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Thesis title:

The Multi-Depot VRP with Vehicle

Interchanges

Abstract: In real-world logistic operations there are a lot of situations that can

be exploited to get better operational strategies. It is important to study these new

alternatives, because they can represent significant cost reductions to the companies

working with physical distribution. This thesis defines the Multi-Depot Vehicle

Routing Problem with Vehicle Interchanges. In this problem, both vehicle capacities

and duration limits on the routes of the drivers are imposed. To favor a better

utilization of the available capacities and working times, it is allowed to combine

pairs of routes at predefined interchange locations.

The objective of this thesis is to analyze and solve the Multi-Depot Vehi-

cle Routing Problem adding the possibility to interchange vehicles at predefined

points. With this strategy, it is possible to reduce the total costs and the number of

used routes with respect to the classical approach: the Multi-Depot Vehicle Rout-

ing Problem. It should be noted that the Multi-Depot Vehicle Routing Problem is
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more challenging and sophisticated than the single-depot Vehicle Routing Problem.

Besides, most exact algorithms for solving the classical Vehicle Routing Problem

are difficult to adapt in order to solve the Multi-Depot Vehicle Routing Problem

(Montoya-Torres et al., 2015). From the complexity point of view, the Multi-Depot

Vehicle Routing Problem with Vehicle Interchanges is NP-Hard, since it is an exten-

sion of the classical problem, which is already NP-Hard.

We present a tight bound on the costs savings that can be attained allowing

interchanges. Three integer programming formulations are proposed based on the

classical vehicle-flow formulations of the Multi-Depot Vehicle Routing Problem. One

of these formulations was solved with a branch-and-bound algorithm, and the other

two formulations, with branch-and-cut algorithms. Due to its great symmetry, the

first formulation is only able to solve small instances. To increase the dimension

of the instances used, we proposed two additional formulations that require one or

more families of constraints of exponential size. In order to solve these formulations,

we had to design and implement specific branch-and-cut algorithms. For these al-

gorithms we implemented specific separation methods for constraints that had not

previously been used in other routing problems. The computational experience per-

formed evidences the routing savings compared with the solutions obtained with the

classical approach and allows to compare the efficacy of the three solution methods

proposed.

Keywords: combinatorial optimization, routing, the Multi-Depot Vehicle

Routing Problem, Rich Vehicle Routing Problem, vehicle interchanges, branch-and-

cut algorithm.
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Resum: En les operacions loǵıstiques del món real es donen situacions que po-

den ser explotades per obtenir millors estratègies operacionals. És molt important

estudiar aquestes noves alternatives, perquè poden representar una reducció signi-

ficativa de costos per a les companyies que treballen en distribució de mercaderies.

En aquesta tesi es defineix el Problema d’Enrutament de Vehicles amb Múltiples

Dipòsits i Intercanvi de Vehicles. En aquest problema, es consideren tant la ca-

pacitat dels vehicles com els ĺımits de duració de les rutes dels conductors. Per tal

de millorar la utilització de les capacitats i temps de treball disponibles, es permet

combinar parelles de rutes en punts d’intercanvi predefinits.

L’objectiu d’aquesta tesi és analitzar i resoldre el problema d’Enrutament de

Vehicles amb Múltiples Dipòsits, on es permet l’intercanvi de vehicles. Amb aquesta

estratègia, és possible reduir els costos totals i el nombre de les rutes utilitzades

respecte l’enfocament clàssic: el problema d’Enrutament de Vehicles amb Múltiples

Dipòsits. Cal assenyalar que el problema d’Enrutament de Vehicles amb Múltiples

Dipòsits és més desafiant i sofisticat que el problema d’enrutament de vehicles d’un

únic dipòsit. A més, molts algoritmes exactes per resoldre el Problema d’Enrutament

de Vehicles clàssic son complicats d’adaptar per resoldre el Problema d’Enrutament

de Vehicles amb Múltiples Dipòsits (Montoya-Torres et al., 2015). Des del punt

de vista de la complexitat, el Problema d’Enrutament de Vehicles amb Múltiples

Dipòsits amb intercanvis de vehicles és NP-Dur, perquè és una extensió del problema

clàssic, que també ho és.

Presentem una cota ajustada de l’estalvi en els costos de distribució que es pot

obtenir permetent els intercanvis. Es proposen tres formulacions de programació

sencera basades en la formulació clàssica “vehicle-flow” del Problema d’Enrutament

de Vehicles amb Múltiples Dipòsits. La primera formulació, degut a la seva grandària

i la seva simetria, només permet resoldre instàncies molt petites. Per augmentar la

dimensió de les instàncies abordables, es proposen dues formulacions addicionals que

requereixen una o vàries famı́lies de restriccions de mida exponencial. Per això, per

tal de resoldre el problema amb aquestes formulacions, ha calgut dissenyar i im-

plementar sengles algorismes de tipus branch-and-cut. En aquests algorismes s’han

implementat mètodes de separació espećıfics per a les restriccions que no s’havien
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utilitzat prèviament en altres problemes de rutes. L’expèriencia computacional re-

alitzada evidencia els estalvis obtinguts comparació amb les solucions corresponents

l’enfocament clàssic. Tambè es compara l’eficàcia dels tres mètodes propostes a

l’hora de resoldre el problema.

Paraules clau: optimizació combinatoria, enrutament, Problema d’Enrutament

de Vehicles amb Múltiples Depòsits, Problema Ric d’Enrutament de Vehicles, inter-

canvi de vehicles, algorisme de branch-and-cut.
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Resumen: En las operaciones loǵısticas del mundo real hay muchas situaciones

que pueden ser explotadas para obtener sistemas de distribución más eficientes. Es

importante estudiar estas nuevas alternativas, porque pueden representar una re-

ducción significativa de costes para las compañ́ıas dedicadas a la distribución de

bienes. En esta tesis se define el Problema de Ruteo de Veh́ıculos con Múltiples

Depósitos e Intercambio de Veh́ıculos. En este problema se imponen tanto capaci-

dades de carga en los veh́ıculos como ĺımites de duración en las rutas de los con-

ductores. Para alcanzar una mejor utilización de la capacidad disponible y de los

tiempos de trabajo, se permite combinar pares de rutas en puntos de intercambio

predefinidos.

El objetivo de esta tesis es analizar y resolver esta extensión donde se permite el

intercambio de veh́ıculos en el problema clásico de Ruteo de Veh́ıculos con Múltiples

Depósitos. Con esta estrategia es posible reducir los costes totales y el número

de rutas usadas respecto al enfoque clásico: el Problema de Ruteo de Veh́ıculos

con Múltiples Depósitos. Queda decir que el Problema de Ruteo de Veh́ıculos con

Múltiples Depósitos es más desafiante y sofisticado que el Problema de Ruteo de

Veh́ıculos con un solo depósito. Además, muchos algoritmos exactos para resolver

el problema clásico de ruteo de veh́ıculos son dif́ıciles de adaptar para resolver el

Problema de Veh́ıculos con Múltiples Depósitos (Montoya-Torres et al., 2015). Desde

el punto de vista de la complejidad, el Problema de Veh́ıculos con Múltiples Depósitos

e Intercambio de Veh́ıculos es NP-Duro ya que es una extensión del problema clásico

que es ya NP-Duro.

Presentamos una cota ajustada de los ahorros en los costes de ruteo que se

pueden obtener permitiendo intercambios. Se proponen tres formulaciones de pro-

gramación entera basadas en las formulaciones clásicas “vehicle flow” del problema

de Ruteo de Veh́ıculos con Múltiples Depósitos. Una de estas formulaciones se re-

suelve con el algoritmo de branch-and-bound. Debido a la gran simetŕıa que presenta,

esta primera formulación es capaz de resolver sólo instancias de tamaño pequeño.

Para incrementar la dimensión de las instancias abordadas, proponemos dos formu-

laciones adicionales que requieren una o varias familias de restricciones de tamaño

exponencial. Por eso, con tal de resolver dichas formulaciones hemos diseñado e im-
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plementado sendos algoritmos de tipo branch-and-cut. Para estos algoritmos, hemos

implementado algoritmos de separación ad-hoc para restricciones que no han sido

previamente usadas en otros problemas de ruteo. La experiencia computacional re-

alizada evidencia los ahorros en el ruteo, comparado con las soluciones del enfoque

clásico y permite comparar la eficacia de los tres algoritmos propuestos para resolver

el problema.

Palabras clave: optimización combinatoria, ruteo, Problema de Ruteo de

Veh́ıculos con Múltiples Depósitos, Problema Rico de Ruteo de Veh́ıculos, intercam-

bio de veh́ıculos, algoritmo de branch-and-cut.
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Chapter 1

Introduction

Nowadays, in the current globalized and competitive world, one of the most impor-

tant challenges for companies is to offer a quality service with efficient strategies to

satisfy all the requirements of the users. Besides, demographic explosion and the

decreasing profit margins have led the companies to increase their size and oper-

ations to satisfy already large and growing demands. As a consequence, efficient

decision-making in logistics systems has increased in complexity too.

Operations Research (OR) is a discipline that deals with the application of

advanced analytical methods to help making better decisions. In recent years, more

and more companies around the world are applying OR tools due to the economic

gains and improvements in logistics operations that they can achieve. For example,

an important petroleum company in Brazil applied a Decision Support System to

support ship scheduling decisions by maritime transportation and they reached a

reduction of approximately 7.5% in the operational costs for long-haul transport

(Dı́az et al., 2014). In the USA a firm that offers trucking and logistics services

used an OR solution in rail-based intermodal freight operations. They wanted to

maximize driver productivity and minimize the time and miles not directly associated

with moving loaded containers to or from rail ramps (Sun et al., 2014). Another kind

of solution offered by software companies focuses on vehicle routing vendors; these

companies provide personalized solutions in real time according with the vendors

necessities (Hall and Partyka, 2016).

In particular, the major operation costs within physical distribution are com-

monly related to fuel consumption and wages. Therefore, there is a considerable

1
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economical interest in finding distribution policies that allow to reduce these costs.

To a large extent, these costs can be reduced by making use of efficient distribution

routes. Identifying such routes in large distribution systems is not a trivial task,

and operations research offer a variety of useful tools to address it successfully. In-

deed, the problems that arise in this context have been intensively studied for more

than half a century in combinatorial optimization. These problems are referred to

as Vehicle Routing Problems (VRPs) (Laporte, 2009).

The VRP can be simply defined as the designing of least-cost delivery routes

from a depot to a set of geographically scattered customers, subject to some side

constraints (Toth and Vigo, 2014). This problem is among of the most researched

ones because of its wide applicability. In real-world situations there are a variety

of operational rules and constraints to consider. As a consequence, there are many

variants that emerge from the VRP. Among these situations, it is worth mentioning:

periodicity, multiple depots, service time windows, capacity constraints, backhauls,

pickups and deliveries and split deliveries (Weise et al., 2009; Lahyani et al., 2015).

Taking advantage of the methodological progress and the development of com-

puter technologies, in recent years the research community has focused on new VRP

variants which could not be addressed before due to their complexity. These variants

include most of the relevant attributes of the VRP that are essential to the routing

of vehicles in real-life. Problems with these features are referred to as Rich Vehicle

Routing Problem (RVRP) (Lahyani et al., 2015; Cáceres-Cruz et al., 2015). Also,

because of the limited supply capacity in each depot and the geographical disper-

sion of the customers locations, companies often need to operate from several depots

(Montoya-Torres et al., 2015). For example, the American electronic commerce and

cloud computing company Amazon during these last 20 years has been incrementing

its distribution network (MWPVL-International, 2015). The MultiDepot Vehicle

Routing Problem (MDVRP) is the VRP extension that studies this realistic situa-

tion where more than one depot is considered (Kulkarni and Bhave, 1985; Laporte

et al., 1988).

The main constraints in the MDVRP are: each customer is visited once and

its demand is fully satisfied, the total load delivered by a vehicle does not exceed its
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capacity, the total time spent by each driver is below a prespecified limit, and each

driver finishes his route at the depot where he started. These conditions often enter

in conflict and, in order to satisfy all of them, some of the available resources cannot

be fully used.

In this thesis we present the Multi-Depot Vehicle Routing Problem with Vehicle

Interchanges (MDVRPVI). It is a new MDVRP variant that can be classified as a

RVRP. With the aim of balancing the usage of the vehicle capacities and the route

durations, we allow the drivers to interchange their vehicles/containers at predefined

meeting points. To this end, their corresponding routes must be synchronized, which

entails an additional source of complexity. However, this approach adds flexibility

to the operations and it can improve the overall costs taking advantage of the fact

that only drivers need to finish tours at their starting depot while vehicle routes can

start and end at different depots. Exchange of drivers, especially in the routing of

public transport, has been studied in the past (Andersson et al., 1979). However,

we want to integrate this strategy within delivery routing problems. The possibility

of distinguishing between drivers and vehicles routes can be encountered besides the

traditional land transportation (trucks and roads) in other transportation modes (as

air, maritime and rail transportation) (Gopalakrishnan and Johnson, 2005). The

MDVRPVI is the extension of the MDVRP where this possibility is considered.

The main objective of this work is to study the properties of the MDVRPVI and

to propose exact solution methods for this problem. These exact solution methods

will be based on different mathematical programming formulations that will also be

proposed along the thesis. Given the complexity of this problem, we only expect to

be able to solve exactly moderate size problem instances.

The rest of the thesis is organized as follows, of works addressing VRP exten-

sions that share some of the elements of the MDRP-VI is given in 2. In Chapter 3 the

definition of the problem and an upper bound on the savings than can be attained

with our policy as compared with the MDVRP is presented together with a brief

analysis of the effect of the interchange locations. The mathematical formulations

proposed to solve the MDVRPVI are explained in Chapter 4. Chapter 5 contains

the details of the branch-and-cut algorithms. All the obtained results are shown
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in Chapter 6. Finally, Chapter 7 provides the summary, conclusions and proposes

several venues of the future research.



Chapter 2

Literature Review

This work is focused on a new MDVRP extension, the MDVRPVI in which drivers

can switch their vehicles in certain meeting points. According to the definition pro-

vided in Lahyani et al. (2015) the MDVRPVI can be classified as a RVRP. The

considered features are: vehicle routing and driver scheduling, synchronization be-

tween routes, waiting time\handling constraints and routes with closed driver tours.

To the best of our knowledge, the problem addressed in this thesis has not been

studied in the literature. In this section, we present a general overview of the so-

lution methods for the MDVRP and a review of works focused on problems closely

related to the MDVRPVI.

The literature about the MDVRP in not that extensive as in the case of the

VRP, given its applicability, many different techniques to solve it and its variants

have been proposed in the literature.

