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Resum en català

Motivació

Aquesta tesi doctoral té per objectiu l’estudi dels processos interfacials que es pro-
dueixen durant l’avanç d’un front de solidificació. El creixement d’un cristall és
un procés dinàmic que succeeix en condicions termodinàmiques de no-equilibri.
Anomenem processos interfacials a les deformacions morfològiques de la interfase
de separació entre les fases sòlida i ĺıquida. Durant un procés de cristaÃl.lització,
aquestes deformacions evolucionen de forma complexa i acaben donant lloc a es-
tructures tan familiars com els flocs de neu.

Però la formació d’estructures en sistemes fora de l’equilibri no és un fenomen
restringit a processos f́ısics, sinó que també s’ha observat en sistemes qúımics,
òptics o biològics. Desde el punt de vista cient́ıfic, aquests problemes tenen un
interès bàsic perquè tots els casos, independentment de la naturalesa del sistema,
comparteixen una sèrie de caracteŕıstiques comunes. Aquesta universalitat recorda
d’alguna forma a la que s’observa en els processos de transformació de fases, en
els que el canvi de fase es produeix per un cert valor cŕıtic d’una variable ter-
modinàmica com ara la temperatura o la pressió. D’una forma similar, els patrons
que apareixen en sistemes fora de l’equilibri s’observen a partir d’un cert valor de
la variable de control amb la que allunyem el sistema de l’equilibri. En el cas par-
ticular dels processos de solidificació, el creixement d’estructures dendŕıtiques com
les de la Figura 1.3 s’observa a partir d’un cert valor del refredament del sistema
per sota de la seva temperatura de cristaÃl.lització. En uns altres règims, també es
poden observar uns altres tipus d’estructures interfacials, com ara patrons ceÃl.lulars
que apareixen a la Figura 1.4.

Existeixen diverses maneres de caracteritzar les deformacions que pateix la in-
terfase, i gairebé totes fan referència a l’amplitud de la deformació i a la separació
entre les seves protuberàncies. Aquesta forma de caracteritzar el problema obre
la possibilitat de fer-se la pregunta següent: Donada una determinada substància
(posem per cas, l’aigua), i unes certes condicions de cristaÃl.lització (p.e., mantenint
la temperatura constant a −15oC), podem saber quina és la forma precisa que
tindrà la interfase uns minuts després d’haver-se iniciat el procés de solidificació?.

Qualsevol que observi detingudament la figura 1.3, se n’adonarà que la forma
de la interfase és força complicada. De fet, l’aparició de complexes deformacions
laterals (anomenades sidebranches) fa inviable qualsevol intent de solució del prob-
lema en termes determińıstics. L’origen d’aquesta impredictibilitat es troba en
les propietats microscòpiques del sistema: El moviment aleatori de les molècules
del material produeix fluctuacions termodinàmiques que pertorben la interfase.
Inicialment, aquestes pertorbacions són molt petites i la interfase no manifesta
cap alteració morfològica. Aleshores, a mesura que el sòlid avança i depenent de
les condicions de cristaÃl.lització, pot arribar un moment en el que el sistema es
torni inestable sota algunes de les pertorbacions. En aquest moment, les deforma-
cions microscòpiques començaran a crèixer ràpidament, fent que la seva amplitud
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s’incrementi en uns quants ordes de magnitud. Aquest procés d’amplificació és
el que provoca que es formin les estructures dendŕıtiques que s’observen amb un
microscopi.

Arribats a aquest punt, si volem continuar, necessitem una forma de conèixer
les fluctuacions termodinàmiques del sistema. La forma més habitual és fer servir
l’anomenat teorema de fluctuació-dissipació, que va ser dedüıt per Einstein en
les seves investigacions sobre el moviment de les part́ıcules brownianes. Aquest
teorema estableix una relació directa entre els coeficients de transport del material
i les seves fluctuacions microscòpiques, de forma que només haurem de conèixer
propietats com ara el coeficient de difusió per determinar la magnitud del soroll.
Una vegada conegudes les caracteŕıstiques de les fluctuacions, podem reformular la
nostra primera pregunta:

Aix́ı doncs, assumint el caràcter estocàstic del problema, i per tant que no
podrem determinar la forma exacta de la interfase, podem dir alguna cosa sobre
l’amplitud i espaiat de les deformacions?. Aquest és el que s’anomena problema de
la selecció, i actualment constitueix un nucli important d’activitat de recerca en
l’àmbit teòric i experimental. Problemes de selecció n’hi ha tants com sistemes que
presentin formació d’estructures fora de l’equilibri, i en cada cas els mecanismes que
donen lloc a una estructura i no a un altra dependran, en general, dels detalls de
cada sistema. En el fons, el fet que no poguèssim determinar el comportament del
sistema no només és per causa del soroll, sinó que gran part de la responsabilitat
recau en el fet que el sistema es trobi fora de l’equilibri. I és que, en general,
no hi ha cap llei universal que determini la dinàmica d’evolució dels sistemes de
no-equilibri.

La solidificació direccional és un procés metaÃl.úrgic que permet controlar l’avanç
del front de solidificació en aliatges binaris. En aquest cas, la solidificació es pro-
dueix com a conseqüència del rebuig de part́ıcules de solut per part de la fase
sòlida a mesura que el front avança. Per tal de controlar el procés, la mostra amb
la solució binària es mou amb una velocitat constant vers la zona freda d’un gra-
dient extern de temperatura que es manté constant. Aquesta situació es descriu a
la figura 3.3 de la memòria. A mesura que la substància s’endinsa al gradient, la
zona de la mostra que es troba a temperatures inferiors a la de solidificació es va
fent més gran i, com a conseqüència, es produeix l’avanç del front.

Depenent de la velocitat amb la que es realitzi aquest procés, el front de so-
lidificació presentarà l’aparició de interstabilitats morfològiques. S’observa que a
partir d’un valor cŕıtic de la velocitat d’empenta, la interfase es torna inestable i
presenta diferents tipus de deformacions. A mesura que augmentem la velocitat
d’empenta, les deformacions interfacials es fan més pronunciades i poden arribar a
donar lloc a estructures periòdiques de dendrites (dendritic arrays).

Metodologia

Potser no hi ha cap llei universal respecte a la seva dinàmica, però śı disposem d’un
coneixement força acurat dels mecanismes f́ısics que intervenen en els processos de
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solidificació. He dedicat el caṕıtol 2 a donar una breu descripció dels que són més
rellevants. Part dels mecanismes s’expliquen desde la termodinàmica de l’equilibri,
mentre que uns altres fan referència a fenomens com ara la capiÃl.laritat o la difusió
del calor i de part́ıcules al sistema.

El problema pot ser llavors formulat en termes d’aquests fenomens f́ısics, donant
lloc a un sistema d’equacions metemàtiques anomenat problema de contorn mòbil,
que es discuteix amb més detall al caṕıtol 3 de la tesi. Els problemes de contorn
mòbil consisteixen en equacions en derivades parcials que descriuen la difusió de
calor i massa en les dues fases del sistema. Aquestes equacions són complemen-
tades per condicions de contorn que s’han de complir a la interfase, com ara que
la quantitat d’energia o massa que es transfereixi entre les dues fases es mantingui
en equilibri. El fet d’haver d’imposar condicions de contorn a la interfase mòbil
presenta una clara dificultat: Per una banda, primer hem de resoldre totes les equa-
cions per determinar la posició del front; per un altra, necessitem un coneixement
previ de la posició de la interfase per tal de poder imposar les condicions de contorn
i per tant per poder trobar una solució del sistema. El tractament anaĺıtic d’aquest
tipus de problemes només es pot dur a terme aplicant hipòtesis que simplifiquin el
problema. Alguns dels procediments teòrics en relació als transitoris (boundary in-
tegral methods) i a les fluctuacions (Warren-Langer theory) es presenten al caṕıtol
4. En general, si volem estudiar el comportament dinàmic del sistema, haurem de
recòrrer a tècniques numèriques que solucionin les equacions diferencials acoblades
del problema. Aquests procediments permeten simular la evolució de la interfase,
però requereixen de la utilització d’uns algorismes de seguiment de la interfase
(front tracking algorithms) que suposen un cost computacional força elevat. Mal-
grat que en aplicacions dins l’àmbit de l’enginyeria de materials aquests mètodes
són sovint utilitzats, en situacions interfacials complexes com la que apareix a la
figura 1.3 resulta més adient fer servir un altre tipus de descripció del sistema.

Els models de camp de fase (phase-field models) són una d’aquestes possibles
descripcions, i consisteixen en un conjunt d’equacions diferencials que descriuen la
dinàmica d’un camp continu φ(r, t) acoblat a les equacions de difusió a les dues
fases. El camp φ s’anomena camp de fase i assoleix valors constants a cadascuna
de les fases, de forma que permet definir la posició de la interfase tan sols mirant
en quins punts de l’espai pren un valor intermedi determinat. Com que la posició
de la interfase vindrà determinada per l’evolució del camp φ, aquest procediment
ens estalvia haver d’imposar les condicions de contorn mòbil i per tant evita la
utilització d’algorismes de seguiment de la interfase. Durant els últims vint anys,
els models de camp de fase s’han establert com una eina molt potent per estudiar
sistemes interfacials complexos. La seva aplicació no només s’ha realitzat en el
context de la solidificació, sinó també en uns altres àmbits com ara en la propagació
de cracks en materials o en la dinàmica de membranes biològiques. Al caṕıtol 5
es deriven les equacions dels models de cap de fase per als processos de solidificació
més habituals.
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Resultats

Els resultats d’aquesta tesi poden dividir-se en dues seccions: La primera és de
caràcter teòric i fa referència a la introducció de fluctuacions en models de camp de
fase. En aquesta primera part, el resultat fonamental ha sigut el desenvolupament
d’un mètode que permet d’incloure tant les fluctuacions termodinàmiques internes
com les possibles pertorbacions incontrolades que puguin ser presents en el sistema
experimental (impureses en la mostra, irregularitats en la superf́ıcie de contacte,
etc). La incorporació de fluctuacions termodinàmiques en models de camp de fase ja
s’havia realitzat prèviament, però la validesa del procediment quedava restringida
a models simplificats amb els que no es podien obtenir resultats quantitatius. El
nostre procediment, que es fonamenta en un anàlisi pertorbatiu asimptòtic (hybrid
asymptotic expasion), es pot aplicar en qualsevol model i amb qualsevol font de
soroll, i en aquest sentit permet la possibilitat de tractar el problema de la selecció
amb aquestes tècniques. Els detalls del procediment i la comprovació de la seva
validesa es descriuen al caṕıtol 6 de la tesi.

El segon bloc de resultats consisteix en estudis amb models de camp de fase de
la dinàmica de transitoris i fluctuacions en processos de solidificació. En primer
lloc, els resultats obtinguts amb els models de camp de fase es comparen amb
prediccions anaĺıtiques derivades dels problemes de contorn mòbil. Els resultats es
descriuen al caṕıtol 7, on s’hi estudia la posició del front durant el transitori, aix́ı
com la evolució dels perfils de concentració de solut en les dues fases. La segona
part, la dels resultats numèrics, correspon als continguts del caṕıtol 8 i es dedica a
l’estudi del problema de seleció en solidificació direccional. Per això s’hi analitza la
estabilitat morfològica de la interfase durant el transitori, i es compara els resultats
amb la predicció teòrica de la teoria proposada per Warren i Langer. Amb un
anàlisi espectral de la dinàmica d’amplificació del soroll, es determina el temps de
transició (crossover time), aix́ı com la longitud d’ona de la primera inestabilitat
interfacial amb una amplitud observable. La part final de la tesi té per objectiu
presentar resultats sobre l’evolució de la inestabilitat en el règim no-lineal, en el
que estructures interfacials esdevenen complexes. Per finalitzar, al caṕıtol 9 es
fa un breu resum dels resultats assolits en aquesta tesi, i es comenten les ĺınies de
recerca que segueixen obertes i que seran objecte de les nostres investigacions en
el futur.
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Chapter 1

Introduction

1.1 Pattern-forming systems

Under non-equilibrium conditions, some systems present the spontaneous appari-
tion of spatio-temporal patterns [Cross93]. These pattern-forming phenomena have
been observed in as diverse scenarios as hydrodynamics [Busse84, Buka96], solid-
ification [Langer80b], nonlinear optics [Moloney92], chemical systems [Field85] or
biology [Koch94, Murray02, Murray03]. When a pattern-forming system is driven
out from equilibrium in a controlled way, it eventually becomes unstable under
infinitesimal perturbations with a defined wave-vector q and frequency ω. If M is
the control parameter used to drive the system away from equilibrium, this loose of
stability occurs at a certain critical value M = Mc. The apparition of the instabil-
ity introduces new space and time scales which are in general not related with the
microscopical details of the particular system. If we continue increasing M a bit
further, a well-defined pattern structure with wave-vector q and frequency ω will ap-
pear in the system. Although the mechanism of the instability depends on the par-
ticular details of the system, the pattern structure can often be described by means
of q, ω and the relative distance to the instability threshold ε = (M − Mc)/Mc.
This independence from the microscopical details of the system allows to stablish
some equivalences between the pattern formation and a phase transition process
[Haken75]. One possible way of classifying the pattern-forming instabilities is to
distinguish between interfacial and bulk instabilities. Bulk instabilities affect to the
system as a whole, whereas interfacial or morphological instabilities destabilize a
front separating two different regions of the system (solid/liquid in solidification
processes, nematic/smectic in liquid crystals, etc.). The main essential difference
between bulk and interfacial patterns is perhaps the singular effect which plays the
surface tension in the case of morphological instabilities.

Pattern-forming structures can also be classified in spatially extended station-
ary patterns (q 6= 0, ω = 0) like the rolls observed in Rayleigh-Bénard convection
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Figure 1.1: Front page of the Johannes Kepler’s On the six-cornered snowflake (De nive
sexangula, 1611). In this work, Kepler asserts that behind the symmetric shape of a
snowflake there is a basic, universal mechanism. It has taken four centuries of scientific
thought to confirm his amazing neo-platonic intuition.

(see Fig.1.2), oscillatory homogeneous (q = 0, ω 6= 0) as the Besulov-Zhabotinshky
chemical reaction and spatio-temporal structures (q 6= 0, ω 6= 0) like non-linear
traveling waves in excitable media or the growth of a dendrite. For even larger
values of the control parameter, some defects will appear in the pattern and the
system will finally enter in a highly non-linear regime presenting a turbulent or
chaotic behavior.

Non-equilibrium instabilities have been traditionally studied by using tech-
niques which were already well established for the study of equilibrium phase tran-
sitions. Almost all of these approaches come from the critical dynamics field, and
have been adapted to account for the universal properties of the system around the
instability point. In order to study the different relevant aspects of pattern-forming
systems, there are different methodological approaches and levels of description:

- The microscopic approach describes the evolution of the system in terms of
the microscopic properties of its basic constitutive elements or particles. The
microscopic dynamics is determined by a Hamiltonian which accounts for
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Figure 1.2: Topological defects in a convective roll pattern.

the particle interactions, and the probability distribution of the macroscopic
states can be obtained by using standard statistical mechanics techniques.
The system evolution can be numerically obtained by means of molecular
dynamics or Monte-Carlo simulations. In pattern-formation, the molecular
dynamics approach are mostly used either to determine some physical pa-
rameters which are difficult to determine experimentally (for instance, kinetic
coefficient in solidification [Bragard02]) or when the macroscopic description
of the system is not fully understood (Flame/crack propagation, etc.).

- Phenomenological equations provide a macroscopic description of the system
in terms of kinetic processes (diffusion, convection, advection, chemical reac-
tion) and conservation laws (conservation of mass, energy, momentum, etc.).
In this level of description we have for instance the Navier-Stokes equations
for hydrodynamic systems, the Maxwell-Bloch Equations in non-linear op-
tics, the sharp-interface equations for solidification processes or the reaction
rates in chemical reaction-diffusion systems. These constitutive equations
usually take the form a non-linear set of partial differential equations, and
few analytical or numerical work can be done in complex regimes where the
instabilities are fully developed. We include in this level of description ap-
proaches like the Swift-Hohenberg equations, which are a simplified version of
the phenomenological equations (Navier-Stokes) presenting the same linear
instabilities under some restricted conditions.

- Amplitude equations can be used to describe the system near the critical
point at which the instability occurs (M ≈ Mc). They describe small spatio-
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temporal modulations from the basic pattern by means of amplitude |A| and
phase φ variables which determine the amplitude of the pattern structure and
the phase shift with respect with its basic periodicity. Amplitude equations
are then constructed from the symmetry properties of the pattern without
considering the details of the physical system. The details of the system are
only reflected in the value of the amplitude equations parameters, which are
determined by using singular perturbation techniques [Bender99]. In turn
of the difficulty in determining the parameters, the equations can be easily
simulated and allow to explore different ranges of the system parameters.
The paradigmatic example of amplitude equations are the real and complex
Ginzburg-Landau equations [Aranson02], which have been extensively used
to study convection rolls in Rayleigh-Bénard convection or electrohydrocon-
vection patterns in nematic liquid crystals [Buka96].

- Phase equations are similar to amplitude equations but only describe the
phase shifts of long wavelength perturbations [Pomeau79]. The main idea is
that the phase-shift δφ produced by a long wavelength perturbation (δq ¿ 1)
relaxes much slowly than the amplitude of the pattern |A|. Their validity is
not necessary restricted to the vicinity of the instability threshold and the
equations also reflect the basic symmetries of the pattern structure.

- Field theories: In some cases as crystal growth, nucleation or spinodal de-
composition, an interfacial pattern is created by means of a first-order phase
transition which separates two different phases of the system (solid/liquid,
solute/solvent, α/β crystallographic structures, etc). In such situations, the
non-equilibrium system can be described by means of a coarse-grained field
φ which labels the two different phases and whose dynamics is determined by
a free-energy functional F(φ). The free-energy functional F is constructed
in order to recover the equilibrium properties of the system, and its minima
are associated with the two phases as stable states of the equilibrium system.
This procedure was proposed in the context of dynamic critical phenom-
ena [Hohenberg77], and provides a powerful description of the system whose
validity is not necessarily restricted to the instability onset. In fact, this ap-
proach can also be used in systems presenting a second-order phase transition
and even in heterogeneous systems where the two phases are different but no
phase transition occurs like in Viscous Fingering or in Hele-Shaw cells. In
this family of models we have the reaction-diffusion equations, Phase-Field
methods, etc.

- Bifurcation theory uses the qualitative theory of differential equations to de-
termine the universal properties of the system near the instability point,
allowing to classify the different instabilities from the geometrical and topo-
logical universal properties of the system equations [Guckenheimer83]. This
approach can be equally applied to the equations describing the system at
different levels as to phenomenological equations or to amplitude equations.
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One of the most important problems in pattern-forming systems is to understand
the mechanisms by which the system selects a certain preferred wavelength and
not other. In equilibrium systems, the selection of one phase is determined by the
minimization of a thermodynamical free energy density. Under non-equilibrium
conditions, however, there is no general variational principle which can be used
in order to determine the selected properties of the system. This leads to the
conclusion that there is no general selection mechanism, and that therefore every
particular system will determine the final wavelength of the pattern depending on
its particular properties. We can classify the different selection mechanisms by
using some well defined scenarios:

- Selection by boundary conditions: The wavelength of the pattern is selected
to be a integer fraction of the size of the system so that the periodic structure
satisfies the boundary conditions of the system. This happens, for instance,
in some bounded hydrodynamic instabilities such as Rayleigh-Benard con-
vection.

- Selection from a variational principle: Extending the optimization princi-
ples which describe the dynamics of equilibrium systems (Lagrangian in me-
chanical systems, Gibb’s free energy in equilibrium thermodynamics, etc.),
it can be supposed that non-equilibrium systems select their wavelength by
minimizing some generic magnitude or generalized action. Although varia-
tional descriptions of non-equilibrium systems have been demonstrated to be
a very powerful techniques (Ginzburg-Landau, Swift-Hohenberg, Lyapunov
function, etc.), nature usually behaves in a non-variational way.

- Selection by noise amplification: Pattern-forming systems are subjected to
both internal thermodynamical fluctuations and to uncontrolled external per-
turbations. These stochastic forces might produce transitions between differ-
ent stable states of the system, therefore selecting the features of the global
pattern. Besides, small noise amplitudes present at microscopic scales can
be amplified by a non-linear selection mechanism which, in combination with
the probability distribution of the fluctuations, might determine the selected
instability.

- Dynamical selection from the initial conditions: Many pattern-forming sys-
tems present a continuum range of stable stationary states. It might happen,
however, that not all the stable states are dynamically accessible from a given
choice of the initial conditions. This is for instance the case of the selection of
the finger width in a Hele-Shaw cell. The main conclusion is that the surface
tension acts as a singular perturbation, in the sense that even a infinitesimal
amount of surface energy produces that the system selects a wavelength.
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1.2 Pattern formation in solidification

During a solidification process, the solid-liquid interface can present a large vari-
ety of complex interfacial patterns [Langer80b, Langer87, Langer86, Boettinger00].
The most common phenomena are the apparition of cellular or dendritic struc-
tures, nucleation of phases, the creation of grain boundaries or the apparition of
solute bands. These microstructures usually appear at length scales of the order
of about 10 µm and determine the final mechanical and electrical properties of a
manufactured material. Besides the technological applications for the character-
ization of processing materials, the study of the physical mechanisms underlying
the formation of such microstructures has a fundamental interest. In order to fully
understand the physics of a solidification process it is necessary to consider the
interplay of three physical phenomena which appear at different physical scales:

- The diffusion of heat in pure systems and of solute particles in binary alloys
are the processes which drive the motion of the solidification front. As we will
see in Section 2.2, heat or mass diffusion are non-equilibrium kinetic processes
by which the system minimizes its Gibbs’ free energy. From the point of view
of the morphological stability of the interface, this diffusion process acts as a
destabilization force which tends to amplify small perturbations of the solid-
liquid interface (cf. Sec. 3.3.4). Diffusion effects define a diffusion length
scale of l̃ = D̃/ṽ, being D̃ the thermal/solutal diffusivity of the liquid phase
and ṽ the front velocity or growth rate. For typical growth velocities of ṽ ∼ 1
µm/s, we have l̃ ∼ 10 cm for thermally driven fronts and l̃ ∼ 1 mm for alloy
solidification processes.

- Capillary effects are due to the surface energy of the solid-liquid interface
and act as a stabilization force for the interface deformations (cf. Sec. 3.3.4).
As the surface energy is an anisotropic magnitude, the growth of unstable
branches is directly related with the crystallographic properties of the solid-
ified phase, giving rise to the six-cornered shape of the snowflake structures.
Capillarity effects define a microscopic length scale which is of the order of
d̃T
0 = 1 nm for pure systems and of ˜̂

d0 = 10 nm for binary alloys. Although
capillary effects appear in a microscopic scale, they have a macroscopic effect
in the deformations of the solidification front. The reason is that they prevent
the formation of cusped shapes associated with short wavelength perturba-
tions, acting as a low-pass filter for the morphological modulations of the
front.

- Kinetic attachment phenomena describe how the solute particles attach from
the liquid phase to the crystalline structure of the solid phase. Kinetic effects
become more important for large growth rates and, like the surface tension
effects, might present an anisotropic behavior.

The interaction between these three physical processes produce a complex non-
linear, non-local dynamics which is responsible of the morphological evolution of
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the solidification front. In controlled solidification processes such as directional
solidification, an externally imposed thermal gradient allows to control the advance
of the front. The thermal gradient acts as a stabilizing force of the system and in-
troduces an additional scale in the problem l̃T (thermal length) which, for typical
values of the external gradient (G̃ ∼ 103 K/m) and of the sample solute concen-
tration (c∞ ∼ 10−2 mol), is of the order of l̃T ∼ 10 mm.
Besides the diffusion mechanism, the amount of heat and solute ahead of the front
can be altered by convection flows which might be present in the liquid phase.
These convective effects can eventually modify the stability conditions and even
create new flow-induced instabilities [Davis01, Büeler98].

1.2.1 Dendritic growth

The formation of a growing dendrite is one of the most elegant and surprising
pattern-forming systems in nature. For a long time, scientists have been studying
the question of how such a complex structure can arise from a simple system like an
undercooled pure melt. Dendrites constitute a suitable example of nature’s com-
plexity, combining the deterministic features of its six-folded shape with complex
sidebranching structures. Dendrites can also form in alloy materials which solidify
under the effect of small concentration gradients. For a general review on dendrite
growth, we refer to Ref. [Glicksman93, Langer87]. The main physical problem
concerning dendritic growth is to determine the selected shape and velocity of the
growing dendrite for a given thermal undercooling. Ivantsov [Ivantsov47] was the
first in obtaining a relation between the tip radius of the dendrite and the under-
cooling of the melt. Assuming that the interface at the tip was isothermal, and
neglecting capillary effects, he approximated the steady-state shape of the dendrite
tip by a paraboloid of revolution. The Ivantsov’s theory, however, did not allow to
determine the tip radius and velocity of the dendrite separately, but rather a prod-
uct of this two quantities. This product was determined as a function of the thermal
undercooling of the system, and could therefore be determined for a given set of
solidification conditions. The validity of the Ivantsov’s solution was experimentally
confirmed by Huang and Glicksman in Refs. [Huang81a, Huang81b]. In these ex-
perimental investigations, the tip radius and velocity were measured independently,
and that induced an important theoretical effort with the aim in understanding the
selection mechanisms. These efforts [Langer87, Temkin60, Trivedi70] led to the mi-
croscopical solvability theory [Ben-Jacob84, Kessler85], which incorporated surface
tension and anisotropy effects. Later on, this theory has been extended to three
dimensions [Amar93] and gives a quantitative description of non-steady stages.

1.2.2 Cellular and dendritic arrays in directional solidifica-
tion

In a directional solidification process, a binary mixture sample is pulled with a
constant velocity through a fixed temperature gradient. Under fixed conditions
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Figure 1.3: Dendritic growth and formation of sidebranches in a needle-crystal structure
(Courtesy of Prof. Ken Libbrecht, Physics Dept., Caltech, Pasadena, USA).

of sample concentration and external gradient, the initially planar solid-liquid in-
terface undergoes a planar to cellular morphological transition as the pulling ve-
locity increases. For even larger growth rates, the cellular pattern enters in a
highly non-linear regime giving rise to a complex dendritic array structure. The
morphological stability of a planar interface was first studied by Mullins and Sek-
erka under a steady-state assumption [Mullins63]. By performing a linear sta-
bility analysis, they found an expression for the growth rate of the morphologi-
cal perturbations. The Mullins-Sekerka instability predicted the instability wave-
length of a steady-state planar interface. The wavelength of the instability, how-
ever, it is not selected when the planar front has reached its stationary state
but during the initial solute redistribution transient [Trivedi85]. In order to ac-
count for these transients, Warren and Langer [Warren90, Warren93] proposed
a linear stability analysis of the non-steady concentration profile and predicted
rather different wavelengths than the steady-state theory. Recent investigations
[Losert98a, Losert98b] have shown a quantitative agreement between the Warren
and Langer predictions of the selected wavelength and the experimental observa-
tions. During the last decade, a large amount of theoretical work has been dedi-
cated to the wavelength selection problem of the cellular structure [Kerszberg83a,
Kerszberg83b, Kerszberg83c, Karma86, Dombre87, Amar88, Haug89, Kessler89a,



1.2. PATTERN FORMATION IN SOLIDIFICATION 9

Kessler89b, Kessler90, Karma90, Mashaal90, Weeks91, Lu92, Kurze96]. The main
question was to elucidate whether there is a selection mechanism or if the instabil-
ity wavelength is selected by means of a dynamical process which depends on the
initial conditions. Although there are different possible scenarios for the selection
problem, it seems that the dynamical selection mechanism is the one which bet-
ter describes the experimental observations. Some experimental works have been
devoted to clarify the selection problem [Eshelman88a, Eshelman88b, Qian89].

Figure 1.4: Destabilization of a planar solidification front. Taken from the experiments
of A. J. Simon, J. Bechhoefer and A. Libchaber (Ref. [Simon88]).

1.2.3 Flow-induced instabilities

From a general point of view, the morphological instability of the solidification
front is not uniquely driven by heat and mass diffusion. Under some situations,
the effects of the advection and convection at the liquid phase might be equally
important [Hurle93c, Davis01]. A description of the solidification problem taking
into account the effects of the fluid flow at the liquid phase requires the coupling of
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the heat and mass equations with the Navier-Stokes equations for the fluid velocity.
In fact, convective patterns can also form during the advance of the solidification
front, and two different pattern-forming instabilities (bulk and interfacial) will be
present in the same physical system [Davis84].

1.2.4 Eutectic patterns

A binary eutectic system is a A-B binary alloy presenting a three-phase coexistence
between the liquid phase and two distinct solid phases which are rich in either A
(α phase) or B particles (β phase) [Davis01, Sinha03]. At the triple point, the
the alloy melt has a eutectic concentration cE and a melting temperature TE .
Below TE , there is a equilibrium state between the α and β solid phases. Eutectic
systems have a great technological importance because the melting temperature TE

is quite smaller than the melting temperatures of the pure A and pure B systems
TA, TB and because their solidification microstructures have a smaller wavelength
than the typical structures in dendritic growth. During eutectic growth, many
different microstructures can appear in the system, and the solid phase presents
some ordering between the α and β phases in the form of a lamellar pattern or a
rod-like structure [Jackson66a, Jackson66b, Davis01]. Pattern-formation in eutectic
systems has not been studied until recently [Langer80a, Karma96c, Kassner91a,
Kassner91b, Caroli90]. There are other important physical metallurgy systems like
monotectics or peritectics which present, as the eutectic system, different stable
solid phases from the melt.

1.3 General objectives and outline of the work

1.3.1 General objectives

The work developed in this thesis deals with continuum models for solidification
processes. The derivation and application of such models requires the combination
of different theoretical and computational approaches. In particular, we will work
with the so-called phase-field models, which constitute a relatively new approach
to deal with complex interfacial phenomena.

The ultimate objective of this thesis is to quantitatively describe the pattern
selection dynamics of the morphological instabilities which are present during a
controlled directional solidification experiment. This pattern selection problem has
important scientific and technological consequences; as basic research, a knowledge
of the selection dynamics will clarify the underlying mechanisms which determine
the apparition of different pattern-forming structures in the system. From the
technological point of view, it provides a tool which can be used to predict and
control the formation of microstructures in material processing engineering.

During the last fifteen years, it has been already well established from experi-
mental [Eshelman88a, Eshelman88b, Losert98a, Losert98b] and theoretical results
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[Warren90, Warren93] that the features of the final solidification pattern are de-
termined during a history-dependent process at the initial transient stages of the
solidification process. For this reason, the first objective of the work is addressed
to decide whether the phase-field formulations allow to quantitatively predict the
correct transient behavior of the solidification front during early mass and heat re-
distribution stages. This is a rather important question, because small differences
in the value of the mass or heat fields might significantly modify the transient sta-
bility of the front and therefore the properties of the final selected pattern. This
part of the thesis is described in Chapter 7, where phase-field simulation results are
compared with standard analytical and theoretical predictions. In this section, we
specifically study the transient behavior of the front, the non-steady formation of
the mass and heat boundary layers, and the evolution of the morphological stability
of the interface during the transient.

Once we have tested the validity of the approach and determined the proper
simulation conditions, the next step is to include the effect of fluctuations in the
dynamics of the advancing interface. The fluctuations in solidification are well
characterized and play a very important role in the selection dynamics of the front.
In fact, these microscopical perturbations constitute the initiation mechanism for
the development of the morphological front instabilities. When the advancing
interface is unstable, these noise perturbations are amplified by several orders of
magnitude until the amplitude of the deformation reaches an observable value.

As a result of the sensibility of the system dynamics under small perturbations,
fluctuations must be included in our field model in a very accurate way. To this
extent, our second objective is twofold: It is not only that the system itself presents
some internal stochastic behavior, but that the experimental set-up might also
induce some additional uncontrolled sources of noise. For this reason, the second
objective of the thesis is to properly account for fluctuations in phase-field models
for solidification.

The third and last aim of this thesis is to use the stochastic phase-field approach
in order to perform long simulations of the front evolution and characterize the
different stages of the selection problem. We can divide the selection dynamics in
different dynamical stages:

- Before the controlled solidification process starts at t = 0, the solid-liquid
interface is morphologically stable and its planar shape is not altered by the
microscopical fluctuations of the system.

- The first dynamical regime starts with the initiation of the solidification pro-
cess at t = 0, and finishes when a first wavelength becomes unstable in the
system. This happens at time ti, which is known as the instability time, and
immediately afterwards some of the spectral modes of the fluctuations will
began to growth.

- The second regime starts at the instability time ti and finishes at t0 when
the interfacial perturbations reach an observable size. The time t0 is known
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as the crossover time, and can be defined as the time at which the amplitude
of the perturbation becomes comparable to its mean wavelength λ0. During
this regime, the microscopic noise spectrum is amplified by the instability
mechanism and the amplitude of the perturbations present a linear growth.
An unstable planar interface will then undergo a dynamical transition from
planar to a cellular shape.

- Once the system has reached the crossover time t0, its dynamical evolution
becomes nonlinear and the interface presents a non-steady coarsening dy-
namics. At the end of this period, the system reaches the final steady-state
pattern, which determine the final electro-mechanical features of the solidified
material.

To summarize, we want to address the selection problem in directional solidification
by means of using phase-field techniques which account for the effect of fluctuations
and transients during the early redistribution stages.

1.3.2 Outline of the work

The outline by chapters of this thesis is structured as follows:

Chapter 2

The main physical phenomena which are relevant in a solidification process are
introduced in this chapter. We first give a thermodynamical description of phase
transformations in pure systems and binary alloys, determining the thermodynam-
ical forces which drive the advance of the solidification front. We present the im-
portance of interfacial capillary effects in the stability of the system, and introduce
the spontaneous nucleation as the process which initiates the spontaneous solidi-
fication from the melt. Other important interfacial effects are introduced by the
attachment dynamics by which the atoms are incorporated at the crystalline struc-
ture of the advancing solid phase. We also consider the internal thermodynamical
fluctuations of the system, which result in mass and heat stochastic currents in the
bulk phases and across the solid-liquid interface.

Chapter 3

The mathematical description of solidification processes is usually given in terms
of a moving boundary problem. This formulation consists in diffusion equations for
the mass and/or heat at the two phases, supplemented with convenient boundary
conditions at the moving interface. These moving boundary conditions are derived
from the conservation laws across the interface and by imposing the thermody-
namical equilibrium conditions of the system. We introduce the sharp-interface
equations for pure systems and dilute mixtures, and introduce the constitutional
undercooling criterion as the basic stability condition for the interfacial stability.
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In this chapter, we perform the Mullins-Sekerka linear stability analysis for the
morphological stability of the interface, which predicts the growth or decay rate
for the interfacial perturbations.

Chapter 4

There are some analytical methods for the study of transient stages in solidifica-
tion. In this chapter, we derive the boundary integrals for different solidification
situations and incorporate the initial recoil transients. Boundary integral meth-
ods provide an integro-differential formulation of the moving boundary problem.
These integro-differential equations are simulated for different solidification prob-
lems (Symmetric system, one-sided, constant miscibility gap approximation). The
second analytical approach to deal with transients and fluctuations in solidifica-
tion is the Warren and Langer’s theory of noise amplification during the initial
transient. The main features and assumptions of this theory are presented, and
numerical simulations will be carried out for some particular cases. The Warren-
Langer approach can be combined with a transient dispersion relation in order to
analytically predict the wavelength selection in directional solidification.

Chapter 5

During the last two decades, the phase-field approach has established as a quanti-
tative method to simulate complex interfacial phenomena. The technique consists
in equations for a continuous order parameter field coupled with the diffusive pro-
cess which drives the motion of the interface. In addition to the microstructure
formation in solidification processes, this technique has been applied to several
interfacial problems such as nucleation, dynamics of grain boundaries, crack prop-
agation or biological membranes. In this chapter we present the derivation of the
phase-field equations for the solidification of a undercooled pure substance and for
a supersaturated diluted binary solution. We distinguish between variational and
non-variational phase-field formulations, and give a detailed derivation of the basic
assumptions. At the end of this chapter, we show how to introduce internal fluc-
tuations in variational formulations by using the fluctuation-dissipation theorem.

Chapter 6

The phase-field approach gives a diffuse-interface description of the front, and re-
covers the moving boundary dynamics in the limit of small interface thickness. The
model consists in a non-linear set of coupled partial differential equations for the
evolution of the order-parameter φ and for the mass or heat diffusion in the sys-
tem. The sharp-interface limit is an asymptotic procedure which projects the field
equations into a set of equations which have the structure of a moving boundary
problem. The model parameters can then be obtained by comparing the projected
equations with the standard sharp-interface equations for the solidification prob-
lem.
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In this chapter, we present a hybrid sharp-interface projection of a generic
phase-field model including fluctuations. This new procedure allows to include
either internal or external noises in both variational and non-variational phase-
field models. The asymptotic limit is taken by performing a small-noise expansion
in combination with the standard expansion in terms of the interface thickness.
This technique allows to determine the deterministic and stochastic phase-field
parameters, and has been tested by evaluating the well-known stationary power
spectrum of the interfacial fluctuations.

Chapter 7

The phase-field method can be used as a simulation technique, and this chapter
begins by pointing out the computational difficulties which arise when trying to ob-
tain quantitative results. The computational efficiency of the phase-field approach
is studied, and the main solutions to improve it are commented.

The rest of the chapter is devoted to perform a quantitative comparison be-
tween the phase-field simulations of the transient stages and the results obtained
by means of analytical or theoretical approaches. We first focus in the front position
during the solute redistribution transient, and study the phase-field convergence
to the sharp-interface dynamics. This procedure is presented for different models
(symmetric, constant miscibility gap, one-sided, liquid crystals), and good quan-
titative agreement is found in all the cases. The second test of the phase-field
transient behavior concerns to the diffusion profiles which are formed behind the
advance of the solidification front. The last process studied in this chapter is the
phase-field behavior under external perturbations. The simulations of the transient
growth rate for different perturbation modes is then compared with the analytical
prediction of the transient linear stability analysis introduced in Chapter 4.

Chapter 8

Once the transient linear stability behavior of the model has been checked, we
perform stochastic simulations of the phase-field equations. Fluctuations are in-
troduced in the model by following the procedure described in Chapter 6, and the
noise amplification of the different Fourier modes is studied during the transient.
During the initial stages, the amplitude of the deformations grow linearly until their
amplitude becomes comparable with its wavelength. At this time, which is known
as the crossover time, the spectral modes begin to interact and the linear regime
finishes. After the crossover time, the system evolves by means of a coarsening
process which selects different primary spacings until it reaches the final cellular
or dendritic structure. In the first part of the chapter (Sec. 8.2), we present sim-
ulations of these initial transient stages and compare our results for the crossover
time with the Warren and Langer’s noise amplification theory. In the second part
(Sec. 8.3), the coarsening process is studied by means of phase-field numerical ex-
periments and the obtained results are compared with two experimental results for
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the directional solidification of organic alloys.

Chapter 9

We present the main results and conclusions of the work, and some assumptions
about the future applicability of the results obtained in this thesis.

Appendix A

Tables with the physical parameters of some relevant pure systems and binary
alloys which have been used in the simulations presented in this thesis.

Appendix B

Differential operators in the orthogonal curvilinear system, which are necessary
when performing the hybrid asymptotic expansion of Chapter 6.

Appendix C

As we introduce several different physical parameters along the thesis, we have in-
cluded this abstract in order to provide a relation of the most important parameter
definitions for the reader’s convenience.
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Chapter 2

The physics of solidification

In this chapter, we introduce the basic physical mechanisms which take place dur-
ing a solidification process. Section 2.1 is devoted to introduce the basic ther-
modynamic arguments needed to describe phase transitions in pure substances
(Sec. 2.1.1) and in binary mixtures (Sec. 2.1.2). In Section 2.1.1 we introduce the
capillary effects associated to the surface energy of the solid-liquid interface, intro-
ducing the spontaneous nucleation of a solid seed as the initiation mechanism of
a solidification process. The diffusion of mass (Sec. 2.2.2) and heat (Sec. 2.2.1) in
the system are presented in Section 2.2 as the main non-equilibrium mechanisms
driving the motion of the solidification front. Phenomenological equations for the
mass and heat conservation laws will be provided. The last section Sec. 2.3 we
focus in the study of the thermal (Sec. 2.3.1) and solute (Sec. 2.3.2) equilibrium
internal fluctuations which are relevant in a solidification processes.

2.1 Thermodynamics of phase transformations

Solidification is a phase transformation process in which a stable solid phase grows
into a metastable liquid. Although this growth process occurs when the system is
driven out from equilibrium, most of its important features can be explained within
the thermodynamical equilibrium theory.

As we will see in this section, the relative stability of the phases is defined in
terms of a general principle which requires the minimization of the Gibbs’ free
energy of the system, which will be soon introduced. For a further introduction
on thermodynamics of phase transformations and kinetic processes, we refer to the
references that I have used in order to write this chapter, Refs. [Kurz85, Porter92,
Sinha03, Davis01, Fermi56, Zemansky81, Landau80, Hurle93a, Hurle93b].
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2.1.1 Pure substance systems

For a thermodynamical system with a constant number of identical particles, the
Gibbs’ Free Energy G is defined as

G = H − TS, (2.1)

where H is the total enthalpy of the system, T the absolute temperature and S
its entropy. The entropy S is a measure of the microscopic disorder of the system,
and the enthalpy H is defined as

H = U + PV, (2.2)

where U is the internal energy of the system, and V, P its volume and pressure
respectively.

Let us consider an infinitesimal process at constant temperature and pressure
in which the volume of the system changes by an amount dV . Using Eqs. 2.1, 2.2,
the infinitesimal variation of the Gibbs’ free energy is given by

dG = dU + PdV − TdS. (2.3)

If the system is transformed from an initial state A to a final state B, the change
in the Gibbs’ free energy can be evaluated by integrating Eq. 2.3, leading to

∆G = ∆U + P∆V − T∆S, (2.4)

where ∆ϕ =
∫ B

A
dϕ = ϕ(B)−ϕ(A). From the first principle of the thermodynamics,

the mechanical work performed during the process W can only be transformed into
a decrease of the internal energy of the system U or in the form of heat Q. For an
infinitesimal process, this principle corresponds to

dW = −dU + dQ. (2.5)

In a hydrostatic system which has been mechanically insulated, the work can only
be performed by means of a volumetric expansion, and we have

dW = PdV. (2.6)

Inserting the last expression into Eq. 2.5 and integrating over the process from
state A to state B, we find

P∆V = −∆U + ∆Q. (2.7)

On the other hand, the second principle states that during an isothermal process
between the states A and B, the amount of heat absorbed from or transferred to
the system obeys the relation

∆Q ≤ T∆S, (2.8)
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where the equality holds when the process which transforms the system from A
to B is reversible. Using Eqs. 2.8, 2.7 and 2.4, we have that, for an isothermal,
isobaric, irreversible process, the Gibbs’ free energy decreases

∆G = G(B)−G(A) < 0, (2.9)

and the final state B has always a smaller free energy than the initial state. If the
transformation between A and B is reversible, the free energy remains unaltered
and we have G(A) = G(B). From the preceding arguments, it follows that the
thermodynamical system evolves until its Gibbs’ free energy takes its minimum
possible value.

