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Abstract

Navigationin unknavn unstructureenvironmentds still adifficult openproblemin the
field of robotics. In this PhD thesiswe presenta novel approackfor robot navigation
basedon the combinationof landmark-basedavigation, fuzzy distancesand angles
representatioandmultiagentcoordinationbasedon a bidding mechanismThe objec-
tive hasbeento have arobustnavigationsystemwith orientationsensdor unstructured
environmentsusingvisualinformation.

To achiere suchobjective we have focusedour efforts on two mainthreads:navi-
gationandmappingmethodsandcontrolarchitecture$or autonomousgobots.

Regardingthe navigation andmappingtask,we have extendedthe work presented
by Prescottsothatit canbe usedwith fuzzy informationaboutthe locationsof land-
marksin the ervironment.Togethermwith this extension we have alsodevelopedmeth-
odsto computedivertingtargets,neededy therobotwhenit getsblocked.

Regardingthe control architecture we have proposeda generalarchitecturethat
usesabiddingmechanismo coordinatea groupof systemghatcontroltherobot. This
mechanismcan be usedat differentlevels of the control architecture. In our case,
we have usedit to coordinatethe three systemsof the robot (Navigation, Pilot and
Vision systemspandalsoto coordinatethe agentshat composehe Navigation system
itself. Using this bidding mechanisnthe actionactually being executedby the robot
is the mostvaluedone at eachpoint in time, so, given that the agentsbid rationally,
the dynamicsof the biddingswould leadthe robotto executethe necessaractionsin
orderto reachagiventarget. Theadwantageof usingsuchmechanisnis thatthereis no
needto createa hierarchy suchin the subsumptiorarchitectureput it is dynamically
changingdependingon the specificsituationof the robotandthe characteristicef the
ervironment.

We have obtainedsuccessfutesults,both on simulationandon real experimenta-
tion, shaving that the mappingsystemis capableof building a map of an unknavn
ernvironmentandusethis informationto move therobotfrom a startingpointto agiven
target. The experimentatioralsoshavedthatthe bidding mechanisnwe designedor
controlling the robot producesthe overall behaior of executingthe properaction at
eachmomentin orderto reachthetarget.






Resum

La navegacb enentornsdescongutsno estructurat&sencaraun problemaobertenel
campdela robotica. En aquestdesipresentenunaaproximacbd perala navegacid de
robotshasadanla combinacd de navegacb basadanlandmarksrepresentaéifuzzy
d'anglesi distanciesi unacoordinacd multiagentbasadaen un mecanismede dites.
L'objectiu delatesihasigutdesenoluparun sistemade navegacib robustambsentitde
I'orientacio peraentornsno estructuratsisantinformacio visual.

Pertal d'assolir aquestobjectiu, hem centratels nostresesfor®s en dueslinies
d’'investigach: metodedde navegacb i construcob de mapesj arquitecturesliecontrol
perarobotsaubnoms.

Pel quefa als métodesde navegac i construcad de mapeshemextesel treball
presentaper Prescotipertal que espugui utilitzar ambinformaci fuzzy sobrela lo-
calitazcd delslandmarks A partd’aguestaxtensd, tamke hemdeserolupatmetodes
pera calcularobjectiusalternatiusnecessariguanel robottrobael cani bloquejat.

Pel quefa a I'arquitecturade control, hem proposatuna arquitecturageneralque
utilitza un mecanismede dites per a coordinarun grup de sistemesque controlenel
robot. Aguestmecanismepot ser usaten diferentsnivells de I'arquitectura. En el
nostrecasl’hem usatper a coordinarels tres sistemesdel robot (Navegacb, Pilot i
Visi6), i tamke peracoordinarelsagentgjuecomposerel sistemade Navegacb. Usant
aquestmecanismede dites, I'accidé que executael robot ésla més ben valoradaen
cadainstant. D’aquestamanera| si els agentsfanles ditesd’'una maneraracional,la
dinamicade les ditesportael robota executarles accionsnecesariespertal d'arribar
a I'objectiu indicat. L’'avantatged'utilitzar aquestmecanismees que no cal imposar
unajerarquiaentreels sistemescom passeaen I'arquitecturade subsumpd, si no que
aquestgerarquiacarvia dinamicamentdepenentiela situacb enque estrobael robot
i lescaracteistiquesdel’entorn.

Hemobtingutresultatssatishctoris,tantensimulacb comenexperimentadd amb
unrobotreal,queconfirmenqueel sistemale navegacib éscapaade construirunmapa
objectiudonat.L'experimentad tambké hamostratqueel sistemade coordinacd basat
en dites que hem disselyat produeixel comportamenglobal d’executarles accions
necesariesencadainstantpertal d’arribaral’objectiu.
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Chapter 1

Intr oduction

robot
Fromtranslatiorof 1920play“R.U.R” (“RossumsUniversalRobots”),by Karel
éapek(1890—1938),from Czechrobota“forced labor, drudgery”,from robotiti
“to work, drudge”, from Old Church Slavonic rabota “servitude”, from rabu
“slave”, from a Slavic stemrelatedto Germanarbeit “work”.

1.1 Overview and Motivation

Sincethelate 1960s,with the developmentof SRI's Shaley robot[54], artificial intel-
ligence(Al) and mobile roboticshave beencloselyrelated. A mobile robot mustbe
autonomousdeal with uncertainty plan and decidewhatto do, reactto unpredicted
situationsthatis, it hasto overcomereally hardproblemsif we wantit to actin anin-
telligentandautonomousvay. Thus,mobile robotsposeoneof the biggestchallenges
for Al.

Although impressie successebave beenobtainedsinceShaley, it cannotstill be
saidthatthe objective of having truly autonomousobotshasbeenachierzed. Oneof the
fieldsin whichthereis still muchto dois onmobileroboticsfor unknovn ervironments.

Roboticsystemdfor navigating throughunknown environmentsare a focusof re-
searchin mary applicationareasncluding,amongothers,spacecraffroversfor Mars
andthe Moon) and searchandrescuerobotics. Thesesystemshave to performvery
differenttasksfrom looking for rocks,picking themup andanalyzingthem,to assess-
ing damage®r looking for survivors aftera naturaldisasteror accidenthashappened.
However, they all sharetwo key characteristicsfirst, they have to achieve their goals
autonomously andsecondthey have to navigatein unknovn ervironments.

Thefirst key point in theseapplications,autonomy arisesfrom the impossibility
of alwayshaving a humanoperatorcontrolling the robotic system.Althoughtheideal
situationwould beto have anexpertoperatorcontrollingtherobot,thenecessargondi-
tionscannotalwaysbe met. Theseconditionsareusuallyrelatedto the communication
betweerthe operatorandthe robot. In mary situationsit is very difficult to guarantee
thatthe communicatiorlink will berobust,in termsof speedandavailability. A clear

1



2 Chapter 1. Introduction

exampleis foundon planetaryexplorationmissions.A majorproblemin suchmissions
is the distancebetweerthe robotandthe control station(usuallylocatedon the Earth);
thetime of sendinganorderto therobotandhaving it executedcanbein the orderof

minutes. In the casea fastreactionwere needed changingthe trajectoryof therobot,
selectinga new scientifictargetthat might be morerelevantto the mission,etc.), this
time would not be acceptableat all. Anotherdisadwantageof dependingon external
agentgbeit ahumanor ary otherdevice — e.g. a GPSdevice for localisation)is that
therobotcangetblockedif any of theseagentgproviding basicinformationfor accom-
plishing the task crashes.This would leave the robotwith no meansto continuewith

its mission. Therefore,all the decisionsshouldbe taken on-board,without having to

exchangecommandsor informationwith ary externalagent,or at least,malke this ex-

changeminimal, suchassendingonly informationabouttaskinitialisation (e.qg. target
selectiontaskdescriptiongtc.).

The otherimportantpoint for suchapplicationsis navigation The robot mustbe
ableto startin anunknawn locationandnavigateto a desiredtarget. Navigationin un-
known unstructuree@rnvironmentgs still adifficult openproblemin thefield of robotics.
Thefirst difficulty of suchanervironmentis thatthereis noapriori knowledgeaboutit,
andthereforea mapcanonly bebuilt while exploring. Secondlyunstructureenviron-
mentsarecharacterizedprecisely by the lack of structureamongthe differentobjects
of theworld. This is usuallythe casefor outdoorervironments.On the otherhand,in
structuredervironments suchasoffices,buildings, etc. mary suppositionsabouttheir
structurecanbe done. For instance walls and corridorsare straight,they are usually
orthogonal mostof the doorshave the samesize, etc. Thesecharacteristicarevery
helpfulwhenbuilding amapof theenvironment,asits structurecanbeinferredwithout
the needof sensingthe whole ervironment. Contrarily, in unstructurecervironments
suchsuppositionglo nothold, sotherobotcanonly rely ontheinformationit is ableto
gatherfrom its sensorsThis makesthetaskof mapbuilding andnavigatingevenmore
difficult.

This researchwork is part of a larger roboticsproject. Anotherpartner(IRI%) in
the projectis building a six leggedrobotwith on boardcamerador outdoorlandmark
recognition. The goal of the projectis to have a completelyautonomousobot capable
of navigatingin outdoorunknonn ervironments. A humanoperatomwill selectatarget
usingthe visualinformationrecevedfrom the robot’s cameraandthe robotwill have
to reachit without ary interventionof the operator The robot could alsohave anim-
ageor descriptionof the target, so the humaninterventionwould not even be needed
for selectingthe target. A first milestonefor achieving the final goal of the projectis
to develop a navigation systemfor indoor unknown unstructuredervironmentsfor a
wheeledrobot. Moreover, the ervironmentsof this first stageare composedf easily
recognizablédandmarkssincethevision systemfor outdoorss not yet available.

We proposea robot architectureto accomplishthis first milestone. The approach
usedandthe resultsobtainedare the subjectof this thesis. The robot architectureis
composedf threesystems:the Pilot system,the Vision systemand the Navigation
system.Eachsystemcompetedor the two availableresourcesmotion control (direc-
tion of movement)andcameracontrol (directionof gaze). Thethreesystemdave the

Linstitut de Robdticai Informaticalndustrial, http://wwwiri.csic.es



1.1. Overview and Motivation 3

following responsibilities.The Pilot is responsibldor all motionsof the robot. It se-
lectsthesemotionsin orderto carry out commanddrom the Navigation systemand,
independentlyto avoid obstaclesThe Vision systemis responsibldor identifying and
trackinglandmarks(including the targetlandmark). Finally, the Navigation systemis
responsibldor choosinghigherlevel decisionsn orderto movetherobotto aspecified
target. This requiresrequestinghe Vision systemto identify andtrack landmarks(in
orderto build a mapof the environment)andrequestinghe Pilot to move therobotin
variousdirectionsin orderto reachthe goal positionor someintermediatdarget.

Fromthe brief descriptionof therobotarchitecturegivenabove, it canbe obsered
thatthethreesystemsnustcooperateandcompete They mustcooperatdecausehey
needoneanothelin orderto achieve theoveralltaskof reachinghetargetposition.But
atthesametime they arecompetingfor motionandcameracontrol.

The Navigation systemis implementedasa multiagentsystem whereeachagent
is competenin a specifictask. Dependingon its responsibilitiesandthe information
receved from otheragents,eachagentproposesvhich actionthe Navigation system
shouldtake. Again, we find that the agentamustcooperatesincean isolatedagentis
not capableof moving therobotto thetarget, but they alsocompetepecausalifferent
agentsvantto performdifferentactions.

The problemof cooperatiorandcompetitionbetweerdifferentagentss very com-
mon in robotics,and BehaviorbasedRobotics[3] addressesxactly this issue. This
approacho robotic systemslealswith coordinating or arbitrating,differentbehaviors
sendingrequestdor actions,usuallyincompatiblewith eachother, to arobot. Therole
of the coordinationis to selecta singleactioncommandhatwill be sentto the robot.
Whenthis actionis a selectionof one of the behaviors’ requestswe talk aboutcom-
petitivecoordinationwhereasf the actionis a mix of severalbehaiors’ requestswe
talk aboutcoopeative coordination.In our architecturegachagentplaystherole of a
behavior, andthereis anadditionalagentplayingtherole of coordinator

For boththeoverallrobotsystemandthe Navigation systemwe proposehe useof
a new competitive coordinationsystembasedon a bidding medanism In the overall
robotsystemtheNavigationandthePilot systemgeneratdidsfor theserviceoffered
by the Pilot andVision systems.Theseservicesareto move the robottoward a given
direction,andto move the cameraandidentify the landmarksfound on its view-field,
respectiely. The serviceactuallyexecutedoy eachsystemdepend®nthewinning bid
ateachpointin time. Similarly, in theNavigationsystemgachagentbidsfor theaction
it wantstherobotto perform. Thesebidsaresentto a specialagentthatgathersall bids
anddetermineghe winning action. The selectedactionis thensentasthe Navigation
systems bid for the servicesof the Vision andPilot systems.

The architecturgust describedabove is actually an instantiationof a generalco-
ordinationarchitecturewve have developed. In this architecturehereare two typesof
systems:executivesystemsand delibemative systems Executive systemshave access
to the sensorsand actuatorsof the robot. Thesesystemsoffer servicesfor usingthe
actuatordo the restof the systemgeitherexecutve or deliberatve) andalsoprovide
information gatheredrom the sensors.On the other hand,deliberative systemsake
higherlevel decisionsandrequirethe servicesofferedby the executive systemsn or-
derto carryout thetaskassignedo therobot. Althoughwe differentiatebetweerthese
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two typesof systemsthe architectures not hierarchical,and coordinationis madeat
a singlelevel involving all the systems.This coordinationis basedon a simplemech-
anism: bidding. Deliberative systemsalwaysbid for the servicesofferedby executive
systemssincethis is the only way to have their decisionsexecuted.Executive systems
thatonly offer servicesdo not bid. However, thoseexecutive systemghatrequireser
vicesfrom ary executive system(including themseles) mustalsobid for them. The
systemsid accordingto the internalexpectedutility associatedo the provisioning of
aservice.A coordinatorrecevesthesebiddingsanddecidesvhich serviceeachof the
executive systemshasto engageon. In the instantiationfor our navigation problem,
thereis a deliberatie system,the Navigation system,one executive systemthat bids,
the Pilot systemandoneexecutive systemthatonly offersservicesthe Vision system.

To navigatein anunknowvn ervironment,the robotmustbuild a map. Existingap-
proachesssumehatanappropriatelydetailedandaccuratenetricmapcanbeobtained
throughsensingheenvironment.However, mostof theseapproachesely onodometry
sensorswhich canbe very imprecise,dueto the wheelsor legs slipping, andleadto
mary errorsthatgrow astherobotmoves.

Our approachconsidersusing only visual information. The adwantageof using
visual informationis thatit is independenbf arny pastactionthe robot may have per
formed,whichis notthe casefor odometry The robotmustbe equippedwith arobust
vision systemcapableof recognisingandmarksandusethemfor mappingandnavi-
gationtasks. The specificscenariathat we are studyingassumeshatthereis a target
landmarkthat the robot is able to recognizevisually. The targetis visible from the
robot’s initial location (so that the humanoperatorcan selectit), but it may subse-
quentlybe occludedby interveningobjects. The challengefor the robotis to acquire
enoughinformationabouttheervironment(locationsof otherlandmarksandobstacles)
sothatit canmove alonga pathfrom the startinglocationto thetarmget.

But even vision-basecdhavigation approachesissumeunrealisticallyaccuratedis-
tanceanddirectioninformation betweenthe robot and the landmarks. We proposea
fuzzy setbasedapproachthat assume®nly very rough vision estimationof the dis-
tancesand,thereforedoesnotrely on ary localisationdevice.

Themaingoal of our researchs to designa robustvision-basedavigation system
for unknowvn unstructurecervironments. In particulay we want to provide the robot
with orientationsensesimilar to thatfoundin humansor animals.Therationaleof the
orientationsensas thattherobotdoesnotneedto know theexactroutefrom its starting
pointto thetarget’s location, but it useslandmarksasreferencedo find its way to the
target. To make a parallelwith humanswhengiving directionsfor going someavhere
in our city, no one gives exact distancesturning angles,etc., but gives approximate
distancesand more important,referencepoints (distinctive placessuchas buildings,
squaresetc.) that help us gettingto the destination.In our approachthis orientation
senseis realizedby the useof landmark-basedhavigation topological mappingand
qualitative computationof landmarklocations. We give a brief definition of eachof
thesethreeconcepts:

e Landmark-basedavigation A landmarkis a visually salientobjectof the envi-
ronmenttherobotis ableto identify. Othernavigationapproachethatdo notuse
vision systemalefinea landmarkasa setof featuregherobotcandetectwith its
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sensorgusuallysonaror laserreadings) As the robotexploresthe ervironment,
it storesthe detectedandmarkson a map. Whentherobotneeddo locateitself

onthe map,it candoit by matchingthe detectedandmarkswith the landmarks
alreadystoredon the map. This approactavoidsrequiringodometryasthe main

informationsourcefor navigatingandbuilding maps.

e Topological mapping thisapproacho mapbuilding hasacloserelationshipwith
landmark-basedavigation. A topologicalmapis usuallya graph,wherenodes
represenfandmarksand arcsrepresenpathsor motion instructionsfor going
from onelandmarkto another The advantageof this approachs thatthereis no
needfor building accurategeometricnaps.Storingthe topologicalrelationships
amongthelandmarksn the ervironmentis enough.

e Qualitative computation we usethe term “qualitative” in the sensethatwe do
not needto work with exact distanceor angleinformation; we can deal with
someimprecisionaboutit. More specifically we dealwith it by meansof fuzzy
numbersandfuzzy arithmetic. Thus,whenwetalk aboutqualitatively computing
thelocationof alandmark,it meanghatwe aretakinginto accountthe possible
imprecisionaboutits location.

Our map representationhowever, is slightly differentfrom the one given above.
The mapis a labeledgraphwhosenodes,insteadof representingsolatedlandmarks,
representriangularshapedregions delimited by groupsof three non-collinearland-
marks,andwhosearcsrepresenthe adjaceng betweerregions,thatis, if two regions
sharetwo landmarks the correspondinghnodesare connectedoy an arc. The arcsof
the grapharelabeledwith coststhat reflectthe easines®f the path betweenthe two
correspondingegions.A blockedpathwould have aninfinite cost,whereasflat, hard
paved pathwould have a costcloseto zero. Sincethe mapis not given, but built while
the robot moves,thesecostscanonly be assignedafter the robot hasmoved (or tried
to move) alongthe pathconnectinghe two regions. Althoughthe adjacenyg of nodes
in our graphalsorepresentadjaceng of topologicalplacesthearcscontainonly cost
information, not instructionson how to getfrom one placeto another But, actually
this informationis not missing, it is implicit in the adjaceng of regions. Giventhat
two nodesareadjacenbonly if their regionssharetwo landmarksit is clearthatto go
from oneregion to anothertherobothasto crossthe edgeformedby the two common
landmarksunlesgthereis along obstacleblockingthis path.

Although this topological map would be suficient for carrying out navigational
tasks, we also provide the robot with the capability of storing the spatial relation-
shipsamonglandmarks.To realizethis capability we have extendedPrescotis beta-
coeficientssysten{55]. Prescots modelstoregherelationshipsamongthelandmarks
in the ervironment. The locationof alandmarkis encodedbasedon the relative loca-
tions (headingsanddistancesf threeotherlandmarks Thisrelationships uniqueand
invariantto viewpoint. Oncethisrelationshiphasbeenstored thelocationof eachland-
markcanbecomputedrom thelocationsof thethreelandmarksencodingt, no matter
wheretherobotis located,aslong asthe robot cancomputethe headinganddistance
to eachof thethreelandmarks.As therobotexploresthe environment,it storesthere-
lationshipsamongthelandmarkst seesThis creates network of relationshipsamong
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thelandmarksn the ervironment.If this network is sufficiently-richly connectedthen
it providesa computationamapof the ervironment.Giventhe headingsanddistances
to a subsebf currently-visiblelandmarksthe network allows usto computethe loca-
tions of all of the remaininglandmarksgvenif they arecurrentlynotvisible from the
robot. Prescotiassumedhatthe robot could have the exactdistancesand headinggo
thelandmarksbut aswe mentionedoreviously, we needto dealwith theimprecisionof
therealworld. To dealwith it, we have extendedthe modelusingfuzzy numbersand
fuzzy arithmetic. With this extension,if the targetis ever lost during the navigation,
therobotwill computeits locationwith respecto a setof previously seenlandmarks
whosespatialrelationwith thetargetis qualitatively computedpothin termsof fuzzy
distanceanddirection.

We have implementedhe overall architectureandthe Navigation systemandfirst
testedit over a simulator After obtainingpromisingresultson simulation,we have
implementedhealgorithmon awheeledrobotandtestedt onrealenvironments.

Although the tuning of our systemwas carried out throughthe experimentation
with therealrobot,we alsoemployedsimulationto apply machindearningtechniques
in orderto improve the performanceof the system. In particular we have applied
Reinforcement.earningandGeneticAlgorithms. We have usedReinforcement.earn-
ing to have the systemlearnto usethe cameraonly whenappropriate.The camerais
a very expensve resourceandit hasalsoa very high demand(the Pilot and several
agentscompetefor its control). Sincemanualtuning of the parametersontrolling the
agents’behaiors is very difficult, andthe problemwe aretrying to solve is a quanti-
tative trade-of, Reinforcement.earningis foundto bethe mostappropriatéechnique
to use,asits maingoalis to maximizeexpectedreward. We have obtainedgoodresults
that shaw the feasibility of applying Reinforcement.earningto improve our system.
Nonethelessye still needfurtherexperimentatiorandtuningof thelearningalgorithm,
in orderto integratethelearnedpolicy into the multiagentsystem.In parallel,we have
useda GeneticAlgorithm to tunethe differentparametersf the agents.The tuning of
theseparametergsannotbe donemanually neithercanit be doneusingReinforcement
Learning.Thereforewe have choserto usea geneticalgorithmapproach.

1.2 Contributions

The objective of theresearcltarriedout during the completionof this PhD thesishas
beento accomplishthefirst milestoneof the above mentionedoroject,thatis, develop-
ing a navigation systemfor indoor unknovn unstructurecervironmentsfor a wheeled
robot. More precisely we have focusedon the Navigation systemand on the overall
robot architecture. However, we have also had to implementsimple versionsof the
Pilot andVision systemsn orderto realizeandtestthe Navigation system.

As it may have alreadybeennoticed,this work hastwo mainresearchhreads:the
control architectureandthe mappingand navigationmethod

Regardingthe control architecture, we have proposed generakoordinatiorarchi-
tecturethatusesa biddingmechanisnior coordinatingagroupof systemgandagents)
that control a robot. This mechanisntanbe usedat differentlevels of the control ar-
chitecture.In our case we have usedit to coordinatetwo of the systemsof the robot
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(NavigationandPilot systemsandalsoto coordinatehe agentshatcomposdhe Nav-

igation systemitself. Moreover, the multiagentview of the Navigation systemcould
alsobe appliedto othersystemshaving a multiagentPilot or a multiagentVision sys-
tem. Using this bidding mechanismthe actionactually being executedby the robot
is the mosturgentoneat eachpoint in time, andthus,if the agentsbid rationally, the
dynamicsof the biddingswould leadthe robotto executethe necessargctionsin or-

derto reacha giventarget. An advantageof usingsuchmechanismis thatthereis no
needto createa hierarchysuchasin the subsumptiorarchitecturebut it is dynamically
changingdependingon the specificsituationof the robotandthe characteristicef the
ervironment. A secondadwantageis thatits modularview conformsan extensiblear

chitecture.To extendthis architecturewith anew capabilitywe would justhave to plug
in anew system(or agent).

Regardingthe mappingand navigation method we have extendedthe work pre-
sentedby Prescot{55], sothatit canbeusedwith fuzzyinformationaboutthelocations
of landmarksn the ervironment. This is of greatimportancewhenworking with real
robots,asit is impossibleto avoid dealingwith the imprecisionof real world ervi-
ronments. Togetherwith this extension,we have alsodevelopedmethodsthat permit
computingdivertingtargets,neededy therobotwhenthereis no clearpathto thegoal.

1.3 Publications

The publicationsrelatedwith this researchhathave beenpublishedasjournal articles
or in conferenceproceedingsirethefollowing:

e C. Sierra,R. Lopezde Mantarasand D. Busquets. Multiagentbidding mecha-
nismsfor robotqualitatve navigation. Lecture Notesin ComputerSciencePro-
ceedingATAL'00), vol. 1986 pagesl98—212 Springer Verlag,2001.

e D. BusquetsR. Lopezde MantarasandC. Sierra. A robust MAS coordination
mechanisnfor actionselection.Proceedingf 2001 AAAI Spring Symposium,
Stanfod, CA. Rolust AutonomySerig pages38—40,2001.

e D. BusquetsR. Lopezde MantarasC. Sierraand T.G. Dietterich. Reinforce-
mentLearningfor Landmark-base®obotNavigation. Proceedingof the First
International Joint Confeenceon AutonomousAgentsand Multiagent Systems
(AAMAS2002) pages841-842 ACM press2002.

e T.G.Dietterich,D. BusquetsR. LopezdeMantarasndC. Sierra.Action Refine-
mentin Reinforcement.earningby Probability Smoothing.Proceedingsf the
19thiInternationalConfeenceon MachineLearning(ICML'02), pagesl07-114,
2002.

e D. BusquetsT.G. Dietterich,R. LopezdeMantarasndC. Sierra.A multi-agent
architecturdantegratinglearningandfuzzy techniquedor landmark-basedobot
navigation. Topicsin Artificial Intelligence Lectuie Notesin Atrtificial Intelli-
gence(Proceedingsf CCIA02), vol. 2504 pages269-281,Springer Verlag,
2002.
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e D. BusquetsC. Sierraand R. Lopezde Mantaras.A multi-agentapproachto
fuzzy landmark-basedhavigation. Journal of Multiple-Valued Logic and Soft
Computing Old City Publishing(In press).

e D. BusquetsC. Sierraand R. Lopezde Mantaras.A Multi-agentapproachto
qualitatve landmark-basedavigation. AutonomousRobots Kluwer Academic
PublishergIn press).

1.4 Structure of the Thesis

This PhDthesisreportis organizedasfollows:

Chapter 1. Intr oduction

This chaptergivesanoverview of this PhDthesis,jits motivations,objectivesand
its main contritutions. It alsogivesallist of the publicationsoriginatedfrom the
researcltarriedout duringthe completionof thethesis.

Chapter 2. Relatedwork and state-of-the-art

Thischapteiis devotedto relevantrelatedwork andstate-of-the-arbn thefield of
autonomousobotsfor unknowvn unstructuredenvironments. The relevantwork
hasbeendividedin two parts,onefor eachmainthreadof researctof thethesis:
control architecturesand mappingand navigation methods. The relevantwork
concerningcontrolarchitectureglivesanoverview of thedifferentapproachesn
autonomousobotscontrol,focusingon the behaior-basedapproachRegarding
themappingmethodswe review andcomparehetwo mainapproachefor map
building, themetriconeandthetopologicalone.A comparisorbetweertwo dif-

ferentlocalisationapproachefandmark-baselbcalisationandmodelmatching)
is alsogiven.

Chapter 3. Mapping and Navigation

In thischaptemvefirstly describePrescotts modelfor storingspatialrelationships
amongthe landmarksof the ervironment. After that, we describehow we have
extendedthis modelfor dealingwith impreciseinformationaboutthelocationof
thelandmarks.We also presenthe algorithmfor building a topologicalmap of
the ervironmentandhow it is usedto computediverting targets,neededy the
robotwhenit is blocked.

Chapter 4. The Robot Ar chitecture

In this chaptera generakoordinationarchitecturébasedn abiddingmechanism
is presentedWe alsopresenthe particularinstantiationof the generalarchitec-
turethatwe have usedto solve the navigationproblem.A detaileddescriptionof
themultiagentNavigationsystemis alsogivenin this chapter
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Chapter 5. Simulation Results

In this chapterthe resultsof the simulatedexperimentsare presentedTheseex-

perimentsincludethe testingof our architectureandthe applicationof Machine
Learningtechnique$n orderto improvetheperformancef thesystem.n partic-
ular, we presenthe applicationof Reinforcement.earning,which we have used
to make thesystemearnhow to appropriatelyusethe cameraandanapplication
of GeneticAlgorithms, usedto tunesomeof the parametersf the agentsof the
Navigationsystem.