The first exact algorithms for the MDVRP were presented in Laporte et al.

(1984) and Laporte et al. (1988). They developed a branch-and-bound algorithm,

that allowed them solving instances of up to 80 nodes. More recently, Baldacci

and Mingozzi (2009) developed an unified exact algorithm capable to solve differ-

ent VRP extensions; among these, the MDVRP. This algorithm is based on a set

partitioning formulation, and uses three types of bounding procedures based on a

LP-relaxation and on the Lagrangean relaxation of the mathematical formulation.

The computational results show that instances involving up to 199 customers can

be solved. Braekers et al. (2014) present an exact approach for a general heteroge-

neous dial-a-ride problem with multiple depots. Three and two-index formulations

5
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are discussed and a branch-and-cut algorithm for the standard dial-a-ride problem

is adapted to exactly solve problem instances with about 50 requests. Contardo

and Martinelli (2014) formulated the MDVRP with length constraints based on a

vehicle-flow and a set-partitioning formulation. Several valid inequalities are used

to strengthen both formulations and a new family of valid inequalities that forbid

cycles of an arbitrary length are included. Their exact method has different stages.

The three main components are variable fixing, column-and-cut generation and col-

umn enumeration. This new algorithm is able to solve MDRVP benchmark instances

that had never been solved before, some having over 200 customers. Lahyani et al.

(2018) developed five different mathematical formulations to solve the multi-depot

fleet size and mix vehicle routing problem (MDFSMVRP). They used a branch-and-

bound and branch-and-cut as solution algorithms, and compared the bounds of these

formulations with classical benchmark instances, achieving better results with the

commodity flow formulations and the capacity-indexed formulation.

Due to the complexity of this problem and its variants, together with the in-

creasing popularity of heuristics and metaheuristics, several algorithms of this type

have been proposed in the literature for the MDVRP and some of its extensions.

The first heuristic method is presented in Min et al. (1992) to solve the MDVRP

with backhauling, the main idea of their algorithm is based on a problem decom-

position. Among recent works, Afshar-Nadjafi and Afshar-Nadjafi (2017) present a

constructive heuristic for the time-dependent MDVRP where an heterogeneous fleet,

hard time windows and limitation on the maximum number of the vehicles in each

depot are considered. Vidal et al. (2014) developed an unified metaheuristic to solve

some variants of the MDVRP with and without fleet mix. The used approach is an

hybrid genetic algorithm with iterated local search and dynamic programming. An

hybrid granular tabu search algorithm was developed by Escobar et al. (2014). This

algorithm is based on a heuristic framework previously introduced by the authors for

the solution of the Capacitated Location Routing Problem. With the computational

experiments on benchmark instances from the literature, they enhance several best

solutions obtained with previously published methods and find new best solutions.

A problem arising in the last mile distribution of e-commerce is studied in Zhou et al.

(2018). In this problem, the first level routing is to design the routes transporting
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the customers demand from the depot to a subset of satellites. The second level is

the routing from the satellites to the customers. Besides, customers may provide

different delivery options, allowing them to pick up their packages at intermediate

pickup facilities. With all the above this is a complex problem, since there are a

lot of interconnected decisions this is a complex problem, so they developed a hy-

brid multi-population genetic algorithm. A real word instance as well as randomly

generated instances were tested.

As mentioned before, the routing policy proposed in this thesis has not been

studied before within VRPs. So, we review the literature on routing works with the

main characteristics of the MDVRPVI.

In our problem, we differentiate vehicles routes and drivers routes. In the liter-

ature there are works considering this fact. To the best of our knowledge, one of the

most similar problems to the MDVRPVI studied in the literature is the simultaneous

vehicle and crew routing and scheduling for partial-and full-load long-distance road

transport proposed in Drexl et al. (2013). In this problem, there is an heterogeneous

float of trucks and homogeneous drivers, and thats it, all drivers are able to use

any available truck. Besides the typical depots and pick-up and delivery locations,

relay stations are considered where drivers can exchange a truck, take a break or

take a small shuttle van to another relay station (unlimited). The objective was

to minimize the total routing costs, while satisfying the EU regulations. In this

work, in contrast to the MDVRPVI, drivers and trucks have to finish at the same

initial depot (as in the traditional MDVRP). This has to be satisfied at the end of

the planning horizon that is six days. The proposed solution procedure is a two

stage heuristic. The first stage consists in solving a Pickup-and-delivery problem

(PDP) with time windows and relay stations. In the second stage, the authors solve

a vehicle routing problem with time windows and multiple depot and, after that,

they integrate both solutions. With all the characteristics considered, this kind of

problems are intractable by means of exact algorithms, so that heuristic algorithms

is one of the most common tools to solve them. We believe that it is important

and useful to have a thorough knowledge of more and more realistic problems and

to be able to solve them exactly. This motivates us to study the MDVRPVI, which
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already has some of the features of such real problems, but it is stylized enough to

allow for theoretical analyses and exact solution methods.

Other problems that, although being different are closely related to the MD-

VRPVI are reviewed next.

Domı́nguez-Mart́ın et al. (2017) and Domı́nguez-Mart́ın et al. (2018), solved a

problem motivated on air transportation where, as in the MDVRPVI drivers must

finish their routes at their home depot, but vehicles need not. In these problems the

daily planning of flights, airplanes and crew has to be made, and the crew members

are allowed to travel as passengers in flights too, in order to reach their depot. To

avoid overnight costs, the flights assigned to each aircraft must be such that it starts

the day in one hub airport and ends in the another one. The largest difference

between these two problems was in the number of visits. The first problem has been

modeled as a scheduling problem where each task must be performed by a unique

operator and a unique machine, while in the second one, some locations may be

visited by several vehicles and drivers. The authors proposed integer programming

formulations for both problems, and branch-and-cut algorithms were used to solve

it. We take this idea of designing different routes for the vehicles and for the crew,

so usual in air transportation, and apply it in road freight transportation.

Also in the context of air transportation, but now motivated by situations

arising in humanitarian and military logistics, (Lam et al., 2015) present the Joint

Vehicle and Crew Routing and Scheduling Problem. In this work, The authors

highlight how important is to consider the crew routing besides the vehicle routing,

because in their problem, limitations on the operating times of the crew need to

be considered. In this problem crews are able to interchange vehicles at different

locations (which are the same places to serve) and to travel as passengers before

and after their operating times. Moreover, if there is a crew interchange, vehicles

need to be synchronized. The problem was modeled with a constraint programming

formulation and to solve it, they implemented a Large Neighborhood Search, that

explored both vehicle and crew neighborhoods.
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In general terms, crew scheduling problems are problems that emerge in the

planning of mass transit companies, where minimal cost bus driver schedules are

sought, considering agreement with labor unions and the transportation schedules

Mesquita and Paias (2008) integrated the vehicle scheduling to this problem, so,

assignments of vehicles to timetabled routes, as well as of drivers to vehicles are

made. As for the solution approach, two mathematical formulations were developed.

In the first one, a multi-commodity network flow model for the vehicle scheduling was

combined with a set partitioning model for the crew scheduling. In order to provide

more flexibility to the model, in the second formulation the authors replaced a subset

of set partitioning constraints by set covering constraints. Note that, in problems

with the previous features routing of the drivers/vehicles is not performed.

When multiple depots are established in large cities or areas the traditional

operation rule is to serve from each depot the customers within a fixed area. In

e-commerce logistics, internet orders are flexibly assigned between different distribu-

tion centers to share depot resources. Seeking to serve efficiently the customers and

to reduce the fuel consumption, this logistic operation has been increasing its appli-

cation. Motivated by this fact, Li et al. (2018) presented the MDVRP under shared

depot resource. They evaluated the benefit ratios between unshared and shared de-

pots on route distance and fuel consumption and showed that they can be up to

2. In this problem, the vehicle is not required to return to the depot from which it

started because an information system, allows to manage and position drivers and

vehicles. So, vehicles are able to share parking spaces in all distribution centers, and

drivers can go home through a convenient and fast subway system after they get off

their works.

In order to take customer sharing among a set of carriers, Fernández et al.

(2018) developed mathematical programming formulations and a branch-and-cut

algorithm to solve a problem with this feature. From delivery services are offered by

the carriers multiple depots spread in the city. This produces numerous simultaneous

trips on common areas and partial loads. With this new approach, the authors

propose to take advantage of collaboration among carriers who must serve common

customers in the same time horizon. Collaborating carriers could serve part of the
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demand for other carriers, as well as combining or exchanging customers orders or

requests. On the benchmark instances they could solve optimally (depending on the

number of customers and their locations), they obtained benefits that a range from

6.5% to 25.5% as compared with a non collaboration scheme.

Another relevant issue in the MDVRPVI is the need to synchronize routes.

Synchronization of routes has been considered in some previous works. Transship-

ments inside the network in a PDP were studied in Rais et al. (2014). In this problem

there are some transshipment locations (the same customers locations) where vehi-

cles may transfer and adjust their loads. The locations of the vehicle origin and final

depots were predefined. Drivers can finish their working day in a different depot.

Moreover, at transshipment locations, they may switch their vehicles, get release

time to adjust to policy-related matters or be replaced by fresh or rested drivers. A

mathematical programming formulation with three indexed variables was presented.

The main difference of the MDVRPVI than our problem is that this is a PDP, which

adds more flexibility to deal with vehicles capacities.

To some extent, synchronization also appears in cross-docking problems. In

cross-docks, freight is unloaded from incoming vehicles and directly transferred to

outbound vehicles. Therefore, planning cross-dock operations involves the synchro-

nization of the routes of both types of vehicles. This type of problems has been

studied since the nineties. A recent example is Dondo and Cerdá (2015), where the

authors consider a problem with heterogeneous fleet.

The VRP with Trailers and Transshipment is a problem that arises in raw milk

collection at farmyards (Drexl, 2013) where route synchronization is also required.

Given an heterogeneous fleet stationed at one or more depots, all the given demand

has to be collected. The fleet is integrated by lorries that can be temporarily enlarged

with trailers, and load transfers can be carried out at transshipment locations such as

parking places or customer premises. This kind of VRP variation exhibits additional

synchronization requirements in regard to spatial, temporal, and load aspects.

The synchronized routing of active and passive means of transport arising in

container and conducting situations was solved in Meisel and Kopfer (2014). In this
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problem, pick up and delivery requests have to be fulfilled with active and passive

means. To perform the task, active means go to the passive means to transport

them through the locations, where they are dropped off and unloaded. As in the

MDVRPVI, in this work an important challenge is the synchronization of the routes.

Considering the fact that passive means are not independent to travel, each travel

must be synchronized. In this case time windows and compatibility constraints be-

tween requests of passive and active means need to be taken into account. They

propose a mathematical formulation but, as this problem is NP-hard, for non-trivial

instances an Adaptive Large Neighborhood Search metaheuristic was implemented.

This problem is similar to the capacitated truck-and-trailer routing problem solved

in Bartolini and Schneider (2018) using a two-commodity flow formulation. Due to

their inaccessibility, there are some customers that cannot be served with a trailer.

So, with a restricted fleet of trucks and trailers from a central depot, the composite

vehicles can temporally park their trailer at any accessible customer and transfer

load from it. This action allows to perform a subtour serving the inaccessible cus-

tomers and then come back to the trailer to resume the journey. Huber and Geiger

(2014) consider a similar problem. They consider different times associated with

attaching/detecting or swapping trailers. Since the number of such actions is not

limited, it is important to handle correctly synchronization times at swap locations.

A maximum driving time cannot be exceeded, the truck must return to the depot

with the same trailer it had started with, and it is not permitted to transfer load

partially or completely to another trailer. A solution method, an Iterated Vari-

able Neighborhood Search was employed. To diversify the considered local optima,

the authors design some different neighborhoods with intra and inter-tour operators

specific to this problem.

There are other problems where routes are allowed to stop at intermediate

points. For example in Crevier et al. (2007) the authors solved an extension of

the MDVRP, where vehicles may be replenished at intermediate depots along their

routes. Similarly, Angelelli and Speranza (2002) presented an extension of the Peri-

odic Vehicle Routing Problem also including this possibility.



Literature Review 12

In both cases, routes may finish at an intermediate depot which is different

from the starting point. In Crevier et al. (2007) a set partitioning formulation al-

lowed to solve only small instances. In both cases, larger instances are tackled by

means of heuristic methods. Crevier et al. (2007) make use of the adaptive mem-

ory principle and create solutions by combining elements of previous ones, whereas

Angelelli and Speranza propose a Tabu Search algorithm. In the same line Baldacci

et al. (2016) solved the Vehicle Routing Problem with Transhipment Facilities. This

problem emerged from a company operating in the production and distribution of

non-perishables. The objective was to minimize the total distribution costs op-

timizing inter-dependent decisions. These decisions were selecting transshipment

facilities, allocating customers to these facilities and the design of vehicle routes.

They proposed two integer-programming formulations and developed and efficient

algorithm to solve large instances both, from the literature as from the real-world.

Another particularity of the MDVRPVI is that some vehicles may finish at

different depot than the starting one. Problems involving either routes of this type, or

routes that are considered to be finished when the last customer is reached are known

in the literature as Open Vehicle Routing Problems (OVRP). We can encounter real-

life applications as school bus routing (Bektaş and Elmastaş, 2007) or ambulance

routing (Tlili et al., 2017). We can highlight the OVRP with Decoupling Points

(Atefi et al., 2018). This is an application motivated by companies transporting

their products over very long distances. They proposed to use a decoupling point of

the route, where it is possible to use more than one carrier to perform a delivery. The

idea is that the first carrier leaves from the depot, performs part of the deliveries

and drops off all remaining load at one of the decoupling points. Then, the rest

of the customers have to be served by a second carrier. An Iterated Local Search

algorithm for this problem is developed. The authors tested their algorithm on real

data and showed that using decoupling points is a profitable policy.

A quite general problem involving different types of constraints to fulfill diverse

typical requirements is considered in Ceselli et al. (2009). In this work, the authors

developed a model with a software-planning tool for distribution of logistics com-

panies. To solve the problem, they employed a column generation algorithm that
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required solving a particular resource-constrained elementary shortest-path problem

as the pricing problem. Another OVRP, but also considering time windows was pre-

sented by Li et al. (2014). An integer programming formulation was used to solve

small instances, and for large instances an hybrid genetic algorithm with adaptive

local search was implemented.