The last statement allows to define the stable equilibrium state of the system
as the state with the lowest possible value of the Gibbs’ free energy. If the system
is not in the global minimum of the Gibbs’ free energy but in a local one, we say
that it is in a metastable state, and the system will evolve across different unstable
states until it reaches its stable equilibrium state. The growth process by which
a system evolves from a metastable state to a stable equilibrium state is called a
kinetic process, and can not be described within the framework of the equilibrium
thermodynamics theory. As we will see in Section 2.2, the diffusion of heat and
mass in the system are the most relevant non-equilibrium processes which drive
the advance of the solidification front.

The principle of the minimization of the free energy is so powerful that can be
used to predict that matter adopts different phases depending on its temperature.
Let us consider condensed systems such as solid or liquid phases. For these systems,
the value of the product PV is typically small compared with the internal energy
U and it can assumed that G ∼ U − TS. At a given temperature, the system
can minimize G by either increasing the entropy or decreasing its internal energy.
For large temperatures T À U/S, the term −TS will be more important and
the equilibrium phases will be those with large entropy such as liquid and vapor
phases. On the contrary, for low temperatures T ¿ U/S, the internal energy U is
the dominant term in the Gibbs’ free energy, and the phases with small internal
energies will be the stable ones. As the internal energy U = Ukin − Upot is defined
as the difference between the kinetic energy of the particles Ukin (translational,
rotational or vibrational motions) and the potential energy Upot associated to the
attractive interaction between them, phases with strong bonds between particles
(like solids) will have a smaller internal energy, and will therefore be the more
stable phase at low temperatures. These arguments point out that the value of
the Gibbs’ free energy determines the relative stability of the different phases in a
thermodynamic system.

Phase equilibrium

After the introductory remarks presented in the last section, we now study the
stability of the solid, liquid and vapor phases as the temperature of the system is
increased. Figure 2.1 shows the value of the Gibbs’ free energy for each of these
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phases for different values of the system temperature. Following the principle of
minimum free energy, at a given temperature, the stable state of the system will
be the one with the smallest value of G.

At T = 0 K, there is no kinetic energy (Ukin = 0) and the Gibbs’ free energy
is determined by the potential energy of the system G ∼ U = −Upot. At this
temperature, the internal energies of the three phases satisfy the relation US >
UL > UV , because the solid phase is the one which presents more interaction
energies between the particles and therefore the largest value of the potential energy
Upot. From this follows that the free energies of the phases satisfy the relation
GS < GL < GV , which brings to the conclusion that the solid phase is the most
stable one at low temperatures near T = 0K.

As the temperature increases, the kinetic energy and the entropy of the system
will get larger producing the decrease of the Gibbs’ free energy. The free energy
of the phases will decrease monotonously with a slope determined by their corre-
sponding entropies (note that S = −∂G

∂T ) (see Fig. 2.1). As the entropies of the
three phases satisfy the relation SS < SL < SV , the decrement of G with T will
be faster in the phases with larger entropies. The G-T lines will eventually cross at
some temperatures TM , TV , and these points will determine the range of temper-
atures for which each of the phases is stable: Below the melting temperature TM ,
we have that the solid phase is the stable one. Between TM and the vaporization
temperature TV the stable phase of the system is the liquid, and for temperatures
above TV the system is a vapor.

At the critical temperatures TM , TV the energy required to produce the corre-
sponding phase transformation is given by the enthalpy difference between the two
phases. We then define L = HL(TM )−HS(TM ) as the latent heat of melting, and
Lvap = HL(TV )−HS(TV ) the latent heat of vaporization, which are the amounts
of energy needed by the system in order to perform the solid-liquid (melting) and
liquid-vapor (vaporization) processes respectively.

The driving force for the solidification of an undercooled pure melt

When a pure liquid is undercooled by an amount ∆T = T − TM below its melting
temperature TM (∆T < 0), the liquid phase becomes a metastable state and the
solid turns out to be the stable equilibrium phase of the system. At the new
temperature T, the free energies of the liquid and solid phases are given by

GL(T ) = HL(T )− TSL(T ) (2.10)
GS(T ) = HS(T )− TSS(T ), (2.11)

and the Gibbs’ free energy difference between the solid and liquid phases is given
by

∆G(T ) = ∆H(T )− T∆S(T ), (2.12)

where ∆H(T ) = HL(T )−HS(T ) and ∆S(T ) = SL(T )− SS(T ). For small under-
coolings ∆T ¿ 1, we can approximate ∆H(T ) by its equilibrium value at TM and
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Figure 2.1: Gibbs’ free energy and phase transformations

write
∆H(T ) ≈ ∆H(TM ) = HL(TM )−HS(TM ) = L. (2.13)

For an isothermal reversible process, the absorbed heat is equal to the enthalpy
(∆Q = ∆H = L) and, as the relation ∆S = ∆Q/T holds, we have

∆S(T ) ≈ ∆S(TM ) = SL(TM )− SS(TM ) =
L

TM
. (2.14)

Finally, inserting Eqs. 2.13 and 2.14 into Eq.2.12, the free energy difference pro-
duced by the undercooling of the system is given by

∆G(T ) ≈ −L∆T

TM
. (2.15)

The Gibbs’ free energy excess of Eq. 2.15 determines the driving force for the
solidification from a undercooled pure melt. The larger the difference between the
free energies of the solid and liquid phases at the undercooled temperature T , the
larger the thermodynamical force which drives the stable solid phase to grow into
the metastable liquid. It is of course proportional to the thermal undercooling ∆T ,
which is the main control parameter in a pure substance solidification experiment.
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2.1.2 Mixtures and dilute alloys

We now consider systems which are composed of more than one type of particles.
It is clear that a variation in the number of particles or a modification in the
composition of the system will produce a variation of the Gibbs’ free energy. As a
consequence, the stability of the phases will not only depend on temperature as in
pure substances, but also on the composition of the system.

Let us consider a mixture system composed by M different substances in such
a way that it contains ni moles of the substance i. The Gibbs’ free energy G of the
whole system will be now a function of the temperature, pressure and composition
of the system given by

G =
M∑

i=1

µini, (2.16)

where

µi(T, P, n1, n2, ..., nM ) =
∂G

∂ni
(2.17)

is the chemical potential of the i-th component.
Note that as the chemical potentials µi represent energies per unit mol, they

do not change when modifying the total number of moles in the system while
maintaining its composition. For a pure system with n moles of a single component,
we have G = µn and the chemical potential µ is the free energy of one mole of the
substance or its molar free energy.

For an isothermal, isobaric process in which the number of moles of the i-th
component is infinitesimally changed by an amount dni, the Gibbs’ free energy
variation is given by

dG =
M∑

i=1

µidni, (2.18)

and the equilibrium condition is that the change in the composition does not pro-
duce any free energy variation, i.e.

dG = µ1dn1 + µ2dn2 + · · ·µMdnM = 0. (2.19)

Ideal binary mixtures

Let us consider a binary system, i.e, a mixture system composed by only two
different species A and B. In this case, the total Gibbs’ free energy is given by

G = µAnA + µBnB . (2.20)

In an isothermal, isobaric process, the composition of the system can be modified
by an infinitesimal change in the number of A and B moles of dnA and dnB ,
respectively. As the total number of moles in the system n = nA + nB remains
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constant, the infinitesimal variations dnA and dnB must be related by dnA = −dnB ,
and the equilibrium condition dG = µAdnA + µBdnB = 0 can be expressed as

µA = µB . (2.21)

The last equation says that the system reaches the stable equilibrium state when
the chemical potential of the two substances are equal.

If we call gA,gB to the molar free energies of the pure A and pure B substances
respectively (gi = ui − Tsi + Pvi, i = A,B, where the lower case letters refer to
molar magnitudes), the total free energy of the system can also be expressed as

G = gAnA + gBnB + ∆G′, (2.22)

where ∆G′ = G′ − G accounts for the variation in the total free energy due to
the mixing between the two substances, being G and G′ the free energy of the
system before and after the mixing process. This variation in the free energy can
be expressed in terms of enthalpy and entropy variations as

∆G′ = ∆H ′ − T∆S′, (2.23)

where ∆H ′ = H ′ − H, ∆S′ = S′ − S and the primes refer to the values after
the mixing. Assuming that the volume during the mixing remains constant, the
variation in the enthalpy is due to the variation of the internal energy of the system,
accounting for the interactions between the two species. In a first approximation,
we consider an ideal solution and suppose that the the enthalpy of the system do
not change during the mixing, i.e. ∆H ′ = 0. For ideal solutions, the change in the
free energy is therefore due to variations in the entropy and we have

∆G′ = −T∆S′. (2.24)

The mixing entropy can be determined by using the Boltzmann’s definition

∆S′ = S′ = kB ln Ω, (2.25)

where kB is the Boltzmann’s constant and Ω represents the number of possible
microscopical configurations of the system. Ω must be understood as the number
of microscopic dynamical states that correspond with the given thermodynamical
state. At first sight it might seem that the number of possible microscopic config-
urations compatible with a certain thermodynamic state is infinite. This difficulty
dissapears if the dynamical states are considered in the phase space of the system.
Each state of the system is then represented by a point in a 2p-dimensional space,
being p the number of degrees of freedom of the system. The phase space is then
divided into identical small cells and each state of the system is characterized by
specifying the cell at which the point belongs. When de size of the cells gets in-
finitesimally small, this technique to determine Ω will be exact. As the value of Ω
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changes by a factor when changing the size of the cells, the entropy remains unde-
termined by an additive constant. This does not suppose any restriction because
we are interested in entropy differences and not in absolute values.

From the last arguments, we can evaluate the entropy of a binary solution after
the mixing by counting the number of distinguishable ways of arranging NA parti-
cles of the kind A and NB particles of the kind B. Using elementary combinatorial
arguments, we get

Ω =
(NA + NB)!

NA!NB !
, (2.26)

and introducing Ω in Eq. 2.25, the entropy after the mixing is given by

∆S′ = kB ln
(NA + NB)!

NA!NB !
. (2.27)

As the number of A and B particles in the system is large (NA, NB À 1), we can
use the Stirling formula ln p! ≈ p ln p − p for p À 1 to expand the logarithm in
Eq. 2.27 and obtain

∆S′ ≈ kB(NA + NB) ln(NA + NB)− kBNA ln NA − kBNB ln NB . (2.28)

If N0 is the number of particles in a mol (Avogadro’s number), a system with
NA, NB particles correspond to a system with nA = NA/N0 and nB = NB/N0

moles of A and B, respectively. Therefore, grouping A and B terms in Eq. 2.28, we
can rewrite the mixing entropy as

∆S′ ≈ −RnA ln
nA

n
−RnB ln

nB

n
, (2.29)

where R = kBN0 = 8, 314 J/K mol is the universal gas constant and n = nA + nB

is the total number of moles of the system.
We introduce here the molar fractions of A and B, xA, xB as

xA =
nA

n
(2.30)

xB =
nB

n
, (2.31)

and using Eqs. 2.24, 2.22 and 2.29, write the total free energy of the ideal binary
system as

G = gAnA + gBnB + RTnA ln xA + RTnB ln xB . (2.32)

The chemical potentials µA and µB for the ideal binary solution can be now cal-
culated by differentiating Eq. 2.32 with respect to nA and nB

µA =
∂G

∂nA
= gA + RT ln xA ,

µB =
∂G

∂nB
= gB + RT ln xB ,

(2.33)
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where, due to the logarithmic dependence in Eq. 2.32, the variations in nA, nB

occur without changing the molar fractions xA, xB .
As xA, xB ∈ [0, 1], the logarithmic terms in Eqs. 2.33 are negative and the effect

of the mixing entropy in an ideal mixture is to reduce the molar Gibbs’ free energy
of the system. This effect is shown in Fig. 2.2, where the dashed lines represent the
molar free energy of the system before mixing g = G/n = µAxA + µBxB at two
different temperatures T1 < T2. As the free energies of the pure substances decrease
when increasing the temperature, we have gA(T1) > gA(T2) and gB(T1) > gB(T2).
The solid lines in Fig. 2.2 correspond to the molar free energies of the mixed
systems at T1, T2, which are given by Eq. 2.32. For all the compositions, the molar
free energy of the mixed system is smaller than the one for the system before the
mixing. As it can be appreciated in the figure, this effect becomes more important
as temperature increases.
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Figure 2.2: Molar Gibbs’ free energy of a ideal binary system. The free energy decrement
due to mixing becomes more relevant for higher temperatures (T1 < T2).

Regular binary solutions

So far, we have only considered ideal solutions, i.e., those with zero mixing enthalpy
∆H ′ = 0. The description of binary systems can be improved by considering the
effect of the interaction between particles during the mixing process. The simplest
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description accounting for these effects is the so-called regular solution model. In
this model, the entropy of mixing is calculated under the assumption of the ideality
of the mixture, and the mixing enthalpy is evaluated by averaging the interactions
between the particles. Let UAA, UBB and UAB be the interaction energies between
A − A, B − B and A − B particles respectively. The interaction energy is here
defined as the negative value of the potential energy. For a binary solution with
NA particles of A and NB of B, and with the internal energy before mixing is then
given by

U =
zNA

2
UAA +

zNB

2
UBB , (2.34)

where z is the number of bonds per particle or coordination number and the factor
2 in the denominator accounts for the fact that the interaction energy per bond is
twice the interaction energy per particle (one bound for each two particles).

After the mixing, some A-B interactions occur and the internal energy takes
the value

U ′ = PAAUAA + PBBUBB + PABUAB , (2.35)

where PAA,PBB and PAB are the number of bonds between A − A, B − B and
A − B particles, respectively. As in a A − A (B − B) interaction there is two A
(B) particles and in a A−B interaction there is only one A or B particle, we have

NAz = 2PAA + PAB (2.36)
NBz = 2PBB + PAB , (2.37)

and the enthalpy of mixing, which is equal to the change in the internal energy due
to mixing, is given by

∆H ′ = ∆U ′ = U ′ − U = PAB

(
UAB − UAA + UBB

2

)
. (2.38)

When the interaction energy UAB is similar to 1
2 (UAA + UBB), it can be assumed

than the particles are randomly arranged and we can approximate

PAB ≈ z(NA + NB)xAxB , (2.39)

and then one obtains

∆H ′ ≈ z(NA + NB)xAxB

(
UAB − UAA + UBB

2

)
. (2.40)

Finally, using Eq. 2.23, Eq. 2.22 and Eq. 2.29, the molar Gibbs’ free energy of a
regular binary solution is given by

G = nAgA + nBgB + ν
nAnB

n
+ TR(nA ln xA + nB ln xB) , (2.41)

with ν given by ν = zN0(UAB − 1
2 (UAA + UBB)).
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The ideality of the solution is recovered with the assumption UAB = 1
2 (UAA +

UBB), and the sign of ν determines if the process is exothermic (ν < 0, ∆H ′ < 0) or
endothermic (ν > 0, ∆H ′ > 0). In exothermic processes and for all temperatures,
the mixing of two substances results in a decrement of the free energy. This effect
is shown in the Figure 2.3, which plots the molar free energies of an ideal and
regular solution. For an endothermic processes, the situation is more complicated
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Figure 2.3: Molar free energy for ideal and regular solutions in the case of an exothermic
process.

and the stability depends on the relative importance of the terms ∆H ′ and −T∆S′

in the free energy. Comparing Eq. 2.41 with Eq. 2.20, the chemical potentials for
a regular binary solution can be determined and take the form

µA = gA + ν(1− xA)2 + RT ln xA (2.42)
µB = gB + ν(1− xB)2 + RT ln xB , (2.43)

where gA, gB are the molar free energies of the pure A and B substances, and it
has been used the trivial relation nAnB = nAnB(nA + nB)/n.

Decrease of the freezing temperature in dilute solutions

In section 2.1.1, we studied the stability of the solid and liquid phases in the pure
system as function of the temperature. The melting temperature TA

M of the pure
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A system was then determined from the G-T curve by the condition gS
A(TA

M ) =
gL

A(TA
M ). In a mixture, the stability of the phases not only depends on temperature,

but also on the system composition.

As we have seen (cf. Fig. 2.2), the introduction of a small amount of solute B
results in a decrement of the molar free energy due to the entropy of mixing. As
a consequence, the G-T curves for the solid and liquid phases cross at a smaller
temperature, resulting in a decrease of the melting temperature of the solution.
This effect is shown in Fig. 2.4, where the temperature of the system is changed
for a given value of the composition. It can be seen that the liquid and solid G-T
curves cross at a smaller temperature in the presence of a solute than for a pure
system.

Temperature (K)

0

m
ol

ar
 f

re
e 

en
er

gy

liquid-pure
solid-pure
liquid-mixed
solid-mixed

SOLID (PURE A) LIQUID (PURE A)

SOLID (MIXTURE)

T
M

A

LIQUID (MIXTURE)

0

∆T

Figure 2.4: Molar free energy of the solid and liquid phases for a pure system and for
an ideal mixture. The melting temperature of the solution is reduced as a consequence of
the introduction of the solute.
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Equilibrium conditions for heterogeneous systems

When modifying the composition at a constant temperature the situation is rather
different. Figure 2.5 represents the molar free energy of the solid and liquid phases
in terms of the molar fraction of B. The functions correspond to a temperature
TA

M < T ′ < TB
M between the melting temperatures of the pure A and pure B sub-

stances. For low concentrations of B, the liquid phase minimizes the free energy
and is therefore the equilibrium state of the system, whereas for high B concentra-
tions, the solid phase is the equilibrium one. In these two regions we have a liquid
or solid homogeneous system.

In the intermediate region between the two minima of the solid and liquid molar
free energies, however, the system can decrease its free energy by separating the
two phases forming a heterogeneous system where solid and liquid phases coexist
with different solute concentrations.
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Figure 2.5: Molar free energies of the solid and liquid phases and their stability depend-
ing on the mixture composition

In the particular case of dilute binary solutions, it is interesting to quantify the
reduction of the melting temperature produced by the introduction of a certain
small amount of solute. A binary solution is said to be dilute when the number
of particles of one of the species (solute) is small compared with the number of
particles of the other substance (solvent). Being A the solvent and B the solute,
this condition can be represented in terms of their molar fractions by xA À xB .
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Noting that xA = 1 − xB , the chemical potentials of a ideal dilute solution are
given by (cf. Eq. 2.33)

µA = gA −RTxB (2.44)
µB = gB −RT ln xB , (2.45)

where we have approximated ln xA = ln(1− xB) ≈ −xB .
In a heterogenous situation where solid and liquid phases coexist, the total

free energy of the system is given by G = GS + GL, where GS and GL are the
free energies of the solid and liquid regions respectively. As the two phases are in
contact, their concentrations can be modified by the migration of particles from
one phase to the other. Being nS

A, nS
B the respective number of moles of A and B

in the solid, and nL
A, nL

B the number of moles of A and B in the liquid, the free
energies of the solid and liquid phases are given, in the ideal approximation, by

GS = gS
AnS

A + gS
BnS

B −RTnS
B + RTnS

B ln
nS

B

nS
A + nS

B

(2.46)

GL = gL
AnL

A + gL
BnL

B −RTnL
B + RTnL

B ln
nL

B

nL
A + nL

B

. (2.47)

Let us consider a process in which the number of moles of the substance i = A,B
in the phase α = S, L is changed by an infinitesimal amount given by dnα

i . If
no chemical reactions occur, the number of moles of A and B nA = nS

A + nL
A,

nB = nS
B + nL

B remains constant. In such a process, it is clear that the relations
dnS

A = −dnL
A and dnS

B = −dnL
B are fulfilled, and the equilibrium condition of the

heterogeneous system, which is given by

dG = dGS + dGL = µS
AdnS

A + µS
BdnS

B + µL
AdnL

A + µL
BdnL

B = 0, (2.48)

can be expressed as

µS
A = µL

A, (2.49)
µS

B = µL
B . (2.50)

The last relation states that a heterogeneous system reaches equilibrium when the
chemical potential of the different species take the same value in the two coexisting
phases.

The chemical potentials µS
A and µL

A can be now easily determined by differen-
tiating the free energies Eqs. 2.47 with respect to the molar concentration nA

µS
A =

∂GS

∂nS
A

= gS
A −RTxS

B , (2.51)

µL
A =

∂GL

∂nL
A

= gL
A −RTxL

B . (2.52)
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Inserting the expressions for the chemical potentials Eqs. 2.52 in the first equi-
librium condition Eq. 2.49, we arrive to

gS
A −RTxS

B = gL
A −RTxL

B . (2.53)

When the amount of solute is small, we can suppose that the effect in the reduction
in the melting temperature is also small. We can therefore expand in Taylor gS

A

and gL
A around the melting point T = TA

M to obtain

gS
A(T ) ≈ gS

A(TA
M ) +

∂gS
A

∂T
(T − TA

M ), (2.54)

gL
A(T ) ≈ gL

A(TA
M ) +

∂gL
A

∂T
(T − TA

M ), (2.55)

where gL
A(TA

M ) and gS
A(TA

M ) are the molar free energies of the pure substances
at the melting temperature, which we know that are equal from the equilibrium
condition of a pure system gS

A(TA
M ) = gL

A(TA
M ) = gA. We remind the definition of

the molar entropy of a pure system as sS = −∂gS
A

∂T and sL = −∂gL
A

∂T , which satisfies
the relation ∆s = sL − sS = Lm/TA

M , where Lm is the latent heat per unit mole
of the pure A substance defined by Lm = L/n and n the total number of moles in
the system. From the last arguments, the melting temperature of the solution T
can be expressed as

T = TA
M − RT 2

Lm
(xL

B − xS
B), (2.56)

expression which quantifies the decrease in the melting temperature due to the
presence of a certain quantity of solute in the solid and liquid phases.

Inserting Eq. 2.45 into the second equilibrium condition Eq. 2.50, we arrive to

xS
B

xL
B

= k(T ) = exp
{

∆gB

RT

}
, (2.57)

where k(T ) is the partition coefficient of the solution, and ∆gB = gL
B − gS

B . The
partition coefficient relates the ratio of solute in the solid and liquid phases in order
to satisfy the thermodynamical equilibrium condition.

Inserting Eq. 2.57 into Eq. 2.56, we find a simpler expression for the decrease
of the melting temperature

T = TA
M − RT 2

Lm
xL

B(1− k). (2.58)

The last equation allows to introduce the absolute value of the liquidus slope of the
binary solution mL as a positive constant defined by

mL =
RT 2(1− k)

Lm
. (2.59)
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Introducing the latent heat per unit volume as Lv = Lm/vm, where vm is the
molar volume of the substance (i.e., the volume of 1 mol of substance, defined as
vm = Z/ρ being Z the molecular weight and ρ the density), the previous expression
can be written as

mL =
RT 2(1− k)

vmLv
. (2.60)

The last expression is known as the Clausius-Clapeyron relation , and allows to
write the shift in the melting temperature due to solute concentration as

T = TA
M −mLxL

B . (2.61)

Although the liquidus slope mL(T ) is a function of the temperature, we will assume
that for solutions with a small amount of solute it can be approximated by its value
at the equilibrium melting temperature of the solution TE = TA

M −mLx0,L
B , i.e.,

mE = mL(TE) =
RT 2

E(1− k)
vmLv

. (2.62)

In the same way we can introduce the equilibrium partition coefficient kE defined
as

kE = k(TE) = exp
{

∆gB

RTE

}
. (2.63)

From the last arguments follows that, at a given temperature and pressure, the local
equilibrium conditions at the solid-liquid interface is ensured by the two conditions:

i) The shift in the melting temperature due to the addition of solute is given
by Eq. 2.61.

ii) For an equilibrium solution at a given temperature T, the ratio of the solute
concentrations at the solid and liquid sides of the interface is constant, and given
by Eq. 2.57.

Isothermal solidification of a supersaturated melt

The phase diagram of a dilute system is represented in figure 2.6, and describes
the stability of the different phases in a system as a function of the temperature
and solute concentration. As it can be observed in the figure, a dilute binary
solution with solute concentration x∞ will be liquid for temperatures above T1 =
TA

M −mLx∞ and solid for temperatures below T2 = TA
M −mLx∞/k.

At a intermediate temperature T ∗ between T1 and T2, the liquid solution is
in a metastable state. The solution is then said to be supersaturated because its
equilibrium concentration x0 is larger than the actual concentration of the alloy
x∞. In such a situation, a solid seed with concentration kc0 can be spontaneously
formed in the system. The mechanisms of this nucleation process will be described
in Section 2.1.3. After this initiation mechanism, and depending on the level of



2.1. THERMODYNAMICS OF PHASE TRANSFORMATIONS 33

T

xB

M

A

T
T

2

Solid

T1
*

x

Liquid

xx 00K 8 8x

S+L

K

T

Figure 2.6: Phase diagram of a dilute binary solution. For a given solute concentration
x, the system is liquid for temperatures above T1 and solid for temperatures below T2.
For intermediate temperatures, solid and liquid phases coexist in a heterogeneous state.

supersaturation of the alloy, the solid nucleus will grow until the whole system
solidifies.

As the solid phase advances, some solute particles are rejected to the liquid
phase, and a boundary layer of accumulated solute builds up near the interface. As
local equilibrium is preserved at the interface, the ratio between the solid and liquid
concentrations is maintained constant (xS/xL = k), and the growing solid phase
increases its concentration. This solute redistribution transient process continues
until the solid reaches a concentration x∞, which corresponds to a concentration
x∞/k at the liquid side of the interface.

One possible way of defining the level of supersaturation of the solution is

δx = x0 − x∞, (2.64)

which corresponds to a supersaturation undercooling below the melting temperature
of the initial melt T1 given by

∆T = T ∗ − T1 = −mLδx. (2.65)

The magnitude ∆T is the equivalent in alloy solidification to the thermal under-
cooling of a pure melt.
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We can introduce here the miscibility gap of the alloy as

∆x0 =
x∞(1− k)

k
, (2.66)

which determines the total amount of solute which has accumulated at the liquid
side of the front at the end of the redistribution transient. In the same way that
the freezing of pure substances occurred by undercooling the liquid below its melt-
ing temperature, the solidification of a binary alloy happens when the system is
supersaturated.

The driving force for the solidification of binary solutions

We can determine the driving force of the solidification of a supersaturated alloy by
determining the Gibbs’ free energy difference between the liquid and solid phases.
We can actually use the same relations obtained in section 2.1.1 for the case of the
pure substance system, using the Clausius-Clapeyron relation Eq. 2.60 to determine
the ∆G in terms of the physical parameters of the alloy system. For n moles of a
pure system, the free energy per unit mole ∆g = ∆G/n is given by

∆g = −Lm∆T

TM
. (2.67)

where Lm = L/n is the latent heat per unit mole and ∆T the undercooling of the
system below its melting temperature. In the case of a supersaturated solution
with solute concentration x∞, ∆T the undercooling in Eq. 2.67 is given by ∆T =
T ∗−T1 = −mLδx (cf. Eq. 2.65). On the other hand, using the Clausius-Clapeyron
relation in molar units

Lm

TM
=

RTM (1− k)
mL

, (2.68)

we arrive to an expression for the Gibbs’ free energy excess for alloys ∆g given by

∆g = RTM (1− k)δx. (2.69)

Note that for a supersaturated solution ∆g is a positive magnitude (k < 1, δx > 0)
which can be understood as the driving force for the alloy solidification process.
From the last equation it follows that no solidification process will occur when
k = 1 (no solute rejection occurs at the interface) or when δx = 0 (the solution is
not supersaturated, so the system is not metastable).

2.1.3 Interface thermodynamics and nucleation

As far, we have assumed that heterogeneous systems are bulk solid and liquid
coexisting phases. In practice, however, these bulk phases are separated by an
interface across which the particles arrange from an ordered structure in the solid
to a disordered motion in the liquid. Let us introduce the interfacial surface energy
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σ̃ as the energy per unit area needed to create this solid-liquid interface. As a
general indication for the rest of this thesis, we will use tilded letters to refer to
dimensional value of the parameters. As a free solidification processes begins with
the spontaneous formation of a small seed of solid in a metastable liquid, the energy
associated to the creation of the solid-liquid interface will modify the equilibrium
conditions of the system.

Let us consider a solid spherical seed of radius r embedded into a metastable
liquid phase. The metastability can be produced by either the undercooling of a
pure substance or by the supersaturation of a solution. In both cases, the formation
of the solid seed produces a change of the Gibbs’ free energy density Gv given by

∆Gbulk = −∆Gv
4π

3
r3 (2.70)

where ∆Gv = (GL
v −GS

v ) is the difference between the solid and liquid free energies
per unit volume. Note that as the liquid is metastable, we have ∆Gv > 0 and the
formation of the solid seed results in a decrease of the free energy of the system.
In the solidification of a pure substance, ∆Gv depends on the undercooling and is
given by ∆Gv = Lv∆T

TM
, where Lv = Lm/vm is the latent heat per unit volume of

the substance.
On the other hand, as a consequence of the tension produced by the solid-liquid

interface, there is a increment in the pressure inside the solid seed given by

∆P = σ̃κ̃, (2.71)

where κ̃ = 2
r is the surface curvature, defined as positive when the center of the

radius of curvature is located at the liquid side of the interface. This pressure
variation produces a change in the Gibbs’ free energy given by

∆Gint = V ∆P =
4π

3
r3∆P =

8πσ̃

3
r2. (2.72)

The total free energy change due to the formation of the seed is therefore given by

∆GTotal = ∆Gbulk + ∆Gint. (2.73)

The total free energy of the previous equation is represented in terms of the seed
radius in Fig. 2.7. When a seed of radius r < rc is created, the system will decrease
its free energy by decreasing the radius of the seed until it dissolves in the liquid.
For spontaneous seeds of radius r > rc, the system decreases its free energy by
growing the seed and a solidification process will be initiated. The critical radius
for nucleation rc can be easily determined by imposing the condition

d∆GTotal

dr

∣∣∣∣
r=rc

= 0, (2.74)

and is given by

rc =
2σ̃

∆Gv
. (2.75)
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Figure 2.7: The spontaneous formation of a solid seed in a metastable liquid only grows
when its radius is larger than the critical nucleation radius rc

The Gibbs-Thomson effect

Besides determining the conditions for spontaneous nucleation, the pressure vari-
ation in the solid due to the surface energy has another important effect: As the
interface curvature increases the free energy of the system, the melting temperature
of the system will be reduced when curved interfaces are present in the system. It
is easy to see that this decrease is given by

T = TA
M −mLxB − d̃0κ̃, (2.76)

where κ̃ is the curvature of the front and

d̃0 =
σ̃TA

M

Lv
(2.77)

is the capillary length of the system, being σ̃ the surface energy of the substance.
The last equation Eq. 2.76 is known as the Gibbs-Thomson equation, and deter-
mines the temperature of a solid-liquid interface in terms of its curvature and the
amount of solute in the system.
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2.1.4 Attachment kinetics

Besides surface energy effects, there are other interfacial processes which might
be important in the dynamics of the solidification front. In many cases, the most
relevant among them is the efficiency by which the particles in the liquid attach
to the atomic structure of the growing solid phase [Nozières91, Chernov04, Aziz88,
Aziz94, Aziz96]. This efficiency can be ideally approximated as infinite, assuming
that the system attaches the particles instantaneously as the solidification front
advances. This might be the case in some situations such as in slow solidification
processes or during the growth of crystal facets where the attachment dynamics is
fast because it is limited by nucleation and defects. In general, however, it is rea-
sonable to expect that the efficiency of the interface attachment process decreases
as the front velocity increases, thus limiting the velocity of the solidification front.

As the solidification growth rate is related with the Gibbs’ molar free energy
difference between the phases ∆g, the actual front velocity can be expressed as

ṽ = ṽmax[1− e
− ∆g

RTM ], (2.78)

where ṽmax is the maximum velocity of the front for a hypothetically infinite driving
force (∆G →∞). Expanding Eq. 2.78 for ṽ ¿ ṽmax, we have

− ∆g

RTM
= ln(1− ṽ

ṽmax
) ≈ − ṽ

ṽmax
. (2.79)

Recovering the expression for ∆g for pure substances (cf. Eq. 2.15), we have

∆gpure = −Lm∆T

TM
, (2.80)

Inserting the last expressions into Eq. 2.79 and noting that ∆T = T − TM < 0, we
arrive to the conclusion that the kinetic attachment results in a reduction of the
melting temperature given by

T = TM − RT 2
M

Lmṽmax
ṽ. (2.81)

In the case of alloys, using the Clausius-Clapeyron in molar units RT 2
M/Lm =

mL/(1− k), we can write the last expression in a more convenient form

T = TM − mL

(1− k)ṽmax
ṽ. (2.82)

This effect is known as the kinetic undercooling, and the value of ṽmax will be
determined by the physical origin of the process which limits the attachment of
the particles to the solid front. This attachment process might be more effective
along some crystallographic planes of the solid, thus producing a kinetic anisotropy
in the growth of the front. The Continuous Growth Model presented by Aziz and
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Kaplan [Aziz88] and developed by Aziz, Kaplan and Boettinger in [Aziz94, Aziz96]
presents two different scenarios for the limiting process: The first one appears
when the growth is limited by the diffusion of the particles, and assumes that ṽmax

is proportional to the diffusivity at the liquid side

ṽmax ∼ D̃

d̃0

, (2.83)

predicting values for ṽmax of the order of about 1 m/s. The second regime is called
the collision limited growth and describes situations in which the particles attach
to the solid crystalline structure following a fast collision process. In this case,
ṽmax is supposed to be proportional to the sound velocity in the liquid phase of
the material, i.e.

ṽmax ∼ ṽsound, (2.84)

predicting values of ṽmax in the range of 103 m/s and therefore having a small
effect in the kinetic undercooling of the front. We can now introduce the interface
mobility µ̃ as the proportionality constant relating the undercooling (∆T < 0) and
the front velocity

ṽ = −µ̃∆T, (2.85)

and its value, written for pure systems and alloys, is respectively given by

µ̃pure =
Lmṽmax

RT 2
M

(2.86)

µ̃alloy =
(1− k)ṽmax

mL
. (2.87)

Note that we have used the same Greek letter µ for the interface mobility and
for the chemical potential. We have considered that as their meanings are rather
different, it should not create any confusion.

2.2 Growth driven by diffusion

Once that the nucleation barrier has been exceeded by the initial seed (i.e., the
seed has a radius larger than the critical radius), a stable solid phase grows into
the metastable liquid. As we have seen, the force driving this growth is the free
energy difference between the two phases. As the front evolves, this free energy
excess is minimized by the system by means of a non-equilibrium process also
called a kinetic process. Kinetic processes occur outside of equilibrium and are
studied within the theoretical frame of the non-equilibrium statistical mechanics.
In systems without other mass or energy flows (fluid, chemical, electrical, etc.), the
kinetic process which allows the decrease of the free energy is diffusion. We can then
say that a diffusion process controls the rate at which the solidification occurs. In
the freezing of pure substances, the process is governed by thermal diffusion of the
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heat released at the interface. In the solidification of mixtures, however, thermal
diffusion is not the relevant process because the thermal diffusivity is typically of
the order of D̃T ∼ 10−5 m2/s, whereas solute diffusivity is normally in the range
of D̃solutal ∼ 10−10 m2/s. It can be therefore assumed that the temperature field
adapts quasi-adiabatically to the alloy solidification front, and the diffusion of the
solute concentration rejected by the solid and accumulated in the liquid can be
considered as the main diffusive process driving the evolution of the front.

2.2.1 Heat diffusion

As the solidification front of a pure substance advances, the latent heat of the solid-
liquid transformation is released to the system at the position of the interface. If
the front moves with a velocity ṽ, the flux of heat is in the growth direction is
given by Lvṽ · n̂, being Lv the latent heat per unit volume of the substance. This
flux is balanced with the heat flux produced by thermal diffusion, given by

[κ̃S∇T |S − κ̃L∇T |L]int · n̂, (2.88)

where κ̃S and κ̃S are the thermal conductivities of the solid and liquid phases
respectively. Thermal conductivities are related with the thermal diffusivities by
the relations

D̃S
T =

κ̃S

cS
v

, (2.89)

D̃L
T =

κ̃L

cL
v

, (2.90)

where cS
v and cL

v are the specific heat per unit volume of the solid and liquid respec-
tively. The first term in Eq. 2.88 accounts for diffusive flux of heat going from the
liquid to the solid, and the second one the corresponds to the thermal flux from
the solid to the liquid. Imposing the heat conservation law across the interface, we
arrive to the moving boundary condition

Lvṽ · n̂ = [κ̃S∇T |S − κ̃L∇T |L]int · n̂, (2.91)

where the gradients are evaluated at the solid-liquid interface. The heat released
to the solid and liquid phases is distributed following the corresponding diffusion
equations

∂tTα = D̃α
T∇2Tα, (2.92)

with α = S, L. The solidification problem is determined by Eq.2.91 and Eq. 2.92,
together with the local equilibrium condition at the interface, which is given by

TS
int = TL

int = TM − d̃0κ̃− 1
µ̃pure

ṽ. (2.93)
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2.2.2 Solute diffusion

In the solidification of mixtures, the solute rejected by the solid accumulates in
a boundary layer ahead of the interface at the liquid side. If the velocity of the
solidification front is v, the flux of solute rejected from the solid to the liquid, is
given by

(xL − xS)ṽ · n̂ = xL(1− k)ṽ · n̂, (2.94)

where the right side term has been written by using the local equilibrium at the
interface xS/xL = k. This flux of solute is balanced by the flux produced by the
diffusion of the solute in the solid and liquid phases

[D̃S∇x|S − D̃L∇x|L] · n̂. (2.95)

Imposing the mass conservation condition across the interface, we arrive to

xL(1− k)ṽ · n̂ = [D̃S∇x|S − D̃L∇x|L] · n̂. (2.96)

The problem is the completed with the equations describing the diffusion of the
solute in the solid and liquid

∂txα = D̃α∇2xα, (2.97)

with α = S, L, and with the thermodynamical local equilibrium condition at the
interface

TL
int = TM −mLxL − d̃0κ̃− 1

µ̃alloy
ṽ, (2.98)

where TL
int indicates that the temperature is taken at the liquid side of the interface.

2.3 Thermodynamical equilibrium fluctuations

Real systems are always exposed to the effects of noise. The physical origin of
the noise can be very diverse and ranges from the internal thermodynamical fluc-
tuations to uncontrolled perturbations due to imperfections in the experimental
set-up. In the description given in the preceding chapters, all the thermodynam-
ical magnitudes characterizing the state of the system referred to the mean value
of the real fluctuating variables.

As a consequence of the microscopical motion of the particles in the system,
the real value of the thermodynamical magnitudes change continously around a
certain mean value. In a near-equilibrium situation, it is possible to describe
the system with the mean values and quantify the effect of the fluctuations by
means of a proper probability distribution. In the case of a noise of internal ori-
gin, this probability distribution is usually Gaussian and it can be obtained from
the statistical properties of the equilibrium fluctuations in the system. In order
to characterize the equilibrium internal fluctuations for a given system, we use the
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so-called Fluctuation-Dissipation theorem, which was proposed in 1902 by Einstein
in his works on the Brownian motion [Einstein56]. This theorem, which is one of
the most important results of thermodynamics and statistical physics, establishes a
connection between the internal fluctuations of a system and the microscopic forces
which determine the motion of its particles. In the particular case of a Brownian
particle, it states that the fluctuations producing the random motion of the particle
have the same origin than the dissipation of energy by friction which is produced
when the particle is moved inside the system.

Crystal growth is a process in which the presence of fluctuations can modify
significantly the dynamical evolution of the solid-liquid interface. Due to its non-
linear and non-local nature, the dynamics of the solidification front is subjected
to morphological instabilities which deform its shape and give rise to complex
structures and patterns. In the presence of fluctuations, the apparition of these
instabilities might be altered, and the properties of the final pattern will generally
depend on the statistical properties of the noises present in the system. This is for
instance the case of the formation of microstructures during alloy solidification; in
this system, the wavelength of the final pattern is selected during early transient
stages by means of a noise amplification process.

The preceding arguments point out the necessity of introducing thermal and
solutal fluctuations into the phenomenological description of the system. Therefore,
the Sharp-Interface description must include fluctuations into both the heat and
mass diffusion equations and in the conservation laws across the interface. As an
additional source of interfacial noise, we will consider the fluctuations produced by
the random attachment kinetics of atoms from the liquid to the solid phase.

2.3.1 Temperature bulk fluctuations

For a given thermodynamical magnitude φ, the probability that the system takes
a value of φ between φ and φ + dφ is given by Ω(φ)dφ, where Ω(φ) is given by

Ω(φ) = Ae−∆W (φ)/kBT , (2.99)

where A is a constant and ∆W (φ) stands for the minimum amount of work needed
to produce an infinitesimal reversible change in φ. In a reversible process, this
amount of work is given by the variation of the Gibbs’ free energy ∆G

∆W = ∆G = ∆U − T∆S + P∆V, (2.100)

where ∆V , ∆U and ∆S are the volume, internal energy and entropy variations
respectively. Expanding ∆W up to second order around the equilibrium values, we
have, at second order in ∆n,

∆W ≈ 1
2

(
∂2U

∂S2

)
(∆S)2 + 2

(
∂2U

∂S∂V

)
∆S∆V +

(
∂2U

∂V 2

)
(∆V )2. (2.101)
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For a process at constant volume (∆V = 0), and using the thermodynamical rela-
tions

(
∂2U

∂S2

)
=

T

cv
(2.102)

∆S =
cv∆T

T
, (2.103)

where cv is the specific heat at constant volume, we obtain an expression for Ω in
Eq. 2.99

Ω = Ae
− cv(∆T )2

2kBT2 . (2.104)

Assuming that the statistics of the fluctuations of φ obey a Gaussian distribution,
we have

Ω(φ) =
1√

2π〈φ2〉e
− (φ−〈φ〉)2

2〈φ2〉 . (2.105)

Taking φ = ∆T and comparing Eq. 2.104 with Eq. 2.105, we obtain the mean and
the variance of the thermal fluctuations

〈∆T 〉 = 0 (2.106)

〈(∆T )2〉 =
kBT 2

cv
. (2.107)

2.3.2 Solute bulk fluctuations

We can use the same procedure to determine the statistical properties of the solute
fluctuations in the system. Let us consider a fluctuation consisting in the isother-
mal, isobaric reversible change of the solute concentration in an amount ∆n moles.
The work ∆W to produce this fluctuation is now given by

∆W = ∆G− µ∆n, (2.108)

where ∆G is the change in the Gibbs’ free energy and µ∆n accounts for the work
which has been done in order to change the concentration. Expanding the Gibbs’
free energy around equilibrium, we have

∆G ≈
(

∂G

∂n

)
∆n +

1
2

(
∂2G

∂n2

)
(∆n)2, (2.109)

and noting that µ = ∂G
∂n , we obtain

∆W =
1
2

(
∂µ

∂n

)
(∆n)2, (2.110)

which, substituted in Eq. 2.99, gives

Ω = Ae
− ( ∂µ

∂n
)

2kBT (∆n)2
. (2.111)
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Identifying this with Eq. 2.105 for φ = ∆n, we obtain the statistical properties of
the solute fluctuations

〈∆n〉 = 0 (2.112)

〈(∆n)2〉 =
kBT

(∂µ
∂n )

. (2.113)

For a n mol solution with nB moles of solute, we define the solute concentration as
the molar fraction of the solute x = nB/n, and the fluctuations in the concentration
are determined by

〈∆x〉 = 0 (2.114)

〈(∆x)2〉 =
kBT

n(∂µ
∂x )

. (2.115)

In the case of a dilute solution, we have ∂µ
∂x ≈ RT/x (cf. Eq. 2.33), and the solute

fluctuations are given by
〈(∆x)2〉 =

x

N
, (2.116)

where N = nN0 is the total number of particles in the system and N0 the Avo-
gadro’s number. If we prefer to write the solute concentration as the number of
solute molecules per unit volume c̃, we use the transformation

c̃ =
N0

vm
x, (2.117)

where vm = Z/ρ is the molar volume of this substance, being Z and ρ the molecular
weight and density of the dissolvent. We can then write Eq. 2.116 in terms of c̃,
obtaining

〈(∆c̃)2〉 =
c̃

nvm
, (2.118)

and noting that nvm is the total volume of the system ∆V , we finally obtain

〈(∆c̃)2〉 =
c̃

∆V
. (2.119)

2.3.3 Heat and mass stochastic currents

Thermal and solute fluctuations result in additional heat and mass stochastic cur-
rents at the bulk phases which must be considered in the description of the system.
In a first approximation, these noises can be assumed to be uncorrelated in space
(white noise) and time (Markov process). During the solidification of a pure sub-
stance, the effect of thermal fluctuations is a stochastic heat current qα(r, t) which
acts at each point of the system and whose statistical properties are given by the
fluctuation-dissipation theorem [Rytov56, Cherepanova76]

〈qi
α(r, t)qj

α(r′, t′)〉 =
2D̃α

T kBT 2

cα
v

δijδ(r′ − r)δ(t′ − t), (2.120)



44 CHAPTER 2. THE PHYSICS OF SOLIDIFICATION

where α = S, L and i, j denote components of qα. The diffusion equation Eq. 2.92
is then modified by adding the stochastic current to the diffusion current, and the
temperature field obeys the stochastic diffusion equation

∂tTα = D̃α
T∇2Tα −∇ · qα. (2.121)

The heat conservation at the interface Eq. 2.91 must also be modified to account
for the extra stochastic current across the interface in the total heat balance

Lvṽ · n̂ = [κ̃S∇T |S − κ̃L∇T |L]int · n̂− [cS
v qS − cL

v qL] · n̂ (2.122)

where qS and qL are the fluctuating currents at the solid and liquid phases respec-
tively.

