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A theoretical and computational study of soft adhesion mediated by
specific binders

Dimitri Kaurin

We examine a classical problem in soft-matter physics: the specific adhesion
between deformable elastic objects, such as vesicles, mediated by mobile
adhesion molecules. This problem is relevant to cell-cell adhesion. To
understand this fundamental yet poorly understood problem, in Part I of
the thesis we develop mechano-stochastic minimal models to examine the
coupling between the stochastic nature of the binding/unbinding of the
adhesion molecules, the mechanical environment and geometrical architecture
of the adhesion patch. Building on previous works, we specifically investigate
the stability of adhesion clusters under hydraulic interstitial pressure, relevant
in various physiological cellular processes, and the role of surface tension at the
boundary of the media bridged by the molecular bond cluster. Remarkably, we
find that surface tension has a strong stabilizing effect because it increases the
rebinding rate. We also discuss the influence of the mobility of these molecules.
This first part lays the ground for the main contributions of the thesis in Part
II. Here, we develop a continuum general approach of soft adhesion mediated
by mobile binders. This approach relies on Onsager’s variational principle.
We then apply this modeling framework to study the unbinding of adhering
vesicles. We consider a membrane with bending rigidity, subject to a fixed
tension and a separation force by a loading device, with mobile adhesion
molecules. These molecules store elastic energy when deformed, diffuse, and
react by attaching with partners in a neighboring vesicle. The binding kinetics
strongly depend on the distance to potential partners and the unbinding
kinetics depends on the force experienced by the binders (slip bond behavior).
The equilibrium picture for this problem has long been known but the dynamics
have been barely explored. Based on our theoretical framework, we perform
numerical calculations to explore previously anticipated qualitative scenarios.
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In particular, we characterize a diffusion-dominated regime in which, under
an applied force, adhesion patches shrink in size and become increasingly
concentrated in bond until a new equilibrium is reached. More interestingly,
in an intermediate regime, motion of bonds by diffusion and bond-breaking
compete during the remodeling of adhesion patches under force. This process
always leads to full dissociation, but the lifetime depends very strongly on
force, defining a critical force that delimits the threshold separating stability
and instability. We show how this threshold depends on the physico-chemical
properties of adhesion molecules and on molecular crowding. Since these
properties can be controlled by cells, e.g. through calcium signaling, our study
portrays soft adhesion mediated by mobile binders as a highly tunable process
allowing cells to strongly hold to each other or disengage to remodel. Finally,
in a reaction-dominated limit, we identify a new unusual tear-out regime, in
which an adhesion patch shrinks under force by progressive bond-breaking
near its edge, but which is critically controlled by diffusion occurring in a
small zone near the edge.
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F ⇤ 0.4Tc . A series of snapshots of the adhesion patch at different
instant of the dynamics illustrate the change in concentration of
bonds as the change in the size of the patch. b) (right) Series of
plots of the profile of normalized concentration of bonds in the
patch at different instants. Lighter color represents later times.
(left) Zoom on the evolution of the concentration during the second
phase of the process. Bonds are packed, and the patch shrinks
slowly while the bond concentration decreases slowly. c) Time
evolution of the normalized number of bonds. d) Series of plots
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interface ŝ/ŝ0 (solid line) as a function of the applied force for
different values of cmax . The bonds are ideal and compliant and
such as k0 ⇤ 2.5 · 10�4 N·m�1. b) Reaction-Diffusion problem:
Influence of the overcrowding of the vesicle on the lifetime of the
adhesion patch and its dependence on the applied force F/Tc for
ideal compliant ideal bonds and slip bonds. . . . . . . . . . . . . . 162

14.1 Simplified scenario for rim clustering of cadherins as a feedback
loop. The different subprocesses are specified by numbers. . . . . 174

A.1 Schematic representation of the diffusion of the bonds/binders
and the corresponding probability distribution for the mobility of
the open and closed bonds. . . . . . . . . . . . . . . . . . . . . . . 178

A.2 Average lifetime of clusters as a function of Nbonds for different
diffusion constant Dbonds . �P ⇤ 300 Pa. The case of immobile
bonds (red curve) is given as a comparison. Lifetime and error bars
are obtained from 2000 trajectories. . . . . . . . . . . . . . . . . . . 179

C.1 Sketch of the problem. Adhesion patch made of c1 bonds and c2
free binders between two rigid plates. h denotes the elongation of
the bonds from their rest position. . . . . . . . . . . . . . . . . . . 187

xxiv



Chapter 1

Introduction

Cell-cell adhesion

Adhesion between animal cells is a fundamental mechanical function during
development and physiology. Cells adhere to each other to form conflu-
ent tissues, which need to remain cohesive during extreme morphogenetic
events [Guillot and Lecuit, 2013] or during the large deformations routinely
experienced by cell monolayers in our lungs, guts or vascular system [Ethier
and Simmons, 2007, Fung, 2013]. Failure to resist the mechanical forces at cell-
cell contacts can lead to tissue fracture [Casares et al., 2015, Harris et al., 2012,
Khalilgharibi et al., 2018], developmental failure and physiological disruptions
such as pulmonary edema [Network, 2000, Suki and Hubmayr, 2014], see
Fig. 1.1(a,b). Cell-cell adhesion is also crucial in immune or neural synapses [Qi
et al., 2001, Dalva et al., 2007], or during cell sorting [Maître et al., 2012b,
Steinberg and Takeichi, 1994]. Interestingly, cells also need to disengage from
other cells during tissue remodeling, including massive changes in junctional
network topology [Guillot and Lecuit, 2013], cell extrusion [Saw et al., 2017],
wound healing [Brugués et al., 2014], see Fig. 1.1(c), or pressure-driven cell-cell
separation during luminogenesis [Sigurbjörnsdóttir et al., 2014, Dasgupta
et al., 2018].
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a)

b)

c)

Figure 1.1: a) Two adhering cells pulled apart by a micropipette. The adhesion
can sustain large cell strains. Reproduced from [Chu et al., 2004b]. b)
Deformation of a monolayer under stretch. Images acquired by bright-field
microscopy for a monolayer at 0 and 80% extension. A bigger stretch (126%)
can lead to fracture. Reproduced from [Harris et al., 2012]. c) Schematic view
of wound healing experiment by ablation of cells in a monolayer and series of
fluorescent images (LifeAct) of the closing of the wound at different instants.
Reproduced from [Brugués et al., 2014].
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Thus, cell-cell adhesion needs to provide mechanical resilience and at
the same time support remodeling. To deal with these conflicting require-
ments, cells avoid the unspecific mechanisms of adhesion acting between
lipid membranes, including depletion [Kuhl et al., 1998, Evans et al., 1996],
electrostatic [Bernard et al., 2000] or van der Waals forces [Chaffey, 2003]
since these are difficult to tune and control. They also avoid specific adhesion
by covalent bonds since breaking one such bond would require the energy
released in the hydrolysis of 10s of ATP molecules. Instead, they resort to a
mechanism of specific adhesion mediated by a set of transmembrane bridging
molecules or cell adhesion molecules (CAMs) such as cadherins, which engage
in homophilic or heterophilic binding [Takeichi, 1988], see Fig. 1.2(e). The low
affinity of these binding molecules enables dynamical binding and unbinding,
and hence enables remodeling of adhesion complexes. On the other hand,
since these binders are laterally mobile in the fluid plasma membrane, they
can aggregate and form clusters or plaques with high concentration of weak
bonds, see Fig. 1.2(a,b,c), which collectively can sustain large stresses.

Thermodynamic theories of specific adhesion between membranes with
mobile binders predict that, in equilibrium, adhesion patches should form with
high and uniform concentration of adhesion molecules [Bell et al., 1984a]. Yet,
CAMs have been shown to unevenly distribute in cell-cell junctions, forming
puncta ranging from nano-clusters with 10s of molecules to micro-clusters
with 100s of molecules [Tru]. Cis-interactions between CAMs, known to form
upon formation of trans-bonds, are thermodynamic driving forces favoring
aggregation. Interestingly, cis-interactions can be chemical or membrane-
mediated and physical in nature [Fenz et al., 2017]. Besides the attractive
interaction between CAMs, the competition between long-range repulsion
by the repellent molecules (e.g. the glycocalyx) and short-range attraction by
specific binders is another physical mechanism leading to phase-separation
at cell-cell junctions with CAM-rich domains of tight adhesion [Albersdörfer
et al., 1997, Bruinsma and Sackmann, 2001]. Yet, these physical mechanisms
do not explain why these concentrated domains of tight adhesion do not
coarsen into larger patches. Biological activity is thought to provide the
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necessary active stirring to maintain an “emulsion” of small clusters at cell-cell
interfaces, which should thus be viewed as out-of-equilibrium dynamical
structures. The precise cellular mechanisms that lead to these adhesive
clusters are not well-understood, but are thought to involve CAM recycling
by endocytosis and the interaction with the actin cytoskeleton (corral effect,
stirring, regulation of mobility and turnover) [Tru, Yap et al., 2015, Changede
and Sheetz, 2017]. In fact, the association between adhesion molecules and the
actin cytoskeleton through a group of adaptor molecules is another hallmark
of cell-cell adhesion [Maître and Heisenberg, 2013]. By coupling the actin
cortices of adjacent cells, adhesion molecules can transmit tension through a
multi-cellular assembly [Maître et al., 2012b]. Cadherins only associate with
the actin cytoskeleton upon formation of trans-bonds, see Fig. 1.2(d) . This
association during maturation of cell-cell contacts reduces the mobility and
turnover of adhesion molecules, stabilizing adhesion clusters. In turn, similarly
to cell-matrix adhesions [Case and Waterman, 2015, Elosegui-Artola et al.,
2016], cell-cell adhesion complexes form a mechano-sensing and mechano-
transduction system that regulate the architecture of the actin cytoskeleton
through mechanosensitive adaptor proteins, e.g. by vinculin recruitment
mediated by ↵�catenin under force [Engl et al., 2014a, Yap et al., 2017]. This
mechanosensitive system includes catch and slip bonds, whose properties
depend on the chemical [Pokutta et al., 1994, Nagar et al., 1996, Sotomayor
and Schulten, 2008] and physical environment [Liu et al., 2015, Rakshit et al.,
2012, Manibog et al., 2014, Huang et al., 2017, Cai et al., 2016]. In summary,
cell-cell adhesion is a highly complex and tunable out-of-equilibrium process
mediated by mobile binder molecules of low affinity, which assemble into
clusters to provide mechanical strength and couple to the cytoskeleton to
form a mechanosensitive system that transmits tension through tissues and
multi-cellular aggregates.
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Figure 1.2: a) Florescence imaging of E-cadherins from a cell monolayer. The
cadherins are clearly concentrated at the cell-cell interfaces and form micro-
clusters. Reproduced from [Cavey et al., 2008]. b) Schematic representation
of a cell monolayer and the distribution of cadherins forming microclusters.
Reproduced from [Yap et al., 2015]. c) Deep-etch image of the bridging struc-
ture between two adjacent cells and the connected actin cytoskeleton visible
on both sides of the membrane. Reproduced from [Hirokawa and Heuser,
1981]. d),e) Schematic representation of cell-cell adhesion with the different
components involved: adhesion molecules (cadherins), adaptor molecules
(↵-catenin and �-catenin) and cytoskeleton (actin) and crystal structure of the
ectodomain of C-cadherin. Reproduced from [Hirano and Takeichi, 2012].
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A simplified problem: soft adhesion mediated by
mobile binders

Since cell adhesion involves many agents and numerous couplings between
chemistry, mechanics and biological signaling (involving different transmem-
branes molecules, adaptor molecules and their connection to actin cytoskeleton
...), modeling experiments on cell adhesion, see Fig. 1.3(a,b,c), raises numerous
questions and complexity increases rapidly. Towards a better understanding
of this problem, simpler models are necessary. As a simpler model for cell-cell
adhesion, we consider here the adhesion of nearby fluid membranes contain-
ing membrane-anchored binder molecules, which can move laterally in the
membrane and can react with a molecule in the neighboring membrane to
form a bond, see Fig. 1.3(d,e). Because this simple model system recapitulates
many features of cellular adhesion, its understanding is a pre-requisite before
invoking models of mechano-transduction in cell-cell adhesions coupling
binders and the cytoskeleton. Furthermore, because the actin cortex is also a
viscous thin layer under tension over long time-scales due to turnover [Sal-
breux et al., 2012a] to which adhesion molecules or clusters are attached, the
simplified model studied here could be relevant to cell-cell adhesion under
specific regimes.

This simplified model system of soft adhesion mediated by mobile binders
has been physically realized in a number of biomimetic systems over the past
decade, in which lipid vesicles or supported bilayers have been functionalized
with a variety of binder molecules including cadherins [Nam and Santore, 2007,
Fenz and Sengupta, 2012, Sackmann and Smith, 2014, Liu and Fletcher, 2009,
Schmid et al., 2016a, Fenz et al., 2017]. This system is also amenable to theoret-
ical modeling, including equilibrium and non-equilibrium thermodynamical
models where binders are described in terms of concentrations [Bell et al.,
1984a, Zhu, 1991, de Gennes et al., 2003, Brochard-Wyart and de Gennes, 2002a,
2003], or stochastic models often examined through Monte Carlo simulations
and where binders are discrete [Erdmann and Schwarz, 2004, Qian et al., 2008,
Gao et al., 2011, Krobath et al., 2011, Bihr et al., 2012, 2015].
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These experimental and theoretical works have shown that this simplified
problem is in fact very rich and displays mechano-chemical feedbacks at mul-
tiple scales [Zhu, 2000]. On the one hand, the nanoscale interactions between
adhesive molecules (formation of trans- bonds, or their lateral interactions)
determines the architecture and adhesive tension of adhesion complexes at a
mesoscale. On the other hand, the mechanics of the adhesion patch, and in
particular the stress distribution and membrane separation at the interface,
determines the microscopic binding/unbinding rates or the lateral bias for
diffusion. Significant progress has been achieved over the last decades in
understanding soft adhesion by mobile binders, such as cooperative effects
mediated by membrane mechanics, which explain formation of domains in
the presence of binders of different lengths [Krobath et al., 2011, Schmid et al.,
2016a] or the effect of membrane fluctuations on the growth and structure of
adhesion domains [Fenz et al., 2017]. Yet, the interplay between mechanics,
binder motion and chemical kinetics conforms a rich landscape of scenar-
ios [de Gennes et al., 2003, Brochard-Wyart and de Gennes, 2002a], which
remains poorly understood.

Aims and structure of the thesis

In this thesis, we examine the behavior and stability of adhesion complexes
under force using theoretical and computational models, with the goal of
understanding the physical principles that allow cell adhesion to sustain
significant stresses or remodel. This question has been addressed experi-
mentally using cell doublet [Tozeren et al., 1989, Berk and Evans, 1991, Chu
et al., 2004a, 2005, Maître et al., 2012b, Engl et al., 2014a] and vesicles adhered
to supported bilayers [Smith et al., 2008a]. We address this problem with
two complementary approaches, discrete stochastic modeling in Part I and
continuous modeling in Part II.

In Part I, we develop discrete stochastic models of specific adhesion
and we study the stability of a stressed adhesive junction as a function of
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Figure 1.3: a) Schematic representation of cell-cell adhesion in a tissue. b)
Schematic representation of an experiment of cell-cell decohesion controlled
via micropipettes. c) Schematic representation of an in-vitro experiment of
adhesion between a cell and a supported bilayer or a rigid substrate controlled
via micropipettes. d) and e) Biomimetic analogs of b) and c) using lipid
membranes with anchored binders.
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the cluster architecture. These kind of models have examined the relation
between the chemical kinetics of binding/unbinding and the mechanical
environment of the bonds, including the effect of unequal force sharing
[Qian et al., 2008, Gao et al., 2011], or membrane and fluctuation mediated
cooperativity effects [Krobath et al., 2011, Bihr et al., 2012, 2015]. Here,
we focus on the important but previously unexplored case of a junction
loaded hydraulically, relevant to hydraulic fracturing and delamination of
cells and epithelial monolayers [Casares et al., 2015, Kosmalska et al., 2015]
or to luminogenesis [Dasgupta et al., 2018]. In this situation, bonds bridge a
pressurized cavity (either by a stretch-induced poroelastic effect or because
of active ionic pumping) and are connected by a tense membrane. These
factors determine the nature of unequal bond sharing and suppress the effect
of membrane fluctuations. Building on previous work, we develop a family of
minimal models and characterize how membrane tension and bond mobility
control the lifetime clusters and the optimal cluster size.

In Part II, we adopt a continuum perspective and develop a family of
non-equilibrium models that couple the reaction kinetics of binders molecules,
their diffusion, and adhesion mechanics. One of the main objectives of this
part of the thesis is to understand the competition between different modes
of junction remodeling under force, and more specifically the competition
between a tear-out regime, in which adhesion patches shrink due to bond
breaking, and a diffusion-dominated regime, in which adhesion patches shrink
due to bond motion [de Gennes et al., 2003, Brochard-Wyart and de Gennes,
2002a]. The behavior of adhesion patches under force has been generally
understood in terms of these extreme scenarios, with instances of tear-out
[Berk and Evans, 1991, Casares et al., 2015] and of diffusion-dominated cell-
cell separation [Tozeren et al., 1989]. The tear-out and diffusion-dominated
responses upon force application have also been reported in biomimetic
systems depending on the mobility of bonds [Smith et al., 2008a]. This and
previous references also examined a different but related problem, in which a
membrane with mobile binders adheres to a solid substrate decorated with
receptors. In this widely studied situation, free binders are mobile but bonds
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are not since they connect mobile binders to receptors fixed to a substrate. As a
consequence, the growth of a patch involves reactions to form new bonds and
diffusion to recruit free binders from the non-adhered part of the vesicle into
the adhesion patch [Boulbitch et al., 2001, Freund and Lin, 2004, Shenoy and
Freund, 2005], but the membrane-substrate separation necessarily proceeds
by progressive bond breaking [Pierrat et al., 2004a, Cuvelier and Nassoy,
2004, Lin and Freund, 2007, Cheng et al., 2009, Alert and Casademunt, 2016].
In principle, the case studied here of mobile binders and mobile bonds is
compatible with more complex scenarios involving the coexistence of bond
breaking and motion, and in fact observations during cell doublet separation
suggest mixed tear-out/diffusion regimes [Maître et al., 2012b]. However,
despite previous theoretical [Zhu, 1991, de Gennes et al., 2003, Brochard-Wyart
and de Gennes, 2002a] and experimental efforts [Smith et al., 2008a], the
dynamics of adhesion patches formed by mobile bonds under forces have not
been systematically examined. In Part II, we develop a theoretical framework
to examine this problem, which observes the compliance and force-sensitivity
of the molecular bonds and molecular crowding at the adhesive junction [Nam
and Santore, 2007, Schmid et al., 2016a] to resolve coupled mechano-chemistry
of soft adhesion mediated by mobile binders.
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Part I: Mechano-Stochastic
modeling of the dynamics of
soft adhesion mediated by

specific binders
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Chapter 2

Introduction to Part I

A single molecular bond has a binding energy Eb of only some tens of kBT.
Looking at the bond’s dissociation process as a thermally assisted escape
over the potential energy barrier Eb , the low binding energy of the bonds
leads to a short lifetime: in absence of applied force, the average lifetime of a
molecular bond is in the order of a second. Applying an external force to the
molecular bond will modify the energy landscape of the dissociation process
and therefore will modify the process itself [Bell, 1978b]. Over the last decades,
numerous studies have characterized the behavior of individual molecular
bonds under external forces, both experimentally and theoretically [Evans,
2001, Evans and Ritchie, 1997, Zhu, 2000]. However, the collective association
of bonds into molecular bonds cluster can exhibit far longer lifetimes even in the
presence of an external force. Although a characterization of individual bonds
has been well accepted, the collective behavior of molecular bond clusters is
still poorly understood. How can multiple bonds acting together sustain longer
to applied forces? What are the processes involved? Different approaches
have been made over the last years to model molecular bond clusters, both
deterministic and stochastic. Depending on the approach chosen, they provide
some interesting insights into the different mechanisms, both mechanical and
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kinetic, involved in soft adhesion.
In Part I of the thesis , we will first summarize pioneering works made to model
the behavior of individual bonds and the collective behavior of molecular
bond clusters. We will then propose different minimal 2D models aimed at
identifying the processes controlling specific adhesion under force or under
hydraulic pressure such as elasticity, surface tension or the mobility of adhesion
molecules.

14



Chapter 3

Stochastic modeling of bond
clusters

The understanding of cell adhesion requires a proper characterization of a sin-
gle bond. Inspired from the properties of polymers, modeling molecular bonds
as elastic-spring like structures gives a good approximation for the complex
behavior of the bonds, and captures the effects of force and displacement on
the bond dynamics. Recently the behaviour of single receptor-ligands bonds
under force have been investigated extensively, both for integrins [Zhang et al.,
2002, Li et al., 2003] , cadherins [Baumgartner et al., 2000] and selectins [Fritz
et al., 1998, Evans et al., 2001] and the elastic-spring model has been confirmed
by these various experiments. Using dynamic force microscopy with different
experimental techniques, including atomic force microscopy [Florin et al.,
1994, Lee et al., 1994], laser optical tweezers [Kellermayer et al., 1997] and the
biomembrane force probe [Merkel et al., 1999], experiments have revealed
that a single molecular bond has a low binding energy of only 10-25 kBT. To
provide context for our contributions in Part I and Part II, we first summarize
previous works about modeling a single bond under force, and then about
modeling the collective behavior of bond clusters.
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ligand

koff

kon

bond receptor

Figure 3.1: Schematic representation of bond breaking/formation as chemical
reaction where ko f f and kon are the forward and reverse reaction rates.

3.1 Binding and unbinding of adhesion molecules as a
chemical reaction

Unlike the non-specific adhesion due to Van Der Waals or electrostatic forces,
the adhesion mediated by specific binders involves a chemical reaction. Using
the framework of the elastic-spring model, we assume that receptors and
ligands are elastic springs which interact via a reversible chemical process
to form bond complexes, themselves having spring-like properties as shown
in Fig. 3.1. These processes can be seen as chemical reactions, obeying the
Eq. (3.1) where kon and ko f f are the forward and reverse reaction rates.

Receptor + Li gand
kon
⌦
koff

Bond (3.1)

This chemical reaction is dependent on the mechanical and chemical envi-
ronment surrounding the molecules, and particularly on the force applied to
the bonds and the proximity of the binders. In the two following sections we
detail how these rates depend on the mechanical environment.

16



3.1. Binding and unbinding of adhesion molecules as a chemical reaction

Dependence of bond breaking on force

Experiments have shown that the unbinding of single bonds exhibit different
force dependencies depending on their type or on the chemical environment.
Many biological bonds exhibit slip-bond behavior, by which the bonds become
weaker under an applied load, or catch-bond behavior, by which, counterintu-
itively, bonds strengthen under force. Some bond can even be insensitive to the
applied load; such bonds are called ideal-bonds. For instance, depending on
the chemical environment, E-cadherin homophilic bonds can switch between
ideal-bond, slip-bond and a biphasic catch/slip-bond behavior [Rakshit et al.,
2012].

Bell proposed, in a seminal theoretical paper [Bell, 1978a], a phenomeno-
logical model for the off rate of slip bonds extending the transition state theory
for reactions in gases. It states that the off-rate of receptor-ligand interactions
depends exponentially on the force on the linkage. One could think of an
applied force tilting the energy landscape and accelerating the dissociation of
the non-covalent receptor-ligand bond, see Fig. 3.2.

xb

E

x
F.xb

Eb

ligand

receptor

F

Figure 3.2: Schematic representation of the energy landscape for receptor-
ligand interaction. The solid curve represents the energy landscape for an
unstressed bond and the dotted line corresponds to the modified energy
landscape in the presence of an applied force F.
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According to Kramer’s theory [Kramers, 1940], the spontaneous dissocia-
tion rate can be seen as a thermally activated escape over a transition barrier
Eb :

k
0
o f f

⇤ !0e

�E
b

kBT , (3.2)

where !0 is the natural vibration frequency, in the order of 10�12 s�1, Eb is the
energy barrier required to break the bond, in the order of 10 to 25 kBT, and
kBT that sets the thermal energy.

According to Bell’s model, when a force F is applied along the axis of the
bond, the energy barrier is modified. To break the bond, the new barrier Êb(F)
is Êb(F) ⇤ Eb � Fxb , with xb the coordinate of the transition state along the
axis of the bond. Thus, the new dissociation rate is:

ko f f (F) ⇤ !0e

Ê
b
(F)

kBT ⇤ !0e

�E
b
+Fx

b

kBT ⇤ k
0
o f f

e

Fx
b

kBT ⇤ k
0
o f f

e
F

F
b (3.3)

where k
0
o f f

is the spontaneous dissociation rate in the absence of force, F the
applied force and Fb ⇤ kBT

xb

a force scale for bond strength (a typical scale in
for E-cadherins being Fb ' 4 pN, for xb ' 1 nm). This law is commonly called
Bell’s law in the literature.
This modeling of force dependence of the dissociation rate for slip bonds has
been tested and verified experimentally for many different types of bonds.
Some models [Evans and Ritchie, 1997] have been developed later, that take
into account the dynamical loading and the limitations of such a simple model
like the fact that all the features of the energy landscape are lumped in only one
parameter, xb . The importance of Bell’s insight was to expose the significant
role of mechanical forces in biological chemistry.

Inspired by Bell’s and Evans [Evans et al., 2004] work, Pereverzev [Pereverzev
et al., 2005a, 2011] introduced a similar model, the so-called two-pathway
model, to explain the force dependence of the dissociation rate of catch bonds.
It provides the simplest mathematical description of the catch-slip bond tran-
sitions but despite its simplicity has led to many useful analytical results
and predictions [Pereverzev et al., 2005b, Pereverzev and Prezhdo, 2006].
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3.1. Binding and unbinding of adhesion molecules as a chemical reaction

Assuming that the minimum of the energy landscape corresponding to the
bound state has two alternative pathways to escape corresponding to the catch
and slip mechanisms of dissociation, this model states that the dissociation
rate has the following form:

ko f f (F) ⇤ k
0
o f f�s

e

Fx
s

b

kBT + k
0
o f f�c

e

�Fx
c

b

kBT ⇤ k
0
o f f�s

e

F

F
s

b + k
0
o f f�c

e

�F

F
c

b (3.4)

with k
0
o f f�s

and k
0
o f f�c

the rate of dissociation for the slip and catch pathways
at zero force, x

s

b
and x

c

b
the two distances from the minimum of the energy

landscape to the two transition barriers. Finally F
s

b
and F

c

b
are the two force

scales corresponding for both pathways. We plot in Fig. 3.3 the lifetime of slip
and catch bonds for different values of the catch bond pathway force scale F

c

b
.

