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Abstract

This thesis consists of three chapters on forecasting techniques in economics. In
chapter 1, I use copulas to estimate multivariate density forecasts based on univari-
ate densities from survey data. Survey-based predictions are often competitive to
time series models in their forecasting performance but have a univariate focus and
my estimation strategy exploits the information in the surveys’ marginal densities.
I subsequently demonstrate the importance of the multivariate aspect for forecast-
ers. In chapter 2, we propose novel tests for forecast rationality, which are robust
under the presence of Markov switching. Existing tests focus on constant out-of-
sample performances or use non-parametric techniques; consequently, they may lack
power against the alternative of discrete switches. Investigating the Blue Chip Fi-
nancial Forecasts, we find evidence against forecast unbiasedness during periods of
monetary easing. Chapter 3 provides an empirical investigation of the real-time
forecasting performance of quantile regressions for predicting different vintages of
real US GDP growth. My results indicate that quantile regressions are competitive
to current benchmark models and that the in-sample estimation strategy matters
for the performance concerning different data vintages.
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Resumen

Esta tesis consta de tres capítulos sobre métodos predictivos en economía. El primer
capítulo propone el uso de cópulas para la elaboración de previsiones de distribuci-
ones multivariantes utilizando datos de encuestas sobre distribuciones univariantes.
Las previsiones basadas en sondeos son, a menudo, equiparables a las obtenidas
por modelos de series temporales, pero sólo hay datos disponibles para distribuci-
ones univariantes. La estrategia de estimación propuesta utiliza la información de
las distribuciones univariantes de los sondeos. Posteriormente queda demostrada la
importancia de la perspectiva multivariante en la elaboración de previsiones. El se-
gundo capítulo propone nuevos tests para evaluar la racionalidad de las previsiones,
los cuales, resultan sólidos bajo la presencia de Markov switching. En compara-
ción, los tests existentes se centran en probar la prueba entera o usan técnicas
no-paramétricas y tienen menos poder contra la alternativa de cambios discretos.
Mediante la investigación empírica de la racionalidad del las previsiones del Blue
Chip Financial Forecasts, se encuentra evidencia a favor de la hipótesis de un sesgo
con Markov switching durante los periodos de relajación monetaria. El tercer capí-
tulo es una investigación empírica de la eficacia del modelo de regresión de cuantiles
para prever en tiempo real el crecimiento del PIB estadounidense. Los resultados
obtenidos indican que dicho modelo es comparable a los modelos de referencia ac-
tuales y que la estrategia de estimación aplicada con differentes muestras de datos
influye los resultados.
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Preface

This thesis consists of three self-containing chapters, all of which are related to eco-
nomic forecasting and contain both, theoretical and empirical results. Chapter one
and three present and evaluate models for multivariate and univariate density fore-
casts. Chapter two provides a framework to test for time variation in the forecasting
performance of competing models.

In chapter 1, I present a methodology to estimate multivariate density forecasts
based on univariate densities from survey data. Survey-based predictions are of-
ten competitive to time series models in terms of their forecasting performance but
have a univariate focus. My methodology exploits the information in the surveys’
marginal densities for the estimation of the multivariate densities. I demonstrate the
importance of the multivariate aspect for new measures of the state of the economy
and a novel measure of joint macroeconomic uncertainty. A stronger distributional
dependence between the variables has different implications for the two types of
measures. It tends to increase the probability of “recession-type” events and reduces
uncertainty. Empirical results based on SPF data from the euro area and the U.S.
show that the survey-based joint density forecasts are competitive to current bench-
mark econometric models. When considering joint macroeconomic uncertainty, the
dependence has sizeable effects on my uncertainty measure in the aftermath of the
Great Recession, a feature of the data that existing measures would not capture.

Chapter 2 proposes novel tests for forecast rationality, which are robust under
the presence of Markov switching. Existing tests focus on constant out-of-sample
performances or use non-parametric techniques; consequently, they may lack power
against the alternative of discrete switches. Monte Carlo results suggest that the
tests we propose have better power than existing tests in detecting Markov switching
deviations from unbiasedness or efficiency. In an empirical investigation of the fore-
cast rationality of the Blue Chip Financial Forecasts for the federal funds target rate,
we find evidence against forecast unbiasedness. During periods of monetary easing,
the forecasters tend to overestimate the future interest rate systematically. The size
of the systematic bias component is around 25 basis points, a typical interest rate
move of the federal reserve.

In chapter 3, I provide an empirical investigation of the real-time forecasting
performance of quantile regressions for predicting different vintages of real GDP
growth. Given a large number of potential predictors, I pool univariate models us-
ing an equal-weighting scheme and bayesian model averaging. My results indicate
that equal-weighting outperforms bayesian model averaging and that forecasting
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first-release GDP growth is best done by also basing the in-sample estimation on
first-release data only. When the predictive performance is compared to stochastic
volatility models, the pooled bayesian quantile regressions outperform the competi-
tor models at the one-quarter-ahead forecast, in particular for quantiles above the
median. For horizons of four quarters-ahead, the results speak in favor of quan-
tile regressions but exhibit substantial time-variation - the multivariate stochastic
volatility models tend to perform better during recession periods but worse after the
great recession.
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Chapter1
Survey-Based Multivariate Density
Forecasts

1.1 Introduction

Expectations about future events are of central concern for policymakers, the pri-
vate sector and academia alike. Not only are accurate probabilistic forecasts critical
to good decision making but can also be an important determinant of the actual
realisations of present and future outcomes. For instance, firms and households
take the expected future inflation rate into account when negotiating wages or set-
ting prices and thereby influence the realised inflation rate today. In 2004, Alan
Greenspan emphasised ...a central bank needs to consider not only the most likely
future path for the economy, but also the distribution of possible outcomes about that
path (Greenspan, 2004).1 For an economy, which is a multivariate system of vari-
ables, multivariate density forecasts provide the most comprehensive information
about future events. In light of the importance of predictions, the present paper
seeks to make the following contributions.

We propose to estimate joint density forecasts based on the marginal density
forecasts of survey data through copula functions. The joint densities will be char-
acterised by marginal densities from a survey, a copula function and the thereby
estimated distributional dependence of the variables.2 Survey forecasts are known
to be competitive to time series model predictions (Faust and Wright, 2013) and
our methodology allows to exploit the information provided by survey marginals

1Manski (2017) most recently highlighted the importance of including predictive densities in
the decision process of policy institutions.

2It is important to note that, in the estimation, the copula is evaluated using the cumulative
distribution function of the survey implied marginals, which in turn are evaluated at the realised
values of the variables.
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for the estimation of joint density forecasts. Existing macroeconomic surveys ask
participants only for the univariate marginal distributions and hence, studies have
been limited to univariate analyses with survey data. We show the importance of
the multivariate aspect for the two following novel applications.

We demonstrate how the joint density forecasts can be used to extract infor-
mation about the state of the economy. Specifically, we propose a probabilistic
economic downturn indicator (for the euro area), a probability of the risk of rare
events, such as negative output growth accompanied by low inflation, and the prob-
ability of remaining in a secular stagnation region. Importantly, the joint density
forecasts allow to base these indicators on the joint behaviour of several variables,
which reflects the dating procedures of the NBER Business Cycle Dating Committee
and the Centre for Economic Policy Research (CEPR).

Further, we consider macroeconomic uncertainty through the lens of the joint
distribution function of several variables. Existing measures of uncertainty are typ-
ically a functional of univariate density forecasts. In contrast, we propose to use
a multivariate version of Shannon’s entropy and our joint uncertainty accommo-
dates the computation of uncertainty in a multivariate system of variables. Cover
and Thomas (1991) provide a rigorous introduction to entropy from an informa-
tion theoretical point of view. While we focus on the importance of distributional
dependence for a multivariate measure of dispersion, joint density forecasts, more
generally, allow to compute uncertainty for loss functions of several variables, and
can therefore be of use beyond the specific example considered in this paper.

We apply the methodology to data from the U.S. and euro area Survey of Profes-
sional Forecasters (SPF) and estimate joint density forecasts based on the marginal
density forecasts of the surveys. We find that the univariate as well as the multi-
variate density forecasts, estimated using the SPF, are competitive to econometric
model predictions.3 Further, for both data sets, we find substantial movements in
the time-varying correlations between key macroeconomic variables, in particular
for the time period after the Great Recession. Moreover, the estimated multivariate
densities imply non-linear conditional expectations. The strength of the out-of-
sample dependence varies over different parts of the distribution at a given point in
time, and the non-linearity follows directly from the non-Gaussian shape of the SPF
marginal forecast densities.

Using the estimated multivariate density, we produce one-year ahead out-of-

3We choose an AR(1) with stochastic volatility (AR-SV) and a time-varying parameter VARs
with stochastic volatility (BVAR) (Primiceri, 2005; Del Negro and Primiceri, 2015). It is well
known that stochastic volatility models perform well for density forecasts (see e.g. Clark (2011);
D’Agostino et al. (2013); Clark and Ravazzolo (2015)).

2
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sample forecasts for different indicators of the state of the economy. We find that
the empirical performance of the SPF-based economic downturn forecasts is com-
petitive with the BVAR. The SPF-based and the BVAR-based indicator perform
similarly in predicting the end of the Great Recession, while the BVAR performs
better in predicting its onset. However, using our indicator, the SPF-based joint
density predicts markedly well the downturn during euro area debt recession and
outperforms the BVAR. Still, in 2017, almost a decade after the financial crisis, the
probability of remaining in a secular stagnation region, defined by low growth and
low inflation (and high unemployment for the eurozone), is high. For the joint un-
certainty measure, our empirical results show that dependence can have a sizeable
effect on macroeconomic uncertainty for the euro area. We compare the measure to
the results of Abel et al. (2016) and find that, when taking distributional dependence
into account, our results differ.

Our paper builds on several strands of the literature. Faust and Wright (2013),
among others, stress the good performance of survey data point forecasts and Kenny
et al. (2015a) discuss the performance of euro area SPF density forecasts. D’Agostino
et al. (2013), Clark and Ravazzolo (2015) and Smith and Vahey (2016), among oth-
ers, explore the performance of predictive densities estimated by different econo-
metric models. We contribute to this literature, firstly, by analysing the usefulness
of survey marginal density forecasts for estimating joint density forecasts and, sec-
ondly, by comparing the performance of the resulting multivariate density to existing
benchmark econometric models.

Our work is further related to the literature on Business Cycle (BC) dating,
recently surveyed by Hamilton (2011). Recent work on (nowcast) BC dating, that
is based on the joint behaviour of several highly aggregated series, includes Chau-
vet and Piger (2008) and Camacho et al. (2014).4 Chauvet and Piger (2008) use
a Markov-switching dynamic factor model and Camacho et al. (2014) use a mixed-
frequency Markov-switching factor model in order to determine the state of the BC
in real time. While we build on the idea of using several highly aggregated variables,
we differ from the existing approaches in the following ways. First, our ex-ante prob-
abilities are, to a large extent, based on agents’ subjective probabilities, i.e. they
reflect beliefs of economic decision makers. Second, joint density forecasts allow
obtaining not only recession probabilities but also probabilities for crisis events of
different economic magnitudes, for example, a recession accompanied by deflation.
In addition, we are particularly interested in the out-of-sample predictive perfor-

4Another recent example includes Billio et al. (2016). The authors use a panel Markov-switching
VAR and, for the determination of the state of the Business Cycle, take the interconnectedness of
euro area countries as well as the US into account.
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mance, while for example Chauvet and Piger (2008) and Camacho et al. (2014)
focus on the real-time ability to call a recession.

Starting with the seminal paper by Bloom (2009), the task of quantifying un-
certainty has attracted considerable attention over the last decade. Our measure
of uncertainty is related to existing work by Lahiri and Sheng (2010), D’Amico
and Orphanides (2014), Abel et al. (2016), Rossi et al. (2017) and Jo and Sekkel
(forthcoming), who used survey data to estimate ex-ante uncertainty measures. All
of these papers’ measures are functionals of univariate distributions, and we con-
tribute to this literature by providing a measure, multivariate Shannon’s entropy,
that is a functional of a multivariate distribution. Further, we build on the work of
Adrian et al. (2016). The authors, among other things, apply a univariate version
of conditional Shannon entropy to conditional GDP growth to calculate downside
and upside uncertainty. In comparison, we use a multivariate version of entropy in
order to compute the joint simultaneous uncertainty of a system of macroeconomic
variables. Lastly, we show how our framework relates to the influential uncertainty
measure proposed by Jurado et al. (2015).

On the technical side, we estimate the joint distribution function using copulas,
based on Sklar’s Theorem (Sklar, 1959). The theorem states that every joint dis-
tribution function can be decomposed into its marginals and a copula function that
characterises the dependence of the random variables.5 It, therefore, allows model-
ing the dependence between variables and the marginals separately. Our estimation
is hence based on two key ingredients: marginals from a survey and the choice of a
copula family, which allow us to estimate a joint density forecast using past realisa-
tions. Patton (2006) used copulas to model exchange rate dependence. Smith and
Vahey (2016) use copulas for modeling both cross-sectional and serial correlation
in four macroeconomic variables and show that their out-of-sample forecasts are
superior to a Bayesian VAR, albeit not to a specification that includes stochastic
volatility. However, the authors focus on model-based estimation of the joint fore-
cast density and do not base their predictions on survey data. Our approach can
also be interpreted from the angle of combining (subjective) survey information with
an econometric model. In a recent paper, Krueger et al. (2017) develop a technique
for point forecasts, that allows, inter alia, to incorporate survey information into
a BVAR. We differ because we estimate joint density forecasts using survey data,
where the joint density is characterised by the marginals from the survey, a copula
function, and the thereby estimated distributional dependence.

Finally, we would like to highlight that, although the analysis of mean and

5Joe (1997) and Nelsen (2006) provide rigorous introductions to copula theory.
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variance survey forecasts is standard in economics, little is known about forecasters’
expectations on the joint behaviour of variables.6 For a review of the literature
on univariate survey data in time series econometrics, see for example Pesaran and
Weale (2006).

A few remarks on notation. Origin denotes the date on which the forecast was
made. Target denotes the date for which the forecast was made. Throughout the
paper, the variable Yt will denote GDP growth, πt will denote the inflation rate and
Ut will denote the unemployment rate.

The remainder of this paper is organised as follows. Section 1.2 motivates the
importance of multivariate density forecasts. Here we introduce the ex-ante prob-
abilistic measures of the state of the economy and joint uncertainty. Section 1.3
explains the methodology used for constructing the joint density forecasts and de-
scribes in detail the empirical estimation strategy. Section 1.4 describes the two
survey data sets used. Section 1.5 and 1.6 contain the empirical results for the
multivariate density for the euro area and the U.S. Section 1.7 concludes.

1.2 Why Joint Densities?

This section motivates why joint densities can be an essential tool in economics.
Further, we introduce the measures for the ex-ante probabilities and the joint uncer-
tainty. Using these two examples, we will illustrate that, on the one hand, stronger
distributional dependence can imply higher probabilities of recessions/economic
downturns and disastrous events. On the other hand, stronger dependencies can
dampen the uncertainty about future outcomes. Their implications, therefore, dif-
fer and depend on the specific application.

By Ft(x) we denote the cumulative distribution function (cdf) of a (vector-
valued) random variable Xt of dimension d.7 The conditional distribution function
Ft+h|t(x) denotes the forecasts with origin t for the target period t+ h.

1.2.1 Probabilistic Indicators for the State of the Economy

Forecasting the state of the economy, in particular, the Business Cycle is an im-
portant task for policymakers. In general, there are two different approaches: a

6See for example Manski (2004, 2017) for a discussion of the importance of measuring agents’
probabilistic expectations through survey data.

7With a slight abuse of notation, Ft+h|t(x) will denote true distribution function or an estimated,
possibly misspecified distribution function.
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model-based type8 and a survey-based type, such as the anxious index 9. We focus
on the latter, which has been shown to be competitive to a model-based approach.

In particular, we propose a way to construct an ex-ante Business Cycle indicator,
based, to a large extent, on the expectations of economic decision makers collected
via surveys. Three important features emerge. First, the multivariate density al-
lows to estimate an economic downturn probability based on the joint behaviour of
several variables, which reflects how the majority of Business Cycle indicators is es-
timated. The economic downturn indicator aims at resembling recession-like events.
Second, we can construct an index for the euro area in real time, for which no direct
equivalent of the Anxious Index exists.10 Third, the joint density allows to obtain
probabilities for specific events, i.e., we can additionally construct an anxious-type
index for different magnitudes of economic downturns.

In Example 1, we motivate why it is the joint density forecasts that matters for
estimating probabilistic ex-ante Business Cycle indicators and highlight the perils
of relying on univariate indicators.

Example 1 Suppose the Business Cycle is determined by the following bivariate sys-
tem of GDP growth, denoted by Yt, and the unemployment rate, denoted by Ut. The
joint distribution is a bivariate normal [Yt, Ut]

′ ∼ N(µt,Σt). For simplicity, suppose
further, that values of Yt smaller than zero and Ut bigger than 10 indicate an eco-
nomic downturn. For period t, the forecaster estimates a conditional mean forecast
µt|t−1 = [0, 10]′ and a conditional variance-covariance Σt|t−1 = [1, 0; 0, 1], whereas for
period t+1 the results are µt+1|t = [0.3, 9.7]′ and Σt+1|t = [1,−0.9;−0.9, 1]. Although
the conditional mean vector shifted away from the recession threshold, and the vari-
ance stayed constant, the probability of an economic downturn has increased from
Ft|t−1

(
Yt < 0, Ut > 10

)
= 0.25 to Ft+1|t

(
Yt+1 < 0, Ut+1 > 10

)
= 0.31. The coun-

terfactual probability, i.e. assuming a constant zero correlation, is F̃t+1|t
(
Yt+1 <

8See for example Stock and Watson (1989, 1991, 2014), Koop and Potter (2007), Hamilton
(1989), Chauvet and Potter (2005), Chauvet and Piger (2008), Chauvet and Piger (2008), Altissimo
et al. (2010) and Camacho et al. (2014), Billio et al. (2016)

9In an article on September 1, 2002, New York Times reporter David Leonhardt used the
term anxious index to refer to the probability of a decline in real GDP, as reported in the Sur-
vey of Professional Forecasters. The survey asks panelists to estimate the probability that real
GDP will decline in the quarter in which the survey is taken and in each of the following four
quarters.[...] The index often goes up just before recessions begin. For example, the first quar-
ter survey of 2001 (taken in February) reported a 32 percent anxious index; the National Bu-
reau of Economic Research subsequently declared the start of a recession in March 2001. taken
from https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters/anxious-index

10Please see A for further elaboration.
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0, Ut+1 > 10
)

= 0.15, where F̃t+1|t is parameterised by µt+1|t = [0.3, 9.7]′ and
Σ̃t+1|t = [1, 0; 0, 1]. Figure 1.1 displays 0.15 contour plots for ft|t−1 (dashed) and
ft+1|t (dotted). The correlation has spread out the distribution along the diagonal
and shifted probability mass to above the downturn threshold. Although the mean
µt+1|t = [0.3, 9.7]′, displayed by the cross, shifted down-right, the downturn probabil-
ity increased.

Figure 1.1: How Correlation Shifts the Probability Mass

NOTE. – The x and y axis display the values of Yt and Ut. The dashed and dotted ellipse display 0.15 contour
levels of ft|t−1 and ft+1|t respectively. Realisations within the upper left-hand side quadrant marked by the solid
lines indicate an economic downturn. The crosses denote the mean µt|t−1 = [0, 10]′ and µt+1|t = [0.3, 9.7]′.

A Probabilistic Ex-Ante Business Cycle Indicator
We define the out-of-sample Business Cycle indicator as follows. A threshold for
the target time t + h, based on information up to t, for variable i is defined as
τ bct+h|t,i ≡

1
W

∑W
w=1 xi,t−w+1 where xi,t−w is the realisation of the random variable

Xi,t−w. Then the economic downturn probability ξt+h|t, is defined as

ξt+h|t ≡ Ft+h|t(Xt+h,1 < τ bct+h|t,1, ..., Xt+h,d < τ bct+h|t,d) (1.1)

where Ft+h|t is the joint density forecast for target period t+h based on information
up to time t.11 Here, the recession probability is determined by the probability of
the variables being smaller than some threshold, where the threshold is an average
of current and past realisations. While there is no single definition for a recession,

11Assuming that for all variables, smaller values indicate less economic activity. A reversion
of the operator < straightforwardly complements the usage of variables for which a higher value
indicates less economic activity.
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the NBER Business Cycle Dating committee, broadly speaking, calls a recession a
period of diminishing economic activity, rather than diminished activity.12 We want
to highlight, that multivariate densities are flexible enough to accommodate a va-
riety of definitions, as the thresholds τ bct+h|t,i can be chosen in different of ways, e.g.
relative to the latest observations or with respect to values that realised in previous
recessions.

Computing the recession probability directly out of the joint distribution fore-
cast takes into account the forecast of the mean, any quantile and the dependence
of the variables. It is important to note that, using this definition, we can compute
an out-of-sample indicator ξt+h|t, as the joint density forecasts and the thresholds
are computed only with information up to time t.

Probabilities of Target Inflation, Rare Events and Secular Stagnation
In addition, it is useful to know the probabilities of events of different magnitudes.
We propose to estimate the probability of GDP growth being, at least, τY and
inflation being within a certain range defined by [−τ

π,+ τ
π].

δt+h|t ≡ Ft+h|t(Yt+h > τY , −τ
π < πt+h < +τ

π) (1.2)

In addition, we compute the out-of-sample probability of negative growth ac-
companied by either very low or very high inflation. Both events are rare but have
occurred in the past. A negative (positive) pre-subscript indicates low inflation (high
inflation). Let −ζt+h|t be the probability of negative output growth occurring jointly
with low inflation

−ζt+h|t ≡ Ft+h|t(Yt+h < 0, πt+h < −τ
V aR) (1.3)

and +ζt+h|t be the probability of negative output growth occurring jointly with high
inflation

+ζt+h|t ≡ Ft+h|t(Yt+h < 0, πt+h > +τ
V aR) (1.4)

where again Ft+h|t denotes the joint density forecast and +τ
V aR,− τ

V aR are the re-
spective thresholds for high inflation (low inflation) in a respective currency area.

Further, the joint density forecast allows to compute the probabilities of remain-
ing in a secular stagnation region (SeSt). We will define secular stagnation by low
growth, low inflation and high unemployment state of the economy, where low and

12The website of the NBER provides details; http://www.nber.org/cycles/recessions_faq.html
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high will be defined as below (above) pre-financial crisis averages, i.e.

ηt+h|t ≡ Ft+h|t(Yt+h|t < τ sy , πt+h|t < τ sπ, Ut+h|t > τ su) (1.5)

where again Ft+h|t denotes the joint density forecast and τ si is the respective secular
stagnation threshold.

1.2.2 A Measure of Joint Uncertainty

Starting with the seminal paper of Bloom (2009), the task of quantifying uncertainty
has received increasing attention over the last years.13 Existing work has often
used survey data to estimate a ex-ante uncertainty; see Lahiri and Sheng (2010),
D’Amico and Orphanides (2014), Abel et al. (2016), Rossi et al. (2017), Jo and
Sekkel (forthcoming). While many different definitions of uncertainty have been
proposed in the literature, typically, a reduction in the variance of the individual
time series is presumed to be a reduction in uncertainty.

We contribute to the literature by proposing an uncertainty measure that pro-
vides a systematic way of measuring the uncertainty of multivariate systems of
variables that takes the dependencies of the variables into account. Here, we think
about joint uncertainty as measuring the quantity of possible future paths the econ-
omy can take, while being agnostic towards the type of possible paths. That means,
that it does not measure the risk of a specific event, for example negative growth
and deflation, which was discussed in section 1.2.1. Example 2 motivates graphi-
cally why the multivariate approach is important and why dependencies can matter.

Example 2 Consider a bivariate system constituted by GDP growth, Yt, and in-
flation πt, where Yt ∼ N(0, σ2

Y,t) and πt ∼ N(2, σ2
π,t). Additionally, assume that Yt

and πt are jointly distributed as a bivariate normal [Yt, πt]
′ ∼ N([0, 2],Σt) and that

Σt|t−1 = [1.3, 0.95; 0.95, 1.3] and Σt+1|t = [1, 0; 0, 1]. Thus, in absolute terms, both
variance and covariance decrease from t− 1 to t.

An uncertainty measure based on univariate prediction intervals (or alternatively,
on forecast variances or inter-quartile ranges) will therefore indicate that uncertainty
decreased. The 95% prediction interval, of the demeaned variables, decreased from
[−2.067, 2.067] in t− 1 to [−1.96, 1.96] in t.

In contrast, a joint uncertainty measure, based on the joint prediction confidence

13From a perspective of policy-makers, Alan Greenspan stated that [uncertainty] is the defining
characteristic of the [monetary policy] landscape (Greenspan, 2004)
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region, will indicate that uncertainty increased from t − 1 to t.14 Denote the confi-
dence regions by CRt|t−1 and CRt+1|t, defined through Ft|t−1

(
(Yt, πt) ∈ CRt|t−1

)
≥

1 − α and Ft+1|t
(
(Yt+1, πt+1) ∈ CRt+1|t

)
≥ 1 − α. Then, CRt+1|t increased relative

to CRt|t−1. Univariate measures fail to take into account the information provided
by the covariance of the random variables. Figure 1.2 illustrates the respective con-
fidence region. The solid ellipse displays CRt|t−1 and the dashed circle displays
CRt+1|t.

Figure 1.2: The Effect of Correlation on Confidence Regions

NOTE. – Solid lines display values for t, dashed lines display values for t+ 1. The solid ellipse is the 95% confidence
area CRt|t−1 and the dashed ellipse is 95% confidence area CRt+1|t from Example 2. The solid (dashed) densities
are the marginal densities of Yt and the (demeaned) πt for t (and t+ 1 respectively). The distance between parallel
solid (dashed) lines, displays the univariate 95% confidence intervals. Confidence intervals decreased from t to t+ 1,
but the confidence area increased from t to t+ 1, i.e. the drop in covariance outweighed the drop in variance.

