
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en
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Introduction

The problems that we study in this thesis lie in the area of Harmonic Analysis and Geo-
metric Measure Theory. More precisely, we consider the connection between the analytic
properties of singular integral operators defined in L2(µ) and the geometric properties of
the measure µ. In the forthcoming several pages we will make a historical review of the
topic, give necessary definitions and briefly discuss the results that we obtained. Let us
mention that the exposition in this thesis is based on the papers [Chu,CMT1,CMT2].

We start with necessary notation and background facts. Note that we work mostly in
the plane and therefore usually skip dimension markers in definitions.

Let E ⊂ C be a Borel set andB(z, r) be an open disc with center z ∈ C and radius r > 0.
We denote by H1(E) the (1-dimensional) Hausdorff measure of E, i.e. length, and call E a
1-set if 0 < H1(E) <∞. A set E is called rectifiable if it is contained in a countable union
of Lipschitz graphs, up to a set of H1-measure zero. A set E is called purely unrectifiable
if it intersects any Lipschitz graph in a set of H1-measure zero.

By a measure often denoted by µ we mean a positive locally finite Borel measure on C.
We consider Calderón-Zygmund (CZ ) kernels K : C \ {0} → C with the following

properties: there exist constants C > 0 and η ∈ (0, 1] such that |K(z)| 6 C|z|−1 for all
z ∈ C \ {0}, and moreover

|K(z)−K(z + ζ)| 6 C |ζ|
η

|z|1+η
if |ζ| 6 1

2 |z|, z, ζ ∈ C. (0.1)

We will mostly deal with −1-homogeneous CZ kernels K.
Given a measure µ, a CZ kernel K and an f ∈ L1(µ), we define a truncated singular

integral operator (SIO) as

TK,εf(z) :=

∫
E\B(z,ε)

f(ζ)K(z − ζ)dµ(ζ), where E = sptµ and ε > 0. (0.2)

We do not define the SIO TK explicitly because several delicate problems such as the
existence of the principal value (p.v.), i.e. limε→0 TK,εf(z), might arise. On the contrary,
the integral in (0.2) always converges absolutely. Nevertheless, we say that TK is L2(µ)-
bounded if the operators TK,ε are L2(µ)-bounded uniformly on ε.

How to relate the L2(µ)-boundedness of a certain SIO to the geometric properties of
the support of µ is an old problem in Harmonic Analysis. It stems from Calderón’s pa-
per [Cal] where it is proved that the Cauchy transform, i.e. the SIO TK with K(z) = 1/z,
is L2(H1bE)-bounded if E is a Lipschitz graph with small slope. Later on, Coifman, McIn-
tosh and Meyer [CMM] removed the small Lipschitz constant assumption and thus ex-
tended the result to all Lipschitz graphs. Furthermore, in [Dav1] David fully characterized
rectifiable curves Γ for which the Cauchy transform is L2(H1bΓ)-bounded. Namely, they
have to satisfy the linear growth condition:

H1(Γ ∩B(z, r)) 6 Cr for all r > 0 and z ∈ C and some C > 0. (0.3)
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These results led to further development of tools for understanding the above-mentioned
problem (see also the corresponding parts of [Chr,DS2,Mat1,Mat2,Mat3,Tol5]).

A new quantitative characterization of rectifiability in terms of the so-called β-numbers
introduced by Jones [Jon1] and the concept of uniform rectifiability proposed by David and
Semmes [DS1,DS2] are among these tools. Several related definitions for the plane are in
order. (We refer the reader to [DS1,DS2] for definitions and results in the multidimensional
case). A measure µ is called Ahlfors-David regular (or AD-regular, for short) if

C−1r 6 µ(B(z, r)) 6 Cr for all z ∈ sptµ and r ∈ (0, diam (sptµ)), (0.4)

where C > 0 is a fixed constant. Moreover, µ is called uniformly rectifiable if it is AD-
regular and sptµ is contained in a curve satisfying (0.3).

The well-known David-Semmes problem is stated in the plane as follows: does the
L2(µ)-boundedness of the Cauchy transform is sufficient for the uniform rectifiability of
the AD-regular measure µ? This problem was settled by Mattila, Melnikov and Verdera:

Theorem A [MMV]. Let µ be an AD-regular measure. The measure µ is uniformly recti-
fiable if and only if the Cauchy transform is L2(µ)-bounded.

Note that an analogous problem in higher dimensions is still unsolved except for the
case of codimension 1 settled by Nazarov, Tolsa and Volberg in [NTV] not long ago.

The proof of Theorem A relied on the so-called curvature (or symmetrisation) method
that was new at that time but soon became very influential in solving many long-standing
problems related to the Cauchy transform and analytic capacity, for example, Painlevé’s
problem on metric/geometric description of removable singularities for bounded analytic
functions, Vitushkin’s conjecture and the semiadditivity of analytic capacity (see [Dav2,
MMV,Mel,Tol1] and especially historical remarks in [Tol5]). For our purposes it is more
convenient to describe a generalised version of the curvature method and so do we.

Let (z1, z2, z3) ∈ C3. For a kernel K, consider the following permutations:

PK(z1, z2, z3) :=
∑
s∈S3

K(zs2 − zs1)K(zs3 − zs1), (0.5)

where S3 is the group of permutations of the three elements {1, 2, 3}. Supposing that µ1,
µ2 and µ3 are measures, set

PK(µ1, µ2, µ3) :=

∫∫∫
PK(z1, z2, z3) dµ1(z1) dµ2(z2) dµ3(z3). (0.6)

We write PK(µ) := PK(µ, µ, µ) for short and call it permutation of the measure µ. More-
over, in what follows PK,ε(µ1, µ2, µ3) stands for the integral in the right hand side of (0.6)
defined over the set

{(z1, z2, z3) ∈ C3 : |zk − zj | > ε > 0, 1 6 k, j 6 3, j 6= k}, (0.7)

and PK,ε(µ) := PK,ε(µ, µ, µ).
The identities (0.5) and (0.6) were first considered by Melnikov [Mel] in the case of the

Cauchy kernel. He showed that

PK(z1, z2, z3) = c(z1, z2, z3)2, (0.8)

where K(z) = 1/z,

c(z1, z2, z3) :=
1

R(z1, z2, z3)
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is the so called Menger curvature and R(z1, z2, z3) stands for the radius of the circle pass-
ing through z1, z2 and z3. Moreover, points z1, z2 and z3 are collinear if and only if
c(z1, z2, z3) = 0 (and R(z1, z2, z3) =∞). From what is said it is clear that

c(z1, z2, z3) > 0 for any (z1, z2, z3) ∈ C3, (0.9)

which is very important in applications. Additionally, it is easily seen that Menger curvature
can be calculated in geometrical terms in different ways, e.g.

c(z1, z2, z3) =
4S(z1, z2, z3)

|z1 − z2||z1 − z3||z2 − z3|
=

2 sin ẑ1z2z3

|z1 − z3|
, (0.10)

where S(z1, z2, z3) stands for the area of the triangle (z1, z2, z3) and ẑ1z2z3 is the angle of
this triangle opposite to the side z1z3. One can find the proof of these and other formulas,
e.g. in [Tol5, Section 3.2].

Melnikov also introduced in [Mel] the notion of curvature of measure µ:

c2(µ) := PK(µ), where K(z) = 1/z. (0.11)

One can also define c2
ε(µ) in an obvious way over the set (0.7).

Permutations (0.5) and (0.6) for more general kernels K were considered later by Chou-
sionis, Mateu, Prat and Tolsa in [CMPT1] (see also [CMPT2]).

Now let K be a −1-homogeneous CZ kernel, see before (0.1). Suppose that the permu-
tations (0.5) for K are non-negative for any (z1, z2, z3) ∈ C3. If µ is a finite measure with
C∗-linear growth, i.e. there exists a constant C∗ > 0 such that

µ(B(z, r)) 6 C∗r for all r > 0 and z ∈ sptµ, (0.12)

then the following relation between truncated versions of PK(µ) and TK1 holds:

‖TK,ε1‖2L2(µ) = 1
6PK,ε(µ) +RK,ε(µ), |RK,ε(µ)| 6 cC2

∗µ(C), (0.13)

with some c > 0 independent of ε. We call (0.13) generalised Melnikov-Verdera’s identity.
Actually, it was first proved for the Cauchy kernel in the seminal paper [MV] by Melnikov
and Verdera where they gave a new geometric proof of the above-mentioned result about
the L2-boundedness of the Cauchy transform on Lipschitz graphs. It turns out that one can
follow Melnikov-Verdera’s proof for the Cauchy kernel in order to obtain (0.13) as stated,
see e.g. [CMPT2, Section 2].

The formulas (0.8) and (0.13), generating the curvature method, are remarkable in the
sense that they relate an analytic notion (the SIO TK , in particular, the Cauchy transform)
with a metric-geometric one (permutations, in particular, curvature).

Later on, Theorem A was pushed even further by David and Léger [Leg]. They used
the curvature method and, in particular, the property (0.9) to prove the following deep
result (see a brief exposition of the proof in Section 1.5).

Theorem B [Leg]. Let E be a 1-set. If c2(H1bE) <∞, then E is rectifiable. Moreover, if
the Cauchy transform is L2(H1bE)–bounded, then E is rectifiable.

Note that the L2(H1bE)–boundedness of the Cauchy transform and the identity (0.13)
imply that c2(H1bE) < ∞. Consequently, to prove Theorem B it is enough to prove just
the first statement and this was actually done in [Leg]. Let us mention that Theorem B is
originally stated in [Leg] in a more general form.

For a long time very few results analogous to Theorem B were known for kernels
different from 1/z. For instance, it was clear [MMV,CMPT1] that the same result is true
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for the coordinate parts of the Cauchy kernel, in particular, for the real part that we
denote by

KDL(z) :=
Re z
|z|2

≡ Re
1

z
. (0.14)

Indeed, considering the permutations (0.5), it is not difficult to show that

PKDL
(z1, z2, z3) = 1

2c(z1, z2, z3)2. (0.15)

This fact was a motivation point of the paper [CMPT1] by Chousionis, Mateu, Prat
and Tolsa, where analogues of Theorems A and B were proved for the kernels

κn(z) :=
(Re z)2n−1

|z|2n
, n ∈ N. (0.16)

(We also refer the reader to the paper [CP] where the kernels (0.16) and other related ones
were studied.) Namely, it is shown in [CMPT1] that

Pκn(z1, z2, z3) > 0 for any (z1, z2, z3) ∈ C3 (0.17)

and Pκn(z1, z2, z3) = 0 if and only if points z1, z2 and z3 are collinear. This is an analogue
of (0.9). Moreover, it is proved that the permutations Pκn(z1, z2, z3) behave similarly to
c(z1, z2, z3)2 for triangles (z1, z2, z3) with comparable sides such that one side makes a big
angle with the vertical line. This fact enables the authors of [CMPT1] to adapt the curva-
ture method from [Leg] to the kernels κn. This adaptation however requires several essential
modifications in crucial points, where the curvature must be exchanged for the permuta-
tions Pκn . In particular, new arguments are provided in [CMPT1] when Léger’s scheme
does not work (see Section 1.5 for more details). As a result, the following statements were
proved.

Theorem C [CMPT1]. Let n > 1 and µ be an AD-regular measure. The measure µ is
uniformly rectifiable if and only if Tκn is L2(µ)-bounded.

Theorem D [CMPT1]. Let n > 1 and E be a 1-set. If Pκn(H1bE) < ∞, then E is
rectifiable. Moreover, if the SIO Tκn is L2(H1bE)–bounded, then E is rectifiable.

Obviously, for n = 1 one gets the case of (0.14) (or equivalently the case of the Cauchy
kernel due to (0.15)) and thus Theorems A and B. However, for n > 2 these are the first
examples of SIOs that are not directly related to the Cauchy transform and whose L2(µ)-
boundedness implies certain rectifiability properties of µ. In what follows, we will typically
deal with the case n = 2 in (0.16) and therefore we set

KCMPT(z) :=
(Re z)3

|z|4
. (0.18)

There are two more results which are actually counterexamples to the property that
L2-boundedness implies rectifiability. The first one is due to Huovinen.

Theorem E [Huo]. Let K belong to the class H of odd kernels satisfying

|K(x− y)−K(x− z)| 6 C |y − z|
|x− y||x− z|

, |K(z)| 6 C

|z|
, x, y, z ∈ C,

K(r) = 0, K(z) = −K(−z), r ∈ R, C = const.

Then there exists a purely unrectifiable 1-set E such that the operator TK , associated with
the kernel K, is bounded on L2(H1bE) and, moreover, p.v. TK exists H1-a.e. and is finite.
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As a typical example from H one can take the kernel

KH(z) :=
(Re z)3

|z|4
− Re z
|z|2

. (0.19)

Another counterexample is due to Jaye and Nazarov. We formulate it here in a slightly
different form than it was done originally.

Theorem F [JN]. There exists a purely unrectifiable 1-set E such that the operator TK ,
associated with the kernel K(z) = z/z2, is bounded on L2(H1bE) and, moreover, p.v. Tk
fails to exist H1-a.e.

For further exposition it is important to notice that the same statement holds for the
(renormalised) real part of K(z) = z/z2, namely, for the kernel

KJN(z) :=
1

4

z

z2
=

(Re z)3

|z|4
− 3

4

Re z
|z|2

. (0.20)

Take into account that the examples of purely unrectifiable sets from Theorems E and F
are quite intricate, essentially use analytic properties of the kernels and avoid the curvature
method (as it is actually unavailable as we will see below).

Note that up to now we meant only −1-homogeneous CZ kernels in the plane which we
are mostly interested in. However, there are other interesting examples of kernels in different
settings with a certain connection between the L2(µ)–boundedness of the corresponding
operator and the geometry of µ. For example, David [Dav3] constructed odd and even CZ
kernels in the plane that define L2(H1bE)–bounded SIOs, where E is a purely unrectifiable
set (namely, the corner quarters Cantor set). Unfortunately, David’s kernels are not −1-
homogeneous. Chousionis [Cho] had similar results for a larger class of kernels for some
s-dimensional fractals with s < 1. Recently Chousionis and Li [CL] gave examples of
−1-homogeneous kernels in the Heisenberg group with a direct connection between the
L2(µ)–boundedness of the corresponding singular integral operators and the rectifiability
of µ. Unlike the Euclidean case, where most of kernels related to rectifiability are odd,
Chousionis-Li’s kernels defined in the Heisenberg group are even and non-negative.

Now we are going to summarise the above-mentioned results for −1-homogeneous ker-
nels in the plane (defined in (0.14) and (0.18)–(0.20)) and formulate more precisely the
questions that we consider in this thesis. From what is said we conclude that an affirma-
tive answer to the question does the L2(H1bE)–boundedness of TK implies that the 1-set
E is rectifiable is given by curvature-like methods essentially only for the SIOs associated
with the kernels KDL and KCMPT. On the other hand, only two kernels, K = KH and
K = KJN, are known to be such that TK is still L2(H1bE)–bounded for some purely un-
rectifiable 1-sets E (the curvature method is not available in both cases). Thus there is
a natural problem consisting in finding other −1-homogeneous CZ kernels in the plane
and corresponding SIOs whose L2(µ)–boundedness does or does not imply that µ is rec-
tifiable (uniformly rectifiable in the AD-regular case). Of course, we also want to partly
move forward in characterizing the class of such kernels but this seems to be a much more
ambitious and difficult objective so we will make just a few remarks on it. Another re-
lated problem that we will briefly discuss is whether L2(µ)-boundedness of a certain SIO
(besides the Cauchy transform) implies that all other “reasonable” SIOs in the plane are
L2(µ)–bounded.

To move in achieving the above-mentioned objectives, in Chapter 1 we introduce the
following t-parametric family of kernels:

kt(z) :=
(Re z)3

|z|4
+ t · Re z

|z|2
, where t ∈ R, and k∞(z) :=

Re z
|z|2

. (0.21)
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Figure 0.1: The overall picture of previously known results for the kernels kt.

One can immediately notice that this is a reasonable generalisation of the kernels (0.14)
and (0.18)–(0.20), see Figure 0.1. Indeed,

KDL ≡ k∞, KCMPT ≡ k0, KH ≡ k−1 and KJN ≡ k−3/4.

Thus studying SIOs associated with the kernels (0.21) for different t may provide useful
settings to further understanding the connection between the L2–boundedness and rectifi-
ability. Now we give an overall picture of the results that we obtained in this direction. To
avoid repetitions, we do not number the statements here but indicate the corresponding
results in further chapters.

In Chapter 1 we study the permutations associated with the kernels (0.21) and prove
the following result that complements the ones for t = 0 and t =∞ (see Theorem 1.1 and
Remark 1.1).

Theorem. Let kt be a kernel of the form (0.21), where t ∈ (−∞,−2] ∪ (0,+∞). Then

Pkt(z1, z2, z3) > 0 for all (z1, z2, z3) ∈ C3.

Furthermore, the range of the parameter t is sharp in the sense that there are triples
(z1, z2, z3) such that Pkt(z1, z2, z3) change sign if t ∈ (−2, 0).

This theorem implies that the curvature method is not available directly if t ∈ (−2, 0),
and surprisingly exactly this interval contains the known counterexamples from Theorems E
and F. However, by adapting a curvature-type method from [Leg,CMPT1] we will prove
the following result for the rest values of t that provides a big family of SIOs whose L2-
boundedness implies rectifiability (see Theorem 1.2).

Theorem. Let kt be a kernel of the form (0.21), where t ∈ (−∞,−2] ∪ (0,+∞), and E
a 1-set. If Pkt(H1bE) < ∞, then E is rectifiable. Moreover, if the SIO Tkt is L2(H1bE)–
bounded, then E is rectifiable.

What is more, the situation in the plane where t ∈ (−2, 0) is somehow similar to the one
in higher dimensions where curvature-type methods are likely unavailable (see [NTV,Far])
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and one has to come up with other tools instead. As for our case, in Chapter 2 we propose
a perturbation method that enables us to prove the following result, being the first example
in the plane when the curvature method fails but it is still possible to prove that L2-
boundedness implies rectifiability (see Theorem 2.2).

Theorem. Let kt be a kernel of the form (0.21), where t ∈ (−2,−
√

2), and E a 1-set. If
the SIO Tkt is L2(H1bE)–bounded, then E is rectifiable.

The proof of this result is based on the following (see Lemma 2.2 and Remark 2.2).

Lemma. It holds that

Pk0(z1, z2, z3) 6 2Pk∞(z1, z2, z3) for all (z1, z2, z3) ∈ C3.

Additionally, the constant 2 is sharp in the sense that for any small ε > 0 there are triples
(z1, z2, z3) such that Pk0(z1, z2, z3)/Pk∞(z1, z2, z3) > 2− ε.

Note that this lemma with an implicit constant is contained in [CMPT2, Lemma 7].
Nevertheless, the explicitness of our constant is essential here and actually enables us to
obtain the required result by the perturbation method in Chapter 2.

The latter lemma yields that Pk0,ε(µ) 6 2Pk∞,ε(µ) for any measure µ. This and (0.13)
immediately imply that the L2-norm of Tk01 is controlled by the L2-norm of Tk∞1 (with
an explicit constant). The triangle inequality and a proper version of T1-theorem which
form the perturbation method then give the required theorem.

Unfortunately, an inequality of the form Pk∞(z1, z2, z3) 6 C · Pk0(z1, z2, z3) with an
absolute constant C > 0 hardly exists and this makes the study of kernels (0.21) for small
negative t more difficult. Nevertheless, the following lemma holds as shown in Chapter 3
(see Inequality (3.4)).

Lemma. There exist absolute constants t0 > 0 and c > 0 such that for any finite measure
µ with C∗-linear growth it holds that

Pk∞(µ) 6 t−2
0 Pk0(µ) + cC2

∗µ(C).

In a similar manner as in Chapter 2, from the latter lemma we get that the L2-norm of
Tk∞1 (and thus of the Cauchy transform of measure) is controlled by the L2-norm of Tk01
(see Theorem 3.1). Applying the perturbation method yields the following theorem using
the same absolute constant t0 as above (see Theorem 3.2).

Theorem. Let kt be a kernel of the form (0.21), where t ∈ (−t0, 0), and E a 1-set. If the
SIO Tkt is L2(H1bE)-bounded, then E is rectifiable.

To prove the latter Lemma and Theorem, we use the David-Mattila dyadic lattice
from [DM] and a corona decomposition that is similar to the one in [AT]. More precisely,
we split the lattice into some collections of cubes, which are called trees, where the density
of µ does not oscillate too much and most of the measure is concentrated close to the
graph of a Lipschitz function. To construct this function, we use a variant of the Whitney
extension theorem adapted to the David-Mattila dyadic lattice. Further, we show that
the family of trees of the corona decomposition satisfies a packing condition by arguments
inspired by some of the techniques used in [AT] and earlier in [Tol3] to prove the bilipschitz
“invariance” of analytic capacity.

It is worth mentioning that the structure of our trees is more complicated than in [AT].
This is because we deal with permutations which are not pointwise comparable to curvature
in general and this leads to additional technical difficulties.
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Figure 0.2: The overall picture of known results for the kernels kt.

Finally, we summarise all the results known for the kernels kt in Figure 0.2, cf. Fig-
ure 0.1.

Let us also mention that our results in Chapters 1–3 (more precisely, Lemmas 1.5,
1.6 and 2.3 and Theorem 3.1) together with the obvious case t = ∞ imply the following
necessary and sufficient condition.

Theorem. Let µ be a measure with linear growth and

t ∈ (−∞,−
√

2) ∪ (−t0,∞]. (0.22)

The Cauchy transform is L2(µ)-bounded if and only if so is the SIO Tkt.
This has further consequences. For example, one can characterise uniformly rectifiable

measures via L2–bounded SIOs Tkt (see Theorems 2.1, 2.3 and Corollary 3.1).

Corollary. Let µ be an AD-regular measure and kt a kernel of the form (0.21) with t as in
(0.22). The measure µ is uniformly rectifiable if and only if the SIO Tkt is L2(µ)-bounded.

The part of this Corollary for t =∞, i.e. in fact for the Cauchy transform, was proved
in [MMV] (see Theorem A) and for t = 0 in [CMPT1] (see Theorem C).

The following result is from Section 2.5 and Corollary 3.2.

Corollary. Let µ be a measure with linear growth and kt a kernel of the form (0.21) with t
as in (0.22). If the SIO Tkt is L2(µ)-bounded, then so are all 1-dimensional SIOs associated
with a wide class of kernels.

By “a wide class of kernels” we mean the class of kernels K = K(z), where z ∈ C \ {0},
which are odd C2–functions satisfying

∣∣∇jK(z)
∣∣ 6 C(j)

|z|1+j
for all z ∈ C \ {0} and j ∈ {0, 1, 2}. (0.23)

It is easily seen that (0.23) implies that K is a CZ kernel with the properties indicated
before (0.1), where η = 1.

The latter Corollary for t = ∞, i.e. actually for the Cauchy transform, was earlier
proved in [Tol2,Tol4], see also [Gir].
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It is worth mentioning that some of our results stated above are actually proved in
Chapters 1–3 not just for kt but for more general t-parametric kernels:

Kt(z) := κN (z) + t · κn(z), t ∈ R, K∞(z) := κn(z), n 6 N, n,N ∈ N, (0.24)

i.e. linear combinations of the kernels (0.16) of different order. Clearly, Kt(z) ≡ kt(z)
for (n,N) = (1, 2). For the sake of simplicity, we do not state the corresponding re-
sults in Introduction but thoroughly discuss them in the subsequent chapters (see The-
orems 1.1, 1.2, 2.3, 3.3, 3.4 and 3.5).

A few words about notation. We use the letters c and C to denote constants which may
change their values at different occurrences. On the other hand, constants with subscripts
such as A0 or c1 do not change their values throughout each chapter. In a majority of cases
constants depend on some parameters which are usually indicated explicitly, for instance,
we write C(ε) or Cε if C depends on ε. If there is a constant C such that A 6 C B, we
write A . B. Furthermore, A ≈ B is equivalent to saying that A . B . A, possible with
different implicit constants. If the implicit constant in expressions with “.” or “≈” depends
on some positive parameter, say α, we write A .α B or A ≈α B.

Equations, theorems, lemmas and other statements are numbered within a chapter.
Introduction is considered as Chapter 0 for numbering.
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Chapter 1

A new parametric family of singular
integral operators whose
L2-boundedness implies rectifiability
by a curvature-like method

1.1 Introduction

The exposition in this chapter is based on [Chu]. Below, we consider the SIOs associated
with the kernels (0.24), i.e. with

Kt(z) =
(Re z)2N−1

|z|2N
+ t · (Re z)2n−1

|z|2n
and K∞(z) =

(Re z)2n−1

|z|2n
, (1.1)

where n and N are positive integer numbers such that N > n, and t ∈ R. We prove that the
L2(H1bE)-boundedness of these operators implies that E is rectifiable for t ∈ R \ (t1, t2)
with certain t1, t2 depending only on n and N . We use the curvature method for this so all
the definitions related to curvature and permutations given in Introduction will be used in
this chapter. We nevertheless remind some of them and introduce new ones now.

For a CZ kernel K, we introduced the following permutations in (0.5):

PK(z1, z2, z3) =
∑
s∈S3

K(zs2 − zs1)K(zs3 − zs1),

where S3 is the group of permutations of three elements {1, 2, 3}. Note that the kernels
(1.1) that we deal with in this chapter are real-valued so the bar in the latter sum may be
skipped. For this reason it is more convenient for us to consider the permutations

pK(z1, z2, z3)

:= K(z1 − z2)K(z1 − z3) +K(z2 − z1)K(z2 − z3) +K(z3 − z1)K(z3 − z2)

= 1
2PK(z1, z2, z3),

(1.2)

where K is an odd and real-valued kernel.
Taking into account the definitions (0.6) and (0.7) and supposing that µ, µ1, µ2 and

µ3 are measures, we also set

pK(µ1, µ2, µ3) := 1
2PK(µ1, µ2, µ3), pK,ε(µ1, µ2, µ3) := 1

2PK,ε(µ1, µ2, µ3) (1.3)
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and
pK(µ) := 1

2pK(µ, µ, µ), pK,ε(µ) := 1
2PK,ε(µ, µ, µ). (1.4)

We will use (1.3) and (1.4) many times below without additional mentioning.
Recall that by a measure we mean a positive locally finite Borel measure on C.
Bear in mind that (1.1) can be written in the form (0.24), i.e.

Kt(z) = κN (z) + t · κn(z), t ∈ R, K∞(z) = κn(z), n 6 N, n,N ∈ N,

where, according to (0.16),

κm(z) =
(Re z)2m−1

|z|2m
, m ∈ N.

Note also that in our new terms it follows from (0.17) and (1.3) that

pκm(z1, z2, z3) > 0 for any (z1, z2, z3) ∈ C3 and m ∈ N,

and pκm(z1, z2, z3) = 0 if and only if z1, z2 and z3 are collinear.

In the forthcoming sections, in order to find values of t such that a result analogous to
Theorems B and D is valid for the kernels (1.1), we first study the sign of the permutations
(1.2) and then, for the case when these permutations are non-negative, adapt the scheme
from [CMPT1] to our situation.

1.2 Main results

First of all let us mention that the case t = 0 in the theorems below agrees with the
inequality (0.17) and Theorem D, proved in [CMPT1]. We now indicate the values of t
such that the permutations pKt(z1, z2, z3) are non-negative for all triples (z1, z2, z3).

Theorem 1.1. Let Kt be a kernel of the form (1.1) with t = 0 or

t ∈ R \
(
−1

2

(
3 +

√
9− 4Nn

)
, 2− N

n

)
, n < N 6 2n, (1.5)

t ∈ R \
(
−1

2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
, ρn,N

)
, N > 2n, (1.6)

where ρn,N := (Nn − 2)
√
N − 2n. In particular, t ∈ R \ (−2; 0) for N = 2n. Then

pKt(z1, z2, z3) > 0 for all (z1, z2, z3) ∈ C3.

Furthermore, the range of the parameter t in the case N = 2n is sharp.

Remark 1.1. The conditions (1.5) and (1.6), guaranteeing that pKt(z1, z2, z3) > 0, cannot
be weakened much in the following sense. As we will show in Section 1.4, there are triples
(z1, z2, z3) such that pKt(z1, z2, z3) can change sign if

t ∈ (−N
n , 0) for all n and N,

t ∈
(

0, 2
e3/2

N
n

)
for N � n (i.e. N is large enough with respect to n).

(1.7)

Surprisingly, in this context the case t = 0 is an isolated point with non-negative permuta-
tions. Thus the curvature method, requiring the permutations to be non-negative, cannot
be applied directly for t indicated in (1.7).
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From the aforesaid it follows that (1.5) and (1.6) are indeed sharp for N = 2n.
Figure 1.1 illustrates Theorem 1.1 and this remark for n = 3 and different N > 3

(consider the horizontal line passing through a fixed positive integer N in order to determine
the corresponding t). The green area represents the values of t, indicated in (1.5) and (1.6),
i.e. those where pKt are guaranteed to be non-negative (the boundaries are included). In
the blue area (the boundaries are not included), obtained by computer-based exhaustive
search, the permutations can change sign. Note that the part of the blue area for t < 0
is exactly the former in (1.7). Moreover, the part for t > 0 quite agrees with the latter
in (1.7). The white area is not covered by our results and, generally speaking, we can say
nothing about the sign of pKt therein. However, computer experiments suggest that the
permutations pKt are non-negative everywhere except the blue area and thus (1.7) seems
to give likely boundaries for t, whose corresponding permutations can change sign.

Relying deeply on Theorem 1.1, we will prove the following result.

Theorem 1.2. Let Kt be a kernel of the form (1.1) with t as in Theorem 1.1 and E a
1-set. If pKt(H1bE) <∞, then E is rectifiable. Moreover, if the operator TKt is L2(H1bE)-
bounded, then E is rectifiable.

Remark 1.2. It is known that for t = −1 (see the red line in Figure 1.1), which belongs
to the area, where the permutations can change sign, the statement of Theorem 1.2 is not
valid anymore, i.e. L2-boundedness does not imply rectifiability. Indeed, it is a corollary
of Theorem E since all the kernels Kt of the form (1.1) with t = −1 belong to Huovinen’s
class H as can be easily checked.

For the subfamily (0.21) of the kernels (1.1) with (n,N) = (1, 2), i.e. for

kt(z) =
(Re z)3

|z|4
+ t · Re z

|z|2
,

even more is known as we have already mentioned in Introduction. Namely, for t = −3/4,
whose corresponding pkt change sign, there also exists a purely unrectifiable set E such
that Tkt is L2(H1bE)-bounded as follows from Theorem F.

Recall Figure 0.2 that illustrates the known results for the kernels kt. By Theorems 1.1
and 1.2, if t ∈ R \ (−2, 0), then the permutations pkt are always non-negative and the
L2(H1bE)-boundedness of Tkt implies the rectifiability of E. By the arguments from Re-
marks 1.1 and 1.2, the permutations pkt for t ∈ (−2, 0) change sign and there are two
values of t such that the operator Tkt is L2(H1bE)-bounded but E is not rectifiable.

1.3 Auxiliary results

This section is devoted to several auxiliary lemmas, which will be used to prove Theo-
rems 1.1 and 1.2 in Section 1.5.

If a kernel K is real and odd, then one can show that the permutations (1.2) are
invariant under translations. This can be done, e.g. by the substitutions u = z1 − z2 and
v = z1− z3. Consequently, one point can be always fixed and it is enough to consider only
permutations of the form

pK(0, u, v) = K(u)K(v) +K(u)K(u− v) +K(v)K(v − u), (1.8)
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Figure 1.1: Theorem 1.1 and Remark 1.1 for n = 3 and different N > 3.
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where u, v ∈ C \ {0} are distinct points. The kernels (0.16) and (1.1) that we study are
real and odd and hence we can use (1.8) instead of (1.2). Furthermore, the case of collinear
points u and v is trivial as then pK(0, u, v) ≡ 0 and thus we can skip it.

We will use the following lemma many times below. Note that it can be easily gener-
alised for another couple of kernels instead of κn and κN .

Lemma 1.1. Given Kt of the form (1.1),

pKt(0, u, v) = pκN (0, u, v) + ϕn,N (0, u, v) t+ pκn(0, u, v) t2, (1.9)

where

ϕn,N (0, u, v) := κN (u)(κn(v) + κn(u− v))
+κN (v)(κn(u) + κn(v − u)) + κN (u− v)(κn(u)− κn(v)).

(1.10)

Proof. We substitute (1.1) into (1.8) and get

pKt(0, u, v)
= (κN (u) + t κn(u))(κN (v) + t κn(v))
+(κN (u) + t κn(u))(κN (u− v) + t κn(u− v))
+(κN (v) + t κn(v))(κN (v − u) + t κn(v − u))
= κN (u)κN (v) + (κN (u)κn(v) + κn(u)κN (v)) t+ κn(u)κn(v) t2

+κN (u)κN (u− v) + (κN (u)κn(u− v) + κn(u)κN (u− v)) t+ κn(u)κn(u− v) t2

+κN (v)κN (v − u) + (κN (v)κn(v − u) + κn(v)κN (v − u)) t+ κn(v)κn(v − u) t2.

To finish the proof it is enough to group the terms and take into account (1.8). �

It is important that the leading coefficient of the quadratic polynomial (1.9) (with
respect to t) is always non-negative by (0.17) and (1.2).

From now on, in order to simplify formulas we skip (0, u, v) in permutations and other
expressions if there is no confusion. For example, we write pK instead of pK(0, u, v). In
addition, we use the following notations:

λ1 :=
Reu
|u|

, λ2 :=
Re v
|v|

, λ3 :=
Re (u− v)

|u− v|
, Λ := λ1λ2λ3, (1.11)

where the denominators do not vanish as the points u and v are assumed to be distinct
and non-collinear. Note that in these terms,

pκn =
(λ1λ2)2n−1

|u||v|
+

(λ1λ3)2n−1

|u||u− v|
− (λ2λ3)2n−1

|v||v − u|
(1.12)

and

ϕn,N =
λ2N−1

1

|u|

(
λ2n−1

2

|v|
+

λ2n−1
3

|u− v|

)
(1.13)

+
λ2N−1

2

|v|

(
λ2n−1

1

|u|
− λ2n−1

3

|v − u|

)
+
λ2N−1

3

|u− v|

(
λ2n−1

1

|u|
− λ2n−1

2

|v|

)
.

What is more, another representation of ϕn,N is valid.

Lemma 1.2. In terms of (1.11) it holds that

ϕn,N = τ1pκn − τ2, (1.14)
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where
τ1 := λ

2(N−n)
1 + λ

2(N−n)
2 + λ

2(N−n)
3 , 0 6 τ1 6 3, (1.15)

and

τ2 := Λ2(N−n)

(
(λ1λ2)2(2n−N)−1

|u||v|
+

(λ1λ3)2(2n−N)−1

|u||u− v|
− (λ2λ3)2(2n−N)−1

|v||v − u|

)
. (1.16)

In particular, τ2 ≡ 0 if N = 2n.

