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Summary  

Electrospray provides unique atomization of liquids, whereby micro- or nano-droplets with 

very narrow size distributions are generated. To scale up this process, many electrospray 

emitters must be operated while keeping the flow rate per emitter unchanged to preserve 

stability. We have studied the conditions leading to robust spraying in linear arrays of 

electrosprays in which the counter electrode is far compared to the inter-emitter separation. 

Strong electrostatic interactions are expected between the spray plumes and the electrified 

drops which are at the emitters (Taylor cones). In our design, a row of emitter tubes 

protrudes out of a backplate, and the counter electrode is a flat collector plate set at a high 

negative potential. In addition, electrodes at both ends of the array enable uniform electrical 

field conditions, while preventing electrical gaseous discharges. We show that this geometry 

is scalable without bound, both by electric field computations, as by experiments performed 

under different geometrical configurations, liquid flow rates per emitter, and electrical 

conductivities of the liquid (mainly, NaCl/MEG solutions). The onset voltage required to 

stabilize the spraying at all emitter positions approaches a plateau as the number of 

operated emitters increases.  

The same linear electrospray array setup has been used to generate polymer micro/nano 

particles loaded with an active pharmaceutical ingredient (API). Our model API was turmeric, 

a potent anti-inflammatory natural substance that is non-water soluble and therefore suffers 

from low bio-availability. The API and a highly hydrophilic polymer (PVP) were dissolved in 

ethanol. The solution has been electrospray dried using the linear electrospray array, 

resulting in PVP-Curcumin spherical particles of 0.5 μm average size. Micronized particles of 

a hydrophilic polymer-API formulation, can be considered as a general method, for 

improving the bioavailability of poorly water-soluble APIs. Position sensitive analysis at areas 

of interest (AOI) in each spot has been performed using SEM to identify the distribution of 

sizes and morphology of the deposited micro-particles showing good reproducibility for each 

batch. Particles accumulate over time on the collector plate, producing ovoidal deposition 

spots below each of the emitters. These spots are poorly aligned sometimes due to the 

electrostatic interaction between the neighboring spray-plumes. We show that the spots 

divergence from the array plane reflects minute misalignment of the emitters from such 

plane. We have tested the efficacy of a horizontal electrode to restore the symmetry of the 

deposition spots; aiming to facilitating the eventual recollection of the produced particles in 

practical scenarios. Apart from a silicon wafer particle collector, we demonstrate that it is 

possible to deposit particles directly on filter paper, at ambient conditions.  

We have also developed a single emitter EHD printing device that can jet-print lines directly 

on cellulose or nitrocellulose paper with no prior treatment and demonstrate this method by 

printing a lateral flow biosensor, aimed at inexpensive point-of-care diagnostics. The 

advantage of our method is that the size of the jet generated upon EHD jet printing is several 

times smaller than the emitter capillary size preventing clogging. The “inks” are water-based 

protein solutions without any other polymer addition. We tackled the issue of stabilizing a 

cone-jet for a high surface tension solution by using a laminar co-axial gas co-flow around 

the EHD emitter. In addition, for the final lateral flow assembly we have used a novel 

modular DNA- binding protein that can be modified to detect different DNA targets. Upon 

detection, the assays produce a colorimetric signal in the form of a line directly on the paper 

strip. As a conclusion, we have successfully printed nitrocellulose paper-based biosensors 

for the detection of the human papilloma virus-DNA target.   
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Figure 3.10: Spot positions under the same conditions with and without the 

horizontal electrode overlapped with the emitter positions. 
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Figure 3.11: Particles produced using a 7-emitter LEsS showing the conformal 

shapes and sizes of the produced particles from all the emitters.  

62 

Figure 3.12: SEM images at the POIs marked on the Si collector sample. 63 

Figure 3.13: Representative SEM images at different locations of the 4 deposition 

spots. 
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Figure 3.14: SEM images of the blank paper (shown on the first row) and 

deposited Curcumin-PVP particles. 
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Figure 3.15: SEM images of spherical particles collected on a Si wafer. 66 

Figure 3.16: SEM images of spherical particles collected on paper. 66 
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Figure 4.1: A typical latteral flow assay strip. The vertical black “test line” 

represents the colorimetric signal produced upon target detection 
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Figure 4.2: This is a schematic of a single emitter Es setup that has been used for 

trial solution testing  
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Figure 4.3: (a) The EHD jet printing emitter setup (same as Fig. 4.1) and the 

rotating collector, (b) Topview of a test EHD jet print using ethanol pigmented with 

curcumin, the big spot is where the jet is deposited initially before starting the 

rotation of the platform. 
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Figure 4.4: Detection of HPV16 gene via EHD jetted scCro DNA binding protein 

and dHP DNA binding protein-carbon nanoparticles 
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Figure 4.5: a. Composite image (darkfield & brightfield) of the electrospray 

operating in cone-jet mode b. The parafilm mask used on top of the nitrocellulose 

paper to create a protein line and c. The HRP line after the addition of the AEC 

substrate (developed). Total HRP mass electrosprayed ~900 ngr. 
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Figure 4.6: On the left Q=0.03 ml/hr, deposition time t=120 sec, On the right Q=0.7 

ml/hr, average time that the emitter spends over each strip ts= 0.68 sec.   
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Figure 4.7: HRP spots after development with AEC deposited with near-field 

electrospray (without mask) 
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Figure 4.8: HRP calibration curve using the “maskless” electrospray method 85 

Figure 4.9: Developed lines of HRP protein deposited using the direct EHD-jet 

printing mode and LOD graph. 
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Figure 4.10: Activity check of EHD jet printed HRP protein on Ncw strip. The 

developed lines prove long term stability 
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Figure 4.11: a. Near-field electrospray deposition on the strips, b. The latteral flow 

strips where a very fade circular spot appears for the test spot and almost no color 

for the control spot.  
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Figure 4.12: EHD-jet printed strips with both the control line and test line 

appearing. The numbers above the strips are the nanograms of ssCro protein 

complex deposited per test line. 
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Since antiquity powders have been in high esteem for masonry, for food preservation, and 

for medicine. Nowadays we know that surface to mass ratio plays a key role in the 

physicochemical properties of a material. In the hunt to mass produce these materials, 

traditional techniques like milling are still in use while new techniques are being developed, 

such as spray drying. In this context, electrohydrodynamic atomization of liquids is a 

relatively modern alternative to other liquid atomization schemes.  

A typical setup consists of a capillary tube used as electrode, fed with liquid from one side, 

and its open end positioned against a counter electrode. The liquid flow feed is such that 

pendent drops are formed at the open end, or tip, of the capillary tube.  A high voltage 

difference is established between the counter electrode and the capillary tip that causes 

electrical charges initially in the liquid to accumulate at the liquid-air interface. When the 

electrostatic force exceeds the surface tension force, the pendent drop assumes a conical 

shape that expels a thin jet through its apex, which is much smaller than the capillary tube 

internal diameter (Fig 1.1). This shape is termed the Taylor-cone in honor to G. I. Taylor who 

first developed a mathematical model for it (Taylor,1964). Further downstream, the jet 

experiences periodic varicose instabilities and breaks-up into a shroud of droplets commonly 

of a bimodal distribution; the main and satellite droplets. As the droplets travel towards the 

opposing electrode, depending on their volatility, they may evaporate and shrink to the point 

the charge to volume ratio will exceed the Rayleigh limit. The same forces that caused the 

cone-jet formation at the tip, will act to create a secondary in-flight jet emission from the 

droplet itself, termed “Coulombic explosion” (Hunter and Ray, 2009, Rosell-Llompart et al., 

2018). The progeny droplets generated by the coulombic explosion are fractions of the 

primary droplet, but even so the droplet size distribution range of an electrospray system 

remains unparalleled and is almost solely dependent on volumetric liquid flow rate.  

A wide range of liquid solutions can be electrosprayed and more specifically in this work we 

are interested in polymer-drug dissolutions. It has been found that according to their size 

particles can passively target different areas of the body as they cross specific physiological 

barriers (Banerjee et al., 2016, Saraiva et al., 2016, Islam et al., 2017). In addition, it is 

possible to engineer particles with complex internal composition (e.g. core-shell particles) by 

merging two or more liquid streams of suitable chemical compositions within the same 

Taylor cone (e.g. coaxially) (Rosell-Llompart et al., 2018; Xie et al., 2015). These are all valid 

reasons to use electrospray in medicinal particle production. However, for the industry to 

adopt to this technique the production rate should be scaled up from the laboratory scale. To 

do that the same flow rate through each emitter must be maintained, so multiplexing of 

emitter sources becomes necessary to achieve higher total throughput.  
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Figure 1.1: A. Droplet formation at the capillary tip when no high voltage is applied (photo 

overlap), B. Stable cone-jet electrospray as the necessary high voltage difference is 

established between the capillary and the counter-electrode. 

Narrowing down the field of applications to pharmaceutics, we decided to study linear 

multiplexed electrospray 1-D arrays emitters for the production of polymeric nanoparticles. 

Linear 1-D arrays simplify droplet-drying for polymer particle generation, a process that may 

be challenging in denser emitter arrangements; e.g. hexagonal or square 2D geometries.  

We executed a parametrical study of an 11-emitter 1-D linear array system, expanded by 

computational models to a simplified 1-D, N-emitter system. We also show the interactions 

between plumes and symmetry breaking effect at high voltages  

The same 11-needle 1-D linear array setup was used for the production of polymeric 

nanoparticles. The purpose was to proof-test our system with polymer- API (Active 

Pharmaceutical Ingredient) loaded liquid. The synthesized polymer particles, made in most 

cases of poly-vinyl-pyrrolidone (PVP) were loaded with curcumin a substance that is used 

traditionally in eastern medicine, while recent studies show its potency as a drug (Cartiera et 

al., 2010, Jurenka 2009). 

In the course of this research, we have realized that it was possible to electrospray in the 

cone-jet mode on paper substrates. Paper is such a widespread, cheap and common 

material along with its other properties - flexible, biodegradable and recyclable - that 

incremental improvements in its functionality can have huge impacts in everyday life. For this 

reason, many research groups have focused their efforts in creating paper-based printable 

A. High 

Voltage OFF 
B. High 

Voltage ON 
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flexible electronics, microfluidic devices and disposable biosensors (Gonzalez-Macia et al., 

2010, Wu et al., 2018) More specifically we got interested in lateral flow assay biosensors as 

no specialized technology is required for their use (Koczula et al., 2016). These devices can 

reduce the cost, increase the speed and decentralize diagnostics of patients. Lateral flow 

biosensors generate colorimetric signal in the form of a line as a standard. We present two 

methods of single step protein deposition on paper-based materials with a single emitter 

setup. Our initial plan was to use electrospray to deposit a protein solution on the sensor 

surface and take advantage of the low flow rate and large coverage area owing to droplet 

repulsion for achieving a stronger colorimetric signal with little amount of deposited protein. 

We have discovered that the same setup- for higher flow rates- is able to generate a stable 

and focused EHD-jet. The EHD-jet printed trace has proved ideal, both in speed and 

accuracy, for our application. However, both techniques- electrospray deposition and EHD-

jet printing - are compared and presented in this thesis as alternate methods to already 

existing biosensor printing techniques, with the emphasis shifted on the later.  
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Abstract 

Electrospray provides unique atomization of liquids, whereby micro- or nano-droplets with very 

narrow size distributions are generated. To scale up this process, many electrospray emitters 

must be operated while keeping the flow rate per emitter unchanged to preserve stability. To 

cope with the electrostatic repulsion between the various elements in the system, it is common 

to position the emitters very near a counter electrode. Instead, we have studied the conditions 

leading to robust spraying in linear arrays of electrosprays in which the counter electrode is 

far compared to the inter-emitter separation. Strong electrostatic interactions are expected 

between the spray plumes and the electrified drops which are at the emitters (Taylor cones). 

In our design, a row of emitter tubes protrude out of a backplate, and the counter electrode is 

a flat collector plate set at a high negative potential. In addition, electrodes at both ends of the 

array enable uniform electrical field conditions, while preventing electrical gaseous 

discharges. We show that this geometry is scalable without bound, both by electric field 

computations, as by experiments performed under different geometrical configurations, liquid 

flow rates per emitter, and electrical conductivities of the liquid (mainly, NaCl/MEG solutions). 

The onset voltage required to stabilize the spraying at all emitter positions approaches a 

plateau as the number of operated emitters increases. Eventually, as the voltage becomes 

high enough, the sprays misalign. In this case, the emissions directions are in consonance 

with minute zig-zag misalignments of the emitters, revealing the importance of small 

asymmetries in the electrostatic forces. 

 

Keywords: 

aerosol, electrohydrodynamic atomization, electrospray, electrostatic spraying, multiplexing, 

space charge 
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2.1 Introduction 

Electrospray, or electrohydrodynamic spraying, is an unparalleled liquid atomization process, 

whose scaling up remains a challenge. It is based on the stabilization of a liquid jet at the end 

of electrified conical menisci (called Taylor cones) produced by the action of an intense electric 

field. This jet undergoes periodic capillary breakup, releasing uniformly sized droplets. 

Electrospray is capable of producing dense sprays of quasi size-monodisperse droplets, in a 

wide size range from microns to nanometers (Rosell-Llompart et al., 2018). These droplets 

have been used for making engineered nano/micro-sized particles with extremely narrow size 

distributions, or thin films, out of a wide range of materials present in the droplets. In addition, 

it is possible to engineer particles with complex internal composition (e.g. core-shell particles) 

by merging two or more liquid streams of suitable chemical compositions within the same 

Taylor cone (e.g. coaxially) (Rosell-Llompart et al., 2018; Xie et al., 2015).  

However, the scaling up of electrospray process is not trivial, as it involves operating multiple 

Taylor cones in a small space in the presence of strong electrostatic fields. The liquid rate 

passing through a single Taylor cone is constrained because stabilizing the cone and its jet 

relies on delicate balances between forces (e.g. interfacial electric and surface tension 

stresses). For example, to produce micrometer-radius droplets requires a volumetric rate 

typically of ~10-11 m3/s. Such small rates suffice for analytical chemistry applications of 

electrospray, namely electrospray ionization mass spectrometry or ESI-MS (Fenn, 2003), as 

a source of particles for calibration of aerosol instruments (Hogrefe et al., 2004; Steiner et al., 

2017), or other lab scale experimentation. However, obviously, such low rates do not suffice 

to meet industrial demands of potential applications.  

At lab scale, electrospray arrays have been implemented in virtually every application of 

electrospray: Pharmaceutical particle synthesis (Almería et al., 2010, 2011; Kawakami, 2012), 

surface coating (Tang & Gomez, 2015), micro-electronics cooling (Deng & Gomez, 2011), 

mass spectrometry in nanospray mode (Kelly et al., 2007, 2008a; Mao et al., 2011), 

microprotein arrays (Bhatnagar, 2007), 3D printing (Wang et al., 2015), micro-combustion 

(Kyritsis et al., 2004; Deng, Klemic et al., 2007), colloidal spacecraft propulsion (Velásquez-

García et al., 2006; Krpoun & Shea, 2009), and nanofiber production by electrospinning (Zhou 

et al., 2009). Studied geometries include 2D square and hexagonal patterns, and 1D linear 

and circular ones (Lhernould et al., 2011). Obviously, 2D arrays can accommodate greater 

emitter density than 1-D geometries. Yet, 1D arrays can be convenient to use when emitter 

density needs not be extremely high. In addition, drying of the droplets for producing particles 

is very straightforward in 1D electrospray arrays.  
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Despite significant progress in this area, reliability continues to be challenging. The 

multiplexing of electrosprays is dependent on attaining similar electric field at all Taylor cones' 

positions in the array. This has often been achieved by means of the so-called extractor 

electrode, a perforated plate or a ring which is positioned near each Taylor cone and is set to 

a different voltage. The droplets pass through an aperture on the extractor electrode, and are 

attracted to an additional electrode located downstream which holds a suitable electric 

potential. By keeping a small separation between Taylor cones and the extractor electrode, 

the cones become electrostatically shielded from one another as well as from the spray charge 

(Bocanegra et al., 2005; Deng et al., 2006, 2009; Almería et al., 2010). The extractor electrode 

solution, however, is not without issues, especially when used at atmospheric pressure with 

2D arrays and very small droplets (Bocanegra et al. 2005; Deng & Gomez, 2007; Deng et al., 

2009; Higuera 2013; Kempen et al., 2016).  

Compared to dense 2D arrays, in dense 1D arrays the electrostatic interactions among 

emitters are significantly reduced; as well as between the emitters and the sprays. Hence, 

robust operation of dense 1D arrays without an extractor electrode should be possible within 

some region of the operational parameter space. Table 2.1 lists previous studies on the 

operation and/or design of 1D linear arrays. Such studies have either used extractor 

electrodes or a droplet collection electrode located near the Taylor cones. The only 1D arrays 

for which the reported separation between the emitters and the counter electrode was large 

compared to the emitters' pitch had a pitch of many mm; therefore, such arrays are not 

considered to be "dense" here (Almekinders & Jones, 1999; Kawakami, 2012). In the present 

study we consider 1D linear arrays without an extractor electrode, in which the droplet 

collection electrode is at a large distance compared to the emitters pitch. In addition, our 

capillary tube emitters protrude out of a backplate, set parallel to the collection plate.  

