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Summary

Survival analysis is used in various fields for analyzing data involving the duration

between two events. It is also known as event history analysis, lifetime data analysis,

reliability analysis or time to event analysis. One of the difficulties which arise in this

area is the presence of censored data. The lifetime of an individual is censored when it

cannot be exactly measured but partial information is available. Different circumstances

can produce different types of censoring. Interval censoring refers to the situation when

the event of interest cannot be directly observed and it is only known to have occurred

during a random interval of time. This kind of censoring has produced a lot of work

in the last years and typically occurs for individuals in a study being inspected or

observed intermittently, so that an individual’s lifetime is known only to lie between

two successive observation times.

This PhD thesis is divided into two parts which handle two important issues of

interval censored data. The first part is composed by Chapter 2 and Chapter 3 and it is

about formal conditions which allow estimation of the lifetime distribution to be based

on a well known simplified likelihood. The second part is composed by Chapter 4 and

Chapter 5 and it is devoted to the study of test procedures for the k–sample problem.

The present work reproduces several material which has already been published or has

been already submitted.

In Chapter 1 we give the basic notation used in this PhD thesis. We also describe the

nonparametric approach to estimate the distribution function of the lifetime variable.

Peto (1973) and Turnbull (1976) were the first authors to propose an estimation method

which is based on a simplified version of the likelihood function. Other authors have
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studied the uniqueness of the solution given by this method (Gentleman and Geyer,

1994) or have improved it with new proposals (Wellner and Zhan, 1997).

Chapter 2 reproduces the paper of Oller et al. (2004). We prove the equivalence

between different characterizations of noninformative censoring appeared in the liter-

ature and we define an analogous constant–sum condition to the one derived in the

context of right censoring. We prove as well that when the noninformative condition

or the constant–sum condition holds, the simplified likelihood can be used to obtain

the nonparametric maximum likelihood estimator (NPMLE) of the failure time dis-

tribution function. Finally, we characterize the constant–sum property according to

different types of censoring. In Chapter 3 we study the relevance of the constant–sum

property in the identifiability of the lifetime distribution. We show that the lifetime

distribution is not identifiable outside the class of constant–sum models. We also show

that the lifetime probabilities assigned to the observable intervals are identifiable inside

the class of constant–sum models. We illustrate all these notions with several examples.

Chapter 4 has partially been published in the survey paper of Gómez et al. (2004).

It gives a general view of those procedures which have been applied in the nonparametric

problem of the comparison of two or more interval–censored samples. We also develop

some S–Plus routines which implement the permutational version of the Wilcoxon test,

the Logrank test and the t–test for interval censored data (Fay and Shih, 1998). This

part of the PhD thesis is completed in Chapter 5 by different proposals of extension of

the Jonckeere’s test. In order to test for an increasing trend in the k–sample problem,

Abel (1986) gives one of the few generalizations of the Jonckheree’s test for interval–

censored data. We also suggest different Jonckheere–type tests according to the tests

presented in Chapter 4. We use permutational and Monte Carlo approaches. We give

computer programs for each proposal and perform a simulation study in order compare

the power of each proposal under different parametric assumptions and different alter-

natives. We motivate both chapters with the analysis of a set of data from a study of the

benefits of zidovudine in patients in the early stages of the HIV infection (Volberding
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et al., 1995).

Finally, Chapter 6 summarizes results and address those aspects which remain to

be completed.





Resum

L’anàlisi de la supervivència s’utilitza en diversos àmbits per tal d’analitzar dades que

mesuren el temps transcorregut entre dos successos. També s’anomena anàlisi de la

història dels esdeveniments, anàlisi de temps de vida, anàlisi de fiabilitat o anàlisi del

temps fins a l’esdeveniment. Una de les dificultats que té aquesta àrea de l’estad́ıstica

és la presència de dades censurades. El temps de vida d’un individu és censurat

quan només és possible mesurar–lo de manera parcial o inexacta. Hi ha diverses cir-

cumstàncies que donen lloc a diversos tipus de censura. La censura en un interval fa

referència a una situació on el succés d’interès no es pot observar directament i només

tenim coneixement que ha tingut lloc en un interval de temps aleatori. Aquest tipus de

censura ha generat molta recerca en els darrers anys i usualment té lloc en estudis on

els individus són inspeccionats o observats de manera intermitent. En aquesta situació

només tenim coneixement que el temps de vida de l’individu es troba entre dos temps

d’inspecció consecutius.

Aquesta tesi doctoral es divideix en dues parts que tracten dues qüestions impor-

tants que fan referència a dades amb censura en un interval. La primera part la formen

els caṕıtols 2 i 3 els quals tracten sobre condicions formals que asseguren que la versem-

blança simplificada pot ser utilitzada en l’estimació de la distribució del temps de vida.

La segona part la formen els caṕıtols 4 i 5 que es dediquen a l’estudi de procediments

estad́ıstics pel problema de k mostres. El treball que reprodüım conté diversos materials

que ja s’han publicat o ja s’han presentat per ser considerats com objecte de publicació.

En el caṕıtol 1 introdüım la notació bàsica que s’utilitza en la tesi doctoral. També

fem una descripció de l’enfocament no paramètric en l’estimació de la funció de dis-
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tribució del temps de vida. Peto (1973) i Turnbull (1976) van ser els primers autors

que van proposar un mètode d’estimació basat en la versió simplificada de la funció de

versemblança. Altres autors han estudiat la unicitat de la solució obtinguda en aquest

mètode (Gentleman i Geyer, 1994) o han millorat el mètode amb noves propostes (Well-

ner i Zhan, 1997).

El caṕıtol 2 reprodueix l’article d’Oller et al. (2004). Demostrem l’equivalència

entre les diferents caracteritzacions de censura no informativa que podem trobar a la

bibliografia i definim una condició de suma constant anàloga a l’obtinguda en el context

de censura per la dreta. També demostrem que si la condició de no informació o la

condició de suma constant són certes, la versemblança simplificada es pot utilitzar per

obtenir l’estimador de màxima versemblança no paramètric (NPMLE) de la funció de

distribució del temps de vida. Finalment, caracteritzem la propietat de suma constant

d’acord amb diversos tipus de censura. En el caṕıtol 3 estudiem quina relació té la

propietat de suma constant en la identificació de la distribució del temps de vida.

Demostrem que la distribució del temps de vida no és identificable fora de la classe dels

models de suma constant. També demostrem que la probabilitat del temps de vida en

cadascun dels intervals observables és identificable dins la classe dels models de suma

constant. Tots aquests conceptes els il·lustrem amb diversos exemples.

El caṕıtol 4 s’ha publicat parcialment en l’article de revisió metodològica de Gómez

et al. (2004). Proporciona una visió general d’aquelles tècniques que s’han aplicat en

el problema no paramètric de comparació de dues o més mostres amb dades censurades

en un interval. També hem desenvolupat algunes rutines amb S–Plus que implementen

la versió permutacional del tests de Wilcoxon, Logrank i de la t de Student per a dades

censurades en un interval (Fay and Shih, 1998). Aquesta part de la tesi doctoral es

complementa en el caṕıtol 5 amb diverses propostes d’extensió del test de Jonckeere.

Amb l’objectiu de provar una tendència en el problema de k mostres, Abel (1986)

va realitzar una de les poques generalitzacions del test de Jonckheere per a dades

censurades en un interval. Nosaltres proposem altres generalitzacions d’acord amb els
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resultats presentats en el caṕıtol 4. Utilitzem enfocaments permutacionals i de Monte

Carlo. Proporcionem programes informàtics per a cada proposta i realitzem un estudi

de simulació per tal de comparar la potència de cada proposta sota diferents models

paramètrics i supòsits de tendència. Com a motivació de la metodologia, en els dos

caṕıtols s’analitza un conjunt de dades d’un estudi sobre els beneficis de la zidovudina

en pacients en els primers estadis de la infecció del virus VIH (Volberding et al., 1995).

Finalment, el caṕıtol 6 resumeix els resultats i destaca aquells aspectes que s’han

de completar en el futur.
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Chapter 1

Introduction

At the beginning, this PhD thesis was motivated by the idea that existing k–sample

testing methods for interval–censored data needed to be compiled and studied for further

extension. The results from this research were part of the material for a seminar course

that Guadalupe Gómez, M. Luz Calle and Ramon Oller did in 2001. Then, the work

done in this seminar produced a survey paper about interval censoring (Gómez et al.,

2004) and motivated a new interest for this PhD thesis. From the interval censoring

issues introduced in this seminar we questioned ourselves about the validity of the

simplified likelihood function. Henceforth, this PhD thesis followed two lines of research.

The first part of the present work (Chapter 2 and Chapter 3) is about theoretical

foundations in the nonparametric estimation approach. The second part (Chapter 4

and Chapter 5) considers existing methods for the k–sample problem and gives new

proposals.

This chapter deals with the basic concepts and notation needed for the subsequent

chapters. In Section 1.1 we give the notion of interval–censored data. In the following

sections we consider different aspects related to the nonparametric maximum likelihood

estimator (NPMLE) of the lifetime distribution. Section 1.2 introduces the simplified

likelihood function. Section 1.3 is devoted to maximization methods for the simplified

likelihood. Section 1.4 describes the Turnbull’s intervals, that is, the set of intervals

where the nonparametric estimator concentrates its mass. Section 1.5 provides the no-
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tion of self–consistency, a concept which will play an important role in the development

of this PhD thesis. Section 1.6 addresses computation of the NPMLE via the S-Plus

package. Finally, we give an outline of the subsequent chapters in Section 1.7.

1.1 Interval censoring

Methods for lifetime data have been widely used in a large number of studies in medical

and biological sciences. In this setting the lifetime variable of interest, T , is a positive

random variable representing the time until the occurrence of a certain event E . For

instance, in the area of clinical and epidemiological studies, this event of interest is

often the onset of a disease, the disappearance of disease’s symptoms, or death. A

key characteristic that distinguishes survival analysis from other areas in statistics is

that lifetime data are usually censored. Censoring occurs when information about

the lifetimes of some individuals is incomplete. Different circumstances can produce

different types of censoring. It can be distinguished between right-censored data, left-

censored data and interval-censored data.

Interval censoring mechanisms arise when the event of interest cannot be directly

observed and it is only known to have occurred during a random interval of time. In this

situation, the only information about the lifetime T is that it lies between two observed

times L and R. We in fact formally observe a random censoring vector (L,R), such

that T ∈ bL,Rc with probability one. We use the following bracket notation bL,Rc

to indicate an interval that can be closed, open or half open depending on the interval

censoring model. We find in the articles of Peto (1973) and Turnbull (1976) the first

approach to the estimation of the distribution function when data are interval-censored.

These authors consider closed intervals, [L,R], so that exact observations are taking

into account. We find in the literature other censoring mechanisms closely related to the

concept of interval censoring as introduced by Peto and Turnbull. For example, if the

event is only known to be larger or smaller than an observed monitoring time, the data
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conforms to the current status model or interval-censored data, case 1. In experiments

with two monitoring times, U and V with U < V , where it is only possible to determine

whether the event of interest occurs before the first monitoring time (T ≤ U), between

the two monitoring times (U < T ≤ V ), or after the last monitoring time (T > V ),

the observable data is known as interval–censored data, case 2. A natural extension of

case 1 and case 2 models is the case k model, where k is a fixed number of monitoring

times. Schick and Yu (2000) discuss an extended case k model where the number of

monitoring times is random. In all these censoring schemes the intervals are half open

and non–censored observations are not considered. Yu et al. (2000) generalize the case

2 model so that exact observations are allowed.

Many recent books concerning survival analysis have incorporated the interval cen-

sored data topic. We mention as references the last book editions of Kalbfleisch and

Prentice (2002) and Lawless (2003) which give a comprehensive and modern approach

to models and methods for lifetime data.

1.2 The simplified likelihood

A model for interval–censored data is described by the joint distribution, FT,L,R , be-

tween the random variable T and the observables (L,R). The fact that bL,Rc contains

T requires that the support of (T, L,R) is a subset of {(t, l, r) : 0 ≤ l ≤ t ≤ r ≤ +∞}.

We denote the lifetime distribution by

dW (t) = P (T ∈ dt),

and by

dFL,R(l, r) = P (L ∈ dl, R ∈ dr, T ∈ bl, rc) (1.1)

the contribution to the likelihood of an individual with observed interval bl, rc. Because

the construction of the likelihood is not straightforward, the interval censoring prob-

lem has been generally treated via the nonparametric maximization of the simplified
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likelihood defined as the probability that T belongs to bl, rc. This likelihood considers

the observed intervals as fixed in advance and ignores their randomness. If we con-

sider a sample of n independent realizations of the observables, (l1, r1), . . . , (ln, rn), the

simplified likelihood can be expressed as,

L(W ) =
n
∏

i=1

∫

{t:t∈bli,ric}

dW (t) =
n
∏

i=1

PW (bli, ric). (1.2)

As uncensored observations are allowed, we assume in the sequel that PW ({t}) = dW (t).

The appropriateness of the simplified likelihood with interval–censored data has

been based on the so-called noninformative conditions which have been introduced in

the papers of Self and Grossman (1986) and Gómez et al. (2004). In a more general

censoring framework, Heitjan and Rubin (1991), Heitjan (1993) and Gill et al. (1997)

develop and characterize the analogous notion of coarsening at random conditions.

In Oller et al. (2004) different characterizations for the noninformative condition are

given and their equivalence is shown. They introduce a weaker condition, namely the

constant–sum condition, which is sufficient for the validity of the simplified likelihood

(1.2) in a nonparametric estimation of the lifetime probability distribution W . The

constant–sum condition for interval censoring is an extension of the same notion in

Williams and Lagakos (1977) or Ebrahimi et al. (2003), in the context of right censoring,

and Betensky (2000), in the context of current status data.

1.3 Maximum likelihood estimation

The nonparametric likelihood estimator of W (t) is a monotonically increasing function

which maximizes the simplified likelihood function (1.2). The resulting estimator might

not be unique because the likelihood for an interval-censored observation depends only

on the difference between the survival values at the end-points of that interval and

not at all on the detailed behavior within the interval. It is important to remark that
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computational results could be different if we treat intervals as closed, open or half open.

The continuous nature of the variables would induce us to think that such a precision

is not important. However, as it is exposed in Ng (2002), different interpretations of

the intervals lead to different likelihood functions, which in turn could imply different

nonparametric maximum likelihood estimates.

One of the first papers approaching the maximum likelihood estimation for interval–

censored data is due to Peto (1973) who reports data from annual surveys on sexual

maturity development of girls. Peto proposes a method based on maximizing the log–

likelihood by a suitable constrained Newton–Raphson programmed search. Few years

later, Turnbull (1976) approaches the more general problem of the analysis of arbi-

trarily grouped, censored and truncated data and derives a self–consistency method to

obtain the nonparametric estimator of the distribution function. This method can be

taken as a particular case of the expectation–maximization (EM) algorithm and can be

applied, in particular, to deal with interval-censored situations. Few more years elapsed

before these methods were applied in different setups, but these two pioneers papers

are today the seed of most of the practical results. Moreover, many papers since then

consider and discuss computational issues arising in the calculation of the nonpara-

metric maximum likelihood estimation from censored data. For instance, Gentleman

and Geyer (1994) provide standard convex optimization techniques to maximize the

likelihood function and to check the uniqueness of the solution. Another example is the

proposal in Groeneboom and Wellner (1992) who use isotonic regression theory in the

interval censored–data model case 1 and case 2. This proposal implies the application

of the convex minorant algorithm to determine the nonparametric maximum likelihood

estimate. Wellner and Zhan (1997) improve this method with an hybrid algorithm

based on a combination of the EM algorithm and a modified iterative convex minorant

algorithm.
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1.4 Turnbull’s intervals

In what follows we introduce the set of intervals where the nonparametric estimator of

the distribution function W concentrates its mass. As proposed in Turnbull (1976), we

consider closed observed intervals I1 = [l1, r1], . . . , In = [ln, rn]. The definition below

is easily modifiable to cover open or half open intervals. For instance, Gentleman and

Geyer (1994) consider open intervals, Kalbfleisch and Prentice (2002) consider half open

intervals and Yu et al. (2000) consider mixed interval censored data which include

half open intervals and exact observations. From the sets L = {li, 1 ≤ i ≤ n} and

R = {ri, 1 ≤ i ≤ n} we can derive all the distinct closed intervals whose left and right

end-points lie in the sets L and R respectively and which contain no other members

of L or R other than at their left and right endpoints respectively. Let these intervals,

known as Turnbull’s intervals, be written in order as [q1, p1], [q2, p2], . . . , [qm, pm]. We

illustrate this construction with the following example.

Example 1.1. Suppose that the following n = 6 intervals have been observed [0, 1],

[4, 6], [2, 6], [0, 3], [2, 4], [5, 7]. Then, Turnbull’s intervals are given by [q1, p1] = [0, 1],

[q2, p2] = [2, 3], [q3, p3] = [4, 4] and [q4, p4] = [5, 6].

As noted by Peto (1973) and Turnbull (1976), any distribution function which in-

creases outside Turnbull’s intervals cannot be a maximum likelihood estimator of W .

Moreover, the total likelihood is a function only of the amount that the distribution

curve increases in the Turbull’s intervals and is independent of how the increase actually

occurs. Thus, the estimated distribution curve is unspecified in each [qj, pj] and is well

defined and flat between these intervals.

Denoting by wj = PW ([qj, pj]) the weight of the jth interval, j = 1, . . . ,m − 1,
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wm = 1−∑m−1
j=1 wj, we can write down the simplified likelihood (1.2) as

L(w1, . . . , wm−1) =
n
∏

i=1

(

m
∑

j=1

αi
jwj

)

(1.3)

where the indicator αi
j = 1{[qj ,pj ]⊆[li,ri]} expresses whether or not the interval [qj, pj]

is contained in [li, ri]. The vectors w = (w1, . . . , wm) define equivalence classes on

the space of distribution functions W which are flat outside ∪m
j=1[qj, pj]. Therefore,

the maximum will be at best unique only up to equivalence classes and the problem

of maximizing L has been reduced to the finite-dimensional problem of maximizing a

function of w1, . . . , wm−1 subject to the constraints wj ≥ 0 and 1−∑m−1
j=1 wj ≥ 0.

The total likelihood, as a function of w1, . . . , wm−1, is strictly convex (except on

the boundaries of the constrained region on which the likelihood function is zero), so

the values of w1, . . . , wm−1 that maximize it are unique. Let ŵ = (ŵ1, . . . , ŵm) be the

maximizing solution of (1.3). Turnbull’s nonparametric estimator Ŵ for W is given by

Ŵ (t) =







0 if t < q1
ŵ1 + · · ·+ ŵk if pk ≤ t < qk+1, 1 ≤ k ≤ m− 1
1 if t ≥ pm

(1.4)

and is not specified for t ∈ [qj, pj], for 1 ≤ j ≤ m.

The variances and covariances of the non zero ŵk are given by the inverse of the

second derivatives matrix of the logarithm of simplified likelihood (1.3) with respect

to w1, . . . , wm−1. However, there is no yet theoretical justification for this procedure,

the problem being a violation of the usual assumption of a fixed number of unknown

parameters that remains unchanged with increasing the sample size.

Example 1.2. The simplified likelihood corresponding to the previous 6 intervals in
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Example 1.1 is given by

LT (w1, w2, w3, w4) =
6
∏

i=1

(

4
∑

j=1

αi
jPW ([qj, pj])

)

= (w1)(w3 + w4)(w2 + w3 + w4)(w1 + w2)(w2 + w3)(w4),

The maximizing solution is found at the point (ŵ1, ŵ2, ŵ3, ŵ4) = (1
4
, 1

4
, 1

8
, 3

8
) and has

estimated variance-covariance matrix equal to









3/64 −3/64 3/128 −3/128
−3/64 11/64 −19/128 3/128
3/128 −19/128 53/256 −21/256

−3/128 3/128 −21/256 21/256









Thus Turnbull’s nonparametric estimator Ŵ for W is given by

Ŵ (t) =



























0 if t < 0
1
4

if 1 ≤ t < 2
1
2
= 1

4
+ 1

4
if 3 ≤ t < 4

5
8
= 1

4
+ 1

4
+ 1

8
if 4 ≤ t < 5

1 if t ≥ 6

Figure 1.1: Distribution function for the fictitious example. In regions [0, 1], [2, 3], [4, 4], [5, 6] the
distribution function is not identified
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1.5 Self–consistency

We now introduce the concept of self–consistency and give its equivalence with the

property of maximum likelihood. The idea of self-consistency was first used by Efron

(1967) and it is applied in different fields of statistics, see Tarpey and Flury (1996).

If Ŵ 0 denotes the unknown empirical distribution function of the unobserved lifetimes

t1, t2, . . . , tn,

Ŵ 0(t) =
1

n

n
∑

i=1

1{ti≤t},

then a distribution function Ŵ is called a self-consistent estimate of W when

Ŵ (t) = EŴ (Ŵ 0(t)|(l1, r1), . . . , (ln, rn)).

In terms of the Turnbull’s intervals, a self-consistent estimator of w = (w1, . . . , wm) is

defined to be any solution ŵ = (ŵ1, . . . , ŵm) of the following simultaneous equations:

ŵj =
1

n

n
∑

i=1

αi
jŵj

∑m
l=1 α

i
lŵl

1 ≤ j ≤ m. (1.5)

We note that the terms
∑m

l=1 α
i
lŵl correspond to PŴ ([li, ri]), and the self–consistent

equations (1.5) can also be written as

PŴ ([qj, pj]) =

∫ ∫

{(l,r):[qj ,pj ]⊆[l,r]}

PŴ ([qj, pj])

PŴ ([l, r])
dF̂ 0

L,R(l, r) 1 ≤ j ≤ m, (1.6)

where F 0
L,R denotes the empirical distribution function of the observed sample data,

(l1, r1), . . . , (ln, rn),

F̂ 0
L,R(l, r) =

1

n

n
∑

i=1

1{li≤l,ri≤r}.

The maximization of the simplified likelihood (1.3) can be considered as a concave

programming problem with linear constraints. Thus, as noted in Gentleman and Geyer
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(1994), the Kuhn-Tucker conditions are necessary and sufficient for optimality. That

is, ŵ is a maximum likelihood estimate if and only if, for every j, either

∫ ∫

{(l,r):[qj ,pj ]⊆[l,r]}

dF̂ 0
L,R(l, r)

PŴ (bl, rc) =
1

n

n
∑

i=1

αi
j

∑m
l=1 α

i
lŵl

= 1 when ŵj 6= 0, (1.7)

or

∫ ∫

{(l,r):[qj ,pj ]⊆[l,r]}

dF̂ 0
L,R(l, r)

PŴ (bl, rc) =
1

n

n
∑

i=1

αi
j

∑m
l=1 α

i
lŵl

≤ 1 when ŵj = 0. (1.8)

Thus, if ŵ is a maximum likelihood estimator for w, then ŵ satisfies the self-consistent

equations (1.6). Conversely, the solution ŵ of the self-consistent equations (1.6) is the

nonparametric maximum likelihood estimator of w provided that condition (1.8) holds.

1.6 Computational aspects

If we first define µij(w) =
αij

∑m
l=1 α

i
l
wl
wj and τj(w) = 1

n

∑n
i=1 µ

i
j(w), then the expectation–

maximization (EM) algorithm runs as follows:

(A) Choose starting values w0 = (w0
1, . . . , w

0
m). This can be any set of positive num-

bers summing to unity.

(B) Expectation step: evaluate µij(w
0) for i = 1, . . . , n and j = 1, . . . ,m.

(C) Maximization step: obtain improved estimates w1 = (w1
1, . . . , w

1
m) by setting

w1
j = τj(w

0) for j = 1, . . . ,m.

(D) Return to step (B) with w1 replacing w0 till the required accuracy has been

achieved.
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(E) Denote by ŵ = (ŵ1, . . . , ŵm) the limiting solution and check Kuhn-Tucker con-

dition (1.8). Finish if it is satisfied, otherwise go to step (A) and start with a

different set of initial values.

The S–Plus software (version 6.0) provides a set of commands to perform survival

analysis with interval–censored data. The EM algorithm used by this software con-

siders semi–closed intervals (L,R] where L < T ≤ R and incorporates exact, right-

censored, and left-censored data. A vector censor.codes is first defined, it assigns

a numerical value to each individual to distinguish whether the observation is exact

(censor.codes=1), right-censored (censor.codes=0), left-censored (censor.codes=2)

or interval-censored (censor.codes=3). Vectors lower and upper contain the lower and

the upper limit, respectively, of the intervals. These are the objects that the procedure

kaplanMeier needs in order to estimate the survival function using Turnbull’s method,

that is, svf <- kaplanMeier(censor(lower, upper,censor.codes)∼1). Plots of

the estimated survival function can be obtained by either plot(surv.est) or

plot.kaplanMeier(surv.est).

It is important to note that this software occasionally returns a point that is lo-

cal maximum but not is the nonparametric maximum likelihood estimator. See, for

instance, Lawless (2003, page 138).

Example 1.3. We illustrate the S–Plus commands with the previous fictitious example.

It is important to note that the intervals are closed and we should redefine the lower

limits by subtracting a small quantity, say 0.01.

censor.codes <- c(3,3,3,3,3,3)

lower <- c(0,3.99,1.99,0,1.99,4.99)

upper <- c(1,6,6,3,4,7)

The estimated survival function we will obtain with the procedure kaplanMeier is the

following:
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Number Observed: 6

Number Censored: 6

Confidence Type: log

Survival Std.Err 95% LCL 95% UCL

(-Inf, 0.00] 1.000 0.000 1.000 1

( 1, 1.99] 0.750 0.217 0.426 1

( 3, 3.99] 0.501 0.354 0.125 1

( 4, 4.99] 0.375 0.286 0.084 1

( 6, Inf) 0.000 0.000 NA NA

1.7 Outline of the subsequent chapters

Chapter 2 reproduces the paper of Oller et al. (2004). We prove the equivalence be-

tween different characterizations of noninformative censoring appeared in the literature

and we define an analogous constant–sum condition to the one derived in the context

of right censoring. We prove as well that when the noninformative condition or the

constant–sum condition holds, the simplified likelihood can be used to obtain the non-

parametric maximum likelihood estimator (NPMLE) of the failure time distribution

function. Finally, we characterize the constant–sum property according to different

types of censoring.

The work we introduce in Chapter 3 is a sequel of Oller et al. (2004) and it is

under revision in an international journal. We study the relevance of the constant–sum

property in the identifiability of the lifetime distribution. We show that the lifetime

distribution is not identifiable outside the class of constant–sum models. We also show

that the lifetime probabilities assigned to the observable intervals are identifiable inside

the class of constant–sum models. We illustrate all these notions with several examples

and situations.

Chapter 4 has partially been published in the survey paper of Gómez et al. (2004).

It gives a general view of those procedures which have been applied in the nonparametric

problem of the comparison of two or more interval–censored samples. We also propose
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a new test which generalizes the class of tests for right–censored data in Harrington

and Fleming (1982). We have implemented with S–Plus functions those tests which are

based on a permutational distribution method.

In Chapter 5 we propose different extensions of the Jonckeere’s test. In order to

test for an increasing trend in the k–sample problem, Abel (1986) gives one of the few

generalizations of the Jonckheree’s test for interval–censored data. We also suggest

different Jonckheere–type tests according to the tests presented in Chapter 4. We

use permutational and Monte Carlo approaches. We give computer programs for each

proposal and perform a simulation study in order compare the power of each proposal

under different parametric assumptions and different alternatives. We motivate Chapter

4 and Chapter 5 with the analysis of a set of data from a study of the benefits of

zidovudine in patients in the early stages of the HIV infection (Volberding et al., 1995).

Finally, Chapter 6 summarizes results and address those aspects which remain to

be completed.





Chapter 2

Model characterizations for the
validity of the simplified likelihood

As we have introduced in Chapter 1, inference methods with interval–censored data

are mainly based on what we will refer to as the simplified likelihood, that is, the

likelihood we would obtain if the censoring intervals were fixed in advance and we

would ignore their randomness. Turnbull (1976), Groeneboom and Wellner (1992) and

Shick and Yu (2000), among other authors, approach the estimation of the distribution

function via the simplified likelihood. In this chapter we discuss different conditions

under which such likelihood–based inferences are correct. Williams and Lagakos (1977),

in the context of right censoring, and Betensky (2000), in the context of current status

data, addressed an analogous problem. Sufficient conditions for the appropriateness

of the simplified likelihood with interval–censored data are introduced in the papers

of Self and Grossman (1986) and Gómez et al. (2004). In a more general censoring

framework, Heitjan and Rubin (1991), Heitjan (1993) and Gill et al. (1997) develop and

characterize a closely related concept, the so–called coarsening at random conditions.

This chapter adapts the paper of R. Oller, G. Gómez and M. L. Calle (2004) pub-

lished in The Canadian Journal of Statistics to the terminology of this work. The

remainder of this chapter is organized as follows. Section 2.1 introduces different non-

informative censoring conditions and states their equivalences. In Section 2.2 we gen-

eralize the constant–sum condition introduced by Williams and Lagakos (1977) in the
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context of right–censoring. We distinguish between the constant–sum condition, which

ensures that the inference process can omit the randomness of the intervals, and the

noninformative conditions, which ensure that the censoring mechanism cannot affect

the distribution of the time to the event of interest. We state the relationship between

these two concepts. Section 2.3 reviews specific censoring schemes and states the general

concepts of noninformativeness and constant–sum for these models.