Proof. Direct multiplication of τ1 by pκn gives(
λ

2(N−n)
1 + λ

2(N−n)
2 + λ

2(N−n)
3

)
·
(

(λ1λ2)2n−1

|u||v|
+

(λ1λ3)2n−1

|u||u− v|
− (λ2λ3)2n−1

|v||v − u|

)

=

(
λ

2(N−n)
3 (λ1λ2)2n−1

|u||v|
+
λ

2(N−n)
2 (λ1λ3)2n−1

|u||u− v|
− λ

2(N−n)
1 (λ2λ3)2n−1

|v||v − u|

)

+
λ2N−1

1

|u|

(
λ2n−1

2

|v|
+

λ2n−1
3

|u− v|

)
+
λ2N−1

2

|v|

(
λ2n−1

1

|u|
− λ2n−1

3

|v − u|

)
+
λ2N−1

3

|u− v|

(
λ2n−1

1

|u|
− λ2n−1

2

|v|

)
,

which is exactly τ2 + ϕn,N by (1.13) and (1.16). �

Lemma 1.3. Given κn and κN of the form (0.16),

N

n
· Λ2(N−n) · pκn 6 pκN , 1 6 n 6 N. (1.17)

Note that this inequality for n = 1 was obtained in [CMPT1, Proof of Lemma 2.3]. We
will use the following lemma from there in order to prove the general form.

Lemma 1.4 (Proof of Proposition 2.1 in [CMPT1]). One has the representation

pκm =
m∑
k=1

(
m

k

)
Λ2(m−k)hk(u, v),

where hk(u, v) > 0 and are defined as follows:

hk(u, v) =(|u||v||u− v|)−2k
(

(Reu Re v)2k−1(Im (u− v))2k

+(Reu Re (u− v))2k−1(Im v)2k + (Re v Re (v − u))2k−1(Imu)2k
)
.

Proof. Within the settings of Lemma 1.4,

Λ2(N−n) pκn
pκN

=

∑n
k=1

(
n
k

)(
N
k

)−1
Hk(u, v)∑N

k=1Hk(u, v)
,

where Hk(u, v) :=
(
N
k

)
Λ2(N−k)hk(u, v) > 0. Furthermore,(

n

k

)(
N

k

)−1

=
n!

(n− k)!

(N − k)!

N !
=

(n− k + 1) · · ·n
(N − k + 1) · · ·N

6
n

N
, 1 6 k 6 n,

and finally

Λ2(N−n) pκn
pκN

6
n

N
·
∑n

k=1Hk(u, v)∑N
k=1Hk(u, v)

6
n

N
, n 6 N,
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which is the desired result. �

Lemmas 1.1, 1.2 and 1.3 enable us to obtain lower pointwise estimates for the permu-
tations pKt via the permutations pκn for some t. To do so, we will use (1.14) and (1.17)
to estimate the coefficients of the quadratic polynomial (1.9). Let us start with the case
n < N 6 2n.

Lemma 1.5. Given Kt of the form (1.1) with n < N 6 2n, if

t ∈ R \
[
−1

2

(
3 +

√
9− 4Nn

)
, 2− N

n

]
,

then pKt > C(t) · pκn with some C(t) > 0.

Proof. To get the required estimate, we first look at the expression for τ2 in (1.16) for our
case. Since n < N 6 2n, from (1.12) and (1.16) we immediately get

τ2 = Λ2(N−n) · pκ2n−N , 0 6 2n−N 6 n− 1,

with τ2 ≡ 0 if N = 2n. Consequently, by (1.9) and (1.14),

pKt = pκN + (τ1pκn − Λ2(N−n)pκ2n−N ) t+ pκnt
2. (1.18)

Now we show that the right hand side of (1.18) for t mentioned in the lemma is bounded
from below by pκn , multiplied by a positive constant, depending only on t.

Applying the inequality (1.17) to pκN and pκ2n−N in (1.18) for t > 0 gives

pKt >
(
N
n Λ2(N−n) + (τ1 − 2 + N

n ) t+ t2
)
· pκn = f(ξ1, ξ2, ξ3) · pκn , (1.19)

where ξj := λ
2(N−n)
j ∈ [0, 1], j = 1, 2, 3, and

f(ξ1, ξ2, ξ3) := N
n ξ1ξ2ξ3 + (ξ1 + ξ2 + ξ3 − 2 + N

n ) t+ t2. (1.20)

Analysis of ∂f/∂ξj shows that f is non-decreasing for t > 0 with respect to each ξj ∈ [0, 1].
Consequently,

f(ξ1, ξ2, ξ3) > f(0, 0, 0) = t(t− 2 + N
n ),

which is strictly positive for t > 2− N
n > 0.

For t 6 0 we apply (1.17) to pκN and use that pκ2n−N > 0 (see (0.17)). This yields

pKt >
(
N
n Λ2(N−n) + τ1 t+ t2

)
· pκn = F (ξ1, ξ2, ξ3) · pκn , (1.21)

where the function

F (ξ1, ξ2, ξ3) := N
n ξ1ξ2ξ3 + (ξ1 + ξ2 + ξ3) t+ t2 (1.22)

is non-increasing for t 6 −N
n with respect to each ξj ∈ [0, 1]. Consequently,

F (ξ1, ξ2, ξ3) > F (1, 1, 1) = N
n + 3 t+ t2,

where the latter expression is positive for t < −1
2

(
3 +

√
9− 4Nn

)
6 −N

n . �

Now let N > 2n. Note that the following lemma coincides with the previous one if we
put N = 2n.
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Lemma 1.6. Given Kt of the form (1.1) with N > 2n, if

t ∈ R \
[
−1

2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
, ρn,N

]
, ρn,N =

(
N
n − 2

)√
N − 2n,

then pKt > C(t) · pκn with some C(t) > 0.

Proof. We will again estimate the coefficients of the polynomial (1.9) in terms of pκn . At
first, we will estimate |φn,N |. By (1.14), this will only need to estimate |τ2|.

As we have already mentioned before Lemma 1.1, the permutations pKt and pκn are
invariant under translations. Therefore we can assume without loss of generality that all
triangles (0, u, v) that we consider belong to the half plane Re z > 0. This will be necessary
in the further analysis of angles of these triangles.

From now on, we use the following notation additionally to (1.11):

sinαj := λj , λj ∈ [−1; 1], j = 1, 2, 3. (1.23)

We also suppose that λ2
j are pairwise distinct. One can get the other case by passage to a

limit below. For the geometrical interpretation of αj see Figures 1.2 and 1.3.
Now we aim to represent τ2 from (1.16) in terms of the curvature written in the form

(0.10). For this purpose we will segregate the area squared S(0, u, v)2 in the numerator and
|u|2|v|2|u− v|2 in the denominator of τ2. First, from (1.16), taking into account (1.11), we
obtain

τ2 =
Λ2n−1

|u||v||u− v|
(λ1λ2)2(2n−N)−1|u− v|+ (λ1λ3)2(2n−N)−1|v| − (λ2λ3)2(2n−N)−1|u|

Λ2(2n−N)−1

=
Λ2n−1

|u||v||u− v|

(
λ

2(N−2n)
3 Re (u− v) + λ

2(N−2n)
2 Re v − λ2(N−2n)

1 Reu
)

=
Λ2n−1

|u||v||u− v|

(
Reu

(
λ

2(N−2n)
3 − λ2(N−2n)

1

)
− Re v

(
λ

2(N−2n)
3 − λ2(N−2n)

2

))
=

Λ2n−1

|u||v||u− v|
(
λ1|u|

(
λ2

3 − λ2
1

)
A1(u, v)− λ2|v|

(
λ2

3 − λ2
2

)
A2(u, v)

)
,

where

A1(u, v) :=
λ

2(N−2n)
3 − λ2(N−2n)

1

λ2
3 − λ2

1

and A2(u, v) :=
λ

2(N−2n)
3 − λ2(N−2n)

2

λ2
3 − λ2

2

. (1.24)

Finally, we can rewrite τ2 as

τ2 =
Λ2n−1

|u|2|v|2|u− v|2
·A(u, v), (1.25)

where A(u, v) := |u||v||u− v|
(
λ1

(
λ2

3 − λ2
1

)
|u|A1(u, v)− λ2

(
λ2

3 − λ2
2

)
|v|A2(u, v)

)
.

By (1.23) and the formulas for the sum of sines and the sine of a double angle,

λ2
3 − λ2

1 = (sinα3 + sinα1)(sinα3 − sinα1)

= 2 sin
α3 + α1

2
cos

α3 − α1

2
· 2 sin

α3 − α1

2
cos

α3 + α1

2
= sin(α3 + α1) sin(α3 − α1).

Analogously, λ2
3 − λ2

2 = sin(α3 + α2) sin(α3 − α2). Thus

A(u, v) = |u|2|v||u− v| sin(α3 + α1) sin(α3 − α1)λ1A1(u, v)
−|u||v|2|u− v| sin(α3 + α2) sin(α3 − α2)λ2A2(u, v).

(1.26)
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Figure 1.2: Triangles in the case 1 (the proof of Lemma 1.6).

Now let us see how one can calculate the angles ∠(u, 0, v), ∠(0, u, v) and ∠(0, v, u)
of the triangle (0, u, v), using the angles αj , j = 1, 2, 3. Recall that the triangles (0, u, v)
belong to the half plane Re z > 0. Thus only two cases are possible:

1. The vertexes u and v both lie in the same (first or forth) quarter of the plane.
2. The vertexes u and v lie in different quarters of the plane.
One can check that four options are realizable in the case 1 (see the examples in Figure

1.2; several other situations are possible but they produce the same cases):
1a. ∠(u, 0, v) = α1 − α2 , ∠(0, u, v) = −(α1 − α3), ∠(0, v, u) = π + (α2 − α3);
1b. ∠(u, 0, v) = −(α1 − α2), ∠(0, u, v) = α1 − α3 , ∠(0, v, u) = π − (α2 − α3);
1c. ∠(u, 0, v) = α1 − α2 , ∠(0, u, v) = π − (α1 + α3), ∠(0, v, u) = α2 + α3 ;
1d. ∠(u, 0, v) = −(α1 − α2), ∠(0, u, v) = π + (α1 + α3), ∠(0, v, u) = −(α2 + α3).
In the case 2 (see Figure 1.3) one always has

∠(u, 0, v) = π − (α1 + α2), ∠(0, u, v) = α1 − α3, ∠(0, v, u) = α2 + α3.

Consequently, taking into account the formulas

S(0, u, v) = 1
2 |u||v| sin∠(u, 0, v) = 1

2 |u||u− v| sin∠(0, u, v) = 1
2 |v||u− v| sin∠(0, v, u),

we conclude from (1.26) that,
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Figure 1.3: Triangles in the case 2 (the proof of Lemma 1.6).

• in the cases 1.a and 1.b:

A(u, v) = |u||v| sin(±(α2 − α1))|u||u− v| sin(±(α1 − α3))
sin(α3 + α1)

sin(α1 − α2)
λ1A1(u, v)

− |u||v| sin(±(α2 − α1))|v||u− v| sin(π ± (α3 − α2))
sin(α3 + α2)

sin(α1 − α2)
λ2A2(u, v)

= 4S(0, u, v)2 sin(α3 + α1)λ1A1(u, v)− sin(α3 + α2)λ2A2(u, v)

sin(α1 − α2)
;

• in the cases 1.c and 1.d:

A(u, v) = |u||v| sin(±(α1 − α2))|u||u− v| sin(π ∓ (α1 + α3))
sin(α3 − α1)

sin(α1 − α2)
λ1A1(u, v)

− |u||v| sin(±(α1 − α2))|v||u− v| sin(±(α2 + α3))
sin(α3 − α2)

sin(α1 − α2)
λ2A2(u, v)

= 4S(0, u, v)2 sin(α3 − α1)λ1A1(u, v)− sin(α3 − α2)λ2A2(u, v)

sin(α1 − α2)
;
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• in the case 2:

A(u, v) = −|u||v| sin(α1 + α2)|u||u− v| sin(α1 − α3)
sin(α3 + α1)

sin(α1 + α2)
λ1A1(u, v)

− |u||v| sin(α1 + α2)|v||u− v| sin(α2 + α3)
sin(α3 − α2)

sin(α1 + α2)
λ2A2(u, v)

= −4S(0, u, v)2 sin(α3 + α1)λ1A1(u, v) + sin(α3 − α2)λ2A2(u, v)

sin(α1 + α2)
.

Note that the substitutions α1 7→ −α1, α2 7→ −α2 (λ1 7→ −λ1, λ2 7→ −λ2) in the
expression for A(u, v) for the case 1.a and 1.b give A(u, v) in the cases 1.c and 1.d. Moreover,
the substitution α2 7→ −α2 (λ2 7→ −λ2) in A(u, v) for the case 1.a and 1.b gives −A(u, v)
in the case 2. In what follows, this allows us to consider only one expression for A(u, v),
say, the one corresponding to 1.a and 1.b, instead of the three. This reduction will not
affect the final result. By this reason, let

A(u, v) = 4S(0, u, v)2 · V (u, v)

sin(α1 − α2)
,

where
V (u, v) := sin(α3 + α1)λ1A1(u, v)− sin(α3 + α2)λ2A2(u, v). (1.27)

From this and (1.25) by the formula (0.10), connecting the curvature c(0, u, v) and the area
S(0, u, v), we get

τ2 =
4S(0, u, v)2

|u|2|v|2|u− v|2
· Λ2n−1 · V (u, v)

sin(α1 − α2)
= 1

4c(0, u, v)2 · Λ2n−1 · V (u, v)

sin(α1 − α2)
.

Note that 1
4c(0, u, v)2 = pκ1(0, u, v) by (0.15). Consequently, the inequality (1.17) and the

fact that |Λ| 6 1 yield

|τ2| = nΛ2(n−1)pκ1 ·
|Λ|
n
· |V (u, v)|
|sin(α1 − α2)|

6
pκn
n
· |V (u, v)|
| sin(α1 − α2)|

. (1.28)

Now we want to show that |V (u, v)| 6 const · | sin(α1 − α2)|. If we rewrite A1(u, v) and
A2(u, v), defined in (1.24), using the formula

am − bm

a− b
=

m−1∑
v=0

am−1−vbv, m ∈ N+,

for m := N − 2n > 1, then (1.27) takes the form

V (u, v) =
m−1∑
v=0

λ
2(m−1−v)
3

(
sin(α3 + α1) · λ2v+1

1 − sin(α3 + α2) · λ2v+1
2

)
.

Now we substitute λj = sinαj , j = 1, 2, by (1.23) and apply the well-known formula

(sin θ)2v+1 =
1

22v

v∑
k=0

(−1)v−k
(

2v + 1

k

)
sin(2v + 1− 2k)θ.

This leads to the following representation:

V (u, v) =
m−1∑
v=0

λ
2(m−1−v)
3

1

22v

v∑
k=0

(−1)v−k
(

2v + 1

k

)
Bv,k(α1, α2, α3), (1.29)
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where

Bv,k(α1, α2, α3)

:= sin(α3 + α1) sin(2v + 1− 2k)α1 − sin(α3 + α2) sin(2v + 1− 2k)α2.

By the formulas for the product of sines and the difference of cosines we obtain

Bv,k(α1, α2, α3)

=1
2 (cos(α3 − 2(v − k)α1)− cos(α3 + 2(v − k + 1)α1)

− cos(α3 − 2(v − k)α2) + cos(α3 + 2(v − k + 1)α2))

= sin(α3 − (v − k)(α1 + α2)) sin((v − k)(α1 − α2))

+ sin(α3 + (v − k + 1)(α1 + α2)) sin((v − k + 1)(α1 − α2)).

Since | sin rx| 6 r| sinx|, r > 0, it follows that

|Bv,k(α1, α2, α3)| 6 (2v − 2k + 1)| sin(α1 − α2)|.

This and the obvious estimate of |V (u, v)| from (1.29) yield

|V (u, v)|
| sin(α2 − α1)|

6 σ(m) :=

m−1∑
v=0

1

22v

v∑
k=0

(
2v + 1

k

)
(2v − 2k + 1).

One can check by successive use of the formulas (4.2.1.6), (4.2.2.13) and (4.2.3.19) from
[PBM, §4.2] that

σ(m) =
4m2 − 1

3 · 4m−1

(
2m− 2

m− 1

)
.

Moreover, it can by easily proved by induction that

σ(m) 6 m3/2, m ∈ N.

Since m = N − 2n > 1, (1.28) yields

|τ2| 6 ρn,N · pκn , ρn,N =
(N − 2n)3/2

n
=
(
N
n − 2

)√
N − 2n, N > 2n. (1.30)

Now we come back to the representation (1.9) from Lemma 1.1 and estimation of its
terms. By (1.14), (1.17) and (1.30), we deduce for t > 0 that

pKt >
(
N
n Λ2(N−n) + (τ1 − ρn,N ) t+ t2

)
· pκn = g(ξ1, ξ2, ξ3) · pκn , (1.31)

where ξj = λ
2(N−n)
j ∈ [0, 1] as in the proof of the previous lemma, and

g(ξ1, ξ2, ξ3) := N
n ξ1ξ2ξ3 + (ξ1 + ξ2 + ξ3 − ρn,N ) t+ t2. (1.32)

The function g is non-decreasing for t > 0 with respect to each ξj ∈ [0, 1] , hence for
t > ρn,N > 0 we obtain the inequality

g(ξ1, ξ2, ξ3) > g(0, 0, 0) = t(t− ρn,N ) > 0.

For t 6 0 we have

pKt >
(
N
n Λ2(N−n) + (τ1 + ρn,N ) t+ t2

)
· pκn = G(ξ1, ξ2, ξ3) · pκn , (1.33)
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where the function

G(ξ1, ξ2, ξ3) := N
n ξ1ξ2ξ3 + (ξ1 + ξ2 + ξ3 + ρn,N ) t+ t2 (1.34)

is non-increasing for t 6 −N
n with respect to each ξj ∈ [0, 1] and therefore

G(ξ1, ξ2, ξ3) > G(1, 1, 1) = N
n + (3 + ρn,N ) t+ t2.

The roots of the latter quadratic polynomial are

−1
2

(
3 + ρn,N ±

√
(3 + ρn,N )2 − 4Nn

)
,

so it has only positive values if t < −1
2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
6 −N

n . �

Note that Lemmas 1.5 and 1.6 give Theorem 1.1 by continuity. For the proof of Theo-
rem 1.2, additionally to Theorem 1.1, we will also need lower estimates of pKt for t, which
are the end points of the intervals excluded in (1.5) and (1.6) from the real line. In order
to obtain these estimates, we first introduce additional notation.

Given two distinct points z, w ∈ C, we denote by Lz,w the line passing through z and w.
Given three pairwise distinct points z1, z2, z3 ∈ C, we denote by ∠(z1, z2, z3) the smallest
angle formed by the lines Lz1,z2 and Lz1,z3 . This angle belongs to [0;π/2]. If L and L′

are lines, then ∠(L,L′) is the smallest angle between them. This angle belongs to [0;π/2],
too. Also, θV (L) := ∠(L, V ) and θH(L) := ∠(L,H), where V and H are the vertical and
horizontal lines, correspondingly. Furthermore, for a fixed constant τ > 1, we set

Oτ =

{
(z1, z2, z3) :

|zi − zj |
|zi − zk|

6 τ for pairwise distinct i, j, k ∈ {1, 2, 3}
}
, (1.35)

so that all the triangles with vertexes z1, z2 and z3 in Oτ have comparable sides.
Given α0 ∈ (0, π/2) and (z1, z2, z3), in what follows we will use the conditions

θV (Lz1,z2) + θV (Lz2,z3) + θV (Lz1,z3) > α0 (1.36)

and
θH(Lz1,z2) + θH(Lz2,z3) + θH(Lz1,z3) > α0. (1.37)

Note that (1.36) and (1.37) can be correspondingly replaced by the conditions

θH(Lz1,z2) + θH(Lz2,z3) + θH(Lz1,z3) 6 3
2π − α0

and
θV (Lz1,z2) + θV (Lz2,z3) + θV (Lz1,z3) 6 3

2π − α0.

To obtain the desired result, we first prove several geometrical lemmas.

Lemma 1.7. Fix α0 ∈ (0, π/2). Given (0, u, v) ∈ Oτ , if the condition (1.36) is satisfied,
then

τ1(0, u, v) = λ
2(N−n)
1 + λ

2(N−n)
2 + λ

2(N−n)
3 > C1(α0) > 0.

Proof. Clearly,

λ2
1 = sin2 θV (L0,u), λ2

2 = sin2 θV (L0,v), λ2
3 = sin2 θV (Lu,v).

Moreover, from (1.36) it follows that at least one of the angles θV (L0,u), θV (L0,v), θV (Lu,v)
is not less than α0/3. Thus τ1 > (sin α0

3 )2(N−n). �
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Figure 1.4: Triangles in the case 2 (the proof of Lemma 1.8).

Lemma 1.8. Fix α0 ∈ (0, π/2). Given (0, u, v) ∈ Oτ , if the condition (1.37) is satisfied,
then

Υ(0, u, v) := 2 + (λ1λ2λ3)2(N−n) − (λ
2(N−n)
1 + λ

2(N−n)
2 + λ

2(N−n)
3 ) > C2(α0, τ) > 0.

Proof. First we note that

Υ(0, u, v) > 2 + λ2
1λ

2
2λ

2
3 − (λ2

1 + λ2
2 + λ2

3)

as the function 2 + ξ1ξ2ξ3− (ξ1 + ξ2 + ξ3) is non-increasing with respect to each ξj ∈ [0, 1],
j = 1, 2, 3, and λ2

j > λ
2(N−n)
j for N > n > 1.

In addition, we have

λ2
1 = 1− sin2 θH(L0,u), λ2

2 = 1− sin2 θH(L0,v), λ2
3 = 1− sin2 θH(Lu,v),

and hence

Υ(0, u, v) > sin2 θH(L0,u) sin2 θH(L0,v) + sin2 θH(L0,u) sin2 θH(Lu,v)

+ sin2 θH(L0,v) sin2 θH(Lu,v)− sin2 θH(L0,u) sin2 θH(L0,v) sin2 θH(Lu,v)

> 2
3

(
sin2 θH(L0,v) sin2 θH(L0,u) + sin2 θH(L0,u) sin2 θH(Lu,v)

+ sin2 θH(L0,v) sin2 θH(Lu,v)
)
.

Consider a triangle (0, u, v) ∈ Oτ such that (1.37) is satisfied. Fix some ε ∈ (0;α0/3). Two
cases are possible:

1. amongst θH(L0,u), θH(L0,v), θH(Lu,v), there exists a pair of angles, each being greater
than ε and then it is easily seen that Υ(0, u, v) > 2

3 sin4 ε;

2. amongst those, there exists no pair of angles, each being greater than ε.

Let us consider the second case in detail (see Figure 1.4). It is clear that at least two
angles amongst θH(L0,u), θH(L0,v), θH(Lu,v) are less than ε then. In other words, two sides
of the triangle cut the horizontal line at angles less than ε. We call these sides A and B.

Furthermore, let the angle γ between A and B be acute; then obviously it is smaller
than 2ε. Then the acute angle between the third side C and the horizontal line is greater
than α0− 2ε and the acute angle between A and C is greater than α0− 3ε. Consequently,
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the obtuse angle between A and C is smaller than π − (α0 − 3ε). Thus we have for the
angle β of the triangle:

α0 − 3ε < β < π − (α0 − 3ε).

Therefore by the law of sines, the inequalities (2/π)x 6 sinx 6 x for x ∈ [0, π/2], and
(1.35), we get

1

τ2
6

length(C)

length(B)
=

sin γ

sinβ
<

sin 2ε

sin(α0 − 3ε)
6

πε

α0 − 3ε
⇒ ε > ε0(α0, τ) :=

α0

3 + πτ2
.

Now let the angle γ between A and B be not acute (it is greater than π − 2ε). Then
for one of acute angles of the triangle, say β, we have

β < ε− (α0 − 2ε) = 3ε− α0 < 0, ε ∈ (0;α0/3),

which is impossible.
It follows from the aforesaid that there is a contradiction for ε = ε0(α0, τ) in the second

case and thus Υ(0, u, v) > 2
3 sin4 ε0(α0, τ). �

We will also need the following result.

Lemma 1.9 (Lemma 2.3 in [CMPT1]). Fix α0 ∈ (0, π/2). Given κn of the form (0.16)
and (z1, z2, z3) ∈ Oτ , if the condition (1.36) is satisfied, then

pκn(z1, z2, z3) > C3(α0, τ) · c(z1, z2, z3)2

for some C3(α0, τ) > 0.

Now we are able to obtain necessary lower pointwise estimates for pKt if t are the
end points of the intervals excluded in (1.5) and (1.6) from the real line. Recall that
ρn,N = (Nn − 2)

√
N − 2n.

Lemma 1.10. Fix α0 ∈ (0, π/2). Given Kt of the form (1.1) and (z1, z2, z3) ∈ Oτ ,

(i) if (1.36) is satisfied and t = 2− N
n for n < N 6 2n or t = ρn,N for N > 2n, or

(ii) if (1.36) and (1.37) are satisfied and t = −1
2

(
3 +

√
9− 4Nn

)
for n < N 6 2n or

t = −1
2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
for N > 2n,

then
pKt(z1, z2, z3) > C(α0, τ) · c(z1, z2, z3)2

for some C(α0, τ) > 0.

Proof. It is enough to prove it for triples (0, u, v). What is more, the statement for t = 0
in (i), i.e. when N = 2n, is just Lemma 1.9 and therefore we may exclude it. We also recall
the notation ξj := λ

2(N−n)
j ∈ [0, 1], j = 1, 2, 3.

Now let t = 2− N
n and n < N < 2n. Then for the function given in (1.20) we have

f(ξ1, ξ2, ξ3) = N
n ξ1ξ2ξ3 + (2− N

n )(ξ1 + ξ2 + ξ3) > (2− N
n )τ1,

where τ1 is as in (1.15). If t = ρn,N and N > 2n, then from (1.32) it follows that

g(ξ1, ξ2, ξ3) = N
n ξ1ξ2ξ3 + ρn,N (ξ1 + ξ2 + ξ3) > N

n τ1.
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Thus from the inequalities (1.19) for n < N < 2n and (1.31) for N > 2n, both being
valid for t > 0, and Lemmas 1.7 and 1.9 (with the assumption (1.36)) we get

pKt(0, u, v) > N
n τ1(0, u, v) · pκn(0, u, v) > N

n C1(α0)C3(α0, τ) · c(0, u, v)2,

which is the required result in the case (i).

Now consider (ii). Set t = −1
2

(
3 +

√
9− 4Nn

)
and n < N 6 2n. Then, by (1.22),

F (ξ1, ξ2, ξ3) = N
n (ξ1ξ2ξ3 − 1) + 1

2(3− (ξ1 + ξ2 + ξ3))(3 +
√

9− 4Nn ).

Since −1
2

(
3 +

√
9− 4Nn

)
6 −N

n ,

F (ξ1, ξ2, ξ3) > N
n (2 + ξ1ξ2ξ3 − (ξ1 + ξ2 + ξ3)) > N

n Υ.

The function (1.34) for

t = t0 := −1
2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
and N > 2n after some simplifications takes the form

G(ξ1, ξ2, ξ3) = N
n (ξ1ξ2ξ3 − 1) + (ξ1 + ξ2 + ξ3 − 3)t0,

and hence G(ξ1, ξ2, ξ3) > N
n Υ since t0 6 −N

n for N > 2n.
Thus for the last two values of t, by the inequalities (1.21) for n < N 6 2n and (1.33)

for N > 2n, both being valid for t 6 −N
n , and Lemma 1.9 (with the assumption (1.36)),

we get

pKt(0, u, v) > N
n Υ(0, u, v) · pκn(0, u, v) > N

n Υ(0, u, v)C3(α0, τ) · c(0, u, v)2.

If (1.37) is also satisfied, then by Lemma 1.8 we obtain the desired inequality

pKt(0, u, v) > N
n C2(α0, τ)C3(α0, τ) · c(0, u, v)2,

and we are done. �

1.4 Examples

In this section we present triples (0, u, v) such that the permutations pKt(0, u, v) change
sign for t mentioned in (1.7), namely, t ∈ (−N/n, 0) for all n and N and t ∈

(
0, 2

e3/2
N
n

)
for

N � n. We use the notations of Lemma 1.1 below. Note that by this lemma, pKt can be
calculated via pκm for m, equal to n and N , and ϕn,N . To obtain pκm we substitute (0.16)
into (1.8); ϕn,N is calculated by (1.10).

We first show that pKt(0, u, v) is positive for any t if u = a + i and v = a − i, where
a ∈ R \ {0} is suitably chosen. By (1.8) and taking into account that Kt(u) = Kt(v) and
Kt(u− v) ≡ 0,

pKt =

(
a2N−1

(1 + a2)N
+ t · a2n−1

(1 + a2)n

)2

=
a4n−2

(1 + a2)2n

(
a2(N−n)

(1 + a2)N−n
+ t

)2

,
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which is positive for any real t if a is chosen so that the expression in the latter brackets
does not vanish.

Now the aim is to show that for any fixed t from (1.7) there exist triples (0, u, v) such
that pKt(0, u, v) is negative. To do so, we find families of (0, u, v) such that the quadratic
polynomial

pKt
pκn

=
pκN
pκn

+
ϕn,N
pκn

t+ t2, pκn > 0,

(with respect to t) has two different roots t1 and t2, depending on u and v, and thus pKt
(of the form (1.9)) is negative for t ∈ (t1; t2). In addition, we prove that the union of the
intervals (t1; t2) when (0, u, v) runs the whole above-mentioned family is either the interval
(−N/n; 0) or

(
0; 2

e3/2
N
n

)
, indicated in (1.7).

Let us consider the case t < 0.

Example 1.1. Set u = −a+ i, v = a+ i, where a ∈ R \ {0}. Then

pκm = − a2(2m−1)

(a2 + 1)2m
+

a2m−2

2(a2 + 1)m
+

a2m−2

2(a2 + 1)m
=
a2m−2

(
(a2 + 1)m − a2m

)
(a2 + 1)2m

,

where m equals n or N , and

ϕn,N =− a2N−1

(a2 + 1)N

(
a2n−1

(a2 + 1)n
− 1

2a

)
+

a2N−1

(a2 + 1)N

(
− a2n−1

(a2 + 1)n
+

1

2a

)
− 1

2a

(
− a2n−1

(a2 + 1)n
− a2n−1

(a2 + 1)n

)
=
a2n−2

(
(a2 + 1)N + (a2 + 1)na2(N−n) − 2a2N

)
(a2 + 1)N+n

.

From this by (1.9) we deduce that

pKt
pκn

=
d1(a)d2(a)

d3(a)2
+
d1(a) + d2(a)

d3(a)
t+ t2, a 6= 0, (1.38)

where

d1(a) := (a2 + 1)n
(

1− a2N

(a2 + 1)N

)
, d2(a) := (a2 + 1)n

(
a2(N−n)

(a2 + 1)N−n
− a2N

(a2 + 1)N

)

and d3(a) := (a2 + 1)n − a2n. The polynomial (1.38) has two different negative roots
t1(a) = −d1(a)/d3(a) and t2(a) = −d2(a)/d3(a), where d1(a) > d2(a) > 0 and d3(a) > 0.
It is easy to check that the roots t1(a) and t2(a) run the intervals (−N/n;−1) and (−1; 0),
correspondingly, when a runs (0;∞). Furthermore, we see by continuity that⋃

a∈(0;∞)

(t1(a); t2(a)) = (−N/n; 0).

This means that pKt is negative for any t in (−N/n; 0) for a suitably chosen.

As we have already mentioned above, this example shows that (1.6) is sharp for N =
2n in the sense of Remark 1.1. In addition, the left hand side of (1.6) is also sharp for
N = 2n+ 1.

Now we give the example for t > 0.
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Example 1.2. Let n be fixed. Consider the triples (0, u, v) such that

u = −r(1 + δN (q)i), v = r(1− 1
r + δN (q)i), δN (q) :=

√
ln q

N − n
, (1.39)

where r > 0 and q > e. We can also calculate pκm and ϕn,N for these (0, u, v) using (0.16),
(1.8) and (1.10). However, the expression of pKt/pκn obtained is too big and therefore we do
not place it here. Instead, we give the following identity (the permutations are calculated
for (0, u, v) as in (1.39)):

P (t) := lim
r→∞

pKt
pκn

= cN (q) + bN (q)t+ t2,

where

cN (q) =
N

n (1 + δ2
N (q))2(N−n)

·
(2N − 1)δ2

N (q) + 1

(2n− 1)δ2
N (q) + 1

and

bN (q) = −
(
2(N − n)2 +N − 4nN + n

)
δ2
N (q)− (n+N)

n (1 + δ2
N (q))N−n((2n− 1)δ2

N (q) + 1)
.

Note that

cN (q) ∼ (2 ln q + 1)N

q2n
, bN (q) ∼ −(2 ln q − 1)N

qn
, N →∞.

The quadratic polynomial P (with respect to t) has two different positive roots t1(N, q)
and t2(N, q) if N is large enough (as the discriminant is positive). Additionally, one can
check that

t1(N, q) ∼ t̃1(q) :=
2 ln q + 1

q (2 ln q − 1)
, t2(N, q) ∼ t̃2(N, q) :=

(2 ln q − 1)N

qn
, N →∞.

Taking into account the properties

t̃1(q)→ 0 as q →∞ and max
q∈[e;∞)

2 ln q − 1

q
=

2

e3/2
,

we deduce by continuity that⋃
q∈[e;∞)

(t̃1(q); t̃2(q)) =

(
0;

2

e3/2

N

n

)
.

Thus, pKt(0, u, v) with u and v as in (1.39) are negative for any t in
(

0; 2
e3/2

N
n

)
, if N

(with respect to n) and r are large enough and q is suitably chosen.

1.5 Proof of Theorems 1.1 and 1.2

Recall that Lemmas 1.5 and 1.6 state that if Kt is of the form (1.1) and

t ∈ R \
[
−1

2

(
3 +

√
9− 4Nn

)
, 2− N

n

]
, n < N 6 2n,

t ∈ R \
[
−1

2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
, ρn,N

]
, N > 2n,
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where ρn,N =
(
N
n − 2

)√
N − 2n, then

pKt > C(t) · pκn , C(t) > 0.

These lemmas immediately give Theorem 1.1 by continuity if we take into account the
fact that pκn(z1, z2, z2) > 0 for all (z1, z2, z3) ∈ C3 (see (0.17)).

What is said from now on is related to Theorem 1.2.
First of all we note that the latter statement of Theorem 1.2, i.e. the one asserting that

if the operator TKt is L2(H1bE)-bounded, then E is rectifiable, is a corollary of the fact
that the L2(H1bE)-boundedness of TKt implies that pKt(H1bE) < ∞. This follows from
the generalised Melnikov-Verdera identity (0.13) for the kernels Kt and permutations pKt .