In Table 2.1 we summarize the characteristics of the works addressing the most

similar problems to the MDVRPVI.
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Angelelli and Speranza (2002) Waste collection * Tabu search * *

Algorithm combining
Crevier et al. (2007) Grocery distribution * * integer programming, the * * *

adaptive memory principle
and tabu search

Ceselli et al. (2009) Good deliveries * Column generation * * * *

Drexl et al. (2013) Transportation under * Two stage heuristic * * * * * *
EU regulations

Branch-and-cut and
Drexl et al. (2013) Raw milk collection * branch-and-cut and * * * * *

price algorithms

Huber and Geiger (2014) Transport deliveries * Iterated Variable * * * *
Neighborhood Search

Li et al. (2014) Collaborative * Hybrid genetic algorithm * * *
Transportation with adaptive local search

Meisel and Kopfer (2014) Container and * Adaptive large * * * *
conducting situations neighborhood search

Three index formulation
Rais et al. (2014) Transport systems * and model constraints for * * * * * *

some particular cases

Lam et al. (2015) Humanitarian and * Large neighborhood * * * * *
military logistics search

Atefi et al. (2018) Food routing * * Iterated Local Search * * *

Domı́nguez-Mart́ın et al. (2018) Local air-traffic * Branch-and-cut * * * * *

Li et al. (2018) E-commerce * Hybrid genetic algorithm * * *
with adaptive local search

Table 2.1: Related work





Chapter 3

The Multi-Depot Vehicle

Routing Problem with Vehicle

Interchanges

In this Chapter, we present the definition, assumptions and characteristics of the

MDVRPVI together with an upper bound on the relative savings that can be ob-

tained by allowing vehicle interchanges. This bound will be proven to be tight by

means of an asymptotic example.

3.1 Problem definition

We are given a set of geographically scattered points divided into customers, depots

and interchange locations. Transportation costs and travel times (or distances) be-

tween any pair of such points are also given (the triangle inequality is assumed).

Each customer has a certain demand, and each depot an available fleet of capaci-

tated vehicles to serve all the customers. There is also a limit on the duration of the

drivers routes. The MDVRPVI consists in determining a set of vehicle and driver

routes which minimize the total distribution costs (total transportation plus vehicle

utilization costs) so that: each customer is serviced exactly once by a vehicle, the

total demand of each vehicle route does not exceed the vehicle capacity, the total

driver working time does not exceed the maximum available time and each driver

finishes at the same depot where the started. In the MDVRP routes are designed

so that each vehicle and its associated driver must start and end at the same depot.

15
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As opposite, in our problem the vehicle may not end at the depot where it departed

from, but drivers must start and finish at their home depot. To do that, a cou-

ple of routes can be synchronized and stop at a certain interchange location where

drivers exchange their vehicles or containers. We will refer to a pair of such routes as

“exchanged routes”. With this strategy it is possible to combine better the vehicle

capacities and the allowable driving times. We want to take advantage of this fact

and hence reduce the total routing costs. We assume that at most one interchange

per route is permitted and also that at most one interchange per interchange loca-

tion is performed. This last assumption can be satisfied by replicating interchange

locations if more interchanges are allowed. No waiting times at the interchange

locations are imposed, since we do not force all vehicles to start their journey at

the same time, and, therefore, they are assume to start in a coordinated way, so

that they arrive to the interchange location at the same time. Within this thesis,

we do not distinguish between the time required to traverse an edge (used in the

driving time constraints), and the cost to do it (needed for the objective function).

However, all the arguments used here can be extended to the case where they are

two distinct sets of values. Note also that the possible time required to perform an

interchange has not been explicitly defined. In most cases this time is negligible.

However, if an application requires including such times, they can be simply dealt

with by adding them to the times associated with arcs ending at an interchange

location. The MDVRP is classified as NP-Hard (Laporte et al., 1988). Since the

MDVRPVI contains as a particular case the MDVRP (the set of interchange sites

is empty), the MDVRPVI is NP-Hard too.

To illustrate a MDVRPVI solution consider the situation depicted on top of

Figure 3.1 where four customers (circles), two depots (squares) and an interchange

location (triangle) are placed in a line. The time required to traverse the whole

segment between A and B equals the maximum driving time, T , the vehicle capacity

is Q, and the customers demands are those given inside the circles representing them.

In this case, if it is only allowed to move along the horizontal line, the optimal

MDVRP solution is to serve from depot A the customers with demand Q − 1 in

two separate routes and use another tour from depot B for serving the other two

customers. The value of this optimal solution is Z(MDVRP ) = 2(T
2
− 2ε) + 2(T

2
−
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ε)+2(T
2
−ε) = 3T−8ε. If interchanges are allowed, the optimal solution is composed

of two routes, each starting at one depot, collecting the demand of one small and

one big customer and finishing at the other depot. For making this possible, the two

routes must meet at the interchange point (the triangle) so that drivers can switch

their vehicles and finish their journey at their home depot. This solution is feasible

for both drivers and vehicles, and the total cost is Z(MDVRPV I) = 2T . Thereby,

for arbitrarily small ε values, in this example, Z(MDVRP ) → 3
2
Z(MDVRPV I).

In Figure 3.1 both solutions are shown.

Figure 3.1: Example of MDVRPVI solution.

In Figure 3.2 we provide another example to illustrate the possible advantage

of a MDVRPVI solution with respect to the MDVRP solution. In this instance

customers, depots and an interchange point are located on a 3 × 5 grid and Eu-

clidean distances are considered. The vehicles capacity is Q = 14 and T = 12 is the

maximum available time. As we see in Figure 3.2(a) the MDVRP optimal solution

consists of two routes, with a total length Z∗ = 22. On the other hand, in the

MDVRPVI solution (3.2(b)) drivers arrive to the interchange point (triangle) and

with this strategy, each of the routes has length 8.41. As a result Z∗ = 16.82 is

the optimal value, which represents a 23.5% reduction with respect to the MDVRP

solution.
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(b) MDVRPVI solution

Figure 3.2: Example MDVRP versus MDVRPVI.

Additionally to the transportation cost reduction, in some cases the MDVR-

PVI gives the possibility to reduce the number of routes needed as it is the case

in the synthetic example of Figure 3.1. We provide a last example. Consider the

instance depicted in Figure 3.3, with depots at nodes 0 and 1 an interchange lo-

cation at node 2, and customers at nodes {3, ..., 14}. Euclidean distances are used.

The corresponding demands are as follows {13, 4, 7, 15, 6, 4, 9, 15, 9, 4, 15, 17} vehicles

capacity is Q = 59 and the route duration limit T = 200. The optimal MDVRP so-

lution, with value Z∗ = 327.077 uses three vehicles whereas the optimal MDVRPVI

solution, with value Z∗ = 291.217 requires only two. Besides, we can observe with

the load ratios (qk/Q) that all the vehicles capacity is used. About the time ratios

(tk/T ), our policy in this case reflects a better balance between drivers.

(a) MDVRP solution using 3 routes (b) MDVRPVI solution using 2 routes

Figure 3.3: Example where the MDVRPVI uses one route less than MDVRP.
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Effect of the location of the interchange points

We are aware of the fact that the interchange points locations can represent a

significant variation in the possible savings to obtain by using the interchange policy.

As we have defined the MDVRPVI, the problem is already very complex, so unfortu-

nately optimizing this location is not within the scope of this thesis. Nonetheless, in

order to know the behavior in the savings that could be achieved, in one particular

instance we tested some different interchange locations around a specific region to

observe the variation of the obtained gains.

Figure 3.4 shows an instance with two depots (d1 and d2), 13 customers (with

size proportional to the demands), and one interchange point, for which three differ-

ent locations have been tested (i1, i2 and i3). Again, Euclidean distances are used.

In all of them, the shape of the solution is the same, but the savings with respect

to the MDVRP are different. The largest one is 9.10%, obtained with the point i1,

the second one is i3 with 7.34% and finally i2 gives the smallest saving, 6.15%. So

we can see that even small variations on the interchange point location can have a

large effect on the obtained gains.

9% 

Savings 

6% 

𝑑2 

𝑑1 
𝑖1 

𝑖2 

𝑖3 

Figure 3.4: Different interchange point locations tested and their corresponding
savings.
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3.2 Analysis of the maximum achievable savings

In this section we provide a theoretical tight bound on the savings that can be

attained by using this policy, as compared with the classical MDVRP. In the classical

MDVRP each driver must finish his route at the depot where he started (closed

route). Due to these constraints the driver route duration limit and vehicles capacity

may be not completely used. As mentioned above, in the MDVRPVI, we allow that

pairs of vehicle routes switch their respective depots so that, if the corresponding

drivers also switch, they can finish their journey at their home depot. As it has been

shown in the previous examples, in some occasions this may help balancing the use

of the available resources.

To take advantage of combining vehicle loads and drivers operation times,

a new design of routes is performed and a significant routing cost reduction can

be attained. We want to bound the largest value that this reduction can take.

Starting from a fixed instance, we denote the costs of the optimal solutions to both

problems by Z(MDVRP ) and Z(MDVRPV I), respectively. We next analyze the

ratio between these values.

In that follows, we refer to a route which is feasible with respect to the capacity

constraint as a Q-feasible route. Analogously, a route that is feasible regarding the

time constraint is called T -feasible. Keep in mind that the only assumption made

on the distances is that they satisfy the triangle inequality.

Theorem 1: Z(MDVRP )
Z(MDVRPV I)

< 2, and this bound is tight.

The simplest case where exchanged routes can appear is an instance with two

depots and one interchange point. We will focus on this case for simplicity. All

the ideas used here naturally extend to instances with more depots and interchange

points.

Let us consider an MDVRPVI instance for which the optimal solution contains

two exchanged routes a, and b, as depicted in Figure 3.5(a). After serving some

customers each, drivers meet at the interchange location (triangle) where they switch

their vehicles. Then, they can serve the rest of the customers and finish in their home
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depot. Now, from the previous MDVRPVI solution we will build a feasible MDVRP

solution and compute its cost. This solution is initially formed by routes a′ and b′.

Each of them follows the previous drivers routes, but skipping the interchange point

(see Figure 3.5(b)). These will be further modified if they are not feasible. We will

show in what follows that the value of the new solution is at most 2Z(MDVRPV I).

Since the new solution will be feasible for the MDVRP, its value will bound above

Z(MDVRP ).

B

A

𝑎

𝑏

(a) z(MDVRPVI) = c{a, b}

B

A

𝑎′

𝑏′

(b) MDVRP solution?

A

B

𝑐𝑎2′

𝑐𝑏′

𝑐𝑎1′

(c) z(MDVRP) 6 c{a′1, a′2, b′}

Figure 3.5: From a MDVRPVI solution to a MDVRP solution.

1. If routes a′ and b′ were feasible, taking advantage of the triangle inequality,

the solution {a′, b′} would be optimal for the MDVRPVI, because it has a total

driving distance not larger than that of {a, b}. In this case, Z(MDVRP ) =

Z(MDVRPV I).

2. Even if a′ and/or b′ are infeasible, note that they must be both T-

feasible: due to the length constraints, and the triangle inequality, route a′

is not longer than the route of the driver that started at depot A (the same

for b′). Therefore, the only unfeasibilities of a′ and/or b′ are related with the

capacity constraints.

• If a and b are Q-feasible then at least one of a′ or b′ is Q-feasible

too: Let Q1 and Q2 be the aggregate demand of the customers in the
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first and second path of route a, respectively, and let Q3 and Q4 be the

aggregate demand of the customers in the first and second path of route

b, respectively. If a′ is infeasible it must be because Q1 +Q4 > Q, if b′ is

infeasible, Q2 +Q3 > Q. Then, if both were infeasible, the total demand

would satisfy Q1 + Q2 + Q3 + Q4 > 2Q and this cannot happen if a and

b were Q-feasible. Therefore, at most one of the routes a′ and b′ can be

infeasible. We assume, without loss of generality, that a′ is not Q-feasible.

If the Q-infeasible route is a′, it can be split into two Q-feasible routes

a′1 and a′2 as in Figure 2.c. Route a′1 starts at the depot, follows route a′

until the last customer before skipping the interchange point, and then

goes straight back to the depot. Route a′2 resumes route a′ from the first

customer not visited by route a′1. By the triangle inequality neither a′1

nor a′2 are longer than a′, and, by construction, both are Q-feasible since

each is part of one of the original Q-feasible routes a and b and demands

are non negative. Therefore routes {a′1, a′2, b′} define a feasible MDVRPVI

solution.

Next, we compare the transportation cost of the solution built above with

the cost of the original one. Since {a, b} is the optimal MDVRPVI solution, and

{a′1, a′2, b′} is a feasible MDVRP solution, any upper bound on c({a,b})
c({a′1,a′2,b′})

will be an

upper bound on Z(MDVRP )
Z(MDVRPV I)

for this instance. Indeed, by the triangle inequality, the

potentially feasible solution {a′, b′} described in point 1 will never be more expensive

than {a′1, a′2, b′}, so that it is not necessary to consider it further in this analysis.

Figure 3.5 shows the costs involved in both solutions. We split the cost of

route a into costs c1
a + c2

a to manage the costs in the route before and after the

interchange point, respectively. Analogously, the cost of route b has been split into

c1
b + c2

b . Similarly, we denote with ca′1 , ca′2 and cb′ the costs of routes a′1, a′2 and b′,

respectively. Therefore,

c({a, b})
c({a′1, a′2, b′})

=
c1
a + c2

a + c1
b + c2

b

ca′1 + ca′2 + cb′
(3.1)
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Now, we have two possibilities: either c1
a + c2

b ≤ c1
b + c2

a or c1
a + c2

b > c1
b + c2

a.

Case 1: considering that c1
a + c2

b ≤ c1
b + c2

a then

cb′ + ca′1 + ca′2 ≤ 2(c1
a + c2

b) + c1
b + c2

a ≤
3

2
(c1
a + c2

b + c1
b + c2

a) =
3

2
ZR(MDVRPV I).

where ZR stands for the routing cost of the optimal MDVRPVI solution.

Case 2: suppose that c1
a + c2

b > c1
b + c2

a then

cb′ + ca′1 + ca′2 ≤ 2(c1
a + c2

b + c1
b + c2

a) = 2ZR(MDVRPV I). (3.2)

In Case 2 we can see that the delivery cost never reduces to less than 50% if

interchange routes are allowed. As a consequence, in both cases the ratio (3.2) is

bounded by 2. The same reasoning can be repeatedly applied if in a solution there

are more than one pair of exchanged routes. As for the vehicle utilization costs, note

that in the MDVRP solutions built as above, the number of vehicles is increased, at

most, by 50%. Therefore, for any instance, Z(MDVRP )
Z(MDVRPV I)

< 2.

To see that the bound is tight, Figure 3.6 shows a synthetic example where

allowing the combination of two routes results in cost savings that, asymptotically,

reach this bound. Given ∈ N consider the instance with capacity 2n + 2 customers

with Q = 2n+ 1, a huge value of the driving time limit, network distances, and the

demands shown in the figure. The optimal MDVRP solution is composed by two

routes rooted at depot A delivering all the customers with demand 2 (one above and

one below) and one route rooted at depot B serving the remaining two customers.

