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When God began to create heaven and earth, the earth being unformed and void,

with darkness over the surface of the deep and a wind from God sweeping over the water.

God said, “Let there be light”; and there was light.

God saw that the light was good, and God separated the light from the darkness.

God called the light Day, and the darkness He called Night.

And there was evening and there was morning, a first day.

God said, “Let there be an expanse in the midst of the water,

that it may separate water from water”.

God made the expanse, and it separated the water which was below the expanse

from the water which was above the expanse.

And it was so. God called the expanse Sky.

And there was evening and there was morning, a second day.

Bereshit 1: 1-8
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Abstract
The present thesis investigates how explicit filters can be useful in numerical sim-

ulations of turbulent, compressible flow with symmetry preserving discretizations.
Such explicit filters provide stability to simulations with shocks, provide stability to
low-dissipation schemes on smooth flows and are used as test filters in LES turbu-
lence models such as the Variational Multi-Scale eddy viscosity model or regulariza-
tion models. The present thesis is a step forward in four main aspects.

First, a comparative study of the Symmetry Preserving schemes for compressible
flow is conducted. It shows that Rozema’s scheme is more stable and accurate than
the other schemes compiled from the literature. A slight modification on this scheme
is presented and shown to be more stable and accurate in unstructured meshes, but
lesser accurate and stable in uniform, structured meshes.

Second, a theoretical analysis of the properties of filters for CFD and their con-
sequences on the derivation of the LES equations is conducted. The analysis shows
how the diffusive properties of filters are necessary for the consistency of the model.

Third, a study of explicit filtering on discrete variables identifies the necessary
constraints for the fulfillment of the discrete counterpart of the filter properties. It
puts emphases on the different possibilities when requiring the filters to be diffusive.
After it, a new family of filters has been derived and tested in newly developed tests
that allow the independent study of each property.

And last, an algorithm to couple adaptive filtering with time integration is re-
ported and tested on the 2D Isentropic Vortex and on the Taylor-Green vortex prob-
lem. Filtering is shown to enhance stability at the cost of locally adding diffusion.
This saves the simulations from being diffusive everywhere. The resulting method-
ology is also shown to be potentially useful for shock-capturing purposes with the
simulation of a shock-tube in a fully unstructured mesh.
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Introduction

In this introductory chapter, we describe the situations in which the simulation
of compressible flow has or has had a relevant role in science and engineering. Then,
the physical characteristics of turbulent compressible flow are described. After that,
the models in the literature that reproduce this kind of flow and their mathematical
formulation are also described and briefly analysed. Then, the scope of this thesis,
i.e., the range of low dissipation numerical simulations of compressible flow is set.
Finally, the main objectives of the thesis are announced and the outline of the docu-
ment presented.

1.1 Scientific and industrial relevance of the simulation

of compressible flow

The understanding and management of fluid flow played a crucial role in technifi-
cation of the human societies occurred in western countries between the mid 18th
century and the late 20th century, marked by the substitution of hand production
for machine production. The energy sources the new machines required were based,
during all this period, in the energy transfer between fluids and solids.

So, alongside the industrial development, the study of fluid flow gained inter-
est and achieved great success. Unfortunately, when the equations that describe the
time evolution of fluids were finally derived, it turned out that analytical solutions
can be found in a minimal range of cases and that finding approximate solutions
with simplified models does not provide accurate enough solutions either.

But the technological development took place and, today, accurate predictions of
the behaviour of fluids enable energy savings, reductions in COx and NOx emissions,
better meteorological predictions and the subsequent economic benefits, new indus-
trial production methods, more long-lasting designs of machinery or structures af-
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2 CHAPTER 1. INTRODUCTION

fected by fluid loads, noise pollution reduction, higher levels of comfort with HVAC,
etc. Many of these fields of application enable to make the hypothesis that fluids
are incompressible (i.e. ∇ · u = 0) or to simplify the variations in density by means
of the Boussinesq hypothesis. This thesis is dedicated to applications in which such
simplification does not apply. These are, mainly, in the aerospace, turbomachinery
and thermal machines fields.

In these applications of turbulent flow, the usual situation in which a prediction
of a flow is required reads: “Given a geometry, a set of boundary conditions and a set
of initial conditions, obtain the pressure, velocity and temperature fields of the flow
in a region as functions of time and space”. Sometimes the time dependence is not
required and the steady or statistically steady states of the fluid fields are sufficient
for the technological purposes. The vast majority of these flows are at high Reynolds
numbers and Mach numbers greater than 0.3.

Since the fundamental fluid dynamics principles of lift and drag generation are
well understood since the early 20th centuries and the flows are usually at high
Reynolds numbers, potential flow based modellings of compressible flow were de-
veloped and used extensively in the past due to their capacity to provide fast and
accurate solutions at low computational cost. This is true as long as the potential
flow hypothesis applies and the geometry is simple or can be divided into simple
significant parts. These approaches combined with empirical data have played a
fundamental role in the design of aircraft and turbomachines in the past, but the hy-
potheses in which they are based are too restrictive for the State of the Art. When this
happens, only more advanced experiments or numerical simulations can shed light
on the fluidic behaviour that R&D engineers aim to harness to improve their designs.

Experimentation has evolved with the development of more accurate measuring
equipment and wind tunnels. For example, PIV allows measuring velocity fields.
But in experimental tests it is not easy to reproduce the flow conditions in full-scale
machinery, its accuracy is limited and experimental campaigns are slow and expen-
sive. Thus, when investigating a broad landscape of designs, experimental tech-
niques are still limited. Numerical simulation, on the other side, can provide accu-
rate data of specific flow phenomena, can better reproduce operating conditions and
can reduce, depending on the studied flow, response times and costs.

The numerical simulation of fluid phenomena, or Computational Fluid Dynam-
ics (CFD), is now a mature technique with reliable methodologies that allow to sim-
ulate most of the relevant flows. But its capacity is very strongly dependent on
the available computing capacity for a simulation and there is a trade-off between



1.2. PHYS. AND MATH. MODELS 3

committed computational resource and available accuracy. This limitation has been
overcome along the years and the numerical simulation of fluid flow has had an enor-
mous impact on the machines that we use nowadays. For example, CFD was crucial
to understanding the nacelle-wing interference drag and this allowed to situate the
nacelles under the wings of Boeing 737 and all the later turbofan airliners [1].

1.2 Physical and mathematical models of gas dynamics

In this thesis, it is assumed that the kinetic theory of gases is valid for the range of
situations under study. The focus of the work is the evolution of the macroscopic
properties of gases and, thus, the starting point is the set of equations describing
the evolution of the fluid magnitudes in an Eulerian system, i.e., density ρ, velocity
u, pressure p, temperature T and, in case of chemical transport, the species mass
fractions xi. These set of equations are called are the Navier-Stokes Equations (NSE).
No transport of chemical species is considered in this thesis and, thus, NSE read for
a single substance (see. e.g. [2]):

∂ρ

∂t
+∇ · (ρu) = 0 , (1.1)

∂(ρu)

∂t
+∇ · (ρu⊗ u) = ∇ · (−pI+ σ) + ρ fm , (1.2)

∂ρEt

∂t
+∇ · (ρEtu) = ∇ · (−pu + σ · u + q) + ρ fm · u + q̇v ; (1.3)

where E = e + 1
2 |u|

2 and e is the internal energy.These equations should be used
together with the set of the constitutive equations of the particular gas under study.
For Newtonian, calorifically perfect ideal gases, they are the ideal gases law

p

ρ
= RgT , (1.4)

with Rg the gas constant, the constitutive laws of Newtonian shear stress

σij = 2µ

[
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 1

3

∂uk

∂xk
δij

]
, (1.5)

where µ is the dynamic viscosity and in this work it is assumed to comply with
Sutherland’s Law

µ = µre f T2/3 1 + C

T + C
, (1.6)
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Joule’s law for internal energy for calorifically perfect substances

e = cvT , (1.7)

where cv is the specific heat capacity at constant volume and e is internal energy,
Fourier’s law for thermal conduction

qi = −λ
∂T

∂xi
, (1.8)

where λ is the thermal conductivity of the gas.

In equations (1.1-1.3) fm and q̇v are respectively a volumetric force and a volu-
metric heat source that depend on the case under study. The real numbers Rg, µre f ,
C, and λ are the physical properties of the gas under study.

Taking the characteristic flow velocity u∗, density ρ∗, length L∗, temperature

T∗ = u∗2/(RgγM∗2), with the characteristic Mach M, Reynolds Re and Prandtl Pr
numbers based on them and using the specific heat ratio γ, dividing each variable
by its characteristic magnitude, the set Eqs.(1.1-1.3) become the non-dimmensional
set of NSE if they are used together with the proper set constitutive laws. They read:

p =
ρT

γM2
, (1.9)

σij =
2µ

Re

[
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 1

3

∂uk

∂xk
δij

]
, (1.10)

µ = T2/3 1 + C

T + C
, (1.11)

e =
T

γ(γ− 1)M2
, (1.12)

and

qj = −
µ

RePrM2(γ− 1)

∂T

∂xj
. (1.13)

Furthermore, the heat sources and volumetric forces should also be scaled accord-
ingly.

The NSE are a set of Partial Differential Equations (PDE) for which only a few
analytical solutions of cases with simple initial and boundary conditions have been
found. Engineers rely on approximations, experimentation, numerical modelling
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and combinations of these. For general initial and boundary conditions, there is no
proof of the existence and unicity of a solution of the system. For this reason, they
are object of one of the 7 millennium problems of the Clay Institute of Mathematics
in their incompressible flow and periodic or vanishing at infinity version. For now,
the main tools to study the physics of fluids are experimentation and numerical sim-
ulation. This thesis is focused on the second.