Now we come to the proof of the former statement in Theorem 1.2.
The proof for t, mentioned in Lemmas 1.5 and 1.6 (see also the beginning of the

current section), is direct via Theorem D, which states that if pκn(H1bE) <∞, then E is
rectifiable. Indeed, if pKt(H1bE) < ∞ for such t, then pκn(H1bE) < ∞ by the inequality
pKt > C(t) · pκn , C(t) > 0, and thus the set E is rectifiable.

What is left is to prove the former statement in Theorem 1.2 for

t = −1
2

(
3 +

√
9− 4Nn

)
, t = 2− N

n , n < N 6 2n,

t = −1
2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
, t = ρn,N , N > 2n.

It requires some additional work and therefore for the reader’s convenience we first make
several observations, which could help to clarify the forthcoming proof.

We start with a very brief exposition of the proof of Theorem B given in [Leg] (note
that one can find a modified version of the proof from [Leg] in [Tol5, Chapter 7] and follow
that instead). Recall that Theorem B states that for a 1-set E, if c2(H1bE) <∞, then
E is rectifiable. We emphasize again that it is essential in the proof that the curvature is
non-negative.

The first step is to show that there exists a compact subset F of the given set E such
that, among other things, c2(H1bF ) is well-controlled and can be made very small (this is
done in [Leg] by a quite standard uniformization procedure). Then the second and most
important step follows: to prove that if µ is a measure satisfying a few special conditions
(see Proposition 1.2), then there exists a Lipschitz graph Γ such that µ(Γ) > C · µ(C),
where C is an absolute constant.

The problem is to choose an adequate coordinate system of C and construct a Lipschitz
function A whose graph will be the one needed. For this purpose, the author of [Leg] first
defines some functions used to measure how well the sptµ is approximated by straight lines
at a given location and a given scale. It is shown that these functions are related to the c2(µ)
in the case when the measure µ does not degenerate too much. These preliminary results
are then used to construct the function A by stopping time arguments, which demand fine
adjustments to many parameters and thresholds. Starting with choosing a point x0 ∈ sptµ
and fixing an approximating line D0 (which will be the domain of the function A) such
that the mean distance from sptµ to the line D0 is suitably small, the author of [Leg]
comes to cutting sptµ in four disjoint pieces Z, F1, F2 and F3 such that

sptµ = Z ∪ F1 ∪ F2 ∪ F3.

It is shown that Z is very nice for constructing the graph but the three others admit “bad
events”. Then the goal is to prove that these bad pieces carry only a small part of the
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measure µ, namely, µ(Fj) 6 10−6µ(C) for each j and thus µ(Z) > 99
100µ(C). This allows to

construct the required Lipschitz function A : D0 → D⊥0 such that the set Z is contained
in the graph of A.

Coming back to the initial settings, if µ = H1bF , where F is the above-mentioned
subset of E, then there exists a Lipschitz graph Γ such that H1(Γ ∩ F ) > C · H1(F ). This
fact is used in the last step of the proof from [Leg], which is as follows. Since H1(E) <∞
by the assumptions, the set E can be decomposed into a rectifiable and purely unrectifiable
part, i.e. E = Erect + Eunrect. Suppose that

H1(Eunrect) > 0. (1.40)

Then there exists a compact set F ⊂ Eunrect and Lipschitz graph Γ such that H1(Γ ∩ F ) >
C · H1(F ) that contradicts the fact that F is purely unrectifiable.

Let us now say a few words about the proof of Theorem D given in [CMPT1]. Recall
that this theorem is an analogue of Theorem B, where the kernel 1/z and curvature squared
c2(H1bE) are replaced by the kernels κn(z) = (Re z)2n−1/|z|2n, n ∈ N, and corresponding
permutations pκn . We will use the definitions given near the formula (1.35) and in the
discussion of Theorem B above. First we mention that it is proved in [CMPT1] that the
permutations pκn(z1, z2, z3) behave similarly to c2(z1, z2, z3) for all triangles with compa-
rable sides, whose one side makes a big angle with the vertical line. More precisely (see
Lemma 1.9), it is shown there that for a fixed α0 ∈ (0, π/2) and given (z1, z2, z3) ∈ Oτ , if
the condition (1.36), i.e.

θV (Lz1,z2) + θV (Lz2,z3) + θV (Lz1,z3) > α0,

or
θH(Lz1,z2) + θH(Lz2,z3) + θH(Lz1,z3) 6 3

2π − α0,

is satisfied, then

pκn(z1, z2, z3) > C(α0, τ) · c(z1, z2, z3)2, C(α0, τ) > 0.

This enables the authors of [CMPT1] to use the above-described scheme from [Leg] in
order to construct the required Lipschitz graph Γ in the case when the first approximating
line D0 for sptµ is far from the vertical line. Note that exchanging the curvature for the
permutations pκn still requires new arguments in several key points of the proof. Otherwise,
when D0 is close to the vertical line and the scheme from [Leg] does not work (as µ(F3)
may be too big), they tune thresholds and apply some coverings so that they can use
the result for D0, being far from the vertical line, to construct countably many Lipschitz
graphs, which give Γ after appropriate joining.

We are now at the position to finish the proof of our Theorem 1.2. This will be an
adaptation of the arguments from [CMPT1].

On the one hand, by the clause (i) of Lemma 1.10, for a fixed α0 ∈ (0, π/2) and
given (z1, z2, z3) ∈ Oτ , if the condition (1.36), i.e. the same as in the result for t = 0
from [CMPT1] mentioned above, is satisfied and t = 2 − N

n for n < N 6 2n or t = ρn,N
for N > 2n, then we also have

pKt(z1, z2, z3) > C(α0, τ) · c(z1, z2, z3)2, C(α0, τ) > 0. (1.41)

It means that we can undeviatingly follow the scheme from [CMPT1] (exchanging pκn for
pKt) in order to get our result for t = 2− N

n , n < N 6 2n, and t = ρn,N , N > 2n.
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On the other hand, by the clause (ii) of Lemma 1.10, the inequality (1.41) is true for

t = −1
2

(
3 +

√
9− 4Nn

)
, n < N 6 2n,

t = −1
2

(
3 + ρn,N +

√
(3 + ρn,N )2 − 4Nn

)
, N > 2n,

(1.42)

only if both the conditions (1.36) and (1.37) are satisfied, i.e.

α0 6 θV (Lz1,z2) + θV (Lz2,z3) + θV (Lz1,z3) 6 3
2π − α0,

or
α0 6 θH(Lz1,z2) + θH(Lz2,z3) + θH(Lz1,z3) 6 3

2π − α0,

and thus the triangles (z1, z2, z3) are far from both the vertical and horizontal line.
Consequently, the scheme from [CMPT1] cannot be applied directly for t from (1.42).

However, as we will see, it works after a few modifications (besides the exchange of pκn
for pKt) connected basically with adapting geometrical arguments to both the conditions
(1.36) and (1.37). Since the cases where we are close to either the vertical or horizontal
line are well-separated and similar geometrically, the arguments for the first approximating
line D0, being close (far) to (from) the vertical line, can be easily transferred into the ones
for D0, being close (far) to (from) the horizontal line.

We now reproduce the main steps of the proof, stemming from [CMPT1], with necessary
changes when our permutations and the conditions (1.36) and (1.37) are involved. Several
statements are formulated without proofs because they are the same as in [CMPT1] (or
[Leg]) modulus the permutations involved.

Below we consider only t from (1.42). The following two propositions will then imply
Theorem 1.2 by the same contradiction arguments as in the proof from [Leg] (see the
arguments around (1.40) above). Note that one has to take µ = 40H1bF in Proposition 1.2,
where the set F is from Proposition 1.1 (it may be suitably rescaled if necessary).

Proposition 1.1 (An analogue of Lemma 3.4 in [CMPT1] and Proposition 1.1 in [Leg]).
Let E be a 1-set and pKt(H1bE) <∞. Then for all η > 0 there is a set F ⊂ E such that

• F is compact,

• pKt(H1bF ) 6 η diamF ,

• H1(F ) > 1
40 diamF ,

• for all z ∈ F , for all r > 0, H1(F ∩B(z, r)) 6 3r.

Proposition 1.2. For any C0 > 10, there is η > 0 such that if a measure µ satisfies

• µ(B(0, 1)) > 1, µ(C \B(0, 2)) = 0,

• for any ball B, µ(B) 6 C0 diamB,

• pKt(µ) 6 η,

then there exists a Lipschitz graph Γ such that µ(Γ) > 10−5µ(C).
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The rest of the section is devoted to the proof of Proposition 1.2 which is an analogue
of [CMPT1, Proposition 3.1]. First, we give several definitions that will be needed below,
see [CMPT1,Leg] for further ones. Given a measure µ, set

pKt,τ (µ) :=

∫∫∫
Oτ
pKt(z1, z2, z3)dµ(z1)dµ(z2)dµ(z3),

see (0.6), (1.2) and (1.35). For a ball B = B(x, r) set

δµ(x, r) :=
µ(B(x, r))

r
.

We will use a small density threshold δ > 0 for this quantity.
Given a fixed k > 1, for any ball B = B(x, r) ⊂ C and D a line in C, set

βD1,µ(x, r) :=
1

r

∫
B(x,kr)

dist (y,D)

r
dµ(y),

βD2,µ(x, r) :=

(
1

r

∫
B(x,kr)

(
dist (y,D)

r

)2

dµ(y)

)1/2

.

Geometrical notation connected with lines and angles is given near the formula (1.35)
at the end of Section 1.3.

Lemma 1.11. Let µ be a measure with C0-linear growth and B(x, r) ⊂ C a ball with
δµ(x, r) > δ. Suppose that τ is big enough, then for any ε > 0, there exists some δ1 =
δ1(δ, ε) > 0 such that

pKt,τ (µbkB)

µ(B)
6 δ1 =⇒ inf

D
βD2,µ(x, r) 6 ε.

Proof. The proof is the same as for Lemma 4.4 in [CMPT1]. We just have to use our
Lemma 1.10 instead of Lemma 2.3 there for the case when both the conditions (1.37) and
(1.36) are satisfied, and say that in the case

θH(Lz1,z2) + θH(Lz1,w) + θH(Lz2,w) 6 α0

we obtain the same estimate for dist(w,Lz1,z2) as in the case

θV (Lz1,z2) + θV (Lz1,w) + θV (Lz2,w) 6 α0.

�

By Lemma 1.11, chosen a point x0 ∈ sptµ, there exists an approximating line D0 such
that βD0

1,µ(x0, 1) 6 ε. The next step is to construct a first Lipschitz graph in the case when
D0 is far from both the horizontal and vertical lines.

To do so, one first has to introduce a family of stopping time regions and obtain the
partition sptµ = Z ∪ F1 ∪ F2 ∪ F3 (see the exposition of the proof from [Leg] above). As
this entirely repeats the corresponding part of [CMPT1, Section 5] (cf. [Leg, Subsection
3.1]), we omit it. We just have to mention that the thresholds θ0 and α, arising there, have
to be adapted to that D0 is far from both the horizontal and vertical line. Namely, θ0 is
now a threshold for both θV (D0) and θH(D0). It means that one has to distinguish not
only the cases θV (D0) > θ0 and θV (D0) < θ0 but also θH(D0) > θ0 and θH(D0) < θ0.
Moreover, α is tuned as follows: if θV (D0) or θH(D0) are greater than θ0, then α 6 θ0/10;
if θV (D0) or θH(D0) are not greater than θ0, then α = 10θ0.
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Furthermore, see [Leg,CMPT1] for the way how one can define the Lipschitz function
A on the line D0, using Z, F1, F2, F3, and appropriate thresholds.

Now we come to the main step of the proof of Proposition 1.2. The following lemma is
an analogue of Lemma 6.1 from [CMPT1].

Lemma 1.12. Under the assumptions of Proposition 1.2, if furthermore

θ0 < θV (D0) < π
2 − θ0,

then there exists a Lipschitz graph Γ such that µ(Γ) > 99
100µ(C).

For the proof one uses the above-mentioned function A to obtain the graph Γ, Z ⊂ Γ,
and show that

µ(F1) + µ(F2) + µ(F3) 6 1
100µ(C).

Indeed, the following lemmas are valid (recall that µ(C) > 1 by the assumptions).

Lemma 1.13. Under the assumptions of Proposition 1.2,

µ(F1) 6 10−6.

Proof. This is an analogue of [CMPT1, Proposition 6.3], whose proof includes consider-
ation of the two cases: 1) θV (D0) > θ0 and 2) θV (D0) 6 θ0 (see the proof of [CMPT1,
Lemma 6.4]).

Under our settings, we have to consider three cases. Namely, the case 1) has to be
exchanged for θ0 < θV (D0) < π

2 − θ0, although the proof remains the same. The case 2)
splits up into the following two: θV (D0) 6 θ0 and θV (D0) > π

2 − θ0 (i.e. θH(D0) 6 θ0).
Arguments in the latter case are the same as in the former one. �

Lemma 1.14 (An analogue of Proposition 6.2 in [CMPT1]). Under the assumptions of
Proposition 1.2,

µ(F2) 6 10−6.

Lemma 1.15. Under the assumptions of Lemma 1.12,

µ(F3) 6 10−6.

Proof. The proof stems from the one of [CMPT1, Proposition 6.5], but with exchange of
θV (D0) > θ0 for θ0 < θV (D0) < π

2 − θ0 as in Lemma 1.12. �

Thus Proposition 1.2 is proved under the assumptions of Lemma 1.12. What is left is
to consider the other case.

Lemma 1.16. Under the assumptions of Proposition 1.2, if furthermore

θV (D0) 6 θ0 or θV (D0) > π
2 − θ0 (i.e. θH(D0) 6 θ0),

then there exists a Lipschitz graph Γ such that µ(Γ) > 10−5µ(C).

Proof. To prove this, we repeat arguments from the proof of [CMPT1, Lemma 7.1], given
for θV (D0) 6 θ0, for the case θH(D0) 6 θ0. �
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1.6 Additional remarks

In this section we generalise Theorem 1.2 to higher dimensions. Let us introduce necessary
notation first. For d ∈ N+ and E ⊂ Rd with finite length we consider a SIO TKt = (T jKt)

d
j=1

such that formally

T jKtf(x) :=

∫
E
f(y)Kj

t (x− y)dH1(y), Kj
t (x) := κjN (x) + t · κjn(x),

where κjn(x) := x2n−1
j /|x|2n and x = (x1, . . . , xd) ∈ Rd \ {0}. As before, we suppose that

N > n, where n,N ∈ N+, and t ∈ R. We also need the permutations

PKt(x, y, z) :=
d∑
j=1

P
Kj
t
(x, y, z) for distinct points x, y, z ∈ Rd,

where P
Kj
t
(x, y, z) are the same as in (0.5) with Kj

t instead of K. We also define PKt(µ)

analogously to (0.6).

Theorem 1.3. Let t be as mentioned in Theorem 1.1. Given a Borel set E ⊂ Rd such that
0 < H1(E) <∞, if PKt(H1bE) <∞, then E is rectifiable. Moreover, if the operator TKt

is L2(H1bE)-bounded, then E is rectifiable.

This result for t = 0 was recently proved in [CP, Theorem 1.2(1) and Theorem 6.2].
To prove Theorem 1.3 for all required t we only need to use our Lemmas 1.5, 1.6 and 1.10
in order to show that for all x, y, z ∈ Rd such that (x, y, z) ∈ Oτ and the assumptions of
Lemma 1.10 are satisfied,

P
Kj
t
(x, y, z) > C(t, α0, τ)P

Kj
0
(x, y, z), C(t, α0, τ) > 0. (1.43)

See the definitions of α0, τ and Oτ before Lemma 1.7. Then by [CP, Proposition 3.3],
adapted to the conditions (1.36) and (1.37), and the arguments similar to those in [CP,
Section 6] and our Section 1.5 we immediately get the result. Note that [CP, Proposition
3.3] slightly simplifies the approach from [CMPT1] (and improves Lemma 1.9) in the case
t = 0 as the parameter τ is not needed anymore. In our case this parameter is still necessary
because of the inequality (1.43).

To finish, it is also worth mentioning here that under Ahlfors-David regularity assump-
tion one can expect that for t as in Theorem 1.1 the L2-boundedness of the operator
associated with Kt implies uniform rectifiability. This is indeed true and will be proved in
Chapter 2.
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Chapter 2

Singular integral operators
unsuitable for the curvature method
whose L2-boundedness still implies
rectifiability

2.1 Introduction

The exposition in this chapter is based on [CMT1]. Below we continue working with the
family of kernels defined in (0.24),

Kt(z) =
(Re z)2N−1

|z|2N
+ t · (Re z)2n−1

|z|2n
, t ∈ R, K∞(z) =

(Re z)2n−1

|z|2n
,

and its subfamily with (n,N) = (1, 2) defined in (0.21),

kt(z) =
(Re z)3

|z|4
+ t · Re z

|z|2
, t ∈ R, k∞(z) =

Re z
|z|2

.

We are going to use the same definitions related to curvature and permutations as given in
Introduction and Chapter 1 so it is recommended to recall them. We however emphasize
that as in Chapter 1 it is more convenient for us to deal with the following simplified
version of the permutations (0.5) introduced in (1.2) in Chapter 1:

pK(z1, z2, z3)

= K(z1 − z2)K(z1 − z3) +K(z2 − z1)K(z2 − z3) +K(z3 − z1)K(z3 − z2)

= 1
2PK(z1, z2, z3),

where K is supposed to be an odd and real-valued kernel. Note that the kernels that we
consider are odd and real-valued.

Take into account that, under the same assumption on K, by (1.3) and (1.4),

pK(µ1, µ2, µ3) = 1
2PK(µ1, µ2, µ3), pK,ε(µ1, µ2, µ3) = 1

2PK,ε(µ1, µ2, µ3)

and
pK(µ) = 1

2pK(µ, µ, µ), pK,ε(µ) = 1
2PK,ε(µ, µ, µ),

where µ, µ1, µ2 and µ3 are measures.
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Recall that by a measure we mean a positive locally finite Borel measure on C.
We will need several results proved in Chapter 1. Namely, Theorem 1.1 states that if t

belongs to the set

Ω(n,N) :=


{0} ∪ R \

(
−1

2

(
3 +

√
9− 4Nn

)
, 2− N

n

)
if n < N 6 2n,

{0} ∪ R \
(
−1

2

(
σn,M +

√
σ2
n,M − 4Nn

)
, σn,M − 3

)
if N > 2n,

(2.1)

where σn,M := 3 + (Nn − 2)
√
N − 2n, then

pKt(z1, z2, z3) > 0 for all (z1, z2, z3) ∈ C3. (2.2)

Moreover, by Theorem 1.2, if the SIO TKt , where t ∈ Ω(n,N), is L2(H1bE)-bounded, then
E is rectifiable. From the other side, it follows from Remark 1.1 that there exist triples
(z1, z2, z3) such that pKt(z1, z2, z3) change sign if t belongs to the interval

ω(n,N) := (−N/n, 0) (2.3)

Obviously, ω(n,N) ⊆ R \ Ω(n,N). Note also that ω(n, 2n) = (−2, 0) = R \ Ω(n, 2n). For
this reason, a curvature-like method cannot be applied directly for t ∈ ω(n,N) (see also
Remark 1.2 and Figure 0.2).

Thus we come to the question of what happens when t ∈ ω(n,N), i.e. the permutations
pKt(z1, z2, z3) change sign and curvature-like methods as in [MMV,Leg,CMPT1,Chu] do
not work. In this chapter a partial answer is given in the case of kernels (0.21). Namely,
we show that for any fixed t ∈ (−2,−

√
2) ⊂ ω(1, 2) the analogues of Theorems A and B

are still valid (a plausible conjecture for the kernels (0.24) with t ∈ ω(n,N) is also stated).
To the best of our knowledge, this is the first example of kernels with this property in the
plane. We also establish an analogue of Theorem A for the kernels (0.24) with t ∈ Ω(n,N).
The corresponding results are given in the next section.

2.2 Main results

The following two theorems are analogues of Theorems A and B for the kernels (0.21)
with t ∈ (−2,−

√
2), whose corresponding permutations change sign and a curvature-like

method cannot be applied directly. We will prove them in Section 2.3 by exploiting sharp
estimates for permutations related to the kernels (0.16) but not to the ones in (0.21). This
will form the perturbation method that we mentioned above. Recall that ω(1, 2) = (−2, 0),
see (2.3).

Theorem 2.1. Let µ be an AD-regular measure and kt a kernel of the form (0.21), where
t ∈ (−2,−

√
2) ⊂ ω(1, 2). The measure µ is uniformly rectifiable if and only if the SIO Tkt

is L2(µ)-bounded.

Note that this theorem fails if t = −1 ∈ ω(1, 2) as follows from Theorem E (take into
account that the purely unrectifiable set there is AD-regular).

Theorem 2.2. Let E be a 1-set and kt a kernel of the form (0.21), where t ∈ (−2,−
√

2) ⊂
ω(1, 2). If the SIO Tkt is L2(H1bE)-bounded, then E is rectifiable.

This theorem supplements the results about SIO Tkt , see Figure 0.2.
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Remark 2.1. As we will see at the end of Section 2.3, it is plausible that analogues
of Theorems 2.1 and 2.2 are valid for the kernels (0.24) with |t| >

√
N/n. Note that

in particular (−N/n,−
√
N/n) ⊂ ω(n,N), i.e. for t from this interval the corresponding

permutations change sign.

We now formulate a Theorem A type result for the kernels (0.24), where t ∈ Ω(n,N)
and thus the corresponding permutations are non-negative (see (2.1) and (2.2)).

Theorem 2.3. Let µ be an AD-regular measure and Kt a kernel of the form (0.24), where
t ∈ Ω(n,N). The measure µ is uniformly rectifiable if and only if the SIO TKt is L2(µ)-
bounded.

Since the permutations are non-negative here, we can use a curvature-like method. The
proof that will be given in Section 2.4 is more or less analogous to the one used for the
kernels (0.16) in [CMPT1, Section 8].

2.3 Proof of Theorems 2.1 and 2.2

Recall that

k∞(z) = κ1(z) =
Re z
|z|2

, k0(z) = κ2(z) =
(Re z)3

|z|4
and kt(z) = κ2(z) + t · κ1(z).

The following result from [CMPT1] will be necessary below.

Lemma 2.1 (Proof of Proposition 2.1 in [CMPT1]). For any u = (x, y) and v = (a, b) in
the complex plane,

pκm(0, u, v) =
m∑
k=1

(
m

k

)
(ax(x− a))2(m−k)

|u|2m|v|2m|u− v|2m
hk(u, v), (2.4)

where hk(u, v) := (ax)2k−1(y − b)2k + (x(x− a))2k−1b2k + (a(a− x))2k−1y2k > 0.

To prove Theorems 2.1 and 2.2 we first obtain sharp pointwise estimates for the per-
mutations related to the kernels (0.16).

Lemma 2.2. It holds that

pκ2(z1, z2, z3) 6 2pκ1(z1, z2, z3) for all (z1, z2, z3) ∈ C3. (2.5)

Proof. It is enough to prove (2.5) for (z1, z2, z3) = (0, u, v) as the permutations of the form
(1.2) are invariant under translations (see Section 1.3). Given u = (x, y) and v = (a, b), by
(2.4) we get

2pκ1(0,u, v)− pκ2(0, u, v)

=
2h1(u, v)

|u|2|v|2|u− v|2
− 2x2a2(x− a)2 h1(u, v) + h2(u, v)

|u|4|v|4|u− v|4

=
2
[
|u|2|v|2|u− v|2 − x2a2(x− a)2

]
h1(u, v)− h2(u, v)

|u|4|v|4|u− v|4
.

Now we obtain a lower estimate of the expression in the square brackets before h1(u, v).
Expanding |u|2|v|2|u− v|2 gives

(x2 + y2)(a2 + b2)
(
(x− a)2 + (y − b)2

)
− x2a2(x− a)2

= x2a2(y − b)2 + (x2b2 + a2y2 + b2y2)
(
(x− a)2 + (y − b)2

)
> x2a2(y − b)2 + (x2b2 + a2y2)(x− a)2.
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Thus,

2pκ1(0,u, v)− pκ2(0, u, v) >
G(x, y, a, b)

|u|4|v|4|u− v|4
,

where

G(x, y, a, b) := 2(x2a2(y − b)2 + (x2b2 + a2y2)(x− a)2)h1(u, v)− h2(u, v).

Notice that by Lemma 2.1,

h1(u, v) = ax(y − b)2 + x(x− a)b2 + a(a− x)y2

h2(u, v) = (ax)3(y − b)4 + (x(x− a))3b4 + (a(a− x))3y4.

Consequently, to prove the required inequality it is enough to show that G(x, y, a, b) > 0.
We separate the discussion into three cases.

1) Let a = 0. Then

G(x, y, 0, b) = 2x4b2 · x2b2 − x6b4 = x6b4 > 0.

2) Let b = 0. Then

G(x, y, a, 0)

= 2
(
a2x2y2 + a2y2(x− a)2

) (
axy2 + a(a− x)y2

)
−
(
a3x3y4 + a3(a− x)3y4

)
= 2a3y4

(
x2 + (x− a)2

)
(x+ (a− x))− a3y4

(
x3 − (x− a)3

)
= a4y4

(
2(x2 + (x− a)2)− (x2 + x(x− a) + (x− a)2)

)
= a4y4

(
x2 − x(x− a) + (x− a)2

)
= a4y4

(
x2 − ax+ a2

)
= a4y4

(
(x− 1

2a)2 + 3
4a

2
)
> 0.

3) Let a 6= 0 and b 6= 0. We divide G(x, y, a, b) by a6b4, put α = x/a and β = y/b and
take into account that by Lemma 2.1 in these settings one has

hk(u, v)

a4k−2b2k
= α2k−1(β − 1)2k + α2k−1(α− 1)2k−1 − (α− 1)2k−1β2k, k = 1, 2.

Therefore

G(x, y, a, b)

a6b4

= 2
(
α2(β − 1)2 + (α2 + β2)(α− 1)2

) (
α(β − 1)2 + α(α− 1)− (α− 1)β2

)
−
(
α3(β − 1)4 + α3(α− 1)3 − (α− 1)3β4

)
.

Removing brackets and further collecting terms give

G(x, y, a, b)

a6b4
=
(
α2 − α+ 1

) (
β4 − 4αβ3 + 6α2β2 − 4α3β + α4

)
=
(
(α− 1

2)2 + 3
4

)
(α− β)4 > 0.

Thus G(x, y, a, b) is non-negative in all the cases and so we are done. �
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Remark 2.2. The inequality (2.5) is sharp as it is known from Lemma 1.3 proved in
Chapter 1 that

2
[

Re (z1−z2)
|z1−z2|

Re (z1−z3)
|z1−z3|

Re (z2−z3)
|z2−z3|

]2
pκ1(z1, z2, z3) 6 pκ2(z1, z2, z3).

Indeed, when all sides of the triangle (z1, z2, z3) make a small angle with the horizontal,
the multiplier in the square brackets is close to 1 in modulus.

The estimate (2.5) allows us to obtain an inequality for L2-norms.

Lemma 2.3. Let µ be a finite measure with linear growth. Then for any ε > 0 we have

‖Tκ2,ε1‖L2(µ) 6
√

2 ‖Tκ1,ε1‖L2(µ) + C
√
µ(C), C > 0. (2.6)

Proof. From Lemma 2.2 we immediately get that

pκ2,ε(µ) 6 2pκ1,ε(µ). (2.7)

Now we use the identity (0.13) for the permutations (1.2), i.e.

‖TK,ε1‖2L2(µ) = 1
3pK,ε(µ) +RK,ε(µ), |RK,ε(µ)| 6 CKµ(C), CK > 0,

where K is a real and odd CZ kernel with non-negative permutations. In these terms the
inequality (2.7) gives

1
3pκ2,ε(µ) +Rκ2,ε(µ) 6 2

(
1
3pκ1,ε(µ) +Rκ1,ε(µ)

)
+Rκ2,ε(µ)− 2Rκ1,ε(µ),

and, consequently,

‖Tκ2,ε1‖2L2(µ) 6 2‖Tκ1,ε1‖2L2(µ) + Cµ(C), C > 0.

Applying the inequality
√
ax2 + b 6

√
ax+

√
b valid for a, b, x > 0, we get (3.3). �

Remark 2.3. Note that Lemma 2.2 is a particular case of [CMPT2, Lemma 7] but with
an explicit constant. Nevertheless, the explicitness of the constant is essential here and
actually enables us to obtain the result.

We are now ready to prove Theorems 2.1 and 2.2. By (2.6) and the triangle inequality,

‖Tkt,ε1‖L2(µ) = ‖(Tκ2,ε + t · Tκ1,ε)1‖L2(µ)

> |t|‖Tκ1,ε1‖L2(µ) − ‖Tκ2,ε1‖L2(µ)

> (|t| −
√

2)‖Tκ1,ε1‖L2(µ) − C
√
µ(C).

Consequently,

‖Tκ1,ε1‖L2(µ) 6
‖Tkt,ε1‖L2(µ) + C

√
µ(C)

|t| −
√

2
, |t| >

√
2, (2.8)

and therefore for any cube Q ⊂ C,

‖Tκ1,εχQ‖L2(µbQ) 6
‖Tkt,εχQ‖L2(µbQ) + C

√
µ(Q)

|t| −
√

2
, |t| >

√
2.

Applying a variant of the T1 Theorem of Nazarov, Treil and Volberg from [Tol5, Theorem
9.40], we infer that the L2(µ)-boundedness of the SIO Tkt , where t is fixed and such that
|t| >

√
2, implies that Tκ1 (or equivalently the Cauchy transform by (0.13) and (0.15)) is

L2(µ)-bounded. Therefore, Theorems A and B give the desired result. Note that the “only
if” part of Theorem 2.1 follows from [Dav1].
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Remark 2.4. Computer experiments suggest that the following inequality holds:

pκN (z1, z2, z3) 6 N
n pκn(z1, z2, z3). (2.9)

(Lemma 2.2 corresponds to the case (n,N) = (1, 2).) Moreover, if u = −γ + i, v = γ + i
and γ > 0, then (see Example 1.1 in Chapter 1)

pκm(0, u, v) =
γ2m−2

(
(γ2 + 1)m − γ2m

)
(γ2 + 1)2m

, m ∈ N,

and therefore

lim
γ→∞

pκN (0, u, v)

pκn(0, u, v)
= lim

γ→∞

1−
(
γ2/(γ2 + 1)

)N
1− (γ2/(γ2 + 1))n

=
N

n
.

It means that the constant N/n is sharp if (2.9) is true.
It would follow from (2.9) in the same manner as above that the L2(µ)-boundedness of

TKt , where t is fixed and such that |t| >
√
N/n, implies that Tκn is L2(µ)-bounded. This

would give the analogues of Theorems 2.1 and 2.2 for the more general class of kernels (0.24)
via Theorems C and D. However, we are not able to prove (2.9) yet.

2.4 Proof of Theorem 2.3

We now consider the kernels (0.24) with t ∈ Ω(n,N) (see (2.1)). As mentioned above, the
corresponding permutations are non-negative and hence a curvature-like method can be
used directly. Namely, we will adapt the arguments from [CMPT1, Section 8], which in
turn stem from [DS1], to our settings. Note that the “only if” part of Theorem 2.3 follows
from [Dav1]. Thus we only need to prove the “if” part.

Suppose that µ is an AD-regular measure and TKt the SIO associated with the kernels
(0.24), t ∈ Ω(n,N). It is proved in Lemmas 1.5 and 1.6 in Chapter 1 that if

t ∈ R \
[
−1

2

(
3 +

√
9− 4Nn

)
, 2− N

n

]
, n < N 6 2n, (2.10)

t ∈ R \
[
−1

2

(
σn,M +

√
σ2
n,M − 4Nn

)
, σn,M − 3

]
, N > 2n, (2.11)

where σn,M = 3 +
(
N
n − 2

)√
N − 2n as above, then

pKt(z1, z2, z3) > C(t) · pκn(z1, z2, z3), C(t) > 0, (z1, z2, z3) ∈ C3.

Consequently, pKt,ε(µ) > C(t) · pκn,ε(µ) and hence from (0.13) we conclude that for t as in
(2.10) and (2.11) and any cube Q ⊂ C,

‖Tκn,εχQ‖L2(µbQ) 6 C(t)
(
‖TKt,εχQ‖L2(µbQ) + C

√
µ(Q)

)
. (2.12)

By a variant of the T1 Theorem from [Tol5, Theorem 9.40] and Theorem C (see also
Lemma 3.50 that will be proved in Chapter 3), the measure µ is uniformly rectifiable.

What is left, according to (2.1), is to prove Theorem 2.3 for

t = 2− N
n , n < N 6 2n, (2.13)

t = σn,M − 3, N > 2n, (2.14)

t = −1
2

(
3 +

√
9− 4Nn

)
, n < N 6 2n, (2.15)

t = −1
2

(
σn,M +

√
σ2
n,M − 4Nn

)
, N > 2n. (2.16)
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To manage these cases, we introduce additional notation. Given two distinct points
z, w ∈ C, we denote by Lz,w the line passing through z and w. Given three pairwise
distinct points z1, z2, z3 ∈ C, we denote by ](z1, z2, z3) the smallest angle (belonging to
[0;π/2]) formed by the lines Lz1,z2 and Lz1,z3 . If L and L′ are lines, then ](L,L′) is the
smallest angle (belonging to [0;π/2]) between them. Also, θV (L) := ](L, V ), where V is
the vertical. Furthermore, for a fixed constant τ > 1 and complex numbers z1, z2 and z2,
set

Oτ :=

{
(z1, z2, z3) :

|zi − zj |
|zi − zk|

6 τ for pairwise distinct i, j, k ∈ {1, 2, 3}
}
, (2.17)

so that all triangles with vertexes z1, z2 and z3 in Oτ have comparable sides.
Given α0 ∈ (0, π/2) and (z1, z2, z3) ∈ C3, in what follows we will sometimes need the

conditions
θV (Lz1,z2) + θV (Lz2,z3) + θV (Lz1,z3) > α0 (2.18)

and
θV (Lz1,z2) + θV (Lz2,z3) + θV (Lz1,z3) 6 3

2π − α0. (2.19)

We will also use the following result which is Lemma 1.10 in Chapter 1.

Lemma 2.4. Fix α0 ∈ (0, π/2). Given Kt and (z1, z2, z3) ∈ Oτ ,

(i) if (2.18) is satisfied and t is as in (2.13) or (2.14),

or

(ii) if (2.18) and (2.19) are satisfied and t is as in (2.15) or (2.16),

then the following inequality holds:

pKt(z1, z2, z3) > C(α0, τ) · c(z1, z2, z3)2, C(α0, τ) > 0. (2.20)

On the one hand, if we are in the clause (i) of Lemma 2.4, i.e. in the same settings
as in [CMPT1], then we can undeviatingly follow the scheme from [CMPT1, Section 8]
(exchanging pκn for pKt) in order to get our result for t as in (2.13) or (2.14).