We address the question of whether such "linearly dense" arrays of Taylor cones are up-

scalable without bound, by studying how the onset voltage scales with the number of operated 

(spraying) emitters. Since the counter electrode sits far from the Taylor cones, strong 

electrostatic interactions between the cones are expected, resulting in non-uniform 

electrostatic field. To offset this issue, several studies (Rulison & Flagan, 1993; Hubacz & 

Marijnissen, 2003; Quang Tran et al., 2010) have used passive (non-spraying) electrodes at 

the edges of the array which improve the electric field uniformity (a strategy also used on 2D 

arrays by Deng et al. 2006). One of our goals has been to assess this question with the 

constraints of our arrays, and evolve previous designs of such electrodes to obtain robust 

stability. Another goal of the present work is to report on symmetry breaking of the 

electrosprays which develops as the applied voltage becomes large enough.  

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAY SCALE-UP FOR THE PRODUCTION OF PARTICLES OF PHARMACEUTICAL INTEREST 
Nikolas Sochorakis Saloustros 
 



12 
 

For the experimental work, we have used a common solvent (ethylene glycol) mixed with 

electrolytes to attain electrical conductivities appropriate to obtain droplets' diameters of 

order 1 µm. This study includes the following factors: the number of operated emitters, the 

separation between the collector and backplate, and the liquid volumetric flow rate. A novel 

method used in this study is the continuous recording of the current-time traces emitted by 

each Taylor cone, individually, which allows monitoring the stability of the spraying. The 

experimental methodology has been complemented with numerical solutions of the electric 

field.  
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Table 2.1 – Prior studies using 1D-linear electrospray emitter arrays (with > 5 emitters; 
atmospheric pressure)1,2 

References 
(in chrono-

logical 
order) 

Kind of 
study, 

application 

Emitters type Emitters 
number x 

pitch 

Extractor 
plate? 

Emitter - 
counter 

electrode3 
separation 

End 
electro
des? 

Droplet 
diameter 

range 
(μm) 

Rulison & 
Flagan 
(1993) 

Parametric 
study on 
array 
operation 

Metal capillary 
tubes, plus 1 
dummy one at 
each array end 

6 × several 
pitches 

No Not reported Yes N.A. 

Almekinder
s & Jones 
(1999) 

Technical 
note 

Sawtooth 
("serrations") 

24 × 6.5 
mm 

No Large (>> 1 
cm) 

No 112-260 
VMD 

Kelly et al. 
(2007, 
2008a) 

LC / 
nanoESI-MS  

Pulled fused-
silica capillaries 

19 × 0.5 
mm 

9 × 1 mm 

No 1 mm 
1 – 1.5 mm 

No N.A.  
(< 1, 

probably) 

Kim et al. 
(2007) 

Lab-on-a-
chip / 
nanoESI-MS 

Monolithic silica 
emitters 
protruding from 
Si wafer 

10 × 0.010 
mm 

Yes Not reported 
(not used) 

No N.A. 

Wang et al. 
(2007) 

Biomolecules 
pulsed 
deposition 

Silica in MEMS 
device (10 μm 
emitter 
diameter) 

10 × 0.2 
mm 

No 0.2 mm No N.A. 

Quang Tran 
et al. (2010) 

Operation 
and design  

Tubes milled on 
PMMA 

10 × 2 mm Yes 4 mm No N.A. 

Mao et al. 
(2011) 

nanoES – 
MS 

Linear 
Monolithic silica 
emitters 

10 x 0.040 
mm 

No Not reported No N.A. 

Lhernould 
et al. (2011) 

Operation 
and design 

PC slab with 
holes (I.D. 0.15 
mm) 

8 x 2 mm Yes 0.8 mm No N.A. 

Kawakami 
(2012) 

Pharma 
particles 
production 

Stainless steel 
needles (1 mm 
diameter) 

8 × 10 mm No 150 mm No N.A. 

Lojewski et 
al. (2013) 

Operation 
and design 

Tubes milled on 
brass and on PC 

51 × 0.5 
mm 

Yes Not reported No 6.5 – 12 
d10 

Kim & Kim 
(2014) 

Operation 
and design 

Sawtooth, plus 2 
dummy teeth at 
each end 

10 × 8 mm No 10 mm Yes 16 – 21 
d10 

Kumar et al. 
(2018) 

Parametric 
study on 
array  
operation  

Stainless steel 
emitters (0.2 mm 
I.D.) 

5 x 1.5 mm No 2.5 mm No N.A. 

Zhao et al. 
(2017) 

Technical 
note 

Sawtooth, cut 
from paper 

9 × 3 mm No About 5 mm No 6.9 d10 

 

1We  have  considered  only  arrays  with  more  than  5  emitters.               
2 

  Abbreviations:  LC  =  liquid  chromatography;  MS  =  mass  spectrometry;  N.A.=  not  available;  nanESI  =  nano-electrospray  ionization;  PC  
=  polycarbonate;  PDMS  =  poly(dimethyl  siloxane);  PMMA  =  poly(methyl  methacrylate);  VMD  =  volume  median  diameter     
3 

  The  counter  electrode  is  the  extractor  electrode,  if  one  is  present.  It  is  the  mass  spectrometer  inlet,  if  one  is  used. 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAY SCALE-UP FOR THE PRODUCTION OF PARTICLES OF PHARMACEUTICAL INTEREST 
Nikolas Sochorakis Saloustros 
 



14 
 

2.2 Materials and methods  

All reagents were used as purchased, without further purification. Sodium chloride (Sigma-

Aldrich, ≥99%, AR grade) was dissolved in ethylene glycol (MEG, Scharlau, Reagent grade) 

at various concentrations using a magnetic stirrer (Table 2.2). Acetic acid (Sigma-Aldrich, 

glacial) was mixed with H2O prior to mixing with ethylene glycol. All solutions were prepared 

at room temperature, and their compositions and electrical conductivities are shown in Table 

2.2. These conductivities are consistent with extrapolated values from data reported by 

Sandengen & Kaasa, 2006. 

 

 

Fig. 2.1. Schematic of the setup.  

 

2.2.1 Electrospray generation setup 

The schematic of the setup is shown in Fig. 2.1. A solution is loaded into the liquid reservoirs 

from which it is supplied to the electrospray emitters when the reservoirs are gas-pressurized. 

Each reservoir (tuberculin 1.0 mL Henke Sass Wort NORM-JECT syringes without plunger) is 

vertically positioned and is connected to a 27-gauge × ½" hypodermic needle fitted to a 

capillary PTFE line (Teknokroma, 360 μm I.D., 580 μm, 550 mm length) which leads to an 

electrospray emitter tube. To achieve independent control of the liquid supply rate and the 

N2

Multiple 

inputs

Gas buffer 

chamber
Gas distributor

Current to PC-

DAQ card line

kiloVolt

µAmp

HV cable

Nano-

ammeters 

box

High (-) voltage 

power supply

Safety 

resistor 

250 MΩ

High 

voltage 

probe

103:1

1 GΩ

Solution 

reservoirs 

(syringes)

Volt

Gauge 

manometer

Silica tubing 

sections

Voltage to PC-DAQ card line 

PC-DAQ card line 

Computer

with DAQ card

Emitters

Backplate

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAY SCALE-UP FOR THE PRODUCTION OF PARTICLES OF PHARMACEUTICAL INTEREST 
Nikolas Sochorakis Saloustros 
 



15 
 

applied voltage, in each line we have inserted a short section of fused silica tubing (100 μm 

I.D., 100 mm length) which elevates the hydrodynamic resistance such that the reservoir 

gauge pressure exceeded 1 psi. This value greatly exceeds the Laplace pressure at the 

emitter exit; which is the surface tension coefficient over emitter outer radius 
𝛾
𝑅⁄  (0.015 psi 

for ethylene glycol). The pressure was measured with a digital manometer and the flow rate 

were computed from flow rate versus gauge pressure calibrations performed with zero applied 

voltage. 

The electrospray emitters are 100 mm long sections of 304 stainless-steel capillary tubing 

(Tubos Capilares, Spain; O.D. 400 μm, I.D. 160 μm) square-cut and polished on their exit end. 

They protrude out of the backplate, which is a perforated metal plate held parallel to the 

collector plate. The support structure rests on the collector plate with four Delrin© legs which 

sit on insulating spacers used for controlling height (not shown). Initially a rectangular brass 

plate was used as collector. Later on, we added a stainless steel perforated metal plate on top 

of the collector plate, with absorbent paper sandwiched between the two, to prevent puddle 

formation due to liquid accumulation. The collector plate and backplate are sized 85 x 235 

mm, defining a parallel-capacitor in which the emitters and the electrosprays are shielded from 

external electrical conditions and perturbations. The emitters are sandwiched in a sub-

assembly consisting of two Delrin© mirror blocks with precut groves, press fit together by two 

screws (not shown). Additional electrodes are placed at the ends of the array, as described 

later (sec. 3.2). For the 11 emitters at 2.5 mm pitch, the standard deviation for the emitter 

separations (along the array or x-axis) is only 0.09 mm, and that for the cross-array (y-axis) 

displacements from a perfect line is only 0.06 mm. 

The electric field necessary for electrospraying is provided by a negative high voltage (𝐻𝑉) 

power supply connected (Ultravolt, HV-RACK-4-250-0032, 0 to -15 kV range) to the collector 

through a high voltage-rated 250 MΩ safety-resistor so that the electrospray polarity is positive 

(Chang-Mou et al., 2011).  We continuously monitor the applied electric potential at the 

collector 𝑉𝐶 by means of a HV probe (Testec, TT-HVP-40, 109 Ω), as shown in Fig. 2.1. The 

reason for setting the collector at high voltage instead of the emitters is that they and the 

backplate are earth-grounded through nanoammeters of homemade design (based on op-

amp current-to-voltage converter design) housed in a shielded box. The output voltages from 

the nanoammeters, digital manometer, and high voltage probe are fed to a National 

instruments PCI 6221 DAQ card on a desktop computer. Fig. 2.2 shows example traces for a 

typical run in which the collector voltage was adjusted manually at a constant vial pressure 

(thus steady liquid supply), starting with zero voltage. The current traces show steps when the 

spraying transitions from one mode to another. In addition, the current is a monotonous 
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function of flow rate. Therefore, differences in current can be used to detect differences on the 

hydrodynamic resistance of the supply lines, or occasional changes caused by partial 

clogging.  

2.2.2 Imaging of sprays and cones  

The spraying modes could be easily identified by following the current traces as well as the 

liquid meniscus shape at the exit of each emitter tube. The meniscus is imaged best under 

brightfield conditions, for which a LED backlight was positioned behind the emitter array, and 

the array was imaged from the opposite side (front view). In this case, image contrast arises 

from attenuation of light by the cones, while attenuation by the sprays is small. To image the 

spray plumes darkfield illumination was used, whereby image contrast arises from light 

scattered (rather than attenuated) by the droplets. In this case, the backlight was replaced by 

a black velvet cloth, which provided a dark background, while the sprays were illuminated from 

two white LED spot lamps positioned symmetrically at roughly 45º from the array mid plane. 

Additional views of the sprays were taken from a side, in order to reconstruct the directions of 

the micro-jets in 3D (section 2.5.2). Front view images were shot with an OLYMPUS PEN E-

PL7 photo camera with a Nikkor macro lens (60 mm, 1:2.8). Side images were taken with an 

OLYMPUS PEN EP-1 photo camera and a ZUIKO 14-42 mm zoom lens. Most of the images 

we show later are enhanced for brightness and contrast, while some are presented with their 

tone scale inverted ("negative images") to better show the spray outline.  

2.2.3 Spraying protocol  

Electrospraying was carried in laboratory air, whose temperature (𝑇) and relative humidity 

(between 35% and 64% for all the experiments) was determined with a Vaisala HM34 meter. 

A typical experimental run starts with setting the gas pressure to achieve the desired flow rate. 

Some minutes are required for the pressure to stabilize and for the liquid to fill the lines. Once 

the flow rate is steady, the data acquisition is initiated, and the applied voltage is ramped-up 

manually, and pictures are shot frequently. The main spraying modes which we differentiate 

in the experiments described are the intermittent cone-jet and the steady cone-jet modes 

(Rosell-Llompart et al., 2018). The former one, also known as pulsating mode (Smith, 1986; 

Bober & Chen, 2011), is characterized by a lower current level, and is encountered before the 

steady mode, as voltage is increased. Fig. 2.2 shows several transitions between the two 

modes, triggered by small adjustments of the collector voltage.  
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Fig. 2.2. Collected raw data from an example run with a 5-emitter array. The currents are 
represented by symbols of the kind 𝐼𝑖, where i is the emitter index with 0 referring to the 
central emitter. The collector voltage 𝑉𝑐 was varied manually. The gauge pressure 𝑃𝑔 is 

proportional to the liquid flow rate.  
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Table 2.2 - Solute concentrations and electrical conductivities of ethylene glycol solutions. 

Solution 

code 

Solutes and nominal 

mass fractions 

Electrical 

conductivity, S/m 

SC025 NaCl 0.0025% 4.2 × 10-4 (at 22.8 ºC) 

SC027 NaCl 0.0027% 2.9 × 10-4 (at 20.6 ºC) 

SC250 NaCl 0.0250% 2.3 × 10-3 (at 24.9 ºC) 

SC900 NaCl 0.0900% 1.1 × 10-2 (at 21.5 ºC) 

AW Acetic acid 1.900% 
Water 3.610%  

3.8 × 10-4 (at 21.6 ºC) 

 

 

2.3 Theoretical approach 

2.3.1 Electric field computations 

Our experimental array geometries include a backplate, which is a conducting plate located 

behind the emitters, which are at the same electric potential as the backplate. The two plates 

(backplate and collector) define a parallel-capacitor gap, which hosts the linear array of 

emitters and sprays, and shields them from external perturbations. To find out whether dense 

linear arrays of Taylor cones are scalable without bound, we have investigated how the electric 

field scales with the number of operated emitters. "Dense" here means that the separation 

between the emitters' tips and the collector is large compared to the spacing between emitters 

(pitch). Since we aim to gather physical insights, our numerical computations are for simplified 

systems: The field due to a linear array of lines-of-charge, which emulate the space charge of 

electrosprays (section 2.3.2, Grifoll J., 2018), and the field in an array of emitters without space 

charge (section 2.3.3, Grifoll J., 2018).  

2.3.2 Electric field scaling due to space charge (lines-of-charge) 

We start by asking how the electric field grows as more lines-of-charge (space charge) are 

added in the capacitor gap. In our simplified system, each line-of-charge is straight, joining the 

two conducting parallel plates, and has uniform charge density 𝜆 (C/m). The plates are of 

infinite extent, so we can use the method of images to solve the electrostatics problem 

(Jackson, 1998). In our computation, we assume no voltage difference between the two plates. 

Fig. 2.3a shows the first few of the infinite series of image charges of a single line-of-charge. 

The electric field due to the line-of-charge and its first 𝐽 image lines-of-charge pairs computed 

at the mid plane between the plates and at a distance 𝑥 from the line has modulus 
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 (2.1) 

Here, 𝜀0 is the electric permittivity of vacuum, and 𝐻 is the separation between the plates. The 

first term inside {...} is the contribution due to the real line-of-charge while the summation over 

index 𝑗 is due to its image-charges. This summation must be solved numerically but converges 

rapidly as 𝐽 increases (Fig. 2.3b). To be on the safe side, we have used 𝐽 = 1000 in all 

remaining computations.  

Next, we have used this equation to compute the electric field modulus due to a linear array 

of lines-of-charge, at the array edge and the mid-plane between the plates (Fig. 2.4a): 𝐸𝑇 =

∑ 𝐸𝑥𝑖
𝑁
𝑖=2 , where 𝑖 is the line index, 𝑁 is the number of lines, and 𝐸𝑥𝑖 is given by equation (1), 

where 𝑥 are the distances from each line 𝑖 to line 1 (where the field is computed), 𝑥 = (𝑖 − 1)𝑃. 

Fig. 2.4b shows how the field modulus at the edge of the array increases as an array is 

expanded by adding lines, thus increasing the array width 𝑊. At values of 𝑊 comparable to 

𝐻, the field modulus (data set labelled "total" in Fig. 2.4b) asymptotes out rapidly. This trend 

is much slower if only the real charges are considered. Therefore, the image charge lines 

accelerate the convergence. In order words, the electric field due to a line-of-charge becomes 

strongly shielded by the two plates at distances from the line which are farther than about 𝐻. 

This picture holds true for other line densities as shown in Fig. 2.4c. In fact, the approach 

toward the asymptote becomes faster for denser arrays (smaller pitch 𝑃). As a corollary, in a 

long array, the electric field strength due to the space charge (lines-of-charge) is nearly zero 

everywhere except within a distance of about 𝐻 from the array edge. A similar picture arises 

in 2D (square 𝑁 × 𝑁) arrays of lines-of-charge between two parallel plates, although the 

electric field strength is greater, as expected (see Fig. 2.4d).  

  

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAY SCALE-UP FOR THE PRODUCTION OF PARTICLES OF PHARMACEUTICAL INTEREST 
Nikolas Sochorakis Saloustros 
 



20 
 

 

a)  b) 

 

 

 

Fig. 2.3. Electric field computation due to a single line of charge placed between two 
conducting infinite plates. (a) Real and image line-of-charge elements considered in the 
computation of 𝐸𝑥, the 𝑥-component of the electric field computed at the midplane between 
the two plates, at a distance 𝑥 from the line-of-charge. (b) Effect of the number of images 𝐽 
considered in the computation of 𝐸𝑥 using Eq. (2.1), non-dimensionalized with 
𝐸0 ≡  𝜆 (4𝜋𝜀𝑜𝐻)⁄ .  
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a)  

  

b)   

 

c) 

 

d) 

  

Fig. 2.4. Electric field for a linear array of 𝑁 lines-of-charge lying across two parallel 
conducting plates, at the at the edge of the array. a) Geometrical parameters definition and 
location of the electric field whose modulus is computed. (b) Electric field modulus ("total") 
and contributions from the "real" charge and its "images". (c) Total electric field modulus 
versus non-dimensionalized array width 𝑊/𝐻, for various array line densities 𝐻/𝑃. The 

modulus is non-dimensionalized with 𝐸0 ≡  𝜆 (4𝜋𝜀𝑜𝐻)⁄ . 𝐽 = 1000 in Eq. (2.1). (d) Total electric 
field modulus calculation at the corner of a square 𝑁 × 𝑁 array of lines-of-charge, at the mid-
plane between two parallel conducting plates. 