1.2.1 Scales of motion, computational cost and the Kolmogorov length
scale

Throughout this work, the concept “scale of motion” will be used several times. It
is a widespread concept in CFD that, nonetheless, has a vague meaning. The most
used meaning comes from the Fourier analysis of the evolution in time of a fluid
property evaluated at a point. Decomposing such signal in a Fourier series, each
time frequency is associated with a characteristic geometric mode whose wavelength
verifies the flow boundary conditions. In the case of isotropic turbulence, these ge-
ometric modes become Fourier modes of a 3D cube [3]. In general geometries and
boundary conditions, this definition of a scale of motion does not provide means to
determine the shapes of the modes. A short description of scales of motion in con-
tinuous spaces is given next. (Another definition for discrete domains is provided in
chapter 4).

Let

P =

{
φ(x) : D ⊂ IRn 7→ IR | aφ + b

∂φ

∂xn
= f ∀x ∈ ∂D

}

the space of real continuous functions of bounded variation defined on a D subdo-
main of IRn that verify some boundary condition. Let

〈φ|ψ〉 =
∫

D
φψ dΩ (1.14)

be the inner product of P .

Let
Ginf = {G1(x), G2(x), G3(x), . . . , Gn(x), . . .}

a sequence of the eigenfunctions of ∇2 in D with increasing positive eigenvalues.
As a result of the spectral theorem, the functions Gn of G form an orthogonal basis.
Thus, each φ can be represented as a unique series in the form

φ(x) =
∞

∑
j=1

φ̆jGj(x),
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where

φ̆j =
∫

D
φ(x)Gj(x) dΩ.

Moreover, each Gj(x) is related with a combination of a characteristic length scale

in each space direction, e.g. , in the case of a periodic flow in IR3, one of them is
exp(i(k1x + k2y + k3z)).

To represent the physics of continuum mechanics it is not necessary to represent
φ with all the modes of Ginf because, if

φ̆j =
∫

D
φ(x)Gj(x) dΩ

converges everywhere, then φ̆j vanishes faster than 1/j and the highest modes (or
smallest scales) are negligible.

Then, only a finite subset GN ⊂ Ginf is necessary to represent the physics with
enough detail. This reduces many problems of continuum mechanics to analyzing
only a small number of the modes because, as the operators in these applications
are linear, the modes do not interact between them and only those with the lowest
eigenvalues have interest in engineering applications. This is not the case in fluid dy-
namics. The non-linear convective term in equation (1.2) causes interactions between
the different scales of motion, i.e. small scales affect big scales and vice-versa. This
requires determinating the highest N (i.e., the smallest flow scale) so that GN is suf-
ficient to properly represent the fluid flow. This number depends on the flow under
study. In the case of incompressible isotropic turbulence ruled by the Navier-Stokes
equations (1.1-1.3) the ratio between the largest ηLC and the smallest ηKol scales of
motion is given by (see [4])

ηKol

ηLC
∝ Re−3/4 (1.15)

that can be applied to any flow region with approximately isotropic turbulence. This
implies that the number of degrees of freedom (DOF) in a cubic domain with unitary
side size is NDOF ∝ (1/ηKol)

3 ∝ Re9/4. Other relations between flow scales exist for
boundary layers and shear layers (see, e.g., [2, 5]).

The constraints on the integration time steps in a simulation have not been consid-
ered so far because they are not a main part of the scope of this thesis. Nonetheless,
they also have a major influence when analyzing the computing cost of a simulation.
Large scales of motion are related to low frequency phenomena and are the most
relevant in engineering applications. Meanwhile, small scales of motion are related
to high frequency phenomena. To properly calculate the effects of large scales, the
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simulations of fluid flow should span enough in time as to capture the unsteady phe-
nomena under study or to contain a number of cycles of the lowest frequency scale
in statistically steady flows. On the other side, as it has been already mentioned,
flow scales affect one another and such simulations limit the time integration steps
so that the smallest scales phenomena are also accurately captured. These criteria on
overall integration time and allowable time steps are independent of any time dis-
cretization and determine the maximum physically allowable time integration step
and the number of time integration steps in a simulation. The ratio between the
characteristic time of ηLC and ηKol in isotropic turbulence is (see [4])

τ(ηKol)

τ(ηLC)
∝ Re−1/2. (1.16)

Therefore the total number of time steps (TS) to simulate the evolution of isotropic
turbulence in a cubic domain is NTS ∝ 1/τ(ηKol) ∝ Re1/2.

Thus, from a scales of motion only point of view, for a CFD simulation to be able
to capture all the physics of a fluid flow, it is required that the grid is fine enough and
the time integration steps are small enough to capture all the scales of motion at every
point. Furthermore, the geometrical domain must be large enough to not interfere
with the physics under study and the number of iterations must be large enough to
allow to capture all the largest scale transient phenomena. The total amount of DOFs
multiplied by the number of fluid properties involved in a simulation and the dis-
crete differential operators defines the total number of variables to be stored in the
volatile memory of a computing architecture. Then, each operation between these
variables and the memory communications between computing units requires some
computing time. Finally, all the operations for a single time step should be repeated
each iteration until the final integration time is reached. In the end, the size of the
grid and the number of time integration steps play a fundamental role in the overall
computing time and computing cost (committed facilities, maintenance, personnel,
electric energy, etc.), and is determinating in the economical, scientifical and techno-
logical viability of a simulation.

Considerations of this kind lead to the conclusion that simulations of most of the
flows of interest in engineering are unfeasible if all the flow scales are to be well
reproduced. This handicap is overcome by modelling or not taking into account
some of the flow physics. This opens the door to simulations with a level of accuracy
that allows the designers to make decisions. Next, an introduction to some of the
most known models in use follows.
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1.3 Simplified models of compressible flow

In many situations of interest in aeronautics, the Navier-Stokes can be simplified by
neglecting or modelling some of their terms. To do it, the relative order of magnitude
of the terms in the Navier-Stokes equations must be studied first.

Among the of the most common simplifications, one consist in neglecting the
transitory term when the boundary conditions are steady or almost steady. Another
consists in neglecting viscous terms when the flow Reynolds numbers are high in
the bulk of the domain and the flow is irrotational in this region. Since the Reynolds
number of many interesting flows is high and the boundary layers are attached, vis-
cous effects can be neglected in the freestream region (i.e., the whole fluid domain
except boundary layers and wakes).

1.3.1 Potential flow

At high Reynolds numbers, if the flow is attached to the solid surfaces, boundary
layers are thin and their exact shapes and thicknesses affect the freestream flow as
small perturbations. Furthermore, if the freestream flow is irrotational, the velocity
vector can be assigned to be u = ∇φ, where φ is the velocity potential. The NSE (1.1-
1.3) for compressible flow can then be simplified into the Prandtl-Glauert equation

(1−M∞)2φxx + φyy + φzz = 0, (1.17)

where x is the main flow direction and M∞ the unperturbed stream Mach number.

Unlike the Navier-Stokes equations, Eq.(1.17) is linear and thus the superposi-
tion principle applies. This property has been used to determine the properties of
the flow around objects as linear combinations of φ solutions of Eq.(1.17) which, all
together, verify the boundary conditions of the object under analysis.

This procedure has been computationally exploited by means of the panels meth-
ods [6] to calculate airplane aerodynamics in design stages since the 1960’s. Such
methods are computationally light and with actual desktop computers approximate
solutions of the attached flow around aircraft can be obtained within the fractions of
a second.

The panels methods can include boundary layers by passing velocity and pres-
sure distributions on the body surfaces to boundary layer solver codes and then
using the result to modify the apparent body geometry. They can also calculate the
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shapes of aircraft wakes and resolve unsteady flow if the boundary movement char-
acteristic speed is orders of magnitude lower than the flows. All this for both sub-
sonic and supersonic flows.

But the assumptions underlying in the potential flow model do not allow to pre-
dict transonic situations, nor boundary layer separations, nor interferences due to
wakes, nor the effects of detached eddies, nor accurate values of friction-caused drag
forces [7]. Because of these reasons, more accurate models are required at the cost
of more effort in the preparation and post-processing of the case as well as higher
computational resources and longer computing time.

1.3.2 Reynolds Averaged Navier Stokes (RANS)

When the potential flow model does not hold because viscous or transonic effects
become too relevant in the overall flow description, the Navier-Stokes equations (1.1-
1.3) can be averaged in time, thus obtaining the Reynolds Averaged Navier Stokes
(RANS) [8]:

∂ρ̄

∂t
+∇ · (ρ̄ ˆ̄u) = 0 , (1.18)

∂ρ̄ ˆ̄u

∂t
+∇ · (ρ̄ ˆ̄u⊗ ˆ̄u) = ∇ · (− p̄I+ σ̄)−∇ · Sgs + ρ̄ ˆ̄fm , (1.19)

∂ρ̄ ˆ̄Et

∂t
+∇ ·

(
ρ̄ ˆ̄u ˆ̄Et

)
= ∇ · (− p̄ ˆ̄u + ˆ̄u · σ̄ + q̄) + ˆ̄u · ∇ · (Sgs) +∇ ·

(
Sght + Sgdi f f

)
+ ¯̇qv ;

(1.20)

where

φ̄ =
1

t2 − t1

∫ t2

t1

φ dt ;

and

ˆ̄φ =
φρ

ρ̄
.