On the other hand, by the clause (ii) of Lemma 2.4, we can ensure that the inequal-
ity (2.20) is true for t as in (2.15) or (2.16) if the sides of the triangles (z1, z2, z3) are far
from both the vertical and horizontal. Consequently, the scheme from [CMPT1, Section 8]
cannot be applied directly for such t. Nevertheless, as we show below, it works after sev-
eral modifications (besides the exchange of pκn for pKt) connected basically with adapting
geometrical arguments to both the conditions (2.18) and (2.19). Note that some of the
arguments in [CMPT1, Section 8] are very sketchy and so, for the sake of completeness,
we give a proof that is more detailed than the corresponding one in [CMPT1, Section 8].

The fact that the L2(µ)-boundedness of TKt implies that µ is uniformly rectifiable will
be proved by means of a corona type decomposition. We now recall how such a decompo-
sition is defined in [DS1, Chapter 2] for a given AD-regular measure µ. The elements Q
playing the role of dyadic cubes are usually called µ-cubes.

Given an AD regular measure µ on C, for each j ∈ Z (or j > j0 if µ(C) < ∞) there
exists a family Dj of Borel subsets of sptµ, i.e. µ-cubes Q of the jth generation, such that

• each Dj is a disjoint partition of spt µ, i.e. if Q,Q′ ∈ Dj and Q 6= Q′, then

sptµ =
⋃

Q∈Dj
Q and Q ∩Q′ = ∅;
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• if Q ∈ Dj and Q′ ∈ Dk with k 6 j, then either Q ⊆ Q′ or Q ∩Q′ = ∅;

• for all j ∈ Z and Q ∈ Dj , we have

2−j . diam (Q) . 2−j and µ(Q) ≈ 2−j .

In what follows, D :=
⋃
j∈ZDj . Moreover, given Q ∈ Dj , we define the side length of Q

as `(Q) = 2−j , which actually indicates the generation of Q. Obviously, `(Q) ≈ diam (Q).
The value of `(Q) is not well defined if the µ-cube Q belongs to Dj ∩ Dk with j 6= k. To
avoid this, one may consider a Q ∈ Dj as a couple (Q, j).

Given λ > 1 and Q ∈ D, set

λQ := {x ∈ sptµ : dist (x,Q) 6 (λ− 1)`(Q)}.

We will also need the following version of P. Jones’ β-numbers for µ-cubes (see [DS2]):

βq(Q) := inf
L

(
1

`(Q)

∫
η1Q

(
dist (x, L)

`(Q)

)q
dµ(x)

)1/q

, 1 6 q 6∞,

where η1 > 4 is some constant to be fixed later and the infimum is taken over all affine
lines L. We will mostly use β1(Q) and denote by LQ the best approximating line for β1(Q).

Given Q ∈ Dj , the sons of Q, forming the collection Sons(Q), are the µ-cubes Q′ ∈ Dj+1

such that Q′ ⊆ Q.
By [DS1, Chapter 2], one says that µ admits a corona decomposition if there are pa-

rameters η, δ > 0 and a triple (B,G,Tree), where B and G are subsets of D and Tree is a
family of subsets S of G, such that the following conditions are satisfied:

1. D = B ∪ G and B ∩ G = ∅.

2. B satisfies a Carleson packing condition, i.e.∑
Q∈B:Q⊆R

µ(Q) .η µ(R) for all R ∈ D. (2.21)

3. G =
⋃
S∈Tree S and the union is disjoint;

4. Each S ∈ Tree is called a tree and is coherent : each S has a unique maximal element
QS , which contains all other elements of S as subsets, i.e.

• a µ-cube Q′ ∈ D belongs to S if Q ⊆ Q′ ⊆ QS for some Q ∈ S;
• if Q ∈ S then either all elements of Sons(Q) lie in S or none of them do.

5. For each S ∈ Tree, there exists a (possibly rotated) Lipschitz graph ΓS with constant
smaller than η such that dist (x,ΓS) 6 δ diam (Q) whenever x ∈ 2Q and Q ∈ S.

6. The maximal µ-cubes QS , for S ∈ Tree, satisfy the Carleson packing condition∑
S∈Tree: QS⊆R

µ(QS) . µ(R) for all R ∈ D.

According to [DS1, Section 1, (C4) and (C6)], if µ is uniformly rectifiable, then it admits
a corona decomposition for all η, δ > 0. Conversely, the existence of a corona decomposition
for a single set of η and δ implies that µ is uniformly rectifiable.
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We now turn to constructing our corona decomposition. Let ε > 0 be some small
constant to be chosen at the very end of the construction. From now on, B0(ε) stands for
the family of cubes Q ∈ D such that β1(Q) > ε. Furthermore, G0(ε) := D \B0(ε). The aim
is to show that B0(ε) satisfies a Carleson packing condition.

Note that constants in some inequalities below depend also on the AD-regularity con-
stant and the constants η1, η2 and η3 related to β-numbers. Since these constants are fixed
at some point, we do not indicate this dependence explicitly. On the contrary, we emphasize
the dependence of some forthcoming inequalities on the essential parameter ε.

Recall that `(Q) ≈ µ(Q). We start with observing that for any y, z ∈ η1Q we have

β2(Q)2 6
1

`(Q)

∫
η1Q

(
dist (x, Ly,z)

`(Q)

)2

dµ(x)

=
1

`(Q)

(∫
x∈η1Q:

dist (x,Ly,z)

`(Q)
<ε2

(
dist (x, Ly,z)

`(Q)

)2

dµ(x)

+

∫
x∈η1Q:

dist (x,Ly,z)

`(Q)
>ε2

(
dist (x, Ly,z)

`(Q)

)2

dµ(x)

)

. ε4 +
1

`(Q)

∫
x∈η1Q:

dist (x,Ly,z)

`(Q)
>ε2

(
dist (x, Ly,z)

`(Q)

)2

dµ(x).

Lemma 2.5. Let B1 = B(ζ1, r1) and B2 = B(ζ2, r2) be two balls such that B1 ∩ sptµ ⊂
η1Q, B2 ∩ sptµ ⊂ η1Q, dist (B1, B2) ≈ `(Q) and r1 ≈ r2 ≈ `(Q). If y ∈ B1 and z ∈ B2,
then for ε small enough,∫

x∈η1Q:
dist (x,Ly,z)

`(Q)
>ε2

dist (x, Ly,z)
2dµ(x) .ε `(Q)2p

(ε;Q)
Kt

(µ),

where
p

(ε;Q)
Kt

(µ) :=

∫∫∫
(x,y,z)∈(η1Q)3

|x−y|>ε2`(Q),
|x−z|>ε2`(Q)

pKt(x, y, z) dµ(x)dµ(y)dµ(z).

Note that the existence of the above-mentioned balls B1 and B2 is guaranteed in the
AD-regular case.
Proof. Note that the condition dist (x, Ly,z) > ε2`(Q) implies that |x − y| > ε2`(Q) and
|x− z| > ε2`(Q). Consequently, since x ∈ η1Q, y ∈ B1 and z ∈ B2,

|x− z| ≈ε |x− y| ≈ε |y − z|. (2.22)

We now separate two cases.
(1) Suppose that

ε10 6 θV (Lx,y) + θV (Ly,z) + θV (Lx,z) 6 3
2π − ε

10.

Then by the clause (ii) of Lemma 2.4, where we put α0 = ε10 and τ = τ(ε, η1) chosen with
respect to the constants in (2.22), we have c(x, y, z)2 .ε pKt(x, y, z).

(2) Now let
θV (Lx,y) + θV (Ly,z) + θV (Lx,z) < ε10

or
θV (Lx,y) + θV (Ly,z) + θV (Lx,z) >

3
2π − ε

10.
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In this case dist (x, Ly,z) . ε10`(Q). Thus for ε small enough we get a contradiction with
the assumption dist (x, Ly,z) > ε2`(Q).

Summarizing,∫
x∈η1Q:

dist (x,Ly,z)

`(Q)
>ε2

dist (x, Ly,z)
2dµ(x)

.ε
`(Q)4

µ(B1)µ(B2)

∫
B2

∫
B1

∫
η1Q:

dist (x,Ly,z)

`(Q)
>ε2

(
dist (x, Ly,z)

|x− y||x− z|

)2

dµ(x)dµ(y)dµ(z)

.ε `(Q)2

∫
η1Q

∫
η1Q

∫
η1Q:

dist (x,Ly,z)

`(Q)
>ε2

c(x, y, z)2dµ(x)dµ(y)dµ(z)

.ε `(Q)2p
(ε;Q)
Kt

(µ).

We used the well-known identity c(x, y, z) = dist (x, Ly,z)/(|x− y||x− z|). �

The estimate for β2(Q)2 that we obtained above and Lemma 2.5 give

β2(Q)2 . ε4 +
C(ε)

`(Q)
p

(ε;Q)
Kt

(µ), Q ∈ D.

We now take into account that β1(Q) . β2(Q) by Hölder’s inequality and, consequently,
if Q ∈ B0(ε), i.e. β1(Q) > ε, then β2(Q) & ε. From this we deduce for sufficiently small ε
that

µ(Q) .ε p
(ε;Q)
Kt

(µ) for any Q ∈ B0(ε).

From this we immediately get that∑
Q∈B0(ε):Q⊆R

µ(Q) .ε
∑

Q∈B0(ε):Q⊆R

p
(ε;Q)
Kt

(µ).

To estimate the latter sum, we will use the notation

Aj(ε) := {x : ε22−j 6 |x− y| 6 c 2−j} for some siutable c > 0. (2.23)

Recall that `(Q) = 2−j if Q ∈ Dj . Clearly, (2.23) are the concentric annuli B(y, c`(Q)) \
B(y, ε2`(Q)) contained in the ball B(y, c`(R)) and having bounded overlap depending on ε
and c. These observations lead to the following:∑

Q∈B0(ε):Q⊆R

p
(ε;Q)
Kt

(µ)

6
∫
η1R

∫
η1R

(∑
j>j0

∑
Q∈B0(ε)∩Dj(R)

∫
η1Q∩Aj(ε)

pKt(x, y, z) dµ(x)

)
dµ(y)dµ(z)

.
∫
η1R

∫
η1R

(∑
j>j0

∫
η1R∩Aj(ε)

pKt(x, y, z) dµ(x)

)
dµ(y)dµ(z)

.ε pKt(µb(η1R)).

Since TKt is L2(µ)-bounded, we get pKt(µbF ) . µ(F ) for any F ⊂ C. Consequently,

pKt(µb(η1R)) . µ(R) for all R ∈ D,

48



and therefore we reach the desired inequality∑
Q∈B0(ε):Q⊆R

µ(Q) .ε µ(R) for all R ∈ D.

Thus, for any ε > 0, there exists the decomposition

D = B0(ε) ∪ G0(ε), (2.24)

where B0(ε) satisfies a Carleson packing condition and for any cube Q ∈ G0(ε) there exists
a line LQ such that dist (x, LQ) .

√
ε `(Q) for all x ∈ 1

2η1Q (since β1(Q) < ε for such
cubes and β∞(Q) .

√
β1(2Q)). More details can be found in [DS1, Ch. 6].

Using the decomposition (2.24), we now can apply [DS1, Lemma 7.1] in order to obtain
a new decomposition (still depending on ε) but already with a family of stopping time
regions. Suppose that θ0 is small enough and 0 < ε� θ0 to prove the following assertion.

Lemma 2.6. For all sufficiently small ε > 0, there exists a decomposition D = B ∪ G,
where B = B(ε) satisfies a Carleson packing condition (with a constant depending on ε)
and G = G(ε) can be partitioned into a family Tree of coherent regions S, satisfying the
following. For each S ∈ Tree denote

α(S) := 1
10θ0 if θ0 6 θV (LQS ) 6 π/2− θ0

and
α(S) := 10θ0 if θV (LQS ) < θ0 or θV (LQS ) > π/2− θ0.

Then

• if Q ∈ S, then ](LQ, LQS ) 6 α(S);

• if Q is a minimal cube of S, then either at least one element of Sons(Q) lies in B or
else ](LQ, LQS ) > 1

2α(S).

Here G ⊆ G0(ε) and therefore for any Q ∈ G one has β1(Q) < ε.
Lemma 2.6 is an analogue of [CMPT1, Lemma 8.1] which comes from [DS1, Lemma

7.1]. The main difference between [CMPT1, Lemma 8.1] and [DS1, Lemma 7.1] is that two
different values of the parameter α(S) have to be chosen, according to the angle θV (LQS ).
In our case the situations where the angle θV (LQS ) is close to zero and π/2 have to be also
distinguished.

To obtain the required Lipschitz function, one can follow the proof of [DS1, Proposition
8.2] to deduce the following lemma.

Lemma 2.7. For each S ∈ Tree from Lemma 2.6, there exists a Lipschitz function AS :
LQS → L⊥QS with norm . α(S) such that, denoting by ΓS the graph of AS,

dist (x,ΓS) .
√
ε `(Q)

for all x ∈ 2Q with Q ∈ S.

The proof will be completed if we show that the maximal µ-cubes QS , S ∈ Tree, satisfy
the Carleson packing condition∑

S∈Tree: QS⊆R
µ(QS) .ε µ(R) for all R ∈ D.
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To do so, we will distinguish several types of trees.
Here and subsequently, Stop(S) denotes the family of the minimal µ-cubes of S ∈ Tree,

which may be empty. By Lemma 2.6, we can split Stop(S) as follows:

Stop(S) = Stopα(S) ∪ Stopβ(S), Stopα(S) ∩ Stopβ(S) = ∅, (2.25)

where Stopβ(S) contains all minimal µ-cubes Q such that at least one element of Sons(Q)

belongs to B and Stopα(S) contains all minimal Q such that ](LQ, LQS ) > 1
2α(S).

The first set that we will consider is

∆1 :=
{
S ∈ Tree : µ

(
QS \

⋃
Q∈Stop(S)Q

)
> 1

2 µ(QS)
}
.

Clearly, if S ∈ Tree \∆1, then by (2.25),

1
2 µ(QS) < µ

(⋃
Q∈Stop(S)Q

)
= µ

(⋃
Q∈Stopα(S)Q

)
+ µ

(⋃
Q∈Stopβ(S)Q

)
. (2.26)

Now let
∆2 :=

{
S ∈ Tree \∆1 : µ

(⋃
Q∈Stopβ(S)Q

)
> 1

4 µ(QS)
}
.

The trees remained are in

∆3 :=
{
S ∈ Tree \ (∆1 ∪∆2) : µ

(⋃
Q∈Stopα(S)Q

)
> 1

4 µ(QS)
}
.

Indeed, if S ∈ Tree \ (∆1 ∪∆2 ∪∆3), then (2.26) is valid and moreover

µ
(⋃

Q∈Stopα(S)Q
)
< 1

4 µ(QS) and µ
(⋃

Q∈Stopβ(S)Q
)
< 1

4 µ(QS).

This means that Tree \ (∆1 ∪∆2 ∪∆3) = ∅.
We also split ∆3 in the three disjoint sets:

∆
′
3 := {S ∈ ∆3 : θ0 6 θV (LQS ) 6 π/2− θ0} ,

∆
′′
3 := {S ∈ ∆3 : θV (LQS ) < θ0} ,

∆
′′′
3 := {S ∈ ∆3 : θV (LQS ) > π/2− θ0} .

So we have the disjoint union

Tree = ∆1 ∪∆2 ∪∆
′
3 ∪∆

′′
3 ∪∆

′′′
3 .

The procedure now is to check the required Carleson packing condition for all components
of this union.

For all S ∈ Tree the sets QS \
⋃
Q∈Stop(S)Q are pairwise disjoint and hence for S ∈ ∆1

we get ∑
S∈∆1: QS⊆R

µ(QS) 6 2
∑

S∈Tree: QS⊆R
µ
(
QS \

⋃
Q∈Stop(S)Q

)
6 2µ(R).

If S ∈ ∆2, then by definition and the fact that µ(Q) ≈ µ(Q′) for Q′ ∈ Sons(Q),

µ(QS) 6 4µ
(⋃

Q∈Stopβ(S)Q
)
.

∑
Q∈Stop(S)

∑
Q′∈B∩Sons(Q)

µ(Q′)
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and consequently by Lemma 2.6,∑
S∈∆2: QS⊆R

µ(QS) .
∑

S∈∆2: QS⊆R

∑
Q∈Stop(S)

∑
Q′∈B∩Sons(Q)

µ(Q′)

6
∑

Q∈B: QS⊆R
µ(Q)

.ε µ(R).

Let us consider the case S ∈ ∆
′
3 . We will need β-numbers defined for balls B(x, r):

βq(x, r) := inf
L

(
1

r

∫
B(x,2r)

(
dist (x, L)

r

)q
dµ(x)

)1/q

, 1 6 q 6∞,

where the infimum is taken over all affine lines L.
It is claimed in [DS1, Section 12, Inequality (12.2)] that for all S ∈ ∆3 there exists

η2 > 1 such that

µ(QS) .
∫∫

XS

β1(x, η2r)
2dµ(x)dr

r
,

where

XS := {(x, r) ∈ sptµ× R+ : x ∈ η2QS ,
1
η2
d(x) 6 r 6 η2 diam (QS)} (2.27)

and
d(x) := inf

Q∈S
{ dist (x,Q) + diam (Q)}.

By Holder’s inequality, β1(x, η2r) . β2(x, η2r). Moreover, it follows from [Leg,
Lemma 2.5 and Proof of Proposition 2.4] (or by the arguments analogous to the ones
in the proof of Lemma 2.5) that if µ is AD-regular, then there exists η3 > 2 such that for
any x ∈ sptµ,

β2(x, η2r)
2 .

1

η2r

∫∫∫
Oη3 (x,η2r)

c(u, v, w)2dµ(u)dµ(v)dµ(w),

where

Oη3(x, ρ) :=

{
(u, v, w) ∈ (B(x, η3ρ))3 : |u− v| > ρ

η3
, |v − w| > ρ

η3
, |u− w| > ρ

η3

}
.

Note also that for any (u, v, w) ∈ Oη3(x, ρ) we have |u − v| 6 2η3ρ, |v − w| 6 2η3ρ and
|u− w| 6 2η3ρ, and thus for a fixed η3,

|u− v| ≈ |v − w| ≈ |u− w| ≈ ρ.

Therefore if a triple (u, v, w) ∈ Oη3(x, η2r) with (x, r) ∈ XS , then at least one side of
the triangle (u, v, w) makes a big angle with the vertical and horizontal. Indeed, by con-
struction, if η1 is chosen much bigger than η2, then β∞(x, η2r) .

√
ε, and consequently

the angle between one side of (u, v, w) and the best approximating line LQS is less than
C(η3)

√
ε with some C(η3) > 0. Furthermore, θ0 6 θV (LQS ) 6 π/2− θ0 and thus the angle

that one side of (u, v, w) makes with the vertical and horizontal belongs to the interval(
9
10θ0 − C(η3)

√
ε, π/2− 9

10θ0 + C(η3)
√
ε
)
⊇
(

1
2θ0, π/2− 1

2θ0

)
,
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where ε is chosen sufficiently small. This fact enables us to use the clause (ii) of Lemma 2.4
and exchange the curvature for our permutation pKt :

β2(x, η2r)
2 .θ0

1

η2r

∫∫∫
Oη3 (x,η2r)

pKt(u, v, w) dµ(u)dµ(v)dµ(w), (x, r) ∈ XS .

Summarizing and taking into account that θ0 is fixed, we get

µ(QS) .
∫∫

XS

∫∫∫
Oη3 (x,η2r)

pKt(u, v, w) dµ(u)dµ(v)dµ(w)
dµ(x)dr

(η2r)2
.

What is more, it is shown after [DS1, Lemma 7.9] that the regions XS (see (2.27)) with
S ∈ ∆

′
3 have bounded overlap. By this reason,∑
S∈∆

′
3:QS⊆R

µ(QS)

.
∑

S∈∆
′
3:QS⊆R

∫∫
XS

∫∫∫
Oη3 (x,η2r)

pKt(u, v, w) dµ(u)dµ(v)dµ(w)
dµ(x)dr

(η2r)2

.
∫ 2η2`(R)

0

∫
2η2R

∫∫∫
Oη3 (x,η2r)

pKt(u, v, w) dµ(u)dµ(v)dµ(w)
dµ(x)dr

(η2r)2

. pKt(µb(2η2R)).

The third inequality is by Fubini’s theorem. See the definition of Oτ in (2.17). Finally, by
the L2-boundedness of TKt , we get∑

S∈∆
′
3:QS⊆R

µ(QS) . µ(R).

Suppose now that S ∈ ∆
′′
3 . If Q ∈ Stopα(S), then Sons(Q)∩B = ∅ and by Lemma 2.6,

](LQ, LQS ) 6 α(S), ](LQ, LQS ) > 1
2α(S), α(S) = 10θ0,

and thus

θV (LQ) 6 ](LQ, LQS ) + θV (LQS ) < 10θ0 + θ0 = 11θ0,

θV (LQ) > ](LQ, LQS )− θV (LQS ) > 5θ0 − θ0 = 4θ0.

Since β1(Q) < ε, we can choose ε small enough so that ](LQ, LQ′) 6 θ0, Q′ ∈ Sons(Q),
and hence

3θ0 < θV (LQ′) < 12θ0, Q′ ∈ Sons(Q).

Consequently, any element of Sons(Q) is the maximal µ-cube of a tree belonging either to
∆1, ∆2 or ∆

′
3. Additionally, from the definition of ∆3 and the fact that minimal cubes for

a single tree are pairwise disjoint it follows that

µ(QS) 6 4µ
(⋃

Q∈Stopα(S)Q
)

= 4
∑

Q∈Stopα(S)

µ(Q) = 4
∑

Q∈Stopα(S)

∑
Q′∈Sons(Q)

µ(Q′).

From the above-mentioned we deduce that∑
S∈∆

′′
3 : QS⊆R

µ(QS) 6 4
∑

S∈∆
′′
3 : QS⊆R

∑
Q∈Stopα(S)

∑
Q′∈Sons(Q)

µ(Q′)

6 4
∑

S∈∆1∪∆2∪∆
′
3: QS⊆R

µ(QS).
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Take into account that the maximal cubes of all trees from ∆1 ∪ ∆2 ∪ ∆
′
3 satisfy a

Carleson packing condition (with a constant depending on ε). By this reason,∑
S∈∆

′′
3 : QS⊆R

µ(QS) .ε µ(R).

One can argue for S ∈ ∆
′′′
3 in the same manner as for S ∈ ∆

′′
3 . Indeed, if ε is appropri-

ately chosen and Q ∈ Stopα(S), then

π/2− 12θ0 < θV (LQ′) < π/2− 3θ0, Q′ ∈ Sons(Q),

and hence any element of Sons(Q) is the maximal µ-cube of a tree belonging either to ∆1,
∆2 or ∆

′
3.

Summarizing, we proved that maximal cubes of all types of trees satisfy a Carleson
packing condition and so the triple (B,G,Tree) is a corona decomposition as required.

2.5 Additional remarks

To finish, we would like to mention a corollary of the results from the previous sections.
Let µ be a measure with linear growth and

t ∈ (−∞,−
√

2) ∪ (0,∞). (2.28)

If the SIO Tkt is L2(µ)-bounded, then all 1-dimensional SIOs associated with a wide class
of kernels defined around (0.23) are also L2(µ)-bounded. Indeed, it follows from (2.8) and
(2.12) with (n,N) = (1, 2) that for any t as in (2.28) and any cube Q ⊂ C, one has

‖Tκ1,εχQ‖L2(µbQ) 6 C(t)
(
‖Tkt,εχQ‖L2(µbQ) +

√
µ(Q)

)
, C(t) > 0,

where Tκ1 , as we have already mentioned before, is the SIO associated with the real part
of the Cauchy kernel, i.e. with the Cauchy kernel, up to a constant. Using the T1 Theo-
rem from [Tol5, Theorem 9.40], we conclude that the L2(µ)-boundedness of Tkt with t as
in (2.28) implies that the Cauchy transform is L2(µ)-bounded. It is left to apply the results
from [Tol2,Tol4].
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Chapter 3

A family of singular integral
operators which control the Cauchy
transform

3.1 Introduction and Theorems

The exposition in this chapter is based on [CMT2]. We aim to study the behaviour of SIOs
associated with the kernels (0.21), i.e. with

kt(z) =
(Re z)3

|z|4
+ t · Re z

|z|2
, t ∈ R, k∞(z) =

Re z
|z|2

,

in the case of small negative t. We will first show that for a measure with linear growth
the corresponding L2-norm of Tk0 controls the L2-norm of Tk∞ and thus of the Cauchy
transform. As a corollary, we prove that the L2(H1bE)-boundedness of Tkt with some
t ∈ (−t0, 0), where t0 > 0 is an absolute constant, implies that E is rectifiable (as above,
E is a 1-set). This is so in spite of the fact that the usual curvature method fails to be
directly applicable for t ∈ (−2, 0) as shown in Chapter 1. As we will see, the study of kernels
(0.21) for small negative t is more difficult than in the case of t ∈ (−2,−

√
2) considered in

Chapter 2.
We will use the same definitions related to curvature and permutations as given in

Introduction and Chapters 1 and 2. Now we will recall some of them. Again we will work
with the following simplified version of the permutations PK given in (0.5),

pK(z1, z2, z3)

= K(z1 − z2)K(z1 − z3) +K(z2 − z1)K(z2 − z3) +K(z3 − z1)K(z3 − z2)

= 1
2PK(z1, z2, z3),

introduced in (1.2) in Chapter 1. The kernel K here is supposed to be odd and real-valued.
Then by (1.2), (1.3) and (1.4), we also have

pK(µ1, µ2, µ3) = 1
2PK(µ1, µ2, µ3), pK,ε(µ1, µ2, µ3) = 1

2PK,ε(µ1, µ2, µ3)

and
pK(µ) = 1

2pK(µ, µ, µ), pK,ε(µ) = 1
2PK,ε(µ, µ, µ),

where µ, µ1, µ2 and µ3 are measures.
Recall that by a measure we mean a positive locally finite Borel measure on C.
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Some of the identities from Introduction have a slightly different form in these terms.
In particular, let K be an odd and real-valued CZ kernel with the permutations (1.2),
being non-negative for any (z1, z2, z3) ∈ C3. If µ is a finite measure with C∗-linear growth,
i.e. there exists a constant C∗ > 0 such that

µ(B(z, r)) 6 C∗r for all z ∈ sptµ,

then the generalised Melnikov-Verdera identity (0.13) takes the form:

‖TK,ε1‖2L2(µ) = 1
3pK,ε(µ) +RK,ε(µ), |RK,ε(µ)| 6 cC2

∗µ(C), (3.1)

where ε > 0 and c > 0 is independent of ε. What is more, (0.15) becomes

pk∞(z1, z2, z3) = 1
4c(z1, z2, z3)2, (z1, z2, z3) ∈ C3.

Clearly, this implies that pk∞(µ) = 1
4c

2(µ) for any measure µ.
Recall also that it is shown in Theorem 1.1 and Remark 1.1 in Chapter 1 that{

pkt(z1, z2, z3) > 0 for any (z1, z2, z3) ∈ C3, if t /∈ (−2, 0),
pkt(z1, z2, z3) may change sign for some (z1, z2, z3) ∈ C3, if t ∈ (−2, 0),

see Figure 0.2. Moreover, by (2.5) from Lemma 2.2 proved in Chapter 2,

pk0(z1, z2, z3) 6 2pk∞(z1, z2, z3) for any (z1, z2, z3) ∈ C3.

Now we give several definitions related to β-numbers and densities. For any closed ball
B = B(x, r) with center x ∈ C and radius r > 0 and 1 6 p <∞, let

βµ,p(B) = inf
L

(
1

r

∫
B

(
dist (y, L)

r

)p
dµ(y)

)1/p

, (3.2)

where the infimum is taken over all affine lines L ⊂ C. The βµ,p coefficients were introduced
by David and Semmes [DS1] and are the generalization of the well-known Jones β-numbers
[Jon2].

We will mostly deal with βµ,2(2BQ) and so by LQ we denote a corresponding best
approximating line, i.e. a line where the infimum is reached in (3.2) for B = 2BQ (see the
definition of BQ below) and p = 2 .

Throughout the chapter we also use the following densities:

Θµ(B) := Θµ(x, r) =
µ(B(x, r))

r
, where B = B(x, r), x ∈ C, r > 0.

First we prove the following.

Theorem 3.1. There exist absolute constants t0 > 0 and c > 0 such that for any finite
measure µ with C∗-linear growth it holds that

sup
ε>0
‖Tk∞,ε1‖L2(µ) 6 t

−1
0 sup

ε>0
‖Tk0,ε1‖L2(µ) + cC∗

√
µ(C). (3.3)

Roughtly speaking, this means that the L2-norm of the Cauchy transform of measure
is controlled by the L2-norm of the operator Tk0 .

Note that by Lemma 2.3 in Chapter 2 under the same assumptions on µ,

‖Tk0,ε1‖L2(µ) 6
√

2‖Tk∞,ε1‖L2(µ) + cC∗
√
µ(C),

where ε > 0 and c > 0 is independent of ε. With respect to the proof of Lemma 2.3, the
proof of (3.3) is more difficult as we will see in this chapter.

As a corollary of Theorem 3.1, using the same t0, we obtain the following result.
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Theorem 3.2. Let kt be a kernel of the form (0.21), where t ∈ (−t0, 0), and E a 1-set. If
the SIO Tkt is L2(H1bE)-bounded, then E is rectifiable.

This theorem complements Theorems B, D, E, F and Theorems 1.2 and 2.2 so that
we have the overall picture as in Figure 0.2. It is clear from Theorem F that necessarily
t0 ∈ (0, 3/4). What is more, it is very important here that the pointwise permutations,
corresponding to t ∈ (−t0, 0), also change sign as in Theorem 2.2 so that the curvature
method cannot be applied directly but L2-boundedness still implies rectifiability.

Remark 3.1. By simple analysis one can show that the kernel kt has
one zero line if t ∈ (−∞,−1) ∪ [0,∞],
two zero lines if t = −1,
three zero lines if t ∈ (−1, 0).

By a zero line we mean a straight line L ⊂ C such that kt(z) = 0 for z ∈ L.
In this sense, it is interesting to compare Theorem 3.2 with Theorem F. Observing

Figure 0.2, one can see that the number of zero lines along is not determinant.

Remark 3.2. Let t1 and t2 be such that −
√

2 6 t1 < t2 6 −t0. If there exist finite purely
unrectifiable (i.e. concentrated on purely unrectifiable sets) measures µ1 and µ2 with linear
growth such that Tkt1 is L2(µ1)-bounded and Tkt2 is L2(µ2)-bounded, then µ1 is different
from µ2.

Indeed, let µ be a finite purely unrectifiable measure with linear growth such that Tkt̃
is L2(µ)-bounded for a fixed t̃ ∈ [−

√
2,−t0]. By the triangle inequality for any real t,

‖Tkt1‖L2(µ) = ‖(Tk0 + (t− t̃) · Tk∞ + t̃ · Tk∞)1‖L2(µ) > |t− t̃|‖Tk∞1‖L2(µ) − ‖Tkt̃1‖L2(µ).

Consequently, ‖Tkt1‖L2(µ) =∞ for all t 6= t̃ as ‖Tk∞1‖L2(µ) =∞ since µ is purely unrecti-
fiable. Thus an example of a purely unrectifiable measure µ such that Tkt̃ is L

2(µ)-bounded
for a fixed t̃ ∈ [−

√
2,−t0] does not work for t 6= t̃.

3.2 Main Lemma and proofs of Theorems

Theorem 3.1 is implied by the following lemma.

Main Lemma. There exist absolute constants t0 > 0 and c > 0 such that for any finite
measure µ with C∗-linear growth it holds that

pk∞(µ) 6 t−2
0 pk0(µ) + cC2

∗µ(C). (3.4)

The proof of this result is long and technical and actually takes the biggest part of this
chapter. Note that (3.4) is a counterpart to the inequality pk0(µ) 6 2pk∞(µ) that follows
from (2.5).

3.2.1 Proof of Theorem 3.1

Suppose that Main Lemma holds. Then the identity (3.1) and inequality (3.4) yield

sup
ε>0
‖Tk∞,ε1‖2L2(µ) 6

1
3pk∞(µ) + cC2

∗µ(C)

6 1
3 t
−2
0 pk0(µ) + cC2

∗µ(C)

6 t−2
0 sup

ε>0
‖Tk0,ε1‖2L2(µ) + cC2

∗µ(C),

where c > 0 is an absolute constant. Applying the inequality
√
ax2 + b 6

√
ax +

√
b that

is valid for a, b, x > 0, gives Theorem 3.1.

56



3.2.2 Proof of Theorem 3.2

We now apply the perturbation method from Chapter 2. By the triangle inequality and
Theorem 3.1,

sup
ε>0
‖Tkt,ε1‖L2(µ) = sup

ε>0
‖(Tk0,ε + t · Tk∞,ε)1‖L2(µ)

> sup
ε>0
‖Tk0,ε1‖L2(µ) − |t| sup

ε>0
‖Tk∞,ε1‖L2(µ)

> (t0 − |t|) sup
ε>0
‖Tk∞,ε1‖L2(µ) − cC∗

√
µ(C).

Consequently,

sup
ε>0
‖Tk∞,ε1‖L2(µ) 6

supε>0 ‖Tkt,ε1‖L2(µ) + cC∗
√
µ(C)

t0 − |t|
, |t| < t0,

and therefore for any cube Q ⊂ C we have

sup
ε>0
‖Tk∞,εχQ‖L2(µbQ) 6

supε>0 ‖Tkt,εχQ‖L2(µbQ) + cC∗
√
µ(Q)

t0 − |t|
, |t| < t0. (3.5)

Applying a variant of the T1 Theorem of Nazarov, Treil and Volberg from [Tol5, Theorem
9.40], we infer from (3.5) with µ = H1bE and 1-set E that the L2(H1bE)-boundedness of
Tkt with a fixed t such that |t| < t0 implies that Tk∞ and thus the Cauchy transform is
L2(H1bE)-bounded. Finally, Theorem B gives the desired result.

3.3 Several corollaries

Recall that a measure µ is Ahlfors-David regular (AD-regular) if it satisfies (0.4), i.e.

C−1r 6 µ(B(z, r)) 6 Cr, where z ∈ sptµ, 0 < r < diam (sptµ),

and C > 1 is some fixed constant. A measure µ is called uniformly rectifiable if it is AD-
regular and sptµ is contained in an AD-regular curve. One can summarise all up-to-date
results characterising uniformly rectifiable measures via L2(µ)-bounded SIOs Tkt as follows.

Corollary 3.1. Let µ be an AD-regular measure and kt a kernel of the form (0.21) with
t ∈ (−∞,−

√
2) ∪ (−t0,∞]. The measure µ is uniformly rectifiable if and only if the SIO

Tkt is L2(µ)-bounded.

The part of Corollary 3.1 for t = ∞, i.e. for the Cauchy transform, was proved in
[MMV]; for t = 0 in [CMPT1]; and for t ∈ (−∞,−

√
2) ∪ (0,∞) in Chapters 1 and 2.