Chapter 6. Real Experiments

This chapteris devotedto presentthe resultsof the experimentson real envi-
ronmentswith a real robot. Firstly, the wheeledrobot platform and a simple
vision systemusedfor the real environmentsexperimentsare described.Then,
we describethe differentscenariosn which the experimentshave beencarried
out. Finally, the resultsof the experimentationn suchscenariosaregivenand
discussed.

Chapter 7. Conclusionsand Futur e Work

In this chapteywe summarizehe main contributionsof the thesis,andpoint out
someopenproblemsandfutureresearciperspeciiesthatwe planto tacklein the
nearfuture.






Chapter 2

RelatedWork and
State-of-the-art

In this chapterwe review relevantrelatedwork andthe state-of-the-aron the field of
autonomousobotics. We have dividedit in two sectionspnefor eachmain threadof
our researchControl ArchitecturesandMappingandNavigation.

2.1 Control Architectures

A mobilerobotworkingin unknovn ervironmentshasto beableto perceve theworld,
reasonaboutit, andactconsequentlyn orderto achiese its goals. The way in which
this processs doneis definedby therobot’s controlarchitecture Many approachefor
controlarchitecture®iave beendeveloped andtherealsoexist mary definitionsof what
acontrolarchitectures:

“Robotic architecture is the disciplinedevotedto the designof highly specificand
individual robotsfroma collectionof commorsoftwae building blocks” — Adaptation
of Stones[62] definitionof computerarchitecture.

“ [an architecture refeis to] the abstact designof a classof agents: the set of
structural component$n which perception,reasoning and action occur; the specific
functionality and interface of eadh componentand the interconnectiontopolagy be-
tweencomponents.— Hayes-RotH30].

“An architecture providesa principled way of organizinga control system.How-
ever, in addition to providing structure, it imposesconstaints on the way the control
problemcanbesolved. — Mataric[48].

“An architectureis a descriptionof howa systenis constructedrombasiccompo-
nentsand howthesecomponentsit togetherto form thewhole” —JamedAlbus,atthe
1995AAAIl SpringSymposium.

The maindifferencebetweerthe architectureproposedn the pastyearsrelieson
whetherthey aremoredeliberatie or morereactve. Figure2.1 depictsthe spectrunof
controlarchitectures.

11
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Figure2.1: Controlarchitecturesspectrum

In this sectionwe give anoverview (characteristicsadvantagesanddisadwantages)
of the threemain approachespurely deliberatve or hierarchical architectues purely
reactive or behaviorbasedarchitectuies andhybrid architectuies which combineboth
previousmethods.

2.1.1 Hierarchical Architectures

Hierarchicalarchitecturesalsonameddeliberatve control architectureswereusedfor
mary yearssincethe first robotsbeganto be built. Examplesof sucharchitectures
androbotsare SRI's Shaley [54], Stanfords CART [50], NASA's Nasremsystem[42]
andlIsik’'s ISAM [32], amongothers. Thesearchitecturesare basedon a top-dovn
philosophyfollowing a sense-plan-aanodel(seeFigure2.2). The control problemis
decomposeithto a setof modules sequentiallyorganized:first the perceptiormodule
getsthe sensoryinformation, which is passedo the modelingmodule that updates
aninternalmodel of the environment; after that, planningis doneusingthis internal
model,andfinally the executionmoduleimplementshe solutionwith the appropriate
commanddor the actuators.

Y

Act

Y

Sense Model[— Plan

Sensors
Actuators

Figure2.2: Sense-plan-achodel

This modelworks very well whenthe environmentin which the robotis working
can be tailoredto the taskto be performed(e.g. industrial robotsin factories,with
magneticheaconsmarked paths,etc.). However, whenthe taskis to be performedin
anunknawn, unpredictablenoisy environment,they fail to succeedasthe planningis
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Perception——| Behavior — Response

Figure2.3: Singlebehaior diagram

usuallyout-of-dateby thetime it is beingexecuted.

Anotherdrawbackof sucharchitecturess their lack of robustnessSincethe infor-
mationis processedequentiallyafailurein any of thecomponentgauses complete
breakdevn of thesystem.

2.1.2 Behavior-basedRobotics

Behaior-basedrobotics[3] appearedn the mid 1980sin responseo the traditional
hierarchicalapproach Brooks[8] proposedo tightly coupleperceptiono action,and
thereby provide a reactve behaior that could dealwith any unpredictedsituationthe
robotmay encounter Moreover, Brooksadwcatedfor avoiding keepingany modelof
the ervironmentin which the robot operatesarguing that “the world is its own best
model”. Behavior-basedroboticsis a bottom-upmethodologyinspiredby biological
studies,wherea collectionof behaiors actsin parallelto achieve independengoals.
Eachof thesebehaiorsis asimplemodulethatrecevesinputsfrom therobot'ssensors,
and outputsactuatorcommandgseeFigure 2.3). The overall architectureconsistsof
several behaviors readingthe sensoryinformationand sendingactuatorcommanddo
a coordinatorthat combineshemin orderto senda singlecommando eachactuator
(seeFigure2.4).

= Behavior n =

Y

> Behavior n-1

y

Sensors
Coordinator
Actuators

= Behavior 2

—| Behavior 1 ™

Figure2.4: Behavior-basedarchitecture

Themostrepresentatie of sucharchitecturesireBrooks’ subsumptiomrchitecture
[8], Maes’actionselection[43] andArkin’smotorschemad4]. Sincethen,mary other
architectureiave beenproposed.

Behavior-basedarchitecturesreclassifieddependingon how the coordinationbe-
tweenbehaiorsis done:

e Competitive in thesearchitectureshe coordinatoiselectsanactioncomingfrom
one of the behaviors and sendsit to the actuatorsthatis, it is a winnertake-
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all mechanism.Subsumptiorarchitectureand action selectionare examplesof
competitive coordination.

e Coopeative in thesearchitectureshe coordinatorcombineghe actionscoming
from severalbehaiors to producea new onethatis sentto the actuators Motor
schemass anexampleof cooperatie coordination.

In this sectionwe give a brief overview of the threemostknown behaior-based
architecturesndpoint out someothersrelevantto our work.

Subsumptionarchitecture

The Subsumptiorarchitecture designedby Rodne Brooks [8], was the first of the
Behavior-basedarchitecturesln thisarchitectureeachbehaior is representedsasep-
aratelayer, having directaccesdo sensoryinformation. Eachlayer hasanindividual
goal, andthey all work concurrentlyandasynchronouslyA layeris constructedf a
setof AugmentedFinite StateMachines(AFSM), connectedy wires throughwhich
signalscan be passedrom one AFSM to another Theselayersare organizedhierar
chically, andhigherlevels areallowedto subsumehencethe name,lower ones. This
subsumptiorcantake form of inhibition or suppressioninhibition eliminatesthe sig-
nal coming out from an AFSM of the lower level, leaving it inactive. Suppression
substituteghe signal of the AFSM by the signal given by the higherlevel. Higher
level AFSMs canalsosendresetsignalsto lower ones. Thesemechanismgprovide a
competitive, priority-basecdcoordination.
Thehierarchicabrganizatiorpermitsanincrementatlesignof thesystemashigher
layersareaddedntop of analreadyworking controlsystemwith noneedof modifying
thelowerlevels. An exampleof suchbehaior layeringis depictedn Figure2.5.

Back-out-of-tight
situations layer

— MOTORS
= BRAKES

Figure2.5: Exampleof a controlsystemusingthe subsumptiorarchitecture Eachbox
is an AFSM, and signalsare passedhroughthe arrons connectingthe AFSMs. An
encircledS is a suppressiomoint,andanemptycircle is aresetpoint

The main strengthsof this architectureare its incrementaldesign methodology
which makesit easyandintuitive to build a system,its hardwareretagetability (each
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of thelayerscanbeimplementedlirectly onlogic circuitry), andthe supportfor paral-
lelism, sinceeachlayercanrunindependentlyandasynchronously

However, this theoreticindependencés not absolute sincehigherlayerscansup-
press,inhibit andalsoreadthe signalsof lower layers. Moreover, theseconnections
betweenayersare hard-wired,sothey cannotbe changedduring execution,thus, not
allowing on-the-flyadaptabilityof the systemto changesn the ervironment. Onefi-
nal aspeciagainsthis architecturds thatit forcesthe designetto prioritize behaiors,
therefore the caseof behaviors with equalpriority cannotbe representegvith the sub-
sumptionarchitecture.

Action selection

Action selectionis an architecturalapproactdevelopedby Pattie Maes[43] that uses
a dynamicmechanisnfor behaior (or action) selection. This dynamicmechanism
solvesthe problemof the predefinedpriorities usedin the subsumptiorarchitecture.
Eachbehaior hasan associate@ctivation level, which canbe affectedby the current
situationof the robot (gatheredrom the sensors)its goals,andthe influenceof other
behaviors. Eachbehaior alsohassomepreconditionghathave to bemetin orderto be
active. Fromall theactive behaviors, the onewith the highestactivationlevel is chosen
for actualexecution.

This coordinationmechanisnresemblewery muchour bidding approach.Iin our
architecture eachsystem(or agentwithin the Navigation system)bids accordingto
the urgeng for having the actionexecuted which is equivalentto the activationlevel.
However, our biddingagentdhave no preconditiongo bemetin orderto becomeactive,
andthey arealwaysreadyto bid. Anotherimportantdifferenceis that behaiors in
action selectioncaninfluencethe activation level of otherbehaiors, whereasn our
approachheagentsaretotally independentsinceanagentcannotinfluencethe bids of
anotheragent.

Motor schemas

The Motor schemaspproachwasproposedy RonaldArkin [4], andit is a morebio-
logically basedapproactio controlarchitectureshantheprevioustwo. As in theprevi-
ousapproachesachbehaior recevessensorjinformationasinputsandgenerategan
actionasoutput. This outputis alwaysa vectorthatdefineshow shouldtherobotmove,
and canhave asmary dimensionsas needede.g. two dimensiongor ground-based
navigation, threefor flying or undervaternavigation, etc.). Eachbehaior usesthe po-
tentialfield approachdevelopedby Khatib [34] andKrogh[37]) to produceits output
vector However, insteadof computingthe entire potentialfield, only the responseat
the currentlocationof therobotis computedallowing a simpleandfastcomputation.
Contrarily to the previous two approachesnotor schemasisesa cooperatie coordi-
nationmechanism.The way the differentbehaiors are coordinateds throughvector
summation Eachbehaior contributesto theglobalreactiondependingn againfactor
(G:). Eachoutputvector(R;) is multiplied by its behavior gainfactorandsummedup
with therestto producea singleoutputvectorthatwill be sentto therobot’s actuators
(seeFigure2.6). Thesegain factorsarevery usefulfor adaptabilitypurposesasthey
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canbedynamicallychangediuringexecution thus,astheactionselectiorarchitecture,
alsoovercomingtherestrictingsubsumptiorarchitectures priority scheme.

Coordinator

Behavior n 1

Y

—1 Behavior n-1 ™

Sensors

Actuators

Behavior 2 —

Y

“=|Behavior1 [ R=Z (G R

Figure2.6: Motor-schemasirchitecture

However, cooperatie mechanismbiave someproblems A first problemis thatthey
canreachlocal minimain the potentialfield. Imaginethe situationin which the robot
hasan obstaclein front of it, andthe taskto be performedis to reacha targetlocated
right behindthe obstacle.In this situation,the behavior for avoiding obstaclesvould
computea repulsive vectorcomingfrom the obstacle while the go-to-tagetbehaior
would computea vector going to the target, which would also point to the obstacle.
Thus, in a particularlocation, the sum of both vectorswould be null, and the robot
would not move arymorefrom thatlocation. This problemis easilysolved by adding
a noiseschemathat always producesa small randomvectorin orderto avoid these
blocking situationsfrom happening. Anotherproblemof cooperatre mechanismss
thattheactionactuallyexecuteds onethatno behaior hasgeneratedAgain,imaginea
robotwith anobstacleaheadandimaginethattwo differentbehaiors generateutputs
for avoiding that obstacle,one trying to avoid it throughthe right and the otherone
trying to avoid it throughthe left. The sum of the vectorwould be a vector going
straightaheado the obstaclewhich obviously would not be the bestthing to do.

Other behavior-basedsystems

Rosenblatt[56], in CMU’s Distributed Architecturefor Mobile Navigation project
(DAMN), proposedanarchitecturehatis similarto our approachin this architecture,
a setof modules(behaviors) cooperatdo control a robot’s pathby voting for various
possibleactions(steeringangleand speed)andan arbiterdecideswhich is the action
to beperformed.Theactionwith morevotesis theoneactuallyexecuted However, the
setof actionsis pre-definedwhile in our systemeachagentcanbid for any actionit
wantsto perform. Moreover, in the experimentscarriedout with this system(DAMN),
the navigation systemuseda grid-basedmap and did not useat all landmarkbased
navigation.

Safioti et al [58, 57] developedthe Saphiraarchitecturewhich usesfuzzy logic
to implementthe behaiors. Eachbehaior consistsof several fuzzy rulesthat have
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fuzzy variablesasantecedentgextractedfrom sensoryandworld modelinformation),
and generateas outputa control set(i.e. fuzzy control variable). This control setis
computedfrom the valuesof the fuzzy variables,andit representshe desirability of
executingthe controlaction,beingsimilar to the activationlevel of theactionselection
architecture Eachbehavior alsohasafixed priority factorwhichis usedfor coordinat-
ing all the behaviors. This coordinationis very similar to the cooperatre mechanism
usedin Motor schemas.However, insteadof combiningvectors,it combinescontrol
setsandthendefuzzifiesheresultingsetin orderto getasinglecontrolvalue.
Humphrys[31] presentseveral actionselectionmechanismshatusea similar co-
ordinationmechanisnto ours. Eachagentsuggestghe actionit wantsthe robot to
performwith a givenstrengthor weight(equivalentto our bid), andthe actionwith the
highestweightis the oneexecuted.Theseweightsare computedandlearnedthrough
Reinforcement.earning)usingthe one-stegeward of executinganaction,which each
agentis ableto predictfor theactionsit suggestsThisis animportantdifferencewith
our problem,sincewe cannotassignaone-stegewardto anaction;theonly rewardthe
robotmayreceveis whentherobotreacheshetarget,andit is verydifficult to split this
rewardinto smallerrewardsfor eachactiontakenduringthe navigationto thetarget.

2.1.3 Hybrid Architectures

Althoughit hasbeenwidely demonstratethatbehaior-basedarchitectureeffectively
producea robust performancen dynamicandcomplex environmentsthey arenot al-
ways the bestchoicefor sometasks. Sometimedhe taskto be performedneedsthe
robotto make somedeliberationandkeepa modelof the ervironment. But behaior-
basedarchitectureslo avoid this deliberatiorandmodeling.However, aswe have men-
tionedatthe beginning of this section purelydeliberatve architecturesrealsonotthe
bestchoicefor tasksin complex ervironments.Thus,a compromisebetweerthesetwo
completelyoppositeviews mustbereachedThisis whathybrid architectuesachiese.

In thesehybrid architectureghereis a part of deliberation,in orderto modelthe
world, reasonaboutit and createplans,anda reactie part, responsibleof executing
the plansand quickly reactingto any unpredictedsituationthat may arise. Usually
thesearchitecturesare structuredin threelayers(seeFigure2.7): (1) the deliberatve
layer, responsibleof doing high-level planningfor achieving the goals,(2) the control
executionlayer, which decomposg¢he plangivenby the deliberatve layerinto smaller
subtaskgthesesubtaskdmply activating/deactiatingbehaiors, or changingpriority
factors)and(3) thereactivelayer, whichis in chaigeof executingthesubtasksetby the
control executionlayerandcanbe implementedvith ary behaior-basedarchitecture.
Examplesof suchhybrid architecturesamongothers,are Arkin’s AURA [2] andGat’s
Atlantis system[29] for JPLsrovers.

Anotherhybrid architecturealthoughnot following thethree-layestructurejs that
of Liscanoetal [25]. In their architecturethey usean actiity-basedblackboardcon-
sisting of two hierarchicallayersfor stratgic and reactive reasoning. A blackboard
databas&eepgrackof the stateof theworld anda setof actiities to performthe nav-
igation. Arbitration betweerncompetingactiities is accomplishedy a setof rulesthat
decidewhich activity takescontrolof therobotandresohesconflicts.
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Figure2.7: Threelayershybrid architecture

Although our approachs presentedisa behaior-basedsystemiit is not a purely
reactive system,sincethereis somemodeling (one of the agentsof the Navigation
systemis in chage of building a map of the ervironmentand computingroutes)and
deliberation(the agentseasoraboutthe world andcommunicatevith eachother). So
if we hadto classifyit onthe spectrunof controlarchitecturesywe would placeit in the
hybrid group,having thereactve anddeliberatie partsmixedin onesinglelayer.

2.1.4 Bidding Mechanisms

Regardingthe useof biddingmechanismsye have foundveryfew systemsnakinguse
of it. At CMU, the FIRE project[19] usesa market-orientechpproactto modeltheco-
operationof ateamof robots.In this approachinsteadof usingthebiddingmechanism
to coordinate¢heagentwf asinglerobot,biddingis usedto coordinateateamof robots
thathave to accomplishseveraltasks. Therationaleis thatwith this mechanismeach
taskis performedby the bestsuitedrobot for the task, thusachiesing a betterglobal
performance.

SunandSession$63] have alsoproposedinapproacHor developinga multi-agent
reinforcementearningsystemthat usesa bidding mechanisnto learncomplex tasks.
Thebiddingis usedto decidewhich agentgetsthe control of thelearningprocessThe
agentshid accordingto the expectedreward thatwould receve if they weregiventhe
control. Thus,althoughthey arecompetingfor the control, they alsocooperatesince
they seekto maximizethe overall systenreward.

2.2 Mapping and Navigation

The mappingproblemis regardedas one of the mostimportantproblemsin the field
of autonomousobotics,andit datesbackto SRI's famousShaley robot[54]. A robot
operatingautonomouslneedgo answetrthe threebasicquestionsaboutmappingand
navigation,aspositedby Levitt andLawton[39]:
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e Wheream|?
e How dol getto otherplacesfrom here?

e Whereareotherplacesrelativeto me?

This would be easyif ana priori mapwereavailable, but we aredealingwith the
scenarioof unknaovn ervironments. Thatis, the robot hasno knowledgeat all about
what the ervironmentlooks like, wherethe landmarks the obstaclesgetc are. To be
ableto answerthesequestionsand,thereby be ableto performits task,therobotmust
acquireamodelof theervironmentin whichit hasto navigatethrough.Recentesearch
onmodelingunknavn ervironmentds basentwo mainapproachesoccupancygrid-
based(or metric),andtopological maps

Anotherdistinctive andvery importantfeatureof mappingapproachess localiza-
tion. Thelocalizationproblemcanbe split in two very differentparticularproblems:
local localizationand global localization. Local localization,alsoknown as position
tracking,aimsat compensatingdometricerrorsoccurringduringrobotnavigation. On
theotherhand,globallocalizationis concernedvith the problemof finding outwherea
robotis relativeto a mapof thewholeernvironment.In thisthesiswe tacklethe problem
of globallocalization. Therearetwo mainapproache$or solvingit: modelmatding
andlandmarkbasedocalization.

In therestof this sectionwe will go throughall theseapproachesstartingwith the
globallocalizationapproachesandthenthe grid-basedandtopologicalmappingones.

2.2.1 Localization

As justmentionedgloballocalizationis the problemof finding outwherearobotis rel-
ative to amap(i.e. aligntherobot’s local coordinatesystemwith the globalcoordinate
systemof the map). This problemis asimportantasbeingableto build a good map
of the ervironment. No matterhow goodthe mapis, it will be of no useif we arenot
ableto localizetherobotonit. Corversely evenif we know how to localizethe robot
with high precision,thatwill be uselessf thereis no goodmapavailableon whereto
localizeit. Moreover, theaccurag of ametricmapdependsighly onthealignmentof
therobotwith its map. If we arenot ableto localizethe robot, the resultingmapsare
too erroneougo be of practicaluse. As seenthesetwo problemsare closelyrelated,
andmostof the mappingapproachetry to addressoth problemsat the sametime, in
whatis known assimultaneousocalizationand mapping(SLAM).

Model matching localization

Thesealgorithmsextract geometricfeaturesrom the sensorreadingsandtry to match
them with a map of the ervironment,in order to correctpossibleodometricerrors.
This approachs closelyrelatedto grid-basednapping(describedelow), sincethese
geometrideaturesaretheinformationpieceghatgrid-basednappingapproachestore
onthemap.

The positionof the robotis incrementallycomputedusingodometryandinforma-
tion from sensorsby matchingthis informationwith the mapalreadybuilt. The sensor
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informationusedfor matchingcanbe single sonarscanswhich are matchedwith the
obstacle®nthemap,suchin MoravecandElfe’sapproach23, 52]. Otherapproaches,
suchasChatilaandLaumonds[18] extractgeometrideaturegline sggmentsandpoly-
hedral objects)from the sensorreadingsand matchthemto a geometricmap of the
ervironment.

One problemwith this approachis that it requiresaccurateodometryto disam-
biguateamongpositionsthatlook similar. Probabilisticapproache¢Smith et al [61],
Fox et al [27], Castellanosand Tardds [16]) try to solve this ambiguity problem,and
they arethe mostfrequentlyusedin thefield of robotmapping.The basicideaof these
algorithmsis to employ probabilisticmodelsof the robotandthe ervironmentto cope
with the uncertaintyof robotmotionandsensoreading.Iln orderto localizetherobot,
they useconsecutie sensoreadinggo estimatea distribution over the spaceof all lo-
cationsin the erwvironment. The more readingsthe robot gets,the more preciselyits
locationcanbe computed.

In our casewe do not have to dealwith this ambiguity sincewe have developed
a Vision systemrobust enoughto correctlyidentify the landmarks. Thus, thereis no
uncertaintyaboutthe presenceof a landmark. However, thereis someimprecision
aboutits location,which we dealwith usingfuzzy techniques.

The modelmatchingapproachhowever, is computationallyvery expensve, since
the procesof matchingthe currentsensoreadingswith the maprequiresmary com-
putations.

Landmark-based localization

In theseapproachesandmarksare usedas referencego computethe location of the
robot. Landmarkscanrangefrom a setof sensoreadinggo artificial landmarkssuch
asbeaconr barcodesor naturallandmarksdetectedoy vision systems.Becausenf
its computationalsimplicity and alsoits closerelationshipwith humannavigational
abilities, this approachs the mostwidely used,andit hasbeenusedwith both grid-
basedandtopologicalapproaches.

This approachalso suffers from the problemof ambiguity amonglandmarksthat
look similar. Again, the probabilisticapproachcanhelp solving this problem. Thrun
[65] andDissanayak et al [21], amongothers,usethis approachtogetherwith grid-
basednapsandSimmonsandKoenig[60] andKaelblingetal [33] combineit with the
topologicalapproach.

2.2.2 Map Representation

In orderto navigatethroughtheervironment,therobotmustcreatea modelof it. There
aretwo approacheso modelthe ervironment,the metric or grid-basedapproachand
the topologicalapproach.Dependingon the type of ervironmentoneor the otherap-
proachis mostappropriateTable2.1 summarizethe advantagesanddisadwantage of
thesetwo approaches.
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Table 2.1: Advantagesaanddisadwantagef grid-basedand topologicalmappingap-
proaches

Grid-based mapping

This approachwas originally proposedby Elfes [23] and Moravec[51]. Cellsin an
occupanyg grid containinformation aboutthe presenceor not of an obstacle. Each
of thesecellsis updatedusing sensorreadingsandits valuerepresentshe degreeof
beliefin the presencef an obstacle.The vastnumberof grid-basedalgorithmsdiffer
ontheway in which sensoreadingsaretranslatednto occupang levels. Amongother
techniques probability theory [51, 66, 67] and fuzzy settheory [41, 40] have been
used. This mappingapproachcan be usedin conjunctionwith the two localization
approachesashasbeenjust describedabove.

In this approach nhavigationis performedusing path planningalgorithms,which
computepreciseroutesthroughthe ervironmentin orderto reacha goal avoiding the
obstacles.

Althoughthis approactis widely usedandachievesvery goodresults,it is mainly
focusedfor indoorstructuredernvironments.The sizeof suchenvironmentgpermitsthe
robotto maintainagrid with ahigh enoughresolution(i.e. smallcells). In largeoutdoor
ernvironments however, this techniquecannotbe applied,asthe computationatostof
the grid would betoo high.

Moreover, in mostof thealgorithmsfollowing thisapproachtherobothasatraining
periodin whichit navigatesthroughthe ervironmentwith theonly purposeof building
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amap.After thistraining period,therobotis ableto performits taskandlocalizeitself
usingthe alreadybuilt map. In our scenariohowever, thereis no suchtraining period,
astherobotdoesnot have the opportunityto inspecttheenvironmentbeforeattempting
to reachthetarget,but hasto reachit while exploringtheervironmentfor thefirsttime.

Topologicalmapping

In comparisorto grid-basedepresentationgppologicalrepresentationsuchasthose
proposedy Chatila[17], KuipersandByun [38], Mataric [47] andKortenkamp[36],
amongothers)arecomputationallycheaper They usegraphsto representhe environ-
ment.Eachnodecorrespond$o anernvironmentfeatureor landmarkandarcsrepresent
pathsor motion instructionsbetweenthem. Someapproache¢Kuipers[38], Korten-
campandWeymouth[35]) alsodefinethenodesas“places”,wherea“place”is defined
asa locationwherea setof featuresor landmarksfulfill a given property(e.g. sonar
readingsmatchinglandmarkvisibility, etc.).

With this graph,the problemof navigationis reducedto the problemof finding a
route from one nodeto another— the target one. This canbe easily computedwith
mary graphsearchalgorithms(Dijkstra’s shortestpath, A*, dynamicprogramming).
However, this simplicity of computingrouteshasthe disadantagethat the routesare
not always the optimal ones,sincethereis not an accurategeometricdescriptionof
the ervironment, and path planningalgorithmsfor metric worlds cannotbe applied.
Moreover, in topologicalgraphsthereis no explicit representationf the obstaclesas
in ametricmap. Therefore whenmoving from onenodeto anotheythereis no way of
planninganoptimal path,sincetheremay be someobstacle®n theway.

The advantageof topologicalapproachess thatthey do not rely on odometryin
orderto build the mapnor localizetherobotonit. The only pointin which odometry
is sometimesisedis to labelthe arcsbetweemodes. As alreadymentionedthe arcs
containinformationabouthow to getfrom onenodeto another This informationcan
be, dependingon the approachmetric information (headingand distanceto the next
node). If this werethe case the odometryerror would influencethe precisionof this
information. However, sinceneighboringnodesare closeto eachother, this erroris
boundedanddoesnot accumulateastherobotnavigatesthroughthe ervironment.

The drawbackof not usingmetricinformationis thattopologicalapproachebave
difficultiesin determiningf two placesthatlook similar arethe sameplace,sincethey
computethe positionof therobotrelative to theknown landmarks.This problemcanbe
tackledif arobustenoughlandmarkrecognitionsystemis in place. Landmarkrecog-
nition is a very active field of researctin vision andvery promisingresultsare being
obtained46]. In this work we assumehatthevision systemcanrecognizdandmarks.
However, in theabsencef arobustrecognitionsystema probabilisticapproachsimi-
lar to the onedescribedor metricmaps,couldbe applied.

Topologicalapproachesanalsobe combinedwith grid-basedapproachesThrun
[66] combineshothrepresentation his work on learningmapsfor navigationin in-
door structuredervironments. The grid-basedmapis partitionedin coherentregions
to generatea topologicalmapon top of the grid. By combiningboth methodshis ap-
proachgainsthe advantagef both methods resultingin an accurategconsisteneind
efficient mappingapproachThis is indeeda goodideafor indoorenvironmentsbut for
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large-scaleoutdoorervironmentsmay not be worth the computationakffort of main-
taininga grid representationnderatopologicalone.