Defining the time perturbations of the fluid magnitudes

φ′ = φ− φ̄ ⇒ φ̄′ = 0 ;

and
φ′′ = φ− ˆ̄φ,
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the ideal gas law in equations (1.18-1.20) becomes

p̄ = ρ̄

(
(γ− 1) ˆ̄Et −

1

2
ˆ̄u · ˆ̄u + kt

)
, (1.21)

where

kt =
1

2
û′′ · u′′ (1.22)

is the turbulent kinetic energy: a non-simulated property whose evolution is part of
each specific RANS model. Newton’s stresses tensor is approximated with

σ̄ij ≈ ˆ̄2µ

[
1

2

(
∂ ˆ̄ui

∂xj
+

∂ ˆ̄uj

∂xi

)
− 1

3

∂ ˆ̄uk

∂xk
δij

]
, (1.23)

and Fourier’s heat flux vector is approximated with

q̄i ≈ − ˆ̄λ
∂ ˆ̄T

∂xi
. (1.24)

Moreover, the sub-grid stress tensor

Sgs = ρu′′ ⊗ u′′ , (1.25)

the sub-grid diffusion and turbulent transport

Sgdi f f = σu′′ − 1

2
ρu′′ · u′′ ⊗ u′′ (1.26)

and also the sub-grid heat transfer vector

Sght = cpρT′′u′′ (1.27)

should be modelled.

There is a huge variety of models for kt, Sgs, Sgdi f f and Sght in the literature
(see, for example [8]). These models are implemented in CFD codes and have al-
lowed to improve the designs of numerous devices operating with fluids: be it by
making conclusions out of numerical simulations as in the cases reported in [9], or
combined with optimization codes like in [10]. RANS models have performed accu-
rately when simulating a broad range of flows. For example, Naseri et. al. predicted
with reasonable accuracy the instability point and the performance of an axial tran-
sonic compressor [11]. For this reason, and also because they lay in the range of
computationally affordable models, they have become the main CFD model in the
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industry.

RANS models were originally developed to simulate flows where the scales of
fluid motion consist on a big steady scale and relatively much smaller unsteady
scales, i.e., turbulent scales. In this situation the transient term of the equations (1.18-
1.20) should vanish. Nonetheless, transient terms are kept in the equations to allow
the smooth evolution, from an initial guess to the steady state result, of the simulated
fluid magnitudes. This technique is called time marching. With it, the intermediate
solutions between the initial guess and the final steady state do not represent, in any
sense, the transient evolution that would happen in an equivalent experiment.

Later, RANS models were also used to study transient flows consisting of a very
large, slow unsteady flow motion scale and the much smaller turbulent scales in
the so-called Unsteady Reynolds Averaged Navier Stokes (URANS) model. This ap-
proach splits the transient terms of equations 1.18-1.20) in two terms: one approaches
the actual transient term of the variables and the other is used for time marching.

Time filtering of fluid properties inherent of RANS and URANS enables the use
of implicit time integration schemes. This reduces the necessary time integration
iterations to reach a solution and allows for shorter computing time and lesser com-
putational resource. Thus, RANS and URANS are reasonably affordable in terms
of response time and economical cost. But time filtering also limits the capacity of
these methodologies to accurately simulate the interactions of flow motion scales.
Flows composed of flow scales in two very separated size ranges, i.e., some large
steady or long-period unsteady scales of motion and a range of much smaller small
scales limited in near-wall regions, this is not a major drawback if there is no inter-
est in the specific evolution of the small scales. On the contrary, when simulating
flows where there is no such separation between two ranges of present flow scales
or when reproducing the interactions between small, intermediate and large mo-
tion scales is necessary to capture the main behavior of the flow, using RANS or
URANS is very questionable. Among the phenomena that time-filtering is inaccu-
rate it is worth mentioning transitions of boundary layers, finding the stall angle of
airfoils, flows driven by detached turbulence like the lift coefficient of an airfoil in
stall, Rayleigh-Bénard convection at high Péclet numbers, etc. For such cases, using
RANS or URANS provides unreliable solutions that may lead to inaccurate design
decisions and undermine the credibility of CFD.
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1.3.3 Large Eddy Simulations (LES)

The theoretical foundation of Large Eddy Simulations is the spatial filtering of the
Navier-Stokes equations, which is in turn an implicit filtering in time as the smallest
scales of motions are not simulated and only their average effect on the bigger scales
is considered at each time step. Defining the spatial filter as

φ̂(x) =
∫

Ω
KG(x, ξ)φ(ξ) dξ, (1.28)

then
φ = φ̂ + φ′ .

If filtering commutes with the differential operators, LES equations of mass and mo-
mentum conservation are straightforward while the derivation of the energy equa-
tion with the ideal gas law (1.34) is not. Altogether, the LES equations read (see [12])

∂ρ̂

∂t
+∇ · (ρ̂ ˆ̄u) = 0 , (1.29)

∂ρ̂ ˆ̄u

∂t
+∇ · (ρ̂ ˆ̄u⊗ ˆ̄u) = ∇ · (− p̂I+ σ̂)−∇ · Sgs + ρ̂ ˆ̄fm , (1.30)

∂ρ̂ ˆ̄Et

∂t
+∇ ·

(
ρ̂ ˆ̄u ˆ̄Et

)
= ∇ · (− p̂ ˆ̄u + ˆ̄u · σ̂ + q̂) + ˆ̄u · ∇ · Sgs + Sp + Se + Sd + ˆ̇qv ;

(1.31)

where
φ′ = φ− φ̂ ⇒ φ̂′ = 0 (1.32)

and

ˆ̄φ =
φ̂ρ

ρ̂
. (1.33)

In equations (1.29-1.31) the ideal gas law is

p̂ = ρ̂

(
(γ− 1) ˆ̄Et −

1

2
ˆ̄u · ˆ̄u

)
, (1.34)

the Newton’s stress tensor is approximated with

σ̂ij ≈ ˆ̄2µ

[
1

2

(
∂ ˆ̄ui

∂xj
+

∂ ˆ̄uj

∂xi

)
− 1

3

∂ ˆ̄uk

∂xk
δij

]
(1.35)

and Fourier’s heat flux vector is approximated with

q̂i ≈ − ˆ̄λ
∂ ˆ̄T

∂xi
. (1.36)
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Moreover, the sub-grid stress tensor

Sgs = ρ̂u⊗ u− ρ̂u⊗ ρ̂u

ρ̂
= ρ̂

(
û⊗ u− ˆ̄u⊗ ˆ̄u

)
, (1.37)

the pressure-dilatation term

Sp = p̂∇ · u− p̂∇ · ˆ̄u , (1.38)

the sub-grid internal energy-velocity sub-grid term

Se = ∇ ·
(

ρ̂uEt −
̂ρu⊗ u · u

2

)
−∇ ·

(
ρ̂ ˆ̄u ˆ̄Et −

ρ̂ ˆ̄u⊗ ˆ̄u · ˆ̄u

2

)
(1.39)

and the sub-grid turbulent dissipation rate

Sd = σ̂ : ∇u− σ̂ : ∇ ˆ̄u (1.40)

should be modelled.

LES allows to capture the large and part of the inertial (intermediate) scales of mo-
tion while the smallest turbulent scales are modelled after assuming they are almost
independent of the largest. This allows to assume that their behaviour is statistically
identical for all turbulent flows with the same constitutive equations and does not
depend on the specific boundary and initial conditions. This allows to use coarser
spatial discretizations and consequently larger time integration steps in areas where
turbulence is reasonably isotropic.

In LES, explicit time integration schemes are of most common use because the
time step restrictions inherent of these methodologies is not much more limiting than
the physical maximum allowed time integration steps. With explicit time integration,
for a given space discretization, the relationship between the maximum allowable
time integration step ∆t and the grid size ∆x at each element of the geometrical
discretization scales is

∆t ∝
∆x

u∗
M

1 + M
, (1.41)

where M is the local Mach number and u∗ the flow-characteristic speed. Therefore,
the maximum time integration step is restricted by the minimum sized element in
the domain. But the models for the sub-grid terms of LES are derived for isotropic
turbulence and zones with strongly anisotropic turbulence like boundary and shear
layers must be resolved with almost full grid resolution. Henceforth, the smallest
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elements that determine the overall maximum allowed time steps are in these rela-
tively small regions. In LES, most grid points are near the boundary and shear layers.
Since the grid spacing in these regions can not be coarsened, the overall computing
costs of LES are significantly higher than those of RANS and URANS in many rele-
vant situations (e.g. [13, 14]).

1.4 Discretizations of the Navier Stokes equations for

compressible flow

Once the set of equations describing the evolution of the properties of a compressible
flow is set, the methodology to simulate it with computers consists in establishing
a finite set of real numbers that will represent, up to some degree of accuracy, the
evolution of the fluid magnitudes in some physical domain.

First, a discretization methodology is chosen. The most known discretization
methodologies are Finite Differences, Finite Elements, Finite Volumes (FV), Spec-
tral Methods and the Discontinuous Galerkin Method. They all can be applied to
any set of partial differential equations and have relative advantages and inconve-
niences [15]. In CFD, FV methods have gained popularity because the telescopic
property inherent in their formulation ensures local and global conservation of mass,
momentum and energy in all the regions of the fluid domain. Respecting conserva-
tion may not be so necessary in other fields of application like structural analysis,
where other methodologies with higher local accuracy are preferred. There, the rul-
ing equations do not need to be integrated with as much time integration steps as
those necessary for the NSE. Therefore, the cumulative error committed due to non-
conservation at each iteration is relatively less significant.