Furthermore, one can formulate the following general result.

Corollary 3.2. Let µ be a measure with linear growth and kt a kernel of the form (0.21)
with t ∈ (−∞,−

√
2) ∪ (−t0,∞]. If the SIO Tkt is L2(µ)-bounded, then so are all 1-

dimensional SIOs associated with a wide class of kernels.

The above-mentioned “wide class of kernels” was defined around (0.23) in Introduction.
The part of Corollary 3.2 for t =∞, i.e. for the Cauchy transform, was proved in [Tol2,Tol4]
(see also [Gir]) and for t ∈ (−∞,−

√
2) ∪ (0,∞) in Chapters 1 and 2.
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3.4 Plan of the proof of Main Lemma

To prove Main Lemma, we will use a corona decomposition that is similar, for example,
to the ones from [Tol6] and [AT]: it splits the David-Mattila dyadic lattice into some
collections of cubes, which we will call “trees”, where the density of µ does not oscillate too
much and most of the measure is concentrated close to a graph of a Lipschitz function. To
construct this function we will use a variant of the Whitney extension theorem adapted
to the David-Mattila dyadic lattice. Further, we will show that the family of trees of the
corona decomposition satisfies a packing condition by arguments inspired by some of the
techniques used in [AT] and earlier in [Tol3] to prove the bilipschitz “invariance” of analytic
capacity. More precisely, we will deduce Main Lemma from the two-sided estimate

pk∞(µ) .
∑
R∈Top

Θµ(2BR)2µ(R) . pk0(µ) + C2
∗µ(C), (3.6)

where Top is the family of top cubes for the above-mentioned trees. Note that the left hand
side inequality in (3.6) in essentially contained in [Tol6] and verifying the right hand side
inequality is actually the main objective in the proof.

It is worth mentioning that the structure of our trees is more complicated than in [AT].
This is because we deal with permutations which are not comparable to curvature in some
cases and this leads to additional technical difficulties. What is more, we are not able to
use a nice theorem by David and Toro [DT] which shortens the proof in [AT] considerably.
Indeed, this theorem would be useful to construct a chordal curve such that most of the
measure µ is concentrated close to it. However, in our situation we need to control slope
and therefore we have to deal with and to construct a graph of a Lipschitz function with
well-controlled Lipschitz constant instead.

The plan of the proof of Main Lemma is the following. In Section 3.5 we recall the
properties of the David-Mattila dyadic lattice. We construct the trees and establish their
properties in Sections 3.6–3.12. The main properties are summarized in Section 3.13, where
they are further used for constructing the corona type decomposition. The end of the proof
of Main Lemma is given in Section 3.13.6.

Finally, in Sections 3.14 and 3.15 we show how one can slightly change the proof of
Main Lemma in order to give another proof of a certain result from [AT] and also to extend
the results in this chapter for a more general class of kernels.

Remark 3.3. In the forthcoming proof, we will usually write pt instead of pkt in order to
simplify notation.

Remark 3.4. The measure µ considered below is under assumptions of Main Lemma,
i.e. µ is a finite measure with C∗-linear growth. Moreover, without loss of generality we
additionally suppose that µ has compact support.

3.5 The David-Mattila lattice

We use the dyadic lattice of cubes with small boundaries constructed by David and Mattila
[DM]. The properties of this lattice are summarized in the next lemma (for the case of C).

Lemma 3.1 (Theorem 3.2 in [DM]). Let µ be a measure, E = sptµ, and consider two
constants C0 > 1 and A0 > 5000C0. Then there exists a sequence of partitions of E into
Borel subsets Q, Q ∈ Dk, with the following properties:
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• For each integer k > 0, E is the disjoint union of the “cubes” Q, Q ∈ Dk, and if
k < l, Q ∈ Dl, and R ∈ Dk, then either Q ∩R = ∅ or else Q ⊂ R.

• The general position of the cubes Q can be described as follows. For each k > 0 and
each cube Q ∈ Dk, there is a ball B(Q) = B(zQ, r(Q)) such that

zQ ∈ Q, A−k0 6 r(Q) 6 C0A
−k
0 ,

E ∩B(Q) ⊂ Q ⊂ E ∩ 28B(Q) = E ∩B(zQ, 28r(Q)),

and
the balls 5B(Q), Q ∈ Dk, are disjoint.

• The cubes Q ∈ Dk have small boundaries. That is, for each Q ∈ Dk and each integer
l > 0, set

N ext
l (Q) = {x ∈ E \Q : dist (x,Q) < A−k−l0 },

N int
l (Q) = {x ∈ Q : dist (x,E \Q) < A−k−l0 },

and
Nl(Q) = N ext

l (Q) ∪N int
l (Q).

Then
µ(Nl(Q)) 6 (C−1C−7

0 A0)−l µ(90B(Q)).

• Denote by Ddbk the family of cubes Q ∈ Dk for which

µ(100B(Q)) 6 C0 µ(B(Q)). (3.7)

If Q ∈ Dk \ Ddbk , then r(Q) = A−k0 and

µ(100B(Q)) 6 C−l0 µ(100l+1B(Q)) for all l > 1 such that 100l 6 C0.

We use the notation D =
⋃
k>0Dk. For Q ∈ D, we set D(Q) = {P ∈ D : P ⊂ Q}.

Observe that
r(Q) ≈ diam (Q).

Also we call zQ the center of Q. We set BQ = 28B(Q) = B(zQ, 28 r(Q)), so that

E ∩ 1
28BQ ⊂ Q ⊂ BQ.

We denote Ddb =
⋃
k>0Ddbk and Ddb(Q) = Ddb ∩ D(Q). Note that, in particular, from

(3.7) it follows that
µ(100B(Q)) 6 C0 µ(2BQ) if Q ∈ Ddb. (3.8)

For this reason we will call the cubes from Ddb doubling.
As shown in [DM], any cube Q ∈ D can be covered µ-a.e. by doubling cubes.

Lemma 3.2 (Lemma 5.28 in [DM]). Let Q ∈ D. Suppose that the constants A0 and C0 in
Lemma 3.1 are chosen suitably. Then there exists a family of doubling cubes {Qi}i∈I ⊂ Ddb,
with Qi ⊂ Q for all i, such that their union covers µ-almost all Q.

We denote by J(Q) the number k such that Q ∈ Dk.

Lemma 3.3 (Lemma 5.31 in [DM]). Let P ∈ D and let Q ( P be a cube such that all the
intermediate cubes S, Q ( S ( P , are non-doubling (i.e. not in Ddb). Then

µ(100B(Q)) 6 A−20(J(Q)−J(P )−1)
0 µ(100B(P )).
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Recall that Θµ(B) = µ(B(x, r))/r. From Lemma 3.3 one can easily deduce1

Lemma 3.4 (Lemma 2.4 in [AT]). Let Q,P ∈ D be as in Lemma 3.3. Then

Θµ(100B(Q)) 6 C0A
−19(J(Q)−J(P )−1)+1
0 Θµ(100B(P )) 6 C0A0 Θµ(100B(P ))

and ∑
S∈D:Q⊂S⊂P

Θµ(100B(S)) 6 cΘµ(100B(P )), c = c(C0, A0).

We will assume that all implicit constants in the inequalities that follow may depend
on C0 and A0. Moreover, we will assume that C0 and A0 are some big fixed constants so
that the results stated in the lemmas below hold.

3.6 Balanced cubes and control on beta numbers through
permutations

We first recall the properties of the so called balanced balls introduced in [AT].

Lemma 3.5 (Lemma 3.3 and Remark 3.2 in [AT]). Let µ be a measure and consider the
dyadic lattice D associated with µ from Lemma 3.1. Let 0 < γ < 1 be small enough (with
respect to some absolute constant), then there exist ρ′ = ρ′(γ) > 0 and ρ′′ = ρ′′(γ) > 0 such
that one of the following alternatives holds for every Q ∈ Ddb:

(a) There are balls Bk = B(ξk, ρ
′ r(Q)), k = 1, 2, where ξ1, ξ2 ∈ B(Q), such that

µ (Bk ∩B(Q)) > ρ′′ µ(Q), k = 1, 2,

and for any yk ∈ Bk ∩Q, k = 1, 2,

dist (y1, y2) > γ r(BQ).

(b) There exists a family of pairwise disjoint cubes {P}P∈IQ ⊂ Ddb(Q) so that
diam (P ) & γ diam (Q) and Θµ(2BP ) & γ−1 Θµ(2BQ) for each P ∈ IQ, and∑

P∈IQ

Θµ(2BP )2 µ(P ) & γ−2 Θµ(2BQ)2 µ(Q). (3.9)

Let us mention that the densities in the latter inequality in the original Lemma 3.3
in [AT] are not squared. However, a slight variation of the proof of [AT, Lemma 3.3] gives
(3.9) as stated.

Moreover, notice that in Lemma 3.5 the cubes Q and P , with P ∈ IQ, are doubling.
If the alternative (a) holds for a doubling cube Q with some γ, ρ′(γ) and ρ′′(γ), then the
corresponding ball B(Q) is called γ-balanced. Otherwise, it is called γ-unbalanced. If B(Q)
is γ-balanced, then the cube Q is also called γ-balanced.

We are going to show now that the beta numbers βµ,2(2BQ) (see (3.2)) for γ-balanced
cubes Q are controlled by a truncated version of the permutations p0(µb2BQ). To do so,
we introduce some additional notation.

Given two distinct points z, w ∈ C, we denote by Lz,w the line passing through z and w.
Given three pairwise distinct points z1, z2, z3 ∈ C, we denote by ](z1, z2, z3) the smallest

1Note that there is an inaccuracy with constants in the original Lemma 2.4 in [AT].
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angle formed by the lines Lz1,z2 and Lz1,z3 and belonging to [0, π/2]. If L and L′ are lines,
let ](L,L′) be the smallest angle between them. This angle belongs to [0, π/2], too. Also,
we set θV (L) = ](L, V ), where V is the vertical line.

First we recall the following result of Chousionis and Prat [CP]. We say that a triple
(z1, z2, z3) ∈ C3 is in the class VFar(θ) if it satisfies

θV (Lz1,z2) + θV (Lz1,z3) + θV (Lz2,z3) > θ > 0. (3.10)

Lemma 3.6 (Proposition 3.3 in [CP]). If (z1, z2, z3) ∈ VFar(θ), then

p0(z1, z2, z3) > c1(θ) · p∞(z1, z2, z3), where 0 < c1(θ) 6 2. (3.11)

Note that the inequality c1(θ) 6 2 follows from (2.5) that was proved in [CMT1].
For measures µ1, µ2 and µ3 and a cube Q we set

p
[δ,Q]
0 (µ1, µ2, µ3) :=

∫∫∫
δr(Q)6|z1−z2|6δ−1r(Q)

p0(z1, z2, z3) dµ1(z1)dµ2(z2)dµ3(z3).

The parameter δ > 0 will be chosen later to be small enough for our purposes. If µ1 =

µ2 = µ3 = µ, then we write p[δ,Q]
0 (µ) instead of p[δ,Q]

0 (µ, µ, µ), for short.
Now we are ready to state the above mentioned estimate of βµ,2(2BQ) for γ-balanced

cubes Q via the truncated version of p0(µb2BQ). Pay attention that the first term in the
estimate is a “non-summable” part which makes a big difference with the case of curvature
or p∞ (see Section 3.14).

Lemma 3.7. If Q is γ-balanced, then for any ε ∈ (0, 1),

βµ,2(2BQ)2Θµ(2BQ) 6 4ε2Θµ(2BQ)2 + C(ε, γ)
p

[δ,Q]
0 (µb2BQ)

µ(Q)
, 0 < δ 6 γ. (3.12)

Moreover, for any ε0 > 0, there exist ε = ε(ε0) > 0 and ε̃ = ε̃(ε0, γ) > 0 such that if

p
[δ,Q]
0 (µb2BQ)

Θµ(2BQ)2µ(Q)
6 ε̃, (3.13)

then
βµ,2(2BQ)2 6 ε2

0Θµ(2BQ).

Proof. By Lemma 3.5, there exist balls Bk = B(ξk, ρ
′ r(Q)), k = 1, 2, where ξk ∈ B(Q),

such that µ(Bk∩B(Q)) > ρ′′µ(Q) and dist (y1, y2) > γr(BQ) for any yk ∈ Bk∩Q, k = 1, 2.
From (3.2) it follows that

βµ,2(2BQ)2 6
1

2r(BQ)

∫
2BQ

(
dist (w,Ly1,y2)

2r(BQ)

)2

dµ(w).

We separate triples (w, y1, y2) that are in and not in VFar(ε). Clearly,

dist (w,Ly1,y2) 6 diam (2BQ) sin ε 6 4 ε r(BQ) if (w, y1, y2) /∈ VFar(ε).
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Thus

βµ,2(2BQ)2

6
4ε2

2r(BQ)

∫
2BQ

dµ(w) +
1

2r(BQ)

∫
2BQ, (w,y1,y2)∈VFar(ε)

(
dist (w,Ly1,y2)

2r(BQ)

)2

dµ(w)

6 4ε2Θµ(2BQ) + 8r(BQ)

∫
2BQ, (w,y1,y2)∈VFar(ε)

(
2 dist (w,Ly1,y2)

|w − y1||w − y2|

)2

dµ(w)

= 4ε2Θµ(2BQ) + 8r(BQ)

∫
2BQ, (w,y1,y2)∈VFar(ε)

c(w, y1, y2)2dµ(w).

We used that |w − yk| 6 diam (2BQ) = 4r(BQ) as w, y1, y2 ∈ 2BQ and that

c(w, y1, y2) =
2 dist (w,Ly1,y2)

|w − y1||w − y2|
.

Recall that r(BQ) = 28r(Q) by definition. By (0.15) and (3.11),∫
2BQ, (w,y1,y2)∈VFar(ε)

c(w, y1, y2)2dµ(w)

6
2

c1(ε)

∫
2BQ, (w,y1,y2)∈VFar(ε)

p0(w, y1, y2)dµ(w).

Recall that |y1 − y2| > γr(Q) for any yk ∈ Bk ∩ Q, k = 1, 2. Furthermore, for any δ
such that 0 < δ 6 γ we can find y1 ∈ B1 and y2 ∈ B2 so that∫

2BQ

p0(w, y1, y2)dµ(w) 6
p

[δ,Q]
0 (µb2BQ)

µ(B1)µ(B2)
6
p

[δ,Q]
0 (µb2BQ)

(ρ′′)2µ(Q)2
.

By (3.7) and the fact that E ∩B(Q) ⊂ Q, we deduce that

µ(Q) > C−1
0 µ(100B(Q)) > C−1

0 µ(56B(Q)) = C−1
0 µ(2BQ).

Consequently,

βµ,2(2BQ)2 6 4ε2Θµ(2BQ) +
16r(BQ)p

[δ,Q]
0 (µb2BQ)

c1(ε)(ρ′′)2µ(Q)C−1
0 µ(2BQ)

= 4ε2Θµ(2BQ) + C(ε, γ)
p

[δ,Q]
0 (µb2BQ)

Θµ(2BQ)µ(Q)
.

Multiplying both sides by Θµ(2BQ) finishes the proof of (3.12). Note that ρ′′ = ρ′′(γ).
Let us prove the second statement. By the assumption (3.13),

βµ,2(2BQ)2 6 (4ε2 + C(ε, γ)ε̃)Θµ(2BQ).

For any ε0 > 0, we put ε =
√

2
4 ε0 and choose ε̃ so that ε̃ 6 1

2ε
2
0/C(ε, γ).

3.7 Parameters and thresholds

Recall that we work everywhere with the David-Mattila dyadic lattice D associated with
the measure µ.

In what follows we will use many parameters and thresholds. Some of them depend on
each other, some are independent. Let us give a list of the parameters:
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• τ is the threshold for cubes with low density:

0 < τ � 1.

• A is the threshold for cubes with high density:

0 < A−1 6 τ2 � 1, i.e. A� 1.

• θ0 is the threshold for the angle between best approximating lines associated to some
cubes:

0 < θ0 � 1.

• γ is the parameter controlling unbalanced cubes:

0 < γ 6 τ3 � 1.

• ε0 is the threshold controlling the β2,µ-numbers:

0 < ε0 = ε0(γ, τ, A, θ0)� 1.

• α is the threshold controlling permutations of intermediate cubes:

0 < α = α(τ,A, ε0, γ, θ0)� 1.

• δ is the parameter controlling the truncation of permutations:

0 < δ = δ(γ, ε0, τ, A)� 1.

All the parameters and thresholds are supposed to be chosen (and fixed at the very
end) so that the forthcoming results hold true. In what follows, we will again indicate step
by step how the choice should be made.

3.8 Stopping cubes and trees

3.8.1 Stopping cubes

Let R ∈ Ddb. We use the parameters and thresholds given in Section 3.7. We denote by
Stop(R) the family of the maximal cubes Q ⊂ R for which one of the following holds:

(S1) Q ∈ HD(R) ∪ LD(R) ∪ UB(R), where

• HD(R) is the family of high density doubling cubes Q ∈ Ddb satisfying

Θµ(2BQ) > AΘµ(2BR);

• LD(R) is the family of low density cubes Q satisfying

Θµ(2BQ) < τ Θµ(2BR);

• UB(R) is the family of unbalanced cubes Q ∈ Ddb \ (HD(R)∪ LD(R)) such that
Q is γ-unbalanced;
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(S2) Q ∈ BP(R) (“big permutations”), meaning Q /∈ HD(R) ∪ LD(R) ∪ UB(R) and

∑
Q⊂Q̃⊂R

perm(Q̃)2 > α2, perm(Q̃)2 :=
p

[δ,Q̃]
0 (µb2BQ̃, µb2BR, µb2BR)

Θµ(2BR)2µ(Q̃)
.

(S3) Q ∈ BS(R) (“big slope”), meaning Q /∈ HD(R)∪LD(R)∪UB(R)∪BP(R) and Q ∈ Ddb
so that

](LQ, LR) > θ(R),

where θ(R) depends on some geometric properties of R and is comparable with the
parameter θ0 > 0 mentioned in Section 3.7. The more precise description will be
given in Section 3.12.

(S4) Q ∈ F(R) (“big part of Q is far from best approximating lines for the doubling ances-
tors of Q”), meaning Q /∈ HD(R) ∪ LD(R) ∪ UB(R) ∪ BP(R) ∪ BS(R) and

µ(Q \ 2BCl
Q ) >

√
αµ(Q),

where

2BCl
Q := {x ∈ R ∩ 2BQ : dist (x, LQ̃) 6 5

√
ε0 r(BQ̃) ∀Q̃ ∈ Ddb(R) :

2BQ ⊂ 2BQ̃ and Q̃ is not contained in any cube from

HD(R) ∪ LD(R) ∪ UB(R) ∪ BP(R) ∪ BS(R)}.

(3.14)

Let Tree(R) be the subfamily of the cubes from D(R) which are not strictly contained
in any cube from Stop(R). We also set

DbTree(R) := Ddb ∩ (Tree(R) \ Stop(R)).

Note that all cubes in Stop(R) are disjoint.

Remark 3.5. It may happen that Stop(R) is empty. In this case there is no need to
estimate the measure of stopping cubes and we may immediately go to Section 3.10. In the
lemmas below related to estimating the measure of stopping cubes we naturally suppose
that Stop(R) is not empty.

Generally speaking it is possible that R ∈ Stop(R) (and then DbTree(R) is empty).
Clearly, R /∈ HD(R) ∪ LD(R) ∪ BS(R) by definition but it may occur that R ∈ UB(R) ∪
BP(R) ∪ F(R). Firstly, we will not work with the family UB(R) before Section 3.13 so we
may assume before that section that R /∈ UB(R). Secondly, if R ∈ BP(R), then we may
directly go to Lemma 3.14 and use the same estimate for the measure of stopping cubes
from BP(R). Thirdly, it will follow from Lemmas 3.12 and 3.13 (see Remark 3.6) that if
R /∈ UB(R) ∪ BP(R), then R /∈ F(R), i.e. the case R ∈ F(R) may be skipped.

It is also worth mentioning that if R ∈ Stop(R), then the Lipschitz function mentioned
in Section 3.4 may be chosen identically zero and its graph is just LR.

3.8.2 Properties of cubes in trees

Below, we will collect main properties of cubes from Tree(R) that readily follow from the
stopping conditions. Before it we prove an additional result.
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Lemma 3.8. For any Q ∈ Tree(R), we have

Θµ(2BQ) . AΘµ(2BR).

The implicit constant depends only on C0 and A0.

Proof. Let Q ∈ Tree(R). If Q ∈ Ddb, then there is nothing to prove. If not, then denote
by Q̃ ∈ Ddb the first doubling ancestor of Q. Such a cube Q̃ exists and Q̃ ⊂ R because
R ∈ Ddb by construction. Since the intermediate cubes P , Q ( P ( Q̃, do not belong to
Ddb, by Lemma 3.4 we have

Θµ(2BQ) . Θµ(100B(Q)) . C0A0Θµ(100B(Q̃)).

Using that Q̃ ∈ Ddb, namely, the inequality (3.8), we get

Θµ(2BQ) . C2
0A0 Θµ(2BQ̃) . C2

0A0AΘµ(2BR),

and we are done.

Lemma 3.9. The following properties hold:

τ Θµ(2BR) 6 Θµ(2BQ) . AΘµ(2BR), ∀Q ∈ Tree(R) \ (LD(R) ∪ HD(R)). (3.15)

Q ∈ Ddb ∩ (Tree(R) \ (HD(R) ∪ LD(R) ∪ UB(R))) =⇒ Q is γ-balanced. (3.16)∑
Q⊂Q̃⊂R

perm(Q̃)2 < α2 ∀Q ∈ Tree(R) \ (HD(R) ∪ LD(R) ∪ UB(R) ∪ BP(R)). (3.17)

βµ,2(2BQ)2 6 ε2
0Θµ(2BQ) if α = α(γ, τ, ε0) is small enough and

Q ∈ Ddb ∩ (Tree(R) \ (HD(R) ∪ LD(R) ∪ UB(R) ∪ BP(R))).
(3.18)

](LQ, LR) 6 θ(R) ∀Q ∈ DbTree(R). (3.19)

µ(Q \ 2BCl
Q ) 6

√
αµ(Q) ∀Q ∈ Tree(R) \ Stop(R). (3.20)

Proof. The statement (3.15) follows from Lemma 3.8 and the stopping condition (S1).
The statements (3.16), (3.17), (3.19) and (3.20) immediately follow from the construction
of Stop(R) and Tree(R), while (3.18) is implied by Lemma 3.7 and the stopping conditions
(S1) and (S2).

The following property of γ-balanced cubes will be used many times below.

Lemma 3.10. Let ε0 = ε0(γ) be chosen small enough. Then for any Q ∈ Ddb ∩ (Tree(R) \
(HD(R) ∪ LD(R) ∪ UB(R) ∪ BP(R))) there exist two sets Zk ⊂ Q, k = 1, 2, such that

µ(Q) .γ µ(Zk) 6 µ(Q) and dist (Z1,Z2) > γr(BQ),

and moreover for any z1 ∈ Z1 and z2 ∈ Z2 we have

distH(Lz1,z2 ∩ 2BQ, LQ ∩ 2BQ) 6
√
ε0 r(BQ).
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Proof. Since Q ∈ Ddb ∩ (Tree(R) \ (HD(R) ∪ LD(R) ∪UB(R))), Q is γ-balanced by (3.16).
Furthermore, by Lemma 3.5 there exist balls Bk = B(ξk, ρ

′r(Q)), k = 1, 2, where ξk ∈
B(Q), such that

µ(Bk ∩B(Q)) > ρ′′µ(Q) and dist (y1, y2) > γr(BQ) for any yk ∈ Bk, k = 1, 2,

where ρ′ and ρ′′ depend on γ. Due to the estimate βµ,2(2BQ)2 6 ε2
0Θµ(2BQ) (see (3.18)),

by Chebyshev’s inequality there exist Zk ⊂ Bk ∩Q such that

µ(Q) .γ µ(Bk) . µ(Zk) 6 µ(Q) and sup
z∈Zk

dist (z, LQ) .γ ε0 r(BQ), k = 1, 2.

Thus for any z1 ∈ Z1 and z2 ∈ Z2 we have

dist (zk, LQ) .γ ε0 r(BQ), k = 1, 2, dist (z1, z2) &γ r(BQ).

This implies that ](Lz1,z2 , LQ) .γ ε0 and therefore the following estimate for the Hausdorff
distance holds:

distH(Lz1,z2 ∩ 2BQ, LQ ∩ 2BQ) .γ ε0 r(BQ).

Choosing ε0 small enough with respect to the implicit constant depending on γ, we obtain
the required result.

Clearly, it may happen that not all cubes in Tree(R) are γ-balanced as there may
be undoubling cubes. However, for any cube in Tree(R), there is always an ancestor in
DbTree(R) close by. Namely, the following result holds.

Lemma 3.11 (Lemma 6.3 in [AT]). For any cube Q ∈ Tree(R) there exists a cube Q̃ ⊃ Q
such that Q̃ ∈ DbTree(R) and diam (Q̃) 6 λ diam (Q) with some λ = λ(A, τ).

Now we want to show that the measure of the set of points from R which are far from
the best approximation lines for cubes in {R} ∪ (Tree(R) \ Stop(R)) is small. Set

p
[δ,Q]
0 (x, µ, µ) :=

∫∫
δr(Q)6|x−y|6δ−1r(Q)

p0(x, y, z) dµ(y)dµ(z)

and consider

RFar := {x ∈ R :
p

[δ,Q]
0 (x, µb2BR, µb2BR)

Θµ(2BR)2
> c2(γ, τ, ε0)

for some Q ∈ {R} ∪ (Tree(R) \ Stop(R)) such that x ∈ 2BQ},

where c2(γ, τ, ε0) > 0 will be defined precisely in the proof of Lemma 3.13.

Lemma 3.12. If R /∈ UB(R) ∪ BP(R) and α = α(γ, τ, ε0) is chosen small enough, then

µ(RFar) 6 αµ(R).

Proof. By Chebyshev’s inequality,

c2(γ, τ, ε0)µ(RFar)

6
∫
R

∑
Q∈{R}∪(Tree(R)\Stop(R)):x∈2BQ

p
[δ,Q]
0 (x, µb2BR, µb2BR)

Θµ(2BR)2
dµ(x)

6
∑

Q∈{R}∪(Tree(R)\Stop(R))

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

Θµ(2BR)2

=
∑

Q∈{R}∪(Tree(R)\Stop(R))

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

Θµ(2BR)2µ(Q)

∫
χQ(x) dµ(x).
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Changing the order of summation yields

c2(γ, τ, ε0)µ(RFar)

6
∫
R

 p
[δ,R]
0 (µb2BR)

Θµ(2BR)2µ(R)
+

∑
Q∈Tree(R)\Stop(R):x∈Q

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

Θµ(2BR)2µ(Q)

 dµ(x)

6
∫
R

perm(R)2 +
∑

Q∈Tree(R)\Stop(R):x∈Q

perm(Q)2

 dµ(x)

6 2α2 µ(R).

Supposing that 2α 6 c2(γ, τ, ε0) gives the required result.

Recall the definition (3.14).

Lemma 3.13. Let δ = δ(ε0) be chosen small enough. If x ∈ (R ∩ 2BQ̃) \ 2BCl
Q̃

for some

Q̃ ∈ Tree(R), i.e. in particular there exists Q ∈ Ddb(R) such that 2BQ ⊃ 2BQ̃ and Q is
not contained in any cube from HD(R)∪ LD(R)∪UB(R)∪BP(R)∪BS(R), then x ∈ RFar.

Proof. Clearly, x ∈ 2BQ and Q ∈ Ddb ∩ (Tree(R) \ (HD(R) ∪ LD(R) ∪ UB(R) ∪ BP(R))).
Therefore, by Lemma 3.10 we can find Zk ⊂ Q, k = 1, 2, such that for any z1 ∈ Z1 and
z2 ∈ Z2 we have

distH(Lz1,z2 ∩ 2BQ, LQ ∩ 2BQ) 6
√
ε0 r(BQ).

Consider triangle (x, z1, z2) which is wholly contained in 2BQ. It is easily seen that

dist (x, Lz1,z2) > dist (x, LQ)− distH(Lz1,z2 ∩ 2BQ, LQ ∩ 2BQ) > 4
√
ε0 r(BQ). (3.21)

This implies that one of the angle of the triangle (x, z1, z2) is at least

4
√
ε0 r(BQ)

diam (2BQ)
=
√
ε0,

and thus (x, z1, z2) ∈ VFar(
√
ε0) for any z1 ∈ Z1 and z2 ∈ Z2. Note also that (3.21) implies

that |x − z1| > δr(Q) if δ = δ(ε0) is chosen small enough. Consequently, by the identity
(0.15) and Lemma 3.6,

p
[δ,Q]
0 (x, µb2BR, µb2BR) >

∫∫
z1∈Z1, z2∈Z2

p0(x, z1, z2) dµ(z1)dµ(z2)

> 1
2c1(
√
ε0)

∫∫
z1∈Z1, z2∈Z2

c(x, z1, z2)2 dµ(z1)dµ(z2)

= 1
2c1(
√
ε0)

∫∫
z1∈Z1, z2∈Z2

(
2dist (x, Lz1,z2)

|x− z1||x− z2|

)2

dµ(z1)dµ(z2),

where the constant c1 is from Lemma 3.6. Furthermore, we apply (3.21) and the fact that
|x− zk| 6 diam (2BQ) = 4r(BQ) for k = 1, 2 to obtain the following:

p
[δ,Q]
0 (x, µb2BR, µb2BR) >

ε0 c1(
√
ε0)

8r(BQ)2
µ(Z1)µ(Z2).

Since µ(Zk) &γ µ(Q) by Lemma 3.10, µ(Q) & µ(2BQ) as Q ∈ Ddb and Θµ(2BQ) >
τΘµ(2BR) by (3.15), we finally get

p
[δ,Q]
0 (x, µb2BR, µb2BR) &γ ε0 c1(

√
ε0) τ2Θµ(2BR)2 = c2(γ, τ, ε0) Θµ(2BR)2.

Consequently, x ∈ RFar by definition.
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Remark 3.6. Suppose that R ∈ F(R) and thus µ(R \ 2BCl
R ) >

√
αµ(R) by definition.

Then it is clear that R /∈ UB(R) ∪ BP(R) (and furthermore R /∈ HD(R) ∪ LD(R) ∪ BS(R),
see Remark 3.5) and so µ(RFar) 6 αµ(R) by Lemma 3.12. Furthermore, R \ 2BCl

R ⊂ RFar

by Lemma 3.13 (where one takes R for both Q and Q̃) and thus µ(R \ 2BCl
R ) 6 αµ(R)

which contradicts the fact that R ∈ F(R) as α� 1.

3.9 Measure of stopping cubes from BP(R) and F(R)

Lemma 3.14. It holds that∑
Q∈BP(R)

µ(Q) 6
1

α2 Θµ(2BR)2

∑
Q̃∈Tree(R)

p
[δ,Q̃]
0 (µb2BQ̃, µb2BR, µb2BR).

What is more, if α = α(τ) is small enough, then∑
Q∈F(R)

µ(Q) 6
√
αµ(R) 6 1

3

√
τ µ(R).

Proof. All the cubes in Stop(R) are disjoint and so are the cubes in BP(R) and F(R). From
(S3) we get

∑
Q∈BP(R)

µ(Q) 6
1

α2

∑
Q∈BP(R)

∑
Q⊂Q̃⊂R

p
[δ,Q̃]
0 (µb2BQ̃, µb2BR, µb2BR)

Θµ(2BR)2µ(Q̃)
µ(Q)

=
1

α2 Θµ(2BR)2

∑
Q̃∈Tree(R)

p
[δ,Q̃]
0 (µb2BQ̃, µb2BR, µb2BR)

∑
Q∈BP(R):Q⊂Q̃

µ(Q)

µ(Q̃)

6
1

α2 Θµ(2BR)2

∑
Q̃∈Tree(R)

p
[δ,Q̃]
0 (µb2BQ̃, µb2BR, µb2BR).

By (S4) and Lemmas 3.12 and 3.13, we obtain∑
Q∈F(R)

µ(Q) 6
1√
α

∑
Q∈F(R)

µ(Q \ 2BCl
Q ) 6

1√
α
µ(RFar) 6

√
αµ(R),

which finishes the proof.

3.10 Construction of a Lipschitz function

We aim to construct a Lipschitz function F : LR → L⊥R whose graph ΓR is close to R
up to the scale of cubes from Stop(R). We will mostly use the properties mentioned in
Lemma 3.9. This task is quite technical and so we start with a bunch of auxiliary results.
Note that, although we follow some of the methods from [Leg] and [Tol5, Chapter 7] quite
closely, we need to adapt the whole construction to the David-Mattila lattice used in the
current chapter (instead of the balls with controlled density used in [Leg] and [Tol5]).

Let us mention again that we may suppose that R /∈ Stop(R) as otherwise we choose
F ≡ 0 and the graph ΓR of F is just LR.
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3.10.1 Auxiliary results

As before, we denote by LQ a best approximating line for the ball 2BQ in the sense of the
beta numbers (3.2). We need now to estimate the angles between the best approximating
lines corresponding to cubes that are near each other. This task is carried out in the next
two lemmas. The first one is a well known result from [DS1, Section 5]. We formulate it
for lines in the complex plane.

Lemma 3.15 ( [DS1]). Let L1, L2 ⊂ C be lines and z1, z2 ∈ Z ⊂ C be points so that

(a) d1 = dist (z1, z2)/ diam (Z) ∈ (0, 1),

(b) dist (zi, Lj) < d2 diam (Z) for i = 1, 2 and j = 1, 2, where d2 < d1/4.

Then for any z ∈ L2,

dist (z, L1) 6 d2

(
4
d1

dist (z, Z) + diam (Z)
)
. (3.22)

We will use the preceding lemma to prove the following result.

Lemma 3.16. Let ε0 = ε0(γ) be chosen small enough. If Q1, Q2 ∈ DbTree(R) are such
that r(Q1) ≈ r(Q2) and dist (Q1, Q2) . r(Qj) for j = 1, 2, then

dist (w,LQ2) .
√
ε0 ( dist (w,Q1) + r(Q1)), w ∈ LQ1 , (3.23)

dist (w,LQ1) .
√
ε0 ( dist (w,Q2) + r(Q2)), w ∈ LQ2 , (3.24)

](LQ1 , LQ2) .
√
ε0. (3.25)

Proof. Let Q ∈ DbTree(R) be the smallest cube such that 2BQ ⊃ BQ1 ∩ BQ2 . Clearly,
r(Q) & r(Qj), j = 1, 2. Moreover, we can also guarantee that

r(Q) . dist (Q1, Q2) +
2∑
j=1

r(Qj) . r(Qj).