In ourwork we usethe approachwherenodesrepresentegionsdefinedby groups
of threelandmarksandthatareconnectedy arcsif the regionsareadjacentthatis, if
they have two landmarksn common.The arcs,insteadof containingmotioninforma-
tion, representhe costof goingfrom oneregionto another This graphis incrementally
built while therobotis moving within the environment.This incrementamapbuilding
approachs basedn previouswork by Prescot{55] thatproposedinetwork modelthat
usedbarycentriccoordinatesalso called beta-codicientsby Zipser[68], to compute
the spatialrelationsbetweenandmarksor robotnavigation. By matchinga perceved
landmarkwith the network, the robot canfind its way to a targetprovidedit is repre-
sentedn the network. Prescott approachis quantitatve whereaur approachusesa
fuzzy extensionof the beta-coeficientcodingsystemin orderto work with fuzzy qual-
itative information aboutdistancesainddirections. Anotherdifferencewith Prescott
approachs that his topologicalgraphcontainsonly adjaceng information, thus, not
maintainingary informationaboutcosts,asin ours. This costinformationis very im-
portantwhen planningroutesfrom oneregion to anothey sinceit is the only way to
know whethera pathis blocked or free. Onefinal pointto mentionis thatin Prescot
experiments carriedout only on simulation,the robot was allowed a training period,
while this periodis not presenin ourapproach.

Levitt andLawton[39] alsoproposeda qualitatve approacho the navigationprob-
lem. In this approachlandmarkpairsdivide the ervironmentinto two regions,onefor
eachsideof theline connectinghetwo landmarks.The combinationof all suchlinear
divisionsgenerates topologicaldivision of the ervironment,on which navigationcan
be performed. Navigation consistsof crossinga seriesof landmarkpairsin orderto
reachthe region containingthetargetlandmark.Our navigationmethodusesthe same
ideafor computingand navigating to diverting targets. The differencebetweenthis
approachandoursis thatwe usethreelandmarksfor creatingthe region subdvision,
insteadof only two. This givesasresulta betterandmorecompactdivision of theen-
vironment. Moreover, this third landmarkpermitsthe robotto computea relationship
amongthe landmarkghatis uniqueandinvariantto viewpoint.

Anotherqualitatve methodfor robotnavigationwasproposedy EscrigandToledo
[24], using constraintlogic. However, they assumethat the robot hassomea priori
knowledgeof thespatialrelationshipof thelandmarkswhereasur systembuilds these
relationshipavhile exploring the environment.

Oneof the dravbacksof mostof the mappingapproachess thatthey arethought
for staticervironments. Thatis, landmarksare not supposedo changetheir location
while therobotis exploring theervironment.Thus,researclon vision systemsapable
of extracting robust (distinguishablejnvariantto viewpoint and illumination, static)
landmarkss very important. However, somemappingapproachearealreadyableto
copewith dynamicervironments.In [1] landmarkshave an existencestate(usingthe
principlesof neuralnetworks). This mechanisnpermitsthe removal of landmarksor
which their existenceis not certainenough. We have useda similar ideato devise a
Visual Memory(seechapterd), a shorttermmemaoryof detectedandmarks.






Chapter 3

Mapping and Navigation

As alreadymentionedthe taskthe robot hasto performis to navigatethroughan un-
known unstructurecervironmentand reacha target landmarkspecifiedby a human
operator This taskis not easyto solve, sinceit hasto be carriedout in a comple
ervironment,andthe target canbe occludedby otherobjects. Purelyreactive robotic
systemswould have problemstrying to accomplishthis task, sincethey do not build
ary modelof the environment. If the targetwerelost, it would be difficult to recover
its visibility andcontinuethe navigationtowardsit. For thisreasonwe thoughtthatthe
robotshouldbuild a mapof the ervironmentin orderto navigatethroughit. Theinfor-
mationstoredin the mapmustpermittherobotto computeits location,the locationof
thetarget,andhow to getto this target. Althoughthe objective of this PhD thesisis to
develop a navigation systemfor indoorervironmentswe have useda maprepresenta-
tion thatalsoworks outdoors,sincethis is the next milestoneof the projectin which
we areinvolved. Thus,insteadof usinga grid-basedapproachthe mostwidely used
approachor indoor environments,we have useda topologicalone, mostappropriate
alsofor outdoors.

Our approachis basedon the model proposedby Prescottin [55]. The princi-
plesunderlyingthis modelareinspiredby studiesof animalandhumannavigationand
wayfindingbehaior. Thismodel,calledbeta-codficientsystemdoesnotonly dealwith
how to representhe ernvironmentasa map,but alsoaddsa mechanisnfor computing
thelocationof landmarks~vhenthey arenot visible, basedon the relative positionsof
thelandmarks.This mechanisnis whatwe have usedto provide therobotwith orienta-
tion sensesinceit capturegherelationshipamongdifferentplacesof the ervironment.
Therobotmakesuseof this orientationsensdo computethelocationof thetargetwhen
it is occludedby otherobjectsor obstacles.

In this chapterwe firstly describehow Prescots modelworks whenthe robot is
ableto have exactinformationaboutits ervironment,andthenwe explain how we have
extendedit to work with impreciseinformation. We also describethe methodused
for dividing the ervironmentinto appropriatedopologicalregions,andfinally how the
topologicalmapis usedto navigatethroughthe ervironment.

25
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Figure 3.1: Possiblelandmarkconfigurationand points of view. LandmarksA, B, C
andT arevisible from viewpoint V. Only landmarksA , B and C are visible from
viewpoint V'

3.1 Beta-coefficientSystem

The ideabehindPrescott modelis to encodethe location of a landmark(which we
referto astarget— notto confusewith thetargetor goal of the Navigation system)with
respectto the location of threeotherlandmarks. Having seenthreelandmarksanda
targetfrom a viewpoint (e.g.,landmarksA, B andC andtargetT from viewpoint V,
in Figure3.1),thesystemis ableto computethetarget’s positionwhenseeingagainthe
threelandmarksput not the target, from anotherviewpoint (e.g.,V'). A vector, called
the g-vectorof landmarksA, B, C andT, is computedas

B=X"1Xp (3.1)

whereX = [X4XpX¢c]andX; = (z;,y;,1)T, arethehomogeneou€artesiarcoor
dinatesof objecti, i € {A, B,C,T}, from viewpoint V. This relationis uniqueand
invariantfor any viewpoint if landmarksare distinct and non collinear The target’s
locationfrom viewpoint V' is computedas

Xh=X'3, (3.2)

whereX' = [X), X5 X(].

It shouldbe notedthat, althoughPrescotts systemworks with Cartesiancoordi-
nates,onceall the computationdave beendone,the resultingtarget’s locationis con-
vertedto polarcoordinatessince, aswill beseenn next chaptersthisis thecoordinate
systenthatusesthe Navigationsystem.

This methodcanbeimplementedvith atwo-layerednetwork. Eachlayercontains
a collection of units, which can be connectedo units of the otherlayer. The lowest
layer units areobject-units andthey representhelandmarkgherobothasseen.Each
time therobotrecognizes new landmark,a new object-unitis created. The unitsof the
highestlayerarebeta-unitsandthereis onefor eachg-vectorcomputed.

Whentherobothasfour landmarksn its viewframe, it selectoneof themto bethe
target,anew beta-unitis createdandthe 3-vectorfor thelandmarkss calculated.This
beta-unitwill be connectedo thethreeobject-unitsassociatedavith the landmarkgas
incoming connectionskandto the object-unitassociatedvith the targetlandmark(as
an outgoingconnection). Thus, a beta-unitwill alwayshave four connectionswhile
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anobiject-unitwill have asmary connectionasthe numberof beta-unitst participates
in. An exampleof the network canbe seenin Figure3.2h In this figure therearesix

object-unitsandthreebeta-units. The notationABC/D is understoodasthe beta-unit
thatcomputeghelocationof landmarkD whenthelocationsof landmarksA, B andC

areknown.

This network hasa propagatiorsystemthat permitsthe robot to computethe lo-
cationof non-visiblelandmarks.It works asfollows: whenthe robot seesa group of
landmarksit activates(setsthevalue)of theassociatedbject-unitswith theegocentric
locationsof theselandmarks.Whenan object-unitis activated,it propagate#s loca-
tion to the beta-unitsconnectedo it. Onthe otherhand,whena beta-unitrecevesthe
locationof its threeincomingobject-units,it getsactive andcomputeghe locationof
thetargetit encodesausingits S-vector, andpropagatesheresultto the object-unitrep-
resentingthe target. Thus,an activation of a beta-unitwill activatean object-unitthat
canactivateanotherbeta-unit,andsoon. For example,in the network of Figure3.2b,
if landmarksA, B andC arevisible, their object-unitswill be activatedandthis will
activatethebeta-unitABC/D, computingthelocationof D, whichwill activateBCD/E,
activating E, andcausingBDE/F alsoto be activated.In this case knowing thelocation
of only threelandmarks(A, B andC), the network hascomputedhe locationof three
morelandmarkghatwerenotvisible (D, E andF). This propagatiorsystemmakesthe
network computeall possibledandmarks’locations.Obviously, if a beta-unineedshe
location of a landmarkthatis neitherin the currentview nor actvatedthroughother
beta-unitsjt will notgetactive.

This propagationsystemaddsrobustnesgo the computationof non-visibleland-
marks sincealandmarkcanbethetargetof seseralbeta-unitatthesameime. Because
of imprecisionin the perceptioron landmarklocations the estimate®f thelocationof
atargetusingdifferentbeta-unitsarenot alwaysequal. Whenthis happensthe differ-
entlocationestimatesnustbe combined.Prescotiusesthe size of the 3-vectorasthe
criterionto selectoneamongthem.A beta-unitwith a smallerg-vectoris moreprecise
thanthosewith larger 3-vectors(see[55] for a detaileddiscussioron how to compute
the estimateerrorfrom the sizeof the §-vector). The propagatiorsystemdoesnot only
propagatdocationestimatesbut alsothe sizeof the largests-vectorthathasbeenused
to computeeachestimate.Whena new locationestimatearrivesto an object-unit,its
locationis substitutedvith thenew oneif thesizeof thelargests-vectoruseds smaller
thanthatusedfor thelastlocationestimatereceved.

The network createdby objectandbetaunits canbe corvertedinto a graphwhere
thenodesrepresentriangularshapedegionsdelimitedby a groupof threelandmarks,
andthe arcsrepresenpaths.Thesearcscanhave anassociatedost,representingnow
difficult it is to move from oneregion to another Althoughthe arcsarecreatedmme-
diatelywhenaddinga new nodeto the graph,the costscanonly be assignedafterthe
robothasmoved (or tried to move) alongthe path connectinghe two regions. In the
casethe pathis blockedby anobstaclethearcis assigne@ninfinite cost,representing
thatit is notpossibleto gofrom oneregionto theother Thisgraphis atopologicalmap,
andwe call its nodestopolaogical units. An exampleof how thetopologyis encodedn
agraphis shavn in Figure3.2c.

Thistopologicalmapis usedwhenplanningroutesto the target. Sometimeswhen
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Figure3.2: (a) Setof landmarkgb) associatedetwork (partialview) and(c) associated
topologicalmap

the positionof the targetis known, the easiesthing to do is to move in a straightline

towardsit, but sometimest is not (the routecanbeblocked,the costtoo high...). With

the topologicalmap, a routeto the target canbe computed.In Section3.4 a detailed
explanationon how to computeroutesto thetargetis given.

3.2 Extending Prescott's System:Moving to Fuzzy

The beta-codicient systemasdescribedy Prescottassumeshattherobotcancom-

putethe positionof the landmarkswith small errors,in orderto createthe beta-units
andusethe network. But this is never the case:the Vision systemprovidesthe robot

with inexactinformationaboutthe locationof landmarks.To work with thisimprecise
informationwe usefuzzy numbers.

3.2.1 Fuzzy Numbersand Fuzzy Operations

A fuzzy numbercanbethoughtof asa weightedinterval of realnumberswhereeach
point of the interval hasa degreeof membershiprangingfrom O to 1 [7]. The higher
this degree,the higherthe confidencehatthe point belongsto the fuzzy number The
function F4 (z), calledmembeship function givesusthe degreeof membershigor x
in thefuzzy numberA.

Beforedefiningthearithmeticwith fuzzy numbersye haveto introducetheconcept
of a-cut. Thea-cut (o € [0,1]) of afuzzy numberA, is theinterval {4}, = [a1,a2]
suchthat F4(z) >= a, Yz € [a1,as].

Let A and B befuzzy numbersand{ A}, and{B}, a-cuts. Thefuzzy arithmetic
operationsaaredefinedasfollows,

A+ B=C,s5t {C}a ={A}a ® {B}a Vo

A—B=0C,st.{C}a ={A}a ©{B}a Va

AxB=0C,st.{C}a ={A}a ® {B}a Vo

A+ B=C,s5t{C}a ={A}a ©{B}a Vo
wheretheoperationsp, ©, ® and@ areperformedonintervalsandaredefinedas

[a1, a2] @ [b1,b2] = [a1 + b1, a2 + b2]

[a1,a2] © [b1,b2] = [a1 — b2, a2 — b1]
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[a1, az] ® [b1,b2] = [min(a1b1,a1b2,a2b1,a2b2), maa:(a1b1,a1b2,a2b1, azbz)]
[a1,a2] @ [b1,b2] = [a1,a2] ® [év ﬁ]v 0 ¢ [b1,02]

3.2.2 Fuzzy Beta-coefficientSystem

To usethe beta-codficient systemwith fuzzy numbers,we simply perform the cal-
culationsdescribedin the previous sectionusing the fuzzy operatorsdefinedabove.
However, becaus®f the natureof fuzzy operatorssomelandmarkconfigurationsmay
not be feasible(the matrix inversionusedfor computingthe g-vector— Equation3.1-
may produceadivision by 0), sonotall configurationscanbe storedin the network.

Whenusingthe network to computethe positionof alandmark,we obtaina fuzzy
polarcoordinatgr, ¢), wherer and¢ arefuzzy numbersgiving usqualitatve informa-
tion aboutits location. An advantageof working with fuzzy coordinatess thatit gives
usinformationabouthow precisethe locationestimates, sinceit representshe loca-
tion notasa crisp coordinateput asa spatialregion wherethelandmarkis supposedo
be.

Anotherdifferencewith Prescot modelis the criterion usedto selectamongdif-
ferentestimatedocationsfor the samelandmark. In our extendedsystem,insteadof
looking at the size of the g-vectors,we usethe imprecisionof the estimatedocation
itself. Theimprecisionof alandmarkiocation, (1), is computedoy combiningtheim-
precisionin theheadingandin thedistanceasfollows. I}, (1) is theimprecisionin head-
ing, andit is definedby takingtheinterval correspondingo the 70%«-cut of thefuzzy
numberrepresentinghe headingto the landmark(seeFigure3.3). This imprecisionis
normalizeddividing it by its maximumvalueof 27. Similarly, I;(1) is theimprecision
in distanceandit is definedasthe 70% a-cut of the fuzzy numberrepresentinghe
distance.lt is normalizedby applyingthe hyperbolictangentfunction, which mapsit
into the [0, 1] interval. Finally, thetwo imprecisionsarecombinedaccordingio:

I(l) =X tanh(8 - (1)) + (1 = \) - [;_S:) (3.3)
where A weighsthe relative importanceof the two imprecisions,and 5 controlshow
quickly thetransformed; approaches. In ourexperimentswesetg = 1 andA = 0.2.
Whenan object-unitrecevesa new locationestimate jt computeshe imprecisionof
this estimate,comparest with the imprecisionof the currentlocation estimate,and
keepsgtheleastimpreciselocation.

3.3 Building the Map

In Section3.1we mentionedhatwhenthe robothasfour landmarksn its viewframe,
it createsa new beta-unitfor them. However, with four landmarkstherearefour can-
didatesto be the target of the beta-unit. Moreover, if the robot hasmore than four
landmarksin the viewframe, thereare mary possiblebeta-unitsto be created. More
precisely if therearen visible landmarksthereare (}) - 4 candidategor beingnew
beta-unitsHowever, it is notfeasibleto storethemall, firstly becausef thehugenum-
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70% a—cut

1,0

0 Heading(l) 2n

Figure3.3: Computatiorof theimprecisionof theheadingowardlandmark asafuzzy
number

ber of combinationsand secondly and moreimportant,becausesomeconfigurations
arebetterthanothers.Thus,someselectioncriterion mustbe used.

Beforedescribinghe criterionwe have used we explain how theobstaclesrerep-
resentedn the map.We differentiatetwo typesof obstaclespoint obstaclegndlinear
obstaclesPoint obstaclesrethosetherobotcaneasilyavoid by slightly modifying its
trajectory sincethey do notcompletelyblock thepath.In ourindoorenvironmentsuch
obstaclesare boxes and bricks. In outdoorenvironmentsthey could be small rocks,
trees,etc. Theseobstacleslo not affect the global navigation, asthe Pilot cantackle
themalone,sothe Navigation systemdoesnot take theminto accountandthey arenot
storedin themap.Ontheotherhand linear obstaclesrelongobstacleshatcompletely
block the pathof the robot. They canalsobe avoidedby the Pilot, but the trajectory
hasto be drastically modified. In our indoor ervironmentwe use several bricks to
form theseobstaclesIn anoutdoorervironmenttheseobstaclesouldbefenceswalls,
groupsof rocks, etc. Sincetheseobstaclesdo highly affect the navigation task, they
have to berepresenteth the map,sothatthey aretakeninto accounwhencomputing
routesto thetarget. Theinformationabouttheseobstacless storedon the arcsof the
topologicalmap.An arcis labelledwith aninfinite costto indicatethatthereis anobsta-
cle betweerthe two regionsconnectedy the arc. Notice thatwith this representation
we canonly representhoseobstacleplacedalongtheline connectingwo landmarks.
Althoughin ourexperimentsve have designedheervironmentssothatthey satisfythis
condition, the systemwould alsowork if it werenot satisfied. However, in this latter
case the Navigation systemcould not take all the obstaclesnto accountandthus,its
performancevould be worse. The arcs’ labelsareupdatedwvhenerer the Pilot system
informsaboutthe presencef anobstaclebetweerntwo landmarks.

Going back to the selectioncriterion, given a set of landmarks,for which their
location is known, we seekto obtain a set of triangularregions with the following
constraints:

e Low collinearity: thecollinearityof aregionis computedas

afy
(3)?

wherea, § and~ arethethreeanglesof the triangularregion. The bestquality
is associatedo equilatertriangles,wherea = 3 = v = %, andhencetheir
collinearity is 0. Whenone of the anglesis 0, landmarkswould be maximally

Col(R) =1 — (3.4)
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collinearand Col(R) = 1. The higherthe collinearity, the higherthe erroron
the computationof the 3-vectorandlandmarklocations(see[55] for a detailed
explanation). Therefore,the regionswith lower collinearity are preferred. For
example,in Figure3.4thetwo regionsontheright arepreferredoverthetwo on
theleft, sincetheregion ABD is too collineat

B B
C C
A A
D D

Figure3.4: Left badsetof regions;region ABD is too collinear Right goodsetof
regions

e Connectivity thesetof regionsmustbecorvertedinto agraphwith asinglecom-
ponentsothatthereis a pathbetweerany two nodesof thegraph.In Figure3.5,
the setof regionson theleft is not acceptablesincetherearetwo disconnected
componentsywhereasn the seton theright all theregionsareconnected.

B8 c B c
D D
A A
E E
G G
F F

Figure 3.5: Left badsetof regions;therearetwo disconnectedomponents.Right
goodsetof regions

e Corvex hull covering the regionsmustcover the corvex hull of the setof land-
marks,sothatthe ervironmentis representedompletely with no unrepresented
regions. In Figure3.6,thesetontheleft is not acceptablesincetheregion DFG
is notrepresented.

Figure3.6: Left badsetof regions;region DFG is missing.Right goodsetof regions



32

Chapter 3. Mapping and Navigation

e Nonoverlapping theregionsshouldnot overlapwith eachother If thiswerethe

case therobotcould be in morethanoneregion at the sametime, which could
causesomeproblemswhencomputingroutesto the target. For instancejf the
robotwerein the overlappingareaof the two regions, it would make no senseo

orderthe robotto move from oneregion to the other, sinceit would alreadybe
insidebothregions,andthe orderwould not have ary effect. Moreover, if oneof

theoverlappingedgess anobstaclethe pathfrom onesideof theadjacentegion

to theothersidewould beblocked,whichis obviously abadrepresentatioof the
ernvironment,sincethe robotmustbe ableto move aroundthe whole spaceof a
region. In Figure3.7,the setof regionson theleft is a badset,sincepartof the
obstaclebetweenlandmarksB andD lies inside the region ADC. In this case,
the associatedyraphwould have two nodes,ABD and ACD, which would be
connectedsotherobotwould think thatit canmove from region ABD to region

ADC, but it would find the pathblockedbecaus®f the obstacle.

B B

obstacl
D D

Figure3.7: Left badsetof regions;the obstaclebetweerlandmarksB andD is inside
theregion ACD. Right goodsetof regions

e Keepobstacles if anedgeof aregion is marked asan obstacle this edgemust

bekeptin themap,evenif it causesherobotto keephigh collinearregions.The
obstacleedgesarethe only onesthatcannotbe removedfrom the map. If we did
so,theinformationaboutthe locationof obstaclesvould be lost andwould not
betakeninto accountwhencomputingroutesto thetarget.

To computethe optimal setof regionsfor a given setof landmarkswe have de-

velopedanincrementablgorithmthattreatslandmarksoneby oneto updatethe map.
However, the algorithmonly startsworking whenthe locationsof at leastfour land-
marksareknown, sincethis is the numberof landmarksneededo createa beta-unit.
With thesefour landmarks,the mappingalgorithm computesthe bestset of regions
accordingto the constraintgyiven above. Then,the restof visible landmarks,f ary,
areaddedoneby oneto the alreadybuilt map. Whenaddinga new landmarkto the
map,two situationscanhappen:(1) the landmarkis insidean alreadyexisting region,
or (2) the landmarkis outsideary region. In thefirst case,the region containingthe
new landmarkis replacedby threenew regions(seeFigure 3.8). In the secondcase,
all the possiblenew regionsarecreatedseeFigure3.9). No matterthe situationof the
landmark,oncethe new regionshave beencreated the algorithmchecksif the result-
ing mapis still optimal. This optimizationconsistsof analyzingeachpair of adjacent
regionsandcheckingif their configurationis optimalaccordingto the constraintsIf it
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finds that someregionscould be changedso that a betterconfigurationis obtained,it
doesso. An exampleof this stepby stepupdatingis shavn in Figure3.10.

B B
c ‘ C
A A
Figure3.8: Adding anew landmark(D) locatedinsideanexisting region (ABC) result-
ing in the substitutionof the original region for threenew regions(ABD,ACD,BCD)

l C

Figure3.9: Adding anew landmark(D) locatedoutsideany existing regionresultingin
theadditionof two new regions(ACD,BCD)

Oncethe setof regionsis computednew betaandtopologicalunitscanbecreated.
For eachnew regionabeta-unitis createdor eachregionadjacento it, takingthethree
landmarkof thefirst regionastheencodingandmarksandthelandmarkof thesecond
regionthatis notin thefirst oneasthetarget. In otherwords,for eachpair of adjacent
regions, two “twin” beta-unitsare created. An examplecan clarify this explanation:
with theregionsABC andACD showvn ontherightin Figure3.4,thebeta-unitsABC/D
andACD/B would becreated Onetopologicalunit is alsocreatedor eachnew region,
andthe graphis updatedaccordingto the adjaceng of regions. Initially, the arcsare
labelledwith a default costof 1, andthey arechangedo oo whenever an obstacleis
detected. The topologicalunits correspondingo regionsthat are not usedary more
areremoved from the graph. However, beta-unitsare never removed, sincethey add
robustnesso the systemasin Section3.1.

Thistriangulationalgorithmneedghelocationof thelandmarkdo beknown (either
recognizedy theVision systemor computedy thebeta-codicientsystem) However,
notall landmarklocationscanalwaysbeknown. Thealgorithmonly takesinto account
thoselandmarkswhoselocationsareknown. This ensureghatthefive constraintsex-
plainedabove aresatisfiedonly for the locatedlandmarks.Whenoneof the unlocated
landmarkss seenor computedsomeconstraintsnight becomeunsatisfied Whenever
ary constraintis broken,the mapis rehuilt in orderto satisfyagainall the constraints.
This constraintoreakcanalsobe causedy the fuzzinessof the locations.Becausef
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Figure3.10: Adding anew landmark(E) into amapwith two regions(ABD andBCD):
first, region ABD is substitutedfor three new regions (ABE,ADE,BDE); after that,
optimizationfor regionsBCD andBDE is performedandthey aresubstitutedor the
new regionsBCE andCDE

the imprecisionof the locations,the map cansuddenlybe breakingsomeof the con-
straints.To avoid having aninconsistentmap,every oncein a while the satisactionof
the constraintss checled,and,if neededthe mapis retuilt.

3.4 Navigating Thr oughthe Environment

Thebeta-codiicient systemdescribedabove providesthe meandor computingthelo-

cationof atargetevenif it is notvisible. Thisis very usefulif therobotis navigatingin

an ervironmentwith a high densityof landmarksandobstacleghat occludethetarget.
In this casetherobotis ableto go towardsthetargetby seeingotherlandmarks How-

ever, in somecaseghe obstaclesnight be blockingthe directpathto thetarget. In this
case knowing the locationof thetargetis not enoughandan alternatve routeto reach
it mustbe computedusingthetopologicalmap.

Althougharouteconsist®of asequencef regionstherobotshouldnavigatethrough
in orderto reachthe target, only thefirst region is takeninto account. The reasorfor
doing sois that sincethe ervironmentis never fully known, the robot cannotcommit
to a givenroute becauset might encountemew landmarksand obstacleghat would
changethe shapeof the map,andpossibly therouteto thetarget. Therefore hereafter
insteadof talking aboutroutes,we will talk aboutdivertingtargets. A divertingtarget
canbe: (1) anedge betweertwo landmarkswhich therobothasto crossin orderto go
from oneregionto anotheyor (2) a singlelandmarkto whichtherobothasto approach.

Whenthe systemis asled for a diverting targetin orderto reachanothertamet,
it first finds out in which region the robotis currentlylocated,using the information
aboutthe landmarksvhoselocationis known. This region will bethe startingnodeon
the topologicalmap. The shortestpathfrom this nodeto ary of the nodescontaining
the target landmark(a landmarkcanbe componenbf several topologicalregions)is
computed. The edgeconnectingthe currentregion with the next one on the shortest
pathwill bethedivertingtarget. Theedgeis givenasa pair of landmarkspnethathas
to be kepton the left handside of the robotandanotherto be kepton the right hand
side,sotherobotknows which way the edgehasto be crossed.An exampleis shovn
in Figure3.11.In this casetherobotis in region ABC, thetargetis G, andthe shortest
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Figure3.11: Divertingtargetcomputation

pathto the target would be {ABC,ABD,BDE,BEFEFG}. Thus, the diverting target
would betheedgeAB.

However, it could happenthatthereis no suchshortestpath. The casesn which
suchpathdoesnot exist arethe following:

e Therobotis notin ary topologicalregion.

e Thecostof theshortespathis infinite. This meanghatthe pathis blockedby an
obstaclesoit is notavalid path.

e Thetamgetis notfoundin ary topologicalregion.

To solve thefirst two casesthemaphasto be enlagedwith virtual regionsthrough
which the robot can navigate. The ideais to let the robot move in an unknown area
outsidethemap. Thevirtual regionsarebuilt by placingsomevirtual landmarksaround
the existing map, and creatingthe appropriateregions using the samealgorithm as
describedn the previous section. An exampleof thesevirtual regionsis depictedin
Figure3.12. To force therobotto useregionsof the original map,the arcsconnecting
virtual regionsarelabelledwith a high cost(thoughnot infinite), sothatthey areused
only if it is absolutelynecessarywith this enlagedmap,the shortespathis computed
again.However, it canbethatthe edgeto be crossedcontainsonevirtual landmark.In
this casetheedgecannotbegivenasthedivertingtarget,sincethevirtual landmarksio
not exist on thereal ervironmentandcannotbetracked. In this situation,the direction
tothemiddlepointof theedgeis computedandgivenasthedivertingtarget. Weassume
thatthereis alwayssomefreespacearoundtheexploredareasothattheregionscreated
with thevirtual landmarkscanbetraversed.