In alloys, we proceed in a similar way by modifying both the diffusion equation
Eq. 2.97 and the mass conservation equation Eq. 2.96 in order to include the cor-
responding solute stochastic current j. The fluctuating version of the problem is
then given by

∂txα = D̃α∇2xα −∇ · jα, (2.123)
xL(1− k)ṽ · n̂ = [D̃S∇xα|S − D̃L∇xα|L] · n̂− [jS − jL] · n̂, (2.124)

where α = S, L and the properties of the solute stochastic current jα are given by

〈ji
α(r, t)jj

α(r′, t′)〉 =
2D̃αxαvm

N0
δijδ(r′ − r)δ(t′ − t). (2.125)

The heat and solute stochastic processes introduced in the last expressions account
for bulk fluctuations which has an effect in the heat and mass balance across the
interface.

2.3.4 Interfacial fluctuations associated to kinetic attach-
ment

The heat and mass stochastic currents which have been introduced in the last two
sections must be considered as bulk currents which affect to a large number of
particles in the system. However, as pointed out by A. Karma in Ref. [Karma93a],
the interfacial kinetic attachment process described in section 2.1.4 has associated
a stochastic interfacial force which must also be taken into account. After some
theoretical arguments concerning the analytical description of the interface, he
arrived to the result that the effect of the interfacial fluctuations results as an
additive noise η(r, t) in the local equilibrium condition Eq.2.61, which reads

T = TA
M −mLxL

B −
ṽ

µ̃
+ η(r, t), (2.126)
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where µ̃ is the interface mobility anf the statistical properties of the noise are given
by

〈η(r, t)η(r′, t′)〉 = 2
kBT 2

µ̃L

δ(r− r′)δ(t− t′)√
1 + |∇zs(r, t)|2 , (2.127)

being z = zs(r, t) the implicit equation for the position of the solid-liquid surface.
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Chapter 3

Moving Boundary problems
for solidification

This chapter is devoted to introduce the mathematical equations governing the
dynamics of a solidification process. Section 3.2 is dedicated to describe the free
solidification of an undercooled pure substance, and Section 3.3 is devoted to the
directional solidification of a supersaturated mixture. In both cases, we will study
the moving boundary equations and their basic solutions in the case of having a
planar solidification front. The case of directional solidification will be studied
with more detail, and in Sec. 3.3.4 the constitutional undercooling criterion is
introduced in order to explain the basic mechanisms by which the interface becomes
morphologically unstable. At the end of the chapter, a basic linear stability analysis
of the directional solidification problem is performed (Mullins-Sekerka), obtaining
the stationary growth rate for the different perturbation wavelengths.

3.1 Introduction

As we have seen in the previous chapter, the phenomenological formulation of a
solidification problem involved equations for:

i) Heat/mass diffusion at the solid and liquid bulk phases (Eq. 2.92 for pure
substances and Eq. 2.97 for alloys).

ii) Local thermodynamic equilibrium conditions at the interface (Eq. 2.93 for
pure systems and Eq. 2.98 for alloys).

iii) Heat/mass conservation across the interface (Eq. 2.91 for pure systems and
Eq. 2.96 for alloys).

These sort of mathematical problems are called moving boundary problems , since
the solution of the diffusion bulk equations (i) is found by imposing the boundary
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conditions (ii) at the moving boundary whose motion is determined by (iii). In
such a problems, the bulk and interfacial equations are dynamically related and
must be solved simultaneously. The above equations (i-iii), supplemented with
the convenient initial and boundary conditions, define a quantitative physical de-
scription of the solidification process. Moving boundary problems are also called
Stefan problems, in reference to the Austrian physicist Josef Stefan, who derived
a differential equation for the position of a polar ice front by imposing the heat
balance across the solid-liquid interface [Stefan91]. For this reason, condition (iii)
is also known as the Stefan condition. In fact, the problem of a growing phase
transformation was already proposed by Lamé and Clapeyron in Ref. [Lamé31].
An improved analytical solution by means of a similarity analysis was obtained by
F. Neumann in 1860 [Carlslaw50].

Besides solidification systems, moving boundary problems are suited to describe
many scientific and technological processes such as flame propagation, crack dy-
namics or oil drilling. For a detailed description of analytical and numerical tech-
niques for moving boundary problems, we refer to Ref. [Crank84]. In the context
of solidification processes, the moving boundary formulations are called Sharp-
Interface models, because they describe the solid-liquid interface as an atomically
thin interface. The next sections are dedicated to describe the Sharp-Interface
equations for the most relevant solidification processes, namely the solidification of
an undercooled pure melt and the directional solidification of a dilute binary alloy.

3.2 Free growth from an undercooled pure melt

3.2.1 Sharp-Interface equations

Grouping the results presented in the previous sections, the equations describing
the solidification of an undercooled pure melt are given by

∂t̃Tα = Dα
T ∇̃2Tα, (3.1)

Lvṽ · n̂ = [κ̃S∇̃T |S − κ̃L∇̃T |L] · n̂, (3.2)

Tint = TM − d̃0κ̃− 1
µ̃

ṽ, (3.3)

where d̃0 = σ̃TM/Lv is the thermal capillary length introduced in Section 2.1.3 and
µ̃ = Lmvmax/(RT 2

M ) is the kinetic mobility introduced in section 2.1.4.

3.2.2 Analytical similarity solution

Only in few simple cases, analytical solutions can be obtained for Stefan problems.
We shall consider the simplest Stefan problem, which describes the one dimen-
sional solidification of an undercooled pure melt. A pure substance occupies a
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semi-infinite region z̃ ≥ 0 as shown in Figure 3.1. An infinitesimally thin sheet
of solid at temperature T = TM is initially located a z̃ = 0, and the liquid at
z̃ > 0 is undercooled at a temperature T∞ below its melting temperature with an
undercooling ∆T = TM − T∞. The liquid phase is in a metastable state, and the
solid phase will grow in the z̃ > 0 direction occupying the semi-infinite region. As
the temperature at the solid is maintained constant, there is no heat flux in the
solid. If z̃ = ξ̃(t̃) is the position of the solid-liquid interface at time t̃, the equations
describing this process are given by

∂t̃TL = D̃T
L ∂2

z̃TL, (3.4)

at the liquid bulk z̃ > ξ̃(t̃), and

Lv
dξ̃(t̃)
dt̃

= −κ̃L∂z̃TL|z̃=ξ̃(t̃) (3.5)

TS(z̃ = ξ̃(t̃), t̃) = TL(z̃ = ξ̃(t̃), t̃) = TM (3.6)

at the interface z̃ = ξ̃(t̃). Additionally, we have the far-field conditions

TL(z̃ →∞) = T∞ (3.7)
TS(z̃ ≤ ξ̃(t̃)) = TM . (3.8)

TM

T 8

T(z,t)

zξ(t)

SOLIDSOLID LIQUID

Figure 3.1: Temperature profile during the solidification of an undercooled pure melt in
a semi-infinite region

It is easy to check that equations 3.4 and 3.7 are satisfied by the similarity
solution

TL(z̃, t̃) = T∞ + A erfc

(
z̃

2
√

D̃T
L t̃

)
, (3.9)
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where erfc(x) = 2√
π

∫∞
x

e−y2
dy is the complementary error function. The constant

A in Eq. 3.9 is determined by imposing TL(z̃ = ξ̃(t̃)) = TM from Eq. 3.6, and is
given by

A =
∆T

erfc
(

ξ̃(t̃)

2
√

D̃T
L t̃

) . (3.10)

As A is a constant, we have, for consistency, that

ξ̃(t̃)√
D̃T

L t̃
= α, (3.11)

where α is a constant which determines the growth velocity of the front for a given
undercooling ∆T = TM − T∞. In order to determine the value of α, we impose
the Stefan condition Eq. 3.5 to the solution Eq. 3.9. Noting that D̃T

L = κ̃L/cL
v and

using Eq. 3.11, we obtain the relation

√
π α erfc(α) eα2

=
∆TcL

v

Lv
. (3.12)

It is interesting to note here that the term at the right side of Eq. 3.12 coincides with
the expression obtained in section 2.1.1 for the Gibbs’ free energy variation driving
the solidification process of an undercooled pure substance. Relation Eq. 3.12
can be understood as the law which determines the growth velocity α for a given
driving force ∆TcL

v /Lv, and the ratio S = Lv/∆TcL
v is also known as the Stefan

number. The validity of the relation 3.12 is restricted to values of the inverse
of the Stefan number S−1 ∈ [0, 1] and therefore for undercoolings ∆T smaller
than Lv/cL

v . This is shown in Fig. 3.2, where it can be observed that Eq. 3.12
has no solutions for S−1 ≥ 1 . Moreover, for S−1 → 1−, the value of α tends
to infinity and the solution predicts erroneously infinitely large growth velocities
for a finite undercooling ∆T . These limitations are due to the breakdown of the
local equilibrium condition and can be overcame by introducing finite interfacial
attachment dynamics described in section 2.1.4. Following identical procedure,
a similarity solution for the resulting model with the modified local equilibrium
condition can be easily obtained [Davis01], predicting three different growth regimes
depending on the value of the Stefan number

ξ̃(t̃) ∼
√

t̃ , for S−1 < 1, (3.13)

ξ̃(t̃) ∼ t̃
√

t̃ , for S−1 = 1, (3.14)
ξ̃(t̃) ∼ t̃ , for S−1 > 1. (3.15)

In spite of their fundamental interest, the analytical approaches for moving
boundary problems are limited to relatively simple situations. In fact, Stefan
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Figure 3.2: Dependence of the growth parameter α with the inverse of the Stefan number
S−1. The validity of the similarity solution is restricted to undercoolings satisfying S−1 <
1.

problems are in general three-dimensional and, as a consequence of their non-linear
and non-local character, present complex interfacial structures such as dendrites
or spikes, making it necessary to use quasi-analytical, perturbative or numerical
approaches to study its dynamical evolution.

3.3 Directional solidification of a dilute binary so-
lution

3.3.1 The directional solidification process

Directional solidification is a technological process which allows to control the
advance of an alloy solidification front. The set-up for a directional solidifica-
tion experiment is shown in Fig. 3.3. A dilute binary solution sample is pulled
with a constant velocity ṽp = −ṽpẑ towards the cold region of an externally im-
posed stationary temperature gradient ∇̃T = G̃ẑ. If the initial stationary melt
has a uniform concentration c∞, the regions located at temperatures smaller than
T = TM −mLc∞ will solidify creating a solid-liquid interface separating the two
bulk phases. Then the sample is pulled towards the cold region of the gradient,
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producing the controlled advance of the solid-liquid front. As it will be discussed
in Section 3.3.4, the planar solid-liquid interface remains morphologically stable for
small pulling velocities, whereas for larger growth rates the front becomes instable
presenting different kinds of interfacial instabilities.

ŷ x̂

ẑ
GRADIENT FRAME

COLD

M
T

Tint

T

pV

z
HOT

SAMPLE FRAME

z
s

Figure 3.3: Experimental set-up of a directional solidification experiment. The mixture
sample is pulled at constant velocity vp under an externally imposed temperature gradient.

Problem setting and definitions

Before entering in the mathematical description of the problem, we would like to
remark some issues related with the choice of fields, reference frames and scaling
of the variables:

i) We describe the solute concentration at a certain point of the sample c(r̃, t̃)
as the molar fraction of solute, defined in Sec. 2.1.2 as the ratio between the
number of moles of solute nB and the total number of moles of the solution,
n, i.e.,

c(r̃, t̃) =
nB

n
. (3.16)

This measure of the solute concentration can be easily related with the physi-
cal concentration c̃(r̃, t̃), denoted with a tilde and defined as number of solute
molecules per unit volume of the solution. Noting that 1 mol of solute has
N0 particles of solute and that the volume of 1 mol of solution is given by
the molar volume vm = Z/ρ, these two measures for the concentration can
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be easily related by

c̃(r̃, t̃) =
N0

vm
c(r̃, t̃). (3.17)

ii) We will use the gradient frame to refer to all the distances and velocities,
adding explicitely the subscript “s” when referring to variables measured in
the moving frame of the sample. Positions and velocities in the sample and
gradient frames are therefore related by the Galilean transformations

r̃ = r̃s − ṽpt̃, (3.18)
ṽ = ṽs − ṽp. (3.19)

iii) The origin of the moving sample frame is chosen in such a way that the initial
value of the system temperature at the origin (z̃ = 0, t̃ = 0) is equal to

T (z̃ = 0, t̃ = 0) = TM −m
c∞
k

. (3.20)

iv) Tilted variables and parameters refer to the physical, unscaled values of the
magnitudes.

The initial recoil transient

Let us now consider a more detailed description of the directional solidification
process. Figures Fig. 3.4, Fig. 3.5 and Eq. 3.6 describe the main idea of the exper-
imental procedure. At t̃ = 0, a sample with concentration c∞ is located under a
fixed external temperature profile given by

T (r̃) = TM −mL
c∞
k

+ G̃z̃. (3.21)

Figure Fig. 3.4 shows the sample frame under the external gradient at t̃ = 0. Under
the effect of the external gradient, the system reaches equilibrium by creating
an interface which separates a solid region with concentration kc∞ and a liquid
region with concentration c∞. This initial equilibrium interface, as can be shown
in Fig. 3.4, is located at

z̃ = l̃T =
mL∆c0

G̃
, (3.22)

which is the position of the sample at a temperature of Ti = TM −mLc∞. The pa-
rameter l̃T is known as the thermal length and defines a new physical length in the
solidification problem. The bulk regions at the left and right of this position will be
therefore occupied by solid and liquid phases respectively. Once the planar solidifi-
cation front is created, the sample is pulled at a constant velocity −ṽp towards the
cold region of the gradient. This motion results in a progressive introduction of the
sample into the cold region of the gradient, therefore producing the growth of the
solid phase in the system and the consequent advance of the solidification front.
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Figure 3.4: Motion of the sample under the temperature gradient. The frames are
represented here at t̃ = 0. In the gradient frame, the initial front position is ξ̃(t̃ = 0) = l̃T ,
and the stationary position is ξ̃(t̃ →∞) = 0.

As the solidification front evolves, not all the solute particles of the liquid phase
can be incorporated at the structure of the solid phase. A certain amount of solute
is then rejected from the solid, producing the creation of a boundary layer at the
liquid side of the advancing front as indicated in Fig. 3.6. As a consequence of this
phenomena, the solute concentration is increased in the solid and liquid regions
near the interface. The accumulation of solute continues until the concentration
at the solid and liquid sides of the front reach solute concentrations of c∞ and
c∞/k, respectively (cf. Eq. 2.57). The values of the final concentrations and the
temperature at the front position are determined by the phase diagram shown in
Fig. 3.5. At the end of this transient process, the solute boundary layer is totally
formed and the solid-liquid interface is located at z̃ = 0 where the temperature is
Tf . As shown in Fig. 3.6, an observer at the gradient frame will see that the front
moves back from z̃ = l̃T to z̃ = 0. This solute redistribution process in known as
the initial recoil transient. We can describe the position of the solidification surface
in the gradient frame with the implicit relation z̃ = ξ̃(ρ̃, t̃), and the points at the
solid-liquid surface are pointed by the vector

r̃int(t̃) = ρ̃ + ξ̃(ρ̃, t̃)ẑ, (3.23)

where we have used the notation r̃ = ρ̃ + z̃ẑ, being ρ̃ = x̃x̂ + ỹŷ the spatial
components in the orthogonal directions to ẑ. For a planar front, the interface
position will not depend on ρ̃ and we have z̃ = ξ̃(t̃). At t̃ = 0, the planar front is
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Figure 3.5: Phase diagram of a dilute alloy. The initial and final temperatures are
determined by the initial and final solute concentrations at the liquid side of the interface.

located at
ξ̃(t̃ = 0) = l̃T , (3.24)

and as time evolves it moves back until its position for t̃ →∞ is given by

ξ̃(t̃ →∞) = 0. (3.25)

From the sample reference frame, the position of the front ranges from ξ̃s(0) = l̃T
at t̃ = 0 , to ξ̃s(∞) = −ṽpt̃ at t̃ →∞. Equivalently, the gradient and sample frame

velocities range from ˙̃
ξ(0) = −ṽp to ˙̃

ξ(∞) = 0 and from ˙̃
ξs(0) = 0 to ˙̃

ξs(∞) = ṽp.

3.3.2 Sharp-Interface equations

In the sample frame, the diffusion equations at the bulk phases are given by

∂t̃cα − ṽp∂z̃cα = D̃α∇̃2cα, (3.26)

where α = S, L labels the solid and liquid phases respectively.
The local equilibrium conditions at the interface, taking into account capillary

and kinetic effects (cf. Eqs. 2.57, 2.76 and 2.85), are given by

cS(r̃int, t̃) = kcL(r̃int, t̃) (3.27)
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Figure 3.6: Solute profiles and front positions during the initial solute redistribution
transient in directional solidification.

T (r̃int, t̃) = TM −mLcL(r̃int, t̃)− d̃0κ̃(r̃int, t̃)− 1
µ̃

( ˙̃
ξ(ρ̃, t̃) + ṽp), (3.28)

where d̃0 = σ̃TM

Lv
is the capillary length introduced in Section 2.1.3, σ̃ is the surface

energy, κ̃ the local interface curvature and µ̃ = (1 − k)vmax/mL the interface
mobility defined in section 2.1.4 (cf. Eq. 2.87).

Note that the Gibbs-Thomson equation Eq. 3.28 accounts for kinetic effects
during the whole transient. At t̃ = 0 there is no kinetic effects ( ˙̃

ξ(0) = −ṽp), and

in the stationary regime are determined by the pulling velocity ( ˙̃
ξ(∞) = 0).

The last equation accounts for the mass conservation across the interface

n̂ · [D̃S∇̃CS − D̃L∇̃cL]r̃=r̃int = cL(r̃int, t̃) (1− k)( ˙̃
ξ(ρ̃, t̃) + ṽp). (3.29)

Combining Eq. 3.28 and Eq. 3.21, a closed expression can be obtained for the solute
concentration at the liquid side of the interface

cL(r̃int, t̃) =
c∞
k
− G̃

mL
ξ̃(t̃)− d̃c

0κ̃− β̃ ( ˙̃
ξ(ρ̃, t̃) + ṽp), (3.30)
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where we have introduced the kinetic coefficient defined by

β̃ =
1

mLµ̃
, (3.31)

and the chemical capillary length by

d̃c
0 =

d̃0

mL
. (3.32)

From Eq. 3.30 it is clear that, for a planar interface (κ̃ = 0), the kinetic un-
dercooling produces a reduction of the final position of the front, which instead of
being located ξ̃(∞) = 0, is now located at

ξ̃(∞) = − β̃mL

G̃
ṽp. (3.33)

Dimensionless equations

The values of the diffusion coefficient at the liquid D̃L and the pulling velocity ṽp

permit to define natural space and time scales for the solidification problem. We
introduce the diffusion length l̃ and the diffusion time γ̃ as

l̃ =
D̃L

ṽp
(3.34)

γ̃ =
D̃L

ṽ2
p

, (3.35)

and use them to define the new scaled variables r = r̃/l̃ and t = t̃/γ̃. Writing the
model defined by Eqs. 3.26-3.29 in terms of the scaled variables, we obtain

∂tcS − ∂zcS = Ds∇2cS , (3.36)
∂tcL − ∂zcL = ∇2cL (3.37)

k · cint
L = cint

S (3.38)

T int = TM −mLcint
l − d0κ(r)− 1

µ
(1 + ξ̇(ρ, t)), (3.39)

n̂ · [Ds∇cS −∇cL]int = cint
l (1− k)(1 + ξ̇(ρ, t)), , (3.40)
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where we the new scaled parameters are written without the tilde and are defined
by the relations

µ = µ̃
l̃

γ̃
, (3.41)

d0 =
d̃0

l
, (3.42)

Ds = D̃s
γ̃

l̃2
, (3.43)

κ =
κ̃

l̃
(3.44)

ξ =
ξ̃

l̃
, (3.45)

ξ̇ = ˙̃
ξ
γ̃

l̃
, (3.46)

The temperature profile in the new variables takes the form

T (r, t) = TM −mL
c∞
k

+ Gz(t), (3.47)

where G = G̃l̃ and z is the scaled position in the gradient frame. The scaled
equation for the interface concentration is therefore

cint
L =

c∞
k
− G

mL
ξ(t)− dc

0κ− β (1 + ξ̇(ρ, t)), (3.48)

where dc
0 = d̃c

0/l̃.

3.3.3 The planar stationary solution

In order to know the steady-state profile of the moving planar interface, we search
for stationary solutions of the Eq. (3.26)

−ṽp∂z̃cα = D̃α∇̃2cα. (3.49)

In the stationary regime, the motion of the interface is only due to the translation
of the sample along the external temperature gradient, and the interface position
is therefore located at the origin of the gradient frame z̃int = ξ̃(t̃ →∞) = 0.
As the solute diffusion in the solid is typically five orders of magnitude smaller
than in the liquid, we can assume that the diffusion of the concentration profile
only occurs in the liquid side of the interface (one-sided model). We then have

D̃L∇̃2cL + ṽp∂z̃cL = 0. (3.50)
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A general solution for this ordinary differential equation is given by

cL(z) = A + B e
− ṽp

D̃L
z̃
. (3.51)

where A and B are integration constants. We introduce at this point the diffusion
length

l̃ =
D̃L

ṽp
, (3.52)

which is a measure of the thickness of the solute boundary layer formed ahead of
the solidification front. We note that for a given substance, the thickness of the
boundary layer decreases for increasing growth velocities.

We now impose a condition requiring that the value of the concentration profile
away from the interface must be equal to the original composition of the alloy c∞.
This can be imposed by means of the far-field condition cL(z̃ → ∞) = c∞, which
allows to find a value of the integration constant A

A = c∞. (3.53)

Similarly, the value of the integration constant B can be found by imposing the
solute conservation equation Eq. 3.29, which brings to

B =
c∞(1− k)

k
= ∆c0. (3.54)

The final stationary concentration profile is then given by

cL(z̃) = c∞ + ∆c0 e−
z̃
l̃ , (3.55)

which is represented in Fig. 3.6.

3.3.4 Morphological stability of a planar front

Due to the local character of the problem, the solid-liquid interface might be mor-
phologically unstable and front deformations may grow resulting in the formation
of cellular or dendritic patterns. This section is devoted to the study of the physical
mechanisms which give rise to a morphological destabilization of the front. We first
present the constitutional undercooling as the basic physical process destabilizing
the interface, and then introduce the Mullins-Sekerka analysis which determines
the decay or growth of sinusoidal perturbations with different wavelengths.

The constitutional undercooling criterion

When a directionally solidified sample has reached its stationary state (i.e., the
diffusion boundary layer is formed) , there is a simple thermodynamical argu-
ment which qualitatively determines the morphological stability of the solidification
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front. As shown in Fig. 3.7, the boundary layer formed ahead of the solid-liquid
interface has a solute concentration which decreases from c∞/k at the liquid side
of the interface, to c∞ at distances of order of the diffusion length l̃ = D̃/ṽp. As
the concentration at the liquid decreases, the temperature at which it solidifies
increases following T = TM −mLcL. The melting temperatures for the points in
the boundary layer is represented as a dashed line in Fig. 3.7. On the other hand,
the external temperature gradient imposes a temperature at each of the sample
points given by

T (r̃) = TM −mL
c∞
k

+ G̃z̃, (3.56)

which is plotted in Fig. 3.7 as a solid line.
It turns now clear that the points in the region between the solid and dashed

lines have a temperature below its melting temperature, and therefore at these
points the liquid phase is metastable. This local undercooling which produces the
instability of the interface is known as constitutional undercooling, and was first
proposed by Rutter and Chalmers in Ref. [Rutter53] and latter by Tiller et al. in
Ref. [Tiller53]. For a recent historical review of the constitutional undercooling
criterion, we refer to Ref. [Jackson04]. When the value of the temperature gradient
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Figure 3.7: Constitutional undercooling criterion for the morphological stability of the
solidification front. The region between the solid and the dashed line defines a metastable
liquid phase.

G̃ is increased, the constitutionally undercooled region gets smaller. This can be
appreciated in Fig. 3.8, where the undercooled region is plotted for three different
gradients G1 > G2 > G3. For gradients larger than G1, there is no undercooled
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region and the front becomes morphologically stable. So the external gradient has
a stabilizing effect for the interface.

The mathematical condition which determines the front stability can be ob-
tained by comparing the external temperature gradient G̃ with the slope of the
melting temperature curve at z̃ = 0. Using Eq. 3.55, this slope can be easily
determined as ∣∣∣∣

dT

dz̃

∣∣∣∣
z̃=0

= mL∆c0
ṽp

D̃
, (3.57)

and the condition for the stability of the front can then be written as

G̃ > mL∆c0
ṽp

D̃
. (3.58)

The last condition can be expressed in terms of the gradient length l̃T = mL∆c0/G̃
introduced in Eq. 3.24 and the diffusion length l̃ = D̃/ṽp of Eq. 3.52, and the
morphological stability criterion is then written as

l̃ > l̃T , (3.59)

namely that the interface will be morphologically stable when the diffusion length
l̃ is larger than the gradient length l̃T . From the last equation it turns clear that,
whereas the increase of the external gradient has a stabilizing effect because it
decreases l̃T , increasing the pulling velocity has a destabilizing influence because
it increases the diffusion length l̃. For a given sample concentration c∞, the two
main control parameters in a directional solidification experiment are the external
temperature gradient G̃ (stabilizing) and the pulling velocity ṽ (destabilizing). The
constitutional undercooling criterion can be used as a rule of thumb for determining
the interface stability, but it does not take into account important phenomena
such as surface energy or kinetic attachment effects. Capillary effects, however,
have a very important influence in the morphological stability of the interface. We
have seen in section 2.1.3 that a positive interfacial curvature (i.e., with its center
located at the solid side), results in a decrease of the melting temperature in the
liquid side of the front. This undercooling by curvature turns in a reduction of
the melting temperature in the diffusive boundary layer, producing a stabilization
of the front. The effect is represented in Fig. 3.8, where the planar and curved
fronts present different curves for the temperature of melting in the boundary
layer. In particular, for a given external temperature gradient G2, the curved
front becomes stable (there is no undercooled region) whereas the plane front was
clearly unstable. Following the same argument, as the kinetic attachment produces
an effective undercooling at the interface, it also contributes to the stabilization of
the front.

Due to the competition between stabilizing forces (external gradient, capillary
effects, kinetic effects) and destabilizing effects (front velocity, diffusion, solute con-
centration), the solidification front in alloys presents a wide spectrum of morpho-
logical instablilties such as dendrites, banded structures, cellular patterns, traveling
waves, oscillatory modes, etc.
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Figure 3.8: The effect of capillarity in the interface stability is a reduction of the melting
temperature. For the same external gradient G2, the curved surface becomes stable
whereas the planar interface was constitutionally unstable.

The Mullins-Sekerka stability analysis

The above arguments describe the qualitative mechanism by which the front desta-
bilizes, but do not say anything about the amplification or decay of the different
perturbations which might be applied to the system. This analysis was first done by
Mullins and Sekerka in Ref. [Mullins63]. They performed a linear stability analysis
of the stationary front by applying different sinusoidal perturbations and obtaining
an expression for the growth rate at which they growth or decay. We will turn
to this point later in section 4.2, where we will develop the mathematical stability
analysis but not in the stationary regime but during the initial transient stages in
directional solidification.

The analysis starts from the planar stationary solution Eq. 3.55,

c0
S(z̃) = c∞, (3.60)

c0
L(z̃) = c∞ + ∆c0 e

− ṽp

D̃L
z̃
. (3.61)

which is located at z̃ = 0. By perturbing this stationary solution with a sinusoidal
interfacial deformation, we have the perturbed concentration profiles at the liquid
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and solid c′L, c′S , and the perturbed interface is located at the position ξ̃′, given by

c′S(r̃, t̃) = c0
S + δcS(r̃, t̃) (3.62)

c′L(r̃, t̃) = c0
L(z̃) + δcL(r̃, t̃) (3.63)

ξ̃′(ρ̃, t̃) = δξ̃(ρ̃, t̃), (3.64)

where the perturbations are given by

δcS(r̃, t̃) = c2e
ik̃·ρ̃+q̃′z̃+w̃t̃ (3.65)

δcL(r̃, t̃) = c1e
ik̃·ρ̃−q̃z̃+w̃t̃ (3.66)

δξ̃(ρ̃, t̃) = z1e
ik̃·ρ̃+w̃t̃ = ξ̃k(t̃)eik̃·ρ̃. (3.67)

In the stationary state, and neglecting kinetic effects, the perturbed front satisfies
the set of quasi-stationary equations

D̃S∇̃2c′S + ṽp∂z̃c
′
S = 0, (3.68)

D̃L∇̃2c′L + ṽp∂z̃c
′
L = 0, (3.69)

c′L(r̃int, t̃) =
c∞
k
− G̃

mL
ξ̃′(ρ̃, t̃)− d̃c

0κ̃
′ (3.70)

n̂ · [D̃S∇̃c′S − D̃L∇̃c′L]r̃=r̃int = c′L(r̃int, t̃) (1− k)(ṽp + ˙̃
ξ′). (3.71)

Inserting the expressions for the perturbed fields Eqs. 3.65, 3.66 into the diffusion
equations Eqs. 3.68 and 3.69, we obtain the relations

D̃S(q̃′2 − k̃2) + ṽpq̃
′ = 0, (3.72)

D̃L(q̃2 − k̃2)− ṽpq̃ = 0, (3.73)

where k̃2 = k̃2
x + k̃2

y.
By Taylor expanding the perturbed fields c′L, c′S around z̃ = 0, we obtain a first

order approximation in z1, c1, c2 of the concentration at the solid and liquid sides
of the perturbed front

c′S(r̃, t̃)|z=ξ̃′ ≈ c′S(r̃, t̃)|z=0 + ∂z̃c
′
S(r̃, t̃)|z=0 · δξ̃(r̃, t̃), (3.74)

c′L(r̃, t̃)|z=ξ̃′ ≈ c′L(r̃, t̃)|z=0 + ∂z̃c
′
L(r̃, t̃)|z=0 · δξ̃(r̃, t̃). (3.75)

Inserting Eq. 3.66 into Eq. 3.75, the concentration at the liquid side is given by

c′S(r̃, t̃)|z=ξ̃′ ≈ c∞ + ∆c0

(
1− ṽp

D̃L

δξ̃

)
+ c1e

ik̃·ρ̃+w̃t̃. (3.76)

We can expand in the same way the right side of Eq. 3.70, obtaining

c∞
k
− G̃

mL
ξ̃′(ρ̃, t̃)− d̃c

0κ̃
′ ≈ c∞

k
−

(
G̃

mL
+ d̃c

0k̃
2

)
δξ̃(ρ̃, t̃) (3.77)
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Inserting the last expressions Eqs. 3.76 and 3.76 into Eq. 3.76, we find a first
relation between the amplitudes of the perturbations c1 and z1

c1 = z1

(
ṽp

D̃L

∆c0 − G̃

mL
− d̃c

0k̃
2

)
. (3.78)

A second relation between c1 and z1 can be found by expanding the fields in the
local equilibrium condition k · c′int

L = c
′int
S , which brings to

c2 = kc1 − k
ṽp

D̃L

∆c0z1. (3.79)

The third and last relation needed to determine the perturbation amplitudes can
be obtained by expanding the derivatives ∂z̃c

′
L(r̃, t̃), ∂z̃c

′
S(r̃, t̃) and inserting them

into the mass conservation condition Eq. 3.71. After some algebraic manipulations,
we have, at first order

D̃sq̃
′c2 +

[
D̃Lq̃c1 − (1− k)ṽp

]
= z1∆c0

[
ω̃ + k

ṽ2
p

D̃L

]
(3.80)

We can now introduce Eqs. 3.78, 3.79 into Eq. 3.80 and obtain the stationary
dispersion relation for directional solidification

D̃L

ṽ2
p

ω̃(k̃, t̃) = −k − D̃SD̃L

ṽ2
p

q′k ·
[

G̃

mL∆c0
+ ˆ̃

d0k̃
2

]
+

D̃2
L

ṽ2
p

[
q + (k − 1)

ṽp

D̃L

]
·
[

ṽp

D̃L

− G̃

mL∆c0
− ˆ̃

d0k̃
2

]
,

(3.81)

where ˆ̃
d0 has been defined as the reduced chemical capillary length

ˆ̃
d0 =

d̃c
0

∆c0
, (3.82)

and q, q′ are given by the solutions of Eqs. 3.73, which take the form

q′ = − ṽp

D̃S

±
√

ṽ2
p

4D̃2
S

− k̃2 (3.83)

q′ =
ṽp

D̃L

±
√

ṽ2
p

4D̃2
L

− k̃2. (3.84)

By using the diffusion time γ̃ = D̃L

ṽ2
p

introduced in Eq. 3.35, we rewrite the dispersion
relation in a more compact form

ω̃(k̃, t̃) = −k

γ̃
− D̃Sq′k ·

[
1
l̃T

+ ˆ̃
d0k̃

2

]
+

D̃L

[
q + (k − 1)

1
l̃

]
·
[

1
l̃
− 1

l̃T
− ˆ̃

d0k̃
2

]
.

(3.85)
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The Mullins-Sekerka stability analysis can be written as a linear equation for
the evolution of the Fourier modes of the perturbation ξ̃k(t̃) introduced in Eq. 3.67

dξ̃k(t̃)
dt

= ω̃(k̃)ξ̃k(t̃). (3.86)

From the last equation, it becomes clear that the Mullins-Sekerka analysis does
not contain any information about the physical initiation for the perturbations.
If the system departs from a non perturbed initial condition ξ̃′k(t̃ = 0) = 0,
the predicted future evolution of the system will be unperturbed. In order to
account for realistic experimental situations, Warren and Langer introduced in
Refs. [Warren90, Warren93] the internal fluctuations as the initiation process which
activates the perturbation of the front. As we will see in Sec. 4.2.2 of the next
chapter, they proposed a Langevin equation by introducing a fluctuation term in
Eq. 3.86. As the effect of fluctuations will be noted by the front at very early
stages, they extended the Mullins-Sekerka analysis to account for the stability of
the front during the the initial recoil transient where the boundary layer builds up.
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Chapter 4

Analytical methods for the
study of transient stages in
directional solidification

In the study of solidification fronts, there are two important analytical approaches
to deal with transients and fluctuations. The first technique is known as the Bound-
ary Integral Method (Sec. 4.1), and uses the Green’s function theory to transform
the moving boundary equations into an integro-differential formulation of the prob-
lem. The numerical solution of these integro-differential equations will be used as a
benchmark for further simulations results. Some of the integral equations presented
in this chapter cannot be found in the previous literature and have been derived for
the particular purposes of this thesis. We report the complete derivation of these
models in order to provide the necessary expressions needed to account for other
solidification systems in the future.

The second theoretical analysis (Sec. 4.2) is the Warren and Langer’s theory on
noise amplification during the initial transient stages. The main idea is to incorpo-
rate fluctuations as the physical mechanism which perturbs the interface at early
times. In order to know how these perturbations grow or decay, a linear stability
analysis similar to the Mullins-Sekerka is performed in Sec. 4.2.1, but incorporat-
ing the effects of the solute build-up process during the initial transient. The main
difference is that while the Mullins-Sekerka theory perturbed the stationary front,
the Warren-Langer procedure takes the transient profile ansatz as the unperturbed
state.
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4.1 Boundary integral methods for solidification

4.1.1 Introduction

Boundary integral methods have shown great success for the study of engineering
problems such as crack propagation, acoustics, elasticity or solid mechanics. In so-
lidification problems, Green’s functions techniques allow to formulate the moving
boundary problem in terms of a closed set of integro-differential equations known as
boundary integral equations. For a general introduction to this technique in solidifi-
cation problems, we refer to Ref. [Caroli92], and for a more detailed description and
applications to Refs. [Caroli86a, Caroli86b, Caroli93, Tiller53, Huang97, Karma92,
Karma93d, Karma86, Barber87]. In practice, however, these techniques are often
used under some quasistationary approximation, and formulations accounting for
transient stages are difficult to find.

The solutions obtained by the numerical simulation of the boundary integral
equations should be considered as analytical solutions of the problem within the
limits of the computational accuracy of the numerical integration method. This
section is devoted to find this integral equations for different solidification problems
such as directional or symmetric solidification. All the boundary integral problems
will take into account the transient stages from an initial time t0. Equations for
the profile of the diffusive field (temperature or solute concentration) at a certain
time t will be expressed as an integral equation involving the retarded Green’s
function of the problem and the past values (i.e., from the initial time t0 to t) of
the profiles and front positions and velocities. By using the boundary conditions
at the interface, these integral equation for the diffusive field can be transformed
in a closed integral equation for the front position during the solidification process.
This transformation, however, can only be performed in the case of one-sided sys-
tems (no diffusion at the solid) or in a symmetric situation (equal diffusivities in
the solid and liquid). For the case of having different positive diffusivities in both
phases, no closed integral equation for the front position can be obtained as a con-
sequence of the asymmetry in the conservation across the interface of the diffusion
field. This approach describes the front dynamics during the solute redistribution
transient and it is capable of including capillary and kinetic effects. The numer-
ical simulation of these equations will be used as a benchmark in the following
chapter for the results obtained with other computational techniques (phase-field
methods). Although the derivation is presented in the most general case for a 2D
surface including curvature effects, the simulations will be performed in the case of
having a planar interface.

4.1.2 Formulation of the problem

Let us consider two semi-infininite media i = 1, 2, separated by a moving interface
z̃ = ξ̃(ρ, t). For the solidification problem, i = 1 corresponds to the solid phase and
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i = 2 to the liquid phase. The two bulk regions are then defined by

Phase 1 (Solid) : −∞ < z̃ < ξ̃(ρ, t),

Phase 2 (Liquid) : ξ̃(ρ, t) < z̃ < ∞.
(4.1)

In the sample reference frame, which moves with constant velocity ṽp, the physical
variables can be scaled using the time and space scales γ̃i = D̃i

ṽ2
p

and l̃i = D̃i

ṽp
, where

D̃i is the diffusivity at the phase i. The scaled distances and times are then defined
as

ti =
t̃

γ̃i
ri =

r̃i

l̃i
. (4.2)

For the sake of clarity, we will use in this section the compact notation

xi = (ρi, ti) pi = (ri, ti) piS = (xi, ξi(xi)), (4.3)

where
ri = ρi + zik̂ ρi = xiî + yiĵ, (4.4)

and ξi(xi) is the equation for the interface at the side of the phase (i). We now
introduce a normal unitary vector pointing to the liquid side as shown in Fig. 4.1

n̂(x2) =
−∇⊥ξ(x2) + k̂√
1 + |∇⊥ξ(x2)|2 , (4.5)

where ∇⊥ = ∂x î + ∂y ĵ. The unitary normal vector with origin in the phase (i)
and pointing to phase (ii) is then defined as

n̂i = (−1)i+1n̂, (4.6)

We now introduce in each medium a diffusion field ui(pi) which satisfies the limit
boundary conditions

lim
zi→(−)i∞

ui(pi) = lim
zi→(−)i∞

∇iui(pi) = 0. (4.7)

In the moving frame, the fields evolve according to the diffusion equation for each
phase (

∂

∂ti
− ∂

∂zi
−∇2

i

)
ui(pi) = 0. (4.8)

The formalism presented in this section can be applied to both pure and alloy
solidification processes. In the case of alloy solidification, as the initial liquid melt
has a concentration of c∞, the reduced diffusion field will be defined by

ui(p) =
ci(p)− c∞

∆c0
, (4.9)
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Figure 4.1: Unitary vector normal to the interface and pointing to the liquid phase

whereas for pure substances, we have

ui(p) =
TM − T∞

L/cp
, (4.10)

where T∞ is the temperature below the melting temperature TM at which the
liquid melt has been undercooled.

Green’s function of the diffusion problem

The retarded Green’s function associated to the diffusion problem Eq. 4.8 is deter-
mined by the equations

(
∇′2i −

∂

∂z′i
+

∂

∂t′i

)
Gi(pi, p

′
i) = −δ(pi − p′i), ti > t′i,

Gi(pi, p
′
i) = 0, ti < t′i .

(4.11)

Eqs. 4.11 can be solved to find the retarded Green’s function associated to the
diffusion problem, which is given by

Gi(pi, p
′
i) =

θ(ti − t′i)
[4π(ti − t′i)]

3
2

exp
{
− (ρi − ρ′i)

2 + (zi − z′i + ti − t′i)
2

4(ti − t′i)

}
, (4.12)

and satisfies the limit

lim
ε→0

Gi(ri, ti; r′i, ti − ε) = δ(ri − r′i). (4.13)
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Equation for the diffusion field ui(pi)

Let’s now find an expression for the concentration at the interface ui(pi). Mul-
tiplying (4.8) by Gi(pi, p

′
i) and Eq. 4.11 by ui(p′i) and adding the two terms, we

obtain, after some arrangements

∂

∂t′i
[G(pi, p

′
i)u(p′i)] =

∂

∂z′i
[G(pi, p

′
i)u(p′i)]− u(p′i)δ(pi − p′i)

− u(p′i)∇′2i G(pi, p
′
i) + G(pi, p

′
i)∇′2i u(p′i).