Now we use arguments similar to those in Lemma 3.10. Since Qj ∈ DbTree(R) for
j = 1, 2, by (3.16) and Lemma 3.5 there are balls Bk,j = B(ξk,j , ρ

′ r(Qj)), k = 1, 2, where
ξk,j ∈ B(Qj), such that µ(Bk,j ∩ B(Qj)) > ρ′′µ(Qj) and dist (y1,j , y2,j) > γr(BQj ) >
γr(Qj) for all yk,j ∈ Bk,j ∩Qj , where ρ′ and ρ′′ depend on γ. Consequently, by (3.18) and
the fact that r(Bk,j) ≈γ r(Qj) we get

1

r(Bk,j)

∫
Bk,j

(
dist (w,LQj )

r(Bk,j)

)2

dµ(w) .γ βµ,2(2BQj )
2 .γ ε

2
0 Θµ(2BQj ).

Since r(Q) ≈ r(Qj), we analogously obtain

1

r(Bk,j)

∫
Bk,j

(
dist (w,LQ)

r(Bk,j)

)2

dµ(w) .γ βµ,2(2BQ)2 .γ ε
2
0 Θµ(2BQ).

Therefore, using Chebyshev’s inequality and again the relation r(Q) ≈ r(Qj), we can find
zk,j ∈ Bk,j ∩Qj such that

max{ dist (zk,j , LQj ), dist (zk,j , LQ)} .γ ε0 r(Q).
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Since dist (z1,j , z2,j) > γr(Qj) & γr(Q), it follows by Lemma 3.15 that

dist (w,LQ) .γ ε0( dist (w,Qj) + r(Qj)) for all w ∈ LQj , j = 1, 2,

and
dist (w,LQj ) .γ ε0( dist (w,Qj) + r(Qj)) for all w ∈ LQ, j = 1, 2.

From this, by the triangle inequality, choosing ε0 small enough with respect to the implicit
constant depending on γ, we obtain (3.23) and (3.24).

The inequality (3.25) follows from (3.23) and (3.24) by elementary geometry.

Lemma 3.17. Let α = α(γ) and ε0 = ε0(γ) be chosen small enough. If Q1, Q2 ∈
DbTree(R) are such that 2BQ1 ⊂ 2BQ2 and x ∈ LQ1 ∩ 2BQ1, then

dist (x, LQ2) . ε1/3
0 r(Q2).

Proof. By Lemma 3.5 there exists a family of balls Bk = B(ξk, ρ
′ r(Q1)), where ξk ∈

B(Q1), such that µ(Bk ∩B(Q1)) > ρ′′µ(Q1) and dist (y1, y2) > γr(BQ1) > γr(Q1) for any
yk ∈ Bk ∩ Q1, k = 1, 2. Recall that ρ′ and ρ′′ depend on γ. Furthermore, we can choose
α = α(γ) in (3.20) small enough to guarantee that Bk ∩B(Q1) ∩ 2BCl

Q1
6= ∅. This and the

definition of 2BCl
Q1

imply that there exist zk ∈ Bk ∩B(Q1) ∩ 2BCl
Q1

, k = 1, 2, such that

dist (zk, LQj ) .
√
ε0 r(Qj), k = 1, 2, j = 1, 2.

Let z′k be the orthogonal projection of zk onto LQ1 . We easily get from the previous
inequality that

dist (z′k, LQ2) .
√
ε0 r(Q2), k = 1, 2. (3.26)

Moreover, dist (z1, z2) &γ r(Q1) implies that dist (z′1, z
′
2) &γ r(Q1) and z′k ∈ 2BQ1 , if

ε0 = ε0(γ) is small enough. Having this and (3.26) in mind and taking into account that
x ∈ LQ1 ∩ 2BQ1 , by elementary geometry we get the required estimate for dist (x, LQ2),
assuming again that ε0 = ε0(γ) is small enough.

3.10.2 Lipschitz function F for the good part of R

For each given R ∈ Ddb, we first construct the required function F on the projection of
the “good part” of R onto LR and then extend it onto the whole LR. In what follows, we
will work a lot with the function

d(z) := inf
Q∈DbTree(R)

{ dist (z,Q) + diam (Q)}, z ∈ C. (3.27)

Let us mention that θ(R) is supposed to be comparable with the parameter θ0, i.e.
θ(R) ≈ θ0, where the implicit constants will be defined in Section 3.12.

Lemma 3.18. Let ε0 = ε0(τ,A, θ0) and θ0 be small enough. For any z1, z2 ∈ cBR we have

|Π⊥(z1)−Π⊥(z2)| . θ(R)|Π(z1)−Π(z2)|+ c(τ,A) (d(z1) + d(z2)) ,

where Π(z) and Π⊥(z) are the projections of z onto LR and L⊥R, correspondingly, and
c(τ,A) > 0.
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Proof. Everywhere in the proof k = 1, 2. For a fixed h > 0 and any zk ∈ cBR one can
always find Qk ∈ DbTree(R) such that

dist (zk, Qk) + diam (Qk) 6 d(zk) + h, k = 1, 2.

Choose z′k ∈ Qk. Clearly, |zk − z′k| 6 d(zk) + h.
Let Q̃k ∈ DbTree(R) be the smallest cube such that 2BQ̃k ⊃ BQk and

r(Q̃k) ≈τ,A ε0|z1 − z2|+
∑

k
diam (Qk).

Now let Q̃ ∈ DbTree(R) be the smallest cube such that 2BQ̃ ⊃ BQ̃1
∪BQ̃2

and

r(Q̃) ≈τ,A |z1 − z2|+
∑

k
diam (Qk).

Note that |z1 − z2| . r(R) as zk ∈ cBR and thus the cubes Q̃k and Q̃ are well defined.
Furthermore, we easily get that ε0 r(Q̃) .τ,A r(Q̃k). Consequently, the way how Q̃k and Q̃
are chosen and the inequalities (3.15) and (3.18) in Lemma 3.9 imply that

1

µ(BQ̃k)

∫
BQ̃k

(
dist (w,LQ̃)

r(Q̃)

)2

dµ(w) .τ,A
r(Q̃)βµ,2(2BQ̃)2

µ(2BQ̃k)
.τ,A ε

2
0

r(Q̃)Θµ(2BQ̃)

µ(2BQ̃k)

.τ,A ε0

Θµ(2BQ̃)

Θµ(2BQ̃k)
.τ,A ε0 . ε

3/4
0 ,

if ε0 = ε0(τ,A) is chosen properly. Recall again that r(BQ) = 28r(Q) by definition.
From the inequality just obtained we deduce by Chebyshev’s inequality that there exist

z′′k ∈ R ∩BQ̃k , k = 1, 2, such that

|z′′k − π(z′′k)| . ε3/8
0 r(Q̃) . 4

√
ε0

(
|z1 − z2|+

∑
k
diam (Qk)

)
,

where π(z′′k) stands for the orthogonal projection of z′′k onto LQ̃ and ε0 = ε0(τ,A) is small
enough. Note also that

|z′k − z′′k | . r(Q̃k) . 4
√
ε0|z1 − z2|+ c(τ,A)

∑
k
diam (Qk),

if ε0 = ε0(τ,A) is small enough. Summarizing, we obtain the inequality

|z′k − π(z′′k)| 6 |z′k − z′′k |+ |z′′k − π(z′′k)| . 4
√
ε0|z1 − z2|+ c(τ,A)

∑
k
diam (Qk).

Furthermore, the triangle inequality yields

|Π⊥(z′1)−Π⊥(z′2)| 6 |Π⊥(π(z′′1 ))−Π⊥(π(z′′2 ))|+
∑

k
|Π⊥(z′k)−Π⊥(π(z′′k))|

6 |Π⊥(π(z′′1 ))−Π⊥(π(z′′2 ))|+
∑

k
|z′k − π(z′′k)|,

and therefore we immediately obtain

|Π⊥(z′1)−Π⊥(z′2)| . |Π⊥(π(z′′1 ))−Π⊥(π(z′′2 ))|+ 4
√
ε0|z1 − z2|+ c(τ,A)

∑
k
diam (Qk).
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From (3.19) in Lemma 3.9 applied to Q̃ and the triangle inequality we deduce that

|Π⊥(π(z′′1 ))−Π⊥(π(z′′2 ))|
. θ(R)|Π(π(z′′1 ))−Π(π(z′′2 ))|

. θ(R)
(
|Π(z1)−Π(z2)|+

∑
k
|Π(zk)−Π(π(z′′k))|

)
. θ(R)

(
|Π(z1)−Π(z2)|+

∑
k
|zk − π(z′′k)|

)
. θ(R)

(
|Π(z1)−Π(z2)|+

∑
k

(
|zk − z′k|+ |z′k − π(z′′k)|

))
.

Recall the estimates for |zk − z′k| and |z′k − π(z′′k)| and take into account that diam (Qk) 6
d(zk) + h and that ε0 and θ0 (and thus θ(R)) are small. Consequently,

|Π⊥(z′1)−Π⊥(z′2)| . θ(R)|Π(z1)−Π(z2)|+ 4
√
ε0|z1 − z2|+ c(τ,A)

∑
k
(d(zk) + h).

Additionally, the triangle inequality and the estimate for |zk − z′k| lead to

|Π⊥(z1)−Π⊥(z2)| 6 |Π⊥(z′1)−Π⊥(z′2)|+
∑

k
(d(zk) + h),

and thus

|Π⊥(z1)−Π⊥(z2)| . θ(R)|Π(z1)−Π(z2)|+ 4
√
ε0|z1 − z2|+ c(τ,A)

∑
k
(d(zk) + h).

Take into account that |z1− z2| 6 |Π(z1)−Π(z2)|+ |Π⊥(z1)−Π⊥(z2)| and choose ε0 small
enough with respect to θ0 (and thus to θ(R)) and to the implicit absolute constant in the
latter inequality. Finally,

|Π⊥(z1)−Π⊥(z2)| . θ(R)|Π(z1)−Π(z2)|+ c(τ,A)
∑

k
(d(zk) + h).

Letting h→ 0 finishes the proof.

We will also use the following notation:

GR = {x ∈ C : d(x) = 0}. (3.28)

Lemma 3.18 implies that the map Π : GR → LR is injective and we can define the function
F on Π(GR) by setting

F (Π(x)) = Π⊥(x), x ∈ GR. (3.29)

Moreover, this F is Lipschitz with constant . θ(R).
We are now aimed to extend F onto the whole line LR using a variant of the Whitney

extension theorem. This approach is quite standard and is used, for example, in [DS1,
Section 8], [Leg, Section 3.2] and [Tol5, Section 7.5]. Therefore we will skip some details
and mostly give the results related to the adaptation of the scheme to the David-Mattila
lattice that we use. These results will then imply the extension of F onto the whole LR by
repeating the “partition of unity” arguments presented in [Tol5, Section 7.5].

Let us define the function

D(z) := inf
x∈Π−1(z)

d(x) = inf
Q∈DbTree(R)

{ dist (z,Π(Q)) + diam (Q)}, z ∈ LR. (3.30)

For each z ∈ LR such that D(z) > 0, i.e. z ∈ LR \Π(GR), we call Jz the largest dyadic
interval from LR containing z such that

`(Jz) 6 1
20 inf

u∈Jz
D(u).

Let Ji, i ∈ I, be a relabelling of the set of all these intervals Jz, z ∈ LR \Π(GR), without
repetition. Some properties of {Ji} are summarized in the following lemma.
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Lemma 3.19 (Analogue of Lemma 7.20 in [Tol5]). The intervals in {Ji}i∈I have disjoint
interiors in LR and satisfy the properties:

(a) If z ∈ 15Ji, then 5`(Ji) 6 D(z) 6 50`(Ji).

(b) There exists an absolute constant c > 1 such that if 15Ji ∩ 15Ji′ 6= ∅, then

c−1`(Ji) 6 `(Ji′) 6 c `(Ji).

(c) For each i ∈ I, there are at most N intervals Ji′ such that 15Ji ∩ 15Ji′ 6= ∅, where
N is some absolute constant.

(d) LR \Π(GR) =
⋃
i∈I Ji =

⋃
i∈I 15Ji.

Now we construct the function F on

U0 = LR ∩B0, B0 = B(Π(x0), 10 diam (R)),

where x0 ∈ R is such that

dist (x0,Π(x0)) = dist (x0, LR) 6 diam (R).

This x0 exists due to the inequality (3.18) in Lemma 3.9. Note that by construction

R ⊂ B(Π(x0), 2 diam (R)) and Π(R) ⊂ LR ∩B(Π(x0), 2diam (R)). (3.31)

We also define the following set of indexes:

I0 = {i ∈ I : Ji ∩ U0 6= ∅}.

Lemma 3.20. The following holds.
(a) If i ∈ I0, then `(Ji) 6 diam (R) and 3Ji ⊂ LR ∩B(Π(x0), 12 diam (R)).
(b) If Ji ∩B(Π(x0), 3 diam (R)) = ∅ (in particular if i /∈ I0), then

`(Ji) ≈ dist (Π(x0), Ji) ≈ |Π(x0)− z| for all z ∈ Ji.

Proof. For (a), take Ji with i ∈ I0 so that Ji ∩ U0 6= ∅. Then we have

3Ji ⊂ LR ∩B(Π(x0), 10 diam (R) + 2`(Ji)).

It is necessary to estimate `(Ji). Recall that

`(Ji) 6 1
20 inf

u∈Ji
D(u).

Definitely, infu∈Ji D(u) 6 maxu∈U0 D(u) in our case so we will estimate this maximum
instead. To do so, we first notice that the definition (3.27) of d and the inequality (3.31)
give

d(x) 6 dist (x,R) + diam (R) 6 13 diam (R), x ∈ B0.

This yields
max
u∈U0

D(u) 6 max
x∈B0

d(x) 6 13 diam (R),

if we take into account the connection between d and D in (3.30). Thus

`(Ji) 6 13
20 diam (R)
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and therefore
3Ji ⊂ LR ∩B(Π(x0), (10 + 13

10) diam (R)).

Now let us prove (b). Let z ∈ Ji. Clearly, diam (R) 6 1
3 |Π(x0) − z|. Furthermore, we

infer from this and the definition (3.30) that

D(z) 6 (|Π(x0)− z|+ 2 diam (R)) + diam (R) 6 2|Π(x0)− z|.

From another side, by (3.30) and (3.31),

D(z) > dist (z,Π(R)) > |Π(x0)− z| − 2diam (R) > 1
3 |Π(x0)− z|.

Thus
1
3 |Π(x0)− z| 6 D(z) 6 2|Π(x0)− z|, z ∈ Ji.

Together with Lemma 3.19(a) this gives

5
2`(Ji) 6 |Π(x0)− z| 6 150`(Ji).

Moreover, since

|Π(x0)− z| − `(Ji) 6 dist (Π(x0), Ji) 6 |Π(x0)− z|, z ∈ Ji,

we get
3
2`(Ji) 6 dist (Π(x0), Ji) 6 150`(Ji),

which finishes the proof.

Lemma 3.21. Given i ∈ I0, there exists a cube Qi ∈ DbTree(R) such that

(a) `(Ji) . diam (Qi) .τ,A `(Ji);

(b) dist (Ji,Π(Qi)) . `(Ji).

Proof. From the definition (3.30) of D it follows that there exists a cube Q ∈ DbTree(R)
such that

dist (z,Π(Q)) + diam (Q) 6 2D(z) ≈ `(Ji), z ∈ Ji,

where the comparability is due to Lemma 3.19(a). This immediately gives (b) and the right
hand side inequality in (a) for Qi = Q. If the left hand side inequality in (a) does not hold,
we can replace Q by its smallest doubling ancestor Q′ satisfying diam (Q′) & `(Ji) so that
all other inequalities are valid (recall Lemma 3.11). We rename Q′ by Qi then.

For i ∈ I0, let Fi be the affine function LR → L⊥R whose graph is the line LQi . More-
over, Fi are Lipschitz functions with constant 6 θ(R) as ](LQi , LR) 6 θ(R) by (3.19) in
Lemma 3.9 taking into account that all Qi ∈ DbTree(R). On the other hand, for i /∈ I0, we
set Fi ≡ 0, i.e. the graph of Fi is just LR in this case.

Lemma 3.22. If 10Ji ∩ 10Ji′ 6= ∅ for some i, i′ ∈ I, then

(a) dist (Qi, Qi′) .τ,A `(Ji) if moreover i, i′ ∈ I0;

(b) |Fi(z)− Fi′(z)| . ε
1/3
0 `(Ji) for z ∈ 100Ji;

(c) |F ′i − F ′i′ | . ε
1/3
0 .
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Proof. For i, i′ ∈ I0, Lemmas 3.19(b) and 3.21(b) ensure that `(Qi) ≈ `(Qi′) and

dist (Π(Qi),Π(Qi′)) 6 dist (Π(Qi), Ji)+`(Ji)+dist (Ji, Ji′)+`(Ji′)+ dist (Ji′ ,Π(Qi′)) . `(Ji).

Keeping this in mind, we continue. For any z1 ∈ Qi and z2 ∈ Qi′ by the triangle inequality
and Lemma 3.18 we have

dist (Qi, Qi′) 6 dist (z1, z2) 6 |Π⊥(z1)−Π⊥(z2)|+ |Π(z1)−Π(z2)|
. |Π(z1)−Π(z2)|+ c(τ,A)(d(z1) + d(z2)).

Since z1 ∈ Qi and z2 ∈ Qi′ , we have d(z1) 6 diam (Qi) and d(z2) 6 diam (Qi′). Moreover,
if z1 and z2 are chosen so that

|Π(z1)−Π(z2)| 6 2 dist (Π(Qi),Π(Qi′)),

then dist (Qi, Qi′) . dist (Π(Qi),Π(Qi′)) + diam (Qi) + diam (Qi′) .τ,A `(Ji) as in (a).
For i, i′ ∈ I0 the properties (b) and (c) follow from (a) and Lemma 3.16. Indeed, in this

case

diam (Qi) ≈ diam (Qi′) ≈τ,A `(Ji) ≈ `(Ji′) and dist (Qi, Qi′) .τ,A `(Ji).

Taking into account that LQi and LQi′ are the graphs of Fi and Fi′ , correspondingly, by
Lemma 3.16 we have

|Fi(z)− Fi′(z)| .τ,A
√
ε0 `(Ji) . ε

1/3
0 `(Ji), z ∈ 100Ji,

if ε0 = ε0(τ,A) is chosen small enough. Moreover, by the same lemma ](LQi , LQi′ ) .τ,A√
ε0 and thus

|F ′i − F ′i′ | = | arctan](LQi , LR)− arctan](LQi′ , LR)|
= | arctan](LQi , LR)− arctan(](LQi , LR)± ](LQi , LQi′ ))|
. | arctan](LQi , LQi′ )|
.τ,A

√
ε0

. ε1/3
0 ,

if ε0 = ε0(τ,A) is small enough.
For i, i′ /∈ I0, Fi ≡ Fi′ ≡ 0, and so (b) and (c) are trivial.
Finally, let i ∈ I0 and i′ /∈ I0. From the assumption 10Ji ∩ 10Ji′ 6= ∅ and Lemma 3.19(b)

we know that `(Ji) ≈ `(Ji′). Moreover, by Lemma 3.20(a) we have `(Ji) 6 diam (R) as
i ∈ I0. From another side, by Lemma 3.20(b)

`(Ji′) ≈ dist (Π(x0), Ji′)

and additionally dist (Π(x0), Ji′) > 10 diam (R) as i′ /∈ I0, i.e. Ji′ ∩U0 = ∅. From all these
facts we conclude that

`(Ji) ≈ `(Ji′) ≈τ,A diam (R) and dist (Ji, Ji′) .τ,A diam (R).

Recall that Fi′ ≡ 0 and Ji′ ⊂ LR. Then, using Lemma 3.21 and arguments close to those
in the proof of Lemmas 3.10 and 3.16, one can show that LQi is very close to LR in cB0,
which yields (b) and (c) in this case if ε0 = ε0(τ,A) is chosen small enough.
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3.10.3 Extension of F to the whole LR

We are now ready to finish the definition of F on the whole LR. Recall that F has already
been defined on Π(GR) (see (3.29)). So it remains to define it only on LR \Π(GR). To this
end, we first introduce a partition of unity on LR \ Π(GR). For each i ∈ I, we can find a
function ϕ̃i ∈ C∞(LR) such that χ2Ji 6 ϕ̃i 6 χ3Ji , with

|ϕ̃i′| 6
c

`(Ji)
and |ϕ̃i′′| 6

c

`(Ji)2
.

Then, for each i ∈ I, we set

ϕi =
ϕ̃i∑
j∈I ϕ̃j

. (3.32)

It is clear that the family {ϕi}i∈I is a partition of unity subordinated to the sets {3Ji}i∈I ,
and each function ϕi satisfies

|ϕi′| 6
c

`(Ji)
and |ϕi′′| 6

c

`(Ji)2
,

taking into account Lemma 3.19.
Recall that LR \Π(GR) =

⋃
i∈I Ji =

⋃
i∈I 3Ji. For z ∈ LR \Π(GR), we define

F (z) :=
∑
i∈I0

ϕi(z)Fi(z).

Observe that in the preceding sum we can replace I0 by I as Fi ≡ 0 for i ∈ I \ I0.
We denote by ΓR the graph {(z, F (z)) : z ∈ LR}.
Using the lemmas proved above, one can undeviatingly follow the “partition of unity”

arguments in [Tol5, Section 7.5] to prove the following.

Lemma 3.23. The function F : LR → L⊥R is supported on LR ∩ B(Π(x0), 12 diam (R))
and is CF θ(R)-Lipschitz, where CF > 0 is absolute. Also, if z ∈ 15Ji, i ∈ I, then

|F ′′(z)| .
4
√
ε0

`(Ji)
.

Recall that we suppose of course that the parameters and thresholds mentioned in
Section 3.7 are chosen properly.

3.10.4 ΓR and R are close to each other

Lemma 3.24. There exists a constant c3(τ,A) > 0 such that

dist (x,ΓR) 6 c3(τ,A) · d(x) for any x ∈ B0. (3.33)

Proof. Let y = (Π(x), F (Π(x))). By Lemma 3.18,

dist (x,ΓR) 6 |x− y| = |Π⊥(x)−Π⊥(y)| .τ,A d(x) + d(y). (3.34)

If Π(x) ∈ Π(GR), then y ∈ GR and thus d(y) ≡ 0, which proves the lemma.
If Π(x) /∈ Π(GR), let Ji, i ∈ I, be such that Π(x) ∈ Ji. Since Π(x) ∈ Ji ∩ B0 6= ∅,

i ∈ I0 and therefore there exists a cube Qi ∈ DbTree(R) described in Lemma 3.21. This
gives

d(y) 6 dist (y,Qi) + diam (Qi) .τ,A dist (y,Qi) + `(Ji).
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Let us estimate dist (y,Qi). One can deduce from the definition of F that there exist
y′ ∈ LQi such that Π(y′) = Π(y) and dist (y, y′) . `(Ji) (recall that LQi is the graph of Fi
and Π(y) ∈ Ji, see some details in [Tol5, Proof of Lemma 7.24]). Moreover, it follows in a
similar way as in the proof of Lemmas 3.10 and 3.16 that there exist ζ ∈ Qi and ζ ′ ∈ LQi
such that dist (ζ, ζ ′) .

√
ε0 diam (Qi). We know from Lemma 3.21 that dist (Π(y′),Π(ζ)) .

`(Ji). Furthermore, it holds that ](LQi , LR) 6 θ(R) by (3.19) in Lemma 3.9 taking into
account that all Qi ∈ DbTree(R). These facts imply that dist (y′, ζ ′) . `(Ji). Summarizing,
we obtain

dist (y,Qi) 6 dist (y, y′) + dist (y′, ζ ′) + dist (ζ ′, ζ) . `(Ji).

From this by Lemma 3.19(a) and the definition of D (see (3.30)), we conclude that

d(y) .τ,A `(Ji) .τ,A D(Π(x)) .τ,A d(x).

This fact together with (3.34) proves the lemma.

Lemma 3.25. Let ε0 = ε0(A, τ) be small enough. If Q ∈ DbTree(R) and z ∈ ΓR ∩ 2BQ,
then

dist (z, LQ) . 4
√
ε0 r(Q). (3.35)

Proof. Let z ∈ GR. Then there exists Q′ ∈ DbTree(R) such that z ∈ Q′, Q′ ⊂ Q and
r(Q′) 6 ε

1/3
0 r(Q). By Lemma 3.10 there is z′ ∈ Q′ such that dist (z′, z′′) .

√
ε0 r(Q

′),
where z′′ ∈ LQ′ ∩2BQ′ . Furthermore, it is clear that dist (z, z′) . r(Q′) . ε1/3

0 r(Q). Using
that Q′ ⊂ Q, by Lemma 3.17 we get dist (z′′, LQ) . ε1/3

0 r(Q). Consequently,

dist (z, LQ) 6 dist (z, z′) + dist (z′, z′′) + dist (z′′, LQ) . ε1/3
0 r(Q).

Now let z /∈ GR and ζ = Π(z). In this case

F (ζ) =
∑
i∈I0

ϕi(ζ)Fi(ζ).

Now take into account (3.32) and distinguish two cases. Suppose first that∑
i∈I0

ϕi(ζ) = 1.

In this case (ζ, F (ζ)) is a convex combination of the points (ζ, Fi(ζ)) for i such that
ϕi(ζ) 6= 0 (we will write i ∈ Ĩ0 for these i s, Ĩ0 ⊂ I0). Therefore (3.35) follows if

dist ((ζ, Fi(ζ)), LQ) . ε1/3
0 r(Q) for all i ∈ Ĩ0. (3.36)

To prove this estimate, notice that since z ∈ 2BQ,

D(ζ) 6 d(z) . r(Q).

Let Ji′ , where i′ ∈ I0, be the interval that contains ζ. Then

`(Ji′) 6
1
20D(ζ) . r(Q). (3.37)

Recall that ϕi is supported on 3Ji. Consequently, we necessarily have 3Ji∩Ji′ 6= ∅ if i ∈ Ĩ0.
Therefore by Lemma 3.19(b) and 3.21(a),

`(Ji) ≈τ,A diam (Qi) ≈τ,A diam (Qi′) ≈τ,A `(Ji′) .τ,A r(Q).
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Moreover, by Lemma 3.22(a),

dist (Π(Qi),Π(Qi′)) 6 dist (Qi, Qi′) .τ,A `(Ji).

Taking into account that

dist (Π(Qi′),Π(Q)) 6 dist (Π(Qi′), Ji′) + diam (Ji′) + dist (Ji′ ,Π(Q)) . `(Ji′) .τ,A r(Q),

we get

dist (Π(Qi),Π(Q)) 6 dist (Π(Qi),Π(Qi′))+ diam (Π(Qi′))+ dist (Π(Qi′),Π(Q)) .τ,A r(Q).

From Lemma 3.18, applied for z1 ∈ Qi and z2 ∈ Q, we deduce that

dist (Qi, Q) . dist (Π(Qi),Π(Q)) + diam (Qi) + diam (Q) .τ,A r(Q).

This means that 2BQi ⊂ cBQ with some c = c(τ,A) > 1. Consequently, by Lemmas 3.11
and 3.16, we can find Q′ ∈ DbTree(R) such that cBQ ⊂ 2BQ′ , diam (Q′) ≈A,τ diam (Q)
and

dist (w,LQ) .A,τ
√
ε0(dist (w,Q′) + diam (Q′)), w ∈ LQ′ .

Choosing ε0 = ε0(A, τ) small enough, we get

dist (w,LQ) . ε1/3
0 (dist (w,Q′) + diam (Q′)), w ∈ LQ′ . (3.38)

Recall that (ζ, Fi(ζ)) ∈ LQi ∩ cBQi and 2BQi ⊂ 2BQ′ so Lemma 3.17 gives

dist ((ζ, Fi(ζ)), LQ′) . ε
1/3
0 r(Q′).

Note that the parameters and thresholds in Lemma 3.17 are also supposed to be properly
chosen. Together with (3.38) applied to w = projLQ′ (ζ, Fi(ζ)), this yields (3.36) as required.

Suppose now that ∑
i∈I0

ϕi(ζ) < 1.

In this case, there exists some Ji′ with i′ /∈ I0 such that ζ ∈ 3Ji′ (as from (3.32) it follows
that

∑
i∈I\I0 ϕi(ζ) > 0) and by Lemma 3.20(b),

diam (R) . `(Ji′) ≈ dist (Π(x0), Ji′).

Moreover, if Ji is the interval that contains ζ = Π(z), z ∈ 2BQ, then

`(Ji) . D(Π(z)) . d(z) . dist (z,Q) + diam (Q) . diam (R),

where we used the definition of D, see (3.30).
By Lemma 3.19(b), `(Ji) ≈ `(Ji′) as Ji∩3Ji′ 6= ∅. That is why `(Ji′) ≈ diam (R). This

also implies that `(Jm) ≈ diam (R) for any m ∈ I0 such that ζ ∈ 3Jm. By Lemma 3.21(a),
it means that diam (Qm) ≈τ,A diam (R). Furthermore, it is clear that dist (Qm, R) ≡ 0
and so the assumptions of Lemma 3.16 are satisfied for Qm and R. Consequently, LQm
and LR are very close in cBR for some c > 1 if the corresponding parameters are chosen
properly, namely,

distH(LQm ∩ cBR, LR ∩ cBR) .τ,A
√
ε0 diam (R). (3.39)
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On the other hand, arguing as in (3.37), one deduces that `(Jm) .τ,A r(Q), and from this
we conclude that r(Q) ≈τ,A diam (R). By (3.39) then we get

|Fm(ζ)| = dist ((ζ, Fm(ζ)), LR) .τ,A
√
ε0 diam (R) .τ,A

√
ε0 r(Q) . ε1/3

0 r(Q)

for all above-mentioned ms is ε0 = ε0(τ,A) is chosen small enough. Recall that we only
need to sum up i ∈ I0 such that ζ ∈ 3Ji and these are our m ∈ I0. Thus

dist ((ζ, F (ζ)), LR) 6
∑
i∈I0

ϕi(ζ)|Fi(ζ)| =
∑
m∈I0

ϕm(ζ)|Fm(ζ)|

6 max
m∈I0

|Fm(ζ)|
∑
m∈I0

ϕm(ζ) . ε1/3
0 r(Q).

Due to the fact that r(Q) ≈ diam (R), by Lemma 3.16 lines LR and LQ are very close to
each other in 2BQ, and thus

dist ((ζ, F (ζ)), LQ) . ε1/3
0 r(Q)

as desired.

Lemma 3.26. For all x ∈ R \RFar,

dist (x,ΓR) . 4
√
ε0 d(x). (3.40)

Proof. Recall that if d(x) = 0, then x ∈ ΓR and we are done.
By Lemmas 3.13 and 3.25 any point x ∈ R \RFar is very close to LR and (3.40) clearly

holds if d(x) ≈ diam (R). Hence, we may suppose below that d(x) is small with respect to
diam (R), say, d(x)� (c3(τ,A) + 2) diam (R), where c3(τ,A) > 0 is from Lemma 3.24.

Given x ∈ R \RFar with d(x) > 0, take a cube Q ∈ DbTree(R) such that

dist (x,Q) + diam (Q) 6 2d(x).

Take any z ∈ Q (note that dist (z, x) 6 2d(x)) and find Q′ ∈ DbTree(R) such that

B(z, 2(c3(τ,A) + 2)d(x)) ⊂ 3
2BQ′ .

Recall that d(x) is small with respect to diam (R) and thus Q′ can be found. We can also
guarantee that r(Q′) ≈τ,A d(x). Furthermore, it is clear that x ∈ B(z, 2(c3(τ,A) + 2)d(x))
and thus x ∈ 3

2BQ′ . Moreover, Lemma 3.24 gives

dist (z,ΓR) 6 dist (z, x) + dist (x,ΓR) 6 (2 + c3(τ,A))d(x),

which yields that B(z, 2(c3(τ,A) + 2)d(x)) ∩ ΓR 6= ∅ and therefore
3
2BQ′ ∩ ΓR 6= ∅.

Take into account that x ∈ 3
2BQ′ ∩R\RFar ⊂ 2BCl

Q′ , i.e. dist (x, LQ′) .
√
ε0 r(Q

′) and thus
there is x′ ∈ LQ′ ∩2BQ′ such that dist (x, x′) .

√
ε0 r(Q

′). Furthermore, Lemma 3.25 says
that dist (y, LQ′) 6 cε0

1/3 r(Q′) for any y ∈ ΓR ∩ 2BQ′ and some c > 0. In other words,

ΓR ∩ 2BQ′ ⊂ Ucε01/3 r(Q′)(LQ′),

and thus dist (x′,ΓR) . ε0
1/3 r(Q′). Summarising, we get

dist (x,ΓR) 6 dist (x, x′) + dist (x′,ΓR) . ε0
1/3 r(Q′).

It is left to remember that r(Q′) ≈τ,A d(x) by construction and to choose ε0 = ε0(τ,A)
small enough.
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Lemma 3.27. For each i ∈ I0,

dist (Qi,ΓR ∩Π−1(Ji)) .τ,A `(Ji).

Proof. Let x ∈ Qi ⊂ B0. Then by Lemmas 3.24 and 3.21(a) we have

dist (Qi,ΓR) 6 dist (x,ΓR) .τ,A d(x) .τ,A diam (Qi) ≈τ,A `(Ji).

Moreover, dist (Ji,Π(Qi)) . `(Ji) by Lemma 3.21(b). From these two inequalities and
Lemma 3.23, the required result follows.

We finish this section with one more result which can be easily deduced from Lem-
mas 3.23 (look at sptF ) and 3.25.

Lemma 3.28. For any z ∈ ΓR, it holds that

dist (z, LR) . 4
√
ε0 r(R).

3.11 Small measure of the cubes from LD(R)

In what follows we show that the measure of the low-density cubes is small.

Lemma 3.29. If ε0 = ε0(τ,A) and τ are small enough, then∑
Q∈LD(R)

µ(Q) 6 1
3

√
τ µ(R). (3.41)

Proof. Recall that the the parameters and thresholds from Section 3.7 are supposed to be
chosen so that all above-stated results hold true. Taking this into account, note that by
Lemma 3.12 with α = α(τ), being small enough, we have

µ(RFar) 6
1
6

√
τµ(R),

thus for obtaining (3.41) it suffices to show that

µ(SLD) 6 1
6

√
τµ(R), where SLD :=

⋃
Q∈LD(R)

Q \RFar. (3.42)

By the Besicovitch covering theorem, there exist a countable collection of points xi ∈
SLD such that

SLD ⊂
⋃

i
B(xi, r(Qi)) and

∑
i
χB(xi,r(Qi)) 6 N,

where Qi ∈ LD(R) is such that xi ∈ Qi, and N is some fixed constant. Note that
B(xi, r(Qi)) ⊂ 2BQi . From this it follows that

µ(SLD) 6
∑

i
µ(B(xi, r(Qi))) 6

∑
i
µ(2BQi) .

∑
i
Θµ(2BQi)r(Qi).