 

2.3.3 Electric field created by an array of protruding tube emitters  

For an array of equally spaced emitters, the electric field at the emitters' tips intensifies towards 

the two ends of the array. To assess the severity of this "array-end effect" and to guide our 

designs of array-end passive electrodes, we have solved Laplace’s equation for the 

electrostatic potential 𝜙 in a linear array of cylindrical electrodes (∇2𝜙 = 0) using COMSOL 

Multiphysics 5.2. Space charge has been left out for simplicity. In addition, we have assessed 

the role played by emitter protrusion from the backplate (𝐿). Fig. 2.5 shows the computational 
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domain, taken by symmetry as 1/4 of the whole system. The backplate is set at the same 

potential as the emitters, like in our experiments. The emitters are terminated with a 

hemisphere, resembling a pendant drop, to avoid electric field divergences caused by sharp 

edges (Fig. 2.5c). The geometrical parameters are taken from our experimental geometry.  

Fig. 2.6a shows the electric potential 𝜙 along the 𝑥 direction at the base of the emitters' 

cylindrical portion (𝑦 = 0, 𝑧 = −𝐿) (labelled "equator" in Fig. 2.5c). Minus the slope of the 

potential, −𝑑𝜙 𝑑𝑥⁄ , is the electric field 𝑥-component 𝐸𝑥. For emitters 𝑖= 1, 2, 3, the slope of 

the potential is nearly equal on the two sides of the emitter, the field becoming increasingly 

asymmetric as the emitters approach the array end. Fig. 2.6b shows the normalized field 

strength at the equator of the hemispherical cap versus the emitter's azimuth (𝜃𝑖). The two last 

positions (𝑖  = 5 and 6) "see" an electric field that is significantly stronger and azimuthally less 

uniform than the other emitters' positions. The near constancy of the field strength for the inner 

emitters is possible because 𝐷 is small compared to 𝑃.  

The effect from emitter protrusion (𝐿) on the field strength is shown in Fig. 2.7. The strength is 

taken for the central emitter, although its value is similar as for others except at the array ends, 

as discussed earlier. The field strength increases with 𝐿 as the backplate shielding reduces, 

and is expected to approach an asymptote for large 𝐿. In other words, the location of the 

backplate becomes less important as its distance from the emitters' tips becomes large 

compared to the emitter to collector distance (𝐻). In practice, often one seeks to reduce the 

range of operating voltages, and, as predicted by these computations, we can decrease the 

operating voltage by increasing 𝐿, but after some 𝐿 the gain is minimal.  

 

Fig. 2.5. System geometry for electrostatic field computation in absence of space charge.  
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Fig. 2.6. (a) Electric potential 𝜙 along the line cutting through the emitters' hemispheres' 
equators (i.e. line z = -𝐿; see Fig. 2.5), for a 13- and 23-emitter linear arrays, normalized by 
the potential difference between plates, 𝜙0. (b) Electric field strength versus azimuth on the 
emitter's hemisphere's equatorial plane. The electric field strength has been non-
dimensionalized with 𝐸0  = 𝜙0/𝐷.  Zero azimuth corresponds to the x direction (pointing 

towards edge of the array). Emitter diameter 𝐷 = 0.4 mm, pitch 𝑃 = 2.5 mm, emitter 
protrusion 𝐿 = 15 mm, and collector distance 𝐻 = 20 mm  

 

Fig. 2.7. Electric field strength at the pole of the central emitter (see inset) as a function of 
emitter protrusion from the backplate 𝐿, in a 13-emitter linear array as shown in figure 2.5. 
Emitter diameter 𝐷 = 0.4 mm, pitch 𝑃 = 2.5 mm, collector distance 𝐻 = 10 mm. The electric 

field strength is non-dimensionalized using 𝐸0  = 𝜙0/𝐷.  
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2.4 Designs of electrodes at the array ends and their 

effects on Taylor cones 

The numerical simulations in the previous section tell us that linear arrays of electrosprays can 

be scaled up without bound, while distortions of the electrostatic field are confined to the array 

extremes. Encouraged by this conclusion, we proceeded to implement real linear arrays and 

to study their behavior.  

The previous computations advise the use of the two parallel plate geometry to obtain fast 

electrostatic shielding of the space charge (sec. 3.1.1). In addition, they advise using non-

spraying emitter-like electrodes at the two ends of the array, which we refer to as end-

electrodes. Previous works (Rulison & Flagan, 1993; Quang Tran et al., 2010) have used one 

passive emitter at each end of a linear array. We, on the other hand, consider end electrodes 

at the last two positions of the array (at both ends), and have considered different geometries 

for the emitters. Table 2.3 shows the parameters for the array configurations used in this study.  

Table 2.3 - Array configurations used in this work (wherein the number of emitters is 
not reported, as it is considered adjustable for each configuration) 

Parameter Symbol Array configuration 

 A B C 

Emitter outer diameter 
(mm) 

𝐷 0.40 0.40 0.40 

Emitter pitch (center-to-
center separation) (mm) 

𝑃 2.5 2.5 2.5 

Emitter protrusion from 
the back plate (mm) 

𝐿 16 10.6 23.2 

Emitter to collector 
distance (mm) 

𝐻 13 20.4 7.9;10;13 

Number of end 
electrodes on each side 
of the array 

− 2 2 2 

End electrode diameter 
(mm) 

− 0.40 0.40 0.40 and 1.2 

End electrode protrusion 
from the emitter ends 
plane (mm) 

− 0 1.6 0 
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Fig. 2.8 shows three of the end-electrodes configurations that we have tested. The arrays 

shown differ in emitters' number; but this parameter is immaterial for the present discussion. 

The first design, configuration A, comprises two pairs of passive emitters, marked with a *. In 

configuration B, the four passive emitters protrude from the emitters' exit plane, and this 

change helps straighten the outermost Taylor cones. (Protrusion of the passive electrodes 

(one on each array terminus) had been previously proposed by Hubacz & Marijnisen, 2003). 

In both configurations A and B, our system was prone to electric discharges when operating 

large voltages in air. To address this issue configuration C was developed, in which the end-

electrodes do not protrude, and the outermost end-electrode is fat. These end electrodes were 

made by inserting metal head pins into snug-fitting metal capillary tubing.  

As shown in Fig. 2.7, the field strength decreases rapidly with 𝐿, as 𝐿 becomes smaller than 

𝐻. Therefore, in all the arrays considered here, the emitter protrudes from the backplate by a 

greater distance than the emitter to collector distance: 𝐿 𝐻⁄ >1. In this way, the electric field at 

the emitters' tips is strong enough to electrospray at relatively low voltage.  

 

Fig. 2.8. Configurations of array-end electrodes used in this study. Such electrodes are marked 
with a *, while the spraying emitters show Taylor cones. Note that the configuration letter (A, 
B, C) does not identify the number of spraying emitters, and corresponds to the configurations 
in Table 2.3. The thin end-electrodes are passive (non-spraying) emitters.  

The Taylor cones' shape adjusts itself to changes in applied voltage, to accommodate the 

condition of steady state. Fig. 2.9 shows that the Taylor cone length and angle are quite 

sensitive to changes in voltage. If, while liquid is continuously supplied, the voltage (absolute 

value) is suddenly reduced, the rate at which liquid is removed from the Taylor cone by the 

electric field decreases; and consequently, the Taylor cone volume increases, thus elongating. 

At the same time, the cone angle decreases, which intensifies the field strength in that region 

Array configuration A

* * * *

* * * *

* * * *

Array configuration B 

Array configuration C
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(Fernandez de la Mora, 1992). Eventually, the steady-flow condition is restored, as the liquid 

flow rate passing through the cone and the microjet equates the supply rate.  

In Fig. 2.9 we can assess the electric field strength differences along the array, by comparing 

the differences in cone length and seeing how much 𝑉𝑐 must change for the center cone to 

experience the same changes. In panel (c) the field strength differences between the array-

end cones and the central cone must be in the order of only a few %, since the cone length 

difference is less than that experienced by the center cone between panel (c) (-4.95 kV) and 

panel (b) (-5.16 kV), a 4.2% change.  

 

Fig. 2.9. Effect of applied voltage on Taylor cone elongation, in 11-emitter array with 
configuration C (Table 2.3). Flow rate per needle of 1.58 μl/min; 𝑇 = 23.5 °C; solution SC025. 
The dotted line shows the center of the array for reference. Values below the Taylor cones 
refer to the time-averaged electrical current in nA measured on each emitter.  
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2.5 Spray plume patterns in the steady cone-jet 

mode 

We have studied how the spray plumes in steady cone-jet mode are influenced by the 

presence of other spray plumes, and how they evolve with voltage. We also demonstrate the 

importance of complementing 2D planar imaging with stereoscopic imaging for interpreting 

the spray plume patterns correctly. First, we compare the plume patterns in the steady and 

intermittent cone-jet spraying modes. The steady cone-jet mode is characterized by a 

stationary spray and meniscus in the shape of a cone-jet, while the intermittent cone-jet mode 

appears when the tip of the meniscus oscillates rapidly, resulting in intermittent sprays. The 

frequency of the intermittency is usually too high to be perceived, unless a high-speed camera 

or a fast photodetector is used, but we have easily distinguished the two modes by the 

difference in meniscus appearance (Rosell-Llompart et al., 2018) and the current traces. Fig. 

2.10 shows an array in which some emitters (positions -1 to +4, indicated by an arrow) undergo 

a transition from the intermittent cone-jet mode (panel (a)) to the steady cone-jet mode (panel 

(b)) when the voltage is increased at constant flow rate. In the transition, the spray plumes 

become significantly narrower because, compared to the intermittent mode, the specific 

charge on the droplets increases. Therefore, they attain higher velocity in the field, thus 

requiring a longer distance to lose their inertia and start moving electrophoretically (of order 

𝑉𝑜× 𝜏, where 𝑉𝑜 is the initial speed and 𝜏 is the droplet dynamic relaxation time; Rosell-

Llompart et al., 2018). On losing their inertia, the droplets are seeded into more "centrally" 

located electrophoretic paths than in the intermittent mode case, leading to a narrower plume 

spread. The figure also shows that in the intermittent mode the sprays overlap at the edges, 

while sprays in the stable cone-jet mode are clearly separated. The crossing of different 

electrophoretic trajectories in the steady state is impossible for a mono-mobile charged 

aerosol (since the droplets' velocity vector equals the sum of the gas velocity and the product 

of electric field and the droplet's electrical mobility – constant for the mono-mobile aerosol-, 

and both of these vectors are uniquely defined in space). Therefore, the overlapping of the 

intermittent sprays is either due to sprays falling on different planes (more likely) or due to 

intermittent changes in the electric field recorded in the single long-exposure image (less 

likely).  

This experiment also shows differences in the repulsion between the sprays in the different 

modes. The sprays in positions -2 and +5, are clearly re-oriented (repelled more) after the 

transition, reflecting that the space charge in the space occupied by sprays -1 to +4 has 

increased when they go from intermittent to steady cone-jet mode. On the other hand, the 
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sprays in cone-jet mode in positions -5, -4, -3 are virtually identical before and after the 

transition.  

 

2.5.1 Spray patterns uniformity near minimum voltage  

Based on the calculations from section 2.3, we would expect to find two distinct regions in a 

very long linear array of electrospray emitters (at least, in the backplate-and-collector 

"condenser" configuration, considered here): An "inner" region, in which the sprays are 

unaffected by the actual length of the array, and two "outer" regions, located at either end of 

the array, where "end effects" are concentrated. This is the result of the fact that the 

electrostatic repulsion from faraway sprays do not amount to a relevant force. To check 

whether this picture holds in reality, we have determined the sizes of these regions by following 

the evolution of the spray plumes as a function of the number of operated emitters for a given 

array 𝑁𝑜 . The comparison is made at near the "onset voltage" 𝑉𝑢𝑝 condition, namely at the 

applied  

 

 

Figure 2.10. Images of electrospray plumes from 11 emitters, a) The arrows indicate the 
emitters in the intermittent cone-jet mode where 𝑉𝑐  = -6.3 kV (𝐼𝑎𝑣𝑔 = 62.8 nA).  b) All the 

emitters transient to the steady cone-jet mode as the collector voltage was raised to -6.7 kV, 
(𝐼𝑎𝑣𝑔 = 135.5 nA). Array configuration B, flow rate per needle 𝑄 = 0.5 µL/min, solution SC900, 

distance from needle tip to collector 𝐻 = 8.3 mm, 𝑃 = 2.5 mm and 𝑇 = 21.9 °C. These images 
were obtained from darkfield photographs after inverting the tone scale. 

 

a)

b)
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voltage for which all the emitters in the array have attained the steady cone-jet mode from the 

intermittent mode. The recorded individual current traces have allowed us to accurately 

pinpoint these voltages. Fig. 2.11 shows the evolution as 𝑁𝑜  grows from 1 to the maximum 

possible number for two different size arrays, with 𝑁 = 7 and 11. At each condition the voltage 

is the one at which the last emitter in the array has stabilized into the steady cone-jet mode. 

Note that this voltage increases as 𝑁𝑜  is raised. This is probably due to the increased space 

charge. Similarly, the voltages in figure 2.11b are comparatively higher than in 2.11a for the 

same equal number of sprays, and this can be attributed to the larger liquid conductivity (𝐾) 

for the former causing increased space charge.  

The plumes geometry is symmetric about the central emitter (position 𝑖=0). The plumes are 

clearly separated (i.e., do not overlap), while the spray plume widths increase with emitter 

index 𝑖. For both arrays (Fig. 2.11) the central plume (𝑖=0) gets narrower as 𝑁𝑜  increases 

from 1 to 3, and from 3 to 5, but does not change appreciably from 5 to 7, and so on from 7 to 

9, and to 11 in the larger array (Fig. 2.11b). Similar trends are observed with the next emitter 

positions, 𝑖 = +1, -1, as their circumstance changes from being at the array edge to being in 

the "inner region" of the array. We observe that the "edge region" of the array defined above 

appears to occupy one or at most two sprays at either end of the array.   
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Fig. 2.11. Evolution of the spray pattern as a function of the number of operated 
emitters when the voltage is near the onset value (𝑉𝑢𝑝) in a 2.5 mm pitch array of 

a) 7 emitters, and b) 11 emitters. Conditions: (a) Solution = AW, end electrode 
configuration A, 𝐻 = 13 mm, 𝐿= 16 mm, 𝑄 = 0.76 μl/min. (b) solution = SC250, end 

electrode configuration C, 𝐻 = 10 mm, 𝐿 = 23 mm, 𝑄 = 1.3 μl/min. Common to (a) 
and (b): 𝑃 = 2.5 mm. The vertical lines visible on the (a) panels are reflections of 

the light source on the emitters. Inverted grey tone brightfield images. 𝑄 and 𝐼 are 
the average per emitter. 𝐼 is not available for the 7-emitter array runs. Some liquid 
accumulation is visible in panels (a).  

 

2.5.2 Symmetry breaking at high voltages 

At high enough values of the applied voltage (raised at fixed liquid flow rate), the Taylor cones 

bend away from the emitter axis. Meanwhile, the sprays adopt asymmetric static shapes, as 

shown in Fig. 2.12. At this condition, the cones retract, becoming small and difficult to 

visualize; while the light scattered from the various sprays differs in intensity despite being in 

the same mode. For these reasons, the individual current traces can be a useful tool for 

identifying the cone-jet mode.  

Non = 5
VC = -7.61 kV
I = 154 nA
T=27 °C

Non = 9
VC = -7.73 kV
I = 150,9 nA
T= 28°C

Non = 7
VC = -7.69 kV
I = 145,9 nA
T= 27°C

Non = 11
VC = -7.69 kV
I = 148,7 nA
T= 27°C

Non = 3
VC = -6.95kV
I = 147 nA
T= 27°C

Non = 1
VC = -7.01 kV
I = 142 nA
T=27 °C

Non = 1
VC = - 6.4 kV

Non = 5
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Non = 7
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As discussed in section 2.3, when the voltage is raised at constant flow rate, the Taylor cone-

jet momentarily experiences an increased electric pull, and the cone becomes shorter 

("retracts" towards the capillary). Simultaneously, since the droplets' speeds increase (while 

the droplet mobility is not significantly affected), the spray space charge is reduced, hence 

reinforcing the field strength in the cone-jet region. On further increases in applied voltage, the 

cone-jet retracts further, but eventually must tilt. Tilting of the Taylor cone is a familiar 

phenomenon in conventional electrospraying from single emitters without extractor. Yet to our 

knowledge the underlying mechanism has not been discussed in the literature. We know that 

the specific direction of the jetting is repeatable in each experiment, but we ignore what 

determines it. We may list as potential factors: (i) imperfections in the emitter leading to 

asymmetries in the liquid flow, and (ii) asymmetries in the electric field surrounding the Taylor 

cone (the so called "far field"). Category (i) includes both imperfections at inner emitter 

surfaces which can induce asymmetric hydrodynamics, and different outer emitter morphology 

and/or composition which can induce non-symmetric wetting conditions, influencing the 

contact line. The use of a linear array allows us to probe into the role of category-(ii) factors, 

i.e. the asymmetries in the electric field. We can see in Fig. 2.6b that the electric field is slightly 

more intense on the two "exposed" sides of the emitter (angles ±𝜋/2) than on its "within array" 

sides (angles 0 and pi). In addition, emitters closer to the array edge experience stronger field 

(Fig. 2.6a and b). Finally, the field may be influenced by emitter misalignment.  