In the casethetargetis notin arny topologicalregion, thereis no way to compute
which shouldbethe next region to visit, sincethereis no destinatiornode. Whenthis
happensthe divertingtargetis setto ary of thevisible landmarkshopingthaton the
way to this diverting target, the map is updatedand the target for which a diverting
targethasbeencomputeds incorporatednto it.
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original map

S N

enlarged map

Figure3.12: Enlaging the mapwith virtual regions(dottedlines)

3.5 FutureWork

Although the extensionof Prescott method,togethemwith the algorithmsto compute
divertingtargets,is enoughfor permittinga robotbuild a mapandnavigatethroughan
unknown environment,we would like to explore other mappingmethods so that the
combinationof the differentmethodsaddsrobustnesgo the Navigation system.With

the currentmappingmethod the robotneedgo seeat leastthreelandmarksn orderto

beableto usetheinformationstoredin the map. We would like to develop someother
mappingmethodgo copewith the situationsan which therobothasvery little informa-
tion (i.e. lessthanthreelandmarks). Thesemethodswould be even more qualitatve
thanourfuzzy extensionof Prescott method.We could,for example,look atthefield
of SpatialCognition,which workswith spatialrelationshipsuchas“landmarkX is at
theleft handsideof theline connectindandmarkY andlandmarkz”.



Chapter 4

The Robot Ar chitecture

Navigation,asthegenerataskof leadingarobotto atargetdestinationjs naturallyin-
termingledwith otherlow-level taskssuchasobstacleavoidance andhigh-level tasks
suchaslandmarkidentification.We canseeeachof thetasks from anengineeringoint
of view, asa systemthatis, systemgequireandoffer servicesoneanother Thesesys-
temsneedto coopeante, sincethey needone anotherin orderto achieve the overall
task of reachingthe target. However, they alsocompetefor controlling the available
actuatorf therobot. To exemplify this cooperatiorandcompetition,imaginearobot
controlledby three systemsthe Pilot system,the Vision systemand the Navigation
system.Actually, thesethreesystemsomposehearchitectureve have usedto control
our robot, which will be describedn detailin the restof this chapter Regardingthe
cooperationthe Navigation systemneedsthe Vision systemto recognizethe known
landmarksn a particularareaof the ervironmentor to find new ones,andit alsoneeds
the Pilot systemto move the robot towardsthe target location. Regardingthe com-
petition, the Navigation systemmay needthe robotto move towardsthe target, while
the Pilot systemmay needto changethe robot’s trajectoryto safelyavoid anobstacle.
Moreover, the Pilot may needthe camerao checkwhetherthereis ary obstacleahead
and, at the sametime, the Navigation systemmay needto look behindto localizethe
robotby recognizingknown landmarks.Thus,somecoordinatiormechanisnis needed
in orderto handlethis interactionamongthe differentsystems.The mechanisnhasto
let the systemausethe availableresourcesn suchaway thatthe combinationof these
interactiongesultsin therobotreachingts destination.

We proposea generalarchitecturor managinghis cooperatiorand competition.
We differentiatetwo typesof systemsexecutivesystema&nddeliberative systemsEx-
ecutivesystemdave accesgo the sensorsaand actuatorsof the robot. Thesesystems
offer servicedfor usingthe actuatordo the restof the systemsandalsoprovide infor-
mationgatheredrom the sensorsOn the otherhand,delibemative systemsake higher
level decisionsand requirethe servicesoffered by the executive systemsin orderto
carryout thetaskassignedo therobot. Despitethis distinction,the architecturés not
hierarchical,andthe coordinationis madeat a single level involving all the systems.
The servicesoffered by the executive systemsare not only availableto the delibera-
tive systemsthey arealsoavailableto the executive systemghemseles. Actually, an

37
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Deliberative
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Figure4.1: Generabidding coordinationarchitecture

executive systemmustcompetewith the restof the systemsevenfor the servicest is
offering. The systemgno mattertheir type) canexchangeinformationbetweenthem
(beit sensoryinformationor ary otherinformationthey could have — e.g. mapof the
ervironment). Thearchitectures depictedn Figure4.1.

The coordinationis basedon a simple mechanismbidding. Deliberatie systems
always bid for the servicesoffered by executive systemssincethis is the only way
to have their decisionsexecuted. Executive systemsthat only offer servicesdo not
bid. However, thoseexecutive systemghatrequireservicesfrom ary executive system
(includingthemseles)mustalsobid for them. Thesystemdid accordingo theinternal
expectedutility associatedo the provisioning of the services.A coordinatorrecevves
thesebidsanddecidesvhich serviceeachof the executive systemdasto engagen.

Although we usethe term “bidding”, thereis no economicconnotationasin an
auction. Thatis, systemsdo not have any amountof money to spendon the bids,
nor thereis ary reward or good given to the winning system. We useit asa way to
representhe urgeng of a systemfor having a serviceengaged.The bids arein the
rangel0, 1], with high bids meaningthatthe systemreally thinksthatthe serviceis the
mostappropriateo be engagedat thatmoment,andwith low bids meaningthatit has
no urgeng in having the serviceengaged.

This biddingmechanisnis acompetitive coordinatiormechanismsincetheaction
executedby eachsystemis the consequencef a requestbof oneof the systemsnota
combinatiorof severalrequestgor actionsmadeby differentsystemsasit would bein
acooperatre mechanism.
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This modularview forms an extensiblearchitecture. To extend this architecture
with a new capabilitywe would just have to plug in oneor morenew systemsgven-
tually addingnew sensorsr actuatorsandeventuallychangingthe bidding functions
of the existing systems.Not only that, it alsopermitsusto recursvely have a modular
view of eachoneof the systemsaswill be soonseenin the designof our Navigation
system.Moreover, this architectures not thoughtonly for navigation purposessince
its generalitycanbe usedfor ary taskthatcouldbe assignedo aroboticsystem.

For our specificrobotnavigationproblem we haveinstantiatedhegenerahrchitec-
turedescribedabove (seeFigure4.2). It hastwo executive systemsthePilot andVision
systemsandonedeliberatve systemthe Navigationsystem.Eachsystemhasthefol-
lowing responsibilities.The Pilot is responsibldor all motionsof the robot, avoiding
obstaclesf necessary The Vision systemis responsiblgor identifying andtracking
landmarks(including the target landmark). Finally, the Navigation systemis respon-
sible for taking higherlevel decisionsin orderto move therobotto a specifiedtarget.
Therobothastwo actuatorsthewheels’motors, usedby the Pilot systemandthecam-
era motor, usedby the Vision system. The available sensorsarethe wheelencoders
andbumperswhich provide odometricand bumpinginformationto the Pilot, andthe
imagesobtainedby the camerausedby the Vision systemto identify landmarks.The
Pilot systemoffersthe serviceof moving therobotin a givendirection,andthe Vision
systemoffers the serviceof moving the cameraandidentifying the landmarksfound
within agivenarea.ThebiddingsystemsarethePilot andtheNavigationsystemwhile
the Vision systemdoesnot bid for ary service.

In the next sectionswe describesachof the threesystemsof therobotarchitecture,
focusingon the Navigationsystemthe mainsubjectof thisthesis.



40 Chapter 4. The Robot Architecture

. _
\ ! linear obstacle
N -
’ - \\ N
1 \
0
landmarks or R !
point obstacles o \/ L
AN landmarks

Figure4.3: Growing obstacles.Pointsandsolid lines arethe obstaclesdottedlines
showv grown obstacles

4.1 Pilot System

ThePilotis ableto safelycommandhemotorsthatcontroltherobotto movein agiven
direction. It bidsfor motion control to avoid obstaclesandalsofor the control of the
camerato look forwardin orderto detectpossibleobstacles.Although this systemis
not the focusof this thesis,we have hadto develop a simplePilot in orderto testour
Navigationsystem.

For obstacleavoidancejt usestheinformationcomingfrom the Vision systemand
theinformationstoredin the Visual Memory (describedn the next section),applying
anobstaclegrowing technique Theobstaclesregrown agivensizeto defineforbidden
areasoccupiedby theobstaclesThe obstaclesrerepresentedspoints(for landmarks
andsimpleobstaclespndlines (for linear obstacledetweenandmarks)which, after
growing them, becomecircles androundedrectanglesrespectiely. In our case,the
growing sizeis the diameterof therobot. An exampleof how the obstaclesaregrown
is shavnin Figure4.3. The Pilot usesa simpleobstacleavoidancealgorithm.It checks
whethertherobotis aboutto enterary of theforbiddenareasassociatetb theobstacles.
If therobotis in suchasituation thePilot bidsto modify thetrajectoryin orderto avoid
the obstacle. The modifiedtrajectoryis tangentiako the grown obstacleto be avoided.
Sinceobstacleavoidanceis of maximalimportancethe bid shouldbe higherthanthe
othersystemsHowever, it shouldnotbesetto thehighestpossiblevalue,1, sothatthere
is the possibility of addinga new systemthat overridesthe Pilot (e.g. a teleoperation
system).If therobotis in a safeareathe Pilot doesnotbid atall.

Regardingthe bids for cameracontrol, it is basedon a function thatincreaseghe
bid dependingn thedistanceraveledsincethe lasttime therobotlookedforward:

bid(look(ahead)) = ( (4.1)

dist_since_last_look \ ““?
maz_dist_not_looking

wheremax _dist_not_looking is themaximumdistanceallowedto travel withoutlook-
ing aheadandexp definesheincreasingshapeof the biddingfunction.
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ThePilot alsoinformsthe Navigationsystemandthe VisualMemoryaboutary ob-
stacleit detectsWheneverit detectsa singleobstacld(i.e. it bumpsinto it), it storeshe
obstacles locationin the VisualMemory, andcheckswhetherit canbe partof alarger
linearobstacle Suchlinearobstaclesredetectedvhenaseriesof singleobstaclehave
beendetectedalongtheline connectingwo landmarksandthe distancebetweenthese
obstacless belowv agiventhreshold If thisis thecasethePilot informstheNavigation
systemaboutthe presenc®f a blocking obstaclebetweertwo landmarks.

4.2 Vision System

The Vision systemis ableto identify new landmarksin the vision field of the camera
andis alsoableto recognizepreviously identifiedlandmarks This systemdoesnot bid
for any of theavailableservices Again, althoughthis systemis not on thefocusof the
thesiswe have hadto developasimpleVision systenfor carryingouttheexperiments.
A detaileddescriptionof the vision systemdevelopedto recognizendoorlandmarkss
givenin Chapter®.

The Vision systemis simplebut robustenoughto correctlyidentify the landmarks.
Thus,thereis no uncertaintyaboutthe presencef a givenlandmark. However, there
is someimprecisionaboutits location,sincethe Vision systemonly givesapproximate
distanceandangularinformation. To dealwith thisimprecisionwe usethefuzzy tech-
niguesdescribedn Section3.2.

Thegoalof this thesisis to developa vision-basedavigation systemthatdoesnot
useary specializedocalizationdevice (e.g. GPS)nor odometricinformation. How-
ever, we found that it was very restrictingfor the Navigation systemto useonly the
visualinformationavailableafterprocessingachviewframe.Firstly, becausét is very
difficult to have morethanthreelandmarkson the view field, sinceit is very narrow,
andthe beta-codicient systemneedsto have at leastfour visible landmarksin order
to createa new 3-unit. But evenif four landmarkswerein the view field, they would
probablybe highly collinear, which is not a good configurationfor creating3-units.
Secondly it was a very unrealistichehaior to completelyforget the landmarksthat
werenotin the view field, eventhoughthey hadbeenrecentlyseen.We thoughtthat
addingthe ability of rememberingvhat hasbeenpreviously seenwould improve the
behaior of therobot. Moreover, asit hasalreadybeenmentionedwe wanttherobotto
imitate the navigationalbehavior of humansandotheranimals,andwe certainlyhave
the ability of rememberingvhathasbeenrecentlyseen.A shortterm memory called
Visual Memory implementshis ability, andit is partof the Vision system.

4.2.1 Visual Memory

The Visual Memory storeslandmarksand detectecbbstaclesyith their locationcon-
stantlyupdatedusingodometricinformation. To dealwith theimprecisionin odometry
we use,again,a fuzzy approach.The odometricinformationcomingfrom therobotis
indeedfuzzyinformationaboutits motion,usedto recomputehelocationof theobjects
storedin the VisualMemory. Theimprecisionof this motionis higherwhenthe robot
turns,andlowerif it movesstraight.
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As therobotmoves,theimprecisionon thesdocationsgrows unlessthelandmarks
arerecognizedagainby the Vision system(which obviously reducesheir location’s
imprecision). Whenthe imprecisionaboutthe locationof alandmarkreaches given
upperthreshold,the landmarkis removed from the Visual Memory. Theideabehind
this beingthatthe Visual Memory only remembershoselandmarkswhoselocationis
preciseenough.

Theinformationstoredin theVisualMemoryis treatedby the Navigationsystemin
the sameway asthe informationcomingfrom the Vision system.The only difference
is thatthe Visual Memory will be more imprecisethanthe Vision system. The Pilot
systemalso usesthis information to avoid colliding with rememberedbstaclesand
landmarks.

4.3 Navigation System

This thesishasbeenmainly motivatedby this system.We have usedthe modularview
inspiring the overall robot architecturein the designof the Navigation system. The
overallactvity of leadingtherobotto thetarmgetdestinatioris decomposethto a setof
simpletasks.Working with simpletasksinsteadf usinga singlelargemodulecarrying
outthewhole navigationprocesss the basisof Behaviorbasedobotics Theideais to
divide the overall behaior of the robotinto simplerbehaiors, eachonewith its own
goal, actingin parallel. Thesesimplertasksare mucheasierto build anddehug than
a larger module,sincewe only have to focuson separatelysolving smallerproblems.
Moreover, it permitsusto incrementallyincreasehe compleity of theroboticsystem,
thatis, addingnew capabilities,by simply addingnew behaiors, without having to
modify alreadyexisting code. A detaileddescriptionof Behavior-basedarchitectures
wasgivenin Chapter2.

The Navigation systemis definedto be a multiagentsystemwhereeachagentis
competentn oneof thesetasks(seeFigure4.4). Theseagentanustcooperatesincean
isolatedagentis not capableof moving the robotto the target, but they alsocompete,
becausdifferentagentsmay wantto performconflicting actions. Again, we usethe
bidding mechanisnto coordinatethe agents.Eachagentbidsfor servicesprovided by
otherrobotsystemgPilot andVision systems)andan additionalagent,the communi-
cationagent,gatherghedifferentbidsanddeterminesvhich oneto selectat any given
time. This agentis alsoresponsibleof all the communicatiorbetweenthe Navigation
systemand the other systemsof the robot. The coordinationbetweenthe agentsis
alsomadethrougha commonrepresentationf the map. Agentsconsultthe mapand
the Pilot andVision systemsrovide informationaboutthe ervironment—position of
landmarkspbstacles— whichis usedto updateit.

Thelocaldecision®of theagentdake theform of bidsfor servicesandarecombined
into a groupdecision:which setof compatibleservicego require,andhence givesus
ahandleonthedifficult combinatorialproblemof decidingwhatto do next. In the next
sectionwe describen detailthe societyof agentghatmodelsthe navigationprocess.



4.4. The Group of Bidding Agents 43

L

bids and
information Agent Acronyms
MM: Map Manager
TT: Target Tracker
RM: Risk Manager
. . RE: Rescuer
Navigation i
bids and CO: Communicator]
System information

'

Figure4.4: Multiagentview of the navigationsystem

4.4 The Group of Bidding Agents

In the modelreportedin this thesiswe presenta groupof agentshat take careof dif-
ferenttasksthat,whencoordinatedhroughthe biddingmechanismprovide theoverall
desiredbehaior of leadingtherobotto atargetlandmark.Thetasksare:

o to keeptheinformationonthe mapconsistenandup-to-date,

o to keepthetargetlocatedwith minimumimprecisionandmovetowardsit,
o to keeptherisk of losingthetargetlow,

e torecover from blockedsituations.

Four agentshave beendesignedo fulfill eachone of thesegoals(Map Manager,
Target Tracker, Risk Manager and Rescuerrespectiely), plusa communicatoragent
thatis the responsibléor communicatinghe Navigation systemwith the otherrobot
systemgPilot andVision).

Theactionsthatagentscanbid for are:

e Move(direction), instructsthe Pilot systemto move the robot in a particular
direction

e Stop, instructsthe Pilot systemto stoptherobot,

e Look(angle), instructsthe Vision systemto identify all the possiblelandmarks
thatcanbefoundin theareaat angle radiansrom the currentbody orientation.

Finally, agentsmay ask one anotherwith respecto the differentknowledgethey
have. For instance,ary agentin the societymay requestfrom the Map Manager to
computethe locationof thetargetor of a divertingtarget. Agentsmay alsobroadcast
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message$o the restof the agentsin the society For example,the Rescuerinforms
aboutthetargetto bereachedandthe Target Tradker informsabouttheimprecisionon
thetarget'slocation.

In the next sectionswe describesachof the agentsandtheir codeschemaganbe
foundin Section4.4.6.

4.4.1 Map Manager

This agentis responsibldor maintainingthe informationof the exploredernvironment
in thetopologicalmap. Theactiity of this agentconsistof processingheinformation
associatedvith the incoming viewframes— expandingthe graph, creating3-vectors,
andasynchronouslghangingarcs’ costlabelswheninformedby otherrobot systems.
This agentusesthe fuzzy beta-codicient systemdescribedn Chapter3 to build the
mapandanswerquestionsaboutlandmarkpositions.

The Map Manager is alsoresponsibldor computingthe quality of the setof land-
marksin the currentviewframe,whenrequiredby the RiskManager. This quality is a
functionof thecollinearityof thelandmarks Having asetS of landmarkstheir quality
is computedas: g, = max{1 —Col(S")|S' C S,|S’| = 3} whereCol(S") is computed
usingtheequation3.4.

Thisagentalsocomputedlivertingtargetswhenaskedfor by theRescuerTo do so,
it useghetopologicalmap,whereall pathcostsarerecordedto computewhich should
bethenext regionto visit in orderto reachthetarget. A descriptionof the computation
of divertingtargetswasalreadygivenin Chapter3.

4.4.2 TargetTracker

The goal of this agentis to keepthe target locatedat all timesand move towardsit.
Ideally, thetargetshouldbe alwayswithin the view field of thecamerallf it is not, the
imprecisionassociatedo its locationis computedby this agentusingthe information
of the map. Actions of other systemsarerequiredto keepthe imprecisionaslow as
possible.

We modelthe imprecisionasa function on the size of the anglearc, ¢y, from the
robot'scurrentposition,wherethetargetis thoughtto belocated.Whentherobotis sure
of thepositionof thetarget(becausé is in thecurrentview field of thecamerawe have
acrispdirectionand,hence, = 0 andtheimprecisionis 0. If thetarget’s locationis
obtainedrom the VisualMemoryor computedy the Map Manager, ¢, is computedas
thesizeof theinterval correspondingo the 70%«-cut of thefuzzy numbemrepresenting
the headingto the landmark. Whenthe robotis completelylost, ary directioncanbe
correcteg = 2w, andtheimprecisionlevelis 1. Thus,theimprecisionlevelis computed

as: 5
I, = (6—0) (4.2)
2T
wheref givesa particularincreasingshapeto the imprecisionfunction. If 5 is much
smallerthanl, theimprecisionincreasesjuickly astheimprecisionin anglegrows. For
B valueswell over 1, imprecisionwill grow very slowly until the erroranglegetsvery
big.
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Theactionsrequiredby thisagentareto movetowardsthetargetandto look towards
theplacewherethetargetis assumedo be. Thebidsfor moving towardsthetargetstart
at avalue k; (< 1) anddecreaseolynomially to 0, dependingon a parameter.
Therationalefor this is thatwhenthe imprecisionaboutthe targetlocationis low, this
agentis confidentaboutthe target’s positionandthereforebids high to move towards
it. As theimprecisionincreasesthis confidencedecreaseand so doesthe bid. Bids
for looking at the targetincreasefrom 0 to a maximumof k. (< 1) andthendecrease
againto 0. The rationalebeingthatwhenthe imprecisionis low thereis no urgeng
in looking to thetarget, sinceits locationis known with high precision. This urgencg
startsto increaseastheimprecisionincreasesWhentheimprecisionreaches level in
which the agenthasno confidenceon thetargetlocation,it startsdecreasinghe bid so
asto give the opportunityto otheragentgo win thebid. The equationsnvolvedare:

bid(move()) = k1 (1 — I}/%) (4.3)
bid(look(8)) = ko sin(wly,) (4.4)

wherea controlshow rapidly the moving bidsdecreaseandd is the crispanglewhere
thetargetis thoughtto be. The biddingfunctionsareshavn in Figure4.5.

This agentis constantlyaskingthe Map Manager for the location of the tamet.
Whenit recevesan answer(obtaining® andey), it computesheimprecisionandin-
forms the restof the agentsaboutit. If the Target Tradker is not informed aboutthe
target’s locationwithin a giventime limit, it setstheimprecisionlevel to 1.

Thebehaior describedboveis appliedwhenthegoalis to reachasinglelandmark.
However, asmentionedn Section3.4,thegoalcanalsobeto crossthe edgeconnecting
two landmarks(if the Rescuerhassetit asthe diverting target). In this latter case,
this agentis constantlyaskingfor the location of the two landmarks(thus, obtaining
# andey for eachlandmark)and computingtheir associatedmprecision. The highest
imprecisionis usedas I, for computingthe bidding valuesfor moving and looking
actions.lt is alsousedto decidewherethe camerashouldlook; it looksin thedirection
of thelandmarkwith highestimprecision.Regardingthe motionaction,the agentbids
to movein thedirectionof theanglebetweerthetwo landmarks.

TheTargetTradker is alsotheresponsibldor decidingwhethertherobotis attarget
If thetargetis asinglelandmark,t considerghattherobothasreachedhetargetif the
upperboundof the a-cut of level ¢ of the fuzzy numbermodelingthe distanceto the
targetis lessthan§ timesthe body size of the robot. The parameterg) andé canbe
tunedto modify the accurag of the agent. In the caseof the target being an edge
(betweenlandmarksZ; and L,), it checkswhetherthe robotis on the desiredside of
line connectinghetwo landmarks|f therobotis ontheleft of thedirectedine through
L; andL,, it isonthecorrectside,thatis, theedgehasbeencrossedlf it is ontheright
of theline, it meanghattherobothasnotstill crossedheedge.

4.4.3 Risk Manager

The goal of this agentis to keeptherisk of losing thetargetaslow aspossible.While
the Target Tracker’'s goalis to locatethe target by maintainingit in the cameras view
field, thisagenttriesto keepareasonableamountof known landmarksasnoncollinear
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Bid Mave
Bid Look

Imprecision 1 Imprecision 1

Figure4.5: Target Tracker's biddingfunctions

aspossible,in the surroundingf the robot. Therationaleis to have asmary visible
landmarksaspossibleso thatthe Map Manager is ableto computethe locationof the
targetusingthe beta-codicient systemwhenit is notvisible norin the VisualMemory:
The fewer surroundinglandmarkswhoselocationsare known, the more risky is the
currentsituationand the higher the probability of losing the target and getting lost.
Also, themorecollinearthelandmarksthehighertheerrorin thelocationof thetamet,
andthus,the highertheimprecisionon its location.

We modeltherisk asafunctionthatcombines:1) the numberof landmarksahead
(elementsn setA), 2) thenumberof landmarksaround(elementsn setB), and3) their
“collinearity quality” (g4 andgg). As we have describedthesequalitiesarecomputed
by the Map Manager. A minimum risk of 0 is assesse@henthereare at leastsix
visible landmarksn the directionof the movementandminimally collinear Although
the locationsof only threelandmarksare neededn orderto usethe beta-codicient
system,we want to have additionallandmarksaroundthe robot whoselocationsare
known, sothatthereare more chancego computethe target's location. A maximum
risk of 1 is assessedhenthereareno landmarksaheachor around:

r= i (1 () (1)) @5

Thevaluesy4 and~p determinetherelative importanceof the situationof landmarks
(aheador around).

Giventhatthe robot cannotdecreasehe collinearity of the visible landmarksthe
only wayto decreas¢herisk level is by increasinghe numberof landmarksaheadand
around.Having morelandmarkspesidesncreasing A| or | B|, alsohelpsby possibly
increasinghe qualitiesq4 andgp.

We encouragdaving landmarksaheady bidding

bid (look (rcmdom ([—%, +%} ))) =% R (4.6)

for theactionof looking atarandomdirectionin front of therobotandtrying to identify
thelandmarksn thatarea,f |A| < 6, and

bid (look (random ( {%, +74—7T} ))) =, - R 4.7)
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Bid Look

Figure 4.6: RiskManager's look bidding functions(look ahead-solid line- andlook
behind-dashedine-)

(whichis obviously smallerthan-~,. - R) for theactionof looking ata randomdirection
aroundtherobotandtrying to identify landmarksijf |B| < 6, where~, is aparameter
to controlthemaximumvalueof thebiddingfunction. Thebiddingfunctionsareshovn
in Figure4.6.

The behavior of this agentalso helpsthe Map Manager build the mapwhenthe
robotis in anunexploredarea. Sinceit bidsfor looking for landmarkswhenthereare
notmary visible, its bidswill be high,andthusnew landmarkg(if therearelandmarks,
obviously) will beidentifiedandthe mapwill beupdated.

4.4.4 Rescuer

Thegoalof theRescuegentis to rescuetherobotfrom problematicsituations.These
situationamayhapperdueto two reasonsFirst, thePilot canleadtherobotto a position
with a long obstacleaheadthat cannotbe easily avoided. Second the imprecisionof

thelocationof thetargetmaybetoo high (overathresholdr,,).

If therobotgetsblocked, this agentasksthe Map Manager to computea diverting
target, andinforms the restof the agentsaboutthe new target. If the diverting target
computedby the Map Manager is just a direction (this meansthat the robot should
crossan edgecontaininga virtual landmark,asexplainedin Section3.4),the Rescuer
bids for turning the robotin the givendirection. In orderto have the robot moving in
this directionfor a shortperiodof time, it setsthetargetto bealandmarkthatdoesnot
exist. However, therestof the agentsdo notknow thatit doesnot exist, therefore they
behave asif it wasan existing landmark. Thus,the Map Manager will not be ableto
computeits locationwhenasled by the Target Tradker. This latter agent,afterasking
several timesfor the location of the target and not receving ary answey will setthe
imprecisionlevel to 1, whichwill causethe Rescueto getactive again. The rationale
of this “trick” is thatduringthe time the robothasbeenmoving, it will have probably
(and hopefully) recognizednore landmarksso thatthe Map Manager cancomputea
betterdivertingtarget. Finally, if the Map Manager fails to computea divertingtarget,
the Rescuerbids for makingthe robot turn around(a randomanglein 7+ %), hoping
againthatwith the new directionit detectdandmarkghathelp computingthelocation
of thetargetor adivertingtarget. In casethecurrentdivertingtargetcannotbereached,
thisagentwill askfor anew divertingtargetfor theinitial target.

On the otherhand,if the imprecisionof thetarget’s locationis too high, the agent
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bidsfor stoppingthe motionandstartinga visualscanaroundtherobot,trying to detect
asmary landmarksaspossible.Thescanwill stopwhentheimprecisionof thelocation

of thetargethasdecreasetb anacceptabldevel, eitherbecausé hasbeenrecognized
by the Vision systemor becauséts locationhasbeencomputedby the Map Manager

usingotherlandmarks’locations.Sincein this situationno obstaclehasbeendetected,
the Rescuermssumeshatthe pathto the targetis not blocked, sotherewill notbe ary

targetchange.However, if at the endof the scanninghe imprecisionlevel is still too

high, it will askfor adivertingtarget.

This agentalsoperformsa visualscanat the very beginning,whentheinitial target
is given,in orderto detectsomelandmarksandstartbuilding the mapbeforethe robot
beginsmoving to thetarget. Only afterthe scanis completedthis agentwill inform the
otheragentswvhatis thetargetto bereached.

The bidding valuesfor the actionsrequiredby this agentare constant(parameter
w) andshouldbe higherthanthoseof theotheragentw > maxz (1, K2,7r)), Sinceit
is absolutelynecessaryo executethe actionsin orderto continuethe navigationto the
target.