2.1 Noninformative models

The goal of this work is to define conditions under which the contribution to the like-

lihood of an individual dFL,R(l, r) = P (L ∈ dl, R ∈ dr, T ∈ bl, rc) is proportional to

PW (bl, rc), that is, the probability that T belongs to bl, rc ignoring the censoring mech-

anism. The noninformative censoring condition is usually assumed to justify the use

of the simplified likelihood. We will show later that, indeed, under a noninformative

censoring mechanism, the nonparametric maximum likelihood estimator (NPMLE) of

the lifetime distribution function, W , also maximizes the simplified likelihood. First,

we introduce in Theorem 2.1 three definitions for noninformativeness of the interval

censoring mechanism and we prove that they are equivalent. The first characterization

has been proposed in Self and Grossman (1986) and it is in terms of the conditional

distribution function of the lifetime variable given the observables, FT |L,R. The second

and third characterizations are in terms of the conditional distribution function of the

observables given the lifetime variable, FL,R|T . Gómez et al. (2004) use the second

definition to derive the simplified likelihood, while the third definition follows from the

coarsening at random notion used in Heitjan and Rubin (1991), Heitjan (1993) and Gill

et al. (1997).

Theorem 2.1. The following properties define the noninformative condition and are

equivalent:
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(a) The conditional distribution of T given L and R satisfies

dFT |L,R(t|l, r) =
dW (t)

PW (bl, rc) 1{t∈bl,rc}

that is, censoring in bl, rc provides the same information as T being in bl, rc.

(b) The conditional distribution of L and R given T satisfies that

dFL,R|T (l, r|t) =
dFL,R(l, r)

PW (bl, rc) 1{t∈bl,rc} (2.1)

that is, the observables (l, r) are not influenced by the specific value of T in bl, rc.

(c) The conditional distribution of L and R given T satisfies that

dFL,R|T (l, r|t) = dFL,R|T (l, r|t′) on {(l, r) : t ∈ bl, rc and t′ ∈ bl, rc}

that is, two specific values of T that are consistent with the observables always

provide the same information.

Proof:

(a) implies (b):

If dFT |L,R(t|l, r) =
dW (t)

PW (bl, rc) 1{t∈bl,rc}, then for any (t, l, r) such that t ∈ bl, rc,

following the usual rules for conditional distributions, we have

dFL,R|T (l, r|t) =
dFT,L,R(t, l, r)

dW (t)
=
dFT |L,R(t|l, r)dFL,R(l, r)

dW (t)

=
dW (t)dFL,R(l, r)

PW (bl, rc)dW (t)
=
dFL,R(l, r)

PW (bl, rc)

(c) follows straightforwardly from (b). The proof is omitted.
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(c) implies (a):

If dFL,R|T (l, r|t) = dFL,R|T (l, r|t′) on {(l, r) : t ∈ bl, rc and t′ ∈ bl, rc}, then for any

fixed (t, l, r) such that t ∈ bl, rc

dFL,R(l, r) =

∫

{s:s∈bl,rc}

dFT,L,R(s, l, r) =

∫

{s:s∈bl,rc}

dFL,R|T (l, r|s)dW (s)

=

∫

{s:s∈bl,rc}

dFL,R|T (l, r|t)dW (s) = dFL,R|T (l, r|t)PW (bl, rc)

Then, if we use this last equality and we follow the usual rules for conditional distribu-

tions, we have

dFT |L,R(t|l, r) =
dFT,L,R(t, l, r)

dFL,R(l, r)
=

dFL,R|T (l, r|t) dW (t)

dFL,R|T (l, r|t) PW (bl, rc) =
dW (t)

PW (bl, rc)

¤

2.2 Constant–sum models

As mentioned before, the noninformative censoring condition allows to obtain the

NPMLE of W using the simplified likelihood. That is, the observables can be treated

as fixed in advance when making nonparametric inferences for the lifetime distribution

function. Here we introduce a weaker condition, namely the constant–sum condition,

which is sufficient for these inferences to be correct.

The following definition for the constant–sum condition extends that of Williams

and Lagakos (1977) in the context of right censoring. The condition proposed here is

based on the marginal laws of the censoring model, W and FL,R.

Definition 2.2. A censoring model is constant–sum if and only if, for any t ≥ 0 such

that dW (t) 6= 0, the following equation holds

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)

PW (bl, rc) = 1. (2.2)
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Theorem 2.3. If a censoring model is constant–sum, the NPMLE of the lifetime dis-

tribution function also maximizes the simplified likelihood.

Proof:

Let us start by denoting the support of the lifetime variable asDW ={t ≥ 0: dW (t) 6=0}.

Consider a random sample bl1, r1c, . . . , bln, rnc, of (L,R). The logarithm of the full

likelihood (equation (1.1)) can be written as

n
∑

i=1

logPW (bli, ric) +
n
∑

i=1

log dK(li, ri) (2.3)

where PW (bl, rc) =
∫

DW∩{t:t∈bl,rc}

dW (t) and dK(l, r) = P (L ∈ dl, R ∈ dr| T ∈ bl, rc).

The NPMLE of the pair (W, dK) is obtained by maximizing equation (2.3) subject to

the constraints: (i) W is a distribution function with support DW , (ii) dK takes values

in [0, 1] and (iii) the following link between W and dK given by the total probability

of the observables

∫ ∫

{0≤l≤r}

dFL,R(l, r) =

∫ ∫

{0≤l≤r}

PW (bl, rc)dK(l, r) = 1. (2.4)

Equation (2.4) can be equivalently written as

∫

DW

(∫ ∫

{(l,r):t∈bl,rc}

dK(l, r)

)

dW (t) = 1.

If we assume that the model is constant-sum, then in the maximization problem we

have to add equation (2.2) as a new constraint (iv)

∫ ∫

{(l,r):t∈bl,rc}

dK(l, r) = 1 for any t ∈ DW .

Condition (iii) derives from condition (iv), and consequently it can be omitted in

the maximization problem. This means that equation (2.4) is no longer a constraint
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between W and dK. Thus, the NPMLE of each component of the pair (W, dK) can

be obtained separately by maximizing the left–hand side of equation (2.3) under the

constraint (i) and maximizing the right–hand side of equation (2.3) under the constraint

(ii) and (iv). This proves the theorem because the left–hand side of equation (2.3) is

the logarithm of the simplified likelihood for the given sample.

¤

For the sake of completeness, it is interesting to note that for any t ≥ 0 the constant–

sum condition (2.2) can be expressed as well as

∫ ∫

{(l,r):t∈bl,rc}

dW (t)

PW (bl, rc) dFL,R(l, r) = dW (t). (2.5)

Equation (2.5) is the well-known self–consistent equation which is the basis of the

nonparametric maximum likelihood estimation of W , see Turnbull (1976).

In the rest of this section we discuss the relationship between the noninformative

and the constant–sum conditions. The following two propositions show that the non-

informative condition is sufficient but not necessary for a model to be constant–sum.

Proposition 2.4. If a censoring model is noninformative then the model is constant–

sum.

Proof:

Indeed, for any t ≥ 0 such that dW (t) 6= 0, it follows from Equation (2.1) that

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)

PW (bl, rc) =

∫ ∫

{(l,r):t∈bl,rc}

dFL,R|T (l, r|t) = 1

and, consequently, the constant–sum condition holds.

¤
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This proposition together with Theorem 2.3 justifies the use of the simplified like-

lihood when the censoring mechanism is noninformative. Next proposition ensures

that if the underlying model is constant–sum, there exists a full model that satisfies

the noninformative condition and has the same marginal laws of the lifetimes and the

observables.

Proposition 2.5. If a censoring model, FT1,L1,R1
, satisfies the constant–sum condition,

then there always exists a noninformative model, FT2,L2,R2
, such that W2 = W1 and

FL2,R2
= FL1,R1

.

Proof:

Define FT2,L2,R2
by

dFT2,L2,R2
(t, l, r) =

dW1(t)dFL1,R1
(l, r)

PW1
(bl, rc) 1{t∈bl,rc}.

Since model FT1,L1,R1
is constant–sum, the model FT2,L2,R2

defines a probability measure

such that T2 ∈ bL2, R2c with probability one:

∫ ∫ ∫

{(t,l,r):t∈bl,rc}

dFT2,L2,R2
(t, l, r) =

∫ +∞

0

dW1(t)

(∫ ∫

{(l,r):t∈bl,rc}

dFL1,R1
(l, r)

PW1
(bl, rc)

)

=

∫ +∞

0

dW1(t) = 1.

Furthermore, for any t ≥ 0, one has

dW2(t) =

∫ ∫

{(l,r):t∈bl,rc}

dFT2,L2,R2
(t, l, r)

= dW1(t)

(∫ ∫

{(l,r):t∈bl,rc}

dFL1,R1
(l, r)

PW1
(bl, rc)

)

= dW1(t)

and for any (l, r) such that 0 ≤ l ≤ r,
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dFL2,R2
(l, r) =

∫

{t:t∈bl,rc}

dFT2,L2,R2
(t, l, r)

= dFL1,R1
(l, r)

(∫

{t:t∈bl,rc}

dW1(t)

PW1
(bl, rc)

)

= dFL1,R1
(l, r).

Finally, it follows that FL2,R2|T2
satisfies Equation (2.1) for any (t, l, r) such that

t ∈ bl, rc and dW2(t) 6= 0, viz.

dFL2,R2|T2
(l, r|t) = dFT2,L2,R2

(t, l, r)

dW2(t)
=
dW1(t)dFL1,R1

(l, r)

PW1
(bl, rc)dW2(t)

=
dFL2,R2

(l, r)

PW2
(bl, rc) .

¤

Further discussion about the relationship between the noninformative and the

constant–sum conditions is given by Lawless (2004). The author consider situations

where an inspection process defines the censoring observations. Then, the indepen-

dence between the inspection process and T implies that the noninformative condition,

and consequently the constant–sum condition, holds. Moreover, when the inspection

process depends on T , Lawless (2004) proves that the constant–sum property is equiv-

alent to the existence of an alternative inspection process which is independent of T

and which gives the same distribution for the observables, FL,R, as the underlying true

inspection process.

In the following example we illustrate that the constant–sum condition does not

imply the noninformative condition.

Example 2.6. Here we present two related models sharing the same marginal distri-

butions. The first one satisfies the constant–sum condition but not the noninformative

censoring condition while the second one is noninformative.

LetDW = {0, 1, 2, 3} be the support of the lifetime variable andDFL,R = {[0, 0], [0, 2],

[1, 1], [1, 3], [2, 2], [3, 3]} the observable censoring intervals. We consider the model de-

termined by the joint probability between the lifetime variable and the observables,
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dFT,L,R(t, l, r), given by Table 2.1. It is easy to verify that this model holds the constant–

sum condition (2.2) for each t ∈ {0, 1, 2, 3}. For instance, for t = 1 the constant–sum

condition is

∑

{(l,r):1∈bl,rc}

dFL,R(l, r)

PW (bl, rc) =
dFL,R(0, 2)

PW (b0, 2c) +
dFL,R(1, 1)

PW (b1, 1c) +
dFL,R(1, 3)

PW (b1, 3c) =

=
3/16

3/4
+

2/16

1/4
+

3/16

3/4
= 1.

However, this model does not hold the noninformative condition. For instance,

dFL,R|T (0, 2|0) = 1/4, while dFL,R|T (0, 2|1) = 0 and dFL,R|T (0, 2|2) = 1/2, so condi-

tion (c) in Theorem 2.1 fails.

Table 2.1: Joint probability dFT,L,R of a constant–sum model.

'

&

$

%

bl, rc [0,0] [0,2] [1,1] [1,3] [2,2] [3,3]
t dW (t)
0 3/16 1/16 0 0 0 0 1/4
1 0 0 2/16 2/16 0 0 1/4
2 0 2/16 0 0 2/16 0 1/4
3 0 0 0 1/16 0 3/16 1/4
dFL,R(l, r) 3/16 3/16 2/16 3/16 2/16 3/16 1

In Table 2.2, we used Proposition 2.5 to construct a noninformative version of the

above model. Note that, since both models have the same marginal distributions,

they are indistinguishable on the basis of repeated observations and inferences for the

lifetime probabilities will lead to the same estimate of (dW (0), dW (1), dW (2), dW (3)) =

(1/4, 1/4, 1/4, 1/4).
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Table 2.2: Joint probability dFT,L,R of a noninformative model.

'

&

$

%

bl, rc [0,0] [0,2] [1,1] [1,3] [2,2] [3,3]
t dW (t)
0 3/16 1/16 0 0 0 0 1/4
1 0 1/16 2/16 1/16 0 0 1/4
2 0 1/16 0 1/16 2/16 0 1/4
3 0 0 0 1/16 0 3/16 1/4
dFL,R(l, r) 3/16 3/16 2/16 3/16 2/16 3/16 1

2.3 Censoring models

We discuss the meaning of the noninformative and constant–sum conditions for the

particular cases of right–censored data, double–censored data and interval–censored

data case k. The results for right–censored data and interval–censored data case 1 are

similar to those in Williams and Lagakos (1977) and Betensky (2000), respectively.

2.3.1 Right–censored data

Right censored-data arise when the event of interest can only be observed if the lifetime

does not exceed the value of a positive random censoring variable, C. The observed

data for an individual is traditionally expressed by the pair (X, δ) where X = min(T,C)

and δ = 1{T≤C}. Using interval censoring notation, the vector of observables is,

(L,R) = (T, T ) · δ + (C,+∞) · (1− δ)

and the observable intervals are defined as

bl, rc =
{

[l, r] if l = r
(l, r) if r = +∞.



2.3 Censoring models 25

Thus, the joint distribution function for L,R, T is given by:

dFT,L,R(t, l, r) =







P (T ∈ dt, C ≥ t) if l = t = r
P (T ∈ dt, C ∈ dl) if l < t and r = +∞
0 otherwise.

Following analogous steps to the proof of Proposition 2.7 given in Subsection 2.3.3,

the noninformative condition and the constant–sum condition are respectively given by:

P (C ∈ dl|T = t) = P (C ∈ dl|T > l) for any t > l > 0

P (C ≥ t|T = t) +

∫ t−

0

P (C ∈ dl|T > l) = 1 for any t ≥ 0 such that dW (t) 6= 0.

When T and C are continuous, Kalbfleisch and MacKay (1979) show that the constant–

sum condition is equivalent to the following relationship between hazard functions,

P (T ∈ dt|C ≥ t, T ≥ t) = P (T ∈ dt|T ≥ t) for any t > 0 .

The characterization in terms of the hazard functions is easier to interpret and can be

viewed as a kind of noninformative condition. However, as it is shown in Proposition

2.4, the constant–sum condition is weaker than the non–informative condition defined

in this paper. Williams and Lagakos (1977) give an example of a right–censored model

which is constant–sum but informative. We also note that if the variables T and C are

independent, then the constant–sum condition as well as the noninformative condition

are satisfied.

2.3.2 Doubly–censored data

Data is said to be doubly–censored when the event of interest can only be observed

inside the window [C1, C2], where C1 and C2 are positive random variables and C1 < C2

(Chang and Yang, 1987). The observed data for an individual is of the form (X, δ, γ)
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where δ = 1{T<C1}, γ = 1{T≤C2} and X = C1 · δ + T · (1− δ) · γ + C2 · (1− δ) · (1− γ).

In the interval censoring framework, the vector of observables can be expressed as

(L,R) = (0, C1) · δ + (T, T ) · (1− δ) · γ + (C2,+∞) · (1− δ) · (1− γ)

and intervals are defined as

bl, rc =







[l, r) if l = 0
[l, r] if l = r
(l, r) if r = +∞.

In this model the joint probability law of the lifetimes and the observables is given by,

dFT,L,R(t, l, r) =















P (T ∈ dt, C1 ∈ dr) if l = 0 and t < r
P (T ∈ dt, C1 ≤ t, C2 ≥ t) if l = t = r
P (T ∈ dt, C2 ∈ dl) if l < t and r = +∞
0 otherwise.

Under a double censoring setup the noninformative condition is expressed through

the following two equalities:

• P (C1 ∈ dr|T = t) = P (C1 ∈ dr|T < r) for any 0 < t < r

• P (C2 ∈ dl|T = t) = P (C2 ∈ dl|T > l) for any t > l > 0.

Furthermore, for any t ≥ 0 such that dW (t) 6= 0, the constant–sum condition reduces

to
∫ +∞

t

P (C1 ∈ dr|T < r) + P (C1 ≤ t, C2 ≥ t|T = t)

+

∫ t−

0

P (C2 ∈ dl|T > l) = 1.

We observe again that independence between T and (C1, C2) implies both conditions.

Further details on the development are similar to those given below in Proposition 2.7.
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2.3.3 Interval–censored data, case k

This interval censoring scheme has been widely studied, specially the case 1 and case

2 (Groeneboom and Wellner, 1992; Schick and Yu, 2000). In the interval–censored

model, case 1 or current status data, the event is only known to be larger or smaller

than an observed monitoring time. The interval–censored model, case 2, considers two

monitoring times, X1 and X2 with X1 < X2, where it is only possible to determine

whether the event of interest occurs before the first monitoring time (T ≤ X1), between

the two monitoring times (X1 < T ≤ X2), or after the last monitoring time (T >

X2). Although interval censoring case 2 looks like the double censoring model, it is

fundamentally different because the value of T is unknown inside the window (X1, X2].

The general case k model considers k positive random monitoring times, X1 < · · · < Xk,

such that the event of interest can only be determined to have occurred before, between

or after those times. The vector of observables is

(L,R) = (0, X1)1{T≤X1} +
k
∑

j=2

{

(Xj−1, Xj)1{Xj−1<T≤Xj}

}

+ (Xk,+∞)1{T>Xk}.

Thus, the intervals are defined as,

bl, rc =
{

(l, r) if r = +∞.
(l, r] otherwise

The joint distribution function for L,R, T is expressed as

dFT,L,R(t, l, r) =



























P (T ∈ dt,X1 ∈ dr) if l = 0 and t ≤ r
k
∑

j=2

P (T ∈ dt,Xj−1 ∈ dl,Xj ∈ dr) if 0< l <t ≤ r<+∞

P (T ∈ dt,Xk ∈ dl) if l < t and r = +∞
0 otherwise.

Proposition 2.7. In the case k interval censoring model the noninformative condition

can be written as,



28 Model characterizations for the validity of the simplified likelihood

• P (X1 ∈ dr|T = t) = P (X1 ∈ dr|T ≤ r) for any 0 < t ≤ r

•
k
∑

j=2

P (Xj−1∈ dl,Xj∈ dr|T = t) =
k
∑

j=2

P (Xj−1∈ dl,Xj∈ dr|l < T ≤ r)

for any 0 < l < t ≤ r

• P (Xk ∈ dl|T = t) = P (Xk ∈ dl|T > l) for any t > l > 0

and, for any t ≥ 0 such that dW (t) 6= 0, the constant–sum equation is

∫ +∞

t−

P (X1 ∈ dr|T ≤ r) +
k
∑

j=2

∫ t−

0

∫ +∞

t−
P (Xj−1 ∈ dl,Xj ∈ dr|l < T ≤ r)

+

∫ t−

0

P (Xk ∈ dl|T > l) = 1.

Proof:

The definition of the case k interval censoring model, FT,L,R, implies that

dFL,R|T (l, r|t) =



























P (X1 ∈ dr|T = t) if l = 0 and t ≤ r
k
∑

j=2

P (Xj−1 ∈ dl,Xj ∈ dr|T = t) if 0< l <t ≤ r<+∞

P (Xk ∈ dl|T = t) if l < t and r = +∞
0 otherwise

and

dFL,R(l, r) =



























P (T ≤ r,X1 ∈ dr) if l = 0
k
∑

j=2

P (l < T ≤ r,Xj−1 ∈ dl,Xj ∈ dr) if 0< l <r<+∞

P (T > l,Xk ∈ dl) if r = +∞
0 otherwise
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Thus,

dFL,R(l, r)

PW (bl, rc) =



























P (X1 ∈ dr|T ≤ r) if l = 0
k
∑

j=2

P (Xj−1 ∈ dl,Xj ∈ dr|l < T ≤ r) if 0< l <r<+∞

P (Xk ∈ dl|T > l) if r = +∞
0 otherwise

If we impose the second characterization of the noninformative condition in terms

of the above expressions, then the following equations should be satisfied:

• If l = 0 and t ≤ r, P (X1 ∈ dr|T = t) = P (X1 ∈ dr|T ≤ r).

• If 0 < l < t ≤ r < +∞,
k
∑

j=2

P (Xj−1 ∈ dl,Xj ∈ dr|T = t) =
k
∑

j=2

P (Xj−1 ∈

dl,Xj ∈ dr|l < T ≤ r).

• If t > l and r = +∞, P (Xk ∈ dl|T = t) = P (Xk ∈ dl|T > l).

Furthermore, for any t ≥ 0 such that dW (t) 6= 0, the constant–sum condition can be

written as:

∫ +∞

t−

P (X1 ∈ dr|T ≤ r) +
k
∑

j=2

∫ t−

0

∫ +∞

t−
P (Xj−1 ∈ dl,Xj ∈ dr|l < T ≤ r)

+

∫ t−

0

P (Xk ∈ dl|T > l) = 1

¤

Proposition 2.8. If T is a positive continuous random variable with dW (t) 6= 0 for

any t > 0, then the constant–sum condition reduces to the following equality

P (X1 ∈ dt|T ≤ t) +
k
∑

j=2

∫

{l:l∈(0,t)}

P (Xj−1 ∈ dl,Xj ∈ dt|l < T ≤ t)
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=
k
∑

j=2

∫

{r:r∈(t,+∞)}

P (Xj−1 ∈ dt,Xj ∈ dr|t < T ≤ r) + P (Xk ∈ dt|T > t).

Proof:

This result can be shown in a general interval censoring model supposing that intervals

cannot be singletons and T is a positive random variable with dW (t) 6= 0 for any t > 0.

Then, we have to prove that the constant–sum condition reduces to

∫

{l:l∈[0,t)}

dFL,R(l, t)

PW ((l, t])
=

∫

{r:r∈(t,+∞]}

dFL,R(t, r)

PW ((t, r])
.

We will suppose that bl, rc = (l, r] without loss of generality.

If the constant–sum condition holds, and we define dK(l, r) =
dFL,R(l, r)

PW (bl, rc) , then for

any t > 0 it follows that

1 =

∫

[0,t)

∫

[t,+∞]

dK(l, r).

This property implies that for any 0 < a < b < +∞

∫

[0,a)

∫

[a,+∞]

dK(l, r) =

∫

[0,b)

∫

[b,+∞]

dK(l, r).

By splitting the support of the intervals as [a,+∞] = [a, b) ∪ [b,+∞] and [0, b) =

[0, a)∪ [a, b) and simplifying terms, we see that that this equality can also be expressed

as
∫

[0,a)

∫

[a,b)

dK(l, r) =

∫

[a,b)

∫

[b,+∞]

dK(l, r)

From the set equivalence [a, r)× [a, b) = [a, b)× (l, b), the previous equation expands to

∫

[0,r)

∫

[a,b)

dK(l, r) =

∫

[a,b)

∫

(l,+∞]

dK(l, r)
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Thus, we have proved that

∫

{l:l∈[0,t)}

dK(l, t) =

∫

{r:r∈(t,+∞]}

dK(t, r) for any interval

[a, b). Using a monotone class theorem this result extends to the σ-algebra on (0,+∞).

To prove the reciprocal suppose that for any t > 0

∫

{l:l∈[0,t)}

dK(l, t) =

∫

{r:r∈(t,+∞]}

dK(t, r).

Then, it follows, from stepping backward the above equivalences, that for any 0 < a <

b < +∞
∫

[0,a)

∫

[a,+∞]

dK(l, r) =

∫

[0,b)

∫

[b,+∞]

dK(l, r) = k,

which in turn means that

∫ +∞

0

(∫ ∫

{(l,r):t∈(l,r]}

dK(l, r)

)

dW (t) = k

and this equality is only possible if k = 1.

¤

Again, when the model satisfies the usual assumption of independence between the

lifetime, T , and the monitoring times, (X1, . . . , Xk), all the equations in Proposition

2.7 and Proposition 2.8 hold.





Chapter 3

Identifiability and the constant–sum

property

In Chapter 2 different characterizations for the noninformative condition are given and

their equivalence is shown. We have introduced, as well, a weaker condition, namely the

constant–sum condition, which is sufficient for the validity of the simplified likelihood

(1.2) in a nonparametric estimation of the lifetime distribution W . The motivation

of the constant–sum property could be found in situations where an inspection pro-

cess defines the censoring observations. In these particular settings the independence

between the inspection process and T implies that the noninformative condition, and

consequently the constant–sum condition, holds. Moreover, when the inspection process

depends on T , Lawless (2004) proves that the constant–sum property is equivalent to

the existence of an alternative inspection process which is independent of T and which

gives the same distribution for the observables, FL,R, as the underlying true inspection

process. The constant–sum property is a central concept in the development of this

chapter.

The work we introduce here is a sequel of Oller et al. (2004) and it is under revision

in an international journal. The present chapter is devoted to study the identifiability

of the lifetime distribution W on the basis of the assumed support of the lifetimes

DW = {t ≥ 0 : dW (t) > 0} and the distribution for the observables FL,R. This problem

was already approached in the early papers of Tsiatis (1975) and Williams and Lagakos
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(1977) and in more recent papers such as Wang et al. (1994), Betensky (2000) and

Ebrahimi et al. (2003). The results of this chapter emphasize the importance of the

constant–sum condition to ensure identifiability of W . Section 3.1 shows that W is not

identifiable outside the class of constant–sum models. On the other hand, Section 3.2

shows that inside the class of constant–sum models probabilities assigned by W to the

observable intervals bl, rc are identifiable.

3.1 Nonidentifiability outside the class of constant–

sum models

Throughout the chapter it is assumed a known support for the lifetime variable T ,

DW = {t ≥ 0 : dW (t) > 0}, which is not necessarily equal to the usual assump-

tion DW = (0,∞). Definition 3.1 formally gives the notion of nonidentifiability and

Proposition 3.2 gives a constructive way of obtaining censoring models with W being

nonidentifiable.

Definition 3.1. Given a censoring model FT,L,R, we say that W is nonidentifiable

when there exists a censoring model having different lifetime distribution but sharing

the same lifetime support DW and the same distribution for the observables FL,R.

A question which naturally arises when thinking of identifiability is whether any set

D ⊂ [0,+∞) and any bivariate distribution G with support contained in {(l, r) : 0 ≤

l ≤ r ≤ +∞} could respectively be the lifetime support and the observables distribution

of a censoring model. As it is seen in Proposition 3.2 below, the answer is affirmative

provided the following relationship between D and G holds:

∫ ∫

{(l,r):t∈bl,rc}

dG(l, r) > 0 ∀t ∈ D. (3.1)

Relationship (3.1) is a necessary constraint between the lifetime support DW and the
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distribution for the observables FL,R in a censoring model. That is, for any t ∈ DW ,

dW (t) =

∫ ∫

{(l,r):t∈bl,rc}

dFT,L,R(t, l, r) =

∫ ∫

{(l,r):t∈bl,rc}

dFT |L,R(t|l, r)dFL,R(l, r) > 0

and, consequently, the set {(l, r) : t ∈ bl, rc} is a dFL,R–measurable non null set.

Intuitively, relationship (3.1) ensures that any lifetime value t ∈ DW is contained in at

least one observable interval.

Proposition 3.2. If (D, G) is a pair which satisfies equation (3.1) and F is any dis-

tribution function with support D satisfying PF (bl, rc) > 0 dG–almost surely, then

dFT,L,R (t, l, r) =
dF (t) dG(l, r)

PF (bl, rc)
1{t∈bl,rc} (3.2)

defines a censoring model such that (DW , FL,R) = (D, G).

Proof:

We first show that

dFT,L,R (t, l, r) =
dF (t) dG(l, r)

PF (bl, rc)
1{t∈bl,rc}

defines a probability measure such that T ∈ bL,Rc with probability one,

∫ ∫ ∫

{(t,l,r):t∈bl,rc}

dFT,L,R(t, l, r) = 1

This result is easily seen since F is a distribution function which satisfies that

PF (bl, rc) > 0 dG–almost surely and G is a bivariate distribution with support con-

tained in {(l, r) : 0 ≤ l ≤ r ≤ +∞},

∫ ∫ ∫

{(l,r,t):t∈bl,rc}

dFT,L,R(t, l, r) =

∫ ∫

{(l,r): 0≤l≤r≤+∞}

(∫

{t:t∈bl,rc}

dF (t)

PF (bl, rc)

)

dG(l, r)
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=

∫ ∫

{(l,r): 0≤l≤r≤+∞}

dG(l, r) = 1

To prove that DW = D we note that the marginal lifetime distribution which derives

from this censoring model satisfies

dW (t) =

∫ ∫

{(l,r):t∈bl,rc}

dFT,L,R(t, l, r) = dF (t)

(∫ ∫

{(l,r):t∈bl,rc}

dG(l, r)

PF (bl, rc)

)

Since F is a distribution function which has support D, equality DW = D is reached

from the fact that the pair (D, G) holds equation (3.1) and, consequently, the last

element of the right–hand side in equation above is not null for all t ∈ D.

Finally, it follows that any pair (l, r) satisfies that

dFL,R(l, r) =

∫

{t:t∈bl,rc}

dFT,L,R(t, l, r) = dG(l, r)

(∫

{t:t∈bl,rc}

dF (t)

PF (bl, rc)

)

= dG(l, r).

¤

This proposition gives a constructive way of obtaining two different censoring models

sharing the same pair (DW , FL,R) but different probability lifetime distributions. In the

following example, we use this result to illustrate the notion of nonidentifiability.

Example 3.3. We construct two different models with different lifetime

distributionsW1 andW2 but with the same lifetime support DW = {0, 1, 2, 3, 4} and the

same censoring intervals {[0, 1], [0, 2], [2, 4], [3, 4]} having dFL,R observable

probability equal to {1/6, 1/3, 1/3, 1/6}, respectively. In order to build these two

models we use equation (3.2) with two different auxiliary distributions

F1 and F2 defined as (dF1(0), dF1(1), dF1(2), dF1(3), dF1(4)) = (1/5, 1/5, 1/5, 1/5, 1/5)

and (dF2(0), dF2(1), dF2(2), dF2(3), dF2(4)) = (1/8, 1/8, 1/2, 1/8, 1/8). We note that

the pair (DW , FL,R) and the auxiliary distributions F1 and F2 satisfy conditions in

Proposition 3.2. Now, from equation (3.2), the joint probabilities dFT1,L1,R1
(t, l, r) and

dFT2,L2,R2
(t, l, r) for each model are respectively given by Table 3.1 and Table 3.2.
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Table 3.1: Joint probability dFT1,L1,R1
of a non constant–sum model.