The lifetime of the slip bond decreases with the applied force while the catch
bond lifetime reaches a maximum for a non-zero applied force. For higher
forces, the catch bond exhibits a slip bond behavior.
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Figure 3.3: A) The normalized lifetime (k0
o f f

/ko f f ) of slip bonds. Here the
emphasis is made on the influence of the force scale Fb . B) The normalized
lifetime (k0

o f f�s
/ko f f ) of slip and catch bonds, where k

0
o f f�c

⇤ 2k
0
o f f�s

. Here
the emphasis is made on the influence of the catch bond pathway force scale
F

c

b
.
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To sum up, the dissociation rate for the three prototypical types of bonds
can be expressed as :

For ideal bonds: ko f f (F) ⇤ k
0
o f f

For slip bonds: ko f f (F) ⇤ k
0
o f f

e
F

F
b

For catch bonds: ko f f (F) ⇤ k
0
o f f

✓
e

F

F
s

b + Ae

�F

F
c

b

◆

Dependence of bond formation on separation

Figure 3.4: Schematic representation of the two steps necessary for the
formation of the bond. In a first step, the ligand has to come in the vicinity
of the receptor, within a distance lbind . The distance z corresponds to the
extension of the molecule from its rest position. The light blue domain
corresponds to the accessible elongation for the binder. The second step is
a chemical reaction in which the ligand and the receptor chemically react to
form a bond with a constant rate k

0
on .
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3.1. Binding and unbinding of adhesion molecules as a chemical reaction

The reaction consisting of binding of two binders is actually a combination
of two events [Bell et al., 1984b, Erdmann and Schwarz, 2006]. First, the ligand
has to come close enough to the receptor and then react when they are in close
range.
We keep the classical view of the ligand as attached to a spring of rest length
lb and stiffness kLR. As it is stuck between the two surfaces, the ligand is
allowed to move only in a zone delimited between z ⇤ �lb and z ⇤ � � lb in
the potential U(z), with z the extension of the molecule from its rest position
and U(z) such as:

U(z) ⇤ kLRz
2

2 for z 2 [�lb , � � lb] (3.5)

As a classical result of statistical mechanics, the Maxwell Boltzmann statistics
gives the probability density function P(z) for the ligand to be in a position z:

P(z) ⇤ 1
Z

e

�U(z)
kBT ⇤

1
Z

e

�kLR z
2

2kBT , z 2 [�lb , � � lb] (3.6)

where Z is the partition function ensuring the normalization condition:
π ��lb

�lb

P(z)dz ⇤ 1 (3.7)

The normalization gives:

Z ⇤

r
⇡kBT

2kLR

"
erf

 
(� � lb)

r
kLR

2kBT

!
+ erf

 
lb

r
kLR

2kBT

!#
, (3.8)

with er f : x 7! er f (x) the error function, also known as the Gauss error
function. The probability for the ligand to come within a distance lbind from
the receptor, necessary for the binding reaction to happen, is:

p ⇤
lbind

Z
e

�kLR (��l
b
)2

2kBT . (3.9)

With k
0
on the reaction rate for binders separated by a distance z < lbind , the

rebinding rate can be written as:
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possible bonds
closed bonds

Figure 3.5: Schematic representation of an adhesion cluster under constant
shared force F. Ntot , the total number of bonds, and Nb , the number of closed
bonds.

kon ⇤ k
0
on p ⇤ k

0
on

lbind

Z
e

�kLR (��l
b
)2

2KBT . (3.10)

kon is very difficult to determine experimentally, especially for adhesion
mediated by a cluster of adhesion molecules [Chesla et al., 1998], when 3D
bulk kinetics need to be reconciled with 2D kinetics [Hu et al., 2013]. As
considered in previous theoretical works [Seifert, 2000, Erdmann and Schwarz,
2004] and in order to focus on the generic features of soft adhesion, we will
consider k

0
on force-independent for the rest of the thesis.

3.2 Discrete modeling of molecular bond clusters

Despite the steady progress in statistical description of a single molecular
bond, their collective behavior is still poorly understood. Therefore, the
physical description of single bond under force has to be extended to clusters
of adhesion bonds under force. A pioneering theoretical framework for
describing the collective behavior of molecular bonds was introduced by Bell
[1978a].
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3.2. Discrete modeling of molecular bond clusters

Let us consider a simplified version of the model proposed by Bell, by
considering a patch of Ntot couple receptor-ligands, forming bonds, that
can be open or closed between two rigid media. A sketch of the model is
given in Fig. 3.5. Nb(t) bonds are closed at time t. A force F is applied to
the patch and, because of the rigidity of both media, the force is equally
shared among the Nb closed bonds. Thus each bond experiences a force
Fbond ⇤ F/Nb . The binding and unbinding of bonds follows the chemical

reaction Receptor + Li gand
kon
⌦
koff

Bond, with the unbinding rate given by

Bell’s law ko f f (Fbond) ⇤ k
0
o f f

exp(Fbond/Fb). For simplicity the binding rate is
considered constant: kon ⇤ k

0
on .

The evolution of the number of closed bonds Nb as a function of time is given
by Eq. (3.11), expressing the balance of mass of closed bonds:

dNb

dt
⇤ kon(Ntot � Nb) � ko f f (F/(NbFb))Nb (3.11)

Let’s consider the following non dimensional quantities:

⌧ ⇤ k
0
o f f

t, F/Fb ⇤ f and � ⇤ kon/k
0
o f f

The equation 3.11 becomes:

dNb

d⌧
⇤ �(Ntot � Nb) � exp

f

Nb

Nb (3.12)

The exponential dependence on the force of the last term of the equation makes
the stability of its solutions very dependent on the applied force. Studying
this equation, Bell showed that it exists a critical force fcr such as for f < fcr

the Eq (3.12) has a stable solution and for f > fcr it does not accept stable
solution. fcr is given by:

fcr ⇤ Ntotplog
⇣�

e

⌘
with plog(a) solution of xe

x
⇤ a. (3.13)

Thus, for an applied force f such as f < fcr , the cluster is stable and stabilizes
at a non-zero value of Nb , and for f > fcr , the cluster is unstable and the
number of bonds ultimately reaches Nb ⇤ 0. Moreover, the critical force is
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increasing linearly with the size of the cluster: the bigger is the cluster, the
bigger is the critical force necessary to unbind the whole cluster.

For equal loading shared between the bonds and constant rebinding rate,
this deterministic approach of equilibrium properties of adhesion clusters is
a first good approximate model to consider the competition between bond
breaking and rebinding and provides an easy way to introduce the concept of
critical forces.

Nevertheless, the deterministic approach does not allow us to explore the
stochastic nature of cluster decohesion: indeed, according to single-molecule
mechanics, a given bond may be closed at one instant and break at another as
a result of thermally activated escape from the biding potential well.
A stochastic approach could let us explore stochastic trajectories for cluster
evolution (from a state where all the bonds are closed until the total decohesion
of the cluster), and access useful statistical information.

A stochastic version of Bell’s model for bond clusters has been developed,
but only studied in the limit of large systems, and for specific parameters
values [Cozens-Roberts et al., 1990]. It has also been introduced for the case of
absence of rebinding [Bell, 1978a] or to evaluate specific experiments. Focusing
on the generic features of the stochastic dynamics of a cluster under shared
constant loading and constant rebinding, [Erdmann and Schwarz, 2004] devel-
oped a stochastic version of Bell’s model.

The system is also a patch of Ntot couple receptor-ligands (forming bonds)
that can be open or closed. Nb(t) bonds are closed at time t. A force F is
applied to the patch and it is equally share among the Nb closed bonds. Thus
each bonds experience a force Fbond ⇤ F/Nb . Now each bond undergoes
stochastic dissociation, with a reaction rate ko f f (F) following Bell’s law, and
formation, with a constant reaction rate k

0
on .

The bonds are indistinguishable and, as a stochastic system, the evolution of
the system is now given by its probability pi(t) to have i bonds closed at time
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3.2. Discrete modeling of molecular bond clusters

t. With the non-dimensional quantities ⌧ ⇤ k
0
o f f

t, F/Fb ⇤ f , � ⇤ kon/k
0
o f f

, we
can derive the following one-step master equation for pi(t):

dpi

d⌧
⇤ ri+1pi+1 + gi�1pi�1 � (ri + gi)pi , (3.14)

where pi(⌧) is the probability that i bonds are closed at time ⌧. ri and gi are
the reverse rate of transition from i to i � 1 closed bonds and the forward rate
of transition from i to i + 1 closed bonds:

ri ⇤ ie
f

i (3.15)

gi ⇤ �(Nt � i) (3.16)

This equation has to respect some boundary conditions. For instance, the
number of closed bonds is bounded by the total number of bonds: Nb  Ntot .
Thus gNtot

⇤ 0, which is called a reflecting boundary. On the opposite, Nb � 0
and we consider rebinding impossible when all bonds are closed because
of elastic recoil. Thus we have, r0 ⇤ 0 and g0 ⇤ 0, which is an absorbing
boundary.

This one-step master equation is easy to write but solving it is quite difficult
except for very simple cases. To illustrate this, let us look a two important
quantities: the mean number of closed bonds Nb(⌧) and its variance �Nb

(⌧):

Nb(⌧) ⇤< i >⇤
Ntot’
i⇤1

ipi(⌧) (3.17)

�2
Nb

⇤< i
2 > � < i >2

⇤

Ntot’
i⇤1

i
2
pi(⌧) � N

2
b

(3.18)

Substituting both equations in the one-step master equation Eq. (3.14), we
obtain:

dNb

d⌧
⇤

Ntot’
i⇤1

i
dpi

d⌧
⇤< g(i) > � < r(i) > (3.19)

d�2
Nb

d⌧
⇤< g(i) + r(i) > +2 < (i� < i >)[g(i) � r(i)] > . (3.20)
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If ri and gi were both linear functions in i, then Eq. (3.19) would become the
classic deterministic equation Eq. (3.12) studied by Bell. But for F , 0, r(i)
is non-linear in i and therefore we cannot write < r(i) >⇤ r(< i >). As an
approximation, we can expand r(i) as a Taylor series around N , but this leads
to a complex hierarchy of relations between lower moments. We see that the
same problem will arise for higher moments like the variance, see Eq. (3.20).
Finally such approach cannot describe the effect of the absorbing boundary for
i ⇤ 0 which is compulsory to study physically relevant cases. To summarize,
an analytical approach to solve the master equation is difficult.

In order to overcome these limitations, Erdmann and Schwarz [2004] used
a Monte Carlo algorithm called the ”first reaction method” Gillespie algo-
rithm [Gillespie, 1976, 1977], to perform a stochastic analysis of the one-step
master equation Eq. (3.14). This method offers a valuable insight into the
typical nature of unbinding trajectories and is able to treat the problem with
an absorbing boundary. Considering a constant average force per bond, they
found that the cluster lifetime increases monotonically with the cluster size:
bond clustering increases by orders of magnitude the long-term stability of
clusters. Nevertheless, experiments show that in-vivo adhesion clusters size is
usually limited to around few microns [Zaidel-Bar, 2004] in the case of focal
adhesions. What is preventing the bonds to cluster on a bigger scale to achieve
longer lifetimes?

One of the main hypothesis made here is the equal load sharing between
the bonds but in biological systems, the general one can expect non-uniform
force distribution. In case of non-uniformity of force distribution the off-rate
ri given in equation is modified as follows:

ri ⇤

i’
j⇤1

e
f j , (3.21)

with f j the force felt by the bond 1 < j < i among the i closed bonds.
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3.2. Discrete modeling of molecular bond clusters

Because of the convexity of the function exp(x) we can write the so-called
Jensen inequality that states that for a convex function f(x), with x1 , x2 , ..., xi

in its domain and real positive weights a1 , a2 , ..., ai , we have

f

 Õ
i

j⇤1 a j x jÕ
i

j⇤1 a j

!


Õ
i

j⇤1 a j f (xj)Õ
i

j⇤1 a j

. (3.22)

Invoking this inequality, we can make the following statement about the
dissociation rate

ri ⇤

i’
j⇤1

e
f j � ie

(
Õ

i

j⇤1 f j

i
)
⇤ ie

f

i . (3.23)

Thus, any force distribution different from the equally shared force case is
increasing the total dissociation rate and thus leads to less stable clusters. The

assumption ri ⇤ ie

Õ
i

j⇤1 f j

i ⇤ ie
f

i , for equally shared force, tends to overestimate
the lifetime of the cluster, and thus the overall distribution of forces over the
cluster is thought to control the stability of molecular bond clusters.
In order to investigate such a problem, Qian et al. [2008] developed a model
including mechanics into the stochastic problem previously studied and a
method to estimate the force distribution over the cluster via a parameter
accounting for the mechanical context of the bond cluster [Qian et al., 2009,
Gao et al., 2011].

Their theoretical model consists of a periodic array of clusters of molecular
bonds, of size 2a, which are distributed over a length of 2c. The arrays of bond
clusters bridge an elastic medium, with Young modulus E and a Poisson ratio ⌫,
and a rigid medium and is subjected to an applied tensile stress �. For a given
bond configuration and solving an elasticity problem, they are able to compute
the distribution of forces over the cluster. Each bond undergoes stochastic
dissociation (with a reaction rate ko f f ) and formation (with a reaction rate
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... ...

RIGID SUBSTRATE

ELASTIC MEDIUM

SITE
ligand

receptor

ligand

receptor

2

3

4

a)

b)

Figure 3.6: a) Schematic illustration of an idealized theoretical model of
periodic adhesion between an elastic body and a rigid medium. The elastic
medium is subjected to a tensile stress �. Size of the system: 2c. Size of the
cluster : 2a. The system is such that c ⇤ 2a. Bond’s spacing is b. E and ⌫ are
the Young modulus and the Poisson’s ratio of the elastic medium. The bonds
have a stiffness kLR. b) Illustration of the relation between the size of the crack
and the size of the patch. With this set-up, the average density of bonds is
kept constant and independent of the number of bonds Nbonds .

kon). To study the influence of the cluster size Nbonds , the system is such that
c ⇤ 2a, thus, the density of bond ⇢ is kept constant and ⇢ ⇤ 1

2b
. A sketch of

the model can be seen in Fig. 3.6b). In order to characterize the mechanics
of the adhesive contacts, they identified a dimensionless parameter ↵ given
by ↵̄(a , b , E, ⌫, kLR) ⇤ a

b2 kLR(1 � ⌫2)/E. It controls how the interfacial stress is
distributed over the adhesion domain. Looking at Fig. 3.7, we can see that
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3.2. Discrete modeling of molecular bond clusters

Figure 3.7: Distribution of interfacial stress over the cluster for different ↵̄,
results reproduced from [Qian et al., 2008]. Low ↵̄ leads to uniform load
distribution and high ↵̄ leads to crack-like failure distribution.

for low ↵, the applied tensile stress is equally shared among bonds and the
system is similar to the one studied byErdmann and Schwarz [2004]. On the
other side, for a large ↵, the stress is concentrated on the edges, the bonds in
this zone will bear a much large stress, and thus crack-like failure is expected
at the adhesion edge. For intermediate values of ↵, the stress is maximum at
the edges and minimum in the center of the patch.

This idealized stochastic-elasticity model unifies the statistical description
of single bonds behavior at small scales with an elastic description of the
adhesive contact at large scales. Using a Monte Carlo scheme, the Gillespie
first reaction method, they are able to solve the coupled stochastic-elasticity
equations and study the stability and the strength of molecular bond clusters
joining two elastic bodies.

The results of the numerical simulations suggest that, for any given load,
there exists a window of cluster size, for which the cluster exhibits a lifetime
relatively larger than that of a single molecule with no force.
Furthermore, bond clusters are longer-lived at intermediate cluster sizes. Thus,
under some assumptions, they could provide a model that reproduces the
finite size clusters observed in the experiments. Despite the very idealized
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framework proposed, this model provides a very elegant and efficient way to
study the chemo-mechanical problem of soft adhesion mediated by specific
binders, and will serve as a basis for further modeling presented in this first
part of the thesis. This minimalistic mechano-stochastic approach has been
extended in various ways over the recent years [Qian et al., 2009, Gao et al.,
2011]. It has also been extended to 3-D environment accounting for membrane-
mediated interaction and fluctuations, leading to cooperativity effects, to
study the segregation of bonds of different sizes at adhesion patches [Krobath
et al., 2011, Schmid et al., 2016b], or the dynamics and structure of adhesion
patches [Smith et al., 2008b].
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Chapter 4

Mechano-stochastic modeling

We saw in the previous chapter, that the mechanical environment and the struc-
ture of the clusters play a role in the stability of molecular bond clusters. Gao
and coworkers idealized the cellular mechanical environment as an elastic half
plane. Moreover, this and other groups considered that force was transmitted
to the bonds by a tensile stress � on this elastic medium. While the cytoskeleton
can indeed behave like an elastic medium, binders are more closely associated
to the membrane, which is often under tension. Furthermore, the cortex
itself can be seen as a thin membrane under tension [Salbreux et al., 2012b].
We develop, in this chapter, an idealized 2D model coupling mechanics and
stochastic reaction dynamics, which allows us to include the effect of surface
tension, in addition to elasticity, to determine the force distribution over the
bonds in a cluster. In addition, we consider the possibility that bonds are
loaded through hydraulic pressure �P in the interstitial space bridged by
bonds, as motivated in the Introduction. In this case, the membrane can be
expected to be tense, and hence membrane fluctuations suppressed.
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Figure 4.1: Scheme of the model for molecular bond clusters embedded on an
elastic medium. The blue line on the bottom of the elastic medium is subject
to the tension Tc and tends to oppose to its elongation. The elastic medium is
subjected to a tensile stress � or the interstitial space to an overpressure �P.

The model considered in this chapter is summarized in Fig. 4.1. We will
introduce the different features of the model step by step to understand their
role in stability of bond clusters.

4.1 Model

We consider a periodic array of size Lx of adhesion patches of size Lp made
of closed bonds with a uniform spacing b, which establishes an adhesion
between an elastic medium, with a Young’s modulus E and a Poisson’s ration
⌫, and a rigid substrate. The system is subjected to either a tensile stress
� or an interstitial overpressure �P. The interface is tense with a surface
tension contribution Tc to the interface bounding the bottom part of the elastic
medium. The effect of this tension is opposed to an increase of size of the
bottom surface, see Fig. 4.1. In the present 2D setting, Tc is a line tension,
which could represent membrane or cortical tension
The system is parameterized such that the density of bonds does not depend
on the size of the patch. For simplicity, we set the size of the crack equal to
the size of the patch. Thus, due to the periodicity of the problem, we will
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4.1. Model

focus on a system of size Lx with one cluster of size Lp ⇤ ↵Lx , with ↵ ⇤ 1/2,
made of Nbonds ⇤

Lx

2b
+ 1 bonds. Because of the constant average bond density

independent of cluster size, we can state that for a given surface tension Tc

and a given tensile stress � or a given overpressure �P, the average force
applied on closed bonds is constant whatever the size of the cluster is. Only
the distribution of forces depends on the size of the system. Thus, this simple
set-up allows us to examine the stability of the adhesion complex depending
on its architecture at constant average bond density.
Each bond undergoes stochastic dissociation, with a reaction rate ko f f , and
formation, with a reaction rate kon , which will depend on the force applied to
the bond and on the separation distance between the two surfaces as discussed
in subsection 3.1.

Mechanical modeling

To account for the elasticity of the system in a simple way, we consider a slice of
linearly elastic material with vertical thickness d ⇤ b as a plane strain problem.
The molecular bonds are uniformly distributed within the adhesion domain
at fixed spacing b. We neglect unspecific adhesion and, thus, adhesion is only
mediated by the binders. We consider that only the vertical component of the
force applied to the bond modifies the kinetics of unbinding.
In order to solve the mechanics, the elastic medium is discretized using a
non-uniform 2D Finite element triangular mesh made with 8298 triangular
elements, refined at the adhesion site. The lateral sides are subjected to
periodic boundary conditions. The binders coincide with nodes at the bottom
side of the material. According to its state, open or closed, the bond is free
or fixed. When the bond is closed, the displacement of the corresponding
node is fixed, and when the bond is open, the corresponding node is free.
The elements on the bottom side of the elastic medium are subjected to a
line tension Tc . We number the bonds from the left to the right from 1 to Nbonds .
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The mechanics of the problem is then obtained through the minimization of
the energy including the elastic energy EE, the energy due to the overpressure
EP , the surface tension energy ET and the potential of the loads EL. For a
global displacement U of the nodes of the mesh, K the stiffness matrix of
the system, Lbottom the length of the bottom interface of the elastic medium,
Abottom the area between the two surfaces and F the vector of tensile forces
due to the tensile stress �, the energy Etot of the system is:

Etot ⇤ EE + EP + ET + EL ⇤
1
2U>

KU � �PAbottom + TcLbottom � U>F (4.1)

With the proper boundary conditions for periodicity and given set of bonds,
minimization of the energy Etot allows us to compute the vertical component
of the force Fi felt by closed bond number i and the separation distance � j for
a open bond number j. In this way we can compute the corresponding rates
of dissociation and formation for each closed or open bonds in the cluster.

Stochastic modeling

The dissociation rate ko f f follow the classical Bell’s law

ko f f ⇤ k
0
o f f

e
Fi/Fb , (4.2)

with Fb the force scale, typically in the pN range, k0 the spontaneous dissocia-
tion rate in the absence of force, typically from a fraction of second to hundreds
of seconds and Fi the vertical component of the force felt by the bond i

We can write the breaking rate, for a closed bond i subject to a force Fi , in a
dimensionless form as

ri ⇤
ko f f

k
0
o f f

⇤ e
Fi/Fb ⇤ e

fi , (4.3)

with fi ⇤
Fi

Fb

the normalized force acting on the bond.
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And for the formation rate, we use the definition detailed in Fig. 3.4 that
gives the non-dimensionalized formation rate for an open bond i at a distance
�i from the opposite surface:

gi ⇤
kon

k
0
o f f

⇤ 2�
r
�

⇡

exp(��(�i � Lb)2)
erf

⇥
(�i � Lb)

p
�
⇤
+ erf

⇥
Lb

p
�
⇤ , (4.4)

with �i ⇤
�i

b
the surface separation normalized by the bond spacing b, Lb ⇤

lb

b

the rest length of the bond after the same normalization, � ⇤ n
k

0
on

k
0
o f f

lbind

b
and

� ⇤
kLR b

2

2kBT
.

Numerical method: Gillespie algorithm

Considering our problem, where each molecular bond, opened or closed, has a
different rate, solving the master equation is very difficult. Different methods
have been proposed to study chemical reactions [Long et al., 1999, Tees et al.,
1993], but to solve the master equation with spatially dependent rates, we
will use in the following sections the ”first reaction method” developed by
Gillespie [Gillespie, 1976, 1977].
In order to do so, we consider each molecular bond i as an independent
reaction site. We label the site of reaction by the bond number i ⇤ 1, ...,Ntot

and the corresponding rate ai with ai ⇤ ri ⇤ r(Fi) for closed bonds and
ai ⇤ gi ⇤ g(�i) for opened bonds.
Following the first reaction method, we want to determine the site i where
the first reaction happens and the time ⌧ at which it will happen according to
the probability distribution P(i , ⌧) ⇤ ai e

�atot⌧ with atot ⇤
Õ

Ntot

i
ai . Then, we

generate a series of independent random numbers ⇠⌫ , ⌫ ⇤ 1, ...,Ntot uniformly

distributed over [0,1] and compute the series ⌧⌫ ⇤
� ln ⇠⌫

a⌫
.

Then, the next event will happen after a time ⌧i ⇤ min⌫(⌧⌫) at the correspond-
ing site i. If ai ⇤ ri the corresponding bond will break and if ai ⇤ ri the
corresponding open bond will rebind. See Fig. 4.2 for a graphical description.

35



4. M������-���������� ��������

Initialization of the problem

Set: {
Solve mechanical equations

We obtain:{Force distribution

Separation

if site i is a closed bond

if site i is a open bond

Compute the rates

For each closed/open bond we
compute the rates:

if site i is a
closed bond

if site i is a
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:
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Compute reaction times
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Figure 4.2: The flow chart of a Gillespie Monte Carlo scheme coupling
stochastic descriptions of molecular bonds and elastic descriptions of cell-
substrate adhesion.
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4.2. Bond clusters attached to an elastic medium

Numerical parameters

For the following examples we choose numerical parameters in accordance
with [Qian et al., 2008] in order to be able to compare results. A table below
summarizes the numerical parameters.

Numerical parameters

• b ⇤ 3.2 · 10�8 m

• lb ⇤ 1.1 · 10�8 m

• � ⇤ 1 � 100

• kLR ⇤ 2.5 · 10�4 N·m�1

• Fb ⇤ 4 pN

• Nbonds ⇤ 3 � 65

4.2 Bond clusters attached to an elastic medium

Bond clusters under applied tensile stress �

We start by studying the case of a uniform tensile stress � applied on the
surface of the elastic medium, thus ignoring surface tension and hydraulic
pressure, in a problem previously studied by Gao and coworkers, it is natural
to expect that the cluster will be more fragile as the applied tensile stress
increases since the bonds are force sensitive. A sketch of the problem is given
in Fig. 4.1, with Tc ⇤ 0 N·m1 and �P ⇤ 0 Pa. The mechanics of the problem is
obtained through the minimization of the energy Etot ⇤ EE + EL.
First, we will look at the influence of the tensile stress and the size of the
cluster on the force profile and the separation distance between the two media,
as the rates depend on these two variables.
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Figure 4.3: Force F(N) on the bond and normalized separation y/Lx for
different values of the applied tensile stress �(Pa). E ⇤ 10 kPa. Nbonds ⇤ 9.
Force and displacements are linear with �.

To illustrate the influence of the tensile stress � on the mechanics, we plot
in Fig. 4.3, for a cluster of 9 bonds initially closed, the distribution of forces
over the cluster and the surface separation profile. We can see that, on the
one hand, increasing the tensile stress � will increase the separation between
the two surfaces in the cracks making rebinding more difficult and, on the
other hand, increasing the tensile stress � increases the transmitted forces
distribution over the cluster, which will make bonds more fragile. Its then
expected that the cluster will also be more fragile.
It is also interesting to look at the influence of the cluster size. Fig. 4.4 shows
the force distribution over the cluster for different value of the cluster size.
We see that, as Nbonds increases, the force distribution transits from a uniform
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Figure 4.4: Force distribution F(N) as a function of the cluster size Nbonds . Lx

increases linearly with Nbonds . E ⇤ 10 kPa. � ⇤ 500 Pa.

distribution to a crack-like distribution. Thus, the cluster size controls the
overall force distribution and then the stability of the cluster.
These two remarks are illustrated in Fig. 4.6 and Fig. 4.5. Fig. 4.6 shows that the
lifetime of the cluster decreases with the tensile stress �. Fig. 4.5 shows that
the size of the clusters, which scales as the size of the cracks, influences the
ability of the cluster to resist to tensile stresses. Small clusters tend to live short
due to the small number of bonds supporting the applied force and thus are
very sensitive to thermal fluctuations. Large clusters, on the other hand, tend
to live short and exhibit dramatic dissociations: for large clusters the cracks
are so big that the force at the crack tip make the bonds more susceptible to
break, and these bonds never rebind, as the separation also increases with the
size of the cracks.
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Figure 4.5: Simulation trajectories of a molecular bond clusters obtained for
different initial number of closed bonds Nbonds . The tensile stress is constant
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4.2. Bond clusters attached to an elastic medium

These results only give a partial view of the process since the relevant
information here would be the average of lifetimes for a large number of
simulations. Nevertheless, such trajectories illustrate the random-like behavior
of binding and unbinding.
In Fig. 4.5, we can see that reducing the tensile stress � tends to stabilize the
cluster and leads to a longer lifetime. We plot in Fig. 4.7 the average lifetime,
obtained by averaging over 500 trajectories, as a function of the applied tensile
stress �. We observe that the lifetime of a cluster of given size increases as we
decrease the applied tensile stress �. It reaches asymptotically infinity below a
critical value. Following the work by Qian et al. [2009] this critical value �c of
the stress, for which the lifetime of the cluster approaches infinity, will be called
the strength of the cluster. Here, we consider that the lifetime approaches
infinity when the normalized average lifetime ⌧1 ⇤ k

0
o f f

t1 is larger than 100,
meaning that the lifetime of the cluster is 100 times longer that the average
lifetime of an unstressed individual bond (tindividual(F ⇤ 0) ⇤ 1/k

0
o f f

). The
strength depends on the way we define ⌧1, but the curve for the lifetime has
a very large slope near the critical stress. Then, a change in the definition of
⌧1 will have a little effect on the value of the strength of the cluster. As an
indication of the consistency of the model with previous works, we reproduce
in Fig. 4.8, the results presented by Qian et al. [2008], where there exists a
window of enhanced stability at intermediate cluster sizes.
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Figure 4.7: Average lifetime of a cluster of Nbonds ⇤ 9 closed bonds as a
function of the applied tensile stress �. The strength is defined as the critical
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Bond clusters under applied hydraulic pressure �P

Justified by previous works [Casares et al., 2015], we adapt this framework to
study the effect of an overpressure inside the crack. The system considered is
given in Fig. 4.1, with with Tc ⇤ 0 N·m1 and � ⇤ 0 Pa. The mechanics of the
problem is obtained through the minimization of the energy Etot ⇤ EE + EP .
As shown in various works, membrane fluctuations are thought to play an
important role in cell adhesion. Pressurization of the crack would reduce
drastically membrane fluctuations and would ensure that, for the considered
problem, only the interplay between mechanics and reaction would drive
the evolution of the system. With the proper boundary conditions for the
periodicity and the bonds, minimizing the energy Etot allows us to compute
the force Fi felt by closed bond i and the separation distance � j for open bond
j. This way we can compute the corresponding rates of dissociation and
formation for each closed or open bonds in the cluster.