4.45 Communicator

The multiagentsystemimplementingthe navigation algorithmcommunicatesvith the
remainingrobotsystemghroughthe Communicatomagent. This agentrecevesthein-
formationaboutthe visible landmarksand obstaclesletected which is passedo the
appropriateagentyMap Manager andRescue). This agentalsoreceiesbids for ac-
tionsfrom the otheragentsandis responsibldor determiningwhich oneto selectand
sendasthe Navigation systems bid. The actionsrequiredmay be conflicting or not.
For instance anagentrequiringthe camerato look behindandanothemrequiringit to
identify a new landmarkon the right, bid for conflicting actions,thatis, actionsthat
cannotbe fulfilled at the sametime. On the contrary an agentrequiringthe robotto
move forward, and an agentrequiring the camerato look behindmight be perfectly
non-conflicting. It canbe easilyseenthat the conflictsoccurwhenthe actionsrequire
the useof the sameresourcgrobot motion or cameracontrol). Thus,the requestfor
actionswill be separatelyreateddependingon the resourceequired: Move andStop
actionson oneside,and Look actionson the other The Communicatorlagentreceives
the bids for the two differenttypesof actions,and selectsthe moving actionwith the
highestbid andthe looking actionwith the highestbid. The resultingtwo action-bid
pairsaresentto the Pilot andVision systemrespectiely. This agentwaits sometime
beforeprocessingherecevedbids,sothatall theagentdhavetimeto senctheirbids. If,
duringthistime window, anagentsendsnorethanonebid for the sametype of action,
it replaceghe previously sentbid. Whenthetime window expires,the Communicator
processesll therecevedbidsanddetermineshewinners.

As alreadymentionedthe biddingmechanisnimplementsa competitive coordina-
tion mechanismThis mechanisnihasproblemswith selfishagents Theproblemarises
whenthereis one (or more) agentsthat always bids very high sothatit wins all the
bids, thus,not letting the otheragentshaving their actionsexecuted.In this case there
is no coordinationat all betweenthe agentsandit is very difficult, if notimpossible,
to achieve the goal of reachingthe targetdestination.For instancejf we setthe Target
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Tradker to bid alwayshigherthanthe Pilot systemtherobotwould notbeableto avoid
ary obstacleandwould getstuckif any wasencounteredTo avoid suchproblem,the
agentsand systemsshouldbid rationally, thatis, bidding high only whenthe action
is found to be the mostappropriatefor the currentsituation,andbidding low whenit
is not clearthatthe actionwill help, giving the opportunityto otheragentsto win the
bid. Thus,specialattentionmustbe payedwhendesigningthe agentsandtheir bidding
functions.

To solwve this problemwe could usea more economicview of the bidding mecha-
nism,assigninga limited creditto eachagentandallowing themto bid only if they had
enoughcredit. With this new systemthereshouldalsohave to be a way to reward the
agentslf not, they would run out of creditaftersometime andno agentwould beable
to bid. However, we facethe creditassignmenproblem,thatis, decidingwhento give
a reward andwhich agentor setof agentsdesere to receve it. This problemis very
commonin multiagentlearning systems,especiallyin Reinforcementearning,and
thereis not a generalsolutionfor it. Eachsystemusesanad hoc solutionfor thetask
beinglearned.Otherpossiblesolutionswould be to have a mechanisnto evaluatethe
bidding of eachagent,assigninghemsucceedingr failing bids, or somemeasurenf
trust,in orderto take or not take into accounttheir opinions. However, we would have
againthe credit assignmenproblem. Thus,in the multiagentsystemreportedin this
thesiswe have designedhe agentsso thatthey bid rationally, leaving the exploration
of theseevaluationmechanismsasalline of futureresearch.

4.4.6 Agentscodeschemas

In this sectionwe presentthe code schemador the agentsMap Manager, Target
Tracker, RiskManager andRescuerandalsofor the Pilot system.The schemahave
someparameterssuchasthetargetthathasto bereachedits initial headingandsome
otherparticularparametersor eachagent(bidding function parametershresholds...).
Theseparticularparameterslefinethe behavior of the agentsandthereby the overall
behavior of therobot. Varying the valuesof the parameterswe may obtainbetteror
worst navigation performancesandwe may alsoadjustthe conserativenessor riski-
nessof therobot. Thus,appropriateljtuningtheseparameterss very important.In the
next chapterwe explore the useof learningtechniquesn orderto do suchparameter
tuning.

Whendescribingthe algorithmschemasthe speechactswill appeamlasexpressions
in a KQML-style language[26]. Agentsrefer to themseles by the specialsymbol
“self”. Whenreferringto all the agentsof the society they usethe symbol“all”.

Agentshave a hybrid architectureWe will usethefollowing constructo modelthe
reactive componentf agents:

On conditiondo action

Whenever the condition holds (typically an illocution arriving to the
agent), the action is executed immediately = The illocutions used by the
agents are the following: ask(asking_agent, asked_agent, question) and
in form(in forming_agent,in formed_agent, information).
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SystemPilot(v,maxdist.not looking,exp) =

Begin deliberative
Repeat
inform(self,Msion System,odometriinformation)
(avoid,f) := avoid.obstaclesof_VisuaLMemory()
If avoid then inform(self,Coord{(Move(f),v)})
. ) ) exp
inform(self,Coord { (T.ook(0), ( ;istsince lastlook 1)) 1)
Until
End deliberative

Beginreactive
On bumpersactive do
bakupsafedistance()
(obstacledetectedl.;, L) := updateVisual. Memory()
If obstacledetectedhen inform(self,NavigationSystem,bstacle(.,, 1))

On inform(VisionSystem,self,currentiew(CV) do
(avoid,d) := avoid.obstacles(CV)
If avoid then inform(self,Coord{(Move(#),v)})
End reactive

End system
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SystemNavigationSystemg, 3, k1, k2, G, 6, YA, VB Ve La, W) =

Agent MM() =

Beginreactive
On inform(CO,self,currentiew(CV)) do
updatemapgCV)

On inform(CO,self,obstacld(;, L,)) do
updateobstacl€L, L)

On ask(X,self,position-landmark?{) do
(0, €9,d, eq) := computelandmarkposition(L)
inform(self,X,position-landma&( L, 6, €5, d, €4))

On ask(X,self,position-landmarksE(, L)) do
(01, ¢€9,,d1,€q,) = computelandmarkposition(;)
(02, €0, , da, €4, ) := computelandmarkposition(-)
inform(self,X,position-landmas(L1, 61, €g, , d1, €4, , L2, 02, €g,, d2, €4,))

On ask(X,self,landmarks-quality 2)o
(|Al,|Bl|, ¢4, g) := computelandmarksquality()
inform(self,X,landmarks-qality(| A, | B|, ¢4, ¢B))

On ask(X,self,dverting-taget?(L) do

(T, Ly, L, 0, type) := computediverting target(L)

If type=landmarkhen
inform(self,X,diverting-taget(T))

elseif type=edgehen
inform(self,X,dverting-ed@(L;, L))

elseif type=directiorthen
inform(self,X,diverting-directio(9))

elseif type=failedthen
inform(self,X,diverting-taget-failed)

End reactive
End agent
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Agent TT(a, B, K1, k2, ¢, (5) =
Begin deliberative
targetset:= false
initial targetreached= false
Repeat
If target setthen
If targettype=Ilandmarkthen
ask(self,MM,position-landmark?(tget))
else
ask(self, MM, position-landmarks®?(L;,E L,.))
endif
endif
Until initial targetreached
End deliberative

Beginreactive
On inform(RE,self,initial-taget(T))do
targetset:= true
targettype:=landmark
initial_target:=T
target:= initial _target

On inform(RE,self,taget(T))do
targettype:=landmark
taget:=T

On inform(RE,self taget(;,L,)) do
tagettype:=edge
(EL;,EL,) = (L, L)

On inform(MM,self,position-landrark(targetf, ey,diste4;5:)) do
I, = (25%)5
inform(self,all,imprecision{,))
inform(self,CO,{(Move(8), k1 (1 — (Ié/a))), (Look(h), ka2 sin (11,))})
[min,max]:= {dist} 4
at target:= max < §*bodyshape
If attargetthen inform(self,all,at-taget(taget))
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On inform(MM,self,position-landrarks(E Ly, 6;, €9, , d;, €4,
ELT‘: 07“: €9, dr: edr)) do

)
L= (57
7= (R
I, :=max(IL, I7)

anglemove:=(6; +0,.)/2

If I! > I then anglelook := 6,

elseanglelook := 4,

inform(self,all,imprecision[,))

inform(self,CO,{ (Move(angle_move), k1 (1 — (I2/%)))
(Look(angle_look), ka sin (m1,))})

edgecrossed= checkedgecrossed;, 6,

If edgecrossedhen inform(self,all,edge-crossei(l;,EL,))

On inform(self,self,at-taget(initial target)) do
initial_targetreached= true
End reactive
End agent
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AgentRM(v4,vB,vr) =

Begin deliberative
targetset:= false
initial targetreached= false
Repeat
If targetsetthen
ask(self, MM,landmarks-quality?)
endif
Until initial targetreached
End deliberative

Beginreactive
On inform(RE,self,initial-taget(T))do
tamgetset:= true
initial _target:=T

On inform(MM,self,landmarks-qality(| A|,| B|,q4,q5)) do

R :=1—min (l,qA (%)M + (IB(lﬁﬂ)’YB)
If |A| < 6then

inform(self, CO{(Look(random_angle ([-%,+%]) ,7R)})
elseif |B| < 6 then

inform(self, CO{(Look(random_angle ([+
endif

+T]) R

INH

On inform(TT,self,at-taget(initial target))do
initial _targetreached= true

End reactive

End agent
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AgentRE(T,,w) =
Beginreactive
On inform(CO,self,nav-target(T))do
initial _scan()
inform(self,all,initial-taget(T))

On inform(CO,self,Blocled)do
ask(self,MM,dverting-taget?(initialtarget))

On (inform(TT, self,imprecision(,)) and (I, > I,)) do
angle := compute_scan_angle()
If scan_finished(angle) then
ask(self, MM,dverting-taget?(nitial target))
else
inform(self,CO{ (Stop, w), (Look(angle),w)})

On inform(TT,self,at-taget(T)) or inform(TT,self,edge-crossed(, L,.)) do
target:= initial _target
inform(self,all, taget(taget))

On inform(MM,self,diverting-taget(T)) do
inform(self,all, target(T))
taget:=T

On inform(MM,self,diverting-edye(L;, L)) do
inform(self,all, target(Z;, L,))

On inform(MM,self,diverting-drection()) do
inform(self,all, taget(fake_target))
inform(self, CO{(Move(#),w)})

End reactive

End agent

End system
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4.5 FutureWork

We shouldexplorethefeasibility of usinganeconomicview of thebiddingmechanism,
asmentionedn Section4.4.5,andanalyzehow to solve the difficult problemof credit
assignment.

The designof eachone of the agentsof the Navigation systemshouldbe revised
accordingo theresultsobtainedhroughtheexperimentationThisrevisioncouldrange
from simpletuningof someof theagentsbehavior to theinclusionof new agentsSome
of this changewill be discussedn Chapter6, devotedto the experimentatiorwith a
realrobot.



Chapter 5

Simulation Results

In this chapterwe describethe experimentswe have carriedout throughsimulation.

We have usedsimulationfor threedifferenttasks:firstly, to checkthatthe multiagent
Navigation systemwe have designedvorks properly;secondlywe have appliedRein-

forcement_earningtechniquesn orderto learna policy ontheuseof thecameraand

finally, we have useda GeneticAlgorithm approacho tunetheparametersf theagents
in the Navigationsystem.

For thesddifferenttasks we have usedwo simulators We startedusingthe Webots
simulator On this simulatorwe implementedhe Navigation systemandwe alsoused
it for the Reinforcement.earningtask. However, we found someproblemswith the
Webotssimulator mainly relatedto batchexecution,which madethe experimentation
veryslow. Althoughwewereableto getresultswhenusedfor Reinforcementearning,
we decidedo developour own simulator to do extensie simulationwith no problems.
We usedthis new simulatorto run againthe multiagentNavigation systemandfor the
GeneticAlgorithm approacho tunethe parameters.

5.1 The Simulated System

It hasto bepointedoutthatthe overall system(thatis, the Navigation, Pilot andVision
systems)sedin the simulationsis not exactly the sameasthe one describedn the
previous chapter(also describedn [13]). Sincethe beginning of this researchfour
yearsago,the Navigation, Pilot andVision systemshave beenevolving (agentsof the
Navigation systemhave beenaddedmodifiedandremoved,andthe capabilitiesof the
Pilot and Vision systemshave alsochangeduntil we have reachedwhat, by now, is
the definitive version,which hasjust beendescribed.This evolution hasbeenguided
by the experimentation both on simulationand with the real robot. The simulation
experimentsdescribedn this chaptershav the performanceof a previous versionof
our system59, 12].

One of the main differencesbetweenthe simulatedsystemandthe definitive one
is thatin the simulatedonethe Vision systemdid not provide information aboutthe

1From Cyberboticshttp://iwwwcyberbotics.com
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distanceo thevisible landmarksijt providedthe Navigation systemonly with angular
information. Moreover, the simulatedVision systermhadno rangelimitation, thatis, it
couldidentify any landmark no matterhow farit was,aslongasit wasin theview field
of thecamera Obviously, this doesnot hold on thereal Vision system.

Dueto this lack of distanceinformation,the Map Manager agenthadto compute
thedistanceo thelandmarkausingthechangdn angleof eachlandmarkon successie
viewframes.Sincethe changedn anglecanvary verylittle for thelandmarktherobotis
goingtowards(i.e. thetarget),it wasvery difficult to accuratelycomputethe distance
to thetarget. In the simulatedsystem therewasanadditionalagent the DistanceEsti-
mator, thathelpedon computingthedistanceo thetarget. Therole of thisagentwasto
move therobotorthogonallywith respecto theline connectingherobotandthetarget
landmarkwhile pointingthe cameran the directionof the target, sothatthe changen
anglewas maximal, permittingthe Map Manager to computethe distanceaccurately
The DistanceEstimatoragentcomputedthe imprecisionassociatedo the distanceto
thetarget. Thisimprecisionis computedas; = 1 — 1/e"¢, wherex is aparameteto
controlthe shapeof the function,ande; is the errorin distanceand,similarly to what
the Target Tradker does,it is computedasthe sizeof theinterval correspondingo the
70% a-cut of the fuzzy numberrepresentinghe distanceto the target. The Distance
Estimatoragentbids werea function on thisimprecision.If theimprecisionwashigh,
it bid high to move the robot orthogonally so the distanceto the target could be com-
putedwith a lower error.. Onthe otherhand,if the imprecisionwaslow, sowerethe
bids. This agentplayeda very importantrole at the beginning of the navigation, since
thedistanceo the targetwasunknawn, andtherefore theimprecisionmaximal. Thus,
the DistanceEstimatorwould bid very highin orderto let the Map Manager geta first
estimateof the distance.This agentwasalsoresponsibldor decidingif therobothad
reachedhetarget,sinceit hadthe distancanformation. On the definitive system this
is responsibilityof the Target Tradker.

Anotherimportantdifferences thatthe simulatedsystemdid not useVisual Mem-
ory. Thatis, the Navigation systemwasonly informedaboutthe landmarkscurrently
visible within the view field of the camera.This restrictionmadeit difficult to create
“good” beta-unitssinceall thevisible landmarkswverewithin a narrov view field, and
thus,very collinear

The Rescueragentalsohad somedifferences:apartfrom getting active whenthe
robotwasblockedandwhentheimprecisionin thetarget'slocationwastoo high, it also
got active whentherisk (computedandbroadcastety the RiskManager) wasover a
threshold. Furthermorejts behavior wasto alwaysvisually scanthe surroundingsof
therobotand,afterthat,askfor adivertingtarget, nottakinginto accounthe reasorof
its activation.

Therewerealsodifferencesn the Pilot system.Anotherpartneron the projectwe
areinvolvedin wasresponsiblef building the Pilot system.Thereforejnitially, we did
not focuson this system,anddid not worry abouthow it wasdesigned.As long asit
wasableto avoid theobstaclegncountereth its way, its designdid notaffectatall our
coordinatiormechanismmorthedesignof theagents For thisreasonyve startedusinga
built-in pilot systemof the Webotssimulatorthatusedsimulatedsonarsensorsn order
to avoid obstacleslIn therealrobot,however, suchsonarsensorsarenot available,and,
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asexplainedin the previous chaptey the Pilot systemwe finally implementeds only
ableto detectobstacledy bumpinginto them.

A final differenceis that the mappingandnavigation methodusedwasnot asex-
plainedin Chapter3. Firstly, the criterion usedto selecttopologicalregionswasbased
only onthecollinearity of theregion andits size,thus,permittingoverlappingregions,
andnotassuringa completerepresentationf theervironment.And secondlythecom-
puteddivertingtargetswerealwayssinglelandmarksthe computationof edgesasdi-
vertingtargetswasintroducedafterexperimentingwith therealrobot.

Despiteall thesdlifferencesthebasicelement®of ourapproachave notbeendras-
tically modifiedduring the evolution of the system:the bidding coordinationmecha-
nismhasnot beenchangedat all, andthe mappingmethodhasexperiencednly slight
modifications.

5.2 Multiagent Navigation SystemSimulation

The goal of simulationwasto checkwhetherour approachthatis, the architecture,
the bidding coordinationmechanisnandthe mappingmethod,could leadto a robust
navigationsystem.

We implementedhe agentsof the Navigation systemandtestedthe algorithmon
the Webotssimulatorandin our own developedone. Eachagentwas executedasan
independenthread,andthey usedsharedmemoryfor messag@assing We alsosimu-
latedthe Pilot andVision systemsn bothsimulators. We setthe parametersf eachof
theagentdy hand.We first settheir valuesintuitively, andslightly modifiedthematfter
somesimulationtrials.

As afirst step,we checledwhetherthe bidding mechanisnwasableto adequately
coordinatethe agentsof the Navigation systemandthe Pilot, sothatthe taskof reach-
ing the targetwasaccomplished The Pilot systemusedwasnot ableto inform about
the presencef long obstacledetweenandmarksalthoughit would avoid them. For
this reasonwe werenot still checkingthe mappingand navigation capabilitiesof the
system.

Figure5.1 shavs a navigationrun in the Webotssimulator It shaws the pathfol-
lowed by the robot from a startingpoint to a targetlandmark. The ervironmentwas
composedy a setof landmarks(shovn ascircles), a river (the thick blue traversing
line) with a coupleof bridges,andsomefencesandother obstacles.Theseobstacles
did not occludethe target landmark,so it wasvisible from ary location of the ervi-
ronment. Thetaskto be performedwasto reachthe target (at the left-handside of the
world) avoiding ary obstacleencounteredn theway.

At thevery beginning, the distanceto the targetis unknown, so the DistanceEsti-
matoragent(DE) bidsvery high to move therobotorthogonallyto theline connecting
it to the target andlooking to the target, so that the Map Manager can estimatethe
distanceto thetarget. The Target Tracker agent(TT) bids for moving andlooking to-
wardsthe target, but the bids of DE are higherandthe robot movesorthogonally As
therobotmoves,the Map Manager computeghe distanceo thetarget,andtheimpre-
cisioncomputedby the DE decreases;ausingits bidsalsoto decay At a givenpoint,
thebidsof TT arehigherthanthoseof DE, andtherobotstartsgoing towardsthe tar
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Figure5.1: Robot’s pathfrom startingpoint to the target

get. Sincethereareno obstaclesaround,the Pilot doesnot bid at all. However, after
someadwance the robotencountersan obstacle andthe Pilot bids very high to avoid
it, surpassinghe bidsof TT and DE. Whenthe obstaclehasbeentotally avoided,the
Pilot stopsbidding, the bids of TT win again,andthe robot movestowardsthe tamget.
This situationis repeated coupleof timesuntil therobotfinally reacheghetarget.

Although the ervironmentusedin this first stepwas simple, mainly becauseof
the constantisibility of the target, simulationsshoved that the bidding coordination
mechanismworkedproperly sinceit wasableto coordinatehedifferentagentsandthe
Pilot.

Thenext stepwasto testthe mappingandnavigation capabilitiesof the Navigation
system.In this stepwe usedour own developedsimulator with a betterPilot system,
capableof informing aboutthe linear obstaclesbetweenlandmarks,and with more
realisticenvironmentsincluding occludingobstaclesso that the targetwasnot visible
all thetime.

In Figure 5.2 we seehow the Navigation systemcomputesdiverting targetsfor
reachingthe initial target whenthis is lost. In this ernvironment,filled polygonsare
occludingobstaclesandemptyonesarenon-occludingones thus,permittingthe visi-
bility of thetargetfrom the startingpoint. At point A, it seeghetargetandstartsgoing
towardsit. However, at point B, it detectsan obstacle,so the Pilot forcesthe robot
to turn. Whenit reachegoint C, it cannotseethe targetarymore,asit is behindan
occludingobstacle At this point, adivertingtargetis computedin this caseJandmark
30is selected).Therobotstartsgoingto this divertingtarget. Oncereachedpoint D),
anew divertingtargetis computedlandmark38is selected)andtherobotgoestoward
it. At point E, afterreachingthe currentdivertingtarget,a new oneis computedland-
mark 12), which is reachedat point F. Fromthis point, it seesthe initial targetagain,
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Figure5.2: Computingdivertingtargets
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goesstraighttowardsit, andfinally reacheshetarget.

Someonanay askwhy the Navigation systemcomputedso mary divertingtargets,
insteadof trying to go towardsthe initial targetmorefrequently Thereasorwasthat
the risk wastoo high very often. This was becauseof the narrov view field of the
cameraand the fact that the systemwas not using Visual Memory, thus, having too
few landmarksin sightvery often. Althoughthe performancevasgoodenough- the
robotreachedhe target— this behavior of constantlycomputingdiverting targetswas
notwhatwe really wanted.Moreover, in the situationof therobotbeingin anareawith
very few landmarkspossiblyseeingonly thetamet, therisk would be very high, but it
would not be a wise decisionto stopgoingtowardsthe targetand,instead,computea
divertingtarget. Thatis why the Rescueragentwasmodifiedsothatit did nottake into
accountherisk, aspresentedn the previouschapter

In Figure5.3themapgeneratedavhile reachinghetargetis shovn. Althoughinter-
nally the Map Manager agentstoresthe mapasa graph,here,for clarity, we shaw the
triangularregions correspondingo the nodesof this graph. As canbe seenthe map
hasmary overlappingregions,unconnectedegionsandregionswith obstaclesnside.
Obviously, it is nota very goodrepresentatioof the ervironment.In orderto obtaina
bettermapof the ervironment,we modifiedthe mappingalgorithmsothatit included
the constraintgpresentedn Chapter3. As will be seenin the experimentatiorwith the
realrobot(Chapter6), the modifiedmappingalgorithmobtainsmuchbettermaps.

Although in the simulation we simplified the task in comparisonto navigating
througharealernvironment(the Vision systemworked perfectly withoutary limitation
on its view range,the Pilot usedsonarsfor obstacleavoidance),the resultsobtained,
shawing thatthe coordinationandmappingworkedwell, werevery promisinganden-
couragedusto keepworking on the refinemenif the systemin orderto testit on the
real robot. However, eventhoughthe main experimentationvasto be donewith the
realrobot,we still employedsimulationto apply MachineLearningtechniquesn order
to automaticallytune the parametersand obtain betterperformance.In the following
sectionswve describehow we have appliedthesetechniques.

5.3 ReinforcementLearning

As mentionedgachof the agentswithin the Navigation systemhasa bidding function
thatis controlledby a setof internalparametersTheseparametersieedto betunedin
orderto achiese the bestperformanceof the Navigation systemandof the overall sys-
tem. Although,asshown in the previous section,we achievzed goodresultswith hand-
tunedparametersye wantedto explore if therewere other parameterconfigurations
thatled to betterperformancef the system.Adjusting theseparametersnanuallycan
be very difficult, particularlybecausef the tradeofs confrontingthe top-level agents.
An alternatie to manuakuningis to employ MachineLearningtechniquesspecifically
Reinforcement.earningmethodq64]. In this section,we describesomeexperiments
to testthe feasibility of applying Reinforcement.earningwithin this multiagentsys-
tem.

Reinforcement.earningis oneof the mostcommonlyusedlearningtechniquesn
Robotics. In Behavior-basedarchitecturedearning can be appliedat two levels: at
the coordinationlevel, wherethe goal is to apply learningto the coordinationsystem
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Figure5.4: Modified navigationsystemwith the new agent

[44, 28], or at the behaior level, wherethe goalis to apply learningto the individual
behaviors of thesysteni45, 14]. In our casewe havetakenthelatterapproachl0, 11].

Ideally, we wouldlik eto applyReinforcementearningto tuneall of theparameters
of all of the agentsin the system. However, this is a very difficult problem,andit is
not clearthat Reinforcement.earningis the bestsolutionat all levels of the system.
Insteadwe have choserto focuson a particularlearningproblemwithin the Navigation
system.Reinforcement_earningis mostneededand mostappropriatén caseswvhere
thereis a comple, quantitatve tradeof betweenbehaiors. In suchcasesmanual
tuningis difficult, andthe quantitatve criterion of maximizingexpectedreward,which
is the goal of Reinforcement.earning,permitsusto representhetradeof nicely.

Within the Navigation system,sucha tradeof exists betweenthe Target Tracker
agent,the RiskManager, andthe DistanceEstimator— recall that we usetheinitial
versionof thesystemasdescribedn Sectionb.1. TheTarget Tradker wantsto know the
exactheadinganddistanceo thetargetat all times. This canbe achiezed by pointing
the cameraat the target and moving towardsit. The Risk Manager wantsto ensure
thatthe robotis surroundedy arich network of landmarksso thatthe robotdoesnot
getlost. This canbe achieved by pointing the camerain variousdirectionsaroundthe
robot to identify andtrack landmarks.Finally, the DistanceEstimatorseeksto know
accuratalistancedo thetarmgetlandmark.This canbeachiezedby pointingthe camera
in the direction of the target while moving the robot orthogonallyto the direction of
thetarget. In additionto this conflict, the Navigation systemmustnot monopolizethe
camerapecause¢he Pilot needdo useit for obstacleavoidance.

Insteadof trying to learnthe appropriatevaluesfor eachof the parametersf these
agentswe proposeto replacethe Target Tradker, the RiskManager, andthe Distance
Estimatorby a new Learning Agent that learnsits behaior through Reinforcement
Learning. We formulatethe reward function for this agentso thatit is rewardedfor
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reachingthe currenttargetlocationwhile minimizing the useof the camera.The two
remainingagentshave very differentroles. The Map Manager maintainsthe beta-
coeficient map, but doesnot bid on actions. The only remainingbidding agentis the
Rescuer which is responsiblefor the higherlevel choice of diverting targetswhen-
ever therobotbecomeslocked. This actwity is betterimplementedoy pathplanning
algorithmsthanby Reinforcement.earning,sowe have notincludedthe Rescue€ls re-
sponsibilitieswithin the LearningAgent The modifiedarchitecturdor the Navigation
systemis shovn in Figure5.4.

5.3.1 The Taskto be Learned

The task confrontingthe Learning Agent is to chooseactions(for both motion and
vision) in orderto reachthe currenttarget location while minimizing the useof the
camera. The Map Manager informs the Learning Agent aboutthe target location. If
therobotbecomeslocked,the Rescuemwill askthe Map Manager for a new target(a
diverting target), andthenthe Learning Agent will take controland chooseactionsto
reachthatnew target. Oncethedivertingtargetis reachedthe Rescuemaybe ableto
setthe currenttargetto bethe original goal, andthenthe Learning Agentwill attempt
to moveto thattarget(andhence solve the original task).

5.3.2 The ReinforcementLearning Algorithm

Therearetwo generaltypesof Reinforcement.earningalgorithms: Model-basedand
Model-free. Model-basedalgorithmslearna transitionmodel P(s'|s, a) for the ervi-
ronmentwheres is the stateof theervironmentattimet, a is anactionto be executed,
ands’ is theresultingstateof the environmentattime ¢ + 1. Model-basechlgorithms
also learn a reward model R(s, a, s'), which gives the expectedone-stepreward of
performingactiona in states andmakinga transitionto states’. Oncethesemodels
have beenlearneddynamicprogrammingalgorithmg6] canbeappliedto computethe
optimalvaluefunction V* andthe optimalpolicy =* for choosingactions.