(4.14)

We introduce the space and time integration domain Ω defined by

Ω =





ti0 < t′i < ti− , ti− ≡ ti − ε

V1(t′1) : −∞ ≤ x′1, y
′
1 ≤ ∞, −∞ < z′1 < ξ1(x′1)

V2(t′2) : −∞ ≤ x′2, y
′
2 ≤ ∞, ξ2(x′2) < z′2 < ∞,

(4.15)

being Vi(t′i) the volume of the region (i) at time t′i. Integrating equation 4.14 over
Ω and imposing the first limit condition in Eq. 4.7, we get

∫ ti−

ti0

dt′i

∫

Vi(t′i)
dr′i

∂

∂t′i
[G(pi, p

′
i)u(p′i)] =

∫ ti−

ti0

dt′i

∫

Vi(t′i)
dr′i

[
∂

∂z′i
[G(pi, p

′
i)u(p′i)]

+∇′i · [G(pi, p
′
i)∇′iu(p′i)− u(p′i)∇′iG(pi, p

′
i)]

]
.

(4.16)

The first term in left hand side of Eq. 4.16 can be simplified by using Leibnitz’s
rule for the derivation under the integral sign and write
∫ ti−

ti0

dt′i

∫

Vi(t′i)
dr′i

∂

∂t′i
[G(pi, p

′
i)u(p′i)] =

∫ ti−

ti0

dt′i
d

dt′i

∫

Vi(t′i)
dr′iG(pi, p

′
i)u(p′i) + (−)i

∫ ti−

ti

dt′i

∫
dρ′i

dξi(x′i)
dt′i

G(pi, p
′
iS)u(p′iS),

(4.17)

and evaluating the first integral at the right side we obtain
∫ ti−

ti0

dt′i

∫

Vi(t′i)
dr′i

∂

∂t′i
[G(pi, p

′
i)u(p′i)] =

[ ∫

Vi(t′i)
dr′iG(pi, p

′
i)u(p′i)

]ti−

ti0

+ (−)i

∫ ti−

ti

dt′i

∫
dρ′i

dξi(x′i)
dt′i

G(pi, p
′
iS)u(p′iS),

(4.18)
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which, using Eq. 4.13 reads
∫ ti−

ti0

dt′i

∫

Vi(t′i)
dr′i

∂

∂t′i
[G(pi, p

′
i)u(p′i)] =

ui(piS)−
∫

Vi(t′i0)
dr′iG(pi; r′i, ti0)u(r′i, ti0) + (−)i

∫ ti−

ti

dt′i

∫
dρ′i

dξi(x′i)
dt′i

G(pi, p
′
iS)u(p′iS).

(4.19)

The first integral at the right side of Eq. 4.16 can directly be solved by noting
that ∫ ti−

ti0

dt′i

∫

Vi(t′i)
dr′i =

∫ ti−

ti

dt′i

∫
dρ′i

∫

z′i>(−)iξi(x′i)
dz′i =

(−)i

∫ ti−

ti

dt′i

∫
dρ′i

∫ (−)i∞

ξi(x′i)
dz′i,

(4.20)

and gives

(−)i

∫ ti−

ti

dt′i

∫
dρ′i

[
G(pi, p

′
i)u(p′i)

](−)i∞

ξi(x′i)
, (4.21)

which can be simplified using Eq. 4.7 to give

(−)i+1

∫ ti−

ti

dt′i

∫
dρ′iG(pi, p

′
iS)u(p′iS). (4.22)

Finally, by applying Gauss’s theorem to the second term at the right side of
Eq. 4.16, and using the previous results Eqs. 4.19, 4.22, an integral equation for
the diffusion field ui(pi) can be found

ui(pi) =
∫

Vi(ti0)

dr′i ·G(pi; r′i, ti0) · ui(r′i, ti0)

+ (−)i+1

∫ ti−

ti

dt′i ·
∫

dρ′i[1 + ξ̇i(x′i)] · ui(p′iS) ·G(pi, p
′
iS)

+ (−)i+1

∫ ti−

ti0

dt′i

∫
dS′i · [n̂′i · ∇′iui(p′iS)] ·G(pi, p

′
iS)

+ (−)i

∫ ti−

ti0

dt′i

∫
dS′i · ui(p′iS) · n̂′i · ∇′iG(pi, p

′
iS)

(4.23)

The last equation constitutes an integral equation for the diffusive profile ui(pi)
at each time ti. The first integral term accounts for the initial conditions of the
problem. The second one involves the past values of the front velocity and of the
past profiles. The third one accounts for the evolution of the gradients of the
diffusive field, which can be evaluated by means of the conservation law of the
diffusive field across the interface. The last one can be directly evaluated by using
the result for the Green’s function Eq. 4.12.
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Equation for the diffusion field at the interface u(piS)

Once we have obtained the integral equation for the diffusion profile, the next step
is to apply the limit p → pS to Eq. 4.23 in order to obtain an integral equation for
the value of the diffusion field at the interface u(piS). This value will then be used
in combination with the Gibbs-Thomson equation to find a closed equation for the
interface position during the solidification process.

Before performing the limit, we need some mathematical relations of the Green’s
function G(p, p′). The first relation is the so called Friedman’s theorem. The sec-
ond can easily be derived and relates integrals of the Green’s function.

i) The Friedman’s theorem:

The Friedman’s theorem helps us to perform the limit of this equation in order
to get an expression for the concentration at the interface ui(piS). This theorem is
also known as the theorem on the discontinuity of a double layer and is based on a
regularization of the singular kernel as proposed in Ref. [Dee83]. The main idea is
to regularize the limit of the integral by using the Hadamard’s finite part integral
[Hadamard23]. More information about regularization techniques for hypersingular
integral equations can be found in Ref. [Niu04, Hamina00, Guiggiani95]. In our
case, the Friedman’s theorem adopts the form

lim
zi→ξi(xi)+(−)i0

∫ ti

ti0

dt′i

∫
dS′i fi(p′iS) n̂′ · ∇′iG(pi, p

′
iS) =

(−)i

2
fi(p′iS) +

∫ ti

ti0

dt′i

∫
dS′i fi(p′iS) n̂′ · ∇′iG(piS , p′iS)

(4.24)

and determines the value of the limit of the first integral as we approach to the
interface position.

ii) Relations between integrals of the Green’s function:

By integrating over space and time equation Eq. 4.11, and using condition
Eq. 4.13 and Gauss theorem, one finds

∫ ti

ti0

dt′i

∫
dS′i · n̂′i · ∇′iG(pi, p

′
iS)−

∫ ti

ti0

dt′i

∫
dρ′i · [1 + ξ̇i(x′i)] ·Gi(pi, p

′
iS)

+
∫

dρ′i

∫ (−)i∞

ξi(ρ′i,ti0)

dz′iGi(pi; r′i, ti0) = (−)i.

(4.25)

To evaluate the last term at the left hand side, we introduce the function

J(pi, ti0) =
∫

dρ′i

∫ (−)i∞

ξi(ρ′i,ti0)

dz′iGi(pi; r′i, ti0) = lim
zi1→(−)i∞

Ji(pi; zi1, ti0), (4.26)
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where

Ji(pi; zi1, ti0) =
∫

dρ′i

∫ zi1

ξi(ρ′i,ti0)

dz′iGi(pi; r′i, ti0). (4.27)

Introducing Eq. 4.12 into Eq. 4.27 and integrating after performing the change of
variable y = ρ′−ρ√

4(ti−ti0)
, we get

Ji(pi; zi1, ti0) =
1

2π

∫
dy e−y2

[erf(α)− erf(β)], (4.28)

where erf(x) = 2√
π

∫ x

0
e−u2

du, and

α =
zi − ξi(ρ′i, ti0) + 2(ti − ti0)√

4(ti − ti0)
,

β =
zi − zi1 + 2(ti − ti0)√

4(ti − ti0)
.

(4.29)

Taking now the limit zi1 → (−)i∞ to Eq. 4.28, and noting that erf(∞) = 1, one
finds an expression for J(pi, ti0)

J(pi, ti0) =
(−)i

2
+

1
2π

∫
dy e−y2

erf(α). (4.30)

Introducing the function

F (pi, ti0) =
1

2π

∫
dy e−y2

erf(α), (4.31)

Eq. 4.25 can then be written as
∫ ti

ti0

dt′i

∫
dS′i · n̂′i · ∇′iG(pi, p

′
iS)−

∫ ti

ti0

dt′i

∫
dρ′i · [1 + ξ̇i(x′i)] ·Gi(pi, p

′
iS) =

1
2

(−)i − F (pi, ti0).

(4.32)

Performing the limit pi → piS to the last expression Eq. 4.32, and using Friedman’s
theorem Eq. 4.24, it is possible to write Eq. 4.32 as

∫ ti

ti0

dt′i

∫
dS′i · n̂′i · ∇′iG(piS , p′iS)−

∫ ti

ti0

dt′i

∫
dρ′i · [1 + ξ̇i(x′i)] ·Gi(piS , p′iS) =

− 1
2
F (piS , ti0) =

(−)i

2
−

∫
dρ′i

∫ (−)i∞

ξ(ρ′i,ti0)

dz′iGi(piS ; r′i, ti0).

(4.33)
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Note that in the stationary limit ti0 → −∞, we have

lim
ti0→−∞

F (pi, ti0) = 1. (4.34)

Using Eq. 4.33, it is possible to perform the limit pi → piS of Eq. 4.23 and obtain
an integro-differential equation for the diffusion field at the interface ui(pi)

1
2
ui(piS) =

∫

Vi(ti0)

dr′i ·Gi(piS , r′i, ti0) · ui(r′i, ti0)

+(−)i+1

∫ ti−

ti0

dt′i

∫
dρ′i · [1 + ξ̇i(x′i)] · ui(p′iS) ·Gi(piS , p′iS)

+(−)i+1

∫ ti−

ti0

dt′i

∫
dS′i ·Gi(piS , p′iS) · n̂′i · ∇′iui(p′iS)

+(−)i

∫ ti−

ti0

dt′i

∫
dS′i · ui(p′iS)n̂′i · ∇′iGi(piS , p′iS)

(4.35)

4.1.3 Integral equations for the front position

As we have commented, a closed integral equation for the front position can only
be obtained in the case of one-sided or symmetric models. This section is dedicated
to use the moving boundary conditions at the interface to construct the integral
equation in these two cases. Whereas the one-sided model is only considered for di-
lute alloy solidification, the symmetric model can be used for both pure substances
and dilute alloys.

One-sided model for dilute alloys

For clarity of exposition, and as in the one-sided model the diffusion in the solid
phase is neglected, we will write variables and fields in the liquid phase without
sub-indexes. In one-sided alloys, the diffusion field is then defined by u(r, t) =
(c(r, t) − c∞)/∆c0, with ∆c0 = c∞(1 − k)/k. Note that this field satisfies the
condition Eq.4.7 because the initial supersaturated melt has a homogeneous con-
centration c∞. The dimensionless moving boundary conditions at the interface
(cf.Eqs.3.39, 3.40), written for the reduced field u, are given by

n̂ · ∇u(pS) = nz · [1 + ξ̇(x)] · [(k − 1)u(pS)− k]

u(pS) = 1− 1
lT

ξ(x)− d̂0κ(x),

u1(pS) = ku2(pS).

(4.36)

where d̂0 = dc
0/∆c0 and lT = mL∆C0/G.
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Writing Eq. 4.35 in the liquid side (i = 2), we get

1
2
u(pS) =

∫

V (t0)

dr′ ·G(pS , r′, t0) · u(r′, t0)

−
∫ t−

t0

dt′
∫

dρ′ · [1 + ξ̇(x′)] · u(p′S) ·G(pS , p′S)

+
∫ t−

t0

dt′
∫

dS′ · u(p′S) · n̂′ · ∇r′G(pS , p′S)

−
∫ t−

t0

dt′
∫

dS′ ·G(pS , p′S) · n̂′ · ∇r′u(p′S)

(4.37)

Introducing in the last equation the moving boundary conditions at the interface
Eqs. 4.36, 4.36 and using Gauss’ Theorem, we can derive an integro-differential
equation for the position of the interface ξ(x)

1
2

(1− 1
lT

ξ(x)− d̂0κ(x)) =
∫

V (t0)

dr′ ·G(pS , r′, t0) · u(r′, t0)

−
∫ t−

t0

dt′
∫

dρ′ · [1 + ξ̇(x′)] ·
[
1− 1

lT
ξ(x′)− d̂0κ(x′)

]
·G(pS , p′S)

+
∫ t−

t0

dt′
∫

dS′ ·
[
1− 1

lT
ξ(x′)− d̂0κ(x′)

]
· n̂′ · ∇r′G(pS , p′S)

−
∫ t−

t0

dt′
∫

dS′ · nz · [1 + ξ̇(x)] ·
[
(k − 1)(1− 1

lT
ξ(x′)− d̂0κ(x′))− k

]
·G(pS , p′S)

(4.38)

In the particular case of the evolution of a planar interface, the curvature κ(x) = 0
and there’s no integration over the variable ρ. The volume of integration V (t0) is
defined now as ξ(t0) < z′ < ∞ and pS = (ξ(t), t). After these considerations, we
get

1
2

[
1− 1

lT
ξ(t)

]
=

∫ ∞

ξ(t0)

dz′ ·G(pS , z′, t0) · u(z′, t0)

−
∫ t−

t0

dt′[1 + ξ̇(t′)] · (1− 1
lT

ξ(t′)) ·G(pS , p′S)

+
∫ t−

t0

dt′
∫

dS′ · (1− 1
lT

ξ(t′)) · n̂′ · ∇r′G(pS , p′S)

−
∫ t−

t0

dt′
∫

dS′ · nz · [1 + ξ̇(t)] ·
[
(k − 1)(1− 1

lT
ξ(t′))− k

]
·G(pS , p′S)

(4.39)
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separating factors in the equation, we have

1
2

[
1− 1

lT
ξ(x)

]
=

∫ ∞

ξ(t0)

dz′ ·G(pS , z′, t0) · u(z′, t0)

+
∫ t−

t0

dt′[1 + ξ̇(t′)]
1
lT

ξ(t′) ·G(pS , p′S)

−
∫ t−

t0

dt′[1 + ξ̇(t′)] ·G(pS , p′S)

+
∫ t−

t0

dt′
∫

dS′ · n̂′ · ∇r′G(pS , p′S)

−
∫ t−

t0

dt′
∫

dS′ · 1
lT

ξ(t′) · n̂′ · ∇r′G(pS , p′S)

−
∫ t−

t0

dt′
∫

dS′ · nz · [1 + ξ̇(t)] ·
[
− k

1
lT

ξ(t′)− 1 +
1
lT

ξ(t′)
]
·G(pS , p′S).

(4.40)

We now make use of relation 4.33 which, written in the liquid side (i = 2), takes
the form

∫ t−

t0

dt′
∫

dS′ ·n̂′ ·∇′G(pS , p′S)−
∫ t−

t0

dt′
∫

dρ′ · [1+ ξ̇(t′)] ·G(pS , p′S) = −1
2
F (pS , t0)

(4.41)
where

F (pS , t0) = −1 + 2
∫ ∞

ξ(t0)

dz′G(ps; z′, t0). (4.42)

Introducing the last relation to simplify Eq. 4.40, we get

1
2

[
1− 1

lT
ξ(x)

]
=

∫ ∞

ξ(t0)

dz′ ·G(pS , z′, t0) · u(z′, t0)− 1
2
F (pS , t0)

−
∫ t−

t0

dt′
∫

dS′ · 1
lT

ξ(t′) · n̂′ · ∇r′G(pS , p′S)

+
∫ t−

t0

dt′
∫

dS′ · nz · [1 + ξ̇(t)] · [1 + k
1
lT

ξ(t′)] ·G(pS , p′S)

(4.43)

Using the Green’s function Eq. 4.12, the expression for n̂′ · ∇r′G(pS , p′S) is given
by

n̂′ · ∇r′G(pS , p′S) = n′z

[
1
2

+
ξ(t)− ξ(t′)

2(t− t′)

]
G(pS , p′S) (4.44)



78
CHAPTER 4. ANALYTICAL METHODS FOR THE STUDY OF

TRANSIENT STAGES IN DIRECTIONAL SOLIDIFICATION

Introducing Eq. 4.41 into Eq. 4.40 we get

1
2

[
1− 1

lT
ξ(t)

]
=

∫ ∞

ξ(t0)

dz′ ·G(pS , r′, t0) · u(z′, t0)− 1
2
F (pS , t0)

−
∫ t−

t0

dt′
1
lT

ξ(t′) ·
[

1
2

+
ξ(t)− ξ(t′)

2(t− t′)

]
G(pS , p′S)

+
∫ t−

t0

dt′
∫

dS′ · nz · [1 + ξ̇(t)] · [1 + k
1
lT

ξ(t′)] ·G(pS , p′S)

(4.45)

and simplifying we finally get

1
lT

ξ(t) = 2
∫ ∞

ξ(t0)

dz′ ·G(pS , z′, t0) · [1− u(z′, t0)]

− 1
2
F (pS , t0) +

∫ t−

t0

dt′
1
lT

ξ(t′) ·
[
1 +

ξ(t)− ξ(t′)
(t− t′)

]
G(pS , p′S)

− 2
∫ t−

t0

dt′ · [1 + ξ̇(t)] · [1 + k
1
lT

ξ(t′)] ·G(pS , p′S).

(4.46)

Introduction of the initial conditions: We can integrate Eq. 4.46 from different
initial conditions for the concentration profile. If we are interested in early transient
stages, the initial condition at t = t0 is an equilibrium solid-liquid system with
concentration c∞ at the liquid and kc∞ at the solid. In this case we have

u(z, t0) = 0, (4.47)

and the integral equation for the planar front adopts a simpler form given by

1
lT

ξ(t) =
[
1 + erf

(
ξ(t)− ξ(t0) + t

2
√

t

)]
+

∫ t−

t0

dt′
1
lT

ξ(t′) ·
[
1 +

ξ(t)− ξ(t′)
(t− t′)

]
G(pS , p′S)

− 2
∫ t−

t0

dt′ · [1 + ξ̇(t)] · [1 + k
1
lT

ξ(t′)] ·G(pS , p′S).

(4.48)

Numerical Simulations: The last equation Eq.4.46 can be discretized in time
between an initial time t0 = 0 and the final time t. It results in a set of nonlinear
equations which can be solved numerically in order to determine the position of
the front at each time. As an example of this calculation procedure, Fig. 4.2
plots the evolution of the front position in time during the one-sided solidification
for a certain value of the control parameter lT = l̃T /l̃ = 3.125 and for three
different values of the partition coefficient k = 0.15, 0.5, 0.75. It is interesting to
note that, the larger the value of the partition coefficient k, the slower the initial
recoil transient, indicating that the steady state for the front position occurs on a
time scale τ̃front ≈ D̃/(kṽ2

p) which is proportional to 1/k.
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Figure 4.2: Front position during the transient in one-sided directional solidification.
The curves have been obtained by solving the boundary integral equation Eq. 4.48 with
lT = 3.125 and for three different values of the partition coefficient k = 0.15, 0.5, 0.75.

Symmetric models

Equations for the symmetric model can be found in a similar way than in the one-
sided model. In order to satisfy the limiting relation Eq. 4.7, and noting that the
initial concentration of the melt is c∞, the diffusion field is defined as

ci =
ci − c∞

∆c0
, (4.49)

We shall distinguish between two different cases:

- Constant miscibility gap approximation: This approximation assumes
that the solid and liquid slopes are equal mL = mS , and is valid when the
value of the partition coefficient is near 1 (k ≈ 1). The solid and liquid lines
are then parallel, and at the initial temperature, the initial concentrations
are

c0
1 = c∞, (4.50)

c0
2 = c∞ + ∆c0, (4.51)

where the solvability gap is considered here to be constant in the phase di-
agram (∆c0 = c0

L − c0
S ≈ constant). This approximation can be used with
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organic binary mixtures such as liquid crystals where the partition coefficient
is large. The initial conditions in this model are given by

c1(z, t0) = c∞ −∆c0, (4.52)
c2(z, t0) = c∞. (4.53)

For the reduced fields, the previous choice corresponds to

u1(z, t0) = −1, (4.54)
u2(z, t0) = 0. (4.55)

On the other hand, the boundary equations at the front are

u2(p2S) = 1− 1
lT

ξ(x2)− d̂0κ(x2)

n̂ ·
[
∇2u(p2S)−∇1u(p1S)

]
= −[1 + ξ̇(x2)]

u1(p1S) = u2(p2S)− 1.

(4.56)

Adding Eq. 4.35 for i = 1 and i = 2, and imposing the boundary equations
Eqs. 4.56, we obtain a integro-differential equation for the front position in
the symmetric model in the constant gap approximation

1
2
− 1

lT
ξ(t) =

∫ ξ(t0)

−∞
dz′ ·G(pS , z′, t0) · u1(z′, t0)+

∫ ∞

ξ(t0)

dz′ ·G(pS , z′, t0) · u2(z′, t0)− 1
2

∫ −∞

ξ(t0)

dz′G(pS , z′, t0)

− 1
2

∫ ∞

ξ(t0)

dz′G(pS , z′, t0) +
∫ t−

t0

dt′(1 + ξ̇)G(pS , p′S).

(4.57)

Evaluating the third and fourth integrals at the right side of the previous
equation, we obtain

∫ −∞

ξ(t0)

dz′G(pS , z′, t0) = −1
2

[
1− erf

(
ξ(t)− ξ(0) + t

2
√

2

)]
(4.58)

∫ ∞

ξ(t0)

dz′G(pS , z′, t0) =
1
2

[
1 + erf

(
ξ(t)− ξ(0) + t

2
√

2

)]
, (4.59)

and inserting the last expressions together with the initial conditions Eqs. 4.55
into Eq. 4.57, we arrive to the simplified expression

1
lT

ξ(t) = 1−
∫ t−

t0

dt′(1 + ξ̇)G(pS , p′S). (4.60)
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- Normal miscibility gap: In this case, the solid and liquid slopes are related
by kmL = mS , and the equilibrium final concentrations are given by

c0
1 = c∞ (4.61)

c0
2 = c∞/k, (4.62)

whereas the initial profile at t = t0 is

c1(z, t0) = kc∞ (4.63)
c2(z, t0) = c∞. (4.64)

From the last equations, the miscibility gap is ∆c0 = c0
1 − c0

2 = c∞/k −
c∞, and depends on temperature through the partition coefficient k. The
initial condition is given by the same expression than in the constant gap
approximation

u1(z, t0) = −1 (4.65)
u2(z, t0) = 0. (4.66)

In this model, the boundary equations satisfied at the liquid side of the in-
terface are given by

u2(p2S) = 1− 1
lT

ξ(x2)− d̂0κ(x2)

n̂ ·
[
∇2u(p2S)−∇1u(p1S)

]
= nz · [1 + ξ̇(x2)] · [(k − 1)u2(p2S)− k]

u1(p1S) = k[u2(p2S)− 1].

(4.67)

where d̂0 = dc
0/∆c0 and lT = mL∆C0/G. Following the same procedure than

in the constant gap approximation model, the integral equation for the front
position in the symmetric model (without the constant gap approximation
and departing from the initial conditions Eqs. 4.66), are

1
lT

ξ(t) = 1− (k − 1)
(1 + k)

erf
(

ξ(t)− ξ(0) + t

2
√

2

)

− 2
(1 + k)

∫ t−

t0

dt′(1 + ξ̇)G(pS , p′S)

+
(1− k)
(1 + k)

∫ t−

t0

dt′
1
lT

ξ(t′) ·
[
1 +

ξ(t)− ξ(t′)
(t− t′)

]
G(pS , p′S).

(4.68)

Note that the integral equation Eq. 4.68 recovers exactly the integral equation
obtained for the constant gap approximation Eq. 4.60 in the limit k = 1.
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Figure 4.3: Front position during the transient in the symmetric model directional solid-
ification (normal gap). The curves have been obtained by solving the boundary integral
equation Eq. 4.68 with k = 0.9 and for two different values of the control parameter
lT = 1.875, 7.5.

4.2 Noise amplification during directional solidifi-
cation transients

4.2.1 Morphological stability during the solute redistribu-
tion transient

Once we have derived an integro-differential equation for the evolution of the planar
front position ξ(t), we want to study the morphological stability of the planar
interface under sinusoidal perturbations. The analysis presented in this section
is the extension to transient stages of the Mullins-Sekerka analysis described in
section 3.3.4. Contrary than in Sec. 3.3.4, we will consider here that the solute
diffusion in the solid can be neglected (D̃S = 0, one-sided approximation). For this
purpose, we will work in a frame moving at the same velocity than the front during
the transient. In this system of reference, the sharp-interface equations scaled with
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Figure 4.4: Validity of the constant gap approximation. Comparison between the
constant gap result (solid line) calculated from Eq. 4.60, and three different values of
k = 0.1, 0.4, 0.9 in the normal gap model Eq. 4.68. As the value of k approaches to the
unity, the results of the normal gap simulations become similar to the constant gap model.

l̃ = D̃L/ṽp and γ̃ = D̃L/ṽ2
p take the form

∂u

∂t
− (1 + ξ̇)

∂u

∂z
= ∇2u (4.69)

u(rint, t) = 1− 1
lT

ξ − d̂0κ(rint, t) (4.70)

n̂ · ∇u
∣∣
rint

= (1 + ξ̇)
[
(k − 1)u(rint, t)− k

]
, (4.71)

where u(r, t) = (c(r, t) − c∞)/∆c0, d̂0 = dc
0/∆c0, ∆c0 = c∞(1 − k)/k, and lT =

mL∆c0/G.

Unperturbed situation: The transient planar front

As we are looking for a transient dispersion relation , we should take into account
the initial solute redistribution transient from the initial condition to the final
stationary state. Let’s assume, following Warren and Langer in Ref. [Warren90,
Warren93], that the concentration profile during the transient is an exponential
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with a time-dependent decay length l(t)

u0(z, t) = u0(ξ, t) e−((z−ξ(t))/l(t), (4.72)

where ξ is the position of the planar front during the transient and l(t) a time-
dependent dimensionless diffusion length. Equation 4.72 must recover the station-
ary concentration profile u(z) = e−z/l for t → ∞, so in the stationary regime l(t)
recovers the value of the diffusion length in the stationary regime l(t → ∞) = 1
(l̃(t̃ →∞) = D̃/ṽp). Solution 4.72 must obey the set of equations given by

∂u0

∂t
− (1 + ξ̇)

∂u0

∂z
=

∂2u0

∂z2
(4.73)

u0(ξ(t), t) = 1− 1
lT

ξ(t) (4.74)

∂u0

∂z

∣∣∣∣
z=ξ(t)

= (1 + ξ̇(t)) · [(k − 1)u0(ξ, t)− k]. (4.75)

Equations Eqs.4.74 and 4.75 can be used to derive differential equations governing
the dynamics of the position ξ(t) and diffusion length l(t) of the planar interface

1 + ξ̇(t) =

[
1− 1

lT
ξ(t)

]

l(t)
[
1− 1

lT
(1− k)ξ(t)

] (4.76)

l̇(t) =
l(t)ξ̇(t)[

1− 1
lT

ξ(t)
] +

kξ(t)
l(t)

[
1− 1

lT
(1− k)ξ(t)

] (4.77)

The last equations are known as the Warren and Langer equations, and can be used
to determine the front position ξ(t) within the validity of the Warren and Langer
approximation Eq. 4.72. Contrary to the Green’s function solutions presented in
the last section Sec. 2.1.1, the Warren and Langer equations do not constitute an
analytical solution of the moving boundary problem.

Introduction of the perturbation

We will perform a linear stability analysis of a moving planar interface located at
z = ξ(t) and with a concentration profile given by Eq. 4.72.
Let’s introduce a perturbation in the system consisting in slight sinusoidal modu-
lations of the interface position. After the perturbation, the position of the front
is given by z = ξ′(ρ, t), where

ξ′(ρ, t) = ξ(t) + δz(ρ, t), (4.78)

and the prime accounts for the perturbed value. We introduce perturbations which
take the form

δz(ρ, t) = z1 eik·ρ+ω(k,t)t = ξk(t)eik·ρ, (4.79)
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describing an exponential growth or decay of the sinusoidal perturbations depend-
ing on the value and sign of ω(k, t). That means that perturbations with a wave-
vector k will grow or decay exponentially in time with a growth rate ω(k, t), which
can be expressed with a differential equation for the evolution of the Fourier modes
similar to Eq. 3.86 but where ω depends now on time

dξk(t)
dt

= ω(k, t)ξk(t). (4.80)

The objective of this section is to find a closed expression for the dispersion relation
ω(k, t).

Similarly, we consider perturbations in the transient plane front adapted to the
form of the profile

u(r, t) = u0(z, t) + δu(r, t), (4.81)

where δu is given by
δu(r, t) = u1 eik·ρ+ωt−q(z−ξ). (4.82)

The transient dispersion relation ω(k, t)

In order to find closed relations which allow to determine ω and q, we write two
relations in the perturbed situation: i) the diffusion equation and ii) the solute
conservation condition together with the Gibbs-Thomson equation. These two re-
lations will be conveniently arranged so that it would be possible to determine ω
and q.

i) Bulk condition

The first condition will come from the expression of the bulk diffusion equation
after the system is perturbed. The concentration field after the perturbation takes
the form

u(r, t) = u0(z, t) + δu(r, t). (4.83)

The concentration gradient in the z direction is given by

∂u

∂z
=

∂u0

∂z
+

∂δu

∂z
, (4.84)

which, considering Eq. 4.82,
∂δu

∂z
= −qδu, (4.85)

take the form
∂u

∂z
=

∂u0

∂z
− qδu. (4.86)
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Similarly, the time derivative of the perturbed field is given by

∂u

∂t
=

∂u0

∂t
+

∂δu

∂t
=

∂u0

∂t
+ ωδu, (4.87)

and the diffusion term

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= ∇2u0 + (q2 − k2)δu. (4.88)

Inserting Eqs. 4.83, 4.86, 4.87 and 4.2.1 into the diffusion equation Eq. 4.69 and
simplifying terms noting that u0 is solution of Eq. 4.69, we obtain

ω = (q2 − k2)− q(1 + ξ̇) (4.89)

ii) Interface conditions

The next step is to evaluate the moving boundary conditions Eqs. 4.70 and Eq.4.71
at the perturbed interface.

We first proceed by evaluating the mass conservation equation Eq. 4.71 at the
perturbed interface zint = ξ′

∂u

∂z

∣∣∣∣
ξ′

= (1 + ξ̇′) · [(k − 1)u(ρ, ξ′, t)− k]. (4.90)

In order to evaluate the terms ∂u
∂z

∣∣
ξ′ and u(ρ, ξ′, t) at the left side of Eq.4.90, we

expand both functions in Taylor for ξ′ − ξ = δz ¿ 1 to obtain

u(ρ, ξ′, t) ≈ u0(ρ, ξ, t) +
∂u

∂z

∣∣∣∣
ξ

δz + O(δz2) + δu|ξ, (4.91)

∂u

∂z

∣∣∣∣
ξ′
≈ ∂u

∂z

∣∣∣∣
ξ

+
∂2u

∂z2

∣∣∣∣
ξ

δz + O(δz2). (4.92)

Using that u = u0 + δu and keeping terms up to first order in the perturbations
we have

u(ρ, ξ′, t) ≈ u(ρ, ξ, t) +
∂u0

∂z

∣∣∣∣
ξ

δz + δu|ξ (4.93)

∂u

∂z

∣∣∣∣
ξ′
≈ ∂u0

∂z

∣∣∣∣
ξ

+
∂δu

∂z

∣∣∣∣
ξ

+
∂2u0

∂z2

∣∣∣∣
ξ

δz. (4.94)

Evaluating Eq. 4.73 at z = ξ and isolating ∂2u0

∂z2

∣∣
ξ

it is possible to rewrite Eq. 4.94
as

∂u

∂z

∣∣∣∣
ξ′
≈ ∂u0

∂z

∣∣∣∣
ξ

+
∂δu0

∂z

∣∣∣∣
ξ

+
[
∂u0

∂t
− (1 + ξ̇)

∂u0

∂z

]

ξ

δz, (4.95)



4.2. NOISE AMPLIFICATION DURING DIRECTIONAL SOLIDIFICATION
TRANSIENTS 87

and as u0 = 1− 1
lT

ξ(t), ∂u0

∂t = − 1
lT

ξ̇(t) and we are left with

∂u

∂z

∣∣∣∣
ξ′
≈ ∂u0

∂z

∣∣∣∣
ξ

+
∂δu

∂z

∣∣∣∣
ξ

−
[

1
lT

ξ̇(t) + (1 + ξ̇)
∂u0

∂z

∣∣∣∣
ξ

]
δz. (4.96)

Inserting Eqs. 4.93 and 4.96 into the solute conservation equation Eq. 4.90 we
obtain the relation

∂u0

∂z

∣∣∣∣
ξ

+
∂δu

∂z

∣∣∣∣
ξ

−
[

1
lT

ξ̇(t)+(1+ξ̇)
∂u0

∂z

∣∣∣∣
ξ

]
δz = (1+ξ̇′)·

[
(k−1)

(
u(ρ, ξ, t)+

∂u0

∂z

∣∣∣∣
ξ

δz

)
−k

]
,

(4.97)
which can be simplified using Eq. 4.75 and ξ̇′ = ξ̇ + δ̇z to obtain

∂δu

∂z

∣∣∣∣
ξ

−
[

1
lT

ξ̇(t) + (1 + ξ̇)
∂u0

∂z

∣∣∣∣
ξ

]
δz =

(1 + ξ̇)(k − 1)
[
δu

∣∣
ξ

+
∂u0

∂z

∣∣∣∣
ξ

δz

]
+ δ̇z

[
(k − 1)u0(ξ, t)− k

]
.

(4.98)

Using Eqs. 4.79 and 4.82 to evaluate the terms δ̇z and ∂δu
∂z

∣∣
ξ

we have the relations

∂δu

∂z

∣∣∣∣
ξ

= −qδu|ξ = −qu1e
ik·ρ+ωt (4.99)

δ̇z = ωz1e
ik·ρ+ωt, (4.100)

which can be used to simplify Eq. 4.98 to get

−
[

1
lT

ξ̇+(1+ξ̇)
∂u0

∂z

∣∣∣∣
ξ

]
z1−qu1 = (1+ξ̇)(k−1)

[
u1+

∂u0

∂z

∣∣∣∣
ξ

z1

]
+ωz1

[
(k−1)u0(ξ, t)−k

]

(4.101)
and arranging terms

[
q + (1 + ξ̇)(k − 1)

]
u1

+
{

1
lT

ξ̇ + (1 + ξ̇)
∂u0

∂z

∣∣∣∣
ξ

+ (1 + ξ̇)(k − 1)
∂u0

∂z

∣∣∣∣
ξ

+ ω
[
(k − 1)u0(ξ, t)− k

]}
z1 = 0

(4.102)

To complete the interfacial condition, we need another equation relating u1 and z1.
For this purpose, let’s evaluate the Gibbs-Thomson equation Eq. 4.70 at zint = ξ′

u(ρ, ξ′, t) = 1− 1
lT

ξ′ − d̂0κ(ξ′). (4.103)

The curvature of the perturbed interface can be written as

κ(ξ′) = κ(ξ)− k2δz, (4.104)
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and as the unperturbed interface is a plane front, we have κ(ξ) = 0. The concen-
tration at the interface is then given by

u(ρ, ξ′, t) = 1− 1
lT

ξ − (
1
lT

+ d̂0k
2)δz, (4.105)

and using the Taylor expansion Eq. 4.93 we have

u0(ρ, ξ, t) +
∂u0

∂z

∣∣∣∣
ξ

δz + δu|ξ = 1− 1
lT

ξ − (
1
lT

+ d̂0k
2)δz, (4.106)

which, using Eq. 4.74 gives

u1 +
{

∂u0

∂z

∣∣∣∣
ξ

+ (
1
lT

+ d̂0k
2)

}
z1 = 0 (4.107)

We can now combine Eqs. 4.102 and 4.107 to get a closed relation which, together
with Eq. 4.89 will determine the dispersion relation of the perturbations during the
transient

−[
q + (1 + ξ̇)(k − 1)

][∂u0

∂z

∣∣∣∣
ξ

+
1
lT

+ d̂0k
2

]
+

1
lT

ξ̇ + (1 + ξ̇)
∂u0

∂z

∣∣∣∣
ξ

+(1 + ξ̇)(k − 1)
∂u0

∂z

∣∣∣∣
ξ

+ ω
[
(k − 1)u0(ξ, t)− k

]
= 0

(4.108)

simplifying we have

ω
[
(k−1)u0(ξ, t)−k

]
=

[
q+(1+ξ̇)(k−1)

][∂u0

∂z

∣∣∣∣
ξ

+
1
lT

+d̂0k
2

]
− 1

lT
ξ̇−k(1+ξ̇)

∂u0

∂z

∣∣∣∣
ξ

,

(4.109)
and inserting Eqs. 4.74 and 4.75 into Eq. 4.109 we finally obtain

ω
[
(k − 1)

(
1− 1

lT
ξ
)− k

]
=

[
q + (1 + ξ̇)(k − 1)

][
(1 + ξ̇(t)) · [(k − 1)

(
1− 1

lT
ξ
)− k] +

1
lT

+ d̂0k
2

]

− 1
lT

ξ̇ − k(1 + ξ̇)2 · [(k − 1)
(
1− 1

lT
ξ
)− k],

(4.110)

which, together with
ω = (q2 − k2)− q(1 + ξ̇), (4.111)

can be used to determine the transient dispersion relation of the interfacial pertur-
bations during the transient.
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Numerical example and limits

Fig. 4.5 shows the value of ω(k, t) at different times. The substance parameters
for this simulation has been taken for the organic mixture CBr4-C2Cl6 (see Section
A.2.1 of Appendix A), and the experimental parameters are G̃ = 5.6×103 K/m and
ṽp = 0.001 m/s. As time evolves, the growth rate for a certain wavelength increases
from a negative value (stable situation), to a positive one, and the interface becomes
morphologically unstable under perturbations with this wavelength. As it can be
observed in the figure, there is an important difference between the wavelength
of the first unstable mode and the wavelength with maximum growth rate at the
stationary state. This reveals the importance of considering the initial transient
stages when studying the wavelength selection of the final cellular pattern.

As limits of particular interest, we shall remark the equilibrium (t < 0) and
stationary (t → ∞) situations, which are represented with solid thick lines in the
figure. Equations 4.110 and 4.111 permit to obtain analytical expressions for the
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Figure 4.5: Transient dispersion relation at different times calculated from Eqs. 4.110
and 4.111 using the parameters for the organic mixture CBr4-C2Cl6 and the experimental
values G̃ = 5.6× 103 K/m and ṽp = 0.001 m/s. The lower and upper curves correspond
to the equilibrium and stationary dispersion relations respectively

growth rate in these two particular limiting cases:
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i) Equilibrium interface (t < 0)

At t < 0, before the external gradient begins to move ṽp = 0, , we have a stationary
(ξ̇(0) = 0) flat interface in equilibrium at z = ξ(0) = lT . The velocity of the front
in the moving frame is 1 + ξ̇(0) = 0, and the dispersion relation Eqs. 4.110 takes
the form

ωeq = − q

k

[
1
lT

+ d̂0k
2

]

ωeq = (q2 − k2).
(4.112)

ii) Stationary interface (t →∞)

At t → ∞ we are in the stationary situation where the solute boundary layer
is formed and the interface is located at z = ξ(t → ∞) = 0 and with velocity
ξ̇(t → ∞) = 0. The front velocity in the moving frame is now 1 + ξ̇(∞) = 1, and
we recover the results of the Mullins-Sekerka analysis presented in section 3.3.4 in
the one-sided case

ωst =
[
q + k − 1

][
1− 1

lT
− d̂0k

2

]
− k.

ωst = (q2 − k2)− q,

(4.113)

Miscellaneous topics

i) Transient dispersion relation in physical units

In order to change to physical units, we should use the following relations

ξ =
ξ̃

l̃
(4.114)

ξ̇ =
˙̃
ξ

ṽp
(4.115)

q = q̃l̃ (4.116)
k = k̃l̃ (4.117)

ω =
D̃

ṽ2
p

ω̃ (4.118)

d̂0 =
˜̂
d0

l̃
(4.119)

lT =
l̃T

l̃
. (4.120)
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Writing the system equations Eqs. 4.110 in terms of the physical variables we obtain

ω̃
[
(1− k)ξ̃ − l̃T

]
=

[
D̃q̃ + (ṽp + ˙̃

ξ)(k − 1)
][

(ṽp + ˙̃
ξ) · [(1− k)ξ̃ − l̃T ] + 1 + l̃T d̃0k̃

2

]

− ˙̃
ξ − kl̃T

D̃
(ṽp + ˙̃

ξ)2 · [(1− k)ξ̃ − l̃T ]. (4.121)

ω̃ = (q̃2 − k̃2)− q̃(ṽp + ˙̃
ξ), (4.122)

ii) Changing the origin of the reference frame

In some important references (for instance, Refs. [Warren90, Warren93]), the dis-
tances in the growth direction are measured in the gradient frame with a variable
z′ which takes its origin at the initial position of the front instead of the final
stationary one.

The relation between z̃ and z̃′ is therefore given by

z̃′ = z̃ − mLc∞
G̃k

, (4.123)

and consequently the transient front moves from z̃′ = ξ̃L(0) = −mLc∞
G̃

at t̃ = 0 to
z̃′ = ξ̃L(∞) = −mLc∞

G̃k
at t̃ →∞.

The temperature is now given by

T (r̃) = TM + Gz̃′, (4.124)

instead by
T (r̃) = TM −mL

c∞
k

+ G̃z̃, (4.125)

which has been our standard choice during the preceding chapters. Using these
relations, it is possible to write down the equations determining the transient dis-
persion relation in terms of z̃′ and its time derivatives. From Eq.4.122 we find, in
physical units

q̃

[
D̃ + (1− k)ṽ0ξ̃L + d̃0lT k̃2

]
= (4.126)

˙̃
ξ + (1− k)

[
ṽ2
0 ξ̃L

D̃
+ ω̃ξ̃L, +ṽ0(1 + d̃0 l̃T k̃2)

]
(4.127)

ω̃ = D̃(q̃2 − k̃2)− q̃ṽ0, (4.128)

where ṽ0 is given by ṽ0 = ṽp + ˙̃
ξL.

iii) The adiabatic approximation

In order to simplify the problem of solving the non-linear set of equations given
by Eqs. 4.110, a quasi-stationary approximation can be done by assuming ∂tu = 0
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in the derivation of the bulk condition. This assumption implies taking ω = 0 in
Eq.4.89, which brings to a second order equation to determine q

q2 − q(1 + ξ̇)− k2 ≈ 0, (4.129)

and therefore

q ≈
(1 + ξ̇)±

√
(1 + ξ̇)2 + 4k2

2
(4.130)

Note that although we have assumed ∂tu = 0, there is still a time-dependent
contribution coming from the transient motion of the front.As a limiting case, the
stationary front in the quasi-stationary approximation (t →∞, ξ̇ = 0) satisfies

q ≈ 1±√1 + 4k2

2
. (4.131)

4.2.2 Noise amplification during transient stages

The last element of the Warren and Langer’s theory is to include internal ther-
modynamical fluctuations as the initiation mechanism for the front perturbations.
The departing point is a stochastic version of the equation Eq. 4.80 for the evolution
of the Fourier modes,

dξk(t)
dt

= ω(k, t)ξk(t) + νk(t), (4.132)

where the additive noise term νk(t) has the properties

〈νk(t)〉 = 0, (4.133)
〈νk(t)νk′(t′)〉 = R0(k)δ2(k− k′)δ(t− t′) (4.134)

The correlation amplitude R0(k) in Eq. 4.134 has taken to be time independent
because νk(t) accounts for thermodynamical equilibrium fluctuations in the system.
Equation Eq. 4.132 describes a time-dependent Ornstein-Uhlenbeck process, and a
general solution is given by (see Ref. [Gardiner04])

ξk(t) =
∫ t

−∞
dt′ exp

{∫ t

t′
ω(k, s)ds

}
νk(t), (4.135)

where it has been assumed that ξk(−∞) = 0. The external gradient begins to
move at t = 0, and the interface is at equilibrium for t ∈ [−∞, 0). The statistical
properties for the interfacial correlations can be easily calculated from Eq. 4.135

〈ξk(t)ξk′(t)〉 = R0(k)δ2(k− k′)
∫ t

−∞
dt′ exp

{ ∫ t

t′
2ω(k, s)ds

}
. (4.136)
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As the interface correlation for a planar solid-liquid equilibrium interface is given
by

〈ξkξk′〉eq = (2π)2δ2(k− k′)
kBTM

σ

1
k2

, (4.137)

we can evaluate the second integral in Eq. 4.136 for t ∈ [−∞, 0) where the dis-
persion relation takes its equilibrium negative value ω(k, t) = ωeq(k) < 0 given by
Eqs.4.112, obtaining

〈ξkξk′〉eq =
R0(k)

2|ωeq(k)|δ
2(k− k′), (4.138)

and comparing Eq. 4.138 with Eq. 4.138 we arrive to

R0(k) = (2π)22|ωeq(k)|kBTM

σ

1
k2

. (4.139)
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Figure 4.6: Noise amplification during early stages in the directional solidification of
CBr4-C2Cl6 (G̃ = 5.6 × 103 K/m, ṽp = 0.001 m/s). The interfacial correlations increase
by seven orders of magnitude in a fraction of a second.