'

&

$

%

bl, rc [0,1] [0,2] [2,4] [3,4]
t dW1(t)
0 1/12 1/9 0 0 7/36
1 1/12 1/9 0 0 7/36
2 0 1/9 1/9 0 8/36
3 0 0 1/9 1/12 7/36
4 0 0 1/9 1/12 7/36
dFL1,R1

(l, r) 1/6 1/3 1/3 1/6 1

Table 3.2: Joint probability dFT2,L2,R2
of a non constant–sum model.'

&

$

%

bl, rc [0,1] [0,2] [2,4] [3,4]
t dW2(t)
0 1/12 1/18 0 0 5/36
1 1/12 1/18 0 0 5/36
2 0 2/9 2/9 0 16/36
3 0 0 1/18 1/12 5/36
4 0 0 1/18 1/12 5/36
dFL2,R2

(l, r) 1/6 1/3 1/3 1/6 1

Note that these two models FT1,L1,R1
and FT2,L2,R2

share the same pair (DW , FL,R)

but have different lifetime distributions W1 and W2. Other censoring models with the

same pair (DW , FL,R) could also be built. Thus, it is clear that the pair (DW , FL,R) does

not identify the marginal lifetime distribution without additional assumption. It can

be verified that neither model holds the constant–sum condition (2.2). For instance for

model FT1,L1,R1
and t = 1

∑

{(l,r):1∈bl,rc}

dFL,R(l, r)

PW1
(bl, rc) =

dFL,R(0, 1)

PW1
([0, 1])

+
dFL,R(0, 2)

PW1
([0, 2])

=
1/6

14/36
+

1/3

22/36
= 75/77 6= 1.

Moreover, each model assigns different lifetime probabilities to the observable intervals

bl, rc. For instance, in the first censoring model PW1
([0, 2]) = 22/36 while in the second
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model PW2
([0, 2]) = 26/36. As we show in next section, the constant–sum property is

a sufficient condition for identifying at least the lifetime probabilities assigned to the

observable intervals bl, rc.

3.2 Identifiability inside the class of constant–sum

models

The following theorem shows that the probabilities assigned by the lifetime distribution

to the observable intervals bl, rc can be identified from the pair (DW , FL,R) within the

class of constant–sum models. This result enlightens the importance of the assumed

support of the lifetime variable. However, additional conditions on the observables

support will be necessary to assure the complete identifiability of W .

Theorem 3.4. Let FT,L,R and FT ∗,L∗,R∗ be constant–sum models so that (DW , FL,R) =

(DW ∗ , FL∗,R∗), then PW (bl, rc) = PW ∗(bl, rc) dFL,R–almost surely.

Proof:

If model FT,L,R is constant–sum and DW = DW ∗ then

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)

PW (bl, rc) = 1 ∀t ∈ DW ∗ ,

which implies that

∫ +∞

0

dW ∗(t)

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)

PW (bl, rc) = 1,

which can be rewritten as

∫ ∫

{0≤l≤r≤+∞}

PW ∗(bl, rc)
PW (bl, rc) dFL,R(l, r) = 1. (3.3)
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Analogously, it is clear that starting with model FT ∗,L∗,R∗ it follows that

∫ ∫

{0≤l≤r≤+∞}

PW (bl, rc)
PW ∗(bl, rc)dFL∗,R∗(l, r) = 1. (3.4)

Equations (3.3) and (3.4), identity FL,R = FL∗,R∗ and Lemma A.1 given in Appendix

A prove the theorem.

¤

Example 3.5. We illustrate Theorem 3.4 with two constant–sum models, FT3,L3,R3
and

FT4,L4,R4
, both having the same pair (DW , FL,R) introduced in Example 3.3. From the

joint probability dFT3,L3,R3
(t, l, r) and dFT4,L4,R4

(t, l, r) respectively given by Table 3.3

and Table 3.4, it is easy to verify the constant–sum property.

Table 3.3: Joint probability dFT3,L3,R3
of a constant–sum model.

'

&

$

%

bl, rc [0,1] [0,2] [2,4] [3,4]
t dW3(t)
0 1/24 3/24 0 0 1/6
1 3/24 1/24 0 0 1/6
2 0 1/6 1/6 0 1/3
3 0 0 1/24 3/24 1/6
4 0 0 3/24 1/24 1/6
dFL3,R3

(l, r) 1/6 1/3 1/3 1/6 1

Table 3.4: Joint probability dFT4,L4,R4
of a constant–sum model.'

&

$

%

bl, rc [0,1] [0,2] [2,4] [3,4]
t dW4(t)
0 1/36 3/36 0 0 1/9
1 5/36 3/36 0 0 2/9
2 0 1/6 1/6 0 1/3
3 0 0 3/36 5/36 2/9
4 0 0 3/36 1/36 1/9
dFL4,R4

(l, r) 1/6 1/3 1/3 1/6 1
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Moreover, it follows that both models have different lifetime distributionW3 andW4

but they assign the same lifetime probabilities to the observable intervals: PW3
([0, 1]) =

PW4
([0, 1]) = 1/3, PW3

([0, 2]) = PW4
([0, 2]) = 2/3, PW3

([2, 4]) = PW4
([2, 4]) = 2/3 and

PW3
([3, 4]) = PW4

([3, 4]) = 1/3. Consequently, we also derive that both models assign

the same lifetime probabilities to the sets {0, 1}, {2} and {3, 4}. These sets are the so

called expected Turnbull’s intervals which are defined in the following subsection. This

example confirms that inside the class of constant–sum models the entire distribution

for the lifetimes can be nonidentifiable.

3.2.1 Expected Turnbull’s intervals

In this subsection we assume a finite support of the observables, that is, DL,R = {(l, r) :

0 ≤ l ≤ r ≤ +∞, dFL,R(l, r) > 0} is a finite set. We define a collection of sets we call

expected Turnbull’s intervals, {Aj}mj=1, and we show that they partition DW under the

constant–sum property assumption. Finally, as a main result, we conclude that all that

is identifiable about W are the interval probabilities PW (Aj).

The expected Turnbull’s intervals are a generalization of the sample Turnbull’s in-

tervals introduced by Turnbull (1976). To build the expected Turnbull’s intervals, we

first derive all the distinct intervals whose left and right end–points lie in the support

of L and the support of R respectively and which contain no members of the support

of L or the support of R other than at their left and right endpoints respectively. The

intersection of these intervals with the lifetime support gives the expected Turnbull’s

intervals (see Example 3.5). The notion of expected Turnbull’s interval is equivalent

to the notion of population innermost interval used in Yu et al. (2000). For technical

purposes, another definition is formally given below:

Definition 3.6. A set Aj is an expected Turnbull’s interval if and only if Aj is a

nonempty intersection of observable intervals, Aj =
⋂

{(l,r)∈DL,R:Aj⊆bl,rc}
(bl, rc ∩ DW ),

and for any observable (l, r) ∈ DL,R, either Aj ⊂ bl, rc or Aj ∩ bl, rc = ∅.
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Since the expected Turnbull’s intervals are disjoint by construction, the following

proposition demonstrates that they are a partition of DW .

Proposition 3.7. Let FT,L,R be a constant–sum model with DL,R being a finite set, then

it follows that DW =
⋃m

j=1Aj.

Proof:

It holds by construction that
⋃m

j=1Aj ⊆ DW . To prove the equality we first note

that for any t ∈ DW equation (3.1) states that I =
⋂

{(l,r)∈DL,R:t∈bl,rc} (bl, rc ∩ DW ) is

nonempty. Thus, to complete the proof we should show that I is an expected Turnbull’s

interval. If s ∈ I, then by the constant–sum property we have

1 =

∫ ∫

{(l,r): s∈bl,rc}

dFL,R(l, r)

PW (bl, rc)

=

∫ ∫

{(l,r): I⊂bl,rc}

dFL,R(l, r)

PW (bl, rc) +

∫ ∫

{(l,r): I 6⊂bl,rc,s∈bl,rc}

dFL,R(l, r)

PW (bl, rc)

=

∫ ∫

{(l,r): t∈bl,rc}

dFL,R(l, r)

PW (bl, rc) +

∫ ∫

{(l,r): I 6⊂bl,rc,s∈bl,rc}

dFL,R(l, r)

PW (bl, rc)

= 1 +

∫ ∫

{(l,r): I 6⊂bl,rc,s∈bl,rc}

dFL,R(l, r)

PW (bl, rc) .

As a consequence, {(l, r) ∈ DL,R : I 6⊂ bl, rc, s ∈ bl, rc} is an empty set and I is

necessarily an expected Turnbull’s interval.

¤

As a consequence of the previous result, the following corollary characterizes the

constant–sum condition in terms of the expected Turnbull’s intervals. Under the

constant–sum property assumption, next theorem shows not only that the lifetime

probabilities assigned to the expected Turnbull’s intervals are identifiable but also that

W is nonidentifiable inside the expected Turnbull’s intervals.
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Corollary 3.8. A censoring model FT,L,R with DL,R being a finite set is constant–sum

if and only if we have for any expected Turnbull’s interval Aj,

∫ ∫

{(l,r):Aj⊆bl,rc}

dFL,R(l, r)

PW (bl, rc) = 1.

Theorem 3.9. Let FT,L,R be a constant–sum model with DL,R being a finite set.

(a) If FT∗,L∗,R∗ is another constant–sum model so that (DW ∗ , FL∗,R∗) = (DW , FL,R),

then PW ∗(Aj) = PW (Aj) for every j = 1, . . . ,m.

(b) If Ik is not a singleton for some k = 1, . . . ,m, then there exists a constant–sum

model FT∗,L∗,R∗ so that (DW ∗ , FL∗,R∗) = (DW , FL,R) and W
∗(t) 6= W (t) for every

t ∈ Ik.

Proof:

To show (a) we assume, without loss of generality, that the expected Turnbull’s

intervals are ordered, I1 < I2 < · · · < Im. From the definition of the first expected

Turnbull’s interval, there necessarily exists an observable (l1, r1) ∈ DL,R such that

I1 = bl1, r1c ∩ DW and, consequently, Theorem 3.4 implies PW ∗(I1) = PW ∗(bl1, r1c) =

PW (bl1, r1c) = PW (I1). For the second expected Turnbull’s interval, there also exists an

observable (l2, r2) ∈ DL,R such that either I2 = bl2, r2c ∩ DW and Theorem 3.4 implies

PW ∗(I2) = PW ∗(bl2, r2c) = PW (bl2, r2c) = PW (I2), or I1 ∪ I2 = bl2, r2c ∩ DW and Theo-

rem 3.4 implies PW ∗(I2) = PW ∗(bl2, r2c)− PW ∗(I1) = PW (bl2, r2c)− PW (I1) = PW (I2).

This process can continue indefinitely providing the identifiability of the lifetime prob-

abilities assigned to all the expected Turnbull’s intervals, PW ∗(Aj) = PW (Aj) for every

j = 1, . . . ,m.

Now, we show that (b) follows straightforwardly from Proposition 3.2. If (D, G) =

(DW , FL,R) and F , with support DW , satisfies PF (Aj) = PW (Aj) for every j = 1, . . . ,m,

then equation (3.2) defines a constant–sum model FT∗,L∗,R∗ so that (DW ∗ , FL∗,R∗) =
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(DW , FL,R). Since it results thatW
∗(t) = F (t) for every t ∈ DW , we complete the proof

by choosing F so that F (t) 6= W (t) for every t ∈ Ik.

¤

3.2.2 Illustration in a finite censoring setting

In practical situations it is quite usual to assume that DW = (0,∞), and that every

observable (l, r) ∈ DL,R arises from a random inspection process leading to intervals

which are half open bl, rc = (l, r]. It is also not restrictive to assume that the support of

the inspection times is finite, or equivalently, that L and R lie in a set {a0, a1, . . . , ak}

with 0 = a0 < a1 < · · · < ak = +∞. In this case, all that is potentially identifiable

about W are the interval probabilities PW ((aj−1, aj]) = W (aj) − W (aj−1) for j =

1, . . . , k. Since the results in Subsection 3.2.1 apply, Theorem 3.9 proves that these

probabilities are identifiable inside the class of constant–sum models only when there is

coincidence between these intervals and the expected Turnbull’s intervals, m = k and

Aj = (aj−1, aj] for j = 1, . . . , k. This identifiability condition is equivalent to the fact

that the set {a0, a1, . . . , ak} is the support of L (except for ak = +∞) and the support of

R (except for a0 = 0): (i) P (L = 0) > 0, (ii) P (R = +∞) > 0 and (iii) P (L = aj) > 0

and P (R = aj) > 0 for j = 1, . . . , k − 1. However, under the constant–sum property

it is easily seen that P (L = aj) > 0 holds if and only if P (R = aj) > 0 holds for

j = 1, . . . , k − 1. Thus, condition (iii) simplifies either in terms of L or in terms of R.

In this framework, Lawless (2004) proves that for a possibly non–independent inspec-

tion process, the constant-sum property is equivalent to the existence of a Markovian

inspection process that is independent of lifetimes, and which gives the same distribution

for the observables as the underlying true inspection process. Thus, the identifiability

condition above is equivalent to every value in the set {a0, a1, . . . , ak} being visited by

this Markovian process. That is, if we define the transition probabilities of this pro-

cess as πl,r = P (next inspection is at ar | inspection at al) for l = 0, . . . , k − 1 and
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r = l + 1, . . . , k, then (i)
∑j−1

l=0 πlj > 0 for j = 1, . . . , k, and (ii)
∑k

r=j+1 πjr = 1 for

j = 0, . . . , k − 1.

Example 3.10. We now present a simple illustration of the above identifiability con-

dition. We consider k = 4 and a1 = 12, a2 = 24 and a3 = 36. We also consider a

Markovian inspection process independent of T which does not visit a2 = 24 and has,

for instance, the following non null transition probabilities π01 = π03 = π13 = π14 = 1
2

and π34 = 1. Then, the observable intervals are (0, 12], (0, 36], (12, 36], (12,+∞]

and (36,+∞]. Consequently, the expected Turnbull’s intervals are (0, 12], (12, 36] and

(36,+∞], and the interval probabilities (12, 24] and (24, 36] are not identifiable.



Chapter 4

The k–sample problem

One important question that arises in many survival studies is to establish if there

are differences in the lifetimes among different groups of individuals. While many k–

sample tests have been developed when data are uncensored or right–censored, research

for interval–censored data is still ongoing. Most approaches to this problem try to gen-

eralize these known tests to the interval–censored framework. In Mantel (1967) we

find an interval–censored data version of the Wilcoxon test. In Peto and Peto (1972)

we find a different extension of the Wilcoxon test and an extension of the Log–rank

test. In Fay and Shih (1998) we find an interval–censored data form of the t–test.

The main characteristic of these papers is the use of permutational distributions. The

difficulty of finding the distribution of the test statistic is avoided with this permu-

tational approach. Other approaches assume that the collection of possible interval

endpoints is discrete. This assumption ensures a finite number of parameters in the

log–likelihood which allows to find test statistics with known asymptotic distribution,

see for example Finkelstein (1986) and Petroni and Wolfe (1994). Finally, Pan (2000)

proposes to use an approximate Bayesian bootstrap method to impute exact lifetimes

from interval-censored observations and apply known test statistics for right–censored

data.

In this chapter we survey different testing methods for interval censored data and

we propose new methods. Section 4.1 is devoted to permutational tests. We introduce
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the permutational methodology and provide description of the permutational Wilcoxon

and Log–rank tests for interval–censored data. In Section 4.2 permutational tests are

revisited following the interesting approach given in Fay and Shih (1998). This approach

is the basis of new proposals given in the subsequent sections and in Chapter 5. In

Section 4.3, we illustrate the permutational methodology. We analyze data from an

AIDS clinical trial designed to study the benefits of zidovudine therapy in patients in

the early stages of the HIV infection (Volberding et al., 1995). In Section 4.4, we give a

new permutational test proposal which generalizes the class of tests for right–censored

data in Harrington and Fleming (1982). In Section 4.5, a likelihood approach for this

new proposal is also considered. We also extend the relationship given in Fay (1999)

between permutational methods and likelihood methods based on score test statistics.

Section 4.6 contains different tests which generalize the Weighted Kaplan–Meier class

of tests for right–censored data in Pepe and Fleming (1989). Finally, in Section 4.7

we provide and describe several S–plus functions which have been implemented for the

permutational methodology.

In this chapter and in the following, we consider closed observed intervals. This

agrees with the interpretation of the intervals done in Chapter 1. As mentioned before,

the definitions below are easily modifiable to cover open or half open intervals.

4.1 Permutational tests

We introduce now the permutational approach to the k–sample problem. Let T be

the time to the event of interest. Assume that we have k groups of data, G1, . . . , Gk

with respective sample sizes n1, . . . , nk. Define W1, . . . ,Wk the distribution functions

of T under each one of these groups. The k–sample problem establishes a test between

H0 : W1 = · · · =Wk and Ha : Wi 6= Wj for some i,j. Denote by zi a vector of covariates

representing to which group the ith observation belongs. In the two sample problem,

the usual choice of the covariate is zi = α
(2)
i where α

(2)
i is an indicator function that is
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equal to 0 if the individual belongs to group G1 and 1 if it belongs to group G2. When

we have k groups many choices of zi are possible, for instance, we could take

zi =

(

α
(1)
i√
n1

,
α

(2)
i√
n2

, . . . ,
α

(k)
i√
nk

)′

where α
(j)
i is an indicator function that is equal to 1 if the individual belongs to group

Gj and 0 otherwise.

A permutational linear test statistic is of the form:

L0 =
n
∑

i=1

zici, (4.1)

where ci is a scalar score associated to the ith observation which is independent of the

covariates. These scalar scores are often built as

ci =
n
∑

j=1

Φ(i, j),

where Φ(i, j) represents a comparison between pairs of observations. Since usually Φ

compares functions, in the sequel we refer to Φ as a functional.

The idea behind the permutational test is that, if the null hypothesis is true and

the censoring mechanism does not depend on the grouping, the labels on the scores

are exchangeable. Thus, the permutational distribution of L0 is obtained by permuting

the labels and recomputing the test statistic for all the possible rearranged labels.

The main key for these procedures is to use scores that are sensitive to the alternative

hypothesis and, in that case, the null hypothesis will be rejected if L0 is an extreme value

for the permutational distribution. This permutational distribution can be computed

exactly when the sample size is small. When n is large, a version of the Central Limit

theorem for exchangeable random variables allow us to rely on a normal asymptotic

approximation for the permutational distribution of L0 where E(L0) = nc̄z̄′ (c̄ = 0 in
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our examples) and the variance–covariance matrix is

V0 =
(
∑n

i=1 c
2
i − nc̄2) (

∑n
i=1(ziz

′
i − z̄z̄′))

(n− 1)
. (4.2)

4.1.1 Scores used in permutational tests

The choice of different scores yields to different permutational tests. The well known

tests are the permutational forms of the Wilcoxon–Gehan test, the Wilcoxon–Peto test

and the Log–rank test.

For each observation [li, ri], i = 1, . . . , n, the Wilcoxon–Gehan (WG) score is the

difference between the number of lifetimes that are undoubtedly to its left and the

number of lifetimes that are undoubtedly to its right. Intervals which overlap with the

ith interval do not contribute to the computation of the ith score. The Wilcoxon–Gehan

score for the ith individual is given by

WGci =
n
∑

j=1

ΦWG(i, j), (4.3)

where

ΦWG(i, j) = 1{rj<li} − 1{lj>ri}. (4.4)

Gehan (1965) proposes these scores as an extension of the two sample Wilcoxon test

for right–censored data. Gehan’s scores are generalized by Mantel (1967) to allow the

use of interval–censored data. A k–sample version of this test is proposed in Schemper

(1983). In Schemper (1982, 1984) the Wilcoxon–Gehan functional (4.4) is considered to

respectively extend the Kendall’s correlation coefficient for two dimensional censored–

data and the Friedman’s test. Abel (1986) uses as well (4.4) for a test against ordered

alternatives which generalizes the Jonckheere’s test and which will be discussed in

Chapter 5.
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The Wilcoxon–Peto (WP) score for each observation is the difference between Turn-

bull’s estimated proportion of lifetimes that are to the left and Turbull’s estimated

proportion of lifetimes that are to the right, that is,

WPci = Ŵ (l−i )− (1− Ŵ (ri)) = Ŵ (l−i ) + Ŵ (ri)− 1,

where Ŵ is Turnbull’s estimator for the pooled sample. This proposal is introduced by

Peto and Peto (1972) and it is asymptotically efficient for lifetime distributions in the

logistic family.

In the same article Peto and Peto extend the Savage or Log-rank (LR) test to

interval–censored data. The Log-rank scores are given by

LRci =
(1− Ŵ (ri)) log(1− Ŵ (ri))− (1− Ŵ (l−i )) log(1− Ŵ (l−i ))

Ŵ (ri)− Ŵ (l−i )
,

where again Ŵ is Turnbull’s estimator for the pooled sample. This proposal is asymp-

totically efficient for lifetime distributions with Lehmann–type alternatives.

4.2 Permutational tests using estimated distribu-

tion functions

Fay and Shih (1998) introduce what they call distribution permutational tests, which

provides another interesting approach to the k–sample problem. These are permuta-

tional tests where the scalar scores are obtained using an estimate of the distribution

function for each observation and comparing it to the overall Turnbull’s estimate of the

distribution function. For particular ways of comparing these estimated distributions

Fay and Shih obtain the Wilcoxon–Peto test, the Log–rank test and a new test called

the difference in means (DiM) test. We use this methodology in Chapter 5 to build

tests against ordered alternatives.



50 The k–sample problem

4.2.1 Estimating individual distributions

The estimate of the distribution function for each observation is based on the self–

consistent equations (1.5). At convergence of the EM algorithm, the expectation step

implies truncation of the Turnbull’s estimator Ŵ at each observed interval [li, ri]. This

truncation defines an estimate of the distribution function for the ith observation,

Ŵ i(t) = PŴ ([0, t] | [li, ri]) =
Ŵ (ri ∧ t)− Ŵ (l−i ∧ t)

Ŵ (ri)− Ŵ (l−i )

=







0 if t < q1
µi1(ŵ) + · · ·+ µik(ŵ) if pk ≤ t < qk+1, 1 ≤ k ≤ m− 1
1 if t ≥ pm

.

(4.5)

where

µij(ŵ) = PŴ ([qj, pj] | [li, ri]) =
αi
j

∑m
l=1 α

i
lŵl

ŵj 1 ≤ j ≤ m.

and for each Turnbull’s interval [qj, pj] j = 1, . . . ,m, ŵj = PŴ ([qj, pj]) and αi
j =

1{[qj ,pj ]⊆[li,ri]}.

The maximization step implies that Turnbull’s estimator Ŵ can be rewritten as

Ŵ (t) =
1

n

n
∑

i=1

Ŵ i(t).

We note that if the ith observation is not censored, the above empirical distribution

estimate (4.5) coincides with the usual one, i.e., Ŵ i(t) = 1{ti≤t}(t).
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4.2.2 L–functionals

Fay and Shih define an scalar score as a comparison between pairs of empirical distri-

bution estimates:

ci =
1

n

n
∑

j=1

Φ(Ŵ i, Ŵ j) = Φ(Ŵ i, Ŵ ) i = 1, . . . , n . (4.6)

where Φ is a L–functional which operates linearly on distribution functions. That is, Φ

should satisfy the following properties for every distribution function F and G:

(a) Φ(F, F ) = 0,

(b) Φ(F,G) = −Φ(G,F ) and

(c)
∫

Φ(F,G)dν(G) = Φ(F,
∫

Gdν(G)) for any probability measure ν, where the in-

tegration is over the overall space associate with ν.

The authors focus their work on three L–functionals:

(1) The Mann–Whitney (or Wilcoxon–Peto) functional ΦMW defined as,

ΦMW (F,G) =

∫

G(s)dF (s)−
∫

F (s)dG(s) = 2((P (X > Y ) +
1

2
P (X = Y ))− 1

where X and Y are random variables with distribution functions F and G, re-

spectively. The scores for the Mann–Whitney functional are equivalent to the

Wilcoxon–Peto scores.

(2) The Weighted Mann–Whitney functional ΦWMW defined as,

ΦWMW (F,G) =

∫

Q(s)G(s)dF (s)−
∫

Q(s)F (s)dG(s) (4.7)

A suitable choice of the weight function gives also known scores for the Weighted

Mann–Whitney functional. Fay and Shih derive the weighting scheme which is
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necessary to obtain the Log–rank scores. In Section 4.4 we describe these weights

and we also obtain new scores which generalize the class of tests for right–censored

data in Harrington and Fleming (1982).

(3) Difference in means functional ΦDiM defined as,

ΦDiM (F,G) =

∫

xdF (x)−
∫

ydG(y) = E(X)− E(Y ). (4.8)

where X and Y are random variables with distribution functions F and G, re-

spectively. In next subsection, we describe this L–functional in detail.

4.2.3 Difference in means test

Since Ŵ is not defined inside Turnbull’s intervals (see equation (1.4)), the empirical

distribution estimates Ŵ i are not defined either (see equation (4.5)). This nonidenti-

fiability does not affect the calculation of Φ(Ŵ i, Ŵ j) for the Mann–Whitney and the

Weighted Mann–Whitney functional, though it does so for the Difference in means

functional. Fay and Shih avoid this problem collapsing each Turnbull’s interval [qj, pj]

to the right endpoint pj and assigning all the probability of [qj, pj], ŵj, to pj. When

pm = ∞, they let pm = qm. This method produces one of the possible indistinguish-

able distribution functions which are flat outside ∪m
j=1[qj, pj] and which have vector of

probabilities ŵ = (ŵ1, . . . , ŵm):

Ŵ (t) =







0 if t < p1

ŵ1 + · · ·+ ŵk if pk ≤ t < pk+1, 1 ≤ k ≤ m− 1
1 if t ≥ pm

. (4.9)

In the sequel, we will take (4.9) as the definition of the Turnbull’s estimator of W and,

consequently, equation (4.5) reduces to



4.2 Permutational tests using estimated distribution functions 53

Ŵ i(t) =







0 if t < p1

µi1(ŵ) + · · ·+ µik(ŵ) if pk ≤ t < pk+1, 1 ≤ k ≤ m− 1
1 if t ≥ pm

. (4.10)

In what follows we describe the Difference in means test as an extension of the

permutational t–test. The use of the Difference in means functional gives a score for

the ith individual which is the difference between its imputed mean value and the total

mean of the distribution,

DiMci =

∫ +∞

0

t dŴ i(t)−
∫ +∞

0

t dŴ (t)

=
m
∑

j=1

pjµ
i
j(ŵ)−

m
∑

j=1

pjŵj =

∑m
j=1 pjŵjα

i
j

Ŵ (ri)− Ŵ (l−i )
−

m
∑

j=1

pjŵj.

Note that because of the self–consistent property of Turnbull’s estimate, the mean of

the imputed mean of each individual is equal to the total mean of the distribution.

Example 4.1. We illustrate the computation of the scores and the permutational

approach in the two–sample problem with an extension of Example 1.3 developed in

Chapter 1. Let W1 and W2 be the distribution functions of the lifetimes in group G1

and G2, respectively. We are interested in testing the hypothesis H0 : W1 = W2 versus

Ha : W1 6=W2. The covariate choice will be zi = α
(2)
i where α

(2)
i is an indicator function

that is equal to 0 if the individual belongs to group G1 and 1 if it belongs to group

G2. Then, the permutational linear test statistic given by (4.1) and its variance reduce,

respectively, to

L0 =
n
∑

i=1

α
(2)
i ci and V0 =

n1n2

n(n− 1)

n
∑

i=1

c2i . (4.11)

In particular, if the individuals in the first group are those given in Example 1.3, that

is,

G1 = {[0, 1], [4, 6], [2, 6], [0, 3], [2, 4], [5, 7]} ,
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and we consider five new individuals in the second group with intervals,

G2 = {[0, 5], [4, 4], [7, 8], [7, 9], [10,∞)} ,

then Turnbull’s estimate of the distribution function from the pooled sample is:

Ŵ (t) =























































0 if t < 1
7
33

= 0 + 7
33

if 1 ≤ t < 3
7
33

= 0 + 7
33

+ 0 if 3 ≤ t < 4
21
33

= 0 + 7
33

+ 0 + 14
33

if 4 ≤ t < 5
21
33

= 0 + 7
33

+ 0 + 14
33

+ 0 if 5 ≤ t < 7
30
33

= 0 + 7
33

+ 0 + 14
33

+ 0 + 9
33

if 7 ≤ t < 10

1 = 0 + 7
33

+ 0 + 14
33

+ 0 + 9
33

+ 3
33

if t ≥ 10

As illustration of an empirical estimate of the distribution function for one observation,

we consider the interval [0, 5]. Then PŴ ([0, 5]) = Ŵ (5) = 21
33

and, consequently, it

follows that

Ŵ i(t) =



























































0 if t < 1

1
3
= 0 + 7/33

21/33
if 1 ≤ t < 3

1
3
= 0 + 7/33

21/33
+ 0 if 3 ≤ t < 4

1 = 0 + 7/33
21/33

+ 0 + 14/33
21/33

if 4 ≤ t < 5

1 if 5 ≤ t < 7

1 if 7 ≤ t < 10

1 if t ≥ 10

Table 4.1 gives the scores, statistic value, variance and p–value of the different per-

mutational tests statistics. As we see, although neither one of the four tests reject

the null hypothesis, the p-value of the tests are quite different and in particular the

Wilcoxon–Gehan test is close to the 5% level of significance. Thus, we conclude that

there are not significant differences at the 5% level of significance between the distribu-

tions of the two groups. The exact permutational distribution of each test is obtained

computing all the values of the linear test statistic L0 for all the possible rearrangements
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of the scores, that is 462 =
(

11
5

)

combinations. Then, the p-value of each permutational

test is the percentage of rearrangements with absolute value of L0 larger than or equal

to that of our original sample. We should remark that we have also used the asymptotic

approximation for the permutational distribution despite of the fact that the sample

size of the pooled sample is 11.