In contrastmodel-freemethodgsuchasQ learningandSARSA(\)) directlylearna
valuefunctionV* by repeatedlynteractingwith theervironmentwithoutfirst learning
transitionor revardmodels.They rely ontheervironmentto “modelitself”. For robot
learning, however, model-freemethodsare impractical, becausehey require mary
more interactionswith the ernvironmentto obtain good results. They make sensein
simulatedworldswherethe costof performinganactioncanbemuchlessthanthe cost
of storingthe transitionandreward models particularlyif the ervironmentis evolving
overtime. But the costof performingan experimentalactionwith a realrobotis very
high.

Hence,for our experimentswe have chosernthe model-based@lgorithmknown as
Prioritized Sweepindg49]. Prioritized Sweepingworks asfollows. At eachtime step,
the learnerobsenesthe states of the ervironment,choosesan actiona, performsthe
action,recevesaone-stepewardr, andobsenestheresultingstates’. Thelearnerthen
updatests estimateof P(s'|s,a) andof R(s,a,s’) usingthe obseredresultstates’
andtheobsenedrewardr. Finally, thelearnemerformsthe ¥ mostimportantBellman
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backupgo updateits estimateof the valuefunction V. A Bellmanbackupin states is
computedasfollows:

V(s) = max Z P(s'|s,a)[R(s,a,s") +V (s")]

Thisis essentiallyaone-stegookaheadhatconsidersll possibleactionsa andall pos-
sibleresultingstatess’, computeshe expectedbacled-upvalueof eacha, andassigns
the maximumsuchvalueto bethe new estimateof V' at states.

Prioritized Sweepingmaintainsa maximizing priority queueof statesin which it
believesa Bellmanbackupshouldbe performed.First, it performsa Bellmanbackup
for themostrecentstates. In eachBellmanbackupjt computeshechangean thevalue
V () resultingfrom the backup:

A(s) = |V(s) —max ) P(s'|s,a)[R(s,a,s") + V(s")]

After performingthe Bellmanbackup PrioritizedSweepingconsidersll statess— that
are known predecessorsf s, and computesthe potentialimpactC' of the changein
V (s) onthechangen thevalueof s~ accordingo

C(s7) =Y P(s|s™,a)A(s)

It thenplacegthestates™ onthepriority queuewith priority C(s™). Finally, Prioritized
Sweepingperformsk — 1 iterationsin which it popsoff the statewith the maximum
potentialimpact, performsa Bellmanbackupin that state,andthencomputeghe po-
tentialimpactof thatbackupon all predecessastates.In our experimentsk = 5. (In
our implementationyve actuallyusethe state-actiongr @, representationf the value
functionratherthanthe statevaluefunction V. We have described¢he methodusingV’
in orderto simplify the presentation.)

Prioritized Sweepings essentiallyanincrementaform of valueiteration,in which
the mostimportantupdatesare performedfirst. Becauseevery interactionwith the
ervironmentis appliedto updatethe model, Prioritized Sweepingmakes maximum
useof all of its experiencewith the ervironment. Prioritized Sweepingis an “off-
policy” learningalgorithm. During thelearningprocessary explorationpolicy canbe
employedto chooseactionsto execute.|f the explorationpolicy guaranteeso choose
every actionin every stateseveral times, then Prioritized Sweepingwill corvergeto
the optimal action-selectiorpolicy. We employ e-greedyexploration. In this form of
exploration,whentherobotreachestates, it executesarandomactionwith probability
e. With probability 1 — ¢, it executegheactionthatis believedto beoptimal(according
to thecurrentvaluefunction V). Tiesarebrokenrandomly

We represenboththetransitionmodel P(s'|s, a) andtherewardmodel R(s, a, s)
by three-dimensionahatriceswith onecell for eachcombinationof s, s’, anda. This
techniquewill only work if the stateandactionspacesresmall. Therearetwo reasons
for this. First, the tablesmustfit into memory Secondthe time requiredfor learning
is proportionalto the numberof cellsin thesetables,becaus¢he LearningAgentmust
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Figure5.5: Division of ervironmentin sectorsThearrov shavsthedirectionin which
therobotis facing(directionof motion,not directionof gaze)

experiencemultiple visits to eachstates sothatit canperformeachactionqa several
timesandgatherenoughdatato estimateP(s'|s,a) and R(s,a, s'). Hence,the most
challengingaspecbf applyingReinforcemenkLearningis theproperdesignof the state
representation.

State Representation

We wantthe LearningAgentto learna generalpolicy thatworksfor any ernvironment,
independentlyf thelocationsof the landmarksandtargets.Hence our staterepresen-
tation mustnot directly employ the locationsof the landmarks. Moreover, the robot
cannotdirectly obsene the completestateof theervironment,whichwouldincludethe
locationof therobot, all obstaclesandall landmarks!Instead the taskof therobotis
to learn,underconditionsof incompleteknowledge,aboutthe locationsof obstacles,
landmarksandtargets.

Statespaceghatencodeincompleteknowledgeareknown as“belief statespaces”
[15]. The purposeof a belief staterepresentations to capturethe currentstate of
knowlede of theagent ratherthanthe currentstateof the externalworld. In our case,
the Learning Agent is trying to move from a startingbelief statein which it knows
nothingto a goal belief statein which it is confidentthat it is locatedat the target
location. Along theway; it seekgo avoid gettinglost (which is a belief statein which
it doesnotknow its locationrelative to the targetposition).

To explain our staterepresentationye begin by defininga setof belief statevari-
ables.Thenwe explain how thesearediscretizedo provide a smallsetof featuresach
taking on a small setof values,sothat P(s’|s, a) and R(s, a, s") canbe represented
with smalltables.

At ary given point in time, the headingsto all objects(landmarksandthe target
position)aredivided into six sectors.The field of view of the robotis 60 degrees,so
atary pointin time, therobotcanobsene onesector seeFigure5.5. For eachsector
we representnformationaboutthe numberof landmarksbelievedto be in that sector
andthe precisionof our beliefsabouttheir headingsand distances.This information
is gatheredrom an initial versionof the Visual Memory that constantlyupdatesthe
locationof the seenlandmarksandto which the LearningAgenthasaccess.

Giventhesesectorsthefollowing statevariablescanbe defined:

e Distanceto target,andits imprecision,D(t), I4(t)
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e Headingto target,andits imprecision,H (t), I, (¢)
e Thelandmarksn eachsector L(s) = {l1,...,1n, }
e Numberof landmarksn eachsector N(s) = min(4, |L(s)|)

e Average imprecision of landmarks in each sector 1(s) =
1
N{(s) ZleBest(4,L(s)) I(l)

We now explain eachof these.ThedistanceD(l) to alandmark(or D(t) to thetarget)
is afuzzy numberin therange|0, oo]. Theheadingto alandmarkH (1) (or H (t) to the
target)is afuzzy numberwith range[0, 27]. For eachof thesejts imprecision(I4(1) for
distance I, (1) for heading)is definedby takingthe size of the interval corresponding
to the 70% «-cut of thefuzzy number

Theimprecisionof alandmarkis computedusingthe equation3.3 alreadygivenin
Section3.2.2:

In(1)

I(l) =X tanh(8 - (1)) + (1 = \) - o

For anexplanationof the equationseethe mentionedsection.

We summarizehe agents knowledgeof thelandmarksn eachsectorby averaging
theimprecisionof thefour most-precisely-kn@n landmarksThefunction Best : N x
2l — 2T selectsasubset,B = Best(n, L), of agroupof landmarksL = {l1, ..., l,x },
suchthat |B| < n A VepVrer—pI(l) < I(I'). Having 4 landmarksin one sectoris
alreadyvery good,sinceonly 3 landmarksareneededo usethebeta-codicientsystem
network. Furthermorewe do not wantthesemeasure$o be affectedby badlandmarks
whenwe have somethat are good enough. Thatis why we use Best (4, L(s)) when
computingZ(s).

Features

After computingthesestatevariableswe combineanddiscretizethemto defineasmall
numberof featureseachof which takeson a small numberof values. Thesefeatures
definethe statespaceandthey areusedto accesshetablesP(s'|s,a), R(s,a,s") and
V (s) in thelearningphaseandalsoto accessr(s) for policy exploitation.

We employ thefollowing features:

e TametDistance,D(t), discretizedo 5 intervals.

e TargetLocationimprecision:measurefimprecisiononthelocationof thetarget,
I(t), discretizedo 7 intervals.

e LandmarkCount: averagenumberof landmarksoverthe six sectors,
C =13, N(s), discretizedo 4 intenals.

e Landmarkimprecision:averagemprecisionof landmarkslocationsin eachsec-
tor, T = £ 5°°_ 1(s), discretizedo 7 intenals.

This givesatotal of 980 belief states.
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Actions

JustasReinforcement.earningrequirescarefuldesignof the statespaceo ensurehat
it is compact,it alsorequirescarefuldesignof the actionsetto ensurethatit is small
but alsosufiicient for therobotto achieveits goals.

Physically therobotis ableto simultaneouslyperformtwo typesof actions:moving
actionsandlookingactions.Moving actionsmake therobotmove in a givendirection.
Lookingactionsemploy thecamerao identify or tracklandmarksn theervironmentin
specifiedsectors.The Vision systemcaneithersearchor new landmarksor re-acquire
already-detecteldndmarksbutit is notableto doboththingsatthesameime, because
differentimageprocessingoutinesarerequiredfor each.In eithercase however, the
Vision systenreturnsthe headinganddistanceto thelandmarkst detects.

An additionalconstrainton the designof actionsis thatthe Vision systemis most
effective whentherobotis moving in certaindirectionsrelative to thelandmarkseing
obsened.

Giventheseconstraintswe have designedhefollowing setof actionsfor theLearn-
ing Agent

e Move Blind (MB): move toward the target (i.e., in the directionin which the
targetis believedto be). Do notusethe Vision system.

e MoveandLook for LandmarkgMLL): movetowardthetarget. Pointthecamera
in the sectorthat containsthe fewestnumberof known landmarks andlook for
new landmarksn this sector

e Move Orthogonallyto Target (MOT): move orthogonallyto the directionof the
target. Pointthe cameraat the targetandattemptto improve the precisionof the
headinganddistanceo the target.

e Move andVerify Landmarkg(MVL): move towardthetarget. Pointthe camera
to the sectorwith the maximumimprecision,/, andattemptto re-acquireknown
landmarksandmeasureaheir headinganddistancemoreaccurately

e Move and Verify Target (MVT): move toward the target. Point the cameraat
thetargetandattemptto re-acquiraét andmeasuréts headinganddistancemore
accurately

Theseactionsshouldaffect the statevariablesasfollows. All actionsexceptMOT
make thedistanceo thetargetdecreaseMB makesall imprecisiongrow. MLL should
increasehe numberof detectedandmarks MOT shouldreducetheimprecisionabout
the target’s location, while MVL shouldreducethe overall imprecision. MVT also
reduceghe imprecisionof the target’s location, but not asmuchasMOT. All actions
requirethat the headingto the targetis known (at leastapproximately). The heading
is chosenasthe centerof the fuzzy interval for H(t). If the headingis completely
unknown, the centerof this interval is 7. This causeghe robotto “pace” backand
forth, turning180degreeqw radians)eachtime anactionis executed.

We have assignedan immediatereward to eachactionto reflectthe load on the
Vision systemandthe motionsystem.Therewardsarenegative, because¢hey arecosts.
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MB is the cheapestction, sinceit doesnot usethe camera. It hasa reward of —1.
MVL andMVT producea reward of —5, sincethey make moderatedemandon the
Vision system MOT givesarewardof —6, becausét requiresmoremotionin addition
to the sameimageprocessinggsMVL andMVT. Finally, MLL is the mostexpensve,
with arewardof —10, becausé mustdo extensive imageprocessindo searchfor new
landmarksandverify thatthey arerobustto changesn viewpoint.

The systemreceies a reward of 0 whenit reacheghe target location. The Re-
inforcementLearningobjectie is to maximizethe total reward. In this case,this is
eqguialentto minimizing the total costof theactionstakento reachthetarget.

5.3.3 Experimentation

We have employedthe Webotssimulatorto performour experiments.Theervironment
containsasetof landmarkspneof whichis designatedsthetarget. Thereis alsoawall
thatsurroundgheregion in which therobotis navigating. Thelandmarksarethe only
objectsin theenvironment. Thereareno obstaclesasobstacleavoidanceis handledoy
thePilot system.However, therobotcanbeblockedby thelandmarksor by thewall. In
eachtrial, therobotstartsat arandomlocationin this environment,andit hasto reach
thetarget. Thetrial terminatesinderthreeconditions:(a)if therobotreacheshetarget
(andis confidentthatit hasreachedhetarget), (b) if therobottakes500stepswithout
reachinghetarget,or (c) if therobotis blocked. Whenthetrial is finished thenext one
beginswith anotherandominitial locationfor the robot.

In orderto seeif the performanceof the systemimprovesafter learning,we com-
paredit with a hand-codedolicy. The hand-codedolicy usedthe samediscretized
featuresasthe learningalgorithm (Target Distance,LandmarkCount, Landmarkim-
precisionand Target LocationImprecision). The following table shows the policy for
choosinganactiondependingn thevaluesof thesefeatures

R \/'Zr \/'Z:- A
high low * * MLL
high | —low high * MVL
high | =low | —high high || MOT
high | =low | —hitgh | —high || MB

=high * high high || MVL

=high * —high high || MVT
very low * * —high || MVT
low * * —high || MB

wherehigh, low andvery low aredefinedasfollows:



70 Chapter 5. Simulation Results

Variable very low | low | high
TargetDistance <1 <2 >2
TargetLocationlmprecision - <5 | =25
LandmarkCount - <2 >2
Landmarkimprecision - <5 | 25

The readershouldnote that this hand-codedolicy is not the sameasthe policy
producedy the hand-codediddingfunctionsdescribedn Chapte. We have chosen
this policy becauset allows usto delug andtestthe Learning Agent separatelyfrom
therestof the multi-agentsystem.

The LearningAgentwastrainedfor 2000simulatedtrials. At regularintervals,the
learnedvaluefunctionwastestedby placingtherobotin 100randomly-chosestarting
locations funningonetrial from eachlocation,andmeasuringhetotal reward,thetotal
numberof actionsandwhethertherobotsucceedeah reachinghetargetposition. The
samesetof 100startinglocationswasemployedin eachtestingperiod. Thehand-coded
policy wasalsoevaluatedon thesel00startinglocations.

First,letusconsidetthefractionof successfulrials. Figure5.6shovsthatevenafter
only 100 trials, the Learning Agent is alreadyout-performingthe hand-codedgolicy.
After 2000trials, the LearningAgentsucceed reachingthetargetin 84 of thetrials,
comparedo only 24 for thehand-codegbolicy. Fromtheseresultswe alsoseethatour
hand-codegbolicy waspretty bad. Althoughwe could have tried to rewrite the policy
to improve its performancethe resultsshown that Reinforcement.earningcangreatly
helpon solvingcomple tradeofs, very difficult to handlemanually
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Figure5.6: Numberof successfutesttrials asa function of theamountof training

A secondway of analyzingthe performanceof the Learning Agentis to compute
the averagereward pertrial, the numberof actionspertrial, andthe numberof actions
of eachtype. Table5.1 displaysthis informationafter 2000training trials. Eachvalue
is averagedover five testruns. The only differencebetweentestrunsis the random
numberseedor theWebotssimulator We seethatwhile thehand-codegolicy receies
anaverageof —858 unitsof reward,thelearnedpolicy only receves—336 units,which
is a hugeimprovement. In addition,the Learning Agent on the averageonly requires
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Table5.1: Comparisorof the Learning Agent (LA) andthe hand-codedgolicy (HC)
after 2000trainingtrials.
Rewardpertrial ~ Actionspertrial MB MOT MVT MVL  MLL
HC -858 153.33 494 1859 052 12196 7.32
LA -336 4995 1141 652 561 4.97 21.43

50 stepsto terminatea trial (reachthe goal, becomeblocked, or execute500 steps)
comparedo 153 stepsfor the hand-codedolicy. Actually, the Learning Agentnever
terminatesecausef reachingthe 500-stedimit.

Table5.1containsotherinterestingnformation. In particular we seethattheLearn-
ing Agenthaslearnedto performfewer MOT andMVL actionsandmoreMB, MVT,
andMLL actions. Note particularlythat the Learning Agent is executingan average
of 11.4MB (Move Blind) actionsper trial, comparedo only 4.9 for the hand-coded
policy. Oneof the goalsof applying Reinforcement.earningwasto find a policy that
freedthecamerdor useby thelow-level obstaclevoidanceroutines andthisis exactly
whathashappenedthe hand-codegbolicy usesthe camera®6% of thetime, while the
Learning Agent usesit only 77% of thetime. On the otherhand,we were surprised
to seethat the Learning Agent choosedo executethe most expensve action, MLL,
sooften (21.4timespertrial, comparedo only 7.3 timespertrial for the hand-coded
policy). Certainly it hasfound thata mix of MLL andMB givesbetterreward than
the combinationof MVL and MOT thatis producedby the hand-codedolicy. The
LearningAgentspendsnuchmoretimelooking for new landmarksaandmuchlesstime
verifying the directionanddistanceio known landmarks.

5.3.4 Future Work

Althoughtheobtainedresultsshawv thatthe LearningAgenthaslearnedo selectactions
to resohe the complex cameratradeof, we needto integrateit into the overall multi-
agentsystem(asdepictedn Figure5.4),to seeif the performancef thewhole system
is alsoimproved. Eventhoughthe Learning Agent knows which actionsit hasto bid
for (following thelearnpolicy), it is not clearhow its bidding function shouldbe (e.g.
constantdependingnthevaluesof 1 (s)).

Somemorefurtherwork will be focusedon the designof the stateandfeaturerep-
resentatiomand the setof available actions. Asadaet al. [5] proposeda solutionfor
copingwith the “state-actiondeviation problem”, in which actionsoperateat a finer
grainthanthefeaturecanrepresenthaving the effectthatmostactionsappeato leave
thestateunchangedandlearningbecomesmpossible We planto evaluatethe suitabil-
ity of this approachin our experiments Regardingthe actionsetdesignwe foundthat
thesetof availableactionswasmaybetoo smallandsomemoreactionsmaybeneeded.
We areworking on an “action refinement’method[20] that exploits prior knowledge
informationaboutthe similarity of actionsto speedup thelearningprocessin this ap-
proach the setof availableactionsis larger, but in orderto not slow down thelearning,
the actionsare groupedinto subsetof similar actions. Early in the learningprocess,
the Reinforcement_earningalgorithmtreatseachsubsef similar actionsasa single
“abstract”action,estimatingP(s'|s, a) notonly from theexecutionof actiona, but also
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from theexecutionof its similar actions.This actionabstractions lateron stoppedand
then eachactionis treatedon its own, thus, refining the valuesof P(s'|s,a) learned
with abstraction.

5.4 Evolving the Multiagent Navigation System

As we have alreadymentionedpreviously, our Navigation systemis decomposeéhto
a setof differentagentsthat are responsibldor differenttasks. Eachof theseagents
hascertainparametershataffectits biddingbehaior. Trying to manuallyfind the best
valuesfor the parametersf the bidding functionsis an extremelydifficult task. In this
sectionwe describeheapplicationof anevolutionaryapproacho dothis optimization.

5.4.1 Navigation Tasks

For agivenervironmentwe considerntwo differentnavigationtasks.Eachoneof them
with a differentlevel of complexity. The bestparametesetmay changedependingon
the compleity of thetask. We conjecturethatthe parametergounddependmainly on
the compleity of the navigationtaskandnot so muchon the structureof the overall
environment.This compleity is dependenthoughnot equal to thecartographicom-
plexity of theworld in whichtheagentmoves,andis basednthefollowing factors:

1. Numberof visible landmarksat ary time
2. Densityof obstaclesn theregion of navigation

3. Visibility of thetargetatarny time

Usingthis notion of navigationalcomplexity, the total spaceof all navigationtasks
canbe split into two representatie classesgoing towardsthe target free of obstacles,
andreachingtargetslocatedbehindobstacles.In our experimentswe useclustersC;
(encircledtargetsin Figure5.7) and C, (encircledtargetsin Figure5.8) asrepresenta-
tivesof thetwo taskcomplexity classesThebestparametesetis determinedor both
theseclasses.The aim of the experimentsis to endav the Navigation systemof the
robotwith the capabilityto switch betweenthesetwo parametesetsaccordingto the
actualtaskcompleity it is facing.

5.4.2 The Agents

Although a detaileddescriptionof the agentswvasalreadygivenin Chapter4, aswell
asthedescriptionof the differencedetweerthe simulatedsystemandthefinal system,
(givenatthebeginningof this chapter) we review the parametersf eachof theagents:

e TargetTracker («, 3, k1, K2)

— «: controlshow rapidly the bids for moving towardsthe target decrease,
bid(move(9)) = k1 (1 — Ii/“); high valuesof a make bidsincreaseast,
while low valuesmalke bidsincreaseslowly
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Figure5.7: ClusterC1
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Figure5.8: ClusterC2
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— B: controlsthe shapeof theimprecisionfunction, I, = (%)B; highvalues
malkeit increaseslowly, while low valuesmaleit increasdast

— k1 maximumvaluefor moving actionsbids

— k2: maximumvaluefor looking actionsbids
e DistanceEstimator (s, ¢, )

— k: controlstheshapeof thedistancamprecisionfunction,; = 1 —1/e"¢t;
high valuesof x make theimprecisiongrow fast,while low valuesmake it
increaseslowly

— ¢,6: controlsthe at target computation;it considersthat the robot has
reachedhe targetif the upperboundof the a-cut of level ¢ of the fuzzy
numbemodelingthe distanceo thetargetis lessthand timesthebodysize
of therobot

e Risk Manager (74, v5, 7r)

— v4,7B: controltherelative importanceof the positionof landmarksahead
andaround frespectiely, usedin therisk computation,

A YA B B
RZl—min(l,qA(|6—|) +q3(%) )

— 7-: maximumvaluefor looking actionsbids
¢ Rescuer(,,R)

— 1,: imprecisionthreshold above which this agentgetsactive

— R: risk threshold above which this agentgetsactive

5.4.3 The GA algorithm
Representation

We seekto optimize the Navigation systemwith respectto its 10 parametersTarget
Tracker (o, 3, k1, k2), DistanceEstimator(x), RiskManager (va, vB, 7r), andRes-
cuer (I,, R). The DistanceEstimatots parameters) and§ are fixed to 0.7 and 2
respectiely sincethey do not affectthe efficiengy of the system.We usearealvalued
chromosomeeachchromosomdeinga vectorof 10 dimensiongseeFigure5.9). The
initial populationis generatedandomly
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Evaluation

Eachindividualin thepopulationspecifiesa particularparametesetfor thesystemand
is evaluatedby runninga simulationwith the specifiedparameterén a given erviron-
ment. Considerthatthe agentnavigatesfrom aninitial positionp, to thetargetcluster
C containingthe n target positions(ty, t», ..., t,) andthatit takesd; stepsto reach
thetargett; from py with asucceswvalues;. A thresholdis definedfor the numberof
stepsthat aretakento reachthe target, abose which the agentis saidto have failedin
its attemptto navigateto thetarget(i.e. its successalueis 0, otherwiseit is 1).

This formalizationgives the cluesto definethe fitnessfunction that permitsthe
selectionof the bestparametesets.lt is clearthatthe averagecostof reachingatarget
from theinitial positionpy is definedasthe summationof the stepsrequiredto reach
eachtargetdivided by the numberof targets. Thatis,

Z?:1 di

n

Cc =
Similarly, we cannaturallydefinethe averagesuccesvalueas:

Diei Si

n

Thebestbehavior for anavigationsystenis theonethathasahigh successatewith
alow averagecostandwith alow standardleviationfor this averagecost,o.. Thus,we
definethefitnessfunctionasfollows:

s =

Evolution

We follow anelitist approachThatis, from a populationof individuals,thefittestindi-
vidual is passedo the next generation.The remainingindividualsform the pool from
which the new generatioroffspring are created. We randomlyselecttwo individuals
from the mating pool whosefitnessis over a randomly determinedvalue. Thenwe
apply cross@erandmutationonthemto generatanew individuals:

begin
counter.=0;
repeat
r ;= generatarandomnumber;
i :=find thefirstindividual whosefitness> r;
r' := generat@arandomnumber;
i’ :=find thefirst individual whosefitness> r’;
applycross@er operatoroni andi’;
apply mutationoperatoroni andi’;
counter.= counter+1;
until counter= populationsize/ 2
end
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Figure5.9: Chromosomavith the setof parameters

Crossaer

A simple two point cross@er is usedwith the two parentsexchangingtheir genetic
materialbetweentwo randomlygeneratedreakpointsn the genestring. A point to

noteis thatthe chromosomearebrokenonly atagentboundariegseeFigure5.9). The
ideais thatoneof the parentsnayhave goodgenedor aparticularagentwhile theother
parentmay have goodgenedor anotheragent. This way the crossaer could resultin

anoffspring having a higherfitnessvaluethanbothits parents.

Mutation

The mutationoperatorfor the geneticalgorithm hasbeenadoptedfrom the Breeder
GeneticAlgorithm [53]. Givenary setof parameterasa chromosomewe canview
it asa point x within a 10 dimensionalspace. Using our mutationoperator we seek
to searchfor optimality within a “small” hypercubecenteredat x. How small this
hypercubeis, dependson the rangesin eachparametricdimensionwithin which we
allow the chromosomeo mutate. The parametricdimensionsare not homogeneous,
hencemutationrangesdiffer for eachdimension,being directly proportionalto the
varianceallowed in that parameter Anotherfeatureof this mutationoperatoris that
while it searchesvithin thehypercubeenteredtx, it testsmoreoftenin thevery close
neighborhoodf x, the ideabeingthat, while we wantto conducta global searchfor
optimumusingour recombinationmutationis usedfor a morerestrictedocal search.
Having understoodhe broadfeatureswvhich the mutationoperatorshoulddemonstrate,
we formally definethe mutationasfollows:

Given a chromosomex, eachparameterr; is mutatedwith probability 0.1. The
numberof parameterbeingl0impliesthatatleastoneparametewill beprobablymu-
tated. Further giventhe mutationrangefor the parameter:; asrange;, the parameter
x; iIs mutatedo thevaluez;* givenby

*
T; = x; £range;-p

As previously discussedp shouldbe suchthatit lies betweerQ and1 (to generatehe
hypercubecenterecht z) andalsoit shouldprobabilisticallytake on smallvaluessoas
to testmoreoftenin thecloseneighborhoof z. Thisis realizedby computingp from

thedistribution
p=2 027
J

whereeacha; is probabilisticallyeitherO or 1.
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@ B8 K1 K2 K YA B YR 1. R
C1l | 1.731 2.03 0.314 0.493| 0.355| 0.240 0.521 0.054| 0.386 0.215
C2| 1231 212 1.0 0.564| 0.178| 1.377 4.39 0.707| 0.871 0.906

Table5.2: Optimal parameteraluesfor eachof the clustersfor one executionof the
GA over100generations

Diversity

The corvergenceof the geneticalgorithmis estimatedhroughits populationdiversity.
Initially, the populationhasa high diversity sinceall the individualsarerandomlyse-
lected.As the algorithmcorverges theindividualsin the populationcorvergetowards
the bestsolution,thusdecreasindhe diversity. In our case the individualsare points
in a heterogeneoudimensionspacewith «, 3, y4 andyg € R+ while the otherpa-
rametergangingbetweerD and1. Hencewe usethe Mahalanobiglistancemeasurdo
determinghediversity of a population[22].

The Mahalanobidistancetakesinto accountthe heterogeneityn dimensionsand
correspondinglyscaleseach dimensionwhile estimatingthe distancebetweentwo
points. Given a set of data points {z;} with eachdatapoint z; being an n-tuple
(241 < j < n), the Mahalanobidistanced,,, betweentwo pointsz;, andz; is given
as

dn (28, 21) = (2 — 2) TS (21, — 21)

HereX isthen x n variance-coariancematrixfor thegivendatapoints. To comparehe
diversity of populationsacrossgenerationsthe covariancematrix is computedtaking
into accountall the chromosomesver all generations.The diversity of a population
is thencalculatedasthe averageMahalanobiglistanceof eachchromosomdrom the
meanchromosome.