Allowing interchanges, the optimal solution is composed by two routes with similar

shape: starting in one depot, they deliver n customers with demand 2 and one with

demand 1, going to the interchange location and finishing the route in the opposite

depot (see Figure 3.6). So, the value of Z(MDVRP) is equal to (4n + 3)ε and

Z(MDVRPVI) is 2(n+ 4)ε. As n grows, the ratio Z(MDVRP )/Z(MDVRPV I)→
2.
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Figure 3.6: Example of Theorem 1.



Chapter 4

Mathematical programming

formulations

Next we formally define the MDVRPVI and state the notation used in the re-

minder of this thesis. Consider a weighted and directed graph G = (V,A), where

the set of nodes are partitioned as V = D ∪ C ∪ I and the set of arcs is A =

(V × V )\{(D × D) ∪ (I × I)}. D is the set of depots, C is the set of customers

and I the set of predefined interchange locations, where a couple of drivers can meet

to interchange their vehicles/containers. The set of arcs contains all possible arcs

except the ones connecting directly two depots, or two interchange points. Regard-

less the fact that the considered transportation costs are symmetrical or not, it is

convenient to use directed formulations for the MDVRPVI. This is because some

paths can affect feasibility in the solutions. Especially where there are exchange

routes, due to the sense of the arcs, determine charge of the different drivers/trucks

and the interchange times. Moreover, this notably simplifies the modeling of route

synchronization. With each customer j ∈ C is associated a demand qj to be satis-

fied. Each arc has its corresponding cost, (distance or travel time) cij . We assume

that demands and distances are non negative (qj, cij ≥ 0) and distances satisfy the

triangle inequality. There is a fleet of homogeneous vehicles K, each one with ca-

pacity Q and a fixed vehicle usage cost g. T represents the maximum driver working

time, that is composed by the sum of the traveling time along the edges used and

the synchronization waiting time, if the routes are switched.

25
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4.1 3-index formulation

The first and most intuitive mathematical formulation to the MDVRPVI is a three-

index vehicle-flow formulation, which has been extended from the formulation pre-

sented by (Kulkarni and Bhave, 1985) to solve the MDVRP. To this end, we define

the following decision variables. For each arc (i, j) and each vehicle k we define the

binary variable xkij that is equal to 1 if route k uses arc (i, j). For each k ∈ K, d ∈ D
binary variables odk and fdk determine whether route k is starts or ends at depot d,

respectively. We are assuming only one pair of exchanged routes at each interchange

location, so the binary variables erkk′ are equal to 1, if routes k, k′ ∈ K interchange

their vehicles at interchange location r ∈ I. These variables can be defined as inte-

ger, in the case that more than one pair of exchanged routes is allowed. Finally, we

have the non negative continuous variables: `i as the time from the beginning of the

working day until the moment when a vehicle departs from i ∈ C ∪ I and si which

is the driving time from node i to the end of the route that visits it. In the case of

interchange points, `i is the maximum of these values among the routes that visit

it. With this notation, the MDVRPVI can be formulated as:

minimize g
∑
o∈D

∑
k∈K

odk +
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (4.1)

subject to ∑
j 6=i

xkij =
∑
j 6=i

xkji, i ∈ C ∪ I, k ∈ K, (4.2)

∑
i∈D∪C

∑
k∈K

xkir = 2
∑
k,k′∈K

erkk′ , r ∈ I, (4.3)

∑
k∈K

∑
j∈V

xkij = 1, i ∈ C, (4.4)

∑
i∈C

qi
∑
j∈V

xkij ≤ Q, k ∈ K, (4.5)

`i + si ≤ T, i ∈ C ∪ I, (4.6)

`j ≥ `i + cij − (T + cij)(1−
∑
k∈K

xkij), i ∈ C ∪ I, j ∈ C, (4.7)

`j ≤ `i + cij + (T + cij)(1−
∑
k∈K

xkij), i, j ∈ C ∪ I, (4.8)
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si ≥ sj + cij − (T + cij)(1−
∑
k∈K

xkij), i, j ∈ C ∪ I, (4.9)

si ≤ sj + cij + (T + cij)(1−
∑
k∈K

xkij), i, j ∈ C ∪ I, (4.10)

`j ≥ cdj
∑
k∈K

xkdj, d ∈ D, j ∈ C ∪ I, (4.11)

si ≥ cid
∑
k∈K

xkid, d ∈ D, i ∈ C ∪ I, (4.12)

fdk ≥ odk −
∑

k′∈K,r∈I

erkk′ , d ∈ D, k ∈ K, (4.13)

odk +
∑
d′∈D
d′ 6=d

fd′k′ +
∑
r∈I

erkk′ ≤ 2, d ∈ D, k, k′ ∈ K, (4.14)

∑
k′∈K,r∈I

erk,k′ ≤ 1, k ∈ K, (4.15)

odk =
∑
i∈C∪I

xkdi, d ∈ D, k ∈ K, (4.16)

fdk =
∑
i∈C∪I

xkid, d ∈ D, k ∈ K, (4.17)

erkk′ ≤
∑
i∈C∪D

xkir, k, k′ ∈ K, r ∈ I, (4.18)

erkk′ ≤
∑
i∈C∪D

xk
′

ir , k, k′ ∈ K, r ∈ I, (4.19)

xkij ∈ {0, 1}, (i, j) ∈ A, k ∈ K, (4.20)

odk, fdk ∈ {0, 1}, k ∈ K, d ∈ D, (4.21)

erkk′ ∈ {0, 1}, k, k′ ∈ K, r ∈ I, (4.22)

`r, sr ∈ R+, r ∈ C ∪ I. (4.23)

With objective function (4.1) we attempt to minimize the total cost, which

is the fixed cost for using each vehicle plus the sum of the routing costs. Con-

straints (4.2) are the flow conservation constraints and (4.3) set erkk′ variables to

their corresponding value. Constraints (4.4) impose that exactly one vehicle stops

at each customer and (4.5), state that the available capacity for each vehicle can-

not be exceeded. Feasibility of the drivers routes with respect to duration limits is

guaranteed by constraints (4.6). Constraints (4.7) - (4.10) force the values of the
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time variables `r, sr and binary variables xkij to be consistent. They are also used as

subtour elimination constraints (SECs). With (4.11) - (4.12) the time correspond-

ing to starting and ending each route is accounted for. Constraints (4.13) focus on

“traditional” routes and force them to end at the same depot where they started.

Constraints (4.14) ensure that, if k and k′ interchange drivers, they interchange de-

pots too, so that drivers end at their home depot. Constraints (4.15) indicate that

routes can be interchanged only by pairs. We ensure that the different families of

binary variables take consistent values using (4.16) - (4.19), on the one hand odk,fdk

and xkij, on the other erkk′ and xkij are related. The remaining constraints set the

domains of the variables. This formulation uses O(|V |2|K|) binary variables and

O(|V |2 + |V ||K|) constraints. Note that, using constraints (4.16) and (4.17), vari-

ables odk and fdk can be easily eliminated from this formulation. We have kept them

here for ease of reading.

Additionally to the large number of variables it requires, this formulation

presents a high symmetry. An integer linear program is considered to be symmetric

if its variables can be permuted without changing the structure of the solution (Mar-

got, 2010). It is well known that three index flow formulations for VRPs present a lot

of symmetries. This is induced by the third index that represents the vehicles, since

switching two identical vehicles in a feasible solution yields an equivalent solution.

Thus, three-index vehicle-flow formulations are known in the literature for having

a limited practical interest. The symmetry (number of equivalent solutions) grows

exponentially with the number of requests and vehicles (Toth and Vigo, 2014). This

is a drawback that affects the performance of optimization software that principally

works with the branch-and-bound method, because symmetry produces many simi-

lar nodes in the branch-and-bound tree and the solution time becomes unaffordable.

However, these formulations naturally provide tight LP bounds (Contardo et al.,

2013). In the particular case of VRPs this symmetry has been dealt with using

different alternatives. With the aim of partially avoiding the symmetry effects, we

applied the following strategies:
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Use constraint branching: Given a solution where a given link is fractionally

used, we first branch by forcing/forbidding the use of that link in the solution, and

only when a link is fully used, we branch on the variables associated with vehicles,

if it is required.

Route sorting: Imposing some ordering among the routes of identical ve-

hicles, may become helpful in eliminating some redundant (equivalent) solutions,

guaranteeing at the same time that at least one solution representing each equiva-

lence class is included in the resulting feasible set. In this case, we ordered the set

of vehicles k ∈ K according to their load, with the inequalities

∑
i∈C

qi
∑

(i,j)∈A

xkij ≥
∑
i∈C

qi
∑

(i,j)∈A

xk+1
ij . (4.24)

4.2 2-index formulation

In order to reduce the size of the above formulation and eliminate the symmetries,

we propose a 2-index flow formulation for the MDVRPVI based on the formula-

tion propossed by Contardo and Martinelli (2014). We still work with the directed

graph and sets as in the three index formulation. Each depot i ∈ D has a fleet of

homogeneous vehicles K with capacity Q.

The binary variables in this 2-index formulation, emerge from the natural ag-

gregation of the binary variables in the three-index formulation xkij and eikk′ , respec-

tively. So, for each a = (i, j), we have xa equal to 1 if the arc (i, j) is traversed

exactly once in the solution. Therefore, xa =
∑
k∈K

xkij. For i ∈ I, νi is equal to 1

only if at location i ∈ I there is a route exchange (one allowed). That is, now we

use νi =
∑

k,k′∈K
eikk′ . The non negative continuous variables `i and si are defined as

before. The following notation is also used: ∀S ⊆ V, δ(S), denotes the cut-set of

S; that is, the set of arcs with one end-node in S and the other in V \S. As we

are working with a directed graph, δ−(S) and δ+(S) indicates the sense in the arcs

entering or departing from set S. γ(S), denotes the set of arcs with both end-nodes

in S. Additionally, x((S : S ′)) (S : S ′), denotes the set of edges with one end-node
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in S and the other in S ′. ∀S ⊆ V and ∀S ′ ⊆ V \S will be simplified to x(S : S ′) .

r(S) is a lower bound of the minimum number of vehicles needed to serve S (we will

use r(S) = dD(S)/Qe, where D(S) =
∑

j∈S dj,∀S ⊆ C, is the total demand in S).

Then, the 2-index formulation is:

minimize g
∑

d∈D,j∈C∪I

xdj +
∑

(i,j)∈A

cijxij (4.25)

subject to

x(δ−{j}) = 1, j ∈ C, (4.26)

x(δ+{j}) = 1, j ∈ C, (4.27)

x(δ−{i}) ≤ |K|, i ∈ D, (4.28)∑
j∈C∪I

xij =
∑
j∈C∪I

xji, i ∈ D, (4.29)

x(δ+{i}) = 2νi, i ∈ I, (4.30)

x(δ−{i}) = 2νi, i ∈ I, (4.31)

`i + si ≤ T, i ∈ C ∪ I, (4.32)

`j ≥ `i + cij − (T + cij)(1− xij), i, j ∈ C ∪ I, (4.33)

si ≥ sj + cij − (T + cij)(1− xij), i, j ∈ C ∪ I, (4.34)

`j ≥ cdjxdj, d ∈ D, j ∈ C ∪ I, (4.35)

si ≥ cidxid, d ∈ D, i ∈ C ∪ I, (4.36)

xj′i + x(i : D\{j′}) ≤ 1, j′ ∈ D, i ∈ C ∪ I, (4.37)

x(δ+{S}) ≥ r(S), S ⊆ C, (4.38)

Multi-Cut inequalities

Q-Path Constraints

I-Path Constraints

S-Path Constraints

xij ∈ {0, 1} i, j ∈ A, (4.39)

νi ∈ {0, 1} i ∈ I, (4.40)

`i ∈ R+, i ∈ C ∪ I, (4.41)

si ∈ R+, i ∈ C ∪ I. (4.42)
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The goal is to minimize the objective function (4.25) which includes the fixed

costs for vehicle utilization plus the transportation costs. Degree constraints at cus-

tomers are (4.26)-(4.27). With constraints (4.28) we indicate the maximum number

of vehicles that can be used, at each depot. Constraints (4.29) guarantee the flow

conservation at the depots, and constraints (4.30)-(4.31) force the interchange loca-

tions to have an appropriate degree. Constraints (4.32) establish T as the maximum

available driver time. (4.33)-(4.36) are the constraints that involve the coherence

between routing and time variables. With (4.37) we prevent solutions with routes

visiting just one customer or interchange point starting and ending at different de-

pots. Constraints (4.38) are the well-know capacity constraints, used for the CVRP.

Recall that at least r(S) vehicles are needed to serve all the customers in S. Ba-

sically, all the above constraints can be obtained from constraint in the 3-index

formulation by aggregation and basic constraints operations. Unfortunately, since

the vehicle that uses each used arc is not identified now, additional constraints are

needed to forbid wrong solution structures. The rest of families of constraints are

presented and explained next in detail. Finally, (4.39)-(4.42) define the domains of

the variables.

Next we will present and discuss the pending families of constraints.

Multi-Cut inequalities

As in the MDVRP, we need to forbid paths starting and ending in different de-

pots (Figure 4.1(a)). Additionally, in the MDVRPVI, any pair of exchanged routes

using the interchange location, must interchange their startin-finishing depots. Fig-

ure 4.1(b) shows an infeasible solution with patterns where this fact is not satified,

due to an unbalance between the flows entering and leaving from/to depot t from

set S. Note that this expression is formally different from the MCC definition given

in Bektaş et al. (2017). In that paper, these constraints are expressed as:

x(d : S) + x(S̄ : S) > yd − x(S̄ : d)

where yd accounts for the degree at depot d. Since we do not use these variables, we

replace yd − x(S̄ : d) with x(S : d), which is equivalent.
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𝑆 

𝑑 

(a) Classical path constraint violated

𝑆 

𝑑 

𝑑 

(b) Example with exchanged routes unbalanced

Figure 4.1: Examples with violated multicut inequalities.

Let d ∈ D and sets S ⊆ C ∪ I, S̄ = (C ∪ I) \ S. The following constraint must

be satisfied.

x(S : d) 6 x(d : S) + x(S̄ : S). (4.43)

These constraints are valid, since x(S : d) is bounded above by the number of

vehicles that visit set S and finish their journey at d. This last value is in turn equal

to the number of drivers based at d that visit set S. Each of these drivers must enter

set S at least once, either directly from depot d (increasing thus x(d : S)) or from

some other customer or interchange point (accounted for in x(S̄ : S)).