Table 4.1: Different scores and statistic tests for the data in the example. We use the exact permu-
tational distribution, p–value 1, and the normal approximation, p–value 2.

'

&

$

%

Wilcoxon–Gehan Wilcoxon–Peto Log– Difference
rank in means

Left Right Left Right Imputed
value value WGci value value WPci LRci mean DiMci

G 0 8 -8 0 26/33 -26/33 -0.88 1 -41/11
R 2 3 -1 7/33 12/33 -5/33 -0.42 4 -8/11
O 1 3 -2 7/33 12/33 -5/33 -0.42 4 -8/11
U 0 6 -6 0 26/33 -26/33 -0.88 1 -41/11
P 1 4 -3 7/33 12/33 -5/33 -0.42 4 -8/11
1 4 1 3 21/33 3/33 18/33 0.55 7 25/11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G 0 3 -3 0 12/33 -12/33 -0.58 3 -19/11
R 2 4 -2 7/33 12/33 -5/33 -0.42 4 -8/11
O 7 1 6 21/33 3/33 18/33 0.55 7 25/11
U 7 1 6 21/33 3/33 18/33 0.55 7 25/11
P 10 0 10 30/33 0 30/33 2.40 10 58/11
2

MEAN 0 0 0 52/11 0
L0 17 49/33 2.49 81/11
V0 84 0.87 2.53 20.78

p–value 1 0.0649 0.1450 0.1234 0.1450
p–value 2 0.0636 0.1111 0.1168 0.1062
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4.3 Illustration

An instance of interval-censored data is found in an AIDS Clinical Trial designed to

study the benefits of zidovudine therapy in patients in the early stages of the human

immunodeficiency virus (HIV) infection, see Volberding et al. (1995). The design com-

pares three groups. The first group, G1, corresponds to those patients who started

zidovudine monotherapy after their CD4 cell count fell below 500 per cubic millimeter.

In the second and third groups, G2 and G3, two different dosages of zidovudine were

given immediately after randomization. Among the 1607 subjects who could be evalu-

ated, 541 were in the deferred-therapy group, 538 in the 500–mg group and 528 in the

1500–mg group. Subjects were followed prospectively until the development of AIDS

or death. As a measure of the clinical progression of the disease, CD4 cell counts were

periodically determined. The reported data included the times of the first count below

500 cells per cubic millimeter, as well as below 400 and below 300. We will focus on

the time T , measured in months from randomization, until the CD4 count first reaches

400 cells per cubic millimeter. The random variable T is interval-censored, that is, for

each individual i, we know that Ti is between li and ri where ri is the time of the first

visit when CD4 was observed to be below 400 cells per cubic millimeter and li is de-

fined to be the time of the preceding visit. Figure 4.1 shows the probabilities of keeping

CD4 values larger than a certain number of months. The estimated survival curves sug-

gest differences between the deferred–therapy group and the immediate–therapy groups

(500-mg and 1500-mg). In particular, the immediate–therapy group for a heavier dose

of zidovudine shows a better survival than the other two groups.

We illustrate now the above permutational methodology with the comparison of the

survival of these three groups (k = 3). The choice for the zi covariates is the following,

z′i =

(

α
(1)
i√
n1

,
α

(2)
i√
n2

,
α

(3)
i√
n3

)

=

(

α
(1)
i

23.2594
,

α
(2)
i

23.1948
,

α
(3)
i

22.9783

)

where α
(j)
i is an indicator function that is equal to 1 if the individual belongs to group
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Figure 4.1: Probabilities of keeping CD4 values larger than a certain number of months for the group
receiving 500 mg (thick dotted curve), 1500 mg (solid curve) and deferred therapy (dashed curve)
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Gj and 0 otherwise. Then the linear permutational statistic form simplifies to the

expression,

L0 =
n
∑

i=1

zici =





√
n1 c̄(1)√
n2 c̄(2)√
n3 c̄(3)



 =





23.2594 c̄(1)
23.1948 c̄(2)
22.9783 c̄(3)



 ,

where c̄(j) = 1
nj

∑n
i=1 ciα

(j)
i . The permutational distribution of L0 is asymptotically

distributed as a k–dimensional normal and we can use the Mahalanobis distance (Md)

to obtain a χ2
k−1 = χ2

2 distribution:

Md = L′0V
−
0 L0 =

n− 1
∑n

i=1 c
2
i

k
∑

j=1

nj c̄
2
(j) =

1606
∑n

i=1 c
2
i

(541 c̄2(1) + 538 c̄2(2) + 528 c̄2(3)),

where V −0 is the generalized inverse of the variance–covariance matrix V0. The results

using each of the permutational tests (see Table 4.2) show significant evidence of the

differences between the survival curves.
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Table 4.2: Permutational test statistic (L0), Mahalanobis distance (Md) and p–values for the null
hypothesis of equal distributions: H0 : W1 = W2 = W3 versus the alternative of some differences
between the distributions Ha : Wi 6= Wj for some i,j, for different score choices'

&

$

%

Wilcoxon– Wilcoxon– Difference
Gehan Peto Log–Rank in Means

L0





−1804.732
337.9202
1485.709









−1.5351
0.2687
1.2826









−2.2098
0.3449
1.8887









−84.0323
16.4337
68.4719





Md 16.3978 16.6800 17.6607 17.8151
p–value 0.000275 0.000239 0.000146 0.000135

4.4 A new permutational family of tests

In this section we propose new scores which generalize the class of tests for right–

censored data given in Harrington and Fleming (1982) (see also Fleming and Harrington,

1991 and Lawless, 2003).

Definition 4.2. For any ρ ≥ 0, we define the Harrington and Fleming scores as

HFci =
(1− Ŵ (ri))

ρ+1 − (1− Ŵ (l−i ))
ρ+1

ρ (Ŵ (ri)− Ŵ (l−i ))
+

1

ρ
. (4.12)

Analogously to Harrington and Fleming (1982), the special case ρ = 1 gives the

Wilcoxon–Peto scores and ρ = 0 gives the Log–rank scores. In the sequel of this

section, we base on Fay and Shih (1998) and Fay (1996) to derive the Harrington and

Fleming scores (4.12). In next section, we show that this class of test statistics can be

written in a Weighted Log–rank form or can be derived as a class of efficient score test

statistics under an accelerated failure time model.
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Proposition 4.3. Let weights in the Weighted Mann–Whitney functional (4.7) depend

on Ŵ as in Fay and Shih (1998),

Q(t) =
γ(Ŵ (t))− γ(Ŵ (t−))

Ŵ (t)− Ŵ (t−)
=
dγ(Ŵ (t))

dŴ (t)
(4.13)

where γ(t) is a nondecreasing function. Then,

γ(t) =
(1− t)

t

(1− t)ρ − 1

ρ
(4.14)

gives the Harrington and Fleming scores (4.12).

Proof:

The proof of this result follows straightforward by characterizing the Weighted

Mann–Whitney scores in terms of the function γ. We use our notation to derive this

characterization given in Fay and Shih (1998).

The definition of Ŵ i as a truncation of Ŵ at the observed interval [li, ri] provides,

ci = ΦWMW (Ŵ i, Ŵ ) =

∫ +∞

0

Q(t)Ŵ (t)dŴ i(t)−
∫ +∞

0

Q(t)Ŵ i(t)dŴ (t)

=

∫ ri
l−i
Q(t)Ŵ (t)dŴ (t)

Ŵ (ri)− Ŵ (l−i )
−
{
∫ ri
l−i
Q(t)(Ŵ (t)− Ŵ (l−i ))dŴ (t)

Ŵ (ri)− Ŵ (l−i )
+

∫ +∞

ri

Q(t)dŴ (t)

}

=
Ŵ (l−i )

Ŵ (ri)− Ŵ (l−i )

∫ ri

l−i

Q(t)dŴ (t)−
∫ +∞

ri

Q(t)dŴ (t).

Now, from the weighting definition (4.13), the scores simplify as follows,
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ci =
Ŵ (l−i )

Ŵ (ri)− Ŵ (l−i )

∫ ri

l−i

dγ(Ŵ (t))−
∫ +∞

ri

dγ(Ŵ (t))

=
Ŵ (l−i )

Ŵ (ri)− Ŵ (l−i )

{

γ(Ŵ (ri))− γ(Ŵ (l−i ))
}

−
{

γ(1)− γ(Ŵ (ri))
}

=
Ŵ (ri) γ(Ŵ (ri))− Ŵ (l−i ) γ(Ŵ (l−i ))

Ŵ (ri)− Ŵ (l−i )
− γ(1).

(4.15)

Finally, substitution of (4.14) in equation (4.15) completes the proof.

¤

The Harrington and Fleming scores (4.12) can be seen as a special case of the scores

proposed in Fay (1996) under a grouped continuous accelerated time model. For these

general scores Fay and Shih (1998) provide that

γ(t) = −G
′(G−1(t))

t
, (4.16)

where G is the distribution function of the error term in the model. A logistic distri-

bution for G gives the Wilcoxon–Peto scores and a extreme value distribution gives the

Log–rank scores. The scores we propose in (4.12) arise from a family of distributions G

which depends on a parameter ρ ≥ 0 and extends the logistic (ρ = 1) and the extreme

value (ρ = 0) distributions,

G(t) = 1− (1 + ρ exp(t))
−1
ρ . (4.17)

By substitution of (4.17) in (4.16), we obtain γ(t) = −G′(G−1(t))
t

= (1−t)
t

(1−t)ρ−1
ρ

and,

consequently, the scalar scores (4.12). When data are right–censored, it is well known

that the Harrington and Fleming class of tests can be derived as an efficient score

statistic under an accelerated failure time model with error term distribution (4.17). In

the likelihood approach of next section, we also derive this result with interval–censored

data.
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4.5 Weighted Log–rank tests

Finkelstein (1986) proposes an extension to interval–censored data of the proportional

hazards model. Finkelstein assumes a discrete lifetime distribution and derives, from

the likelihood function, the score statistic that results for testing the hypothesis of

a null regression coefficient. This statistic has the form
∑

(O − E) and it can be

seen as the Log–rank test proposed by Peto and Peto. Because of the discrete nature

of the data, Finkelstein uses the Fisher information matrix to derive the asymptotic

distribution of the statistic instead of the permutational distribution. Their approach,

however, produces numerical problems when applied to a large group of patients because

the calculation of the variance–covariance matrix involves dealing with high dimension

matrices or because sometimes there are parameters on the boundary of the parameter

space. Fay (1996) extends Finkelstein’s work to a grouped continuous model. The

score statistic for testing the null hypothesis that the failure times are unrelated to the

covariates, reduces to the Wilcoxon-Peto or the Log–rank tests as special cases. Fay

(1999) shows the equivalence between the permutational linear form of these two tests,

see equation (4.1), and a Weighted Log–rank form given by
∑

Q∗ · (O − E). Some

particular cases of these Weighted Log–rank tests are also considered in Sun (1996) and

Sun et al. (2005).

In the remainder of this section we extend the results in Fay (1999). We give a

framework which can be used in a natural way to generalize known tests for right–

censored data as permutational tests for interval–censored data. In Subsection 4.5.1

we write the Weighted Log–rank tests in terms of the individual distribution function

estimates defined by Fay and Shih (1998). Then, we relate the weights in the Weighted

Mann–Whitney functional and the weights in the Weighted Log–rank tests. We use

this connection to obtain the Weighted Log–rank form of the Harrington and Fleming

class of tests. In Subsection 4.5.2 we derive the Harrington and Fleming class of tests as

an efficient score statistic. Finally, in Subsection 4.5.3 we describe the generalized Log–
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rank tests proposed in Sun et al. (2005). We also address the formulation differences

between the Harrington and Fleming class of tests considered by Sun et al. (2005) and

our proposal.

4.5.1 Equivalence between test statistic forms

In this subsection we extend the equivalence between test statistic forms given in Fay

(1999). First, we use estimated individual distribution functions Ŵ i to write the general

form of the Weighted Log–rank tests considered in Fay (1999):

U =

∫ +∞

0

Q∗(t) {O(t)− E(t)}

=

∫ +∞

0

Q∗(t)
n
∑

i=1

zi

{

dŴ i(t)− 1− Ŵ i(t−)

1− Ŵ (t−)
dŴ (t)

}

=
n
∑

i=1

zi

∫ +∞

0

Q∗(t)

{

dŴ i(t)− 1− Ŵ i(t−)

1− Ŵ (t−)
dŴ (t)

}

(4.18)

where
∑n

i=1 zidŴ
i(t) represents the expected value of the number of deaths in t for

the group determined by the covariate zi, n ·dŴ (t) represents the expected value of

the total number of deaths in t and, similarly,
∑n

i=1 zi(1− Ŵ i(t−)) and n·(1− Ŵ (t−))

represent the expected number at risk.

Next, we give the relationship between weights in the Weighted Mann–Whitney

functional and weights in the Weighted Log–rank tests. From this result, we derive

the Weighted Log–rank form for the Harrington and Fleming class of tests given in

Section 4.4.

Proposition 4.4. A Weighted Log–rank statistic U (4.18) with the following weights

Q∗(t) = (1− Ŵ (t−))
ξ(Ŵ (t))− ξ(Ŵ (t−))

Ŵ (t)− Ŵ (t−)
= (1− Ŵ (t−))

dξ(Ŵ (t))

dŴ (t)
,
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and a permutational linear statistic L0 (4.1) with weights in the Weighted Mann–

Whitney functional as in (4.13)

Q(t) =
γ(Ŵ (t))− γ(Ŵ (t−))

Ŵ (t)− Ŵ (t−)
=
dγ(Ŵ (t))

dŴ (t)
,

are equivalent when

γ(t) =
1− t

t
ξ(t) (ξ(0) = γ(1) = 0) .

Proof:

From definitions of the test statistics U and L0, equivalence between both formulas

U =
n
∑

i=1

zi

∫ +∞

0

Q∗(t)

{

dŴ i(t)− 1− Ŵ i(t−)

1− Ŵ (t−)
dŴ (t)

}

=
n
∑

i=1

zici = L0,

imply the definition of the following score values

ci =

∫ +∞

0

Q∗(t)

(

dŴ i(t)− 1− Ŵ i(t−)

1− Ŵ (t−)
dŴ (t)

)

=

∫ +∞

0

dξ(Ŵ (t))

dŴ (t)

(

(1− Ŵ (t−)) dŴ i(t)− (1− Ŵ i(t−)) dŴ (t)
)

=

∫ +∞

0

dξ(Ŵ (t))

dŴ (t)

(

(1 + dŴ (t)− Ŵ (t)) dŴ i(t)− (1 + dŴ i(t)− Ŵ i(t)) dŴ (t)
)

=

∫ +∞

0

dξ(Ŵ (t))

dŴ (t)

(

(1− Ŵ (t)) dŴ i(t)− (1− Ŵ i(t)) dŴ (t)
)

.

Since of Ŵ i is a truncation of Ŵ at the observed interval [li, ri], following analogous

steps to the development in equation (4.15), these scores reduce to

ci =
(1− Ŵ (ri)) ξ(Ŵ (ri))− (1− Ŵ (l−i )) ξ(Ŵ (l−i ))

Ŵ (ri)− Ŵ (l−i )
+ ξ(0) .
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Now, if we compare these scores and the scores in equation (4.15) derived from the

Weighted Mann–Whitney functional

ci =
Ŵ (ri) γ(Ŵ (ri))− Ŵ (l−i ) γ(Ŵ (l−i ))

Ŵ (ri)− Ŵ (l−i )
− γ(1)

it is clear that

ξ(t) =
t

1− t
γ(t) (ξ(0) = γ(1) = 0) .

¤

Corollary 4.5. The Harrington and Fleming class of tests proposed in equation (4.12)

admits a Weighted Log–rank form such that,

Q∗(t) = (1− Ŵ (t−))
(1− Ŵ (t))ρ − (1− Ŵ (t−))ρ

ρ (Ŵ (t)− Ŵ (t−))
.

When dŴ (t) −→ 0, we obtain a characterization of the Harrington and Flem-

ing weights in Corollary 4.5 similar to the one in the right–censored data framework,

Q∗(t) −→ − (1 − Ŵ (t−))ρ. If ρ 6= 0, the magnitude of the weight function decreases

monotonically and the parameter ρ determines the rate of this diminution. As ρ in-

creases, earlier differences are emphasized stronger than late differences.

Remark 4.6. We note that these weights are negative. In accordance with literature,

these weights should be consider positive and this chapter should be rewritten in order

to have positive weights. The problem is that the sign of these weights is opposite

to the sign of the weights in the Weighted Mann–Whitney functional. Thus, we have

negative weights in the Weighted Log–rank form of the test and positive weights in the

Weighted Mann–Whitney functional. A possible solution is to change the order of the

difference between integrals in the definition of Weighted Mann–Whitney functional,
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see equation (4.7). Nevertheless, we have decided to keep the definition given in Fay

and Shih (1998) because this fact does not essentially affect the interpretation of the

weights. This weighting scheme implies that ΦWMW (Ŵ i, Ŵ j) > 0 can be related to the

ith individual having higher probability of survival than the jth individual. Similarly,

in the two sample problem, a positive value in the test statistic can be related to

individuals in the second group having higher probabilities of survival than those in

the first group. This interpretation also applies in the k–sample trend problem in

Chapter 5.

4.5.2 Score test statistics

When zi =
(

α
(1)
i , α

(2)
i , . . . , α

(k)
i

) ′
is a vector of indicators of k treatments and data are

discrete or grouped continuous, Fay (1999) explicitly gives the efficient score statis-

tic U and its likelihood based variance–covariance matrix V for a proportional odds

model (Wilcoxon–Peto test), a proportional hazards model (Log–rank test) and a lo-

gistic model. Then, under the null hypothesis and regularity conditions, UV −U ′ is

asymptotically chi–squared with k− 1 degrees of freedom, where V − is the generalized

inverse of the variance–covariance matrix V . We also extend these results to lifetimes

following a regression model with hazard function,

λ(t|z′iβ) = λ0(t) exp(z
′
iβ){(1−W0(t))

ρ + [1− (1−W0(t))
ρ] exp(z′iβ)}−1

,

and distribution function,

W (t|z′iβ) =1− (1−W0(t)) {(1−W0(t))
ρ+ [1− (1−W0(t))

ρ] exp(z′iβ)}−
1
ρ . (4.19)

As showed in Fay (1999), the efficient score statistic for a regression model with

discrete data or grouped continuous interval censored data can be written in a linear

form like the one used with permutational tests, see equation (4.1). The scalar scores
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of this linear form are derived by Fay as

ci =
Ŵ ′(ri)− Ŵ ′(l−i )

Ŵ (ri)− Ŵ (l−i )
(4.20)

where

Ŵ (pj) = [W (pj|η = z′iβ, γ)]η=0,γ=γ̂

Ŵ ′(pj) =

[

∂W (pj|η = z′iβ, γ)

∂η

]

η=0,γ=γ̂

and γ is a vector of nuisance parameters.

In the present regression model (4.19), we consider the parameterization given by

γj = log
(

1
ρ
[1− (1−W0(pj))

ρ]/(1−W0(pj))
ρ
)

. Then,

Ŵ (pj) = 1− [1 + ρ exp(γ̂j)]
− 1

ρ

and

Ŵ ′(pj) =
1

ρ
{1− Ŵ (pj)− (1− Ŵ (pj))

ρ+1}.

Substitution of these results in equation (4.20) provides the Harrington and Fleming

scores (4.12) except for the sign which is just the opposite. We note that this question

about the sign assigned to the scores has already been discussed in Remark 4.6. In next

proposition we give the form of V . The proof of this result is omitted because it follows

from standard statistical theory and it is analogous to Fay (1999).

Proposition 4.7. Under the regression model (4.19), the likelihood based variance–

covariance matrix V of the efficient score statistic for β is given by

V = −
[

(

∂2 log(L)

∂β∂β′

)

−
(

∂2 log(L)

∂β∂γ′

)(

∂2 log(L)

∂γ∂γ′

)−1(
∂2 log(L)

∂β∂γ′

)

]

β=0,γ=γ̂

,
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where for arbitrary parameters ψu and ψv (u, v = 1, 2, . . . , k)

∂2 log(L)

∂ψu∂ψv

=
n
∑

i=1

1

gi

[(

∂2gi
∂ψu∂ψv

)

− 1

gi

(

∂gi
∂ψu

)(

∂gi
∂ψv

)]

,

gi = PW ([li, ri]|z′iβ, γ)) =W (ri|z′iβ, γ))−W (l−i |z′iβ, γ))

and

[

∂W (pj|z′iβ, γ)
∂βu

]

β=0,γ=γ̂

=
1

ρ
{1− Ŵ (pj)}{1− (1− Ŵ (pj))

ρ}α(u)
i

[

∂W (pj|z′iβ, γ)
∂γu

]

β=0,γ=γ̂

=
1

ρ
{1− Ŵ (pj)}{1− (1− Ŵ (pj))

ρ} 1{j=u}

[

∂2W (pj|z′iβ, γ)
∂βu∂βv

]

β=0,γ=γ̂

= − 1

ρ2
{1− Ŵ (pj)}{1− (1− Ŵ (pj))

ρ}

· {1− (ρ+ 1)(1− Ŵ (pj))
ρ}α(u)

i α
(v)
i

[

∂2W (pj|z′iβ, γ)
∂βu∂γv

]

β=0,γ=γ̂

= − 1

ρ2
{1− Ŵ (pj)}{1− (1− Ŵ (pj))

ρ}

· {1− (ρ+ 1)(1− Ŵ (pj))
ρ}α(u)

i 1{j=v}

[

∂2W (pj|z′iβ, γ)
∂γu∂γv

]

β=0,γ=γ̂

= − 1

ρ2
{1− Ŵ (pj)}{1− (1− Ŵ (pj))

ρ}

· {1− (ρ+ 1)(1− Ŵ (pj))
ρ}1{j=u=v}

4.5.3 Generalized Log–rank tests in Sun et al. (2005)

When dealing with interval–censored data case 2, Sun et al. (2005) propose an-

other approach to derive the asymptotic distribution of the weighted Log–rank tests

through the use of the empirical process theory developed in Groeneboom and Well-

ner (1992) and Groeneboom (1996). As an advantage to the previous methodology in
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Subsection 4.5.2, this approach applies to interval-censored data measured on contin-

uous scale. Moreover, a simulation study shows that it performs well when interval–

censored data is not strictly a case 2 and arise from periodic follow–up studies. As a

disadvantage, however, it does not apply to situations where data include uncensored

observations. Finally, it is important to remark that in the simulation study Sun et

al. (2005) consider a generalization of the Harrington and Fleming class of tests which

implies the following scalar scores in the linear permutational form,

ci =
(1− Ŵ (ri))

ρ+1 log(1− Ŵ (ri))− (1− Ŵ (l−i ))
ρ+1 log(1− Ŵ (l−i ))

(Ŵ (ri)− Ŵ (l−i ))
. (4.21)

Now, following the proof of Proposition 4.4, we have that the weights in the Weighted

Log–rank form are given by

Q∗(t) = (1− Ŵ (t−))
(1− Ŵ (t))ρ log(1− Ŵ (t))− (1− Ŵ (t−))ρ log(1− Ŵ (t−))

Ŵ (t)− Ŵ (t−)

(4.22)

where Q∗(t) −→ − (1 − Ŵ (t−))ρ (ρ log(1 − Ŵ (t−)) + 1) as dŴ (t) −→ 0. Note that

the scores in equation (4.21) and the weights in equation (4.22) do not coincide with

our proposal of scores in equation (4.12) and weights in Corollary 4.5. It would be

interesting to compare the efficiency of the related tests both in the permutational

framework and in the Sun et al. (2005) framework.

4.6 Generalization of weighted Kaplan–Meier statis-

tics

The approach by Petroni andWolfe (1994) is different from all the above methods. Their

proposal is a class of two sample tests based on Turnbull’s estimated survival function

from each group and requires a finite pre–specified number of intervals. These tests

are based on the integrated weighted difference in Turnbull’s estimators and extend
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the Weighted Kaplan–Meier class developed by Pepe and Fleming (1989) for right–

censored data. Under the null hypothesis of no difference between the distributions,

the distribution of these tests is asymptotically normal and the variance is obtained

via information matrices. This approach is specially indicated under crossing hazard

alternatives.

Recently, Fang et al. (2002) and Lim and Sun (2003) discuss other generalizations

of the Weighted Kaplan–Meier statistics that do not require discrete interval–censored

data. Fang et al. (2002) derive an asymptotic variance estimate which has a very com-

plex form and they suggest an alternative bootstrap procedure. Lim and Sun (2003)

consider test statistics which are based on the integrated weighted difference in esti-

mates of the survival probability function, the hazard function or the cumulative hazard

function and they suggest a bootstrap procedure. Via a simulation study, their method

is shown to perform quite well for nonmonotone departures from the null hypothesis of

equality of survival or hazard functions.

4.7 Computational aspects

The scores, functionals and permutational tests given in this chapter have been imple-

mented with the S–Plus functions given in Appendix B. The function cdf.data(·,·,·)
uses the output of the kaplanMeier() S–plus procedure and it computes the estimated

lifetime distribution function at every left and right endpoint of the interval data sam-

ple. The following three functions, WGsc(·,·), HFsc(·,·) and DiMsc(·,·,·) implement,

respectively, the Wilcoxon–Gehan scores, the Harrington–Fleming scores and the Dif-

ference in Means scores. The test statistic can be computed from each set of scores

using either the two sample methodology (w2test(·,·)), or the k–sample methodology,

(wktest(·,·)). These functions assume that the intervals are semi–closed because they

use the kaplanMeier() procedure which considers semi–closed intervals. If the inter-

vals are closed as it is the case in this chapter, we can replace each interval [li, ri] by
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(li − ε, ri] where ε is a small quantity.

Let lower and upper be two vectors containing the left and right endpoints of an

interval data sample (when a right endpoint is +∞, we write down 1e+029), then the

steps needed to compute the permutational tests are the following:

A. Estimate the survival function from the pooled sample using Turnbull’s method,

svf <- kaplanMeier(censor(lower,upper,censor.codes)∼1)

B. Compute the estimated lifetime distribution function at every left and right end-

point of the interval data sample,

cdf <- cdfdata(lower,upper,surv.est)

C. Compute the scores values.

C1. Wilcoxon–Gehan scores: scores1 <- WGsc(lower,upper)

C2. Wilcoxon–Peto scores (ρ = 1): scores2 <- HFsc(cdf,1)

C3. Log–rank scores (ρ = 0): scores3 <- HFsc(cdf,0)

C4. Difference in means scores: scores4 <- DiMsc(lower,upper,svf)

D. Create a vector of covariates covar which assigns a numerical value to each indi-

vidual to distinguish whether the observation belongs to one group or another.

D1. Two sample problem: assign the value 0 for individuals in the first group

and 1 to individuals in the second group.

D2. k–sample problem: assign the value 1 for individuals in the first group, the

value 2 for individuals in the second group and likewise until the kth group.

The wktest(·,·) routine would transform each covariate value s in a k–vector

whose s–component is 1/
√
ns and the rest of components are 0.
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E. Compute the permutational test statistic with the two sample method,

w2test(scores,covar)

or the k–sample method,

wktest(scores,covar).





Chapter 5

The Jonckheere’s test

An important issue that arises in survival studies is to establish an increasing or decreas-

ing trend in the k–sample problem. In medical and epidemiological studies, survival

of the groups is expected to follow an order given by the covariates. For instance,

the effect of increasing dose levels of a drug is expected to increase survival. Alterna-

tively, the effect of increasing levels of exposure to a risk factor is expected to decrease

survival. Trends like these can be examined with the the permutational linear test

statistic considered in Chapter 4. If groups are monotonically ordered according to a

covariate zi, the use of this covariate in equation (4.1) gives a test for detecting this

trend. Without the requirement of a covariate specification, Jonckheere (1954) and

Terpstra (1952) were among the first to develop a nonparametric statistic to test for

monotonically ordered alternatives. This test for trend has received much attention in

the uncensored and right–censored data literature. Abel (1986) proposal is perhaps one

of the few generalizations of the Jonckheere’s test for interval–censored data.

In the uncensored data framework, the Jonckheere’s test is an extension of the

Mann–Whitney test. As an alternative, Puri (1965) presents a modification of the Jon-

ckheere’s test which is an extension of the Chernoff–Savage test. Some other modifica-

tions for the Jonckheere’s test are recently proposed in Neuhäuser et al. (1998), Büning

and Kössler (1999) and Terpstra and Magel (2003). The proposal in Neuhäuser et al.

(1998) shows substantially more power in the detection of trend than the Jonckheere’s
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test. Büning and Kössler (1999) define what they call the class of Jonckheere–type

tests, a proposal which is similar to the one in Puri (1965). Since the Jonckheere’s test

is based on a sum of two–sample Mann–Whitney statistics, Büning and Kössler (1999)

study the modification of the test with other two-sample statistics and obtain a general

expression for the asymptotic power function. Moreover, the authors prove that this

proposal is asymptotically equivalent to Puri’s proposal. Terpstra and Magel (2003)

raise the following important issue: a test for trend should have low power for any

alternative that does not fit the profile given in the alternative hypothesis. The authors

propose a new trend test in order to tackle this problem. When the alternative hypothe-

sis holds, the Terpstra and Magel (2003) proposal has similar power to the Jonckheere’s

test and the modification in Neuhäuser et al. (1998). When the assumed ordering in

the alternative hypothesis is uncorrect, it has lower power. For further reading on the

Jonckheere’s test and possible extensions, see Hollander and Wolfe (1999), Robertson

et al. (1988) and Barlow et al. (1972).