We have used stereoscopic imaging to determine the direction at which each of the jets aims, 

as shown in Fig. 2.13. The array was not perturbed between the two experiments; the only 

difference in configuration being the height of the emitter ends relative to the collector plate 

(𝐻). Panels (a) and (b) show the front and rotated views of the sprays. These images are used 

to determine the  (𝛥𝑥, 𝛥𝑦, 𝛥𝑧)  location of a point on the jet relative to the center of the tip of its 

emitter. The point on the jet is chosen in all cases to be relatively far downstream from the 

Taylor cone, near the end of the straight section of the jet, before it "flares out" as a spray. 

Therefore, it may be located downstream the actual jet breakup point. These "jet" coordinates 

are then plotted with the (𝑥, 𝑦) positions of the emitters in the top views of panel (c). The 

emitters' coordinates are independently obtained from a bottom view photo of the emitter array 

taken in absence of liquid and voltage (not shown), obtained by means of a mirror at 45o from 

the camera's optical axis. A rotated view of a low voltage condition for which the sprays are 

straight is provided in Fig. 2.13d for comparison. Fig. 2.14 shows another case. 

Comparing panels (c) between Figs. 2.13 and 2.14, we find that the jets' positions relative to 

the emitters are very similar with only one exception (𝑖 = -4), and that they do not follow any 

symmetric pattern about the central emitter. To understand how the jets "choose" a particular 
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direction, it helps to analyze each side of the array separately. On the left side, the emitters' 

misalignments and jet directions follow a zig-zag pattern (except for the end emitter, 𝑖 = -5, in 

Fig. 2.13), and are correlated. The jets' are deflected toward the same side as their emitter 

misalignment in the 𝑦-direction. This suggests that the emitters' misalignments distort the 

electric field sufficiently. On the right side of the array, the emitters are aligned better, and this 

may explain why there is no zig-zag pattern in this case, as their jets mostly aim toward one 

side of the array (𝑦<0). Therefore, other factors are at play. This experiment does not resolve 

what these factors are, but may be related to the emitter geometry, as mentioned earlier, or 

wetting. That the electric field is not the sole factor can be seen by the fact that many jets point 

toward the array center, while the electric field should be pointing outward (see section 2.3.1).  

 

 

 

Fig. 2.12. Composition of a bright-field image (top) and the tone inverted dark-field image 

(bottom) of the linear array. Parameters 𝑉𝑐 = 9.17 kV, 𝐻 = 10 mm, solution= SC250, 𝑇 = 27.1 

°C, 𝑄 =0.6 μl/min, 𝐼 = 99.5 nA (𝑄 and 𝐼 are per emitter.).  
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Fig. 2.13. Stereoscopic reconstruction of the azimuthal angle of the cone-jet in a high voltage 

situation for 11-emitters array (𝑃 = 2.5 mm, 𝐻 = 7.9 mm). a) Front view. b) View rotated to the 

right (by 74 off the front-view optical axis). c) 𝑥-𝑦 positions of the emitters (circles) and the 

microjets (crosses) (see text). 𝑄 = 0.6 μl/min, 𝑉𝑐 = -8.39 kV, 𝐼= 79 nA, 𝑇= 24°C, solution = 

SC250. d) Rotated view of a lower voltage condition, shown for comparison (𝑉𝑐 = 6,2 kV, 𝐼 = 

83 nA, other parameters being the same as for b)). (𝑄 and 𝐼 are per emitter.) 

Fig. 2.14. Stereoscopic reconstruction of the azimuthal angle of the cone-jet in a high voltage 

situation for 9-emitters array (𝑃 = 2.5 mm, 𝐻 = 10 mm). a) Front view. b) View rotated to the 

right (by 61° off the front-view optical axis). c) 𝑥-𝑦 positions of emitters (circles) and the 

microjets (crosses) (see text). 𝑄 = 0.5 μl/min, 𝑉𝑐 = 7,23 kV, 𝐼= 82 nA, 𝑇= 28°C, solution = 

SC250.  

a)  Front view (8.39 kV) (θ = 0o)

d)  Rotated view of low 

voltage condition (6.2 

kV) (θ = 74o)

c)  Needles (circles) and microjets (crosses) (8.39 kV)
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2.6 Cone-jet mode transitions near the onset voltage 

The transition from intermittent to steady spraying happens at a critical condition of the electric 

field acting on the liquid in the Taylor cone region. The changes in spraying mode can be 

identified for each emitter as jumps in current (see Fig. 2.2). This capability has allowed us to 

investigate how uniform the electric field stays along the array, for different arrays and 

operating conditions. In addition, we address whether the electric field in the central region of 

the array becomes bounded as the number of operated sprays is increased as done in Fig. 

2.11.  

2.6.1 Taylor cones stabilization and destabilization sequences 

within the array 

Using the 11-emitter array with end-electrode configuration C, we have studied the order in 

which the spraying stabilizes in the cone-jet mode for each emitter in the array, as the applied 

voltage is raised, and as a function of the number of emitters being operated, 𝑁𝑜 . These 

configurations always include the center emitter, and 𝑁𝑜  attains values 1, 3, 5, …11. For each 

configuration, we have scanned the collector voltage to determine 𝑉𝑢𝑝, the onset voltage for 

the steady cone-jet spraying at each emitter, and once all of the emitters are in steady cone-

jet mode we have lowered the voltage to determine, 𝑉𝑑𝑜𝑤 , the minimum voltage at which the 

steady cone-jet mode is no longer be sustained and the intermittent mode sets in. 𝑉𝑢𝑝 and 

𝑉𝑑𝑜𝑤  do not coincide, due to a hysteresis well known for individual emitters (Smith, 1986). 

For convenience we refer to positive voltage values, i.e. minus the collector voltage values. 

Fig. 2.15 shows the 𝑉𝑢𝑝 versus emitter position for different combinations of spraying-emitter 

number 𝑁𝑜 , flow rate per emitter 𝑄, and emitter-to-collector distances 𝐻. We find that the 

onset voltage at each position in the array increases with 𝑁𝑜  and with 𝑄. This result implies 

that the spray electric charge (space charge), which increases with these parameters, 

influences the electric field strength at the Taylor cones. As more sprays are turned on, the 

repulsive force exerted by the sprays on the Taylor cones increases, thus weakening the 

electric field in that region, which must be overcome by an increment in the voltage to achieve 

enough field strength to sustain a stable Taylor cone. However, for the centrally located 

emitters (𝑖 = 0 and ±1), this effect weakens or disappears as the number of sprays becomes 

large enough. For them, the onset voltage tends to a plateau value. When the plateau 

condition is approached by an emitter, the repulsive forces from the additional sprays 

contribute negligibly to the weakening of the field at the emitter in question. These 

observations confirm the existence of two kinds of regions in long arrays, an inner region and 

two outer regions near the array edges.  
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We also confirm that the electric field is stronger near the edges of the array, since this is 

where the transition to the steady cone-jet mode is met first. (Note that the voltage differences 

between array center and edge would get wider if the passive end electrodes were absent, 

possibly even preventing stabilization of the entire array.) The electric potential difference at 

the mode transition depends on any factors influencing the electric field, including the 

geometry of the electrodes and the presence of space charge. Therefore, in a linear array 

without extractor plate such as ours, it is not surprising to detect this transition at different 

voltage values for different emitter positions.  

The role played by space charge is revealed also in the transient behavior of the sprays at the 

voltages preceding complete stability, while still some of the sprays are in the intermittent 

mode. In this "transient regime" sprays flip-flop transiently into and out of the cone-jet mode. 

As one spray in intermittent mode becomes stable, a neighboring spray already in that mode 

will feel a decrease in field strength due to the increased space charge, and may therefore 

revert to the intermittent cone-jet mode. Such cross-talk between sprays is more pronounced 

at large 𝑄 and 𝐻 (due to the increased space charge), revealed in more frequent "flickering" 

of the sprays, and the sudden global stabilization of the array when a critical value of the 

voltage was reached. This is the case for 𝑄 =1.9 μL/min and 𝐻 = 10 mm at which 𝑉𝑢𝑝 is flat 

across much of the array (Fig. 2.15).  

Figure 16 shows the onset voltage at which all the emitters have stabilized for a given 𝑄, as a 

function of number of operated emitters, at three different 𝐻. This onset voltage tends towards 

a plateau as expected from the trends observed in Fig. 2.15. For collector distance 𝐻 of 13 

mm, at high enough voltage a corona and in some cases, spark discharges were audible. 

Although these took place at some unknown location on the collector electrode edges, they 

interfered with the current measuring equipment. Therefore, as a precaution, for these 

experiments the current data acquisition was disconnected, and the mode transitions were 

identified by changes in the Taylor cones and the spray plumes. However, no gaseous 

discharges were present for the data points shown.  

Fig. 2.17 shows 𝑉𝑑𝑜𝑤  for similar parameters. We would expect to find similar trends as for 𝑉𝑢𝑝 

except for a space-charge dependent shift in the transition voltages, responsible for the well-

known hysteresis mentioned earlier. The transition is observed sooner (i.e. at higher voltage) 

in the central emitters, where the field is weaker and the Taylor cones are more elongated 

(Fig. 2.9c), than at the outer emitters, where the field is strongest. Unlike for 𝑉𝑢𝑝, we do not 

find for 𝑉𝑑𝑜𝑤  in Fig. 2.17 a monotonous dependence on the number of operated emitters. 

Here too, we observe in some cases that the transition of a single spray causes the 
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destabilization of neighboring sprays in cascade, resulting in the flat portions of the curves 

shown in Fig. 2.17. In this case, destabilization in one spray leads to reduced space charge, 

and therefore the field strength intensifies at nearby spraying emitters. However, instead of 

reinforcing the steady cone jet mode, the sudden intensification of the electric field causes 

destabilization. Perhaps such sudden perturbations result in the emission of a large fragment 

from the meniscus causing a drop in the field at the liquid meniscus, which then transitions 

into the intermittent cone-jet.  

 

Fig. 2.15. Stabilization sequence into the cone-jet mode for the 11-emitter array, as minus 
the collector voltage is slowly increased, for different 𝐻 and 𝑄 values. The graphs show the 
voltage (minus voltage applied on the collector plate) at which each emitter transitioned into 
the steady cone-jet mode (𝑉𝑢𝑝) versus emitter position 𝑖. Liquid= SC250, configuration C. 𝑄 

is the flow rate per emitter.  
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Fig. 2.16. Onset voltage for the 11-emitter array versus number of operated emitters at 
different emitter to collector separations. The flow rate is the same for all (1.35 μl/min). 

 

Fig. 2.17.  Destabilization sequence from the cone-jet mode for the 11-emitter array, 
as minus the collector voltage is slowly decreased, for different 𝐻 and 𝑄 values. The 
graphs show the voltage (minus voltage applied on the collector plate) at which each 
emitter transitioned from the steady cone-jet mode to the intermittent cone-jet mode 
(𝑉𝑑𝑜𝑤 ) versus emitter position 𝑖. Liquid= SC250, Cconfiguration C. 𝑄 is the flow rate 
per emitter. 
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An interesting qualitative observation is that the array can be stabilized at a lower voltage than 

𝑉𝑢𝑝. While the array is operating in the intermittent cone-jet, at a voltage a few hundred volts 

lower than 𝑉𝑢𝑝 (but larger than 𝑉𝑑𝑜𝑤 ), a sudden gush of air is directed towards it, strong 

enough to blow the sprays away from under the emitters. The array recovers itself directly into 

the steady cone-jet mode (see complementary video data). We believe that the space charge 

below the emitters was momentarily carried away, causing the local field at the tip of the 

emitters to reach the required value to enter the stable cone-jet mode stability region. Due to 

hysteresis, the array remains stable (Smith, 1986; Cloupeau and Prunet-Foch, 1989).  

2.6.2 Role of electrical conductivity (𝑲) on the onset voltage (𝑽𝒖𝒑) 

The role of space charge also becomes apparent when changing the electrical conductivity of 

the liquid, 𝐾 When 𝐾 is reduced, the transition voltage 𝑉𝑢𝑝 from intermittent to steady spraying 

is reduced significantly. This is shown in Fig. 2.18 for the 11-emitter array, which compares 

data obtained with liquids differing in 𝐾 by a factor of ~8. The comparison is made at equal 

flow rate per emitter (𝑄) and emitter-collector separation (𝐻). In Fig. 2.18b, we observe similar 

patterns of the emitter transition voltage for the two 𝐾 values, except for the shift to lower 

voltages as 𝐾 is decreased. Fig. 2.19 shows that the plume configurations obtained with these 

liquids are strikingly different.  

We interpret the reduction in 𝑉𝑢𝑝 when 𝐾 is decreased as caused by differences in the spray 

space charge. The electric field required to sustain the Taylor cones should be nearly the 

same for both liquids, as their surface tensions are similar. However, the contribution from the 

space charge to this electrical field is different depending on K, being lower for the low-𝐾 liquid. 

This is due both to the lower amount of charge, and the fact that it is distributed farther away 

(Fig. 2.19). Order of magnitude analysis considering charge conservation under steady state 

shows that the electrical charge contained in a spray is proportional to the electrical current 

and inversely proportional to the applied voltage and the electrical mobility of the droplets. The 

reduction in 𝐾 causes a decrease in electrical current (per emitter) from 149 to 43.7 nA, a 

factor of about 3.4, which is close to the square root of the electrical conductivity values (2.8), 

in approximate agreement with scaling laws proposed in the literature (Fernandez de la Mora 

& Loscertales, 1994; Gañán-Calvo et al., 1997; Rosell-Llompart et al., 2018). The electrical 

mobility of the droplets can be compared for the two conductivities considering the scaling 

laws of droplet charge and size, resulting in larger mobility for the low 𝐾 case. Both of these 

effects lead to higher space charge for the larger 𝐾 case, despite the difference in applied 

voltage.  
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Fig. 2.18. Effect of liquid electrical conductivity for a 11-emitter array, (a) on the transition 
voltage 𝑉𝑢𝑝 versus number of operated emitters, and (b) 𝑉𝑢𝑝 versus emitter position 𝑖 in the 

array. Parameters: 𝑄 = 1.35 μl/min (per emitter), 𝐻 = 10 mm, 𝑃 = 2.5 mm and end electrode 
configuration C. Reported conductivities are from Table 2.2. For (b) the current per emitter 
was approximately uniform along the array, with mean values of 149 nA for the high 
conductivity liquid (SC250) at 27 ºC, and 43.7 nA for the low conductivity liquid (SC025) at 
24.5 ºC.  

 

Fig. 2.19. Effect of conductivity on the electrospray plume shapes, for the same flow rate per 
emitter (1.35 µL/min) and array geometry (configuration C with equal emitter tip to collector 
distance, 𝐻 = 10 mm). In a) the solution is SC250, with 𝐾= 0.0023 S/m, 𝑉𝑐 = -8.39 kV, 𝑇 = 27 
°C, current per emitter 𝐼  = 149 nA. In b) the solution is SC025, 𝐾 = 0.00029 S/m, 𝑉𝑐 = -5.78 

kV, 𝑇 = 23°C, 𝐼 = 43.7 nA. Images are composites of brightfield and darkfield images in 
graytone.  

a) b)

a.  2.3 × 10-3 S/m

b.  2.9 × 10-4 S/m
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2.7 Conclusions  

The scaling up of the electrospray process is not trivial, as it involves operating multiple Taylor 

cones in a small space in the presence of strong electrostatic fields. The aim of this study is 

to define the conditions of robust operation for extractor-free linear arrays of electrosprays in 

simple, and dense geometries. By "simple" we mean geometries in which only two electrodes 

are used: the spray emitters and a counter electrode. And by "dense" we mean that the 

separation between the counter electrode and the electrospraying emitters is large compared 

to the spacing between adjacent emitters (pitch). Our approach excludes the use of so-called 

extractor electrodes, which can compromise reliability. We include a backplate, which is a 

conducting plate set behind the emitters and set at their same electric potential (voltage). The 

two plates define a parallel-capacitor gap that hosts the linear array and sprays, and shields 

them from external perturbations.  

First we have gained physical insights into the question of scalabilility from electric field 

computations of arrays of lines-of-charge (section 2.3). These computations have revealed 

that the electric field at the edge of the array does not increase indefinitely as the array grows. 

Instead, the field converges towards a plateau value as the number of lines increases, and 

such plateau is approached when the width of the array is as small as the plate's gap (𝐻). We 

have shown also that image charges in the two plates speed up the convergence of the electric 

field. We also reach this conclusion for 2D square arrays of lines-of-charge.  

Next, we have numerically solved the electric field for linear arrays of emitter tubes protruding 

from the backplate, in absence of space charge (sprays), to identify if array-end non-spraying 

electrodes are needed in the array-in-capacitor design. We have found that at the two last 

positions at the extremes the electric field is significantly stronger and azimuthally less uniform 

than at the other positions. Therefore, we have identified as optimal array configurations the 

ones having on either end two non-spraying electrodes, positioned at the same pitch as the 

spraying emitters. We have implemented experimentally several configurations. Our most 

robust one has a passive (non-spraying) emitter in the innermost position and a much thicker 

electrode in the outermost position to prevent the appearance of gas discharges at that 

location. We have estimated the difference in electric field strength at the Taylor cones 

between the central and edge spraying emitters of only a few % (section 2.3.1).  