Once we have determined the value of R0(k), Eq. 4.136 can be integrated to
obtain the growth or decay of the Fourier modes during the transient. In order
to evaluate this integral, we need to solve Eqs. 4.110 and 4.111 to determine the
dispersion relation ω(k, t) at each time. This procedure allows to study the noise
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amplification of the system during the initial transient. The mean square amplitude
of the interfacial deformations is given by

〈ξ2(t)〉 =
∫

d2k

(2π)2
〈ξk(t)ξ−k(t)〉, (4.140)

where 〈ξk(t)ξ−k(t)〉 is defined as

〈ξk(t)ξ−k(t)〉 =
∫

d2k′

(2π)2
〈ξk(t)ξk′(t)〉 =

R0(k)
(2π)2

∫ t

−∞
dt′ exp

{ ∫ t

t′
2ω(k, s)ds

}
.

(4.141)
Figure Fig. 4.6 shows the time evolution of the interfacial correlations at nine

different times during the very early redistribution transient. The integration of
Eq. 4.141 have been performed using the parameters of the CBr4-C2Cl6 and for
the experimental values G̃ = 5.6 × 103 K/m and ṽp = 0.001 m/s. Fig. 4.6 shows
the rapid amplification of these wavelengths from the initial interfacial noise. A
remarkable fact is that the dynamically selected wavelength is about k̃ ≈ 10−6 m−1,
whereas the dispersion relation in Fig. 4.5 shows that other wavelengths have much
larger growth rates. This shows that the wavelength selection occurs at very early
times during the transient stages, and that the selected wavelength is maintained
by the system even in later stages when the growth rate for other perturbations
have higher values.



Chapter 5

Phase-field models for
solidification

In the last years, phase-field models have emerged as an efficient technique to
simulate interfacial phenomena in non-equilibrium systems [González-Cinca04].
This method has successfully been applied to several problems such as solidi-
fication [Wheeler92a, Wheeler92b, Karma98], domain growth, grain boundaries
[Warren03], crack propagation [Aranson00], viscous fingering [Folch99] or vesicle
dynamics [Biben03]. The phase-field approach introduces an equation for a con-
tinuous variable φ(r, t), which appears as an order parameter and takes distinct
constant values in the different phases. The interface is then described by the level
set φ = constant, and the transition between both phases takes place in a diffuse
interface of thickness W . The model is completed by coupling the φ equation with
a diffusion field which acts as a driving force. The behavior of the diffuse interface
can then be computed by the integration of a set of partial differential equations for
the whole system, therefore avoiding the explicit tracking of the interface position.
This has practical advantages over using the free boundary conditions characteristic
of a moving boundary description.

5.1 Introduction

Phase-field models were first proposed by J.S. Langer as a method to describe the
dynamics of first-order phase transitions [Langer78, Langer86]. At the same time,
Collins and Levine [Collins85] derived independently a diffuse interface approach
and studied the basic solutions of the equations, and Fix [Fix83] applied the idea
of introducing a continuous field in order to avoid the tracking of the front in the
numerical simulation of a moving boundary problem.

The Langer’s original formulation was based in classical models for phase tran-
sitions such as the Ginzburg-Landau theory [Ginzburg50] or the Cahn-Hilliard
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[Cahn58] models. Langer described the advance of the solidification front by means
of a continuous order parameter φ which took different constant values at the solid
and liquid phases of the system. The dynamics of this order parameter or phase-
field obeys a variational principle determined by the optimization of a general
free energy functional. In particular, he started from the C model of Hohenberg,
Halperin and Ma [Halperin74] which incorporated the coupling of the order param-
eter φ with an auxiliary conserved field like temperature or solute concentration.
Using general thermodynamical considerations, Langer derived the form of the sys-
tem’s free energy in the case of the solidification of an undercooled pure melt. In
particular, he related the thickness of the diffuse region between the two phases
with the surface energy of the solid-liquid interface. With this approach, Langer re-
covered the physical dynamics of the solidification front in the limit where the space
and time variations of the diffusion field occur in a larger and slower scale than
the phase-field variations. Therefore, the phase-field evolution recovers the moving
boundary solutions in the limit of small interface thickness and a quasistationary
evolution of the diffusion field with respect to the phase-field dynamics.

A major advantage of the phase-field approach is that the resulting model equa-
tions were much simpler than the moving boundary equations of the sharp-interface
problem. One of the main computational advantages of the phase-field over the
moving boundary description is that it avoids the use of interface tracking algo-
rithms. As soon as phase-field models where first formulated, an important amount
of work was done in order to define them from solid mathematical and physical
grounds. Caginalp [Caginalp84, Caginalp86a, Caginalp89, Caginalp88, Caginalp90]
proposed a formal asymptotic limit in terms of the interface thickness which al-
lowed to determine the model parameters so that the phase-field dynamics recovers
the different versions of the moving boundary problem. This asymptotic procedure
was known as the sharp-interface limit, and established the physical and mathe-
matical grounds of the phase-field technique. Fife and Penrose [Fife95] studied how
the finite thickness effects produced a deviation from the dynamics of the physical
moving boundary description.

The first phase-field simulations were performed by Kobayashi [Kobayashi93a]
and Wheeler [Wheeler93], who used the model to simulate solidification patterns
as the growth of dendritic structures. At about the same time, some authors
[Penrose90, Wang93, Penrose93] noticed that the phase-field method presented
some thermodynamical inconsistencies. Specifically, they proposed a formulation
which ensured the increase of the local entropy production by deriving the model
in terms of an entropy functional instead using a free energy functional.

Phase-field methods, which were first formulated for the solidification of pure
substances, were soon extended to account for the solidification of supersaturated
melts [Wheeler92a, Wheeler92b] by introducing the solute concentration of a dilute
binary mixture as the conserved diffusive field in the problem.

The introduction of surface tension anisotropy was already proposed in the
early phase-field formulations [Langer86, Caginalp86b, Caginalp86c, Caginalp86d],
and opened the possibility of performing dendritic growth simulations. Some later
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works [Karma98] also included anisotropy in the kinetic attachment, which becomes
relevant in the kinetic regime at high growth rates. Three-dimensional simulations
of the tip radius selection in dendritic growth were performed by Karma and Rap-
pel [Karma96a, Karma97] confirming the validity of the phase-field approach in
selection problems and supporting the conclusions of the microscopic solvability
theory for the growing dendrite. Qualitative comparison of the phase-field re-
sults with experimental results were proposed by Murray, Wheeler and Glicksman
[Murray95].

The main drawback of the phase-field approach was that obtaining quantita-
tive results from the simulations presented some important computational diffi-
culties. The first versions of this asymptotic procedure (classical sharp-interface
limit) were very restrictive in the values of W , which meant a drastic reduction of
the computational efficiency of the method. By performing the asymptotic expan-
sion using the Pélcet number instead of the interface thickness, Karma and Rappel
[Karma96b, Karma98] presented a modified asymptotic procedure (thin interface
limit) which presented better convergence in W , allowing quantitative results to
be obtained. This procedure relaxed the restrictive conditions of the ratio between
the interface thickness and the capillary length of the substance, resulting in an
important improvement of the computational power of the technique.

From the first article of Langer, phase-field models were formulated with the
possibility of having a variational structure, i.e., in such a way that the equations of
both the phase-field and the coupled conserved diffusion field could be derived from
the same free energy functional. Some computational works [Kim99, Karma98],
however, have pointed out that non-variational formulations allow for more flexi-
bility and provide an improvement in computational efficiency.

The importance of noise in the wavelength selection during initial stages [Qian89]
and its relevance in the formation of dendritic sidebranches [Karma99, González-Cinca01,
Pocheau01, Li99] resulted in the necessity of introducing thermodynamical fluctu-
ations in the phase-field approach. Thermodynamical fluctuations were first intro-
duced by following the Hohenberg and Halperin models for critical dynamics and
introducing additive stochastic terms in the model equations. For a complete intro-
duction to noise in pattern-forming extended systems, we refer to Ref. [Garćıa-Ojalvo99].
The statistical properties of the additive noises in the phase and diffusive field equa-
tions were then determined by using the fluctuation-dissipation relation. Other
approaches based on the statistical properties of the system where proposed by
Pavlik and Sekerka [Pavlik99, Pavlik00], which used the free energy functional as a
partition function for the system, and derived the statistical properties of the noises
from statistical mechanics arguments. In all these works, however, the introduc-
tion of noise was restricted to variational models. In non-variational formulations,
fluctuation-dissipation relation cannot be used in order to determine the noise prop-
erties and a stochastic asymptotic limit is required to project the noise dynamics
of the phase-field into a fluctuating sharp-interface description [Beńıtez04c]. We
will turn to this point in Chapter 6, where we present a sharp-interface projection
of a generic stochastic phase-field model.
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Another important problem of the phase-field approach was to account for one-
sided systems. In such cases, the sharp interface limit presented some pathological
problems which resulted in the form of finite thickness effects. Almgren was the first
in determining the form of these spurious terms arising from the sharp-interface
limit [Almgren99], concluding that the finite thickness effects could not be canceled
by simply choosing the convenient interpolation functions in the free energy func-
tional. Following a similar procedure proposed by Folch [Folch99], Karma proposed
a one-sided model which included an additional anti-trapping current term which
allowed to cancel these spurious terms [Karma01].

5.2 Variational Formulations

5.2.1 Non-symmetric dilute binary alloys

Let us introduce the phase-field variable φ as a continuous order parameter which
takes different constant values at the solid and liquid bulk phases. Consider, for
instance, that φ = 1 in the solid and φ = −1 in the liquid phase. In the inter-
mediate region between the two phases, the phase field defines a diffuse zone of
a certain thickness W̃ . The dynamics of φ will be determined by a phenomeno-
logical free energy functional F̃ which should include the basic thermodynamical
features of the system. For a dilute binary solution, for instance, the system can
be thermodynamically described in terms of its molar fraction of solute cB and its
temperature T , and the general expression for the free energy functional, written
in dimensional units, is given by

F̃ [φ, cB , T ] =
∫

dr̃

[
K̃

2
|∇̃φ|2 + h̃0f(φ) + g̃v(φ, cB , T )

]
, (5.1)

In the last expression, F̃ represents the total Gibbs’ free energy of the system and
the integration domain extends to the total volume of the system. The K̃

2 |∇̃φ|2
term accounts for the free energy excess due to the presence of interfaces in the
system, being K̃ the energy per unit length associated to a solid-liquid interface.
The second term is a symmetric double-well potential with two minima located at
φ = ±1, and separated by a barrier of height h̃0. The standard choice for this
potential is given by

f(φ) = −1
2
φ2 +

1
4
φ4, (5.2)

which is represented in Fig. 5.1. The last term in the integral g̃v(φ, cB , T ) is a
function of φ which recovers the Gibbs’ free energy per unit volume of the system
at the solid and liquid phases for φ = ±1. This function g̃v includes the particular
thermodynamic features of the system such as the phase diagram and the equilib-
rium conditions for heterogeneous phases. By changing the parameters in the free
energy density g̃v, it is possible to modify the relative stability of the solid and
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Figure 5.1: The double-well potential f(φ) which determines the solutions φ = ±1 as
the two stable phases in the system.

liquid phases, thus producing the metastability of one of the phases and imposing
a non-equilibrium situation in the system which will act as a driving force for the
solidification process.

Once we have determined the form of F̃ , its dynamics can then be described
by imposing the variational minimization of F̃

τ̃∂t̃φ = − 1
h̃0

(
δF̃
δφ

)
(5.3)

∂t̃cB = −∇̃ · j̃, (5.4)

where τ̃ is a certain time scale, h̃0 the height of the double-well barrier, and the
solute current j̃ is given by the Fick’s Law

j̃ = −M(φ, cB)∇̃µv, (5.5)

where µv is the chemical potential per unit volume of the system, which can be
calculated from the free energy functional F̃ as

µv =
δF̃
δcB

=
∂g̃v

∂cB
. (5.6)
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The quantity M(φ, cB) in Eq. 5.5 is the atomic mobility of the substance, defined
as

M(φ, c) = c(1− c)
D̃Lvm

RT
q(φ), (5.7)

where the dimensionless function q(φ) satisfies q(φ = +1) = D̃S/D̃L and q(φ =
−1) = 1 and accounts for systems with different diffusivities in the solid and
liquid phases (non-symmetric models). Note that this model can also account
for symmetric substances by simply taking q(φ) = 1 in the model equations. From
Eqs. 5.3, 5.4 it follows that the phase-field obeys a non-conserved dynamics whereas
the solute concentration is governed by a conserved equation.

Being d the spatial dimensionality of the system, the dimensions of the param-
eters and fields which have appeared so far are

[F̃ ] ∼ E (5.8)

[K̃] ∼ E

Ld−2
(5.9)

[g̃v] ∼ [h̃0] ∼
[
δF̃
δφ

]
∼

[
δF̃
δc

]
∼ E

Ld
(5.10)

[M ] ∼ Ld+2

ET
(5.11)

[µv] ∼ E

Ld
(5.12)

[τ̃ ] ∼ T, (5.13)

where E, T, L denote energy, time and length, respectively.

Thermodynamics of dilute regular binary solutions

As we have seen in the first chapter (Sec. 2.1.2), the Gibbs’ free energy for a dilute
regular binary solution is given by (cf. Eq. 2.41)

G = nAgA + nBgB + νnAnB + TR(nA ln cA + nB ln cB) , (5.14)

where ν = zN0
n (UAB − 1

2 (UAA + UBB)), n = nA + nB the total number of moles,
ni is the number of moles of the i = A,B specie, ci = ni/n its molar fraction, and
gi the molar free energy of the pure i substance.

The molar free energy density gv can then be obtained by dividing Eq. 5.14 by
the molar density vm and the total number of moles n, resulting

gv = cAgA
v + cBgB

v + νvcAcB +
TR

vm
(cA ln cA + cB ln cB) , (5.15)
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with νv = zN0
vm

(UAB − 1
2 (UAA + UBB)).

In the dilute approximation, we can assume that

ln cA ≈ −cB (5.16)
cAcB = (1− cB)cB ≈ cB , (5.17)

and the resulting molar free energy density is

gv = cAgA
v + cBgB

v + νvcB +
TR

vm
(cB ln cB − cB). (5.18)

If our system is taken slightly away from equilibrium, the molar Gibbs’ free en-
ergy density of the pure A substance gA

v (T ) can be expanded around the melting
temperature TA

M having

gA
v (T ) ≈ gA

v (TA
M )− sv(TA

M )(T − TA
M ), (5.19)

where sv(T ) = −∂gA
v (T )
∂T is the molar entropy density. Inserting the last expression

into Eq. 5.18, we get the final expression for the free energy density

gv(T, cB) = cA

[
gA

v (TA
M )−sA

v (TA
M )(T −TA

M )
]

+cBgB
v (T )+νvcB +

TR

vm
cB(ln cB−1).

(5.20)
In a heterogeneous system, assuming that the molar volumes are equal in the solid
and liquid phases (vS

m = vL
m = vm), the value of the free energy density is given by

gS
v (T, cS

B) =cS
A

[
g̃A − sS

v (TA
M )(T − TA

M )
]

+ cS
BgB,S

v (T )

+ νS
v cS

B +
TR

vm
cS
B(ln cS

B − 1)

gL
v (T, cL

B) =cL
A

[
g̃A − sL

v (TA
M )(T − TA

M )
]

+ cL
BgB,L

v (T )

+ νL
v cL

B +
TR

vm
cL
B(ln cL

B − 1),

(5.21)

where we have introduced g̃A = gA,S
v (TA

M ) = gA,L
v (TA

M ) by noting that the molar
free energy density of A have the same value at the solid and the liquid, which is
the equilibrium condition for the pure A substance system. Observing the form
of Eq. 5.21, we note that for regular solutions in the dilute approximation, the
thermodynamical magnitudes which take different values at the two phases are:

1. The entropy density sα
v ,

2. the regular solution parameter να
v = zN0

vm
(Uα

AB − 1
2 (Uα

AA + Uα
BB)), and

3. the pure solute free energy density gB,α
v (T ).
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Equilibrium conditions for a regular dilute system

For a dilute regular solution, the chemical potentials per unit volume (µv = µ/vm)
are given by (cf. Eq. 2.52)

µA
v = gA

v −
RT

vm
cB

µB
v = gB

v + νv +
RT

vm
ln cB .

(5.22)

The equilibrium conditions for the system are given by (cf. Eq.2.49 and 2.50) are

µA,S
v = µA,L

v (5.23)
µB,S

v = µB,L
v . (5.24)

Inserting µA in Eq. 5.22 into the first equilibrium condition Eq. 5.23, and expanding
as usual gα

A(T ) ≈ gα
A(TA

M ) − sα
A(T − TA

M ), we find the decrease in the melting
temperature for a regular dilute solution

T = TA
M − RT 2

Lm
(cL

B − cS
B), (5.25)

where Lm is the latent heat per unit mol of the substance or molar latent heat.
From the second equilibrium condition Eq.5.24, it results

c0,S
B

cL,0
B

= k = exp
{

vm

RT
(∆gB

v + ∆νv)
}

, (5.26)

being c0,S
B and cL,0

B the solid and liquid equilibrium concentrations, ∆gB
v = gB,L

v −
gB,S

v , ∆νv = νL
v − νS

v , and k the partition coefficient of the system.

Constructing the g̃v(φ, cB , T ) potential

Now that we know the expressions for the free energy density at each phase
Eqs. 5.21, we can construct the function g̃v(φ, cB , T ) in the free energy functional
F̃ in Eq. 5.1. As g̃v(φ, cB , T ) changes continously between the solid and liquid
phases, let us consider the next ansatz expression

g̃v(φ, cB , T ) = cA

[
g̃A − a(φ)(T − TA

M )
]

+ b(φ)cB +
TR

vm
cB(ln cB − 1). (5.27)

where a(φ) and b(φ) are continuous functions of φ which allow to recover the
thermodynamical properties of the system at each of the phases. In the dilute
limit, we can assume cA ≈ 1 in Eq. 5.27 and write

g̃v(φ, cB , T ) = g̃A − a(φ)(T − TA
M ) + b(φ)cB +

TR

vm
cB(ln cB − 1). (5.28)
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In order to recover the solid and liquid molar entropy and enthalpy densities at
φ = ±1, i.e.

a(φ = +1) = sS
v (TM ) (5.29)

a(φ = −1) = sL
v (TM ) (5.30)

b(φ = +1) = νS
v + gB,S

v (T ) (5.31)
b(φ = −1) = νL

v + gB,L
v (T ), (5.32)

the functions a(φ) and b(φ) in Eq. 5.28 should be given by

a(φ) =
Σsv

2
− ∆sv

2
g(φ) (5.33)

b(φ) =
(Σνv + ΣgB

v )
2

− (∆νv + ∆gB
v )

2
p(φ), (5.34)

where we have defined

Σsv = sS
v (TM ) + sL

v (TM ) (5.35)
Σνv = νS

v + νL
v (5.36)

ΣgB
v = gB,S

v (T ) + gB,L
v (T ) (5.37)

∆νv = νL
v − νS

v (5.38)
∆sv = sL

v (TA
M )− sS

v (TA
M ) (5.39)

∆gB
v = gB,L

v − gB,S
v , (5.40)

and the functions p(φ) and p′(φ) satisfy the relations

g(φ = ±1) = p(φ = ±1) = ±1 (5.41)
∂φg(φ = ±1) = ∂φp(φ = ±1) = 0. (5.42)

Let us consider again the pure A substance case, which is recovered from Eq. 5.28
by taking cB = 0 (and cA = 1). Its free energy density g̃v is then given by

g̃pure
v (φ, T ) = g̃A − a(φ)(T − TA

M ), (5.43)

When the pure substance is not undercooled (i.e. T = TA
M ), the system will be

at equilibrium obeying the equilibrium condition g̃pure
v (φ = ±1, TA

M ) = g̃A. When
the system is undercooled, the free energy density difference between the solid and
liquid phases can easily be calculated from Eq. 5.43 to be

∆g̃pure
v = g̃pure,L

v −g̃pure,S
v = g̃pure

v (φ = −1, T )−g̃pure
v (φ = +1, T ) = −∆sv(T−TA

M ),
(5.44)

and noting that ∆sv = Lv/TA
M , we recover the driving force for the solidification

of an undercooled melt introduced in Sec. 2.1.1

∆g̃pure
v = − Lv

TA
M

(T − TA
M ), (5.45)

recovering the result of the first chapter (cf. Eq. 2.15).
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Derivation of the model equations

1. Equation for cB :

Introducing Eq. 5.28 into the free energy functional Eq. 5.1, the variations
δF̃
δφ and δF̃

δc which appear in the dynamic equations Eqs. 5.3, 5.4, can be easily
calculated. The chemical potential density of the solute B in the model is defined
as

µv(φ) =
δF̃

δcB
=

∂g̃v

∂cB
= b(φ) +

RT

vm
ln cB . (5.46)

which recovers the second expression in Eqs. 5.22 at the solid (φ = +1) and liquid
(φ = +1) bulk phases. For dilute solutions, the mobility M introduced in Eq. 5.7
can be approximated by

M(φ, cB) = cB
D̃Lvm

RT
q(φ), (5.47)

and, introducing Eq. 5.46 and noting that gB
v is constant, the Fick’s law Eq. 5.5

reads

j̃ = −cBD̃Lq(φ)∇̃µv(φ) = −cBD̃Lq(φ)∇̃
[

vm

RT
b(φ) + ln cB

]
, (5.48)

and the evolution of the solute concentration field is given by

∂t̃cB = −∇̃ · j̃ = D̃L∇̃cBq(φ)∇̃
[

vm

RT
b(φ) + ln cB

]
, (5.49)

or, equivalently,

∂t̃cB = D̃L∇̃cBq(φ)∇̃
[

vm

RT
b(φ)

]
+ D̃L∇̃q(φ)∇̃cB . (5.50)

Reminding the definition of q(φ) in Eq. 5.7, we recover for φ = ±1 the diffusion
equations in the solid and liquid phases α = S, L

∂t̃c
α
B = D̃α∇̃2cα

B . (5.51)

2. Equation for φ:

The equation for the dynamics of the φ field can also be obtained noting that
the variation of the free energy with respect to φ is given by

δF̃

δφ
= −K̃∇̃2φ +

∂g̃v

∂φ
. (5.52)

From Eq. 5.28, the last term in Eq. 5.52 is

∂g̃v

∂φ
= −∂φa(φ)(T − TA

M ) + ∂φb(φ)cB , (5.53)
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and the time evolution of the phase field is given by

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ) +
1
h̃0

∂φa(φ)(T − TA
M )− 1

h̃0

∂φb(φ)cB , (5.54)

where we can check that all the terms are dimensionally correct by noting that
both a(φ) and b(φ) have dimensions of energy per unit volume. Equation 5.54 can
be interpreted as follows: The time evolution of the phase-field variable depends
on the four factors at the right side of Eq. 5.54: The first term is a diffusive term
which tends to eliminate the gradients in the phase-field φ by diffusing them. The
derivative of the double-well potential ∂φf acts as a force which guarantees that the
solid (φ = +1) and liquid (φ = −1) phases are the equilibrium phases of the system.
The last two terms account for the deviations from the bulk equilibrium which
turns metastable one of the phases making the other one grow. The ∂φa(φ) term
describes the free energy variation due to the mixing entropy density differences
between the solid and liquid phases, whereas the ∂φb(φ) term accounts for free
energy variations produced by the variation in the mixing enthalpy of the system
(regular systems) and in the free energy of the pure solute.

Equilibrium profiles for φ and cB

Let us consider an equilibrium dilute binary heterogeneous system with equilibrium
solute concentration at the liquid c0,L

B . The equilibrium condition µS
v = µL

v can
be imposed by evaluating from Eq. 5.46 the chemical potential at the bulk phases
φ = ±1

µ0
v = b(φ = +1) +

RT

vm
ln c0,S

B = b(φ = −1) +
RT

vm
ln c0,L

B , (5.55)

where µ0
v is the equilibrium chemical potential. From the last equation, we see that

the phase-field formulation recovers the equilibrium concentration at the solid as
c0,S
B = kc0,L

B , where the segregation constant k is

k = exp
{

vm

RT
(∆gB

v + ∆νv)
}

, (5.56)

The next step is to obtain the phase field profile φ0(z̃) of an equilibrium solid-liquid
planar interface perpendicular to the z direction.

In equilibrium, we have
∂g̃v

∂φ

∣∣∣∣
φ0,c0

B

= 0, (5.57)

and the non-equilibrium terms in Eq. 5.54 cancel out leading to a relation between
the functions a and b

∂φa(φ0(z̃))(T − TA
M ) = ∂φb(φ0(z̃))c0

B(z̃), (5.58)



106 CHAPTER 5. PHASE-FIELD MODELS FOR SOLIDIFICATION

which is obviously satisfied at the bulk phases because we have imposed the con-
dition ∂φg(φ = ±1) = ∂φp(φ = ±1) = 0 (cf. Eq. 5.42) to the functions g and p.
Imposing now the stationarity of the phase-field ∂t̃φ0 = 0, Eq. 5.54 can be written
as

K̃

h̃0

∂2
z̃φ0 − ∂φf(φ)|φ0 = 0. (5.59)

It is easy to show that, for the particular choice of f(φ) given in Eq. 5.2, the last
equation has a kink-type solution given by

φ0(z̃) = − tanh
(

z̃√
2W̃

)
, (5.60)

where W̃ =
√

K̃
h̃0

is the thickness of the solid liquid interface in the phase-field
model. From the last equation, it follows that the solid and liquid bulks are lo-
cated at z̃ → −∞ and z̃ →∞ respectively.

In order to find the equilibrium concentration profile c0
B(z̃), we introduce the

kink solution φ0(z̃) into the chemical potential Eq. 5.46, and impose the equilibrium
condition µv(φ0) = µ0

v

b(φ0(z̃)) +
RT

vm
ln c0

B(z̃) = νL
v + gB,L

v (T ) +
RT

vm
ln c0,L

B , (5.61)

from which, using Eq. 5.34, we obtain

c0
B(z̃) = c0,L

B exp
{

(∆νv + ∆gB
v )vm

2RT
[1 + p(φ0(z̃)]

}
. (5.62)

Using the definition of the segregation constant k in Eq. 5.56, we can write the last
equation as

c0
B(z̃) = c0,L

B k
1
2 [1+p(φ0(z̃)]. (5.63)

The concentration and phase field equilibrium profiles φ0, c0
B can be now in-

serted into the condition Eq. 5.58 in order to obtain a relation between the g(φ)
and p(φ) functions in Eqs. 5.33 and 5.34, which takes the form

∂φg(φ0(z̃)) =
TA

Mc0,L
B (∆νv + ∆gB

v )
Lv(T − TA

M )
∂φp(φ0(z̃))k

1
2 [1+p(φ0(z̃)], (5.64)

where we have used that ∆sv = Lv/TA
M . By using from Eq. 5.56 that

ln k =
(∆νv + ∆gB

v )vm

RTA
M

, (5.65)

and noting from the equation for the decrease of the melting point Eq. 5.25 that

T − TA
M = −RTA

M
2

vmLv
c0,L
B (1− k), (5.66)
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the constant pre-factor of the right side term of Eq. 5.64 can be rewritten as

TA
Mc0,L

B (∆νv + ∆gB
v )

Lv(T − TA
M )

= − ln k

1− k
, (5.67)

and the equation Eq. 5.64 adopts the simplified form

∂φg(φ0(z̃)) = − ln k

1− k
∂φp(φ0(z̃))k

1
2 [1+p(φ0(z̃)], (5.68)

The last equation can be easily solved by performing the change of variable y(φ) =
k

1
2 p. We can then write

∂φp(φ0)k
1
2 p(φ0) =

2∂φy

ln k
, (5.69)

which, substituted in Eq. 5.68, leads to

∂φg(φ0) = − 2
√

k

1− k
∂φy, (5.70)

which can be integrated over φ resulting in

g(φ0) = − 2
√

k

1− k
k

1
2 p(φ0) + C, (5.71)

where C is an integration constant which can be determined by imposing the con-
ditions g(±1) = p(±1) = ±1 to be

C =
1 + k

1− k
. (5.72)

The desired relation between the functions g and p is finally given by

g(φ0) =
1 + k

1− k

[
1− 2

√
k

1 + k
k

1
2 p(φ0)

]
. (5.73)

As the condition Eq. 5.58 is a required condition for the equilibrium of the system,
the last relation between g and p must be respected in the phase-field formulation.
The relation Eq. 5.73 can be inverted in order to express the function p in terms
of g

p(φ0) =
2

ln k
ln

(
1 + k − (1− k)g(φ0)

2

)
− 1, (5.74)

The equilibrium concentration profile Eq. 5.63 adopts a simpler form when written
in terms of g

c0
B(z̃) =

c0,L
B

2

[
1 + k − (1− k)g(φ0(z̃))

]
, (5.75)

recovering the equilibrium concentration at both sides of the interface for φ = ±1

c0
B(z̃ →∞) = c0,L

B (5.76)

c0
B(z̃ → −∞) = kc0,L

B . (5.77)
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Compact form of the phase-field equations

With the help of relations Eq. 5.74 and Eq. 5.67, we can rewrite the free energy
density Eq. 5.28

g̃v(φ, cB , T ) = g̃A +
TR

vm
cB(ln cB − 1)− Σsv

2
(T − TA

M ) + cB
(Σνv + ΣgB

v )
2

+
Lv(T − TA

M )
2TA

M

[
g(φ) +

cB

(k − 1)c0,L
B

[
ln

(
1 + k − (1− k)g(φ)

2

)
− 1

]]
,

(5.78)

and the equation for the phase-field evolution Eq. 5.54 adopts the form

τ̃∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ) +
Lv(T − TA

M )
2TA

M h̃0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)g]

− 1
]
. (5.79)

Using Eq. 5.66, Eq. 5.79 can be written as

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)− RTA
M∆c0

2vmh̃0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)g]

− 1
]
, (5.80)

where we have introduced ∆c0 = c0,L
B − c0,S

B = (1 − k)c0,L
B . The last term in

Eq. 5.79 can be interpreted as the total deviation from equilibrium of the system,
and vanishes in the solid and liquid bulk regions due to the requirement g(±1) = 0.
Note that in an equilibrium situation, cB is given by the equilibrium profile c0

B in
Eq. 5.75, and the non-equilibrium driving force vanishes. The standard choice for
the function g(φ) is given by the fifth order odd polynomial

g(φ) =
15
8

(φ− 2
3
φ3 +

1
5
φ5), (5.81)

and its derivative appearing in the phase-field equation Eq. 5.79 is

∂φg(φ) =
15
8

(φ2 − 1)2. (5.82)

The equation for the evolution of the solute field can also be rewritten by using the
obtained relations between g and p. The concentration current j̃ given in Eq. 5.48
can be expressed as

j̃ =− cBD̃Lq(φ)∇̃µv(φ) = −cBD̃Lq(φ)∇̃
[

vm

RT
b(φ) + ln cB

]

= −cBD̃Lq(φ)∇̃ ln
(

cB

[1 + k − (1− k)g]

) (5.83)

where we have used the definition of b(φ) in Eq. 5.34 and the relation Eq. 5.65.
Using the last expression for j̃, the equation for cB reads

∂t̃cB = D̃L∇̃q(φ)∇̃cB + (1− k)D̃L∇̃
[

cBq(φ)∇̃g(φ)
[1 + k − (1− k)g]

]
. (5.84)
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The last equations Eqs. 5.84, 5.79 determine the time evolution of the φ and cB

fields and can be numerically solved to simulate the dynamical evolution of the
solidification front. In the next chapter, we will present simulations of these equa-
tions in order to quantitatively check the phase-field results comparing them with
the analytical predictions presented in the previous chapter.

Extension to Directional Solidification

As far, we have only considered a phase-field model for isothermal solidification
processes. However, it is straightforward to extend the phase-field procedure to
the directional solidification system discussed in Sec. 3.3. In such a system, the
temperature at each point of the sample is determined by an externally imposed
temperature gradient ∇T = G̃ẑ. Being z̃ the distance transversal to the planar
front measured in the sample frame, the gradient is located at

T (r̃, t̃) = TM −mL
c0,L
B

k
+ G̃z̃(t̃), (5.85)

where c0,L
B is the solute concentration of the melt. A simple way to introduce the

external gradient into the phase-field equation Eq. 5.79 is to add the term

G̃

mLc0,L
B

z̃(t̃) (5.86)

inside the factor between the brackets of the third term at the right side of Eq. 5.79.
The equation for the phase-field then reads

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)

− RTA
M∆c0

2vmh̃0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)g]

− 1 +
G̃

mLc0,L
B

z̃(t̃)
]
,

(5.87)

and in equilibrium, the bracketed expression cancels out and we recover the Gibbs-
Thomson equation

cL
B(φ = −1, t̃) = c0,L

B − G̃

mL
ξ̃(t̃), (5.88)

being ξ̃(t̃) the front position in the sample frame which changes from an initial
value of ξ̃(t̃ = 0) = l̃T to its final one ξ̃(t̃ → ∞) = 0. Using the definition of the
gradient length l̃T = mL∆c0/G̃, the phase-field equation adopts the form

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)

− RTA
M∆c0

2vmh̃0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)g]

− 1 +
(1− k)

l̃T
z̃(t̃)

]
,

(5.89)
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Explicit dependence on the interface thickness W̃

The surface energy of the system can be easily calculated from the phase-field free-
energy potential by subtracting from the total free energy the energy associated to
the bulk phases. We therefore define the surface energy σ̃ as

σ̃ = F̃(φ0, c
0
B(φ0), T )−F̃(±1, c0

B(φ = ±1), T ) =
∫

dr̃
[
K̃2

2
∇̃2φ0+h̃0(f(φ0)−f(±1))

]
,

(5.90)
and inserting Eq. 5.60 and evaluating the integral, we obtain

σ̃ =
√

K̃h̃0I1, (5.91)

where I1 is an integral constant defined as

I1 =
∫ ∞

−∞
dη(∂ηφ0(η))2. (5.92)

If the potential f(φ) is chosen as f = −φ2/2 + φ4/4, the kink solution for the
equilibrium phase-field is given by φ0(η) = −tanh(η/2) and we have

I1 =
2
√

2
3

. (5.93)

As W̃ =
√

K̃/h̃0, equation Eq. 5.91 can be rewritten in terms of the interface

thickness W̃ as
σ̃ = W̃ h̃0I1, (5.94)

and using the Clausius-Clapeyron relation, the pre-factor in the phase-field equa-
tion RT A

M∆c0

2vmh̃0
can be finally written as

RTA
M∆c0

2vmh̃0

=
I1

2(1− k)
W̃

ˆ̃
d0

, (5.95)

where ˆ̃
d0 = σ̃T A

M

LvmL∆c0
is the reduced chemical capillary length introduced in section

Sec. 3.3.4 ( ˆ̃
d0 = dc

0/∆c0, with d̃c
0 = d̃0/mL). The final form of the phase-field

equation is therefore expressed in terms of the interface thickness as

τ̃ ∂t̃φ = W̃ 2∇̃2φ− ∂φf(φ)

− I1

2(1− k)
W̃

ˆ̃
d0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)g]

− 1 +
(1− k)

l̃T
z̃(t̃)

]
.

(5.96)
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Introduction of anisotropies in the phase-field equations

A major advantage of the phase-field approach is that it can easily account for
anisotropic thermophysical properties of the system. The two quantities which
tipically depend on the cristalline structure of the solid are the surfece energy σ̃ and
the kinetic attachment of the system β̃. The introduction of anisotropies in σ̃ and
β̃ has been studied elsewhere [Karma98], and requires a convenient modification
of the phase-field parameters W̃ and τ̃ respectively. For the standard fourfold
symmetry of these quantities, we define the anisotropic interface thickness W̃ (n)
and τ̃(n) as

W̃ (n) = W̃0(n)fa(n) (5.97)
τ̃(n) = τ̃0(n)fa(n), (5.98)

where n is a unit vector normal to the interface and fa(n) = (1 + δ cos(θ)) being θ
the angle between n and the y axis and δ the anisotropy strength.

5.2.2 Pure substances and symmetric alloys with constant
miscibility gap

The solidification of pure substances and dilute alloys in the constant miscibility
gap approximation can be modeled by a very simple variational phase-field. Let us
consider the free-energy functional F̃

F̃ =
∫

dr̃

[
K̃

2
|∇̃φ|2 + h̃0f(φ) + g̃v

]
, (5.99)

where g̃v stands for the free energy density of the system, and the double-well
potential f(φ) is taken to be f(φ) = −φ2/2 + φ4/4. The simplest variational form
for the free energy density g̃v was first proposed by Langer [Langer86], and was
further developed and studied in [Karma98]

g̃v =
ẽ0

2
u2. (5.100)

Model for pure substances

For the case of a pure substance, u is the reduced temperature field defined by

u =
T − TM

(Lv/cv)
, (5.101)

and ẽ0 is an energy density scale associated to the thermal field which will be
determined in brief. Let us now introduce the physical field ẽ, defined as

ẽ = ẽ0

(
u− 1

2
g(φ)

)
, (5.102)
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where g(φ) is the continuous function introduced in the last subsection satisfying
the limit conditions g(φ = ±1) = ±1 at the solid and liquid bulk phases and the
additional condition ∂φg(φ = ±1) = 0 in order to ensure the stability of the two
phases. As we know from the last section, in variational formulations, the standard
choice for the function g(φ) is given by (cf. Eq. 5.81)

g(φ) =
15
8

(φ− 2
3
φ3 +

1
5
φ5), (5.103)

Noting that the field ẽ takes different values at the solid and liquid phases

ẽS = ẽ0

(
u− 1

2

)
(5.104)

ẽL = ẽ0

(
u +

1
2

)
, (5.105)

we can evaluate the free energy difference between the phases

∆g̃v = g̃L
v − g̃S

v = g̃v(φ = −1)− g̃v(φ = +1) =

ẽ0

2

(
ẽL

ẽ0
− 1

2

)2

− ẽ0

2

(
ẽS

ẽ0
+

1
2

)2

= −ẽ0
T − TM

(Lv/cv)
,

(5.106)

where we have used that ẽ2
L − ẽ2

S = 0. Comparing the last equation with the free
energy difference for an undercooled pure melt Eq. 2.15, which is given by

∆g̃v = −Lv(T − TM )
TM

, (5.107)

we can determine the value of the constant ẽ0

ẽ0 =
L2

v

TMcv
. (5.108)

The dynamical evolution of the phase-field φ and of the diffusive variable ẽ are
determined by the variational principle

τ̃ ∂t̃φ = − 1
h̃0

(
δF̃
δφ

)
(5.109)

∂t̃ẽ = Dẽ0∇̃2

(
δF̃
δẽ

)
, (5.110)

and the equations for φ and u can be expressed as

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)− 1
2

ẽ0

h̃0

∂φg(φ)u (5.111)

∂t̃u = D̃∇̃2u +
1
2
∂t̃g(φ), (5.112)
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It interesting to insert ẽ0 into Eq. 5.111 and write the phase-field equation with
the explicit dependence on the thermodynamical magnitudes

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)− Lv(T − TM )
2h̃0TM

∂φg(φ) (5.113)

and note that is the same equation than the phase-field equation in the previous
model for alloys Eq. 5.79 in the pure substance case cB = 0. The phase-field
equation Eq. 5.113 can be written in a simpler form by noting from the definition
of u that T − TM = uLv/cv and that h̃0 = σ̃/W̃ I1. It reads

τ̃ ∂t̃φ = W̃ 2∇̃2φ− ∂φf(φ)− I1

2
W̃

d̃T
0

∂φg(φ)u, (5.114)

where d̃T
0 = σ̃T A

M cv

L2
v

is the reduced thermal capillary length .
The parameters and fields that we have introduced so far have dimensions of

[h̃0] ∼ [ẽ] ∼ [ẽ0] ∼ [
δF̃
δφ

] ∼ E

Ld
(5.115)

[
δF̃
δẽ

] ∼ 1 (5.116)

[K̃] ∼ E

Ld−2
(5.117)

[F̃ ] ∼ E (5.118)

[τ̃ ] ∼ T. (5.119)

Model for alloys in the miscibility gap approximation

The model presented in this section can be easily extended for the solidification of a
dilute alloy in the constant miscibility gap approximation introduced in Sec. 4.1.3.
This approximation assumes that the solid and liquid slopes are equal mL = mS ,
which is equivalent to suppose that ∆c0 = c0

L−c0
S is constant in the phase diagram.

Under this assumption, if the concentration at the liquid of a solid-liquid interface
is c0,L

B , the equilibrium concentration at the solid side will be given by c0,S
B =

c0,L
B −∆c0 instead c0,S

B = kc0,L
B . For such a system, we identify

ẽ =
ẽ0

∆c0

(
c− c0

S + c0
L

2

)

ẽ0 =
RTA

M (∆c0)2

vmc0
L

u =
ẽ

ẽ0
+

1
2
g(φ),

(5.120)
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With this change of variables, the phase-field equations for the alloy constant mis-
cibility gap model adopt the same form as in the pure substance case Eqs. 5.111,
5.112. In particular, the phase-field equation written with all the thermodynamical
constants is given by

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)− RTA
M∆c0

2vmh̃0

∂φg(φ)
[

cB

c0,L
B

− c0,S
B + c0,L

B

2c0,L
B

− ∆c0

2c0,L
B

g(φ)
]
,

(5.121)
which is the constant miscibility gap version of Eq. 5.89. The last equation can be
also rewritten with the help of Eq. 5.95 showing explicitely the dependence with
the interface thickness, the phase field equation for the solutal case read

τ̃ ∂t̃φ = W̃ 2∇̃2φ− I1

2
W̃

ˆ̃
d0

∂φg(φ)
[

cB

∆c0
− c0,S

B + c0,L
B

2∆c0
− g(φ)

2

]
, (5.122)

where now it appears the solutal capillarity constant ˆ̃
d0 = σ̃T A

M

LvmL∆c0
instead of the

thermal capillarity d̃0.