The Log–rank trend tests in Liu et al. (1993), Liu et al. (1998) and Liu and Tsai

(1999) are similar to the Jonckheere’s test and are commonly used in the right–censored

data framework. In Jones (2001) it is showed that these Jonckheere–type test statistics

are special cases of the class of single–covariate nonparametric test statistics introduced

by Jones and Crowley (1989) and Jones and Crowley (1990). Thus, each Jonckheere–

type test statistic is seeking for the trend defined by a non–explicit covariate. The

author explicitly gives these time–dependent covariates and shows that they depend

on the initial group sizes and censoring distributions. As an alternative approach not

requiring specification of a covariate, we mention the order–restricted inference method

used in Mau (1988) and the ordered test based on two–sample weighted Kaplan–Meier

statistics proposed in Chi (2002).

In the literature, as far as we know and except for Abel (1986), there are not exten-

sions of the Jonckheere’s test for interval–censored data. This chapter deals with new
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proposals which extend this test for interval–censored data. In Section 5.1 we introduce

the Jonckheere’s test for uncensored data as a sum of two–sample Mann–Whitney test

statistics. In Section 5.2 and Section 5.3, we suggest different test statistics which extend

in a natural way the Jonckheere’s test for interval–censored data. These Jonckheere–

type tests are sum of the two–sample test statistics studied in Chapter 4, such as the

Wilcoxon–Gehan test statistics, the Harrington and Fleming class of test statistics and

the Difference in Means test statistic. We use permutational and bootstrap methods

to obtain an asymptotic distribution for these tests. In Section 5.4 we give computer

programs for each proposal. In Section 5.5 we perform a simulation study in order com-

pare the power of each proposal under different parametric assumptions and different

alternatives. In Section 5.6, we end this chapter with the analysis of a set of data.

5.1 Uncensored data

A nonparametric test for trend considers the hypothesis H0 : W1 = · · · = Wk against

the alternative of stochastic order Ha : W1 ≥ · · · ≥ Wk. In terms of survival proba-

bilities, the alternative hypothesis imply that individuals in the first groups have lower

probabilities of survival that those in the last groups. To investigate asymptotic ef-

ficiencies with ordered alternatives, Tryon and Hettmansperger (1973) or Büning and

Kössler (1999) consider the location parameter problem. That is, the unknown distri-

butions of T under each group are assumed to be of the same type and only differ in

location Wi(t) = W (t − θi), if at all. In this situation, the hypothesis of interest are

H0 : θ1 = · · · = θk versus Ha : θ1 ≤ · · · ≤ θk. In a lifetime data analysis framework, the

same simplification of the hypothesis hold when we consider a location shift in an accel-

erated failure time regression model, log(T ) = θ+λZ. That is, the distribution function

W for the random variable Z and the scale parameter λ are assumed to be equal for

all lifetimes but the location parameter θ may differ among groups. In this model the

distribution function of T under each group is of the type Wi(t) = W ( log(t)−θi
λ

).
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When data are uncensored, the Jonckheere’s statistic for testing the nondecreasing

ordered alternative is a sum of two–sample Mann–Whitney statistics,

J =
k
∑

r, s = 1
r < s

Mr;s =
k
∑

r, s = 1
r < s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦM(i, j) (5.1)

where ΦM(i, j) = 1{tj<ti}. Equivalently, the Jonckheere’s test can also be expressed as

J =
k
∑

s=2

M1,...,s−1;s =
k
∑

s=2

n
∑

i,j=1

α
(s)
i

(

s−1
∑

r=1

α
(r)
j

)

ΦM(i, j) (5.2)

or

J =
k−1
∑

r=1

Mr;r+1,...,k =
k−1
∑

r=1

n
∑

i,j=1

(

k
∑

s=r+1

α
(s)
i

)

α
(r)
j ΦM(i, j) (5.3)

where M1,...,s−1;s denotes the Mann–Whitney statistic computed for the pooled group

G1∪· · ·∪Gs−1 versus Gs, andMr;r+1,...,k denotes the Mann–Whitney statistic computed

for Gr versus the pooled group Gr+1 ∪ · · · ∪Gk.

The Jonckheere’s test was proposed independently by Terpstra (1952) and Jonck-

heere (1954). The statistic J coincides with the Mann–Whitney test when k = 2.

Moreover, it can be viewed as a sum of two–sample Wilcoxon tests or as a Kendall’s

correlation coefficient. The trend sought by the alternative hypothesis is evidenced by

larger J . Although critical values for J have been tabulated from the exact probability

distribution, a large–sample normal approximation is usually applied. Under the null

hypothesis, the expected value and variance of J are

E(J) =
1

4

[

n2 −
k
∑

r=1

n2
r

]

and

V (J) =
1

72

[

n2(2n+ 3)−
k
∑

r=1

n2
r(2nr + 3)

]

(5.4)
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If there are ties (Hollander and Wolfe, 1999), then

V (J) = 1
72

[

n(n− 1)(2n+ 5)−
k
∑

r=1

nr(nr − 1)(2nr + 5)−
e
∑

s=1

ds(ds − 1)(2ds + 5)

]

+ 1
36n(n−1)(n−2)

[

k
∑

r=1

nr(nr − 1)(nr − 2)

][

e
∑

s=1

ds(ds − 1)(ds − 2)

]

+ 1
8n(n−1)

[

k
∑

r=1

nr(nr − 1)

][

e
∑

s=1

ds(ds − 1)

]

(5.5)

where e is the number of different values, d1 is the number observations which are

equal to the smallest value, d2 is the number observations which are equal to the next

smallest, and so on.

5.2 Jonckheere–type tests

When data are interval–censored, the Jonckheere’s test allow different ways to be ex-

tended by means of any two–sample statistic other than the Mann–Whitney statistic.

In this section we begin introducing the proposal in Abel (1986) which is a sum of

two–sample Wilcoxon–Gehan statistics. Next, in Subsection 5.2.1 we suggest other

Jonckheere–type tests which are sum of the Weighted Log–rank statistics introduced

in Chapter 4. Finally, Subsection 5.2.2 is devoted to the permutational distribution of

these Jonckheere–type tests. We discuss some problems of this permutational approach

which motivate the modification we propose in Section 5.3.

The Abel’s test statistic is a sum of the two–sample Wilcoxon–Gehan statistics LWG

given in equations (4.11) and (4.3). If we consider J in equation (5.1), the analogous

form of the Abel’s test is the following:

JA =
k
∑

r, s = 1
r < s

LWG
r;s =

k
∑

r, s = 1
r < s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWG(i, j) (5.6)
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where ΦWG(i, j) = 1{rj<li}−1{lj>ri}. Equivalently, the Abel’s test can also be expressed

a generalization of equation (5.2)

JA =
k
∑

s=2

LWG
1,...,s−1;s =

k
∑

s=2

n
∑

i,j=1

α
(s)
i

(

s−1
∑

r=1

α
(r)
j

)

ΦWG(i, j) (5.7)

or equation (5.3)

JA =
k−1
∑

r=1

LWG
r;r+1,...,k =

k−1
∑

r=1

n
∑

i,j=1

(

k
∑

s=r+1

α
(s)
i

)

α
(r)
j ΦWG(i, j).

where LWG
1,...,s−1;s denotes the Wilcoxon–Gehan statistic computed for the pooled group

G1∪· · ·∪Gs−1 versus Gs, and L
WG
r;r+1,...,k denotes the Wilcoxon–Gehan statistic computed

for Gr versus the pooled group Gr+1 ∪ · · · ∪Gk.

For the distribution of JA, the author considers a permutational approach. Under

the null hypothesis the permutational distribution of JA is asymptotically normal with

mean equal to zero. The permutational variance given in Abel (1986) will be presented

later in Subsection 5.3.3.

5.2.1 Weighted Log–rank tests under order restrictions

As a new extension of the Jonckheere’s test we propose to use the two–sample Weighted

Log–rank statistics U given in equations (4.11), (4.6), (4.7) and (4.18). In this case,

the three forms of the Jonckheere’s statistic in equations (5.1), (5.2) and (5.3) provide

three extensions which are not equivalent. The first Jonckheere–type test statistic is,

J1 =
k
∑

r, s = 1
r < s

Ur;s =
k
∑

r, s = 1
r < s

n
∑

i=1

α
(s)
i ΦWMW

r,s (Ŵ i
r,s, Ŵr,s)

=
k
∑

r, s = 1
r < s

n
∑

i=1

α
(s)
i

∫ +∞

0

Q∗r,s(t)

{

dŴ i
r,s(t)−

1− Ŵ i
r,s(t

−)

1− Ŵr,s(t−)
dŴr,s(t)

}

(5.8)
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where Ŵr,s is the Turnbull’s estimate of the distribution function in the pooled group

Gr ∪ Gs, which is used to derive the estimate of the distribution function for the ith

observation, Ŵ i
r,s, the Weigthed Mann–Withney functional ΦWMW

r,s and the weights

Q∗r,s(t). Alternatively, the other Jonckheere–type test statistics are given by

J2 =
k
∑

s=2

U1,...,s−1;s =
k
∑

s=2

n
∑

i=1

α
(s)
i ΦWMW

1,...,s (Ŵ i
1,...,s, Ŵ1,...,s)

=
k
∑

s=2

n
∑

i=1

α
(s)
i

∫ +∞

0

Q∗1,...,s(t)

{

dŴ i
1,...,s(t)−

1− Ŵ i
1,...,s(t

−)

1− Ŵ1,...,s(t−)
dŴ1,...,s(t)

}

(5.9)

and

J3 =
k−1
∑

r=1

Ur;r+1,...,k =
k−1
∑

r=1

n
∑

i=1

(

k
∑

s=r+1

α
(s)
i

)

ΦWMW
r,...,k (Ŵ i

r,...,k, Ŵr,...,k)

=
k−1
∑

r=1

n
∑

i=1

(

k
∑

s=r+1

α
(s)
i

)

∫ +∞

0

Q∗r,...,k(t)

{

dŴ i
r,...,k(t)−

1− Ŵ i
r,...,k(t

−)

1− Ŵr,...,k(t−)
dŴr,...,k(t)

}

(5.10)

The test statistics J1, J2 and J3 are at the same time an extension of the Jonckheere’s

test modifications for right censored–data given in Liu et al. (1993) and Liu and Tsai

(1999). As these authors note for the right–censored data framework, the way each

test statistic is built determine the power to possible alternative configurations. For

instance, in an extreme case like Ha : W1 = · · · =Wk−1 ≥ Wk the test statistics J3 may

have more power than J1 and J2. This is because in this situation J3 =
∑k−1

r=1 Ur;r+1,...,k

will detect differences in every Ur;r+1,...,k, however J1 =
∑k

r, s = 1
r < s

Ur;s will only detect

differences in the two–sample statistics Ur;k (r = 1, . . . , k− 1) and J2 =
∑k

s=2 U1,...,s−1;s

only in U1,...,k−1;k. On the other hand, in a case like Ha : W1 ≥ W2 = · · · = Wk the test

statistic J2 may have more power than J1 and J3. We will explore this power features

in the simulation study of Section 5.5.
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5.2.2 Permutational distribution

In the case of right censored–data, counting process approaches can be applied to de-

rive the asymptotic distribution of the Jonkheere’s test modifications given in Liu et

al. (1993) and Liu and Tsai (1999). In the case of interval censored–data, we could

have tried a likelihood approach for tests J1, J2 and J3. However, this approach needs

a discrete nature of the data and it surely would have involved complicated variance

estimation. As in Abel (1986) for the test JA, we propose to use the permutational

approach for tests J1, J2 and J3 because it is less restrictive and more simple. If the

null hypothesis is true and the censoring mechanism does not depend on the grouping,

the data labels are exchangeable. Thus, the permutational distribution of the test is

obtained by permuting the data labels or, equivalently, regrouping the data in k groups

where the size of the ith group is ni. Corresponding to this, we have to calculate the

test statistic for each of the n!/(n1! . . . nk!) partitions of the numbers 1, . . . , n. The null

hypothesis will be rejected if the observed statistic value is extreme for the permuta-

tional distribution. Unfortunately, as the number of observations increase the number of

partitions becomes less manageable and the exact permutational distribution is compu-

tationally intensive. One way of solving this problem is to find a normal approximation

of the permutational distribution. Another way is to use a Monte Carlo approach and

consider a random sample of all possible partitions.

In Abel (1986) a normal approximation of the permutational distribution is used.

For proposals in equations (5.8), (5.9) and (5.10), we use a Monte Carlo approach.

However, since each resampling step needs of the computation of the Turnbull’s estimate

for the lifetime distribution of the k(k−1)/2 in J1 and k−1 pooled groups in J2 and J3,

this method does not alleviate the computations needed to obtain the permutational

distribution. In the following sections, we give a new modification of the Jonckheere’s

test which reduce this computational work. We base this proposal on the estimate

of the lifetime distribution function for each observation introduced in Fay and Shih
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(1998), see equation (4.10).

5.3 Kendall–type tests

As defined in Terpstra (1952), the Jonckheere’s test for uncensored data is a Kendall’s

correlation coefficient. In a right–censored data framework, Jones and Crowley (1989)

also show this relationship with the modification proposed in Abel (1986). Thus, the

idea in this section is to introduce a new Jonckheere–type test such that the normal

approximation of the permutational distribution could be easily derived from rank cor-

relation theory, see Kendall and Gibbons (1990). In the following definition we replace

the Wilcoxon–Gehan functional used in equation (5.6) by the Weighted Mann–Whitney

functional defined in equation (4.7) and proposed in Fay and Shih (1998)

JK =
k
∑

r, s = 1
r < s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWMW (Ŵ i, Ŵ j) =

k
∑

s=2

n
∑

i,j=1

α
(s)
i

(

s−1
∑

r=1

α
(r)
j

)

ΦWMW (Ŵ i, Ŵ j)

=
k−1
∑

r=1

n
∑

i,j=1

(

k
∑

s=r+1

α
(s)
i

)

α
(r)
j ΦWMW (Ŵ i, Ŵ j)

(5.11)

When k = 2, this proposal is equivalent to J1, J2 and J3 given in equations (5.8),

(5.9) and (5.10). However, that is not true when k > 2. In this statistic we use the

overall estimation of the lifetime distribution Ŵ to derive the estimate of the lifetime

distribution for the ith observation, Ŵ i, and the weights in the functional, ΦWMW ,

independently of the grouping. This fact simplifies the permutational distribution of

the test and it is the main difference to J1, J2 and J3.

Proposition 5.1. The Jonckheere’s test in equation (5.11) is equivalent to a Kendall’s
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correlation coefficient,

JK =
1

2

n
∑

i,j=1

aij bij

where aij = ΦWMW (Ŵ i, Ŵ j) and bij =
k
∑

r, s = 1
r < s

α
(s)
i α

(r)
j −

k
∑

r, s = 1
r > s

α
(s)
i α

(r)
j .

Proof:

Since the necessary antisymmetric properties of a Kendall’s correlation coefficient hold,

aij = −aji and bij = −bji, we only need to show the equivalence of both expressions.

We use the antisymmetric property of the functional ΦWMW and a rearrangement of

indices to proof this result:

n
∑

i,j=1

aij bij =
n
∑

i,j=1

ΦWMW (Ŵ i, Ŵ j)







k
∑

r, s = 1
r < s

α
(s)
i α

(r)
j −

k
∑

r, s = 1
r > s

α
(s)
i α

(r)
j







=
k
∑

r, s = 1
r < s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWMW (Ŵ i, Ŵ j)−

k
∑

r, s = 1
r > s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWMW (Ŵ i, Ŵ j)

=
k
∑

r, s = 1
r < s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWMW (Ŵ i, Ŵ j) +

k
∑

r, s = 1
r > s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWMW (Ŵ j, Ŵ i)

= 2
k
∑

r, s = 1
r < s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWMW (Ŵ i, Ŵ j)

¤

Theorem 5.2. Under the null hypothesis, the permutational distribution of the JK test

statistic is asymptotically normal with zero mean and variance given by
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V (JK) =
n3−3n2−

∑k
r=1 n

3
r+3

∑k
r=1 n

2
r

3n(n−1)(n−2)

n
∑

i=1

[

n
∑

j=1

ΦWMW (Ŵ i, Ŵ j)

]2

+
n3+2

∑k
r=1 n

3
r−3n

∑k
r=1 n

2
r

6n(n−1)(n−2)

n
∑

i,j=1

[

ΦWMW (Ŵ i, Ŵ j)
]2

(5.12)

Proof:

From Proposition 5.1, the permutational distribution of the JK test statistic coincides

with the distribution of a Kendall’s correlation coefficient. Thus, see Kendall and Gib-

bons (1990), the permutational distribution is asymptotically normal with zero mean

and variance given by

V (JK) = 1
n(n−1)(n−2)

[

n
∑

i,j1,j2=1

aij1aij2 −
n
∑

i,j=1

a2
ij

][

n
∑

i,j1,j2=1

bij1bij2 −
n
∑

i,j=1

b2ij

]

+ 1
2n(n−1)

[

n
∑

i,j=1

a2
ij

][

n
∑

i,j=1

b2ij

]

(5.13)

Since aij = ΦWMW (Ŵ i, Ŵ j) , it immediately follows that

n
∑

i,j=1

a2
ij =

n
∑

i,j=1

[

ΦWMW (Ŵ i, Ŵ j)
]2

and

n
∑

i,j1,j2=1

aij1 aij2 =
n
∑

i=1

[

n
∑

j=1

ΦWMW (Ŵ i, Ŵ j)

]2
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For the coefficient bij =
k
∑

r, s = 1
r < s

α
(s)
i α

(r)
j −

k
∑

r, s = 1
r > s

α
(s)
i α

(r)
j , Kendall and Gibbons (1990)

show that

n
∑

i,j=1

b2ij = n2 −
k
∑

r=1

n2
r

and

n
∑

i,j1,j2=1

bij1 bij2 =
1

3

[

n3 −
k
∑

r=1

n3
r

]

.

We also derive these two sums in Appendix C.

Finally, if we replace all these results in equation (5.13) and we do some algebraic

manipulation, we obtain the stated expression for V (JK).

¤

5.3.1 Comparison with a k–sample test

In this subsection we compare JK with the permutational linear test statistic L0 given

in equation (4.1). First, we note that if we define zi =
∑k

r=1 α
(r)
i r as a covariate

indicating the group ordering of the ith individual, then in Proposition 5.1 it follows

that bij = sign(zi−zj). Thus, the coefficient bij is equal to 0 if the i
th and jth individuals

belong to the same group, is equal to 1 if the group ordering of the ith individual is

bigger than the group ordering of the jth individual, and −1 otherwise. Intuitively,

for each pair of observations, the JK test statistic is measuring the agreement of the

group ordering and the ordering given by the estimates of the lifetime distribution, Ŵ i

and Ŵ j. We also note that if we define a new Kendall’s correlation coefficient with

bij = zi − zj =
∑k

r,s=1 α
(r)
i α

(s)
j (r − s) and aij = ΦWMW (Ŵ i, Ŵ j), or alternatively

aij = ci − cj = ΦWMW (Ŵ i, Ŵ ) − ΦWMW (Ŵ j, Ŵ ), then the statistic simplifies to L0.
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This result is important because illustrates the differences between using the JK test

statistic and the L0 test statistic with these particular covariates. Since the group

ordering covariates zi =
∑k

r=1 α
(r)
i r are linear, it suggests that JK may be more

efficient than L0 when the true trend is not linear. In the simulations of Section 5.5 we

study the behavior of JK and L0. We consider accelerated failure models with equal

spacings in the location parameters (linear trend) and models with different spacings

(nonlinear trend).

5.3.2 Dependence on group sizes

Another useful interpretation of the JK test statistic is given by the definition of

Ŵ ∗
r = 1

nr

∑n
i=1 α

(r)
i Ŵ i, Ŵ ∗

1,...,s−1 = 1
n1+···+ns−1

∑n
i=1

(

∑s−1
r=1 α

(r)
j

)

Ŵ i and Ŵ ∗
r+1,...,k =

1
nr+1+···+nk

∑n
i=1

(

∑k
s=r+1 α

(s)
j

)

Ŵ i as respective estimates of the lifetime distribution

in group Gr, in the pooled group G1∪· · ·∪Gs−1 and in the pooled group Gr+1∪· · ·∪Gk.

Then, by linearity of the Weighted Mann–Whitney functional,

JK =
k
∑

r, s = 1
r < s

nr ns ΦWMW (Ŵ ∗
s , Ŵ

∗
r )

or equivalently,

JK =
k
∑

s=2

(n1 + · · ·+ ns−1)ns ΦWMW (Ŵ ∗
s , Ŵ

∗
1,...,s−1)

=
k−1
∑

r=1

nr (nr+1 + · · ·+ nk) ΦWMW (Ŵ ∗
r+1,...,k, Ŵ

∗
r )

These expressions show that the test statistic compares lifetime distributions between

groups but is sensitive to differences in group sample sizes. Those groups with larger

sample size play a more important role in the detection of the trend. Consequently,
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it is possible that the set of alternatives against which JK is consistent may depend

on the group sample sizes. This problem is mentioned in Barlow et al. (1972) for the

Jonckheere’s test and in Jones (2001) for Jonckheere–type tests with right–censored

data. As an alternative, a weighted form of the JK test statistic can be used to remove

this feature,

WJK =
k
∑

r, s = 1
r < s

Ωr,s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦWMW (Ŵ i, Ŵ j)

=
k
∑

r, s = 1
r < s

Ωr,s nr ns ΦWMW (Ŵ ∗
s , Ŵ

∗
r )

=
1

2

n
∑

i,j=1

aij bij

where aij = ΦWMW (Ŵ i, Ŵ j) , bij =
k
∑

r, s = 1
r < s

Ωr,s α
(s)
i α

(r)
j −

k
∑

r, s = 1
r > s

Ωr,s α
(s)
i α

(r)
j and

Ωr,s = Ωs,r > 0.

For Ωr,s = 1/(nrns), the statistic WJK compare groups in pairs and it does not

depend on the group sample sizes. This is the solution suggested in Barlow et al.

(1972) for the Jonckheere’s test. For Ωr,s = 1/(nr + ns), the statistic WJK and J1

are equivalent when data are not censored and coincide with the Jonckheere–type test

proposed in Puri (1965). Different weight schemes in Puri’s proposal are studied in

Tryon and Hettmansperger (1973). The authors assume equal group sample sizes and

prove maximum Pitman efficiency of Puri’s proposal when the alternative specifies equal

spacings in the location parameters. They also give the optimum weight scheme for

location alternatives without equal spacings.

As a Kendall’s correlation coefficient, the permutational distribution of WJK is

asymptotically normal. The main problem of this statistic is that the permutational

variance does not have a simple form and we must use the general formula given in
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equation (5.13). For this reason, we are not going to study further this WJK statistic.

In the simulation study in Section 5.5 we will pay attention to the performance of the

JK test statistic when group sample sizes are not equal or when the true trend is not

linear.

5.3.3 Abel’s test

In this subsection we consider again the test statistic JA given in equation (5.6). Note

that if we replace the Weighted Mann–Whitney functional by the Wilcoxon–Gehan

functional, the JA test statistic is a particular case of the JK test statistic in equation

(5.11). Thus, the permutational variance given in equation (5.12) applies. However,

this is not the permutational variance given in Abel (1986). Here, we compare both

variances and show that they are asymptotically equivalent.

The permutational variance derived in Abel (1986) follows from the decomposition

of the JA given in equation (5.7). Since the author assure that the statistics LWG
1,...,s−1;s

are independent, it follows that

V (JA) =
k
∑

s=2

V (LWG
1,...,s−1;s) (5.14)

Moreover, the author obtain the permutational variance of each statistic from the two–

sample method presented in Chapter 4 (see equation (4.4) and equation (4.11)),

VAbel(L
WG
1,...,s−1;s) =

(
∑s−1

r=1 nr) ns
(
∑s

r=1 nr) (
∑s

r=1 nr −1)

n
∑

i=1

[

n
∑

j=1

s
∑

r1,r2=1

α
(r1)
i α

(r2)
j ΦWG(i, j)

]2

(5.15)

This permutational variance is, however, incorrect because it is based on the permu-

tation of data labels from individuals within the groups G1, . . . , Gs and neglect the

permutation of data labels from individuals outside these groups. The permutational

distribution of the JA test statistic, and consequently the LWG
1,...,s−1;s statistics, must be
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a rearrangement of data labels from the overall sample. We prove in Appendix D that

each statistic LWG
1,...,s−1;s can be rewritten as a Kendall’s correlation coefficient which uses

the overall sample. Thus, the permutational distribution of LWG
1,...,s−1;s coincides with the

distribution of a Kendall’s correlation coefficient. In Appendix D, we derive the correct

permutational variance as

V (LWG
1,...,s−1;s) =

(
∑s−1

r=1 nr) ns (
∑s

r=1 nr −2)

n (n−1) (n−2)

n
∑

i=1

[

n
∑

j=1

ΦWG(i, j)

]2

+
(
∑s−1

r=1 nr) ns (n−
∑s

r=1 nr)

n (n−1) (n−2)

n
∑

i,j=1

[ΦWG(i, j)]
2

We also show that the LWG
1,...,s−1;s statistics are uncorrelated under the permutational

distribution and, consequently, the variance decomposition in equation (5.14) is correct.

From the sum of variances, we obtain for V (JA) an equivalent expression to V (JK)

(see equation (5.12)),

V (JA) =
n3−3n2−

∑k
r=1 n

3
r+3

∑k
r=1 n

2
r

3n(n−1)(n−2)

n
∑

i=1

[

n
∑

j=1

ΦWG(i, j)

]2

+
n3+2

∑k
r=1 n

3
r−3n

∑k
r=1 n

2
r

6n(n−1)(n−2)

n
∑

i,j=1

[ΦWG(i, j)]
2 .

(5.16)

When data are not censored and there are not ties, both permutational variances

(5.15) and (5.16) coincide with the variance of the Jonckheere’s test (5.4). In this

situation, the Jonckheere’s test statistic can indistinctly be written as a function of

the uncensored data, the ranks of the data in the overall sample or the ranks of the

data within each of the pooled groups G1 ∪ · · · ∪ Gs (s = 2, . . . , k). In presence of

ties, however, only the permutational variance (5.16) coincide with the variance of the

Jonckheere’s test (5.5).
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A question which naturally arises is how different are the correct permutational vari-

ance of JA and the variance given in Abel (1986). As noted in Heimann and Neuhaus

(1998), when the α–critical value of the permutational distribution of a test statistic

converges in probability to the α–critical value of the non–permutational distribution,

both distributions are asymptotically equivalent. In this situation, V (JA) will con-

verge to the non–permutational variance. Moreover, VAbel(JA) will also converge to

the non–permutational variance because each VAbel(L
WG
1,...,s−1;s) will do. Consequently,

V (JA) and VAbel(JA) will be asymptotically equivalent. In a general asymptotic situa-

tion, however, the permutational distribution of a test statistic might not coincide with

the non–permutational distribution. In that case, as the following proposition shows,

both permutational variances are still asymptotically equivalent.

Proposition 5.3. The variances V (JA) and VAbel(JA) are asymptotically equivalent.

Proof:

To prove the proposition, we show that V (LWG
1,...,s−1;s) and VAbel(L

WG
1,...,s−1;s) are asymp-

totically equivalent. First we note that

n
∑

i,j=1

[ΦWG(i, j)]
2 =

n
∑

i, j = 1
i<j

(

[ΦWG(i, j)]
2 + [ΦWG(j, i)]

2) = 2
n
∑

i, j = 1
i<j

1{

Ii,Ij present

no superposition

}

and
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n
∑

i=1

[

n
∑

j=1

ΦWG(i, j)

]2

=
n
∑

i,j1,j2=1

ΦWG(i, j1) ΦWG(i, j2)

=
n
∑

i, j1, j2 = 1
i<j1<j2

[ ΦWG(i, j1)ΦWG(i, j2) + ΦWG(i, j2)ΦWG(i, j1)

+ ΦWG(j1, i)ΦWG(j1, j2) + ΦWG(j1, j2)ΦWG(j1, i)

+ ΦWG(j2, i)ΦWG(j2, j1) + ΦWG(j2, j1)ΦWG(j2, i) ]

+
n
∑

i, j1, j2 = 1
j1 =j2

ΦWG(i, j1) ΦWG(i, j2)

= 2
n
∑

i, j1, j2 = 1
i<j1<j2

1{

Ii,Ij1
,Ij2

present less

than two superpositions

} +
n
∑

i,j=1

[ΦWG(i, j)]
2

= 2
n
∑

i, j1, j2 = 1
i<j1<j2

1{

Ii,Ij1
,Ij2

present less

than two superpositions

} + 2
n
∑

i, j = 1
i<j

1{

Ii,Ij present

no superposition

}

Thus,

V (LWG
1,...,s−1;s) =

2ns(n1+···+ns−1)(n1+···+ns−2)
n(n−1)(n−2)

n
∑

i, j1, j2 = 1
i<j1<j2

1{

Ii,Ij1
,Ij2

present less

than two superpositions

}

+2ns(n1+···+ns−1)(n−n1−···−ns)
n(n−1)

n
∑

i, j = 1
i<j

1{

Ii,Ij present

no superposition

}

and

VAbel(L
WG
1,...,s−1;s) =

2ns(n1+···+ns−1)
(n1+···+ns)(n1+···+ns−1)

n
∑

i, j = 1
i<j

s
∑

r1,r2=1

α
(r1)
i α

(r2)
j 1{

Ii,Ij present

no superposition

}
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+ 2ns(n1+···+ns−1)
(n1+···+ns)(n1+···+ns−1)

n
∑

i, j1, j2 = 1
i<j1<j2

s
∑

r1,r2,r3=1

α
(r1)
i α

(r2)
j1
α

(r3)
j2

1{

Ii,Ij1
,Ij2

present less

than two superpositions

}

Now, if the null hypothesis is true and sample sizes for all groups are large enough,

it follows that

n
∑

i, j = 1
i<j

s
∑

r1,r2=1

α
(r1)
i α

(r2)
j 1{

Ii,Ij present

no superposition

} ≈
(

n1+···+ns
2

)

(

n
2

)

n
∑

i, j = 1
i<j

1{

Ii,Ij present

no superposition

}

and

n
∑

i, j1, j2 = 1
i<j1<j2

s
∑

r1,r2,r3=1

α
(r1)
i α

(r2)
j1
α

(r3)
j2

1{

Ii,Ij1
,Ij2

present less

than two superpositions

}

≈
(

n1+···+ns
3

)

(

n
3

)

n
∑

i, j1, j2 = 1
i<j1<j2

1{

Ii,Ij1
,Ij2

present less

than two superpositions

}

This result completes the proof because the substitution of these expressions in the

V (LWG
1,...,s−1;s) formula gives the VAbel(L

WG
1,...,s−1;s) formula.