Q-Path constraints

Constraints (4.38) ensure that non-interchanging routes satisfy the capacity

constraints, and also that they are satisfied by any leg of an interchanging route

(depot-interchange point or interchange point-depot). On the other hand, con-

straints (4.43) forbid non-interchanging routes starting and ending at different de-

pots. Despite these two constraints, it is possible to get solutions with a route

exchange violating the available capacity. For example, in Figure 4.2(a) we have an

instance where the vehicles capacity is Q = 10 and the solution is composed by a

pair of exchanged routes.
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A first route starting at depot d is satisfying the capacity constraint, but the

second one, departing from depot d′ delivers a total of 11 units and is, therefore,

unfeasible.

2 

5 
3 

4 

4 

b 

𝑖 

 𝑑′ 
𝑆 = {𝑖, 𝑏} 

𝑙 

𝑗 

𝑑 

(a) Solution a possible Q-feasibility

2 

3 
2 

2 

1 

 𝑑′ 

𝑑 

4 

3 

3 

(b) Solution a non possible Q-feasibility

Figure 4.2: Solutions violating the Q-feasibility.

Note however that the set of connections used by unfeasible solutions like those

of Figure 4.2 can become feasible by choosing appropriate directions in some cases,

but not always. This is the case of Figure 4.2(a), that can be turned feasible as shown

in Figure 4.3. As opposite, the second situation shown in Figure 4.2(b) cannot be

made feasible by just modifying arc directions.

𝑑 

2 

5 
3 

4 

4 

𝑑′ 

𝑑′ 

Figure 4.3: Solution with exchanged routes and Q-feasibility.

For this reason, to forbid this type of situations “directed” constraints seem

more appropriate. Motivated from the “classical” path constraints (4.50) proposed

in Belenguer et al. (2011) Q-Path constraints seek to prohibit the violated path as

follows. Taking j, l ∈ (C∪I) and sets S ⊆ (C∪I)\{j, l} with r(S∪{j, l}) > 2, D′ ⊂ D

and γ0(S) ⊂ γ(S) such that |γ0(S) ∩ δ+(i)| = 1 and |γ0(S) ∩ δ−(i)| = 1 ∀i ∈ S the

following constraint must hold. Then, the following constraint holds:

x(γ0(S)) + x({j} : S) + x(S : {l}) + x(D′ : {j}) + x({l} : D\D′) ≤|S|+ 2. (4.44)
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The path shown in the first example of Figure 4.2(a) would be forbidden by

the constraint from set (4.44) with D′ = d, and S, j, l taken as shown in the figure.

Note that, given the degree constraints at the customers and he conditions set

on γ0, the left hand side of constraints (4.44) can only reach |S|+ 3 if the used arcs

form a path from a depot in D′ to a depot in D \D′ going through all customers in

S ∪ {j, l}, which is not feasible when r(S ∪ {j, l}) ≥ 2.

I-Path constraints

For instances with |I| > 1 it is necessary to ensure that x variables will not

define any path connecting two interchange locations (Figure 4.4).

𝑖 

𝑖′ 

𝑆 

𝐼′ 

 𝐼′\I 

𝑙 

𝑗 

Figure 4.4: Solution with violated I-Path constraint.

To this end, it is possible to use the path elimination constraints. So, in the

same manner, taking j, l ∈ C, S ⊆ C\{l, j}, but using a set of interchange locations

I instead of a set of depots D and I ′ ⊂ I, we have the I-Path constraints (4.45).

x(γ(S ∪ {l, j})) + x({j} : I ′) + x({l} : I\I ′) ≤ |S|+ 2. (4.45)
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Alternatively, we can derive constraints from the Multi-cut inequalities to for-

bid the above paths as follows: Let i ∈ I and sets S ⊆ C, S̄ = (C ∪ D) \ S. The

following constraint must be satisfied.

x(S : i) 6 x(S̄ : S). (4.46)

The rationale behind these constraints is similar to 4.43. The value of x(S : i)

equals the number of vehicles that go directly from set S to i. Each of those vehicles

must have entered to the set of customers either from a customer not in S, or from

a depot, but not from another interchange point.

S-Path constraints

Another set of necessary constraints defining the feasible set of the MDVRPVI

is formed by the following S-Path constraints. For instances where |D| > 2 and |I| >
1 it is possible to get patterns as in Figure 4.5 where two interchanging routes do not

swap their home depots, so that even if vehicles are interchanged, the corresponding

drivers would not finish their journey at their home depot. In the unfeasible solution

depicted in Figure 4.5, identifying the pair of routes associated with the interchange

point i, we can see that only one of them is performing a correct trip. For example,

taking as first route the one that the two routes that meet at this interchange point

(depicted in red and green in the figure) visit completely different depots so that if

drivers interchange their vehicles at i, the driver that started his journey at d2 would

finish at d4, and the one who started at d3 would finish at d1.

𝑑1 

𝑖 

𝑆1 

𝑆2 

𝑑2 

𝑑3 

𝑑4 
𝐷′ 

Figure 4.5: Example with violated S-Path constraints.
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To prohibit the above situations, we define the S-Path constraints. For d ∈
D, i ∈ I, S1, S2 ⊂ C such that S1 ∩ S2 = ∅, let D′ = D \ {d}, then, the following

constraint must be satisfied:

x(γ(S1)) + x(γ(S2)) + x(D′ : S1) + x(S1 : {i})+x(S2 : {i}) + x({i} : S2) + x(S2 : D\D′)

≤ |S1|+ |S2|+ 2νi.

(4.47)

• Note that, if νi = 0, then, by constraints (4.47) xdi = x(S1 : i) = x(i : S2) =

x(S2 : i) = 0. The value of x(d, S1) +x(γ(S1)) is bounded above by the sum of

the in-degrees of the nodes in set S1, which is |S1|. Analogously, considering

the out-degree of the nodes in S2, +x(γ(S2)) + x(S2 : D′) 6 |S2|. Adding up

both inequalities we obtain the above constraint for this case.

• Let us consider now the case with νi = 1. Note that, if subtour elimination

constraints are satisfied, the only feasible subcircuits are driver tours associated

with pairs of exchanged routes. Therefore they contain both, one depot and

one interchange point. Taking this into account, no subcircuit can be closed if

neither arcs leaving an interchange point nor entering a depot are considered.

Using this fact, we obtain:

xdi +x(d, S1) +x(γ(S1)) +x(S1 : i) = x
(
γ(S1 ∪ {d, i}) \

(
δ−i ∪ δ+

d

))
6 |S1|+ 1.

(4.48)

Moreover, the equality can only hold if all nodes in S1 ∪ {d, i} are connected,

which taking into account the considered arcs, and the degree constraints on

the customers, implies that the used arcs contain a path from d to i.

We consider now the remaining terms in the left hand side of Eq. (4.47). Taking

into account the out-degree of nodes in S2 ∪ {i}, we know that:

x(i : S2)︸ ︷︷ ︸
A

+x(S2 : i)︸ ︷︷ ︸
B

+x(γ(S2))︸ ︷︷ ︸
C

+x(S2 : D′)︸ ︷︷ ︸
D

6 |S2|+ 2νi (4.49)

Moreover B + C +D 6 |S2| because of the out-degree constraints of nodes in

S2, and A+ B +D 6 |S2| because no circuit involving only nodes in S2 ∪ {i}
can be formed. Therefore, being νi = 1, an equality in equation (4.49) would
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imply that A > 2, C > 2, and that all arcs incident to nodes in S2 are among

those considered in either A, B, C or D, which implies that they contain at

least two paths from i to depots in D′.

Summarizing, in case νi = 1, equation (4.47) will hold unless both equations

(4.48) and (4.49) hold as an equality which is unfeasible. Indeed, if one route

departing from d arrives to i, one of the two routes going through i must finish

at d; they cannot finish both at D′.

Like in the previous cases, Figure 4.5 provides the sets corresponding to the

S-Path constraint that forbids the situation depicted in the figure.

For this 2-index flow formulation there are |A|+ |I| binary variables and 2(|I|+
|C|) continuous variables. Regarding the constraints with polynomial size, we have

2|D| + 2|I| + 2|C| related with in-out degree (4.26)-(4.31). To handle the times

(4.32)-(4.36) and by the constraint (4.37) there are 5(|I|+ |C|) + 3|D|(|I|+ |C|). A

group of constraints (4.38)-(4.43) are constraints with exponential size growing as

the number of customers, so, we added it only in the moment that are needed.

4.2.1 Valid inequalities

• Path elimination constraints: As we mentioned before, in the MDVRP and in

Location Routing Problems too, it is common to use the so-called path elimi-

nation constraints in order to avoid paths that connect two distinct depots (See

Figure 4.1(a)). For instance, Belenguer et al. (2011) proposed the following

family of constraints, defined for each D′ ⊂ D, j, l ∈ C, and S ⊆ C \ {j, l}:

x(γ(S ∪ {j, l})) + x(D′ : {j}) + x({l} : D\D′) ≤ |S|+ 2. (4.50)

We have adapted these constraints for the MDVRPVI taking into account

that, now, paths connecting two depots are allowed, but only in case they are

formed by parts of two routes that interchange their vehicles. The obtained

family of constraints is defined for j, l ∈ C ∪ I, S ⊆ C ∪ I\{j, l}, D′ ⊂ D and

is expressed as:



Mathematical programming formulations 38

x(γ(S ∪ {j, l})) + x(D′ : {j}) + x({l} : D\D′) ≤|S\I|+ 2 + 2
∑

i∈(S∪{j,l})∩I

νi.

(4.51)

With the above constraint if νi is in a solution we have two options: a violated

path (Figure 4.6(a)) a non-violated path (Figure 4.6(b)), lets analyze this

case. These paths with a special combination are allowed if there is a pair of

exchanged routes. Note that x(D′ : {j}) + x({l} : D\D′) ≤ 2, and considering

that νi = 1 for i ∈ (S∪{l, j})∩I, then x(γ(S∪{l, j})) ≤ |S\I|+1+2νi because

of the SECs. Holding the inequality as an equality, customers in (S ∪{l, j}\I)

are consecutive in a path, it is still valid to forbid subcircuits, since because we

take into account a reduced number of arcs incident to νi. If x(D′ : {j}) = 1

it means that the path is connected to a depot in D′ and with our constraint

it is possible that x({l} : D\D′) = 1.
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• Minimum number of needed routes: we have as parameters customers demands

and the capacities of the vehicles, so it is possible to compute a lower bound

on the number of vehicles that are needed to serve all the customers.

∑
i∈D,j∈C∪I

xij ≥

⌈∑
j∈C

qj/Q

⌉
. (4.52)

• Relating the number of routes with the number of interchanges: the total

number of used vehicles, which can be computed as the number of used arcs
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leaving a depot, must be at least twice the number of interchanges.∑
d∈D,j∈C∪I

xdj ≥ 2
∑
i∈I

νi. (4.53)

4.3 Load based formulation

Commonly, VRP formulations have decision variables with a vehicle index to indicate

the arcs traversed by each vehicle. This fact involves a large number of decision

variables and, as mentioned before, serious symmetry problems. The so-called load-

based formulations try to deal with this difficulty. In this kind of formulations, the

decision variables identified with the arcs used in the solutions are not explicitly

associated with the vehicles that traverse them (Letchford and Salazar-González,

2015).

For the MDVRPVI, the binary variables in this load formulation emerge if the

2-index flow variables are related with the depot where the routes start and end,

we will named this as “depot-route”. For an exchanged route, it will be associated

with the depot it departed from until it arrives to the interchange point, then it

will be related to the ending depot from then on. For this formulation, we still

work with the set of arcs A initially defined, and we denote by A∗ the set of arcs in

(C×C)∪(I×C)∪(C×I). Formally, binary variables xdij with (i, j) ∈ A, d ∈ D that

indicates whether a route associated with depot d traverses the arc (i, j). Similarly,

new continuous variables wdij will represent the load of the vehicle that traverses arc

(i, j) in a route associated with depot d. The rest of variables are maintained as in

the 2-index formulation.
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The load-based formulation for the MDVRPVI is the following:

minimize g
∑
d∈D
j∈C∪I

xddj +
∑
d∈D
j∈C∪I

(cdjx
d
dj + cjdx

d
jd)+

∑
d∈D

(i,j)∈A∗

cijx
d
ij (4.54)

subject to∑
d∪D

xddj +
∑
d∈D

i∈C∪I\{j}

xdij = 1, j ∈ C (4.55)

∑
d∪D

xdjd +
∑
d∈D

i∈C∪I\{j}

xdji = 1, j ∈ C, (4.56)

∑
i∈C∪I

xdid ≤ |K|, d ∈ D, (4.57)

∑
d∈D

xddi +
∑
j∈C
d∈D

xdji = 2νi, i ∈ I, (4.58)

∑
d∈D

xdid +
∑
j∈C
d∈D

xdij = 2νi, i ∈ I, (4.59)

`i + si ≤ T, i ∈ C ∪ I, (4.60)

`j ≥ `i + cij − (T + cij)(1−
∑
d∈D

xdij), i, j ∈ C ∪ I, (4.61)

si ≥ sj + cij − (T + cij)(1−
∑
d∈D

xdij), i, j ∈ C ∪ I, (4.62)

`j ≥
∑
d∈D

cdjx
d
dj, j ∈ C ∪ I, (4.63)

si ≥
∑
d∈D

cidx
d
id, i ∈ C ∪ I, (4.64)

∑
j∈C∪I

xddj =
∑
j∈C∪I

xdjd, d ∈ D, (4.65)

xddj +
∑
i∈C∪I

(i,j)∈A∗

xdij = xdjd +
∑
i∈C∪I

(j,i)∈A∗

xdji, d ∈ D, j ∈ C ∪ I, (4.66)

∑
d∈D

xdij 6 1, (i, j) ∈ A, (4.67)

wddj 6 Qxdij, d ∈ D, j ∈ C ∪ I, (4.68)

wdij 6 Qxdij, (i, j) ∈ A, d ∈ D, (4.69)∑
d∈D

∑
k∈C∪I∪{d}

k 6=j

(wdjk − wdkj) = −qj
∑

k∈C∪I∪{d}
k 6=j

xdkj, d ∈ D, j ∈ C, (4.70)
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j∈D∪C

wdij 6
∑
d′∈D
d′ 6=d
j∈D∪C

wd
′

ji , i ∈ I, d ∈ D, (4.71)

Multi-Cut inequalities*

xdij ∈ {0, 1} (i, j) ∈ A, d ∈ D, (4.72)

νi ∈ {0, 1} i ∈ I, (4.73)

wdij ∈ R+ (i, j) ∈ A, d ∈ D, (4.74)

`i ∈ R+, i ∈ C ∪ I, (4.75)

si ∈ R+, i ∈ C ∪ I. (4.76)

The objective is the same one that we have been using, minimize the costs with

(4.54). Constraints (4.55)-(4.64) are maintained as in the 2-index formulation, by

aggregating x variables corresponding to the same arc. The new constraints added

to this formulation are group (4.65)-(4.71). Flow conservation constraints on the

entering and leaving arcs at each depot-route, and for the customers are defined

with constraints (4.65)-(4.66) respectively. Constraints (4.67) establish that each

arc is related only to one depot-route. With constraints (4.68)-(4.69) we ensure that

the load of vehicles does not exceed their capacity. Indeed, in case i ∈ C, these

constraints can be slightly reinforced to

wdij 6 (Q− qi)xdij.