A Measure of Joint Uncertainty
We define the joint uncertainty of the vector of variables X = [X1, ..., Xd]

′ as the
differential entropy of X, DE(X). Differential entropy is an information theoretical
concept and we follow the definitions in Cover and Thomas (1991).15 DE(X) is
defined as

DE(X) ≡ −
∫
Rd

f(x) log
(
f(x)

)
dx (1.6)

14Under normality, our joint uncertainty measure is proportional to the areas of the confidence
regions CRt|t−1 and CRt+1|t.

15Arellano-Valle et al. (2012) provide analytical solutions for the differential entropy of multi-
variate skew-normal and skew-t distributions, which increases computational speed and allows an
insight into how different parameters contribute to the entropy measure.
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where f(x) denotes the joint density function of X. We can decompose DE into the
entropy contributions of the individual variables X1, ..., Xd and the contribution of
their dependencies

DE(X) = H(X1) + ....+H(Xd)− TC(X) (1.7)

where H(Xi) is the univariate differential entropy of Xi and TC(X), total correla-
tion, is defined as

TC(X) ≡
∫
Rd

f(x) log
(

f(x)

f1(x1) · · · fd(xd)

)
dx (1.8)

where fi denotes the marginal distribution function of Xi and f(x) denotes the
joint density. Total correlation is therefore equivalent to a Kullback-Leibler diver-
gence of the joint density and the product density of the marginals and computes
distributional dependence between the variables. For given marginals, the upper
bound of uncertainty is reached for independent variables because TC(X) is non-
negative and equal to zero for independence. Further, the dependence measure
TC(X) can be related to instantaneous Granger causality as defined in Taamouti
et al. (2014).16 In their framework, a variable X1,t instantaneously Granger causes
a variable X2,t if there is distributional dependence, given the conditioning on the
past values of X1,t, X2,t. In other words, X1,t instantaneously Granger causes X2,t if
f(X1,t, X2,t|X1,t−1, X2,t−1) 6= f(X1,t|X1,t−1, X2,t−1)f(X2,t|X1,t−1, X2,t−1). Therefore,
if the joint density is modelled as a function of the past values of the variables,
TC(X) is equivalent to instantaneous Granger causality. Hence, TC(X) = 0 then
implies that there is no instantaneous Granger causality.

Example 2 continued Under joint normality, DE(X) is available in closed form
and gives the following results in the forecaster’s problem in Example 2

DE(Yt|t−1, πt|t−1) = 1 + log(2) +
1

2
log(|Σt|t−1|) = 2.72

and
DE(Yt+1|t, πt+1|t) = 1 + log(2) +

1

2
log(|Σt+1|t|) = 2.84

The uncertainty, of GDP growth and inflation jointly, increased from a perspective
of a forecaster from t − 1 to t using joint uncertainty, while the univariate forecast

16See Wiener (1956) and Granger (1969) for the original work about Wiener-Granger causality
and Geweke (1984) for the introduction of mean-squared forecast errors as a measure for Wiener-
Granger causality.

11



variance decreased from 1.3 to 1.

We emphasise four important features of our measure of uncertainty that contribute
to the literature. First, it allows for a decomposition into the contributions of in-
dividual variables and a contribution of the joint behaviour of the variables. In
the context of Example 2, it would, therefore, capture both the changes in forecast
variance as well as the changes in distributional dependencies. Second, the measure
of dependence, denoted by TC(X), is not restricted to linear types of dependencies
but is a measure of distributional dependence because it is based on a Kullback-
Leibler divergence. Third, for given marginals, the researcher can infer lower and
upper bounds of entropy, which will be determined by their dependencies. The up-
per bound is reached for independence and reduces to a sum of individual variables’
uncertainty. The lower bound is determined by the dependencies and is directly
related to copula entropy. A fourth important feature is that the measure allows
computing conditional entropy. For example, if a researcher estimates the multi-
variate density of GDP growth, inflation, and the policy interest rate, the measure
would allow computing the change in uncertainty, conditioned on a specific policy
rate in the future. In other words, in this example, it would allow insights into the
central bank’s influence on joint uncertainty.

An additional feature of joint densities is that they naturally enable the re-
searcher to learn something about the uncertainty of a general function zt that
depends on the random variables X1,t, ..., Xd,t, i.e. about zt ≡ g(X1,t, ..., Xd,t).
For example, if g(·) takes the form of a square-loss function, g(X1,t, ..., Xd,t) =

−(X1,t + ... + Xd,t)
2, the joint density straightforwardly enables the researcher to

compute the uncertainty of zt. Given f(x), we can sample values of the random
vector X and obtain the density of zt, denoted by ht(z). The density ht enables the
researcher to compute DE(zt) =

∫
R ht(z)log

(
ht(z)

)
dz.

Relationship to existing work:
In a simple example we can show how our measure of uncertainty relates to the
influential framework of Jurado et al. (2015) (and therefore similarly to Jo and
Sekkel (forthcoming)). We adopt their notation in the following paragraph in order
to facilitate legibility with respect to their paper. The authors define uncertainty
as the conditional volatility of the unforecastable component of the future. Their
measure of uncertainty is based on Ut(h) = 1

Ny

∑Ny

j=1 Ωy
jt(h), where Ωy

jt(h)denotes the
h−step forecast error variance of the forecast of variable yjt+h. The authors provide
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a stylised example17 in order to explain the variance decomposition. Following their
example, assume that yjt+h is governed by a factor structure such that

yjt+1 = φyjyjt + γFj Ft + vyjt+1

where Ft is a single factor estimated on a large panel of macroeconomic time series,
and vyjt+1 = σyjt+1ε

y
tj+1 with εytj+1 ∼iid N(0, 1), where iid stands for independently

and identically distributed, where σyjt+1 follows a stochastic volatility equation and
is depends only on its own past values. Importantly, the factor Ft is modelled
recursively such that

Ft = ΦFFt−1 + vFt , vFt = σFt ε
F
t , εFt ∼iid N(0, 1)

where ΦF is a vector of coefficients and σFt is characterised by

log(σFt ) = αF + βF log(σFt−1)2 + τFηFt , ηFt ∼iid N(0, 1)

The recursive structure of the factor implies a time-varying covariance of the series
ymt+h, yjt+h. For h = 2 the forecast error for yjt+h is

V y
jt+2 = vyjt+2 + φyjV

y
jt+1 + γFj V

F
t+1

where V F
t+1 = vFt+1. It follows therefore that the forecast errors of j and m are

characterised by

cov(V y
jt+2, V

y
mt+2) = γFj γ

F
mvar(vFt+1) = γFj γ

F
mE
[
(σFt+1)2

]
= γFj γ

F
m(σFt )2exp{αF}exp{τF +

1

2
}

(1.9)

where exp{·} denotes the Euler number. We observe that the conditional covariance
for h = 2 of ymt+h and yjt+h, as determined in (1.9), is a function of the factor
loadings γFj , γFm, the past realised factor volatility, the level-parameter αF and the
expected mean of a transformation of the factor innovations, i.e. the expected
value of a log-normal random variable exp{ηFt }. The common component of the
forecast errors is therefore E

[
(σFt+1)2

]
. Importantly, a factor model directly implies

a common component in the forecasting errors and the dynamic factor structure
naturally complements the notion of dependence in the future realisations of the
variables. The covariance-matrix would further depend on the correlation of vyjt+2

17The example can be found on page 1188 of the published article. Without loss of generality,
we drop the hat on Ft.
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and vymt+2, once the simplifying assumption of independence in εytj+1 is dropped, i.e.
once cross-sectional dependence is allowed for even after conditioning on the factors.

Assuming for simplicity, conditionally, joint normality for a bivariate system of
y1,t+h and y2,t+h, we can directly compare our measure to Jurado, Ludvigson and
Ng (2015). Then, joint uncertainty is equal to, up to a constant, the logarithm of
the determinant of the variance-covariance matrix, i.e. DE(yt+h|t) ∝ log|Ωy

t (h)| =

log
(
Ωy

1t(h)
)

+ log
(
Ωy

2t(h)
)

+ log(1 − ρ2
12,h) where ρ12,h is the correlation between

y1,t+h and y2,t+h. Joint uncertainty therefore differs from Jurado, Ludvigson and Ng
(2015) as it takes all elements of matrix into account, not only the diagonal elements.

1.3 Econometric Framework

In this section, we present the methodology to estimate the survey-based multivari-
ate density forecasts. In addition, we describe the choice of the copula family and
elaborate on the specific estimation strategy we use in the application.

1.3.1 Estimation of Survey-Based Multivariate Distributions

Sklar’s theorem (Sklar, 1959) states that a joint distribution function F (·) with
marginals F1(·), ..., Fd(·) and domain R̄d can be represented by a copula function C
such that for all xt = (x1,t, ..., xd,t)

′ ∈ R̄d

F (xt) = C(F1(x1,t), ..., Fd(xd,t)) (1.10)

For continuously differentiable copulas the joint density of a continuous joint distri-
bution function can be decomposed into

f(xt) = c(F1(x1,t), ..., Fd(xd,t))f1(x1,t) · · · fd(xd,t) (1.11)

where c(F1(x1,t), ..., Fd(xd,t)) is the copula density, f(·) is the multivariate density
and fi(xi,t) denotes the marginal density. Importantly, Sklar’s theorem holds both
ways, i.e. we can combine arbitrary (continuous) marginals with a copula and get a
valid joint distribution function.18 Copulas allow to model the dependence structure
and marginals separately. In particular, any dependence measure that is invariant
to a monotone transformation can be represented by the copula alone.

18A formal definition of a copula is given in the Appendix C.
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One of the contributions of our paper is estimating joint density forecasts based
on the marginal densities of survey data. The idea is based on the reversion of Sklar’s
theorem, which allows to estimate joint density functions given the marginals from a
survey. In particular, for given marginals, the copula can be estimated by maximum
likelihood

ρ̂ = argmax
ρ

T∑
t=1

c
(
F1,t(x1,t), ..., Fd,t(xd,t); ρ

)
(1.12)

where Fi,t denotes the marginal provided by a survey for variable i at time t, xi,t
denotes the realisation of variable i at time t and ρ denotes the copula parameters.
Fi,t evaluated at xi,t is the well-known Probability Integral Transform (PIT). The
estimation is therefore based on the PITs and a choice of a copula family for c.

The estimation procedure is easiest understood through an algorithmic description:

1. Evaluate marginal density forecasts from survey data at the respective reali-
sations

2. Choose a copula family, for instance the Gaussian family

3. Decide on the estimation strategy of the copula parameters, for instance con-
stant copula parameters vs time-varying copula parameters

4. Given (1)-(3), obtain the parameter vector ρ through maximum likelihood

The resulting multivariate density will have univariate marginal densities, which are
identical to the survey marginals. The specific shape of the multivariate density will
be determined by the marginals, the copula family of c and the parameter (vector)
ρ. In turn, the estimation of ρ depends on the marginals, the copula family c, the re-
alised values of the variables and the modeling choice of the potential time-variation
in ρ. The choice of the parametric copula family, required in (2), and the estimation
scheme, required in (3), are explained in detail in the next section. In general, cop-
ula functions are a flexible tool to build new multivariate distributions that allow
for variables with bounded and unbounded domains. For the eurozone, we combine
two skewed student’s marginals, for GDP and inflation, with a truncated normal for
the unemployment rate. We are not aware of an existing multivariate distribution
that allows for this flexibility. A widely used workaround in economics is to take
logs of the variable. However, linear correlation, the most widely used measure of
association in economics, is not invariant to this type of monotone-transformations,
i.e. in general corr(Xk, Xj) 6= corr(Xk, log(Xj)).
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1.3.2 Model Choice and Empirical Estimation Strategy

The copula function we choose is a Gaussian copula defined as

CRt
(ut) = ΦRt

(
Φ−1(u1,t), ..,Φ

−1(ud,t)
)

(1.13)

where ΦRt
is the cumulative distribution function of a normal with mean-zero and

correlation matrix Rt with elements ρkj,t and Φ−1 is the inverse cdf of a univariate
standard normal. The subscripts k and j of ρkj,t denote respectively the variable k
and j. We would like to highlight four important features of the Gaussian copula.
First, although the copula functions is based on Gaussian distributions, the resulting
joint distribution function would only be a multivariate Gaussian if the marginals
were Gaussian as well. Second, although the Gaussian copula is determined by the
correlation matrix R, it allows for a non-linear mean dependence between X1, ..., Xd.
Dropping the time subscript for simplicity, Spearman’s rho, denoted by ρSkj, has a
closed form functional relationship with ρkj, ρSkj(Xi, Xj) = 6

π
arcsin

(ρkj
2

)
. Therefore,

the Gaussian copula is able to capture monotone, linear and non-linear, dependen-
cies. Third, many of the existing copulas are best suited for the dimension d = 2. In
contrast, the Gaussian copula is easily scalable to dimensions d ≥ 2. Other exam-
ples of scalable distributions include the Student’s t-copula and, including for very
high-dimensions, the factor copula proposed by Oh and Patton (2017).

As the marginals are time-varying, we will specify the copula as having a time-
varying parameters. In order to allow the parameters ρkj,t to change over time
and at the same time ensure that it stays within the range of (−1, 1), the time-
varying parameter will be estimated by a transformed auxiliary parameter γkj,t.
The specification is based on Patton (2006).19 Let γkj,t evolve according to

γkj,t = β1 + β2γkj,t−1 + β3

1

τ

τ∑
i=1

Φ−1(zt−i,j)Φ
−1(zt−i,k) (1.14)

where β2 captures the persistence in γkj,t and zt,k is the PIT values based on the
realisations of variable k at time t. The PIT is computed using the corresponding
survey data marginal density. The correlation parameters are then obtained through

ρkj,t = Λ(γkj,t) (1.15)

19Manner and Reznikova (2012) provide a survey of alternative models for time-varying copulas.
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where the transformation function Λ is a modified logistic function

Λ(y) =
1− ey

1 + ey
(1.16)

The intuition for equation (1.14) is similar to that of a GARCH model, where today’s
correlation evolves according to a constant, last periods correlation and last periods’
realised correlations. The time-variation in the dependence is therefore observation
driven. As ρkj,t is correlation measure of two random variables, it is symmetric,
i.e. ρkj,t = ρjk,t. The sum 1

τ

∑τ
i=1 Φ−1(zj,t−i)Φ

−1(zk,t−i) in (1.14) allows to take
into account the smoothed co-movements of the PITs in the last periods. In the
estimation, the value of τ is set to 8 in order to balance the trade-off of a quick
update of the correlation versus a smooth estimate of the coefficient. Results are
robust for different values for τ . Note that the estimation based on (1.14) does not
ensure a positive definite correlation matrix. However, we do not encounter this
problem with our estimated parameter values. Similar to time-varying parameter
VARs with stochastic volatility, the multivariate density forecasts using the SPF
marginals exhibits time-variation in the mean, variance, skewness, kurtosis and the
cross-sectional dependence of the variables.

Figure 1.3: Estimation Scheme

NOTE. – The recursive window estimation is performed with a starting window size of s for the coefficients β1, β2, β3
of (1.14). The baseline value for τ is equal to 8. The parameter estimated at s + k is estimated using information
up to time t = s+ k. This parameter is then used in constructing the joint density forecasts, Fs+k+h|s+k, where h
is the forecasting horizon.

The estimation procedure only uses information available to the survey participants
at the time they produced their marginal forecast densities. A parameter ρt,kj,
used to construct joint density forecasts with a target period t + h, where h is the
forecast horizon, is estimated only with information available up to time t. Figure
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1.3 illustrates the estimation scheme. We use a recursive window estimation scheme.
We chose the recursive window scheme on top of the time-varying parameter model
to construct out-of-sample forecasts. We define out-of-sample as forecasts that would
have been available in real time. More details on how we achieve to obtain actual
real-time forecasts can be found in Section 1.4. It is important to note that only the
copula parameter estimation would be affected by the data revisions, as the survey
forecasts are true out-of-sample forecasts. For both surveys, the starting size of the
recursive window, denoted by s, is equal to 50 periods.

1.4 Data

In this section, we provide a brief discussion of the two SPF data sets. Appendix
A provides a more thorough description of the surveys’ procedures. In addition, we
plot the smoothed marginals obtained from the SPF histograms.

1.4.1 Euro Area Data

The ECB Survey of Professional Forecasters started at the beginning of 1999 and
is a quarterly survey that asks experts, working in the financial and non-financial
industry, for their forecasts of eurozone output, inflation, and unemployment.20 The
output measure to be forecasted is the real GDP growth of the eurozone, the inflation
measure is the Harmonised Index of Consumer Prices (HICP)21 and unemployment
is the seasonally adjusted level of the eurozone unemployment rate. Our dataset
ranges from 1999:Q1 to 2017:Q2. The total number of realisations and forecasts we
match is 70.

Besides point forecasts, the survey reports marginal density forecasts by asking
the participants to provide a discrete number of percentiles of the forecast density
in the form of a histogram. Depending on the year and quarter, the number of
percentiles provided in the questionnaire ranges from 8 to 22. Our estimation is
based on the consensus of these marginal distributions, which is also the measure
directly published on the website of the ECB.22 The consensus is obtained by an
equal-weighted averaging over all answers for a given percentile. In total, the survey
provides data on up to six different types of forecast horizons: end-of-current year
(fixed-event), end-of-next year (fixed-event), end-of-the-year after next (fixed-event),

20The ECB website regarding the survey can be found under
https://www.ecb.europa.eu/stats/ecb_surveys/html/index.en.html

21Appendix A describes in more detail the properties of the HICP.
22Genre et al. (2013) show that the simple equal-weighted average is competitive when compared

to more refined techniques.
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one year ahead (fixed-horizon), two years ahead (fixed-horizon) and five years ahead
(fixed-horizon). Our focus will be the one year ahead forecast for a fixed-horizon as
it provides the longest time series of density forecasts that we can evaluate at the re-
alisations of the variables. The fixed-horizon forecast ensures that the horizon of the
forecast of the dependence parameter is fixed. However, the proposed methodology
to estimate joint density forecasts is equally applicable for fixed-event horizons. The
timing is such that one-year-ahead forecasts with the origin (beginning of) Q1 has
the target Q3. For fixed-horizons (f-h) the growth rates for real output growth and
inflation are year-on-year (cumulative) growth rates, i.e. Let Yt,qi , denotes the level
in year t at quarter qi and h the forecast horizon. Then the year-on-year growth
rate is defined as

Yt+h,qi

Yt,qi
− 1. For the unemployment rate, the forecasters predict the

unemployment rate, i.e., the level of the rate directly. The timing reflects the lag
in the official release of the euro area GDP growth data and Appendix A provides
details on the timing of the surveys. For the euro area, the joint forecast densities
with origin 2012:Q2 and after that are out-of-sample forecast, as we use real-time
data.23 To achieve out-of-sample forecasts, we align each SPF round with the latest
official publication of GDP growth, HICP, and unemployment by the ECB, that
took place before the submission deadline.

1.4.2 U.S. Data

The U.S. Survey of Professional Forecasters is currently conducted by the Federal
Reserve Bank of Philadelphia and started in 1968.24 It is conducted at a quarterly
frequency and provides, besides point forecasts, marginal density forecasts for output
growth and inflation.25 The survey’s timing is such that for a survey published at
quarter t, information up to t−1 is available. Again, for the analysis of the copulas,
we will focus on the consensus density forecasts, i.e., the average for a given percentile
taken over all respondents. At 1981:Q3 the output measure the survey asks for
changed from nominal GNP to real GNP. Therefore, the sample we use starts at
1981:Q3.26 The inflation measure considered in the survey is the GDP deflator. The
total number of realisations and targets that we match for each variable are 139,
from 1982:Q2 to 2016:Q4. The timing is such that a Q1 origin has the target Q4.
The forecasts are originally fixed-event forecasts. To provide comparability to the

23The real-time is taken from the real-time database of the ECB.
24Details about the survey can be found at the website of the Federal Reserve Bank of Philadel-

phia https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters/

25Again, the data we use is the final release.
26In the 1992:Q1, the survey changed from real GNP to real GDP. As the two measures of output

are closely related, our estimation proceeds without taking the break into account.
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euro area survey, we use the methodology proposed for point-forecast by Dovern
et al. (2012a) to transform the densities into fixed-horizon forecasts. The forecasts
are then annual-average over annual-average predictions, which is different from the
year-on-year euro area predictions. Due to the transformation, the density forecasts
are not true out-of-sample forecasts. Appendix A provides more details.

1.4.3 SPF Smoothed Marginal Densities

The SPF forecast densities for the U.S. and the eurozone are reported in histograms
over a range of values mi

1,t, ...,m
i
M,t for variable i at time t. We decide to work with

smoothed histograms. Although the theorem of copulas extends to the discrete case,
it does so with some pitfalls. For example, an estimated copula that implies an in-
dependence copula is in general, not a sufficient condition for independence of the
random variables.27 An interesting alternative could be to model the dependence
through intraclass correlations as in Jondeau and Rockinger (2006). The authors
split the unit square into different sub-squares and calculate the dependence as a
function of joint occurrences in the sub-squares. However, existing work on density
forecasts uses almost exclusively continuous distributions, and to guarantee compa-
rability, we stay within the framework of continuous distributions.

In order to smooth the distribution function based on the histogram data, we
use a parametric distribution function. The minimisation takes the form of

min
µt,i,αt,i,σt,i,νt,i

Mt∑
j=1

(
FSPFt,i

(mi
j,t)− T si (mi

j,t;µt,i, αt,i, σt,i, νt,i)
)2 (1.17)

where FSPFt,i
(mi

j,t) is the probability Pr(Xi < mj,t) implied by the SPF histograms
for point mi

j,t at time t for variable i and T si (mi
j,t;µt,i, αt,i, σt,i, νt,i) (hereafter de-

noted by T si,t) is the distribution function, evaluated at mi
j,t, of the skewed student’s

distribution proposed by Azzalini and Capitano (2003).28 Estimation of the param-
eters µt,i, αt,i, σt,i, νt,i is performed independently for every time step and will result
in a set of parameters

{
µt,i, αt,i, σt,i, νt,i

}T
t=1

, where µt,i measures the centrality of
the distribution, αt,i the skewness, σt,i the scale and νt,i is the degree of freedom of
the Student’s t. The unemployment rate is naturally truncated at zero whereas the
skew-t distribution has the entire real line as its support, i.e. the skew-t allows for
negative values. Hence, we use the truncated normal as the parametric smoother
for the unemployment rate. A truncated normal is characterised by four parameters

27See for example Genest and Nes̆lehová (2007).
28We are not the first to use this distribution function to obtain smooth densities; see for example

Adrian et al. (2016).
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(µt, σ
2
t , a, b) where (µt, σ

2
t ) are the location and scale of the distribution and a and

b are the bounds of the support. We choose a = 0 and leave the upper limit of the
support unbounded, i.e. b =∞.

The skewed Student’s distribution is a flexible function that allows for skewness
as well as fat tails. Figure 1.4 displays an example of the matching. Panel (a)
displays T sGDP,2002:Q4, i.e. the smoothed distribution function computed for GDP
growth for the range of values [0, 0.5, ..., 3.5, 4]. If the red crosses are positioned on
the top of the respective bar, the resulting matching error is zero.

Figure 1.4: Example of a Smoothed Marginal

NOTE. – In panel A, the red crossed line displays the estimated smoothed cdf evaluated at the SPF histogram cutoff
points. The blue bars displays the cdf computed directly from the SPF histogram. The bars are centred around
the mid-point of the respective SPF probability interval. Panel B displays the SPF histogram in blue bars and the
smoothed estimated density. The blue bars are centred around the middle of the respective histogram interval.

Figure 1.5 and Figure 1.6 display the smoothed marginal densities forecasts for the
euro area, and the U.S. SPF surveys over time. The figures highlight graphically two
interesting features of the data set. First, the euro area forecasts have experienced
a location shift for both, inflation and the unemployment rate. Although the U.S.
inflation measure also experienced a location shift during the 80s, it has remained
largely constant over the last two decades. Second, all three euro-area distributions
exhibit a strong surge in scale, whereas the scale for the U.S. decreased. The euro-
zone distributions remained more spread out after the Great Recession, a fact that
will be well reflected in the uncertainty measure.29 In contrast, the U.S. forecast

29Kenny et al. (2015b) use individual-level densities of the euro area SPF and find that the vari-
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Figure 1.5: Smoothed Marginal Density Forecasts for the Euro Area

(a) Output Growth (b) Inflation (c) Unemployment Rate

NOTE. – The time axis is target aligned, i.e. a forecast displayed at time t was made for t and not in t. The
y-axis displays the values in %. The z-axis displays the density. Panel (a) displays the smoothed marginal density
forecasts of real output growth over time. Panel (b) displays the smoothed marginal density forecasts for inflation.
Panel (c) displays the smoothed marginal density forecasts for the unemployment rate.

Figure 1.6: Smoothed Marginal Density Forecasts for the U.S.

(a) Output Growth (b) Inflation

NOTE. – The time axis is target aligned, i.e. a forecast displayed at time t was made for t and not in t. The
y-axis displays the values in %. The z-axis displays the density. Panel (a) displays the smoothed marginal density
forecasts of real output growth over time. Panel (b) displays the smoothed marginal density forecasts for inflation.

distributions exhibit a rise in scale during the Great Recession but return to the
pre-crisis level after a few quarters. In comparison to the conditional distribution of
GDP growth of Adrian et al. (2016), the U.S. SPF data exhibits more shifts in lo-
cation whereas the distribution in Adrian, Boyarchenko and Giannone (2017) shows

ance increased after the Great Recession but that the majority of forecasters exhibits a downward
bias in their variances.
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a stronger downside asymmetry with fatter tails.

1.5 Eurozone Results on the Joint Densities

Estimation results show large movements in the expected dependence between GDP
and HICP and HICP and the unemployment rate. Figure 1.7 displays the estimated
copula parameters. The time axis is origin aligned, i.e. the parameter value is
plotted against the date on which the forecast of the joint density based on the
respective correlation parameter would have been made. The shaded areas are the
period from peak to trough as determined by the Business Cycle committee of the
Centre for Economic Policy Research (CEPR).