We see in Fig. 4.9, that the effect of an over-pressure and that of a tensile
stress on the cell-cell separation and force felt by the bonds are very similar: a
high over-pressure tends to separate the surfaces and increases the force felt
by the bonds, making them more fragile. This observation is confirmed by
further calculations. Thus the behavior of molecular bonds subject to tensile
stress or over-pressure will show similar features.

4.3 Influence of surface tension

In order to study the influence of the surface tension on the stability of
adhesion clusters, we update the model in section 4.2 by adding a surface
tension contribution Tc to the interface bounding the bottom part of the elastic
medium. The effect of this tension is opposed to an increase of size of the
bottom surface, see Fig. 4.1. In the present 2D setting, Tc is a line tension, which
could represent membrane or cortical tension. The mechanics of the problem
is then obtained through the minimization of the energy Etot ⇤ EE + ET + EL.
The line tension term introduces non-linearity in the model. With the proper
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Figure 4.9: Force Fy(N) on the bond and normalized separation y/Lx for
different values of the overpressure �P (Pa). Nbonds ⇤ 9. E ⇤ 10 kPa. Force
and displacement are linear with �P.

boundary conditions for the periodicity and the bonds, minimizing the energy
Etot allows us to compute the force felt by closed bonds and the separation
distance for an open bond to compute the corresponding rates of dissociation
and formation for each closed or open bonds in the cluster. The numerical
stochastic algorithm is kept the same.
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different values of the cortical tension Tc . Applied tensile stress � ⇤ 600 Pa.
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Influence on the mechanics

Fig. 4.10 examines the influence of the surface tension Tc on the surface
separation distance and on the force applied to the bonds: increasing the
tension will tend to close the crack, making rebinding easier for broken bonds,
and change the distribution of forces in the patch, increasing the force felt by
the bonds at the edges of the crack, making them more fragile. Thus cortical
tension is another way to control bond clusters dynamics, which we examine
more closely in the following. The effect of the surface tension seems stronger
on the normalized separation than on the overall force distribution.
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We can see in the figure that Tc modulates the force distribution from
a elasticity dominated system (black curve) to a surface tension dominated
system (green curve). We consider values for Tc in an intermediate regime
where tension and elasticity compete and play a significant role.

Influence on lifetime of the cluster

A shown in Fig. 4.11, from the point of view of the intrinsic strength of the
cluster of a given size Nbonds , increasing the cortical tension Tc increases the
strength of the cluster. This dependence of the strength �c on the cortical
tension Tc could provide to the system a way to switch from stability to
instability and thus allow the system to strengthen or to adapt and remodel.
An illustration of this idea is given in Fig. 4.11: for a given stress �0 > �0

c the
cluster is unstable when Tc ⇤ 0. Increasing the surface tension to Tc ⇤ 10�5

N·m1 will displace the strength from �0
c to �1

c and we have �0 < �1
c for which

the cluster is stable.
Fig. 4.12 examines the effect of Tc on the lifetime of bond clusters of

different size for a high applied stress, for which the cluster is very fragile.
This figure shows the very strong effect of Tc on the lifetime: doubling Tc

from 6 · 10�5 to 12 · 10�5 N·m1 increases the maximum lifetime by an order of
magnitude. The closing of the cracks due to surface tension combined with
the strong dependence of the rebinding rate with normalized separation �
(as ⇠ exp(�(�/a)2), with a a constant, see Eq. (3.10)) has a stronger effect on
stability than the modification of the force distribution related to the breaking
rate (as ⇠ exp(F/Fb), with Fb a constant, see Eq. (3.3)). Actually, this latter
effect weakens the bonds at the crack tip. Thus, stability arises mainly from
the change in shape due to an increase in surface tension.
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4.3. Influence of surface tension

Figure 4.11: Average lifetime of a cluster of Nbonds ⇤ 9 closed bonds as a
function of the applied stress for Tc ⇤ T

0
c ⇤ 0 and Tc ⇤ T

1
c , 0. The strength is

defined as the critical value of the stress � for which the average lifetime of
the cluster approaches infinity and is given for both values of Tc as �0

c and �1
c .

The blue zone corresponds to stability for clusters under T
0
c and T

1
c and the

yellow zone corresponds to instability for both tensions. In the green zone,
clusters are unstable under T

0
c and stable under T

1
c . We have �0

c < �
0 < �1

c .
E ⇤ 10 kPa. Lifetime and error bars are obtained from 500 trajectories.
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Figure 4.12: Average lifetime of clusters as a function of Nbonds for different
tension Tc. � ⇤ 1000 Pa and E ⇤ 10 kPa. Lifetime and error bars are obtained
from 500 trajectories.
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Chapter 5

Capillary-stochastic modeling

We now propose a simpler model at the limit of vanishing elasticity using
Laplace law to model the mechanics of the cell surface.

5.1 Model

The previous models suggest that the mechanical effect on an array of bond
clusters of an over-pressure and of a tensile stress on the mechanics of the
adhesion cluster are equivalent. The models presented above considered the
mechanics of the medium on which the molecular bond cluster is embedded
as elastic with a surface tension. As stated in the introduction, this modeling
choice is pertinent for some systems such as vesicles filled with a gel.
This model, however, is not relevant in other situations. For instance, in adhered
lipid vesicles under hydraulic stress, the force on the bonds is determined
by the membrane mechanics without the presence of an elastic medium.
For animal cells with a well-defined actin cortex, bonds can be assumed to
be attached to a thin and tense interface, made of the membrane and the
underlying cortex, and therefore, membrane mechanics would determine
forces and separations between opposite open bonds. In either of these
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situations, membrane mechanics can be modeled using capillarity, according
to which the surface tension and the inner pressure are related through the
Laplace’s law. In the capillary limit, the bending rigidity  of the membrane is
neglected. This approximation is correct at scales larger than `T ⇤

p
/Tc .

Here that requires this `T < b, with b ⇤ 32 nm, the minimum spacing between
bonds, and `T ⌧ Lx , with Lx , the size of the system. For tense membranes,
Tc ⇤ 10�3 N·m1 and  ⇤ 10�20 N·m we have `T ⇤ 3 nm < b ⌧ Lx . We can
conclude that, for such parameters, the capillary hypothesis is justified, and
the mechanics of the membrane can be computed using Laplace’s law. Thus, in
order to provide a framework to study the behavior of molecular bond clusters
on tense membranes under hydraulic stress, we will derive a simpler capillary
model for which the mechanics are ruled by surface tension and pressure
through the Laplace law. The model considered here is based on the same
set-up detailed in previous sections with molecular bond clusters adopting
the same structure and following the exact same kinetics. An illustration of
the model is given in Fig. 5.1

5.2 Parameterization of the problem

Between two fixed bonds, the shape of the curve is given by Laplace’s law: it
is an arc of circle with a radius of curvature R given by

R ⇤
Tc

P
. (5.1)

Thus we can consider the whole membrane as a combination of the arcs
formed between each closed bonds. To reconstruct the full shape and force
distribution, it is necessary, using a proper parameterization, to compute
the length of each arc, the area below the arcs and the force acting on each
bonds. The parameterization of the arc is given in Fig. 5.2. Simple geometric
considerations give the length L of the membrane, the area A below the arc
and the vertical Fy and lateral forces Fx on the bonds as stated on the same
figure. The overall mechanics can thus be obtained by considering the shape
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Figure 5.1: Scheme of the model. The structure of the cluster is kept the same
that the one detailed on fig 4.1. The blue line is a purely capillary membrane.
The bonds follow the exact same reaction than in previous sections.

of the vesicle as a combination of arcs. To obtain the forces on the closed
bonds we sum the contribution of the two adjacent arcs. This way we obtain,
at low computational cost, all the data necessary to perform the algorithm
described in section 4.1. Thus, we obtain a very cheap and efficient procedure
to compute the shape and the force distribution on the bonds, which greatly
reduces the computational cost as compared to the previous method using
Finite elements or the method using Green functions provided by Qian et al.
[2008].
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Figure 5.2: Parameterization of the problem. The red line represents the shape
of the membrane between two bonds separated by a spacing W . R is the
radius of curvature given by Laplace law. The lateral and vertical projection of
the resultant forces on the bonds due to the tension Tc are Fx and Fy

5.3 Results

Mechanics

Looking at the influence of the overpressure �P and the cortical tension Tc the
force distribution over the system and the profile of separation between the
rigid substrate and the membrane, we can make the following observations
summarized in Fig. 5.3.

First, we recover important features of the previous models. The force
transmitted to the bonds is mostly borne by the bonds on the edge of the crack,
while the distribution of forces inside the patch is uniform and much lower.
Secondly, we see that increasing the overpressure �P tends to increase the
height of the cracks and the overall forces transmitted to the bonds (see
Fig. 5.3(b)) while an increase of the cortical tension Tc would leave the
distribution unchanged (see Fig. 5.3(a)). Finally, we recover another important
feature of the previous models: increasing the cortical tension tends to reduce
the opening gap of cracks.
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Thus, with this minimalistic and very efficient capillary-stochastic model, we
recover the main features driving the unbinding of the clusters: non uniformity
of transmitted forces and a competition between the closing and opening of
the cracks.

Energy release rate

In analogy with fracture mechanics, another way to characterize the system
as a material is to look at the energy release during crack propagation, the
thermodynamic driving force of the system.
In order to do so, we will consider the following system: starting from a state
where all bond are closed, we will break the bonds one by one until full
separation to simulate the propagation of the crack. For each state we will
compute the total energy of the system. Thus, we will be able to compute the
rate of change of energy in the system during the propagation of the crack.
In Fig. 5.4, we plot the energy release rate for different values of the cortical
tension. We can see that increasing the cortical tension tends to reduce the
total energy release rate of the system. Keeping the analogy with fracture
mechanics we can say that the cortical tension has a toughening effect as it
reduces the driving force for crack propagation.

Lifetime

To characterize the effect of the cortical tension Tc on the stability of the
clusters we adapt the Fig. 4.7, giving the strength of a given cluster, to the
capillary-stochastic model. We use a new criterion to define the strength of
the cluster: the strength �Pc is such as the normalized lifetime ⌧(�P) is such
as k

0
o f f
⌧(�Pc) ⇤ 400. The results are given in Fig. 5.5. This better assessment

of the lifetime and the better statistics in this figure are possible thanks to the
high computational efficiency of this model. The capillary-stochastic model
reproduces the same behavior with the force that we reported for an applied
force: there exist a critical pressure �Pc for which an overpressure �P < �Pc
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Figure 5.3: a) Force Fy(N) on the bond and normalized separation y/Lx for
different values of the overpressure �P. Tc ⇤ 10�3 N·m1. b) Force Fy(N) on
the bond and normalized separation y/Lx for different values of the cortical
tension Tc . �P ⇤ 300 Pa.
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5.3. Results

Figure 5.4: Energy release during crack propagation for different values of
the cortical tension Tc . An illustration of the crack propagation is given in the
right corner of the figure.

will leave the cluster stable and an overpressure �P > �Pc will lead to total
decohesion of the cluster. We see that the value of �Pc is dependent on
the cortical tension Tc : the bigger the cortical tension, the bigger the critical
stress. Thus, at a given cluster size and overpressure, increasing the tension
will increase the stability. Similarly to the previous chapters in section 4.3,
modulating cortical tension could provide a way for the system to switch
between stability and instability and thus allow strengthening or remodeling.
Concerning the dependence of the lifetime of the cluster on the cluster size, the
results are given in Fig. 5.6. If we consider a cortical tension Tc ⇤ 3 · 10�3 N·m1,
we can see that the capillary-stochastic model captures the dependence we
found with the elastic-stochastic model discussed in the previous chapter.
There exists a window of cluster size for which clusters are stable under a
given force and a small increase in surface tension leads to a large increase
in lifetime. A series of kymographs illustrating the difference of behavior of
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Figure 5.5: Average lifetime of a cluster of Nbonds ⇤ 9 closed bonds as function
of overpressure �P for Tc ⇤ T

1
c ⇤ 10�3 N·m1 and Tc ⇤ T

2
c ⇤ 2 · 10�3 N·m1.

The strength is defined as the critical value of the overpressure for which the
average lifetime of the cluster approaches infinity and is given for both values
of Tc as �Pc

1 and �Pc
2. �P ⇤300 Pa. Lifetime and error bars are obtained

from 2000 trajectories

clusters depending on their size are given in Fig. 5.7. They clearly show the
dependence of the lifetime on the cluster size and the different features of the
failure mode, with a crack propagation mechanism for large clusters. Going
back to Fig. 5.6, we observe that increasing the surface tension increases the
width of the window: large unstable clusters can become stable by increasing
the tension. The strong dependence of the maximum lifetime on tension
is illustrated in the inset in Fig. 5.6: the maximum of the lifetime increases
rapidly with surface tension. This strong dependence is expected since the
rebinding rate strongly depends on the normalized separation, see Eq. (3.10)
and the comments given on section 4.3.
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Figure 5.6: Average lifetime of clusters as a function of Nbonds for different
tension Tc. �P ⇤ 300 Pa. Lifetime and error bars are obtained from 2000
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Figure 5.7: Kymographs describing trajectories of closed bonds for different
cluster size Nbonds . The black lines represent closed bonds. The pink line
domain represents the extension of the initial patch of closed bonds. The
red line represents the instant at which the cluster fails. �P ⇤ 300 Pa and
Tc ⇤ 3 · 10�3 N·m�1. a) Nbonds ⇤ 4. b) Nbonds ⇤ 10. c) Nbonds ⇤ 20.
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5.4 Mobile molecular bonds

Up to now, we have considered fixed bonds and fixed binders. We want to
consider now the possibility of lateral diffusion of bonds and binders during
the separation.
During the time corresponding to a reaction the bonds diffuse according to a
normal distribution around their initial position. The extent of their diffusion
is parametrized by the constant diffusion D. The bonds are attached to the
two membranes so we expect Dbonds ⇤

Dbinders

2 . A sketch of the problem is
given in Fig. 5.8.

Modeling diffusion

Every molecule, bound or unbound, is diffusing according to Brownian motion
dynamics. In 1D diffusion along x, any adhesion molecule, with a diffusion
constant D, at x0 at t ⇤ 0 has a probability p(x , t) of being at x after a time t is
given by the Fokker-Planck equation in the absence of external forces:

@p

@t
⇤ D

@2
p

@x2 (5.2)

A solution of the equation is given by the following probability distribution
function p(x , t):

p(x , t) ⇤ 1p
4⇡Ddt

e
�
(x � x0)2

4Dt ⇤
1p

2⇡�(t)2
e

�
(x � m(t))2

2�(t)2 , (5.3)

with m(t) ⇤ x0 the mean of the distribution and �(t) ⇤
p

2Dt its standard
deviation.

In order to model the diffusion of the adhesion molecules on the mem-
brane, we perform a Monte Carlo algorithm simulating Brownian motion.
This Monte Carlo scheme will be implemented in the Gillespie algorithm. The
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5.4. Mobile molecular bonds

Figure 5.8: Schematic representation of the diffusion of the bonds/binders
and the corresponding probability distribution for the movements.

general scheme of the reaction/diffusion algorithm is described in Fig. 5.9.

For each event predicted by the Gillepsie algorithm, a time ⌧ is assigned,
corresponding to the duration of the first reaction. The random walk is
performed for each molecule, binders and bonds, during this time ⌧, as
following:
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Figure 5.9: General scheme of the reaction/diffusion algorithm.
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• Given this time ⌧, the duration is divided into intervals of duration
dt << ⌧.

• For each time steps dt, we perform a random walk procedure. We
assign a random displacement dxi according to a normal distribution of
mean m and standard deviation � such as m ⇤ 0 and � ⇤

p
2Di dt, with

Di ⇤ Dbonds for bonds and Di ⇤ Dbinders for binders. The bonds move
on a lattice with a spacing of b̄ ⇤ b/10.

• The movement of the adhesion molecules obeys some rules: the molecule
assigned to ⌧ is fixed during the procedure and the others cannot jump
over each other or get too close to each other (steric crowding).

• When all the movements are assigned for each dt, we update all the
positions of the bonds in the Gillespie algorithm and determine the next
time ⌧. The whole procedure ends when all the bonds are open.

Influence on the lifetime

We now look at the influence of the mobility of the bonds on the dependence
of the lifetime of the cluster with the size of the cluster. The results are given
in Fig. 5.10. We observe that increasing the diffusivity Dbonds of the molecules
on the membrane increases the size of the window of stability: the faster
the diffusion, the bigger is the range of cluster size that are stable under the
applied overpressure. Moreover the lifetime of large cracks is also increased by
the the mobility of the bonds. This can be interpreted as follows: if the kinetics
are unchanged, bonds with faster diffusion can more easily move into the
crack faces and close them, reducing the forces exerted on the edges and thus
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increasing the overall lifetime of larges clusters. The fragility of large clusters
is determined by the crack-like force concentration at the crack’s tip. Indeed
considering a time ⌧ ⇤ 1/k

0
o f f

⇤ 1 s corresponding to the average lifetime of an
unloaded bond, the standard deviation �(t) ⇤

p
2Dt is such as �(⌧) ⇠ Ntot b for

the values of Dbonds considered in this section: for this kind of set-up, a crack
can easily be closed during the average time of binding/unbinding thanks
to the diffusion of the binders. This observation is illustrated in Fig. 5.11,
where trajectories are presented as kymographs. We see that for fixed bonds,
the cluster evolves towards decohesion by increasing the two existing cracks.
When the bonds are mobile, the bonds and binders are able to cross the cracks
and close them, thus increasing the overall lifetime of the clusters. Increasing
mobility enhances this effect: for faster diffusion (see Fig. 5.11c), after a small
duration, the initial cracks have disappeared and the patch of bonds have
spread and the effect of the overpressure is shared over the whole periodic
box. In the Appendix A, we discuss the influence of the bias on the mobility
of the bonds due to the lateral forces exerted by the membrane on the bonds,
which may limit the spreading of bonds over the whole periodic box.
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Figure 5.11: Kymographs describing trajectories of clusters for different
diffusion constant Dbonds . The black lines represent closed bonds. The pink
domain represents the extension of the initial patch of closed bonds. The red
line represents the instant at which the cluster fails. Nbonds=10, �P ⇤ 300 Pa
and Tc ⇤ 3 · 10�3 N·m�1. a) Dbonds ⇤ 0 m2·s�1. b) Dbonds ⇤ 10�14 m2·s�1. c)
Dbonds ⇤ 5 · 10�14 m2·s�1.
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Chapter 6

Conclusion to Part I

We have examined the effect of geometrical and mechanical architecture on the
stability of molecular bond clusters embedded on an elastic medium at fixed
average density. We have first developed an elasto-stochastic model using
finite elements to solve the mechanics of the elastic medium and the Gillespie
algorithm to solve the stochastic master equation ruling the evolution of the
number of bond, reproducing previous results on similar system [Qian et al.,
2008]: for a given applied tensile stress and elasticity of the elastic medium,
there exists a window of cluster sizes for which the bond clusters is stable. At
a given cluster size, there exists a critical stress �c which defines the stability
of the clusters. This critical stress is called the strength of the cluster.

Using the same model, we have studied the effect of an overpressure
between the two surface and found similar results for the stability of the
cluster, either pulling the medium apart with a tensile stress or pressurizing
the interstitial space.

We have examined the effect of a surface tension Tc on the mechanics of the
problem. We found that increasing Tc modulates the overall force distribution
on the closed bonds, concentrates the force at the crack tip, thus increasing
fragility of the bonds at the tip, and closes the space inside the crack, thus
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favoring rebinding. We identified the closing of the crack as the major factor
for the strong increase in lifetime. As a consequence, the lifetime of the cluster
strongly increases with surface tension. Moreover, for a given cluster size, we
found that the strength depends on the surface tension. Given the very strong
sensitivity of lifetime on surface tension, this mechanism could provide a way
for adhesion to switch between instability and stability by modulating surface
tension.

We have proposed a simplified and very efficient capillary-stochastic
model, in which the the mechanics are dominated by surface tension. In
such a system, the shape is given simply by Laplace’s law, which greatly
simplifies the computation. This model was able to reproduce the same
features detailed previously. Using this framework we studied the influence
of surface tension on energy release during crack propagation. In analogy
with fracture mechanics, we found that the surface tension has a toughening
effect as it reduces the driving force for crack propagation. Modifying the
Gillespie algorithm, we extended our model to mobile bonds and binders. We
found that mobility of bonds and binders increases the stability of clusters of
all sizes as it allows bonds and binders to close cracks and thus reduces the
force borne by bonds at the crack tip.
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Part II

Part II: Continuum modeling of
the dynamics of soft adhesion
mediated by mobile binders
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Chapter 7

Introduction to Part II

Soft adhesion mediated by mobile binders is a multi-scale problem coupling
adhesion mechanics at a macro-scale and reaction kinetics at a micro-scale.
Part I of the thesis has focused on stochastic minimalistic models examining
how bond cluster architecture and mechanical environment affect the stability
of adhesion patches. This modeling approach provides insight about micro
and mesoscopic phenomena, but it is very difficult to access sufficiently large
length scales and larger time scales to model non-equilibrium phenomena
such as unbinding occurring at a vesicle/ cell scale.
In this Part II of the thesis, we propose another approach to the problem
based on continuum modeling. We consider adhesion between two vesicles
mediated by reacting adhesion molecules that can bind or unbind according
to reaction rates coupled with the mechanics. We focus on the unbinding of
the vesicles due to a force applied on the vesicle with a loading device, e.g. a
micropipette. A sketch of the problem is given in Fig. 7.1. This is a prototypical
dissipative problem in soft matter physics mixing elasticity and capillarity of
the fluid membrane with diffusion of mobile and reacting chemical species,
and all these ingredients being tightly coupled and relevant to biology. The
equilibrium of this problem has been extensively studied [Bell et al., 1984a]
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and classical results are given in Fig. 7.1. Essentially, in equilibrium, the
concentration of free binders in the entire vesicle and that of bonds in the
adhesion patch are uniform and need to obey the balance of molecular number,
a chemical equilibrium condition, and force balance at the contact point
between mechanical tension on the membrane and the osmotic tension of
the bonds, which are confined to the adhesion patch whose boundary can be
viewed as a semi-permeable boundary that free binders but not bonds can cross.
Force balance at the contact point couples the chemical and mechanical aspect
of the problem. This problem is notoriously subtle , and dynamics have only
been barely explored [Brochard-Wyart and de Gennes, 2002b, de Gennes et al.,
2003]. In principle, different behaviors can be proposed for extreme regimes, as
it is summarized in Fig. 7.1. For the regime dominated by unbinding kinetics
of bonds, we expect a tear-out decohesion [Berk and Evans, 1991, Casares et al.,
2015]. On the opposite, a regime where diffusion dominates will lead to an
increase in the concentration of bonds in a shrinking adhesion patch [Tozeren
et al., 1989].
To formulate a consistent model coupling all these different physics we will
need a systematic approach. Based on the Onsager’s variational principle, we
will detail a general framework allowing us to generate the governing equation
of the problem we want to study by making energetic considerations on the
free energy and the dissipation of the problem.
Chapter 8 gives an overview of Onsager’s principle using simple examples
oriented towards our problem. Chapter 9 develops the application of this
principle to study the chemo-mechanical problem of soft adhesion mediated
by mobile binders for cases of unbinding or growth and maturation. General
hypotheses will be discussed and the last chapters will detail the consequences
on the dynamics when theses hypotheses do not hold. Towards this objective,
Chapter 10 discusses the influence of the compliance of the bonds on the
dynamics while Chapter 11 discusses the modeling of slip bonds and the
influence of the nature of the bonds on the dynamics. Finally, Chapter 12
considers molecular crowding on the membrane.
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Chapter 8

Onsager’s variational principle

8.1 Introduction

Our main objective is to introduce an emerging variational modeling frame-
work for the dissipative dynamics of soft-matter and biological systems, which
provides a systematic and transparent approach to generate complex models
coupling multiple physics. This approach used under different names in
different contexts and recently formalized [Doi, 2011, Peletier, 2013] states that
the dynamics result from the interplay between energetic driving forces and
dissipative drag forces, each of them deriving from potentials that are the sum
of individual contributions for each physical mechanism. Models coupling
different physics can be assembled by just adding more terms to the energy
and dissipation potentials, and encoding in them the interactions between
the different physical mechanisms. In this way, this framework provides
a flexible and thermodynamically consistent method to generate complex
models. Unlike Onsager’s relations, this approach is not limited by linearity
and is able to deal with mechanical and chemical nonlinearity, arising for
instance from molecular crowding.
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Figure 8.1: Sketch of the elementary model. A spring with stiffness k is in
parallel with a dashpot with a drag coefficient µ and a force F is applied. The
system is characterized by its displacement x from its equilibrium position.

The goal of the Chapter is to convey Onsager’s variational principle through
examples. More specifically, the emphasis is made on simple models exhibiting
coupling between diffusion, reaction and mechanics. We will conclude with a
general statement of the variational principle that will provide the framework
for the modeling of vesicle unbinding in subsequent chapters. For a more
extensive introduction to Onsager’s variational principle in soft matter physics,
see [Doi, 2012, Arroyo et al., 2018]. The interested reader may also find recent
applications of the variational principle to lipid membranes elsewhere [Arroyo
and DeSimone, 2009, Rahimi and Arroyo, 2012, Fournier, 2015].

8.2 Elementary examples

Competition between energy release and dissipation

The first example is a very simple model to illustrate that the dynamics of
dissipative dynamics arises from a competition between energy release and
dissipation. Let us consider a spring with stiffness k coupled with a dashpot
with a drag coefficient ⌘ under the action of a force F. The sketch of the model
is given in Fig. 8.1. This very simple system will allow us to understand some
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of the most essential ideas underlying the Onsager’s variational principle.
In the present system, the variable characterizing the state of the system is
the elongation x of the spring and this elongation generates a conservative
force Fcons ⇤ �kx. But because of the dashpot in parallel, the system also
experiences a viscous force Fvisc ⇤ �⌘v ⇤ �⌘ €x.
If the drag is considered large enough, the inertia of the system can be neglected
and we can write the following balance of forces:

Fcons + Fvisc + F ⇤ 0, (8.1)

leading to the differential equation governing the system:

⌘ €x + kx ⇤ F. (8.2)

But let us look at this equation from another perspective: both Fcons and F

derive from a potential (elastic energy stored in the spring and the potential
energy of the external force F). We can express this potential F , which can be
seen as the free energy of the system, as follows:

Fcons + F ⇤ �@F
@x

with F (x) ⇤ kx
2

2 � Fx. (8.3)

In the same way, the viscous force Fvisc can be expressed as deriving from a
potential. This potential D, which depends on v, is often referred to as the
dissipation potential and it obeys:

Fvisc ⇤ �@D
@x

with D(x) ⇤ ⌘v
2

2 . (8.4)

We can express the rate of change of the free energy F as follows:

dF
dt

⇤ (kx � F)v ⇤ (kx � F) €x. (8.5)

The rate of change dF
dt

is a function of x and v. Let us now define the so-called
Rayleighian as:

R(x , v) ⇤ €F (x , v) +D(v) ⇤ (kx � F)v +
⌘v

2

2 . (8.6)
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Figure 8.2: Elementary model for diffusion. The bulk domain ⌦ represent a
quiescent fluid and @⌦ its impermeable container. The dilute specie is labeled
with red dots.