Constraints are (4.70) the load conservation constraints, which are imposed for each

customer and depot-route. Constraints (4.71) are necessary when there are ex-

changed routes. They are used with two objectives. On the one hand, they switch

the depots to which each route is linked, according to the definition. (the route is

linked to its starting depot until it arrives to the interchange point, and it is linked

to the vehicle destination depot after it). On the other hand, they ensure that the

loads of the two vehicles arriving to the interchange point are properly kept. The

following, are the I-Multi-Cut inequalities adapted the new sets of variables. Let
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i ∈ I and sets S ⊆ C, S̄ = (C ∪D) \ S, we have:∑
j∈S
d′∈D

xd
′

ji ≤
∑

k∈S,j∈S̄
d′∈D

xd
′

jk. (4.77)

These constraints are needed to prohibit a path between two interchange locations.

And finally, (4.39)-(4.42) define the domains of the variables. The number of binary

variables defining this load based formulation is (|A|+ |D|+ |I|), and 2(|I|+ |C|) +

|A| + |D| continuous variables. The number of polynomial constraints is (9|D| +
11(|C|+ |I|)) and constraints (4.77) whose size grows exponentially with the number

of customers and interchange points.



Chapter 5

Branch-and-cut algorithms

In this chapter first, we will present some definitions and concepts necessary to

explain our solution methods. Then, we explain the branch-and-cut algorithms

(Branch and Cut (B&C)) we propose to solve the MDVRPVI, which are based on

the 2-index formulation and the load based formulation (respectively) presented in

Chapter 4.

• Branch-and-bound: This technique consists in dividing the problem into

smaller subproblems, which are solved or divide again. Commonly, the Branch

and Bound (B&B) is presented such a divided and conquer approach through

an enumeration three, where an initial relaxation of the problem is the root

node and each subproblem is represented by a node in the tree.

To solve an (Integer Program (IP)) with B&B algorithm, the first step is to

solve the Linear Relaxation (LP) relaxation of the IP. If the solution to the LP

and all its corresponding variables have integer values, the obtained solution

for the original IP is optimal. In other case, some variable xi with a fractional

value f , is selected to create two new problems. In the first problem, it is

necessary to add the constraint xi ≤ dfe, and in the second the constraint

xi ≥ bfc. The new problems are recursively solved until all the subproblems

are examined. If a subproblem has an integer solution, this value is saved as

the incumbent, provided it has a better (lower) than the current best integer

solution. The incumbent (value) is used to refuse subproblems whose linear

relaxation solution is equal or worse (greater) than the incumbent value, re-

ducing the number of subproblems to explore and at the same time, it reduces

43
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the enumeration procedure. In a B&B it is important to get good global upper

bounds in short time, because this fact allows to build (in general) a smaller

exploration tree compared to the tree produced with a complete enumeration.

• Cutting planes: Starting in a domain containing all feasible points, the

method iteratively refines that area adding cuts i.e., linear inequalities that

are valid (they are satisfied by all integer solutions) but cut-off some parts of

the domain of the relaxed problem with attractive objective function values.

Most of the cases, Integer Programs contains families of inequalities containing

an exponential number of inequalities that cannot be added a priori. So, in

such cases it is better to add them iteratively. The first step is to obtain

a solution x∗ that is the result to solve the LP relaxation of the IP. If this

solution is not integer, a separation problem for x∗ is solved. For each family

of valid inequalities, the separation problem consists in finding a constraint of

that family that is not satisfied at x∗ or proving that none exists. If at least

one violated inequality is found, then this it is added to the current LP, which

is then reoptimized. The process keeps until no violated constraints exist from

any of the used families. If the used families are enough to define the convex

hull of the set of integer solutions, then this process terminates at the optimal

solution.

Branch-and-cut (B&C): is a technique that combines of B&B and a

generation of cutting planes that is applied to the nodes of the enumeration

tree, to tighten the LP relaxations. This approach is often used to solve NP-

hard combinatorial optimization problems. The first step of the B&C is to

compute the LP relaxation of the IP. If the solution has at least one variable

with non-integer value, a cutting plane phase is applied. So, a violated or valid

inequalities are added to the linear program to reinforce the relaxation. After

that, two new subproblems are defined (according to the branching phase).

And so, the algorithm continue through each new subproblem.

Next, the different elements specific to our B&C algorithms are described.
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5.1 Separation algorithms

As we already mentioned if in an Integer Problem there are constraints from the

exponential-size families, in a B&C algorithm these are adding iteratively. In our

case, these families are equations 4.38-4.43 plus valid inequalities. To identify which

are these constraints, it is necessary to employ some separation procedures. An exact

separation algorithm for a given class of inequalities is a routine which takes as input

a LP solution vectors x∗ and outputs one or more violated inequalities in that class

(if any exist). At each iteration of the algorithm, we find exactly a valid inequality

violated with the separation problems for the different possible cases, some kinds

of inequalities that are specific to the MDVRPVI. Lets consider G[x̄, ν̄] that is the

weighted graph induced by the arcs a with positive weight, defined with variables

(x̄, ν̄). Moreover, (x̂, ν̂) denote if the current LP solution is integer.

• Separation of the capacity constraints (4.38)

As a generalization of the CVRP, any LP solution of our problem can be

transformed into an LP solution of a CVRP instance by shrinking all the

depots and interchange locations into a single one. In this manner, procedures

for separating CVRP constraints can be applied. We used one of the CVRPLIB

routines provided by Lysgaard (2004). We have take a heuristic routine of this

library. It is well-know that the separation of constraints (4.38) is NP −hard,

so they resorted to use an heuristic algortihm. The interested reader can find

a detailed description of these procedures in Lysgaard et al. (2004).

• Separation of Multi-cut constraints (4.43)

The separation problem for this family of constraints can be stated as follows.

Let x̄ be a (possibly fractional) solution to a relaxation of the formulations

4.2-4.3. The separation can be solved as a max-flow problem in a network

defined as follows:

Nx = (Vx, Ax) where set Vx contains one node for each i ∈ C ∪ I and two

additional nodes, s and t that act as a source and as a terminal, respectively.

The set of arcs contains one arc (i, j) for each pair i, j ∈ C∪I such that x̄ij > 0,
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and, in fact, x̄ij will be its capacity. Additionally, Ax contains arcs (s, i) and

(i, t) for each i ∈ C ∪ I. The capacities of these additional arcs are defined as

follows. For each node i ∈ C ∪ I, let bi = x̄di − x̄id and take b+
i = max{bi, 0}

and b−i = −min{bi, 0}. Then, arc (s, i) will have capacity b+
i , and arc (i, t),

b−i . Let (U,W ) be an s − t cut in this graph, with s ∈ U and t ∈ W (Figure

5.1). Then, the capacity of this cut will be:∑
i∈U\{s}
j∈W\{t}

x̄ij +
∑

i∈W\{t}

b+
i +

∑
i∈U\{s}

b−i

=
∑

i∈U\{s}
j∈W\{t}

x̄ij +
∑

i∈W\{t}

b+
i −

∑
i∈W\{t}

b−i

︸ ︷︷ ︸
vC

+
∑

i∈Vx\{s,t}

b−i
(5.1)

Note that the last term of the second expression of the capacity of the cut is

a constant and, therefore, the cut of minimum capacity corresponds with the

cut that minimizes the value of vC , which is, in fact, the slack of the Multi-cut

constraint associated with S = W \ {t} in the current solution. Therefore, if

the minimum capacity of an s− t cut in this graph is smaller than
∑

i∈Vx\{s,t}
b−i ,

W identifies a violated Multi-cut constraint. Otherwise, a minimum capacity

larger than this amount proves that no Multi-cut constraint associated with

the considered depot is violated.

This separation is needed equivalent to the separation proposed in Bektaş et al.

(2017) for the same constraints. As observed in that work, these constraints

are valid also if a subset of depots D′ ∪D is considered, instead of one in that

case.

The extension of our separation to the case of with D′ with D′ 6= 1 requires

only redefining the parameters bi as bi = x̄di − x̄id without increasing the size

of the auxiliary graph.
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s
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−

t

Cut

Figure 5.1: Separation graph to our Multi-cut separation.

• Separation of Q-Path constraints (4.44)

As we mentioned before, Q-path constraint are left as lazy constraints and

separated by inspection only in integer solutions. After ensuring that the four

paths connecting one interchange location with a depot, satisfy the capacity

constraint these constraint can be applied. It is possible to get solutions where

there is an interchange but the vehicle capacity in a route, to forbid these cases

we formulated the Q-Path constraints.

• Separation of I-Path constraints (4.45)

We can see the I-Path constraints as the classical path constraints, where in-

terchange locations play then role of depots instead of a pair of depots. So,

we used the same separation procedure as Belenguer et al. (2011). Note that

we are working in a directed graph and, thus, the arcs direction is considered.

Each connected component of the solution is considered separately, and only

those connected components containing more than 2 interchange points are

considered; in the other cases no I-Path constraint can be violated. The con-

nected components are identified by using the separation algorithm. Let be

G(x) the support graph, we want to find the most violated set for the current

solution. In the LHS, to maximize x({j} : I ′) + x({l} : I\I ′) is easy to find

the most connected j to I ′. Now, following with x(γ(S ∪ {l, j})), adding the

degree constraint for the customers in S ∪ {l, j} we have:

2(|S|+ 2) = 2x(γ(S ∪ {l, j})) + x(δ(S ∪ {l, j}))
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then

−x(δ(S ∪ {l, j})) = 2x(γ(S ∪ {l, j}))− 2(|S|+ 2)

Using the max flow min cut theorem, the second part is maximum when the

minimum x(δ(S ∪ {l, j})) is attained.

• Separation of S-Path constraints (4.47)

These group of constraint are left as lazy constraints and if the solution is

integer, separated by inspection (as Q-Path constraints). Getting the inte-

ger connected component, if there are paths ending in a wrong depot, then

identifying all the necessary elements to apply this constraint.

• Separation of path elimination valid constraints (4.50)

As in the I-Path separation, this procedure is as the developed by Belenguer

et al. (2011). Similar as before, each connected component of the solution is

considered separately, and only connected components containing more than

1 depot are considered; otherwise no path constraint can be violated. Path

elimination constraints are determined by a pair of customers or interchange

points {j, l}, S ⊆ C ∪ I\{j, l}, denoted by S∗ and a subset of depots D′ ⊂ D.

All these must be perform the same connected component. We denote with

A(j, l, D′) = x({j} : D′) + x(D\D′ : {l}). Then, to identify whether there is

any violated constraint for this choice of j, l and D′ it is necessary to find the

set S∗ that maximizes is necessary to maximize x(γ(S∗)). Adding the in-degree

constraints for nodes in S∗ we have :

|S∗\I|+ 2 + 2
∑

i∈(S∗∩I)

νi = x(γ(S∗)) + x(δ+(S∗))

here we see that maximizing x(γ(S∗)) is equivalent to minimize x(δ+(S∗)) so,

to find the minimum j-l cut in S∗. Substituting in constraint (4.51),

|S∗\I|+2
∑

i∈(S∗∩I)

νi−x(δ+(S∗))+x({j} : D′)+x(D\D′ : {l}) ≤ |S∗\I|+2
∑

i∈(S∗∩I)

νi.
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Then if x(δ+(S∗)) if less or equal than A(i, j,D′) the path constraint associated

with S∗ is violated by the current solution x.

As mentioned above, I-Path constraints can be replaced with I-MultiCut con-

straints. Some preliminary computational tests recommended to use the sep-

aration of the I-path constraints but add the cuts corresponding to the I-

Multicut associated with the same set.

Initial relaxation

The initial linear program includes the objective function, the degree con-

straints for customers, depots and interchange locations (4.26)-(4.31), the group of

constraints related with the driver working time (4.32)-(4.36) the valid inequalities

(4.52)-(4.53) and the next clearly violated constraints.

• Inter-customer-inter: this is a particular case of the I-Path constraints where

|S| = 1 and |I| ≤ 2, we can avoid these paths from the beginning.

xj′i + x(j : I\{j′}) ≥ 1, j′ ∈ I, i ∈ C. (5.2)

Separation Strategy

Deciding which separation procedures will be called and their order is an im-

portant issue in a branch-and-cut algorithm. We tested some alternative cutting to

determine which strategy is the most effective. For 2-index formulation, we tested

three B&C algorithms. In Algorithm 1 we explained step by step the B&C1.

About the load based formulation only one B&C is needed, because we need

to separate only the constraint (4.77).
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Algorithm 1 Pseudocode of the branch-and-cut algorithm

1: At the root node, generate and insert all valid inequalities into the program.
2: Subproblem solution. Solve the LP relaxation of the node.
3: if There are no more nodes to evaluate - Termination check then
4: Stop.
5: else
6: Select one node from the branch-and-cut tree.
7: while (x̄, ν̄) contains at least one violated constraint do
8: Identify connected components
9: Determine whether the component contain a violated constraint with

10: if |D| = 1 then
11: use CVRPSep.
12: else if |D| > 1 then
13: use PathSep.
14: else if (x̂, ν̂) & |D| = 2 & |I| = 1 then
15: use Q-PathSep.
16: else if |I| ≥ 2 then
17: use I-PathSep.
18: else if (x̂, ν̂) & |D| > 2 & |I| ≥ 1 then
19: use S-PathSep.
20: else if |D| ≥ 2 & |I| ≥ 1 then
21: use one of the Multi-CutSep.

22: Add the result violated constraint.
23: Subproblem solution. Solve the LP relaxation of the node.

24: if (x̂, ν̂) then
25: Go to the termination check.
26: else
27: Branching: branch on one of the fractional variables.
28: Go to the termination check.



Chapter 6

Computational experience

In this section we present the computational experience performed to collect empir-

ical insight on the MDVRPVI solutions, the behaviour of the formulations and the

efficiency of the algorithms. All the mentioned algorithms have been implemented in

C++ using the callable libraries. As metioned in Chapter 5, we have also used some

of the algorithms in the library CVRPSEP Lysgaard (2004). Tests were executed

on a computer with an Intel Core i7-4790 processor at 3.60 Ghz with 16 GB.