Figure 1.7: Time-Varying Copula Parameters for the Eurozone

NOTE. – The lines display the evolution of the time-varying copula correlations for the eurozone. The dates on
the time axis are origin based. For example, the parameter value plotted against 2009:Q1 is based on information
available at the beginning of 2009:Q1. Shaded areas mark CEPR recession periods.

With the end of the Great Recession, dependence between GDP and inflation in-
creased from about zero to around 0.65, negative dependence between GDP and
the unemployment rate is constant with only minor fluctuations around the time
after the Great Recession. For the dependence of HICP and the unemployment rate
we observe a drop, from slightly positive for origins right before the financial crisis,
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to −0.9 for the period during and after the Great Recession. Starting with 2012
the dependencies moved back to approximately pre-crisis level. The variation of the
dependence will affect the joint uncertainty measure and the probabilistic indicators
for the state of the economy because these measures are functions of the marginals
and the dependence. We compare the density forecast performance of the SPF to
two models, an AR(1) (AR-SV) with stochastic volatility and a time-varying param-
eter VAR(2) (BVAR) with stochastic volatility.30 Using real-time data, when we test
for statistically significant differences, the SPF overall outperforms the two compet-
ing models for an out-of-sample period from 2008:Q1 to 2016:Q4. This result holds
for both univariate as well as multivariate density forecasts. Appendix ?? provides
a detailed table of the univariate and multivariate density forecast comparisons.

Figure 1.8 displays two contour plots for the joint distribution of output growth
and inflation at density levels of 0.01, 0.05 and 0.15 that show several features of
the estimated joint forecast densities. The dashed black line depicts the conditional
mean of inflation, conditioned on the respective values of output growth. It provides
a straightforward graphical way to assess whether the conditional mean dependence
is linear. Panel (a) displays the contour plot for output growth and inflation for the
origin period of 2009:Q1, i.e. a target of 2009:Q3. Panel (a) of Figure 1.7 shows
that for 2009:Q1, the expected dependence between output and inflation was close
to zero, ρt = −0.03. In the midst of the Great Recession, the joint density predicts a
negative growth and a low to moderate inflation. The contour plot does not resemble
an ellipse because of the non-gaussian marginals, which allow for both asymmetry
and fat-tails. For output growth, the skewness parameter, αt,gdp, is positive, which
is reflected in the relatively longer positive tail along the horizontal axis for the 0.01
contour isoline. Further, the distributions does not exhibit excessive tails, which
shapes the contour into a circular instead of squared-edged region. The distribution
for inflation is negatively skewed, which is reflected in the larger distances between
different isolines for smaller values on the x-axis.

In contrast to panel (a), the dependence for the time period displayed in Panel
(b) is positive and strong with ρt = 0.64. Further, the distributions exhibit fatter
tails and positive asymmetry for inflation. The fat-tails let the isoline appear more
rectangular than elliptical. For both cases, the distributions deviate largely from the
contour plot of a bivariate normal. The multivariate density predicts the euro area
economy to exhibit by positive output growth and positive inflation. In addition,
the conditional mean exhibits some non-linearities as depicted by the dashed black
line. It is steeper for values around the mean of output growth and less steep in the

30A detailed description of the models can be found in Appendix D and E.

24



tails, which implies a stronger dependence between GDP and inflation for values
around the centre of the distribution.

Figure 1.8: Contour for Output Growth and Inflation for the Eurozone

(a) 2009:Q1 (b) 2011:Q1

NOTE. – The date is origin aligned, i.e. it displays the forecast made in 2009:Q1 and 2011:Q1. The x-axis displays
inflation values in %. The y-axis displays real output growth values in %. The isolines are for density levels of 0.01,
0.05 and 0.15 and are based on the joint densities estimated from the smoothed SPF marginals and the Gaussian
copula. The dashed black line displays the conditional mean of inflation, conditioned on output growth.

1.5.1 SPF Relative Forecasting Performance

We compare the univariate density forecasts of the SPF to two popular time series
models. The aim of this exercise is twofold. First, we want to evaluate the forecast-
ing performance of the (smoothed) univariate density forecasts of the SPF. Second,
we want to evaluate the forecasting performance of our estimated survey-based mul-
tivariate density forecasts.

The competing models are an AR(par) (AR-SV) with stochastic volatility and
a bayesian time-varying parameter VAR(pvar) with stochastic volatility (BVAR).31

These models are known for models performing well for density forecasts (D’Agostino
et al., 2013; Clark and Ravazzolo, 2015). In addition, we compare the forecasting
performance of the joint densities estimated based on the SPF marginals and the
BVAR.

31The lag length par = 1 and pvar = 2 are chosen according to the BIC.
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Table 1.1: Density Forecast Comparison - Euro Area

Panel A: Log Scores
2008:Q1 - 2016:Q4 2009:Q3 - 2016:Q4

Model Y π U (Y, π, U) Y π U (Y, π, U)
AR-SV 17.41 0.79 0.26 - 0.63‡ 1.32* 0.76† -

(13.90) (0.69) (0.37) - (0.20) (0.76) (0.27) -
BVAR 18.97* 7.46† 9.12† 10.01† 4.75‡ 9.26† 9.82 5.40‡

(10.10) (3.50) (3.20) (4.80) (1.54) (4.25) (6.01) (1.36)

Panel B: CRPS Scores
2008:Q1 - 2016:Q4 2009:Q3 - 2016:Q4

Model Y π U (Y, π, U) Y π U (Y, π, U)
AR-SV 0.52‡ 0.32 0.25† - 0.56‡ 0.53† 0.34‡ -

(0.17) (0.22) (0.10) - (0.20) (0.23) (0.10) -
BVAR 1.58‡ 0.54 0.40‡ 2.32‡ 1.66‡ 0.78‡ 0.31‡ 2.51‡

(0.40) (0.30) (0.14) (0.53) (0.37) (0.31) (0.11) (0.55)
NOTE. – Panel A displays the log-scores of the SPF minus the log-score of the AR-SV and the BVAR model
respectively. Panel B displays the negative orientation of CRPS difference of SPF and the AR-SV and the BVAR
model respectively. In both cases, positive numbers indicate a superior performance of the SPF. The number of
out-of-sample observations is 36 and 30 for the sample that excludes the financial crisis respectively. Y denotes
year-on-year GDP growth, π denotes the year-on-year HICP inflation and U denotes the unemployment rate.
(Y, π, U) denotes the multivariate density forecast. HAC standard errors are in parenthesis and *, † and ‡ denote
significance at the 10%, 5% and 1% level.

Both, the AR-SV and the BVAR, are estimated over a rolling window, with a window
size of 40.32 To imitate realistic forecasting conditions we use real time data for both
models to produce the forecasts. The out-of-sample period starts at 2008:Q1. We
test for differences in log-scores and continuous ranked probability scores (CRPS)
of the two econometric models to the SPF based forecasts, using the out-of-sample
from 2008:Q1 to 2016:Q4. In addition, we compute the difference for a sample
that excludes the financial crisis for two reasons. First, the SPF density forecasts
after the Great Recession are less over-confident in general, i.e. the density fore-
casts improved. Secondly, the Great Recession is a rare and volatile period and
potentially not representative for the forecasting performance of the rest of the sam-
ple. The following table compares the log-scores (CRPS) of the two econometrics
models relative to the eurozone SPF, such that positive numbers indicate a better
performance of the SPF density forecasts. Based on the log score, the SPF den-
sity forecasts significantly outperform the BVAR density forecasts for both GDP
growth and unemployment, and for unemployment for the period that includes the
Great Recession. For the AR-SV model, the log-score difference remains positive
throughout but the SPF’s performance is only significantly better for the period
that excludes the Great Recession. Using the CRPS, all but the inflation forecasts

32For a description of the models please see D and E.
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perform statistically significantly better.

1.5.2 Economic Downturns, Target Inflation and Rare Events

Let Yt be the GDP growth rate and Ut be the unemployment rate of the eurozone,
then we define the ex-ante economic downturn probability of the euro area as

ξt+4|t ≡ Ft+4|t(Yt+h < τ bct+4|t,Y , Ut+4 > τ bct+4|t,u) (1.18)

The baseline specification usesW = 2, i.e. the average of the two quarters preceding
the forecast origin. The threshold then takes the form of τ bct+4,i ≡ 1

2

∑2
w=1 xi,t−w+1.33

We start by comparing the bivariate measure that we propose to the univariate
analogues, i.e. for GDP growth

ξYt+4|t ≡ FY
t+4|t(Yt+4 < τ bct+4|t) (1.19)

and for unemployment
ξUt+4 ≡ FU

t+4|t(Ut+4 > τ bct+4|t) (1.20)

where FY
t+4|t and F

U
t+4 are the respective marginal forecast densities of GDP growth

and unemployment. Figure 1.9 plots in Panel (a) the realised values of GDP and
unemployment over time and in Panel (b) and (c) we show the comparison of the
economic downturn measure based on the joint density, ξt+4|t, to ξUt+4 and ξYt+4. In
Panel (a), the beginning of the 2000s emphasises, why looking at more than one
variable can be important in order to determine the state of the Business Cycle.
From the end of 1999 until the beginning of 2002, the GDP growth rate decreased
by 3.8 percentage points, but the unemployment rate only increased by about half a
percentage point during the same time period. In comparison, during the eurozone
debt-crisis recession, GDP growth decreased by 3.9 percentage points but unemploy-
ment increased by over 2 percentage points. The CEPR did not call a recession for
the period of the early 2000s, although looking only at GDP growth rates could sug-
gest to do so. Panel (b) and (c) display the univariate versus the bivariate economic
downturn probabilities, ξYt+4 vs ξt+4 and ξUt+4 vs ξt+4, and the bivariate probability
is clearly preferable.

The competitor model we use is the BVAR evaluated in 1.5.1. As the BVAR
produces joint density forecasts, we can define the recession probability identically

33Appendix F shows results for an alternative, more conservative, definition of an economic
downturn.
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to the definition in (F.9). The model is estimated using a rolling window and the
first out-of-sample density forecast of the model is made for the target 2008:Q1.34

Figure 1.9: Bivariate vs Univariate economic downturn Probabilities

(a) Realised Values (b) ξt+4|t,Y vs ξt+4|t (c) ξt+4|t,U vs ξt+4|t

NOTE. – The dates on the time axis are target based. In Panel (a), the solid line displays realised, cumulative,
year-on-year GDP growth rates and the dashed line displays the unemployment rate. In Panel (b) and (c), the solid
line denotes the one year-ahead probability of an economic downturn based on the joint density forecast. In Panel
(b) the dashed line denotes the economic downturn probability based on the univariate measure of GDP growth, as
defined in (1.19). In Panel (c) the dashed line denotes the economic downturn probability based on the univariate
measure of the economic downturn, as defined in (1.20). Shaded areas mark CEPR recession periods. The grey,
dotted vertical lines denote the early 2000s U.S. recession.

Figure 1.10 displays the one year-ahead economic downturn probabilities as defined
by ξt+4|t above. The solid line is the economic downturn probability calculated using
the joint density forecasts estimated based on the SPF data. As discussed in the
estimation section, from 2012:Q2 onwards, the values are out-of-samples estimates.
The dashed line denotes the respective probability computed using the joint density
forecast from the BVAR. The crossed markers display the actual realisations of the
event lower GDP growth and higher unemployment relative to today.

Overall, the SPF did somewhat worse for the Great Recession than the BVAR
model but somewhat better for the euro debt crisis and the aftermath. The be-
ginning of the sample is marked by a spike of ξt+4|t, with a peak at the target
date 2002:Q2 (i.e. origin 2001:Q4) of about 70%. While the euro area as a whole
did not experience a recession during that period, following the CEPR dating, the
strong surge of the economic downturn probability can be rationalised by at least
two important events that occurred. First, forecasters could have been wary of the
eurozone reaction to the ongoing U.S. economic turmoil.35 The U.S. recession had
its trough at mid 2001:Q4 and the forecast origins for the highest values of ξt+4|t are

34An alternative could be to compare the performance to the Eurocoin index, which is computed
by the Bank of Italy and published on the website of the Centre for Economic Policy Research
(CEPR). Similar to the Eurocoin index, the Federal Reserve Bank of Philadelphia publishes the
Aruoba-Diebold-Scotti Business Conditions Index based on Arouba et al. (2009).

35The NBER recession dates for the early 2000s assign the peak to March 2001 and the trough
to November 2001.
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dated earlier than the U.S. trough. Second, Germany entered a recession during mid
to end 2001 and France a near-recession during the second half of 2001. In other
words, two major member countries already experienced an economic downturn.
The solid, crossed line displays euro area GDP growth, which experienced a strong
decrease although it stayed positive. Overall, the period of the early 2000s therefore
fulfils the criteria of a time of diminishing activity in GDP. The BVAR picks up that
movement of GDP calls strongly economic downturn. In addition, it is important
to note that the early 2000s are the beginning of the data set over which the BVAR
is estimated, and the prediction is entirely in-sample.

For the Great Recession, the joint density based on the SPF is late in the fore-
cast of the economic downturn and determines the trough three quarters after the
date of CEPR. In other words, forecasters overestimated the length of the economic
downturn. Again, it is important to note that, in contrast to the joint density fore-
cast, the CEPR dating procedure is in-sample and the final decision on the date
was made at the end of 2010. The BVAR is quite precise out-of-sample, as the
model recognises early on the probability of an economic downturn. Similar to the
SPF-based forecast, the BVAR overestimates the length of the economic downturn
using the indicator proposed in (F.9).

Figure 1.10: Probability of Economic Downturns

NOTE. – The dates on the time axis are target based. For example, the probability plotted against 2010:Q1 is
based on information available at the beginning of 2009:Q2. The solid line denotes the one year-ahead probability
of lower GDP growth and higher unemployment based on the joint density forecast using the SPF data. The dashed
line denotes the respective probability based on the BVAR. The crossed markers denote the realisation of the event
of lower GDP growth and an increase in the unemployment rate. Shaded areas mark CEPR recession periods.

On the other hand, the euro area debt crisis that led to the second economic down-
turn is estimated quite accurately out-of-sample by the SPF and the plotted proba-
bility is in real time as the sample is for the period after 2012:Q2. The BVAR picks
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up the second dip of the Business Cycle somewhat late when compared to the CEPR
recession dates. The increase in a economic downturn probability during the years
2015 to mid 2017 is in line with IMF reports (IMF, 2014, 2016) on a remaining risk
of a triple-dip economic performance in the euro area. Here again, the performance
of the SPF forecasts are superior to the BVAR model. Summarising, the forecasters
overestimated the length of the Great Recession but improved timing for the euro
area debt crisis. However, we conclude that joint density forecast could be an in-
teresting tool to predict economic downturns, in particular a combination of model
and survey-based densities.

Figure 1.11: Probabilities of Rare Events

(a) Low Inflation & Negative GDP Growth

(b) High Inflation & Negative GDP Growth

NOTE. – The dates on the time axis are target based. For example, the probability plotted against 2010:Q1 is based
on information available at the beginning of 2009:Q2. In panel (a), the black solid line denotes the one year-ahead
probability of negative output growth and deflation. In panel (b), the black solid line denotes the one year-ahead
probability of negative output growth and high inflation. The dashed line is the respective BVAR model implied
probability. Shaded areas mark CEPR recession periods.

Panel (a) of Figure 1.11 displays −ζt+4|t, the one-year ahead probability of negative
output growth accompanied by a low inflation in the euro area. The BVAR predicts
rather well the event of negative output growth and low inflation, which is driven
by low mean forecasts as well as the high volatility of the model during that period.
For the euro area debt crisis and the remaining crisis the probabilities of a low
inflation recession increase slightly but remain very low. In contrast, the SPF-based
predictions are lagged with respect to the realisations of the actual events.
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Panel (b) of Figure 1.11 displays +ζt+4|t, the one-year ahead probability of a recession
accompanied by high inflation in the euro area. The graph remains flat, according
to the SPF-based model there was no risk of negative output growth and very
high inflation since the establishment of the euro currency area. The BVAR spikes
somewhat during the Great Recession and calls a high risk during the beginning of
the 2003 period. Both spikes are largely driven by the high variance of the BVAR
model density during that period.

1.5.3 Probability of Remaining in a Secular Stagnation

We define the secular stagnation threshold for variable i, as the pre-financial crisis
averages, i.e. τ si = 1

tf

∑tf
w=1 xi,w, where tf denotes 2008:Q1 and xi,w denotes the

realisation of the respective values of GDP growth, inflation and of the unemploy-
ment rate. Then the probability of remaining the secular stagnation region can be
computed using

ηt+4|t ≡ Ft+4|t(Yt+4|t < τ sy , πt+4|t < τ sπ, Ut+4|t > τ su) (1.21)

where again Ft+h|t denotes the joint density forecast.

Figure 1.12: Eurozone Probability to Remain in the Secular Stagnation Region

NOTE. – The dates on the time axis are target based. For example, the probability plotted against 2010:Q1 is based
on information available at the beginning of 2009:Q2. The black solid line denotes the one year-ahead probability
for remaining in a secular stagnation region. Shaded areas mark CEPR recession periods.

Figure 1.12 displays the one year-ahead probability of remaining in a secular stagna-
tion region, i.e. both output growth and inflation remaining below and unemploy-
ment remaining above a pre-crisis level. We can observe a drop for the time before
2012:Q1 and a sharp increase of almost 15% during the euro area debt crisis. With
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the end of the second euro area recession, the probability decreases slightly only to
surge an additional 12% a quarter later. The outlook on future development in the
euro area remains pessimistic.

1.5.4 Joint Uncertainty

Panel (a) of Figure 1.13 displays the joint uncertainty for the eurozone. Note that
the graph is origin based in order to display uncertainty at the time of the forecast
origin.The graph reveals three important aspects. First, uncertainty surges with
the onset of the Great Recession with a peak for the forecast origin of 2009:Q2.
Second, although the macroeconomic uncertainty spikes during the euro area debt
crisis recession, it does much less so relative to the Great Recession. Third, joint
uncertainty has experienced a level shift over time. In particular, euro area uncer-
tainty did only briefly converge back to the pre-Great Recession level for the period
of 2009:Q3 to 2011:Q3 and remains currently still higher than prior to the 2009
economic downturn.

Figure 1.13: Entropy Measures for the Eurozone

(a) Multivariate vs Univariate Entropy

(b) Total Correlation

NOTE. – The dates on the time axis are origin based. For example, the uncertainty plotted against 2010:Q1 is
based on information available at the beginning of 2010:Q1. The solid line in panel (a) displays the entropy based
on the joint density forecasts. The dashed line displays the sum of the univariate entropies. The solid black line in
panel (b) displays the negative value of total correlation based on the joint density forecasts. Shaded areas mark
CEPR recession periods.

To understand the different behaviour of the joint uncertainty and the univariate un-
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certainty around 2009:Q3 to 2011:Q3 we need to consider Panel (b), which displays
the negative value of total correlation. As total correlation is a Kullback-Leibler
distance and therefore bounded below by zero, the graph displays directly the con-
tribution to uncertainty. It contributed strongly to a reduction in joint uncertainty
during the first years of the existence of the euro. Moreover, in the aftermath of
the financial crisis, starting during mid 2009 until the beginning of the euro area
debt crisis, total correlation contributed an average reduction of 32% to the entropy
measure, i.e. the increase in dependencies of the macroeconomic variables reduced
macroeconomic uncertainty by about 32%.36 The importance of TC(X) highlights
the fact that uncertainty of a multivariate system of variables behaved differently
than uncertainty of any of the univariate variables.
Panel (a) and Panel (b) of Figure 1.14 compare our entropy measure to the results of
Abel et al. (2016), which are based as well on the euro area SPF data set and from
an empirical perspective most closely related to us.37 Note the different scaling
on the right-hand y-axis. The authors provide two measures of uncertainty, one
that is based on the median of the variance and one that is based on the median
of the interquartile range (iqr) of the individual forecast densities. The dashed
lines show the evolution of their measure compared to us. With the onset of the
Great Recession, both the variance and the iqr based measure increase markedly.
Importantly, the measures do not show a return to pre-crisis levels for the period in
between the two recessions, which for joint uncertainty is based on the increase in
cross-sectional dependence.

36Computed as the average of the percentage difference between joint uncertainty and the sum
of the univariate uncertainty, i.e. it is the negative value of TC(X)

DE(X)−TC(X) .
37Abel et al. (2016) provide estimates for each individual SPF variable, i.e. GDP growth, inflation

and unemployment. We display the mean of the three measures.
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Figure 1.14: Entropy Measures for the Eurozone

(a) Abel et al. Variance Uncertainty

(b) Abel et al. IQR Uncertainty

NOTE. – The left-hand side y-axis denotes the entropy measure proposed in this paper. The right-hand side axis
denotes the entropy measure of Abel et al. The dates on the time axis are origin based. For example, the uncertainty
plotted against 2010:Q1 is based on information available at the beginning of 2010:Q1. The solid black lines display
the entropy based on the joint density forecasts and the dashed lines display the sum of univariate entropies. The
dotted lines display the uncertainty measure computed by Abel et al. (2016). Shaded areas mark CEPR recession
periods.
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1.6 U.S. Results on the Joint Densities

Figure 1.15 shows that the predicted dependence between real output and inflation
increases sharply, from around −.25 up to 0.4 during and in the aftermath of the
Great Recession and the increase is qualitatively comparable to the eurozone results.
In 2011 it starts to drop but remains above the pre-crisis level. Again, the increase
in predicted co-movement during and after the Great Recession will dampen the
increase in joint uncertainty relative to a measure that is limited to only consider
univariate variances, although less so than in the euro area. Further, probabilities of
recessions and disastrous events will be affected by the evolution of the association
of GDP and CPI. As well as the euro area data, we compare the forecasting perfor-
mance of the US SPF to an AR an AR(1) (AR-SV) with stochastic volatility and a
time-varying parameter VAR(2) (BVAR) with stochastic volatility.38 For inflation,
the econometric models tend to outperform the two competing models for an out-of-
sample period from 1999:Q4 to 2016:Q4. Appendix 1.6.1 provides a detailed table
of the univariate and multivariate density forecast comparisons.

Figure 1.15: Time-Varying Parameter Copula for the U.S.

NOTE. – The figure displays the evolution of the time-varying copula correlation for the U.S. The dates on the
x-axis are origin based. For example, the parameter value plotted against 2010:Q1 is based on information available
at the beginning of 2010:Q1. Shaded areas mark NBER recession periods.

Figure 1.16 shows two example contour plots of the estimated joint forecast density
for the origin period 1999:Q2 (target 2000:Q1) and 2010:Q1 (target 2010:Q4), i.e.
Panel (a) shows a forecast density with origin during the boom year of 1999 and the
second for a forecast origin after the Great Recession. The contour plots allow an
insight into several interesting features of both, the marginals as well as the joint
distribution function.

38A detailed description of the models can be found in Appendix D and E.
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Figure 1.16: Contour for Output Growth and Inflation for the U.S.

(a) 1999:Q2 (b) 2010:Q1

NOTE. – The date is origin aligned, i.e. it displays the forecast for 2000:Q1 and 2010:Q3 made in 1999:Q2 and
2010:Q1. The x-axis displays inflation values in %. The y-axis displays real output growth values in %. The isolines
are for density levels of 0.01,0.05 and 0.15 and are based on the joint densities estimated from the smoothed SPF
marginals and the Gaussian copula. The dashed black line displays the conditional mean of inflation, conditioned
on output growth.

Although the forecasts are optimistic for the output growth rate and inflation for the
2000:Q1 period, we observe strong asymmetry along the horizontal axis of output
growth in panel (a). The asymmetry suggests that the model not yet assigns a
lot of weight to an economic downturn, reflected by the strong positive mean, but
at the same time remained wary of a risk of a recession with a relatively high
inflation, reflected by the long negative tail along the horizontal axis. Moreover,
there conditional mean (solid line) of inflation is not a linear function of GDP growth
as the curvature somewhat flattens for smaller growth values. Panel (b) of Figure
1.16 exhibits three interesting features. First, in the beginning of 2010, the model
generally implies a positive outlook for the year of 2010 with expectations on positive
growth and a moderate inflation. However, although the centre of the distribution
is in the positive region of the outcome space, there is a risk of a returning economic
downturn for real output growth, as reflected in the long tail. Third, although the
relationship between GDP growth and inflation is monotone, it is not from being
linear. The dashed black line depicts the conditional mean of inflation, conditioned
on output growth. Its shape implies that dependence is weaker for large (small)
values of output growth as the line is less steep for large (small) values on the
y-axis.
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1.6.1 Relative SPF Forecasting Performance

Again, the AR-SV and the BVAR, are estimated over a rolling window, with a
window size of 70. The out-of-sample period starts at 1999:Q1.39 We test for
differences in log-scores of the two econometric models to the SPF based forecasts,
using the full out-of-sample from 1999:Q1 to 2016:Q4. The econometric models
perform better in forecasting the annual-average over annual-average GDP deflator,
but only the forecasts of the AR(1) are significantly better. For GDP growth the SPF
is slightly better, but the difference is not statistically significant. When comparing
the log-scores of the multivariate densities, the BVAR clearly outperforms the SPF
based density forecast.

Table 1.2: Density Forecast Comparison - US

1999:Q1 - 2016:Q4 Excluding Financial Crisis
Model Y π (Y, π) Y π (Y, π)
AR-SV 0.16 -0.22‡ - 0.21* -0.17† -

(0.13) (0.08) - (0.12) (0.08) -
BVAR 0.15 -0.17 -2.60 0.16 -0.25 -2.29‡

(0.21) (0.20) (0.28) (0.18) (0.21) (0.13)
NOTE. – The table displays the log-scores of the SPF minus the log-score of the AR-SV
and the BVAR model respectively. The number of out-of-sample observations is 72 and
64 for the sample that excludes the Great Recession respectively. Y denotes annual-
average over annual-average one year-head GDP growth, π denotes the annual-average
over annual-average one year-head HICP inflation. (Y, π) denotes the multivariate den-
sity forecast. HAC standard errors are in parenthesis and *, † and ‡ denote significance
at the 10%, 5% and 1% level.