¤

5.3.4 Difference in means test for trend

In this subsection we consider a modification of JK which considers the Difference in

means functional given in equation (4.8) instead of the Weighted Mann–Whitney func-

tional. The Difference in means functional holds that ΦDiM (Ŵ i, Ŵ j) = ΦDiM (Ŵ i, Ŵ )−

ΦDiM (Ŵ j, Ŵ ). This property implies that ΦDiM (Ŵ i, Ŵ j) = DiMci−DiMcj and that

JKDiM reduces to the permutational linear test statistic L0 given in equation (4.1):
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JKDiM =
k
∑

r, s = 1
r < s

n
∑

i,j=1

α
(s)
i α

(r)
j ΦDiM (Ŵ i, Ŵ j)

=
k−1
∑

r=1

nr

n
∑

i=1

(

k
∑

s=r+1

α
(s)
i

)

DiMci −
k
∑

s=2

ns

n
∑

j=1

(

s−1
∑

r=1

α
(r)
i

)

DiMcj

=
n
∑

i=1

(

k
∑

r=1

[

r−1
∑

s=1

ns −
k
∑

s=r+1

ns

]

α
(r)
i

)

DiMci

=
n
∑

i=1

zi ·DiMci

where

zi =
k
∑

r=1

[

r−1
∑

s=1

ns −
k
∑

s=r+1

ns

]

α
(r)
i .

A little algebra in equation (4.2) provides the following simplification of the permuta-

tional variance,

V (JKDiM) =
n3−

∑k
r=1 n

3
r

3(n−1)
·

n
∑

i=1

(DiMci)
2

Note that the covariates depend on the sample size of the groups, a property which

may seem undesirable. Moreover, if groups have equal sample size nr = k
n
, then the

trend determined by the covariates

zi =
k
∑

r=1

[

r−1
∑

s=1

ns −
k
∑

s=r+1

ns

]

α
(r)
i =

k
∑

r=1

(2r−1−k) n
k

α
(r)
i ,

is linear. Thus, this particular functional, or any other which holds that Φ(Ŵ i, Ŵ j) =

ci − cj, gives a JK test statistic which is equivalent to a L0 test statistic with linear

covariates.
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5.4 Computational aspects

The permutational and Monte Carlo methods of this chapter have been implemented

with the S–Plus functions given in Appendix E. In this section we describe each of

these S-plus functions and illustrate how they work. All these functions assume that

the intervals are semi–closed because several of them use the kaplanMeier() procedure

and the S–plus functions described in Section 4.7. If the intervals are closed, as it is

the case in this chapter, we can replace each interval [li, ri] by (li − ε, ri] where ε is a

small quantity.

Let lower and upper be two vectors containing the left and right endpoints of an

interval data sample (when a right endpoint is +∞, we write down 1e+029). First, it

is necessary to estimate the survival function from the pooled sample using Turnbull’s

method,

svf <- kaplanMeier(censor(lower,upper,censor.codes)∼1)

and compute the estimated lifetime distribution function at every left and right endpoint

of the interval data sample,

cdf <- cdfdata(lower,upper,surv.est)

It is also necessary to create a vector of covariates, covar, which assigns the value 1

for individuals in the first group, the value 2 for individuals in the second group and

likewise until the kth group.

Now, each S–plus function in Appendix E works as follows:

A. Function JK(·,·,·,·) computes the standardized value of the test JK. In the

Weighted Mann–Whitney functional, we have implemented the weighting scheme

described in equation (4.13). Thus, as it is proved in Appendix F, the Weighted

Mann–Whitney functional simplifies as follows:
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ΦWMW (Ŵ i, Ŵ j) =
Ŵ (l−i )

[

γ(Ŵ (l−i ∨ rj))− γ(Ŵ (l−i ∨ l−j ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}

−
Ŵ (l−j )

[

γ(Ŵ (l−j ∨ ri))− γ(Ŵ (l−j ∨ l−i ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}

+
Ŵ (rj)

[

γ(Ŵ (rj ∨ ri))− γ(Ŵ (rj ∨ l−i ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}

−
Ŵ (ri)

[

γ(Ŵ (ri ∨ rj))− γ(Ŵ (ri ∨ l−j ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}

We use γ(t) = (1−t)
t

(1−t)ρ−1
ρ

, the function related to the Harrington and Fleming

scores given in equation (4.12). Function JK(·,·,·,·) works for any ρ ≥ 0. For

instance when ρ = 0 and ρ = 1, expressions

JK(cdf,covar,0)

and

JK(cdf,covar,1)

compute respectively the Log–rank and Wilcoxon–Peto extension of the Jonck-

heere’s test.

For the sake of time efficiency, we have used matrix algebra in the implementation

of this function. Hence, there is a fourth input parameter which corresponds to

the number of files of the matrices used in the computations. The default value

of this parameter is equal to 25. When the sample size is large it could appear

memory allocation problems, then it is recommended to reduce the value of this

parameter.
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B. Function Ltrend(·,·) computes the standardized value of the test L0 with a trend

covariate. The first input parameter corresponds to a vector of scores values,

for instance, the Log–rank scores given by the function HFsc(·,·) introduced in

Section 4.7:

scores <- HFsc(cdf,0)

The second input parameter corresponds to the vector of covariates, trendcovar,

which specify the trend sought by the test stastistic L0. Then,

Ltrend(scores,trendcovar)

computes the desired result.

C. Functions J1boot(·,·,·,·), J2boot(·,·,·,·) and J3boot(·,·,·,·) compute the

Jonckheere–type statistics J1, J2 and J3 given in equations (5.8), (5.9) and (5.10)

respectively. These statistics have been implemented as a sum of two–sample test

statistics in the Harrington and Fleming class. The fourth input parameter corre-

sponds to any ρ ≥ 0. For implementing a Monte Carlo approach, these functions

should be jointly used with the bootstrap() S–plus procedure. For instance, a

Monte Carlo resampling with the statistic J1 and ρ = 0.5 is performed by,

bootstrap(covar,J1boot(lower,upper,covar,0.5),sampler=samp.permute)

We note that these functions use internally the function HFsc(·,·) introduced in

Section 4.7.

D. Functions JA(·,·,·,·) and JA2(·,·,·) compute the standardized values of the test

JA considering respectively the permutational variance derived from rank corre-

lation theory, see equation (5.16), and the variance derived in Abel (1986), see

equation (5.15). They apply as follows:

JA(lower,upper,covar)
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and

JA2(lower,upper,covar)

Function JA(·,·,·,·) has a fourth input parameter which corresponds to the num-

ber of files of the matrices used in the computations. The default value of this

parameter is equal to 25. We also note that function JA2(·,·,·) uses internally

the function WGsc(·,·) introduced in Section 4.7.

E. Function JKDiM(·,·) computes the standardized value of the Difference in means

test for trend. The first input parameter corresponds to the Difference in means

scores given by the function DiMsc(·,·,·) introduced in Section 4.7:

scores <- DiMsc(lower,upper,svf)

Then, this function applies as follows,

JKDiM(scores,covar)

5.5 Simulation study

This section tries to elucidate the behavior of the trend tests introduced in this chap-

ter. A first purpose of the simulation study is to compare the powers of these tests

under various linear and nonlinear trend alternatives. We are interested in the power

differences between a test like L0 which requires that the covariates should be specified

according to the trend sought in the alternative hypothesis and tests like J1, J2, J3, JK

and JA which do not have this requirement. A second purpose of the simulation study

is to confirm that the nominal significance level is roughly reached when the null hy-

pothesis is true. We are specially interested in the Monte Carlo approach introduced for

J1, J2 and J3, and in the two options for JA established in terms of the permutational

variance.
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5.5.1 Data generation

In the generation of the simulated data for the lifetime variable T we have considered

a discretization of a variable T ∗ under an accelerated lifetime model log(T ∗) = θ+ λZ.

We restrict ourselves to those models under which the Harrington and Fleming class of

tests is efficient. Hence, the distribution function for T ∗ is given by

Wθ,λ,ρ(t) =Wρ(
log(t)− θ

λ
) = 1−

(

1 + ρ t1/λ exp(−θ/λ)
)−1/ρ

,

where Wρ is the error term distribution given in equation (4.17). The discrete lifetime

variable T is established to take values 1, 2, . . . , 10 and it is defined as T = [T ∗] + 1 for

T ∗ ≤ 10 and T = 10 for T ∗ > 10.

The censoring mechanism of T mimics a longitudinal study where there is a period-

ical follow–up with scheduled visits but patients might miss some of the appointments.

Specifically, there are assumed potential monitoring times tj = j for j = 1, . . . , 10. The

patients would assist to each of these scheduled visits with probability p. Then, for an

individual i, the observed censoring interval [Li, Ri] is constructed by defining Ri as

the first visit where the event of interest is observed and Li as the previous visit of the

patient. That is, Li = max{tj|tj ≤ Ti, δ
i
j = 1} and Ri = min{tj|tj > Ti, δ

i
j = 1}, where

δij is the indicator of whether the visit at time tj occurs (δ
i
j = 1) or is missed (δij = 0).

The S–plus function gendata(·,·,·,·,·) given in Appendix G implements the gen-

eration data process. For instance,

gendata(100,0.9,0.6,1,0.5)

generates a random sample of n = 100 censoring intervals where the accelerated lifetime

model for T ∗ has parameters (θ, λ, ρ) = (0.9, 0.6, 1) and the probability of assistance to

each scheduled visit in the periodical follow–up is p = 0.5.
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5.5.2 Simulation scenarios

In the simulation study we have considered a location shift accelerated lifetime model

for the variable T ∗. That is, the error distribution function Wρ and the scale parame-

ter λ are assumed to be equal for all the lifetimes, but the location parameter θ may

differ among groups. We define scenarios where the distribution Wθ,λ,ρ has parame-

ters (λ, ρ) = (1, 0), (0.75, 0.5), (0.6, 1), (0.5, 1.5). For a situation of differences between

groups, we study models with equal spacings in the location parameters (linear trend)

and models with different spacings (nonlinear trend). Under each of the four settings

fixed for (λ, ρ), we regard an scenario with equal spacings (θ2 − θ1 = · · · = θk − θk−1)

and two scenarios where all the groups have the same location parameters except one

(θ1 < θ2 = · · · = θk−1 = θk and θ1 = θ2 = · · · = θk−1 < θk). In Table 5.1 and Table 5.2

we give the parameter settings of the scenarios when k = 3 and k = 4.

Table 5.1: Parameters for each trend scenario when k = 3'

&

$

%

(λ, ρ) (1, 0) (0.75, 0.5) (0.6, 1) (0.5, 1.5)

θ1 1.6 1.6 1.6 1.25 1.25 1.25 0.9 0.9 0.9 0.5 0.5 0.5
θ2 1.85 2.1 1.6 1.5 1.75 1.25 1.15 1.4 0.9 0.75 1 0.5
θ3 2.1 2.1 2.1 1.75 1.75 1.75 1.4 1.4 1.4 1 1 1

Table 5.2: Parameters for each trend scenario when k = 4'

&

$

%

(λ, ρ) (1, 0) (0.75, 0.5) (0.6, 1) (0.5, 1.5)

θ1 1.65 1.65 1.65 1.3 1.3 1.3 0.95 0.95 0.95 0.55 0.55 0.5
θ2 1.8 2.1 1.65 1.45 1.75 1.3 1.1 1.4 0.95 0.6 0.55 0.5
θ3 1.95 2.1 1.65 1.6 1.75 1.3 1.25 1.4 0.95 0.75 0.55 1
θ4 2.1 2.1 2.1 1.75 1.75 1.75 1.4 1.4 1.4 1 1 1

The location parameters have been chosen so that the set of means of T ∗ roughly co-

incides in those scenarios with the same trend configuration (columns 1, 4, 7, 10, columns
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2, 5, 8, 11 and columns 3, 6, 9, 12 in Table 5.1 and Table 5.2). For all the parameter set-

tings, Appendix G give the mean and median of T ∗, the mean and median of T and

the plots of the survival probabilities of T .

Under the null hypothesis, the parameters (θ, λ, ρ) are identical in each group. In

this situation, we have also considered some scenarios with some of the parameters

(θ, λ, ρ) given above.

The sample simulation of each scenario has been performed with the S–plus function

simu() given in Appendix G. All the simulation results are based on D = 500 repli-

cations of the data samples and a probability of assistance to each scheduled visit of

p = 0.5. For each of the following tests we have computed the percentage of rejections

of the null hypothesis under a nominal significance level α = 0.05.

• L0
trend, L

0.5
trend, L

1
trend and L1.5

trend: they are specific cases in the Harrington and

Fleming class of k–sample tests. We consider the parameters ρ = 0, 0.5, 1, 1.5 and

a trend covariate given by zi =
∑k

r=1 α
(r)
i r .

• JK0, JK0.5, JK1 and JK1.5: they are specific cases of the JK test. We consider

the Harrington and Fleming functional and parameters ρ = 0, 0.5, 1, 1.5.

• Jρ
1 , J

ρ
2 and Jρ

3 : they are specific cases of the J1, J2 and J3 tests. We consider the

Harrington and Fleming functional and the same parameter ρ as in the distribu-

tion of T ∗. We use M = 1000 resamples in the Monte Carlo approach.

• JA: it is the JA test with the permutational variance derived from rank correla-

tion theory.

• JA2: it is the JA test with the variance derived in Abel (1986).

• JKDiM : it is the Difference in means test for trend.
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5.5.3 Simulation results

In this subsection we report some of the simulation results given in Appendix H. First

we give a description of each studied issue. Then, we give a discussion about open

questions which need of further research.

1) In most of the simulation scenarios given in Table 5.1 and Table 5.2, the tests

Lρ
trend and JK

ρ show higher estimated power when ρ coincides with the analogous

parameter in the distribution of T ∗. This is an important feature which confirms

the Harrington and Fleming class of tests given in Chapter 4 as a generalization

of the class introduced in Harrington and Fleming (1982).

2) Under linear trend alternatives, we suggested in Subsection 5.3.1 that Lρ
trend would

have higher power than JKρ. However, the estimated power of JKρ, Lρ
trend and

Jρ
1 is similar and it is generally as high or higher than those of the other tests.

Table 5.3 shows these power performance when k = 3.

Table 5.3: Power sizes under linear trend alternatives when k = 3'

&

$

%

(n1, n2, n3) (θ1, θ2, θ3, λ, ρ)

(1.6, 1.85, 2.1, 1, 0) (1.25, 1.5, 1.75, 0.75, 0.5)

JK0 L0
trend J0

1 JK0.5 L0.5
trend J0.5

1

(50, 50, 50) 0.656 0.656 0.66 0.682 0.682 0.686
(100, 100, 100) 0.882 0.886 0.876 0.928 0.926 0.926
(50, 100, 150) 0.812 0.816 0.818 0.896 0.902 0.892
(150, 100, 50) 0.86 0.884 0.888 0.882 0.87 0.866

(0.9, 1.15, 1.4, 0.6, 1) (0.5, 0.75, 1, 0.5, 1.5)

JK1 L1
trend J1

1 JK1.5 L1.5
trend J1.5

1

(50, 50, 50) 0.736 0.742 0.73 0.68 0.676 0.676
(100, 100, 100) 0.94 0.94 0.946 0.926 0.926 0.922
(50, 100, 150) 0.872 0.872 0.868 0.884 0.886 0.884
(150, 100, 50) 0.888 0.888 0.884 0.872 0.884 0.874
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3) Under nonlinear trend alternatives of the type θ1 < θ2 = · · · = θk−1 = θk, the

estimated power of Jρ
2 is higher than those of the other tests. In Subsection

5.2.1 we have given the intuition of this result. Moreover, in Subsection 5.3.1 we

suggested that JKρ would higher power than Lρ
trend under nonlinear trends. The

present trends are clearly nonlinear and, however, the estimated power of JKρ,

Lρ
trend and Jρ

1 is roughly similar. Table 5.4 shows these results when k = 3.

Table 5.4: Power sizes under nonlinear trend alternatives when k = 3 and θ1 < θ2 = θ3'

&

$

%

(n1, n2, n3) (θ1, θ2, θ3, λ, ρ)

(1.6, 2.1, 2.1, 1, 0) (1.25, 1.75, 1.75, 0.75, 0.5)

JK0 L0
trend J0

1 J0
2 JK0.5 L0.5

trend J0.5
1 J0.5

2

(50, 50, 50) 0.636 0.636 0.664 0.71 0.718 0.718 0.728 0.786
(100, 100, 100) 0.886 0.886 0.90 0.936 0.924 0.924 0.928 0.956

(0.9, 1.4, 1.4, 0.6, 1) (0.5, 1, 1, 0.5, 1.5)

JK1 L1
trend J1

1 J1
2 JK1.5 L1.5

trend J1.5
1 J1.5

2

(50, 50, 50) 0.746 0.74 0.746 0.798 0.732 0.736 0.724 0.782
(100, 100, 100) 0.928 0.93 0.926 0.966 0.912 0.914 0.912 0.952

4) Under nonlinear trend alternatives of the type θ1 = θ2 = · · · = θk−1 < θk, the

estimated power of Jρ
3 is higher than those of the other tests. As we have noted

in the last item, the intuition of this result was given in Subsection 5.2.1. Again,

the present trends are clearly nonlinear and, contrarily to the expectancies given

in 5.3.1, the estimated power of JKρ, Lρ
trend and Jρ

1 is roughly similar. Table 5.5

shows these results when k = 3.

5) The nominal significance level α = 0.05 is roughly reached in the scenarios where

the null hypothesis is true. There are some exceptions, but these cases can be due

to the random variability of the replicated samples. Since D = 500 is not a large

number of replications, the percentage of rejections can produce several strange
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Table 5.5: Power sizes under nonlinear trend alternatives when k = 3 and θ1 = θ2 < θ3'

&

$

%

(n1, n2, n3) (θ1, θ2, θ3, λ, ρ)

(1.6, 1.6, 2.1, 1, 0) (1.25, 1.25, 1.75, 0.75, 0.5)

JK0 L0
trend J0

1 J0
3 JK0.5 L0.5

trend J0.5
1 J0.5

3

(50, 50, 50) 0.672 0.67 0.646 0.734 0.724 0.726 0.72 0.786
(100, 100, 100) 0.892 0.892 0.882 0.93 0.938 0.938 0.934 0.96

(0.9, 0.9, 1.4, 0.6, 1) (0.5, 0.5, 1, 0.5, 1.5)

JK1 L1
trend J1

1 J1
3 JK1.5 L1.5

trend J1.5
1 J1.5

3

(50, 50, 50) 0.708 0.712 0.706 0.754 0.722 0.72 0.728 0.764
(100, 100, 100) 0.956 0.96 0.954 0.974 0.914 0.912 0.918 0.95

results. For instance, when k = 3, n1 = n2 = n3 = 100 and (θ, λ, ρ) = (1.4, 0.6, 1),

most of the tests have a percentage of rejection lower than 0.03. For this particular

case, we repeated the simulation process with a different seed and the results

became better.

6) The tests JA and JA2 do not show differences in the percentage of rejections

neither under the null hypothesis nor under a trend alternative. Furthermore,

they show a similar power performance to JK1.

7) As noted by Jones (2001) in the right–censored data framework, tests like J1, J2

and J3 may seek for a trend which depends on group sizes. In Subsection 5.3.2 we

also suggested that the test statistic JK would depend on group sizes. This do

not immediately mean that the trend sought by JK will depend on group sizes.

In the simulation study, this possible dependence was checked by introducing

different group sample sizes in the linear trend scenarios. Once more, the results

do not show the power differences we expected between Lρ
trend, JK

ρ and Jρ
1 . See,

for instance, Table 5.3.

8) The power of JKDiM is generally lower than the power of Lρ
trend, JK

ρ and Jρ
1 when
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ρ coincides with the analogous parameter in the distribution of T ∗. However, it is

high or higher than the power of Lρ
trend and JKρ when the value of ρ is far away

from the analogous parameter in the distribution of T ∗.

In general, the tests perform as we expected before running the simulations. How-

ever, it has been somewhat surprising to not observe clear differences in the behavior

of Lρ
trend, JK

ρ and Jρ
1 . Our main goal in this simulation study has not been attained.

We pretended to find those situations where tests like JK and J1, which do not precise

of covariate specification, are preferable to a test like L0, which necessarily does. We

think that this goal could be attained if we consider a continuous model for T or, at

least, a thinner discretization of the variable T ∗. This would increase the variability of

the data and, consequently, it would clarify the differences between the tests. Since the

Monte Carlo approach for J1, J2 and J3 is computationally intensive, we think that at

least JK and L0 should be compared. We will carry out this new simulation study in

future work.

5.6 Illustration

The methodology of this chapter is illustrated with data from the AIDS Clinical Trial

described in Section 4.3. The variable of interest is the time T , measured in months from

randomization, until the CD4 count first reaches 400 cells per cubic millimeter and is

interval-censored. The estimated survival curves suggest an increasing trend according

to group G1 (the deferred–therapy group), group G2 (immediate–therapy group with

500–mg) and group G3 (immediate–therapy group with 1500–mg).

The analysis of this data set shows the results given in Table 5.6 and Table 5.7.

In Table 5.6 we give the standardized test statistics and p–values of the tests L0, JK,

JA, JA2 and JKDiM . All these tests clearly show a significant increasing trend of the

survival probabilities in each group. Since the p–values of these tests are low, in the

Monte Carlo approach for the tests J1, J2 and J3 we have used M = 100000 resamples.
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The results are given in Table 5.7 and they also clearly show a significant increasing

trend.

Table 5.6: Standardized test statistics and p–values with the normal approximation of the permuta-
tional distribution'

&

$

%

Test L0
trend L0.5

trend L1
trend L1.5

trend JK0 JK0.5

statistic: 4.150754 4.123759 4.028795 3.896602 4.153457 4.125687
p–value: 0.00002 0.00002 0.00003 0.00005 0.00002 0.00002

JK1 JK1.5 JA JA2 JKDiM

4.029249 3.895257 4.011888 3.992121 4.156854
0.00003 0.00005 0.00003 0.00003 0.00002

Table 5.7: Test statistics and p–values in the Monte Carlo approach'

&

$

%

Test J0
1 J0.5

1 J1
1 J1.5

1 J0
2 J0.5

2

statistic: 97.41890 79.44099 66.15175 56.15465 75.47007 61.33287
p–value: 0.00001 0.00002 0.00002 0.00005 0.00001 0.00001

J1
2 J1.5

2 J0
3 J0.5

3 J1
3 J1.5

3

50.90874 43.07878 70.16334 53.44330 48.06883 41.01986
0.00001 0.00004 0.00001 0.00003 0.00004 0.00007



Chapter 6

Conclusions and future research

This thesis is divided into two parts which aimed to investigate two aspects of survival

analysis with interval–censored data. The first part of this thesis is devoted to give a

constant–sum condition for interval censoring models and to explore the consequences

of this assumption. The second part deals with the analysis and hypothesis testing of

k samples. In the following sections we summarize the results of the dissertation while

suggest other possible topics or new approaches of investigation.

6.1 Constant–sum models

The simplified likelihood has been widely used with interval censored data. Neverthe-

less, in some cases the mechanisms leading to censoring could be related to the event

time process and in this case the simplified likelihood would not be appropriate. Thus,

a natural problem arises elucidating whether the simplified likelihood is the correct one

to get valid inferences for a given data set. Chapter 2 specifies the conditions which

ensure that the simplified likelihood is a proper basis for inferences. We describe the

constant–sum condition and give the relationship to the noninformative conditions. The

attractiveness of the theoretical development presented here stems from the fact that

the framework is general enough to cover most of the censoring models in the litera-

ture. Henceforth, further application of the ideas pointed out in this chapter, and in

particular Proposition 2.7 and Proposition 2.8, might be useful in characterizing the
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noninformative and the constant-sum conditions for different censoring models.

When the censoring observations occur through a longitudinal inspection process,

an intuitive interpretation of the constant–sum condition is given in Lawless (2004).

However, further research is needed to give to this condition more intuition and practical

use. For instance, the equivalent condition given in Kalbfleisch and MacKay (1979) for

right–censored data is more intuitive. We plan to continue our research along this

aspect.

In Chapter 3, we have investigated which role does the constant–sum property play

in the identifiability of the lifetime distribution. We have shown that the lifetime dis-

tribution is not identifiable outside the class of constant–sum models. We have also

shown that the lifetime probabilities assigned to the observable intervals are identifi-

able inside the class of constant–sum models. In case that the observables have finite

support, we have completely elucidated the issue of the identifiability ofW . In a general

censoring setting, it is still an open question to give sufficient conditions which ensure

identification of the entire lifetime distribution.

There are specific situations where it is possible to ensure complete identifiability,

for instance, when uncensored data are allowed for the whole support of the lifetime

variable, that is, when dFL,R(t, t) > 0 for any t ∈ DW . This identifiability assumption

is rather mild and it is typically satisfied in right censored data and doubly censored

data applications. For instance, Chang and Yang (1987) use this assumption to prove

the consistency of the NPMLE with doubly censored data.

Further research is needed for the inspection model discussed in Subsection 3.2.2

when the support of the inspection times is not finite. In this setting, the characteriza-

tion given in Lawless (2004) does not necessarily apply. The interval censoring model

studied in Wang et al. (1994), which includes the well known case k interval censoring

model, and the mixture of case k interval censoring models presented in Schick and

Yu (2000) are examples of such inspection models. Both examples assume that each

individual is inspected a countable number of times and that this inspection process
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is independent of the lifetime variable. As a consequence, the constant–sum condition

holds and we have a particular structure for the observable intervals which, jointly

with Theorem 3.4, derives in the identifiability of 1 −W (l) and W (r) for any observ-

able (l, r) ∈ DL,R. In this case, the assumption that the support of L or R covers

DW = (0,+∞) would ensure identifiability of W . At this point, it might be interest-

ing to investigate an identifiability assumption when each individual is inspected an

uncountable number of times or the constant–sum condition holds but the inspection

process depends on the lifetime variable.

Another point of interest is to develop a formal test to examine, from the observed

data, whether the constant–sum condition does hold or not. The literature on coarsen-

ing data suggest the existence of a noninformative model, and consequently a constant–

sum model, for any given observables structure, FL,R. However, we think that there

are situations where this noninformative model cannot hold the assumed lifetime sup-

port DW . A disagreement between DW and the lifetime support of this noninformative

model could open a way to detect that the constant–sum condition does not hold. For

instance, this problem is considered by Gill et al. (1997) and Betensky (2000) in the

right censoring and current status data settings, respectively. These authors establish

conditions under which it is possible to state that the constant–sum property does not

hold.

6.2 k–sample problem

The nonparametric tests introduced in Chapter 4 and Chapter 5 give new methods to

compare survival functions among groups when data are interval–censored. Chapter

4 gives a review of k–sample tests provided in the literature. We specially focus on

permutational tests. We develop links between different forms of the tests, propose

new extensions and implement S–Plus functions. Chapter 5 considers tests for ordered

alternatives. We propose several new generalizations of the Jonckheere’s test based on
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the permutational tests given in Chapter 4. We provide software and simulate data to

study the performance of each Joncheere–type test.

The permutational approach in Chapter 4 and Chapter 5 requires that the censoring

mechanisms are identical across the groups. The testability of the equality of censoring

mechanisms is an aspect which needs further research. Another point of interest is how

much the non–equality of the censoring mechanism could affect the tests. For instance,

in situations where an inspection process defines the censoring observations, it seems

possible that having different frequencies of inspection might not be relevant for the

inference.

Our plans for the future include the implementation of the likelihood score test

statistic given in Subsection 4.5.2 and a simulation study to learn about the power

of the different tests proposed in Chapter 4. We plan to compare the permutational

approach and the likelihood approach for discrete data. For continuous data, it is of

interest to compare the permutational approach and the approach introduced in Sun

et al. (2005).

Finally, and since the simulation study in Chapter 5 has not shown substantial

differences between the powers of the test statistics L0, JK and J1, we would like to

explore the cause of these results. The similar powers might be due to the discrete

nature of the the simulated data or an asymptotic equivalence between the tests. It

will be interesting to explore the performance of the tests under continuous data or

under small sample sizes.
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Appendix

A A probability measure result

Lemma A.1. Let µ be a probability measure and f a µ–measurable positive function

such that
∫

f dµ = 1 and

∫

1

f
dµ = 1

then f = 1 µ–almost surely.