Next, a set of functions

N =
{

N1(x), N2(x), N3(x), . . . , Np(x)
}

defined in the spatial coordinates D ⊂ IRn is chosen for the representation of

φ(x) ≃
p

∑
i=1

φiNi(x) .

Hence, each fluid magnitude φ(x) is represented by the array

φ = {φ1, φ2, φ3, . . . φn} ∈ ℜp
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andN is the basis of the vector space on which the fluid variables will be represented.
The basis of functionsN is chosen in agreement with the discretization methodology.
For example, in FV methods, N consists of piece-wise constant functions, each one
evaluating 0 in all D excepting for simply connected subdomains Ωo ∈ D, with⋃

o Ωo = D and preferably
〈

No|Np
〉
= 0. Meanwhile, in Discontinuous Galerkin

methods, N consists of polynomials that evaluate zero in most of the domain and
evaluate non-zero only in simply connected subdomains Ωo of D.

Another choice to be made is the set of properties that will be the primary vari-
ables in the calculations. The constitutive equations provide relations between all
the fluid magnitudes in a flow. This allows to calculate most of them as functions
of a subset of the set of all the magnitudes. The primary variables are those in this
subset. Numerical simulations approximate the evolution in time of the primary
variables, which are used as parameters to calculate the others. In the case of com-
pressible fluid flow of ideal gases 5 independent variables allow to calculate all the
rest. Considering the primary variables as functions of space and time, the others
become functions of the primary variables and their dependence on space and time
is obtained after the constitutive equations. In compressible flow, the most common
set of primary variables is the so-called conservative variables, i.e. the vector that
contains 



ρ
ρu1

ρu2

ρu3

ρEt




o

(1.42)

for every DOF, identified with the subindex “o”. For incompressible flow, the usual
primary variables are 



u1

u2

u3

T




o

(1.43)

Then, one discretizes the spatial operators of the NSE, RANS or LES. It is in this
stage of the discrete modelisation process when the properties of the chosen basis of
functions N has a paramount effect. For example, when discretizing equation (1.30)
an approximation og∇ · (ρ̂ ˆ̄u⊗ ˆ̄u) is required for each DOF. Table 1.4 summarizes the
differential operators in the Navier-Stokes, RANS or LES equations in continuous
and discrete spaces:
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Table 1.1: Differential operators in the Navier-
Stokes, RANS and LES equations.

Name Analyitical Form Discrete Form

Divergence ∇· M

Gradient ∇ G

Convectiona u · ∇ C(u)

Laplaciana ∇ · ∇ L

Curla ∇× Rot

a Isomorphism.

The following example illustrates the discretization of a divergence operator in
FV. Consider a cell (i.e., the subdomain Ωo where a No(x evaluates 1)). in order to
approximate∇ · u in that cell using Gauss’ theorem. Thus

(∇ · u)o =
1

Ωo

∫

∂Ωo

u · n δσ ≃ Mo =
1

Ωo
∑
op

uop · nopSop ∀p ∈ Nbo

, where Nbo is the set of Ωp with a non-null sized interface with Ωo. There is some
freedom to chose how uop is evaluated at each interface “op” between cells “o” and
“p”. In the literature there are approximations like

uop ≃ 1/2
(
uo + (∇u)o · (rop − ro) + up + (∇u)p · (rop − rp)

)
≃

≃ 1/2
(
uo + (Gu)o · (rop − ro) + up + (Gu)p · (rop − rp)

)

and
uop ≃ 1/2

(
uo + up

)
.

Notice that the first option requires Go and Gp ∀p ∈ Nbo. This increases the com-
plexity of the discretization. A hierarchy of criteria to decide how the discretization
of the equations should be undertaken is mandatory to construct discrete operators
with predictable behaviour.

One of the causes of these misbehaviours when discretizing the differential oper-
ators is the non-prevalence of the product rule of differentiation in discrete spaces.
E.g., while

∇ · (ρu) = ∇ρ · u + ρ∇ · u ∀x

the same is not true for discrete operators:

M(ρu)o 6= (Gρ · u + ρMu)o .
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This implies that discretizations based on Gauss’ theorem and the divergence opera-
tor do no respect the skew-symmetry of convection and that discretizations based on
the convection operator are not necessarily fully conservative. The criteria used in
this thesis follow the school of the Computational Mechanics and Numerical Mathe-
matics (CMNM) at the Johann Bernoulli Institute for Mathematics and Computer Sci-
ence and the Heat and Mass Transfer Technological Center that has been published
in numerous scientific journal articles, e.g. [16–18]. Our approach consists in design-
ing discrete operators for which the global properties of symmetry, skew-symmetry,
conservation and normalization hold and, after these properties are ensured, focus
on others like local accuracy. These concepts will be developed in chapters 2 and 3.

Finally, once the spatial operators are discretized, numerical schemes for Ordi-
nary Differential Equations (ODEs) are used to get the relationship

Ψ(φn+1, φn, φn−1, φn+1−q) = 0,

where the superscript represents the time instant. After this is done, the system of
ODEs is ready for coding and computing.

1.4.1 Classical characteristics analysis based discretisations

Classical mathematical analysis divides PDE systems into three main categories de-
pending on the discriminant of the system if it is linear or the system’s Jacobian
when it is not [19]. The NSE for compressible belong, according to this criterion, in
the hyperbolic-parabolic group. The hyperbolic part of the equations comes from
the convective and pressure terms in equations (1.1, 1.2 and 1.3), while the parabolic
part is in the diffusion terms in Eqs. (1.2 and 1.3). At high Reynolds and Péclet
numbers, convection dominates over diffusion and the Navier Stokes equations can
be seen as perturbed Euler equations. The perturbations are, in this approach, the
diffusion terms. Since the Euler equations are hyperbolic, the discretization of the
Navier Stokes equations for compressible flow is very often carried out adding diffu-
sion terms to a characteristics-based discretization of the Euler equations (e.g. [20]).

This procedure starts writing the Euler part of the equations (1.1-1.3), or their LES
or RANS equivalents in a divergence form

∂

∂t
φ +

∂

∂x j
f j = 0 , j ∈ [1, 3] , (1.44)

where φ is an array with the primary variables and f j is the array of fluxes of quan-
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tities

φ =




ρ
ρu1

ρu2

ρu3

ρEt




, f j =




ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

ρhtu
j




. (1.45)

Next, introducing the jacobian of the flux vector J( f , φ) with components
∂ f

j
p

∂φq
, one

gets

∂

∂t
φ +

∂ f j

∂φq

∂φq

∂x j
= 0 , (1.46)

which can be diagonalized in a region if nj ∂ f
j
p

∂φq
has a complete set of eigenvectors for

all n ∈ IR3. For a given n,

Jn( f jnj, φ) = R−1ΛnR,

where Λn is a diagonal matrix. Thus one can study the projection of the system of
equations (1.44) on n and the equations become uncoupled. The sth component then
reads:

R
p
s

∂φp

∂t
+ R

p
s

∂ f
j
p

∂φq

∂φq

∂xn
=

∂ψs

∂t
+ λsδsq

∂ψq

∂xn
= 0, (1.47)

where ψ are the so-called characteristic variables, xn is the spatial coordinate in the
n direction and δij is Kronecker’s delta.

Now, in a small domain around a point where Eq. (1.46) can be diagonalized, it
follows from (1.47) that δψs = 0 on (xn − λst) or, in other words, φs is well approxi-
mated by

ψs(x, t) ≃ ψs(x− λs∆tn, t− ∆t);

i.e., a convection along xn at λs velocity. Of course, the concepts “well approximated”
and “small domain”are very vague here and, moreover, temporal variations of ψs are
also affected by the information travelling in other directions. This very vague rea-
soning contains the main ideas behind the characteristics-based discretisations of the
Euler equations.

To illustrate characteristics-based schemes we consider a 1D advection problem
on a infinite spatial domain.

∂φ

∂t
+ u

∂φ

∂x
= 0 (1.48)

φ(x, t = 0) = φ0. (1.49)
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It is straightforward that

φ(x, t) = φ0(x−
∫ t

0
u(τ) dτ, 0)

and φ is a wave travelling at u speed. The sign of u determines the direction in
which the φ wave travels. Thus, in a numerical simulation, it seems obvious that the
directionality of the information propagation should be respected. This is achieved
by upwinding the numerical fluxes; i.e., using directionally-biased stencils for the
approximations to the geometrical differential operators on φ (see, e.g. [21]). But
upwinding causes undesired diffusion that smears the solutions of hyperbolic prob-
lems [22] and jeopardizes the capacity of numerical schemes to fulfill their ultimate
goal, i.e., providing accurate predictions of fluid flow. High order upwind-biased nu-
merical discretizations resolve this major drawback and allow to accurately simulate
compressible flow at the cost of using larger stencils, i.e., increasing the computing
cost.

1.4.2 Critique to the classical characteristics analysis

Among the motivations and influences that make researchers more prone to adopt
one or another approach to their subject, some are not strictly related with the ra-
tional analysis of the scientific and technological challenges. Other social and indi-
vidual factors related with ethics, finance, tradition and politics play a major role
and strongly influence, not only the questions that researchers make, but also their
predisposition to find positive and negative answers. These factors have a low im-
pact in rationally pure disciplines like algebra, mathematical analysis or fundamen-
tal physics. But as a discipline becomes less fundamental and is closer to industrial
applications, and as long as it combines more concepts, personal and social choices
have a stronger effect on the scientific output.