5.4.4 Results

The geneticalgorithmwasrun on the two taskcomplexity classegepresentedby the
targetclustersC; andC; in our simulator The populationsizewasof 20 individuals,
andwe ranthegeneticalgorithmfor 100generationsTheinitial positionwasthe same
for bothtaskswith the cross@er andthe mutationratesbeing0.8 and0.1respectiely.
In the algorithm, four of the parameters— a, 3, y4 and~g lie on the positve real
axis and hencewe have to choosean upperlimit on the real line. This upperlimit
is importantsincea low upperlimit valueimplies that we implicitly restrictour real
valuedparameterso thatlimit, while ahighupperlimit valuemayincreasehe number
of generationgor which the geneticalgorithm may have to be run sincethe initial
randomgeneratiorwill beverydispersea andg areexponentof numberdessthanl
andhencetheir large valueswill not be useful. Keepingthesefactorsin consideration,
theupperlimit valuehasbeenfixedto 5 in our simulations.

The geneticalgorithm cornvergesto an optimal solutionfor eachclusterascanbe
seenin Figures5.10-5.15.By optimal solutionwe refer to the bestsolutionthe algo-
rithm hasfound, which may not necessarilybe the optimal solutionto the navigation
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Goingto ¢ Goingto C,

2 f 5 c f
Cyiset|| 1 |505|0.017| 0.5| 127.5| 0.003
Cyset|| 0.5]425| 0.011 1 122 | 0.007
HT set| 0.5| 69 | 0.005|f O - 0

®|

Table5.3: Resultsobtainedby the differentparametesets

task. The optimal valuesfor someof the parametergliffer significantly for the two
clustersasshavn in Table5.2. The parameterassociatetb thebiddingfunctionof the
Risk Manager agentdiffer the mostbetweenthe two clusters. This is so becausehe
RiskManager is very sensitve to the compleity of the task. The moreobstaclesthe
highertherisk of losingsightof landmarks.

In orderto checkthe resultsobtainedfor eachof the clusters,we have testedthe
two parametesetsfoundby thegeneticalgorithmonthetwo differentnavigationtasks
(goingto clusterC; andgoingto clusterCs). We have alsotestedour original param-
eterset,which we setby hand,on the sametwo navigationtasks.Theresultsobtained
by eachseton eachof thetasksareshavnin Table5.3. For eachtask,themeanaverage
succesvalue(s), averagecost(c) andthefitnessvalue(f) is computed.As expected,
theparametesetfoundfor clusterC; performsperfectlywhengoingto clusterC; and
it only reacheghetargetsof clusterC, 50% of thetime. Onthe otherhand,theparam-
etersetfoundfor clusterC; reacheshetargetsof clusterC, all thetimes,while it only
reacheghe targetsof clusterC; 50% of thetime. Finally, the hand-tunedbarameter
setreache$0% of the time for targetsin clusterC;, andnever reachegshe targetsof
clusterCs. Therefore the evolutionary approachhasimproved the global navigation
behavior.

In Figures5.16and5.17 we canseesomepathsfollowed by the robot usingeach
of the parametesseton eachof the tasks. Successfupathsare only shavn for those
parametesetwith asuccessalueof 1. Otherwise anexampleof afailing path(marked
with acrossatits end)is shovn.

5.4.5 Future Work

We will analyzethe generality in termsof differentervironmentsandstartingpoints,
of theparametersbtainedby the geneticalgorithm. Furtherwork shouldalsofocuson
designingan agentcapableof identifying the complexity of the taskbeingperformed,
sothatthe parametersanbe switchedfrom onesetto another We will exploretheuse
of CaseBaseReasonindechnique®nthis “situationidentifier” agent.
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Figure5.16: Goingto clusterC

Figure5.17: Goingto clusterC,
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Chapter 6

Real Experiments

In this chapterwe describethe experimentscarriedout with the realroboton real en-
vironments.We firstly describetherealrobotic platformwe have usedfor this experi-
mentationandthevision systemwe have developedn orderto recognize¢hebarcoded
landmarksusedin the experimentatiorervironment.A brief descriptionof agraphical
controlinterfaceis alsogiven. Finally, we describein detailthe differentscenario®on
which the experimentshave beencarriedout andthe resultswe have obtained.

6.1 The Robot

Therobotusedin the experimentatioris an ActivMedia® Pioneer2 AT. It is a4-wheel
drive all-terrainrobot, equippedwith a panandtilt unit with two B&W cameras.lt
is alsoequippedwith front andrearbumpersfor collision detection. The dimensions
of the robotare 50x50x 26 (in cm, lengthxwidthx height). The field of view of the
camerass of 45 degreesandthe pan/tilt unit canpanfrom +150 (left) to -150 (right)
degreesandtilt from -90 (down) to +90 (up) degrees.Therobotis calledMarkFinder,
sinceits navigationalskills are basedon finding landmarksin the environment. Some
picturesof therobotareshown in Figure6.1.

Althoughthefinal objective of the projectwe areinvolvedin is to have acompletely
autonomousobot,we arecurrentlyworking with off-boardcontrolandvision process-
ing, asit is easierfor programminganddetuggingour algorithms. We usea wireless
Etherneto communicatevith the robot(to sendcommandso thewheels’andpan/tilt
unit's motors,andto receve informationaboutodometryand bumperactivation),and
theimagesaresentthroughavideotransmitteseeFigure6.2). To make therobotfully
autonomouswe would only needto put the control andvision processinglgorithms
into its on-boardcomputeyalthoughit shouldstill needto sendsomeinformationback
to anoff-boardcomputerfor manuallyselectingthetarget.

Theexperimentatiorhasbeencarriedoutin anindoorunstructurednot office-like)
environment,with easily recognizableand controlledlandmarksand obstacles. The
environmentis anareaof about50m?, containingtenlandmarksplus the targetanda

1ActivMediaRobotics http://iwwwactvmedia.com
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Figure6.1: Left MarkFinder robot. Right Detail of the panandtilt unit with two
B&W cameras

few nonvisible obstaclesA difficulty in realervironmentds thevision systemasit is
highly sensitve to changesn theillumination, which makesit very hardto detectob-
jects. Therefore we have developeda simpleandrobustvision systemthatrecognizes
barcodedandmarks. Moreover, the simplicity of the landmarkspermitsus to easily
configurescenariowith differentcompleity levelsby changingtheir location,aswell
asthelocationof the obstaclesThe vision systemandthe landmarksaredescribedn
thefollowing section.

6.2 Vision

Sincewe do notfocusour researcton the Vision systemof therobot,we did notintend
to develop a Vision systemcapableof recognizingcomplex objects,but just a very
simpletypeof landmark.The simplesttype we thoughtof wasbarcodes.
Landmarklabelshave a commonpart of five vertical black bars,to indicatethat
it is a landmark,and at the right side of the bars,a vertical binary codificationwith
blackandwhite squaresThe binary codeis composedf five squaregblack meaning
1, white meaning0), sowe have 32 differentcodes.However, codesO and31 arenot
used,asthey give mary problemswhentrying to identify them,sowe have a total of
30 differentcodes,which is enoughfor our ervironment. We have usedboxes with
the samelandmarklabel on their four sidesso the Vision systemis ableto detectthe
landmarksfrom ary perspectie. The labelsare printedon DIN A4 papers,andthe
dimensionsof the boxesare 30x 30x40 (lengthxwidthxheight),having the labelsat
thetop of eachside. Examplesof suchlandmarksareshawvn in Figure6.3.
Thealgorithmfor recognizingtheselandmarkds basedon thefactthatthe pattern
of a seriesof alternatedblack andwhite barsof equalwidth is very unusual. First of
all, theimageis binarized,sinceit is in gray scale,andthe algorithmneedsto have
pureblackandwhiteimages.A closeoperationis alsoapplied.This operations useful
for removing noisefrom theimage.Oncethe binarizationandthe closeoperationsare
done,the algorithm startsscanningthe imageline by line, looking for the patternof
blackandwhite bars.Whenit findssucha pattern,it scansvertically thebinarycodeto
identify whichlandmarkhasbeendetected Dependingon thelighting, alandmarkcan
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Figure6.2: Communicatiorwith therobot

be detectedusinga binarizationthreshold but not detectedor otherthresholdsThus,
this scanningprocesds doneseveraltimeswith differentthresholds.Oncethewhole
imagehasbeenprocesseavith all thethresholdvalues theinformationof all detected
landmarksis sentto the Navigation system. A flowchartof the processs showvn in
Figure6.4.

Althoughtherobotis equippedwith two camerasye arenow processingnly the
imagesof one of them, aswe have not yet finishedthe implementatiorof the stereo
vision algorithm. This algorithmwould usethe imagesfrom both camerago compute
thedistanceo the detectedandmarks However, we simulatethatwe alreadyhave this
stereovision algorithm. To do so, we have designedhe landmarkssothatall of them
have the samesize. This way, knowing the heightof the bars(in pixels of theimage)
of a landmark,the distancefrom the robot to that landmarkcan be computed. The
headingis takenasthe angleto the centralpoint of the label. However, evenwith the
robotstoppedanddueto illumination conditions theimageprocessinglgorithmdoes
not alwaysdetectthe landmarksn the sameplace(it canvary somepixels). Thus,the
computeddistancesandangleshave someimprecision.

Sincethequality of thecamerass not very good,the Vision systemhassomeprob-
lemswith recognizinglandmarksthat arefar from the robot. To have a robustrecog-
nition system,we have setthatit only informs aboutthe landmarksthat are within a
distanceof 3 metersaroundthe robot. However, evenif alandmarkis in this “visible
area”,the Vision systemsometimesnisidentifiesit. To solve this problem,we require
thata landmarkhasto be recognizedn several subsequerframeswith the samecode
beforeinforming aboutits detection.

But eventhis lastrequirements not alwaysenoughto give correctlandmarkiden-
tification. To add more robustnesgo the Vision system,the detectedandmarksare
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Figure6.3: Left Landmarkiabel21 (code=10101=21). Right Oneof theboxeswith
multiple landmarklabels

checledagainsthe VisualMemory (seeChapter4 for a detaileddescriptionof the Vi-
sualMemory). For eachlandmarkin the list of detectedandmarks.two checksare
done. First, we checkthat the detectedandmarkis notin a locationcloseto another
landmarkstoredin the Visual Memory (i.e. the distancebetweenthe two locations—
one given by the Vision systemand the other one storedin the Visual Memory — is
belown athreshold).If thisis thecase andthecodeof thelandmarkdiffersfrom theone
given by the Vision system we replacethe codeof the detectedandmarkby the one
storedin the VisualMemory on thatlocation. If the codeis the samethenthelocation
givenby the Vision systemis assumedo be correct,andit replaceghelocationstored
in the VisualMemory. Secondlywe checkthatthe detectedandmarkis not storedin
the VisualMemory at a very differentlocationthanthatgivenby the Vision system.If
thisis thecaseandthelocationstoredin the VisualMemoryliesin theview field of the
camerathis locationis givenasthelocationof the detectedandmark.If thelocation
doesnotlie in theview field, thelandmarkis ignored.Finally, if the detectedandmark
is neitherstoredin the VisualMemory nor locatedcloseto anothedlandmark,it means
thatit is anew landmark,andit is addedto the VisualMemory. Table6.1 summarizes
the actionstaken in eachsituation. We indicatethe information aboutthe landmark
(codeandlocation)thatis finally sentto the Navigationsystemandhow the informa-
tion of the Visual Memory is modified. The subscriptVS standsfor the information
givenby the Vision systemwhile the subscriptVM refersto theinformationstoredin
theVisualMemory:.

Although this checkaddsrobustnesgo the Vision system,it may have undesired
effectsin somesituations,sinceit gives more importanceto the information stored
in the VisualMemorythanto thatcomingfrom the Vision system.For instancejf the
locationof acorrectlydetectedandmarkdifferstoomuchfromits locationstoredn the
VisualMemory, notbecaus®f anerrorof theVision systembut dueto theimprecision
of thestoredocation,it will notbeupdatedalthoughit shouldbe. Anotherproblematic
situationwould ariseif the robotwere movedto anotherocation,without it noticing
it (whatis known asthe “kidnapping problem”). From the new location, the Vision
systemwould detectsomelandmarks but their locationswould not matchat all with
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Table6.1: CheckagainstisualMemory

Closelocation Differentlocation
—Right recognition— —Wrongrecognition—
return(idvs,locyvs) if locy ar in viewfield then

SamelD Updatelocationin VM return(idy s, locv ar)

elseignorelandmark

—Wrongrecognition— | —Right identification—
DifferentiD | return(idvar,locys) return(idy s, locv s)
Updatelocationin VM Add to VM

the locationsstoredin the Visual Memory, and,therefore they would not be updated
eithet The first problemcan be solved by changingthe imprecisionthresholdabove

which thelandmarksareremovedfrom the VisualMemory, sothatit only keepsthose
landmarkswhoselocationis very preciselyknown. However, thereis no way to solve

the“kidnappingproblem”. The only way to handleit would beto have a betterVision

systemsothatit would not needto checkthelocationswith the VisualMemory. Since
we still do not have sucha Vision system,andin our experimentsthe robotis never

“kidnapped”,we rely ontheVisualMemory.

With all theseprovisions,landmarksarealwayscorrectlyidentified,thereforethere
is no uncertaintyaboutthe presencef landmarksalthoughthereis imprecisionabout
their exactlocation.

The fact of the Vision systembeing only capableof recognizinglandmarksnot
furtherthan3 meterdrom therobot,togethemwith theassumptiorof theinitial visibility
of thetarget, restrictsthe possibleervironmentson which we canexperiment.In order
to be ableto testthe Navigation systemon moreinteresting(larger) environmentswe
have a speciallandmarklabelthatis consideredisthe targetandcanbe seenfrom 7-8
meters.This landmarklabelis of the sametype asthe rest,but hasa larger size (DIN
A1), andwhencomputingthe distancefrom the robotto it, this is takeninto account.
In Figure6.5this largertargetlandmarkis shown (therearefour “standard’landmarks,
plusthelargertarget, placedhigherthanthe others).

i

Figure6.5: Largertargetlandmarklabel
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6.3 Graphical Interface

In orderto carry out the experimentationwe have developeda graphicalinterfaceso
thata humanoperatorcangive ordersto therobot. Theinterface,shovn in Figure6.6,
permitsthe operatorto manuallycontrol the robot motion (translationabndrotational
speedskhndthe panandtilt unit movements. The interfacehasa three-dimensional
representatiof the environment,shaving the robot andthe detectedandmarksand
obstacleqincluding thosestoredin the Visual Memory). It also shows the images
gatheredrom thecamerasndalist of detectedandmarks.

The operatorcan selectthe type of landmarksto be recognized.In our case,we
wereonly ableto usethe barcodediandmarkslescribedn the previoussection.Once
thelandmarks'type hasbeenselectedthe Vision systemstartsprocessingheimages
comingfrom the camerasandthe detectedandmarksare displayedin the interface.
Theoperatorcanthenselectoneof the detectedandmarksandsetit asthetargetland-
markto bereached.Oncethe targetis selectedthe operatorcaninstructthe robotto
goto thetarget. Fromthis point on, the robotwill autonomoushnavigatetowardsthe
targetuntil eitherit reacheshetargetor it is instructedto stopnavigating.

Theinterfacealsogivesinformationaboutthe Navigation system suchasthe cur-
renttargetor how mary object,betaandtopologicalunitsthe Map Manager hasstored,
anda graphicalrepresentationf the topologicalmap. Whenthetargetis reachedthe
relevantinformationaboutthetrial is given: trial duration,total lengthof the path,dis-
tribution of winning bidsamongthe agentsandnumberof divertingtargetscomputed.
This informationcanalsobe storedfor later statisticalanalysis.

Althoughtheinterfacehasbeenusedonly with our robot, we have developedit so
thatit canbeusedwith arny roboticsystemsothereis no needto have a specificcontrol
interfacefor eachdifferentrobotwe mayhave in thelab. Theideais to let the operator
configurea specificsystemby choosinga robotplatform (beit wheeled)egged,or ary
otherkind of autonomousobot), the type of landmarksto be used(which mayimply
having morethanoneVision systemrunningin parallel),andthe Pilot andNavigation
systemghatwill controltherobot. Oncetheroboticsystemhasbeenconfiguredijt can
be controlledasdescribedibove.

6.4 Goalsof the Experimentation

Thefirst goal of the realexperimentatioris to checkwhetherthe goodresultsobtained
throughsimulationarealsoobtainedwith therealrobot. Ideally thiswould bethe case,
sothe only modificationsneededvould beto make the existing Navigation systemuse
the real robot insteadof a simulatedone. However, moving from simulationto the
realworld is not thateasy asmary problemsarisewhenworking with physicalrobots
whichwerenot presenbnthesimulatedvorld (unlesghesimulatorusedhasvery high
realism). Theseproblemsare mainly relatedto the motion andvision systemsof the
realrobot.

Regardingthe motion system,we have to take into accountthat the robot needs
sometime in orderto executemotion commands.On simulation,we could run the
systemasfastaswe liked, sincethe commandavere executedimmediately however,
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we cannotdo sowith therealrobot. Thefrequeng of sendinghesemotioncommands
to therobotshouldbe setaccordingo theresponseime of the robot,soacommands
only sentwhentherobotis really preparedo executeit.

Another problemof usinga real robotis the vision system. Although the vision
systemandthe landmarkswe have designedare very simple, the systemis not able
to identify the landmarksall the time, dueto changesn illumination, interferenceon
videotransmissionblurring causedy motionof thecameragtc. Therefore asalready
mentionedthe vision systemneedgo processsomeframesbeforeit is ableto inform
aboutthe detectedandmarks.Thus,the actionsfor moving the cameraandidentifying
landmarksmustalsobe sentwith the properfrequeng so thatthe vision systemhas
time to processenoughframes.

To overcometheseproblems we have tunedthe agentsso thatthe robotis ableto
executeall thecommandgeneratedby the system.

Throughtherealexperimentave alsocheckwhetherthe Navigationsystemwe have
designeds ableto performwell in differenttypesof ervironmentsandif the designof
eachindividualagentis themostappropriatdor obtaininggoodoverall performancef
the Navigation system.To checkthis, we have experimentedwith differentscenarios,
startingwith simpleronesandincreasingheir complexity stepby step. Thetwo main
variableshatdescribehe compleity of ascenaricare:

¢ Densityof landmarks the fewer landmarksin the scenariothe morerisky it is,
sincethe map containsvery little informationaboutthe relative location of the
target and otherlandmarks. On the otherhand,if the densityof landmarksis
high, therewill very probablybe alwayssomelandmarksvisible, andthe Navi-
gationsystemwill be ableto computethe locationof the targetfrom thevisible
landmarks.

¢ Densityof obstaclesif the densityof obstacless low, the pathfrom the starting
pointto thetargetmaynotbeblocked,or only blockedby easilyavoidableobsta-
cles,sotherobotmaynot needto computedivertingtargetsto reachthe original
one. Contrarily, in a scenariovith mary obstaclestherobotis forcedto change
directionvery often,which may causat to losesightof thetarget,andtherefore,
to increasethe imprecisionaboutits location. Moreover, if the obstacledblock
the way to the target, the Navigation systemmay needto computea diverting
targetto reachtheoriginal one.

6.5 The Real Scenarios

The differentclassesof scenariooon which the experimentatiorhasbeencarriedout
arethefollowing:

1. Singlelandmark in this classof scenaricthereis only onelandmark,which is
thetarget,andno obstaclesThis classof scenarioss usedto checkthattherobot
is ableto reachatamgetwhentherearenoreferenceso it andthereexistsaclear
pathto thetarget.
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2. Singlelandmarkand obstacles thesescenariosare composedf a singleland-
mark which is the target, and several small obstacleghat do not occludethe
target, but forcetherobotto avoid themin orderto getto thetarget.

3. Several landmarks in thesescenarioghereareseverallandmarks,oneof them
beingthe target, but no obstaclegapartfrom the landmarksthemseles, which
areobviously seemasobstacles)In thesescenarioshe Navigationsystems able
to build amapof the ervironment,andwe will checkhow goodit is.

4. Several landmarksand obstacles in thesescenariosve add obstaclesetween
the landmarksof the previous scenariosso that they block the robot andit is
forcedto computediverting targetsto reachthe original one. In thesescenarios
the Navigation systemis alsoableto build a mapof the environment,including
thedetectedlockingobstacles.

Somepicturesof thedifferentscenarioxanbe seenin Figure6.7.

The first two classesof scenariosare very simple, and the experimentson such
scenariogust checkthe very basicbehaiior of reachinga targetthrougha quite clear
path.In thesescenarioghetargetis visible all thetime, asthe only obstaclesaresmall
ones thereforenot occludingtheview field of thecamera.Therealtestsarein classes
3 and4, asthetarget may be occludedby otherlandmarks andthe pathto the target
might be blockedby landmarksandobstaclesThus,in thesescenariosthe robotmust
malke useof its navigationalskills.

We imposetherestrictionof the objectson the ervironment(thatis, landmarksand
obstaclespestatic,sotheir locationcannotchangeduringatrial. If thatwereallowed,
the computedrelationamonglandmarkswould be inconsistentandthusthe 3-vector
computatiorwould not bevalid at all.

6.6 Experimentation Results

We describegheexperimentatiorcarriedoutin eachoneof thefour scenarioslescribed
above. We have usedthe parametersbtainedthroughthe GeneticAlgorithm approach
describedn Chapter5 (discardingthosethat are not usedin the final versionof the
Navigation system). For eachscenario thereis a brief discussionof the results. In
eachof thesescenariosve have defineddifferentstartingpoints (two startingpoints
in scenariosl and2, andthreein scenarios3 and4). We have run 40 trials for each
startingpoint andstoredthe following statistics:

e SuccessHilurerate
e Numberof divertingtargets
e Distribution of winning bidsamongthe agents

Therelevantstatisticsof the experimentsareshown in Table6.2.
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Figure6.7: Top left: oneof the obstaclesisedin the ervironments.Topright: scenario
1. Middle left: scenarid2. Middle right: scenarid3. Bottomleft andright: scenario4.
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Table 6.2: Resultsof experimentation(TT: Target Tracker; RM: Risk Manager; RE:
RescuerPS:Pilot system

Scenario|| Success| #d.t. || Winningmoving bids || Winninglooking bids
class rate TT | RE| PS TT | RM | RE| PS
1 100% 0 100% | 0% | 0% | 0% | 54% | 0% | 46%
2 100% 0 79% | 0% | 21% || 0% | 66% | 0% | 34%
3 85% 0 78% | 0% | 22% || 0% | 56% | 0% | 44%
0:24%
4 84% 1:58% | 67% | 2% | 31% | 3% | 41% | 0% | 56%
2:18%

Scenariol. Singlelandmark

Description: Scenariawith justonelandmarkandno obstacles.

Task: Reachthelandmark.

Results: In this scenariahe robot behaior was,asexpected o go directly to the
targetin a straightline. The Target Tradker won 100% of the moving actionsit bid
for, sinceits bids were high becausehe imprecisionaboutthe location of the target
wasverylow. TheRescuedid notbid becausé neverreachedts activationlevels: the
imprecisionwasneverhighenoughandtherewereno blockingsituations.Similarly, as
therewereno obstaclesthePilot did nothaveto bid for changingherobot'strajectory
Regardingthelooking actions the RiskManager andthe Pilot won a similar numberof
bids. Sincetherewasonly onelandmark therisk wasvery high, andthe RiskManager
alwaysbid to look ahead.Thetargetwaspreciselylocatedall thetime, sothe looking
bids of the Target Tradker werevery low, andneverwon.

Scenario?2. Singlelandmark and small obstacles

Description: Scenariowith just onelandmarkandsomesmall obstacledetween
therobotandthelandmark.Thesmallobstaclesrenotvisible andcanonly bedetected
by bumpinginto them.

Task: Reachthelandmark,avoiding the obstaclesletectedy thebumpers.

Results: The robot did always reachthe target. The winning bids for looking
actionswere distributed, again,amongthe Risk Manager andthe Pilot. The Target
Tradker did notwin ary of thebidsbecaus¢heimprecisionof thetarget'slocationwas
not high enough.As in the previous scenariothe Rescuedid not have to interveneat
ary point. Regardingthe moving actions,only the Pilot and Target Tradker won bids:
the Pilot whenanobstaclevasdetectecandavoided,andthe Target Tracker whenthe
pathto thetamgetwasfree.

Scenario3. Several landmarks

Description: Scenariovith mary landmarksandwith no obstaclespartfrom the
landmarksthemseles. In orderto have aninterestingscenariowe placedthe target
landmarklabel higher sothatit wasvisible from the startingpoint, evenif therewere
otherlandmarksin the view line from the robotto the target. If we hadnot doneso,
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Figure6.8: Mapsof 2 differentscenario®f scenaricclass3

the pathfrom the startingpoint to the target would always have beenclear, sincethe
targethasto beinitially visible, which actually correspondso the first scenario.This

changerequiredtherobotto movethe cameraup anddown to beableto have thetarget
landmarkin its view field (in the previousscenariosit wasonly doingapanmovement,
with notilt atall). Thus,wehadto changehelookingactionsin orderto incorporatehe
tilt angle. The agentshidding for looking actionsaddedthetilt anglein thefollowing

way: the Target Tracker selectsa randomtilt angle,rangingfrom 0 degrees(so that
thetargetlandmarkcanbein theview field whenit is 7-8 metersaway) to 35 degrees
(sothatthetargetcanbein the view field whenit is lessthan1 meteraway); the Risk
Manager doesa similar thing, but it only selectsa randontilt angleon onethird of the

actionsit bidsfor, while it setsanull tilt angleontheothertwo thirds,sincemostof the

landmarkgactually all but the target) areat the sameheightof the cameradi.e. in the

null tilt angleplane);finally, the Rescuerwhenbidding becauseheimprecisionis too

high, doestwo visualscansaroundtherobot,onewith anull tilt angle,andanotherone
with arandompositive tilt angle.

Task: Reachthe target landmark,eventually avoiding othersalong the way and
build amapof the environment.

Results: Thebehavior of therobotin this scenariovassimilar to the oneexhibited
in the previous one. However, it reachedhetargetin 85% of thetrials; in 15% of the
trials it failed becausehe error on the locationof the targetmadeit supposet wasat
thetargetlocationwhenit wasreally notthereyet. Thiswascausedy thetamgetbeing
occludedby otherlandmarks,and the constantchangein trajectoryneededo avoid
thesdandmarks Thesetwo factorscausedhelocationof thetamgetstoredin the Visual
Memoryto increaséts imprecision.However, theimprecisionwasnot high enoughfor
the Rescuelto becomeactive. A differencewith the previous scenarids thatthe Risk
Manager bid for looking bothaheadandaround sincethereweremary landmarksand
atsomepoint, it hadenoughandmarksaheadput notaround,soit bid to look around.
Someexamplesof mapsbuilt in scenario®f this classduring the trials are shavn in
Figure6.8. In thesemaps,numbersrepresentandmarksthe robot hasseen,andthe
triangularregions correspondo topolagical units of the Map Manager's topological
map(seeChapter3 for detailson how this mapis built).
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Scenario4. Several landmarks and obstacles

Description: In thisscenaridherearealsoafew nonvisiblelongobstaclebetween
somelandmarksthat completelyblock the shortestpathfrom the startingpoint to the
targetlandmark.

Task: Reachthe target landmarkavoiding obstaclesand building a map of the
ernvironment,andusingit to computedivertingtargets.

Results: therobotdid successfullencodeheobstacle®nthetopologicalmapand
usedit to computedivertingtargets. In 58% of thetrials only onedivertingtargetwas
computedn orderto avoid a long obstacleblocking the path;the restof the obstacles
wereavoidedby the Pilot system with no needto computemoredivertingtargets. In
18% of thetrials, however, it wasnecessaryo computeanotherdivertingtarget, since
the Pilot found the pathblocked againby a long obstacle.On the otherhand,in 24%
of the trials, the Pilot was ableto avoid the long obstaclesbut did not realizethat
they weresuchlong obstaclesThis situationhappenedvhenthe crashpointswith the
long obstaclewere not closeenoughto eachotheror to the landmarks so they were
consideredasindependenbbstacles.Thus,whenthe Pilot tried to avoid these“point
obstacles”,it was actually avoiding the long obstacle,without realizingit. In such
situationstherobotreachedhetargetwithout having to computeary divertingtarget.
Bidsfor moving actionsweredistributedvery similarly asin thetwo previousscenarios.
The only differenceis thatthe Rescuerlsowon somebids (actually it only wins one
bid for stoppingthe roboteachtime it asksfor a divertingtarget). Regardingbids for
looking actions,now the Target Tracker alsowon a few bidsto look towardsthe target
to decreasédts location's imprecision. Be it for theseactionsor becausehe scenario
wasnot complex enough the imprecisionwasnever high enoughso thatthe Rescuer
hadto bid for looking actions.Again, someof thetrials failed becausef the erroron
thetamget'slocation.In Section6.7 we describan detailonetrial in this scenario.