By acquiring the individual time traces of the electrical current transmitted through each emitter 

separately, we have established two voltages when the spraying mode changes at each 

location on the array: The onset voltage, reached when the steady cone-jet mode is 

established as the applied voltage difference is increased while in the intermittent mode, and 
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the minimum voltage, the voltage when the steady cone-jet stops after the voltage difference 

is lowered. We have found that near the onset voltage the sprays are straight and are similarly 

shaped for the central locations of the array, whereas the sprays progressively expand near 

the edge of the array (section 2.5.1). In another experiment (section 2.6.1), we have studied 

the onset voltage progression as the number of operated emitters is increased in a fixed array 

from 1 to 11, by turning on only the central emitter, and progressively adding adjacent emitters. 

We have found that the onset voltage depends on the number of operated emitters, because 

the spray space charge reduces the electric field in the Taylor cone region. However, the onset 

voltage reaches a plateau for the innermost emitters. Its value increases when the electrical 

conductivity is increased, as expected from the increase in space charge (section 2.6.2). We 

conclude from these experiments that the electrostatic field experienced by the central region 

of very long arrays is not dependent of how large the array is. So, the array is expandable 

indefinitely while the voltage is bounded, averting gas breakdown discharges. We have shown 

this for arrays characterized by a small pitch of 2.5 mm (4 emitters/cm) and a collector distance 

as large as 13 mm.  

We have also reported on "symmetry breaking" of the electrosprays, observed at high enough 

voltage, caused by the tilting of the Taylor cones (section 2.5.2). Tilting of a Taylor cone is a 

familiar phenomenon in conventional electrospraying from single emitters without extractor. 

Here, we have used stereoscopic imaging to identify the directions at which the microjets are 

pointing. We have found that those directions correlate with the slight emitters' misalignments 

when they have a zig-zag pattern, with the jets roughly pointing in the direction of strongest 

field strength. In absence of a pattern, other factors are important in this phenomenon, as, 

sometimes, the array end sprays point inward toward the array, instead of outward where the 

field is most intense. These experiments suggest that symmetry breaking may be exploited to 

actively control the collection of the generated droplets/particles.  
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Use of linearly multiplexed electrosprays to produce 

PVP-curcumin submicron particles, collected on 

paper and Si substrates. 
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Abstract 

 

A Linear Electrospray System (LEsS) was implemented for the production of polymer 

micro/nano particles loaded with an active pharmaceutical substance (API). Below each 

emitter the particles accumulated over time, produce 2D-ovoidal deposition spots due to the 

electrostatic interaction between the spray-plumes of neighboring emitters. The spots 

diverge from the array axis reflecting the misalignment of the emitters within the linear array. 

An horizontal electrode configuration implemented to restored the symmetry of the 

deposition spots potentially facilitating the collection of the produced particles. Apart from a 

silicon wafer that was used, to collect particles we demonstrate for the first time that it is 

possible to collect particles directly on paper, at ambient conditions. Paper can be used to 

facilitate collection of electrospray particles on roll-to-roll process and can present interest for 

other applications. Position sensitive analysis at areas of interest (AOI) in each spot was 

performed using Scanning Electron Microscopy (SEM) to identify the distribution of sizes and 

morphology of the deposited micro-particles. Finally, the API used throughout this study was 

turmeric, a potent anti-inflammatory natural substance that is non-water soluble and 

therefore has low bio-availability. We propose a formulation of a highly hydrophilic polymer 

(PVP) to formulate below 1-micron particles, for improved solubility and subsequently 

bioavailability of our API.  

Keywords: Electrospray multiplexing, Curcumin nanoparticles, bioavailability, water 

solubility, pharmaceutical carriers, paper, electrospray deflection 

 

3.1 Introduction 

A key feature of micro processed materials is the high surface to mass ratio (Rajiv Saini et 

al. ,2010). Electrospray provides a very efficient way of converting electrical energy into 

surface energy, electrostatically inducing break-up of liquids into droplets. Furthermore, the 

size of the produced droplets, is accurately dictated by the supplied liquid flow rate (Rosell-

Llompart et al., 2018). This allows precise control over droplet size, but comes out as a 

shortcoming of electrospray systems when high throughput is required. Maintaining the 

required flow rate while increasing the throughput is resolved by the multiplexing of the 

electrospray emitters.  

Highly charged liquid droplets have direct uses, namely, mass spectrometry (Fenn,1989), 

satellite propulsion (Demmons,2016) bioprinting (Eagles et al., 2006), cooling systems 
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(Deng et al., 2011), environmental forensics (Rostad et al., 2007), wind energy harvesting 

(Djairam et al. 2014), sanitization (Pyrgiotakis et al., 2016, Jaworek et al., 2006) etc.  

On the other hand, polymeric liquid solutions in combination with electrospray droplet drying, 

is a straightforward method to create micro/nano particles (Hwang et al., 2012, Bodnár et al., 

2018) of very narrow size distributions, or continuous film coatings. Moreover, an Active 

Pharmaceutical Ingredient (API) can be combined with polymeric solutions, upgrading 

electrospray drying into a powerful technique for micro/nano-sized pharmaceutical carrier 

formulations (Mehta et al., (2017). Even polymer/API systems with no common solvents can 

be made into encapsulations using coaxial electrospray emitters, where layered shell - core 

particles are formed (Loscertales et al. 2002, Lee et al. 2011). Tailored sized particles can 

penetrate selectively the body physiological barriers from the epidermis down to the cellular 

membrane, for targeted drug delivery (Chauhan et al., 2012).  

The oral administration route is one of the most convenient to use as it is not intrusive for the 

patient. In this case not only the size of the particle formulations but also the aqueous 

solubility of the API/polymer formulations affecting API bioavailability (Williams et al., 2013). 

The aim is to minimize the administered API dosage, reducing side-effects and increase 

residence time in systemic blood circulation. More than 50% percent of the newly developed 

APIs are BCS class II compounds, meaning they suffer from low water solubility. This led to 

intense research in the field with huge interest to the pharmaceutical and chemical industry 

(Ting et al., 2018). Out of several strategies (Williams et al., 2013) for improving water 

solubility electrospray (Es) can be directly applied for API nano/micronization, 

simultaneously with the solid dispersion method where, the hydrophobic API is conjugated to 

a water-soluble polymer (Zelikin A.,2018). Other more elaborate strategies that may also be 

applied through Es for the same purpose is particle shape engineering Zhao et al., 2017, 

Bodnár et al., 2018), crystal engineering (isomer) (Patil et al., 2017, Rietveld et al., 2010) 

and quite possibly charge assisted surface functionality modification as has been 

demonstrated for electrospun fibers (Stachewicz et al., 2012).   

Curcumin was chosen as our model API due to its great promise as a drug (Bharat et al., 

2007, Jurenka et al., 2009, Mouthuy et al., 2017, Wang et al., 2015, Cartiera et al., 2010), its 

aqueous insolubility and its general handling safety, classified as GRAS- (Generally 

Recognized As Safe by the FDA (Gad et al.,2014). 

Here we propose a linearly multiplexed system (LEsS) previously developed and studied by 

our research group (Sochorakis, N., et al, 2018) for the scaled-up production of polymeric 

particles through droplet drying. These particles are loaded with a potent API (curcumin) that 

suffers however from low water solubility. The proposed formulation of a water-soluble 
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polymer combination with the micron sized of produced particles, is a single step process to 

increase water solubility and therefore Curcumin bioavailability. The process can be easily 

adapted to other API formulations and the whole system is up scalable without bound (see 

chapter 2). We propose, for the specific system, a novel design horizontal electrode, parallel 

to the array axis, that creates a uniform deposition pattern on the collector surface. A paper 

(non-conducting) fibrous collector, never proposed before, to our knowledge, for electrospray 

systems has been used as an alternative collection surface. Paper is a trending material 

promoted for applications such as printed sensors, microfluidics, flexible electrodes etc. (Lan 

et al., 2013, Carrilho et al., 2009) due to its low price and popularity. Other non-conducting, 

absorbent flexible materials (fabrics,garments etc) may be also eligible for Es, opening new 

perspectives in the field. 
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3.2 Materials and methods 

 

Polyvinylpyrrolidone (PVP), (CAS Number 9003-39-8, average Molecular weight (Mw) 

40kDa, ethyl cellulose (EC), (4 cP viscosity, 48% ethoxyl content, density 1.14 g/ml), 

butanone (Sigma–Aldrich, ACS reagent grade),rhodamine 6G (Rh6G, Sigma–Aldrich) 

ethanol (laboratory reagent 96%, CAS Number 64-17-5), acetic acid glacial (CAS Number: 

64-19-7) and curcumin/Turmeric powder (CAS Number 458-37-7, Mw 368.38 gr/mol) were 

purchased from Sigma-Aldrich and used with no further purification. The solutions prepared 

for the experiments are shown in  

Table 3.1. 

 

 

Figure 3.1: This is a schematic of a single emitter Es setup that has been used for trial 

solution testing.  

A single emitter Es setup was deemed necessary to screen trial solutions, before porting to 

the Linear Electrospray System (LEsS). For example, distance from tip to collector (H), 

solution composition and flow rate (Q) are core parameters which control droplet drying, for 

the production of particles, that can quickly be screened prior to LEsS testing. Additionally, 

during the same tests, we get an estimation of the voltage range within which, for each set of 

screening parameters, the single Es operates in the stable Taylor cone-jet mode. Figure 3.1 

shows the emitter is of the same dimensions as the ones used in the multiplexed system. 

The “collector slide” is the material inserted for a limited amount of time to collect the 

generated particles. The “spraying emitter” is connected directly to the positive channel of a 

high voltage power supply and the “collector electrode” grounded. The liquid is supplied by a 

syringe pump (KDS legacy 100) with dial-in flow rate input panel. A positive voltage is 

applied at the emitter producing positive Es. 
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Figure 3.2: LEsS01 schematic. The material where the particles are collected is inserted 
between the collector and the emitters always in contact with the collector plate.  

 

The electrospray emitters are 100 mm long sections of 304 stainless-steel capillary tubing 

(Tubos Capilares, Spain; O.D. 400 μm, I.D. 160 μm) flat-cut and polished on their exit end. 

They protrude out of the backplate, which is a perforated metal plate held parallel to the 

collector plate. The support structure rests on the collector plate with four Delrin© legs which 

sit on insulating spacers used for controlling height (not shown). Initially a rectangular brass 

plate was used as collector. The collector plate and backplate are sized 85 x 235 mm, 

defining a parallel-capacitor in which the emitters and the electrosprays are shielded from 

external electrical conditions and perturbations. The emitters are sandwiched in a sub-

assembly consisting of two Delrin© mirror blocks with precut groves, press fit together by 

two screws (not shown). Additional electrodes are placed at the ends of the array, as 

described later. For the 11 emitters at 2.5 mm pitch, the standard deviation for the emitter 

separations (along the array or x-axis) is only 0.09 mm, and that for the cross-array (y-axis) 

displacements from a perfect line is only 0.06 mm. 

The electric field necessary for electrospraying is provided by a negative high voltage (HV) 

power supply connected (Ultravolt, HV-RACK-4-250-0032, 0 to -15 kV range) to the collector 

through a high voltage-rated 250 MΩ safety-resistor. We continuously monitor the applied 

electric potential at the collector Vc by means of a HV probe (Testec, TT-HVP-40, 109 Ω), as 

shown in Fig. 3.2.  
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The emitters and the backplate are earth-grounded, either through a nanoammeters(s) of 

homemade design housed in a shielded box, or directly on the return of the power supply. 

The output voltages from the nanoammeters(s) and the high voltage probe are fed to a 

National instruments PCI 6221 DAQ card on a desktop computer. A negative high voltage is 

applied on the collector plate in order to obtain a positive electrospray, as in the single 

emitter setup (Fig. 3.1). The schematic of the 7-emitter setup is shown in Fig. 3.2. This was 

the setup we used initially where the syringe pump (Harvard apparatus phd 2000) was 

modified to accommodate up to 7-syringes. In the experimental part presented later all the 7-

spot polymer particle depositions (composed of EC-rhodamine) were generated using this 

setup. The current was globally recorded for all the emitters through a single nanoameter. 

Later-on to increase the number of emitters and get rid of the syringe pump minute 

fluctuations we re-designed the liquid feed system as well as multiplexed the current 

monitoring system, but kept the rest of the setup essentially intact.  

The individual nanoammeters -1 per emitter- allow us to distinguish between spray modes at 

each sprayer, record and diagnose system stability. Additionally, the pressure driven liquid 

feeding system, gives us the advantage of low cost scalability and is described in chapter 2 

materials and methods (section 2.2). The later was used for all the experiments related to 

PVP-curcumin polymer particle formulations.   We used two methods to calculate the 

volumetric flow rate for our experiments. The first method is based on a direct calibration 

curve of gas pressure vs volumetric flow rate. Another method for estimating the volumetric 

flow rate for each experiment was grabbing images of the pendent drops formed at the tip of 

the emitters with time tags and then using the ImageJ  “Pendent drop” plugin (Daerr & 

Mogne, 2016) to estimate the droplet volume/unit time for each experiment. The necessary 

information can be extracted by the sample image of a growing drop, shown in Fig. 3.3. 
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Figure 3.3: Time evolution sample stack of pictures of the pendent drop (10 sec intervals), 

that was used to estimate the volume and subsequently the volumetric flow rate using 

ImageJ software. 

  

The current traces are indicative of the Es mode (dripping, intermittent jet, stable jet). In 

addition, the current is a monotonous function of flow rate. Therefore, differences in current 

can be used to detect differences on the hydrodynamic resistance of the supply lines, or 

occasional changes caused by partial clogging.  

Es protocol 

Electrospraying was carried in laboratory air, whose temperature (T) and relative humidity 

(between 25% and 40% for all the experiments) was determined with a Vaisala HM34 meter. 

A typical experimental run starts with setting the gas pressure to achieve the desired flow 

rate. Sometime (minutes) is required for the pressure to stabilize and for the liquid to fill the 

lines. Once the flow rate is steady, the data acquisition is initiated, and the applied voltage is 

ramped-up manually and pictures are shot frequently. The main spraying modes which we 

differentiate in the experiments described are the intermittent cone-jet and the steady cone-

jet modes (Rosell-Llompart et al., 2018). The former one, also known as pulsating mode 

(Smith, 1986; Bober & Chen, 2011), is characterized by a lower current level, and is 

encountered before the steady mode, as voltage is increased.  

For the collection of particles, a slide (weighed before and after the deposition) was swiftly (< 

1 sec) positioned under the Es emitters always in contact with the collector electrode using 

glass insulating rods. The collection time was monitored with a hand chronometer. A camera 

with a macro lens, and in some cases current measurements, ensured that for the whole 

duration the sprayers were operating. After the collections the slides were swiftly retracted 

over the same path as the slide insertion. The samples collected were photographed under 

the same lighting conditions and then transported to the SEM where they were sputtered 

with a gold layer from the operating at 30mA for 180 sec (~40nm) and the samples were 

analyzed in the SEM to confirm the particle formation and obtain info about size distribution, 

shape, morphologies etc. 
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For some of the experiments a cylindrical copper wire with a diameter of 1.1 mm, termed as 

the “horizontal electrode” was attached to the backplate. The horizontal electrode was at the 

same height as the emitter tips, parallel to and at 2,5 mm distance from the emitter axis. 

 Two different types of collector slides were used Si wafer (Siltronix, 0.525 mm thickness, 1-

30 ohm resistivity, P-Bor 100) and cellulose filter paper (0.16 mm thickness, 0.0085 

gr/cm^2). 

 

Imaging of sprays and cones  

The spraying modes could be identified by following the current traces as well as the liquid 

meniscus shape at the exit of each emitter tube. The meniscus is imaged best under 

brightfield conditions, for which a LED backlight was positioned behind the emitter array, and 

the array was imaged from the opposite side (front view). In this case, image contrast arises 

from attenuation of light by the cones, while attenuation by the sprays is small. To image the 

spray plumes darkfield illumination was used, whereby image contrast arises from light 

scattered (rather than attenuated) by the droplets. In this case, the backlight was replaced by 

a black velvet cloth, which provided a dark background, while the sprays were illuminated 

from two white LED spot lamps positioned symmetrically at roughly 45º from the array mid 

plane. Additional views of the sprays were taken at an angle using a second camera, to give 

a perspective of the directions of the micro-jets. Front view images were shot with an 

OLYMPUS PEN E-PL7 photo camera with a Nikkor macro lens (60 mm, 1:2.8). Side images 

were taken with an OLYMPUS PEN EP-1 photo camera and a ZUIKO 14-42 mm zoom lens. 

Most of the images we show later are enhanced for brightness and contrast, while some are 

presented with their tone scale inverted ("negative images") to better show the spray outline. 

For evaluating the linear alignment of the emitters in the LEsS a bottomview of the emitters 

was captured using a mirror and the OLYMPUS PEN EP-1 photo camera and a ZUIKO 14-

42 mm zoom lens as shown in Fig. 3.4. 
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Figure 3.4: The mirror method used to acquire images of the emitter tip positions without 

disturbing the emitter holder. 

Table 3.1 

Liquid solutions used in this work 

 

 

3.3 Results and discussion 

3.3.1 Single emitter  

The Es deposition spot (Fig.3.5) is shown to highlight the symmetric circular shape of the 

deposition that is typical for a single emitter setup operating in the stable cone-jet mode. The 

liquid jet emanating from the Taylor cone tip breaks-up into highly charged droplets. These 

droplets follow electrophoretic trajectories (axisymmetric) towards the collector electrode. 