It is now obvious that the governing equation of the system derives from
the minimization of the Rayleighian @R

@v
⇤ 0. Noting that since ⌘ > 0, the

Rayleighian is convex in v and thus, the governing equation follows from the
variational principle

v ⇤ argmin
w

R(x ,w). (8.7)

In contrast with the classical principle of minimum potential energy the
minimization is here performed over the rate of change of the system v. This
variational principle establishes a competition between dissipation and energy
release. The examples below show that this principle is broadly applicable
to systems in which dissipation dominates over inertia and for which the
dissipation forces derive from a potential D.

Diffusion of particles in a bulk

In order to apply this principle to our problem of interest, we consider now
a classical problem, the diffusion of solute particles in a quiescent fluid. For
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this, let us consider ⌦, a region of space occupied by a quiescent fluid with a
dilute distribution of non-interacting solute molecules and delimited by an
impermeable container. The state of the system is defined by the continuous
field on ⌦ , c(x, t), the molar concentration of solute molecules at instant t. A
sketch of the problem is given in Fig. 8.2. Such a problem is governed by the
diffusion equation

@c

@t
⇤ D�c , (8.8)

and its appropriate boundary conditions. Here D is the diffusion constant
and � is the Laplacian. Furthermore, the Stokes-Einstein equation provides a
microscopic expression for the diffusion coefficient as

D ⇤
kBT

f
, (8.9)

where kB is the Boltzmann constant, T is the absolute temperature and f is the
hydrodynamic drag coefficient, that is the proportionality coefficient between
the drag force experienced by a solute molecule and the speed at which it is
moving relative to the fluid.
Let us now apply the Onsager’s variational principle to this problem.
In such a system the main driving force is the minimization of the entropic
free energy (or the maximization of the mixing entropy, that is to say the
tendency for the dilute molecules to homogenize their concentrations). For a
dilute solution, the free energy can be expressed as:

F [c] ⇤ RT

π
⌦

c(log c � 1)dV +

π
⌦

cµ0dV , (8.10)

where µ0 is the standard chemical potential and R the universal gas constant.
Noting that the boundary is impermeable, the rate of change of the free energy
at an instant t is given by the Reynolds transport formula

d

dt
F [c(, t)] ⇤

π
⌦
(µ0 + RT log c)@c

@t
dV ⇤

π
⌦
µ(c)@c

@t
dV , (8.11)

with

µ(c) ⇤ �F
�c

⇤ µ0 + RT log c , (8.12)
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the chemical potential at concentration c. This quantity measures the free
energy cost of adding one mole of solute molecules per unit of volume at
a given concentration c. Thus gradients in µ will drive the migration of
molecules to reduce the free energy.
Now, let us consider the dissipation in the system. If a solute molecule is
moving at a velocity w compared to the quiescent fluid, it experiences a drag
force F ⇤ � f w with f the previously defined hydrodynamic drag coefficient.
The corresponding dissipation potential is f |w|2

2 . So, if we keep assuming the
solution to be diluted, that is to say that the presence of other molecules does
not affect the solute molecules, we can write the total dissipation potential
D as the sum of the dissipation potentials of the Na c solute molecules in the
system, with Na the Avogadro’s constant:

D[w] ⇤
π
⌦

Na f

2 c |w|2dV . (8.13)

The field w is called process variable. We can note that, for this system, in
contrast to the previous example of the spring and dashpot, the rate of change
of the energy does not depend only @t c but rather on the field w. Thus,
the Rayleighian R(x , v) ⇤ €F (x , v) + D(v) depends on two different ways to
characterize changes in the state of the system: @t c and w. What variable
should we minimize R with respect to? To overcome this issue, we invoke the
continuity equation of local conservation of mass,

@t c + r · (cw) ⇤ 0, (8.14)

which following [Peletier, 2013], we call process operator. Plugging this
equation in Eq. (8.11), and performing a integration by parts, we can express
the rate of change of the free energy as:

d

dt
(F [c(, t)]) ⇤ �

π
⌦
µ(c)r · (cw)dV (8.15)

⇤ �
π
@⌦
µ(c)cw · ndS +

π
⌦

crµ(c) · wdV . (8.16)
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Since we assume the container to be impermeable, we have w · n ⇤ 0 over @⌦.
Thus the Rayleighian of the system can be expressed as follows:

R[c ,w] ⇤
π
⌦

crµ(c).wdV +

π
⌦

Na f

2 c |w|2dV. (8.17)

Minimizing this functional with respect to the field w we obtain the following
condition: π

⌦
RTrc.�wdV + f Na

π
⌦

cw.�wdV ⇤ 0, (8.18)

which should hold for any admissible variation �w. Thus we can express the
molar diffusive flux of solute molecules as:

j
D
⇤ cw ⇤ � RT

f Na

rc ⇤ � kBT

f
rc , (8.19)

which is the Fick’s law of diffusion. Plugging this equation in Eq. (8.14), we
recover the diffusion equation:

@c

@t
⇤

kBT

f
�c in ⌦. (8.20)

Thus, the Onsager’s variational principle is able to derive the diffusion equation,
and the Stokes-Einstein equation, from physically motivated considerations
on the free energy and the dissipation in the system.

Diffusion-reaction problem: chemical reaction as an
energetic-dissipative process

In order to apply the Onsager’s variational principle to our coupled problem
we provide a last example describing a problem coupling diffusion of reacting
species in a quiescent fluid delimited by a container impermeable to both
species. See [Mielke, 2011, 2012] for more general energetic-dissipative formu-
lation of chemical reactions satisfying the law of mass action. Let us denote
⌦ the region of space delimiting the fluid, X1 and X2 the two species, with
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Figure 8.3: Elementary model for diffusion-reaction. The bulk domain ⌦
represents a quiescent fluid and @⌦, its impermeable container. The two dilute
species X1 and X2 are labeled with red and green dots and they react through

the reaction X1
kf
⌦
kb

X2.

c1 and c2 the corresponding molar concentrations, transforming through the
following simple reaction:

X1
kf
⌦
kb

X2. (8.21)

A sketch of the model is given in Fig.8.3. We assume that the reaction follows
the law of mass action, that is to say that the net forward rate is

r ⇤ kfc1 � kbc2. (8.22)

Then the dynamics can be modeled through the linear set of reaction-diffusion
equation in ⌦:

@tc1 ⇤ D1�c1 � r ⇤ D1�c1 � kfc1 + kbc2 , (8.23)

@tc2 ⇤ D2�c2 + r ⇤ D2�c2 + kfc1 � kbc2 , (8.24)

with the corresponding initial and boundary conditions. D1 and D2 and the
diffusion constants of the two reacting species. At the equilibrium, we have
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r ⇤ 0 and thus c2
eq/c1

eq ⇤ kf/kb ⇤ K, where K is the so-called equilibrium
constant of the reaction (8.21). The state of the system is defined by Z ⇤ (c1 , c2).
Let us now see how we can derive the same equations using considerations
on the free energy and the dissipation in the system using the Onsager’s
variational principle. For a dilute solution, the free energy is expressed as

F (Z) ⇤RT

π
⌦

c1(log c1 � 1)dV +

π
⌦

c1µ0,1 , dV (8.25)

+ RT

π
⌦

c2(log c2 � 1)dV +

π
⌦

c2µ0,2 , dV , (8.26)

where µ0,1 and µ0,2 are the standard chemical potentials of both species.
As a reaction-diffusion problem, the concentration can evolve due to the
diffusive velocities w1 and w1 of both species but also due to the chemical
reaction which is quantified by the net forward rate r. So the new set of
process variables is now W ⇤

�
w1 ,w2 , r

 
. Accounting for chemical reactions,

the process operator is then given by the equations

@t c1 + r · (c1w1) + r ⇤ 0,

@t c2 + r · (c2w2) � r ⇤ 0,
(8.27)

encoding balance of mass for the dissolved species. The conditions 0 ⇤ wi · n
in @⌦, reflecting the fact that @⌦ is impermeable, can also be viewed as part
of the process operator. Following the same procedure than in the previous
section and using the process operators, we can write the rate of change of the
free energy as

€F (Z; W) ⇤ �
π
⌦
µ1r · (c1w1)dV �

π
⌦
µ2r · (c2w1)dV (8.28)

+

π
⌦
(µ2 � µ1)rdV , (8.29)

with the chemical potentials defined as:

µi(ci) ⇤ µ0,i + RT log ci for i ⇤ 1, 2. (8.30)
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Integrating by parts and using the impermeability of @⌦, we obtain

€F (Z; W) ⇤RT

π
⌦
rc1 · w1dV + RT

π
⌦
rc2 · w2dV (8.31)

+

π
⌦
(µ2 � µ1)rdV . (8.32)

Let us have a look now at equilibrium, that is to say the state that minimizes the
free energy. The stationarity conditions with respect to w1 and w2 give that the
concentrations are uniform over ⌦ and the condition with respect to r implies
that µ1 ⇤ µ2 and K ⇤ c2

eq/c1
eq ⇤ kf/kb ⇤ exp ��µ0

RT
with �µ0 ⇤ µ0,2 � µ0,1.

Thus K is a purely thermodynamic quantity.
Let us now go back to the dynamics. How does the system dissipate energy?
We can argue physically that energy is dissipated through the drag of molecules
during diffusion and through reactions, when the system is brought to a
potential saddle point along the reaction coordinate and then inelastically
relaxes to a neighboring metastable state. Thanks to Mielke [2011] we can to
write a dissipation potential for the reaction as a quadratic function in r (all
the dissipation potentials considered until now are so) :

Dreaction(Z; r) ⇤
π
⌦

1
k̄

r
2
dV (8.33)

with k̄ > 0 unspecified for the moment. Thus the total dissipation potential D
is :

D(Z; W) ⇤
π
⌦

Na f1

2 c1 |w1 |2dV

π
⌦

Na f2

2 c1 |w1 |2dV +

π
⌦

1
k̄

r
2
dV , (8.34)

where fi are the molecular drag coefficients of the two species. Forming the
Rayleighian R ⇤ €F + D and minimizing it with respect to wi , we recover
Fick’s law for each species:

ciwi ⇤
kBT

fi

rci in ⌦, (8.35)

and the minimization with respect to r leads to:

r ⇤ k̄(µ1 � µ2). (8.36)
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Comparing Eq. (8.36) and Eq. (8.22), let us consider the following choice for k̄:

k̄(c1 , c2) ⇤ k
c1 � e

�µ0/RT
c2

µ1 � µ2
(8.37)

⇤
ke

�µ0,1/RT

RT

e
µ1/RT � e

µ2/RT

µ1/RT � µ2/RT
, (8.38)

where k > 0 is independent of the concentrations. From Eq. (8.37) we can
see that k̄ > 0 for any choice of concentrations due to the convexity of the
exponential function. Plugging the first equation in Eq. (8.36), we obtain the
classic expression of the net forward rate:

r ⇤ k|{z}
k f

c1 � ke
�µ0/(RT)|     {z     }

kb

c2 , (8.39)

and we note that we also recover Arrhenius law. Finally plugging Eq. (8.35) in
the process equations 8.27 and using the last equation we recover the system
of coupled reaction-diffusion equations 8.23 and 8.24 using the Onsager’s
variational principle. This derivation has shown that both reaction and
diffusion are driven by the same chemical energy, which decreases during
the dynamics. This free energy contains an entropic contribution, but also
an enthalpic one given by the difference of reference chemical potentials
between the reacting species �µ0. Furthermore, we have understood that the
forward and backward rates contain not only kinetic information but also
thermodynamic information in the sense that their ratio depends on �µ0.
Onsager’s principle has allowed us to untangle the kinetic and thermodynamic
components of the reaction’s dynamics.

Thus, this example further exemplifies two benefits of Onsager’s prin-
ciple: (1) it provides a systematic method to derive models for dissipative
systems from a library of building blocks, and (2) it highlights the energetic-
dissipative structure of such systems, providing physical insight into the
model parameters.
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8.3 General statement

Consistent with the previous examples and observations, we can write On-
sager’s variational principle in an abstract form [Peletier, 2013, Arroyo et al.,
2018], which we will use later for the derivation of the equations of our model
for vesicle unbinding but can also be used for other problems exhibiting
analogous chemo-mechanical couplings. The procedure goes as follows:

ONSAGER’S VARIATIONAL PRINCIPLE

For a non-inertial dissipative chemo-mechanical system, given:

1. A set of state variables Z describing the system,

2. A set of process variables W describing how the system changes
and the related process operator P such as €Z ⇤ P(Z)W ,

3. A free energy functional F (Z),

4. A dissipation potential D(Z; W),

5. An externally supplied power P(Z; W).

The governing equations are obtained by minimizing the so-called
Raleighian R(Z; W) with respect to the process variables W :

W ⇤ argmin
V

R(Z; V) ⇤ argmin
V

DF (Z).P(Z)V +D(Z; V) + P(Z; V)

(8.40)
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If the process variables satisfy the constraint expressed as

C(Z)V ⇤ 0, (8.41)

the constrained dynamics can be equivalently characterized as stationary
saddle points of the Lagrangian

L(Z; W,⇤) ⇤ R(Z; W) +⇤ · C(Z), (8.42)

where ⇤ are the Lagrange multipliers. Minimizing the Lagrangian to obtain
W and using the process operators P, we obtain the governing equations. The
dissipative dynamics of such a system exhibits an interesting characteristic. To
illustrate this property, let us examine stationarity of a homogeneous system
such that the power supply is P(Z; W) ⇤ 0.
The stationarity condition �WL ⇤ 0 leads to C(Z)W ⇤ 0.
The stationarity condition �ZL ⇤ 0 gives the following equation

DZF (Z).P(Z) + DWD(Z; W) +⇤.C(Z) ⇤ 0 (8.43)

Multiplying the last equation by W , and making the assumption D(Z; W)
quadratic in W , like all the dissipation potentials detailed in this chapter, we
obtain:

DZF (Z).P(Z)W ⇤ €F (8.44)

⇤ �DWD(Z; W)W � 0

⇤ �2D(Z; W)  0

This shows that Onsager’s principle complies with the second law of thermo-
dynamics by construction and that F is a Lyapunov function of the dynamics,
as long as D is chosen quadratic in W . In fact, to show this result we only
need D to be convex, see [Arroyo et al., 2018].
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Chapter 9

Theoretical model for soft
adhesion mediated by mobile
binders

9.1 Set-up of the problem and hypotheses

Physically and from a continuum perspective, the system can be understood
as a membrane with bending rigidity , subject to a fixed tension Tc by a
loading device such as a micropipette, with mobile adhesion molecules. A
sketch of the model is given in Fig. 9.1. These molecules can attach with
partners in a neighboring vesicle (we consider for simplicity a symmetric
system, both along the horizontal and vertical axes. These molecules are
compliant and can stretch due to external forces. Their stiffness is k0. The
binding kinetics strongly depends on the distance to potential partners in
the neighboring membrane. The unbinding kinetics depends on the force
experienced by the binders, see Chapter 3. The bound and unbound molecules
are treated as concentrations and we assume that the binder and the bonds do
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Figure 9.1: Sketch of the problem.

not have self-interaction, attractive or repulsive. Naturally, this leads to a phase-
separation into a region where adjacent membranes are in close proximity and
the concentration of bound binders is high, and another region with a very low
or vanishing concentration of bound binders and potentially a large distance to
the neighboring vesicle. To treat these two phases, a sharp interface bounding
the adhesion patch has been often considered, with bound molecules only on
one side of this interface, the adhesion patch [Brochard-Wyart and de Gennes,
2002a, 2003].
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Tcs=L

s(t)^
C ,C1 2

C =0,C1 2
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,η η1 2

s=0

x(s)
y(s)

s

mapping

0 L

(s)=( )r

η2

s=L0

0

y

x

H

Figure 9.2: Simplified sketch of the problem. The position on the vesicle is
mapped by the arc-length s with s 2 [0, L0]. Binders and bonds are treated
as concentrations as respectively c1(s) and c2(s). The system is divided in
two domains: the adhered domain [0, ŝ] where c1 , 0 and c2 , 0 and a free
domain where c1 ⇤ 0 and c2 , 0.

Here, we adopt a classical description of the adhesion patch, according
to which its boundary is sharply defined. No bonds can exist outside of the
adhered region. We do assume capillarity for the vesicle, whose shape is
given by the prescribed tension Tc and an enclosed volume constraint. To
focus on the chemo-mechanical coupling and simplify all other aspects of
the model, we consider a 2D model, see Fig. 9.2, where a curve represents a
vesicle partially adhering to another symmetric curve. This model is easily
extended to axisymmetry by appropriately introducing geometrical factors.
The conceptual extension to 3D is straightforward, although the numerical
implementation becomes more complex. The 2D curve representing the vesicle
is parameterized by arc-length, s. The interface between the bound and the

89



9. T���������� ����� ��� ���� �������� �������� �� ������ �������

unbound parts of the curve is labeled by s ⇤ ŝ(t).
Along this inextensible curve of total length L0, two fields, c1(s) and c2(s),
describe the number concentration of bound and free binders. Obviously,
c1(s) ⇤ 0 for s > ŝ. For the moment, we neglect the force sensitivity of the
bonds and in a first step, the concentrations of bonds and binders are also
considered small enough to be in the dilute limit. Thus, if cmax is the maximum
concentrations of adhesion molecules allowed on the membrane because of
steric constraints, we have (c1 + c2)/cmax ⌧ 1 in [0, ŝ] and c2/cmax ⌧ 1 in
[ŝ , L0]. We revisit these hypotheses in Chapter 11 and Chapter 12.
We consider an idealized loading device that can remove or release membrane
length to control tension so that the actual length of the adhered and free parts
of the vesicle is L  L0. As a first approximation, we assume that unbound
binders can freely enter this device, thus the whole domain accessible to
the free binders is [0, L0]. The loading device can also apply a vertical force
to drive binding or unbinding of the vesicles. We assume that this device
does not affect the volume (area) enclosed by the vesicle (curve), which is
constrained. This constraint imposes a pressure difference between the inside
and the outside of the vesicle.

If the vesicle is large enough, or tension is large enough, bending elasticity
can be neglected to determine the vesicle configuration and the mechanical
force acting at the boundary of the adhesion patch (the triple point s ⇤ ŝ in
Fig. 9.2). Indeed, the competition between tension Tc and bending stiffness 
gives a length-scale `1 ⇤

p
/Tc , which defines the typical radius of curvature

near the rim of adhesion patch and near the loading device. If `1 is much
smaller than the system size, then one can model the vesicle as a purely
capillary system, thus allowing kinks in the vesicle shape and a well-defined
macroscopic contact angle ✓ at s ⇤ ŝ and at the contact point between the
micropipette and the vesicle t s ⇤ L0, see Fig. 9.2.
The same statement can be made considering the competition between the
elasticity of bonds and the tension, which is characterized by the length-scale
`2 ⇤

q
Tc

k0c0
, where c0 is a typical bond concentration. Thus, if `2 ⌧ L0, we can

neglect the effect of the stretching of the bonds on the mechanics in the patch.
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X

X

H

Figure 9.3: Sketch for the parameterization of the mechanics of the vesicle.
As a pure capillary system, three parameters are sufficient to characterize the
mechanics of the vesicle: the position of the interface ŝ and the two contact
angles ✓ and �.

For reasonable values of the parameters c0 ⇤ 2.5 · 103 molecules/µm2,
 ⇤ 10�19 N·m, Tc ⇤ 10�4 N·m�1, k0 ⇤ 2.5 · 10�4 N·m�1 and L0 ⇤ 30 µm
we have `1 ⇤ 32 nm ⌧ L0 and `2 ⇤ 13 nm ⌧ L0. The two length scales are
comparable and the previous approximations are then justified and will be
considered and discussed in the following chapter. Since tension in the free
part is constant, the resulting shape of the free part of the curve is an arc of a
circle. In fact, because the concentration field c2(s) is not necessarily uniform in
the free part of the membrane, there will be a non-uniform osmotic component
of tension, that will lead to a non-circular shape in general. However, we
expect this osmotic tension to be much smaller than Tc and therefore decouple
vesicle shape from the concentration of unbound binders.
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Considering the parameterization depicted in Fig. 9.3, elementary geomet-
ric considerations allow us to express, in terms of these variables, the radius
of the arc of circle R, the area enclosed by the curve A, the length of the curve
L and the distance between the adhesion patch and the loading device H in
terms of ŝ and the two contact angles ✓ and �.

R(✓, �, ŝ) ⇤ŝ/�sin ✓ + cos �
�
, (9.1)

A(✓, �, ŝ) ⇤R
2 �

3⇡/2 � ✓ � � + sin ✓ cos ✓ + sin � cos � + 2 cos ✓ cos �
�
,

(9.2)

L(✓, �, ŝ) ⇤2R
�
3⇡/2 � ✓ � � + sin ✓ + cos �

�
, (9.3)

H(✓, �, ŝ) ⇤R
�
cos ✓ + sin �

�
. (9.4)

9.2 Goal and plan

In Part II of the thesis, we develop a chemo-mechanical model based on
Onsager’s principle, describing the dynamics of the shape of the vesicle (given
here by the two contact angles, ✓ and � and the position of the adhesion
interface ŝ) and of the concentration of bound and unbound binders that
evolve due to diffusion and reaction in the bound region. The focus is made
on the coupling between the mechanics, the reaction kinetics and the diffusion
by discussing the different hypotheses detailed above and the consequences
on the dynamics when these hypothesis are lifted. Chapter 9 discusses the
case of rigid ideal bonds while Chapter 10 and Chapter 11 discuss the effect of
compliant bonds and of slip bonds. In Chapter 12, we lift the assumption of a
dilute limit, by introducing molecular crowding to consider cases in which
c1 + c2 ⇠ cmax .

9.3 Model ingredients

States variables

Let us start by identifying the state variables of the system. At any given
instant, the mechanical state of the system can be parameterized by the three
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scalars ✓, � and ŝ, see Fig. 9.3. The chemical state is parameterized by the
number concentration of bound and free binders c1 and c2. Thus the system
can be described by the set of state variables Z:

Z ⇤
�
✓, �, ŝ , c1 , c2

�
. (9.5)

Free energy

In order to apply the variational principle, it is necessary to detail the free
energy of the system and compute the variation of the free energy. Considering
a capillary free energy contribution, the potential energy for the force applied
by the loading device and an ideal gas entropy, in the dilute limit, for the bound
and unbound non-interacting binders, the chemo-mechanical free energy is

F (Z) ⇤ Tc · L(✓, �, ŝ) � F · H(✓, �, ŝ)

+
kBT

2

π
ŝ

0
c1

✓
log c1

c0
� 1

◆
ds +

1
2

π
ŝ

0
µ0

1c1 ds

+ kBT

π
ŝ

0
c2

✓
log c2

c0
� 1

◆
ds +

π
ŝ

0
µ0

2c2 ds

+ kBT

π
L0

ŝ

c2

✓
log c2

c0
� 1

◆
ds +

π
L0

ŝ

µ0
2c2 ds , (9.6)

where µ0
i

is the so-called standard chemical potential of either bound (i ⇤ 1)
or unbound (i ⇤ 2) binders and c0 is an arbitrary reference concentration.
We note that µ0

2 could, in principle, be different at the adhesion patch or out of
it, given the different chemical environment. We will consider that µ0

2 is equal
in both regions. As we are modeling only half of a symmetric system, and the
bound binders are shared by the two vesicles, the terms in the second line of
this equation are multiplied by a 1/2 factor. The tension Tc and force applied
by the loading device F are parameters in the model. Note that the integrals
in the last line extend to L0, the constant total length relevant to diffusion,
and not to the smaller and variable length L of the membrane, exterior to the
loading device, since we assume that unbound binders can freely enter this
device.
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To enforce our assumption that the enclosed area (volume) remains constant
so that A ⇤ A0, we introduce the Lagrangian

L(Z, P) ⇤ F (Z) � P
⇥
A(✓, �, ŝ) � A0

⇤
, (9.7)

where P is the pressure difference enforcing the constraint. Thus, this La-
grangian is a function of the extended set of state variables Z̄ as:

Z̄ ⇤
�
✓, �, ŝ , c1 , c2 , P

�
. (9.8)

Process variables and jump conditions

To investigate, both equilibrium and dynamics, we examine how the state
can change in time. We denote by !, �, v̂, and Q the rates of change of ✓, �,
ŝ, and P. To parameterize the changes in concentration, we recall the local
form of the balance of mass for each of the chemical species, noting that s is a
Lagrangian coordinate:

€ci + (ci wi)0 ⌥ r ⇤ 0, (9.9)

where wi(s , t) denotes the diffusive flux of species i, r(s , t) is the net rate of
binding within the adhesion patch, the dot denotes partial differentiation
with respect to time, and the prime partial differentiation with respect to s.
Therefore, we can define the process variables describing the rate of change of
the system as

W̄ ⇤
�
!, �, v̂ , w1 ,w2 , r,Q

�
, (9.10)

and the process operator relating changes in Z̄ to W̄ as

€̄
Z ⇤ P(W̄) ⇤ �

!, �, v̂ ,�(c1w1)0 + r,�(c2w2)0 � r,Q
�
. (9.11)

We note that, because c1 is only different from zero in the adhesion patch, then
r vanishes for s > ŝ. Furthermore, because of symmetry, wi(0) ⇤ wi(L0) ⇤ 0
for both species.
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There are additional process equations which relate wi at the interface and
v̂, as a result of mass conservation. The global statement of conservation of
bound binder molecules is

d

dt

π
ŝ

0
c1 ds ⇤

π
ŝ

0
r ds , (9.12)

which, using Leibniz rule and the local statement of mass conservation,
becomes

c1(ŝ) v̂ +

π
ŝ

0
€c1 ds ⇤ c1(ŝ) v̂ +

π
ŝ

0
[�(c1w1)0 + r] ds ⇤

π
ŝ

0
r ds , (9.13)

and applying the fundamental theorem of calculus, we obtain

v̂ ⇤ w1(ŝ), (9.14)

which states that the flux of bound binders at the interface occurs due to the
motion of the interface. Invoking global conservation of number of unbound
binders,

d

dt

✓π
ŝ

0
c2 ds +

π
L0

ŝ

c2 ds

◆
⇤ �

π
ŝ

0
r ds , (9.15)

and following an analogous procedure to above, we find

[[c2]] v̂ ⇤ [[c2w2]] , (9.16)

where the symbol
⇥⇥

f
⇤⇤

⇤ f (ŝ+) � f (ŝ�) denotes the jump operator across the
interface.

Equilibrium

To get a first insight into the problem, it is worth to look at the equilibrium.
Minimization of the free energy F with respect to Z subject to the area
constraint yields the equilibrium equations for Z and P. Alternatively, these
equations can be written abstractly by making the Lagrangian stationary with
respect to Z̄ as

0 ⇤
dL
dt

⇤ D
Z̄
L(Z̄) · P(W̄) 8W̄ (9.17)
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To obtain these equations, we calculate the variation of the Lagrangian

D
Z̄
L(Z̄) · P(W̄) ⇤

⇥
Tc @✓L(✓, �, ŝ) � F @✓H(✓, �, ŝ) � P @✓A(✓, �, ŝ)

⇤
!