1.6.2 Probabilities of Target Inflation and Rare Events

As we do not have a long time series for US SPF marginal density forecasts of
unemployment, we will restrict our analysis to, firstly, predicting, at least, moderate
GDP growth and target inflation and, secondly, predicting the joint probability of
negative output growth accompanied by low inflation and negative output growth
accompanied by high inflation.

Starting with the analysis moderate GDP growth and target inflation, let Yt
denote GDP growth and πt inflation. We set the value for the target inflation to be
in a range of 1.8% to 2.2% and define moderate GDP growth to be, at least, 1%.

δt+4|t ≡ Ft+4|t(Yt+4 > 1, 1.8 < πt+4 < 2.2) (1.22)

Figure 1.17 displays the probability δt+4|t. The models overall attribute higher prob-

39The out-of-sample for the joint density forecasts starts as well in 1999:Q1, as the periods before
are used for the estimation of the copula parameter.

37



abilities to time periods where more of the events realised. In comparison to the
SPF-based probability, the BVAR based probability is more volatile and predicts
particularly well the events in the period around 1995, 1999 and 2003.
Turning to the analysis of negative output growth accompanied by low inflation and
negative output growth accompanied by high inflation, we set the value of τV aR in

+ζt+4|t ≡ Ft+4|t(Yt+4 < 0, πt+4 > 3) (1.23)

to 3%, i.e. an inflation above 3% is considered a high inflation. The value for low
inflation is set to 1, such that

−ζt+4|t ≡ Ft+4|t(Yt+4 < 0, πt+4 < 1) (1.24)

Similar to the euro area results, we compare the results to a time-varying parameter
VAR with stochastic volatility (BVAR).

Figure 1.17: Probability of Moderate GDP Growth and Target Inflation

NOTE. – The dates on the time axis are target based. For example, the probability plotted against 2010:Q1 is
based on information available at the beginning of 2009:Q2. The solid line denotes the one year-ahead probability
of, at least, moderate GDP growth and target inflation based on the joint density forecast using the SPF data. The
dashed line denotes the respective probability based on the BVAR. The crossed markers denote the realisation of
the event of, at least, moderate GDP growth and inflation being within a target range. Shaded areas mark NBER
recession periods.

Panel (a) of Figure 1.18 displays −ζt+4|t, the one-year ahead probability of a recession
accompanied by a low inflation. The peak of 11% is reached in quarter 4 of 2009,
which is around 6 months after the trough established by the NBER. However, for
the annual-average over annual-average rates, the realisation of the event negative
GDP growth and low GDP deflator occurs in 2009Q:3 and 2009:Q4. Both models
perform rather well in the prediction and the SPF-based outperforms the BVAR
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model. Interestingly, the pseudo out-of-sample probabilities remain low for all other
U.S. recessions that occurred in the data sample.

Panel (b) of Figure 1.18 displays +ζt+4|t, the one-year ahead probability of a
recession accompanied by high inflation. The SPF-based model predicts a high
risked of a recession and high inflation for the period after the 1982 U.S. recession
that had its trough in November 1982, following the NBER Business Cycle Dating
Committee. For the annual-average over annual-average growth rates, the event of
negative output growth and high inflation occurs somewhat later than the NBER
recession dates. The first target date plotted on the time axis is 1983:Q2. The next
U.S. recession occurred in the beginning of the 90s and experienced its trough in
March 1991. Output growth remained positive throughout the recession, however,
the joint density computes a probability of a recession accompanied by high inflation
of around 35%.

Figure 1.18: Probabilities of Rare Events

(a) Low Inflation & Negative GDP Growth

(b) High Inflation & Negative GDP Growth

NOTE. – The dates on the time axis are target based. For example, the probability plotted against 2010:Q1 is
based on information available at the end of 2009:Q1. In panel (a), the black solid line denotes the one year-ahead
probability of negative output growth and deflation. In panel (b), the black solid line denotes the one year-ahead
probability of negative output growth and high inflation. The dashed line depicts the BVAR based estimation.
Shaded areas mark NBER recession periods.

Similar to the plot in Panel (a) and the analogue euro area result, there is a two
to three quarter mismatch between the highest values of +ζt+4|t and the end of the
recession due the use of annual-average over annual-average growth rates. Impor-
tantly, as the GDP deflator includes energy prices, the Iraqi invasion of Kuwait in
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mid 1990 contributed to a severe oil-price shock, which potentially contributed to
the risk of a high inflation.

1.6.3 Probability of Remaining in a Section Stagnation

Similar to the eurozone results, we compute the probability of remaining in a secular
stagnation region. Due to the lack of unemployment forecasts, the probability is
computed based on output growth and inflation only, otherwise the definition is the
same.40 While the probability lowered after the financial crisis, it increased during
the years of 2013 to 2015 back to about 85%. Federal Reserve outlooks during that
time expected a moderate output growth and low inflation. While unemployment
decreased over the last years in the U.S. and nearly reached its pre-crisis level in
2017, the models’ predictions for jointly, inflation and output growth, remains low
throughout the years of 2016 and 2017. Interestingly, for both the eurozone and
the U.S., the SeSt probability increased for the target year 2016, but experienced a
slight decrease with the beginning of 2017.

Figure 1.19: U.S. Probability to Remain in the Secular Stagnation Region

NOTE. – The dates on the time axis are target based. For example, the probability plotted against 2010:Q1 is
based on information available at the end of 2009:Q1. The black solid line denotes the one year-ahead probability
for remaining in a secular stagnation region. The dashed line depicts the BVAR based estimation. Shaded areas
mark NBER recession periods.

1.6.4 Joint Uncertainty

Panel (a) of Figure 1.20 displays the joint uncertainty based on the one year-ahead
joint density forecasts. First, the level of joint entropy has declined comparing the
beginning and the end of the sample which stands in contract to the euro area
results. Second, the volatility has declined as well. Starting in the beginning of

40The computation of the thresholds is performed in an analogous way using the respective U.S.
data dating back to 1982.
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2009, uncertainty spikes for three periods and drops back to the pre-crisis level.
Uncertainty of the forecasts surged during the height of the Great Recession and
in the immediate aftermath. Panel (b) of Figure 1.20 displays again the negative
value of total correlation. We observe that during the recession at the beginning
of the new century and in the aftermath of the financial crisis, the dependence of
the two variables contribute only slightly to reduction of joint uncertainty by about
3%, a pattern that is similar to the eurozone. The contribution to a reduction in
uncertainty was somewhat larger for the periods of the early to mid 80s and in the
90s, i.e. to periods of high positive growth. Overall, TC(X) reduces U.S. uncertainty
by less than the equivalent measure for the euro area.

Figure 1.20: Entropy Measures for the U.S.

NOTE. – The dates on the x-axis are origin based. For example, the uncertainty plotted against 2010:Q1 is based
on information available at the beginning of 2010:Q1. The solid black line in panel (a) displays the entropy based
on the joint density forecasts. The solid black line in panel (b) displays the negative value of total correlation based
on the joint density forecasts. Shaded areas mark NBER recession periods.

1.7 Conclusion

In this paper, we present a methodology to estimate joint densities based on uni-
variate densities obtained through survey data. Existing analyses have been limited
by the univariate focus of the surveys. We demonstrate the usefulness of joint den-
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sity forecasts for a variety of applications such as new indicators of the state of the
economy and a novel joint uncertainty measure. The survey-based joint densities
are better or at least competitive to density forecasts from a bayesian time-varying
parameter VAR with stochastic volatility and an AR(1) with stochastic volatility.
While the BVAR and SPF perform equally well in predicting a recession following
the Great Recession, the survey-based forecast is better for the euro area debt crisis
and its aftermath. In turn, the BVAR performs better in predicting the intensity
of the economic downturn during the Great Recession. Also, we introduce a novel
joint uncertainty measure that takes dependencies between variables into account.
We show that, due to an increase in the expected co-movement in the eurozone after
the Great Recession, the rise in uncertainty has been dampened relative to existing
univariate uncertainty measures.

In the present paper, we only modeled cross-sectional dependence between dif-
ferent variables through copulas. In general, the methodology readily extends to
modeling time-dependence as well, i.e., we can estimate multivariate density fore-
casts of GDP growth, inflation, and unemployment one-year ahead jointly with two-
years ahead. The resulting joint densities could be used to answer questions such as:
how much does the two-year ahead inflation depend on next year’s inflation? This
extension is left for future research.
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Appendices

A Euro Area Data

The HICP includes all goods and services purchased by household money, i.e. en-
ergy and food prices are included, with the exception of expenditures on housing
by homeowners. In addition, in european countries health care and education are
commonly state-provided and are therefore excluded to the extent to which they are
not directly paid by household.41

The survey is usually sent out within the first twenty days of the first month of
the respective quarter. Participants normally have to reply within a week to ten
days to the questionnaire. This timing implies that the forecasts of a survey dated
at t is based on information up to t − 1.42 In particular, the timing is such that
the fixed-horizon is fixed with respect to the last published information regarding
that variable. For unemployment and inflation, data becomes available at a higher
frequency than for output. In particular, the unemployment data becomes available
such that for the first, second, third and fourth quarter survey publication the target
month are November, February, May and August. For inflation, the first, second,
third and fourth quarter survey publication are aligned with the targets December,
March, June and September. Publication of output data is delayed relative to
unemployment and inflation. For the surveys published in the first, second, third
and fourth quarter the respective fixed-horizon targets for output are the third,
fourth, first and second quarter.

These features of the survey have two relevant implications for our analysis. First,
one can only estimate the expected dependencies of the variables with the slight
misalignment in target dates. Second, while output forecasts are quarterly, inflation
and unemployment are monthly. A possible procedure to mitigate the effect could be
based on interpolating between different horizons in order to achieve the same target
date for all three variables. Further, although monthly realisations of unemployment
and inflation vary within a given quarter, the variations are rather small. More
importantly, variations in model based forecasts for relatively large horizons tend to
be even smaller across neighbouring months. In our baseline estimation, we do not
control for this potential confounding factor.

Starting in 2013:Q1 the survey asks participants for the on the point in the
forecast horizon in which according to your baseline outlook the level of real GDP

41More information can be found on
https://www.ecb.europa.eu/stats/macroeconomic_and_sectoral/hicp/html/index.en.html

42Details about the dates involving the forecast of all published surveys can be found under the
tab ’Background’ on the ECB’s main page for the SPF survey.
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will increase again in a sustained manner (i.e.witness successive quarter-on-quarter
growth rates larger than 0.0%).43

B U.S. Data

Let fFEt+k|t denote the fixed-event forecast k-periods ahead. In the U.S. SPF dataset
we observe k-period and k + 4-period ahead forecasts. The fixed-horizon forecasts
are formed through a weighted sum of the k and k + 4-period ahead forecast where
the weights are proportional to the horizon overlap. This means that the FH forecast
with origin in t, four periods ahead is denoted by f̂FHt+4+k|t and constructed from

f̂FHt+4|t =
k

4
fFEt+k|t +

4− k
4

fFEt+k+4|t (B.1)

For example, a forecast with origin in quarter 1, 4 periods ahead will be a forecast for
quarter 4 of the same year. Therefore, the US density forecasts will be in-sample as
todays one year-ahead forecast is constructed using information from future density
forecasts. For U.S. and the euro area, final release data is taken from the database
of the Federal Reserve Bank of St. Louis.

C Formal Definition of Copulas

A copula is a function that maps from the d-dimensional [0, 1]d unit cube on to
an interval on the real line: C : [0, 1]d → [0, 1]. Following the definition of Nelsen
(2006), a function C that maps from the unit d-cube Id to I = [0, 1] is called a copula
if

1. For every u in Id it follows that

C(u) = 0 (C.2)

if at least one coordinate of u is 0
and
if all coordinates of u are 1 except uk, then C(u) = uk.

2. For every a,b ∈ Id such that a ≤ b it follows that

VC([a,b]) ≥ 0 (C.3)

43Taken from a sample questionnaire published on
https://www.ecb.europa.eu/stats/ecb_surveys/survey_of_professional_forecasters/html/index.en.html
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where VC(·, ·) is the C-volume of the hyperrectangles formed by [a,b].

D Time-Varying Parameter VAR with Stochastic Volatility

The model is based on Primiceri (2005). The estimation takes into account the
correction of the algorithm proposed in Del Negro and Primiceri (2015). We describe
the model briefly, for more details, we refer the reader to the original papers. Let yt
be a vector of variables at time t, then

yt = B0,t +B1,tyt−h + ..+Bp,tyt−p−h + A−1
t Σtet

where
Bt = Bt−1 + vt (D.4)

αt = αt−1 + ξt (D.5)

log(σt) = log(σt−1) + ηt (D.6)

where Bt is matrix of stacked Bi,t, the αt are the stacked non-zero elements of At and
log(σt) is the log of the vector of diagonal elements of Σt. The variable h denotes
the horizon, which here is four quarters-ahead. The errors (et, vt, ξt, ηt) are assumed
to be normal and mutually independent. Let ΘT = [Θ1, ...,ΘT ] be the collection
of all model parameters, let Φ denote the parameters that are constant and let
yT = [y1, ..., yT ]. The predictive density is computed as

p(yT+h|yT ) =

∫
p(yT+h|yT ,ΘT ,Φ)p(ΘT ,Φ|yT )dΘT (D.7)

where p(yT+h|yT ,ΘT ,Φ) is a Normal due to normality of et and p(ΘT ,Φ|yT ) is ap-
proximated using a Gibbs sampler as proposed by Primiceri (2005), using the cor-
rection of Del Negro and Primiceri (2015). A natural extension, as used for example
by D’Agostino et al. (2013), would be to simulate future draws ΘT+h using the pos-
terior distribution of ΘT and the equations in (D.4),(D.5),(E.8), and then draw from
p(yT+h|yT ,ΘT+1,Φ).

For the euro area, the data used is real-time data and consists of the three-
variables GDP growth, unemployment and inflation. For the U.S. we estimate a
bivariate VAR using GDP growth and the corresponding GDP deflator. We adopt
the exact same timing as for SPF forecasts. For example, for the target 2008:Q1 we
use data available until the end of 2007:Q1. We choose the number of lags equal
to two and we choose a direct forecasting scheme for the one-year ahead forecast
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instead of an iterative scheme.44

We use the prior specification of Primiceri (2005), D’Agostino et al. (2013) and
Clark and Ravazzolo (2015). Hyperparameters for the prior of B0, A0 and log(σ2

0) are
based on the respective OLS estimate using the first T0 observations. The prior for
the initial states is a Normal, such that, for example, B0 ∼ N

(
B̂ols, 4V (B̂ols)

)
. For

the euro area, T0 is equal to 25 and due to the short data set, we do not drop these
estimations in the posterior estimation. For the U.S. we drop these observations
for the estimation of the posterior. The priors for the variances of vt, ξt and ηt are
inverse Wishart with degrees of freedom 40, 4 and [2,3] respectively and the same
scale as in Primiceri (2005) and Del Negro and Primiceri (2015). We set the total
number of draws from the Gibbs sampler for (D.7) to 15000 and drop the first 3000
draws. In addition, we thin out the results by a factor of 10.

E AR with Stochastic Volatility

The model is a standard autoregressive model with stochastic volatility. Let yt be
the variable of interest. We choose an AR(1) and the model takes the form

yt = c+ βyt−h + σtet

where c is the intercept, β is a constant autoregressive parameter and et ∼ N(0, 1).
The volatility is modelled following Chan and Grant (2016):

log(σt) = µσ + γσ
(
log(σt−1)− µσ

)
+ ηt (E.8)

where µσ is the mean of the volatility, γσ is the autoregressive parameter, with
|γσ| < 1, and ηt ∼ N(0, ω2

σ). We assume the same prior specifications as Chan and
Grant (2016) and base the estimation on their code, where we set the number of
draws of the MCMC to 15000.

F Economic Downturn Probability

Let Yt be the GDP growth rate and Ut be the unemployment rate of the eurozone,
then we define the alternative ex-ante economic downturn probability of the euro
area as

ξt+h|t ≡ Ft+h|t(Yt+h < 0, Ut+h > τ bct+h|t,u) (F.9)

44Teräsvirta (2006) notes that a direct forecasting scheme can be superior in the case of mis-
specified non-linearities.
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The baseline specification uses again W = 2, i.e. the average of the two quar-
ters preceding the forecast origin. The threshold then takes the form of τ bct+h|t,u ≡
1
2

∑2
w=1 Ui,t−w+1. Importantly, a recession is now defined through negative output

growth and an increase in unemployment. Using this definition, the BVAR performs
somewhat better in terms of predicting actual crises, but it calls wrong events at
the beginning of the 2000s.

Figure F.1: Probability of Negative Growth and Higher Unemployment

NOTE. – The dates on the time axis are target based. For example, the probability plotted against 2010:Q1 is based
on information available at the beginning of 2009:Q2. The crossed markers denote the realised event of negative GDP
growth and higher unemployment. The solid line denotes the one year-ahead probability of a economic downturn
on the joint density forecast using the SPF data and the dashed line denotes the economic downturn probability
based on the BVAR. Shaded areas mark CEPR recession periods.
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Chapter2
Comparing Forecast Performances under
Markov Switching

(joint with Barbara Rossi and Tatevik Sekhposyan)

2.1 Introduction

We propose three tests to evaluate the absolute performance of a mean forecast,
where the tests are robust under the presence of parametric time-variation in the
forecast errors. The time-variation is assumed to take the parametric form of Markov
switching, i.e. weakly dependent and potentially discrete changes in the process
of the forecast error. Existing tests focus on the constant relative out-of-sample
performance or use non-parametric techniques to detect time-varying deviations
from an equal performance; both approaches can lack power against the alternative
of regime switching.

Producing accurate forecasts for economic variables is an essential task in aca-
demic work, central banks, and the private sector. Policymakers and private agents
strive to base their decisions on optimal (rational) predictions, i.e., forecasts that
are unbiased and efficient.1 In light of the importance of optimal predictions, we
seek to make two contributions.

We are the first to apply the idea of Markov switching directly on the forecast
errors and to test for rationality under this specific, but popular, type of paramet-
ric time-variation. Second, we modify three existing test such that they satisfy the
need of a forecaster to test jointly for both, no instabilities and no constant deviation

1See Granger and Newbold (1986) and Diebold and Lopez (1996) for seminal contributions to
the definition of forecast optimality in the mean prediction case. See Mincer and Zarnowitz (1969)
for a definition of forecast rationality.
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from rationality. We label our tests ORS-H, ORS-G and ORS-CHP. Throughout the
paper, we focus on forecasts that are model-free or survey-based, i.e. we abstract
from parameter estimation error in the forecast errors. Testing for Markov switching
requires non-standard statistics as it is subject to two problems. The hyperparam-
eters of the switching process, i.e., the state-to-state transition probabilities are not
identified under the null and therefore the standard LR, Wald and LM tests do
not have chi-square distribution. The problem of a unidentified nuisance parame-
ters under the null was described by Davies (1977, 1987). It has since generated a
substantial literature, for example regarding tests of parameter instability. In the
case of Markov switching, a second problem occurs. Under the null, the score of
the restricted parameters is identically zero, which violates the regularity conditions
that are imposed to derive the asymptotic chi-square distribution of the finite di-
mensional LR statistic by the usual second-order Taylor expansion.

Our tests are based on a modification of the test against Markov switching pa-
rameters proposed by Hansen (1992), García (1998), and Carrasco et al. (2014)
(CHP). The main difference to their work is that Hansen, Garcia, and CHP leave
the switching parameters unspecified under the null whereas we impose a specific
value such that the forecast errors are rational (or unbiased/efficient respectively).
Consequently, we can test jointly for rationality in the full out-of-sample as well
as against local, regime switching deviations. To summarize our modifications: for
Hansen, we partition the parameter vector differently. In the case of Garcia we ap-
ply a different restriction matrix, and for CHP we specify the parameters differently
under the null.

For several reasons, we are interested in testing for random variation in the fore-
cast error instead of the predictand. First, it allows the forecaster to impose the null
hypothesis directly on the object of interest, namely the forecast error. Moreover,
we focus on the case when the forecasts are model-free or survey-based, for instance
when testing for rationality of the SPF, Greenbook forecasts or the Blue Chip Fi-
nancial Forecasts.

Importantly, the idea of Markov switching in models’ absolute forecasting abili-
ties allows for economic interpretation. For example, considering the case of testing
for unbiasedness, our tests can discover recurring periods that exhibit a bias in
the predictions, even if the full sample of forecast errors is unbiased; the periods
of biased predictions can be times of recessions, financial distress or other, previ-
ously unnoticed, circumstances. Our testing procedure treats these periods as an
unknown state variable and allows the model under the alternative to recover them.
Supporting the idea of changing relations of economic variables, predictors, and
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predictands, the St. Louis Fed recently announced (Bullard, 2016) that their new
characterization of the economy abandons the view of a single steady-state in favor
of a regime-switching world with several steady-states.

In addition to the Markov switching literature, we build on the literature for
evaluating absolute predictive abilities (Diebold and Lopez, 1996; West and Mc-
Cracken, 1998). The closest to our work is Rossi and Sekhposyan (2016). The
authors propose a non-parametric test for forecast rationality that is robust under
the presence of instabilities. We differ from their work because our tests can detect
non-smooth discrete deviations from rationality, whereas their test has better power
against smooth and somewhat persistent changes. In other words, relative to Rossi
and Sekhposyan (2016), our test can detect deviations from rationality that occur
for shorter time periods, as long as the deviations occur repeatedly. Also, the iden-
tification of regimes can allow for a meaningful interpretation of the source of the
rejection of the null hypothesis, which the Fluctuation test cannot provide.

We demonstrate the usefulness of our approach by investigating the bias in the
predictions of the Blue Chip Financial Forecast survey for the federal funds target
rate. When we consider the 3-months-ahead forecast error, our test rejects the null
hypothesis of unbiasedness and finds evidence in favor of a two-regime model. The
estimated regimes indicate that in the majority of times (in the persistent regime)
the forecasts are unbiased. However, in regime two the forecasters overestimate the
federal funds target rate. The occurrence of regime two is associated with times of
monetary easing and not limited to recessionary periods.2

The paper is organized as follows. Section 2.2 formalizes our null hypothesis,
describes the challenges that arise when testing for Markov switching and gives an
overview of the Markov switching test literature. Section 2.3 introduces our test
statistics. Section 2.4 provides Monte Carlo results for size and power of our pro-
posed procedure and section 2.5 illustrates the empirical usefulness of our procedure.
Section 2.6 discusses an idea for future research. We conclude in section 2.7.

2.2 Literature and the Null and Alternative Hy-

pothesis

2.2.1 Null and Alternative Hypothesis

Assume the researcher has a series yt+h|t, of h-step-ahead out-of-sample predictions
for the variable yt+h. Let εt+h|t = yt+h − yt+h|t denote the forecast error. We are

2The results are robust when using the 6-months-ahead predictions.
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interested in testing for unbiasedness, efficiency and rationality in εt+h|t, robust to
the presence of parametric time-variation. Without loss of generality, we consider
the leading case of two regimes and we model the forecast errors as

εt+h|t = (1− St)ztβ1 + Stztβ2 +
d∑
i=1

φiεt+h−i|t−i + et+h (2.1)

where St is a stationary Markov chain with St ∈ {0, 1}, et+h is N(0, σ2) and the
lag coefficients φi. Another way of modelling the serial correlation in the forecast
error would be to include a MA(h-1) component.3 However, we stick to the conven-
tion in the Markov switching literature to control for autocorrelation by autoregres-
sive components. The vector zt = [1, yt+h|t] contains the main regressors and the
βr = (µr, γr)

′ are the parameters of interest, where r denotes regime r = 1, 2. The
parameters µ1 and µ2 denote the intercepts of regime one and two and they are the
parameters of interest in our test for unbiasedness. The parameters γ1 and γ2 denote
the regression coefficients on the forecast itself and denote the parameters of interest
in a test for efficiency.4 For notational simplicity, we drop the the autocorrelation
parameters in what follows, i.e. φi = 0 ∀i.5 Then (2.1) simplifies to

εt+h|t = (1− St)ztβ1 + Stztβ2 + et+h (2.2)

(i) Unbiasedness: In a test for unbiasedness, zt = 1 and (2.3) simplifies to

εt+h|t = (1− St)µ1 + Stµ2 + et+h (2.3)

Subsequently, our null and alternative hypothesis are

H0 : µ1 = µ2 = 0 vs. HA : µ1 6= µ2 or µ1 = µ2 6= 0 (2.4)

Under the null, the expected value of εt+h is equal to zero for all t. Existing tests
for Markov switching impose a null hypothesis of µ1 = µ2, but not µ1 = µ2 = 0 and
the specification of the otherwise unrestricted parameter values under the null will
lead to changes in the test statistics. The additionally restriction of µ1 = µ2 = 0 is
important in order to have power in cases of the traditional tests for unbiasedness,
i.e. where the forecast errors have a constant non-zero mean.

3An h period-ahead forecast should at most exhibit a MA(h-1) autocorrelation structure.
4In general, the vector zt can be extended to contain more regressors.
5Note that, when we control for autocorrelation, the null hypothesis remains on the parameters

of interest in βi.
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(ii) Efficiency: In a test for efficiency, zt = [yt+h|t] and subsequently

εt+h|t = (1− St)yt+h|tγ1 + Styt+h|tγ2 + et+h (2.5)

Our null and alternative hypothesis then take the form

H0 : γ1 = γ2 = 0 vs. HA : γ1 6= γ2 or γ1 = γ2 6= 0 (2.6)

Again, note that in a traditional test for forecast efficiency, the value γ is restricted
to be constant.

(iii) Rationality: The test for rationality is a joint test of unbiasedness and effi-
ciency, i.e. zt = [1, yt+h|t] and

εt+h|t = (1− St)ztβ1 + Stztβ2 + et+h (2.7)

where βr = [µr, γr]
′ and our null hypothesis takes the form

H0 : β1 = β2 = 0 vs. HA : β1 6= β2 or β1 = β2 6= 0 (2.8)

2.2.2 Literature on Inference in Markov Switching Models

Testing for the presence of Markov switching in parameters is prone to two prob-
lems. First, a nuisance parameters which are only present under the alternative.
Consequently, standard likelihood ratio tests do not have an asymptotic chi-squared
distribution, a problem first documented by Davies (1977, 1987). The respective
nuisance parameters are the hyperparameters that govern the distribution of the
random coefficients, i.e. the state-to-state transition probabilities. In the closely re-
lated literature of parameter instabilities, the problem is solved by treating uniden-
tified parameters as nuisance parameters and using a supremum type of test. The
relevant central theorems rely on the weak convergence of the finite dimensional
statistics.6 However, in Markov switching models, the score with respect to the pa-
rameters of the Markov process is identically zero under the null, i.e. the null yields
a local optimum and the asymptotic distribution of the finite dimensional statistic
cannot be derived by the usual second-order approximation.