6.7 A Trial Example

In this sectionwe describein detail one of thetrials run in a scenarioof class4. The
environmentandthe path followed by the robot are shovn in Figure 6.9. The target
landmarkin this trial is landmarknumberl0. In Figures6.10and6.11theincremental
building of themapis depicted.They shav botha 2D representatioandthetopological
mapactuallystoredby theMap Manager. In thetopologicalmapsalthoughnotshown,

thearcshave afixed costof 1, unlessotherwisespecified.Figures6.12and6.13shov

the evolution of the bids of eachagentandthe Pilot for moving andlooking actions,
respectiely. In thesegraphicsthefilled areasndicatethe agentthatmadethe highest
bid atthatpointin time. The correspondingpointsin Figure6.9 arealsoshavn. Next,

we commenton therelevantpointsof the path:

e A: Startingpoint of thetrial. Initially, landmarksl0, 29 and19 arevisible. With
thesehreelandmarksnomapis createdsinceatleastfour landmarksareneeded
in orderto startbuilding the map. Landmark10 is selectedasthe target by the
userandthe Rescuelis informedaboutit. Then,the Rescuelbidsfor doingan
initial sweepasdescribedn Section4.4.4. During this sweepJandmarks, 21
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Figure6.9: Pathfollowedduringthetrial. Seeexplanationof relevantpointsonthetext

and17 arealsoidentified. With thesenew landmarksthe Map Manager is able
to startbuilding the map. The stepby stepupdateof the mapis shavn in Figure
6.10. The correspondingipdatesafter seeingeachof thesethreelandmarksare
maps(1) to (3). Whenthe sweepis finished, the Rescuerinforms the Target
Tradker aboutthe target beinglandmark10, which immediatelystartsbidding
for going towardsit, andthe robot startsmoving. Actually, the point A in the
graphicsof the bids correspondso this moment,whenthe Target Tradker starts
bidding. As canbe seenin thegraphicof moving actionbids,the Pilot won most
of thebids. This wassobecausdandmark4 wascloseto therobot,andthe Pilot
wantedto avoid it. The trajectory however, was minimally modified. Before
reachingpoint B, landmark13 is identified,andthe mapis updatedaccordingly
resultingin map(4) in Figure6.10.

e B: The robot bumpsinto the obstaclebetweenlandmarks29 and4 andimme-
diately backsup. However, it is not yet consideredas being a long blocking
obstaclesincethereis still enoughspacebetweerthe crashpoint andlandmark
29, throughwhich the robot could pass. This backup is a built-in actionof the
Pilot, andit doesnot bid for executingit. Thatis why in the graphicthe Target
Tradker winsthebids. However, while thebackup actionis beingexecutedthese
bidsarenottakeninto account.
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Figure6.10: Map createdduringthetrial
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Figure6.12: Moving bids. Target Tracker in red,andPilot in green



6.7. A Trial Example 101
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Figure6.13: Looking bids. Target Tradker in red, Pilot in greenand RiskManager in
blue
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e C: After backingup,the Target Tracker bidsagainfor moving towardsthetarget,
but thesebidsaresurpassety the Pilot’s bidsto avoid thejust detectedbstacle
(ascanbeseerin themoving bidsgraphic),andthetrajectoryis slightly modified.

¢ D: Therobotbumpsagaininto theobstacleandbacksup. After thissecondrash,
the obstacleis consideredo be blocking the path. The Pilot informs the Navi-
gationsystemaboutthe blocking situation. This informationis internally sentto
the Map Manager, which updategshe map(the correspondingrcis assignedn
infinite cost, seemap (4b) in Figure6.11), andto the Rescuerwhich asksthe
Map Manager for a divertingtarget. Again, althoughin the graphicsthe Target
Tradker is winning the bidding, the backup actionis really beingexecuted.

e E: The Map Manager computeghedivertingtamgetasbeing: “to crossthe edge
betweenandmarksl7 and29” andinformsthe Rescuerwhich will inform the
Target Tracker aboutthe new target. This agentstartsbiddingto move the robot
sothatit crosseshegivenedge.

o F: At thispoint,the Target Tracker considerghattheedgel7/29hasbeencrossed
andinformsaboutit. This causeghe Rescuelto setthetargetto be the original
one (landmark10). The Target Tracker's bids are againto move towardsthis
landmark.Beforereachingpoint G, landmarksl and20 aredetectecandthe map
is updated(maps(5) and (6)). Landmark20 is not visible in Figure6.9; it is
behindlandmarkl.

e G: Theproximity of landmarkl3 makesthe Pilot bid high to avoid it, surpassing
the Target Tracker's bids, andthe robot’s trajectoryis modified. While avoiding
this landmark,landmark? is detectedandthe mapis updatedresultingin the
final map(7).

e H: At this point thePilot considerghatlandmarkl3 hasbeenavoidedandstops
bidding. The Target Tradker wins again,andit makesthe robot go towardsthe
target.

| Thetargetis finally reached.

Analyzing the graphicof looking action bids, we canseethat the winning bid is
periodicallychangingbetweerthe Pilot andthe RiskManager. The bids of the Target
Tradker areverylow, sincethetargetis preciselylocatedduringthewholetrial. Around
pointH, the bidsof the RiskManager alsodecay Thisis sobecausatthatpoint, there
aremorethan six landmarksbehindthe robot, which makesthe risk 0. The winning
bids of the Target Tradker, at point I, aredueto the factthatthis agentbids very high
to look towardsthe targetwhenthis hasbeenreached The executionof this actionhas
no intentionof decreasingheimprecisionof thetarget'slocation,but it is justaway to
show thatit “knows” thatthetargethasbeenreached.
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Table6.3: Sourcef computatiorof thetarget's location

Vision System | 12.7%
VisualMemory | 76.1%
Map Manager | 11.2%

6.8 Discussionand Future Work

The resultsobtainedconfirmedthat, as alreadyseenthrough simulation, the bidding
coordinationmechanisnmandthe mappingandnavigationmethodswork appropriately
The bidding mechanisnmachievesthe desiredeffect of combiningthe simplebehaiors
of theagentsinto anoverall behaior thatexecuteshe mostappropriateactionat each
momentandleadstherobotto thetargetdestination As for themappingandnavigation
method,we have seenthatit is ableto build a mapof the environmentandis usedfor
two differentpurposeson onehand,to computedivertingtargetswhentherobotfinds
the pathto the target blocked, and on the otherhand,to computethe location of the
target whenthis is not visible. Regardingthis latter useof the map, Table 6.3 shavs
the statisticsof how thetarget’s locationis computed.The sourcef this computation
canbethefollowing: (1) the real Vision system thatis, the targetis recognizedand
its locationcomputedfrom the images,(2) the Visual Memory (describedn Chapter
4), and,(3) the Map Manager, thatis, thelocationof the targetis computedusingthe
beta-codicient systemandthe locationsof otherlandmarks.As canbe seenfrom the
statisticsmostof thetime (76.1%)the locationis computedusingthe VisualMemory,
however, sometimeg11.2%)the Navigation systemmustmake useof its “orientation
sense”in orderto figure out wherethe tamgetis. Figure 6.14 shaws the evolution of
the imprecisionon the target’s location andthe differentsourcegthe coloredbandat
the bottomof the graphic).Although, usually therobotrealizesthatit hasreachedhe
targetby obtainingits locationfrom the VisualMemory;, it sometimesealizesit using
the orientationsense.However, sincethe computationof the targetlocationusingthe
orientationsensds more imprecisethanthe Visual Memory (becauset accumulates
the imprecisionof several landmarks’locations),the robot sometimednforms about
having reachedhetargetwhenit hasnot really doneit, thusfailing in its mission.

Thescenariosisedin therealexperimentsverenotvery complex. Thereforesome
more experimentationon more complex scenariosshould be performed. Thesenew
scenariosshouldinclude more blocking obstaclespossiblyhaving somecul-de-sacs,
sothattherobotwould needto undothe pathalreadydone.

Although the goodresultsobtainedindicatethat the agentsare well designedwe
couldstill improvethemand,hopefully, improve the performancef the overallrobotic
system.Actually, during the experimentatiorwith the realrobot, we alreadydid some
refinementHowever, thisrefinementanbeanever-endingtask,andfor thisreasorwe
decidedto stopit anddo the real experimentswith the versionof the agentsdescribed
in Chapter4. The possiblefurther refinementof someof the agentscould go in the
following directions:

e Target Tracker: this agentcould do a moreintelligenttilt angleselection,such
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Figure6.14: Evolution of thetarget's locationimprecisionandsourceof computation

asbeinga function of the distanceto the target, thus, increasinghe chanceof
having it in theview field of thecamera.

e RiskManager: this agentcould alsobid, not only for looking aheador around,
but alsoto otherareaswith fewerlandmarkspr evenselectingarandomdirection
to look to. Right now, if therearevery few landmarksaheadthis agentsticksto
bidding for looking ahead,and never bids for looking around,thus,ignoring a
large part of the ervironment. An alternatve to modifying the Risk Manager
would beto adda new agentwith this behaior.

Someimprovementcouldalsobe doneonthePilot andVision systemsRegarding
the Pilot, we could usea betterobstacleavoidancealgorithm. With the currentalgo-
rithm, only the closestobstacleis consideredor computingthe avoidancepath. We
couldimprove the robot'’s performancef the Pilot took into accountall the obstacles
and landmarksstoredin the Visual Memory, thus, producingbetteravoidancepaths.
We arealsoplanningto equipthe robotwith alaserscannerThis laserwould be con-
tinuouslyscanninga 180degreeareain front of therobotto accuratelydetectobstacles
thatareseseralmetersaway. With this new sensoythe Pilot could avoid the obstacles
beforebumpinginto them,thus,generatingetterpaths.Regardingthe Vision system,
we planseveralimprovementsThefirst oneis to finish the sterecalgorithm,sowe can
usethe two available camerador computingthe distanceto the landmarks. Another
very importantimprovementis to make the Vision systemmorerobust, sothatit does
not needto checkthe recognizedandmarksagainstthe Visual Memory. Actually, we
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shouldusethe robust Vision systemto adjustthe imprecisionsof the Visual Memory.

We also plan to corvert the Vision systeminto a Multiagent Vision system. In this

system severalagentsvould procesghe cameramageswith differentalgorithms.and
the agentsshouldagreeon what could be a goodlandmarkcandidatgsalientenough,
robust, static,etc.). A final improvementof the Vision systemwould beto let it bid for

servicedy othersystemgeitherthe Pilot systenor itself). With thebiddingcapability,

it couldrequesthePilot to approachalandmarkto betterrecognizdt, or even“request
itself” to slightly movethecameraothata partially visible landmarkenterscompletely
theview field.






Chapter 7

Conclusionsand Futur e Work

7.1 Revisiting the Objectives

The needfor autonomousobotshasbeenrapidly increasingin the lastyears. There
aremary areasn which theserobotsareused,rangingfrom “servicerobots”, suchas
museunguidesor transportatiomobotsin factoriesto robotsusedfor tasksto be per
formedin inaccessiblenvironmentssuchasplanetaryexploration,hazardousnaterial
handlingandrescueamissions.

Usually, servicerobotsoperatein indoor structuredervironments.The problemof
navigatingthroughindoorervironmentshasbeenthefocusof roboticsresearctduring
mary years,and mary successfukesultshave beenachieved. Usually, the map of
the ervironmentis given a priori (eithera detailedmetric map or a topologicalone,
showing the spatialrelationshipamongdifferentplacesof the environment),or, whenit
is notgiven,thereis aninitial phasefor learningthe map. Onceit is learnedthe robot
repeatedlyperformsthe taskin this environment. Examplesof suchrobotsarethose
performingdelivery tasksin office environmentsor guidingtoursin museumsg67, 9].

Ontheotherhand,inaccessiblervironmentsareusuallyunknavn andunstructured
(asis thecasan mostoutdoorervironments)which poseamoredifficult problem.The
lack of structureof suchenvironmentsnakesthemapbuilding verydifficult. Moreover,
the large scaleof theseenvironmentsalsoaddsto the difficulty of mappingand navi-
gationtasks. Thesecharacteristicsnale it impossibleto apply the approachesised
in indoor structuredenvironments. Although therehasbeenalsoa lot of researclon
navigationin unstructurecervironmentsit is still anopenproblem.

This PhD thesishasfocusedon this latter problem,thatis, on navigatingin un-
known unstructuredernvironments Theresearctwaspartof aroboticsprojectwhose
goalis to have a completelyautonomousobot capableof navigating in outdoorun-
known ervironments. A humanoperatorselectsa target usingthe visual information
receivedfrom therobot's cameraandtherobothasto reachit withoutary furtherinter-
ventionof theoperator Navigatingto atargetis afundamentataskof any mobilerobot,
whatever its missionis (beit graspingobjects,analyzingthem,looking for something,
etc.) Thetaskto be performedoncethe targethasbeenreacheds outsidethe scopeof
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the projectandthis thesis.

A first milestoneof the projectwasto develop a navigation systemfor indoor un-
known unstructurecervironments. The reasonfor startingwith indoor ervironments
wasthatthe developmentof robustvision systemdor outdoorervironmentsis still an
openandvery difficult problemin the field of computervision. Therefore,sincethe
vision systemwasnot the focusof our researchye decidedto startexperimentingin-
doors,for whichvision systemsaremucheasietto develop. Moreover, we designedhe
landmarkssothatwe couldeasilychangeheirlocation,thus,permittingusto configure
scenario®f differentcompleity.

This thesishasreportedthe researchcarriedout in orderto accomplishthis first
milestone.For achieving it, we have combinedlandmark-baseadavigation fuzzydis-
tanceandanglerepresentationandmultiagentcoordinationbasedon a bidding med-
anism The objective of our researchwasto have a robust navigation systemwith
orientation sensefor unknown unstructuredenvironmentsusing visual information.

7.2 Contributions

The researcthasbeenfocusedon two main threads:the control architecture andthe
mappingand navigation method The contributionsof the thesison thesetwo areas
arepresentedhext.

Regardingthe control architecture, we have proposeda generalcoordinationar
chitecturebasedon a bidding mechanism.In this architecturethereare two typesof
systems:executivesystemsand delibemative systems Executive systemshave access
to the sensorsand actuatorsof the robot. Thesesystemsoffer servicesfor usingthe
actuatorgo the restof the systemgeitherexecutve or deliberatve) andalsoprovide
information gatheredrom the sensors.On the other hand,deliberative systemsake
higherlevel decisionsandrequirethe servicesofferedby the executive systemsn or-
derto carryout thetaskassignedo therobot. Althoughwe differentiatebetweerthese
two typesof systemsthe architecturds not hierarchical,and coordinationis madeat
a singlelevel involving all the systems.This coordinationis basedon a simplemech-
anism: bidding. Deliberative systemsalwaysbid for the servicesofferedby executive
systemssincethis is the only way to have their decisionsexecuted.Executive systems
thatonly offer servicesdo not bid. However, thoseexecutive systemghatrequireser
vicesfrom ary executive system(including themseles) mustalsobid for them. The
systemdsid accordingto the internalexpectedutility associatedo the provisioning of
the services.A coordinatorreceivesthesebids anddecideswhich serviceeachof the
executive systemdasto perform.

Thebiddingmechanismassureshatthe actionactuallybeingexecutedoy therobot
is the mostvaluedone at eachpoint in time, andthus, if the systemsbid rationally,
the dynamicsof the bids lead the robot to executethe necessanactionsin orderto
reacha giventarget. An advantageof usingsuchmechanisnis thatthereis no need
to createa hierarchy suchasin the subsumptiorarchitecturebut it is dynamically
changingdependingon the specific situation of the robot and the characteristicof
the ervironment. A secondadvantagds thatits modularview conformsan extensible
architecture.To extendthis architecturewith a new capabilitywe would just have to
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plugin anew system.Moreover, thecoordinatiormechanisntanbeappliedatdifferent
levelsof thearchitecturebeit attheoverallarchitecturdevel, or within eachoneof the
systems.

For our specific navigation problem, we have instantiatedthis architecturewith
three systems:the Pilot, Vision and Navigation systems. The first two being execu-
tive systemsandthe latter one being deliberatve. The Navigation systemhasbeen
designechsa multiagentsystemusingthe samebidding coordinationmechanisnused
in the overall architecture The high-level taskof navigatingto a giventargethasbeen
decomposeihto a setof simplertasks,andwe have designecbneagentcompetentin
eachof thesetasks.Theseagentsompetesincethey mayrequestheexecutionof con-
flicting actions.As in the overall architectureeachagentbids for the servicesoffered
by theexecutive systemsandthereis acoordinatoragenthatdecidesvhichis themost
urgentrequestThis requesis thensentastherequesbf the Navigation systemwhich
will have to competewith therequest®f the Pilot system.

Regardingthe mappingand navigation method we have addressetivo problems:
the problemof providing the robot with orientationsenseand the problemof build-
ing a map of the ernvironmentandusingit for navigationalpurposes.Concerningthe
orientationsensewe have built uponpreviouswork presentedby Prescot{55], which
describemmodelfor storingspatialrelationship@amongandmarksn theervironment.
We have extendedPrescott modelsothatit canbe usedwith fuzzy informationabout
thelocationsof landmarksThis is of greatimportancevhenworking with realrobots,
asit isimpossibleto avoid dealingwith theimprecisionof realworld environments As
faraswe know, thisis thefirst applicationof Prescots modelon arealroboticsystem.
As part of this extension,we have alsodevelopedmethodsfor building a topological
mapof the environment,which is usedfor computingdiverting targets,neededy the
robotwhenit findsthatthe pathto thetargetis blocked.

Althoughthe robotic systemproposedn this thesishasbeenpresentecsa whole
system,including both the control architectureand the mapping method, they are
two solutionsfor two completelyindependenproblems. Thus, we could substitute
Prescott mappingmethodby ary othermappingmethod(beit anothertopologicalap-
proach,a metricapproachetc.). Obviously, the particularitiesof eachsystemdepend
on the mappingmethod(e.g. it would make no sensehaving a Vision systemif the
mapusessonarreadings) put the overall architectureandits coordinationmechanism
would not be affectedat all by the choiceof this mappingmethod.Similarly, our map-
ping methodcould beusedin aroboticsystemcontrolledby ary otherarchitecturgbe
it hybrid, centralizedgtc.).

We have obtainedsuccessfutesults,both on simulationandon real experimenta-
tion, shawing that the mappingmethodis capableof building a map of an unknowvn
environmentand using this informationto move the robot from a startingpoint to a
giventarget. The experimentationalso shaved that the bidding mechanismwe de-
signedfor controlling the robot produceghe overall behaior of executingthe proper
actionat eachmomentin orderto reachthe target. Thus, we considerthat we have
satishctorily achieredthe objective of developinga navigationsystemwith orientation
sensdor unknawvn unstructurecervironments.

In parallelwith the experimentatiorwith the realrobot, we have alsousedsimula-
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tion to apply MachineLearningtechniquesMore concretelywe have usedReinforce-
mentLearningfor having the systemlearnhow to usethe cameramoreappropriately
thatis, to useit only whenneeded We have alsouseda GeneticAlgorithm approach,
in orderto tune someof the parametershat definethe behaior of the agentsin the

Navigationsystem.Successfutesultshave beenobtainedwith bothtechniquesthough

thereis still muchwork to do. Actually, they could easilybethe subjectof severalPhD

thesesespeciallythework on Reinforcement.earning.

7.3 Future Work

Although,aswe have just said,we considerthatthe goal of the thesishasbeenaccom-
plished,thereareplenty of improvementshatcould be donein orderto achieve better
results. In the following sectionswe presentfor eachof the aspectof the research
carriedoutin thisthesis,someof theopenissueghatdesenre furtherresearcti{someof
which we arealreadyworking on). Notethatit is basicallya compilationof the Future
Work sectionsof eachof the previouschapters.

7.3.1 Mapping and Navigation

The extensionof Prescott method togethemwith the algorithmsto computediverting
targets,hasbeenshovn to successfullyencodehe ervironmentinto a mapthatpermits
navigating from a startingpointto the target. However, we would lik e to explore other
mappingmethods sothatthe combinationof the differentmethodsaddsrobustnesgo
theNavigationsystem With the currentmappingmethodtherobotneeddo seeatleast
threelandmarksn orderto be ableto usetheinformationstoredin the map.We would
like to develop someothermappingmethodsto copewith the situationsin which the
robothasvery little information(i.e. lessthanthreelandmarks). Thesemethodswould
be even morequalitative thanour fuzzy extensionof Prescott method.We could, for
example,look at thefield of SpatialCognition,which workswith spatialrelationships
suchas“landmark X is at the left handside of the line connectinglandmarkY and
landmarkz”.

7.3.2 Robot Ar chitecture and Multiagent Navigation System

Oneof thefirst thingsto explore in our coordinationarchitectures the useof a more
economicview of the biddingmechanismWith this approacheachsystem(or agent)
would be assigneda limited credit, andthey would only be allowedto bid if they had
enoughcredit. Thereshouldalsobe a way to rewardthe systemgagents).If not, they
would run out of creditafter sometime andno onewould be ableto bid. Thedifficulty
of the reward mechanisms how to decidewhento give a rewardandwho deseresto
receve it. This problem,known asthe creditassignmenproblem,is very commonin
multiagentlearningsystemsgspeciallyin Reinforcement.earning,andthereis nota
generakolutionfor it; eachsystemusesanadhocsolutionfor thetaskbeinglearned.
An alternatve to the economicview would be to have a mechanisnto evaluate
the bidding of eachsystem(agent),assigninghemsucceedingr failing bids, or some
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measureof trust,in orderto take or not take into accounttheir opinions. However, we
would faceagainthe creditassignmenproblem.

Regardingthe specificset of agentswe have designedor solving the navigation
problem,we couldintroducesomeimprovementson someof them,andevenaddnew
agentdo the Navigationsystem.Someof thesemprovementsouldgoin thefollowing
lines:

e Target Tracker: this agentcould do somemore intelligent tilt angleselection,
being a function of the distanceto the target, thus, increasingthe chancesof
having it in theview field of thecamera.

e RiskManager: thisagentcouldalsobid notonly for looking aheadbr around put
alsoto specificareaswith fewerlandmarkspr evenselectingarandomdirection
to look to. Right now, if therearevery few landmarksahead this agentsticks
bidding for looking ahead,and never bids for looking around,thus, ignoring a
large part of the ervironment. An alternatve to modifying the Risk Manager
would beto adda new agentwith this behaior.

Someimprovementcouldalsobe doneonthePilot andVision systemsRegarding
the Pilot, we could usea betterobstacleavoidancealgorithm. With the currentalgo-
rithm, only the closestobstacleis consideredor computingthe avoidancepath. We
couldimprove the robot'’s performancef the Pilot took into accountall the obstacles
andlandmarksstoredin the VisualMemory, thus,producingbetteravoidancepathswWe
arealsoplanningto equipthe robotwith a laserscanner This laserwould be contin-
uously scanninga 180 degreeareain front of the robot to accuratelydetectobstacles
thatareseseralmetersaway. With this new sensorthe Pilot could avoid the obstacles
beforebumpinginto them,thus,generatingetterpaths.Regardingthe Vision system,
we plan severalimprovements. The first oneis to finish the stereoalgorithm, so we
canusethetwo availablecamerasAnotherveryimportantimprovements to make the
Vision systemmorerobust, sothatit doesnot needto checktherecognizedandmarks
againstthe VisualMemory. Actually, we shouldusethe robustVision systemto adjust
theimprecisionsof the VisualMemory. We alsoplanto corvertthe Vision systeminto
a MultiagentVision system. In this system,several agentswould processhe camera
imageswith differentalgorithms,andthe agentsshouldagreeon whatcouldbeagood
landmark(salientenough robust, static,etc.). A final improvementof the Vision sys-
temwouldbeto letit bid for servicesdy othersystemgeitherthe Pilot systenor itself).
With thebidding capability it could requesthe Pilot to approacha landmarkto better
recognizet, or even“requestitself’ to slightly movethecamerasothata partially seen
landmarkenterscompletelythe view field.

7.3.3 ReinforcementLearning

AlthoughtheresultsobtainedhroughReinforcement.earningshavedthatthe system
learnedto selectactionsin orderto solve thecomplex cameraradeof, we still needto
integrateit into the overall multi-agentsystem o seeif the performanceof the whole
systemis alsoimproved. Eventhoughthe LearningAgentknows which actionsit has
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to bid for (following thelearnedpolicy), it is not clearwhatits biddingfunctionshould
be;it couldbe a constanbiddingvalue,or abiddingdependingn thevaluesof V (s).

Somemorefurtherwork will befocusedonthedesignof the stateandfeaturerepre-
sentatiorandthesetof availableactions.Asadaetal. [5] proposedsolutionfor coping
with the “state-actiordeviation problem”,in which actionsoperateat afiner grainthan
the featurescanrepresenthaving the effect thatmostactionsappeatto leave the state
unchangedandlearningbecomesmpossible We planto evaluatethesuitability of this
approachn our experiments Regardingthe actionsetdesign we foundthatthe setof
availableactionswasmaybetoo smallandsomemoreactionsmay be needed We are
working on an“action refinement’method[20] thatexploits prior knowledgeinforma-
tion aboutthe similarity of actionsto speedup the learningprocess.In this approach,
thesetof availableactionsis larger, but in orderto not slow down thelearningprocess,
the actionsare groupedinto subsetof similar actions. Early in the learningprocess,
the Reinforcement.earningalgorithmtreatseachsubsebf similar actionsasa single
“abstract’action,estimatingP(s'|s, a) notonly from the executionof actiona, but also
from theexecutionof its similar actions.This actionabstractions lateron stoppedand
theneachactionis treatedon its own, thus, refining the valuesof P(s'|s,a) learned
with abstraction.

7.3.4 GeneticAlgorithm

We shouldanalyzehegeneralityin termsof differentervironmentsandstartingpoints,
of the parametersbtainedby the geneticalgorithm. Furtherwork shouldalsofocuson
designingan agentcapableof identifying the complexity of the taskbeingperformed,
sothatthe parametersanbe switchedfrom onesetto another We will exploretheuse
of CaseBaseReasonindechnique®nthis “situationidentifier” agent.

7.3.5 Real experimentation

The results obtainedthrough real experimentationconfirmedthat, as already seen
through simulation, the bidding coordinationmechanismand the mappingand navi-

gation methodswork appropriately Nonethelessthe scenariosusedin the real ex-

perimentswere not very comple, and somemore experimentatioron more comple

scenarioshouldbe performed.Thesenew scenarioshouldincludesomemoreobsta-
cles,eventuallyhaving somecul-de-sacssothatthe robotwould needto undothepath
alreadydone.

However, the big next stepon our researclis to move the experimentatiorto out-
doorenvironments.Themaindifficulty of doingsois theavailability of avision system
for outdoorswhichwe do nothave atthis moment.However, we think thatthesuccess-
ful resultsobtainedonindoorunstructureenvironmentscouldbe quite easilyobtained
outdoors sinceneitherthe navigationmethodnor the control architecturearedramati-
cally affectedby the differencesf indoor/outdooervironments.
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7.3.6 CaseBasedReasoning

Besideghe useof CBR describedn the GeneticAlgorithm approachwe alsoplanto
adda CBR agentthat would bid for actions. This agentwould usethe information of
pastexperiencesn differenttrials (storedin form of {situation,action,resujttuples)to
recognizesimilar situations,and would then bid for executingthe actions(or similar
actions)that bestsuitedthosesituations. The difficulty of this approachs to find the
properway to characterizehe situationsandhow to comparetwo situationsin order
to find out how similar they are. In this approachwe alsofacethe creditassignment
problem,sincewe cannotevaluatea situation-actiorexperienceuntil the robot either
successfullyeacheghetargetor failsin its mission.
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