Since Qi ∈ LD(R), we have Θµ(2BQi) < τΘµ(2BR) by definition. Furthermore, each
xi ∈ SLD satisfies Lemma 3.26 and moreover d(xi) .τ,A diam (Qi) (as xi also belongs to
the first doubling ancestor of Qi with a comparable diameter with comparability constant
λ = λ(τ,A), see Lemma 3.11) so that

dist (xi,ΓR) .τ,A 4
√
ε0 r(Qi) . 8

√
ε0 r(Qi),

80



if ε0 = ε0(τ,A) is small enough. This means that ΓR passes very close to the center of
B(xi, r(Qi)) in terms of r(Qi). Consequently,

r(Qi) . H1(ΓR ∩B(xi, r(Qi)))

as ΓR is a connected graph of a Lipschitz function. Thus we get

µ(SLD) . τΘµ(2BR)
∑

i
H1(ΓR ∩B(xi, r(Qi))).

Since
∑

i χB(xi,r(Qi)) 6 N with an absolute constant N , we get by Lemma 3.23 that∑
i
H1(ΓR ∩B(xi, r(Qi))) . H1

(
ΓR ∩

⋃
i
B(xi, r(Qi))

)
. H1(ΓR ∩ 2BR) . r(BR).

From this we deduce that

µ(SLD) . τΘµ(2BR)r(BR) . τµ(2BR) . τµ(R),

where the latter inequality is due to the fact that R ∈ Ddb by construction. Finally, we
obtain (3.42) if τ is chosen small enough.

3.12 Small measure of the cubes from BS(R) for R whose best
approximation line is far from the vertical

3.12.1 Auxiliaries and the key estimate for the measure of cubes from
BS(R)

Given some θ0 > 0, we say that

R ∈ TV F (θ0) and θ(R) = θ0, if θV (LR) > (1 + CF ) θ0;

R /∈ TV F (θ0) and θ(R) = 2(1 + CF ) θ0, if θV (LR) < (1 + CF ) θ0.

Note that CF > 0 is an absolute constant from Lemma 3.23 where it is stated that the
function F is CF θ(R)-Lipschitz. Recall that θ0 and θ(R) were first introduced and used in
Sections 3.7 and 3.8.1.

Let R ∈ TV F (θ0). From the definition of the family BS(R) it follows that in this case
we have

](LQ, LR) > θ0 ∀Q ∈ BS(R). (3.43)

On the other hand, if Q ∈ DbTree(R), then ](LQ, LR) 6 θ0 and thus

θV (LQ) > (1 + CF ) θ0 − ](LQ, LR) > CF θ0 ∀Q ∈ DbTree(R).

In this section we are going to deal with R ∈ TV F (θ0) only. Our aim is to prove the
following assertion.

Lemma 3.30. For any R ∈ TV F (θ0), if ε0 = ε0(τ) is chosen small enough, then∑
Q∈BS(R)

µ(Q) 6 1
3

√
τµ(R).

The rest of this section is devoted to the proof of this lemma.

Remark 3.7. It is natural to suppose in this section that BS(R) is not empty. This and
Remark 3.5 imply that R /∈ Stop(R) and thus Tree(R) \ Stop(R) is not empty.
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3.12.2 The measure of cubes from BS(R) is controlled by the permuta-
tions of the Hausdorff measure restricted to ΓR

Recall that the the parameters and thresholds from Section 3.7 are supposed to be chosen
so that all above-stated results hold. Taking this into account, note that by Lemma 3.12
with α = α(τ), being small enough, we have

µ(RFar) 6
1
6

√
τµ(R),

thus to prove Lemma 3.30, it suffices to show that

µ(SBS) 6 1
6

√
τµ(R), where SBS :=

⋃
Q∈BS(R)

Q \RFar. (3.44)

The following results is the first step in proving (3.44). (Recall the identity (0.15).)

Lemma 3.31. If θ0 and ε0 = ε0(θ0, τ, A) are chosen small enough, then

µ(SBS) .A
p∞(Θµ(2BR)H1

ΓR
)

θ2
0 Θµ(2BR)2

.

Proof. For every x ∈ SBS take the ball B(x, r(Qx)), where Qx ∈ BS(R) and is such that
x ∈ Qx. By the 5r-covering theorem there exists a subfamily of pairwise disjoint balls
{B(xi, r(Qi))}i∈Î , where Qi = Qxi , such that

SBS ⊂ R ∩
⋃

i∈Î
B(xi, 5r(Qi)).

Let Bi = B(xi,
1
2r(Qi)), i ∈ Î. Clearly, Bi ⊂ BQi . Moreover, take into account that

Qi ∈ Ddb by the stopping condition (S3) and that SBS∩RFar = ∅ by definition. Therefore,
by Lemma 3.26,

dist (xi,ΓR) . 4
√
ε0 d(xi) . 4

√
ε0 r(Qi) <

1
4r(Qi),

if ε0 is small enough. Thus ΓR ∩ 1
2Bi 6= ∅ and therefore there exist y1, y2 ∈ ΓR ∩ Bi such

that
cr(Qi) 6 |y1 − y2| . |Π(y1)−Π(y2)|

with some small fixed constant c > 0, where in the latter inequality we took into account
that ΓR is a graph of a Lipschitz function F (see Lemma 3.23).

Now, by Lemma 3.11, there exists Q̃i ∈ DbTree(R) such that Qi ⊂ Q̃i and moreover
diam (Qi) ≈τ,A diam (Q̃i). By Lemma 3.25,

dist (yk, LQ̃i) . ε0
1/3 r(Q̃i), yk ∈ ΓR ∩Bi, k = 1, 2.

At the same time, ∠(LQi , LQ̃i) .τ,A
4
√
ε0 by arguments similar to those in the proof of

Lemma 3.16 (this lemma cannot be applied directly as Qi /∈ DbTree(R) but the arguments
can still be adapted if one of the cubes is in BS(R)). Therefore, if ε0 = ε0(τ,A) is small
enough, then one can show that

dist (yk, LQi) .
8
√
ε0 r(Qi), yk ∈ ΓR ∩Bi ⊂ ΓR ∩ 2BQi , k = 1, 2.

Consequently, denoting by y′k the orthogonal projections of yk onto LQi , we get

|yk − y′k| . 8
√
ε0 r(Qi), k = 1, 2.
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Since ](LQi , LR) > θ0 by (3.43) and ε0 = ε0(θ0) is small enough, it holds that

|F (Π(y1))− F (Π(y2))|

= |Π⊥(y1)−Π⊥(y2)| > |Π⊥(y′1)−Π⊥(y′2)| −
∑

k
|yk − y′k|

& θ0|Π(y′1)−Π(y′2)| −
∑

k
|yk − y′k| & θ0|Π(y1)−Π(y2)| − 2

∑
k
|yk − y′k|

& θ0r(Qi)− 8
√
ε0r(Qi) & θ0r(Qi),

where k = 1, 2. Thus,∫
Π(Bi)

|F ′(z)|dz >

∣∣∣∣∣
∫ Π(y2)

Π(y1)
F ′(z)dz

∣∣∣∣∣ = |F (Π(y1))− F (Π(y2))| & θ0r(Qi).

This and Hölder’s inequality yield

θ0r(Qi) .
√
r(Bi)‖F ′‖2,Π(Bi) ≈

√
r(Qi)‖F ′‖2,Π(Bi),

and finally
r(Qi) . θ

−2
0 ‖F

′‖22,Π(Bi)
.

Since the balls 2Bi, i ∈ Î, are pairwise disjoint by construction, so are the intervals
Π(Bi) ⊂ LR, i ∈ Î, if θ0 is chosen small enough. This is a consequence of the fact that xi,
the centres of Bi, lie very close to ΓR, namely, dist (xi,ΓR) . 4

√
ε0 r(Bi), and moreover

](Lxi,xj , LR) . θ0 for all i, j ∈ Î as ΓR is Lipschits with constant . θ0, see Lemma 3.23.
By this reason we have

µ(SBS) 6
∑

i∈Î
µ(B(xi, 5r(Qi))) .

∑
i∈Î

Θµ(2BQi)r(Qi)

.A θ
−2
0 Θµ(2BR)

∑
i∈Î
‖F ′‖22,Π(Bi)

.A θ
−2
0 Θµ(2BR)‖F ′‖22.

Now take into account that under the assumption that ‖F ′‖∞ 6 1/10 (which is satisfied
if θ0 is sufficiently small) by [Tol5, Lemma 3.9] we have

‖F ′‖22 ≈ p∞(H1
ΓR

) ≈ Θµ(2BR)−3 p∞(Θµ(2BR)H1
ΓR

)

with some absolute constants.

We claim that p∞(x, y, z) is well controlled by p0(x, y, z) for any x, y ∈ ΓR if R ∈
TV F (θ0).

Lemma 3.32. If R ∈ TV F (θ0), then

p∞(x, y, z) .θ0 p0(x, y, z) for any x, y ∈ ΓR.

Proof. The fact that the function F (whose graph is ΓR) is CF θ(R)-Lipschitz by
Lemma 3.23 and the definitions at the beginning of Subsection 3.12.1 yield

](Lxy, LR) 6 CF θ0 and θV (LR) > (1 + CF ) θ0.

Consequently,

θV (Lxy) > θV (LR)− ](Lxy, LR) > (1 + CF ) θ0 − CF θ0 = θ0.

Therefore (x, y, z) ∈ VFar(θ0) and it is left to use Lemma 3.6.
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For x ∈ C such that Π(x) /∈ Π(GR), set

Jx = Ji, i ∈ I, such that Π(x) ∈ Ji,

and
`x = `(Jx).

If Π(x) ∈ Π(GR), we write

Jx = Π(x) and `x = 0,

i.e. one should think that in this case the point Π(x) is a degenerate interval Jx with zero
side length. To simplify notation, throughout this section we also write

x1 = Π(x) and x2 = Π⊥(x).

Recall that the intervals {Ji}, i ∈ I0, are the ones from {Ji}, i ∈ I, that intersect the
ball B0 = B(Π(x0), 10 diam (R)), where x0 ∈ R is such that dist (x0, LR) . r(R) (see
(3.31)). Observe that if z ∈ U0 = LR ∩ B0, then D(z) . r(R). Thus `(Ji) . r(R) for all
i ∈ I0. Thus, setting

ΓB0 = GR ∪
⋃
i∈I0

ΓR ∩Π−1(Ji),

we deduce that ΓB0 ⊂ c′B0 with some fixed c′ > 0. It is also true that B0 ⊂ c′′BR with
some c′′ > 0 and thus

ΓB0 ⊂ cBR with some c > 0.

One can actually tune constants to guarantee that

ΓB0 ⊂
⋃

Q∈Tree(R)

2BQ ⊂ 2BR,

so we will suppose this in what follows.
Clearly, Π(ΓB0) is an interval on LR and therefore ΓB0 is a connected subset of ΓR. We

also set
ΓExt(B0) = ΓR \ ΓB0 .

First we will show that the part of the permutations of H1
ΓR

that involves ΓExt(B0) is
very small.

Lemma 3.33. We have

p∞(Θµ(2BR)H1
ΓExt(B0)

,Θµ(2BR)H1
ΓR
,Θµ(2BR)H1

ΓR
) . 8
√
ε0 Θµ(2BR)2 µ(R).

Proof. The proof is analogous (up to constants) to the proof of [Tol5, Lemma 7.36], where
we should use our Lemmas 3.23 and 3.28 instead of [Tol5, Lemma 7.27 and Lemma 7.32].

What is more, it can be easily seen that

p∞(Θµ(2BR)H1
ΓR

) 6p∞(Θµ(2BR)H1
ΓB0

)

+ 3p∞(Θµ(2BR)H1
ΓExt(B0)

,Θµ(2BR)H1
ΓR
,Θµ(2BR)H1

ΓR
).

(3.45)
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Consequently, taking into account Lemmas 3.31 and 3.33, we are now able to reduce
the proof of Lemma 3.30 to the proof of a proper estimate for p∞(Θµ(2BR)H1

ΓB0
), where

ΓB0 ⊂ cBR with some c > 0. For short, we will write

σ := Θµ(2BR)H1
ΓB0

.

Thus, using this notation, we are aimed to prove the following lemma in the forthcoming
subsections.

Lemma 3.34. It holds that

p∞(σ) . ε1/40
0 Θµ(2BR)2 µ(R).

3.12.3 Estimates for the permutations of the Hausdorff measure re-
stricted to ΓR

Recall that, for x ∈ C, we set `x = `(Jx). Let x, y ∈ ΓR. We say that x and y are

• very close and write

(x, y) ∈ VC, if |x1 − y1| 6 `x + `y;

• close and write

(x, y) ∈ C, if |x1 − y1| 6 ε−1/20
0 (`x + `y);

• far and write
(x, y) ∈ F, if |x1 − y1| > ε

−1/20
0 (`x + `y).

Notice that the relations are symmetric with respect to x and y.
Given (x, y, z) ∈ Γ3

B0
, there are three possibilities: either two of the points in the triple

are very close, or no pair of points is very close but there is at least one pair that is close,
or all the pairs of points are far. So we can split p∞(σ) as follows:

p∞(σ) 6 3

∫∫∫
(x,y)∈VC

p∞(x, y, z) dσ(x) dσ(y) dσ(z)

+ 3

∫∫∫
(x,y)∈C\VC
(x,z)6∈VC
(y,z)6∈VC

p∞(x, y, z) dσ(x) dσ(y) dσ(z)

+

∫∫∫
(x,y)∈F
(x,z)∈F
(y,z)∈F

p∞(x, y, z) dσ(x) dσ(y) dσ(z)

=: p∞,VC(σ) + p∞,C\VC(σ) + p∞,F(σ).

(3.46)

A straightforward adaptation of the arguments from [Tol5, Section 7.8.2, Lemmas 7.38
and 7.39] to our settings gives the following.

Lemma 3.35. If ε0 = ε0(τ,A) and α = α(θ0, ε0, τ, A) are chosen small enough, then

p∞,VC(σ) + p∞,C\VC(σ) . ε
1/40
0 Θµ(2BR)2 µ(R).

Now we are going to prove the following result that actually finishes the proof of
Lemma 3.34 and therefore Lemma 3.30 taking into account (3.46) and Lemma 3.35.
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Lemma 3.36. If ε0 = ε0(τ,A), α = α(θ0, ε0, τ, A) and δ = δ(ε0) are small enough, then

p∞,F(σ) . ε1/40
0 Θµ(2BR)2 µ(R). (3.47)

The proof of Lemma 3.36 is similar to the one of [Tol5, Lemma 7.40] but necessary
changes are not straightforward so we give details. First we need to approximate the mea-
sure σ by another measure absolutely continuous with respect to µ, of the form gµ, with
some g ∈ L∞(µ). This is carried out by the next lemma, where we say that

i ∈ I ′0 if i ∈ I0 and µ(Qi \RFar) >
3
4µ(Qi), (3.48)

for the cubes Qi ∈ DbTree(R) from Lemma 3.21 associated with the intervals Ji, i ∈ I0.
Recall the definition of RFar in Section 3.8.2 and Lemmas 3.12 and 3.13. In what follows
we will also write

Ĵi := ΓR ∩Π−1(Ji).

Lemma 3.37. For each i ∈ I ′0 there exists a non-negative function gi ∈ L∞(µ), sup-
ported on Ai ⊂ Qi \ RFar, where Qi ∈ DbTree(R) are associated with the intervals Ji by
Lemma 3.21, and such that∫

gi dµ = Θµ(2BR)H1(Ĵi) = σ(Ĵi), (3.49)

and ∑
i∈I′0

gi .τ,A 1. (3.50)

Proof. Assume first that the family {Ji}i∈I′0 is finite. Suppose also that `(Ji) 6 `(Ji+1) for
all i ∈ I ′0. We will construct

gi = αiχAi , where αi > 0 and Ai ⊂ Qi \RFar.

We set

α1 =
σ(Ĵ1)

µ(A1)
and A1 = Q1 \RFar,

so that
∫
g1 dµ = σ(Ĵ1). Furthermore, by (3.15) in Lemma 3.9, Lemmas 3.21 and 3.23 and

the condition (3.48) we get

‖g1‖∞ = α1 .τ,A
Θµ(2BR)`(J1)

µ(Q1)
≈τ,A

Θµ(2BR) diam (Q1)

µ(2BQ1)
6 b′ with b′ = b′(τ,A) > 0.

Furthermore, we define gk, k > 2, by induction. Suppose that g1, . . . , gk−1 have been
constructed, satisfy (3.49) and the inequality

∑k−1
i=1 gi 6 b with some b = b(τ,A) > 0 to be

chosen later.
If Qk is such that Qk ∩

⋃k−1
i=1 Qi = ∅, then we set

αk =
σ(Ĵk)

µ(Ak)
and Ak = Qk \RFar,

so that
∫
gk dµ = σ(Ĵk). Moreover, similarly to the case of α1, we have

‖gk‖∞ = αk 6 b
′,
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where b′ = b′(τ,A) is obviously independent of k. Since Ak ∩
⋃k−1
i=1 Ai = ∅, we have

gk +
∑k−1

i=1
gi 6 max{b, b′}.

We choose b = b′(τ,A) in order to have (3.50).
Now suppose that Qk ∩

⋃k−1
i=1 Qi 6= ∅ and let Qs1 , . . . , Qsm be the subfamily of

Q1, . . . , Qk−1 such that Qsj ∩Qk 6= ∅. Since `(Jsj ) 6 `(Jk) (because of the non-decreasing
sizes of `(Ji), i ∈ I ′0), we deduce that dist (Jsj , Jk) . `(Jk), and thus Jsj ⊂ c′Jk, for some
constant c′ > 0. Using (3.49) for i = sj , we get by (3.15) in Lemma 3.9, Lemmas 3.21
and 3.23 that∑

j

∫
gsj dµ =

∑
j
σ(Ĵsj ) 6 σ(Π−1(c′Jk))

. Θµ(2BR)`(Jk) . Θµ(2BR) diam (Qk) 6 c
′′ µ(Qk)

with some c′′ = c′′(τ,A) > 0. Therefore, by Chebyshev’s inequality,

µ
({∑

j
gsj > 2c′′

})
6

1

2
µ(Qk).

So we set
Ak =

(
Qk ∩

{∑
j
gsj 6 2c′′

})
\RFar,

and then µ(Ak) >
1
4µ(Qk). As above, we put αk = σ(Ĵk)/µ(Ak) so that gk = αkχAk

satisfies
∫
gk dµ = σ(Ĵk). Consequently,

αk 6
σ(Ĵk)

1
4µ(Qk)

6 b′′ with some b′′ = b′′(τ,A) > 0,

which yields
gk +

∑
j
gsj 6 b

′′ + 2c′′.

Recall that sj are such that Qsj ∩Qk 6= ∅. The latter inequality implies that

gk +
∑k−1

i=1
gi 6 max{b, b′′ + 2c′′}.

In this case, we choose b = b′′ + 2c′′ and (3.50) follows. Clearly, this bound is independent
of the number of functions.

Suppose now that {Ji}i∈I′0 is not finite. For each fixed M we consider a family of
intervals {Ji}16i6M . As above, we construct functions gM1 , . . . , gMM with spt (gMi ) ⊂ Qi\RFar

satisfying ∫
gMi dµ = σ(Ĵi) and

∑M

i=1
gMi 6 b = b(τ,A).

Then there is a subsequence {gk1}k∈I1 which is convergent in the weak ∗ topology of L∞(µ)
to some function g1 ∈ L∞(µ). Now we take another convergent subsequence {gk2}k∈I2 ,
I2 ⊂ I1, in the weak ∗ topology of L∞(µ) to another function g2 ∈ L∞(µ), etc. We
have spt (gi) ⊂ Qi \ RFar. Furthermore, (3.49) and (3.50) also hold due to the weak ∗
convergence.

Recall that GR = {z ∈ C : d(z) = 0} (see (3.28)) and clearly GR ⊂ R. We will need
the following result which can be proved analogously to [Tol5, Lemma 7.18] taking into
account that the density Θµ(2BR) is involved in our case.
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Lemma 3.38. We have

µbGR = ρGRΘµ(2BR)H1
GR

= ρGRσbGR,

where ρGR is a function such that c 6 ρGR 6 c
−1 with some constant c = c(τ,A) > 0.

Let us mention now the following technical result proved in [Tol5, Subsection 4.6.1].

Lemma 3.39. Let x, y, z ∈ C be pairwise distinct points, and let x′ ∈ C be such that

a−1|x− y| 6 |x′ − y| 6 a|x− y|,

where a > 0 is some constant. Then

|c(x, y, z)− c(x′, y, z)| 6 (4 + 2a)
|x− x′|

|x− y||x− z|
.

Take into account that p∞(x, y, z) = 1
2c(x, y, z)

2 by (0.15).
Recall that

ΓB0 = GR ∪
⋃

i∈I0
Ĵi and Ĵi = ΓR ∩Π−1(Ji).

In Lemma 3.37 we showed how σbĴi can be approximated by a measure supported on
Qi \RFar, for each i ∈ I ′0, where I ′0 is defined in (3.48). Notice that, by Lemma 3.27,

dist (Qi, Ĵi) .τ,A `(Ji), i ∈ I0. (3.51)

Now we consider the measures

νi := gi µ, i ∈ I ′0,

with gi as in Lemma 3.37, and set

ν := σbGR +
∑

i∈I′0
νi = ρ−1

GR
µbGR +

∑
i∈I′0

gi µ. (3.52)

This measure should be understood as an approximation of σ = Θµ(2BR)H1
ΓB0

, which
coincides with σ on GR due to Lemma 3.38 (gi ≡ 0 in this case).

Using the measure ν, we will actually prove the inequality (3.47) in Lemma 3.36. This
will be done in the forthcoming subsection.

3.12.4 Estimates for the permutations of the Hausdorff measure re-
stricted to ΓR in the case when points are far from each other

To proceed, we need to introduce some additional notation. Given measures τ1, τ2, τ3, set

pt(τ1, τ2, τ3) :=

∫∫∫
pt(x, y, z) dτ1(x) dτ2(y) dτ3(z), where t = 0 or t =∞.

We denote by pt,F(τ1, τ2, τ3) the triple integral above restricted to (x, y, z) such that

|x1 − y1| > ε−1/20
0 (`x + `y),

|x1 − z1| > ε−1/20
0 (`x + `z),

|y1 − z1| > ε−1/20
0 (`y + `z).

(3.53)

88



So we have
p∞,F(σ) = p∞,F(σbGR)

+p∞,F(σbΓB0 \GR)
+3 p∞,F(σbGR, σbΓB0 \GR, σbΓB0 \GR)
+3 p∞,F(σbGR, σbGR, σbΓB0 \GR).

(3.54)

1. Consider the term p∞,F(σbGR). In this case `x = `y = `z ≡ 0 and the subscript F
may be skipped. Moreover, using Lemmas 3.32 and 3.38, we get

p∞,F(σbGR) .θ0 p0(σbGR) ≈θ0,τ,A p0(µbGR).

Now we proceed very similarly to the proof of Lemma 3.12. For δ > 0 from Lemma 3.7
(see also Section 3.7), taking into account Remark 3.7, we get

p0(µbGR) 6
∫
GR

∑
Q∈Tree(R)\Stop(R):x∈2BQ

p
[δ,Q]
0 (x, µbGR, µbGR) dµ(x)

6
∑

Q∈Tree(R)\Stop(R)

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

=
∑

Q∈Tree(R)\Stop(R)

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

µ(Q)

∫
χQ(x) dµ(x).

Changing the order of summation and the inequality (3.17) yield

p0(µbGR)

Θµ(2BR)2
6
∫
R

∑
Q∈Tree(R)\Stop(R):x∈Q

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

Θµ(2BR)2µ(Q)
dµ(x)

=

∫
R

∑
Q∈Tree(R)\Stop(R):x∈Q

perm(Q)2 dµ(x).

From this and the inequality (3.17) in Lemma 3.9 we deduce that

p0(µbGR) 6 α2 Θµ(2BR)2µ(R).

Finally, if α = α(θ0, ε0, τ, A) is chosen small enough, then

p∞,F(σbGR) . ε1/40
0 Θµ(2BR)2 µ(R).

2. Let us study p∞,F(σbΓB0 \ GR). In this case `x, `y and `z are strictly positive and
so are the lengths of the associated doubling cubes from Lemma 3.21. We set

p∞,F(σbΓB0 \GR) =
∑

i,j,k∈I0

p∞,F

(
σbĴi, σbĴj , σbĴk

)
.

First let us consider the case when at least one of the indices i, j or k is in I0 \ I ′0, i.e.
µ(Qh ∩ RFar) >

3
4µ(Qh) for h being i, j or k, according to (3.48). By symmetry, we may

consider just the case i ∈ I0 \ I ′0. Moreover, then the required estimate will follow from a
proper one for

p∞

(
σbĴ ′, σbΓB0 , σbΓB0

)
, where Ĵ ′ :=

⋃
i∈I0\I′0

Ĵi.

Recall that
σ = Θµ(2BR)H1

ΓB0
and ΓB0 = GR ∪

⋃
i∈I0

Ĵi.
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Lemma 3.40. We have
H1(Ĵ ′) 6

√
α diam (R).

Proof. Notice that for i ∈ I0 \ I ′0 we have

Θµ(2BR)H1(Ĵi) . Θµ(2BR)`(Ji) .τ,A Θµ(2BR) diam (Qi) ≈τ,A µ(Qi) .τ,A µ(Qi ∩RFar),

where Qi ∈ DbTree(R) is the cube associated to the interval Ji by Lemma 3.21. By Vitali’s
covering lemma, there exists a subfamily of balls 2BQi , i ∈ J ⊂ I0 \ I ′0, such that

• the balls 2BQi , i ∈ J , are disjoint,

•
⋃
i∈I0\I′0

2BQi ⊂
⋃
i∈J 10BQi .

Then, taking into account that µ(10BQi ∩R) ≈τ,A µ(2BQi) ≈ µ(Qi), we get

Θµ(2BR)H1(Ĵ ′) .
∑

i∈I0\I′0

µ(Qi) .
∑
i∈J

µ(10BQi ∩R)

.τ,A
∑
i∈J

µ(Qi) .τ,A
∑
i∈J

µ(Qi ∩RFar) .τ,A µ(RFar),

because the cubesQi from the family J are disjoint. Since µ(RFar) 6 αµ(R) by Lemma 3.12,
the lemma follows if α = α(τ,A) is chosen small enough.

To continue, we need the following result from [Tol5].

Lemma 3.41 (Lemma 3.4 in [Tol5]). Let µ1, µ2 and µ3 be finite measures. Then∑
s∈S3

∫
Cε(µs2)Cε(µs3) dµs1 = c2

ε(µ1, µ2, µ3) +R, R 6 C
∑
s∈S3

∫
MRµs2MRµs3 dµs1 ,

where S3 is the group of permutations of the three elements {1, 2, 3}, Cε the truncated
Cauchy integral, c2

ε the truncated curvature of measure (see (0.6) and below) and MR the
1-dimensional radial maximal operator.

Lemma 3.42. For E ⊂ ΓB0, we have

c2(H1
E ,H1

ΓB0
,H1

ΓB0
) . H1(E)1/2 diam (R)1/2.

Proof. By Lemma 3.41, we have

c2(H1
E ,H1

ΓB0
,H1

ΓB0
) . lim sup

ε→0

∫
ΓB0

|Cε(H1
E) Cε(H1

ΓB0
)| dH1

+ lim sup
ε→0

∫
E
|Cε(H1

ΓB0
)|2 dH1

+

∫
ΓB0

|MR(H1
E)MR(H1

ΓB0
)|2 dH1

+

∫
E
|MR(H1

ΓB0
)|2 dH1

:= I1 + I2 + I3 + I4.
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Regarding I1, by the L2-boundedness of the Cauchy transform on Lipschitz graphs
(with respect to H1

ΓR
) we have

I1 6 lim sup
ε→0

‖Cε(H1
E)‖L2(H1

ΓR
)‖Cε(H1

ΓB0
)‖L2(H1

ΓR
)

. H1(E)1/2H1(ΓB0)1/2

. H1(E)1/2 diam (R)1/2.

For I2 we use the L4-boundedness of the Cauchy transform:

I2 6 lim sup
ε→0

H1(E)1/2 ‖Cε(H1
ΓB0

)‖2L4(H1
ΓR

) . H
1(E)1/2 diam (R)1/2.

Using the fact that MR(H1
ΓB0

) . 1, we derive

I4 6 H1(E) . H1(E)1/2 diam (R)1/2,

and also
I3 .

∫
ΓB0

|MR(H1
E)| dH1.

Since the operator MR(H1
ΓR

) is bounded in L2(H1
ΓR

) (as it is comparable to the Hardy-
Littlewood operator with respect to the measure H1

ΓR
), we deduce

I3 . ‖MR(χEH1
ΓR

)‖L2(H1
ΓR

)H1(ΓB0)1/2 . H1(E)1/2 diam (R)1/2.

So the lemma follows.

By Lemma 3.42 for E = Ĵ ′ and Lemma 3.40 we derive that

c2(H1
Ĵ ′
,H1

ΓB0
,H1

ΓB0
) . H1(Ĵ ′)1/2 diam (R)1/2 . α1/4 diam (R).

Therefore, recalling that p∞(x, y, z) = 1
2c(x, y, z)

2 (see (0.15)),

p∞

(
σbĴ ′, σbΓB0 , σbΓB0

)
. α1/4Θµ(2BR)3 diam (R) ≈ α1/4 Θµ(2BR)2 µ(R).

Furthermore, choosing α = α(ε0) small enough, we get from the latter estimate that∑
i∈I0\I′0, j,k∈I0

p∞,F

(
σbĴi, σbĴj , σbĴk

)
. ε1/40

0 Θµ(2BR)2 µ(R), (3.55)

and we are done with the case when at least one of the indices i, j or k is in I0 \ I ′0.

Now let (i, j, k) ∈ (I ′0)3. By definition, if p∞,F
(
σbĴi, σbĴj , σbĴk

)
6= 0, then there exist

x ∈ Ĵi, y ∈ Ĵj and z ∈ Ĵk satisfying (3.53). Then it follows easily that

dist (Ĵi, Ĵj) > 1
2ε
−1/20
0 (`(Ji) + `(Jj)) ,

dist (Ĵi, Ĵk) >
1
2ε
−1/20
0 (`(Ji) + `(Jk)) ,

dist (Ĵj , Ĵk) >
1
2ε
−1/20
0 (`(Jj) + `(Jk)) .

(3.56)

We denote by JF the set of those indices (i, j, k) ∈ (I ′0)3 such that the inequalities (3.56)
hold, so that

p∞,F(σbΓB0 \GR) 6
∑

(i,j,k)∈JF

p∞

(
σbĴi, σbĴj , σbĴk

)
.
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Consider (i, j, k) ∈ JF and

x, x′ ∈ Ĵi ∪Qi, y, y′ ∈ Ĵj ∪Qj and z, z′ ∈ Ĵk ∪Qk.

Due to (3.56) and (3.51), taking into account that `(Jh) ≈τ,A diam (Ĵh) ≈τ,A diam (Qh)

for each h ∈ I by Lemma 3.21, the sets Ĵi ∪Qi, Ĵj ∪Qj and Ĵk ∪Qk are far to each other
in the sense that

dist (Ĵi ∪Qi, Ĵj ∪Qj) & ε−1/20
0 (`(Ji) + `(Jj)) ,

dist (Ĵi ∪Qi, Ĵk ∪Qk) & ε
−1/20
0 (`(Ji) + `(Jk)) ,

dist (Ĵj ∪Qj , Ĵk ∪Qk) & ε
−1/20
0 (`(Jj) + `(Jk)) ,

(3.57)

where ε0 is chosen small enough. Furthermore, applying Lemma 3.39 three times gives

p∞(x, y, z) 6 2 p∞(x′, y′, z′) + c (Tx(y, z) + Ty(x, z) + Tz(x, y)) ,

where

Tz1(z2, z3) :=
`2z1

|z1 − z2|2 |z1 − z3|2
for z1, z2, z3 ∈ C.

Then, integrating on x ∈ Ĵi, y ∈ Ĵj , and z ∈ Ĵk with respect to σ, we get

p∞

(
σbĴi, σbĴj , σbĴk

)
6 2 p∞(x′, y′, z′)σ(Ĵi)σ(Ĵj)σ(Ĵk)

+ c

∫∫∫
x∈Ĵi
y∈Ĵj
z∈Ĵk

[Tx(y, z) + Ty(x, z) + Tz(x, y)] dσ(x) dσ(y) dσ(z).

On the other hand, by analogous arguments, we have

p∞(x′, y′, z′) ‖νi‖ ‖νj‖ ‖νk‖ 6 2 p∞(νi, νj , νk)

+ c

∫∫∫
[Tx(y, z) + Ty(x, z) + Tz(x, y)] dνi(x) dνj(y) dνk(z).

Thus, recalling that ‖νh‖ = σ(Ĵh) for any h ∈ I ′0, from the preceding inequalities we get

p∞

(
σbĴi, σbĴj , σbĴk

)
. p∞(νi, νj , νk)

+

∫∫∫
[Tx(y, z) + Ty(x, z) + Tz(x, y)] dνi(x) dνj(y) dνk(z)

+

∫∫∫
x∈Ĵi
y∈Ĵj
z∈Ĵk

[Tx(y, z) + Ty(x, z) + Tz(x, y)] dσ(x) dσ(y) dσ(z).

(3.58)

Now recall that Ah = spt νh ⊂ Qh for any h ∈ I ′0. This and Lemma 3.24 imply that
for each x ∈ Qi and y ∈ Qj there exist x̃ ∈ ΓR and ỹ ∈ ΓR, correspondingly, such that
dist (x, x̃) .τ,A `(Ji) and dist (y, ỹ) .τ,A `(Jj). Due to this fact and (3.57), it holds that

](Lxỹ, Lxy) .
|y − ỹ|
|x− y|

.τ,A
`(Jj)

ε
−1/20
0 (`(Ji) + `(Jj))

.τ,A ε
1/20
0

and
](Lx̃y, Lxy) .

|x− x̃|
|x− y|

.τ,A
`(Ji)

ε
−1/20
0 (`(Ji) + `(Jj))

.τ,A ε
1/20
0 .
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So it follows that ](Lx̃ỹ, Lxy) .τ,A ε
1/20
0 . By Lemma 3.23 and the definitions at the begin-

ning of Subsection 3.12.1,

](Lxy, LR) 6 CF θ0 and θV (LR) > (1 + CF ) θ0.