The first formal test for Markov switching was developed in the seminal work of

6See for example Pollard (1990).
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Hansen (1992). The author bounds the likelihood ratio by an empirical process and
derives the asymptotic distribution of the bound instead of the likelihood-ratio it-
self. Main drawbacks of the test by Hansen (1992) are that the bound may decrease
power and that the asymptotic distribution is data dependent, i.e. to simulate the
asymptotic distribution the alternative model needs to be estimated over a grid of all
parameters of interest. On the positive side, the test is robust to weak serial corre-
lation and heterogeneity in the error terms. For very large models, the computation
becomes computationally infeasible. García (1998) partitions the parameter vector
differently than Hansen (1992), ignores the problem of the identically zero-score, and
obtains an asymptotic distribution, using results from Hansen (1996), which is not
data dependent. Although the derivation of the asymptotic distribution is invalid
from a theoretical point of view, the test exhibits good size properties and a com-
putationally feasible alternative to Hansen (1992). Recently, Qu and Zhuo (2017)
derived the exact asymptotic distribution of the likelihood-ratio using higher-order
approximations.

Carrasco et al. (2014) propose a test statistic which requires the estimation of
the model only under the null and is admissible in the sense of satisfying an optimal-
ity condition against local alternatives. Their test relies on the information matrix
equality (White, 1982; Chesher, 1984), and further makes use of the auto-covariance
of the scores generated by the persistence of the regimes. It is a supremum type of
test that factors out the nuisance parameters governing the process of the random
coefficient under the alternative.

Whereas Hansen (1996), García (1998), Carrasco et al. (2014) and Qu and Zhuo
(2017) focus on the null region of µs = 0, Cho and White (2007) extend the null
region to contain the boundary value π = 1 (or π = 0 respectively), where π is
the unconditional probability of regime one. The authors derive a QLR statistic
that tests for mixture components, taking into account the extended null region.7

As we built our test statistic on Hansen (1996), García (1998) and Carrasco et al.
(2014), we focus on the null space of µs and do not consider the boundary parameter
problem of π = 1 (π = 0).

7Including π = 1 (π = 0) can guard against false rejections due to structural breaks or infrequent
but extreme values. See Carter and Steigerwald (2013) for an excellent summary of Cho and White
(2007) and a detailed description of how to simulate their asymptotic distribution.
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2.3 Test Statistics

2.3.1 ORS-H Test Statistic

Hansen (1992) developed the first formal test for Markov switching. Before we
describe how we implement our null hypothesis, we summarize the results of Hansen
for the simplest case of a switch-in-mean model. To simplify the comparison of our
work to Hansen (1992), we adopt the following notation from his work: µ1 and µ2

can be equivalently written as µ1 = µ and µ2 = µ + µs. The null hypothesis of
Hansen (1992) is µs = 0 (using Hansen’s (1992) notation, our null takes the form
of µ = µs = 0).8 The author considered the likelihood ratio as an empirical process
indexed by the parameters of interest, α = (µs, p, q), and additionally depending
on the nuisance parameters θ = (µ, φ1, ..., φd, σ). Let α0 = (µs0, p, q) denote the
parameter vector under the null hypothesis of Hansen. Let

θ̂ = max
θ∈Θ

LT
(
α0, θ

)
denote the MLE of the nuisance parameters under the null and let

θ̂(α) = max
θ∈Θ

LT
(
α, θ(α)

)
denote the MLE of the nuisance parameters under the alternative α. The likelihood
ratio is defined as

L̂RT (α) = LT
(
α, θ̂(α)

)
− LT (α0, θ̂) (2.9)

with

LT
(
α, θ̂(α)

)
=

T∑
t=1

`t
(
α, θ̂(α)

)
and LT

(
α0, θ̂

)
=

T∑
t=1

`t
(
α0, θ̂

)
where `t denotes the log likelihood of observation t. The likelihood ratio can be split
into its expected value, RT (α), and its deviation from that expectation, QT (α),

L̂RT (α) = RT (α) + QT (α) + Op(1) (2.10)

and

QT (α) =
T∑
t=1

qt(α) =
T∑
t=1

[
`t
(
α, θ(α)

)
− `t(α0, θ)− E

[
`t
(
α, θ(α)

)
− `t(α0, θ)

]]

8Note that we can equivalently write Hansen’s (1992) null hypothesis as µ1 = µ2 without the
additional zero restriction.
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with
RT (α) = E

[
`t
(
α, θ(α)

)
− `t(α0, θ)

]
where θ and θ(α) denote the large sample values of the MLE of θ̂ and θ̂(α). The
parameter estimation error that is present in sample equivalent of QT (α) is captured
in the term Op(1). Please see appendix C for details. Under the null, RT (α) ≤ 0

and the value of RT (α) is maximized at the true parameter α0 (under the null). It
follows that

1√
T
L̂RT (α) ≤ 1√

T
QT (α) + op(1)

Let VT (α) denote the variance of the qt(α). For a fixed α, the demeaned and
standardized QT (α) converges to a standard Normal by a central limit theorem

1√
T

QT (α)

V1/2
T (α)

=
1√
T
Q∗T (α)→d N(0, 1)

Then, by applying a empirical process central limit theory, Hansen derives the
asymptotic distribution of the bound sup

α∈A
Q∗T (α)

sup
α∈A

1√
T
L̂R
∗
T

(
α, θ(α)

)
≤ sup

α∈A

1√
T
Q∗T (α) + op(1)→d sup

α∈A
Q∗(α)

which is a supremum of standard Normals with covariance matrix K∗(αi, αj).

To use the strategy of Hansen for testing our joint null hypothesis, we need to parti-
tion the parameters differently. Our null hypothesis includes both µ1 and µ2, or more
generally speaking β1 and β2, i.e. we can not treat β1 as nuisance parameter but
have to add it to the vector of parameters of interest. The three relevant cases for us
imply parameter vectors α̃u = (µ1, µ2, p, q), α̃e = (γ1, γ2, p, q) and α̃r = (β1, β2, p, q),
where the subscripts u, e, r denote unbiasedness, efficiency and rationality. For no-
tational ease, we drop the subscript for the remainder of the section. The vector
of nuisance parameters reduces to the lag coefficients and the standard deviation,
θ = (φ1, ..., φd, σ). By partitioning the parameters in this way, we can rely on the
same empirical process theory as Hansen did and consider the likelihood ratio as
an empirical process indexed by α̃ = (β1, β2, p, q). Let α̃0 denote the vector of
parameters of interest under the null. Analog to Hansen, let

θ̂ = max
θ∈Θ

LT
(
α̃0, θ

)
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denote the MLE of the nuisance parameters under the null and let

θ̂(α̃) = max
θ∈Θ

LT
(
α̃, θ(α̃)

)
denote the MLE of the nuisance parameters under the alternative α̃. Then, we can
write

sup
α̃∈A

L̂RT

(
α̃
)

= LT
(
α̃, θ̂(α̃)

)
− LT

(
α̃0, θ̂

)
The inequality

1√
T
L̂RT (α̃) ≤ 1√

T
QT (α̃) + op(1) (2.11)

follows from the assumptions of Hansen, i.e. that the estimator θ̂(α̃) converges to its
pseudo-true9 value θ(α̃), for a given α̃. As the result in Statement 1 follows directly
from Hansen (1992), we summarize his main steps and assumptions in appendix C.
The conditions allow for dependence in `t

(
α̃, θ̂(α̃)

)
or `t

(
α̃0, θ̂0(α̃0)

)
such as mixing

or a near epoch dependence and heterogeneity in the error terms.

Statement 1: Under assumption A1

Pr
(
L̂R
∗
T ≥ x) ≤ Pr(Q∗T ≥ x) + op(1)→d Pr(Q∗ ≥ x) (2.12)

where each Q∗(α̃) converges to a N(0, 1) variate and the process Q∗ = sup
α̃∈A

Q∗(α̃) is

characterized by its covariance function

K∗(α̃1, α̃2) =

∑∞
k=−∞Eqt(α̃1)qt+k(α̃2)

V(α̃1)
1
2V(α̃2)

1
2

(2.13)

The covariance function now depends on qt(α̃) in contrast to qt(α) in the origi-
nal Hansen test. Simulation of the critical values is analog to Hansen and can be
achieved by simulating

Q∗T (α̃i) =

∑M
i=0

∑T
t=1 q̂t(α̃i)vt+i√

1 +MVT (α̃i)
1
2

(2.14)

where the vt+i are i.i.d. N(0, 1) variates andM denotes the bandwidth length for the
Bartlett kernel. To obtain a set of Q∗T (α̃i), the researcher must estimate the model
under the alternative over a grid of values for α̃ = (β1, β2, p, q). Table 2.1 displays
the average critical values we obtain when we apply the ORS-H and the original
Hansen test to the DGP of a standard Normal for the unbiasedness and efficiency

9Pseudo-true value means the large-sample value, given a fixed value for α̃.
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test with α̃u = (µ1, µ2, p, q) and α̃e = (γ1, γ2, p, q). As the approximation of the
asymptotic distribution is data dependent, the numbers are obtained by averaging
the critical value over all Monte Carlo repetitions. The aim of this exercise is not
to tabulate critical values, for that would be invalid, but to provide an idea of how
the additional parameter restriction changes the empirical critical values we obtain.
As expected, the critical values of the ORS-H test are larger on average, reflecting
the additional restriction of the ORS-H on the null parameter space.

Table 2.1: Critical Values

Unbiasedness Efficiency
Nominal Size ORS-H Hansen ORS-H Hansen

1% 3.60 2.80 3.44 3.24
5% 3.01 2.51 2.84 2.64
10% 2.72 2.18 2.53 2.33

NOTE. – The table shows the average critical values based on our simu-
lations for the ORS-H test and the Garcia test for standard Normal DGP
and a sample size of T = 500 and 500 Monte Carlo repetitions.

2.3.2 ORS-G Test Statistic

García (1998) develops a likelihood ratio test for Markov switching models, which
closely follows the seminal work of Hansen (1992).10 The main difference in their
work is that Garcia partitions the parameter vector differently, which allows him
to use the theory developed in Hansen (1996). Hansen defines the parameters of
interests as α = (µs, p, q), treats θ = (µ, σ) as nuisance parameters and considers
the likelihood as an empirical process indexed by α = (µs, p, q). Garcia, in turn,
treats α = (p, q) as nuisance parameters11 and defines the parameters of interest to
be θ = (µ, µs, σ). By keeping the parameter of interest µs in the parameter vector
θ and through ignoring the problem of the zero score of the parameter µs under
the null restriction, Garcia is in the general setting where unidentified nuisance
parameters are only present under the null (Hansen, 1996). Importantly, as already
noted by Garcia, the score problem violates the regularity conditions imposed in
Hansen (1996). However, the Monte Carlo results obtained by Garcia show that the
test has good size and power properties and it provides a computationally simple
alternative to the statistic of Hansen.

We can equivalently define the parameter vector of interest as θ = (β1, β2, σ), i.e.
we do not need to partition the parameters differently and can straightforwardly
impose our null hypothesis as H0 : β1 = β2 = 0 (rationality), H0 : µ1 = µ2 = 0

10The null hypothesis of Garcia is the same as in Hansen (1992), i.e. H0 : µs = 0.
11Assumed to be in a compact set A.
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(unbiasedness) and H0 : γ1 = γ2 = 0 (efficiency). The difference in the test statis-
tics will be a different restriction matrix τ , which we explain below. Although the
asymptotic distribution follows directly from results of Garcia, for notational clar-
ity, denote testing the null hypothesis of Garcia by G and denote testing our null
hypothesis by ORS-G. Note that the asymptotic distribution will be nuisance pa-
rameter free only in special cases, and will depend in general on the autocorrelation
parameters as well as one the first two moments of regressors with Markov switching
coefficients. For the ease of the reader we summarize Garcia’s main arguments, and
then show how our restrictions matrix differs.

Let LRT (α) = 2T
[
QT

(
α, θ̂(α)

)
− QT (θ̃)

]
denote the likelihood ratio statistic,

given a value for α. The parameter vector θ̂(α) denotes the MLE of the uncon-
strained model and θ̃ denotes the MLE of the constrained model. Let

LRT = sup
α∈A

LRT (α) (2.15)

be the supremum of the likelihood ratio statistics, taken over the nuisance parameter
α. Garcia’s theorem 1 states that LRT converges weakly to the supremum of chi-
square processes

LRT = sup
α∈A

C(α) (2.16)

where C(α) is a chi-square process with covariance matrix K̄(αi, αj), defined as

K̄(αi, αj) = τV −1(αi)K(αi, αj)V
−1(αj)τ

′ (2.17)

The matrices V (αi)
−1 and K(αi, αj) are described in Appendix D. The main differ-

ence to Garcia is in the matrix of restrictions τ . In the case of testing for Markov
switching in the mean, τ simplifies to be vector with a one in the position of the
constrained parameter. As we are testing a joint null, τ will be a matrix of size r x k,
where r is the number of restrictions and k is the size of the vector θ. For a two-state
model, the restrictions matrix τ , for testing for unbiasedness or efficiency12, takes
the form

τ =

(
1 0 0 ... 0

0 1 0 ... 0

)

12Assuming a model without intercept.
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For testing for rationality, τ takes the form

τ =


1 0 0 0 0 ... 0

0 1 0 0 0 ... 0

0 0 1 0 0 ... 0

0 0 0 1 0 ... 0


Table 2.2 compares the critical values for the unbiasedness test, without autoregres-
sive coefficients, of the original Garcia null to our joint null. Note that for a model
without autoregressive parameters, the asymptotic distribution, conveniently, de-
pends on the nuisance parameter α = (p, q) only through π = (1−q)/(2−p−q). We
follow Garcia in the choice of the grid such that π ∈ [0.01, 0.99] and π ∈ [0.15, 0.85].
As expected, the critical values of our null are higher because we are testing an
additional constraint. In general, the derivation assumes iid error terms. Condi-
tional heteroskedasticity and serial correlation can be accommodated but will lead
to additional nuisance parameters in the asymptotic distribution.

Table 2.2: Comparison of Critical Values

π ∈ [0.01, 0.99] π ∈ [0.15, 0.85]
Nominal Size ORS-G G ORS-G G

1% 14.33 13.64 12.66 12.45
5% 10.67 10.18 9.25 8.60
10% 8.94 8.68 7.64 7.08

NOTE. – The table shows the simulated critical values of the ORS-
Garcia test and the Garcia test. The grid is π ∈ [0.01, 0.99] and
π ∈ [0.15, 0.85] respectively.

2.3.3 ORS-CHP Test Statistic - Test for Unbiasedness

Carrasco et al. (2014) develop an optimal test for Markov switching parameters. We
extend their test statistic to satisfy our null hypothesis of unbiasedness, because,
different from CHP, we use the test in an absolute forecast evaluation framework.
To ease the comparison between their work and ours we adopt, whenever possible,
their notation. Before we describe the test statistic, we discuss the relation of their
null and alternative to ours. Their null and alternative hypothesis are H0 : θt = θ0,
for some unspecified θ0, against H1 : θt = θ0 + ηt. We are interested in the null of
H0 : θt = θ0 for some parameters of θ0 being specified, i.e. µ = 0. As our null imposes
a specified value for θ0, the arguments used by Carrasco et al. (2014) to derive the
asymptotic distribution apply only in the special case of a normal likelihood and
when testing the intercept for unbiasedness. We leave the general case of testing for
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rationality for future research.
We are interested in the alternative of ηt = (cSt, 0, ..., 0), where St is a stationary

Markov chain and c is the magnitude of the change. This alternative corresponds
to Example 3.3 in CHP and allows to describe the process of ηt by the dynamics of
St alone, which are summarized in α.13

Their test statistic builds on two parts: one that exploits the autocorrelation
introduced by the Markov chain and one that tests for misspecification in the like-
lihood and goes back to White (1982). We will directly describe the test statistic
under our null θ0 and derive the asymptotic distribution under the assumption of a
Normal likelihood. Let `(i)

t (θ̂0) denote the i-th derivative of the log likelihood func-
tion with respect to θ, evaluated at θ̂0, where θ̂0 is the MLE of θ under our null.
The statistic in the general form is based on

µ2,t(α, θ̂0) =
1

2
h′
[(
`

(2)
t (θ̂0) + `

(1)
t (θ̂0)`

′(1)
t (θ̂0)

)
+ 2

t−1∑
s=1

α(t−s)`
(1)
t (θ̂0)`

′(1)
s (θ̂0)

]
h (2.18)

where the parameter α captures the dynamics of St, i.e. E(StSt−i) = αi. The first
term is an information matrix type of test, which has power against misspecification
of the likelihood, and the second term exploits the autocorrelation introduced by
the Markov chain that governs the time-varying coefficients. The vector h selects
the parameters to be tested and takes the form h = (1, 0, ..., 0)′.14 Therefore, (2.18)
simplifies to

µ2,t(α, θ̂0) =
1

2

[(
`

(2)
t,(1,1)(θ̂0) + {`(1)

t (θ̂0)`
(1)′

t (θ̂0)}(1,1)

)
+ 2`

(1)
t,1 (θ̂0)

t−1∑
s=1

α(t−s)`
(1)
s,1(θ̂0)

]

=
1

2

[
2`

(1)
t,1 (θ̂0)

t−1∑
s=1

α(t−s)`
(1)
s,1(θ̂0)

]

where the second equality is due to the choice of a Normal likelihood. The subscript
(i, j) denotes the (i, j)-element of a matrix and `(1)

t,1 denotes the first element of the
score. The restricted MLE implies that the sum of the score vector of the restricted
parameters is different from zero. The numerator of our test statistic differs from
CHP because it is evaluated at a different null, θ̂0, where in our case the first element
of θ̂0 is specified to be zero

vT (θ̂0, α) =
1√
T

T∑
t=1

µ2,t(θ̂0, α) (2.19)

13Please see appendix E for details.
14The time-varying parameter ηt can alternatively be written as ηt = chSt.
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The denominator differs in the argument θ̂0 and takes the form

ut(θ̂0, α) = µ2,t(θ̂0, α)− d̂′0`
(1)
t (θ̂0, α) (2.20)

where d̂′0 is the regression coefficient from regressing µ2,t(θ̂0, α) on `(1)
t (θ̂0, α). Fur-

ther, denote by u = [u1, ..., uT ]′, where we dropped the arguments (θ̂0, α) for nota-
tional simplicity.

Proposition 1: Let the test statistic take the form

supTS = sup
α∈[α,ᾱ]}

1

2

(
max

(
0,
vT (θ̂0, α)√
T−1u′u

))2

(2.21)

Given that Assumption B1 to B3 in appendix E hold and that the likelihood is taken
to be a Normal, then it follows that supTS converges weakly under H0, using results
from Theorem 3.1, to the distribution of the supremum of a set of normal random
variables

supTS→d sup
α∈[α,ᾱ]

1

2

(
max

(
0, K(α)

))2

(2.22)

where K(α) is a linear combination of standard Normal random variables, with a
covariance that depends on α.

We impose regularity assumptions on the data analog to CHP. The test of CHP has
optimal local power against a variety of random coefficient processes. The subset
of feasible random coefficients processes that we are interested in, is discussed in
Example 3.3 of CHP and can be described such that ηt = µshSt, where St is a
stationary Markov chain as described above. This definitions allows for geometric
ergodic Markov process with a finite state space, such that St ∈ {0, 1, ..., N}, as well
as for continuous but bounded state spaces such that St ∈ (a, b), where a, b ∈ R are
finite constants. Consequently, we can test against a finite number of regime switches
as well as against random variation that can take a smooth form of a continuum of
values. As we are interested in testing the intercept we have h = (1, 0, ..., 0)′ and
analog to CHP we can analytically maximize our test statistic with respect to µs.
The magnitude of µs and the parameter h are thus irrelevant for the computation
of the test statistic. We model the forecast errors as

εt|t−h = µ+ µsSt +
d∑
i=1

φdεt−i|t−h−i + et (2.23)

where et ∼ N(0, σ2). Again, the parameter µ denotes the unconditional mean and
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ηt captures the time-variation in the forecast errors due to Markov switching. For
the model in (2.23), under the null, and analog to CHP, define

µ2,t(θ̂0, ρ) =
1

2σ̂4

(
(êt

2 − σ̂2) + 2
t−1∑
s=1

αt−sêtês

)
(2.24)

where êt are the errors of equation (2.23) estimated under the null of µs = 0 and
σ̂2

0 = 1
T

∑
t ê

2
t . In order to obtain the test statistic one has to compute the statistic

in (2.21) over a grid of values for α.
Proposition 1 and equation (2.24) are derived under the assumption of normal-

ity of the errors et. However, the test is robust to certain misspecification of the
likelihood under the null. In particular, as stated before, for the statistic based on a
µ2,t of the form in (2.24) the moment conditions required for Proposition 1 to hold
are mild with respect to some properties of the et, as they allow for heterogeneity
or a random coefficient as long as it is stationary and serially uncorrelated. The
important assumption of no serial correlation is motivated by the fact that the test
achieves power against weakly dependent random coefficients by explicitly exploit-
ing the autocorrelation generated by these random coefficients. Consequently, any
serial correlation that does not arise from the random coefficient will lead to over-
rejections under H0. This feature is inherited from the original CHP test. We do
not provide an analytic evaluation of its power against either of the alternatives. In
particular we can not assess whether it maintains the property of optimality against
local alternatives and we leave this question for future research. A drawback of our
test statistic is that it does not provide a strictly formal way to assess the source of
rejection. Consequently, we recommend to investigate the sign of the mean of the
forecast errors and subsequently estimate a Markov switching model.

Comparison of ORS-CHP to CHP
Consider the model in (2.23) (without the autoregressive component)

εt|t−h = µ+ ηt + et

The numerator takes the form of

µ2,t(θ̂0, α) =
1

2σ̂4

(
(êt

2 − σ̂2) + 2
t−1∑
s=1

αt−sêtês

)

=
1

2σ̂4

(
(ε2t|t−h −

1

T

T∑
t=1

ε2t|t−h) + 2
t−1∑
s=1

αt−sεt|t−hεs|s−h

) (2.25)
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such that

vT (θ̂0, α) =
1√
T

T∑
t=1

µ2,t(θ̂0, α)

=
1√
T

1

σ̂4

T∑
t=1

t−1∑
s=1

ρt−setes

(2.26)

In comparison, the numerator of Carrasco et al. (2014) takes the form

vT,chp(θ̂, α) =
1√
T

T∑
t=1

µ2,t,chp(θ̂, α)

=
1√
T

1

σ̃4

T∑
t=1

t−1∑
s=1

αt−s(et − µ̃)(es − µ̃)

(2.27)

where µ̃ = 1
T

∑T
t=1 εt|t−h and σ̃ = 1

T

∑T
t=1(εt|t−h − µ̃)2. For the alternative of µ 6= 0,

the sum of errors in (2.26) will not have a mean of zero, i.e. the sum diverges.

2.4 Simulation Results

2.4.1 Monte Carlo Study - Unbiasedness

This section provides Monte Carlo evidence on the empirical size and power of the
test for unbiasedness. The DGP that we consider in this section has the form

yt = φyt−1 + ut (2.28)

The forecasting model is (we abstract from parameter estimation error)

yt+1|t = φyt (2.29)

and the forecast errors are subsequently

εt+1|t = yt+1 − yt+1|t

We then model the forecast errors for the ORS-H, ORS-G and ORS-CHP as

εt+1|t = µ1(1− St+1) + St+1µ2 + et+1 (2.30)

where µ1 and µ2 are the Markov switching parameters, St+1 is a stationary Markov
chain and et+1 ∼ N(0, σ2). The null model imposes the restrictions µ1 = µ2 = 0
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and takes the form
εt+1|t = et+1 (2.31)

Table 2.3 shows the size results for ORS-H, ORS-G and ORS-CHP. In addition,
we show size results for the original Hansen, Garcia and CHP test, to provide a
comparison of how our null affects the size properties relative to the original tests.
As we are going to use the tests of West and McCracken (1998) (WM) and Rossi
and Sekhposyan (2016) (Fluctuation) as a benchmark in the power study, their sizes
are included as well.15 Overall, the size results of ORS-CHP and ORS-G are good,
although ORS-G performs better for small and medium sized samples than ORS-
H. The ORS-H overrejects for small and medium sized samples, however, the size
distortions are of a similar magnitude as in the original test of Hansen.

Table 2.3: Size Results - Unbiasedness

Nominal Size Test T = 100 T = 200 T = 500
5% WM 0.047 0.056 0.052

Fluctuation 0.096 0.059 0.046
Hansen 0.116 0.100 0.070
Garcia 0.043 0.035 0.036
CHP 0.036 0.034 0.040
ORS-H 0.126 0.090 0.058
ORS-G 0.054 0.059 0.065

ORS-CHP 0.091 0.076 0.062

10% WM 0.100 0.109 0.111
Fluctuation 0.015 0.109 0.092
Hansen 0.194 0.174 0.110
Garcia 0.073 0.055 0.063
CHP 0.072 0.068 0.075
ORS-H 0.198 0.156 0.104
ORS-G 0.107 0.108 0.108

ORS-CHP 0.146 0.129 0.104
NOTE. – T denotes the sample size. Results are based on 1000 Monte Carlo repli-
cations, except for Hansen and ORS-H. Due to the computational burden, the Monte
Carlo replications for Hansen and ORS-H are limited to 500. The DGP is a stan-
dard Normal. The results for Hansen are based on a 3-tuple of 12 grid points for
(p, q) ∈ [0.05, 0.95] and 20 grid points for µs ∈ [0.05, 1]. The results for ORS-H are
based on a 4-tuple of 12 grid points for (p, q) ∈ [0.05, 0.95] and 20 grid points for
µ1, µ2 ∈ [−1, 1]. The results for CHP and ORS-CHP are based on 70 grid points for
α ∈ [0.02, 0.98]. The results for Garcia and ORS-G are based on π ∈ [0.01, 0.99]. The
window size m for the Fluctuation test is set to m = T

2
.