6.1 Instances tested

Since the MDVRPVI is a new problem, no benchmark instances are available. So, we

generated a set of instances by transforming instances of similar problems taken from

the literature. On the one hand, to test our approach with Euclidean distances we

generated instances from the “SDVRPLIB” instances proposed by Belenguer et al.

(2000) (referred to with an “SD” label) and some MDVRP instances from Cordeau

et al. (1997) (labelled “MD”). In the case of SDVRP instances, extra depots had to

be added. For the MDVRP instances, from a set of four depots, we selected two of

them randomly. Customers were chosen randomly and after that, the interchange

location was chosen as a central point among the selected customers and depots

locations. To concentrate on the routing component of the solutions, we tested some

instances with no fixed costs for vehicle utilization (g = 0).
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Description of network distances

To test with network distances, we took real world instances from Quebec

used in Anaya-Arenas et al. (2016). We tested three different depot/interchange

configurations, by adding extra locations to the unique depot location from the

original instance.

Two groups of network instances were generated. The first one with size |D| =
2, |I| = 1 and |C| = 18 and four different demands. The second one with |D| = 3,

|I| = 2 and |C| = 40 and five different demands. The demand vectors were generated

randomly and each one was tested with all the locations. These demands were

generated with a normal distribution and different means and standard deviations

(see Table 6.1).

Instance µ σ
1 6 4
2 10 3
3 36 20
4 41 14
5 86 40

Table 6.1: Parameters by the normal distribution to generate vector demands.

• QC1 instances locations

By the first location (Figure 6.1(a)), additionally to the original depot (d2

in Anaya-Arenas et al. (2016)) an extra depot was located at the down-right

corner of the region, and the interchange point was located in a city between

them. In the next two cases, the original depot location was used for the

interchange point, and two depots were allocated in extreme points of the

region (Figures 6.1(b) and 6.1(c)).

• QC2 instances locations

Departing of the above locations, we added more locations to increase the

size of the instances. Location of the depots and interchange location were in

the same manner as before, depots at the extreme points of the region and

interchange locations at the city center. In Figure 6.2 we can see the three

different locations for group two.
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Figure 6.1: Locations of the group QC1 network distances tested.
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Figure 6.2: Locations of the group QC2 Network distances tested
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In Table 6.2 we summarize the dimensions with our tested instances. The

column “Range” indicates the initial and final number in the sets of instances. We

auxiliary define some sets to referring us a specific instance. For the Euclidean

instances “a” indicate the number of instance. In the case of “QC1” and “QC2” we

use “b” to refer the three different locations and “c” to the four different demands.

Label Range |D| |I| |C|
SDa |a| ∈[1-18] 2 1 [12-20]
MDa |a| ∈[1-12] 2 1 [12-21]

QC1DLbdc |b| ∈ [1-3],|c| ∈ [1-4] 2 1 18
QC2DLbdc |b| ∈ [1-3],|c| ∈ [1-5] 3 2 40

Table 6.2: Dimensions of the instances tested.

6.2 3-index formulation results

The three-index flow-formulation was implemented using Xpress-Mosel Version 7.7.

To compare our results with the classical MDVRP, the mathematical formulation

proposed by Kulkarni and Bhave (1985) was also implemented with the same soft-

ware, and the time limit of 7200 sec. (2h.).

In spite of the incorporation of the strategies to reduce symmetry, our for-

mulation is able to solve optimally only small instances (|D| = 2, |I| = 1 and

|C| ∈ [12, 20]). For both, Euclidean and network distances we tested with |K| = 1

and |K| = 2 available vehicles per depot.

Next tables and figures show the obtained results. In particular, Tables 6.3-

6.4 and 6.5 show the results for Euclidean and network instances, respectively. In

all cases, results are shown for the MDVRP and for the MDVRPVI, starting with

their optimal value, under the heading Z∗. In the case of the Euclidean distances

we provide the percent gap of the linear relaxation under LP gap, and the time

required to solve the MDVRPVI, under Time (sec.). In the case of the network

instances, since some of them were interrupted because of the time limit, instead

of the execution time we provide the percent gap at termination, both, for the

MDVRP and for the MDVRPVI. In both cases, in the rightmost column we provide
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MDVRP MDVRPVI
Instance |C| Z∗ LP gap Z∗ LP gap Time (sec.) Saving(%)
SD1 12 215.284 30.7 215.284 29.3 15.83 0.00
SD2 12 256.044 25.0 256.044 23.8 8.28 0.00
SD3 12 237.077 30.8 237.077 31.7 25.21 0.00
SD4 12 246.150 23.6 246.150 22.7 14.11 0.00
SD5 12 215.284 30.7 215.284 29.3 26.49 0.00
SD6 12 215.284 30.7 215.284 29.3 5.09 0.00
SD7 12 235.717 30.4 235.717 31.3 35.08 0.00
SD8 12 263.906 27.2 263.906 26.1 29.36 0.00
SD9 12 237.077 30.8 237.077 31.7 34.57 0.00
MD1 12 370.840 26.3 370.840 25.9 9.02 0.00
MD2 12 532.890 18.4 532.890 17.4 2.88 0.00
MD3 12 455.965 42.3 455.965 41.8 26.08 0.00
MD4 12 489.091 25.5 489.091 24.4 3.00 0.00
MD5 12 361.638 30.9 361.638 30.9 31.56 0.00
MD6 12 481.584 26.4 481.584 22.4 7.94 0.00
MD7 12 577.570 33.4 577.570 32.6 88.30 0.00
MD8 12 476.408 29.8 476.408 27.5 7.61 0.00
MD9 12 522.807 28.2 522.807 27.1 13.53 0.00
MD10 12 430.967 23.8 430.967 23.2 26.44 0.00
SD10 13 166.480 32.0 166.480 31.0 23.12 0.00
SD11 13 242.710 29.0 242.710 28.1 15.04 0.00
SD12 13 271.540 21.9 271.540 21.6 27.96 0.82
SD13 13 243.650 28.8 243.650 27.6 10.11 0.00
MD11 16 246.800 33.4 246.800 31.5 115.69 0.00
MD12 16 285.830 34.5 285.830 32.8 466.85 0.00
SD14 16 292.210 25.8 292.210 24.5 465.86 0.00
SD15 20 263.320 17.9 263.320 18.0 194.72 0.00
SD16 20 279.580 17.4 279.580 15.4 1010.82 1.80
SD17 20 282.640 21.8 282.640 17.7 5494.50 3.70
SD18 20 308.430 25.2 308.430 24.3 7200.60 0.00

Table 6.3: Results for Euclidean instances, |K| = 2

the savings attained by allowing route interchanges.

Results using |K| = 2 with Euclidean instances are in Table 6.3. We can see

that only in instances SD12, SD16 and SD17 there are some savings (0.8%-3.7%)

applying MDVRPVI. More significant benefits are shown in Tables 6.4 and 6.5 using

|K| = 1, where the fleet of vehicles is more limited. We see that the MDVRPVI

is able to provide cheaper solutions and take advantage of available resources than

the MDVRP although, in some instances our policy cannot improve on the MDVRP

solution. Among the 30 Euclidean instances tested, interchanges allowed to reduce

the costs in 19 of them. Indeed, we could improve by up to 7.73% with respect to the

MDVRP routing costs (instance SD10). The column LP gap (for both, |K| = 2 and

|K| = 1) reflects that in general our MDVRPVI formulation provide slightly better

bounds than the MDVRP formulation (the gap was smaller in 26 - 29 respectively

out of 30 instances and regardless there are savings or not). This is because the
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constraints that control drivers times and synchronization of routes are useful to

strengthen the bound.

MDVRP MDVRPVI
Instance |C| Z∗ LP gap Z∗ LP gap Time (sec.) Saving(%)
SD1 12 231.936 35.7 223.792 32.0 7.88 3.51
SD2 12 292.310 34.3 284.309 31.4 38.47 2.74
SD3 12 244.660 32.9 240.180 32.6 96.35 1.83
SD4 12 246.150 20.7 246.150 22.7 7.25 0.00
SD5 12 231.940 35.7 223.792 32.0 5.53 3.51
SD6 12 241.110 38.1 231.217 34.2 14.58 4.10
SD7 12 249.820 34.3 243.905 33.6 72.78 2.37
SD8 12 298.450 35.7 296.489 34.2 158.21 0.66
SD9 12 278.430 41.1 259.370 37.6 373.63 6.85
MD1 12 449.470 39.2 422.850 35.0 63.11 5.92
MD2 12 581.620 25.3 575.570 23.5 10.01 1.04
MD3 12 463.818 43.3 459.988 42.3 13.00 0.83
MD4 12 489.091 25.5 489.091 24.4 1.32 0.00
MD5 12 361.638 30.9 361.638 30.9 3.06 0.00
MD6 12 561.853 37.0 530.657 29.6 81.83 5.55
MD7 12 577.570 33.4 577.570 32.6 57.88 0.00
MD8 12 476.408 29.8 476.408 27.5 1.37 0.00
MD9 12 531.807 29.4 531.807 28.3 9.44 0.00
MD10 12 438.761 25.2 436.495 24.2 16.69 0.52
SD10 13 206.700 45.2 190.730 39.8 165.67 7.73
SD11 13 242.710 29.0 242.710 28.1 5.07 0.00
SD12 13 277.280 23.5 272.840 22.6 13.06 1.60
SD13 13 250.270 30.7 250.270 29.5 19.10 0.00
MD11 16 255.070 35.5 255.070 33.7 59.63 0.00
MD12 16 287.710 34.9 286.070 32.9 93.84 0.57
SD14 16 309.380 29.9 309.380 28.7 436.12 0.00
SD15 20 269.920 19.9 268.160 19.5 26.94 0.65
SD16 20 279.580 17.4 274.560 15.4 82.83 1.80
SD17 20 282.640 21.8 272.190 17.7 72.38 3.70
SD18 20 308.430 25.2 308.430 24.3 979.67 0.00

Table 6.4: Results for Euclidean instances, |K| = 1

In the case of network distances (with |C| = 18) delivery routes for both

problems are the same for |K| = 1 and |K| = 2, so, we present the obtained results

using |K| = 1. In these results, we can see that the profitability of the interchanges

depends very much on the locations of depots and interchange points.

As it can be seen in Table 6.5 with the first configuration of depots and inter-

change points no savings can be attained. As opposite, with location patterns 2 and

3 the savings are much more significant. Even though some of these instances could

not be solved optimally (they reached the time limit) we observed savings ranging in

3.7%-5.3%. The fact that already some of these small instances could not be solved

in less than two hours gives an idea of the computational complexity in this routing

problem. Indeed, looking at this fact, and the CPU times of the Euclidean instances,
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Depot MDVRP MDVRPVI
location Demand Z∗ Gap Z∗ Gap Saving(%)

1 426.36 0 426.36 0.00 0
1 2 426.36 0 426.36 0.00 0

3 426.36 0 426.36 0.00 0
4 427.02 0 427.02 0.00 0
1 487.77 0 464.09 6.60 4.9

2 2 484.99 0 465.06 7.83 4.1
3 489.84 0 466.22 8.49 4.8
4 484.99 0 464.86 8.12 4.2
1 476.94 14.71 459.21 16.96 3.7

3 2 486.13 15.97 465.01 17.63 4.3
3 486.93 13.26 462.32 16.23 5.1
4 484.99 12.63 459.45 14.16 5.3

Table 6.5: Results for QC1 instances, |K| = 1

one can conclude that the difficulty of solving a particular instance is more related

with the distribution of customers and locations than with the instance size, at least

for the small cases.
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Figure 6.3: Utilization of vehicle capacity and driving time (Euclidean distances).

In order to further analyze the obtained solutions, we decided to look for the

resource utilization in the optimal routes for both problems in the instances with

|K| = 1, where the optimal solution is formed by two routes. So, in all of these

instances where savings were obtained we computed a ratio indicating to what extent

each resource was used in each route. To compute these ratios, we have computed
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the total demand served by each route, qk, and divided it over the available vehicle

capacity Q. In the same way, we have computed the driver time in route, tk, divided

by the driver working time T . All those ratios are depicted in Figures 6.3 and 6.4

for Euclidean and network instances, respectively.
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Figure 6.4: Utilization of vehicle capacity and driving time (QC1 instances).

For the Euclidean instances we can observe that, regarding the vehicle load,

both solutions are quite balanced and the capacity is almost fully used. Indeed, no

route uses less than 75% of the vehicle capacity, and in most cases 90% or more is

used. In the case of network distances, we can appreciate the largest ratio between

the capacity utilization of the two routes in a solution is 15% (instance DL2D1).

Concerning the driver times, in general these constraints are looser and there are

more variations in the utilization ratios. Surprisingly, the MDVRPVI instances

present more imbalance in one route with respect to the other, because the time

is associated with the driver. Therefore, since drivers must be synchronized at the

interchange location, if only one of them performs a long route before this location

the final routes become quite unbalanced; otherwise, one of them would be infeasible.
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6.3 2-index formulation results

The branch-and-cut code was implemented in C++ using Xpress-BCL callable li-

brary. All pre-processing, heuristics and separation of valid inequalities implemented

by XPRESS were turned off. Except for this, default XPRESS settings were used.

To test this algorithm, we generate more network instances with size |D| = 3,

|I| = 2 and |C| = 40, with the same characteristics as the previous ones. The time

limit stated is 10800 sec. (3h.)

Since the most demanding instances we tested with the 3-index formulation

were those corresponding to the Euclidean instances and two vehicles per depot, in

this section we compare these results with those of the 2-index formulation on the

same subset of instances.

Table 6.6 displays the results obtained, again with a CPU time limit of 3 hours.

Since many instances in this subset could not be solved within this time limit, the

best solution found by either algorithm need not be the same. The best solution

obtained among the two algorithms is given under heading BKS. Then, two columns

are provided for each formulation. The first one, with heading gap provides the

gap reported by Xpress at termination, while the second one, with heading %dev

provides the percent deviation of the value of the best solution obtained with each

algorithm from the best known solution so far.