CFD sits in between physics, mathematics, computing science and engineering.
Moreover, it has a strong influence in the design of aircraft, vessels and a vast num-
ber of machines and devices. Thus, CFD is prone to be influenced by these elements
and its development should not be analysed without considering them. This be-
comes apparent in the several accounts about how the fundamentals of CFD were
established by different research groups ( [23, 24]).

Regarding compressible flow, after the hyperbolic nature of the Euler equations
and the characteristics, it seems that upwind biased schemes are the most extended
methodologies to discretize the geometrical differential operators [25]. A good in-
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troduction to them and other strategies to avoid the instability of numerical simula-
tions for high speed flow (large Reynolds and Péclet numbers) can be found in [26].
It is remarkable that it is widely accepted in the litterature that central differentia-
tion schemes do not add undesired artificial dissipation but, unfortunately, they are
unstable and should be used together with some explicitly added dissipation mech-
anism (e.g. filtering). See, in this regard, the famous JST flux discretization [27]. This
was also a common belief among the incompressible flow CFD community after the
conclusions of classical authors like Patankar ( [28]). But later investigations based
on the properties of the operators of the NSE rather than on local approximations to
derivatives or numerical fluxes showed that it is possible to build stable discretisa-
tions without any artificial dissipation or upwinding [16,29]. These are the so-called
Symmetry Preserving (SP) discretisations.

Several attempts to bring the good stability properties of SP schemes to compress-
ible flow have been made. In his review article, Pirozzoli [26] mentions [30] and [31]
as pioneers in energy-consistent schemes. Others have conducted similar works with
more or less success (e.g. [32, 33]). However, as I see it, Rozema [34] established the
first steps of a solidly founded discretization in this regard and the Groningen school
took the lead in the theoretical study of flux discretisations.

Therefore, we now have compressible flow schemes that do not need any arti-
ficial dissipation, do not do any upwind and they are still stable when the flow
is smooth (i.e. no shocks or strong discontinities), attaining the goals sought with
characteristics-based upwind schemes without encompassing their drawbacks.

But the competition between the different CFD schools will never end. Many
researchers have dedicated huge efforts and resources to high order and upwind-
based methodologies. Now, with a very broad spectrum of discretizations to choose,
the CFD researcher or user needs to identify the pros and cons of each of them to
decide, on the most rational way, his/her best option.

Now it is time to go back to the reasons that hold characteristics-based high-order
upwinding and check up to which degree they reproduce the nature of the flows.
Here are some reasonable doubts:

• Characteristic-based high-order upwinding is derived from the advection equa-
tion, which is linear with respect to the transported magnitude. Convection in
the NSE is non-linear.

• Most of the methodologies in characteristics-based high-order upwinding schemes
are developed and checked in 1D Euler equations and extended to 2D and 3D
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problems “straightforwardly”. This is sometimes inconsistent (e.g. TVD in
each dimension is not a sufficient condition for TVD in several dimmensions).

• The advantage of high-order methods over lower-order non-dissipative meth-
ods is often attributed to the reduction of aliasing error. However, the analysis
that leads to this conclusion is the 1D advection at constant transport speed.
This analysis has not been reproduced neither in higher dimensions spaces nor
in non-linear convection. Consequently, there are no theoretical arguments that
ensure that the advantage should hold under these conditions.

• High-order upwind schemes dissipate kinetic energy into internal energy in
excess.

• The symmetry properties of the differential operators of the Euler equations
can not be reproduced in discrete operators based on high-order upwinding.

Hence, overall, it seems that characteristics-based schemes are very well fit for
linear or quasi-linear hyperbolic problems like high-velocity flows where smooth-
ness and shock positions are more relatively important than the accurate prediction
of detached turbulence and RANS is accurate. On the other side, for non quasi-linear
problems that require LES or DNS, their advantages should now be reconsidered in
front of SP schemes. This is the case of many of the applications of interest already
described in section 1.1.

1.5 Objectives and Scope of the Thesis

This thesis is focused on the combination of Symmetry Preserving (SP) schemes for
compressible flow with explicit filtering in order to eliminate wiggles and their in-
duced instability. But doing this requires expanding the knowledge of the two ele-
ments to be combined. On one side, the existing SP schemes must be compared to
identify which produce wiggles and to which extent they do. On the other, under-
standing of filtering in CFD has to be improved and the conclusions drawn brought
to discrete filters. Finally, once the two elements are better understood, a combining
methodology is described and tested. The thesis is structured in a way that each
chapter can be read independently from the others or as a part of the overall work.
Therefore, each of the chapters contains a more detailed introduction with a more
specific scope and objectives.

To fulfill the goals, a comparison of the existing SP schemes is carried out in order
to identify possible advantages of one scheme with respect to the others. This task
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is reported in chapter 2. Later, before applying any filter, chapter 3 is a thorough
study of the mathematical properties of the analytical filters in the CFD literature.
An effort is made to summarize the defining properties of filtering and to identify
mutually exclusive properties. This analysis is necessary in order to later determine
which should be the criteria to design new discrete filters for CFD. To my surprise, I
could not find similar published works. The theoretical work in chapter 3 is followed
by another piece of text dedicated to explicit discrete filters for CFD in chapter 4. In
it, I apply the findings of the previous chapter to define constraints for discrete ex-
plicit operators, to describe a new family of filters derived with these constraints and
to define new tests that help assess them. After this is done, the derived filters are
applied to SP discretizations of compressible flow in chapter 5. To finalize, chapter 6
summarizes and reviews the conclusions of the former.

The contents of this work will be useful to those who develop numerical methods
for LES and to those who study the properties of LES equations. Meanwhile, those
people who develop or use fast simulation tools in an industrial level will probably
find the reasons and conclusions made here too far from their interest.
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2

Symmetry Preserving

Discretizations of

Compressible flow: a

Comparison

2.1 Introduction

In the past, CFD simulations with centred schemes for the calculation of spatial
derivatives or numerical fluxes have been considered unstable or oscillation generat-
ing by the researchers of numerical methods in both incompressible and compress-
ible flow. The book by Patankar [1] for the simulations of incompressible flows, the
pioneering work by Godunov [2] and the works by Harten, for example, [3], remark
that, in order to grant stability, the numerical schemes used to compute derivatives
or fluxes at interfaces should contain some degree of diffusion. Accordingly, diffu-
sion was introduced using more or less elaborated upwind schemes. This theory
was constructed on 1D hyperbolic equations and extended to 3D with structured
meshes. As artificial diffusion reduces the accuracy of results, efforts were put to
reduce it to the strictly necessary minimum. Examples of these approaches are the
Lax-Wendroff scheme, ENO [3] and WENO [4] for compressible flows or QUICK [5]
for incompressible flows.

Flow scales are eigenfunctions of the diffusion operators. As their eigenvalues are
higher, smaller scales are more affected by artificial diffusion. This can also be seen

27
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with Fourier analysis, whose function basis is precisely the set of eigenfunctions of
the Laplacian operator in IRn. Consequently, the addition of artificial diffusion was
acceptable as long as the numerical simulations intended only to capture the features
of the largest flow scales; i.e. as long as turbulence was modelled with Reynolds Av-
eraged Navier Stokes (RANS). Later, due to the increase of computing capacity, tran-
sient LES and DNS have gradually become more affordable and widespread. These
techniques can better predict fluid flows because more motion scales are resolved.
On the other hand, artificial diffusion on small scales can distort them and their
effect on larger flow scales, reducing the accuracy of the time-averaged variables.
Henceforth, DNS and LES have questioned the existing upwind-biased spatial dis-
cretization schemes.

In Finite Volumes discretizations, research has led to the substitution of centered
schemes where fluxes at interfaces between adjacent o and p cells are computed as

fo p =
f (φo) + f (φp)

2
(2.1)

and those in which variables were interpolated at interfaces to later calculate the flux
funcions

fo p = f (φop(φ)) (2.2)

to the families of the Symmetry Preserving and Kinetic Energy Preserving schemes,
where the numerical fluxes depend on neighbour cells and no interpolation of the
fluid variables is required

fo p = f (φo, φp) = fp o . (2.3)

Morinishi [6] developed equivalent methodologies for Finite Diferences discretiza-
tions. With these schemes and the imposition of some restrictions, artificial diffusion
is not necessary anymore and velocities are bounded by some criterion other than
monotonicity preservation.

Under incompressible flow assumptions, it seems that the first reference of this
kind of scheme is due to Harlow and Welch [7], but the authors do not mention this
property and, thus, do not identify the cause of the stability of their second-order
scheme. Arakawa [8] showed the importance of respecting the analytical symme-
tries of the operators in their discrete approximation and developed schemes accord-
ingly. Later, Morinishi et al. [6] proposed a high order KEP method and Finite Dif-
ferences schemes in structured meshes. Verstappen and Veldman [9] extended the
Symmetry Preserving method to 4th-order non-uniform structured staggered finite
volumes aiming the conservation of kinetic energy. Perot provides a good account
of this family of schemes up to 2011 in [10]. Later, KEP schemes have been adapted



2.1. INTRODUCTION 29

to unsturctured meshes with both staggered and collocated formulations by Trias et
al. [11]. Higher order symmetry preserving schemes for unstructured grids have not
been reported. Even with low-order, it is commonly accepted nowadays that non
dissipative schemes are the best choice to discretize NSE when simulating internal
or external flows for DNS or LES [12].