Proof:

If we sum the two integrals,

∫ (

f +
1

f

)

dµ = 2

Then we can rewrite this result as,

∫ {(

f +
1

f

)

1{f 6=1} + 2 · 1{f=1}

}

dµ = 2

=⇒
∫ (

f +
1

f
− 2

)

1{f 6=1} dµ = 0

=⇒ µ

{(

f +
1

f
− 2

)

1{f 6=1} = 0

}

= 1 =⇒ µ {f = 1} = 1

¤
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B S–Plus functions for the permutational tests

cdfdata

function(l,r,svf){

n <- length(l)

q <- c(t(svf$fits[[1]][,2]))

p <- c(t(svf$fits[[1]][,1]))

w <- c(t(svf$fits[[1]][,3]))

p[1:(length(q)-1)] <- p[2:length(q)]

w[1:(length(q)-1)] <- w[1:(length(q)-1)]-w[2:length(q)]

q <- q[1:(length(q)-1)]

p <- p[1:(length(p)-1)]

w <- w[1:(length(w)-1)]

while(p[length(p)]>10^28){

q <- q[1:(length(q)-1)]

p <- p[1:(length(p)-1)]

w <- w[1:(length(w)-1)]

}

cdf.right <- numeric(n)

cdf.right[r>10^28] <- 1

cdf.right[r<=10^28] <- c(w%*%matrix(p<=rep(r[r<=10^28],

each=length(p)),length(p),))

cdf.left <- c(w%*%matrix(p<=rep(l,each=length(p)),length(p),))

cbind(cdf.left,cdf.right)

}
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WGsc

function(l, r){

left <- numeric(length(l))

right <- numeric(length(l))

cc <- numeric(length(l))

for(i in 1:length(l)) cc[i] <- length(r[r <= l[i]])-

length(l[l >= r[i]])

cc

}

HFsc

function(cdf,rho){

l <- cdf[,1]

r <- cdf[,2]

if(rho==0){

cc <- numeric(length(l))

cc[r==1] <- -(1-l[r==1])*log(1-l[r==1])/(1-l[r==1])

cc[r<1] <- ((1-r[r<1])*log(1-r[r<1])-(1-l[r<1])*log(1-l[r<1]))/

(r[r<1]-l[r<1])

}

else{

cc <- ((1-r)^(rho+1)-(1-l)^(rho+1))/(rho*(r-l))+(1/rho)

}

cc

}
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DiMsc

function(l,r,svf){

n <- length(l)

q <- c(t(svf$fits[[1]][,2]))

p <- c(t(svf$fits[[1]][,1]))

w <- c(t(svf$fits[[1]][,3]))

p[1:(length(q)-1)] <- p[2:length(q)]

w[1:(length(q)-1)] <- w[1:(length(q)-1)]-w[2:length(q)]

q <- q[1:(length(q)-1)]

p <- p[1:(length(p)-1)]

w <- w[1:(length(w)-1)]

while(p[length(p)]>10^28){

q <- q[1:(length(q)-1)]

p <- p[1:(length(p)-1)]

w <- w[1:(length(w)-1)]

}

cdf.right <- numeric(n)

cdf.right[r>10^28] <- 1

cdf.right[r<=10^28] <- c(w%*%matrix(p<=rep(r[r<=10^28],

each=length(p)),length(p),))

cdf.left <- c(w%*%matrix(p<=rep(l,each=length(p)),length(p),))

m <- (1-sum(w))*max(l)+sum(p*w)

m.right <- numeric(n)

m.right[r>10^28] <- m

m.right[r<=10^28] <- c((p*w)%*%matrix(p<=rep(r[r<=10^28],

each=length(p)),length(p),))

m.left <- c((p*w)%*%matrix(p<=rep(l,each=length(p)),length(p),))

mm <- (m.right-m.left)/(cdf.right-cdf.left)
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mm-mean(mm)

}

w2test

function(cc,z){

L <- sum(cc[z==1])

m <- mean(cc)*length(z[z==1])

v <- ((length(z[z==0])*length(z[z==1]))/length(z))*var(cc)

list(c("The L statistic"),L,c("The permutation mean"),m,c("The

permutation variance"),v,c("The standardized value"),(L-m)/sqrt(v))

}

wktest

function(cc,z){

zz <- matrix(data=NA,length(z),max(z))

for(i in 1:max(z)) zz[,i] <- (z==i)/sqrt(length(z[z==i]))

L <- t(cc)%*%zz

m <- t(length(z)*mean(cc)*colMeans(zz))

v <- var(cc)*((t(zz)%*%zz)-length(z)*(t(t(colMeans(zz)))%*%

t(colMeans(zz))))

W <- c((L-m)%*%ginverse(v)%*%t(L-m))

list(c("The L statistic"),L,c("The permutation mean"),m,c("The

permutation variance"),v,c("The Mahalanobis distance"),W)

}
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C Sums in the permutational variance of the Jon-

ckheere’s test

In the JK statistic bij =
k
∑

r, s = 1
r < s

α
(s)
i α

(r)
j −

k
∑

r, s = 1
r > s

α
(s)
i α

(r)
j , thus

n
∑

i,j=1

b2ij=
n
∑

i,j=1







k
∑

r, s = 1
r < s

α
(s)
i α

(r)
j −

k
∑

r, s = 1
r > s

α
(s)
i α

(r)
j







2

=
n
∑

i,j=1

k
∑

r, s = 1
r < s

α
(s)
i α

(r)
j +

n
∑

i,j=1

k
∑

r, s = 1
r > s

α
(s)
i α

(r)
j

=
k
∑

r, s = 1
r < s

ns nr +
k
∑

r, s = 1
r > s

ns nr =
k
∑

r,s=1

ns nr −
k
∑

r, s = 1
r = s

ns nr = n2 −
k
∑

r=1

n2
r.

For the other sum in the permutational variance, we derive

n
∑

i,j1,j2=1

bij1 bij2 =
n
∑

i,j1,j2=1







k
∑

r, s = 1
r < s

α
(s)
i α

(r)
j1
−

k
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α
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i α

(r)
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
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


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α
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i α
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α
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i α
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α
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n
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Now, we split the following sums,

k
∑

r1, r2, s = 1
r1, r2 < s

nsnr1nr2 =
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k
∑
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nsnr1nr2 =
k
∑
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k
∑
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nsnr1nr2 +
k
∑
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s < r1 = r2
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and we use the following property of symmetry,

k
∑

r1, r2, s = 1
r1 < r2 < s

nsnr1nr2 =
k
∑

r1, r2, s = 1
r2 < r1 < s

nsnr1nr2 =
k
∑
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r1 < s < r2
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∑

r1, r2, s = 1
s < r2 < r1

nsnr1nr2 ,

to obtain

n
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k
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Finally, since

k
∑
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k
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it follows that

n
∑
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1

3
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∑
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[
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r

]

.
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D Permutational distribution of the Abel’s test

Proposition D.1. The statistic LWG
1,...,s−1;s is equivalent to a Kendall’s correlation coef-

ficient,

LWG
1,...,s−1;s =

1

2

n
∑

i,j=1

aij bij

where aij = ΦWG(i, j) and bij = α
(s)
i

s−1
∑

r=1

α
(r)
j − α

(s)
j

s−1
∑

r=1

α
(r)
i .

Proof:

Since the necessary antisymmetric properties of a Kendall’s correlation coefficient hold,

aij = −aji and bij = −bji, we only need to show the equivalence of both expressions. We

use the antisymmetric property of the functional ΦWG and a rearrangement of indices

to proof this result:

n
∑

i,j=1

aij bij =
n
∑

i,j=1

ΦWG(i, j)

[

α
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i
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α
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i

]
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α
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i

(
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∑
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α
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j

)
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n
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(
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∑
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α
(r)
i

)

α
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(
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α
(s)
i

(
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∑
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α
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j

)

ΦWG(i, j)

¤

Proposition D.2. Under the null hypothesis, the permutational distribution of the

statistic LWG
1,...,s−1;s is asymptotically normal with zero mean and variance given by
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V (LWG
1,...,s−1;s) =

(
∑s−1

r=1 nr) ns (
∑s

r=1 nr −2)

n (n−1) (n−2)
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2

Proof:

The permutational distribution of the LWG
1,...,s−1;s statistic coincides with the distribution

of a Kendall’s correlation coefficient and, consequently, is asymptotically normal with

zero mean and variance given by

V (LWG
1,...,s−1;s) =

1
n(n−1)(n−2)
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i,j1,j2=1 bij1bij2−

∑n
i,j=1 b

2
ij

n(n−1)(n−2)

)

n
∑

i,j1,j2=1

aij1aij2

+
(

n
∑n

i,j=1 b
2
ij−2

∑n
i,j1,j2=1 bij1bij2

2n(n−1)(n−2)

)

n
∑

i,j=1

a2
ij

Since aij = ΦWG(i, j) , it immediately follows that

V (LWG
1,...,s−1;s) =

(
∑n

i,j1,j2=1 bij1bij2−
∑n

i,j=1 b
2
ij

n(n−1)(n−2)

)

n
∑

i=1

[

n
∑

j=1

ΦWG(i, j)

]2

+
(

n
∑n

i,j=1 b
2
ij−2

∑n
i,j1,j2=1 bij1bij2

2n(n−1)(n−2)

)

n
∑

i,j=1

[ΦWG(i, j)]
2

Now, we do some algebraic manipulation and we obtain

n
∑

i,j=1

b2ij=
n
∑

i,j=1

[

α
(s)
i

s−1
∑

r=1

α
(r)
j − α

(s)
j

s−1
∑

r=1

α
(r)
i

]2

=
n
∑

i,j=1

α
(s)
i

s−1
∑

r=1

α
(r)
j +

n
∑

i,j=1

α
(s)
j

s−1
∑

r=1

α
(r)
i

=
s−1
∑

r=1

n
∑

i,j=1

α
(s)
i α

(r)
j +

s−1
∑

r=1

n
∑

i,j=1

α
(r)
i α

(s)
j = 2 ns

s−1
∑

r=1

nr
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and

n
∑

i,j1,j2=1

bij1 bij2 =
n
∑

i,j1,j2=1

[

α
(s)
i

s−1
∑

r=1

α
(r)
j1
− α

(s)
j1

s−1
∑

r=1

α
(r)
i

][

α
(s)
i

s−1
∑

r=1

α
(r)
j2
− α

(s)
j2

s−1
∑

r=1

α
(r)
i

]

=
n
∑

i,j1,j2=1

s−1
∑

r1,r2=1

α
(s)
i α

(r1)
j1

α
(r2)
j2

+
n
∑

i,j1,j2=1

s−1
∑

r=1

α
(r)
i α

(s)
j1
α

(s)
j2

= ns

(

s−1
∑

r=1

nr

)2

+ n2
s

s−1
∑

r=1

nr = ns

(

s−1
∑

r=1

nr

)(

s
∑

r=1

nr

)

We complete the proof replacing these results in the permutational variance given in

the previous equation.

¤

Proposition D.3. The LWG
1,...,s−1;s statistics are uncorrelated with the permutational dis-

tribution.

Proof:

The mean value of two Kendall’s correlation coefficients product is given by

E(τ (1)τ (2)) = 4
n(n−1)(n−2)

[

n
∑

i,j1,j2=1

a
(1)
ij1
a

(2)
ij2
−

n
∑

i,j=1

a
(1)
ij a

(2)
ij

]

·
[

n
∑

i,j1,j2=1

b
(1)
ij1
b
(2)
ij2
−

n
∑

i,j=1

b
(1)
ij b

(2)
ij

]

+ 2
n(n−1)

[

n
∑

i,j=1

a
(1)
ij a

(2)
ij

][

n
∑

i,j=1

b
(1)
ij b

(2)
ij

]

In the particular case when τ (1) = LWG
1,...,s1−1;s1

and τ (2) = LWG
1,...,s2−1;s2

with s1 < s2, we

prove the result showing that

n
∑

i,j=1

b
(1)
ij b

(2)
ij =

n
∑

i,j=1

[

α
(s1)
i

s1−1
∑

r=1

α
(r)
j − α

(s1)
j

s1−1
∑

r=1

α
(r)
i

]

·
[

α
(s2)
i

s2−1
∑

r=1

α
(r)
j − α

(s2)
j

s2−1
∑

r=1

α
(r)
i

]

= 0
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and

n
∑

i,j1,j2=1

b
(1)
ij1
b
(2)
ij2

=
n
∑

i,j1,j2=1

[

α
(s1)
i

s1−1
∑

r=1

α
(r)
j1
− α

(s1)
j1

s1−1
∑

r=1

α
(r)
i

]

·
[

α
(s2)
i

s2−1
∑

r=1

α
(r)
j2
− α

(s2)
j2

s2−1
∑

r=1

α
(r)
i

]

= −
n
∑

i,j1,j2=1

α
(s1)
i α

(s2)
j2

s1−1
∑

r=1

α
(r)
j1

+
n
∑

i,j1,j2=1

α
(s1)
j1

α
(s2)
j2

s1−1
∑

r=1

α
(r)
i = 0

¤

Corollary D.4. As a sum of the permutational variances of the LWG
1,...,s−1;s statistics,

the permutational variance of the JA test statistic is given by

V (JA) =
n3−3n2−

∑k
r=1 n

3
r+3

∑k
r=1 n

2
r

3n(n−1)(n−2)

n
∑

i=1

[

n
∑

j=1

ΦWG(i, j)

]2

+
n3+2

∑k
r=1 n

3
r−3n

∑k
r=1 n

2
r

6n(n−1)(n−2)

n
∑

i,j=1

[ΦWG(i, j)]
2 .

Proof:

To prove this result it is enough to show that:

k
∑

s=2

ns

(

s−1
∑

r=1

nr

)(

s
∑

r=1

nr − 2

)

=
1

3

[

n3 − 3n2 −
k
∑

r=1

n3
r + 3

k
∑

r=1

n2
r

]

and

k
∑

s=2

ns

(

s−1
∑

r=1

nr

)(

n−
s
∑

r=1

nr

)

=
1

6

[

n3 + 2
k
∑

r=1

n3
r − 3n

k
∑

r=1

n2
r

]

These equalities follow from the same sum arguments given in Appendix C.

¤
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E S–Plus functions for the Jonckeere–type tests

JK

function(cdf,z,rho,nblock=25){

l <- cdf[,1]

r <- cdf[,2]

n <- length(l)

nn <- ceiling(n/nblock)

aux3 <- numeric(n)

jk <- 0

var1 <- 0

var2 <- 0

for(i in 1:nn) {

n1 <- nblock*(i-1)+1

n2 <- ifelse(i<nn,nblock*i,n)

n3 <- ifelse(i<nn,nblock,n2-n1+1)

n4 <- n-n1+1

if(rho==0){

aux1 <- pmax(matrix(l[n1:n2],n3,n4),matrix(r[n1:n],n3,n4,

byrow=T))

aux2 <- pmax(matrix(l[n1:n2],n3,n4),matrix(l[n1:n],n3,n4,

byrow=T))

aux1[aux1==1] <- 0

aux1[aux1!=0] <- ((1-aux1[aux1!=0])*log(1-aux1[aux1!=0]))/

aux1[aux1!=0]

aux2[aux2!=0] <- ((1-aux2[aux2!=0])*log(1-aux2[aux2!=0]))/

aux2[aux2!=0]

phi <- l[n1:n2]*(aux1-aux2)

aux1 <- pmax(matrix(l[n1:n],n3,n4,byrow=T),matrix(r[n1:n2],
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n3,n4))

aux2 <- pmax(matrix(l[n1:n],n3,n4,byrow=T),matrix(l[n1:n2],

n3,n4))

aux1[aux1==1] <- 0

aux1[aux1!=0] <- ((1-aux1[aux1!=0])*log(1-aux1[aux1!=0]))/

aux1[aux1!=0]

aux2[aux2!=0] <- ((1-aux2[aux2!=0])*log(1-aux2[aux2!=0]))/

aux2[aux2!=0]

phi <- phi-t(l[n1:n]*t(aux1-aux2))

aux1 <- pmax(matrix(r[n1:n],n3,n4,byrow=T),matrix(r[n1:n2],

n3,n4))

aux2 <- pmax(matrix(r[n1:n],n3,n4,byrow=T),matrix(l[n1:n2],

n3,n4))

aux1[aux1==1] <- 0

aux1[aux1!=0] <- ((1-aux1[aux1!=0])*log(1-aux1[aux1!=0]))/

aux1[aux1!=0]

aux2[aux2==1] <- 0

aux2[aux2!=0] <- ((1-aux2[aux2!=0])*log(1-aux2[aux2!=0]))/

aux2[aux2!=0]

phi <- phi+t(r[n1:n]*t(aux1-aux2))

aux1 <- pmax(matrix(r[n1:n2],n3,n4),matrix(r[n1:n],n3,n4,

byrow=T))

aux2 <- pmax(matrix(r[n1:n2],n3,n4),matrix(l[n1:n],n3,n4,

byrow=T))

aux1[aux1==1] <- 0

aux1[aux1!=0] <- ((1-aux1[aux1!=0])*log(1-aux1[aux1!=0]))/

aux1[aux1!=0]

aux2[aux2==1] <- 0

aux2[aux2!=0] <- ((1-aux2[aux2!=0])*log(1-aux2[aux2!=0]))/
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aux2[aux2!=0]

phi <- phi-r[n1:n2]*(aux1-aux2)

}

else{

aux1 <- pmax(matrix(l[n1:n2],n3,n4),matrix(r[n1:n],n3,n4,

byrow=T))

aux2 <- pmax(matrix(l[n1:n2],n3,n4),matrix(l[n1:n],n3,n4,

byrow=T))

aux1[aux1!=0] <- ((1-aux1[aux1!=0])^(rho+1)-

(1-aux1[aux1!=0]))/(rho*aux1[aux1!=0])

aux2[aux2!=0] <- ((1-aux2[aux2!=0])^(rho+1)-

(1-aux2[aux2!=0]))/(rho*aux2[aux2!=0])

phi <- l[n1:n2]*(aux1-aux2)

aux1 <- pmax(matrix(l[n1:n],n3,n4,byrow=T),matrix(r[n1:n2],

n3,n4))

aux2 <- pmax(matrix(l[n1:n],n3,n4,byrow=T),matrix(l[n1:n2],

n3,n4))

aux1[aux1!=0] <- ((1-aux1[aux1!=0])^(rho+1)-

(1-aux1[aux1!=0]))/(rho*aux1[aux1!=0])

aux2[aux2!=0] <- ((1-aux2[aux2!=0])^(rho+1)-

(1-aux2[aux2!=0]))/(rho*aux2[aux2!=0])

phi <- phi-t(l[n1:n]*t(aux1-aux2))

aux1 <- pmax(matrix(r[n1:n],n3,n4,byrow=T),matrix(r[n1:n2],

n3,n4))

aux2 <- pmax(matrix(r[n1:n],n3,n4,byrow=T),matrix(l[n1:n2],

n3,n4))

aux1[aux1!=0] <- ((1-aux1[aux1!=0])^(rho+1)-

(1-aux1[aux1!=0]))/(rho*aux1[aux1!=0])

aux2[aux2!=0] <- ((1-aux2[aux2!=0])^(rho+1)-
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(1-aux2[aux2!=0]))/(rho*aux2[aux2!=0])

phi <- phi+t(r[n1:n]*t(aux1-aux2))

aux1 <- pmax(matrix(r[n1:n2],n3,n4),matrix(r[n1:n],n3,n4,

byrow=T))

aux2 <- pmax(matrix(r[n1:n2],n3,n4),matrix(l[n1:n],n3,n4,

byrow=T))

aux1[aux1!=0] <- ((1-aux1[aux1!=0])^(rho+1)-

(1-aux1[aux1!=0]))/(rho*aux1[aux1!=0])

aux2[aux2!=0] <- ((1-aux2[aux2!=0])^(rho+1)-

(1-aux2[aux2!=0]))/(rho*aux2[aux2!=0])

phi <- phi-r[n1:n2]*(aux1-aux2)

}

phi <- phi/((r[n1:n2]-l[n1:n2])%*%t(r[n1:n]-l[n1:n]))

jk <- jk+sum(phi*sign(z[n1:n2]*(1-lower.tri(phi))-t(z[n1:n]*

t(1-lower.tri(phi)))))

var1 <- var1+sum((aux3[n1:n2]+rowSums(phi))^2)

var2 <- var2+sum((phi*(1-lower.tri(phi)))^2)

if((n2!=n)&(nblock!=1)) aux3[(n2+1):n] <- aux3[(n2+1):n]-

colSums(phi[,(nblock+1):n4])

if((n2!=n)&(nblock==1)) aux3[(n2+1):n] <- aux3[(n2+1):n]-

c(phi[,(nblock+1):n4])

}

ngroup <- c(table(z))

aux1 <- n^2-3*n-(sum((ngroup^3-3*ngroup^2)/n))

var1 <- (aux1*var1)/(3*(n-1)*(n-2))

aux2 <- n^2+2*(sum(ngroup^3/n))-3*(sum(ngroup^2))

var2 <- (aux2*var2)/(3*(n-1)*(n-2))

jk/sqrt(var1+var2)

}
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Ltrend

function(cc,z){

L <- sum(cc*z)

m <- length(z)*mean(cc)*mean(z)

v <- (length(z)-1)*var(cc)*var(z)

(L-m)/sqrt(v)

}

J1boot

function(l,r,z,rho){

n <- length(z)

k <- max(z)

npair <- choose(k,2)

aux <- matrix(0,k,k)

a <- rep(z,npair)

b <- c(t(row(aux)*(1-lower.tri(aux,diag=T))))

b <- b[b!=0]

b <- rep(b,each=n)

c <- c(t(col(aux)*(1-lower.tri(aux,diag=T))))

c <- c[c!=0]

c <- rep(c,each=n)

zcontrol <- numeric(n*npair)

zcontrol[a==b] <- 1

zcontrol[a==c] <- 2

zl <- rep(l,npair)[zcontrol!=0]

zr <- rep(r,npair)[zcontrol!=0]

zz <- rep(1:npair,each=n)[zcontrol!=0]

j1 <- 0
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for(i in 1:npair) {

zzl <- zl[zz==i]

zzr <- zr[zz==i]

svf <- kaplanMeier(censor(zzl,zzr,rep(3,length(zzl)))~1,

data.frame(zzl,zzr,rep(3,length(zzl))),se.fit=F,

conf.interval="none")

j1 <- j1+c((zcontrol[zcontrol!=0][zz==i]-1) %*%

HFsc(cdfdata(zzl,zzr,svf),rho))

}

j1

}

J2boot

function(l,r,z,rho){

n <- length(z)

npair <- max(z)-1

a <- rep(z,npair)

b <- rep((1+npair):2,each=n)

zcontrol <- numeric(n*npair)

zcontrol[a<b] <- 1

zcontrol[a==b] <- 2

zl <- rep(l,npair)[zcontrol!=0]

zr <- rep(r,npair)[zcontrol!=0]

zz <- rep(1:npair,each=n)[zcontrol!=0]

j2 <- 0

for(i in 1:npair) {

zzl <- zl[zz==i]

zzr <- zr[zz==i]
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svf <- kaplanMeier(censor(zzl,zzr,rep(3,length(zzl)))~1,

data.frame(zzl,zzr,rep(3,length(zzl))),se.fit=F,

conf.interval="none")

j2 <- j2+c((zcontrol[zcontrol!=0][zz==i]-1) %*%

HFsc(cdfdata(zzl,zzr,svf),rho))

}

j2

}

J3boot

function(l,r,z,rho){

n <- length(z)

npair <- max(z)-1

a <- rep(z,npair)

b <- rep(1:npair,each=n)

zcontrol <- numeric(n*npair)

zcontrol[a==b] <- 1

zcontrol[a>b] <- 2

zl <- rep(l,npair)[zcontrol!=0]

zr <- rep(r,npair)[zcontrol!=0]

zz <- b[zcontrol!=0]

j3 <- 0

for(i in 1:npair) {

zzl <- zl[zz==i]

zzr <- zr[zz==i]

code <-rep(3,length(zl[zz==i]))

svf<- kaplanMeier(censor(zzl,zzr,code)~1,

data=data.frame(zzl,zzr,code),se.fit=F,
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conf.interval="none")

j3 <- j3+c((zcontrol[zcontrol!=0][zz==i]-1) %*%

HFsc(cdfdata(zzl,zzr,svf),rho))

}

j3

}

JA

function(l,r,z,nblock=25){

n <- length(l)

nn <- ceiling(n/nblock)

aux3 <- numeric(n)

ja <- 0

var1 <- 0

var2 <- 0

for(i in 1:nn) {

n1 <- nblock*(i-1)+1

n2 <- ifelse(i<nn,nblock*i,n)

n3 <- ifelse(i<nn,nblock,n2-n1+1)

n4 <- n-n1+1

phi <- (matrix(l[n1:n2],n3,n4)>=matrix(r[n1:n],n3,n4,byrow=T))-

(matrix(r[n1:n2],n3,n4)<=matrix(l[n1:n],n3,n4,byrow=T))

ja <- ja+sum(phi*sign(z[n1:n2]*(1-lower.tri(phi))-

t(z[n1:n]*t(1-lower.tri(phi)))))

var1 <- var1+sum((aux3[n1:n2]+rowSums(phi))^2)

var2 <- var2+sum((phi*(1-lower.tri(phi)))^2)

if((n2!=n)&(nblock!=1)) aux3[(n2+1):n] <- aux3[(n2+1):n]-

colSums(phi[,(nblock+1):n4])

if((n2!=n)&(nblock==1)) aux3[(n2+1):n] <- aux3[(n2+1):n]-
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c(phi[,(nblock+1):n4])

}

ngroup <- c(table(z))

aux1 <- n^2-3*n-(sum((ngroup^3-3*ngroup^2)/n))

var1 <- (aux1*var1)/(3*(n-1)*(n-2))

aux2 <- n^2+2*(sum(ngroup^3/n))-3*(sum(ngroup^2))

var2 <- (aux2*var2)/(3*(n-1)*(n-2))

ja/sqrt(var1+var2)

}

JA2

function(l,r,z){

n <- length(z)

npair <- max(z)-1

a <- rep(z,npair)

b <- rep((1+npair):2,each=n)

zcontrol <- numeric(n*npair)

zcontrol[a<b] <- 1

zcontrol[a==b] <- 2

zl <- rep(l,npair)[zcontrol!=0]

zr <- rep(r,npair)[zcontrol!=0]

zz <- rep(1:npair,each=n)[zcontrol!=0]

ja2 <- 0

var2 <- 0

for(i in 1:npair) {

cc <- WGsc(zl[zz==i],zr[zz==i])

zaux <- zcontrol[zcontrol!=0][zz==i]-1

ja2 <- ja2 + sum(cc*zaux)
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var2 <- var2 + ((length(zaux[zaux==0])*

length(zaux[zaux==1]))/length(zaux))*var(cc)

}

ja2/sqrt(var2)

}

JKDiM

function(cc,z){

ngroup <- c(table(z))

k <- max(z) zz <- c(0,cumsum(ngroup[1:(k-1)]))-

(c(0,cumsum(ngroup[k:2]))[k:1])

zz <- zz[z]

L <- sum(cc*zz)

m <- length(z)*mean(cc)*mean(zz)

v <- ((length(z)^3-sum(ngroup^3))/3)*var(cc) (L-m)/sqrt(v)

}



138 Appendix

F Simplification of the Weighted Mann–Whitney

functional

When

ΦWMW (F,G) =

∫

Q(s)G(s)dF (s)−
∫

Q(s)F (s)dG(s)

and

Q(t) =
γ(Ŵ (t))− γ(Ŵ (t−))

Ŵ (t)− Ŵ (t−)

we derive the following simplifications for the comparison between empirical distribution

estimates Ŵ i and Ŵ j.