5.2.3 Introduction of fluctuations in variational models

In variational formulations such as those presented so far in this chapter, the in-
troduction of fluctuations can be done by following the procedure proposed by
Hohenberg, Halperin and Ma within the context of critical dynamics [Halperin74,
Hohenberg77]. For a general reference concerning the introduction of noise in spa-
tially extended systems, we refer to Ref. [Garćıa-Ojalvo99].

For the sake of clarity, we will refer to the model proposed in Sec. 5.2.2, which
applies for both pure substances and symmetric dilute alloys in the miscibility gap
limit. In order to use the results of this section for each of these situations, one
simply has to use the definitions of ẽ, ẽ0 and u in Eqs. 5.101, 5.102, 5.108 and 5.120.

Noise terms can be directly added to the variational equations Eqs. 5.109, 5.110,
resulting in the stochastic dynamical equations

∂t̃φ = − 1
τ̃ h̃0

(
δF̃

δφ

)
+ s̃(r̃, t̃) (5.123)

∂t̃ẽ = Dẽ0∇̃2

(
δF̃

δẽ

)
− ∇̃ · q̃e. (5.124)

Note that the stochastic term in the phase-field equation is a non-conserved additive
noise s̃, whereas in the equation for ẽ we have a conserved stochastic current q̃e.
If the noises have a thermodynamical internal origin, we can assume that they are
described by Gaussian white random variables. The statistical properties of the
noise terms are then related with the deterministic parameters of the system by
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the Fluctuation-Dissipation theorem, which can be used in order to determine the
correlation of the stochastic terms in Eqs. 5.123, 5.124

〈s̃(r̃, t̃)s̃(r̃′, t̃′)〉 =
2KBTM

τ̃ h̃0

δ(r̃− r̃′)δ(t̃− t̃′) (5.125)

〈q̃i
e(r̃, t̃)q̃j

e(r̃′, t̃′)〉 = 2KBTMDẽ0δijδ(r̃− r̃′)δ(t̃− t̃′), (5.126)

where the super-indexes i, j refer to the spatial components of the stochastic current
q̃e. The dimensions of the new stochastic terms are given by

[s̃] ∼ 1
T

(5.127)

[q̃e] ∼ E

Ld−1T
. (5.128)

Introducing the new stochastic variables

q̃u =
q̃u

ẽ0
(5.129)

η̃ = τ̃ s̃, (5.130)

the fluctuating phase-field equations adopt the form

τ̃∂t̃φ =
K̃

h̃0

∇̃2φ− f ′(φ)− ẽ0

2h̃0

∂φg(φ)u + η̃(r̃, t̃) (5.131)

∂t̃u = D̃∇̃2u +
1
2
∂t̃g(φ)− ∇̃ · q̃u(r̃, t̃) , (5.132)

with the correlations

〈η̃(r̃, t̃)η̃(r̃′, t̃′)〉 =
2KBTM τ̃

h̃0

δ(r̃− r̃′)δ(t̃− t̃′) (5.133)

〈q̃i
u(r̃, t̃)q̃j

u(r̃′, t̃′)〉 =
2KBTM D̃

ẽ0
δijδ(r̃− r̃′)δ(t̃− t̃′). (5.134)

A similar procedure can be applied to the model presented in section Sec. 5.2.1.

5.3 Non-variational Formulations

Although their appealing structure, variational phase-field formulations have some
important drawbacks. As pointed by Almgren in Ref. [Almgren99], when the one-
sided model presented in this section is asymptotically expanded to its sharp-
interface projection, some spurious terms appear which can not be canceled by
simply choosing the proper interpolation functions. That constitutes indeed a very
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important problem, because without a proper sharp interface projection the phase-
field simulations might present undesirable and uncontrolled finite thickness effects.
A solution to this problem was presented by Karma in Ref. [Karma01], where he
introduced an effective solute current which canceled the spurious solute trapping
effect. With the introduction of this additional current, the choice of the potentials
turned to be sufficient to eliminate the remaining finite-thickness effects.

5.3.1 Non-symmetric dilute binary alloys

The variational model presented in section 5.2.1 can be used as the basis for compu-
tationally improved, non-variational formulation. Taking the free-energy functional

F̃ [φ, cB , T ] =
∫

dr̃

[
K̃

2
|∇̃φ|2 + h̃0f(φ) + g̃v(φ, cB , T )

]
, (5.135)

where the phenomenological free-energy density is now given by

g̃v(φ, cB , T ) = −RTA
M∆c0

2vm
g(φ)

[
2cB

c0,L
B [1 + k − (1− k)h(φ)]

− 1
]
, (5.136)

where we have introduced h(φ) as a new odd function satisfying the limiting condi-
tions h(φ = ±1) = ±1 but not ∂φh(±1) = 0. The stability of the φ = ±1 solutions
is guaranteed because the function g(φ) satisfies ∂φg(±1) = 0. The evolution of the
phase-field variable can be determined from the following the variational principle

τ̃ ∂t̃φ = − 1
h̃0

(
δF̃
δφ

)
, (5.137)

and is given by

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)− I1

(1− k)
W̃

ˆ̃
d0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)h]

− 1
]
. (5.138)

The evolution for the concentration field can not be derived from the equivalent
variational principle, and will be assumed to have the form

∂t̃cB = D̃L∇̃q(φ)∇̃cB + (1− k)D̃L∇̃
[

cBq(φ)∇̃h(φ)
[1 + k − (1− k)h(φ)]

]
, (5.139)

which is equivalent to Eq. 5.84 but where the function g(φ) has been changed by
the better computationally behaved h(φ).

Finite-thickness effects and the anti-trapping current

Recently, some authors have pointed out some important problems which affect
non-symmetric phase-field models when performing the sharp-interface asymptotics
[Almgren99, Karma01].



5.3. NON-VARIATIONAL FORMULATIONS 117

In the next chapter, we will see that in symmetric phase-field models the choice
of the functions f, g, h gives enough freedom to cancel out the finite thickness spuri-
ous terms which appear in the sharp-interface projection of the model. The cancel-
lation of these terms is of course a necessary condition in order to obtain quantita-
tive phase-field simulation results. As pointed by Almgren in Ref. [Almgren99], in
non-symmetric models these finite thickness terms appear in an asymmetric form
and can not be canceled in situations where the system presents large differences
between the solid and liquid diffusivities (one-sided models). Therefore the inter-
polation functions f, g, h are not enough to proceed with this cancellation, and the
performance of the phase-field simulations will be affected by these spurious terms.

In Ref. [Karma01], Karma proposed a solution to this problem consisting in the
introduction of an additional term into the solute concentration equation. The form
of this term is chosen in such a way that its sharp-interface projection cancels one
of the finite thickness spurious terms. This explicit cancellation makes it possible
to eliminate the remaining spurious terms by a proper choice of the interpolation
functions f, g and h. This additional term is called the anti-trapping current j̃a,
and has the form of an interfacial solute current going from the solid to the liquid
phase and therefore in the opposite sense than a solute trapping effect. This extra
current is oriented in the normal direction to the solidification front n̂ = ∇̃φ/|∇̃φ|,
and is proportional to the front velocity and to the local solute concentration. The
proposed form for this term is given by

j̃a = −aW̃ (1− k)
cB

[1 + k − (1− k)h(φ)]
∂φ

∂t̃

∇̃φ

|∇̃φ| , (5.140)

where a is a constant to be determined for a given choice of the interpolation
potentials. The dependence on W̃ is due to the fact that the finite-thickness term
that is canceled with the projection of j̃a appears at second order in the asymptotic
expansion in ε. After the introduction of the anti-trapping current, the total solute
current in the model is given by

j̃T = j̃ + j̃a, (5.141)

where j̃ is defined by Eq. 5.83. The concentration equation after the introduction
of j̃a reads

∂t̃cB = D̃L∇̃q(φ)∇̃cB + (1− k)D̃L∇̃
[

cBq(φ)∇̃h(φ)
[1 + k − (1− k)h(φ)]

]

+ aW̃ (1− k)∇̃
[

cB

[1 + k − (1− k)h(φ)]
∂φ

∂t̃

∇̃φ

|∇̃φ|

]
.

(5.142)

It can be shown (cf. Ref. [Echebarria04]), that for one-sided systems (i.e, D̃S = 0,
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D̃L = D̃) and the usual choice of the potentials

f(φ) = −1
2
φ2 +

1
4
φ4 (5.143)

ḡ(φ) = φ− 2
3
φ3 +

1
5
φ5 (5.144)

h(φ) = φ, (5.145)

all the spurious terms are canceled when the interpolation function q(φ) is chosen
to be

q(φ) =
(1− φ)

[1 + k − (1− k)h(φ)]
, (5.146)

and a =
√

2. Note that the function q satisfies the one-sided values of the diffusivity
at the liquid and solid phases (q(+1) = 0, q(−1) = 1).

5.3.2 Pure substances and symmetric alloys with constant
miscibility gap

Let us consider the free-energy functional F̃

F̃ =
∫

dr̃

[
K̃

2
|∇̃φ|2 + h̃0f(φ) + g̃v

]
, (5.147)

where the free energy g̃v adopts now the form [Langer86, Karma98]

g̃v =
ẽ0

2
g(φ)u, (5.148)

where the function g(φ) satisfies the conditions g(φ = ±1) = ±1 and ∂φg(φ =
±1) = 0, and u, ẽ0 are defined for pure substances and symmetric alloys as in
section Sec. 5.2.2. The equation for the phase-field can be derived as usual from
the variational principle

τ̃ ∂t̃φ = − 1
h̃0

(
δF̃
δφ

)
, (5.149)

and takes the form

τ̃ ∂t̃φ =
K̃

h̃0

∇̃2φ− ∂φf(φ)− 1
2

ẽ0

h̃0

∂φg(φ)u. (5.150)

The equation for the evolution of the u field is postulated to have the form

∂t̃u = D̃∇̃2u +
1
2
∂t̃h(φ), (5.151)
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where the function h(φ) is odd and satisfies h(φ = ±1) = ±1 and will be chosen in
order to improve the computational efficiency of the numerical simulations. The
best choice for this function is given by

h(φ) = φ. (5.152)

For an interesting work discussing the computational efficiency of the different
choices for the potentials, we refer to [Kim99]. We shall remark here that in this
model the function g(φ) appears in the phase-field equation only, but not in the
diffusion dynamics.

5.3.3 Introduction of fluctuations in non-variational models

The standard procedure to introduce fluctuations in phase field models has been
traditionally restricted to variational formulations [Karma99, Pavlik99, Pavlik00,
Elder94, Drolet00] analogous to the C model of critical dynamics [Halperin74,
Wheeler92a, Wheeler92b], where the intensity of the fluctuations can be determined
by using a fluctuation-dissipation relation. In more recent phase field formulations
which do not maintain their variational structure, the fluctuation-dissipation rela-
tion cannot be used to infer the statistics of the noise appearing in the equations.
We will refer on a recent calculus [Beńıtez04c] that projects the dynamics of a
generic stochastic phase field model to the motion of the fluctuating interface.
This procedure, which will be described in the next Chapter, provides a prescrip-
tion for the intensity of the noise terms in the model, accounting for fluctuations of
both internal and external origin. This approach has previously been used in both
equilibrium [Beńıtez04c] and out of equilibrium situations [Beńıtez04a, Beńıtez04b].
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Chapter 6

Sharp-Interface projection of
a fluctuating phase-field
model

We present in this chapter a derivation of the sharp interface limit of a fluctuating
phase field model for solidification. In the result, the noise terms appear both in
the diffusion equation and in the moving boundary conditions, and their intensities
are computed from the phase field parameters. The procedure does not rely on
any free energy functional, and hence can be applied to both external and internal
fluctuations. In particular it can be applied to quantitatively account for thermo-
dynamical internal fluctuations in non variational formulations of the phase field
model, which could be numerically more efficient.

6.1 Introduction

Phase field models are constructed in order to recover the classical moving bound-
ary dynamics in the so called sharp-interface limit as W̃ → 0 [Caginalp88]. This
limit is taken by means of a systematic asymptotic expansion on the interface
width, and allows in turn to determine the model parameters in terms of physical
and substance parameters. On the other hand, it is well established the impor-
tance of interfacial and bulk fluctuations in the selection dynamics of morpho-
logical instabilities [Warren90, Warren93, Karma93b, Karma93c]. In this respect,
one interesting characteristic of the phase-field model is the possibility of incor-
porating fluctuations without major modifications of the numerical scheme. In
fact fluctuations were early introduced in phase-field models in an ad hoc way as
a controlled source of interfacial perturbations [Kobayashi93b]. However, models
accounting for internal thermodynamical fluctuations were not formulated until
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recently [Elder94, Karma99, Pavlik99, Pavlik00]. These formulations have a varia-
tional structure, in the sense that they are derived from a single free-energy func-
tional, and the properties of the fluctuating terms of the phase-field equations can
be determined by using the fluctuation-dissipation theorem, following the proce-
dure proposed by Hohenberg, Halperin and Ma in the context of critical dynamics
[Halperin74, Hohenberg77]. Unfortunately, this variational structure is lost when
improving the computational efficiency of the model [Karma98], or when introduc-
ing some specific physical situations such as one-sided solidification [Karma01] or
viscous fingering [Folch99].

The aim of this chapter is to present a systematic procedure to deal with generic
sources of noise in phase field models, not relying on any variational formulation.
To this end, we will perform the classical sharp interface limit of a phase field
model with fluctuations, obtaining explicitly the properties of the projected noise
terms that will appear in the sharp interface equations. This projection will be
carried out by means of an asymptotic expansion which combines a standard sharp
interface limit up to second order in W̃ and a small noise expansion. The structure
of the resulting sharp interface projection takes the form of a moving boundary
problem which now includes bulk and interfacial stochastic terms. The statistical
properties of these new terms are related with those of the noises appearing in the
starting phase field equations. The extension of our procedure to a thin-interface
asymptotics [Karma98] is straightforward and is not presented here for the sake of
clarity.

This analytical technique will permit to give a prescription for the introduction
of internal thermodynamical fluctuations in non-variational phase field models,
subjected only to the constraint of giving the correct interface equilibrium fluctu-
ations. This approach will also allow for considering more general noise sources of
external origin, like experimental imperfections or controlled perturbations, which
would not obey equilibrium statistics. It is worth pointing out that although the
calculations will be performed in the framework of the symmetric model of solid-
ification, the approach can be easily extended to consider one-sided formulations
[Karma01].

6.2 Model equations

Our approach starts from the non-variational phase-field model introduced in sec-
tion Sec. 5.3.2, which applies for both the solidification of a pure substance and
for the symmetric alloy solidification in the constant miscibility gap approxima-
tion. We scale space and times in the model equations Eqs. 5.150 and 5.151 with a
characteristic length l̃ = D̃/ṽp and a time scale γ̃ = l̃2/D̃, being D̃ the thermal dif-
fusivity of the substance. The scaled interface thickness is then defined as ε = W̃/l̃,
and will be considered the small parameter in which the formal expansions will be
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carried out. Introducing the parameters

λ =
15
16

I1

d̂0

, (6.1)

and

α =
τ

ε2
, (6.2)

where τ = τ̃ /γ̃, the dimensionless model equations adopt the form

αε2∂tφ = ε2∇2φ− f ′(φ)− ελḡ′(φ)u + ε
3
2 η(r, t) (6.3)

∂tu = ∇2u +
1
2
∂th(φ)−∇ · q(r, t) , (6.4)

where u is the reduced temperature field defined by u = T−TM

(Lv/c) in the pure substance

system and by u = (c − c0
S+c0

L

2 )/∆c0 + ḡ(φ)/2 for symmetric alloys. The relation
between the function g(φ) introduced in the last chapter and the new ḡ(φ) function
is given by

ḡ =
8
15

g(φ), (6.5)

and the condition g(φ = ±1) = ±1, will be now supplied by the requirement
ḡ(φ = ±1) = ±8/15. In Eq. 6.2, α does not depend on ε, and can therefore be
understood as the assumption that the phase-field time scale τ̃ is proportional to
ε2. All the dependence of the model equations on ε has been explicitely written,
so the model parameters α, λ do not have any dependence on ε.

In the model, fluctuations appear as a non-conserved noise term η in the equa-
tion for the phase-field, and a conserved noise current q in the equation for the
temperature. These fluctuations account for generic sources of noise of either in-
ternal or external origin. We assume that the noises are Gaussian with correlations
given by

〈η(r, t)η(r′, t′)〉 = 2σ2
φδ(r− r′)δ(t− t′) , (6.6)

〈qi(r, t)qj(r′, t′)〉 = 2σ2
uδijδ(r− r′)δ(t− t′) . (6.7)

In order to carry out the calculations along this chapter, we will assume ḡ(φ)
and h(φ) to be odd functions of φ, and the standard double-well potential for
f(φ) = φ4/4 − φ2/2. In addition, we must also assume that the functions g and
h satisfy the limiting relation g′(±1) = 0 and h(±1) = ±1, respectively. These
conditions will be used in different points during the asymptotic matching derived
in this section. Although the whole derivation will be developed with generic
expressions for the functions f(φ), ḡ(φ) and h(φ), in the numerical simulations will
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be given by

f(φ) = −1
2
φ2 +

1
4
φ4 (6.8)

ḡ(φ) = φ− 2
3
φ3 +

1
5
φ5 (6.9)

h(φ) = φ. (6.10)

6.3 Hybrid asymptotic expansion

In the presence of fluctuations, the classical sharp interface limit, based on a small
interface width (small ε) expansion, must be complemented with a small noise
assumption. To this end, noise intensities σφ and σu will also be taken as small
parameters in the expansion. Namely we will assume the order relations

σφ ∼ O(ε3/2), (6.11)
σu ∼ O(ε2), (6.12)

between the noise intensities and the interface thickness.
As usually, we proceed by dividing the system into two different regions: an

outer region far away from the interface at distances much greater than ε, and an
inner region located around the interface up to distances of order ε. Solutions for
the fields in both regions should match at some intermediate radial distance rM ,
which can be taken of order rM ∼ ε1/2, in the limit ε → 0.

6.3.1 Outer region

The equations for the outer region can be solved at each order by expanding the
fields in ε as

u = u0 + εu1 + O(ε2) (6.13)
φ = φ0 + εφ1 + O(ε2). (6.14)

The functions of φ (or u) like ϕ(φ) will also be expanded in Taylor

ϕ(φ) ≈ ϕ(φ0) + ϕ′(φ0)(φ− φ0) +
1
2
ϕ′′(φ0)(φ− φ0)2 + · · · , (6.15)

and using the expansions Eqs. 6.14 we get

ϕ(φ0) + εϕ′(φ0)φ1 + ε2

(
ϕ′(φ0)φ2 +

1
2
ϕ′′(φ0)φ2

1

)
+ · · · . (6.16)

An equivalent expression will be used when expanding the functions of the inner
fields. We next proceed to write the outer equations at each order.
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Zero Order:

The outer equations at zero order in ε is given by:

f ′(φ0) = 0 (6.17)
∂tu0 = ∇2u0. (6.18)

As our function f satisfies f ′(±1) = 0, the first equation brings to φ0 = ±1.

First Order:

The outer equations at order ε are

f ′′(φ0)φ1 = −λḡ′(φ0)u0 (6.19)
∂tu1 = ∇2u1 . (6.20)

As we have chosen the functions f , ḡ such that f ′′(±1) 6= 0 and ḡ′(±1) = 0, the
first equation brings to φ1 = 0.

Second Order:

f ′′(φ0)φ2 = λḡ′(φ0)u1 (6.21)
∂tu2 = ∇2u2 −∇ · q , (6.22)

which is solved by φ2 = 0. Compiling the results for φ at the three first orders, the
outer phase-field is given up to second order by

φ = ±1 + O(ε3). (6.23)

Similarly, the outer diffusion field u follows a diffusion equation with a stochastic
current which contributes at second order in ε, i.e.

∂tu = ∇2u−∇ · q(r, t) + O(ε3) . (6.24)

6.3.2 Inner region

For the inner region, it is convenient to write Eqs. 6.3 and 6.4 in a curvilinear co-
ordinate system centered at the interface. The idea is that the solvability condition
for the very existence of solutions of these transformed equations will provide the
evolution of the coordinate system, i.e. of the interface, which in fact constitutes
the solution we are looking for. To define this coordinate system maintaining it
smooth at small scales, we use an auxiliary coarse grained field defined as a local
spatial and temporal average of the fluctuating field φ. The surface corresponding
to the level set of this coarse grained field 〈φ(r, t)〉 = 0 then defines the 3D orthog-
onal curvilinear coordinate system (r, s1, s2), where r is a normal distance from
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the surface and s1, s2 are the arclength distances measured along the maximum
and minimum curvature directions of the surface. Furthermore, we introduce the
scaled radial coordinate ρ = r/ε and the scaled time τ = t/ε to measure radial
distances and times in the inner region. We use capital letters to refer all the fields
when written in the inner region, including the fluctuating fields. Appendix B is
dedicated to derive the expressions of the differential operators written in curvilin-
ear coordinates. After some algebraic manipulations (see Appendix B), we get the
inner equations in the frame of the moving interface

αε[
d

dτ
− v∂ρ]Φ = ∂2

ρΦ + ε(κ1 + κ2)∂ρΦ− ε2ρ(κ2
1 + κ2

2)∂ρΦ

+ ε2∂2
s1

Φ + ε2∂2
s2

Φ− f ′(Φ)− ελḡ′(Φ)U + ε1/2H(ρ, s, τ)
(6.25)

1
ε

[
d

dτ
− v∂ρ − ε2ρ(vs1∂s1 + vs2∂s2)]U =

1
ε2

∂2
ρU +

(κ1 + κ2)
ε

∂ρU − ε2ρ(κ2
1 + κ2

2)∂ρU + ∂2
s1

U + ∂2
s2

U

+
1
ε

dh(Φ)
dτ

− v

2ε
∂ρh(Φ)− 1

ε2
∂ρQρ,

(6.26)

where v = v(s, τ) is the normal (or radial) front velocity, and κ1(s, τ), κ2(s, τ) the
main curvatures of the surface. The fluctuating functions H(ρ, s, τ) and Q(ρ, s, τ)
are the noises in the inner region and Qρ corresponds to the radial component of
the stochastic current. The correlations of these scaled noise terms are

〈H(ρ, s, τ)H(ρ′, s′, τ ′)〉 = 2σ2
φδ(ρ− ρ′)δ(s− s′)δ(τ − τ ′), (6.27)

〈Qi(ρ, s, τ)Qj(ρ′, s′, τ ′)〉 = 2σ2
uδijδ(ρ− ρ′)δ(s− s′)δ(τ − τ ′). (6.28)

The inner and outer noises are related by

H = εη (6.29)
Q = εq, (6.30)

where we have used that

δ(r − r′) =
1
ε
δ(ρ− ρ′) (6.31)

δ(t− t′) =
1
ε
δ(τ − τ ′). (6.32)

The inner equations, keeping terms up to second order in ε can be written in a
more compact form

αε[
d

dτ
− v∂ρ]Φ = ∂2

ρΦ + εκ∂ρΦ− ε2ρ(κ2 − 2Π)∂ρΦ

+ ε2
∑

i=1,2

∂2
si

Φ− f ′(Φ)− ελḡ′(φ)U + ε1/2H(ρ, s, τ),
(6.33)
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1
ε

[
d

dτ
−v∂ρ]U =

1
ε2

∂2
ρU +

1
ε

[κ−ρ(κ2−2Π)]∂ρU +
∑

i=1,2

∂2
si

U − vr

2ε
∂ρh(Φ)− 1

ε2
∂ρQρ,

(6.34)
where we have introduced κ = κ1 + κ2 and Π = κ1κ2 as the mean and Gaussian
curvatures of the surface.

Expanding the inner fields in ε

U = U0 + εU1 + ε2U2 + O(ε3) (6.35)
Φ = Φ0 + εΦ1 + ε2Φ2 + O(ε3), (6.36)

and the parameters

κi = κi0 + εκi1 + O(ε2) , i = 1, 2 (curvatures) (6.37)
v = v0 + εv1 + O(ε2) (normal velocity)
vt = εvt1 + O(ε2) (tangential velocity), (6.38)

we can determine the inner equations at each order in ε.
After solving the inner and outer equations at each order, the fields at each

region are asymptotically matched at an intermediate distance rM . The matching
procedure can be described as follows: Let’s consider the arbitrary inner and outer
functions a(r) and A(ρ). The inner function A(ρ) is then asymptotically expanded
for ρ → ±∞ as

A(ρ) ∼ A0 + A1ρ + A2ρ
2 + O(ρ3), (6.39)

and the outer function a(r) is expanded in Taylor around r = 0± by

a(r) ≈ a(0±) + ∂ra(0±) · r +
a

2
∂2

ra(0±) · r2 + O(r3). (6.40)

As ε → 0, the inner and outer functions must take the same value at the intermedi-
ate distances ρM ∼ O(ε−1/2) and rM ∼ O(ε1/2). This defines a matching condition
which is given by

a(rM ) = A(ρM ), (6.41)
and permits to proceed to match the inner and outer solutions at each order by
taking

A0 = a(0±) (6.42)
A1 = ε∂ra(0±) (6.43)

A2 =
1
2
ε2∂2

ra(0±) (6.44)

· · · (6.45)

An =
1
n!

εn∂n
r a(0±). (6.46)

The last equations can be expanded in powers of ε to find the matching condi-
tions at each order. During the solution of the inner equations, we will use some
assumptions which are derived from these matching relations.
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Zero order:

The inner equations at zero order (ε0 for the Φ equation, ε−2 for the U one) are
given by

∂2
ρΦ0 − f ′(Φ0) = 0 (6.47)

∂2
ρU0 = 0. (6.48)

From the first equation, and choosing f(φ) = −φ2/2 + φ4/4, we obtain the zero-
order kink solution for the phase-field

Φ0(ρ) = − tanh
(

ρ√
2

)
. (6.49)

Note that the zero-order phase-field solution Φ0 satisfies the matching conditions
with the outer field φ0 = ±1 for ρ → ±∞. Furthermore, the higher order solutions
of the inner phase-field must satisfy the limiting condition

Φi(ρ → ±∞) = 0, for i = 1, 2. (6.50)

Integrating the second equation Eq. 6.48, we have

U0(s, τ) = A(s, τ) + B(s, τ)ρ. (6.51)

As the gradients of U0 must vanish far away from the interface, it is necessary that
B(s, τ) = 0, so we are left with

U0(s, τ) = A(s, τ). (6.52)

First Order:

The inner equations at order ε are

ΩΦ1 = −(v0α + κ0)∂ρΦ0 + λḡ′(Φ0)U0 (6.53)

∂2
ρU1 =

dU0

dτ
+

v0

2
∂ρh(Φ0), (6.54)

where Ω = ∂2
ρ−f ′′(Φ0) and we have used that dΦ0/dτ = 0. Φ1 can be then isolated

from Eq. 6.53 to give

Φ1 = Ω−1[−(v0α + κ0)∂ρΦ0 + λḡ′(Φ0)U0]. (6.55)

If we choose ḡ′(φ0) and f ′′(φ) even in Φ, Ω is an even differential operator. As the
functions ∂ρΦ0 and ḡ′(Φ0) are even functions of ρ, we conclude that Φ1 is even in
ρ. Integrating twice over ρ the equation for U Eq. 6.54, we get

U1 = D(s, τ) + C(s, τ)ρ +
v0

2

∫ ρ

0

dρ′h(Φ0) +
1
2

dU0

dτ
ρ2 , (6.56)

where D(s, τ) and C(s, τ) are the integration constants and we have used that
∂ρU0 = 0.
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Second order:

At second order in ε, the inner equations read

ΩΦ2 = −(αv1 + κ1)∂ρΦ0 − (αv0 + κ0)∂ρΦ1 + α
dΦ1

dτ
+

1
2
f ′′′(φ0)Φ2

1

+ ρ(κ0 − 2Π0)∂ρΦ0 + λḡ′(φ0)U1 + λg′′(Φ0)Φ1U0 + ε−3/2H.

(6.57)

∂2
ρU2 = −(v0 + κ0)∂ρU1 +

dU1

dτ
+

v1

2
∂ρh +

v0

2
∂ρ(h′(Φ0)Φ1)

− ∂2
sU0 − 1

ε2
∂ρQρ.− h′(Φ0)

dΦ1

dτ

(6.58)

The first equation will be used in the next section when imposing the solvability
conditions of the problem. Integrating twice over ρ the equation for U2 Eq. 6.58,
we obtain

U2 = F + Eρ− (v0 + κ0)
∫ ρ

0

dρ′U1 +
∫ ρ

0

dρ′
∫ ρ′

0

dρ′′
dU1

dτ

− 1
2
∂2

sU0ρ
2 +

v1

2

∫ ρ

0

dρ′h(Φ0) +
v0

2

∫ ρ

0

dρ′h′(Φ0)Φ1 − 1
ε2

∫ ρ

0

dρ′Q(ρ, s, τ)
(6.59)

6.3.3 Solvability conditions

We impose now the solvability conditions for the inner problem, which are given
by ∫ ∞

−∞
(∂ρΦ0)ΩΦjdρ = 0, for j = 1, 2. (6.60)

From the first order solvability condition
∫∞
−∞(∂ρΦ0)ΩΦ1dρ = 0 we get

−(αv0 + κ0)I1 − λI2v0 = 0, (6.61)

which allows to determine U0 as

U0(s, τ) = A = −αI1

λI2
v0 − I1

λI2
κ0, (6.62)

where I1 and I2 are integral constants given by

I1 =
∫ ∞

−∞
dρ(∂ρΦ0)2 (6.63)

I2 = −
∫ ∞

−∞
dρḡ′(Φ0)(∂ρΦ0) = −

∫ ∞

−∞
dρ∂ρḡ(Φ0) = ḡ(1)− ḡ(−1). (6.64)

Imposing the solvability condition at second order
∫∞
−∞(∂ρΦ0)ΩΦ2dρ = 0, and

taking into account that Φ0, ∂ρΦ1, are odd in ρ, ∂ρΦ0, Φ1 even in ρ, ḡ(φ), g′′(φ),



130
CHAPTER 6. SHARP-INTERFACE PROJECTION OF A FLUCTUATING

PHASE-FIELD MODEL

f ′′′(φ), h(φ) are odd in φ (
∫ ρ

0
dρh(φ) is even in φ) and that ḡ′(φ) is even in φ, we

obtain

D(s, τ) = −(αv1 + κ1)
I1

λI2
+ v0

I3

2I2
+

I4

2I2
+

αI5

λI2
− ε−3/2 Z(s, τ)

λI2
, (6.65)

where the integral constants I3,I4 and I5 are defined by

I3 =
∫ ∞

−∞
dρ (∂ρΦ0) ḡ′(Φ0)

∫ ρ

0

dρ′h(Φ0) (6.66)

I4 =
dU0

dτ

∫ ∞

−∞
dρ (∂ρΦ0)ḡ′(φ0)ρ2 (6.67)

I5 =
∫ ∞

−∞
dρ (∂ρΦ0)

dΦ1

dτ
, (6.68)

and Z is a stochastic term given by

Z(s, τ) =
∫ ∞

−∞
dρ (∂ρΦ0) H(ρ, s, τ), (6.69)

whose statistical properties are given by

〈Z(s, τ)Z(s′, τ ′)〉 = 2I1σ
2
φδ(s− s′)δ(τ − τ ′). (6.70)

In the outer region, the stochastic term Z gets an extra
√

ε factor coming from the
un-scaling of the time delta

√
εz(s, t) = Z(s, τ). (6.71)

6.3.4 Asymptotic matching of the inner and outer solutions

Expanding in ε the fields, velocities and curvatures, and introducing the expansions
into Eqs. 6.25,6.26 we get the inner equations at each order. Following the classical
sharp-interface procedure [Almgren99], the solutions should match with those of
the outer equations order by order. For the phase field, direct matching with the
outer φi solutions provides the boundary conditions for the Φi terms of the inner
expansion. However, to match the diffusion field in the presence of fluctuations,
we have to employ an auxiliary matching function defined in both regions as

χ(r, s, t) = u(r, s, t)−
∫ r

0

dr′qr(r′, s′, t) (6.72)

X(ρ, s, τ) = U(ρ, s, τ)−
∫ ρ

0

dρ′Qρ(ρ′, s, τ), (6.73)

which is smooth up to order ε2 in the matching region rM .
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Explicitely, if X is asymptotically expanded for ρ → ±∞ as

X ∼ T + S ρ + R ρ2 + O(ρ3), (6.74)

and the outer matching function χ is expanded in Taylor around r = 0± by

χ ≈ χ(0±) + ∂rχ(0±) · r +
1
2
∂2

rχ(0±) · r2 + O(r3), (6.75)

the different terms can be related to those of the Taylor expansion of χ at r → 0±

to obtain the relations

T = χ(0±) (6.76)
S = ε∂rχ(0±) (6.77)

R =
ε2

2
∂2

rχ(0±). (6.78)

These terms are then expanded in powers of ε to complete the matching at each
order in ε.

Using the expression for the asymptotic expansion of an integral

lim
ρ→±∞

∫ ρ

0

dρ′ϕ(ρ′) = ϕ(±∞) · ρ + J±, (6.79)

where the integration constant J± is given by

J± =
∫ ±∞

0

dρ[ϕ(ρ)− ϕ(±∞)], (6.80)

we can expand asymptotically for ρ → ∞ the obtained expressions for the inner
solutions U0, U1 and U2 Eqs. 6.52, 6.56 and 6.59 to get

Zero Order:

At zero order we do not have any dependence in ρ and U0 remains unchanged

U0(s, τ) = −αI1

λI2
v0 − I1

λI2
κ0. (6.81)

First Order:

U1 ≈ 1
2

dU0

dτ
ρ2 +

[
U0(s, τ) +

v0

2
h(Φ0(ρ → ±∞))

]
ρ + D +

v0

2
J±1 (6.82)

where

J±1 =
∫ ±∞

0

dρ

[
h(Φ0(ρ))− h(Φ0(ρ → ±∞))

]
, (6.83)

which is a finite integral because the integrand vanishes at ρ → ±∞. This assertion
can be checked by noting that h satisfies h(±1) = ±1 and Φ0(ρ → ±∞) = ±1.
Choosing h(Φ(ρ)) to be odd in φ, and noting that Φ0 is odd in ρ, we have

J1 = J+
1 = J−1 . (6.84)
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Second Order:

U2 ≈ F + Eρ− (v0 + κ0)
∫ ρ

0

dρ′
dU1

dτ
+

∫ ρ

0

dρ′
∫ ρ′

0

dρ′′
dU1

dτ

− 1
2
∂2

sU0ρ
2 −

∫ ρ

0

dρ′
∫ ρ′

0

dρ′′h′(Φ0)
dΦ1

dτ

+
v0

2
J±2 +

v1

2
J1 +

v1

2
h(Φ0(ρ → ±∞))ρ +

∫ ρ

0

dρ′Qρ(ρ, s, t).

(6.85)

where
J±2 =

∫ ρ

0

dρ′h′(Φ0)Φ1, (6.86)

and we have used that Φ1(ρ → ±∞) = 0 from condition Eq. 6.50. By inserting the
asymptotic expressions of U0, U1 and U2 Eqs. 6.81, 6.82 and 6.85 into Eq. 6.74, we
can construct the far field expansion of the matching function X and perform the
matching with the outer function χ in Eq. 6.75.

Imposing the third matching condition Eq. 6.78 at first order, we determine
that

dU0

dτ
= 0, (6.87)

and using the relation Eq. 6.55, it brings to

dΦ1

dτ
= 0, (6.88)

so the integral constants I4 and I5 defined in Eqs. 6.67, 6.68 are zero

I4 = I5 = 0. (6.89)

From the two first orders of the matching condition Eq. 6.76, we get a first order
expression for the outer interfacial temperature

u(0±) = − I1

λI2
(αv + κ) +

εv0

2
(
I3

I2
+ J1)− z(s, t)

λI2
+ O(ε2), (6.90)

where z(s, t) is a stochastic term whose statistical properties are given by

〈z(s, t)z(s′, t′)〉 = 2I1σ
2
φδ(s− s′)δ(t− t′). (6.91)

Note that as a consequence of choosing h(φ) as an odd function of φ, we have
J+

1 = J−1 and Eq.6.90 satisfies temperature continuity at the interface up to first
order in ε. The calculation is completed by using the two first orders of the second
matching conditions Eq. 6.77, from which we find a conservation equation to first
order in ε,

v = v0 + εv1 = [∂ru]−+ − [qr]−+ + O(ε2), (6.92)

where the stochastic current qρ accounts for a conserved stochastic heat current at
the interface.
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6.4 Determination of the model parameters

As a main result of this chapter, the sharp-interface projection of the stochastic
phase field Eqs. 6.3-6.7 is given by the diffusion Eq. 6.24, supplemented with two
moving boundary conditions at the interface: the conservation condition Eq. 6.92,
and the Gibbs-Thomson Eq. 6.90, where a new projected interfacial noise appears
with correlation given by Eq. 6.91. Whereas the general lines of the calculation
follow the standard sharp interface asymptotics, we have included along the proce-
dure the fluctuating terms, which have been projected in the weak noise limit. In
that sense, this calculation is similar to the projection of front dynamics performed
in Ref. [Rocco02]. Indeed, projected interfacial noise appearing in Eq. 6.90 is the
analogous counterpart of the noise term of the projected eikonal front equation of
Ref. [Rocco02].

The noises considered in this work are intended to account for both external
and internal sources of fluctuations. Nevertheless it is worth pointing out that the
resulting stochastic sharp interface equations are similar to those postulated in the
Langevin formulation of solidification due to Karma [Karma93b, Karma93c] (see
also Ref. [Cherepanova76]), which was constructed to obey equilibrium statistics.
This opens the possibility of using the results above to provide generic (not nec-
essarily variational) phase-field models with the correct equilibrium fluctuations,
without using the fluctuation dissipation theorem for its formulation.

Pure substances

To illustrate that, let us consider the Langevin equations for the solidification of
a undercooled pure substance [Karma93b, Karma93c] scaled with l̃ = D̃/ṽp and
γ̃ = l̃2/D̃

∂tusi = ∇2usi −∇ · qsi(r, t) (6.93)
vint = [∂rusi]−+ − [qr

si]
−
+ (6.94)

uL,int
si = −dT

0 κ− βT v + θ(r, t) , (6.95)

where dT
0 = d0/(Lv/c) = σ̃TM c

L2
v l̃

is the reduced thermal capillary length and βT =
c/µ̃Lv where µ̃ is the reduced thermal kinetic coefficient. The fluctuating terms
qsi and θ have correlations given by

〈qi
si(r, t)q

j
si(r

′, t′)〉 =
2KBT 2

Mc

L2
v l̃d

δijδ(r− r′)δ(t− t′) (6.96)

〈θ(s, t)θ(s′, t′)〉 =
2KBT 2

McβT

L2
v l̃d

δ(s− s′)δ(t− t′). (6.97)

The Gibbs-Thomson equation Eq. 6.95 can be compared with Eq. 6.90 and the heat
conservation condition Eq. 6.94 with Eq. 6.92. This comparison allows to determine
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the phase-field parameters in terms of physical and substance parameters

λ =
I1

I2dT
0

α =
βT

dT
0

+
ε

2dT
0

(
I3

I2
+ J1

)

σ2
u =

KBT 2
Mc

L2
v l̃d

(6.98)

σ2
φ =

I1KBT 2
M c βT

(dT
0 )2L2

v l̃d
=

βT I1

(dT
0 )2

σ2
u.

The first relation is obtained from the asymptotic matching and recovers the defi-
nition of λ in the formulation of the model. The second one determines the value
of the parameter α (or equivalently, τ), defined by Eq. 6.2 in terms of the physical
parameters of the sharp-interface problem. The last two relations determine the
intensities of the phase-field noises which are required to recover the stochastic
sharp-interface equations Eqs. 6.93, 6.94.

Symmetric alloys

As the model can be used for both pure substances and symmetric alloys, we
can also compare the sharp-interface projection of the model with the Langevin
equations corresponding to the solutal case. For the reduced concentration u =
c−c∞
∆c0

, these equations are given by the dimensionless set of equations

∂tusi = ∇2usi −∇ · jsi(r, t) , (6.99)
vint = [∂rusi]−+ − [jr

si]
−
+ (6.100)

uL,int
si = −d̂0κ− β̂v + ν(r, t) (6.101)

uS,int
si = uL,int

si − 1 , (6.102)

where d̂0 = dc
0/∆c0 = d0/mL = σ̃TM

LvmL∆c0 l̃
is the scaled reduced chemical capillary

length, σ̃ the interfacial surface energy and

β̂ =
β

∆c0
=

l̃

γ̃µ̃mL∆c0
(6.103)

is the (scaled) reduced chemical kinetic coefficient , being µ̃ the interface mobility.
The correlations of the fluctuations are now

〈ji
si(r, t)j

j
si(r

′, t′)〉 =
2c0

Lvm

N0∆c2
0 l̃

d
δijδ(r− r′)δ(t− t′) , (6.104)

〈ν(s, t)ν(s′, t′)〉 =
2KBT 2

M β̂

LvmL∆c0 l̃d
δ(s− s′)δ(t− t′), (6.105)
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By comparing Eqs. 6.100 and 6.102 with the sharp-interface projection of the phase-
field model Eqs. 6.92 and 6.90, we obtain the values for the phase-field parameters

λ =
I1

I2

1

d̂0

(6.106)

α =
β̂

d̂0

+
ε

2d̂0

(
I3

I2
+ J1

)
(6.107)

σ2
u =

c0
Lvm

N0(∆c0)2 l̃d
(6.108)

σ2
φ =

KBT 2
M β̂I1

d̂2
0LvmL∆c0 l̃d

=
β̂I1

d̂2
0

σ2
u. (6.109)

6.5 Power spectrum of a stationary flat interface

As a test of our results, we perform 2D phase-field simulations to find the power
spectrum of the interfacial fluctuations of a solid-liquid stationary flat interface. In-
troducing the Fourier transform of the interface position ξ(r, t) as ξk(t) =

∫
dk ξ(r, t) e−ikr,

the power spectrum of a flat stationary interface in scaled variables is given by

S(k) = 〈ξkξ−k〉 =
∫

dk′

2π
〈ξkξk′〉 =

KBTM

γ̃

1
k2

, (6.110)

where γ̃ = l̃dL2
vd0

TM c is the scaled interfacial surface energy. We perform 2D simu-
lations of the model Eqs. 6.3, 6.4 scaling spaces and times with l̃ = 10−8 m and
γ̃ = 9 × 10−10 s respectively. The functions f, g have been chosen to be h(φ) = φ
and ḡ′(φ) = (1−φ2)2 so that the model does not have a variational structure. The
substance parameters are given by d0 = 0.2817, β = 3.0331 and σ2

u = 0.001432,
which correspond to the values of the pure SCN in the d = 3 case. For this choice,
and using Eqs. 6.98, the phase-field parameters take the values λ = 3.13, α = 10.76
and σ2

φ = 0.05158. The interface thickness is taken to be ε = 0.3. The simulations
have been implemented with a finite differences scheme on a 512× 50 lattice with
∆y = ∆x = 0.2 and ∆t = 0.005. Fluctuations have been included by adding in
the equations independent zero-mean Gaussian random variables at each time step
and at each grid point. We use the initial conditions φ(0) = − tanh( x

ε
√

2
), u(0) = 0,

and non-flux and periodic boundary conditions have been imposed in the x and
y directions respectively. The power spectrum statistics has been obtained as a
time average among the last 3 × 106 time steps in a long simulation of 3.5 × 106

steps. The dashed line in Fig. 6.1 reflects the theoretical result given by Eq. 6.110,
whereas the solid line describes the stationary power spectrum calculated from the
phase-field simulations. As it can be seen, good agreement is found between theo-
retical and numerical results. The vertical dashed line in the figure represents the
wavelength associated to the effective thickness of the interface, and determines
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Figure 6.1: Comparison between the theoretical power spectrum of the stationary in-
terface and the results from the phase-field simulations. Note that the incorporation of
the phase-field (non-conserved) noise is necessary to recover the theoretical prediction.

qualitatively the breakdown of the phase-field description. The dot-dashed line
in Figure 6.1 describes the power spectrum obtained by a phase-field simulations
with only the conserved noise. This curve shows that, in general, the non-conserved
noise is necessary to properly account for the correct equilibrium fluctuations of the
system. Only in systems with a small attachment kinetics [Karma99], the noise in
the diffusion equation becomes more relevant than the phase-field non-conserved
noise and the power spectrum can be described without the contribution of the
phase-field fluctuations.