For the alternative of a constant mean we impose µ1 = µ2 = µ, and estimate the
power of the four tests over a grid of values for µ. The grid is set to [0.05, 2] with

15Under our assumption of no parameter estimation error, the West and McCracken (1998)
simplifies to a standard t-test.
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increments of 0.1. Panel (a) of figure 2.1 shows the size-adjusted power results for
a sample size of T = 100 at a nominal size of 5%. As expected, the WM test has
the highest power against a constant mean. However, the results of the ORS-CHP
test are close to the WM rejections frequencies. The ORS-G test exhibits good
power against a constant mean and the power increases rapidly with the size of the
alternative. For the ORS-H test, we compute the power only at eight grid points
due to the computational intensity of the test. Its power is similar, but lower, than
that of the ORS-G test.16

Figure 2.1: Size-Adjusted Power - Unbiasedness

(a) Constant Mean

(b) Markov Switching in the Mean

NOTE. – The y-axis denotes the rejection frequency. The x-axis denotes the size of µ1 − µ2. The nominal size is
5% and illustrated by the solid horizontal line. The results are based on 1000 Monte Carlo replications - except for
the ORS-H, which is based on 500 replications due to the computational intensity. The results for ORS-H are based
on a 4-tuple of 12 grid points for (p, q) ∈ [0.05, 0.95] and 20 grid points for µ1, µ2 ∈ [−1.5, 1.5]. ORS-CHP is based
on 70 grid points for α ∈ [0.02, 0.98]. The results for ORS-G are based on π ∈ [0.01, 0.99]

For the alternative of Markov switching, we set the state-to-state transition prob-

16An increase in the number of grid points for µ may increase the power of ORS-H.
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abilities to be (p, q) = 0.9 and impose µ1 = −µ2. These parameter choices ensure
that Eεt+1|t = 0, i.e. that we can compute the power against Markov switching
only. Again, the rejection frequencies are computed over a grid for µ1 of [0.05, 2]

with increments of 0.1. Panel (b) of figure 2.1 displays the size-adjusted rejections
frequencies at a nominal size of 5%.17 The ORS-CHP and ORS-G exhibit strong
power against the alternative of Markov switching. Theoretically, the rejection fre-
quency of the GW test should remain at the nominal level of 5%. However, for small
samples, it is quite likely to sample one of the states more often than the other, even
if the unconditional state probabilities are 0.5 and this shifts the mean away from
zero.18 Interestingly, the Fluctuation test does not have much power against this
type of time variation. This result is driven by the non-parametric approach of the
test, i.e. it has less power against parametric discrete switches. Note however, that
the power results of the Fluctuation test depend to some extent on the window size
- smaller windows potentially improve the tests’ power under Markov switching.
Analog to the case of a constant mean, we compute the power of ORS-H only at
two reference points. ORS-H exhibits a lower power than ORS-G and ORS-CHP,
however, we note that the grid size of µ and µs can influence the results.

2.4.2 Monte Carlo Study - Efficiency

We now turn to testing efficiency. The DGP, the forecasting model and the forecast
errors have the same DGPs as in (2.32), (2.29) and (2.30). We are testing the null
hypothesis of γ1 = γ2 = 0 in

εt+1|t =
(
(1− St+1)γ1 + St+1γ2

)
yt+1|t + et+1 (2.32)

where γ1 and γ2 are the Markov switching parameter, St+1 is a stationary Markov
chain and et+1 ∼ N(0, 1). Table 2.4 shows the size results for ORS-H, ORS-G, the
original Hansen, Garcia, WM and the Fluctuation test. Overall, the size results
of ORS-G are good, although ORS-G slightly underrejects. The ORS-H is rather
strongly undersized, but again, the size distortions are of a similar magnitude as in
the original test of Hansen. The reason for the distortions could be that the critical
values are taken from a bound and not from an exact distribution. Another reason
for the underrejections could be that the test is more sensible to choice of the grid
for p, q and γ1, γ2 than in the case of unbiasedness.

17Figure and B.5 and B.6 show the raw (not size-adjusted) power.
18This the feature should disappear for large samples.
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Table 2.4: Size Results - Efficiency

Nominal Size Test T = 100 T = 200 T = 500
5% WM 0.050 0.058 0.055

Fluctuation 0.119 0.085 0.062
Hansen 0.000 0.017 0.010
Garcia 0.018 0.016 0.012
ORS-H 0.020 0.023 0.010
ORS-G 0.056 0.034 0.034

10% WM 0.099 0.113 0.095
Fluctuation 0.176 0.118 0.115
Hansen 0.017 0.030 0.017
Garcia 0.028 0.028 0.034
ORS-H 0.046 0.033 0.030
ORS-G 0.096 0.068 0.068

NOTE. – T denotes the sample size. Results are based on 1000 Monte Carlo repli-
cations, except for Hansen and ORS-H. Due to the computational burden, the Monte
Carlo replications for Hansen and ORS-H are limited to 500. The DGP is a stan-
dard Normal. The results for Hansen are based on a 3-tuple of 12 grid points for
(p, q) ∈ [0.05, 0.95] and 20 grid points for γs ∈ [0.05, 1]. The results for ORS-H are
based on a 4-tuple of 12 grid points for (p, q) ∈ [0.05, 0.95] and 20 grid points for
γ1, γ2 ∈ [−1, 1]. The results for Garcia and ORS-G are based on π ∈ [0.01, 0.99]. The
window size m for the Fluctuation test is set to m = T

2
. The ORS-H test is based on

a grid for (γ1, γ2) ∈ [−1.5, 1.5]x[−1.5, 1.5].

To study power, we proceed similarly as in the case of unbiasedness. Under the
alternative of a constant, but non-zero efficiency coefficient, we impose γ1 = γ2,
and estimate the power of three tests over a grid of values for µ.19. The grid is set
to [0.05, 1] with increments of 0.05. Panel (a) of figure 2.2 shows the size-adjusted
power results for a sample size of T = 100 at a nominal size of 5%. Again the
power of the WM test cleary outperforms the other two tests.20 However, as we
will see in Panel (b) of figure 2.2 the traditional WM test has little power against
the the alternative of Markov switching in γ. In the simulation, we set the state-
to-state transition probabilities to be (p, q) = 0.9 and impose γ1 = −γ2.21 Again,
the rejection frequencies are computed over a grid for µ1 of [0.05, 2] with increments
of 0.1. Panel (b) of figure 2.2 displays the size-adjusted rejections frequencies at
a nominal size of 5%. The ORS-H and ORS-G exhibit strong power against the
alternative of Markov switching, whereas the power of the traditional WM test
remains rather flat. The Fluctuation test outperforms the ORS-H and ORS-G test
for a constant, but non-zero efficiency parameter. However, in the case of Markov

19As before, for the ORS-H test, we compute the power at fewer grid points due to the compu-
tational intensity of the test.

20An increase in the number of grid points for µ may increase the power of ORS-H.
21Again, these parameter choices ensure that Eεt+1|t = 0, i.e. that we can compute the power

against Markov switching only.
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switching efficiency parameters, its power is similar to the WM test. Again, the
power of the Fluctuation test will be sensitive to the window size m.

Figure 2.2: Size-Adjusted Power - Efficiency

(a) Constant Efficiency Parameter

(b) Markov Switching Efficiency Parameter

NOTE. –The y-axis denotes the rejection frequency. The x-axis denotes the size of µ. The nominal size is 5% and
illustrated by the solid horizontal line. The results are based on 1000 Monte Carlo replications - except for the
ORS-H, which is based on 500 replications due to the computational intensity.

2.4.3 Discussion of the Tests

Testing for Markov-switching is challenging and all of the proposed tests have advan-
tages and disadvantages. ORS-H and ORS-G allow to test for a specific alternative,
for instance a two-state first-order Markov switching model with switching in the
mean or an additional regressor. However, ORS-H has the drawback of computa-
tional intensity and size distortions for small samples when testing for the intercept
and rather strong underrejections in the efficiency test. On the other hand, ORS-
H is robust to weakly dependent and heteroscedastic error terms. ORS-G has the
disadvantage of violating the regularity conditions that are imposed to derive its
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asymptotic distribution. In addition, when testing for efficiency or when including
lags of forecast error the asymptotic distribution is not nuisance parameter free.
For testing efficiency, the test is slightly undersized. In contrast, the original CHP
test is optimal against local alternatives, requires estimation only under the null, is
reasonably well sized for medium sized samples and exhibits high power under both
alternatives. However, we can only test unbiasedness with it and it does not specify
a clear alternative. To the practitioner, we recommend using the test that is most
appropriate for the question at hand. When testing for unbiasedness, ORS-CHP can
be a powerful test that is robust under the presence of (quite general) parametric
time-variation.22 When the researcher is interested in testing for efficiency and ra-
tionality or unbiasedness, with interest on testing against the specific alternative of a
Markov switching, ORS-H and ORS-G might be the better choice. When using the
ORS-H test, the researcher needs to set the grid of parameters of interest carefully.
For the case of unbiasedness, we recommend to plot the forecast errors and decide
then on a range for the intercept coefficients. For the test of efficiency, setting a grid
around the full sample efficiency parameter could be a sensitive starting point.

2.5 Empirical Evidence

In the empirical section, we investigate the absolute forecasting performance of the
federal funds rate forecast of the Blue Chip Financial Forecasts (BCCF) survey. The
survey is conducted on a monthly basis and consists of approximately fifty partici-
pants in the private financial sector.23 The predictions are fixed-event forecasts and
we use the same methodology as Dovern et al. (2012b) to convert the forecasts to
fixed-horizon forecasts. In total, the data ranges from 1983:M4 to 2018:M2. In the
analysis, we will focus on the period starting in 1990:M1, as the periods in the 80s,
are quite volatile and could potentially confound the results of a Markov switching
model.24 Further, we focus on the 3-month-ahead horizon and provide robustness
results, using the 6-month-ahead forecasts, in appendix A.

Our results of testing for unbiasedness are based on a two-regime model, with
switches only in the intercept, and we additionally control for lags of the forecast
error. Thus the model takes the form

22In particular for one period ahead forecast, which should be serially uncorrelated under the
assumption of rationality.

23We will focus on the consensus forecast of all participants.
24Note that our test still rejects but the rejection could be driven by outliers.
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εt+3|t = (1− St+3)µ1 + St+3µ2 +
d∑
i=1

φiεt+3−i|t−i + et+3 (2.33)

Table 2.5 displays the results of the ORS-H test for unbiasedness using (2.33) for
d = 0, 1, 2, 3.25 For all lag length, the ORS-H test clearly rejects with pvalues
below 0.001 and results are very robust across different values for d. A traditional,
West and McCracken (1998) full-sample test for forecast error unbiasedness has a
pvalue of around 60% and would not reject the null hypothesis. The Fluctuation
test by Rossi and Sekhposyan (2016) rejects at the 5% level for window sizes of
m < 100. However, it provides less economic interpretation than a Markov switching
model. The displayed coefficients are the values that correspond to the maximum
of the ORS-H test, where we estimated the test over a 4-tuple of 12 grid points for
(p, q) ∈ [0.04, 0.96] x [0.04, 0.96] and 20 grid points for (µ1, µ2) ∈ [−1, 0.2] x [−1, 0.2].
The results show the presence of a very persistent regime, with a state-to-state
transition probability of 96%, in which the forecasters are unbiased. A t-test on µ1

does not reject the null hypothesis of µ1 = 0. However, in the second regime, which
is considerably less persistent, the forecasters overestimate the future federal funds
rate, and the coefficient µ2 is significantly different from zero. The difference between
the two states, µ1−µ2, is approximately 25 basis points, a typical interest rate move
by the FED. Figure 2.3 plots the smoothed regime probabilities of the MS-AR(1)
model against the forecast errors and the federal funds target rate. The probability
of regime 2 is associated with monetary easing, i.e., decreases in the federal funds
rate and not limited to recessionary periods. In particular, in the time after the
90s recession as well as around 1998 and before the great recession the probability
co-moves with movements in the FFR target rate. The regimes are well identified,
in a sense that most regime probabilities are close to zero or one. Table A.1 and
figure A.1 and A.2 in appendix A show that the results are robust to the exclusion
of the zero lower bound period after the great recession. We use the same data
set as Dahlhaus and Sekhposyan (2018), and our results relate straightforwardly.
The authors find when evaluating forecast unbiasedness in different sub-samples of
the data that the bias seems to be mainly driven by periods of monetary easing.
We find similar periods of a negative forecast bias, but without having to know the
conditioning variable - the periods are identified through the latent states of the
Markov switching model.

25A rational forecast would exhibit maximum serial correlation length should be h-1, i.e., in
this two. We show results for a maximum of three lags to be robust against rejections of the null
hypothesis due to other types of misspecifications.
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Table 2.5: Estimated Coefficients - 3-Months-Ahead Forecast Error

Model p q µ1 µ2 φ1 φ2 φ3 ORS-H pvalue
AR(0) 0.96 0.50 0.01 -0.50 - - - 12.44 < 0.01

(0.03) (0.15) (0.02) (0.06) -

AR(1) 0.96 0.58 0.01 -0.24 0.79 - - 8.46 < 0.01
(0.03) (0.22) (0.02) (0.04) (0.02)

AR(2) 0.96 0.58 0.01 -0.18 1.08 -0.31 - 8.42 < 0.01
(0.04) (0.36) (0.02) (0.05) (0.05) (0.04)

AR(3) 0.96 0.63 0.01 -0.24 1.03 -0.26 -0.03 7.95 < 0.01
(0.03) (0.21) (0.02) (0.04) (0.05) (0.06) (0.04)

NOTE. – The coefficients displayed correspond to the coefficients of the maximum ORS-H statistic. The sample size
is T = 338. Numbers in parenthesis denote standard errors. ORS-H denotes the value of the test statistic. pvalue
denotes the pvalue obtained from the simulated asymptotic distribution. The results for ORS-H are based on a 4-tuple
of 12 grid points for (p, q) ∈ [0.04, 0.96] and 20 grid points for µ1, µ2 ∈ [−1, 0.2]. p denotes the state-to-state transition
probability for regime one and q denotes the state-to-state transition probability for regime two.

Figure 2.4 plots the forecast errors against the time-varying intercept and the time-
varying state-unconditional mean, defined as µ1/(1−φ) and µ2/(1−φ).The switches
play a significant role in explaining the recurring periods of negative bias and fit the
negative values of the forecast errors rather well.

Figure 2.3: Regime Probabilities

NOTE. – The left y-axis denotes the regime probability. The right y-axis denotes the value of the forecast error and
the FFR target. The x-axis denotes time. The solid line displays the smoothed regime probabilities. The dashed
line displays the forecast errors. We rescaled the forecast errors by a factor of two, to increase the legibility of the
plot. The dotted line displays the FFR target. Grey shaded areas display NBER recession periods.
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Figure 2.4: Forecast Errors vs Switching Parameters

NOTE. – The solid line displays the forecasting error. The dashed line displays the time-varying intercept and the
dashed line displays the state dependent unconditional mean, i.e. µ1/(1−φ) and µ2/(1−φ). The left y-axis denotes
the value of the forecast error. The x-axis denotes time. Grey shaded areas display NBER recession periods.

2.6 Regime Switching in a Forecast Comparison Frame-

work

In this chapter, we focussed on the evaluation of the absolute performance of a fore-
casting model under the potential presence of Markov switching. However, the idea
of Markov switching is not limited to absolute evaluations but can also be interest-
ing in the case of relative model comparisons. Consider the case of two competing
models, which produce forecasts for the predictand y and the researcher or policy-
maker is interested in which model forecasts better, i.e., the object of interest is the
loss differential ∆Lt. While the literature has investigated extensively the proper-
ties of full sample comparison tests (Diebold and Mariano, 1995; West, 1996; Clark
and McCracken, 2001; Clark and West, 2006, 2007; Giacomini and White, 2006),
fewer alternatives are available under the presence of instabilities or parametric
time-variation. A non-parametric test that is robust to time-variation is provided
by Giacomini and Rossi (2010), which is based on computing local Giacomini and
White (2006) type of tests. An additional alternative could be the conditional test
by Giacomini and White (2006), which, however, requires knowledge of a conditional
variable. In general, the idea of Markov switching in loss differentials is interesting
for three main reasons. First and different from Giacomini and Rossi (2010), it al-
lows for an economic interpretation if the null hypothesis is rejected. Second, it does
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not require a priori knowledge of the conditioning variable. Third, if a test finds
evidence of switching in ∆Lt, a Markov switching model estimated on the loss differ-
ential can potential improve forecasts in real-time because the regime probabilities
can be considered as a type of model selection or model averaging.

Testing the loss differential is, however, somewhat more challenging than testing
the forecast errors. While the normality assumption might be a good approximation
to forecast errors for the typical macroeconomic data, the loss differential exhibits
strong deviations from normality. For instance, assuming that both of the two
forecasts errors are normal and using the MSE as a loss function, ∆Lt will be the
difference of two chi-squared variates, i.e., loss differentials typically exhibit fat-tails.
As the model under the alternative is a mixture model, strong misspecifications of
the likelihood under the null can lead to overrejections, even if no regime switching
in the intercepts is present. How to best deal with this problem is an open question
that we leave for future research.

2.7 Conclusion

We proposed three tests for evaluating absolute forecast performances and the tests
are robust to parametric time-variation in the forecast errors. Overall, the three tests
exhibit good size and power properties in a Monte Carlo study for unbiasedness and
efficiency, where the ORS-H and ORS-G somewhat underreject in a test for efficiency.
We showed that for the alternative of Markov switching, the new tests outperform
the available alternative tests for absolute forecast performance. In an empirical
investigation of the forecast rationality of the Blue Chip Financial Forecasts, we
find that the forecasters exhibit a bias in the 3-months-ahead prediction of the
federal funds target rate. While there is no deviation from unbiasedness when we
consider the entire sample of forecast errors, we provide evidence that participants
tend to systematically overestimate the federal funds rate during times of monetary
easing.
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Appendices

A Empirical Results - Robustness

Table A.1: Robustness - 3-Months-Ahead Forecast Error

Model p q µ1 µ2 φ1 φ2 φ3 ORS-H pvalue
AR(1) 0.83 0.50 0.07 -0.31 - - - 7.03 < 0.01

(0.05) (0.23) (0.04) (0.12) -

AR(1) 0.92 0.50 0.01 -0.18 0.83 - - 7.03 < 0.01
(0.06) (0.59) (0.03) (0.09) (0.05)

AR(2) 0.96 0.63 0.01 -0.18 1.10 -0.35 - 6.61 < 0.01
(0.07) (0.56) (0.03) (0.09) (0.06) (0.29)

AR(3) 0.96 0.63 0.01 -0.18 1.08 -0.35 -0.29 6.26 < 0.01
(0.07) (0.51) (0.03) (0.09) (0.09) (0.09) (0.05)

NOTE. – The coefficients displayed correspond to the coefficients of the maximum ORS-H statistic. The sample size
is T = 238. Numbers in parenthesis denote standard errors. ORS-H denotes the value of the test statistic. pvalue
denotes the pvalue obtained from the simulated asymptotic distribution. The results for ORS-H are based on a 4-tuple
of 12 grid points for (p, q) ∈ [0.04, 0.96] and 20 grid points for µ1, µ2 ∈ [−1, 0.2]. p denotes the state-to-state transition
probability for regime one and q denotes the state-to-state transition probability for regime two.

Figure A.1: 3-Months-Ahead: Regime Probabilities - Robustness

NOTE. – The left y-axis denotes the regime probability. The right y-axis denotes the value of the forecast error and
the FFR target. The x-axis denotes time. The solid line displays the smoothed probabilities of regime one (upper
panel) and two (lower panel). The dashed line displays the forecast errors. We rescaled the forecast errors by a
factor of two, to increase the legibility of the plot. The dotted line displays the FFR target. Grey shaded areas
display NBER recession periods.
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Figure A.2: 3-Months-Ahead: Forecast Errors vs Switching Parameters

NOTE. – The solid line displays the forecasting error. The dashed line displays the time-varying intercept and the
dashed line displays the state dependent unconditional mean, i.e. µ1/(1−φ) and µ2/(1−φ). The left y-axis denotes
the value of the forecast error. The x-axis denotes time. Grey shaded areas display NBER recession periods.

Table A.2: Estimated Coefficients - 6-Months-Ahead Forecast Error

Model p q µ1 µ2 φ1 φ2 φ3 ORS-H pvalue
AR(0) 0.79 0.50 0.14 -0.37 - - - 6.07 < 0.01

(0.09) (0.24) (0.08) (0.26) -

AR(1) 0.96 0.71 0.01 -0.31 0.84 - - 6.07 < 0.01
(0.02) (0.13) (0.02) (0.04) (0.02)

AR(2) 0.96 0.75 0.01 -0.12 1.27 -0.38 - 5.29 < 0.01
(0.11) (0.56) (0.05) (0.10) (0.10) (0.06)

AR(3) 0.96 0.79 0.01 -0.12 1.24 -0.26 -0.09 5.65 < 0.01
(0.10) (0.42) (0.05) (0.10) (0.08) (0.09) (0.05)

NOTE. – The coefficients displayed correspond to the coefficients of the maximum ORS-H statistic. The sample size
is T = 335. Numbers in parenthesis denote standard errors. ORS-H denotes the value of the test statistic. pvalue
denotes the pvalue obtained from the simulated asymptotic distribution. The results for ORS-H are based on a 4-tuple
of 12 grid points for (p, q) ∈ [0.04, 0.96] and 20 grid points for µ1, µ2 ∈ [−1, 0.2]. p denotes the state-to-state transition
probability for regime one and q denotes the state-to-state transition probability for regime two.
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Figure A.3: 6-Months-Ahead: Regime Probabilities

NOTE. – The left y-axis denotes the regime probability. The right y-axis denotes the value of the forecast error
and the FFR target. The x-axis denotes time. The solid line displays the smoothed regime probabilities. The
dashed line displays the forecast errors. The dotted line displays the FFR target. Grey shaded areas display NBER
recession periods.

Figure A.4: 6-Months-Ahead: Forecast Errors vs Switching Parameters

NOTE. – The solid line displays the forecasting error. The dashed line displays the time-varying intercept and the
dashed line displays the state dependent unconditional mean, i.e. µ1/(1−φ) and µ2/(1−φ). The left y-axis denotes
the value of the forecast error. The x-axis denotes time. Grey shaded areas display NBER recession periods.
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B Power - Not Size-Adjusted

Figure B.5: Power - Constant Mean

NOTE. – The y-axis denotes the rejection frequency. The x-axis denotes the size of µ. The nominal size is 5%
and illustrated by the solid horizontal line. The results are based on 1000 Monte Carlo replications - except for the
ORS-H, which is based on 500 replications due to the computational intensity.

Figure B.6: Power - Markov Switching in the Mean

NOTE. – The y-axis denotes the rejection frequency. The x-axis denotes the size of µ. The nominal size is 5%
and illustrated by the solid horizontal line. The results are based on 1000 Monte Carlo replications - except for the
ORS-H, which is based on 500 replications due to the computational intensity.
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Figure B.7: Power - Constant Efficiency Parameter

NOTE. –The y-axis denotes the rejection frequency. The x-axis denotes the size of µ. The nominal size is 5% and
illustrated by the solid horizontal line. The results are based on 1000 Monte Carlo replications - except for the
ORS-H, which is based on 500 replications due to the computational intensity.

Figure B.8: Power - Markov Switching Efficiency Parameter

NOTE. – The y-axis denotes the rejection frequency. The x-axis denotes the size of µ1 − µ2. The nominal size is
5% and illustrated by the solid horizontal line. The results are based on 1000 Monte Carlo replications - except for
the ORS-H, which is based on 500 replications due to the computational intensity.

C Appendix for ORS-H

The arguments of Hansen (1992) apply in the same way to our partition of the
parameter vector as they applied to his partion. In the following, we summarize
Hansen’s main steps for the convenience of the reader.
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Assumption A1: The first and second derivative of L(α̃, θ(α̃)) with respect to θ(α̃)

is uniformly bounded, i.e.

sup
α̃∈A,θ∈Θ

∣∣∣∣∣∣∣∣∂L(α̃, θ(α̃))

∂θ

∣∣∣∣∣∣∣∣ = Op(n) (C.1)

sup
α̃∈A,θ∈Θ

∣∣∣∣∣∣∣∣∂2L(α̃, θ(α̃))

∂θ∂θ′

∣∣∣∣∣∣∣∣ = Op(n) (C.2)

Assumption A2: Denote as D(α̃) = θ̂(α̃)− θ(α̃). Under the null, assume that

sup
α̃∈A

∣∣∣∣D(α̃)
∣∣∣∣ = op(1) (C.3)

i.e. θ̂(α̃) converges uniformly over α̃ ∈ A to θ(α̃).