After the success of SP schemes in incompressible flows, several researchers en-
gaged in their extension to compressible flows. Feireisen [13] proposed an splitting
of the convective derivatives in order to achieve a kinetic energy consistent method
for compressible flows. Antony Jameson deduced a KEP scheme [14] and tested it
on a 1-D Shock-tube problem, even though the shock-tube does not seem the most
appropriate test for schemes designed for the prediction of turbulence. In his paper,
Jameson stated that KEP schemes could be used for DNS simulations with shock
waves provided that enough control volumes were used, thus requiring very large
computer resources that can be expected in a relatively far future. In the Dutch
school, Kok adapted the method of Verstappen and Veldman [9] to compressible flow
getting a high-order, low-dispersion, SP scheme. However, this scheme requires ad-
ditional filtering to avoid instabilities. Finally, Rozema et al. [15] performed an anal-
ysis based on a L5

2 norm from which they derived a scheme where convection pre-
serves kinetic energy, mass, momentum, and the addition of mass and kinetic energy
in a volume. They imposed a bound on the evolution of the variables that should
be conserved. Therefore, perturbations are prevented from growing and simulations
do not blow up. Still, a limitation in the L∞ norm of fields does not imply that the
solutions obtained with these schemes are physically admissible and bounded wig-
gles can appear with Rozema’s scheme.

Meanwhile, the same family of schemes has also been derived by Kravchenko
and Moin [16] and Ducros et al. [17] after identifying the necessity to use skew-
symmetric convection operators for LES and DNS simulations in order to reduce
aliasing errors in finite differences of finite volumes. The 2nd-order discretization
in Ducros et al. [17] is, in fact, the JST scheme [18], for which the cause of its good
performance was not fully understood at the time of its publication.

Symmetry preserving, kinetic energy preserving or skew-symmetric schemes be-
long to the Symmetry Preserving (SP) family of schemes and, abusing of language,
we will call them all SP Schemes (SPS). Summarizing, SPS try to mimic the symmetry
properties of their continuous counterparts and reduce aliasing errors that otherwise
can affect the simulations results in a catastrophic manner. Both features seem solid
enough in favor of SPS as to make them the default choice for DNS and LES simula-
tions. If this has not already happened, it is probably because of the impossibility to
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construct high-order schemes on unstructured meshes while keeping SP. The range
of application of these schemes in compressible flows can be found in the 2011 re-
view article of Pirozzoli [12]. Without entering into details, SP schemes should be
used to model compressible flows when studying transient flows with a turbulent
component. Shock-Boundary Layer Interactions are a typical example of application.

Once the SP theory established, numerical experimentation shows that incom-
pressible SP schemes avoid the appearance of wiggles in a broader range of situa-
tions than compressible SP. The most notorious case is when using coarse grids. The
reason for this lies on the fact that while incompressible methods imply the resolu-
tion of, at least, one Poisson equation for the calculation of pressure for every time
step. Then, the velocity field is projected projection into a divergence-free space.
Compressible methods do not and must not resolve any elliptic equation. This ellip-
tic operation and the further velocity projection into a divergence-free space can be
lumped into a single smoothing operator [11]

un+1 = (Id +
∆t

ρ
∇(∇2)−1∇·)up = Pup. (2.4)

On the other hand, bounded amplitude wiggles persist in compressible SP methods
if meshes are not refined enough or some action is taken. Hence, even though sym-
metry preserving schemes bound the L2 norm of velocities, wiggles can appear if
a furtter condition bounding velocity variations, e.g., Total Variations Diminishing
(TVD), is not imposed. As far as we know, there is not in the literature a condition in
this sense that does not imply dissipation.

This chapter is dedicated to the comparison of existing explicit symmetry pre-
serving schemes for compressible flow. These schemes are summarized in section
2.2. They are later compared on the 2D Isentropic Vortex problem in section 2.3 and
on the Taylor-Green problem in section 2.4. The conclusions of the tests are reported
in section 2.5.

2.2 Symmetry Preserving schemes for compressible flows

The Navier-Stokes equations for compressible flows have been introduced in Chap-
ter 1. Here, we focus on Finite Volumes discretizations, i.e., the discretization basis
is a set of piece-wise continuous distributions (see subsection 1.4) and assign their
average value to each sub-domain. In the notation of this thesis, subscripts identify
cells when alone and cells interfaces when in pairs and superscripts denote space
dimensions. Vo stands for the volume of the oth cell, Sop is the area of the interface
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between cells o and p and nop is the unit vector normal to the interface, pointing from
o to p. The summation convention applies for subscripts and superscripts. Moreover,
φ• =

{
φ1, φ2, . . . , φp

}
andN =

{
N1(x), N2(x), N3(x), . . . , Np(x)

}
. With all this, let

a discretization be defined by

x ∈ D ∈ IRn ⇒ φ(x) ≃ φiNi(x). (2.5)

Then, a FV discretization is

D =
⋃

o

Ωo; No(x) =

{
1 for x ∈ Ωo

0 for x /∈ Ωo
; φo =

1

Vo

∫

Ωo

φ(x) δΩ. (2.6)

It is obvious to translate these rules into discretizations of IR1 or IR2.

A fundamental element that allows easy descriptions of properties in general
disctretizations is the inner product

〈φ•|ψ•〉 =
∫

D
(φoNo(x))

(
ψp Np(x)

)
δx .

In FV, it reads
〈φ•|ψ•〉 = φoΩoψo .

then, following the Navier Stokes Equations (NSE) (1.1, 1.3, 1.3), when the domain
is periodic numerical schemes should conserve

d

dt
〈ρ•|1•〉 = 0 mass,

d

dt
〈ρu•|1•〉 = 0 momentum and

d

dt
〈(ρEt)•|1•〉 = 0 energy (2.7)

in time. Furthermore, SP schemes do not generate nor destroy kinetic energy by
convection. Recalling the Skew symmetry of convection in the analytic, continuous
space,

〈φ|C(u)ψ〉+ 〈C(u)φ|ψ〉 = 0 . (2.8)

This property holds for the discrete convective operators in NSE SP discretizations.
It becomes

〈φ•|C•(u•)ψ•〉+ 〈C•(u•)φ•|ψ•〉 = 0 , (2.9)

implying
ΩoCop = −ΩpCpo . (2.10)
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The convection of momentum and kinetic energy result from the product of ρu⊗
u · n, and 3 conservative magnitudes should be handled instead of the 2 in Eq. (2.8).
This arises the question about how should ρu⊗ u · n be organized into the product
of two quantities,e.g., (ρu)⊗ (un) or (

√
ρu)⊗√ρun)?

The different approaches when distributing the kinetic energy product define
how the magnitudes should be approximated at interfaces. Accordingly, several SPS
come up. Those of 2nd order are summarized in Table 2.1, where JST refers to the
classical [18] without the stabilizing additional viscosity, i.e., we consider only the
base scheme without any shock capturing methodology. Furthermore, in Table 2.1
the schemes are written in the notation introduced in [19], which has been slighltly
expanded and is summarized in equations (2.11).

φ̄op =
1

2
(φo + φp)

φ̆op =
√

φoφp

φψop =
1

2
(φoψo + φpψp)

φ̃ψop =
1

2
(φoψp + φpψo) (2.11)

Since the discretization of pressure gradients was not derived from any analysis
in any of the schemes and the authors used second-order central discretizations to
evaluate pressure at cell interfaces (see Table 2.1), we include in our analysis a modi-
fication of the RZM scheme in which the pressure was reconstructed with ¯̈p, where

φ̈oop = φo + (Gφ)o · (xop − xo) . (2.12)

This last scheme is identified as Modified Rozema (MRZM).

2.3 2D Isentropic Vortex

The 2D isentropic vortex evolution case [21] tests the capabilities of discretization

schemes in a convective flow without turbulence or shock waves. In IR2, with per-
turbations vanishing at infinity, under ideal gas and Euler equations and following
the parametrization of Spiegel et al. [22], the initial flow fields read:
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Table 2.1: Table : KEP schemes for compressible flow in the literature.

Cons. Equation Mass Momentum Energy
Flux ρvj ρvivj p ρhtv

j

JST81 [18] ρ̄v̄j ρviv̄j p ρhtv̄j

JKEP [14] ρ̄v̄j ρ̄v̄iv̄j p ρ̄h̄tv̄j

KOK [19] ρvj ρvjv̄i p ρvj(ŭ + 1
2 ṽkvk) + p̃vj

RZM [20] ρ̆v̄j ρ̆v̄iv̄j p (ρ̆(ŭ + 1
2 ṽkvk)v̄j) + p̃vj

MRZM ρ̆v̄j ρ̆v̄iv̄j ¯̈p (ρ̆(ŭ + 1
2 ṽkvk))v̄j + ˜̈

pv̄j

u = u∞ + δu ,

T = T∞ + δT ,

p = ργ ;

where

δu = Ω

{
η
−ξ

}
,

δT = −γ− 1

2
Ω2 ;

and ξ = (x − x0)/R; η = (y − y0)/R; Ω = β exp(− f ); f (x, y) = − 1
2σ2 (ξ

2 + η2);

β = 5
2π
√

γ exp 1
2 ; σ = 1.

The numerical values of the parameters are also the same as Spiegel et al. [22],
i.e., R = 1; σ = 1; T∞ = 1; p∞ = 1; ρ∞ = 1; γ = 1.4 and Rgas = 1.