+
⇥
Tc @�L(✓, �, ŝ) � F @�H(✓, �, ŝ) � P @�A(✓, �, ŝ)

⇤
�

+
⇥
A(✓, �, ŝ) � A0

⇤
Q

+
1
2

π
ŝ

0

✓
kBT log c1

c0
+ µ0

1

◆
[�(c1w1)0 + r] ds

+

π
ŝ

0

✓
kBT log c2

c0
+ µ0

2

◆
[�(c2w2)0 � r] ds

+

π
L0

ŝ

✓
kBT log c2

c0
+ µ0

2

◆
[�(c2w2)0] ds

+
⇥
Tc @ŝ L(✓, �, ŝ) � F @ŝ H(✓, �, ŝ) � P @ŝA(✓, �, ŝ)

⇤
v̂

+
1
2


c1

✓
kBT log c1

c0
+ µ0

1

◆
� kBTc1

�
s⇤ŝ

v̂

�


c2

✓
kBT log c2

c0
+ µ0

2

◆
� kBTc2

��
v̂. (9.18)

Using the arbitrariness of W̄ , the first three lines provide three purely mechan-
ical nonlinear algebraic equilibrium equations uncoupled to c1 and c2, which
allow us to obtain ✓equil, �equil and P

equil as a function of ŝ. These quantities
are consistent with Laplace’s law, which in this 2D setting is simply:

Tc ⇤ P
equil(ŝ)R

⇣
✓equil(ŝ), �equil(ŝ), ŝ

⌘
. (9.19)

Therefore, these three mechanical variables can be solved for a give ŝ and
eliminated from the problem.
We identify the chemical potentials of the bound and unbound binders as:

µ1 ⇤ µ0
1 + kBT log c1

c0
. (9.20)

µ2 ⇤ µ0
2 + kBT log c2

c0
. (9.21)

It is a classical result in capillarity that the third-to-last line can be written as
⇥
Tc @ŝ L(✓, �, ŝ) � F @ŝ H(✓, �, ŝ) � P @ŝA(✓, �, ŝ)

⇤
v̂ ⇤ Tc

⇣
1 � cos ✓equil(ŝ)

⌘
v̂.

(9.22)
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Thus, assuming equilibrium for ✓, � and P, integrating by parts the fourth to
sixth lines in the previous expression and using the no-flux conditions at the
symmetry endpoints of the domain, the variation of the Lagrangian takes the
form

D
Z̄
L(Z̄) · P(W̄) ⇤

π
ŝ

0

✓
1
2µ1 � µ2

◆
r +

1
2 c1w1 µ01 + c2w2 µ02

�
ds

+

π
L0

ŝ

c2w2 µ02 ds

�1
2
⇥
c1w1µ1

⇤
s⇤ŝ

+
⇥⇥

c2w2µ2
⇤⇤

+Tc

⇣
1 � cos ✓equil(ŝ)

⌘
v̂

+
1
2
⇥
c1µ1 � kBTc1

⇤
s⇤ŝ

v̂ �
⇥⇥

c2µ2 � kBTc2
⇤⇤

v̂ , (9.23)

where the third line collects the terms at the interface remaining from inte-
gration by parts. Using the relation

⇥⇥
f g

⇤⇤
⇤

⇥⇥
f
⇤⇤
hgi + h f i

⇥⇥
g
⇤⇤

, where h·i
is the average operator across the interface, and rearranging terms, we can
rewrite this equation as

D
Z̄
L(Z̄) · P(W̄) ⇤

π
ŝ

0

✓
1
2µ1 � µ2

◆
r +

1
2 c1w1 µ01 + c2w2 µ02

�
ds

+

π
L0

ŝ

c2w2 µ02 ds

+Tc

⇣
1 � cos ✓equil(ŝ)

⌘
v̂ � 1

2 kBTc1(ŝ)v̂ + kBT [[c2]] v̂

+
1
2
⇥
c1µ1

⇤
s⇤ŝ

v̂ � 1
2
⇥
c1w1µ1

⇤
s⇤ŝ

+ [[c2w2]] hµ2i + hc2w2i
⇥⇥
µ2

⇤⇤
� [[c2]] hµ2iv̂ � hc2i

⇥⇥
µ2

⇤⇤
v̂ ,

(9.24)

Now, recalling the conditions at the interface in Eqs. (9.14,9.16), several terms
cancel out in the fourth and fifth lines, and we obtain
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D
Z̄
L(Z̄) · P(W̄) ⇤

π
ŝ

0

✓
1
2µ1 � µ2

◆
r +

1
2 c1w1 µ01 + c2w2 µ02

�
ds

+

π
L0

ŝ

c2w2 µ02 ds

+Tc

⇣
1 � cos ✓equil(ŝ)

⌘
v̂ � 1

2 kBTc1(ŝ)v̂ + kBT [[c2]] v̂

+
⇥⇥
µ2

⇤⇤
(hc2w2i � hc2iv̂) . (9.25)

Developing the average operator and using Eqs. (9.16), the last line can be
rewritten to obtain the final expression

D
Z̄
L(Z̄) · P(W̄) ⇤

π
ŝ

0

✓
1
2µ1 � µ2

◆
r +

1
2 c1w1 µ01 + c2w2 µ02

�
ds

+

π
L0

ŝ

c2w2 µ02 ds

+Tc

⇣
1 � cos ✓equil(ŝ)

⌘
v̂ � 1

2 kBTc1(ŝ)v̂ + kBT [[c2]] v̂

+
⇥⇥
µ2

⇤⇤
c2(ŝ+) [w2(ŝ+) � v̂] . (9.26)

Note that the mechanical part of the problem only enters here through ✓equil(ŝ).
We can now invoke the arbitrariness of w1, w2, r and v̂ to obtain the remaining
equilibrium equations.
Starting with the variation of w2 at ŝ, we obtain

⇥⇥
µ2

⇤⇤
c2(ŝ+) ⇤ 0. (9.27)

Since c2 will be different from zero, we conclude that the chemical potential of
the unbound binders is continuous across the interface.

From the other variations we obtain:

µ01 ⇤ 0 in (0, ŝ) (9.28)

µ02 ⇤ 0 in (0, L0). (9.29)
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c

c

Figure 9.4: Schematic view of the configurational equilibrium at the interface
s ⇤ ŝ.

We conclude that µ1 is uniform in (0, ŝ) and that µ2 is uniform in (0, L0). We
also obtain the following equality

µ1 ⇤ 2µ2 in (0, ŝ). (9.30)

Furthermore, the equilibrium condition at the interface is

0 ⇤ Tc

⇣
1 � cos ✓equil(ŝ)

⌘
� 1

2 kBTc1(ŝ) + kBT [[c2]] ,

showing that the mechanical force is balanced by the osmotic tension difference
of the bound and unbound binders across the interface.
Recalling Eq. (9.20), if we assume that the bonds are ideal, µ0

1 is uniform and
that µ0

2 is uniform and takes the same value at the adhesion patch and out
of it, then we conclude [[c2]] ⇤ 0, the concentrations ci are uniform, and the
configurational equilibrium at the interface simplifies to

0 ⇤ Tc

⇣
1 � cos ✓equil(ŝ)

⌘
� 1

2 kBTc1. (9.31)

This configurational equilibrium corresponds to the equilibrium between
osmotic forces and tension at the interface as shown in Fig. 9.4.
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Furthermore, recalling Eq. (9.30), the uniform bound and unbound concentra-
tions satisfy the relation

c0c1

c
2
2

⇤ exp

 
2µ0

2 � µ0
1

kBT

!
⇤ K in (0, ŝ), (9.32)

where K is the dimensionless equilibrium constant of the reaction. Seeing the
problem from a chemical kinetics point of view, at the adhesion patch we have
the following reaction

U
a
+ U

b
kon
⌦
koff

B, (9.33)

where U
a and U

b are unbound binder molecules in vesicles a and b, B is a
bound pair of binders, and kon and koff are the reaction rates. Because of our
assumption of symmetry between the two adhering vesicles, in equilibrium,
we have the following law of mass action

c1

c
2
2
⇤

kon
koff
. (9.34)

Comparison with Eq. (9.32) shows that the ratio between reaction rates is a
purely thermodynamic quantity. Eqs. (9.31,9.32), together with the equation
expressing that the total number of binders, free or bound, is fixed

c1 ŝ + c2L0 ⇤ Ntot , (9.35)

allow us to solve for c1, c2, and ŝ. These results for equilibrium are consistent
with previous theoretical results citepBell1984a,Maitre2012a.
Then, the equilibrium state can be obtained from the equations

c0c1

c
2
2

⇤ exp

 
2µ0

2 � µ0
1

kBT

!
in (0, ŝ), (9.36)

Ntot ⇤

π
ŝ

0
c1 ds + c2L0 , (9.37)

0 ⇤ Tc

⇣
1 � cos ✓equil(ŝ)

⌘
� 1

2 kBTc1 , (9.38)

which allow us to solve for c1, c2, ŝ invoking the mechanical equilibrium, for
P, ✓ and �.
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Dissipation

To model the dynamics, we introduce a dissipation potential expressed in
terms of the process variables W :

 (W ; Z) ⇤
π

ŝ

0

1
2k̄

r
2
ds +

π
ŝ

0

⇣ ⌘1c1

4 w
2
1 +

⌘2c2

2 w
2
2

⌘
ds +

π
L0

ŝ

⌘2c2

2 w
2
2ds +

kµ

✓
v̂.

(9.39)

The first term accounts for the dissipation induced by the chemical reactions
of forming or breaking bonds, where k̄ is a kinetic parameter, which may
depend on the concentration of species and must be positive for consistency
with the second law of thermodynamics [Mielke, 2012]. We will provide
a precise definition later. The parameter ⌘1 may be viewed as a molecular
drag coefficient of bound binders, which could be obtained from an extension
of Saffman-Delbruck theory [Saffman and Delbrück, 1975]. Consequently,
⌘1c1w1/2 will be a drag force density on one of the adjacent membranes for
a dilute collection of bound binders moving at a diffusive velocity w1, and
the integrand a dissipation power density for this force. The parameter ⌘2 is
analogous for the free binders, and may depend on whether we are on the
adhesion patch or out of it. The last term accounts for the dissipation in the
bulk fluid resulting from moving the contact point at speed v̂, where k is a
numerical factor, µ the solution viscosity and ✓ the contact angle [de Gennes
et al., 2004]. Given the time-scales of vesicle unbinding mediated by bond
breaking or motion, this contribution will be ignored in the rest of the thesis.
We note that (W ; Z) depends also on the state Z through ŝ, ✓ and ci(s).

9.4 Onsager’s variational principle

Onsager’s variational principle allows us to derive the dynamics of the system
by, at any given state Z, minimizing the Rayleighian

R(W) ⇤  (W ; Z) + DZF (Z) · P(W), (9.40)
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with respect to W subject to the constraints (here the fixed area constraint).
Given the minimizer W , we can integrate in time the state Z(t) using the
process operator. To deal with the constraint, we need to extremize the
Lagrangian

M(W̄) ⇤  (W ; Z) + D
Z̄
L(Z̄) · P(W̄), (9.41)

with respect to W̄ .
Since the dissipation potential does not depend on !, � and Q, the

mechanical equilibrium equations are still algebraic equations that allow us to
solve for ✓equil(ŝ), �equil(ŝ) and P

equil(ŝ). Now, combining Eqs. (9.26,9.39), we
can take variations with respect to the remaining process variables w1, w2, r

and v̂ to obtain the dynamical equations. Making variations with respect to
w1 stationary, we obtain the appropriate version of Fick’s law

w1 ⇤ � 1
⌘1
µ01 ⇤ � 1

⌘1

✓
kBT

c
0
1

c1

◆
in (0, ŝ). (9.42)

Assuming that µ0
2 is uniform in (0, L0), we obtain from taking variations with

respect to w2 that

w2 ⇤ � kBT

⌘2

c
0
2

c2
in (0, ŝ) [ (ŝ , L0) and [[c2]] ⇤ 0, (9.43)

where in principle ⌘2 could depend on whether we are at the adhesion patch
or not.

Taking variations with respect to the reaction rate r, we obtain

r ⇤ k̄

✓
µ2 �

1
2µ1

◆
. (9.44)

Arrived at this point, a modeling choice is needed for k̄. Following [Mielke,
2012], we will make a choice consistent with the law of mass action. Consider-
ing the following choice for k̄:

k̄ ⇤ k

c
2
2/c0 � exp

⇣
µ0

1�2µ0
2

kBT

⌘
c1

µ2 � 1
2µ1

, 00(9.45)
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where k > 0 is a rate constant. A direct calculation shows that

k̄ ⇤
2kc0
kBT

exp

 
�

2µ0
2

kBT

! exp
⇣

2µ2
kBT

⌘
� exp

⇣
µ1

kBT

⌘
2µ2
kBT

� µ1
kBT

, (9.46)

which is clearly positive as required by the second law of thermodynamics.
Plugging Eq. (9.45) into Eq. (9.44), we obtain

r ⇤ k
0
onc

2
2 � k

0
offc1 in (0, ŝ), (9.47)

where

kon ⇤
k

c0
, koff ⇤ k exp

 
µ0

1 � 2µ0
2

kBT

!
. (9.48)

Thus, the model is consistent with the law of mass action but, unlike what
was discussed in Chapter 3, the binding and unbinding rates are constant and
independent of the dynamics. We will revisit this in Chapter 10 and 11. Taking
variations with respect to v̂, we obtain the configurational force-balance at the
interface

0 ⇤ Tc

⇣
1 � cos ✓equil(ŝ)

⌘
� 1

2 kBTc1(ŝ), (9.49)

9.5 Final set of equations

Now, we can plug Eqs. (9.42,9.43,9.47) into the local conservation equations
for the bound and unbound binders to obtain the final system of equations.

Set of coupled equations and boundary/jump conditions

At any given instant, we assume the current state Z is known. Given the location
of the interface ŝ, the large-scale mechanical model requires extremizing the
function

Lmech(✓, �, P) ⇤ T · L(✓, �, ŝ) � F · H(✓, �, ŝ) � P
⇥
A(✓, �, ŝ) � A0

⇤
, (9.50)
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which provides three nonlinear equations to solve for ✓equil(ŝ), �equil(ŝ) and
P

equil(ŝ). The final set of coupled equations for the chemistry and its set of
chemical and mechanical boundary conditions at s ⇤ 0, s ⇤ ŝ and s ⇤ L0 are:

€c1 ⇤ D1c
00
1 + konc

2
2 � k

0
off c1 in (0, ŝ), (9.51)

€c2 ⇤ D2c
00
2 � konc

2
2 + k

0
off c1 in (0, ŝ), (9.52)

€c2 ⇤ D2c
00
2 in (ŝ , L0), (9.53)

where the diffusion coefficients are Di ⇤ kBT/⌘i .
The chemical and mechanical boundary/jump conditions are:

at s ⇤ 0 c
0
1(0) ⇤ 0, c

0
2(0) ⇤ 0, (9.54)

at s ⇤ ŝ [[c2]] ⇤ 0,
⇥⇥

D2c
0
2
⇤⇤

⇤ 0, � D1c
0
1(ŝ) ⇤ c1(ŝ) v̂ , (9.55)

kBT c1(ŝ) ⇤ 2Tc

⇣
1 � cos ✓equil(ŝ)

⌘
(9.56)

at s ⇤ L0 c
0
2(L0) ⇤ 0. (9.57)

Mathematically, we are allowed to impose two boundary conditions on c1

at s ⇤ ŝ (of Robin and Dirichlet type) because the location of this interface is
also an unknown. It is easy to check that these partial differential equations,
boundary and jump conditions are consistent with global conservation of
binders.

Discussion

Two different time-scales appear naturally from the previous system of equa-
tions. The first time-scale ⌧di f f is related to diffusion and expresses the average
time for a bond to diffuse from one end to the other of the patch a size ŝ0. The
second time-scale ⌧reac is related to the chemical reaction and expresses the
average time to break bonds one after the other in a patch with a uniform
concentration of bonds c0. The initial number of bonds in the patch is N

0
bonds

.
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0 0

0

1 1

L0ŝ

φ ψ

Figure 9.5: Sketch of the rescaling of the time-dependent domains into fixed
domains using the transformations ' and  .

We have:

⌧di f f ⇤
ŝ

2
0

2D1
and ⌧reac ⇤

N
0
bonds

k
0
o f f

⇤
c0 ŝ0

k
0
o f f

. (9.58)

Depending on the chosen parameters, we expect different behaviors depending
on which time-scale is relevant in the considered problem. For ⌧di f f << ⌧reac ,
the dynamics will be driven by diffusion while for ⌧di f f >> ⌧reac , the system
will be dominated by reaction dynamics. This provides a first criterion to
study the extreme cases of the process of vesicle unbinding.

9.6 Solving the equations

Rescaling of the problem

We have obtained a set of coupled equations defined on time-dependent
domains (0, ŝ) and (ŝ , L0). Rather than addressing computationally the moving
interface problem directly, we will transform it in a problem on a fixed domain
using time-dependent mappings. We consider the following time-dependent
changes of variables, see Fig. 9.5,

'(·, t) : [0, 1] 7�! [0, ŝ]
⌘ �! ⌘ŝ(t), (9.59)
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 (·, t) : [0, 1] 7�! [ŝ , L0]
⌘ �! ⌘L0 + (1 � ⌘)ŝ(t). (9.60)

We define the concentrations on the re-scaled domain [0, 1] as

u(⌘, t) ⇤ c1
�
'(⌘, t), t� , v(⌘, t) ⇤ c2

�
'(⌘, t), t� , w(⌘, t) ⇤ c2

�
 (⌘, t), t� .

(9.61)

Applying the chain rule, we have

@u

@⌘
⇤ ŝ(t)@c1

@s
,

@2
u

@⌘2 ⇤ ŝ
2(t)@

2
c1

@s2 , (9.62)

@u

@t
⇤
@c1
@t

+ ⌘v̂(t)@c1
@s

⇤
@c1
@t

+ ⌘
v̂(t)
ŝ(t)

@u

@⌘
, (9.63)

and similarly

@w

@⌘
⇤ (L0 � ŝ(t))@c2

@s
,

@2
w

@⌘2 ⇤ (L0 � ŝ(t))2 @
2
c2

@s2 , (9.64)

@w

@t
⇤
@c2
@t

+ (1 � ⌘) v̂(t)
L0 � ŝ(t)

@w

@⌘
. (9.65)

Substituting these expressions into the system of reaction-diffusion equations,
we find

€u ⇤
D1
ŝ2 u

00
+ ⌘

v̂

ŝ
u
0
+ konv

2 � k
0
off u in (0, 1), (9.66)

€v ⇤
D2
ŝ2 v

00
+ ⌘

v̂

ŝ
v
0 � konv

2
+ k

0
off u in (0, 1), (9.67)

€w ⇤
D2

(L0 � ŝ)2
w

00
+ (1 � ⌘) v̂

L0 � ŝ
w

0 in (0, 1), (9.68)

which is an advection-reaction-diffusion system with time-dependent coeffi-
cients but on a fixed domain. The boundary conditions, omitting dependence
on time for notational simplicity, read

u
0(0) ⇤ 0, v

0(0) ⇤ 0, v(1) ⇤ w(0), D2
ŝ

v
0(1) ⇤ D2

L0 � ŝ
w

0(0) (9.69)
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ŝ v̂ u(1) ⇤ �D1u
0(1), kBTu(1) ⇤ 2Tc

⇣
1 � cos ✓equil(ŝ)

⌘
, w

0(1) ⇤ 0. (9.70)

It is easy to show that these equations are consistent with the global balance
of adhesion molecules in the re-scaled domain, that is

0 ⇤
d

dt


ŝ

π 1

0
(u + v)d⌘ + (L0 � ŝ)

π 1

0
w d⌘

�
. (9.71)

Time and spatial discretization

We describe below a straightforward approach to time-discretization. The
method is implicit in the concentrations but explicit in the interface location.
The chemo-mechanical coupling is staggered. Super-indices below denote
quantities evaluated at discrete time instants.

1. Initialize the problem with ŝ
0, v̂

0, u
0, v

0 and w
0.

2. Given ŝ
n , compute the contact angles ✓n , �n and the pressure P

n

extremizing Eq. (9.50).

3. Solve for u
n+1, v

n+1 and w
n+1 using

u
n+1 � u

n

�t
⇤

D1
(ŝn)2 u

n+100
+ ⌘

v̂
n

ŝn
u

n+10
+ kon(vn+1)2 � k

0
off u

n+1 in (0, 1),

v
n+1 � v

n

�t
⇤

D2
(ŝn)2 v

n+100
+ ⌘

v̂
n

ŝn
v

n+10 � kon(vn+1)2 + k
0
off u

n+1 in (0, 1),

w
n+1 � w

n

�t
⇤

D2

(L0 � ŝn)2
w

n+100
+ (1 � ⌘) v̂

n

L0 � ŝn
w

n+10 in (0, 1),

subject to

u
n+10(0) ⇤ 0, u

n+1(1) ⇤ 2Tc

kBT
(1 � cos ✓n) v

n+10(0) ⇤ 0, v
n+1(1) ⇤ w

n+1(0),

w
n+10(1) ⇤ 0, D2

ŝn
v

n+10(1) ⇤ D2
L0 � ŝn

w
n+10(0).

The above system of partial differential equations can be made linear by
replacing (vn+1)2 by v

n
v

n+1.
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4. Update the interface velocity and position

v̂
n+1

⇤ � D1
ŝn un+1(1)u

n+10(1), ŝ
n+1

⇤ ŝ
n
+ �t v̂

n+1. (9.72)

5. Set n + 1 �! n and go to step 2.

We discretize this problem in space using a Galerkin finite element method
combined with B-splines basis functions, see Appendix B. Despite the advective
term in the partial differential equation we did not find the need to stabilize
the formulation.

9.7 Results and discussion

Preparation of an equilibrium state

Before running out-of-equilibrium calculations, we prepare the system in
a equilibrium state, chemical and mechanical, with F ⇤ 0, as follows. We
consider two vesicles with a radius R ⇤ 10 µm coated with binders with a
concentration c

⇤
0 ⇤ 2.5 · 103 molecules /µm2. To map areal concentration to

line concentration in our 2D problem, we consider a ribbon of the membrane
of width llat ⇤ 1/

p
2500 µm. Thus the reference concentration c0 on the

ribbon is c0 ⇤ c
⇤
0llat = 50 molecules/µm. Making the following choice for the

difference of the standard chemical potentials: 2µ0
2 � µ0

1 ⇤ log(2)kBT, Eq. (9.32)
gives K ⇤ 2. The binders will cluster and form bonds in a patch of radius
ŝ0 ⇤ 2.5 µm. The concentration of free binders is constant in the patch and
out of the patch and obeys the law of mass action: v0 ⇤

q
u0
K

. We obtain the
number concentrations u0, v0 and w0 by fixing the total number of molecules
as Ntot ⇤ c0L0 and solving the corresponding system of equations:

Ntot ⇤ u0 ŝ0 + v0 ŝ0 + w0(L0 � ŝ0) (9.73)

v0 ⇤

r
u0
K

(9.74)

w0 ⇤ v0 (9.75)
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The contact angles are chosen such as � ⇤ ⇡/2 (so that F ⇤ 0) and ✓ ⇤asin(1
4 )

so that ŝ0 ⇤ 2.5 µm ⇤ R/4 . We fix the tension Tc such that there is mechanical
equilibrium between the osmotic forces and the mechanical forces at s ⇤ ŝ0

given by Eq. (9.49). The tension is then Tc ⇤ 2.48 · 10�4 N·m�1. For such a
preparation, the chemical and the mechanical equilibrium are achieved and
the system is at equilibrium. The evolution of this system is governed by the
set of equations, obtained in the previous section. A sketch of the prepared
system is given in Fig. 9.6.

To study the dynamics, the system can be brought out of equilibrium in
various ways, here we displace the system from equilibrium by applying a force
F to the top of the vesicle. This induces a change in the shape of the vesicle that
modifies contact angles, and thus, because of the chemo-mechanical coupling
at s ⇤ ŝ, this affects the chemistry inside of the patch.
We focus our numerical studies on two cases: we first examine the pure
diffusive case, where ⌧reac � ⌧di f f . We then look at the dynamics in the
case of a reaction-diffusion problem where ⌧reac ⇠ ⌧di f f . To do so we keep
⌧di f f ⇤ 31 s by setting D1 ⇤ 0.1 µm2·s�1. This choice is justified by different
studies [Cai et al., 2016], and corresponds to the lower bound of diffusion
constant of cadherins for low Ca

2+ concentration. We modify k
0
o f f

to switch
from one case to the other.

Verification of the numerical implementation

We checked that, starting from a variety of equilibrium states satisfying
the conditions derived above, the dynamics of the system were stationary.
Furthermore, we performed mesh refinement and considered a variety of
time-steps to verify numerical convergence. This study allowed us to design
adapted meshes, refined close to the interface s ⇤ ŝ, showing a balance between
accuracy and efficiency. We do checked balance of mass, obtaining typical
relative errors of 10�4. We note that here balance of mass requires proper
treatment of jump conditions at the moving interface.
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,

Figure 9.6: Sketch of the equilibrium definition. By setting the radius of
curvature R of the vesicle, the size of the patch ŝ, the equilibrium constant K

and the reference concentration c0 we determine the concentration of bonds
c1, of binders c2 and the tension Tc .

Finally, to check the consistency of our formulation and numerical imple-
mentation with Onsager’s variational principle, we track the dissipation in the
system and the energy change along time and verify the following relation ,
see Eq. (8.44):

€F (t) ⇤ �2D(t) (9.76)

We consider here the reaction-diffusion case with an applied ramp of force F

such as F(t) ⇤ Fmax
t

⌧di f f

for 0 < t < ⌧di f f and F(t) ⇤ Fmax for t > ⌧di f f with
Fmax ⇤ 0.2 Tc . The result is given in the following 9.7. The figure shows that
the relation expected between energy change and dissipation is verified during
time. Thus our model complies with the second law of thermodynamics.
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Figure 9.7: €F and �2D as a function of time.The time is here normalized by
⌧di f f . In the right corner: profile of force applied. Fmax ⇤ 0.2 Tc

Diffusion-dominated regime

Considering the case of pure diffusion, i.e. the case of ⌧reac � ⌧di f f , we look
at the effect of a pulling force on the system. To do so we set ko f f ⇤ 0 and
kon ⇤ 0 and we displace the equilibrium by applying a force F to the top of the
vesicle.

A series of snapshots capturing the evolution of the size of the patch and
the concentration of bonds is given in Fig. 9.8. It shows a reduction of the size
of the patch associated with an increase of the concentration of chemical bonds.
By increasing the applied force, the contact angle is increased. This leads to
an increase of the concentration of bonds at the interface (Eq. (9.57)), which
creates a gradient in bond concentration, inducing a diffusive flux towards
uniformization of bonds concentration. In turn, diffusive flux at the interface
requires motion of the interface, see Eq. (9.55). This result in a ”packed” patch,
smaller and more concentrated. This is clearly illustrated in Fig 9.8(a,c) and
summarized in Fig. 9.8(b). The system reaches a new equilibrium when the
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Figure 9.8: Diffusion dominated regime. a) Series of plots of the profile of
normalized concentration of bonds in the patch at different instants. Lighter
blue represents later times. b) Scenario after sudden F increase. c) Time
evolution of the normalized position of the interface ŝ/ŝ0 for an applied force
F ⇤ 0.4Tc . A series of snapshots of the adhesion patch at different instant of
the dynamics illustrate the change in concentration of bonds as the change
in the size of the patch. d)Time evolution of the normalized position of the
interface ŝ/ŝ0 for different applied force. e) Final normalized concentration
c f /c0 and final normalized position of the interface ŝ f /ŝ0 as a function of the
applied force.
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9.7. Results and discussion

concentration of the bonds reaches a certain value for which the mechanical
equilibrium at s f ⇤ ŝ is achieved. A larger applied force leads to a more highly
packed patch (smaller and more concentrated), see Fig. 9.8(d,e), but the patch
cannot dissociate since reactions are not possible with kon ⇤ ko f f ⇤ 0. We note
that this kind of behavior has been observed in cells [Maître et al., 2012a]
although our 2D model does not capture the typical tethering observed in
these experiments and more generally in fluid membranes under localized
force [Rahimi and Arroyo, 2012].

Reaction-Diffusion regime

By setting k
0
o f f

⇤ 10 s�1 we have ⌧reac ⇤ 12.5 s ⇠ ⌧di f f . For such a set of
parameters, the time to break one by one the bonds of the patch is nominally
equivalent to the time to move a bond from the interface to the center of the
patch. Here the interplay between the reaction and diffusion is expected to
modify the dynamics of the problem.