During flight the droplets shrink as solvent evaporates and polymer residues are collected at 

the collector surface. The deposition spot is populated by the polymer residues and 

approximately visualizes the electrostatic field lines shape, penetrating the collector surface.  

Notice the visible halo on the periphery of the spot. This halo is in accordance to the 

X

x y

z

Mirror

Emitter

Solution
batch code

Solvent
1 

w/w 
(%)

solvent
2 

w/w
(%)

Solute
1 

w/w 
(%)

solute
2

w/w
(%)

conductivity
(μS/m)

BREC Butanone 98.99 NA 0 EC 1 Rhodamine 4.21x10-4 NA

EP
Ethanol

96% 67.13
Acetic
acid 22.1 PVP 10.4 NA 0 NA

EPCuPA1
Ethanol 

96% 49.97
Acetic
acid 46.06 PVP 2 Curcumin 2 NA

EPCuPA2
Ethanol 

pure 82.45
Acetic
acid 14.21 PVP 3.25 Curcumin 0.085 15

*NA = not available
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deposition thickness profile discussed in Bodnar et al., 2013 as well as Rodriguez-Perez et 

al., 2007 and mostly holds the satellite droplets generated during jet-breakup. 

 

Figure 3.5: A single needle deposition spot top-view, when no other emitters are operated at 

close proximity. Q=2μl/min, RH=40.1 percent, T=20.4 C, H=22 mm, solution BREC. Single 

emitter setup, applied voltage= 6.1 kV. 

Observation 1: In Fig. 3.6 the effect of the adjacent emitters, which only act as electrodes, is 

apparent by the deformed shape of the deposition spots. The deformations occur in the 

direction of the array axis, as expected, with the adjacent emitters affecting the axial -

symmetricity of the electric field around the operating emitter.  

 The paper deposition shape and overall appearance, is unexpected, as paper is a non-

conducting material that should accumulate charge and quickly deflect the droplets and 

destabilize the cone-jet (see supplementary video DFLCT of Es deflection over a Kapton 

insulating slide). At best we would expect a spot with many wet patches. However, the 

produced spot shapes are very similar to one another with the deposition on paper covering 

12% more area for the same depositing time.  

a.  b.  

Figure 3.6: LEsS configuration central emitter deposition, spot top-view, when adjacent 

emitters only act as electrodes. For (a) the collector slide is Si wafer (applied voltage=9.7 

kV) and for (b) the collector slide is paper (applied voltage=9.9 kV). The duration of the 

depositions was the same for both samples. The intermittent line represents LEsS axis 

direction. LEsS pitch P=2.5mm Q=7 μl/min, RH=28.1 percent, T=20.1 C, H=23 mm, 

solution=ECuPA. 
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All the experiments mentioned for paper were realized at ambient conditions of > 28% air 

Relative Humidity (RH). Water vapor absorption on the paper, may have permitted for 

sufficient charge drainage, to sustain the Es. Considering the paper a “bad” conductor would 

also explain the increase in area that depends on the charge dissipation mechanism (Bodnár 

et al., 2013). 

A simple experiment was conducted, where a square (1 cm^2) piece of paper was heated to 

100 °C Celsius and then moved to a precision scale and weighted over time in the laboratory 

environment. The paper increased ~2x in weight after 5 minutes. The same experiment was 

conducted after reheating to 100 degrees Celsius, measuring the conductivity along the 

diagonal line of the square paper which also increased ~2x after 5 minutes of exposure in 

laboratory air (RH=45%, T=24.3°C).  Even though the discharge mechanism is still under 

research we demonstrate here forth, experimentally that common filter paper succeeds as 

an Es collector.   This is an important finding as cellulose based platforms (paper) are 

intensively studied among many others, for applications in biosensors, antibacterial surfaces 

etc (Münch et al., 2018). 

3.3.2: LEsS emitter setup 

Electrostatic interactions are of outmost importance in a multiplexed Es system as not only 

adjacent emitters but spray plumes as well interact with each other. In our LEsS system the 

inter-emitter distance, namely the pitch (P) is a critical parameter as all the emitters lie in a 

single line. 

In both ends of the LEsS emitter line we used passive end-electrodes of different shapes 

and protrusions to control the cone tilting at the array ends aka “end effect” (chapter 2). The 

configurations used in this work are shown in Fig. 3.7.  

   

Figure 3.7. Configurations of array-end electrodes used in this study. Such electrodes are 

marked with a *, while the spraying needles show Taylor cones. The end electrode 

configuration is symmetric for both ends of the LEsS (right side shown). Emitter diameter (D) 

is 400 µm. 

 

A.

* ** * * *

B. C.

UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAY SCALE-UP FOR THE PRODUCTION OF PARTICLES OF PHARMACEUTICAL INTEREST 
Nikolas Sochorakis Saloustros 
 



60 
 

 

Figure 3.8: As the pitch is decreasing the deposition spots become distorted. LEsS of 7-in 

total- emitters, scale bars are 1 mm, Q=1.5 μl/min, RH=19 percent, T=28.9 C, H=20.3 mm, 

solution= BREC, parameters same for all depositions. 

Observation 2: The end electrode configurations influence the produced deposition spots as 

they suppress the outward expansion of the extreme spots and decrease the total deposition 

length (rows 1-3 of Fig. 3.8).  

A comparison between column 1 and 2 of Fig. 3.8 shows the effect of the pitch on the 

deposition spots under the same other parameters. For an inter-emitter pitch (P=4.3 mm) the 

spots are squeezed and elongate in the orthogonal to the LEsS axis direction, but stay 

aligned in the LEsS axis direction. However, for an even smaller pitch of P=2.5 mm both the 

alignment of the spots and the spot symmetry are broken.  

The orderly appearance of the deposition spots in column one is more practical for the 

collection of particles while smaller pitch is preferable for the scale-up of the LEsS. Based on 

observations 1 & 2, I introduced a horizontal electrode parallel to and at 1 pitch distance 

from the emitters axis at the same potential as the emitters. This horizontal electrode 

controls the tilting of the cones and deflects the Es plumes to the opposite direction 

producing orderly deposition spots at P=2.5 mm (Fig. 3.9). 

Depostion duration 30sec
Deposition length 35,26mm
Flow rate 1.5μl/min
Applied Voltage -6.3kV
Configuration B
Deposition length/over sprayer array length 1.22

Depostion duration 30sec
Deposition length 36.01mm
Flow rate 1.5μl/min
Applied Voltage -6.4kV
Configuration A
Deposition length/over sprayer array length 1.25

Depostion duration 30sec
Deposition length 38.31mm
Flow rate 1.5μl/min
Applied Voltage -5.9kV
Configuration no end electrodes
Deposition length/over sprayer array length 1.33

Depostion duration 30 sec
Deposition length 21,1 mm
Flow rate 1.5μl/min
Applied Voltage -7,25 kV
Configuration B
Deposition length/over sprayer array length 1.54

4.3mm 2.5 mm

Depostion duration 30 sec
Deposition length 25 mm
Flow rate 1.5μl/min
Applied Voltage -7.35 kV
Configuration no end electrodes
Deposition length/over sprayer array length

1.82

Pitch
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Figure 3.9: The effect of the horizontal electrode, almost eliminating the spot deformation 

and random misalignment from the array axis. LEsS of 11-emitters Q=0.7 μl/min, RH=28.7 

percent, T=19.9 C, H=27.8 mm, solution= ECuPA, parameters same for all depositions.  

To quantify the effectiveness of the horizontal electrode it was necessary to define the 

position of the deposition spots. This was done using the same images shown above and 

defining the center of mass for each spot with photo processing software. This point is what 

we from now on we will refer to as “spot position”. Combined the spot position analysis with 

the bottomview image of the emitters in the LEsS (method described in Fig. 3.4) the 

suppression of spot misalignment from the LEsS axis is apparent in Fig. 3.10. The applied 

voltage exceeded the scale of the data acquisition device (10.6 kV), but it can be said that 

the voltage required to operate the LEsS with the hor. electrode was 0.5 kV higher than 

without the hor. electrode. 

 

Figure 3.10: Spot positions under the same conditions with and without the horizontal 

electrode overlapped with the emitter positions. 

Front
view 

Side
view 

No horizontal electrode

Deposition 
spots

Horizontal electrode

-4

-2

0

2

4
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Spot positions no electrode
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= operating emitters
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UNIVERSITAT ROVIRA I VIRGILI 
ELECTROSPRAY SCALE-UP FOR THE PRODUCTION OF PARTICLES OF PHARMACEUTICAL INTEREST 
Nikolas Sochorakis Saloustros 
 



62 
 

 

3.3.3 Generated Particles 

In this section the we demonstrate the LEsS versatility in producing particles. Ethyl Cellulose 

(EC) and Polyvinyl-pyrrolidone (PVP) were used to produce the polymer residues, while 

different solvents (Ethanol, Butanone, Acetic acid) and solvent additives (Rhodamine, 

Curcumin) were used to change solution properties (i.e. conductivity). The distance from tip 

to collector (H) was modified to control droplet drying as well as the flow rate (Q) through the 

emitters. A detailed review on polymer particle formation is presented in Bodnár et al., 

(2018). 

For the EC, BREC solution, and the specific parameters of the system (Fig. 3.11) the 

particles assumed the shape of platelets upon collection with approximate sizes between 

0.4- 0.8 micrometers, with uniform particle shapes and sizes, sampled out of all the 

deposition spots. EC has been proposed for controlled release of drugs (Li et al., 2017) as it 

is not water soluble, it is not suitable for our aim of enhancing Curcumin aqueous solubility. 

 

 

Figure 3.11: a) Particles produced using a 7-emitter LEsS showing the conformal shapes 

and sizes of the produced particles from all the emitters. b) corresponding histograms of 

particle sizes. Experimental parameters RH<20%, T=29.5 C, H=20 mm, P=2.5mm, Applied 

Voltage=9 kV, Q=1.5 μl/min, solution= BREC, configuration A. Deposition sample and 

Scanning Electron Microscope (SEM) images with scale bars. 

 

PVP on the other hand is a water-soluble polymer, approved by the FDA as drug excipient. It 

has also been shown to act as a solid dispersion to improve water solubility of organic 

substances (Tachibana et al., 1965). Other advantages of PVP as candidate drug carrier is 

5 mm

2 µm

2 µm2 µm

a) b)
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its antifouling properties (Munch et al., 2018) and its extensive usage in commercial 

pharmaceutical products. 

Initially solution EP was prepared and used with the 11-emitter LEsS. The produced particles 

were between 100 nm and 2 μm. At the outer region (halo) particles seemingly arrived wet 

because they collapsed to continuous structures (Fig. 3.12).  Additional solution optimization 

using the single emitter setup was done to come up with the solutions EPCuPA1 and 

EPCuPA2. 

 

Figure 3.12: SEM images at the POIs marked on the Si collector sample. RH=29.9 %, 

T=21.4 C, H=25 mm, P=2.5mm, applied voltage>10.6 kV, Q=0.85 μl/min, solution= EP. The 

spot deposition’s tone is inverted (negative) for improved contrast. 

 

Curcumin and Ethanol was added to solution EP to create solution ECuPA1. This solution 

was electrosprayed operating 4-emitter of the LEsS. The produced particles had an 

elongated spindle shape with a long axis between 1-4 μm (Fig. 3.13).  

  

Inner region Outer region (Halo) Beyond the Halo
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Figure 3.13: Representative SEM images at different locations of the 4 deposition spots. 

RH=25.7 %, T=21.2 C, H=25 mm, P=2.5mm, applied voltage>10.6 kV, Q=0.75 μl/min, 

solution= EPCuPA1 

 

Particles in the inner region of each of the 4 spots have the same morphologies, spindle 

shape and sizes. The situation changes as we approach the outer border region of each 

spot similarly in all directions as shown in the second row of figure 3.13. At the outer regions 

the particle population decreases and particle shapes and sizes vary heavily. These polymer 

residues originate from both primary and satellite droplets generated upon jet breakup.  

Es from 9 operating emitters of the LEsS on paper was performed to verify that there were 

no structural changes on the produced particles. The produced particles had the same size 

and quite similar morphology, shown in Fig. 3.14.  

Inner region

Outer region
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Figure 3.14: SEM images of the blank paper (shown on the first row) and deposited 

Curcumin-PVP particles. RH=25.7 %, T=21.2 C, H=25 mm, P=2.5mm, applied voltage>10.6 

kV, Q=0.75 μl/min, solution= EPCuPA1. Observed distortion of the images is caused by the 

charge up of the paper, in the vacuum of the SEM despite the applied gold coating. 

 

The polymer curcumin particle formulation premise is satisfied at this point as we have 

produced microrod shaped particles. It is interesting to point out, that rod shaped nano 

particles (~50 nm) have been reported in the literature to enhance bioavailability more than 

the commonly encountered spherical particles (Zhao et al.,2017). Based on the results 

shown in Fig. 3.13 and Fig. 3.14, the LEsS system can be optimized to produce microrod 

shaped particles.  

Nevertheless, smaller particles (<1 μm) are known to have better bioavailability.  In order to 

decrease the size of our particles, a new SOLUTION was prepared. The distance emitter tip 

to collector was increased and the flow rate was reduced. All these changes led to the 

collection of spherical particles shown in Fig. 3.15 and Fig. 3.16 with quite monodisperse 

average sizes of 500 nm in the central region of the collection spots. A scratch was 

deliberately done to show the homogeneity of the particle layers and absence of smaller 

particles in the bottom layers.  

Plain paper
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Figure 3.15: SEM images of spherical particles collected on a Si wafer. RH=31.4%, T=19.7 

C, H=25 mm, P=2.5mm, applied voltage>10.6 kV, Q=0.5 μl/min, solution= EPCuPA2. 

 

Figure 3.16: SEM images of spherical particles collected on paper. RH=31.4%, T=19.7 C, 

H=25 mm, P=2.5mm, applied voltage>10.6 kV, Q=0.5 μl/min, solution= EPCuPA2. Poor 

image quality is due to charge accumulation in SEM High Vacuum. 

The particles collected on Si waffer do not have structural differences compared to the ones 

collected on paper, as discussed before. A separate experiment where the Si sample was 

weighed before and after a 13-min. 11-sec. deposition using 10-emitters resulted in a yield of 

0.0123 gr/hour. Since the 3 min mark the array was not operating consistently in cone-jet 

mode. Some of the emitters were swiftly transitioning back and forth to intermittent mode 

suggesting charge accumulation of the sample. However, a moving collection surface is a 

Inner region

spot 8 center- scratch

spot 9 center

Inner region
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quick solution to this issue for long term LEsS stability. Other methods such as neutralization 

of particles with soft x-rays, ionization or carrier gas flow has also been suggested for long 

term consistent operations of a multiplexed Es system. 

 Dissolution tests for the particle formulations were not performed. However, electrospun 

fibers of high molecular weight PVP were loaded with Curcumin in the work by Chuan Wang 

et al. (2015).  The Curcumin was incorporated in the polymer matrix and showed improved 

solubility in vitro and potency as an orally administered anticancer drug in vitro animal 

testing. 

 

3.4 Conclusions 

Two different polymers (Ethyl cellulose and PVP) have been used to produce micro/nano 

particles of various morphologies demonstrating the particle engineering capability of the 

LEsS. Some other aspects from literature, were briefly mentioned like the capability of Es for 

crystal engineering another way to modify water solubility of an API.  

Curcumin was chosen as a model API. Curcumin is intensively researched for its 

therapeutical properties but suffers from low bioavailiability due to its insolubility in water. 

The proposed  

PVP – Curcumin formulation facilitates the dissolution in water. Furthermore, decreasing the 

particle sizes below 1 micrometer is expected to improve the API absorption through the 

gastrointestinal tract.   

Paper is first time reported to be suitable for particle collection in the stable cone jet mode. 

The advantages are not only cheap price and wide availability but implores us to look into a 

other water absorbing, porous, materials (i.e. fabrics) traditionally considered “bad” 

collectors. 

Taylor cone direction is manipulated with a horizontal electrode and create a uniform 

deposition pattern in well-arranged spots improving the particle-mass to surface ratio on the 

collection surface. 

Regarding the scale-up capability of a LEsS; we operated up to 11-emitters but from our 

previous work (chapter 1) it is shown that the system can be scaled up to a very large 

number of simultaneously operating emitters. A 1000 emitter LEsS (assuming consistent 

operation) could produce 1.13 gr / hour of particulate matter, with an array length of 2.5 m. 

Stacking up of LEsS is also an option where the spacing between each line can be as small 

as 10 mm where electrostatic interactions would be negligible. 
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Abstract 

Paper one of humanity’s oldest technological achievements has been retrofitted into high-tech 

devices. Foldable electronics, microfluidic devices and biosensors are few of the new areas of 

application. Not only, is paper common, cheap and biodegradable, it is also the model platform 

for our current printing technology. These characteristics make it the perfect candidate for the 

development of low cost biosensors in the form of lateral flow assays, able to revolutionize 

point-of-care diagnostics. We developed an Electrohydrodynamic (EHD) printing device that 

can jet-print or electrospray lines directly on cellulose or nitrocellulose paper with no prior 

treatment.  A laminar co-axial gas co-flow around the EHD emitter proved detrimental for 

stabilizing a cone-jet of a water based solution without corona discharges. The advantage of 

our EHD method is the size of the printed features which are several times smaller than the 

emitter capillary ID preventing clogging of the device. Additionally, the EHD method does not 

require high pressure to produce the liquid jet, that in some cases has been shown to damage 

sensitive biological “inks”. The three “inks” used in this work are water based protein solutions 

without any other polymer addition: a)  HRP (horseradish peroxidase) protein for direct 

evaluation of the protein activity, initial testing and  setup optimization, b)  single-chain form 

of the Cro DNA binding protein (scCro) for the test line on the lateral flow assay and c) 

pre-incubated streptavidin-biothynlated DNA probe for the control line on the lateral flow 

assay.  