Errors from all sources (truncation errors, artificial diffusion, dispersion) can pile
up at long time integration times and the initial characteristics of the vortex are lost
and eventually simulations can blow-up. Spiegel et al. [22] studied different ver-
sions of this case reported in the literature and provided recommendations to avoid
boundary-induced blow-up. Specifically, they suggest to set the spatial domain to
D = {(x, y) ∈ [−10R, 10R]× [−10R, 10R]} and to use characteristic non-reflecting
boundary conditions for u∞ = 0, and periodic boundary conditions in the convec-
tion direction only if u∞ 6= 0. This way, perturbations can leave the simulation
domain through the non-reflecting boundary conditions.
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Table 2.2: Table : Meshes for the 2D Isentropic Vortex case.

Mesh L Nside Ntot

str80 10 80 6400
str200 10 200 40000
unstr80 10 80 14620
unstr200 10 200 58330

Following these recommendations, we compare the discretizations in section 2.2
on uniform structured and unstructured meshes. The studied uniform Cartesian
meshes have 80 and 200 divisions in each direction respectively. The correspond-
ing unstructured meshes are made of triangles with the same size of the structured
counterparts. Thus, 4 different meshes are defined (see Table 2.2). The simulations
were discretized in time using the 3-steps explicit Runge-Kutta scheme in Gottlieb
and Shu [23]:

φ
n(+1)
o = φn

o + ∆tRo(φ
n
•)

φ
n(+2)
o =

3

4
φn

o +
1

4
φ

n(+1)
o +

1

4
∆tRo(φ

n(+1)
• )

φ
n(+3)
o =

1

3
φn

o +
2

3
φ

n(+2)
o +

2

3
∆tRo(φ

n(+2)
• )

φn+1
o = φ

n(+3)
o , (2.13)

where R•(φ•) is the addition of all the non-transitory terms of the system of dis-
crete equations. The superscripts stand for the time integration step (+Runge-Kutta
sub-step).

The boundary conditions are the characteristics-based 2nd-order boundary of
Poinsot and Lele [24].

As it is explained in the paper of Sipegel et al. [22], the original 2D Isentropic
vortex consists of a vortex travelling while spinning in a domain. From this original
problem, the characteristic time of the flow is the time it takes the center of the vortex
to propagate completely throughout the entire the computational domain and return
back to its initial position. Here, we study the case in which u∞ = 0 and the vortex is
steady. For this case, the definition of the characteristic should be based on the time
it takes a fluid particle to complete a turn around the center of rotation. For a fluid
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particle at a distance R from the center of the vortex this is 2πR
u(R)

, which gives

T1 =
4π2√γ exp (0.5)

5

in the present parametrization. For the sake of comparison with the results of the
moving vortex, however, it is better to keep a period related with the reference paper.
Thus, the characteristic period refers to the travelling vortex

T2 =
T1

M∞π exp (1)
.

2.3.1 Stationary Vortex

The stationary vortex case shows how some of the SP schemes are more stable than
others. In the str80 mesh, only RZM and MRZM schemes are stable after more than
100 T2 periods. In the unstr80 mesh, the stability differences become more evident
and only MRZM is stable after more than 100 periods.

Table 2.3: Table : Blow-Up times for the 2D Isentropic Stationary Vortex case.

Mesh JST KEP KOK RZM MRZM

str80 38 26 26 529 277
str200 20 34 33 358 282
unstr80 5.8 9.3 13 76 137
unstr200 16 33 25 64 67

After these results, it seems convenient to check if the stability enhancement of
RZM and MRZM is due to a possible higher numerical dissipation. To this end, the
kinetic energy evolution is plotted in the range [0, 40] for str80 mesh and in the range
[0, 15] for the unstr80 mesh.

The results in figures 2.1 - 2.3 do not show any additional dissipation for RZM
and MRZM.

The errors with the different schemes are plotted in figures 2.4-2.6. RZM and
MRZM do not show higher errors than the other schemes during the periods when
these have not blown up. Additionally, in the str80 mesh, the errors with MRZM are
higher than those of RZM. On the contrary, MRZM induces lesser errors and delays
the blow-up with respect to RZM in the unstructured mesh. The conclusion is that
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Figure 2.1: Mass evolution with time with various SP schemes in the 2D isentropic
vortex case. Left: str80 mesh. Right: unstr80 mesh.
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Figure 2.2: Momentum in “x” evolution with time with various SP schemes in the
2D isentropic vortex case. Left: str80 mesh. Right: unstr80 mesh.

RZM and MRZM are the most stable schemes. RZM is more accurate in uniform
Cartesian meshes while MRZM shows more accurate in unstructured meshes.
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Figure 2.3: Kinetic Energy evolution with time with various SP schemes in the 2D
isentropic vortex case. Left: str80 mesh. Right: unstr80 mesh.
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Figure 2.4: Error in velocity
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〈1|1〉 in the 2D isentropic vortex case and

str80 mesh. Left: all schemes. Right: RZM and MRZM.

But even when simulations with RZM and MRZM remain stable at very long
integration times, the errors with unstuctured meshes are one order of magnitude
higher than those obtained with Cartesian meshes (see Fig. 2.6). To better illustrate
the difference in accuracy with the various meshes and schemes, the distribution of
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case. RZM vs MRZM schemes. Left: str80 mesh. Right: unstr80 mesh.

density "ρ" along the line y = 0 has been plotted for t = 3 in Fig. 2.7 and for t = 30
in Fig. 2.8. All schemes approximate very closely the exact solution in the structured
meshes and very slight differences can be observed in the unstructured meshes at
t = 3. In contrast, at t = 30, JST and KOK do not appear because they have already
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blown up. The remaining schemes match very well with the exact solution with
str80. With str200, KEP shows oscillations in which density takes values ρ > 1 out of
the range of the problem. Meanwhile, with the same mesh at at the same time, RZM
and MRZM match very well with the exact solution. In the case of the unstructured
grids, all the schemes show oscillations and density takes values out of the range of
the case.
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Figure 2.7: Density ρ along line x ∈ [−10, 10]; y = 0 at t = 3 in the 2D isentropic
vortex case with different SP schemes on various meshes. From left to right and from
top to bottom: str80, unstr80, str200 and unstr200.
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Figure 2.8: Density ρ along line x ∈ [−10, 10]; y = 0 at t = 30 in the 2D isentropic
vortex case with different SP schemes on various meshes. From left to right and from
top to bottom: str80, unstr80, str200 and unstr200.

To end with the stationary vortex case, the results of error in density results of the
two more stable schemes are compared to those using Flux Reconstruction reported
in [22]. Figure 2.9 shows how the error of RZM and MRZM does not increase with
time in the uniform meshes while the Flux Reconstruction Schemes in Spiegel et al.
do. Furthermore, the P2 schemes in Spiegel et al. require using polynomial interpo-
lation within each control volume, i.e., they increase the overall number of degrees
of freedom NDOF needed to define the fluid fields. In this case, with polynomials of
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second-order, P = 2, Np = (P + 1)dim control points are required in each cell. This
gives 3 points per cell in each dimmension for the P2 polynomials and, in our 2D
vortex, NDOF = 3× Ncells per dimension. At the end, figure 2.9 is comparing the SP
schemes reported here with a flux reconstruction scheme with 9 times more degrees
of freedom. The results with the lesser degrees of freedom reported in Spiegel et al.
are 40× 40 meshes with P3, i.e., NDOF = 160× 160. These simulations are reported
to be unstable. Finally, no evolution of kinetic energy is reported in [22] and, as the
error in figure 2.9 grows in time, it can be suspected that this is due to the effect of
some artificial diffusion.
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Figure 2.9: Error in mass
〈|ρo−ρ(xo)||1〉

〈1|1〉 in the 2D isentropic vortex case. RZM and

MRZM schemes vs. refference [22]. Left: Cartesian meshes. Right: SP in unstruc-
tured meshes vs. refference in Cartesian meshes.

2.4 Taylor-Green Vortex

To assess the capacity of the numerical schemes summarized in table 2.1 to accu-
rately simulate turbulence, they are tested on the Taylor-Green vortex (TGV) [25].
This problem consists of the time evolution of the flow in a cubic box with sides of
length 2πL and periodic boundary conditions where a smooth initial vorticity field is
prescribed. Then, as time advances, eddies roll-up, stretch, and interact. Eventually,
eddies break-up into smaller eddies and so on until a homogeneous turbulent field
is reached. After this, since no energy is injected into the flow domain, turbulence
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dissipates into internal energy and the fluid evolves to rest. The problem set-up is
described in [26], which is the same as in the first AIAA First International Workshop
on High-Order Methods in Computational Fluid-Dynamics.

The initial conditions are:

u = V0
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+ 1
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,

M = 0.1 and Re = 1600.

This study is performed using the meshes in table 2.4. However, not all schemes
have been run in all the meshes because this test is complementary to the isentropic
vortex.

Table 2.4: Table : Meshes in the Taylor-Green case.

Name Description Cells

cart32 cubic cartesian 323

cart64 cubic cartesian 643

cart256 cubic cartesian 2563

uns extr. a tri. b 38x28 cells/edge 1 · 105(114608)
unstr64 extr. tri. 64 cells/edge 2 · 106 (2028466)
unstr128 extr. tri. 128 cells/edge 13 · 106 (13035735)
a Extruded.
b Triangles.

Figure 2.10 shows the results obtained with the RZM scheme and the WALE eddy
viscosity model [27] on the Cartesian meshes. It shows that when refining the mesh
the results of RZM approach the reference solution of [26] obtained with a cartesian
mesh of 5123 cells and a 13 points interpolation scheme.

The errors commited with RZM schemes on the 643 mesh are very similar to those
commited in DeBonis [26] with the same mesh and 13 points interpolation scheme.
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Figure 2.10: Evolution in time of magnitudes of the Taylor-Green case in cartesian
meshes and refference solution [26], 5133 Cartesian mesh, 13 points interpolation.