Consequently,

θV (Lx̃ỹ) > θV (LR)− ](Lxy, LR)− ](Lx̃ỹ, Lxy) > 1
2θ0,

if ε0 = ε0(θ0, τ, A) is chosen small enough. Now use Lemma 3.6 to conclude that

p∞(νi, νj , νk) .θ0 p0(νi, νj , νk). (3.59)

Moreover, from (3.57) and the fact that `(Jh) ≈τ,A diam (Qh) for any h we conclude that

p0(νi, νj , νk) .
∫ ∑

Q∈Tree(R)\Stop(R):x∈2BQ

p
[δ,Q]
0 (x, νj , νk) dνi(x)

.
∑

Q∈Tree(R)\Stop(R)

p
[δ,Q]
0 (νib2BQ, νj , νk),

where δ = δ(ε0, τ, A) is chosen small enough. Furthermore, using that ν = gµ and arguing
as in the case of p∞,F(σbGR) we get∑

(i,j,k)∈JF

p0(νi, νj , νk) .
∑

Q∈Tree(R)\Stop(R)

p
[δ,Q]
0 (νb2BQ, ν, ν)

.τ,A
∑

Q∈Tree(R)\Stop(R)

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

.τ,A α
2Θµ(2BR)2µ(R)

. ε1/20
0 Θµ(2BR)2µ(R),

where α = α(θ0, ε0, τ, A) is chosen small enough. From this, (3.58) and (3.59) by summing
on (i, j, k) ∈ JF we deduce that∑

(i,j,k)∈JF

p∞

(
σbĴi, σbĴj , σbĴk

)
. ε1/40

0 Θµ(2BR)2µ(R)

+

∫∫∫
|x−y|> 1

2
ε
−1/20
0 (`x+`y)

|x−z|> 1
2
ε
−1/20
0 (`x+`z)

|y−z|> 1
2
ε
−1/20
0 (`y+`z)

[Tx(y, z) + Ty(x, z) + Tz(x, y)] dσ(x) dσ(y) dσ(z)

+

∫∫∫
|x−y|> 1

2
ε
−1/20
0 (`x+`y)

|x−z|> 1
2
ε
−1/20
0 (`x+`z)

|y−z|> 1
2
ε
−1/20
0 (`y+`z)

[Tx(y, z) + Ty(x, z) + Tz(x, y)] dν(x) dν(y) dν(z),

(3.60)

where ε0 = ε0(θ0) was chosen small enough. Recall the definition of ν in (3.52).
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To estimate the first triple integral in the right side of (3.60), notice that∫∫
|x−y|> 1

2
ε
−1/20
0 (`x+`y)

|x−z|> 1
2
ε
−1/20
0 (`x+`z)

Tx(y, z) dσ(y) dσ(z)

6

(∫
|x−y|> 1

2
ε
−1/20
0 `x

`x
|x− y|2

dσ(y)

)(∫
|x−z|> 1

2
ε
−1/20
0 `x

`x
|x− z|2

dσ(z)

)

=

(∫
|x−y|> 1

2
ε
−1/20
0 `x

`x
|x− y|2

dσ(y)

)2

. ε1/10
0 Θµ(2BR)2,

(3.61)

where the last inequality follows from splitting the domain {y : |x − y| > 1
2ε
−1/20
0 `x}

into annuli and the linear growth of σ with constant . Θµ(2BR) (see (0.12)). Analogous
estimates hold permuting x, y, z, and also interchanging σ by ν (the implicit constant in
the analogue of (3.61) for ν depends on τ and A then). Indeed, this is a consequence of
the following result.

Lemma 3.43. It holds that

ν(B(x, r)) .τ,A Θµ(2BR) r, where r > `x > 0 and x ∈ spt ν ⊂ R \RFar.

Proof. Recall that ν = gµ with g bounded by a constant depending in τ and A, see (3.52).
If r > diamR, then spt ν ⊂ B(x, r) and thus

ν(B(x, r)) .τ,A µ(2BR) ≈τ,A Θµ(2BR) diam (R) .τ,A Θµ(2BR) r.

Consequently, we may suppose below that `x 6 r 6 diam (R).
First let d(x) 6 C(τ,A)`x, where C(τ,A) > 0 will be chosen later. Then there should

exist P ∈ DbTree(R) such that B(x, r) ⊂ 2BP and diam (P ) ≈τ,A r so that

ν(B(x, r)) .τ,A µ(B(x, r)) .τ,A µ(2BP ) ≈τ,A Θµ(2BR) diam (P ) ≈τ,A Θµ(2BR)r.

Now let d(x) > C(τ,A)`x > 0. Set y = (Π(x), F (Π(x))) ∈ ΓR. As shown in the proof
of Lemma 3.24, d(y) 6 c(τ,A)`x with some c(τ,A) > 0. Choose Q′ ∈ DbTree(R) so that

dist (y,Q′) + diam (Q′) 6 2d(y).

Taking into account that x ∈ R \ RFar, from Lemma 3.26 and the properties of ΓR we
deduce that dist (x, y) . 4

√
ε0 d(x) 6 8

√
ε0 d(x) if ε0 is chosen small enough. Thus

d(x) 6 dist (x,Q′) + diam (Q′) 6 dist (x, y) + 2d(y) 6 8
√
ε0 d(x) + 2c(τ,A)`x

6 8
√
ε0 d(x) +

2c(τ,A)

C(τ,A)
d(x) 6 ( 8

√
ε0 + 1

2)d(x) < d(x),

if we choose C(τ,A) > 4c(τ,A). Hence we get a contradiction if d(x) > C(τ,A)`x > 0.

By plugging the estimates obtained into (3.60), choosing ε0 = ε0(τ,A) small enough
and recalling (3.55) we get

p∞,F(σbΓB0 \GR) . ε1/40
0 Θµ(2BR)2 µ(R).

Now it remains to estimate the last two terms of (3.54). The arguments are similar to
the preceding ones.
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3. Since σbGR = νbGR, we have

p∞,F(σbGR, σbΓB0 \GR, σbΓB0 \GR) = p∞,F(νbGR, σbΓB0 \GR, σbΓB0 \GR)

and
p∞,F(σbGR, σbGR, σbΓB0 \GR) = p∞,F(νbGR, νbGR, σbΓB0 \GR).

Concerning the term p∞,F(σbGR, σbΓB0 \GR, σbΓB0 \GR), the main difference with respect
to the estimates above for p∞,F(σbΓB0 \GR) is that Tx(y, z) equals zero in this case, and
instead of integrating over σbĴi and νi and then summing on i, one integrates over σbGR.
Then one obtains

p∞,F(σbGR,σbΓB0 \GR, σbΓB0 \GR)

. ε1/40
0 Θµ(2BR)2 µ(R)

+

∫∫∫
|x−y|> 1

2
ε
−1/20
0 `y

|x−z|> 1
2
ε
−1/20
0 `z

|y−z|> 1
2
ε
−1/20
0 (`y+`z)

[Ty(x, z) + Tz(x, y)] dσ(x) dσ(y) dσ(z)

+

∫∫∫
|x−y|> 1

2
ε
−1/20
0 `y

|x−z|> 1
2
ε
−1/20
0 `z

|y−z|> 1
2
ε
−1/20
0 (`y+`z)

[Ty(x, z) + Tz(x, y)] dν(x) dν(y) dν(z).

The last two triple integrals are estimated as in (3.61), and then it follows that

p∞,F(σbGR, σbΓB0 \GR, σbΓB0 \GR) . ε1/40
0 Θµ(2BR)2 µ(R).

4. Finally, the arguments for p∞,F(σbGR, σbGR, σbΓB0 \GR) are very similar. In this
case, both terms Tx(y, z) and Ty(x, z) vanish, and analogously we also get

p∞,F(σbGR, σbGR, σbΓB0 \GR) . ε1/40
0 Θµ(2BR)2 µ(R).

This finishes the proof of Lemma 3.36.

3.13 The packing condition for Top cubes and the end of the
proof of Main Lemma

3.13.1 Properties of the trees

In order to prove the packing condition for Top cubes we will first extract some necessary
results from Lemmas 3.9, 3.14, 3.29, 3.30 and 3.38. We suppose that all the parameters and
thresholds from Section 3.7 are chosen properly. Recall also the definition (3.28) of GR.

Lemma 3.44. Let µ be a finite measure with compact support such that

p0(µ) <∞.

Considering the David-Mattila dyadic lattice D associated with µ, let R ∈ Ddb. Then there
exists a CF θ0-Lipschitz function F : LR → L⊥R, where CF > 0 is independent of R, a
family of pairwise disjoint cubes Stop(R) ⊂ D(R) and a set GR ⊂ R such that

(a) GR is contained in ΓR = F (LR) and moreover µbGR is absolutely continuous with
respect to Θµ(2BR)H1

ΓR
;
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(b) for any Q ∈ Tree(R),

Θµ(2BQ) . AΘµ(2BR);

(c) if R ∈ TV F (θ0), then∑
Q∈Stop(R)

Q/∈HD(R)∪UB(R)

µ(Q) 6
√
τ µ(R) +

1

α2Θµ(2BR)2

∑
Q̃∈Tree(R)

p
[δ,Q̃]
0 (µb2BQ̃, µb2BR, µb2BR);

if R /∈ TV F (θ0), then∑
Q∈Stop(R)

Q/∈HD(R)∪UB(R)∪BS(R)

µ(Q) 6
√
τ µ(R) +

1

α2Θµ(2BR)2

∑
Q̃∈Tree(R)

p
[δ,Q̃]
0 (µb2BQ̃, µb2BR, µb2BR).

3.13.2 New families of stopping cubes

According to Section 3.8 and Lemma 3.44, each R ∈ Ddb generates several families of
cubes fulfilling certain properties. In this subsection we will introduce some variants of
these families. The idea is to have stopping cubes that are always different from R and are
in Ddb, cf. Remark 3.5.

Recall that each cube in HD(R) is in Ddb and is clearly different from R due to the fact
that Q ∈ HD(R) satisfies Θµ(2BQ) > AΘµ(2BR) with A� 1.

Now we turn our attention to the family UB(R). By Lemma 3.5, if Q ∈ UB(R), i.e. it
is γ-unbalanced, there exists a family of pairwise disjoint cubes {P}P∈IQ ⊂ Ddb(Q) such
that diam (P ) & γ diam (Q) and Θµ(2BP ) & γ−1 Θµ(2BQ) for each P ∈ IQ, and∑

P∈IQ

Θµ(2BP )2 µ(P ) & γ−2 Θµ(2BQ)2 µ(Q). (3.62)

Let I ′Q be a family of (not necessarily doubling) cubes contained in Q, with side length
comparable to a diam (Q) with some a > 0, disjoint from the ones from IQ, so that

Q =
⋃
P∈IQ

P ∪
⋃
P∈I′Q

P.

To continue, we introduce additional notation. Given a cube Q ∈ D, we denote by
MD(Q) the family of maximal cubes (with respect to inclusion) from Ddb(Q). By Lemma
3.2, this family covers µ-almost all Q. Furthermore, using the definition just given, we
denote by ĨQ the family

⋃
P∈I′Q

MD(P ). Moreover, we set

ŨB(R) =
⋃

Q∈UB(R)

(IQ ∪ ĨQ).

One can deduce from (3.62) that R 6∈ ŨB(R) for a and γ small enough.
Now consider BS(R). Each cube in this family is in Ddb by construction. Moreover,

R /∈ BS(R) due to the condition ](LQ, LR) > θ(R) > 0 for each Q ∈ BS(R).
To continue, we set

O(R) = Stop(R) \ (HD(R) ∪ UB(R) ∪ BS(R)) = LD(R) ∪ BP(R) ∪ F(R)
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and

Õ(R) =

 ⋃
Q∈D
MD(Q) : Q is a son of some cube from O(R)

 .

This guarantees that R /∈ Õ(R) as cubes in Õ(R) are descendants of cubes in Tree(R).
Finally, let

Next(R) = HD(R) ∪ ŨB(R) ∪ Õ(R) ∪ BS(R).

By construction, all cubes in Next(R) are disjoint, doubling and different from R. Moreover,

R \
⋃

Q∈Next(R)

Q = R \
⋃

Q∈Stop(R)

Q. (3.63)

Using the small boundaries property of the David-Mattila lattice and the definition (3.28),
one can also show that

µ

R \ ⋃
Q∈Stop(R)

Q

 = µ(GR). (3.64)

For the record, notice also that, by construction, if P ∈ Next(R), then

Θµ(2BS) .τ,A Θµ(2BR) for all S ∈ D such that P ⊂ S ⊂ R. (3.65)

3.13.3 The corona decomposition

Recall that we assumed that µ has compact support. Let

R0 := sptµ.

Obviously we may suppose that R0 ∈ Ddb. We will construct the family Top contained in
R0 inductively applying Lemma 3.44 so that Top =

⋃
k>0 Topk. Let

Top0 = {R0}.

Assuming Topk to be defined, we set

Topk+1 =
⋃

R∈Topk

Next(R).

Note that cubes in Next(R), with R ∈ Topk, are pairwise disjoint.

3.13.4 The families of cubes IDH, IDU and ID

We distinguish two types of cubes R ∈ Top. We write R ∈ IDH (increasing density because
of high density cubes) if

µ

( ⋃
Q∈HD(R)

Q

)
>

1

4
µ(R).

Also, we write R ∈ IDU (increasing density because of unbalanced cubes) if

µ

( ⋃
Q∈ŨB(R)

Q

)
>

1

4
µ(R).

Additionally, let
ID = IDH ∪ IDU .
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Lemma 3.45 (Lemma 5.4 and its proof in [AT]). If R ∈ ID, then

Θµ(2BR)2 µ(R) .
1

A2

∑
Q∈HD(R)

Θµ(2BQ)2 µ(Q)

Θµ(2BR)2 µ(R) .
γ2

τ2

∑
Q∈ŨB(R)

Θµ(2BQ)2 µ(Q).

Moreover, if A is such that A−1 6 τ2 and γ 6 τ3, then

Θµ(2BR)2 µ(R) 6 cτ4
∑

Q∈Next(R)

Θµ(2BQ)2 µ(Q),

where c > 0 is some absolute constant.

3.13.5 The packing condition

Recall that we assume linear growth of µ, i.e.

µ(B(x, r)) 6 C∗r ∀x ∈ sptµ, r > 0, (3.66)

for some constant C∗ > 0 (see (0.12)). Using this assumption, we will prove the following.

Lemma 3.46. If the parameters and thresholds in Section 3.7 are chosen properly, then∑
R∈Top

Θµ(2BR)2 µ(R) 6 c5 p0(µ) + cC2
∗ µ(C), (3.67)

where c5 = c5(τ,A, θ0, γ, ε0, α, δ) > 0 and c > 0.

Proof. For a given k > 0, we set Topk0 =
⋃

06j6k Topj and ID
k
0 = ID ∩ Topk0.

To prove (3.67), first we deal with the cubes from the ID family. By Lemma 3.45,∑
R∈IDk0

Θµ(2BR)2 µ(R) 6 cτ2
∑

R∈IDk0

∑
Q∈Next(R)

Θµ(2BQ)2 µ(Q)

6 cτ2
∑

R∈Topk+1
0

Θµ(2BR)2 µ(R),

because the cubes from Next(R) with R ∈ Topk0 belong to Topk+1
0 . So we have∑

R∈Topk0

Θµ(2BR)2 µ(R)

=
∑

R∈Topk0\IDk0

Θµ(2BR)2 µ(R) +
∑

R∈IDk0

Θµ(2BR)2 µ(R)

6
∑

R∈Topk0\IDk0

Θµ(2BR)2 µ(R) + cτ2
∑

R∈Topk0

Θµ(2BR)2 µ(R) + cτ2
∑

R∈Topk+1

Θµ(2BR)2 µ(R)

6
∑

R∈Topk0\IDk0

Θµ(2BR)2 µ(R) + cτ2
∑

R∈Topk0

Θµ(2BR)2 µ(R) + c τ2C2
∗µ(R0),
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where we took into account that Θµ(2BR) . C∗ for every R ∈ Top (and in particular for
all R ∈ Topk+1). So, having τ small enough, we deduce that∑

R∈Topk0

Θµ(2BR)2 µ(R) 6 1.1
∑

R∈Topk0\IDk0

Θµ(2BR)2 µ(R) + cτ2C2
∗µ(R0). (3.68)

Let us estimate the first term in the right hand side of (3.68). First note that

µ

(
R \

⋃
Q∈HD(R)∪ŨB(R)

Q

)
>

1

2
µ(R) for anyR ∈ Topk0 \ IDk

0 .

Next, by applying the inequalities (c) in Lemma 3.44 and recalling (3.63) and (3.64) we
get

µ(R) 6 2µ

(
R \

⋃
Q∈Next(R)

Q

)
+ 2µ

( ⋃
Q∈Õ(R)∪BS(R)

Q

)

6 2µ(GR) + 2µ

( ⋃
Q∈Õ(R)

Q

)
+ 2

∑
Q∈BS(R)

(if R∈TV F (θ0))

µ(Q) + 2
∑

Q∈BS(R)
(if R/∈TV F (θ0))

µ(Q)

6 2µ(GR) + 2
√
τ µ(R) + 2

∑
Q∈BS(R)

(if R/∈TV F (θ0))

µ(Q)

+
2α−2

Θµ(2BR)2

∑
Q∈Tree(R)

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR).

Suppose that τ is small enough to get

µ(R) 6 2.1µ(GR) + 2.1
∑

Q∈BS(R)
(if R/∈TV F (θ0))

µ(Q)

+
2.1α−2

Θµ(2BR)2

∑
Q∈Tree(R)

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR).

So we deduce from (3.68) that∑
R∈Topk0

Θµ(2BR)2 µ(R)

6 3
∑

R∈Topk0\IDk0

Θµ(2BR)2 µ(GR) (3.69)

+
3

α2

∑
R∈Topk0

∑
Q∈Tree(R)

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR)

+ 3
∑

R∈Topk0\(IDk0∪TV F (θ0))

Θµ(2BR)2
∑

Q∈BS(R)

µ(Q)

+ cτ2C2
∗µ(R0).

In order to deal with the first sum on the right hand side we take into account that
Θµ(2BR) . C∗ for all R ∈ Top by (3.66) and that the sets GR with R ∈ Top are pairwise
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disjoint. Then we get ∑
R∈Topk0\IDk0

Θµ(2BR)2 µ(GR) 6 cC2
∗ µ(R0).

On the other hand, the double sum in (3.69) does not exceed

2
∑
Q∈D

p
[δ,Q]
0 (µb2BQ, µb2BR, µb2BR) 6 c(δ) p0(µ),

by the finite superposition of the domains of integration. Recall that δ = δ(γ, ε0). So we
obtain ∑

R∈Topk0

Θµ(2BR)2 µ(R) 6cC2
∗ µ(R0) + c(τ,A, γ, ε0, α) p0(µ) (3.70)

+ c
∑

R∈Topk0\(IDk0∪TV F (θ0))

Θµ(2BR)2
∑

Q∈BS(R)

µ(Q).

The third term in (3.70) without the constant may be written as the sum∑
R∈Topk0\(IDk0∪TV F (θ0))

Θµ(2BR)2(S1(R) + S2(R)),

where

S1(R) =
∑

Q∈BS(R)∩TV F (θ0)\IDk+1
0

µ(Q) and S2(R) =
∑

Q∈BS(R)∩TV F (θ0)∩IDk+1
0

µ(Q).

Note that we have the intersection with TV F (θ0) in these sums. This is so because for any
Q ∈ BS(R), where R ∈ Top \ TV F (θ0), it holds that

θV (LQ) > ](LQ, LR)− θV (LR) > 2(1 + CF )θ0 − (1 + CF )θ0 = (1 + CF )θ0,

and thus Q ∈ TV F (θ0).
Let us estimate S1(R). Since Q ∈ TV F (θ0)\ IDk+1

0 , we deduce from (c) in Lemma 3.44
that

µ(Q) 6 2µ

(
Q \

⋃
P∈Next(Q)

P

)
+ 2µ

( ⋃
P∈Õ(Q)∪BS(Q)

P

)

6 2µ(GQ) + 2µ

( ⋃
Q∈Õ(R)

Q

)
+ 2

∑
P∈BS(Q)

(if Q∈TV F (θ0))

µ(P )

6 2µ(GQ) + 2
√
τ µ(Q) +

2α−2

Θµ(2BQ)2

∑
P∈Tree(Q)

p
[δ,P ]
0 (µb2BP , µb2BQ, µb2BQ).

If τ is small enough, then

µ(Q) 6 2.1µ(GQ) +
2.1α−2

Θµ(2BQ)2

∑
P∈Tree(Q)

p
[δ,P ]
0 (µb2BP , µb2BQ, µb2BQ).
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Recall that BS(R) ∩ TV F (θ0) \ IDk+1
0 ⊂ Next(R). So we deduce that

S1(R) 6 2.1
∑

Q∈Next(R)

(
µ(GR) +

α−2

Θµ(2BR)2

∑
P∈Tree(Q)

p
[δ,P ]
0 (µb2BP , µb2BQ, µb2BQ)

)
.

Consequently, using that Θµ(2BR) . C∗, we obtain∑
R∈Topk0\(IDk0∪TV F (θ0))

Θµ(2BR)2S1(R)

6 cC2
∗
∑

R∈Topk0

∑
Q∈Next(R)

µ(GQ)

+
c

α2

∑
R∈Topk0\(IDk0∪TV F (θ0))

∑
Q∈Next(R)

∑
P∈Tree(Q)

p
[δ,P ]
0 (µb2BP , µb2BQ, µb2BQ)

6 cC2
∗

∑
R∈Topk+1

0

µ(GR) +
c

α2

∑
R∈Topk+1

0

∑
P∈Tree(R)

p
[δ,P ]
0 (µb2BP , µb2BR, µb2BR).

Take into account that the sets GR with R ∈ Top are disjoint and that the last (double)
sum is controlled by c(δ) p0(µ) by the finite superposition of the domains of integration.
So we have ∑

R∈Topk0\(IDk0∪TV F (θ0))

Θµ(2BR)2S1(R) 6 cC2
∗µ(R0) + c(τ,A, δ, α) p0(µ).

Now we estimate S2(R). Since BS(R) ∩ LD(R) = ∅, for each Q ∈ BS(R) we have
Θµ(2BQ) > τΘµ(2BR) and thus

S2(R) 6
1

τ2Θµ(2BR)2

∑
Q∈BS(R)∩TV F (θ0)∩IDk+1

0

Θµ(2BQ)2µ(Q).

Since Q ∈ IDk+1
0 , by Lemma 3.45,

S2(R) 6
1

τ2Θµ(2BR)2

∑
Q∈BS(R)∩TV F (θ0)∩IDk+1

0

cτ4
∑

P∈Next(Q)

Θµ(2BP )2µ(P )

6
cτ2

Θµ(2BR)2

∑
Q∈BS(R)∩TV F (θ0)∩IDk+1

0

∑
P∈Next(Q)

Θµ(2BP )2µ(P ).

Consequently, taking into account that BS(R) ∩ TV F (θ0) ∩ IDk+1
0 ⊂ Next(R) and Topk0 \

(IDk
0 ∪ TV F (θ0)) ⊂ Topk0, we obtain∑
R∈Topk0\(IDk0∪TV F (θ0))

Θµ(2BR)2S2(R) 6 cτ2
∑

R∈Topk0

∑
Q∈Next(R)

∑
P∈Next(Q)

Θµ(2BP )2µ(P )

6 cτ2
∑

R∈Topk+2
0

Θµ(2BR)2µ(R)

6 cτ2
∑

R∈Topk0

Θµ(2BR)2µ(R) + cτ2C2
∗µ(R0).
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Coming back to (3.70), we deduce that∑
R∈Topk0

Θµ(2BR)2 µ(R)

6 cC2
∗ µ(R0) + c(τ,A, δ, α) p0(µ) + cτ2

∑
R∈Topk0

Θµ(2BR)2µ(R).

Choosing τ small enough and recalling the information in Section 3.7 yield∑
R∈Topk0

Θµ(2BR)2 µ(R) 6 c5p0(µ) + cC2
∗ µ(R0),

where c5 actually depends on all the parameters and thresholds mentioned in Section 3.7.
Letting k →∞ finishes the proof of Lemma 3.46.

3.13.6 The end of the proof of Main Lemma

We first prove an additional property. For Q, Q̃ ∈ D with Q ⊂ Q̃, define

δµ(Q, Q̃) =

∫
2BQ̃\2BQ

1

|y − zQ|
dµ(y),

where zQ is the center of BQ, see Lemma 3.1. Then the following statement holds.

Lemma 3.47. For all Q ∈ Next(R) there exists a cube Q̃ ∈ DbTree(R) such that
δµ(Q, Q̃) .τ,A Θµ(2BR) and 2BQ̃ ∩ ΓR 6= ∅.

Proof. Take Q′ ⊃ Q such that Q′ ∈ Stop(R). By Lemma 3.11, there exists Q̃ ∈ DbTree(R)
such that Q′ ⊂ Q̃ and r(Q′) ≈τ,A r(Q̃). Moreover, one can easily deduce from Lemma 3.26
that 2BQ̃ ∩ ΓR 6= ∅ if ε0 is small enough (since Q̃ ∈ DbTree(R), there is x ∈ Q̃ \RFar).

Furthermore, split

δµ(Q, Q̃) =

∫
2BQ̃\2BQ′

1

|y − zQ|
dµ(y) +

∫
2BQ′\2BQ

1

|y − zQ|
dµ(y).

In the first integral we have |y − zQ| & r(Q′) ≈τ,A r(Q̃) as y /∈ 2BQ′ and therefore∫
2BQ̃\2BQ′

1

|y − zQ|
dµ(y) .τ,A Θµ(2BQ̃) .τ,A Θµ(2BR),

where we also used the right hand side inequality in (3.15) in Lemma 3.9. To estimate
the second integral we take into account that by construction there are no doubling cubes
strictly between Q and Q′. This together with Lemma 3.4 and properties of Q′ and Q̃
imply by standard estimates (in particular, splitting the domain of integration into annuli
with respect to the intermediate cubes between Q and Q′) that∫

2BQ′\2BQ

1

|y − zQ|
dµ(y) . Θµ(100B(Q′)) .τ,A Θµ(2BQ̃) .τ,A Θµ(2BR).

Thus we are done.
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Lemma 3.44, Lemma 3.47 and the property (3.65) allow us to use arguments as in [Tol6,
Lemma 17.6] in order to show that if µ(B(x, r)) 6 C∗r for all x ∈ C, then

c2(µ) .
∑
R∈Top

Θµ(2BR)2 µ(R)

for our family Top. By combining this estimate and the identity (0.15) with Lemma 3.46
for fixed suitable parameters from Section 3.7, we obtain

p∞(µ) . p0(µ) + C2
∗µ(C)

as wished.

3.14 The case of curvature

Here we come back to the notion of curvature c2(µ). Recall that p∞(µ) = 1
4c

2(µ) as has
been already mentioned.

It is easy to see that one can exchange p0 for c2 in the stopping conditions. Then we
can prove the following analogue of Lemma 3.46 by the arguments used above.

Lemma 3.48. If the parameters and thresholds in Section 3.7 are chosen properly, then∑
R∈Top

Θµ(2BR)2 µ(R) 6 c6 c
2(µ) + cC2

∗ µ(C), (3.71)

where c6 = c6(τ,A, θ0, γ, ε0, α, δ) > 0 and c > 0.

A more direct way to prove it is to use Lemma 3.46 and the inequality (2.5).
Now recall the following theorem from [AT]:
If µ is a finite compactly supported measure such that µ(B(x, r)) 6 r for all x ∈ C and

r > 0, then

c2(µ) + µ(C) ≈
∫∫ ∞

0
βµ,2(x, r)2 Θµ(x, r)

dr

r
dµ(x) + µ(C), (3.72)

where the implicit constants are absolute.
Note that the part . of (3.72) was proved in [AT] by means of the David-Mattila lattice

and a corona type construction similar to the one we considered in this chapter. However,
the part & was proved in [AT] by the corona decomposition of [Tol3] that involved the
usual dyadic lattice D(C), instead of the David-Mattila lattice D.

Using Lemma 3.48 we can also prove the part & of (3.72) using only the David-Mattila
lattice and an associated corona type construction and thus unify the approach with the
proof of the part . in [AT]. As predicted in [Tol6, Section 19], this indeed simplifies some
of the technical difficulties arising from the lack of a well adapted dyadic lattice to the
measure µ in [Tol3].

Clearly, we need to show that∫∫ ∞
0

βµ,2(x, r)2 Θµ(x, r)
dr

r
dµ(x) . c2(µ) + µ(C)

or, equivalently, in a discrete form that∑
Q∈D

βµ,2(2BQ)2 Θµ(2BQ)µ(Q) . c2(µ) + µ(C). (3.73)
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By the packing condition (3.71) for C∗ = 1, to prove (3.73) it suffices to show that for
every R ∈ Top the following estimate holds true:

S(R) =
∑

Q∈T̃ree(R)

βµ,2(2BQ)2 Θµ(2BQ)µ(Q) . Θµ(2BR)2µ(R),

where T̃ree(R) contains cubes in R not strictly contained in S̃top(R). By St(R) we denote
cubes in Stop(R) not strictly contained in S̃top(R). Obviously, βµ,2(2BQ)2 6 4Θµ(2BQ)

for any Q ∈ T̃ree(R) and therefore

S(R) 6
∑

Q∈Tree(R)\Stop(R)

βµ,2(2BQ)2 Θµ(2BQ)µ(Q) +
∑

Q∈St(R)

Θµ(2BQ)2 µ(Q).

By Lemma 3.4, the density of all intermediate cubes between S̃top(R) and Stop(R), i.e.
cubes in St(R), is controlled by the density of cubes from Stop(R) so it can be shown that∑

P∈St(R)

Θµ(2BP )2 µ(P ) .
∑

Q∈Stop(R)

Θµ(2BQ)2 µ(Q).

Moreover, ∑
Q∈Stop(Q)

Θµ(2BQ)2 µ(Q) .A Θµ(2BR)2
∑

Q∈Stop(R)

µ(Q) .A Θµ(2BR)2µ(R),

as cubes in Stop(R) are disjoint subsets of R.
What is more, arguments similar to those in Lemmas 3.7 and 3.12 imply that∑

Q∈Tree(R)\Stop(R)

βµ,2(2BQ)2 Θµ(2BQ)µ(Q)

.γ Θµ(2BR)2
∑

Q∈Tree(R)\Stop(R)

c2
[δ,Q](µb2BQ)

Θµ(2BR)2

.α,γ Θµ(2BR)2µ(R).

Thus, SR .γ,α,A Θµ(2BR)2µ(R), where γ, α and A depend on other parameters and
thresholds and are suitably chosen and fixed at the end.

3.15 Further generalisations

Now consider the kernels defined in (0.24), i.e.

Kt(z) = κN (z) + t · κn(z), t ∈ R, K∞(z) = κn(z), n 6 N, n,N ∈ N,

where, according to (0.16),

κm(z) =
(Re z)2m−1

|z|2m
, m ∈ N.

Let us show that results similar to Theorems 3.1 and 3.2 also hold for them.
First of all, we recall that

pκn(z1, z2, z3) 6 C(n) · c(z1, z2, z3)2 for all (z1, z2, z3) ∈ C2 (3.74)
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with some absolute constant C(n) > 0 as proved in [CMPT2, Lemma 7] (see also Re-
mark 2.3 in Chapter 2). The inequality (3.74) and identity (0.15) readily imply that

pκn(µ) 6 C(n) · pk∞(µ) (3.75)

for any measure µ. Recall that pk∞ ≡ pκ1 by definition.
Furthermore, Lemma 3.6 that we used in the proof (see Section 3.6) may be exchanged

for the following more general result.

Lemma 3.49 (Proposition 3.3 in [CP]). If (z1, z2, z3) ∈ VFar(θ), then

pκN (z1, z2, z3) > C(N, θ) · pk∞(z1, z2, z3) for some C(N, θ) > 0. (3.76)

Using this lemma, one can easily replace the permutations pk0 ≡ pκ2 in the stopping
conditions in Sections 3.8.1 with the permutations pκN . Then the same arguments lead to
the following analogue of Main Lemma for the kernels κN .

Lemma 3.50. There exist absolute constants C(N) > 0 and c > 0 such that for any finite
measure µ with C∗-linear growth it holds that

pk∞(µ) 6 C(N) · pκN (µ) + cC2
∗µ(C). (3.77)

Under the assumptions of Lemma 3.50, we infer from (3.75) and (3.77) that

pκn(µ) 6 C(n,N) · pκN (µ) + cC2
∗µ(C), n 6 N,

with some C(n,N) > 0. This and the perturbation method yield the following result.

Theorem 3.3. There exist constants t̃0 = t̃0(n,N) > 0 and c > 0 such that for any finite
measure µ with C∗-linear growth it holds that

sup
ε>0
‖Tκn,ε1‖L2(µ) 6 t̃

−1
0 sup

ε>0
‖TκN ,ε1‖L2(µ) + cC∗

√
µ(C). (3.78)

As a corollary, we get the following theorems with the same t̃0 as above.

Theorem 3.4. Let Kt be a kernel of the form (0.24), where t ∈ (−t̃0, t̃0), and E a 1-set.
If the SIO TKt is L2(H1bE)-bounded, then E is rectifiable.

Theorem 3.5. Let µ be an AD-regular measure and Kt a kernel of the form (0.24), where
t ∈ (−t̃0, t̃0). The measure µ is uniformly rectifiable if and only if the SIO TKt is L2(µ)-
bounded.

Note that t̃0 ∈ (0, 1) as follows from Remark 1.2, see also Figure 1.1.
Theorems 3.4 and 3.5 complement Theorems 1.2, 2.2 and 2.3 dealing with the ker-

nels Kt. It is important that the pointwise permutations pKt corresponding to t ∈ (−t̃0, t̃0)
change sign for n and N from Remark 1.1 so that the direct curvature method fails.
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[Leg] J. C. Léger, Menger curvature and rectifiability, Ann. of Math. 149 (1999),
831–869.

[Mat1] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge
University Press, 1995.

[Mat2] P. Mattila, Singular integrals, analytic capacity and rectifiability, in: Proceed-
ings of the conference dedicated to Professor Miguel de Guzmán (El Escorial,
1996), J. Fourier Anal. Appl. 3 (1997), Special Issue, 797–812.

[Mat3] P. Mattila, Singular integrals and rectifiability, in: Proceedings of the 6th Inter-
national Conference on Harmonic Analysis and Partial Differential Equations
(El Escorial, 2000), Publ. Mat. Vol. Extra (2002), 199–208.

[MMV] P. Mattila, M. S. Melnikov and J. Verdera, The Cauchy integral, analytic ca-
pacity, and uniform rectifiability, Ann. of Math. (2) 144 (1996), 127–136.

107



[Mel] M. S. Melnikov, Analytic capacity: discrete approach and curvature of a mea-
sure, Sbornik: Mathematics 186(6) (1995), 827–846.

[MV] M. S. Melnikov and J. Verdera, A geometric proof of the L2 boundedness of
the Cauchy integral on Lipschitz graphs. Internat. Math. Res. Notices (1995),
325–331.

[NTV] F. Nazarov, X. Tolsa and A. Volberg, On the uniform rectifiability of AD-
regular measures with bounded Riesz transform operator: the case of codimen-
sion 1, Acta Math. 213 (2014), no. 2, 237–321.

[PBM] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series. Vol.
1. Elementary functions, Gordon and Breach Science Publishers, New York,
1986.
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