ΦWMW (Ŵ i, Ŵ j) =

=

∫ +∞

0

Q(t)Ŵ j(t)dŴ i(t)−
∫ +∞

0

Q(t)Ŵ i(t)dŴ j(t)

=

∫

[li,ri]∩ [lj ,rj ]
Q(t)(Ŵ (t)− Ŵ (l−j ))dŴ (t)

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))
+

∫

[li,ri]∩ (rj ,+∞)
Q(t)dŴ (t)

Ŵ (ri)− Ŵ (l−i )

−
∫

[li,ri]∩ [lj ,rj ]
Q(t)(Ŵ (t)− Ŵ (l−i ))dŴ (t)

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))
−
∫

(ri,+∞)∩ [lj ,rj ]
Q(t)dŴ (t)

Ŵ (rj)− Ŵ (l−j )

=

∫

[li,ri]∩ [lj ,rj ]
Q(t)(Ŵ (l−i )− Ŵ (l−j ))dŴ (t)

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))
+

∫

[li,ri]∩ (rj ,+∞)
Q(t)dŴ (t)

Ŵ (ri)− Ŵ (l−i )

−
∫

(ri,+∞)∩ [lj ,rj ]
Q(t)dŴ (t)

Ŵ (rj)− Ŵ (l−j )

=

∫

[li,ri]∩ [lj ,+∞)
Q(t)(Ŵ (l−i )− Ŵ (l−j ))dŴ (t)

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))
+

∫

[li,ri]∩ (rj ,+∞)
Q(t)dŴ (t)

Ŵ (ri)− Ŵ (l−i )

−
∫

[li,ri]∩ (rj ,+∞)
Q(t)(Ŵ (l−i )− Ŵ (l−j ))dŴ (t)

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))
−
∫

(ri,+∞)∩ [lj ,rj ]
Q(t)dŴ (t)

Ŵ (rj)− Ŵ (l−j )
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=

∫

[li,ri]∩ [lj ,+∞)
Q(t)(Ŵ (l−i )− Ŵ (l−j ))dŴ (t)

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))

+

∫

[li,ri]∩ (rj ,+∞)
Q(t)(Ŵ (rj)− Ŵ (l−i ))dŴ (t)

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))
−
∫

(ri,+∞)∩ [lj ,rj ]
Q(t)dŴ (t)

Ŵ (rj)− Ŵ (l−j )

=
(Ŵ (l−i )− Ŵ (l−j ))(γ(Ŵ (ri ∨ l−j ))− γ(Ŵ (l−i ∨ l−j )))

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))

+
(Ŵ (rj)− Ŵ (l−i ))(γ(Ŵ (ri ∨ rj))− γ(Ŵ (l−i ∨ rj)))

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))

−
(Ŵ (ri)− Ŵ (l−i ))(γ(Ŵ (rj ∨ ri))− γ(Ŵ (l−j ∨ ri)))

(Ŵ (ri)− Ŵ (l−i ))(Ŵ (rj)− Ŵ (l−j ))

=
Ŵ (l−i )

[

γ(Ŵ (l−i ∨ rj))− γ(Ŵ (l−i ∨ l−j ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}

−
Ŵ (l−j )

[

γ(Ŵ (l−j ∨ ri))− γ(Ŵ (l−j ∨ l−i ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}

+
Ŵ (rj)

[

γ(Ŵ (rj ∨ ri))− γ(Ŵ (rj ∨ l−i ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}

−
Ŵ (ri)

[

γ(Ŵ (ri ∨ rj))− γ(Ŵ (ri ∨ l−j ))
]

{Ŵ (ri)− Ŵ (l−i )}{Ŵ (rj)− Ŵ (l−j )}
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G Simulation stuff

G.1 S–plus function for generating data

gendata

function(n,local,scale,rho,p){

if(rho==0) t <- rweibull(n,1/scale,exp(local))

else t <- exp(local)*((((1-runif(n,0,1))^-rho)-1)/rho)^scale

t[t>=10] <- 10

t[t<10] <- ceiling(t[t<10])

delta <- matrix(c(rbinom(9*n,1,p),rep(1,n)),n,10)

insp <- col(delta)>=t

right<- row(t(delta))[t(pmin(delta,insp)*t(cumsum(t(pmin(delta,insp))))

==c(1,1+cumsum(rowSums(pmin(delta,insp)))[1:(n-1)]))]

delta <- cbind(rep(1,n),delta[,1:9])

insp <- col(delta)<=t

left <- (row(t(delta))[t(pmin(delta,insp)*t(cumsum(t(pmin(delta,insp))))

==cumsum(rowSums(pmin(delta,insp))))])-1

cbind(left,right)

}
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G.2 Tables of means and medians of the lifetimes models

'

&

$

%

(λ, ρ) θ Mean Mean Median Median
of T ∗ of T of T ∗ of T

1.6 4.95 4.74 3.43 4
(1, 0) 1.85 6.36 5.45 4.41 5

2.1 8.17 6.13 5.66 6
1.25 4.89 4.42 3.03 4

(0.75, 0.5) 1 6.28 5.13 3.89 4
1.75 8.06 5.86 5.00 5
0.9 4.87 3.92 2.46 3

(0.6, 1) 1.15 6.26 4.58 3.16 4
1.4 8.04 5.30 4.06 5
0.5 4.90 3.30 1.82 2

(0.5, 1.5) 0.75 6.30 3.87 2.34 3
1 8.09 4.51 3.00 4

'

&

$

%

(λ, ρ) θ Mean Mean Median Median
of T ∗ of T of T ∗ of T

1.65 5.21 4.88 3.61 4
(1, 0) 1.8 6.05 5.31 4.19 5

1.95 7.03 5.72 4.87 5
2.1 8.17 6.13 5.66 6
1.3 5.14 4.55 3.19 4

(0.75, 0.5) 1.45 5.97 4.98 3.70 4
1.6 6.94 5.42 4.30 5
1.75 8.06 5.86 5.00 5
0.95 5.12 4.05 2.59 3

(0.6, 1) 1.1 5.95 4.45 3.00 4
1.25 6.92 4.87 3.49 4
1.4 8.04 5.30 4.06 5
0.55 5.16 3.41 1.91 2

(0.5, 1.5) 0.7 5.99 3.75 2.22 3
0.85 6.96 4.12 2.58 3
1 8.09 4.51 3.00 4
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G.3 Survival functions of the lifetimes models

(λ, ρ) = (1, 0) (λ, ρ) = (0.75, 0.5)

(λ, ρ) = (0.6, 1) (λ, ρ) = (0.5, 1.5)

(λ, ρ) = (1, 0) (λ, ρ) = (0.75, 0.5)

(λ, ρ) = (0.6, 1) (λ, ρ) = (0.5, 1)
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G.4 S–plus function for performing the simulation study

simu

function(){

seed <- as.numeric(readline("Initial seed for the simulation? "))

set.seed(seed) M <- as.numeric(readline("Number of

replications? "))

k <- as.numeric(readline("Number of groups? "))

kn <- numeric(k) for (i in 1:k)

kn[i] <- as.numeric(readline(paste("Number of observations

in group",i,"? ")))

local <- numeric(k) for (i in 1:k)

local[i] <- as.numeric(readline(paste("Location parameter in

the accelerated failure time model for group",i,"? ")))

scale <- as.numeric(readline("Scale parameter in the

accelerated failure time model? "))

rho <- as.numeric(readline("Parameter in the

Harrington&Fleming distribution of the error? "))

p <- as.numeric(readline("Percentage of attendance to the

scheduled visits? "))

dput(list(seed,M,k,kn,local,scale,rho,p),"input")

n <- sum(kn)

code <-rep(3,n)

data <- array(0,c(2,n,M))

aux1 <- cumsum(c(1,kn[1:(k-1)]))

aux2 <- cumsum(kn) z <- numeric(n)

for (i in 1:k){

data[,aux1[i]:aux2[i],] <- array(t(

gendata(M*kn[i],local[i],scale,rho,p)),c(2,kn[i],M))
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z[aux1[i]:aux2[i]] <- i

}

pvalue0 <- 0

pvalue1 <- 0

pvalue2 <- 0

pvalue3 <- 0

rho.boot <<- rho

pvalue4 <- 0

pvalue5 <- 0

pvalue6 <- 0

pvalue7 <- 0

pvalue8 <- 0

pvalue9 <- 0

pvalue10 <- 0

pvalue11 <- 0

pvalue12 <- 0

pvalue13 <- 0

for (i in 1:M){

l <- data[1,,i]

r <- data[2,,i]

svf<- kaplanMeier(censor(l,r,code)~1,data=

data.frame(l,r,code),se.fit=F, conf.interval="none")

cdf <- cdfdata(l,r,svf)

pvalue0 <- pvalue0+(pnorm(JK(cdf,z,0),0,1)>0.95)

pvalue1 <- pvalue1+(pnorm(JK(cdf,z,0.5),0,1)>0.95)

pvalue2 <- pvalue2+(pnorm(JK(cdf,z,1),0,1)>0.95)

pvalue3 <- pvalue3+(pnorm(JK(cdf,z,1.5),0,1)>0.95)

left.boot <<- data[1,,i]

right.boot <<- data[2,,i]
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seedb <- .Random.seed

boot1 <- bootstrap(z,J1boot(left.boot,right.boot,z,rho.boot),

sampler=samp.permute,block.size=1000)

pvalue4 <- pvalue4+(mean(boot1$replicates>=boot1$observed)

<0.05)

boot2 <- bootstrap(z,J2boot(left.boot,right.boot,z,rho.boot),

sampler=samp.permute,seed=seedb,block.size=1000)

pvalue5 <- pvalue5+(mean(boot2$replicates>=boot2$observed)

<0.05)

boot3 <- bootstrap(z,J3boot(left.boot,right.boot,z,rho.boot),

sampler=samp.permute,seed=seedb,block.size=1000)

pvalue6 <- pvalue6+(mean(boot3$replicates>=boot3$observed)

<0.05)

pvalue7 <- pvalue7+(pnorm(Ltrend(HFsc(cdf,0),z),0,1)>0.95)

pvalue8 <- pvalue8+(pnorm(Ltrend(HFsc(cdf,0.5),z),0,1)>0.95)

pvalue9 <- pvalue9+(pnorm(Ltrend(HFsc(cdf,1),z),0,1)>0.95)

pvalue10 <- pvalue10+(pnorm(Ltrend(HFsc(cdf,1.5),z),0,1)>0.95)

pvalue11 <- pvalue11+(pnorm(JKDiM(DiMsc(l,r,svf),z),0,1)>0.95)

pvalue12 <- pvalue12+(pnorm(JA(l,r,z),0,1)>0.95)

pvalue13 <- pvalue13+(pnorm(JA2(l,r,z),0,1)>0.95)

print(i)

}

rm(left.boot)

rm(right.boot)

rm(rho.boot)

dput(c("JK0:",pvalue0/M,"JK0.5:",pvalue1/M,"JK1:",pvalue2/M,

"JK1.5:",pvalue3/M,"J1boot:",pvalue4/M,"J2boot:",pvalue5/M,

"J3boot:",pvalue6/M,"L0:",pvalue7/M,"L0.5:",pvalue8/M,
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"L1:",pvalue9/M,"L1.5:",pvalue10/M,"JKDiM:",pvalue11/M,

"JA:",pvalue12/M,"JA2:",pvalue13/M),"output")

c(pvalue0,pvalue1,pvalue2,pvalue3,pvalue4,pvalue5,pvalue6,

pvalue7,pvalue8,pvalue9,pvalue10,pvalue11,pvalue12,pvalue13)/M

}
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H Tables of simulation results

H.1 Percentage of rejection under ordered alternatives

(λ, ρ) = (1, 0)

'

&

$

%

(θ1, θ2, θ3) = (1.6, 1.85, 2.1)

(n1, n2, n3) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50) 1227 0.656 0.656 0.66 0.638 0.638 0.642
(100, 100, 100) 1804 0.882 0.886 0.876 0.878 0.856 0.854
(50, 100, 150) 128 0.812 0.816 0.818 0.822 0.796 0.776
(150, 100, 50) 2895 0.86 0.884 0.888 0.854 0.876 0.838

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.656 0.656 0.636 0.642 0.644 0.646 0.602 0.6
0.872 0.872 0.84 0.84 0.842 0.84 0.818 0.816
0.804 0.818 0.778 0.79 0.778 0.778 0.75 0.76
0.842 0.864 0.83 0.848 0.836 0.838 0.8 0.818

'

&

$

%

(θ1, θ2, θ3) = (1.6, 2.1, 2.1)

(n1, n2, n3) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50) 235 0.636 0.636 0.664 0.71 0.518 0.618
(100, 100, 100) 279 0.886 0.886 0.90 0.936 0.812 0.88

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.622 0.626 0.6 0.596 0.606 0.606 0.584 0.58
0.888 0.886 0.874 0.876 0.874 0.874 0.852 0.85

'

&

$

%

(θ1, θ2, θ3) = (1.6, 1.6, 2.1)

(n1, n2, n3) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50) 1017 0.672 0.67 0.646 0.56 0.734 0.654
(100, 100, 100) 325 0.892 0.892 0.882 0.82 0.93 0.888

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.664 0.668 0.62 0.622 0.638 0.64 0.592 0.586
0.89 0.888 0.88 0.874 0.88 0.882 0.844 0.84
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'

&

$

%

(θ1, θ2, θ3, θ4) = (1.65, 1.8, 1.95, 2.1)

(n1, n2, n3, n4) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50, 50) 2575 0.642 0.642 0.628 0.61 0.64 0.644
(100, 100, 100, 100) 1955 0.86 0.858 0.86 0.844 0.84 0.84
(40, 80, 120, 160) 1109 0.786 0.81 0.81 0.794 0.762 0.756
(160, 120, 80, 40) 2525 0.81 0.828 0.826 0.778 0.814 0.774

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.654 0.652 0.632 0.636 0.634 0.634 0.602 0.604
0.854 0.854 0.83 0.83 0.834 0.834 0.8 0.802
0.78 0.792 0.75 0.774 0.758 0.758 0.712 0.734
0.796 0.814 0.772 0.788 0.768 0.768 0.724 0.742

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.65, 2.1, 2.1, 2.1)

(n1, n2, n3, n4) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50, 50) 8 0.522 0.518 0.552 0.632 0.386 0.508
(100, 100, 100, 100) 593 0.776 0.776 0.788 0.896 0.606 0.758

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.518 0.52 0.516 0.51 0.506 0.506 0.496 0.496
0.768 0.772 0.76 0.764 0.756 0.754 0.746 0.746

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.65, 1.65, 1.65, 2.1)

(n1, n2, n3, n4) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50, 50) 2038 0.544 0.542 0.486 0.382 0.676 0.508
(100, 100, 100, 100) 2213 0.842 0.84 0.802 0.644 0.902 0.792

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.526 0.524 0.494 0.496 0.492 0.498 0.458 0.458
0.802 0.802 0.778 0.778 0.782 0.784 0.744 0.748
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(λ, ρ) = (0.75, 0.5)

'

&

$

%

(θ1, θ2, θ3) = (1.25, 1.5, 1.75)

(n1, n2, n3) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50) 27 0.682 0.682 0.686 0.688 0.676 0.678
(100, 100, 100) 297 0.928 0.926 0.926 0.914 0.922 0.928
(50, 100, 150) 1846 0.896 0.902 0.892 0.89 0.886 0.894
(150, 100, 50) 2965 0.882 0.87 0.866 0.874 0.864 0.888

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.662 0.66 0.674 0.672 0.682 0.682 0.67 0.672
0.912 0.91 0.928 0.926 0.922 0.924 0.916 0.914
0.876 0.89 0.894 0.898 0.892 0.892 0.872 0.87
0.884 0.878 0.874 0.88 0.88 0.882 0.858 0.864

'

&

$

%

(θ1, θ2, θ3) = (1.25, 1.75, 1.75)

(n1, n2, n3) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50) 110 0.718 0.718 0.728 0.786 0.594 0.704
(100, 100, 100) 1739 0.924 0.924 0.928 0.956 0.848 0.918

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.694 0.696 0.726 0.722 0.71 0.71 0.712 0.714
0.912 0.91 0.914 0.908 0.912 0.912 0.902 0.902

'

&

$

%

(θ1, θ2, θ3) = (1.25, 1.25, 1.75)

(n1, n2, n3) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50) 2411 0.724 0.726 0.72 0.63 0.786 0.738
(100, 100, 100) 2566 0.938 0.938 0.934 0.87 0.96 0.932

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.732 0.732 0.704 0.708 0.72 0.722 0.662 0.668
0.936 0.934 0.924 0.926 0.934 0.934 0.918 0.916
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'

&

$

%

(θ1, θ2, θ3, θ4) = (1.3, 1.45, 1.6, 1.75)

(n1, n2, n3, n4) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50, 50) 174 0.696 0.692 0.69 0.68 0.652 0.678
(100, 100, 100, 100) 1550 0.902 0.904 0.902 0.884 0.884 0.906
(40, 80, 120, 160) 2658 0.84 0.846 0.844 0.834 0.826 0.846
(160, 120, 80, 40) 93 0.826 0.842 0.828 0.788 0.828 0.826

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.678 0.672 0.686 0.69 0.682 0.686 0.674 0.676
0.892 0.892 0.892 0.894 0.9 0.9 0.882 0.882
0.842 0.85 0.826 0.832 0.836 0.84 0.806 0.808
0.804 0.834 0.818 0.826 0.822 0.828 0.796 0.812

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.3, 1.75, 1.75, 1.75)

(n1, n2, n3, n4) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50, 50) 1430 0.566 0.57 0.59 0.678 0.434 0.566
(100, 100, 100, 100) 2287 0.864 0.868 0.876 0.94 0.73 0.874

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.554 0.556 0.572 0.578 0.572 0.572 0.558 0.554
0.848 0.848 0.878 0.878 0.88 0.878 0.872 0.872

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.3, 1.3, 1.3, 1.75)

(n1, n2, n3, n4) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50, 50) 1655 0.63 0.634 0.604 0.468 0.718 0.634
(100, 100, 100, 100) 2172 0.84 0.84 0.828 0.674 0.946 0.84

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.636 0.634 0.604 0.602 0.606 0.612 0.572 0.572
0.832 0.834 0.824 0.826 0.838 0.842 0.798 0.794
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(λ, ρ) = (0.6, 1)

'

&

$

%

(θ1, θ2, θ3) = (0.9, 1.15, 1.4)

(n1, n2, n3) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50) 2276 0.736 0.742 0.73 0.724 0.738 0.724
(100, 100, 100) 2634 0.94 0.94 0.946 0.938 0.922 0.926
(50, 100, 150) 1870 0.872 0.872 0.868 0.86 0.852 0.846
(150, 100, 50) 1993 0.888 0.888 0.884 0.872 0.878 0.854

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.692 0.694 0.74 0.742 0.738 0.74 0.736 0.724
0.912 0.912 0.932 0.932 0.946 0.946 0.94 0.936
0.81 0.808 0.846 0.852 0.856 0.856 0.874 0.878
0.838 0.846 0.872 0.884 0.878 0.878 0.886 0.894

'

&

$

%

(θ1, θ2, θ3) = (0.9, 1.4, 1.4)

(n1, n2, n3) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50) 428 0.746 0.74 0.746 0.798 0.634 0.722
(100, 100, 100) 869 0.928 0.93 0.926 0.966 0.828 0.914

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.682 0.682 0.73 0.728 0.74 0.738 0.744 0.744
0.886 0.886 0.916 0.916 0.924 0.924 0.93 0.93

'

&

$

%

(θ1, θ2, θ3) = (0.9, 0.9, 1.4)

(n1, n2, n3) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50) 1319 0.708 0.712 0.706 0.618 0.754 0.71
(100, 100, 100) 2214 0.956 0.96 0.954 0.864 0.974 0.942

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.678 0.678 0.72 0.722 0.72 0.72 0.7 0.692
0.932 0.93 0.944 0.944 0.952 0.952 0.948 0.946
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'

&

$

%

(θ1, θ2, θ3, θ4) = (0.95, 1.1, 1.25, 1.4)

(n1, n2, n3, n4) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50, 50) 2800 0.698 0.7 0.696 0.678 0.68 0.686
(100, 100, 100, 100) 1791 0.938 0.938 0.94 0.91 0.912 0.908
(40, 80, 120, 160) 671 0.86 0.854 0.846 0.842 0.824 0.83
(160, 120, 80, 40) 2483 0.844 0.846 0.832 0.814 0.832 0.822

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.658 0.656 0.688 0.686 0.7 0.702 0.686 0.688
0.878 0.876 0.916 0.912 0.922 0.928 0.94 0.938
0.798 0.802 0.83 0.846 0.844 0.844 0.846 0.854
0.796 0.804 0.834 0.84 0.832 0.834 0.84 0.85

'

&

$

%

(θ1, θ2, θ3, θ4) = (0.95, 1.4, 1.4, 1.4)

(n1, n2, n3, n4) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50, 50) 837 0.638 0.634 0.63 0.738 0.45 0.608
(100, 100, 100, 100) 1110 0.864 0.864 0.854 0.94 0.704 0.838

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.566 0.566 0.612 0.608 0.628 0.626 0.632 0.634
0.804 0.806 0.84 0.842 0.866 0.866 0.86 0.864

'

&

$

%

(θ1, θ2, θ3, θ4) = (0.95, 0.95, 0.95, 1.4)

(n1, n2, n3, n4) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50, 50) 1783 0.596 0.6 0.596 0.466 0.706 0.596
(100, 100, 100, 100) 137 0.862 0.862 0.858 0.698 0.942 0.87

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.574 0.572 0.6 0.6 0.596 0.606 0.578 0.58
0.85 0.852 0.872 0.87 0.864 0.866 0.84 0.84
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(λ, ρ) = (0.5, 1.5)

'

&

$

%

(θ1, θ2, θ3) = (0.5, 0.75, 1)

(n1, n2, n3) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50) 2728 0.68 0.676 0.676 0.674 0.654 0.604
(100, 100, 100) 1159 0.926 0.926 0.922 0.92 0.93 0.876
(50, 100, 150) 2574 0.884 0.886 0.884 0.876 0.858 0.782
(150, 100, 50) 396 0.872 0.884 0.874 0.85 0.872 0.79

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.592 0.594 0.652 0.656 0.68 0.676 0.666 0.668
0.862 0.86 0.906 0.906 0.926 0.928 0.916 0.918
0.76 0.764 0.82 0.832 0.872 0.878 0.846 0.848
0.792 0.802 0.852 0.87 0.874 0.878 0.854 0.854

'

&

$

%

(θ1, θ2, θ3) = (0.5, 1, 1)

(n1, n2, n3) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50) 244 0.732 0.736 0.724 0.782 0.604 0.62
(100, 100, 100) 1202 0.912 0.914 0.912 0.952 0.85 0.85

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.602 0.602 0.688 0.692 0.726 0.726 0.69 0.692
0.83 0.832 0.888 0.888 0.908 0.908 0.898 0.896

'

&

$

%

(θ1, θ2, θ3) = (0.5, 0.5, 1)

(n1, n2, n3) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50) 489 0.722 0.72 0.728 0.62 0.764 0.672
(100, 100, 100) 2532 0.914 0.912 0.918 0.844 0.95 0.878

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.658 0.658 0.708 0.708 0.734 0.732 0.72 0.728
0.876 0.876 0.91 0.908 0.91 0.908 0.908 0.908
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'

&

$

%

(θ1, θ2, θ3, θ4) = (0.55, 0.7, 0.85, 1)

(n1, n2, n3, n4) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50, 50) 2712 0.666 0.664 0.662 0.65 0.652 0.618
(100, 100, 100, 100) 1858 0.928 0.928 0.926 0.906 0.918 0.866
(40, 80, 120, 160) 2135 0.856 0.86 0.85 0.84 0.82 0.746
(160, 120, 80, 40) 310 0.85 0.85 0.842 0.822 0.842 0.746

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.604 0.602 0.65 0.65 0.668 0.668 0.658 0.66
0.848 0.848 0.91 0.912 0.928 0.926 0.922 0.922
0.732 0.736 0.806 0.806 0.842 0.852 0.812 0.814
0.738 0.752 0.81 0.816 0.844 0.842 0.816 0.814

'

&

$

%

(θ1, θ2, θ3, θ4) = (0.55, 1, 1, 1)

(n1, n2, n3, n4) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50, 50) 1297 0.592 0.596 0.59 0.696 0.436 0.478
(100, 100, 100, 100) 53 0.85 0.848 0.842 0.924 0.692 0.776

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.454 0.45 0.536 0.536 0.568 0.57 0.546 0.55
0.722 0.722 0.818 0.818 0.844 0.846 0.83 0.83

'

&

$

%

(θ1, θ2, θ3, θ4) = (0.55, 0.55, 0.55, 1)

(n1, n2, n3, n4) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50, 50) 451 0.588 0.588 0.598 0.466 0.704 0.552
(100, 100, 100, 100) 1462 0.848 0.85 0.85 0.708 0.914 0.804

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.548 0.544 0.594 0.594 0.592 0.598 0.596 0.606
0.794 0.792 0.848 0.85 0.858 0.858 0.858 0.862
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H.2 Percentage of rejection under the null hypothesis

(λ, ρ) = (1, 0)

'

&

$

%

(θ1, θ2, θ3) = (1.6, 1.6, 1.6)

(n1, n2, n3) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50) 232 0.044 0.044 0.046 0.044 0.036 0.044
(100, 100, 100) 2808 0.054 0.054 0.052 0.054 0.054 0.054

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.048 0.048 0.048 0.048 0.048 0.048 0.046 0.046
0.052 0.052 0.05 0.05 0.056 0.058 0.054 0.056

'

&

$

%

(θ1, θ2, θ3) = (2.1, 2.1, 2.1)

(n1, n2, n3) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50) 2222 0.036 0.036 0.038 0.034 0.044 0.04
(100, 100, 100) 1132 0.048 0.048 0.052 0.05 0.054 0.04

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.042 0.042 0.04 0.04 0.04 0.04 0.038 0.04
0.046 0.046 0.046 0.046 0.042 0.042 0.046 0.048

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.65, 1.65, 1.65, 1.65)

(n1, n2, n3, n4) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50, 50) 208 0.032 0.034 0.036 0.03 0.028 0.036
(100, 100, 100, 100) 2148 0.052 0.052 0.052 0.058 0.046 0.052

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.042 0.044 0.042 0.042 0.034 0.034 0.048 0.048
0.05 0.05 0.042 0.044 0.048 0.048 0.052 0.05
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'

&

$

%

(θ1, θ2, θ3, θ4) = (2.1, 2.1, 2.1, 2.1)

(n1, n2, n3, n4) Seed JK0 L0
trend J0

1 J0
2 J0

3 JKDiM

(50, 50, 50, 50) 2997 0.05 0.052 0.054 0.048 0.044 0.048
(100, 100, 100, 100) 1957 0.058 0.058 0.054 0.054 0.054 0.056

JK0.5 L0.5
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.05 0.05 0.05 0.05 0.052 0.05 0.05 0.052
0.05 0.052 0.052 0.054 0.052 0.052 0.06 0.058

(λ, ρ) = (0.75, 0.5)

'

&

$

%

(θ1, θ2, θ3) = (1.25, 1.25, 1.25)

(n1, n2, n3) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50) 2279 0.04 0.04 0.042 0.046 0.046 0.042
(100, 100, 100) 1707 0.054 0.054 0.058 0.056 0.052 0.058

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.044 0.042 0.044 0.044 0.044 0.044 0.04 0.04
0.06 0.06 0.048 0.05 0.05 0.052 0.048 0.05

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.3, 1.3, 1.3, 1.3)

(n1, n2, n3, n4) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50, 50) 2186 0.054 0.056 0.054 0.056 0.06 0.056
(100, 100, 100, 100) 166 0.058 0.058 0.054 0.05 0.058 0.052

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.058 0.064 0.05 0.052 0.052 0.052 0.056 0.056
0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058
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'

&

$

%

(θ1, θ2, θ3) = (1.75, 1.75, 1.75)

(n1, n2, n3) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50) 2877 0.046 0.046 0.04 0.04 0.04 0.04
(100, 100, 100) 236 0.048 0.048 0.054 0.052 0.05 0.05

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.048 0.048 0.036 0.038 0.034 0.034 0.034 0.034
0.052 0.052 0.044 0.044 0.048 0.048 0.04 0.04

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.75, 1.75, 1.75, 1.75)

(n1, n2, n3, n4) Seed JK0.5 L0.5
trend J0.5

1 J0.5
2 J0.5

3 JKDiM

(50, 50, 50, 50) 1149 0.052 0.05 0.044 0.054 0.048 0.058
(100, 100, 100, 100) 1109 0.042 0.044 0.042 0.042 0.046 0.048

JK0 L0
trend JK1 L1

trend JA JA2 JK1.5 L1.5
trend

0.05 0.048 0.058 0.056 0.062 0.062 0.056 0.054
0.044 0.044 0.048 0.048 0.046 0.046 0.044 0.044

(λ, ρ) = (0.6, 1)

'

&

$

%

(θ1, θ2, θ3) = (0.9, 0.9, 0.9)

(n1, n2, n3) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50) 1353 0.064 0.064 0.064 0.066 0.056 0.056
(100, 100, 100) 994 0.052 0.052 0.048 0.048 0.044 0.046

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.05 0.052 0.058 0.056 0.06 0.06 0.06 0.062
0.042 0.04 0.048 0.046 0.05 0.05 0.052 0.052
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'

&

$

%

(θ1, θ2, θ3, θ4) = (0.95, 0.95, 0.95, 0.95)

(n1, n2, n3, n4) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50, 50) 2462 0.044 0.042 0.042 0.046 0.04 0.034
(100, 100, 100, 100) 1265 0.052 0.052 0.052 0.042 0.054 0.036

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.036 0.034 0.032 0.032 0.034 0.036 0.05 0.048
0.036 0.036 0.04 0.038 0.046 0.048 0.048 0.048

'

&

$

%

(θ1, θ2, θ3) = (1.4, 1.4, 1.4)

(n1, n2, n3) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50) 1901 0.032 0.034 0.036 0.038 0.03 0.028
(100, 100, 100) 835 0.03 0.03 0.03 0.036 0.028 0.032

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.03 0.028 0.026 0.026 0.034 0.034 0.038 0.04
0.036 0.036 0.028 0.028 0.03 0.03 0.028 0.028

'

&

$

%

(θ1, θ2, θ3, θ4) = (1.4, 1.4, 1.4, 1.4)

(n1, n2, n3, n4) Seed JK1 L1
trend J1

1 J1
2 J1

3 JKDiM

(50, 50, 50, 50) 217 0.048 0.048 0.054 0.054 0.046 0.044
(100, 100, 100, 100) 2364 0.048 0.046 0.05 0.048 0.048 0.052

JK0 L0
trend JK0.5 L0.5

trend JA JA2 JK1.5 L1.5
trend

0.044 0.044 0.046 0.046 0.044 0.044 0.048 0.05
0.05 0.048 0.054 0.052 0.054 0.054 0.048 0.048
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(λ, ρ) = (0.5, 1.5)

'

&

$

%

(θ1, θ2, θ3) = (0.5, 0.5, 0.5)

(n1, n2, n3) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50) 170 0.054 0.054 0.05 0.058 0.06 0.05
(100, 100, 100) 933 0.046 0.046 0.05 0.054 0.046 0.078

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.052 0.05 0.052 0.054 0.048 0.052 0.052 0.054
0.078 0.078 0.066 0.064 0.05 0.05 0.058 0.058

'

&

$

%

(θ1, θ2, θ3, θ4) = (0.55, 0.55, 0.55, 0.55)

(n1, n2, n3, n4) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50, 50) 2646 0.038 0.038 0.042 0.048 0.04 0.04
(100, 100, 100, 100) 2218 0.05 0.048 0.048 0.05 0.056 0.052

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.042 0.044 0.036 0.038 0.044 0.044 0.04 0.042
0.056 0.056 0.05 0.05 0.046 0.048 0.05 0.052

'

&

$

%

(θ1, θ2, θ3) = (1, 1, 1)

(n1, n2, n3) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50) 1286 0.034 0.034 0.04 0.028 0.04 0.04
(100, 100, 100) 376 0.054 0.052 0.056 0.05 0.046 0.054

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.048 0.048 0.036 0.036 0.036 0.034 0.034 0.036
0.054 0.054 0.056 0.056 0.048 0.048 0.052 0.052
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'

&

$

%

(θ1, θ2, θ3, θ4) = (1, 1, 1, 1)

(n1, n2, n3, n4) Seed JK1.5 L1.5
trend J1.5

1 J1.5
2 J1.5

3 JKDiM

(50, 50, 50, 50) 1305 0.06 0.06 0.054 0.058 0.054 0.058
(100, 100, 100, 100) 2007 0.044 0.044 0.046 0.044 0.044 0.048

JK0 L0
trend JK0.5 L0.5

trend JK1 L1
trend JA JA2

0.054 0.054 0.058 0.06 0.064 0.066 0.06 0.06
0.05 0.05 0.048 0.05 0.048 0.048 0.05 0.05