6.6 Discussion

In this chapter, we have proposed an asymptotic procedure to obtain the sharp-
interface projection of a stochastic phase-field model. This method can be used
in both variational and non-variational phase-field formulations and permits to
account for either internal or external fluctuations. Provided that the technique
does not use the Fluctuation-Dissipation relation, it is therefore capable to account
for the introduction of noise sources which do not obey equilibrium statistics. We
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have tested the validity of our results by simulating the phase-field model to predict
the interfacial correlations of a stationary planar interface.

The procedure might be used in more complex situations in which the pres-
ence of fluctuations is relevant, such as the apparition of dendritic sidebranching.
We will devote Chapter 8 to another important problem in pattern formation,
the wavelength selection during initial redistribution transients in the directional
solidification of dilute alloys. In this case, our procedure will permit to perform
quantitative simulations including fluctuations and properly describing the initial
transient stages.
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Chapter 7

Phase-field simulations of
transient stages in alloy
solidification

In this chapter, we present quantitative phase-field simulations of the early transient
stages in a directional solidification process. To this extent, we will quantitatively
compare the phase-field results with the analytical techniques described in Chapter
4. We will consider the three different non-variational phase-field models presented
in Section 5.3 for one-sided, symmetric, and symmetric with constant miscibility
gap systems. The substance and experimental parameters used in the simulations
correspond to different realistic alloy systems used in several directional solidi-
fication experiments such as CBr4-C2Cl6 [Faivre92, Akamatsu98, Akamatsu97],
SCN-C152 [Losert98a, Losert98b, Losert98c], SCN-ACE [Han94a, Eshelman88a,
Eshelman88b, Trivedi85], or 8CB [Figueiredo96, Figueiredo93, Oswald87, Simon88].
The first quantitative benchmark of the phase-field results is to compare the front
position during the initial redistribution transient with the analytical prediction
based in the Green’s function techniques presented in Section 4.1.1. The Warren-
Langer approximation presented in Section 4.2.1 will be used as reference for the
comparison of the phase-field evolution of the concentration profiles during the ini-
tial transients. The transient dispersion relation derived in Section 4.2.1 from a
linear stability analysis of the interface instability will be used as a benchmark for
the phase-field evolution of the Fourier modes in the absence of noise. Simulation
results for each of these models will be presented in Sections 7.2 (one-sided model),
7.3 (symmetric model) and 7.2 (symmetric model with constant gap).
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7.1 Numerical simulation of the model equations

7.1.1 Selection of the model parameters

The sharp-interface limit performed in the last chapter determines the value of
the deterministic (λ, α) and stochastic (σu, σφ) phase-field parameters in terms of
physical properties of the system. For the sake of clarity, we shall distinguish the
physical properties of the system in two different groups: The first group refers
to the substance parameters, consisting in thermophysical properties of the system
such as the melting temperature of the pure system TA

M , the latent heat per unit
volume Lv or the kinetic coefficient µ̃. The values of these parameters for pure
and alloy systems used in the simulations presented in this chapter can be found
in Appendix A. The second class of parameters are the experimental parameters,
which characterize the directional solidification set-up, and are given by the value
of the external thermal gradient G̃, the solute concentration of the melt sample c∞,
and the pulling velocity of the sample frame with respect to the gradient frame ṽp.

Assuming that we know all the substance and experimental parameters for
a given directional solidification experiment, it is possible to determine all the
phase-field parameters by using the relations Eqs. 6.106 - 6.109. Once the model
parameters have been determined, one chooses the value of the interface thickness
ε in order to perform the numerical simulation of the equations. As the value of
the model parameters has been obtained by assuming ε → 0, it is necessary to
choose small values of ε in order to observe a good convergence of the phase-field
dynamics to the Sharp-Interface prediction. For a given finite value of the interface
thickness W̃ , the phase-field simulations will only be reliable within the order at
which the Sharp-Interface limit has been performed.

In order to understand the importance of the value of W , we first give a
brief review of the main historical evolution of the phase-field simulations. The
first Sharp-Interface asymptotic analysis was done for the pure substance model
[Langer86, Caginalp89], and it was performed at first order in the interface thick-
ness W̃ . The obtained relations for the parameters were given by

λ̃ =
I1

I2d̃0

(7.1)

α̃ =
β̃

d̃0

, (7.2)

where λ̃ and α̃ have dimensions of [L−1] and [TL−2] respectively and we have used
the notation introduced in Chapter 6.

As the last equations are valid in the limit W̃ → 0, the main physical restriction
on the interface thickness W̃ is that it has to be smaller than any relevant length
scale in the problem. As in a solidification problem the smallest relevant scale is
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the capillarity length d̃0, the most restrictive condition for W̃ is then given by

W̃

d̃0

¿ 1. (7.3)

Besides the last relation, there are other less restrictive conditions to be satisfied
by W̃ : For instance, we also need to choose a front thickness smaller than the radii
of curvature of the front deformations W̃ ¿ 1

κ̃ , and obviously smaller than the
diffusion length W̃ ¿ l̃.

The condition Eq. 7.3 expresses the physical requirement of the so called clas-
sical Sharp-Interface limit, and is responsible of the main problem of the early
first-order phase-field formulations. As pointed out by some authors (see for in-
stance [Wheeler93], [Wang96] and [Kobayashi93a] for the computation dendritic
structures), quantitative phase-field simulations required a large amount of com-
putational effort. The reason for that can be already explained by considering a
1D simulation of the model equations: On one hand, the simulation grid size ∆z̃
must be taken to be smaller than W̃ in order to resolve the shape the phase-field
kink. As W̃ must be smaller than d̃0 for convergence reasons, the grid size ∆z̃
must be therefore smaller than d̃0. On the other hand, the size of the simulation
domain L̃z needs to be of the order of the typical microstructures of the solidi-
fication front. These patterns typically appear at the diffusion scale l̃, which is
at least two or three orders of magnitude larger than d̃0, so we must impose the
condition L̃z À ∆z̃. For instance, in a typical experiment with d̃0/l̃ = 10−3, a
fixed-grid simulation scheme with Nz simulation points (L̃z = Nz∆z̃) will need at
least Nz > 1000 simulation points. It turns then clear than extending the simu-
lations to two and three dimensions will demand a huge amount of computational
power.

Besides the large number of simulation points, requiring a small ∆z̃ also im-
poses important restrictions in the simulation time-step of the simulations. In
an explicit time-iteration algorithm, the numerical stability requires a simulation
time-step ∆t̃ < 2D̃/(∆z̃)2 [Press92], which results in very long simulation times.
This situation can be slightly improved by using implicit schemes which are more
computationally stable and therefore not so restrictive in the value of the time-
step. Another computational way of reducing the simulation time was proposed
by Provatas et al. [Provatas98] and consisted in using an adaptive mesh, finite-
elements method to solve numerically the phase-field equations. This procedure
allowed to have more points around the interface and concentrate most of the com-
putational power in solving the front dynamics instead spending time in calculating
the fields in the bulk regions. In fact, adaptive finite-differences algorithms were
already used by Braun and Murray in Ref. [Braun97]. Level-set techniques have
been also used with the aim of reducing the computational time [Kim00]. Follow-
ing this philosophy of decreasing the computational effort, the so-called mesh-less
numerical techniques where also proposed: Plapp and Karma [Plapp00] proposed a
Monte-Carlo simulation to calculate the diffusion field far from the solid-liquid in-
terface, and calculated the phase-field equations only near the interface. Although
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this procedure reduces the computational power dedicated to solve the far-field
region, it requires rather complicated particle-averaging boundary conditions in
order to match the phase-field solutions with the Monte-Carlo results and turns to
be impractical. Beńıtez and Goldenfeld [Beńıtez03a] developed a hybrid method
which simulated the model equations by writing them in a integral form and solv-
ing the multi-dimensional integrals by using importance-sampling, Monte-Carlo
method with quasi-random sequences. Quasi-random sequences are based on low-
discrepancy sequences [Niederreiter98] and present a better convergence than the
classical pseudo-random sequences.

All these computational approaches, however, indicate that an improvement in
the computational method do not necessary leads to an equivalent enhancement of
the phase-field simulation results. In fact, the best way of increasing the compu-
tational efficiency of the phase-field simulations is to improve the accuracy of the
sharp-interface limit. This can be done in two different ways, which turned to be
equivalent:

- The first way was proposed by Karma and Rappel in Refs. [Karma96b,
Karma98] and supposed an important gain in computation power. By assum-
ing that the important length scales of the problem are the interface curvature
and the diffusion length rather than the capillary length, they proposed an
alternative Sharp-Interface asymptotic expansion in terms of a reduced inter-
face thickness p = W̃/l̃ (the interface Péclet number) which was considered
to be small (p ¿ 1). The new asymptotic restriction was given by

W̃

l̃
¿ 1, (7.4)

and replaced the most restrictive requirement of the classical limit W̃/d̃0 ¿ 1,
thus providing more flexibility in the simulations. This approach was called
thin-interface limit , and its main benefit remains in the fact that the limit
p ¿ 1 is taken while maintaining constant the value of W̃/d̃0, therefore
eliminating the hard restriction on ∆z̃ that we have commented before.

- The second way of eliminating the hard restriction on W̃/d̃0 is to perform
the classical Sharp-Interface limit up to second order in ε as we did in the last
chapter. This procedure yields to the same relations than the thin-interface
procedure at first order, thus confirming that the capillary length restriction
can be avoided.

The main relation between these two approaches was pointed out by Karma and
Rappel [Karma96b], and is based in the fact that both asymptotic procedures in-
troduce a term which acts as a non-constant temperature correction in the interface
region. In the classical Sharp-Interface limit, this term appears at second order in
ε and corresponds to the εv0

2 ( I3
I2

+J1) term in Eq. 6.90. If the classical asymptotics
is performed only up to first-order, the diffusion field is constant across the diffuse
interface and imposes the restrictive condition in the value of W̃ .
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This can be explained by noting that if the u field is constant across the in-
terface, its variation δu within the distance W̃ should be negligibly small. As the
variation of u occurs in the scale of the diffusion length l̃, its gradient is propor-
tional to l̃−1 and δu is proportional to W̃/l̃. By comparing δu with the temperature
variations due to kinetic effects β̃ṽ, we arrive to the condition

W̃

l̃
¿ β̃ṽ (7.5)

which can be reformulated using Eqs. 7.1 and 7.2 as

W̃

d̃0

¿ α̃D̃, (7.6)

which is an explicit version of the restriction Eq. 7.3.

7.2 Directional solidification of a one-sided dilute
binary alloy

7.2.1 Dimensionless equations

The equations describing the directional solidification of a one-sided alloy (D̃S = 0,
D̃L 6= 0) can be obtained from the non-symmetric model described in section 5.3.1
(cf. Eqs. 5.138, 5.84) by choosing the function q(φ) in such a way that its value
ranges from zero at the solid to D̃L at the liquid phase. The phase-field equations
are then given by

∂t̃cB = D̃L∇̃q(φ)∇̃cB + (1− k)D̃L∇̃
[

cBq(φ)∇̃h(φ)
[1 + k − (1− k)h]

]

+ aW̃ (1− k)∇̃
[

cB

[1 + k − (1− k)h(φ)]
∂φ

∂t̃

∇̃φ

|∇̃φ|

]

τ̃ ∂t̃φ = W̃ 2∇̃2φ− ∂φf(φ)

− I1

2(1− k)
W̃

ˆ̃
d0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)h]

− 1 +
(1− k)

l̃T
z̃(t̃)

]
,

(7.7)

where ˆ̃
d0 is given by

ˆ̃
d0 =

σ̃TA
M

LvmL∆c0
. (7.8)

In the last model, the extension to directional solidification has been performed
by using the arguments presented in section 5.2. Scaling space and times with
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the diffusion length l̃ = ṽp/D̃L and the diffusion time γ̃ = l̃2/D̃L respectively, the
dimensionless version of the equations is given by

∂tcB = ∇q(φ)∇cB + (1− k)∇
[

cBq(φ)∇h(φ)
[1 + k − (1− k)h]

]

+ aε(1− k)∇
[

cB

[1 + k − (1− k)h(φ)]
∂φ

∂t

∇φ

|∇φ|
]

τ∂tφ = ε2∇2φ− ∂φf(φ)

− I1

2(1− k)
ε

d̂0

∂φg

[
2cB

c0,L
B [1 + k − (1− k)h]

− 1 +
(1− k)

lT
z(t)

]
,

(7.9)

where ε = W̃/l̃, d̂0 = ˆ̃
d0/l̃ and τ = τ̃ /γ̃.

Following the notation introduced in Chapter 6, we use the dimensionless param-
eters

λ =
15
16

I1

d̂0

, (7.10)

α =
τ

ε2
, (7.11)

and the function
ḡ(φ) =

8
15

g(φ), (7.12)

and write the model equations in its final form

∂tcB = ∇q(φ)∇cB + (1− k)∇
[

cBq(φ)∇h(φ)
[1 + k − (1− k)h]

]
+

aε(1− k)∇
[

cB

[1 + k − (1− k)h(φ)]
∂φ

∂t

∇φ

|∇φ|
]

αε2∂tφ = ε2∇2φ− ∂φf(φ)

− ε
λ

(1− k)
∂φḡ

[
2cB

c0,L
B [1 + k − (1− k)h]

− 1 +
(1− k)

lT
z(t)

]
.

(7.13)

For all the simulations presented in this chapter, the potentials and interpolation
functions are chosen to be given by

f(φ) = −1
2
φ2 +

1
4
φ4 (7.14)

ḡ(φ) = φ− 2
3
φ3 +

1
5
φ5 (7.15)

h(φ) = φ. (7.16)

In the case of non-symmetric models, we will take

q(φ) =
(1− φ)

[1 + k − (1− k)h(φ)]
, (7.17)
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and the anti-trapping constant a is taken to be

a =
√

2 (normal gap models), (7.18)
a = 0 (constant gap models). (7.19)

7.2.2 Front position during the transient: Convergence to
the Sharp-Interface

By performing 1D simulations of the model defined by Eqs. 7.13, we determine
the position of the front during the initial redistribution transient. The phase-
field results are then compared with both the Green’s function prediction and with
the Warren-Langer results. This quantitative comparison will be performed for
different values of the convergence parameter ε, and will allow to determine the
value of the interface thickness if we want to obtain quantitative simulation re-
sults. The simulations will be performed for different alloy systems and in different
experimental regimes.

CBr4-C2Cl6

The first set of simulations are performed for the organic alloy CBr4-C2Cl6. The
substance parameters for this substance are listed in Appendix A, Section A.2.1.
The experimental values taken for the simulations are given by ṽp = 10−5 m/s,
G̃ = 5.6 × 103 K/m and c∞ = 0.03 mol, and the relevant parameters for the

simulations are ˆ̃
d0 = 1.45 × 10−7 m and l̃T = 10−4 m. The value of the interface

mobility in this simulations is µ̃ = 0.1503 m/ K s (β̂ = 1.18 × 10−4, for β̂ =
l̃/(γ̃µ̃ml∆c0)). The diffusion length is l̃ = D̃L/ṽp = 5 × 10−5 m and the diffusion
time γ̃ = D̃L/ṽ2

p = 5s, so the scaled thermal length and scaled capillary length

are lT = l̃T /l̃ = 2, d̂0 = ˆ̃
d0/l̃ = 0.0029 respectively. We have simulated the

phase-field equations for different values of the interface thickness ε = W̃/l̃ ∈
[0.08, 0.04, 0.02, 0.01, 0.005] (W̃/

ˆ̃
d0 ∈ [27.58, 13.79, 6.89, 3.44, 1.72]). The equations

have been discretized in a Nz × Ny = 6000 × 2 rectangular lattice with different
dimensionless grid sizes for each interface thickness ∆y = ∆ỹ/l̃ = ∆z = ∆z̃/l̃ ∈
[0.064, 0.032, 0.016, 0.008, 0.004]. For this choice of parameters, the ratio between
the interface thickness and the grid size is given by ∆z̃/W̃ = 0.8, so as can be
observed in Fig. 7.1, the kink solution for the phase-field is well resolved. Finally,
the equations have been iterated in time by using an Euler explicit iteration scheme
with dimensionless time-step ∆t = ∆t̃/γ̃ ∈ [2×10−4, 5×10−5, 1.25×10−5, 3.125×
10−6, 7.8125×10−7], which keep the ratio ∆t/(∆x)2 = 0.15625. In Fig. 7.2 we have
a comparison between the phase-field results and the Green’s function profiles in the
case of small kinetics (β̂ = 1.18× 10−4) and for the different values of the interface
thickness referenced before. The Sharp-Interface curves have been calculated by
integrating the integral equation for the one-sided system Eq. introduced in Section
4.1.3. The initial conditions for the concentration field in both the phase-field and
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Figure 7.1: Profile of the phase-field kink solution and resolution and position of the
simulation mesh points for ∆z̃/W̃ = 0.8.

Green’s function simulations are cS(z, t = 0) = kc∞ and cL(z, t = 0) = c∞. It can
be observed that the phase-field results converges to the sharp-interface prediction
as the interface thickness ε decreases. In the simulations, the value of ε = W/l is
always small (interface thickness much smaller that the diffusion length), whereas
the ratio W/d̂0 is reasonably near to the unity (interface thickness near the capillary
length).

Generic substance

Figure 7.3 shows the convergence for a substance with segregation constant k =
0.15 and l̃T /l̃ = 3.125, ˆ̃

d0/l̃ = 0.06923. We have now plotted, in addition to the
Green’s function result, the profile obtained from the simulation of the Warren-
Langer equations Eqs. 4.77 introduced in Chap. 4.2.1. The interface attachment
has been supposed to be instantaneous µ̃ = ∞ (kinetic coefficient β̂ = 0). The
phase-field simulation has been performed for ε = 0.125 (W/d̂0 = 1.8053) ∆z =
∆y = 0.4, ∆t = 0.008. Note that now the ratio ∆z̃/W̃ = 0.4 is smaller than in
the previous case, so the kink is better resolved. As depicted in the inset graph,
the differences between theoretical and simulation curves are only appreciable at
smaller scales.
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Figure 7.2: Convergence of the phase-field simulations to the Sharp-Interface predic-
tion for the front position during the transient. The physical parameters chosen in the
simulations correspond to a diluted CBr2-C2Cl6 solution.

Different kinetic coefficients

In Fig. 7.4 we present a comparison between the phase-field and Sharp-Interface
results in the case of having small (β̂ = 1.18 × 10−4) and large (β̂ = 0.0805)
kinetic effects. The values of the interface mobility are taken in the collision-
limited and diffusion-limited regimes (cf. Section 2.1.4 and Ref. [Aziz94]) are given
by µ̃ = 0.1503 m/ K s and 2.2 × 10−4 m/ K s respectively, corresponding to
the dimensionless kinetic coefficients β̂ = 1.18 × 10−4 and β̂ = 0.0805, where
β̂ = l̃/(γ̃µ̃ml∆c0). The phase-field parameters correspond to the CBr2-C2Cl6
system performed for ε = 0.005 (W̃/

ˆ̃
d0 = 1.724), and the phase-field results present

a good quantitative agreement with the Green’s function prediction.

Different segregation constants

Figure 7.5 plots ξ(t) for two systems with l̃T /l̃ = 3.125, ˆ̃
d0/l̃ = 0.06923 but dif-

ferent values of the partition constant k = 0.5 and k = 0.75. The computational
parameters are ε = 0.125 (W/d̂0 = 1.8053) ∆z = ∆y = 0.4, ∆t = 0.008 (ratio
∆z̃/W̃ = 0.4).
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Figure 7.3: Phase-field, Warren-Langer and Sharp-Interface curves for l̃T /l̃ = 3.125 in
a binary alloy with segregation constant k = 0.15.

7.2.3 Concentration profiles

Fig. 7.6 plots the concentration profiles for the CBr2-C2Cl6 phase-field simula-
tions at six different times t = 0.25, 1.25, 2.5, 5, 7.5 and 10 during the initial so-
lute redistribution transient. The simulations are performed here for ε = 0.005
(W/d̂0 = 1.724), and are compared with the Warren-Langer’s ansatz Eq. 4.72.
Note that the concentration at the solid side of the interface varies from c∞ = 0.03
to c∞/k = 0.04 during the initial transient (k = 0.75), and that the dimensionless
size of the boundary layer in the stationary state is of the order of the dimensionless
diffusion length l = l̃/l̃ = 1.

7.2.4 Transient dispersion relation

The next step is to perform 2D simulations of the equations in order to observe
if the morphological stability of the interface in the phase-field simulations agrees
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Figure 7.4: Comparison of the transient front positions for a CBr2-C2Cl6 one-sided alloy
and for two different values of the kinetic coefficient β̂ = 1.18× 10−4 and β̂ = 0.0805.

with the theoretical predictions formulated in Section 4.2.1. The phase-field simu-
lations are now performed in a rectangular lattice of size 2000×50. The parameters
are now taken for the case l̃T /l̃ = 3.125 and ˆ̃

d0/l̃ = 0.06923. In order to calculate
the transient dispersion relation from the phase-field simulations, the solid-liquid
interface is perturbed in the simulations at different times with a sinusoidal modu-
lation with a certain wavelength k̃l̃. For convenience reasons, the wavelength of the
sinusoidal perturbation is taken to be equal the size of the system in the transversal
direction, so the dimensionless wavelength of the perturbation is given by

kpert =
2π

Ny∆y
(7.20)

where Ny is the number of simulation points in the y direction, which in this sec-
tion is Ny = 50. Figure 7.8 depicts the form of an initially perturbed interface at
different times. As it can be observed, the amplitude of the perturbation decays
indicating that the perturbed wavelength is stable at this time. The linear ampli-
fication or decay of the amplitude of the perturbed mode allows to determine the
growth rate corresponding to the wavelength of the perturbation at this precise
time. The amplitude of the mode A(k, t) is calculated at each time by obtaining
the Discrete Fourier Transform of the implicit interface curve φ(z, y, t) = 0. As
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Figure 7.5: Phase-field and sharp-interface front position curves for two generic one-
sided alloys with l̃T /l̃ = 3.125 and different segregation constants k = 0.5, k = 0.75.

shown in the Figure 7.9, the growth of the mode is linear only during a certain
time after the perturbation. In the figure we can observe the evolution for a per-
turbation of wavelength k̃l̃ = 10.053 introduced at different times during the intial
transient t = 0.3125, 1.5625, 9.375, 15.625 and 21.875. In these simulations, we have
used a generic substance with l̃T /l̃ = 3.125, and we have chosen a scaled interface
thickness of ε = 0.03125. The sign of the dA(k,t)

dt determines if the perturbed wave-
length is stable (dA(k,t)

dt < 0) or unstable (dA(k,t)
dt > 0) at the time at which the

front has been perturbed. After this linear growth regime, the interface enters in a
non-linear stage where the amplitude of other wavelengths will eventually be com-
parable with the inverse of the perturbation wavelength. This procedure permits
to calculate the transient growth rate ω(k, t) for a given set of parameters and
compare the phase-field result with the theoretical prediction of the transient dis-
persion relation derived in Sec. 4.2.1. Theoretical and simulation curves for ω(k, t)
are shown in Figs. 7.10, 7.11. In both cases, the wavelength of the perturbation
is k̃l̃ = 10.053 and the ratio l̃T /l̃ = 3.125. Both simulations have been performed
with ε = 0.03125, and the difference between the simulations is that in Figure 7.10
the segregation constant is k = 0.9 whereas in Fig. 7.11 we have k = 0.5.
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Figure 7.6: Comparison between the phase-field concentration profiles and the Warren-
Langer approximation profile Eq.4.72 at six different times t = 0.25, 1.25, 2.5, 5, 7.5 and
10 during the initial solute redistribution transient. The simulations correspond to the
one-sided CBr2-C2Cl6 as described in Sec. 7.2.3.

7.3 Directional solidification of a symmetric dilute
alloy

The symmetric model is appropriate to describe the solidification of liquid crystal
alloys. The model equations can be obtained from the non-symmetric model by
taking q = 1.

7.3.1 Dimensionless equations

In order to obtain the symmetric solutal model (D̃S = D̃L = D̃), we take q(φ) = 1
and a = 0 in the previous model and find

∂tcB = ∇2cB + (1− k)∇
[

cB∇h(φ)
[1 + k − (1− k)h]

]
.

αε2∂tφ = ε2∇2φ− ∂φf(φ)

− ε
λ

(1− k)
∂φḡ

[
2cB

c0,L
B [1 + k − (1− k)h]

− 1 +
(1− k)

lT
z(t)

]
.

(7.21)
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Figure 7.7: Profiles of the concentration and phase-field at six different times t =
0.25, 1.25, 2.5, 5, 7.5 and 10 during the initial transient. The profiles correspond to the
system described in Sec. 7.2.3.

7.3.2 Front position during the transient

In this section we use the parameters corresponding to the commercial 8CB liquid
crystal, which has been extensively used in directional solidification experiments
[Figueiredo96, Figueiredo93, Oswald87, Simon88]. The substance parameters for
this substance can be found in Appendix A, Section A.2.2. The experimental values
taken for the simulations are given by ṽp = 6× 10−5 m/s, G̃ = 2.3× 103 K/m and
c∞ = 0.012 mol.

The relevant parameters for the simulations are then ˆ̃
d0 = 2.696 × 10−7 m

and l̃T = 5.128 × 10−5 m. The interface mobility is given by µ̃ = 1.51 m/ K
s, and the values of the diffusion length and diffusion time are l̃ = D̃L/ṽp =
6.666 × 10−6 m and γ̃ = D̃L/ṽ2

p = 0.111s respectively. The model parameters

correspond to l̃T /l̃ = 7.692, ˆ̃
d0/l̃ = 0.04044, and the computational parameters are

ε = W̃/l̃ ∈ [0.15, 0.075, 0.00375] (W̃/
ˆ̃
d0 ∈ [3.709, 1.8545, 0.9272]). The equations

have been simulated in a 600 × 2 rectangular lattice with a dimensionless grid
size ∆y = ∆ỹ/l̃ = ∆z = ∆z̃/l̃ ∈ [0.12, 0.06, 0.03]. The dimensionless time-step is
∆t = ∆t̃/γ̃ ∈ [2.5×10−6, 6.7×10−4, 1.5×10−4]. Figure 7.12 shows the convergence
of this model for ε = 0.15, 0.075 and 0.00375 to the Sharp-Interface results which
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Figure 7.8: Dynamical evolution of a sinusoidal perturbation of the solidification front.
The curves correspond to the numerical linear stability analisis described in Section 7.2.4.

have been obtained by solving the integral equation for the symmetric case and
normal miscibility gap Eq. 4.68.

7.4 Directional solidification of symmetric alloys
with constant miscibility gap

This model is completely equivalent to the pure substance model and only be used
in symmetric alloy systems with segregation coefficients near the unity such as in
solutions of liquid crystals. The results presented in this section are presented in
Ref. [Beńıtez03b].

7.4.1 Dimensionless equations

The symmetric solutal model with constant gap is described in section 5.3.2 and
in its dimensionless form reads

αε2∂tφ = ε2∇2φ− ∂φf(φ)− ελ∂φḡ(u +
z

lT
)

∂tu = ∇2u +
1
2
∂th(φ).

(7.22)
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Figure 7.9: Time evolution of the amplitude of the Fourier mode of wavelength k̃l̃ =
10.053 when perturbing the interface at times t = 0.3125, 1.5625, 9.375, 15.625 and 21.875.

7.4.2 Front position during the transient

Figure 7.13 plots the convergence of the phase-field simulations to the Sharp-
Interface prediction made by solving the symmetric-constant gap boundary in-
tegral formulation Eq. 4.57. The interface thickness has been maintained constant
(W/d0 = 1.8053) and the convergence has been achieved by modifying the diffu-
sion and thermal lengths l, lT so that the value of ε decreases taking the values
ε = 0.5, 0.25, 0.125 maintaining unchanged the ratio lT /l = 12.5.

7.4.3 Transient dispersion relation

Using the same procedure as in Section 7.2.4, we evaluate the time evolution of
two different modes k̃l̃ = 2.5 and k̃l̃ = 1.25 in the symmetric model with constant
miscibility gap. The set of parameters is the same as in the previous case l̃T /l̃ =
12.5 and ε = 0.125, and the phase-field growth rate has been calculated at times t =
0, 6.25, 12.5, 18.75, 25, 31.125, 37.5, 50 and 62.5. The results are shown in Fig. 7.14
where it is shown that the phase-field simulations present a qualitative agreement
with the theoretical predictions.
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Figure 7.10: Time evolution of the growth rate of the wavelength k̃l̃ = 10.053 during
the initial transient. The system is a one-sided alloy and the simulation parameters are
l̃T /l̃ = 3.125 and ε = 0.03125, and the segregation constant of the alloys is k = 0.9. The
phase-field growth rate has been evaluated at times t = 0, 0.3125, 1.5625, 9.375, 15.625 and
21.875.
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Figure 7.11: Time evolution of the growth rate of the wavelength k̃l̃ = 10.053 dur-
ing the initial transient. The system is a generic one-sided alloy, and the simula-
tion parameters are l̃T /l̃ = 3.125 and ε = 0.03125, and the segregation constant
of the alloys is k = 0.5. The phase-field growth rate has been calculated at times
t = 0, 0.3125, 0.625, 1.5625, 2.5, 4.0625, 5.625, 9.375, 15.675 and 21.875.
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Figure 7.12: Sharp-interface convergence of the symmetric phase-field simulations of the
front position for the 8CB liquid crystal. The simulations have been performed with the
symmetric,normal gap model, and the parameters are described in Sec. 7.3.2.
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7.4. DIRECTIONAL SOLIDIFICATION OF SYMMETRIC ALLOYS WITH
CONSTANT MISCIBILITY GAP 157

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
t

−2.5

−2.25

−2

−1.75

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

ω(kl,t)

Phase Field (ε =0.125) kl=2.5
Dispersion Relation kl=2.5
Phase Field (ε =0.125) kl=1.25
Dispersion Relation kl=1.25

Figure 7.14: Time evolution of the growth rate of the wavelengths k̃l̃ = 2.5 and k̃l̃ = 1.25
in the symmetric model with constant miscibility gap.



158
CHAPTER 7. PHASE-FIELD SIMULATIONS OF TRANSIENT STAGES IN

ALLOY SOLIDIFICATION



Chapter 8

Stochastic phase-field
simulations of the
wavelength selection during
transient stages

8.1 Introduction

In the last chapter, we have shown that phase-field models provide a quantitative
description of the solidification process during early transient stages. It is spe-
cially important that the phase-field dynamics recovers quantitatively the sharp-
interface transient behavior, accounting for the correct non-steady growth rate for
the morphological deformations of the interface. On the other hand, a quantita-
tive method to include fluctuations in non-variational phase-field formulations has
been introduced in Chapter 6, which allows to perform simulations with the proper
thermodynamical fluctuations of the system.

The aim of the present chapter is to study the transient dynamics of the solid-
ification front in the presence of the correct thermodynamical fluctuations of the
system. As we have already seen, under certain conditions, the interface becomes
morphologically unstable under perturbations of a given wavelength, giving rise
to complex cellular or dendritic structures. Several experimental results indicate
that the selected final state depends on this loose of stability that happens during
early transient stages while the concentration boundary layer builds up. This mor-
phological destabilization process can be divided into four well defined stages: 1)
At the beginning of the solidification process, the planar interface is stable under
the microscopical perturbations produced by the internal thermodynamical fluctu-
ations of the system. 2) At a certain time, which we shall refer as the instability
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time, the growth rate of a certain wavelength becomes positive and the system
becomes unstable under perturbations of this type. Therefore, the internal noise
acts as an initiation mechanism for the morphological destabilization of the in-
terface. The instability time can be precisely determined by following the time
evolution of the interfacial spectrum. 3) After the instability time, the amplitude
of the unstable modes growth linearly with time. During this linear amplification
regime, the deformations are amplified by several orders of magnitude from the
initial microscopic perturbations, and all the Fourier modes growth independently.
4) The linear regime finishes when the amplitude of one of these modes become
comparable with its own wavelength. At this time, known as the crossover time
t̃0, the interface deformations are typically of the order of few microns and can be
observable with the help of a microscope. After this moment, the front begins a
coarsening process which dynamically selects the final steady cellular or dendritic
structure.

The three first stages happen at early times of the solidification process, and
in most cases the solute concentration profiles are not well developed. During the
linear regime, the front dynamics can be studied from a theoretical framework.
As we have studied in Section 4.2, Warren and Langer were the first in studying
analytically this linear noise amplification process. The first section of this chapter
Sec. 8.2 is devoted to compare the phase-field transient interfacial power spectrum
and compare it with the theoretical predictions of the Warren and Langer’s theory.

After the crossover time, the evolution of the front becomes non-linear, and the
morphological modes begin to interact one to each other. This regime is studied
by means of phase-field simulations in Section 8.3 of this chapter. In the non-
linear regime, the mode interactions become complex and the dynamics of the
whole system selects dynamically different values of the interfacial wavelength.
During this regime, the system presents a coarsening process between the initial
wavelength λ0 at the crossover time t0 and the final wavelength of the pattern λ1.
This crossover is studied for two different systems in Section 8.3.

As we will see, depending on the growth conditions and the thermophysical
properties of the system, the final steady pattern might be a cellular or a den-
dritic structure with a definite wavelength λ1. The first difference between cells
and dendrites is perhaps that dendrites present secondary instabilities in the form
of sidebranches, whereas cell solutions are similar to the Saffmann-Taylor fingers
observed in a Hele-Shaw cell. Dendrites, moreover, have a well-defined tip ra-
dius which is selected by means of the microscopic solvability theory introduced
in Section 1.2.1. The aim of Section 1.2.1 is to compare the results of phase-
field numerical experiments with real experimental data and theoretical predic-
tions of different aspects during the non-linear regime. In particular, we will study
the coarsening process of the cellular or array pattern from the crossover time t0
to the steady state of the system at which a well defined wavelength λ1 is se-
lected. This process has been studied experimentally in a quantitative way by
some authors [Trivedi84, Somboonsuk85, Trivedi85, Somboonsuk84, Eshelman88c,
Huang93, Han94b, Rios97, Losert98b, Ding96, Kauerauf01b, Kauerauf01a], and
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some of the experimental findings are compared with the numerical results ob-
tained from the phase-field model, as well as with recent theoretical descriptions
of the problem [Kurz81, Warren90, Ding97, Lu92, Hunt96, Losert96].

8.2 Noise amplification during the initial recoil
transient: The linear regime

8.2.1 Introduction

We next investigate the amplification of the fluctuations during the initial redistri-
bution transient. It is well known that the final properties of the pattern are deter-
mined while the initial redistribution transient is still building the solute boundary
layer. The simulations are compared with theoretical predictions based on the
Warren and Langer’s work on noise amplification [Warren93]. In that theoretical
work, the time evolution of the interface correlations is described by a transient
power spectrum function

S(k, t) = S0(k)
∫ t

−∞
dt′ exp

{
2

∫ t

t′
ω(k, t)dt′

}
, (8.1)

where ω(k, t) is the transient growth rate of the different Fourier modes present in
the system (cf. Sec. 4.2.1), and S0(k) is a physical pre-factor given by

S0(k) =
|ωe|KBT 2

M

LG(1 + dc
0 lT k2)

, (8.2)

being ωe = ω(k, t = ∞) the amplification rate at t → ∞ or stationary dispersion
relation Eq. 4.113 derived in Section 4.2.1.

8.2.2 One-sided model

We first consider the parameters of the organic alloy CBr4-C2Cl6. The experimental
values for the simulations are given by ṽp = 10−3 m/s, G̃ = 5.6 × 103 K/m and

c∞ = 0.03 mol, and the relevant parameters for the simulations are ˆ̃
d0 = 1.45×10−7

m and l̃T = 10−4 m. The value of the interface mobility is µ̃ = 0.1503 m/ K s
(β̂ = 1.18 × 10−4). The diffusion length is l̃ = D̃L/ṽp = 5 × 10−7 m and the
diffusion time γ̃ = D̃L/ṽ2

p = 5×10−4s, so the dimensionless control parameters are

lT = l̃T /l̃ = 200 and d̂0 = ˆ̃
d0/l̃ = 0.29. The interface thickness is ε = W̃/l̃ = 0.005

(W̃/
ˆ̃
d0 = 1.724). The equations have been discretized in a Nz × Ny = 128 ×

512 rectangular lattice with a dimensionless grid size of ∆y = ∆ỹ/l̃ = 0.4 and
∆z = ∆z̃/l̃ = 0.4 (∆z̃/W̃ = 0.8), and a time step ∆t = ∆t̃/γ̃ = 0.032. Figure
8.1 shows the amplification of the interfacial fluctuation spectrum at six different
physical times during the initial transient (t̃= 0, 0.01866, 0.03433, 0.05, 0.0912,
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0.1059 and 0.12 s). The dashed lines represent the power spectrum at these times
obtained from the phase-field simulations, whereas the solid lines correspond to the
theoretical prediction described in Section 4.2.2 at the same times. The phase-field
power spectrum is noisy because the curves are direct spectral properties of the
fluctuating interface at each time and no average or filtering has been used. The
results shown in Fig. 8.1 present a rather good quantitative agreement between
the theoretical predictions and the phase-field simulations. For clarity reasons, the
inset graph depicts the enlarged amplification region of the spectrum. At t̃ = 0, the
stationary power spectrum is given by the theoretically predicted power spectrum of
a stationary planar interface, given by Eq. 8.2. As time evolves, some of the modes
are located in the range of wavenumbers k̃ ∈ [0.5, 1] µm−1. These perturbations
correspond to morphological deformations in the front of wavelengths in the range
λ̃ ∈ [3.14, 6.28] µm.
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Figure 8.1: Amplification of the initial noise and selection of a preferred wavelength
during the transient.

8.2.3 Symmetric model with normal gap

In this section we use the parameters corresponding to the commercial 8CB liquid
crystal. The simulations have been carried out by using the symmetric phase-field
model with the correct miscibility gap. The experimental values taken for the sim-
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ulations are given by ṽp = 6 × 10−5 m/s, G̃ = 2.3 × 103 K/m and c∞ = 0.012

mol. The relevant parameters for the simulations are then ˆ̃
d0 = 2.696 × 10−7 m

and l̃T = 5.128 × 10−5 m. The interface mobility is given by µ̃ = 1.51 m/ K s,
and the values of the diffusion length and diffusion time are l̃ = D̃L/ṽp = 4× 10−6

m and γ̃ = D̃L/ṽ2
p = 0.04s respectively. The model parameters correspond to

l̃T /l̃ = 12.82, ˆ̃
d0/l̃ = 0.0674, and the computational parameters are ε = W̃/l̃ = 0.25

(W̃/
ˆ̃
d0 = 3.709). The equations have been simulated in a 500 × 256 rectangular

lattice with a dimensionless grid size ∆y = ∆ỹ/l̃ = ∆z = ∆z̃/l̃ = 0.15. The dimen-
sionless time-step is ∆t = ∆t̃/γ̃ = 3.75× 10−3. Figure 8.2 shows the amplification
of the interfacial fluctuation spectrum at three different physical times during the
initial transient (t̃= 0, 1.8 s and 2.7 s). Dashed lines are obtained by integrating
S(k, t) in the adiabatic regime ω ¿ k2. As it can be observed, quantitative agree-
ment is achieved between theory and simulations in the early time amplification
of fluctuations as well as in the wavelength selection of the cellular pattern. After
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Figure 8.2: Amplification of the initial noise and selection of a preferred wavelength
during the transient in the symmetric model and for the parameters of the 8CB liquid
crystal.

the early stages where the growth of fluctuations is linear, the system enters in
a non-linear regime and a cellular pattern with a certain wavelength sets in the
system. The change from linear to non-linear evolution can be observed in Figure
8.3 where the interface presents a morphological destabilization which gives rise to
the apparition of a cellular pattern. The end of the linear regime can be defined
as the time at which the amplitude of the most unstable Fourier mode is compa-
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Figure 8.3: Morphological destabilization of the interface by the amplification of the
initial thermodynamical fluctuations. After the linear regime, a cell-like pattern sets up
and evolves towards a dendritic regime.

rable with its wavelength. This condition defines a crossover time t0 which can be
theoretically determined by the condition

< δz2(t0) >1/2∼ λ̃max, (8.3)

where

< δz2(t) >=
∫

d2k

(2π)2
S(k, t) (8.4)

is the mean-square fluctuation amplitude and λmax is the wavelength of the largest
spectral mode in the system. Figure 8.4 shows the time evolution of these two
magnitudes in our system, and the intersection between the two curves determines
the crossover time t̃0 in physical units.
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Figure 8.4: Determination of the crossover time at which the amplitude of the most
unstable mode becomes of the order of its wavelength.

8.3 Primary spacing selection of the dendritic ar-
ray: The non-linear regime

8.3.1 Introduction

The next two subsections present the simulation results of the non-linear front evo-
lution for two distinct solidification systems. The first one is a CBr4-based alloy
(we have considered CBr4-C2Cl6, but the solute might also be taken to be Br2
as in Ref.[deCheveigné86]), which has extensively been studied experimentally in
Refs. [deCheveigné86, Faivre92, Akamatsu97, Akamatsu98]. The thermophysical
properties of this substance are listed in Appendix A, and can be found in the pre-
viously commented references. The second substance is the succinonitrile-acetone
mixture (SCN-ACE), which has also been used to perform quantitative experimen-
tal studies of the cellular and dendritic coarsening structures directional solidifica-
tion [Somboonsuk84, Eshelman88a, Eshelman87, Eshelman88c, Seetharaman88].

Our purpose is to perform realistic phase-field simulations of these two solidi-
fication systems and compare the results with the previous experimental observa-
tions in the literature. Besides the standard computational problems concerning
phase-field simulations (convergence to the sharp-interface, system size, numerical
discretization, allowed range of wavelengths, proper introduction of noise, etc.),
the main difficulty in this set of simulations is the same that the one reported by
the experimentalists: When decreasing the pulling velocities, the response times
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of these solidification systems become very long. This response time τr can be
defined as the time necessary to reach a well defined concentration profile and a
established morphological structure. Ignoring thermal effects, this time can be es-
timated in directional solidification as τr ∼ DL/kṽ2

p [Tiller53], which in the case
of the CBr4 alloy predicts a response time of τr = 11.1 min. for a pulling velocity
of ṽp = 10−6 m/s and τr = 6.6 s for ṽp = 10−5 m/s. It turns then clear that
considering situations at low pulling speeds requires numerical experiments with
very large simulation times.