Denote by `t(εt|t−h; α̃, θ) = `t(α̃, θ) = `t the log-likelihood and denote by LT (α̃, θ) =∑T
t=1 `t(·). The notation LT (α̃, θ(α̃)) denotes the same as LT (α̃, θ) but for a fixed

value of α̃. Using a second-order Taylor expansion, it follows that

LT (α̃, θ(α̃))− LT (α̃, θ̂(α̃)) = D(α̃)′
∂

∂θ
L(α̃, θ̂(α̃)) +

1

2
D(α̃)′

∂2

∂θ∂θ′
L(α̃, θ∗(α̃))D(α̃)

(C.4)
where θ∗(α̃) = λθ0(α̃) + (1− λ)θ̂0(α̃) and 0 < λ < 1. Under assumption A1 and A2
it follows that

sup
α̃∈A

∣∣∣∣LT (α̃, θ(α̃))− LT (α̃, θ̂(α̃))
∣∣∣∣

= sup
α̃∈A

∣∣∣∣∣∣∣∣D(α̃)′
∂

∂θ
L(α̃, θ̂(α̃)) +

1

2
D(α̃)′

∂2

∂θ∂θ′
L(α̃, θ∗(α̃))D(α̃)

∣∣∣∣∣∣∣∣ = Op(1)
(C.5)

Let R(α̃) denote R(α̃) = ELRT (α̃). For notational clarity, let the following denote
the sample and population counterpart of the variables

L̂RT (α̃) = L̂T (α̃, θ̂(α̃))− L̂T (θ̂0) (C.6)

LRT (α̃) = LT (α̃, θ(α̃))− LT (θ0) (C.7)

R(α̃) = ELRT (α̃) (C.8)

Q̂T (α̃) = L̂RT (α̃)− R(α̃) (C.9)

QT (α̃) = LRT (α̃)− R(α̃) (C.10)
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Rewriting Q̂T (α̃) and under A1 and A2

Q̂T (α̃) = L̂RT (α̃)− R(α̃)

= LRT (α̃)− R(α̃) + L̂RT (α̃)− LRT (α̃)

= QT (α̃) +
[
L̂T (α̃, θ̂(α̃))− LT (α̃, θ(α̃))

]
+
[
LT (θ0)− L̂T , θ̂0)

]
= QT (α̃) +

[
L̂T (α̃, θ̂(α̃))− LT (α̃, θ(α̃))

]
+
[
LT (θ0)− L̂T (θ̂0)

]
= QT (α̃) +Op(1) +Op(1)

(C.11)

where the last inequality follows from (C.5) and the fact that
[
LT (θ0) − L̂T (θ̂0)

]
is

proportional to a likelihood ratio test of the parameters in θ, which has a chi-square
limiting distribution. Therefore

1√
T
Q̂T (α̃) =

1√
T
QT (α̃) + op(1) (C.12)

As R(α̃) ≤ 0, it follows that

1√
T
L̂RT (α̃) ≤ 1√

T
Q̂T (α̃) =

1√
T
QT (α̃) + op(1) (C.13)

and
1√
T
L̂R
∗
T (α̃) ≤ 1√

T
Q̂
∗
T (α̃) =

1√
T
Q∗T (α̃) + op(1) (C.14)

Hansen (1992) imposes high-level assumptions on Q∗T and assumes that Q∗T obeys
an empirical process CLT. In general, there are empirical process CLTs available
(Andrews, 1991) that allow for near epoch dependence in the errors as well as het-
erogeneity.26

D Appendix for ORS-G

We derive the variance-covariance matrix of the ORS-Garcia test following García
(1998), which is necessary for the simulation of the critical values. The matrix V (α)

is defined as
V (α) = lim

T→∞
TE
[
ST (θ0, α)ST (θ0, α)′

]

26Which rules out long-memory behaviour in the qt.
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where ST (θ0, α) is the score with respect to θ evaluated at θ0, the true parameter
values under the null. The matrix K(α1, α2) is defined as

K(α1, α2) = lim
T→∞

TE
[
ST (θ0, α1)ST (θ0, α2)′

]
The variance-covariance matrix is

K̄(α1, α2) = τV −1(α1)−1K(α1, α2)V −1(α2)−1τ ′

which is key for the simulation of the critical values, as K̄(α1, α2) summarizes the
variance-covariance of the chi-square processes indexed by α. García (1998) provides
the scores ST (θ0, α) for a slightly different model specification than we. In the follow-
ing, we will therefore follow his strategy and derive the scores for our specification.
Assume the general model

εt|t−h = µ+ µs + (γ + γs)xt +
d∑
i=1

φiεt−i|t−h−i + et (D.15)

where xt denotes the yt|t−h or any additional regressors. The scores for µ, µs, γ, γs, φi
and σ2, evaluated at θ0, take the form

ST (θ0, α)µ =
1

T

T∑
t=1

et
σ2

0

ST (θ0, α)µs =
1

T

T∑
t=1

et
σ2

0

1∑
st=0

pst(α)st(α)

ST (θ0, α)γ =
1

T

T∑
t=1

etxt
σ2

0

ST (θ0, α)γs =
1

T

T∑
t=1

etxt
σ2

0

1∑
st=0

pst(α)st(α)

ST (θ0, α)φi =
1

T

T∑
t=1

etεt−i|t−h−i
σ2

0

ST (θ0, α)σ2 =
1

T

T∑
t=1

1

σ2
0

(
et
σ2

0

− 1

)

where pst(α) denotes the probability Pr(St = st|ε, θ0, α) with ε = (ε1|1−h, ..., εT |T−h).

Let π = 1−q
2−p−q , with p, q from the transition matrix P =

(
p 1− q

1− p q

)
and
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πj =
1−q(αj)

2−p(αj)−q(αj)
. Under the assumption of serially uncorrelated and homoskedastic

et, the matrix V (α) takes the form

V (α) =
1

σ2
0



1 π µx µxπ 0 0 0 ... 0

π π µxπ µxπ 0 0 0 ... 0

µx µxπ σ2
x σ2

xπ σ2ρxy−1
σ2ρxy−2

σ2ρxy−3
... 0

µxπ µxπ σ2
xπ σ2

xπ σ2ρxy−1
π σ2ρxy−2

π σ2ρxy−3
π ... 0

0 0 σ2ρxy−1
σ2ρxy−1

π σ2ρ0 σ2ρ1 σ2ρ2 ... 0

0 0 σ2ρxy−2
σ2ρxy−2

π σ2ρ1 σ2ρ0 σ2ρ1 ... 0

0 0 σ2ρxy−3
σ2ρxy−3

π σ2ρ2 σ2ρ1 σ2ρ0 ... 0
...

...
...

...
...

...
... ... 0

0 0 0 0 0 0 0 ... 0 1
2σ2

0


where E(x) = µx, Var(x) = σ2

x, E(εt|t−hεt−i|t−h−i) = ρi and E(xtεt−i|t−h−i) = ρxy−i
.

The matrix K(α1, α2) takes the form

K(α1, α2) =
1

σ2
0



1 π2 µx µxπ2 0 ... 0

π1 min(π1, π2) µxπ1 µxmin(π1, π2) 0 ... 0

µx µxπ2 σ2
x σ2

xπ2 0 ... 0

µxπ1 µxmin(π1, π2) σ2
xπ1 σ2

xmin(π1, π2) σ2ρxy−1
π1 ... 0

0 0 σ2ρxy−1
σ2ρxy−1

π2 σ2ρ0 ... 0
...

...
...

...
...

... 0

0 0 0 0 0 ... 0 1
2σ2

0


To simulate the chi-square process we follow the procedure of Garcia. First, we need
to obtain the matrix

Ω =


K̄(α1, α1) K̄(α1, α2) ... K̄(α1, αN)

K̄(α2, α1) K̄(α2, α2) ... K̄(α2, αN)
...

...
...

...
K̄(αN , α1) K̄(αN , α2) ... K̄(αN , αN)


and apply a Cholesky decomposition to it, Ω = PP ′. Then, let ε denote a r x 1

draw of i.i.d. N(0, 1) variates. The asymptotic distribution can then be simulated
by drawing N times a variate ε and compute the distribution according to

sup
α∈AN

(
P (αi)ε

)′
K̄−1(αi, αi)P (αi)ε

Unbiasedness: Let H0 : τβ = 0 denote the null hypothesis H0 : µ1 = µ2 = 0, then
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the matrix τ has the form

τ =

(
1 0 0 ... 0

0 1 0 ... 0

)

and τ has dimension 2 x k, where k is the number of parameters in θ. For the two

regime model, with transition matrix P =

(
p 1− q

1− p q

)
, define π = 1−q

2−p−q .

No Autocorrelation Under uncorrelated and homoskedastic error terms, the variance-
covariance for simulating the asymptotic distribution has elements

K̄(αi, αj) =

(
1

1−πi
− 1

1−πi
πi
πj

− 1
1−πi

1
(1−πi)πj

)
(D.16)

where πi = (1−qi)
2−qi−pi

.

Efficiency: For the special case of a model without intercept, and/or E(xt) = 0,
the matrix K̄(αi, αj) is identical to the case of testing for unbiasedness:

K̄(αi, αj) =

(
1

1−πi
− 1

1−πi
πi
πj

− 1
1−πi

1
(1−πi)πj

)
(D.17)

For E(xt) 6= 0 and an intercept in the model, the asymptotic distribution is not nui-
sance parameter free and critical values need to be simulated depending on E(xt) and
Var(x). As the quantities are unknown in practice, the researcher has to substitute
them with consistent estimates. The restrictions matrix

τ =

(
0 0 1ρ 0 0 ... 0

0 0 0 1ρs 0 ... 0

)

has ones at the position of ρ and ρs in the parameter vector and zeros otherwise.

Rationality: For rationality the respective restriction matrix takes the form

τ =


1µ 0 0 0 0 ... 0

0 1µs 0 0 0 ... 0

0 0 1ρ 0 0 ... 0

0 0 0 1ρs 0 ... 0


Again, critical values can depend on E(xt) and Var(x) and can not be tabulated for

83



a general case.

E Appendix for ORS-CHP

The assumptions we impose are taken from Carrasco et al. (2014):

Assumption B1: The random coefficient ηt is stationary and its distribution depends
on some parameters α, which are not identified under the null. We assume that α
belongs to a compact set A. Moreover, ηt is strongly exogenous in the sense that the
joint likelihood of

(
εh|t0, ..., εT |T−h, η1, ..., ηP

)
factorizes to

Πtf(εt+h|t|εt+h−1|t−1, ...εh|0, θt)g(ηt|ηt−1, ..., η1;α) and the values of θt belong to some
compact subset of Rp, Θ, containing θ0.

Assumption B2: εt+h|t is stationary under H0, and the following condition on the
conditional log-density of εt+h|t given

(
εh|0, ..., εT |t−1

)
, under H0, are satisfied: `t(θ)

is at least five times differentiable and for k = 1, .., 5, it holds that
Eθ0supθ∈N

(
||`(k)

t (θ)||20
)
< ∞, where `(i)

t denote the i-th derivative of the log like-
lihood function with respect to θ and N is a neighborhood around θ0. Eθ0 is the
expectation with respect to the probability measure corresponding to θ0 and ||.|| is the
Euclidean norm. Moreover, θ0 is an interior point of Θ and the information matrix
I(θ0) = Eθ0

(
`

(1)
t (θ0)`

(1)′

t (θ0)
)
is non-singular.

Assumption B3: The latent variable ηt can be represented by ηt = µshSt, where
µs is a finite scalar constant and h is a vector with ||h|| = 1. Moreover, St is
stationary Markov chain, with a finite or a continuous but bounded state space, and
is β-mixing with geometric decay such that var(St) = 1 and cov(St, Ss) = α|t−s| for
−1 < α ≤ α ≤ ᾱ < 1 and h = (1, 0, ..., 0). Assume that E

(
ηtηk

)
, for any integer k,

is assumed to be continuous in α.

Let us rewrite the numerator of our test statistic, vT (θ, α), as

vT (θ, α) =
1√
T

T∑
t=1

(
µ2,t(θ, α)− d(α)′l

(1)
t (θ)

)
(E.18)

where d(α) = d(α, θ0) = I−1(θ0)cov
(
µ2,t(α, θ0), `1

t (θ0)
)
, with I(θ0) being the infor-

mation matrix. For the model we consider and under our null, the definition of
vT (θ, α) is identical to the definition of vT (θ, α) in CHP. Note that the first ele-
ment of d(α), i.e. the element associated with the score of µ, is equal to zero.
Note further that

∑T
t=1 d

′(α)l1t (θ̂0) = 0, because the score with respect to the unre-
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stricted parameters is zero when evaluated at the MLE θ̂0, which implies vT (θ̂0, α) =
1√
T

∑T
t=1 µ2,t(θ̂0, α). In other words, vT (θ, α) in (E.18) and vT (θ, α) in (2.19) are iden-

tical when evaluated at θ̂0. To show that vT (θ̂0, α) has the same limiting distribution
as vT (θ0, α), we need to show that vT (θ̂0, α) converges, uniformly in α ∈ [α, ᾱ], to
vT (θ0, α). Following the argument of CHP, we use a second-order Taylor expansion
around θ0, which gives

vT (θ̂0, α) = vT (θ0, α) +
1√
T

∂

∂θ
vT (θ0, α)

√
T (θ̂0 − θ0)

+
1

2
(θ̂0 − θ0)′

1√
T

∂2

∂θ∂θ′
vT (θ̄, α)

√
T (θ̂0 − θ0)′

(E.19)

where θ̄ = (1−λ)θ0 +λθ̂0 and λ ∈ (0, 1). As our definition of vT (θ, α) is identical to
the definition of CHP, in what follows we can use the arguments as in their proof.
Note that

√
T (θ̂0 − θ̂) = Op(1) and (θ̂0 − θ̂) = op(1) under the null. Further, we

invoke assumption 2, which guarantees the uniform convergence of 1√
T

∂2

∂θ∂θ′
vT (θ̄, α)

to a constant. Lemma C.1 of CHP is sufficient to establish that 1√
T
∂
∂θ
vT (θ0, α)→p 0

uniformly in α, which gives the required result. The asymptotic distribution of
vT (θ̂0, α) can thus be derived from the asymptotic distribution of vT (θ0, α), which
is identical to distribution derived in Andrews and Ploberger (1996). Our denomi-
nator converges to the same probability limit as in CHP (dropping α for notational
convenience)
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(E.20)

For α = 0, the limit of the test-statistic is indeterminate, a feature we inherit from
the original test of CHP. The asymptotic distribution described in (2.22) has the
form

supTS→d sup
α∈[α,ᾱ]

1

2

(
max

(
0, K(α)

))2

(E.21)
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For the model without autoregressive components, it follows that

K(α) = sign(α)
√

1− α2

∞∑
i=1

Ziα
i

where Zi is an iid standard Normal variate. For a model that includes the autore-
gressive component the distribution can be derived from the asymptotic distribution
of sup

α∈[α,ᾱ]

vT (θ0, α).
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Chapter3
Real-Time Density Forecasts via Pooled
Quantile Regressions

3.1 Introduction

Recent developments in the economic forecasting literature aim to give a prob-
abilistic perspective on the predictand, instead of a point prediction only. The
probabilistic forecasts are typically estimated using a parametric density assump-
tion, the shape of the distribution is (to some extent) determined by the choice of
the parametric family and only the mean is a direct function of observables. In
contrast, quantile regressions are a semi-parametric approach for modeling distribu-
tions, allow to specify each quantile of the predictive density directly as a function of
observables and leave the shape of the distribution unrestricted. Subsequently, the
models allow for more flexible, and a growing literature in economics (Gaglianone
and Lima, 2012; Manzan, 2015; Korobilis, 2017; Adrian et al., 2016) uses quantile
regressions for probabilistic forecasts.

We contribute to this literature in several ways. First, we are the first to compare
out-of-sample quantile regression forecasts of real US GDP growth to benchmark
stochastic volatility models using real-time data. Second, we empirically investigate
how two different estimation strategies affect the performance of quantile regressions
for forecasting first- and final-release data. For real-time out-of-sample forecasts, re-
searchers are confronted with substantial measurement error in first-release data, see
Koenig et al. (2003); Croushore and Stark (2003), and need to decide which vintage
to use for the estimation of the model. Further, relevant predictands in practice can
include both, first-release as well as final-release data. We compare the strategies
of end-of-sample vintages, the common approach in the literature, and real-time
vintages for forecasting first-release data. For the prediction of final-release data,
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we base the estimation on end-of-sample vintages.1 Third, due to the abundance of
candidate predictors, we incorporate the information provided by many predictors
by pooling individual regressions.

Within the class of quantile regressions, our results indicate the following. First,
forecasting first-release GDP growth is best done by estimating the model with first-
release data only. The gain in forecast accuracy is more pronounced, and statistically
significant, for one-quarter-ahead forecasts than for four quarter-ahead, and quan-
tiles towards the tails. Importantly, the performance gain from first-release data is
more considerable during recessions for both horizons, one and four quarters-ahead.
Second, equal-weighting outperforms bayesian model averaging for a horizon of four
quarters. Relative to the competitor models, the pooled bayesian quantile regres-
sions outperform (pooled) univariate and multivariate stochastic volatility models
at the one-quarter-ahead forecast, where the evidence is stronger for above-median
quantiles. For horizons of four quarters-ahead, the results speak in favour of quantile
regressions, but no statistically significant differences are observed. As the tick loss
function comparison involves multiple testing, we additionally estimate a density
based on the quantiles forecasts and compare it to the competitor models based
on the continuous ranked probability score (CRPS). The results again are that the
quantile models are competitive to stochastic volatility models. However, when we
plot the loss differential, we observe that the multivariate stochastic volatility model
tends to perform better during recession periods but worse after the great recession.

Our work is mainly related to Gaglianone and Lima (2012), Manzan (2015) and
Adrian et al. (2016). Manzan (2015) explores the performance of frequentist quan-
tile regressions with variable selection via Lasso and compares the out-of-sample
forecasting performance of the quantile regressions using the tick-loss. The main
difference from his paper is that we use real-time data only, investigate the perfor-
mance for first- and final-release and deal with the problem of many predictors by
model pooling instead of variable selection. In addition, we obtain smooth density
forecasts based on the predicted quantiles and evaluate the respective forecasting
performance using density scoring-rules. Gaglianone and Lima (2012) use SPF mean
forecasts as predictors in a quantile regression model and construct density forecasts
based on the quantile forecasts but focus on the US unemployment rate and do not
use real-time data. Adrian et al. (2016) found that the National Financial Con-
dition Index (NFCI) has strong in-sample and out-of-sample predictive power for
lower quantiles of GDP growth. We differ from their paper in several ways. First,

1End-of-sample vintages are defined as using only the latest data available for model estimation.
Real-time vintages instead use only first-release data for model estimation. See Croushore (2006)
for an overview.
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we compare the out-of-sample forecasts not within the class of quantile regressions
but to current benchmark competitor density forecast models. Second, we use real-
time data for both the dependent variable and the predictand, which excludes the
use of the NFCI for the largest part of the sample. Third, we consider a broader
range of predictor and incorporate the resulting model uncertainty by equal-weight
pooling and bayesian model averaging. The paper is further related to the strand of
literature that analyzes the effect of data revisions on forecasts (Koenig et al., 2003;
Croushore and Stark, 2003). We intend to contribute to that literature through an
empirical assessment of the forecasting performance of quantile regressions based
on two different strategies, analogue to the procedures used for mean predictions
in Koenig et al. (2003), for forecasting first- and final-release data. In a recent pa-
per, Clements and Galvao (2017) investigate the impact of data revision on density
forecasts from stochastic volatility models. Different from their work, we focus on
the empirical performance of the model class of quantile regressions for real-time
forecasts.

The set of predictors we use consists of the main macroeconomic variables and
the term spread. To guarantee a true out-of-sample forecast, we rely on the data
vintages provided by the Real-Time Data Research Center of the Philadelphia FED
for each predictor and the dependent variable.2 To incorporate the information in a
data-rich environment, we choose a model averaging approach in this work, i.e. we
estimate a separate univariate model for each predictor and average the resulting
pool of forecast by equal-weights and, alternatively, bayesian model averaging.3

Quantile regressions in economics started with the work of Koenker and Basset
(1978). Bayesian quantile regressions are based on the asymmetric Laplace dis-
tribution (ALD) and were introduced by Yu and Moyeed (2001). We will base
the estimation of the quantile models on the Gibbs sampler developed by Kozumi
and Kobayashi (2011). Recent work of Bernardi et al. (2017) extents the quantile
regression to time-varying parameters and dynamic model averaging. Instead of
time-varying parameters, we use a rolling-window estimation scheme to deal with
potential parameter instabilities. In general, we contribute to the quantile regres-
sion literature by an empirical evaluation of the model’s forecasting performance for
macroeconomic time series.

The paper is organized as follows. Section 3.2 describes the bayesian quantile re-
gression, the competitor models and the empirical estimation strategy with respect

2The real-time data set was first compiled by Croushore and Stark (2001).
3For mean predictions, the success of equal-weighted averaging is documented in Timmermann

(2006); Wright (2009) found that bayesian model averaging improves mean forecasts for inflation
and we are evaluating both strategies.

89



to the use of different vintages. Section 3.3.1 shows some results on the in-sample
estimation of the quantile regressions. Section 3.3.2 and 3.3.3 display the main re-
sults on the out-of-sample forecasting exercise for first-release and final-release data.
Section 3.4 concludes.

3.2 Prediction Models and Empirical Strategy

3.2.1 Bayesian Quantile Regression

Let Yt be the predictand and Xt a set of K predictor variables. The predictive
quantile regressions considered in this paper take the form of

Qτ (Yt+h|Xt) = Xtβ(τ) (3.1)

where h denotes the forecast horizon and Qτ (Yt+h|Xt) denotes the τ th conditional
quantile of Yt+h, with τ ∈ [0, 1]. Yu and Moyeed (2001) showed that quantile
regressions can be estimated by maximum likelihood using the asymmetric Laplace
distribution (ALD), which takes the form

f(et|u, τ) = τ(1− τ)exp{−ρτ (et)} (3.2)

where ρτ (u) = u(τ − 1(u < 0)) and we say that et(τ) has the asymmetric Laplace
distribution.4 Then

Yt = Xtβ(τ) + et(τ) (3.3)

is equivalent to the model by Koenker and Basset (1978). Kozumi and Kobayashi
(2011) note that et(τ) can be represented by a mixture of independent exponential
and normal distributions and subsequently developed a Gibbs sampler, on which we
are going to rely for estimation.

The baseline model takes the form

Yt+h = αk(τ) + Yt,qqβk(τ) +Xt,kγk(τ) + σk(τ)et+h(τ) (3.4)

such that for each predictor, Xt,k, we run a separate univariate predictive regres-
sion and we produce forecasts for h=1 and h=4. Yt,qq denotes the quarter-on-quarter
growth rate of real US GDP. In the case of h=1, Yt+h equally denotes the quarter-on-
quarter growth rate and for the case of h=4, Yt+h denotes the year-on-year quarterly

4The distribution is easily extended to include a scaling coefficient σ. Please see Yu and Moyeed
(2001) for details.
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growth rate. Let θk(τ) =
(
αk(τ), βk(τ), γk(τ), σk(τ)

)′ denote the vector of param-
eters. In total we obtain for each quantile K + 1 out-of-sample forecasts q̂(k)

t+h|t(τ),
k = 1, ..., K + 1, which is estimated using information up to time t.5

The benchmark forecast will be the equal-weight pool of q̂(k)
t+h|t(τ), i.e. Qew

t+h|t(τ) =
1

K+1

∑K+1
k=1 q̂

(k)
t+h|t(τ). In addition, we use bayesian model averaging, which provides a

coherent mechanism to account for model uncertainty that arises from many poten-
tial predictors. Given the data, Y t = [Y1, ..., Yt], we assign the following probability
to model k

Pr(Mk|Y t) =
Pr(Y t|Mk)Pr(Mk)∑K+1
j=1 Pr(Y t|Mk)Pr(Mj)

(3.5)

where Mi denotes model i. We will make use of the relationship of the marginal
likelihood to the prior and posterior as in Chib (1995)

Pr(Y t|Mk) =
Pr(Y t|θ∗i ,Mk)Pr(θ∗i |Mk)

Pr(θ∗i |Y t,Mi)
(3.6)

where θ∗k is for example the mean of the posterior of θk.6 Each model is assigned
the same a priori probability Pr(Mk). The resulting weights wbmat,k = Pr(Y t|Mk) are
then used to construct the bma-pooled forecast Q̂bma

t+h|t(τ) =
∑K+1

k=1 q̂
(k)
t+h|t(τ)wbmat,k .7

3.2.2 Quantile Regression Density Forecast

In addition to the quantile predictions, we obtain continuos densities out of the
quantile predictions for two reasons.8 First, the literature typically evaluates proba-
bilistic forecasts on the basis density scoring rules, such as the log-score or the CRPS.
Second, the evaluation of the tick-loss function at different quantiles requires mul-
tiple testing and, to the best of our knowledge, there is no test available to jointly
evaluate the out-of-sample performance for a discrete number of quantiles. Once we
obtain density forecasts, we can compare the forecasts of the different models using
a scoring rule for densities, which mitigates the problem of multiple testing.9 To
obtain a continuos density out of the quantile predictions, we follow Adrian et al.
(2016) and use the skew student’s t proposed by Azzalini and Capitano (2003). The

5The total K+1 quantile forecasts are obtained through K models of type (3.4) and one AR(1)
model without any additional predictors.

6We suppress the (τ) for notational convenience.
7The problem of quantile crossing essentially never occurs in our application.
8Similar to Gaglianone and Lima (2012); Adrian et al. (2016)
9When we evaluate the scoring rule, the potential additional variation, introduced through the

fit of skew student’s t, is not accounted for.
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minimisation takes the form of

min
µt,αt,σt,νt

N∑
j=1

(
Q̂t|t−h(τj)− T s(τj;µt, αt, σt, νt)

)2 (3.7)

where Q̂t|t−h(τj,t) is the predicted value of the τ thj quantile, N is the number of
predicted quantiles and T s(τj,t;µt, αt, σt, νt) is the distribution function of the skew
student’s distribution at τj,t. Estimation of the parameters (µt, αt, σt, νt) is per-
formed independently for each time period.

3.2.3 Competitor Models

We compare the forecasts of the bayesian quantile regression models to univariate
and multivariate stochastic volatility models.

The univariate stochastic volatility models take the form

Yt+h = αk + Yt,qqβk +Xt,kγk +
√
ht+h,kεt+h (3.8)

where
log ht+h,k = log ht+h−1,k + ut+h (3.9)

and θk = (αk, βk, γk, σu,k, ht,k). The errors εt, ut are mean zero, iid normally dis-
tributed with σε = 1 and the models are estimated using the sampler of Kim et al.
(1998). Following Geweke (1984), we base the predictive density on

pr(Yt+h|Zt,k) =

∫ ∫
pr(Yt+h|θt+h,k, Zt,k)pr(θt+h,k|θt,k, Zt,k)pr(θt,k|Zt,k)dθtdθt+h

where Zt,k = [Xt, Yt,qq] and θt+h,k = [θt+h,k, ..., θt+1,k], i.e. we take parameter un-
certainty and their time variation into account. The quantiles q̂(k)

t+h|t(τ) are then
obtained numerically by simulating from pr(Yt+h|Zt,k).