It is demonstrated that EHD deposited proteins and DNA retain their activity and ability to bind 

their matching complexes, qualifying the EHD deposition methods (jet print and electrospray) 

of biological species directly onto paper-based surfaces as an excellent alternative for 

bioprinting.  

Keywords: EHD jetting, bioprinting, DNA binding protein, paper, biosensors, nitrocellulose. 

 

4.1 Introduction 

With the adaptation of printing technologies and the development of new “inks” it became 

possible to print electrical circuits (Khan et al., 2012), biomolecules (Li, et al., 2015), polymer 

microfluidics (Sun et al., 2015). As paper has been the model platform of the printing industry 

for decades, it is now retrofitted to a new age material (Wu et al., 2018). Paper is 

biodegradable, flexible, foldable and most importantly cheap and globally available. Paper 

based biosensors hold the premise to revolutionize modern day diagnostics especially in low 

resource regions of the planet (Carrilho et al., 2009, (Morbioli et al., 2019). The purpose of this 
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research is to demonstrate the capability of electrohydrodynamic (EHD) deposition 

techniques, as potential candidates for single-step, direct printing of water-based protein 

solutions on paper platforms. It has been demonstrated that EHD deposition is a gentle 

method that does not damage biomolecules even complex and sensitive ones such as 

proteins and enzymes (Gomez et al., 1997, Morozov & Morozova,1999a, Morozov, 2009, 

Jayasinghe et al., 2006, Shigeta et al., 2012). Additionally, the capillary emitter size is several 

times bigger than the EHD emission point. This allows for large bio-macromolecules to flow 

freely without clogging the capillary emitter, in contrast with the tiny capillaries used in other 

techniques such as inkjet printing, and achieve similar deposition feature sizes 

(Gonzalez-Macia et al., 2010, Loh et al., 2008). 

The lateral flow assays (LFA) are a paper-based platform for the detection of analytes in 

mixtures.The sample is placed on one end of the platform and under the effect of capillary 

action, it is absorbed through the platform passing various detection zones (printed lines). The 

results are visible within 6–30 min.A brief review that describes the mechanism of lateral flow 

assays is the one by Koczula & Gallotta, 2016.A typical nitrocellulose (Nc) detection strip is 

depicted in Fig. 4.1.  

 

Figure 4.1: A typical lateral flow assay strip. The vertical black “Test line” represents the 

colorimetric signal produced upon target detection. The “Control line” appears in all cases, 

when there is flow through the LFA and verifies the LFA function. 

Based on the findings of chapter 3 where we discovered that it was possible to deposit 

material directly on paper using EHD methods and we decided to apply this technique in 

depositing proteins for lateral flow assay biosensors. Even though our initial idea was to use 

stencil-masks and electrospray to deposit the line patterns on the strips (as has been shown 

before for conducting substrates  by Morozov & Morozova, 1999b), during the initial phase of 

the experiments we observed that at high enough flow rates when using the gas co-flow 

system the jet wouldn’t brake up and would form a long thin liquid filament from the tip of the 

emitter to the Nc strip. Adjusting the liquid flow-rate we could control the width of the filament 

to approximately the width of the lines we wanted to produce for the biosensors but without the 

need for a stencil mask. We decided to look as well into the EHD jetting method as an 

alternate protein deposition method. Because of the apparent similarities with EHD jetting, we 
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use the term EHD direct jet-printing to denote the direct application on paper like material like 

Nc. Direct deposition on nitrocellulose paper or plain paper substrates has not been previously 

reported using the EHD direct writing technique with any liquid (US patent US3949410A, only 

mentions conducting paper).  

A gas co-flow is documented to enhance the performance of EHD jetting with a polymer 

solution (Lübbert et al.,2018, Zheng et al., 2016, He et al., 2013). Co-flow assisted EHD-jet 

printing as a term has been used by Tse and Barton at 2015, for the purpose of printing small 

features at low liquid flow rates. The main difference with the method used here is that the 

co-flow was at an angle relevant to the EHD emitter that breaks-up the jet in a train of droplets. 

We used a co-flow system that surrounds the EHD emitter with a gas layer which helped 

stabilizing the electrospray in cone-jet mode, as well as the EHD-jet for EHD direct printing of 

aqueous protein solutions, without the need for a controlled atmosphere chamber.  

Horse Radish Peroxidase (HRP) enzyme catalyzes a chromogenic or chemiluminescent 

substrate to generate a quick and easy to detect response. Therefore, HRP is was used for 

verifying protein activity after the EHD deposition process and for optimizing the EHD jet 

printed trace.  

However, for the assembly of a DNA-target detection LFA biosensor we used the novel, 

modular configuration shown by Aktas et al. 2017, of a DNA sensing platform, which was 

modified to provide signal upon specific DNA target detection without the use of enzymes. Our 

modification uses carbon nanoparticles that give a black line colorimetric signal on the Nc strip 

upon DNA target detection. The whole system was EHD jet-printed onto a lateral flow 

biosensor that can be modified to detect different DNA targets by changing only the primer 

sequence where it binds to the target sequence of the Polymerase Chain Reaction (PCR) 

amplicon. The protein-DNA cascade probe was bio-engineered by Dr Gulsen Betul Aktas, in 

house (Aktas et al. 2017),   
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4.2 Materials and methods 

PCR reagents and DNA oligonucleotides from were purchased from Fisher Scientific 

(Barcelona, Spain). Horseradish peroxidase (HRP) enzyme was provided from Alka Aesar 

(Barcelona, Spain). AEC (3-amino-9-ethylcarbazole) was provided from Sigma Aldrich 

(Barcelona, Spain). Carbon nanoparticles was kindly provided from Dr. Aart van Amerongen, 

Wageningen University. Hi-Flow plus HF-135 nitrocellulose membrane was purchased from 

Merck (Madrid, Spain). All other reagents were purchased from Fisher Scientific (Barcelona, 

Spain), Sigma-Aldrich (Madrid, Spain), and Scharlau (Barcelona, Spain). The high voltage 

power supply is an Ultravolt, HV-RACK-4-250-0032, 0 to 15 kV range. 

Electrospray deposition experimental setup 

In figure 4.1 the schematic of the setup used for the electrospray experiments is presented. It 

is the same setup used for testing different solutions in chapter 3. The spraying emitter has 

0.40 mm O.D. and I.D. 0.16 mm. The co-flow tube has an I.D. of 1.5 mm and an O.D. of 2.5 

mm while it was filled with smaller capillaries to ensure laminar gas flow.  The “collection 

slide” is a nitrocellulose paper (Nc-paper) strip covered with a mask. The slide is inserted 

under the spraying emitter. The mask only allows for the electrosprayed liquid to deposit on 

the nitrocellulose paper through a ~1 mm thick slit (Fig. 4.3) and produces a well-defined line 

upon removal; we have experimented with more mask designs and materials discussed later. 

The “spraying capillary emitter” is connected directly to the positive channel of a high voltage 

power supply, generating a positive electrospray and the “counter electrode” is grounded. The 

liquid is supplied by a syringe pump (KDS legacy 100) with dial-in flow rate input panel. The 

typical gas volumetric flow rate (Qg) range was between 90-150 ml/min, and for the liquid 

solution (Q) 0.01- 0.2 ml/hr. All experiments were performed in laboratory air where 

temperature (T) (21-27 °C) and relative humidity (RH) (25-60 %) were recorded for each 

experiment. To calculate the amount of protein deposited on the Nc we divide the total circular 

spot surface (St) with the surface of the slot (Ss) on the mask and multiply the ratio with protein 

concentration times the flow rate times the deposition time (𝐶𝑝 × 𝑄 × 𝑡 ×
𝑆𝑠

𝑆𝑡
). 
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Figure 4.2: This is a schematic of a single emitter Es setup that has been used for trial solution 

testing  

 

Direct EHD jet-printing experimental setup 

The exact same emitter with a rotating-plate, in the role of the counter electrode, can be used 

to generate a long continuous jet of liquid (~10mm) of a smaller diameter than the capillary I.D. 

(Fig. 4.3). In order to print the liquid lines on nc-paper we need to move the collection slide, or 

the emitter. For this reason, we introduced a metallic rotating collector stage (5 cm radius) as 

seen in the sketch of Fig. 4.3 (a). An electric motor rotates the stage and the rotation speed is 

controlled reproducibly by adjusting the input voltage. To deduce the amount of protein 

deposited we calculate how much protein is deposited for a single rotation and then multiply 

with the number of rotations or passes. 
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 a.       b.  

Figure 4.3: (a) The EHD jet printing emitter setup (same as Fig. 4.1) and the rotating collector,  
(b) Top view of a test EHD jet print using ethanol pigmented with curcumin, the big spot is 
where the jet is deposited initially before starting the rotation of the platform. Q= 1.5 ml/hr, 
Qg=243 ml/min, revolution time (tr) 1.24 ms. 

Sometimes the jet may be tilted but maintains the same angle throughout the experiments 

meaning that the “printed” trail is a circle and the portions printed on the strips can be 

considered as straight lines with good approximation (Fig. 4.3b). The nitrocellulose paper 

(Ncw paper) strips were cut manually to 5 mm width and 25 mm length. 

Nitrocellulose paper by itself is a brittle material. For the lateral flow assay applications, it 

comes in A4 sheets with an attached support material of insulating plastic termed Ncw 

hereforth. The support plastic is an additional challenge for us as now the deposition Nc 

surface is not in direct contact with the ground counter-electrode. We inserted the strips in a 

chamber for 30 seconds, where a piezoelectric atomizer was operated creating a humid water 

environment RH~97% to pre-moisturize the strips and then wrapped one end of the Ncw with 

aluminum foil that is in contact with the upper nitrocellulose layer and the grounding counter 

electrode. This was done to create a discharge path around the insulating plastic support. This 

step was not necessary when we Nc paper or normal paper. The temperature (T) and relative 

humidity (RH) were measured using the Vaisala HM34 handheld meter.   
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Determination of bioactivity of electrospray and EHD-jet deposited proteins 

It is key feature to preserve the functional properties of the deposited proteins upon 

electrospray-electrojet and upon subsequent impact of the charged electrospray proteins with 

a substrate surface. The catalytic activity of the electro spray and EHD-jet deposited 

horse-radish peroxidase (HRP) is verified by adding the appropriate substrate that reacts with 

HRP to give a color-signal. First, different dilutions of the HRP enzyme (3 - 36 nanograms) 

were sprayed from a water solution (in 5% glycerol) onto the nitrocellulose surface. The 

nitrocellulose membranes were then incubated at room temperature for 1 hour to dry up. The 

EHD deposited HRP strips were incubated at 4 °C until use. Following, freshly prepared 

chromogenic dye (1 mM 3-amino-9-ethylcarbazole (AEC) and 1 mM hydrogen peroxide in 100 

mM potassium phosphate pH 5) were used as substrate and incubated on nitrocellulose 

substrate for 5 min at room temperature, this process is called “development” a term borrowed 

from photography. The precipitated colour intensity and HRP activity was evaluated using 

ImageJ software and signal intensities were plotted against the amount of the HRP deposited.  

 

Detection of PCR amplicon by NALFA (Nucleic Acid Lateral Flow Assay) 

The test line and control line of the lateral flow assay, scCro DNA binding protein and dHP 

DNA binding protein respectively are printed in two steps by EHD jet printing method on the 

LFA surface for signal generation via conjugation to carbon nanoparticles (CNPs). The target 

DNA is amplified by PCR prior to use to increase the specificity and sensitivity in lateral flow 

assay (LFA). In our case target DNA amplify with the specific binding sequence of the 

bacteriophage lambda Cro DNA binding protein on forward primer and specific binding 

sequence of headpiece domain of the Escherichia coli LacI repressor DNA binding protein on 

reverse primer without any need of labeling of the primer set. The resulting PCR amplicon 

contains a scCro dsDNA binding protein site at one end and the dHP dsDNA binding site at the 

other. In this form, PCR amplicon is ready to be captured and detected in a sandwich on the 

test line. Moreover, preincubated streptavidin-biothynlated dHP DNA binding site complex is 

also ready to use to be captured with dHP DNA binding protein-CNPs. (Figure 4.4) CNPs are 

widely used for the visual detection on lateral flow assay due to their good sensitivity and 

signal-to-noise ratio owing to the high contrast between the dark black color of carbon on the 

white nitrocellulose membrane background. The direct absorption of carbon nanoparticles to 

protein complexes is easy and they are stable in their conjugated form (Posthuma-Trumpie et 

al., 2009). 
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Figure 4.4: Detection of HPV16 gene via EHD jetted scCro DNA binding protein and dHP DNA 

binding protein-carbon nanoparticles. 

The PCR amplicon with scCro DNA binding site on 5’ and dHP binding site on 3’ was 

sandwiched on the test line between scCro DNA binding protein and dHP/CNPs conjugate 

providing carbon black color. In the case of the control line EHD jetted 

streptavidin-biothynlated DNA probe complex was captured with dHP/CNPs conjugate. 

For the LFA detection step the strips were dipped vertically in a low-binding 96-well microplate 

containing 100 ul of running-buffer (2 % BSA and 0.1 % Tween-20 in PBS) including the 

desired amount of the PCR amplicon. After reagents were absorbed through the whole length 

of the strips by the action of the capillary forces, the strips were dipped in 100 ul of 

running-buffer mixed with 1 ul of dHP/CNPs conjugate suspension. Black color signals from 

carbon nanoparticles were photographed after 10 minutes of incubation for qualitative results. 

The results were then compared within equal amount of electro spray deposited scCro and 

EHD jet printed scCro.  
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Polymerase chain reaction 

The ssDNA gene target of human papilloma virus (HPV16) was used as target for the specific 

detection of HPV16. The primers used for the amplification of the target was designed 

according to literature. The forward was modified to include scCro DNA binding protein site 

while reverse primer was modified including dHP DNA binding protein site. PCR reaction was 

prepared total 50 ul including 1 ul of template, 0.25 ul Taq DNA polymerase, 1 ul of 10 mM 

dNTPs, 1 ul of each 10 mM primers and 5 ul of 10x standars Taq reaction buffer. Amplification 

was performed with an initial denaturation of 30 sec 95°C following by 25 cycles with a 

denaturation step 5 sec 95°C, annealing step of 5 sec at 58°C and an extension step of 5 sec 

72°C, following by a final extension step of 1 sec 72°C. The PCR reactions were purified from 

ssDNA residues and primers using ethanol precipitation method. After the purification, dsDNA 

was suspended in MilliQ water, measured by UV absorbance 260 nm and calculated its 

concentration with its extinction coefficient.  

 

Preparation of carbon nanoparticles – DNA binding protein conjugates 

Carbon nanoparticles were labelled with DNA binding protein dimeric headpiece domain of the 

Escherichia coli LacI repressor protein dHP) following (Noguera et al., 2009) with minor 

modifications. In brief, 1 % (w/v) carbon (Spezial Schwartz 4, Degussa AG, Frankfurt, 

Germany) was prepared in Milli Q water and sonicated for 5 min (Branson model 250 Sonifier, 

Danbury, CT, USA). The carbon suspension diluted to 0.2% in binding buffer (5 mM 

carbonate-bicarbonate buffer pH 10.6) and sonicated for 5 min. Next, dHP binding protein was 

added to 0.2 % (w/v) carbon suspension and stirred overnight at 4 °C. Then, carbon 

nanoparticle-dHP suspension was centrifuged at 13,636xg for 15 min, supernatant was 

removed, and pellet was washed with washing buffer (5 mM borate pH 8.8, 1 % w/v BSA) to 

remove unbound protein. The washing procedure was performed for three times in total. After 

the washing procedure, pellet was resuspended in storage buffer (100 mM borate pH 8.8, 1% 

w/v BSA) and stored at 4 °C until use. 

 

4.3 Results and discussion 

Initial tests were carried out using HRP enzyme which given the appropriate substrate 

generates a color signal easy to detect by eye (colorimetric detection). 

The parameters of the experiment are provided in Table 4.1. It is demonstrated (Fig.4.4) that, 

the electrospray can be stabilized in cone-jet mode, the stencil mask is working as expected 
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and the protein not only is deposited on the Nc paper (as would happen for a conducting 

substrate) but also maintained its activity. Moreover, the stability of the EHD deposited HRP 

checked after different time incubations.  

Table 4.1 

Q -liquid flow rate  0.6 (ml/hr) 

Qg- Gas flow rate   243 (ml/min) 

H- tip to collector distance  13 (mm) 

VHVPS- Power Supply Voltage 7.9 (kV) 

Cp – protein concentration  1.2 (mg/ml) 

RH- Relative Humidity  39.5 (%) 

T- Temperature  22 (⁰C) 

Solvent  water  

Deposition surface Nc  

t- Deposition time  45 (sec) 

 

 

Figure 4.5: a. Composite image (darkfield & brightfield) of the electrospray operating in 
cone-jet mode b. The parafilm mask used on top of the nitrocellulose paper to create a 
proteinline and c. The HRP line after the addition of the AEC substrate for the 
development of the deposited trace. Total HRP mass electrosprayed ~900 ng .  

  

a. c.

b.
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From this point on all the deposition slides are nitrocellulose with plastic support backpacking 

(Ncw) and we follow the protocol described in the materials and methods section.  