As it can be seen, the 2-index formulation represents in general terms an im-

provement on the previous one even if it was not able to solve more instances than

the 3-index formulation. On the one hand, the gaps at termination with this formu-

lation are significantly smaller. Indeed, the maximum percent gap observed is now

5.5% is about half the average gap for the previous formulation was 11.2%, with a

maximum of 21.1%. On the other hand, the best solution was found with the new

formulation in 10 of the 12 instances and the deviations for the other two are very

small (0.21% and 0.03%, respectively) while the 3-index formulation provided the

best solution only in 6 instances, and for the others it yielded solutions which were

up to 5% more expensive than the best known one.
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Depot 3-index 2-index
location Demand BKS Gap %dev Gap %dev

1 426.36 0.0 0.00 0.0 0.00
1 2 426.36 0.0 0.00 0.0 0.00

3 426.36 0.0 0.00 0.0 0.00
4 426.36 0.0 0.00 0.0 0.00
1 463.31 10.4 0.00 3.7 0.21

2 2 463.43 12.9 0.74 3.8 0.00
3 465.25 16.5 4.12 4.1 0.00
4 462.68 15.4 5.03 2.5 0.00
1 459.66 19.3 0.65 5.5 0.00

3 2 459.54 19.4 0.00 5.1 0.03
3 464.78 19.3 0.19 1.4 0.00
4 455.96 21.1 1.55 5.0 0.00

Table 6.6: 2-index vs 3-index formulation. QC1 intances, |K| = 2.

As already mentioned in Chapter 5, the 2-index formulation includes many

exponential-size families that need to be separated within the branch and cut. In

the design of the final algorithm we explored different cutting strategies. The best

performing ones are summarized in Table 6.7. Recall that, in this formulation,

At integer solutions At fractional solutions
Order 1 2 3 4 5 6 1 2 3 4

B&C1 cap. Path Q-Path I-Path S-Path MC∗ cap. Path MC I-Path
B&C2 cap. MC Path Q-path I-Path S-Path cap. MC Path I-Path
B&C3 cap. MC Q-path I-path S-Path cap. MC I-Path

(∗MC stands for Multi-Cut)

Table 6.7: Separation strategies tested

Path constraints act as valid inequalities and, therefore, they need not be separated,

actually. For this reason, the last algorithm variant does not use them.

Since some of the constraints that are initially relaxed can only apply in in-

stances with several interchange locations and depots(I-Path, S-Path), we have used

the set of larger instances (with 3 depots, 2 interchange locations and 40 customers)

with no fixed costs per vehicle utilization to test the four algorithm variants. For

this experiment we set a CPU time limit of 3 hours. Table 6.8 provides its main

results. Again, the value of the best solution found using the three algorithm is given

under BKS after that, deviations of the solutions obtained with each algorithm with

respect to this value are given under heading %dev wrt best, and percent gaps at
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termination, under gap. In these last columns, the smallest value is highlighted in

boldface. From the results above, we observe that the first variant of the branch and

Depot %dev wrt best gap
location Demand BKS B&C1 B&C2 B&C3 B&C1 B&C2 B&C3

1 2138.42 0.0 4.8 6.2 17.8 21.7 22.6
1 2 2325.35 4.4 0.0 4.9 27.2 22.8 27.3

3 2254.95 4.0 13.2 0.0 28.6 34.4 25.6
4 2219.17 8.1 1.7 0.0 29.7 25.4 23.9
1 2161.65 9.1 9.9 0.0 21.1 21.7 14.0

2 2 2293.54 0.0 32.2 1.7 17.9 38.0 19.2
3 2576.52 0.0 29.6 3.1 32.9 48.2 34.9
4 2162.44 3.8 35.4 0.0 22.8 40.8 19.9
1 1995.13 0.0 2.2 4.0 9.5 11.4 12.9

3 2 2321.63 0.0 10.8 1.6 21.3 29.2 22.8
3 2122.56 0.0 16.0 2.6 21.2 32.3 23.3
4 2231.00 0.0 0.8 7.3 24.8 25.5 29.7

Table 6.8: Separation strategies. QC2 instances with |C| = 40, g = 0.

cut provides the best results. The average percent gap at termination is 22.9% for

this variant, while it is 29.3% for B&C2, and 23.0% for B&C3. Also, the number of

instances where it provides the best solution is 7, much larger than what we observe

for the other variants (1 and 4, respectively). Variant B&C2 is the worst of the three

in all respects. As for the quality of the obtained solutions when they are not the

best ones, again B&C2 yields the poorest results, giving in some occasions solutions

that are over 30% more expensive than the other variants. With this respect, vari-

ants 1 and 3 provide quite similar results. Their average deviations from the best

solution are 2.5% and 2.6%, respectively, and the maximum ones, 9.1% and 7.3%.

We conclude that B&C2 has worse behavior than the other two variants and

B&C3, although giving slightly worse global values behaves similarly to B&C1.

Therefore, it seems to us that the difference between these two variants does not

pay the additional complexity to include one family of valid inequalities on top of

the already many families of constraints of exponential size. For this reason, we keep

B&C3 as our choice for the 2-index formulation.

Figure 6.5-6.7 display the number of cuts of each type that were found during

the process. As it could be expected, capacity cuts represent the largest proportion of

cuts (over 80% in almost all instances for all three strategies). It can be also seen how,
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Figure 6.5: Cuts generated with B&C1

in the two strategies were multi-cut constraints are separated early in the algorithm,

many more of them are obtained. However, this alone does not explain the behavior

of the algorithms, since the amount of such constraints found with B&C2 and B&C3

is similar, and their results in terms of solution quality and percent gaps are quite

different. With the three figures we also observe that the number of separated cuts
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Figure 6.6: Cuts generated with B&C2

is most often below 15000, but there is one instance for which algorithm B&C2

required over 20000 (23560, in fact). Note that, this particular instance is one of the

two where this algorithm gave the worst percent gap. As can be seen in the figure,

violated S-path constraints are seldom found. Actually, on average, they represent a

0.02% of the violated constraints identified. Given this small value, the differences in

the number of such cuts violated are not noticeable in the figures. We have observed

that B&C1 tends to find more such constraints. Only in two of the instances there

was no constraint of this family violated throughout the application of B&C1, while

the number of such instances for the other two variants was 6 and 7, respectively.
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Figure 6.7: Cuts generated with B&C3

6.4 Load-based formulation results

Finally, we present in this section the comparison of the two last formulations. Since

one single family of constraints are relaxed in the branch and cut for the formulation

with load variables, one single variant of the branch and cut is considered here and

it is compared with the results obtained with B&C3 from the previous section.

We first report the results obtained on the smaller Network instances with

|K| = 2. Recall from Table 6.6 that none of the instances with depot locations 2

and 3 could be solved to optimality within 3 hours with B&C3. We report in Table

6.9 the results obtained on those instances with the load-based formulation. Again,

we compare the solution obtained with the solution of the classical MDVRP.

As can be seen, there are two instances for which the MDVRP could not be

solved to optimality. In the case of the MDVRPVI, with this formulation we could

solve all the instances but three, for which the remaining gaps range between 0.24%

and 2.94%. This gives us a first hint on the superiority of the performance of this

formulation.

Since now we know the optimal solution in most instances, we can evaluate

again the cost saving attained by using vehicle interchanges. Observe that one of

the obtained savings is −0.16%. This awkward value corresponds to a MDVRPVI

instance that could not be solved to optimality. Therefore, it is clear that the best

solution found at termination was not the optimal solution, which is, at most, as

expensive as the MDVRP solution. With the third configuration of depots and
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interchange points, savings between 2% and 4% have been obtained.

Depot MDVRP MDVRPVI Load
location Demand Z∗ Gap(%) Time(sec.) Z∗ Gap(%) Time(sec.) Saving(%)

1 1 426.36 0 6344.48 426.36 0.0 1074.95 0
2 426.36 0 2384.03 426.36 2.0 10799.50 0
3 426.36 4.2 10799.60 426.36 0.0 8960.96 0
4 426.36 0 2946.63 427.04 2.9 10799.00 -0.16

2 1 462.68 0 145.42 462.68 0.0 266.72 0
2 462.68 0 106.18 462.68 0.0 327.12 0
3 469.52 0 1467.63 465.25 0.0 900.34 0.91
4 462.68 0 109.92 462.68 0.0 205.40 0

3 1 468.33 0 869.95 459.19 0.0 172.29 1.95
2 473.169 0 2184.68 459.52 0.2 10799.90 2.88
3 475.05 0 4764.82 460.04 0.0 367.41 3.16
4 472.59 2.3 10800.00 455.25 0.0 8742.64 3.67

Table 6.9: Results of QC1 with load-based formulation, |K| = 2.

Now, together with the instances used in the previous sections, we will also

consider the set of instances with the same locations, but with nonzero fixed cost

per vehicle utilization (recall that, in this case, this cost has been set as g = 100).

Tables 6.10 and 6.11 provide the obtained results, again, with a 3h time limit.

Depot %dev wrt best gap
location Demand BKS 2-index load 2-index load

1 2257.24 0.6 0 29.2 28.4
2 2437.53 0.1 0 37.5 37.5

1 3 2191.81 2.9 0 34.4 30.6
4 2089.23 6.2 0 31.5 23.8
5 2209.94 11.2 0 46.8 32.0
1 2161.65 0.0 18.3 16.2 37.5
2 2331.39 0.0 23.2 23.7 52.5

2 3 2224.31 19.4 0 49.0 24.7
4 2147.38 0.7 0 24.1 23.2
5 2162.98 10.2 0 37.9 25.1
1 2074.49 0 22.2 14.8 40.4
2 2359.78 0 2.5 29.6 32.8

3 3 2177.58 0 2.5 30.4 33.7
4 2047.51 16.9 0 42.3 21.8
5 2168.89 15.4 0 49.4 29.5

Table 6.10: Comparison of 2-index and load-based formulations. QC2 instances with
|C| = 40, g = 0.

As it happened before, no instance in the two groups could be solved to op-

timality with either formulation and, therefore, we report under heading BKS the

value of the best solution found with both formulations, and under %dev wrt best
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the percent deviation of each solution value with respect to the best one. Finally,

we give the final gaps reported by Xpress in each case.

As for the complexity of the two different sets of instances, we must say that

the presence of a fixed cost for vehicle utilization does not have a great impact on

the results obtained. Both, the gaps at termination and the deviations from the best

solution are similar in tables 6.10 and 6.11.

Depot %dev wrt best gap
location Demand BKS 2-index load 2-index load

1 2498.72 0 20.5 10.4 33.0
2 2710.35 7.7 0 28.8 19.5

1 3 2624.11 48.1 0 87.1 26.3
4 2731.1 8.9 0 43.0 31.3
5 2783.06 13.3 0 51.7 33.9
1 2890.71 0 9.8 22.5 34.6
2 3048.61 23.9 0 58.8 28.1

2 3 2953.43 5.5 0 42.9 35.5
4 2699.15 10.3 0 39.7 26.6
5 2776.88 6.4 0 39.1 30.6
1 2459.92 0 25.1 6.8 33.5
2 3018.23 1.2 0 31.1 29.6

3 3 2688.45 17.2 0 52.2 29.9
4 2550.38 6.9 0 31.1 22.6
5 2650.4 6.0 0 35.9 28.1

Table 6.11: Comparison of 2-index and load-based formulations. QC2 instances with
|C| = 40, g = 100.

The gap at termination with the load-based formulation was smaller in 9 of

the 15 instances with g = 0, and in 12 of the 15 instances with g = 100. Although

the relative differences are not always very large, it must be pointed out that in the

computation of those gaps, both, the upper and the lower bounds are different. By

concentrating on the columns that provide the deviations from the best solution, we

can see that the load based formulation provided the best solution in 10+12=22 of

the 30 instances, and in the others it provided a solution very close to the best one.

As opposite, the 2-index formulation gave solutions that are quite worse than the

best one. The average deviation in the g = 0 instances was 5.6%, with values raising

up to 19.4%. In the case of the instances with g = 100, these values are 10.54% and

48.1%, respectively.
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These results tell us that the load based formulation provides weaker bounds,

and it takes much longer to increase these bounds but, at the same time, it allows to

identify good quality solutions much faster. This can be further appreciated in the

Figure 6.8 where the deviation of the lower bound obtained at the root node from

the best known solution is depicted.
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Figure 6.8: Bounds at the root node. Deviations with respect to best known solution.



Chapter 7

Conclusions

In this thesis we introduce a new variant of the MDVRP: the MDVRPVI. In this

problem drivers can exchange their vehicles in predefined meeting points, so that ve-

hicles capacities and working times can be better combined to reduce transportation

costs. To assess the benefits of this new policy, we show that using driver interchanges

it is possible to reduce the routing costs in 50% with respect to the MDVRP. Ad-

ditionally, we evaluate the empirical savings on a set of test instances. To this end,

we present a first mathematical formulation for this problem, using three-indexed

flow variables. Due to the complexity of the MDVRPVI and the known limitations

of the 3-index flow-formulations, only very small instances can be solved. Despite

of this, the first results show relevant savings with our approach. The difficulty to

solve instances of reasonable sizes with the initial 3-index formulation has motivated

us to develop two additional alternative formulations. The first one uses 2-indexed

variables. In this formulation, binary variables are associated with the use of the

arcs of the underlying graph, but have no information on the vehicle using them.

The correct definition of the set of feasible solutions using this variables involves

five families of constraints of exponential size. Additionally to these families, an

extra family of valid inequalities have been adapted from other Multi-Depot vehicle

routing problems from the literature.

To solve this second formulation we have devised a specific branch-and-cut

algorithm. In its design, some separation procedures have been taken from the

literature, some others have been designed or adapted to our particular problem,

and 2 families are separated by inspection only in integer solutions.
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The second alternative formulation uses variables associated with the load of

the vehicle that traverses a given arc. Additionally, binary variables has again a

third index but, now, it is not associated with the vehicle but with a depot, which

is the home depot of the driver traversing each arc. The nature of this third index

represents a trade-off between the size and symmetries of the 3-index formulation,

and the need for additional exponential-size families of constraints of the 2-index

variables formulation. In this case, only one exponential size family of constraints is

required to avoid paths connecting two interchange points.

According to the results, the best performing formulation in terms of its abil-

ity to provide good quality solutions relatively fast is the load-based formulation.

Unfortunately, this nice behavior comes together with a rather loose lower bounds,

that make it extremely time consuming to close the gaps and prove optimality.

Therefore, a first direction of future research is to devise valid inequalities and other

enhancements of this formulation that allow to improve this bound.

Finally, a natural extension of this thesis is to develop a heuristic method for

the MDVRPVI that allows to find good quality solutions efficiently; not only in order

to be able to provide solutions for instances of reasonable size, but also to speed up

any exact algorithm.



List of Abbreviations

B&B Branch-and-bound.

B&C Branch-and-cut.

IP Integer Program.

LP Linear Relaxation.

MDVRP Multi-Depot Vehicle Routing Problem.

MDVRPVI Multi-Depot Vehicle Routing Problem with Vehicle Interchanges.

RVRP Rich Vehicle Routing Problem.

VRP Vehicle Routing Problem.
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