The numerical experiments reported in this section start with an equilibrium
solid-liquid interface with c0

S = kc∞ and c0
L = c∞ located at z̃ = l̃T . At t̃ =

0, sample is pulled along the gradient at the pulling velocity ṽp, and the initial
recoil transient begins. Once that the system has reached the crossover time, the
evolution of the morphological perturbations becomes non-linear. This opens a
dynamic coarsening process where the system modifies its wavelength by means of
a process of creation and annihilation of cells. In our simulations, we will focus in
the determination of the crossover time and in the evolution of the cellular spacing
during the non-linear coarsening process.

8.3.2 Numerical experiments with the CBr4-C2Cl6 alloy

In the CBr4-C2Cl6 mixture, the numerical experiments have been carried out
for c∞ = 0.08 mol and G̃ = 11 × 103 K/m, the same values used in reference
[Akamatsu98]. We have carried out simulations for two values of the pulling ve-
locity ṽp = 10−5 m/s and ṽp = 3.1 × 10−5 m/s above the critical value which is
located at ṽc

p = 2.8 × 10−6 m/s. Although anisotropy in the attachment kinetics
might be relevant for this substance, in this set of simulations we have considered
an isotropic kinetic mobility of µ̃ = 2× 10−4 m/K s. Surface energy has been also
taken to be isotropic. The physical interface thickness in these phase-field simula-
tions is W̃ = 1.5 × 10−6 m (1.5 µm), and the equations have been simulated in a
2000 × 512 rectangular lattice with a physical grid size of ∆ỹ = ∆z̃ = 1.2 × 10−6

m (1.2 µm), being the ratio ∆z/ε = 0.8. Each simulation step corresponds to
a physical time of ∆t̃ = 4.5 × 10−4 s. We have implemented periodic boundary
conditions for all the fields in the y direction and non-flux conditions at the two z
boundaries of the system.

Simulations for ṽp = 10−5 m/s:

The simulations shown in the figures Figs. 8.5, 8.6 and 8.7 correspond to a pulling
velocity of ṽp = 10−5 m/s. In this case, the dimensionless thermal length is given by
lT = l̃T /l̃ = 3.86, and the dimensionless interface thickness is ε = W̃/l̃ = 0.03. The
dimensionless grid size ∆y = ∆ỹ/l̃ = ∆z = ∆z̃/l̃ = 0.024, and the dimensionless
time-step is ∆t = ∆t̃/γ̃ = 9× 10−5.

Figure 8.5 shows snapshots of the front shape taken each 1.8 seconds, and
it can be appreciated how the number of cells in the system (and therefore its
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Figure 8.5: The curves show snapshots of the solid-liquid interface taken each 1.8 s for the
CBr4-C2Cl6 system at ṽp = 10−5 m/s. The interface is initially located at z̃0 = l̃t = 1.939
×10−4 m, and the final profile corresponds to the front at l̃T =90 s.

primary wavelength) changes dynamically as the cellular front advances. At the
crossover time, which is now located around t̃0 = 30 s, the front destabilizes and the
system adopts a small wavelength shape with wavelength λ̃0 ∼ 30 µm. This can be
observed in the upper graph in Figure 8.6, which represents the time evolution of
the most relevant Fourier modes in the system (i.e, those with the larger amplitudes
during the coarsening process).

The lower graph in Fig. 8.6 shows the evolution of the wavelength of the most
important Fourier mode in the system, i.e, the one which has the largest amplitude
at each time. This primary wavelength determines the spacing of the different
cellular shapes at different moments of the dynamical coarsening process. As it
can be appreciated in Fig. 8.6, at t̃ = 35 s the system has passed the crossover time
and the mode with a largest amplitude corresponds to a wavelength λ̃ = 34.13 µm.
Few seconds later, this mode vanishes and the mode λ̃ = 43.85 µm determines the
main cellular spacing of the system. This change of stability can be seen in the two
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lower curves of Figure 8.7, which represents the shape of the system at two times
t̃ = 33.75 s and t̃ = 42.35 s before and after the change of spacing, respectively.
Note that the amplitude of this second mode becomes about twice larger than the
largest amplitude of the first mode. At t̃ = 42.35 s, the shape of the front clearly
shows the non-linear nature of the growth dynamics.

At later times, some of the cells are annihilated producing an increase of the
primary wavelength, and a mode with wavelength λ̃ = 68.26 µm sets up in the
system. At the last stages, there is a competition between this mode and the mode
λ̃ = 102.4 µm, which can be interpreted as a period-doubling instability which
happens by means of the annihilation of one of every two cells in the system (see
Fig. 8.5). This period-doubling mechanism, which was theoretically predicted in
[Warren90, Warren93] and observed experimentally in Ref. [Losert96], has been
observed in our numerical experiments as the main spacing adjustment mechanism
in the selection dynamics.

At the end of the simulation, the primary wavelength of the pattern was λ̃1 =
104.2 µm, which is in qualitative agreement with the experiments carried out by
Faivre and Akamatsu in reference Ref. [Akamatsu98] in which the final wavelength
was λ̃exp

1 ∼ 80 µm. This spacing, however, might be reduced at later stages as a
consequence of the tip splitting in the system. Whereas cell elimination increases
the wavelength of the pattern, tip-splitting is the mechanism by which the cellular
front decreases its spacing. This phenomena can be observed in the upper curves
of Fig. 8.5, where some of the cells present an instability which divides the cell in
two parts. Tip splitting and cell elimination were first reported as space adjusting
mechanisms by Jackson and Hunt [Jackson65] and observed experimentally by
Eshelman et al. in Refs. [Eshelman88a, Eshelman88b].
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Figure 8.6: Time evolution of the primary interdendritic mode (CBr4-C2Cl6, ṽp = 10−5

m/s). After the crossover time, the system evolves by means of process of creation and
annihilation of cells. The time evolution of the most relevant Fourier modes is depicted
in the upper graph. As can be seen, the main primary spacing of the system changes
suddenly at different times.
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Figure 8.7: Interface shapes at four different times t̃=33.75, 42.75, 58.5 and 76.5 seconds,
corresponding to the three different primary wavelengths selected during the coarsening
described in Fig. 8.6. The curves correspond here to the CBr4-C2Cl6 system at a pulling
velocity ṽp = 10−5 m/s.
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Figure 8.8: Shape at the end of the simulation of the CBr4-C2Cl6 system with ṽp = 10−5

m/s.
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Simulations for ṽp = 3.1× 10−5 m/s:

The figures Figs. 8.9 and 8.10 represent simulations for a larger pulling velocity
vp = 3.1 × 10−5 m/s. In this case, the dimensionless thermal length is given by
lT = l̃T /l̃ = 12.06, and the dimensionless interface thickness is ε = W̃/l̃ = 0.093.
The scaled grid size ∆y = ∆ỹ/l̃ = ∆z = ∆z̃/l̃ = 0.075, and the scaled time-step is
∆t = ∆t̃/γ̃ = 3.75× 10−3.

The front evolution is shown in Figure 8.9, where the x and y axis have been
scaled differently in order to see the complete advance of the front. We can see
how the initial instability develops and gives rise to a well defined periodic pattern.
After an initial transient of about 20 seconds, the system selects a fixed spacing of
λ̃1 = 87.77 µm. The primary wavelength dynamics is represented in Figure 8.10.
The saturation of all the important spectral modes indicates that the system has
already reached the steady state cellular structure. The final shape of the front
can be better appreciated in Figure 8.11 and consists in a regular cellular structure
with cells of about 30 µm deep.

The experimental results reported in Ref. [Akamatsu98] present an intercellular
spacing of λ̃exp

1 ∼ 50 µm, which is slightly smaller than the one obtained by our
numerical experiments. We think that this difference might be due to the presence
of anisotropic effects in the attachment kinetics, which has not been considered in
the present simulations.

It is interesting to note that the steady cellular structure obtained in this ex-
periment presents a traveling wave which crosses the pattern in the transversal di-
rection of the advancing front. This can be appreciated in Fig. 8.9, which presents
a clear phase shift in the cells which evolves from right to left in the system as the
solidification front advances. A more systematic study of these kind of traveling
modes is needed in order to understand the basic mechanisms determining their
apparition.

Additionally, we have included in Fig. 8.12 the solute concentration profiles
along the z direction corresponding to a longitudinal cut at half of the system size
in the y direction. The curves have been taken at intervals of 0.9 s, and show the
perturbations in the concentration due to the apparition of the cellular structure.
We observe that the concentration at the front position decreases as a consequence
of the increment of the mean position of the interface.
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Figure 8.9: Interface shapes of the CBr4-C2Cl6 system at vp = 3.1 × 10−5 m/s taken
each 0.9 seconds. Note that in order to see the time evolution of the front the distances
along the z and y directions are not proportional.
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Figure 8.10: Time evolution of the most relevant Fourier modes (upper graph) and of
the primary selected wavelength during the coarsening of the cellular structure (lower
graph). The system is here CBr4-C2Cl6 at ṽp = 3.1× 10−5 m/s.
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Figure 8.11: Final shape of the cellular structure in the CBr4-C2Cl6 system at ṽp =
3.1×10−5 m/s. The amplitude of the cells can be here appreciated better than in Fig. 8.9.
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Figure 8.12: Solute concentration profiles during the coarsening process of the CBr4-
C2Cl6 system at ṽp = 3.1× 10−5 m/s. The snapshots are taken at intervals of 0.9 s.
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8.3.3 Numerical experiments with the SCN-ACE alloy

In the SCN-ACE system, the numerical experiments have been carried out for c∞ =
0.055 mol, G̃ = 6.7× 103 K/m, the same values used in reference [Somboonsuk84].
These experiments were used as a benchmark of the Warren-Langer theory [Trivedi85,
Somboonsuk84, Somboonsuk85]. We have also carried out simulations for two
values of the pulling velocity ṽp = 6.510−5 m/s and ṽp = 10−4 m/s above the
critical value which is located at ṽc

p ∼ 10−7 m/s. A four-fold anisotropy σ̃(n) =
σ̃(1+δ cos(4θ)) with δ = 0.05 has been considered for the surface energy of the sys-
tem. The kinetic mobility is assumed to be isotropic and has a value of of µ̃ = 0.01
m/K s. The physical interface thickness in these simulations is W̃ = 10−6 m (1
µm), and the equations have been simulated in a 2000 × 512 rectangular lattice
with a physical grid size of ∆ỹ = ∆z̃ = 0.8×10−6 m (0.8 µm), being the ratio ∆z/ε
= 0.8. Each simulation step corresponds to a physical time of ∆t̃ = 7.87× 10−5 s.
We have also implemented periodic boundary conditions for all the fields in the y
direction and non-flux conditions at the two z boundaries of the system.

Simulations for ṽp = 6.5× 10−5 m/s:

At this velocity, we observe that the front shape presents three clearly different
spacings during the coarsening (see Fig. 8.13). At early stages, the front selects
a wavelength λ̃ ∼ 40 µm, which stays in the system for about 40 seconds. After
this time one of each two cells grows faster overtaking the intermediate cells, and
the system presents a kind of period-doubling instability resulting in a wavelength
jump from λ̃ ∼ 40 µm to λ̃ ∼ 100 µm. A final spacing adjustment is produced by
the annihilation of an additional intermediate cell, and the system has a definite
wavelength λ̃1 ∼ 136 µm at the end of the simulation. This value presents a rather
good agreement with the wavelength predicted by the Somboonsuk experiments
[Eshelman88a], which is λ̃exp

1 = 125 µm.
As we can see in Figure 8.14, the spacing presents three well-defined plateau

corresponding to the three basic modes appearing in the system. In the upper
graph of Fig. 8.14, we see how the amplitude of the final mode grows and the
others decrease.
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Figure 8.13: Interface shapes of the SCN system at vp = 6.5 × 10−5 m/s experiment
taken each 0.78 seconds.
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Figure 8.14: Time evolution of the most relevant Fourier modes (upper graph) and
primary selected wavelength during the coarsening of the cellular structure (lower graph).
The curves correspond to the SCN system with a pulling velocity of ṽp = 6.5× 10−5m/s.
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Simulations for ṽp = 10−4 m/s:

In this last case, the evolution of the front is represented in Figure 8.15, and the
final state presents a well defined mode with two single cells in the system. A
very interesting feature of this coarsening process is that the spacing of the system
uniquely evolves by means of period-doubling instabilities. This is clearly shown in
the lower graph of Figure 8.16, in which we observe three plateau corresponding to
three wavelengths λ̃ = 51.2 µm, λ̃ = 102.4 µm and λ̃ = 204.8 µm. This sequence
of two period-doubling jumps turns to be a very effective mechanism to increase
the cellular spacing of the system.

However, the wavelength predicted by the Somboonsuk experiments [Eshelman88a]
under the same conditions is λ̃exp

1 = 96.8 µm, which differs in a factor of 2 from
our final wavelength λ̃1 = 204.8 µm.

Although at the end of the simulation the final steady state of the system was
not yet reached, we think that it would be difficult to observe a change in the final
wavelength by increasing the computational time of the numerical experiment. This
could happen by means of a tip-splitting instability, which does not seem to be the
case here. In order to study the reasons of this mismatch, one would need larger
grids in the y direction so that the final state has more cells. This would allow
for a more precise determination of the wavelength based in a combined study of
statistical cell counting and spectral analysis.

0 100 200 300 400

y (µm)
200

400

600

800

1000

z 
(µ

m
)

Figure 8.15: Interface shapes of the SCN system at vp = 10−4 m/s experiment taken
each 0.078 seconds.
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Figure 8.16: Time evolution of the most relevant Fourier modes (upper graph) and
primary selected wavelength during the coarsening of the cellular structure (lower graph).
The curves correspond to the SCN system with a pulling velocity of ṽp = 10−4m/s.

8.4 Discussion

The main aim of this chapter has been to use the phase-field approach to quanti-
tatively determine the wavelength selection properties in directional solidification
experiments. In particular, we have focused in the transient behavior during initial
stages and in the physical fluctuations which are the origin of the initial morpho-
logical instabilities.

A good quantitative agreement has been found in the determination of the
crossover time by means of phase-field simulations. This agreement would not
have been possible without a correct introduction of fluctuations in the stochastic
formulation of the model. In this sense, we would like to remark here that the
results obtained in this chapter provide a sound confirmation of the stochastic
sharp-interface procedure described in Section 6.

This analytic approach, in addition with the quantitative phase-field results
presented in Section 7, provided the possibility of simulating the coarsening dy-
namics in directional solidification obtaining a reasonable agreement with previous
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experimental works. The whole procedure provide us the tools to start a systematic
study of many interesting problems in pattern-formation in solidification. These
studies are beyond the scope of this thesis, and will be carried out in the future.

In the spacing selection studies, we observe that the agreement between ex-
periments and simulations is worse for large pulling velocities. This happens for
both the SCN and the CBr4 systems. As kinetic effects become more important as
velocity increases, we think that the origin of this mismatch could be due to the
assumption of an isotropic kinetic attachment in the system. Indeed, experimental
measures of the anisotropy in the kinetic attachment are quite complicated and
are reported only for few solidification systems. In our opinion, the incorporation
of such effects should give the possibility of performing numerical studies in rapid
solidification conditions. In this respect, it would be interesting to investigate a
hypothetical change in the attachment kinetics from diffusion-limited to collision-
limited regimes (cf. Sec. 2.1.4) in rapid solidification conditions, as well as the
subsequent effects in the properties of the selected pattern.



Chapter 9

Conclusions and perspectives

This final chapter means to be a brief summary of the main results obtained in this
thesis and the new perspectives which are derived from it. The first section gives a
general description of the main conclusions which can be derived from this thesis,
as well as a summary of the most relevant results. We next comment the current
work in progress, and describe some of the topics and problems which we want to
study in the future.

9.1 Conclusions and summary of results

The general conclusion of this thesis is that the phase-field approach provides a
quantitative technique to simulate interfacial phenomena in solidification processes,
allowing to account for the correct transient stages and the proper statistical fluc-
tuations of the system. Therefore, phase-field models constitute a very convenient
approach to simulate the selection dynamics of the morphological instabilities ap-
pearing in solidification processes. In addition, they can be used as a quantitative
tool in order to predict and control the apparition of microstructures in material
processing technologies.

Throughout this thesis, we have focused on the importance of transient and
fluctuations in the apparition of morphological instabilities during solidification
phenomena. Due to the difficulty of accounting for the correct transient dynamics,
several theoretical and numerical approaches in the literature have been based in
a steady-state assumption. This approximation states that the front deformations
occur when the solute boundary layer is already formed, ignoring the initial re-
coil transient of the solidification front. Although that might be the case under
some particular conditions, the experiments show that the interface becomes mor-
phologically unstable at early transient stages. In order to study that non-steady
period, we have tested the validity of the phase-field approach in order to account
for the proper transient behavior (Chapter 7). We have performed a quantitative
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comparison between the phase-field results and the integration of the non-steady
moving boundary equations, finding an excellent agreement. Therefore, we con-
clude that phase-field method is a feasible approach to investigate transient stages,
avoiding the necessity of using front tracking techniques and permitting the study
of complex interfacial regimes.

However, considering the correct transient stages is a necessary, but not a suf-
ficient condition to account for the correct morphological evolution of the front.
In addition, we must take into account the thermodynamical fluctuations of the
system, which are the basic microscopic mechanism by which the interfacial per-
turbations are initiated. Indeed, fluctuating mass and heat currents are stochas-
tic interfacial forces which act during the evolution of the solidification front. A
straightforward incorporation of such noise terms in the phase-field equations is
only possible in the particular case of variational formulations. Unfortunately, vari-
ational models present a rather poor computational efficiency and do not permit
to obtain quantitative results during the initial transient stages. To this extent,
we have derived a stochastic sharp-interface projection which prescribes how to
introduce the fluctuations in both variational and non-variational phase-field for-
mulations (Chapter 6). In this sense, a major conclusion of this thesis is that the
standard asymptotic matching procedure, based in a small interface thickness ex-
pansion, must be complemented with a small noise assumption in order to account
for the correct stochastic terms in the phase-field equations.

When all these considerations have been included, the phase-field model prop-
erly accounts for the correct transients and fluctuations of the system, and can
be used to simulate the complete dynamical evolution of the front from the initial
transient stages to the final non-linear coarsening dynamics.

From our phase-field simulations of the front destabilization during the transient
(Chapter 8), we conclude that the initial front perturbations become observable at
very early times during the initial recoil stages, as predicted by the Warren-Langer
theory. Numerical experiments on the non-linear coarsening process show that
the system presents a dynamical selection mechanism which depends on the pre-
vious history of the front. As the selected cellular wavelengths obtained from the
simulations are in good agreement with the experimental observations, we finally
conclude that the phase-field approach is a powerful technique to carry out quan-
titative studies on interfacial pattern formation.

The main results of this thesis, which are described in the following subsections,
can be divided in computational and analytical results. Both approaches have been
complemented during the whole work, in such a way that the final computational
findings are a direct consequence of the previous analytical studies of the problem.

Theoretical and analytical results

- The main analytical result concerns to the derivation of a sharp-interface limit
of a generic phase-field model with fluctuations and has been described in
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detail in Chapter 6. We have proposed an asymptotic procedure which allows
to obtain the sharp-interface projection of a generic stochastic phase-field
model. This procedure allows to determine the deterministic and stochastic
phase-field parameters, and does not rely in the variational character of the
model. Moreover, our hybrid asymptotic projection can be used in order to
account for noises of both an internal or an external origin, providing the
possibility of accounting for noises which might not follow an equilibrium
statistics. This work has been submitted for publication [Beńıtez04c].

- We have derived the complete boundary integral equations describing the
front evolution during transient stages. In particular, we have derived such
boundary integral equations in the following cases which were not reported
in the previous literature:

i) Symmetric systems in the constant miscibility gap approximation.

ii) Symmetric systems with normal miscibility gap.

iii) Incorporation of kinetic attachment effects.

The derivation and simulation of the resulting integral equations is described
in detail in Chapter 4, and have been used as a benchmark of our phase-field
simulations during early transient stages.

- We have derived analytical expressions for the transient growth rate (Section
4.2.1). This mathematical expressions determine the front stability during
the early transient stages at the beginning of the solidification process.

Computational and modelization results

The second block of results are obtained by means of numerical simulations of
the phase-field method. These results are compared with different theoretical and
experimental works, and can be divided in three parts:

- The first part is devoted to the study of the quantitative convergence of
the phase-field approach to the transient moving boundary dynamics, and
is reported in the Chapter 7 of the thesis. To this end, we have performed
phase-field simulations in different models and compared the results with
theoretical predictions derived from the moving boundary problem. These
theoretical predictions have been obtained by formulating and solving nu-
merically the Boundary Integral Problems associated to the different moving
boundary equations. In particular, we have focused in the transient position
of the solidification front, considering kinetic attachment effects (Sections
7.2.2, 7.3.2 and 7.4.2). We have also simulated the transient build-up of the
solute boundary layer ahead of the solidification front, obtaining a quantita-
tive agreement between the phase-field simulations and the evolution of the
theoretical profiles (Sections 7.2.3). As shown in Sections 7.2.4 (one-sided
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model) and 7.4.3 (symmetric model), quantitative agreement is also obtained
for the transient growth rate of the morphological deformations of the ad-
vancing front. The results obtained in this part have been reported in the
references [Beńıtez03b, González-Cinca04].

- In the second part of the numerical results, we have focused in the ampli-
fication of the initial fluctuations during the solute redistribution transient.
As explained in Section 8.2, we have observed that the initial wavelength
is selected in very early stages, not following the Mullins-Sekerka predic-
tion and thus confirming the Warren and Langer’s theory. We have deter-
mined the crossover time at which the morphological deformations of the
interface become non-linear, and a good quantitative agreement has been
obtained when comparing with the Warren-Langer theory of noise amplifica-
tion. These studies have been performed in both symmetric (liquid crystal)
and one-sided (organic alloy) systems, and are presented in the references
[Beńıtez04b, Beńıtez04a].

- The third section of the computational results is described in Section 8.3 and
concerns to the study of the non-linear coarsening stages in directional solidi-
fication. We have studied two different organic substances in different regimes
of the pulling velocity. These phase-field simulations are carried out until the
system reaches a well defined pattern-forming cellular structure. The dynam-
ical evolution of the primary spacing of the cellular patter has been studied
by means of spectral techniques which allow to determine the main primary
spacing between the cells. We have found a reasonably good agreement with
the equivalent experiments reported in the literature, and conclude that the
phase-field approach is a suitable tool for predicting microstructure formation
in material processing. Additionally, we have observed in the simulations two
of the most important spacing adjustment mechanisms of the cellular front,
i.e. cell creation by tip-splitting and cell elimination by cellular overgrowth.
We have also observed the period-doubling instability which seems to be one
of the basic mechanisms in the wavelength selection of the interfacial pattern.

In all these previous situations, we have the possibility of including anisotropy,
kinetic effects and fluctuations from the thermophysical parameters of the solidifi-
cation process. Moreover, we have used different phase-field formulations for

- One-sided systems in the constant gap approximation.

- One-sided systems with normal miscibility gap.

- Symmetric systems in the constant gap approximation.

- Symmetric systems with normal miscibility gap,

using each model to perform simulations of the corresponding physical systems in
each case.
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9.2 Work in progress

We are currently working in several interesting problems which have been already
started during the realization of this thesis. Some of them are in a rather advanced
situation, and others will still require to dedicate more efforts. The main work in
progress can be structured as follows:

- Extension of the stochastic phase-field limit to one-sided models. We have
already done this calculation, and the result is essentially the same to the
one for the symmetric case. Some technical details, however, still need to be
refined before the complete derivation could be submitted for publication.

- A complete understanding of the relation between the higher order correc-
tions in the deterministic (kinetic effect) and fluctuating (interfacial noise)
terms in the Gibbs-Thomson equation. At second order, the classical sharp-
interface limit presents a second-order finite thickness correction which results
in an effective increase of the interface kinetic mobility. In order to satisfy
the fluctuation-dissipation theorem, an increment in the kinetic attachment
must result in an increase of the interfacial fluctuations. However, the corre-
sponding finite ε fluctuating correction might not appear at the same order in
the asymptotic expansion, and a higher-order expansion might be required.

- Phase-field simulations of the non-linear selection of the dendritic spacing.
Comparison with experiments and importance of the kinetic and surface ten-
sion anisotropies.

- Systematic studies of the nature of the planar-cellular bifurcation. This is
the first bifurcation which suffers the solidification front, and has been exten-
sively studied by some authors from both theoretical [Wollkind70, Caroli82,
Liu94] and experimental [deCheveigné85, deCheveigné86, Eshelman87] points
of view. It is already clear that in many situations this bifurcation is sub-
critical, i.e., presents a hysteretic behavior when crossing the critical velocity
by increasing or decreasing the pulling velocity. Under some circumstances
(different values of the segregation constant, different bulk sample concentra-
tions), however, it is theoretically predicted that the nature of the bifurcation
can be changed and present a normal supercritical behavior. In a subcritical
scenario, the cellular pattern appears suddenly with a certain finite ampli-
tude above the critical point, and the amplitude of the pattern can not be
assumed to be proportional to the distance from the instability threshold. As
a consequence, the subcritical nature of the transition makes it difficult to
give a theoretical description of the system in terms of amplitude equations,
and requires some special analytical techniques.

- Study the history-dependent character of the pattern selection during the
non-linear coarsening regime. For a given set of experimental and substance
parameters, the system does not select a definite wavelength [Eshelman88a,
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Seetharaman88, Warren90, Losert96]. Instead, the selection process depends
on the history of actions which has suffered the front. In this third part, the
front is to a sequence of actions before imposing the final pulling velocity. As
it can be observed, the final wavelength selected by the system is different
depending on the sequence for each experiment.

- Controlled numerical experiments of the period-doubling instability predicted
by Warren and Langer [Warren90] and observed experimentally by Losert et
al. [Losert96].

9.3 Perspectives

Interfacial pattern formation is a very active topic in which there are always new
interesting problems. In particular, the study of microstructure formation in solid-
ification is a highly active area of research. There are some interesting problems
concerning the effect of fluctuations in the apparition of microstructures, and some
of them might be solved by using our hybrid sharp-interface projection. As an
example, some of the interesting problems are the following:

- The study of sidebranching structures in directional solidification. In a den-
dritic array structure, the shape and growth of each dendrite is dynamically
selected by a non-steady process. Although the conditions under which the
sidebranches appear have already been studied, the origin itself of these per-
turbations is not completely understood.

- 3D simulations of the wavelength selection problem in dendritic directional
solidification. As the power of computers is continously increasing, 3D phase-
field simulations will be soon performed without much computational effort.

- Influence of the experimental and external fluctuations in the wavelength
selection of the final cellular or dendritic pattern. This would give an ex-
planation of the discrepancies observed between experiments and theory. As
experimentalists affirm, there some uncontrolled experimental variables which
might induce some perturbations to the advance of the solidification front.

Finally, the method could be applied to phase-field formulations of other inter-
esting problems, not related to solidification, to study the effects of internal and/or
external fluctuations, such as crack propagation, biological membranes, etc.



Appendix A

Substance and experimental
parameters

A.1 Parameters for pure substances

The Gibbs-Thompson equation reads

uint =
T int − TM

(Lv/cv)
= −d̃T

0 κ̃− β̃T ṽn, (A.1)

where

d̃T
0 =

σ̃TMcv

L2
v

, (A.2)

β̃T =
cv

µ̃Lv
. (A.3)

The physical parameters relevant for the solidification of pure substances are col-
lected in Table A.1.

A.2 Parameters for dilute alloys

We remind here the Gibbs-Thompson equation

uint =
cint − c∞

∆c0
= 1− 1

l̃T
ξ̃ − ˜̂

d0κ̃− ˜̂
βṽn, (A.4)

where ∆c0 = c0
L−c0

S , ˜̂
d0 = σ̃TM/LvmL∆c0, ˜̂

β = 1/(µ̃mL∆c0) and l̃T = mL∆c0/G̃.
The physical parameters relevant for some one-sided and symmetric alloy systems
are collected in the next tables.
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Parameter Units Symbol SCN Al
Melting temperature K TM 331.23 933.6
Density Kg/m3 ρ 9.7× 102 2.55× 103

Specific heat density J/Km3 cv = ρ · cm 2× 106 2.92× 106

Thermal conductivity J/Ksm κ̃T 0.22 210
Thermal diffusivity m2/s D̃T 1.11× 10−7 7 ×10−5

Latent heat density J/m3 Lv 4.6× 107 9.5× 108

Interfacial free energy J/m2 σ̃ 9× 10−3 9.3× 10−2

Capillary length m d̃T
0 2.81× 10−9 2.74× 10−10

Interfacial mobility m/sK µ̃ 10−2 4.3
Kinetic coefficient s/m β̃T 4.3 6.95× 10−4

Table A.1: Physical parameters for the pure SCN and Al from [Kurz85]

A.2.1 One-sided systems: Organic alloys

Parameter Units Symbol SCN-ACE SCN-C152 CBr4-C2Cl6
Melting temperature K TM 331.24 331.24 365.5
Partition coefficient k 0.1 0.05 0.75
Density g/m3 ρ 1.016× 106 1.016× 106 3× 106

Liquidus slope K/mol mL 202.77 543 81
Molecular weight g Z 80.09-58 80.09-257 336-237

Solutal diffusivity m2/s D̃L 1.27× 10−9 4.5 ×10−10 5× 10−10

Latent heat density J/m3 Lv 4.6× 107 4.6× 107 2.95× 107

Interfacial free energy J/m2 σ̃ 8.95× 10−3 8.95× 10−3 6.6× 10−3

Interfacial mobility m/s K ˆ̃µ 10−2 4.3 2.24× 10−4

Kinetic coefficient s/m β̃ 4.3 6.95× 10−4 2.09× 103

Table A.2: Substance parameters for three organic alloys. The values have been obtained
from the references [Somboonsuk84, Warren90] (SCN-ACE), [Losert98a, Losert98b] (SCN-
C152) and [Akamatsu98, Faivre92, Akamatsu97] (CBr4-C2Cl6).
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A.2.2 Symmetric systems: Liquid crystals

Parameter Symbol Value units

Segregation Constant k 0.9 dimensionless

liquidus slope mL 88.46 K/mol

Melting temperature TM 313.5 K

Surface tension σ̃ 2.2× 10−4 J/m2

interface mobility µ̃ 10−4 m/Ks

Diffusion constant D̃L 4× 10−10 m2/s

Latent heat Lv 2.2× 106 J/m3

Specific heat cv 5× 106 J/Km3

Molecular weight Z 291.44 g

density ρ 106 g/m3

Table A.3: Substance parameters for the 8CB liquid crystal obtained from
Refs. [Oswald87, Simon88, Figueiredo96]
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Appendix B

Differential operators in 3D
curvilinear coordinates

In this appendix, we give the expressions of the most common differential operators
written in the curvilinear coordinates system introduced in Chapter 6. For a further
information about the derivation of the relations presented in this chapter, we refer
to Refs. [Fife95, Folch99]. The change from Cartesian (x,y,z) to curvilinear (r,s1,s2)
coordinates is defined by the conversion factors

h1 =
∣∣∣∣
∂r
∂r

∣∣∣∣ = 1, (B.1)

h2 =
∣∣∣∣

∂r
∂s1

∣∣∣∣ = 1 + rκ1, (B.2)

h3 =
∣∣∣∣

∂r
∂s2

∣∣∣∣ = 1 + rκ2. (B.3)

These factors will be used in this section to write down the differential operators in
the curvilinear coordinate system introduced in Section 6.3.2. These operators will
be written in both the inner and outer regions of the matching asymptotic analysis
introduced in Capter 6.

B.1 Outer Region

We next write the time derivatives and space differential operators in the outer
region written in curvilinear coordinates.
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COORDINATES

B.1.1 Partial time derivative

The partial derivative operator can be written as

∂t =
d

dt
+ (∂tr)∂r + (∂ts1)∂s1 + (∂ts2)∂s2 , (B.4)

where the functions ∂tr, ∂ts1 and ∂ts2 are given by

∂tr = −vr (radial velocity) (B.5)

∂ts1 = −v1t = − rvs1

1 + rκ1
(tangential velocity along s1) (B.6)

∂ts2 = −v2t = − rvs2

1 + rκ2
(tangential velocity along s2). (B.7)

B.1.2 Space differential operators

Gradient

The gradient, written in curvilinear corrdinates, takes the form

∇ϕ =
∂rϕ

h1
r̂ +

∂s1ϕ

h2
ŝ1 +

∂s2ϕ

h3
ŝ2 = ∂rϕ r̂ +

∂s1ϕ

1 + rκ1
ŝ1 +

∂s2ϕ

1 + rκ2
ŝ2 (B.8)

Divergence

The divergence of a curvilinear vector a = ar r̂ + as1 ŝ1 + as2 ŝ2 is given by

∇ · a =
1

h1h2h3
[∂r(h2h3a

r) + ∂s1(h1h3a
s1) + ∂s2(h1h2a

s2)] =

∇2r ar + ∂ra
r +

r(as1∂s1κ2 + as2∂s2κ1)
(1 + rκ1)(1 + rκ2)

+
∂s1a

s1

1 + rκ1
+

∂s2a
s2

1 + rκ2
.

(B.9)

Laplacian

The Laplacian of a scalar field ϕ is given by

∇2ϕ = ∇ · (∇ϕ) =

1
h1h2h3

[
∂r(

h2h3

h1
∂rϕ) + ∂s1(

h1h3

h2
∂s1ϕ) + ∂s2(

h1h2

h3
∂s2ϕ)

]
=

|∇r|2∂2
r +∇2r∂r + |∇s1|2∂2

s1
+ |∇s2|2∂2

s2
+∇2s1∂s1 +∇2s2∂s2 ,

(B.10)
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where the factors |∇r|2, ∇2r, |∇si|2, ∇2si are given by

|∇r|2 = 1 (B.11)

∇2r =
κ1(1 + rκ2) + κ2(1 + rκ1)

(1 + rκ1)(1 + rκ2)
(B.12)

∇2s1 =
r∂s1κ2

(1 + rκ1)2(1 + rκ2)
− r∂s1κ1

(1 + rκ1)3
(B.13)

∇2s2 =
r∂s2κ1

(1 + rκ2)2(1 + rκ1)
− r∂s2κ2

(1 + rκ2)3
(B.14)

|∇s1|2 =
1

(1 + rκ1)
(B.15)

|∇s2|2 =
1

(1 + rκ2)
. (B.16)

(B.17)

B.2 Inner Region

In the inner region, the radial coordinate and time are scaled using the relations

ρ =
r

ε
(B.18)

τ =
t

ε
, (B.19)

and the change or coordinates is (x,y,z) → (ρ,s1,s2). Writing the inner differential
operators in terms of τ and ρ, we get the conversion relations

h1 = 1 (B.20)
h2 = 1 + ερκ1 (B.21)
h3 = 1 + ερκ2. (B.22)

B.2.1 Partial time derivative

∂t =
1
ε
∂τ =

1
ε

d

dτ
+

∂τρ

ε
∂ρ +

1
ε
∂τs1∂s1 +

1
ε
∂τs2∂s2 , (B.23)

where the pre-factors are now given by

∂τρ = ∂tr = −vr (B.24)

∂τs1 = ε∂ts1 = −εv1t = − ε2ρvs1

1 + ερκ1
≈ −ε2ρvs1 + O(ε3) (B.25)

∂τs2 = ε∂ts2 = −εv2t = − ε2ρvs2

1 + ερκ2
≈ −ε2ρvs2 + O(ε3) (B.26)

As noted in reference Ref. [Elder01], the tangential velocity vt is at least of order
ε, which is consistent with the requirement of a vanishing value for ε = 0.
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B.2.2 Space differential operators

Gradient

∇ϕ =
∂ρϕ

εh1
ρ̂ +

∂s1ϕ

h2
ŝ1 +

∂s2ϕ

h3
ŝ2 =

1
ε
∂ρϕ r̂ +

∂s1ϕ

1 + ερκ1
ŝ1 +

∂s2ϕ

1 + ερκ2
ŝ2

(B.27)

Divergence

a = aρρ̂ + as1 ŝ1 + as2 ŝ2

∇ · a =
1

h1h2h3

[
1
ε
∂ρ(h2h3a

r) + ∂s1(h1h3a
s1) + ∂s2(h1h2a

s2)
]

=

∇2r aρ +
1
ε
∂ρa

ρ +
ερ(as1∂s1κ2 + as2∂s2κ1)

(1 + ερκ1)(1 + ερκ2)
+

∂s1a
s1

1 + ερκ1
+

∂s2a
s2

1 + ερκ2

(B.28)

Laplacian

∇2ϕ = ∇ · (∇ϕ) =

1
h1h2h3

[
1
ε
∂ρ(

h2h3

εh1
∂ρϕ) + ∂s1(

h1h3

h2
∂s1ϕ) + ∂s2(

h1h2

h3
∂s2ϕ)

]
=

|∇r|2 1
ε2

∂2
ρ +∇2r

1
ε
∂ρ + |∇s1|2∂2

s1
+ |∇s2|2∂2

s2
+∇2s1∂s1 +∇2s2∂s2 .

(B.29)

The factors |∇r|2, ∇2r, |∇si|2, ∇2si can be expanded for ε ¿ 1 up to second
order to obtain

|∇r|2 = 1 (B.30)

∇2r =
κ1(1 + ερκ2) + κ2(1 + ερκ1)

(1 + ερκ1)(1 + ερκ2)
≈ (B.31)

κ1 + κ2 − ρ(κ2
1 + κ2

2)ε + ρ2(κ3
1 + κ3

2)ε2 + O(ε3)

∇2s1 =
ερ∂s1κ2

(1 + ερκ1)2(1 + ερκ2)
− ερ∂s1κ1

(1 + ερκ1)3
≈ (B.32)

ρ(∂s1κ2 − ∂s1κ1)ε + ρ2[2κ1∂s1κ2 + κ2∂s1κ2 − 3κ1∂s1κ1]ε2 + O(ε3)

∇2s2 =
ερ∂s2κ1

(1 + ερκ2)2(1 + ερκ1)
− ερ∂s2κ2

(1 + ερκ2)3
≈ (B.33)

ρ(∂s2κ1 − ∂s2κ2)ε + ρ2[2κ2∂s2κ1 + κ1∂s2κ1 − 3κ2∂s2κ2]ε2 + O(ε3)

|∇s1|2 =
1

(1 + ερκ1)
≈ 1− 2ρκ1ε + 3ρ2κ2

1ε
2 + O(ε3) (B.34)

|∇s2|2 =
1

(1 + ερκ2)
≈ 1− 2ρκ2ε + 3ρ2κ2

2ε
2 + O(ε3). (B.35)



Appendix C

Parameter definitions and
notation

C.1 Thermodynamic magnitudes

G Total Gibbs’ free energy
Gv Gibbs’ free energy per unit volume
g Molar Gibbs’ free energy
gv Molar Gibbs’ free energy density
S, H Total entropy, total enthalpy
Sv,Hv entropy and enthalpy per unit volume
s, h Molar entropy and enthalpy
L Latent heat
Lm Molar latent heat
Lv Latent heat per unit volume
cp Specific heat
cv Specific heat per unit volume
W Work
Q Heat
T Temperature
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P Pressure
Ω Probability
vm Molar volume
Z Molecular weight
ρ Density
N0 Avogadro’s number
kB Boltzmann’s constant
R Gas constant
NA, NB Number of A,B particles
nA, nB Number of A,B moles
c, x Solute molar fraction
c̃ Solute concentration per unit volume
k Segregation constant
mL Absolute value of the liquidus slope (molar)
m̃L Absolute value of the liquidus slope (volume)
TM Melting temperature
µ̃ Interface mobility
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C.2 Solidification parameters

D̃α Solute diffusivity at the phase α
κ̃α Thermal conductivity at the phase α

D̃T
α Thermal diffusivity at the phase α

l̃ Diffusion length
γ̃ Diffusion time
G̃ External temperature gradient
l̃T Thermal length
κ̃ Interface curvature
ṽp Pulling velocity
β̃ Kinetic coefficient
β̃T Reduced thermal kinetic coefficient
ˆ̃
β Reduced solutal kinetic coefficient
d̃0 Capillary length
d̃T
0 Reduced thermal capillary length

d̃c
0 Thermal capillary length

ˆ̃
d0 Reduced chemical capillary length

C.3 Physical variables

r̃ Position in the sample frame
r̃g Position in the gradient frame
ṽ Front velocity in the sample
ṽg Front velocity in the gradient frame
ρ̃ x,y plane position in the sample frame
t̃ Time
ξ̃ Front position in the sample frame
p Space-time point
x x,y space-point
k̃ Wave-vector
ξ̃k Fourier transform of the interface position
ω̃ Growth rate
Γ̃, S Power spectrum
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with a pulling velocity of ṽp = 10−4m/s. . . . . . . . . . . . . . . . 177



202 LIST OF FIGURES



List of Tables

A.1 Physical parameters for the pure SCN and Al from [Kurz85] . . . . . 186
A.2 Substance parameters for three organic alloys. The values have

been obtained from the references [Somboonsuk84, Warren90] (SCN-
ACE), [Losert98a, Losert98b] (SCN-C152) and [Akamatsu98, Faivre92,
Akamatsu97] (CBr4-C2Cl6). . . . . . . . . . . . . . . . . . . . . . . . 186

A.3 Substance parameters for the 8CB liquid crystal obtained from Refs. [Oswald87,
Simon88, Figueiredo96] . . . . . . . . . . . . . . . . . . . . . . . . . 187



204 LIST OF TABLES



Bibliography

[Akamatsu97] S. Akamatsu and T. Ihle, Phys. Rev. E , 56(4), 4479–4485
(1997).

[Akamatsu98] S. Akamatsu and G. Faivre, Phys. Rev. E , 58(3), 1–14 (1998).

[Almgren99] R. F. Almgren, SIAM J. Appl. Math., 59, 2086 (1999).

[Amar88] M. B. Amar and B. Moussallam, Phys. Rev. Lett., 60(4), 317–
320 (1988).

[Amar93] M. B. Amar and E. Brener, Phys. Rev. Lett., 71, 589 (1993).

[Aranson00] I. S. Aranson, V. A. Kalatsky and V. M. Vinokur, Phys. Rev.
Lett., 85, 118–121 (2000).

[Aranson02] I. Aranson and L. Kramer, The world of the complex ginzburg
landau equation, Rev. Mod. Phys., 74, 99–143 (2002).

[Aziz88] M. J. Aziz and T. Kaplan, Acta Metall., 36(8) (1988).

[Aziz94] M. Aziz and W. J. Boettinger, Acta Metall. Mater., 42(2),
527–537 (1994).

[Aziz96] M. Aziz, Metall. and Mater. Trans. A, 27A, 671–686 (1996).

[Barber87] M. Barber, A. Barbieri and J. Langer, Phys. Rev. A, 36(7),
3340–3349 (1987).

[Ben-Jacob84] E. Ben-Jacob, N. Goldenfeld, B. Kotliar and J. Langer, Phys.
Rev. Lett., 53, 2110 (1984).

[Bender99] C. Bender and S. Orszag, Advanced Mathematical Methods for
Scientists and Engineers (Springer, 1999).
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[deCheveigné85] S. de Cheveigné, C. Guthmann and M.-M. Lebrun, J. Crys.
Growth, 73, 242–244 (1985).
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