 

4.3.1 Comparing EHD- direct print method, electrospray deposition of HRP with mask and  

near-field electrospray deposition without mask. 

The next experiment is a comparison between the electrospray deposition technique with a 

mask and the EHD-jet direct printing. The main issue with electrospray on a mask is wasting a 

lot of material depositing on the mask (even though it is an insulator). Additionally, the HRP is 

spread on more surface, which may be desirable for other applications but in a colorimetric 

assay reduces the intensity of the signal and therefore increasing the limit of detection (LOD). 

Table 4.2 holds the common parameters for both experiments while Fig. 4.6 shows the 

resulting lines after development and the amount of protein spent for each deposition. 

HRP electrosprayed lines using mask and EHD-jet printed lines initial tests  

 

Table 4.2 

 

Qg- Gas flow rate  155 (ml/min) 

H- tip to collector distance  18 (mm) 

VHVPS- Power Supply Voltage 10 (kV) 

Cp – protein concentration  0.05 (mg/ml) 

RH- Relative Humidity 38.8 (%) 

T- Temperature  19.7 (⁰C) 

Solvent 5% w/w glycerol in water  
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Figure 4.6: On the left Q=0.03 ml/hr, deposition time t=120 sec, On the right Q=0.7 ml/hr, 

average time that the emitter spends over each strip ts= 0.68 sec. 

Near field electrospray HRP spots (no mask) 

In the next experiment HRP was deposited with electrospray at very close proximity to the 

strips (near-field electrospray), bringing the emitter very close to the collector to avoid using a 

mask and therefore decrease the loss of material (parameters presented in table 4.3). Spot 

area (~32 mm^2) may be further reduced by decreasing emitter to collector distance (H). On 

the other hand, this technique does not produce the standardized line but a circular deposition 

spot (Fig. 4.7) Deposition time is only given for the 6 ng strip while it is multiplied by (HRP(ng) 

/6) for the rest. We designed this experiment to compare the results between electrospray and 

EHD-jet printing for equal mass of deposited protein.  

Table 4.3 

Q -liquid flow rate  0.03 (ml/hr) 

Qg- Gas flow rate  62 (ml/min) 

H- tip to collector distance  3.4 (mm) 

VHVPS- Power Supply Voltage 8 (kV) 

Cp – protein concentration 0.1 (mg/ml) 

RH- Relative Humidity  35.6 (%) 

T- Temperature  21.6 (⁰C) 

Solvent 5% w/w glycerol in water  

I-current  75 (nA) 

t- Deposition time for the 6 ng strip 420 (sec) 

 

Electrospray with mask EHD direct printing

Total HRP mass 

deposited 50 ng

HRP Mass

6.6 ng/strip
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Figure 4.7: HRP spots after development with AEC deposited with near-field electrospray 

(without mask) 

 

Figure 4.8: HRP calibration curve using the “maskless” electrospray method 

 

The electrosprayed HRP provides visible color signal for as low as 6 ng of deposited enzyme. 

We don’t see the saturation plateau in the graph (Fig. 4.8) 

In the last of our experiments with the HRP enzyme we used the EHD-jet printing technique to 

prepare the lines on the strips shown in Fig.4.9. The parameters of the experiment are 

presented in table 4.4.  
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R² = 0.9733
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Table 4.4 

Q -liquid flow rate  0.7 (ml/hr) 

Qg- Gas flow rate 62 (ml/min) 

H- tip to collector distance  9.5 (mm) 

VHVPS- Power Supply Voltage 9 (kV) 

Cp – protein concentration  0.05 (mg/ml) 

RH- Relative Humidity 35.0 (%) 

T- Temperature  21.0 (⁰C) 

Composition 5% w/w glycerol in water  

t- Deposition time for the first strip 

(sec) 

0.3 (sec) 

 

 

 

 

lo g (n g )

P
ix

e
l 

g
r
e

y
 v

o
lu

m
e

0 1 0 2 0 3 0 4 0

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

 

Figure 4.9:Developed lines of HRP protein deposited using the direct EHD-jet printing mode 

and LOD graph. 

 

In fig. 4.9 not only the lines become more intense with the amount of HRP deposited but also 

become thicker which could be an effect of electrostatic charging as a result of the technique 

3 6 12 24 36 ng 
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we used to print the lines; that is increasing the number of passes under the electrospraying 

emitter. In this case the 3 ng lines give a clear color signal while the signal quickly saturates 

with (Fig. 4.9 graph). From the experiments presented in section 4.3.1 we conclude that for the 

specific purpose of depositing lines the EHD-jet printing method provides more intense and 

clear signal for the same amount of deposited protein when compared to the electrospray 

method. 

The electrospray wastes a lot of material deposited on the mask. Morozov and Morozova, 

1999b propose a type of mask with multiple openings which reduces the overall area of the 

mask itself and limits the wasted solution. The near field electrospray can also be considered 

as a better method than electrospray with mask but with inferior results than the EHD-jet 

printing for the specific ‘line printing” purpose. 

4.3.2 Stability of the EHD jetted protein species 

Not only the functionality and activity of the EHD-jet printed protein is important but also the 

viability and stability of the deposited protein for a long term stable biosensor. The stability is 

verified for different incubation timed after the EHD deposition process. In Fig. 4.10 , five 

strips, with 12 ng of HRP protein deposited on each, are developed after a maximum of 4 

weeks stored at 4 °C. There is no observable change in the colorimetric signal intensity. 

 

 

Figure 4.10: Activity check of EHD jet printed HRP protein on Ncw strip. The developed lines 

prove long term stability 

 

4.3.2 Lateral flow assay complete system of ssCro-DNA binding cascade for HPV detection 

A lateral flow assay strip (Fig. 4.1) requires two lines. After inserting the sample on one end the 

test line will produce a color signal only upon target detection while a signal should always be 

visible at the control line site after the sample has ran, to verify the function of the device and 

minimize the possibility of false negatives. We used the EHD-jet printing method to print both 

lines of the biosensor. We decided to prepare strips with spots instead of lines using the near 

field electrospray method to compare the two methods.  

  

0 1  2  3  4  (week) 
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Near field electrospray deposition 

Initially with near-field electrospray we deposited the two required spots. Test spot consisting 

of streptavidin-biothynlated dHP DNA binding site complexand control spot consisting of 

scCro DNA binding protein. The electrospray conditions are presented in table 4.5 and the 

results after we run the HPV-DNA target and the carbon nanoparticles through the strips 

appear in Fig. 4.11.  

Table 4.5 

Q -liquid flow rate  0.03 (ml/hr) 

Qg- Gas flow rate  62 (ml/min) 

H- tip to collector distance  3.5 (mm) 

VHVPS- Power Supply Voltage 8-9 (kV) 

Cp – protein concentration  0.05 (mg/ml) 

RH- Relative Humidity  34 (%) 

T- Temperature  21 (⁰C) 

Composition 5% w/w glycerol in water  

t- Deposition time  240 (sec) 

 

a.    b. 

 

Figure 4.11: a. Near-field electrospray deposition on the strips, b. The latteral flow strips where 

a very fade circular spot appears for the test spot and almost no color for the control spot.  

 

The test spots are unclear due to the spread of the capturing probes in the area of the spot that 

leads to colorimetric signal “dilution”. The control spots almost do not appear. The protein 

amount deposited for the control spot and for the test spot was the same for all strips, 150 ng 

Control 
spot

Test
spot
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and 250 ng respectively. We didn’t proceed to the definition of the LOD as the control spot fails 

to appear. 

EHD-jet direct printing method 

The EHD-jet printing mode gave a much better result, as was expected from the initial HRP 

tests. The main reason is that for the same weight of deposited ssCro protein complex we get 

a much higher contrast that increases the limit of detection of the lateral flow assay biosensor 

(Fig. 4.12). The parameters of the experiment are provided in table 4.6.  

Table 4.6 

Q -liquid flow rate  1.4 (ml/hr) 

Qg- Gas flow rate  62 (ml/min) 

H- tip to collector distance 7 (mm) 

VHVPS- Power Supply Voltage 8-9 (kV) 

Cp – protein concentration  0.2 (mg/ml) 

RH- Relative Humidity 34 (%) 

T- Temperature  21 (⁰C) 

Composition 5% w/w glycerol in water  

 

 

 

Figure 4.12: EHD-jet printed strips with both the control line and test line appearing. The 

numbers above the strips are the nanograms of target DNA on the sample per strip. 
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In Fig. 4.12 we see that all the control lines give a strong signal which means that the lateral 

flow assay runs normally. The amount of ssCro on the test line and the DNA-protein complex 

on the control line is 250 ng for all strips. The first faint control line appears at target DNA 

concentration 62.5 ng which sets approximately the DNA-target limit of detection. From the 

graph we see the signal intensity is linear to the amount of target DNA. 

This is a functioning EHD-jet direct printed lateral flow biosensor able to detect an HPV DNA 

segment as a target. The ssCro protein used as a modular probe that can be easily modified 

for different DNA segments (Aktas et al., 2017). 

The control lines of the strips prepared with near-field electrospray deposition method fail and 

we propose three possible mechanisms for that.  

1) The target DNA is all captured in the test line and due to its wide surface.   

2) The electrosprayed species of the control line are damaged during electrospraying.  

3) Charge accumulates fast on the Ncw strip, due to the test line liquid properties, 

subsequently causing the electrosprayed droplets to avoid depositing on the strip 

surface. 

The above assumptions remain to be tested in future work if “spots instead of lines” gain 

attention as a biosensor preparation standard. 

 

4.4 Conclusions  

In this paper we explore the capability of EHD techniques, for the direct printing on 

nitrocellulose paper of lateral flow assay biosensors. The main challenges we faced, regard 

depositing matter on non-conductive surfaces and electrospraying of water-based solutions 

The direct deposition on paper has not been studied before in EHD literature and opens up 

new possibilities for insulating water absorbent materials to be used with this method (fabrics 

etc). In the case of cellulose or nitrocellulose paper the only requirement was a humid 

ambient. Even in the case of nitrocellulose with insulating support, artificial humidification was 

enough to create a charge diffusion path to ground and allow for EHD to function.  

The co-flow system around the EHD emitter was essential for stabilizing a conical emission 

point of the used liquids for all the experiments. It is also supported by literature that the jet is 

better guided with a co-flow. This technique however has not been reported to our knowledge 

to be used for stabilizing long jets of aqueous liquids with no polymer content. 
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There are three techniques employed and compared which were electrospray deposition 

using a mask, near-field electrospraying and the newly developed EHD-jet direct printing.  

In the first case of electrospray deposition with a mask we try to enforce the line pattern and 

much of the protein is wasted on the mask. One could argue that this material can be recycled 

and reused but still the time needed to deposit the required amount of protein on the small 

portion of surface uncovered by the mask increases the complexity and decreases the speed 

of the process. 

For the second case of near field electrospray the main advantage of the electrospray 

technology, sought in other applications, becomes a disadvantage. The big liquid volume 

surface coverage, owing to the highly charged droplets repulsing each other, weakens the 

contrast of the produced spots. Essentially electrospray does the opposite of focusing the 

droplets on a spot, which dilutes the generated colorimetric signal. We were expecting to have 

better results in the enzymatic assay (HRP) that catalyzes the substrate and therefore the 

color signal, given substrate and time, should appear for the whole surface area covered, but 

as the experiment showed we had the similar colorimetric signal dilution effect comparing fig. 

4.7 and 4.11. 

The clear advantage of EHD techniques is that the jet diameter, therefore the print pattern 

resolution can be much smaller that the orifice diameter, preventing clogging of the emitter 

and increasing the robustness of the process. In the case of EHD-jet direct printing we got a 

good signal generation, good reproducibility and long-term stability between batches. The 

speed of printing is significantly reduced compared to electrospraying due to the higher flow 

rate. These reasons justify the EHD-jet printing technique as an alternative for printing 

colorimetric biosensor devices.  

As a concluding remark we have manufactured, in one step, a functional LFA biosensor 

capable of detecting specific fragments of the HPV-DNA, using EHD deposition techniques. 

Furthermore, the detection platform that has been used can be modified to detect almost any 

DNA target, contributing to point-of-care diagnostics.  
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In the second chapter we have developed and characterized a linear electrospray system. 

First, we have gained physical insights into the question of scalabilility from electric field 

computations of arrays of lines-of-charge These computations have revealed that the electric 

field at the edge of the array does not increase indefinitely as the array grows. Instead, the 

field converges towards a plateau value as the number of lines increases, and such plateau 

is approached when the width of the array is as small as the plate's gap. Experiments have 

confirmed that the electrostatic field experienced by the central region of very long arrays is 

not dependent of how long the array is. So, the array is expandable indefinitely while the 

needed voltage is bounded, averting gas breakdown discharges. We have shown this for 

arrays characterized by a small pitch of 2.5 mm (4 emitters/cm) and a collector distance as 

large as 13 mm.  

We have identified as optimal linear array configurations the ones having on either end two 

non-spraying electrodes, positioned at the same pitch as the spraying emitters; A passive 

(non-spraying) emitter in the innermost position and a much thicker electrode in the outermost 

position, to prevent the appearance of gas discharges at that location. 

An individual current measurement per emitter has been used to identify the spray mode 

transitions, functioning as an excellent diagnostic of system stability. 

We have also reported on "symmetry breaking" of the electrosprays, observed at high enough 

voltage, caused by the tilting of the Taylor cones it has been identified that those directions 

correlate with the slight emitters' misalignments when they have a zig-zag pattern, with the 

jets roughly pointing in the direction of strongest field strength. In absence of a pattern, other 

factors are important in this phenomenon, as, sometimes, the array end sprays point inward 

toward the array, instead of outward where the field is most intense. These experiments 

suggest that symmetry breaking may be exploited to actively control the collection of the 

generated droplets/particles.  

In chapter 3 we have applied the Linear Electrospray System (LEsS) know-how and used the 

linear array in hand, to demonstrate the production of polymer particles loaded with an Active 

Pharmaceutical Ingredient (API). The "symmetry breaking" is avoided here by deflecting the 

Taylor cones direction with a horizontal electrode and create a uniform deposition pattern in 

orderly spots, facilitating the collection of the deposited matter. 

Two different polymers (ethyl cellulose and PVP) have been used to produce micro/nano 

particles of various morphologies demonstrating the particle engineering capability of the 

LEsS. Curcumin was chosen as a model API. Curcumin is intensively researched for its 

therapeutical properties but suffers from low bioavailiability due to its insolubility in water.  
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The proposed PVP – curcumin formulation facilitates the dissolution in water. Furthermore, 

decreasing the particle sizes below 1 micrometer is expected to improve the API absorption 

through the gastrointestinal tract.  

While working with this system we came upon an interesting discovery; paper can be used as 

an electrospray collector. Paper is first time reported to be suitable for particle collection in the 

stable cone jet mode. It is not only the low cost and wide availability of paper as a material, 

that has a practical value, but, we are also implored to investigate other water absorbing, 

porous, materials (i.e. fabrics) traditionally considered “bad” collectors for possible use as 

electrospray collectors. 

Regarding the scale-up capability of a LEsS; we have operated up to 11-emitters. From our 

previous work (chapter 1) it is shown that the system can be scaled up to a very large number 

of simultaneously operating emitters. A 1000 emitter LEsS (assuming consistent operation) 

could produce 1.13 gr / hour of particulate matter, with an array length of 2.5 m. Stacking up 

of LEsS units is also a possibility for decreasing the footprint of the system. 

In chapter 4 we tinker with the idea of EHD deposition on paper. A collaboration was initiated 

with the InterfiBio group and EHD deposition methods were investigated for the deposition of 

proteins on nitrocellulose paper for lateral flow assay biosensors. In the case of cellulose or 

nitrocellulose paper the only requirement has been found to be a humid ambient. Even in the 

case of nitrocellulose with insulating support, artificial humidification plus a connection to 

ground, has been enough to create a charge diffusion layer to the electrical ground and allow 

for EHD to function. The co-flow system around the EHD emitter has been essential for 

stabilizing a conical emission point in all the experiments. 

Three deposition techniques have been used and compared in this final part: electrospray 

deposition using a mask, near-field electrospraying and the newly developed EHD-jet direct 

printing. In the case of electrospray deposition with a mask when trying to enforce the line 

pattern some amount of the protein is deposited on the mask. One could argue that this 

material can be recycled and reused but still the time needed to deposit the required amount 

of protein on the small portion of surface uncovered by the mask increases the complexity and 

decreases the speed of the process. 

In the case of near field electrospray, the capability of great uniform dispersion of this 

technology, sought in other applications, seems to have adverse effects. The high surface 

coverage, owing to the highly charged droplets repulsing each other, weakens the contrast of 

the colorimetric signal of the deposited spots. Specifically for the ssCro protein complex, the 

signal is proportional to the immobilized carbon nanoparticles per DNA target detected. We 

also experimented with the (HRP) enzymatic assay that essentially catalyzes the amount of 
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substrate offered and theoretically should amplify the colorimetric signal but, the experiment 

showed we still have had the signal dilution effect.  

In the case of EHD-jet direct printing we have obtained a good signal generation and good 

reproducibility between batches. The speed of printing is significantly reduced comparing to 

the above two methods due to the higher flow rate. These reasons justify in our opinion the 

consideration of this technique for printing colorimetric biosensor devices. An added value to 

this technique is that the jet diameter therefore the print pattern resolution can be much smaller 

that the orifice diameter, therefore preventing clogging and increasing the robustness of the 

device. In conclusion we successfully produced a DNA specific lateral flow biosensor using 

the EHD-jet direct printing method. 
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