We compute equal-weighted pools to deal with the model uncertainty, which are
denoted by Q̂ew

t+h|t,sv(τ).

The multivariate competitor model isa standard bayesian VAR with stochastic
volatility. The form of the model is

Yt+h = A0 + A1Yt + ...+ ApYt−p+1 + Σ
1/2
t+hεt+h (3.10)
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where εt+h ∼ N(0, I) with I being an identity matrix, Σt+h = Ft+hDt+hF
′
t+h with

Dt+h being a diagonal matrix and Ft+h a lower triangular matrix with ones on the
main diagaonal and

log ht+h = αh + log ht+h−1 + ut+h (3.11)

φt = φt−1 + ξt+h (3.12)

where log ht+h contains the diagonal elements ofDt+h and φt is the vector of elements
of Ft+h. The errors ut+h, ξt+h, εt+h are iid Gaussian. We decided to use a four variable
VAR to balance between the problems of noisy parameter estimates in large VARs
and a too small VAR that leaves out relevant information. The vector Yt contains
real GDP growth, changes in the unemployment rate, real residential investment
growth and the term spread. Including an unemployment indicator in this type of
VARs is standard. For two reasons we include real residential investment growth as
variable: First, our sample includes the great recession, which was strongly related
to the housing market. Further, a recent paper by Aastveit et al. (2018) finds that
residential investment is a reliable out-of-sample predictor for economic downturns.
Finally, with the term spread, we add an interest rate variable. Analogue to the
univariate models, the predictive density pr(Yt+h|Yt) is obtained from

pr(Yt+h|Yt) =

∫ ∫
pr(Yt+h|θt+1, Yt)pr(θt+h|θt, Yt)pr(θt|, Yt)dθtdθt+h

and the quantiles are again obtained numerically by simulating from pr(Yt+h|Yt).

3.2.4 Parameter Choices and Priors

We estimate all models using a rolling-window, to mitigate the problem of structural
breaks, of size T = 100. For the choice of the priors and hyperparameters, we
attempt to closely follow the convention in the literature.

Priors for Bayesian Quantile Regressions

Table 3.1: Priors for Bayesian Quantile Regression

Parameter Prior Hyperparameters
αk(τ), βk(τ), γk(τ) Normal µp,Σp

σk Inverse-Gamma t0, s0

The resulting conditional posterior densities are given in Kozumi and Kobayashi
(2011). The prior mean of

(
αk(τ), βk(τ), γk(τ)

)
is specified as the ordinary least

square (ols) estimate and the variance is taken to be an identity matrix with diagonal
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elements equal to 30. We chose a very flat prior to allow for the possibility that
the coefficients vary over quantiles. The hyperparameters σp ∼ IG(t0/2, s0/2), with
t0 = 3.13 and s0 = 0.1, which again imply a rather flat prior.

Priors for Univariate Stochastic Volatility Models

Table 3.2: Priors for Univariate SV Model

Parameter Prior Hyperparameters
(αk, βk, γk) Normal µp,Σp

σu,k Inverse-Gamma t0,u, s0,u

The hyperparameters µp,Σp are set equal to their ols counterpart. The prior on σu,k
is inverse-gamma with σu,k ∼ IG(t0,u/2, s0,u/2) where t0,u = 2.1 and s0,u = t0,uk

2
H ,

with kH = 0.01, which is a rather flat prior. In the filtering step of ht, we use the
same Normal-mixture approximation for the χ2-distribution of ε2t as in Kim et al.
(1998).

Priors for BVAR

Table 3.3: Priors for Multivariate SV Model

Parameter Prior Hyperparameters
A0 Normal µ0,Σ0

Ai for i = 1, ..., p Normal µi,Σi

σu Gamma t0,u, s0,u

σξ Gamma t0,ξ, s0,ξ

We follow closely the existing literature on density forecast with VARs. The hyper-
parameters take the values, for i = 1, ..., p, µi = 0 and Σi = I, i.e. Minnesota-type
priors for the coefficient matrices Ai. For the intercept the hyperparameters do not
impose shrinkage as µ0 = 0 and Σ0 = 100I. For the priors and hyperparameters on
(σu, σξ), we follow Chan and Eisenstat (2017) and choose a Gamma prior (instead
of inverse-gamma) with hyperparameters t0,u = t0,ξ = 1

2
and s0,u, s0,ξ = 0.01.10

3.2.5 Data and Estimation Strategies

The real-time data on all predictors, besides the term-spread, is taken from the
“Real-Time Data Research Center” of the Federal Reserve Bank of Philadelphia

10The estimation and predictions of the BVAR is based on the code of Chan and Eisenstat
(2017).
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and was originally compiled by Croushore and Stark (2001).11. We define the term
spread to be the difference between the 10-year treasury constant maturity rate and
the 3-month treasury bill: secondary market rate, for which the data is taken from
FRED. Our sample, restricted by the length of the term spread, starts in 1962:Q1
and ends in 2017:Q4.

The timing of the vintages is such that the vintage in quarter t contains data
for t − 1. The data of the vintage in quarter t becomes available in the middle of
quarter t, i.e. typically at the beginning of February, May, August and November.12

We want to highlight that for each forecast we use only data that would have been
available at that point in time in the past. For the one quarter-ahead horizon, we
define that a forecast based on the quarter t vintage is a prediction for quarter
t data (which could also be labeled a nowcast). The four quarter-ahead forecast
is the year-on-year quarterly growth of GDP. Following the same logic as for the
one quarter-ahead prediction, the forecast for t + 3 is based on t, i.e. we use year
j, quarter i data to predict the growth up to (and including) year j + 1, quarter i.
Table 3.4 display the predictors, which includes the major macroeconomic indicators
and the term spread, and their transformations.

Table 3.4: List of Predictors

Predictor Transformation
Real GDP ∆log
Real Consumption ∆log
Real Residential Investment ∆log
Real Business Fixed Investment ∆log
Unemployment Rate ∆
Non-Farm Employment ∆log
Real Government Spending ∆log
GDP Price Deflator ∆log
Term Spread -
NOTE. – The transformation ∆ denotes simple differences and ∆log
denotes log-differences. The Term Spread is not transformed.

Following the notation of Koenig et al. (2003), let y(t), x(k)(t) denote the true value
of the predictand and predictor (k). Let ys(t), x

(k)
s (t), with s ≥ t denote the estimate

of the variables by the statistical agency, i.e. the observation available at time s.
We use two different strategies to forecast different vintages of the data. To forecast
the first-release data, we use what Koenig et al. labeled strategy 1, which implies

11https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data
12See the description on the website of the Philadelphia FED.
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using only first-release data for the predictand and the predictor, such that

yt(t) = α + βx
(k)
t (t) + et (3.13)

Strategy 2 denotes what is typically used in the literature, i.e. using the latest-
vintage available at the forecast origin on the left- and right-hand side.13

yP (t) = α + βx
(k)
P (t) + et (3.14)

where P denotes forecast origin. We evaluate the forecasts of strategy 1 and strategy
2 against the first-release realizations of the predictand. and we evaluate only the
forecasts of strategy 2 against the final-release realizations.

3.3 Empirical Results

3.3.1 In-Sample Results of the Quantile Regressions

Before we move to the evaluation of the out-of-sample forecasts, we would like to
draw the attention to some results of the in-sample estimation. Figure 3.1 displays
in-sample parameter estimates at different quantiles at the forecast origin 2013:Q1
and the four-quarter-ahead regression. The upper panel shows results for strategy 1
and the lower panel for strategy 2. Several features of the plot are important. First,
there is strong evidence for quantile effects in the regressions. The coefficients of the
predictors exhibit a downward slope, which is overall stronger for lower quantiles, in
particular for the autoregressive coefficient.14 The intercept exhibits a kink in the
lower quantiles, which is an indicator for skewness in the distribution. Second, the
measurement error in the vintages clearly affects in-sample parameter estimation,
in particular for the term spread and the autoregressive coefficient. Section 3.3.2
investigates to what extent this affects the forecasting performance. Figure 3.2
shows parameter estimates (strategy 2) at two different forecast origins. The results
indicate that the quantile coefficients are not constant over time. The coefficients
from the term spread shifted downwards, indicating a weaker relationship between
the spread and GDP growth, and the autoregressive coefficients exhibit stronger
lower tail dependence - potentially driven by the great recession period.

13The first-vintage data point for real GDP for 1995:Q4 is missing. We substituted the data
point by the reported real GDP for 1995:Q4 in the 1996:Q2 vintage.

14Note that an autoregressive coefficient larger than one in absolute value does not imply ex-
plosive behavior in this case. The autoregressive coefficient here denotes the coefficient for the
last observed quarter-on-quarter growth rate while the left-hand side variable is the year-on-year
growth rate.
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Figure 3.1: Coefficients

(a) Strategy 1

(b) Strategy 2

NOTE. – The dashed line depicts pointwise 90% confidence bands. The solid line displays the mean of the posterior
of the respective coefficient for a forecast origin of 2013:Q1 and the four quarter-ahead regression. The x-axis denotes
quantiles at which the parameters were estimated.

Figure 3.2: Coefficients

(a) 1995:Q1

(b) 2013:Q1

NOTE. – The dashed line depicts pointwise 90% confidence bands. The solid line displays the mean of the posterior
of the respective coefficient for a forecast origin of 2013:Q1 and the four quarter-ahead regression. The x-axis denotes
quantiles at which the parameters were estimated. The dates denote the forecast origin.
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Figure 3.3: BMA Weights - Strategy 1

(a) h=1 (b) h=4

NOTE. – The picture displays the evolution of the weights obtained through bayesian model averaging. Grey shaded
areas depict the NBER recession periods. Figure (a) displays the results for the one quarter-ahead forecasts. Figure
(b) displays the results for the four quarter-ahead horizon. The time-axis is origin based, i.e. display the weight
used at the time of the origin of the forecast. The color code for (a) and (b) is identical.

Figure 3.4: BMA Weights - Strategy 2

(a) h=1 (b) h=4

NOTE. – The picture displays the evolution of the weights obtained through bayesian model averaging. Grey shaded
areas depict the NBER recession periods. Figure (a) displays the results for the one quarter-ahead forecasts. Figure
(b) displays the results for the four quarter-ahead horizon. The time-axis is origin based, i.e. display the weight
used at the time of the origin of the forecast. The color code for (a) and (b) is identical.
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Figure 3.3 and 3.4 show the model weights obtained using (3.5). For the one-quarter-
ahead forecast, the simple autoregressive forecast dominates for both, strategy 1 and
strategy 2. In contrast, for the four-quarter-ahead forecast, the weights displays
considerable time-variation and differences between strategy 1 and strategy 2. For
strategies, the term spread model evolved from being the dominant model in the 90s
to being only dominant for lower quantiles until mid-2000s, to eventually receiving
very small weights. In general, the autoregressive model, without additional pre-
dictors received higher weights at all quantiles and in particular for quantiles above
the median. Again, the weights differ markedly across the estimation strategies, in
particular with regard to the importance of residential investment.

3.3.2 Out-of-Sample Results - First-Release

To evaluate out-of-sample predictions of quantiles, we will use the tick loss function.
The function is defined as

Lτ (ŷ, y) = (y − ŷ)
(
τ − 1(y < ŷ)

)
(3.15)

where y denotes a realization of the predictand, ŷ denotes the forecast, 1 denotes
the indicator function and τ denotes the quantile to be evaluated. Importantly,
in this section, y will be first-release data. Table 3.5 and 3.6 show the results of
a forecast comparison based on individual losses obtained from (3.15). For the
purpose of interpretation, the numbers display the ratio of the loss of a benchmark
model to the loss of the model defined in the respective column. In Panel A, the
benchmark model is the bayesian quantile predictions with equal-weighting, Qew

t+h(τ)

(BQ-EW), and estimated with first-release data only, i.e. strategy 1. In Panel B
the benchmark is Qbma

t+h (τ) (BQ-BMA). The models labeled BQ-EW-EOS and BQ-
BMA-EOS denote the bayesian quantile predictions using end-of-sample vintages
in the estimation (strategy 2). BVAR and SV-EW denote the bayesian VAR and
the equal-weighting univariate SV models, all of which are estimated using strategy
1. A ratio below zero implies that the benchmark model is more accurate. A
number in boldface denotes statistical significance of a (two-sided) Giacomini and
White (2006) test of equal predictive ability at the 10% level.15 The benchmark
model in Table 3.5, Panel A, statistically significantly outperforms the bayesian
quantile forecasts using strategy 2 at higher quantiles and obtains a smaller loss for
lower quantiles. The evidence for a comparison between bma and equal-weights is

15The test is applied to the loss differential, which is defined to be ∆Lτ (ŷ1, ŷ2, y) = Lτ (ŷ1, y)−
Lτ (ŷ2, y) where ŷ1, ŷ2 are forecasts from two competing models.
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mixed and the quantile models exhibit a better predictive ability than the stochastic
volatility models, especially for quantiles above the median. Overall, the results of
the one quarter-ahead forecasts speak in favor of the quantile regression. Table
3.6 has the same structure as Table 3.5, but displays results for a horizon of four
quarters-ahead. Evidence is more mixed for several quarters ahead. While strategy 1
quantile regressions still outperform strategy 2, the evidence is weaker. In addition,
the ratio of the losses relative to the univariate models now point to the direction of
a better performance of the stochastic volatility models. We find similar evidence
for the bma quantile predictions.

Testing many quantiles individually is prone to a multiple testing problem. We
therefore turn to a joint evaluation of the quantile predictions using the continuous
ranked probability score (CRPS). Following Gneiting and Ranjan (2011), the CRPS
is defined as

CRPS(f, y) =

∫ ∞
−∞

(
F (z)− 1(y < z)

)2 dz

=

∫ ∞
−∞

Lτ (F−1(τ), y) dτ
(3.16)

where f denotes a density forecast, F and F−1 the respective cdf and inverse-cdf,
y the realization and τ a quantile. The second equality shows that the CRPS is
equal to evaluating the tick loss function jointly at all quantiles of the distribution.
As our forecasts are restricted to a finite number of quantiles, we use the method
described in section 3.2.2 to obtain a density forecast f . Table 3.7 displays the
ratios of the CRPS of the benchmark model and the competitors.16 A boldface
number indicates that the results of a (two-sided) Giacomini & White test on equal
predictive ability is rejected at the 10% level. The columns indicate the benchmark
models BQ-EW and BQ-BMA. Table 3.7 overall confirms the results from Table 3.5
and 3.6. The strategy 1 quantile regressions somewhat outperform the competitor
stochastic volatility models and the strategy 2 quantile predictions. Overall, the
evidence is less strong for horizons of four quarters-ahead, in particular, when using
bayesian model averaging as the weighting scheme.

16The stochastic volatility models do not provide a closed form expression to evaluate their cdf.
Krueger et al. (2017) show in a recent paper that, under very mild conditions, calculating the
CRPS using the empirical cdf, based on a large number of draws from the posterior, provides a
consistent approximation to the CRPS calculated under the unknown true posterior distribution.
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Table 3.5: One quarter-ahead Forecasts - Tick Loss Results

Panel A
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 BQ-EW-EOS 0.89 0.93 0.98 1.00 0.99 0.99 0.92 0.87 0.84

BQ-BMA 0.98 0.97 1.00 1.00 1.00 1.01 1.02 1.01 1.01
BVAR 0.98 0.96 0.97 0.96 0.92 0.88 0.83 0.80 0.84
SV-EW 0.88 0.93 0.98 1.01 0.99 0.99 0.92 0.88 0.84

Panel B
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 BQ-BMA-EOS 0.92 0.92 0.96 1.00 0.99 0.94 0.88 0.84 0.82

BVAR 1.00 0.98 0.97 0.96 0.93 0.88 0.81 0.80 0.83
SV-EW 0.88 0.96 0.98 1.01 1.00 0.98 0.91 0.88 0.84

NOTE. – Numbers in boldface denote a statistic that is statistically significant different from zero, at the 10% level,
when testing the loss differential, i.e. the difference between the benchmark and the competing model. For ease of
interpretation, the numbers show the ratio of the tick-loss of the benchmark model relative to the other models.
A number smaller/larger than one indicates a superior/inferior performance of the benchmark model. Standard
errors are robust to heteroskedasticity and serial correlation. The out-of-sample (origin) goes from 1990:Q3 to
2016:Q4, a total of 106 matches of realized observations and forecasts. Panel A displays the results when the
BQ-EW model is the benchmark. Panel B displays the results when the BQ-BMA model is the benchmark.

Table 3.6: Four quarter-ahead Forecasts - Tick Loss Results

Panel A
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4 BQ-EW-EOS 0.93 1.01 0.99 1.00 1.00 0.97 0.95 0.97 1.01

BQ-BMA 0.99 0.93 0.86 0.85 0.83 0.82 0.81 0.86 0.96
BVAR 0.91 0.86 0.82 0.80 0.78 0.77 0.76 0.75 0.80
SV-EW 1.09 1.09 1.03 1.03 1.01 1.00 1.01 1.02 1.10

Panel B
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4 BQ-BMA-EOS 0.96 0.92 0.96 0.97 0.97 0.96 1.01 1.03 0.99

BVAR 0.92 0.93 0.95 0.95 0.95 0.93 0.93 0.87 0.82
SV-EW 1.1 1.17 1.20 1.20 1.22 1.22 1.23 1.19 1.12

NOTE. – Numbers in boldface denote a statistic that is statistically significant different from zero, at the 10% level,
when testing the loss differential, i.e. the difference between the benchmark and the competing model. For ease of
interpretation, the numbers show the ratio of the tick-loss of the benchmark model relative to the other models. A
number smaller/larger than one indicates a superior/inferior performance of the benchmark model. Standard errors
are robust to heteroskedasticity and serial correlation. The out-of-sample (origin) goes from 1990:Q3 to 2016Q4, a
total of 106 matches of realized observations and forecasts. Panel A displays the results when the BQ-EW model is
the benchmark. Panel B displays the results when the BQ-BMA model is the benchmark.
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Table 3.7: Density Forecast Comparison via CRPS

h=1 h=4
Model BQ-EW BQ-BMA BQ-EW BQ-BMA

BQ-EW-EOS 0.97 0.97 0.99 0.97
BQ-BMA 1.00 1 0.89 1
BVAR 0.90 0.90 0.81 0.91
SV-EW 0.95 0.95 1.04 1.16

NOTE. – The columns indicate the benchmark models BQ-EW and BQ-BMA.
Numbers in boldface denote a statistic that is statistically significant different from
zero, at the 10% level, when testing the loss differential. The numbers show the
ratio of the CRPS of the benchmark model, relative to the other models. A number
smaller/larger than one indicates a superior/inferior performance of the benchmark
model. Standard errors are robust to heteroskedasticity and serial correlation.

Figure 3.5: CRPS Differences of Different Quantile Regressions

(a) h=1 (b) h=4

NOTE. – h denotes the forecast horizon. The solid line displays the difference of the CRPS of BQ-EW, estimated
using strategy 1, and the BQ-EW estimated using strategy 2. The grey shaded areas display NBER recession
periods.

Figure 3.5 displays the difference of the CRPS using strategy 1 versus strategy 2
of the BQ-EW model, i.e. a negative number indicates a more accurate prediction
of strategy 1. For both horizons, the difference gets negative before and during
the recession periods, indicating that the gain of strategy 1 might be particularly
important during economic downturns and the magnitude is quite large for a horizon
of four quarters-ahead. Whereas Figure 3.5 shows the importance of using real-time
vintages for the estimation, Figure 3.6 displays the difference of the CRPS using
BQ-EW (strategy 1 ) versus BVAR (strategy 1 ). Although the full out-of-sample
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test indicates superior performance of the quantile regressions, the BVAR seems to
outperform the quantile regression during recessions period and more so for longer
horizons.

Figure 3.6: CRPS Differences of Quantile Regression to BVAR

(a) h=1 (b) h=4

NOTE. – h denotes the forecast horizon. The solid line displays the difference of the CRPS of BQ-EW, estimated
using strategy 1, and the BVAR estimated using strategy 2. The grey shaded areas display NBER recession periods.

3.3.3 Out-of-Sample Results - Final-Release

The difference from this section to section 3.3.2 is that the y to evaluate the loss func-
tions Lτ (ŷ, y) and the CRPS(F, y) will be final-release data, i.e. the most accurate
estimate of the true value of y. The benchmark model is the equal-weighting quan-
tile regression forecast, estimated using strategy 2. The competitors are the bma
quantile model, the BVAR and the equal-weighting univariate stochastic volatil-
ity models, all estimated using strategy 2. For the one quarter-ahead horizon the
BQ-EW model again emerges as the best model as it outperforms the competitors,
especially for upper quantiles.
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Table 3.8: One quarter-ahead Forecasts - Tick Loss Results

Panel A
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 BQ-BMA 0.98 0.97 0.98 0.98 0.98 0.98 0.99 0.99 1.00

BVAR 1.01 0.94 0.92 0.86 0.82 0.82 0.80 0.78 0.78
SV-EW 0.99 1.00 0.99 1.00 1.00 0.98 0.95 0.90 0.86

Panel B
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 BVAR 1.02 0.97 0.93 0.88 0.85 0.84 0.81 0.79 0.79

SV-EW 1.01 1.02 1.02 1.01 1.02 1 0.97 0.92 0.87
NOTE. – Numbers in boldface denote a statistic that is statistically significant different from zero, at the
10% level, when testing the loss differential, i.e. the difference between the benchmark and the competing
model. For ease of interpretation, the numbers show the ratio of the tick-loss of the benchmark model
relative to the other models. A number smaller/larger than one indicates a superior/inferior performance of
the benchmark model. Standard errors are robust to heteroskedasticity and serial correlation. The out-of-
sample (origin) goes from 1990:Q3 to 2016:Q1, a total of 103 matches of realized observations and forecasts..
Panel A displays the results when the BQ-EW model is the benchmark. Panel B displays the results when
the BQ-BMA model is the benchmark.

For the four quarter-ahead horizon the stochastic volatility model tends to outper-
form both, the BQ-EW and BQ-BMA model. The BVAR again shows a better
performance for lower tails than for upper tails.

Table 3.9: Four quarter-ahead Forecasts - Tick Loss Results

Panel A
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4 BQ-BMA 1.05 0.96 0.94 0.9 0.85 0.82 0.82 0.83 0.94

BVAR 1.04 0.95 0.93 0.87 0.83 0.8 0.78 0.75 0.78
SV-EW 1.09 1.04 1.05 1.03 1.02 0.99 0.97 0.93 1.03

Panel B
Quantiles

h Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4 BVAR 1 0.99 0.98 0.97 0.98 0.97 0.95 0.90 0.84

SV-EW 1.04 1.08 1.12 1.15 1.20 1.21 1.19 1.13 1.1
NOTE. – Numbers in boldface denote a statistic that is statistically significant different from zero, at the
10% level, when testing the loss differential, i.e. the difference between the benchmark and the competing
model. For ease of interpretation, the numbers show the ratio of the tick-loss of the benchmark model
relative to the other models. A number smaller/larger than one indicates a superior/inferior performance
of the benchmark model. Standard errors are robust to heteroskedasticity and serial correlation. The out-
of-sample (origin) goes from 1990:Q3 to 2016:Q1 a total of 103 observations. Panel A displays the results
when the BQ-EW model is the benchmark. Panel B displays the results when the BQ-BMA model is the
benchmark.
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Table 3.10: Density Forecast Comparison via CRPS

h=1 h=4
Model BQ-EW BQ-BMA BQ-EW BQ-BMA

BQ-BMA 0.98 1 0.87 1
BVAR 0.85 0.87 0.86 0.98
SV-EW 0.98 1.00 1.02 1.18

NOTE. – Numbers in boldface denote a statistic that is statistically significant
different from zero, at the 10% level, when testing the loss differential. The
numbers show the ratio of the CRPS of the benchmark model (EW and BMA
respectively) relative to the other models. A number smaller/larger than one
indicates a superior/inferior performance of the benchmark model. Standard
errors are robust to heteroskedasticity and serial correlation.

We calculate again the CRPS to evaluate the quantiles jointly. The BQ-EW model
significantly outperforms the competitors at the one-quarter-ahead horizon. For the
four quarter-horizon, the BQ-EW model shows a superior performance albeit not
statistically significant.

Figure 3.7 plots the difference between the CRPS of the BQ-EW model and the
BVAR, where positive (negative) values indicate a superior (inferior) performance
of the BVAR. Results are quite similar to the first-release case displayed in figure
3.6. For the four-quarter-ahead horizon, the BVAR forecasts better for recession
periods but exhibits a worse performance for the period after the great recession.
The evidence points in the same direction for the one-quarter-ahead forecast.

Figure 3.7: CRPS Differences of Quantile Regression to BVAR

(a) h=1 (b) h=4

NOTE. – h denotes the forecast horizon. The solid line displays the difference of the CRPS of BQ-EW, estimated
using strategy 1, and the BVAR estimated using strategy 2. Positive (negative) values indicate a superior (inferior)
forecast of the BVAR. The grey shaded areas display NBER recession periods.
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3.4 Conclusion

We estimated real-time quantile and density forecast based on quantile regressions
for US real GDP growth. Our findings indicate that pooled quantile regressions are
competitive to stochastic volatility models, in particular for shorter horizons. We
find that an equal-weighting scheme outperforms bayesian model averaging for four
horizons when comparing forecasts within the class of quantile regressions. For a
horizon of one quarter, the evidence is mixed. As the bma weights exhibit consid-
erable time-variation and their performances deteriorate with the forecast horizon
suggests that results could be improved by a form of dynamic model averaging. If
the aim is to predict first-release data the results indicate to use first-release data
in the parameter estimation of the models - the gains that we find are particularly
big during the beginning of recession periods. Although in general, the quantile re-
gressions tend to do better than the stochastic volatility models, the bayesian VAR
tend to forecast better during recessions.

We leave for future work to develop a test statistic that can jointly test the
performance of the models at a finite number of quantiles because testing different
quantiles individually leads to the problem of multiple testing.
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