For low applied forces, the system is driven out of the equilibrium by the
force but finally reaches a new quasi-equilibrium, when the osmotic pressure
equilibrates with tensile forces, see Eq. (9.57), for which the time-scale of
evolution involves slow reactions and is way longer than the time of the
experiment and the system can be considered as nearly stable. The time
evolution of the position of the interface is given in Fig. 9.9(a). This regime is
similar to the ”packing” of bonds discussed in the previous section with some
degree of bond breaking along the process.
For larger forces, see Fig. 9.9(b), the system never reaches the regime of
quasi-equilibrium and is instead driven out of equilibrium until full separation
in a relatively short time scale. An interesting observation is illustrated in
Fig. 9.9(c), where the lifetime ⌧ f of the patch is plotted as a function of the
applied force. The transition between stability and instability seems like a
threshold: there is a very narrow domain of applied force that separates a
stable patch, with a very large lifetime from a unstable one, for which the
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the system evolves towards a quasi-equilibrium state. b)Time evolution with
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this regime of forces, the system evolves until the two vesicles are completely
detached. c) Lifetime of adhesion patch as a function of the applied force F/Tc .
Fc is the critical force for which lower applied forces F < Fc lead to an infinite
lifetime of the adhesion patch.
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Figure 9.10: Reaction-diffusion regime at large forces. a) Time evolution of
the normalized position of the interface ŝ/ŝ0 for an applied force F ⇤ 0.4Tc . A
series of snapshots of the adhesion patch at different instant of the dynamics
illustrate the change in concentration of bonds as the change in the size of the
patch. b) (right) Series of plots of the profile of normalized concentration of
bonds in the patch at different instants. Lighter color represents later times.
(left) Zoom on the evolution of the concentration during the second phase of
the process. Bonds are packed, and the patch shrinks slowly while the bond
concentration decreases slowly. c) Time evolution of the normalized number
of bonds. d) Series of plots of the net unbinding rate r(s/ŝ0) on the patch at
different instants. Color coding coincides with that in (b)
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lifetime is very small. In analogy with remarks made multiple times in Part I
of the thesis, see section 4.2 and section 5.3, we can identify a critical force Fc

such that for F < Fc the system is stable and for F > Fc the system is unstable.
To better illustrate the dynamics of the system for large forces, a series of
snapshots capturing the dynamics is given in Fig. 9.10(a). We can identify
two phases: a first phase, where the patch gets ”packed” (it shrinks and
becomes more concentrated) in the presence of high concentration gradients,
and hence bonds diffuse towards teh center of the patch, see Fig. 9.10(a,b).
In contrast with the diffusion-dominated case, during this phase bonds also
break at a high speed, as a result of a high breaking rate r localized near
the edge of the patch, see Fig. 9.10(d). This phase stops when the osmotic
pressure equilibrates the mechanical forces. This phase is also present at low
forces. The second phase corresponds to another process: now, the gradient
of bond concentration in the patch is very small, and thus so is diffusion.
The ”packing” of the patch, by increasing the concentration of bonds in the
patch, brought the chemical reaction in the patch far from the equilibrium: the
reaction quotient Q ⇤ c1c0/c

2
2 is such as Q > K ⇤ 2. Thus, reactions continue

to happen towards bond breaking (the breaking rate is positive in the patch
during this phase, see 9.10(d)), reducing the number of bonds in such a way
that the osmotic tension cannot balance the increased mechanical force. This
out-of-equilibrium regime happen on a longer time-scale than the first regime
and is clearly visible on Fig. 9.10(c(left)): the concentration in the patch is
uniform and the patch shrinks slowly towards full separation with a low and
more uniform breaking rate in the patch, see Fig. 9.10(d), decreasing along
time as the reaction in the patch is evolving towards chemical equilibrium
without ever reaching it.

Growth and maturation

In previous examples, we have applied a separation force starting from
an equilibrium state. However, this is not necessarily the case, as in the
experiments reported by Chu et al. [2004a], where they measure the critical
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9.7. Results and discussion

separation force Fc as a function of the maturation time of the patch, i.e. the
time spent after the establishment of a nascent adhesion between two cells.
They found a strong dependence of Fc on maturation time: for the first part of
growth, the critical force increases rapidly by several fold while, after an hour,
the critical force reaches a plateau. To explain this dependence they discuss
the influence of Ca

2+ concentration and immobilization of bonds through
actin binding, as discussed in the introduction. We examine this kind of
behavior with our model next. We place two vesicles in contact, forming a
small adhesion patch with low concentration of adhesion molecules. Tension
is kept constant. The time evolution of the process is given in Fig. 9.11(a,b).

We observe two phases during the process: a first phase of growth, between
30 s and 4 min, for which the the size of the patch increases while the patch is
poorly concentrated and the concentration is constant, it is the ”growth phase”,
and a second phase for which the patch grows slowly and the concentration
of bonds inside the patch increases by ”pumping” binders from the free part
of the vesicles due to diffusion: its the ”maturation phase”. Thus the first
phase evolves towards mechanical equilibrium between tension and osmotic
pressure and stops when the mechanical equilibrium at the interface is reached
while the second phase is due to an equilibration of the chemical potential of
the binders by recruitment of binders from out of the patch and its coupling
with bond formation in the patch, where binders react to form bonds. After an
hour, the system stops to evolve and an equilibrium is achieved. By applying a
separation force during the maturation process, we compute the dependence
of the critical force Fc necessary to unbind the vesicles on maturation time, see
Fig. 9.11(c). We recover a similar dependence than the one observed by Chu
et al. [2004a], even though in these experiments the situation is likely more
complex as cadherins are known to progressively couple to the cytoskeleton
and become increasingly immobilized, see Introduction. Here the plateau is
simply a result of the equilibration of the chemo-mechanical coupling and no
other process is necessary to explain this observation.
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Figure 9.11: a) (left) Series of snapshots of the vesicle doublet at different
instants during growth and maturation of the adhesion patch. The number
corresponds to the times given by the same number on Fig.(b,c). The normal-
ized concentration of bonds in the patch is shown with a color gradient. (right)
Definition of the critical force Fc as the minimum force necessary to unbind
the vesicles. b) Time evolution of the normalized position of the interface
ŝ/ŝ0. c) Dependence of the critical force Fc on the maturation time of the
adhesion. To generate this plot, the separation force is applied at different
instants during maturation. R ⇤ 5 µm, Tc ⇤ 2.5 · 10�4 N·m�1, D1 ⇤ 2.5 · 10�2

µm2 ·s�1, ko f f ⇤ 10 s�1, K ⇤ 1, c0 ⇤ 2500 molecules/µm2.
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Chapter 10

Binding/unbinding dynamics
with compliant ideal bonds

In the previous chapter, we have assumed that bonds are rigid. This hypothesis
has several consequences. From the point of view of the microscopic mechanics,
it allows us to ignore the effect of bond compliance on vesicle shape, which
is reasonable. However, bond rigidity prevents us from resolving the force
distribution on the bonds in a microscopic region near s ⇤ ŝ. This force
distribution will have chemical consequences, even for ideal bonds, since its
stored elastic energy in the bonds will contribute to their chemical potential.
A molecular bond would rather be in an unstressed configuration, which has
lower elastic energy and will create a driving force moving bonds away from
the crack tip. In this chapter, we study the influence of the bond compliance
on the dynamics of adhesion patches in the case of ideal bonds. We exploit the
scale separation between the overall vesicle mechanics, governed by capillarity,
and the microscopic mechanics near s ⇤ ŝ, depending on the bond compliance
and bending rigidity of the membrane, which we resolve with a microscopic
model using the large-scale capillary model to set the boundary conditions.
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Figure 10.1: Sketch of the two-scale approach to examine the mechanics of
the problem which includes a micro-scale model to determine the elongation
h of the bonds in the patch. We treat the adhesion patch as an elastic beam
lying on a continuous concentration of bonds. Minimization of the free energy
of this problem gives h as a function of s. The boundary conditions for this
problem (✓ and Tc) are given by a large-scale capillary problem.

10.1 Micro-scale modeling around the contact point

Sketch of the micro-scale model

To determine the separation h(s), and hence the force distribution on the bonds,
we resort to a more detailed model, since the simple capillary mechanical
model predicts that all the vertical force transmitted by the membrane on
the adhered part is resisted by a concentrated reaction at the triple point. To
overcome this issue, we consider a model for an elastic beam on an elastic
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10.1. Micro-scale modeling around the contact point

foundation as depicted in Fig. 10.1, which takes as data from the larger-scale
model c1(s), ŝ and ✓. We parameterize the deformed shape (a planar curve)
as x 7�! (x , h(x)) for x 2 (0, ↵ ŝ), where ↵ > 1 is a factor determining the
domain size, large enough so that at the right-end of the domain bending
is negligible. The adhesion patch is given by x 2 (0, ŝ). Note that this is an
approximation because the parameter x is not exactly arc-length s, however,

since s(x) ⇤
Ø

x

0

q
1 + h02(y)dy, x and s are expected to be very close within the

adhesion patch because the slope of the curve will be small there. Therefore,
in this region, the concentration of bound binders can be well approximated
by c1(x) instead of c1(s(x)).

How to solve the problem

The free energy consists of five terms. The first one is due to the tension of
the vesicle, simply the product of the tension Tc times the length of the curve.
The second models the bending elastic energy, which is non-negligible near
the interface s ⇤ ŝ and takes the form (/2)

Ø
C

2
ds, where  is the bending

rigidity, c ⇤ h
00/(1 + h

0)3/2 is the curvature of the curve and ds ⇤
p

1 + h02dx.
The third term is the energy stored in the elastic foundation whose stiffness is
given by the number concentration of bound binders c1 times the stiffness to
stretching of one bound binder molecule, k0, with c1 computed thanks to the
bigger scale capillary model. The fourth term accounts for the pressure inside
the vesicle, which presses against the molecular bonds. The last term is the
potential energy of the tension force at the boundary of the domain. Thus, the
free energy takes the form

F̃ [h] ⇤ Tc

π ↵ ŝ

0

p
1 + h02dx +


2

π ↵ ŝ

0

h
002⇣

1 + h02
⌘5/2 dx (10.1)

+

π
ŝ

0

k0c1
2 h

2
dx +

π
ŝ

0
Ph dx � Tc sin ✓ h(↵ ŝ). (10.2)
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Because of symmetry considerations, we should impose the condition h
0(0) ⇤ 0.

Minimization of this functional provides a method to obtain h(x), and thus
the force distribution f (x) ⇤ k0c1(x)h(x) (which is approximately h(s) and
f (s) in the adhesion patch) as a function of c1(s), ŝ and ✓ given by the
large-scale capillary model. We note that treating the large-scale and the small-
scale aspects of the mechanics in a unified model poses practical difficulties
as a result of ill-conditioning. Thus, our two-scale approach is appealing
conceptually and useful computationally.

Separation distance profile in the adhesion patch

A closer look to the mechanics in the patch is given in Fig. 10.2, where the
separation distance over the adhesion patch h(s) is given for different values
of k0. We can form two different characteristics lengths x� and `2. x� ⇤

q
kBT

k0

is a characteristic length that scales the vertical elongation of the bonds at
the interface as can be seen on Fig. 10.2. The second characteristic length
`2 ⇤

q
Tc

k0c0
is shown for each curve and scales the horizontal extension of the

region where bond elongation is perturbed, and thus where bonds bear force.
The figure shows how h(s) , 0 is localized in a small region of extension `2

near s ⇤ ŝ, justifying the two-scale modeling approach.

10.2 Governing equations

Free energy

To apply Onsager’s variational principle, it is necessary to detail the new free
energy of the system and compute its variation. Considering a capillary free
energy contribution, the elastic energy of the stretched bonds, the potential
for the force applied by the loading device and an ideal gas entropy for the
bound and unbound binders, the new chemo-mechanical free energy is
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F (Z) ⇤ Tc · L(✓, �, ŝ) � F · H(✓, �, ŝ)

+
kBT

2

π
ŝ

0
c1

✓
log c1

c0
� 1

◆
ds +

1
2

π
ŝ

0
µ0

1c1 ds +
kBT

2

π
ŝ

0

✓
h

x�

◆2
c1 ds

+ kBT

π
ŝ

0
c2

✓
log c2

c0
� 1

◆
ds +

π
ŝ

0
µ0

2c2 ds

+ kBT

π
L0

ŝ

c2

✓
log c2

c0
� 1

◆
ds +

π
L0

ŝ

µ0
2c2 ds , (10.3)

where h is determined from the small-scale model described before. As stated
in the previous chapter, to enforce our assumption that the enclosed area
(volume) remains constant so that A ⇤ A0, we introduce the Lagrangian

L(Z, P) ⇤ F (Z) � P
⇥
A(✓, �, ŝ) � A0

⇤
, (10.4)

123



10. B������/��������� �������� ���� ��������� ����� �����

where P is the pressure difference enforcing the constraint. Thus, this La-
grangian is a function of the extended set of state variables Z̄ as:

Z̄ ⇤
�
✓, �, ŝ , c1 , c2 , P

�
. (10.5)

Following the same framework used in the previous chapter, we can now
identify the two following chemical potentials.

µ1(h) ⇤ µchem

1 + µmech

1 (h) ⇤ µ0
1 + kBT log c1

c0
+ kBT

✓
h

x�

◆2
, (10.6)

µ2 ⇤ µ0
2 + kBT log c2

c0
, (10.7)

with µ1(h) now exhibiting a chemical and a mechanical part, the latter one
expressing a dependence on the distance h and thus establishing an additional
coupling between the vesicle mechanics and the chemistry.

Process variables and jump conditions

The set of process variables W is unchanged and the continuity equations of
mass conservation 9.9 are not affected by the compliance of the bonds and
thus gives us the same jump conditions than the one obtained for the rigid
bonds

v̂ ⇤ w1(ŝ), (10.8)

[[c2]] v̂ ⇤ [[c2w2]] . (10.9)

Using the new expression for the chemical potentials and these jump conditions,
we are able to express the rate of change of the free energy as:

D
Z̄
L(Z̄) · P(W̄) ⇤

π
ŝ

0

✓
1
2µ1(h) � µ2

◆
r +

1
2 c1w1 µ01(h) + c2w2 µ02

�
ds

+

π
L0

ŝ

c2w2 µ02 ds + Tc

⇣
1 � cos ✓equil(ŝ)

⌘
v̂ � 1

2 kBTc1(ŝ)v̂.

(10.10)
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Dissipation

Similarly, by definition, the dissipation in the system is not affected by the
elastic contribution of stretched bonds. Thus we can express the dissipation
potential as:

 (W ; Z) ⇤
π

ŝ

0

1
2k̄

r
2
ds +

π
ŝ

0

⇣ ⌘1c1

4 w
2
1 +

⌘2c2

2 w
2
2

⌘
ds +

π
L0

ŝ

⌘2c2

2 w
2
2ds .

(10.11)

Biased diffusion

Invoking Onsager’s variational principle and forming the Rayleighian by
combining Eqs. (10.10,10.11), we can take variations with respect to the
remaining process variables w1, w2, r and v̂ to obtain the dynamical equations.
Making variations with respect to w1 stationary we obtain the appropriate
version of Fick’s law

w1 ⇤ � 1
⌘1
µ01(h) ⇤ � kBT

⌘1

 
c
0
1

c1
+ 2 hh

0

x
2
�

!
in (0, ŝ). (10.12)

The second term in this equation is a bias with respect to Fickian diffusion due
to the non-uniform stretching energy stored in the bonds. Assuming that µ0

2
is uniform in (0, L0), we obtain from taking variations with respect to w2 that

w2 ⇤ � kBT

⌘2

c
0
2

c2
in (0, ŝ) [ (ŝ , L0) and [[c2]] ⇤ 0, (10.13)

Taking variations with respect to the reaction rate r, we obtain

r ⇤ k̄

✓
µ2 �

1
2µ1(h)

◆
. (10.14)

Reaction rates

Arrived at this point, a modeling choice is needed for k̄. Following [Mielke,
2012], we will make a choice consistent with the law of mass action. Consider
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the following choice:

k̄ ⇤ k

c
2
2/c0 exp

✓
�h

2

x
2
�

◆
� exp

⇣
µ0

1�2µ0
2

kBT

⌘
c1

µ2 � 1
2µ1(h)

, (10.15)

where k > 0 is a rate constant. A direct calculation shows that

k̄ ⇤
2kc0
kBT

exp

 
�

2µ0
2

kBT

!
2⇡kBT

k0
exp

 
�h

2

x
2
�

! exp
⇣

2µ2
kBT

⌘
� exp

⇣
µ1(h)
kBT

⌘
2µ2
kBT

� µ1(h)
kBT

, (10.16)

which is clearly positive as required by the second law of thermodynamics.
Plugging Eq. (10.15) into Eq. (10.14), we obtain

r ⇤ k
0
on exp

 
�h

2

x
2
�

!
c

2
2 � k

0
offc1 in (0, ŝ), (10.17)

where

k
0
on ⇤

k

c0
and k

0
off ⇤ k exp

 
µ0

1 � 2µ0
2

kBT

!
. (10.18)

Interpretations of kon(h)
In order to interpret this dependence of the binding rate on the separation
distance h between the two vesicle, we recall the discussion in Chapter 3 about
the process of formation of a bond, see section 3.1. The reaction consisting
of binding of two binders is actually a combination of two events [Erdmann
and Schwarz, 2006, 2007, Qian et al., 2008]. First, the binder has to come close
enough to the opposite binder and then react when they are in a close-enough
range.
We keep the classical view of the binder as attached to a spring of rest length lb

and stiffness k0. As it is stuck between the two surfaces, the binder is allowed
to move only in a zone delimited between z ⇤ �lb and z ⇤ 2h + lb in the
potential U(z), with U(z) such as:

U(z) ⇤ k0z
2

2 for z 2 [�lb , 2h + lb]. (10.19)
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As a classical result of statistical mechanics, the Boltzmann statistics gives the
probability density function P(z) for the binder to be in a position z such as:

P(z) ⇤ 1
Z

exp
✓

U(z)
KBT

◆
⇤

1
Z

exp
✓

k0z
2

2KBT

◆
, z 2 [�lb , h + lb], (10.20)

where Z is the partition function satisfying the normalization condition:
π 2h�lb

�lb

P(z)dz ⇤ 1. (10.21)

Letting the limits of integration to infinity we can approximate Z such as:

Z ⇤

r
⇡kBT

2k0
, (10.22)

We thus can compute the probability p(h) of having the spring elongated to
z ⇤ h as

p(h) ⇤ lbind

Z
exp

✓�k0h
2

2kBT

◆
. (10.23)

With k
0
on the reaction rate for binders separated by a distance z < lbind , and

considering lbind ⌧ lb such that p is considered constant on [h� lbind , h+ lbind],
the rebinding rate can be approximated as:

kon(h) ⇤ k
0
on p(h) ⇤ k

0
on

2lbind

lbZ
exp

✓�k0h
2

2kBT

◆
. (10.24)

Thus, our model is consistent with the law of mass action and the following
chemical reaction:

Binder(h) + Binder(h)
kon(h)
⌦
koff

Bond(h) (10.25)

which states that at a given s, only the binder with an elongation h(s) can react
to form a bond that bridges the separation h(s) between the two vesicles. At
the equilibrium the concentrations of bonds and binders in the patch obey

c0c1

c
2
2

⇤ exp

 
2µ0

2 � µ0
1

kBT

!
exp

 
�h

2

x
2
�

!
in (0, ŝ), (10.26)
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This equation has potential experimental implications. Indeed, suppose
that the equilibrium concentrations c1(s) and c2 are measured, e.g. using
fluorescence microscopy. Suppose also that the tension and contact angle are
measured. Then, it is possible to infer the distribution h(s) in the adhesion patch
and obtain an expression for the stiffness of the bonds k0. Interestingly, this
function can also be mapped out from single molecule stiffness measurement
experiments. Thus, this theory can help us confront single molecule and
large-scale collective measurements of adhesion molecules.

Final set of equations

Following the same procedure detailed in the previous chapter, see section 9.5,
we obtain the following system of coupled advection-diffusion-reaction equa-
tions

€c1 ⇤ D1c
00
1 + kon exp

 
�h

2

x
2
�

!
c

2
2 � koff c1 + D1

 
2c1

hh
0

x
2
�

!0
in (0, ŝ),

(10.27)

€c2 ⇤ D2c
00
2 � kon exp

 
�h

2

x
2
�

!
c

2
2 + koff c1 in (0, ŝ),

(10.28)

€c2 ⇤ D2c
00
2 in (ŝ , L0),

(10.29)

where the diffusion constants are Di ⇤ kBT/⌘i and x� ⇤

q
kBT

k0
,

completed by the chemo-mechanical boundary/jump conditions
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Boundary/jump conditions:

at s ⇤ 0

"
2c1

hh
0

x
2
�

+ c
0
1

#
s⇤0

⇤ 0, c
0
2(0) ⇤ 0,

(10.30)

at s ⇤ ŝ [[c2]] ⇤ 0,


c
0
2
⌘2

��
⇤ 0, � D1

"
2c1

hh
0

x
2
�

+ c
0
1

#
s⇤ŝ

⇤ c1(ŝ) v̂ ,

(10.31)

kBT c1(ŝ) ⇤ 2Tc

⇣
1 � cos ✓equil(ŝ)

⌘
(10.32)

at s ⇤ L0 c
0
2(L0) ⇤ 0.

(10.33)

Careful inspection shows that this chemical problem, the large-scale
capillary mechanical problem, and the smaller-scale mechanical problem,
are tightly coupled. The chemical problem is informed about the large-scale
mechanical problem through ✓equil(ŝ) and about the smaller-scale mechanical
problem through h(s). In turn, the smaller-scale mechanical problem needs
c1(s) from the chemical problem and ✓equil(ŝ) from the large-scale mechanical
problem. All problems depend on the location of the interface, whose velocity
is determined by the conditions at the interface.

Solving the problem

To solve the system of equations, we rescale the problem using the same
time-dependent change of variables described in section 9.6. The small-scale
mechanical problem is an equilibrium problem, and therefore the fact that the
interface is moving does not play any role. Once h(x) is obtained, as before we
make the approximation h(x) ⇡ h(s), and then apply the change of variables

129



10. B������/��������� �������� ���� ��������� ����� �����

to feed the result into the re-scaled chemical problem. The separation distance
h can be rescaled on [0, 1] as:

�(⌘, t) ⇤ h
�
'(⌘, t), t� , (10.34)

and applying the chain rule, we have

@�
@⌘

⇤ ŝ(t)@h

@s
,

@2�
@⌘2 ⇤ ŝ

2(t)@
2
h

@s2 . (10.35)

Using this rescaling we are able to solve the set of equations on a fixed interval
[0, 1].

10.3 Results and discussion

In this section, we examine how the stretching of the bonds affects the dynamics
of the problem.

New equilibrium

Looking again at Fig. 10.2, we see that the profile of separation distance in
the patch is such that the equation 10.31 dos not hold with the initial set
of conditions defined as a starting point in section 9.7. In other words, the
chemical potential of the bonds µ1(h) is not uniform in the patch with uniform
bond concentration. Thus at F ⇤ 0, the system evolves towards uniformization
of µ1(h). In Fig. 10.3, we see that the new quasi-equilibrium position of the
interface and bond concentration are largely independent of the stiffness of
the bond k0. By quasi equilibrium we mean a state rapidly reached before
eventual much slower dynamics. Nevertheless the bonds stiffness controls the
extent of the zone in which the concentration of the bonds is not uniform i.e.
the zone in which the separation distance is significantly large. As discussed
in 10.1, this extension is related to the characteristic length `2 ⇤

q
Tc

k0c0
.
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Figure 10.3: Profile of the concentrations of bonds in the adhesion patch after
re-equilibration for different values of k0. The initial profile of concentrations
is given in black. The system evolved towards uniformization of the chemical
potentials.

Diffusion-dominated regime

Considering the case of pure diffusion, for which ⌧reac � ⌧di f f , we look at the
effect of a pulling force on the system. To do so, we set ko f f ⇤ 0 and kon ⇤ 0
and we displace the equilibrium by applying a force F to the top of the vesicle.
We update the Fig. 9.8(c) to compare the dynamics of rigid ideal bonds and
that of compliant ideal bonds due to application of force. The results are
given in Fig. 10.4. We see that, making bonds compliant increases the effect
of ”packing”, due to the biased diffusion of the bonds: the stretched bonds
diffused faster than the resting ones. For a given force F, the patch retracts to a
smaller final size ŝ f for compliant bonds and the corresponding concentration
in the center of the patch is also larger.
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Figure 10.4: Final normalized concentration c f /c0 (dotted line) and final
normalized position of the interface ŝ f /ŝ0 (solid line) as a function of the
applied force. The curve corresponding to rigid bonds is also given in blue.

Diffusion-reaction regime

We now have a look at the influence of the rigidity of the bonds on the more
general mixed diffusion-reaction case. To illustrate it, Fig. 10.5 describes the
time evolution of the position of the interface for three different values of
k0. We see that the general behavior does not depend on the stiffness of
the bonds. The difference appears when the size of the patch comes close
to `2 ⇤

q
Tc

k0c0
. Then, the whole patch is affected by the applied force, the

separation between the bonds is non-zero and kon < 1 everywhere, making
rebinding more difficult in the whole patch, and thus the adhesion patch
dramatically fails. Thus the characteristic length `2 selects the instant when
the adhesion finally fails. This effect is clearly visible in the figure inset.
This effect drifts the threshold in the lifetime of the patch as a function of the
force. The softer the bonds are, the more unstable the patch is, see Fig. 10.6.
We note that, because of the steepness of the relation between the lifetime
and force, a relatively small change in the threshold can lead to a very large
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Figure 10.5: Time evolution of the normalized position of the interface ŝ/ŝ0
for different values of k0. (inset) Zoom on the last instants of the separation is
given to illustrate how the system finally fail and how `2 selects when it fails.
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Figure 10.6: Lifetime of adhesion patch as a function of the applied force F/Tc

for different values of k0. The ideal rigid bonds is also given (blue plot).

change in the lifetime near the critical force. The dependence on bonds
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Figure 10.7: Simplified sketch of the proposed switching process for the
system to pass from a stable mode to an unstable one: by changing the stiffness
of the chemical bonds to change its stability.

stiffness of the strength of the patch could be another physical mechanism
allowing cells to control adhesion. Both experimental and numerical studies,
show a strong dependence of the stiffness of cadherins on the concentration
of Ca

2+ ions [Nagar et al., 1996, Sotomayor and Schulten, 2008]. The binding
process also shows such a dependence [Pokutta et al., 1994]. The conformation
of these molecules is affected by the presence of Ca

2+ ions and thus their
physical properties are affected. Moreover, studies also show the prominent
role of calcium intracellular signaling in cell adhesion mediated by cadherins
or integrins [Sheng et al., 2013]. Thus, calcium signaling could modify locally
the rigidity of the bonds and their affinity to bind, and thus, switch from a
stable patch to an unstable one. This could provide a mechanism for cells
to easily switch from strong adhesion to weak adhesion in processes such
as remodeling or cell migration. An illustration of this switching process is
given in Fig. 10.7, where a patch with bonds of stiffness k

1
0 is stable under an

applied force F < F
1
c . A change in the concentration of Ca

2+ would change
the stiffness of the bonds such as a softening k

1
0 ! k

2
0, reducing the critical
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force such that F > F
2
c , driving the patch towards instability.
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Chapter 11

Binding/unbinding dynamics
with compliant slip bonds

Most biological bonds exhibit force-dependent unbinding kinetics. The ex-
perimental characterization and theoretical modeling of such force-sensitivity
has been a major theme of research over the last decades [Bell, 1978a, Evans
and Ritchie, 1997]. in this chapter we discuss the most general form of
force-sensitivity, that of slip bonds following Bell’s law, for references see
section 3.1. In particular we explore how to introduce the Bell’s law in the
thermodynamically consistent framework based on Onsager’s variational
principle. We present results about the effect of force-sensitivity in the un-
binding rate. In Fig.11.1, we recall the slip bond effect. In this picture the
applied force tilts the energy landscape and accelerates the dissociation of the
non-covalent receptor-ligand bond by modifying the height of the barrier at
x ⇤ xb , leading to the force-dependence of the unbinding rate ko f f ⇤ k

0
o f f

e

F

F� ,
with F� ⇤

kBT

xb

[Bell, 1978a]. Based on this definition of a slip bond, the next
section 11.2 examines and discusses different approaches to include this effect
in the Onsager’s variational framework we detailed in the previous chapters.
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ligand
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Figure 11.1: Schematic representation of the energy landscape for receptor-
ligand interaction. The solid blue curve represents the energy landscape for an
unstressed bond and the dotted blue line corresponds to the modified energy
landscape in the case of an applied force F, which lowers the energy barrier at
a rate controlled by xb .

11.1 Modeling the slip bond complex as a spring and a
slip bond

A slip bond can be seen as a combination in series of two springs: the ”tail” of
the binder of stiffness k0 and a molecular complex acting like the slip bond
itself with a stiffness kslip , which is the reacting part of the molecule. A
schematic view is given in Fig. 11.2. If we consider the stiffness of the slip
bond kslip � k0, we can approximate the stiffness of the complex k as: k ⇠ k0.
Thus, the force F exerted by the vesicle to a bond is transmitted through
the spring to the slip bond and affects its energy landscape of unbinding by
reducing its transition barrier by F

F�
kBT.

According to our model, at any position s in [0, ŝ], is assigned a separation
h(s), such as the bond at s is stretched by h(s) from its rest position. As the
force is transmitted to the slip bond, we can state that the force exerted on
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the bond is F(s) ⇤ k0h(s). Thus we can re-write the change in the energy of
the barrier as h(s)

x�
kBT with x� ⇤ F�/k0. Eventually, according to Bell’s law, the

unbinding rate ko f f can be written as a function of h(s) as :

ko f f (h(s)) ⇤ k
0
o f f

exp h(s)
x�

(11.1)

In the next section 11.2, we review the different options available from
the Onsager’s variational principle to obtain this unbinding rate, which in
principle can only be based on:

1. Modifying the free energy F (Z) of the system,

2. Modifying the kinetics only with a different structure for k̄,

3. Adding a power input Ptilt(W) to the system,

4. Modifying the dissipation potential Dreac(Z; W) associated to the reac-
tion.

11.2 Modeling slip bonds with Onsager’s principle

Through the free energy

A first way to introduce the change in the barrier height would be to see the
decrease of the transition barrier as a force-dependent increase of the energy
of the bonds, which would bias the system towards dissociation. The first
approach considered would thus be to suppose that µ0

1 is an affine function of
h as:

µ0
1(h) ⇤ µ̄1(h) + k0hxb ⇤ µ̄1(h) + kBT

h

x�
, (11.2)

with µ̄1(h) the chemical potential of a compliant ideal bond given by Eq.(10.6).
At first sight, this modeling choice seems to lead to the right form of ko f f .
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Figure 11.2: Schematic representation of the slip bond complex as a combina-
tion of two springs and a slip bond in series.

Indeed, recalling Eq. (10.15) we find that

koff ⇤ k
0
off exp

✓
h

x�

◆
, with k

0
off ⇤ k exp

 
µ̄1 � 2µ0

2
kBT

!
, (11.3)

with x� ⇤
kBT

k0xb

. Recalling the definition of F� given previously, we conclude
that this result is in agreement with Bell’s law.

However this modeling choice also biases the diffusion of bonds. Recalling
Eq. (10.12), we now have:

w1 ⇤ � 1
⌘1
µ01(h) ⇤ � 1

⌘1
µ̄01(h) �

kBT

⌘1

h
0

x�
in (0, ŝ). (11.4)

Thus this modeling choice adds a new force dependence on diffusion.
This additional force-sensitivity on the diffusion of the bonds, different from
that resulting from the bond compliance, captured by the term � 1

⌘1
µ̄01(h),
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and studied in the previous chapter, does not seem physically meaningful.
Indeed, the applied force lowers the barrier for thermally activated unbinding
transitions but does not change the free energy of bonds, other than by the
storage of elastic energy already studied in the previous chapter. Including
this linear tilt in the chemical potential (last term in Eq. (11.2)) seems to ”work”
to capture the right reaction kinetics, but since the chemical potential also
drives diffusion, we get a spurious bias to diffusion. Modifying the energy of
the unbound state would also give the desired rate but would lead to another
bias in the diffusion. Thus, modifying the energy of the bonds or the free
binders appears to be a dead end because the chemical potential drives both
reaction and diffusion.

Through k̄

The previous remarks suggest to introducing force-sensitivity in a way that
affects only reaction kinetics and not diffusion. A straightforward way to do
so would be to modify directly the general structure k̄ as:

k̄ ⇤ k

exp
⇣

2µ2
kBT

⌘
� exp

⇣
µ1(h)
kBT

⌘
c1

2µ2 � µ1(h)
, (11.5)

Consider the following choice:

k̄ ⇤ k

c
2
2/c0 exp

✓
�h

2

x
2
�

◆
� exp

⇣
h

x�

⌘
exp

⇣
µ0

1�2µ0
2

kBT

⌘
c1

µ2 � 1
2µ1(h)

, (11.6)

where k > 0 is a rate constant. This modeling choice would also give us the
desired unbinding rate. But a direct calculation shows that

k̄ ⇤
2kc0
kBT

exp

 
�

2µ0
2

kBT

!
exp

 
� h

2

x
2
�

! exp
⇣

2µ2
kBT

⌘
� exp

⇣
h

x�

⌘
exp

⇣
µ1(h)
kBT

⌘
2µ2
kBT

� µ1(h)
kBT

, (11.7)

which cannot be guaranteed to always be positive. Thus, this choice for k̄ does
not ensure the modeling to be thermodynamically consistent since the rate of
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reaction could either dissipate or pump energy into the system depending on
the state.

Through a power input

One last idea would be to consider the tilting of the energy landscape with a
power input Ptilt(W) in the problem acting directly on the net rate of unbinding
r as:

Ptilt ⇤
1
2

π
ŝ

0
rk0hxb ds ⇤

1
2

π
ŝ

0
kBT

h

x�
r ds (11.8)

This way, applying the Onsager’s variational principle we obtain, minimizing
the Rayleighian with respect to r:

r ⇤ k̄

✓
µ2 �

1
2µ1(h) �

1
2 kBT

h

x�

◆
. (11.9)

Considering the following choice for k̄:

k̄ ⇤ k

c
2
2/c0 exp

✓
� h

2

x
2
�

◆
� exp
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µ0

1+kBTh/x��2µ0
2

kBT

⌘
c1

µ2 � 1
2µ1(h) � 1

2 kBTh/x�
, 00(11.10)

where k > 0 is a rate constant, a direct calculation shows that

k̄ ⇤
2kc0
kBT
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kBT
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2

x
2
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! exp
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2µ2
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⌘
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kBT

⌘
2µ2
kBT

� µ1(h)+kBTh/x�

kBT

, (11.11)

which is clearly positive as required by the second law of thermodynamics.
Plugging Eq. (11.10) into Eq. (11.9), we obtain

r ⇤ k
0
on exp

 
� h

2

x
2
�

!
c

2
2 � k

0
off exp

✓
h

x�

◆
c1 in (0, ŝ), (11.12)
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where

kon ⇤
k

c0
exp

 
� h

2

x
2
�

!
and koff ⇤ k exp

 
µ0

1 � 2µ0
2

kBT

!
exp

✓
h

x�

◆
. (11.13)

Thus, biasing the energy landscape towards the unbinding reaction through a
power input allows us to obtain the desired structure for the rates. However,
this approach is not fully satisfactory. Indeed, a generic calculation shows that

€F (Z,W) + P(W) ⇤ �D(W) (11.14)

Although in most cases P(W) will be positive, this cannot be guaranteed and
thus this approach does not ensure the decrease of the free energy along the
dynamics. It is clear that we bias the system towards unbinding reaction in a
force-dependent manner, but this bias is internal to the system and thus, the
interpretation of this power input in the global energy balance is unclear. The
previous results suggest that:

• The effect of the force should not be included in the free energy because
it would drive diffusion of one of the species.

• It is not possible to introduce the slip bond effect through a state
dependent coefficient k̄ and guarantee a positive dissipation rate.

• Introducing the slip bond effect through a power input leads to the
correct equations, but the physical interpretation is unclear since the
free energy can no longer be guaranteed to be decreasing during the
dynamics.

Up to now, we have not attempted to modify the dissipation potential to
obtain the slip bond effect. This effect could appear from an interaction
with the spring in a natural way by considering a more general set of state
variables including the separation h and through an appropriately constructed
dissipation potential of the form:

D(r, €h) ⇤ 1
2

⇣
r €h

⌘  
k̄
�1 ⌘

⌘ ⌫

!  
r

€h

!
, (11.15)
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with ⌫ characterizing the viscous friction opposing to change in separation h,
due to the surrounding fluid for example, and ⌘ characterizing the coupling
between elongation of the bond and reaction. To relate to our previous
models, ⌫ should be chosen very small, and to ensure that the problem is
thermodynamically consistent, we need the following relation to be verified:

⌫

k̄
� ⌘2 > 0 (11.16)

A more detailed discussion about this last approach is given in the Appendix C,
using a more simple set-up, considering fixed adhesion molecules attached
between two rigid plates.

11.3 Final system of equations

Considering the previous observations, we use the definition of slip bonds
through a power input, which has its drawbacks but has the advantage to
provide the expected dependence on h of the chemical rates. Using this
definition, we obtain the following system of equations:

€c1 ⇤ D1c
00
1 + k

0
on exp

 
�h

2

x
2
�

!
c

2
2 � k

0
off exp

✓
h
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◆
c1 + D1

 
2c1hh

0

x
2
�

!0
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(11.17)

€c2 ⇤ D2c
00
2 � k

0
on exp

 
�h

2

x
2
�

!
c

2
2 + k

0
off exp

✓
h

x�

◆
c1 in (0, ŝ),
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€c2 ⇤ D2c
00
2 in (ŝ , L0),

(11.19)

with respect to the following boundary conditions
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at s ⇤ 0
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at s ⇤ ŝ
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��
⇤ 0, � D1
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2c1hh

0

x
2
�

+ c
0
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#
s⇤ŝ

⇤ c1(ŝ) v̂ , (11.21)

kBT c1(ŝ) ⇤ 2Tc

⇣
1 � cos ✓equil(ŝ)

⌘
(11.22)

at s ⇤ L0

c
0
2(L0) ⇤ 0. (11.23)

These equations need to be solved in conjunction with mechanical equations
resulting from the large-scale capillary problem and for the small-scale problem
in the vicinity s ⇠ ŝ.

11.4 Results and discussion

Reaction-diffusion

The previous section illustrated the fact that the slip bond effect only affects
the reaction and not the diffusion. Thus, the purely diffusive case will not
be affected by a change in the nature of the bond (ideal or slip). Thus, let us
have a look at how the reaction-diffusion case is affected by the change in
the reaction. To illustrate this effect, we update Fig. 10.6 for slip bonds. The
updated version is given in Fig. 11.3

As observed for the case of ideal compliant bonds, the change in the nature
of the bonds modifies the strength of the patch and, for slip bonds and at
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Figure 11.3: Lifetime of adhesion patch as a function of the applied force F/Tc

for different values of x� and k0 ⇤ 2.5 ·10�4 N·m�1. The blue curve corresponds
to the previous case considering ideal compliant bonds.

a given force F, shifts the critical force towards more instability. As Ca
2+

concentration is thought to tune the affinity and the stiffness of the bonds, it
also tunes the nature of the bond itself: by modifying its conformation, the
bond can switch between different behaviors: ideal, slip and catch. This is
supported by different studies [Rakshit et al., 2012, Sivasankar, 2013]. Thus,
similarly to the switching process illustrated in Fig. 10.7, a change in the
concentration of ions could make the adhesion patch switch between stability
and instability. Despite these quantitative changes in the critical force, which
can lead to very strong changes in lifetime near the critical force, we did
not find qualitatively different behaviors between slip compliant bonds and
ideal compliant bonds for the problem considered here. In a different context,
like clutch model for mechanosensitivity [Elosegui-Artola et al., 2016] or the
tear-out behavior detailed next, the slip bond nature of the bonds could lead
to much more significant changes on the dynamics.
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Tear-out

We end this chapter by examining the tear-out scenario [de Gennes et al., 2003],
in which, if reaction are sufficiently fast as compared to diffusion, the shrinking
of the adhesion patch under force should be the result of the progressive
breaking of bonds very much like unbinding from a solid substrate with
immobile receptors. However, faster kinetics can also mean faster rebinding in
the case of ideal bonds. The tear-out scenario is eased by the slip bond behavior,
which can increase the unbinding rate very significantly near the rim of the
adhesion patch due to the uneven force distribution in the patch. To study
the case where reaction dominates the dynamics, for which ⌧reac ⌧ ⌧di f f , we
set k

0
o f f

⇤ 1000 s�1 and keeping the same diffusion constants. To look at this
extreme case, we also choose x� ⇤ 2 nm for the slip bonds, such that bonds
are very sensitive to the transmitted force and h(ŝ) > x�. To probe this case,
we apply a ramp of force on the top of the vesicle and we look at the resulting
dynamics. A series of snapshots capturing the evolution of the size of the
patch and the concentration of bonds is given in Fig. 11.4(a). It shows a fast
transition at small time-scales and then, a linear dependence with time of the
position of the interface.
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Figure 11.4: a) Time evolution of the normalized position of the interface ŝ/ŝ0
while imposing a ramp of force such as F(t)/Tc ⇤ 6.5 · 10�2

t/⌧reac . The time
evolution of F is given as an inset. A series of snapshots of the adhesion patch
at different instants during the dynamics illustrate the change in concentration
of bonds as the change in size of the patch. The dashed line is give as an
illustration of the linear dependence of ŝ with time . The slope of the dashed
line is �v

⇤/v0 with v0 ⇤ ŝ0/⌧reac . b) Profiles of normalized concentration of
bonds c1 and binders c2 in the patch and outside of the patch at different
instants. Clearer colors indicate later times. c) Profiles of the unbinding rate
r(s/ŝ0) on the patch at different instants. Clearer colors indicate later times.
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This is also illustrated in Fig. 11.4(b) and Fig. 11.4(c), where we see that the
concentration of bonds at the interface and the bond breaking rate appear to
exhibit a well defined travelling profile. The linear dependence can be approx-
imated by a linear function with a slope v

⇤/v0, where v0 is a characteristic
speed such as v0 ⇤ ŝ

0/⌧reac . Along the dynamics, the figure shows that the
concentration in the patch is not affected by the tearing process: the bonds
break before they have time to diffuse in a region of the patch where their
transmitted force is lower. There is propagation of local breaking at s ⇤ ŝ, with
no large-scale diffusion of bonds and only a noticeable diffusion of free binders
c2 at s ⇤ ŝ. Thus, we obtain a behavior that looks like a classic tear-out, as
we would observe in the case of immobile bonds [Prechtel et al., 2002, Pierrat
et al., 2004b]. However, in contrast with the classical tear-out, here diffusion
should play a role. Indeed, the time-scale of diffusion ⌧di f f ⇤

`
2D1

is strongly
size-dependent. Thus, even if at the length-scale of the whole patch (` ⇤ ŝ

0)
⌧reac ⌧ ⌧di f f , there should be a small length scale for which ⌧reac ⇠ ⌧di f f .
Following this reasoning, even if reaction should normally dominate the
dynamics of the system, there should be a small region near the edge of the
adhesion patch where it competes with diffusion of bonds. The interesting
question is if this small-scale diffusion has macroscopic consequences, e.g. in
the velocity of propagation as suggested by Eq. (11.21). To interrogate these
ideas with our model, we examined the influence of bond diffusivity on the
tear-out dynamics, see Fig 11.5. According to the theory, the length-scale Lp

where the bond concentration is locally perturbed because of diffusion close
to s ⇤ ŝ should increase with D1. Our results, reported on the figure, are
consistent with this prediction.

To study this effect more systematically, we consider a simplified set-up
where we uncouple the vesicle mechanics with the micromechanics and
the chemistry by fixing the angle ✓ ⇤ ✓0 and the tension Tc at s ⇤ ŝ, as
illustrated in Fig. 11.6(a). Thus, in this problem, the mechanical driving force is
constant, see Eq. (11.22). In Fig. 11.6(b), we represent the time evolution of the
position of the interface for different values of the diffusion constant D1 ( with
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Figure 11.5: Series of plots of the profile of normalized concentration of bonds
c1 and binders c2 in the patch and outside of the patch at different instants
during propagation. Clearer colors indicate later times. The local shape of
the propagating profile of concentration near s ⇤ ŝ is given in the right corner
and its size is denoted Lp . D

0
1 ⇤ 0.5 µm2·s�1. a) D1 ⇤ 5D
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1 . b) D1 ⇤ 15D

0
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D1 ⇤ 45D
0
1 .

D2 ⇤ 2D1), providing an effective kinetic law for the tear-out process. From
these results, we compute the slope v

⇤/v0 for each value of D1. Fig. 11.6(c)
shows the systematic dependence of velocity v

⇤ and extent of the diffusion
zone Lp on the diffusion constant of bonds D1. The figure shows that the
propagation velocity decreases with increasing D1, whereas increasing D1
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leads to a larger diffusion zone. During the propagation of the stationary
profile, local transport by diffusion must keep up with the propagation velocity.
It is therefore natural that larger Lp requires more time for diffusive transport,
and hence can only be compatible with a slower propagation velocity. This
study shows a strong observable effect of small-scale (hence fast) diffusion in
this nominally reaction-dominated tear-out regime. This behavior is a new
kind of tear-out decohesion distinct from classical tear-out for immobile bonds
on a solid substrate, which is independent of membrane fluidity, whereas the
behavior reported here is not since fluidity determines bond mobility. These
results suggest that a pure tear-out process independent of bond diffusion
in adhesion mediated by mobile binders is impossible unless Lp becomes
very small, in the nanometer range, where our theory breaks down. These
results also highlights the subtility of adhesion mediated by mobile binders.
We finally note that one could seek for the traveling wave solutions to the
chemo-mechanical equations that result from fixing ✓0 and T

0
c . By performing

the change of variables ci(s , t) ⇤ c̄i(s + v
⇤
t), where c̄i are time-independent

stationary solutions, one realizes that the resulting system is a set of stationary
advection-diffusion equations coupled to the small-scale mechanical model,
whose analytical solution or even qualitative analysis is far from obvious.
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Figure 11.6: a) Simplified problem with a constant driving force set by a
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Chapter 12

Discussion about the crowded
limit

In the previous section we assumed that the dilute limit was valid, that is to
say, c1 ⌧ cmax and c2 ⌧ cmax . This assumption may break down. Actually, for
usual vesicle membranes and adhesion molecules of the size of E-cadherins, the
maximum possible concentration is of about cmax ⇤ 50000 mol·µm2=20 c0 [Pon-
tani et al., 2016]. It is possible to modify the available space for the molecules
on the membrane by adding some non-interacting molecules on the vesi-
cles. Thus, by modifying the concentration of such molecules, the maximum
concentration cmax can be reduced. The overcrowding of the vesicle limits
the diffusion as it limits the available space for a molecule to move on the
membrane, but at a given s, the binding/unbinding kinetics is not affected
by the level of crowding of its surrounding. However, if crowding severely
limits the ability of the system to evolve by bond motion, then it may lead to a
change in behavior dominated by reaction.
In order to verify these statements and to study the influence of an overcrowd-
ing of molecules on the membrane, we relax the dilute-limit assumption in
the present section.
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12.1 Considering a maximum concentration cmax

Considering a capillary free energy contribution, the potential for the force
applied by the loading device and a more general expression for entropy
of bonds, based on Flory-Huggins theory, that includes the entropy of the
adhesion molecules and the entropy of the free space on the membrane, the
chemo-mechanical free energy is

F (Z) ⇤ Tc · L(✓, �, ŝ) � F · H(✓, �, ŝ)

+
kBT

2

π
ŝ

0
c1

✓
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0
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c1 ds
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c2 log c2
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2c2 ds
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π
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✓
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cmax

◆
ds (12.1)

We can check that, in the dilute limit (i.e. c1 + c2
cmax

⌧ 1, c2
cmax

⌧ 1 ), to first order

in c1 + c2
cmax

and c1
cmax

, the free energy simplifies to :
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ŝ

0
µ0

2c2 ds

+ kBT

π
L0

ŝ
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which are precisely the expression for the free energy of the model previously
used, see Eq. (10.3).
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12.2 Deriving the dynamics from Onsager’s variational
principle

Minimization of the free energy F with respect to Z subject to the area
constraint yields the equilibrium equations for Z and P. Alternatively, these
equations can be written abstractly by making the Lagrangian stationary with
respect to Z̄ as

0 ⇤
dL
dt

⇤ D
Z̄
L(Z̄) · P(W̄) 8W̄ . (12.3)

To obtain these equations, we calculate the variation of the Lagrangian
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As before, the first three lines provide three purely mechanical nonlinear
algebraic equilibrium equations, which allow us to obtain ✓equil, �equil and
P

equil as a function of ŝ. We identify the chemical potentials of the bound and
unbound binders as

µ1 ⇤ µchem

1 + µmech

1 (h) ⇤ µ0
1 + kBT
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� 2 log
✓

cmax � c1 � c2
cmax

◆
+ k0h

2 (12.4)
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µout

2 ⇤ µ0
2 + kBT

c2
c0

� log
✓

cmax � c2
cmax

◆
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Because the chemical potential of one specie depends on the concentration of
other species, this model will result in what is called cross-diffusion. Then,
we can write equation 12.4 as:
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Finally using the local form of balance of mass:

€ci + (ci wi)0 ⌥ r ⇤ 0, (12.8)

We can rewrite the Eq. (12.7) as:
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Recalling the conditions at the interface

v̂ ⇤ w1(ŝ) (12.10)

(c2(ŝ+) � c2(ŝ�))v̂ ⇤ [c2w2]s⇤ŝ+ � [c2w2]s⇤ŝ� , (12.11)

we can simplify Eq. (12.9):
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To model the dynamics, we introduce a dissipation potential expressed in
terms of the process variables W :
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To take into account the slip bond behavior, we introduce the power input
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Applying the Onsager’s variational principle and taking variations with respect
to w1, we find:
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Assuming for simplicity that µ0
2 is uniform in (0, L0), we obtain from taking

variations with respect to w2 that:
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As expected, these expressions show that the diffusion is affected by the
crowding of the membrane. Paradoxically, they show that for very crowded
membranes (c1 + c2 ⇠ cmax), diffusive fluxes are higher than in the dilute limit.
When the the membrane is crowded, a single molecule moves slower, due to
the limitation of the available free space around it, but the collective diffusive
fluxes (here w1 and w2) are faster. This paradox is discussed in another context
by Bruna and Chapman [2012].
Invoking the arbitrariness of w2 at s ⇤ ŝ we found:
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which means :
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⇤

c2(ŝ+)
cmax � c2(ŝ+)

. (12.19)

This equation can also be expressed:

c2(ŝ+)
c2(ŝ�)

⇤
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cmax � c1(ŝ�)
. (12.20)

Taking variations with respect to the reaction rate r, we obtain

r ⇤ k̄

✓
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2µ1 �

1
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◆
. (12.21)
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12.2. Deriving the dynamics from Onsager’s variational principle

Considering the following choice for k̄

k̄ ⇤ k

c
2
2/c0 exp

⇣
�h

2
k0

kBT

⌘
� exp

⇣
µ0

1�2µ0
2

kBT

⌘
exp

⇣
h

x�

⌘
c1

µin

2 � 1
2µ1(h)

, (12.22)

where k > 0 is a rate constant. A direct calculation shows that
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which is clearly positive as required by the second law of thermodynamics.
Plugging Eq. (12.22) into Eq. (12.21), we obtain
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(12.24)

where

k
0
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c0
and k
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!
. (12.25)

As expected, the reaction inside the patch is independent on the level of
crowding on the membrane and we recover the reaction rate r for slip bonds
given in Eq. (11.12). Finally we derive the equilibrium condition at the interface
with the minimization with respect to the speed of the contact point v̂:
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1 � cos ✓equil(ŝ)
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2 c1(ŝ�) (12.26)

And using Eq. (12.20) we can simplify as:
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(12.27)
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12.3 Final system of equations

Putting together all the previous equations, we obtain the following system of
advection-diffusion-reaction equations exhibiting cross diffusion: the diffusion
of each specie is influenced by the other specie. One can check that, in the
dilute limit we recover the system of equations given in section 11.3 for slip
bonds.

Governing equations:
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(12.30)

with its following set of boundary/jump conditions,
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12.3. Final system of equations

Boundary conditions:

at s ⇤ 0
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at s ⇤ ŝ
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c2(ŝ�)c01(ŝ�)
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s⇤ŝ�

+
kBT

2 c1(ŝ�)
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at s ⇤ L0

c
0
2(L0) ⇤ 0. (12.37)
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Figure 12.1: a) Purely diffusive problem: Final normalized concentration
c1/c0 in the patch (dotted line) and final normalized position of the interface
ŝ/ŝ0 (solid line) as a function of the applied force for different values of cmax .
The bonds are ideal and compliant and such as k0 ⇤ 2.5 · 10�4 N·m�1. b)
Reaction-Diffusion problem: Influence of the overcrowding of the vesicle on
the lifetime of the adhesion patch and its dependence on the applied force
F/Tc for ideal compliant ideal bonds and slip bonds.
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12.4. Results and discussion

12.4 Results and discussion

In this last section, we examine the influence of the level of crowding of the
vesicle on diffusion-dependent regimes.
First let us look at the diffusion-dominated case, where ⌧reac � ⌧di f f , for a
vesicle under a pulling force in the presence of crowding. To do so we set
ko f f ⇤ 0 and kon ⇤ 0 and we consider different values for cmax . The results
are given in Fig. 12.1(a). The blue curves correspond to the case of compliant
ideal bonds when c1 , c2 << cmax . The more overcrowded the vesicle is, the
less packed the patch is: the shrinking of the patch is reduced as the total
concentration of adhesion molecules in the patch is limited. Overcrowding
thus limits diffusion of the adhesion molecules and limits the packing in the
diffusion-dominated regime.
In the mixed regime of reaction diffusion, when ⌧reac ⇠ ⌧di f f , Fig. 12.1(b) shows
how overcrowding on the membrane tends to weaken the adhesion patch
of any type of bonds by reducing its lifetime. Thus adding non-interacting
molecules on the patch weakens it and could destabilize a adhesion patch
stable at a given force while having no effects on the binding/unbinding
kinetics.
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Chapter 13

Summary and Conclusion to
Part II

We have examined the dynamics of unbinding under force of adhesive vesicles
mediated by mobile binders. This is an elementary model required to under-
stand the more complex problem of cell-cell adhesion, which however has
remained poorly understood beyond scaling and qualitative insights [Brochard-
Wyart and de Gennes, 2003, 2002a] .

We have formalized the problem in the framework of Onsager’s variational
principle, providing a systematic and elegant procedure to generate the
governing coupled equations of the problem that captures the tight interplay
between diffusion, reaction and mechanics. In particular, we have shown how
microscopic properties of adhesion molecules, such as their compliance, force-
sensitivity, mobility or crowding, have a strong influence on the macroscopic
behavior of an adhesion patch, including its dynamics and lifetime. To focus
on this complex chemo-mechanical interplay, we have focused on a simplified
2D setting. However, the extension to axisymmetry or to 3D is straightforward,
and our results should be general, albeit with quantitative differences. Our
modeling approach exploits scale separation between the overall mechanics of
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the vesicle and the detailed mechanics near the edge of the adhesion patch.
Indeed, the length-scale over which bending plays a role and the displacements
due to the compliance of the bonds in the patch are very small on the scale of
the whole vesicle. This allows us to treat the mechanics of the problem with a
two-scale model, a large-scale capillary model that determines macroscopic
quantities such as the contact angle and or the pressure in the vesicle, and a
small-scale model that determines the force distribution in the bonds in the
vicinity of the edge of the patch. To examine the resulting family of coupled
nonlinear models, we have resorted to numerical calculations.

This framework is able to recover the classical equilibrium picture. It also
describes several anticipated regimes [de Gennes et al., 2003] depending on
the model parameters. When the time-scale for reactions is much longer than
that for diffusion, we have described a diffusion-dominated or packing regime
in which where the adhesion patch responds to the force by shrinking and
increasing bond concentration. The larger bond concentration in the patch
creates an osmotic tension that balances the increasing mechanical force on the
patch interface. When the slip-bond behavior is accounted for, the larger forces
borne by bonds near the edge of the patch can locally increase the unbinding
rate, which in turn can lead to a ”tear-out” regime in which the patch shrinks
by the progressive breaking of bonds near the interface, very much like in the
classical tear-out of a vesicle adhered to a solid substrate through immobile
receptors [Prechtel et al., 2002, Pierrat et al., 2004b]. Interestingly, we found that
the tear-out regime in our model was distinct from that previously described.
Indeed, because bonds are mobile and the time-scale for diffusion is strongly
size-dependent, there is a small diffusion zone near the edge of the patch
where diffusive transport is significant. As a result, and in sharp contrast with
classical tear-out, the mobility of binder molecules on the vesicle (quantified
by their diffusion coefficient) has a profound effect on the kinetics of patch
shrinking, and determines the size of the diffusion zone and more importantly
the speed of propagation of the edge. Thus, even if large-scale diffusion does
not play a role and decohesion occurs by progressive bond breaking, the
process is critically influenced by diffusion in a microscopic diffusion zone
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near the ”crack tip”.

In fact this unusual tear-out regime with small-scale diffusion is an extreme
case of the generic intermediate situation described here in which diffusion
and reaction interact. We have shown that in this regime, one can define a
critical force, below which adhesion is stable for very long times and above
which adhesion is unstable. We have shown that this threshold depends on
the physico-chemical properties of adhesion molecules, including its stiffness,
force-sensitivity or size determining their packing limit. In fact, crowding can
also be tuned by the presence of other inactive molecules on the membrane.
Interestingly, these properties can be tuned in a biological context, for instance
resorting to Ca

2+ signalling. Given the strong dependence of patch lifetime on
Fc � F, small changes in Fc modulated by cells could have a strong effect on the
stability of adhesion patches, providing a physical tool to adapt adhesion to
different physiological requirements such as maintain tissue cohesion under
stress or modify junctions during remodelling. Our results also provide
a background to design and control the mechanics and dynamics of soft
adhesion in tunable and responsive artificial systems.

From a theoretical point of view, we have shown that Onsager’s principle
is a valuable tool to model problems with a tight interaction between chemical
reactions, molecular diffusion and mechanics. We have shown how, in the
context of a moving interface problem, it allows us to determine transparently
the differential equation on a moving domain and the jump conditions at
the interface. Furthermore, we have seen how physical effects such as bond
compliance, force sensitivity or molecular crowding, which leads to highly
nonlinear models, can be included naturally in this framework. One point
that remains open is the formalization of slip bonds, according to which
the unbinding rate increases with force, within Onsager’s framework. We
have accomplished this by including a power input term, which leads to the
expected set of equations but does not admit an obvious interpretation from
the point of view of global energy balance. Our treatment is similar in spirit
to that in [Kumar et al., 2018], where a phase-field damage model with a
stress-dependent damage evolution is formulated.
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Finally, in an effort to compare this specific type of adhesion mediated by
mobile binders with classical types of adhesion, we note that soft adhesion
mediated by mobile binders exhibits similarities and differences with classical
mechanisms of non-biological adhesion. A general survey of adhesion and
the related computational models is given in [Sauer, 2016]. These adhesion
mechanisms can be divided in two families depending on the nature of the
interaction between the adherent materials.

1 Apparent adhesion, where adhesion arises from interpenetration of
materials. Here, local attraction forces at the contact are absent. Instead,
as a result of the porosity and surface roughness of the material surface,
contact forces lead to intertwining of the two different materials put
in contact. Apparent adhesion includes diffusion adhesion, based on
interpenetration of polymers. When two polymers are compatible,
their polymer chains are able to mix upon contact, resulting in partial
penetration between the two materials and an apparent adhesion on a
larger scale.

2 Effective adhesion, arising from attractive forces. This type of adhesion
includes dispersive adhesion based on van der Waals interactions, or
electrostatic adhesion, due to Coulomb attraction between opposite
charges. The interplay of these two types of unspecific adhesion is
essential in cell adhesion as it results in a typical attraction well keeping
lipid bilayers in a closer range allowing chemical adhesion to take
place [Bell, 1978a]. This latter type of specific adhesion rely on covalent
or hydrogen chemical bonds.

Thus, the adhesion mechanism considered here does not precisely fit into
neither of these categories. In the thesis, soft adhesion relies on chemical
bonding mediated by mobile proteins binding through hydrogen bonds,
resulting in stronger cohesion than with van der Waals interactions but weaker
than with covalent bonds. This mechanism is ideal for biological adhesion since
it enables strength but also easy remodeling. Chemical binders can exhibit
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force-sensitivity, such as the slip bonds described in the thesis, producing
chemo-mechanical coupling between the mechanics and the chemistry of
the interface. Another particularity of the model discussed in Part II is the
mobility of the binders, which plays a major role in tuning the adhesion
mechanism by selecting the spatial extent of the cohesive or process zone. In
a diffusion-reaction regime, binders diffuse in the whole adhesion domain
affecting adhesion on large scale. In a tear-out regime, no global transport of
binders is observed and and the the mechanism is similar to the peeling of an
adhering surface, with a small process zone where reactions occur. Even in the
tear-out regime, however, the mechanism studied here is distinct from classical
peeling in that it critically depends on diffusion, even if it happens on a very
small length-scale. The problem of soft adhesion mediated by mobile binders
is then a subtle adhesion mechanism critically depending on the nature of
adhesion molecules, their concentration, their mobility on the membrane or
the loading rate. Because of this, this type of adhesion can offer solutions
to a wide range of problems where versatility between strength and ability
to remodel is required. This highlights the interest of adhesion mediated by
mobile binder for tunable bioengineered soft materials.

Decohesion between adhered deformable objects is essentially a problem of
interfacial fracture. As such, one can understand it in terms of an energy flux or
driving force towards the process zone coming from the surrounding material
(the energy release-rate for a bulk elastic material, the mechanical driving force
Tc(1 � cos ✓) in our capillary problem, the force per adhesion molecule k0h in
our small-scale mechanical model), and a local resistive mechanism encoding
the physics of the interface and how the energy flux is dissipated during
de-cohesion. This last point can be often described in terms of a simple surface
energy (the energy required to expose a new surface), as in Griffith’s fracture
or in the JKR model [Johnson et al., 1971]. Here, however, these interfacial
processes are much more complex and involve diffusion and reactions, and
thus are non-local and time-dependent in nature.
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Chapter 14

Conclusions and Future
directions

Conclusions

In this thesis, we developed different models, both stochastic and continuous,
with the objective of understanding the process of soft adhesion mediated by
mobile binders, its coupling with the mechanics of the supported deformable
surface and the properties of the adhesion molecules. Towards this goal, we
have developed theory and performed simulations. Here, we summarize the
main achievements of this study.

• We have developed several mechano-stochastic minimalistic models
to investigate the influence of surface tension, interstitial pressure and
architecture on the stability of molecular bond clusters. We have found
that surface tension plays a role in controlling surface-surface separation
and thus the kinetics of rebinding. Surface tension also modulates
the force distribution over the cluster. For clusters of slip bonds, this
modulates the unbinding kinetics. Stability arises from the interplay
of these two phenomena. We have found that the effect on rebinding
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dominates, and thus surface tension has a toughening effect: it opposes
to expansion of cracks. We have enriched model to examine the influence
of the mobility of the bonds. From this last investigation we found that
the mobility of the bonds allows the system to close cracks and thus
increase the stability.

• Moving to the continuum modeling, we developed a systematic and
transparent approach to generate complex models coupling multiple
physics. This approach is founded on Onsager’s variational principle, by
which the dynamics result from the interplay between energetic driving
forces and dissipative drag forces, each of them deriving from potentials
that are the sum of individual contributions for each physical mechanism.
This provides an elegant framework for the modeling of vesicle unbinding
but could be used for a large range of other problems exhibiting non
trivial coupling between mechanics, chemistry and diffusion.

• We used this modeling framework to study a prototypical problem in
biophysics but still poorly understood: the dynamics of the unbinding
of soft adhered vesicles adhering through mobile binders. This problem
exhibits complex coupling between mechanics, diffusion and chemistry.

• We have extended the formulation to account for bond compliance,
slip bond behavior and molecular crowding, although the theoretical
understanding of slip bond behavior with Onsager’s framework is not
fully clear.

• We identified two extreme regimes: one dominated by diffusion where
the adhesion patch reacts to the force by shrinking and getting more
concentrated, the so-called packing regime, and one dominated by the
unbinding kinetics where the bonds break from the edge of the patch
with no large-scale diffusion, the so called tear-out regime. This tear-
out regime, however, is new in that its dynamics crucially depend on
diffusive dynamics that take place in a small diffusive zone close to the
edge of the patch.
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• We identified an intermediate regime, where reaction and diffusion act
together and for which it exists a critical force that separates stability
from instability. We show how this critical force depends on the physico-
chemical properties of the bonds, including their compliance, force-
sensitivity, or their size controlling crowding. Thus, our study portrays
soft adhesion mediated by mobile binders as highly tunable and rich soft
matter system allowing cells to strongly adhere to each other or disengage
to remodel, and which may be the basis for artificial biomimetic systems.

Future directions

The range of behaviors and parameter space of our continuum model for soft
specific adhesion are huge, as indicated by many calculations not presented
here. Here, we have only examined a narrow part of this landscape, repre-
sentative of only a few processes in cells. We suggest next further modeling
and applications, where our model or extensions of it, can help understand
complex dynamical phenomena related to cell adhesion and in particular
the mechanosensitivity of the adhesion-cytoskeleton complex. To illustrate
these ideas, we propose a simplified scenario for the observed clustering of
cadherins at the contact rim and its coupling with actin dynamics in a feedback
loop [Engl et al., 2014b, Wu et al., 2015]. This scenario is based on different
experimental observations and our variational modeling could provide a
framework to study this phenomenon by coupling our model with active gel
models. A simplified sketch is given in Fig. 14.1, the different subprocesses
are specified by numbers . While subprocess 1� is well captured by our model,
the other subprocesses can be added to the model and will be discussed in the
following.
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Figure 14.1: Simplified scenario for rim clustering of cadherins as a feedback
loop. The different subprocesses are specified by numbers.
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• The unbinding of vesicles has been studied in the past from a continuous
point of view [Boulbitch et al., 2001, Brochard-Wyart and de Gennes,
2002a, de Gennes et al., 2003, Brochard-Wyart and de Gennes, 2003],
but few modeling attempts have been made during the last decade to
provide a general framework to study the dynamics. Since then, the
experimental tools have improved a whole new range of experimental
set-up are available to study the problem of soft adhesion and the above
problem is a particular example.

• A first natural improvement of the model would be to extend it to
axisymetry by appropriately introducing geometrical factors. The con-
ceptual extension to 3D is straightforward, although the numerical
implementation becomes more complex. The advantage here, is that
for such extension of the model, the general variational framework we
used to derive the governing equations would still be valid. This would
allow us to access to more information on the dynamics and explore
some more complex problems. It would also provide more consistent
results to be compared with experimental data.

• A feature which is not captured by the actual model is the tight coupling
between cytoskeleton mechanics and cell adhesion [Gumbiner, 1996,
Vasioukhin et al., 2000] which is thought to drive many important
processes like cell sorting [Maître et al., 2012b]. Such a coupling is
the basis of mechanotransduction between cells. Some experimental
studies [Engl et al., 2014a] have used new methods to unveil the relation
between the actin dynamics and cell adhesion. Such experimental
methods could be used, with a proper set-up, to test our model. Thinking
about the problem in another way, including actin dynamics in our model,
in particular the actin anchoring, accumulation and the stabilization of
the cadherins (subprocesses 2�, 3� and 4� in Fig. 14.1) in the form of a time-
dependent friction between the bound molecules and the membrane
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for example (similar to section 9.7), could help us to understand more
deeply these experimental observations.

• The lateral cis-interaction between the bonds is also thought to play
a critical role in cell adhesion [Fenz et al., 2017] (subprocess 5� in
Fig. 14.1). Such an effect could be modeled through a lateral affinity
of the cadherins with a dependence on the actin activity. The size
of the adhesion molecules has also be proven to be a key factor for
pattern formations, by segregating the different populations of adhesion
molecules [Schmid et al., 2016a]. Using the ability of the variational
framework to be enriched with other physical processes, our model
could be able to question these observations and propose some physical
interpretations.

• Finally, a thermodynamic definition of the change of the nature of the
bonds, either slip or catch, should be provided in order to integrate this
feature in the model without breaking the thermodynamic consistency
of the model. Indeed, the slip and catch bond behavior is thought
to participate to the mechanosensing [Buckley et al., 2014]. Including
these different force-dependent unbinding behaviors into our variational
modeling framework will require further theoretical developments.
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Appendix A

Modeling biased mobility

We saw that for fast mobility of the molecules, the crack tends to be invisible
for the bonds as they can easily jump from the crack to the patch during
the average time of the binding/unbinding of bonds. However, a closed
bond at the edge of the patch, which bears most of the force exerted by the
overpressure, experiences a lateral force Flat , which is due to its proximity
with the crack and that will oppose to the movement towards the center of the
crack and that will prevent the bonds to migrate in this direction: the lateral
force biases the diffusion of the closed bonds. This observation is illustrated
in Fig. A.1.
To take this effect into account in our capillary-stochastic model, we update
the 1D Fokker-Planck detailed in the previous section. When a constant force
F is applied along the axis x , the 1D Fokker-Planck is modified such as the
probability p(x , t) of finding the molecule at a position x after a time t obeys:

@p

@t
⇤ µ

@
@x

(�0(x)p) + D
@2

p

@x2 ⇤ �µF
@p

@x
+ D

@2
p

@x2 (A.1)

where µ is the mobility given by the Stokes drag of the molecule and � a
potential such that F derives from � as �0(x) ⇤ �F.
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Figure A.1: Schematic representation of the diffusion of the bonds/binders
and the corresponding probability distribution for the mobility of the open
and closed bonds.

A solution p(x , t) to this equation is:

p(x , t) ⇤ 1p
4⇡Dt

e
�
(x � x0 � udri f t t)2

4Dt ⇤
1p

2⇡�(t)2
e

�
(x � m(t))2

2�(t)2 , (A.2)

with m(t) ⇤ x0 � udri f t t the mean of the distribution and �(t) ⇤
p

2Dt its
standard deviation, which stays unchanged by the application of a constant
force. The so-called Einstein relation gives udri f t ⇤ DF/kbT . We can now
update our Monte-Carlo scheme to take into account the effect of lateral forces
on bonds diffusion. In this case bonds experiencing a lateral force F ⇤ Flat

will move according to Eq.( A.2).
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Influence on the lifetime

We now update the Fig. 5.10 to take into account this bias in the diffusion of
the closed bonds. To do so we consider the case of Dbonds ⇤ 10�14 m2·s�1. The
result is given in Fig. A.2: the effect on the lifetime of large clusters of the
mobility of the bonds disappears and the curve for biased diffusion almost
coincides with the curve corresponding to the absence of the diffusion. Thus
the mobility of the closed bonds has compensated the bias to the forces exerted
by the cracks.

179





Appendix B

Spatial discretization of the
system of coupled equations

B.1 Ideal rigid bonds

Considering the staggered problem detailed by the system of equations given in
section 9.6, where we replace (vn+1)2 by v

n
v

n+1. Knowing ŝ,v̂,�n ,✓n ,�n ,Pn ,un ,vn ,wn ,
we can solve for u

n+1, v
n+1 and w

n+1 using:

u
n+1 � u

n

�t
⇤

D1
(ŝn)2 u

n+100
+ ⌘

v̂
n

ŝn
u

n+10
+ kon(vn+1)2 � k

0
off u

n+1

v
n+1 � v

n

�t
⇤

D2
(ŝn)2 v

n+100
+ ⌘

v̂
n

ŝn
v

n+10 � kon(vn+1)2 + k
0
off u

n+1 ,

w
n+1 � w

n

�t
⇤

D2

(L0 � ŝn)2
w

n+100
+ (1 � ⌘) v̂

n

L0 � ŝn
w

n+10,

subject to
h
u

n+10
i
⌘⇤0

⇤ 0, u
n+1(1) ⇤ 2T

kBT
(1 � cos ✓n)

v
n+10(0) ⇤ 0, v

n+1(1) ⇤ w
n+1(0), D2

ŝn
v

n+10(1) ⇤ D2
L0 � ŝn

w
n+10(0), w

n+10(1) ⇤ 0.
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The above system of PDE can be made linear by replacing (vn+1)2 by v
n

v
n+1.

Update the interface velocity and position

v̂
n+1

⇤ � D1
ŝn un+1(1)

h
+u

n+10
i
⌘⇤1
, ŝ

n+1
⇤ ŝ

n
+ �t v̂

n+1.

Then we can solve the mechanical part of the problem to compute ✓n+1,�n+1

and P
n+1 and the mini model to compute �n+1

Then we can set n + 1 �! n and start again the procedure.

Separating the terms in n+1 et the terms in n, multiplying by tests functions
and integrating between 0 and 1 we obtain;

1
�t

π 1

0
u

n+1�u d⌘ � D1
(ŝn)2

π 1

0
u

n+100�u d⌘ � v̂
n

ŝn

π 1

0
⌘u

n+10�u d⌘ (B.1)

� kon

π 1

0
v

n
v

n+1�u d⌘ + k
0
off

π 1

0
u

n+1�u d⌘ ⇤
1
�t

π 1

0
u

n�u d⌘

1
�t

π 1

0
v

n+1�v d⌘ � D2
(ŝn)2

π 1

0
v

n+100�v d⌘ +
v̂

n

ŝn

π 1

0
⌘v

n+10�v d⌘ (B.2)

+ kon

π 1

0
v

n
v

n+1�v d⌘ � k
0
off

π 1

0
u

n+1�v d⌘ ⇤
1
�t

π 1

0
v

n�v d⌘

1
�t

π 1

0
w

n+1�w d⌘ � D2
(L0 � ŝn)2

π 1

0
w

n+100�w d⌘ (B.3)

+
v̂

n

L0 � ŝn

π 1

0
(1 � ⌘)wn+10�w d⌘ ⇤

1
�t

π 1

0
w

n�w d⌘

(B.4)

For the second term (and the last term of the left hand side for the first
equation), we perform an integration by parts using the given boundary
conditions and choosing the good set of B-splines test functions. �u(1) ⇤ 0
because a Dirichlet boundary condition is enforced at ⌘ ⇤ 1.
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B.1. Ideal rigid bonds

The integration by parts gives:

π 1

0
u

n+100�u d⌘ ⇤
⇥
u

n+10�u

⇤1
0 �

π 1
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u

n+10�0
u d⌘
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v
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0
v
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0
w
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⇥
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0
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u
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⇥
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u
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⇥
�n0

u
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0
�n0

u
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(B.5)

The blue terms disappear with boundary conditions at s ⇤ 0 and s ⇤ L0 and
the terms in red will have to be enforced.
We choose B-splines Bi , i ⇤ 1..Nb , as a basis, then we can write:

u
n+1

⇤

Nb’
j⇤1

Bj u
n+1
j
, v

n+1
⇤

Nb’
j⇤1

Bj v
n+1
j
, w

n+1
⇤

Nu’
j⇤1

Bj w
n+1
j
,

with

un+1
⇤

h
u

n+1
1 , ..., un+1

Nb

i
, vn+1

⇤

h
v

n+1
1 , ..., vn+1

Nb

i
, wn+1

⇤

h
w

n+1
1 , ...,wn+1

Nu

i
.

In the case of u, as we enforce a Dirichlet boundary condition at ⌘ ⇤ 1 we have
�u(1) ⇤ 0.
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Applying Galerkin method, ie choosing the B-splines Bi as tests function,
we obtain the the following system of equations that can be written in matricial
form. ✓

1
�t

M
b
+ k

0
offM

o f f
+

D1
(ŝn)2 K

b � v̂
n

ŝn
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(B.8)
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2666664
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(B.9)

With, for (i , j) 2 [1..Nb]2,

M
b

ij
⇤

π 1

0
BiBj d⌘, K

b

i j
⇤

π 1

0
B
0
i
B
0
j
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b
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π 1

0
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0
j
d⌘, (B.10)

M
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o f f
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BiBj d⌘,

and for (i , j) 2 [1..Nu]2,

M
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⇤
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0
i
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0
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d⌘, A

u
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⇤
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(1 � ⌘)BiB

0
j
d⌘.

(B.11)

And Bv and Bw , two spare matrices, such as:

Bvvn+1
⇤ v

n+10(1) and Bwwn+1
⇤ w

n+10(0)
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B.2 Ideal compliant bonds

For the case of ideal compliant bonds we need to for another vector for the
separation �n+1, expressed on the basis of B-splines as:

�n+1
⇤

Nb’
j⇤1

Bj�n+1
j

and �n+1
⇤

h
�n+1

1 , ..., �n+1
Nb

i
,

To take into account the compliance of the bonds we need to form a new matrix
A2b for the biased diffusion and update the matrix for the binding reaction
M

nl with, for (i , j) 2 [1..Nb]2:

A2b

i j
⇤ 2

π 1

0
�n�n

0
BiB

0
j
d⌘, M

nl

i j
⇤

π 1

0
exp

 
�n2

x
2
�

!
v

n
BiBj d⌘, (B.12)

and the system to be solved is:

2666664

Cu +
D1

(ŝn)2x
2
�

A2b �konM
nl 0

�koffM
o f f

Cv 0
0 0 Cw

3777775
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2666664

1
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M
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0 1
�t

M
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0 0 1
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M
u

3777775
Xn (B.13)

B.3 Slip bonds

To take into account the slip bond behavior, the unbinding reaction matrix
M

o f f is modified such as, for (i , j) 2 [1..Nb]2:

M
o f f

i j
⇤

π 1

0
exp

✓
�n

x�

◆
BiBj d⌘, (B.14)

Using the previous matrix system and updating this matrix we can solve the
system of equation for slip bonds.
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B.4 Slip bonds on a crowded vesicle

For this last system of equations we have to form these new matrices
K

b11,Kb12,Kb21 and K
b22 , for (i , j) 2 [1..Nb]2:
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We can then form the following matrices:
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and then solve the following system of equations:
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with B

⇤
v ⇤

v
n(Nb)

cmax�un(Nb)�un(Nb)Bv .
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Appendix C

Dissipation potential capturing
the slip bond behavior

Figure C.1: Sketch of the problem. Adhesion patch made of c1 bonds and c2
free binders between two rigid plates. h denotes the elongation of the bonds
from their rest position.

In this appendix we develop a new approach to model the slip bonds by
considering a new form of the dissipation potential. To do so, let us consider
the following simple model illustrated on Fig. C.1. Two rigid plates adhere

187



C. D���������� ��������� ��������� ��� ���� ���� ��������

through adhesion molecules. c1 and c2 are the concentrations of bonds and
free binders between the two rigid plates. For simplicity we consider that both
species do not diffuse . The bonds are stretched between the plates from the
rest position by a distance h. We will apply Onsager’s variational principle to
obtain the governing equations of this problem.
For this problem, the set of state variables is Z ⇤ (c1 , c2 , h).
First, we need an expression for the free energy F (Z) of the problem:

F (Z) ⇤ kBT

2 c1

✓
log c1

c0
� 1

◆
+

1
2µ

0
1c1 +

1
2 k0c1h

2

+ kBTc2

✓
log c2

c0
� 1

◆
+ µ0

2c2 (C.1)

We can identify the chemical potential of the bonds and the binders as:

µ1 ⇤ µ0
1 + kBT log c1

c0
+ k0h

2 (C.2)

µ2 ⇤ µ0
2 + kBT log c2

c0
. (C.3)

The laws of balance of mass state that:

€c1 ⇤ �r (C.4)

€c2 ⇤ r, (C.5)

with r the net rate of binding. The set of process variables is W ⇤ (r, €h). We
can now write the rate of the free energy as a function of Z and W as:

€F (Z,W) ⇤
✓
µ2 �

1
2µ1

◆
r + k0h €hc1. (C.6)

For the dissipation, we will consider the following coupled dissipation poten-
tial:

D(Z,W) ⇤ 1
2

⇣
r €h

⌘  
k̄
�1 ⌘̄

⌘̄ ⌫̄

!

|    {z    }
M

 
r

€h

!
(C.7)
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To ensure the problem to be dissipative, D(Z,W) should ensure that M is
positive-definite :

k̄
�1⌫ � ⌘2 > 0 or ⌫

k̄⌘2
> 1 (C.8)

Applying the Onsager’s variational principle and minimizing with respect to
the net rate of binding r gives:

r ⇤ k̄(12µ1 � µ2 � ⌘ €h), (C.9)

and the minimization with respect to €h gives:

€h ⇤ �⌘
⌫

r � k0hc1
⌫

(C.10)

Plugging Eq. (C.10) in Eq.( C.9) we obtain the expression for r:

r ⇤
k̄

1 � k̄⌘2

⌫

✓
1
2µ1 � µ2 +

k0⌘hc1

⌫

◆
, (C.11)

Finally, plugging Eq. (C.11) in Eq. (C.10) gives the expression for €h:

€h ⇤ �⌘
⌫

k̄

1 � k̄⌘2

⌫

✓
1
2µ1 � µ2 +

k0⌘hc1

⌫

◆
� k0hc1

⌫
(C.12)

For simplicity, in the limit of k̄⌘2/⌫ ! 0, we can write Eq. (C.11) and Eq. (C.12)
as :

r ⇤ k̄

✓
1
2µ1 � µ2 +

k0⌘hc1

⌫

◆
, (C.13)

€h ⇤ �⌘k̄
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◆
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⌫
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Now, we can make the following assumptions for the different terms ofM:

⌘ ⇤ ⌘̄c1 with ⌘̄ > 0 (C.15)

x� ⇤
⌫

2kBT ⌘̄k0
, (C.16)

and replacing these terms in Eq. (C.11), we have:

r ⇤ k̄
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1
2 kBT

h

x�

◆
, (C.17)
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This way we obtain an expression for the net binding rate r with the right
structure to capture the slip bond effect. Indeed, making the following choice
for k̄ :

k̄ ⇤ k

exp
⇣

h

x�
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exp
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1�2µ0
2
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, (C.18)

where k > 0 is a rate constant and x� ⇤

q
kBT

k0
, a direct calculation shows that
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which is clearly positive as required. This way, plugging Eq. (C.18) in Eq.( C.11),
we can write the net binding rate r as :

r ⇤ k
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off exp
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◆
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0
on exp
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2
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where

kon ⇤
k
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exp
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x
2
�

!
and koff ⇤ k exp

 
µ0

1 � 2µ0
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kBT
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exp

✓
h
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◆
. (C.21)

We recognize the classic expression for binding/unbinding reaction equation
for slip bonds. The following equation can be used to compute h through €h :

⌫ €h ⇤ �k0hc1 � ⌘r. (C.22)

This equation is a balance of forces between a viscous force, an elastic fore
and an additional chemical force due to the change in the number of attached
springs because of the chemical reaction. Thus using this coupled expression
for the dissipation potential related to the chemical reaction we are able to
reproduce the required Bell’s law for the unbinding rate, and we obtain a
corresponding mechanical force associated to the rate of the chemical reaction,
which to our knowledge has not been described before.
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