Left: Kinetic energy evolution. Right: Dissipation dK
dt .

Taking into account that RZM is a lower order scheme, the present methodology is
computationally cheaper than the one used in the reference document. With 2563

meshes, however, the high order schemes in [26] give more accurate results than the
actual implementation of RZM, always at a higher computing cost.

Figures 2.11 and 2.12 show the evolution of magnitudes obtained with KEP, MRZM
and RZM on cart32 and cart64. RZM and KEP collapse to the same results while
MRZM’s are slightly different. After this, we will assume that these schemes give
undistinguishable results in Cartesian meshes as long as they are far from blowing
up.

The results of the simulations with unstructured meshes and the RZM scheme
are shown in figure 2.13. The mesh refinement in this type of meshes does not make
the results more accurate at the pace of what happens with cartesian meshes. This is
a direct consequence of the truncantion error of the schemes in unstructured meshes,
which is in this case higher (it is not my intention to conduct a truncation error anal-
ysis here). For more details about the truncation error of this type of schemes, see
e.g. [28]. Figure 2.14 shows the results given by RZM and MRZM. MRZM became
unstable at the beginning of the simulation.

The major source of error of the unstructured meshes simulations seems to come
from an early instability on the initial flow. A shift on 1.71 time units (t.u.) on the



44 CHAPTER 2. SP DISCRETIZATIONS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  5  10  15  20

DeBonis
KEP-LES-WALE-cart32

MRZM-LES-WALE-cart32
RZM-LES-WALE-cart32

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-2  0  2  4  6  8  10  12  14  16  18  20

DeBonis
KEP-LES-WALE-cart32

MRZM-LES-WALE-cart32
RZM-LES-WALE-cart32

Figure 2.11: Evolution in time of magnitudes of the Taylor-Green case in cart32 with
WALE and various schemes and refference solution [26], 5133 Cartesian mesh, 13
points interpolation. Left: Kinetic energy evolution. Right: Dissipation dK
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Figure 2.12: Evolution in time of magnitudes of the Taylor-Green case with WALE
in cart64 and various schemes and refference solution [26], 5133 Cartesian mesh, 13
points interpolation. Left: Kinetic energy evolution. Right: Dissipation dK
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simulated results gives Figure 2.15. The time shift was chosen to make the plots co-
incide at the point where dK/dt = 0.002, which is the value where the dissipation
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Figure 2.13: Evolution in time of magnitudes of the Taylor-Green case in unstruc-
tured meshes and refference solution [26], 5133 Cartesian mesh, 13 points interpola-

tion. Left: Kinetic energy evolution. Right: Dissipation dK
dt .
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Figure 2.14: Evolution in time of magnitudes of the Taylor-Green case with WALE in
unstr64 using RZM and MRZM schemes and refference solution [26], 5133 Cartesian

mesh, 13 points interpolation. Left: Kinetic energy evolution. Right: Dissipation dK
dt .

starts to steeply increase following, approximately, a straight line. I consider that this
is the start of the turbulent transition. After the time shift, it seems that the main be-
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havior of the flow is well reproduced with RZM scheme in the unstructured meshes.
However, properly checking mesh convergence would require to simulate the flow
with much finer meshes.
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Figure 2.15: Evolution in time of magnitudes of the Taylor-Green case in unstruc-
tured meshes with a 1.71 t.u shift in time and refference solution [26], 5133 Cartesian
mesh, 13 points interpolation. Left: Kinetic energy evolution. Right: Dissipation dK

dt .

2.5 Concluding remarks

The comparison of SP schemes in this chapter shows that RZM and MRZM are
more stable than the other schemes. Furthermore, RZM is more accurate in uniform
meshes and MRZM is more stable in unstructured meshes in the isentropic vortex
case. In the Taylor-Green vortex case, RZM is more stable than MRZM.

In the static 2D vortex, both RZM and MRZM blow-up later in the coarse mesh
than in the finer, while the other schemes show an opposite behavior. It is also inter-
esting that the slight modification to RZM originally introduced here shows a better
performance in the unstructured meshes and a worse performance in the uniform
ones. Yet, the conclusions obtained here attain the studied cases only and are not
strong enough to make recommendations for general LES simulations. Finding a
new numerical scheme is not a primary objective of this thesis but, as it comes to
pass, MRZM shows better performance than any of the other studied SP schemes in
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unstructured meshes in this test. This issue will be further developed later, in the
isotropic turbulence simulations in chapter 5 and in the final conclusions.

If we compare the performance of the studied schemes in the isentropic vortex
case to Speigel et al. [22], for low resolution meshes and long time integration, RZM
and MRZM outperform any other scheme. One could argue here that these schemes
are low order and they do not give good local accuracy. But their Symmetry Preserv-
ing properties imply that they do not increase the errors with excessive diffusion.
In LES, some turbulent scales are represented with very few degrees of freedom be-
cause the mesh resolution is limited in turbulent zones. Thus, schemes with the
capacity to handle these under-resolved scales without artificially dissipating them
or blowing-up allow to conduct LES with a strict control on the added dissipation.
Then, it will come only from the flow viscosity and the turbulence model. Never, in
LES, one can expect to represent the turbulent scales in the inertial range with a mesh
as fine with respect to the characteristic sizes of the scales as the coarsest meshes re-
ported here (i.e. str80 and unstr80) as this would inevitably cause the meshes to be
over-refined and the numerical simulations over-costly.

The simulations on the Taylor-Green case confirm that SP schemes are very well
suited to simulate isotropic/homogeneous turbulence. With comparatively coarse
meshes, they allow to obtain acceptable results at low computing costs. The results
on the unstructured meshes are more disappointing because it does not seem that
increasing the mesh density improves them enough. Furthermore, MRZM becomes
unstable in unstructured meshes. However, even with these meshes, the simulated
flow reproduces the main features of the reference solution.

The long-term analysis on the static vortex also shows that SP schemes need some
mechanism to eliminate oscillations when used in unstructured meshes. The ideal
solution would be to modify SP schemes so wiggles do not appear without adding
any artificial dissipation. However, after analyzing the literature, it seems that all
wiggle-eliminating methodologies add it in one or another way. In the following
of the thesis, this task will be carried out by filtering the numerical solution at each
time step. I consider this is the most clear and transparent way to introduce artificial
dissipation.
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3

Analytic Filters

3.1 Introduction

Computational Fluid Dynamics (CFD) is the branch of fluid dynamics that studies
algorithms and performs numerical simulations of fluid flow. Low-pass spatial filter-
ing is a conventional operation of CFD. It is applied to input scalar fields to dissipate
their small wavelengths. Similar operations are performed in the field of signal anal-
ysis and image processing, but CFD has particularities that do not allow direct use of
alien literature. First, spatial discretisations in CFD can be non-uniform while they
are uniform in the other fields of application of discrete filtering. Second, filtered
fields are often calculated at each iteration of a CFD simulation, and the evolution
of the simulated variables is computed using the filtered fields while in image pro-
cessing there is always a fresh input available. Hence, for some CFD applications,
filtering should exactly verify properties, e.g. conservation, to preserve those of the
overall simulation. Third, CFD fields can be significantly larger than high definition
images, so the amount of running-time processed data is larger. Finally, filtering is
not the main operation in CFD while it is in the other fields. Thus, filtering in CFD
has its own particularities and should be studied separately. Additionally, the com-
puters used for CFD are multi-purpose while the image or signal-processing ones
can be fully adapted to that end. Consequently, filtering in CFD should require the
lesser computer resources possible on a wide range of computer architectures.

The purposes of filtering in CFD are diverse and each of them requires the filters
to accomplish a specific set of properties. The most relevant use of filters in CFD is to
apply them on the Navier-Stokes Equations (NSE) and thus allow the theoretical de-
duction of the Large Eddy Simulations (LES) equations [1]. To this end, filters should
be linear, commutative with differentiation, normalised and conservative. Low-pass
convolution filters match these properties and the LES equations are consistently de-
rived. However, in practice, convolution is not performed in actual LES with discrete
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operators because it consumes too much computer effort. Hence, other analytical fil-
ter models with lesser computer intensive discrete counterparts have been proposed
in the literature, e.g., [2–4]. But any of the known approaches reproduce all the char-
acterising properties of convolution filters at the same time. Meanwhile, in other
applications, these models can match all the necessary properties.

A common application for which this happens is filtering fields for the calcula-
tion of closures of Sub-Grid Scales Stresses models for LES, e.g., [5–7]. For this pur-
pose, commutation with differentiation and conservation can be relaxed. Another
application for which filters match all the required properties is filtering the fluid
variables to stabilise non-dissipative or high-order numerical schemes [8–10]. In this
case, conservation is relevant while commutation with differentiation is not. The
same happens when filters are applied to smear sharp body forces like those of the
Immersed Boundary Method (see a review of the methodology in [11]) or those pro-
ducing wind-turbine wakes (e.g., [12]) that are introduced in LES.

It seems that specific filter analytical models and discretisations should be cho-
sen depending on the specific application and it is the specific use what determines
the required set of filter properties that allow keeping the overall consistency of a
CFD simulation. In this sense, the global filter properties are not always explicitly
mentioned or taken into account in the literature. Furthermore, there does not seem
to be a compendium of filters with their global properties that would be useful for
researchers when facing the choice of a filter for an application. Finally, there is not a
standard minimum set of properties characterising filters. Thus, an operator can be
applied as it was a filter while its properties are not taken into account or, in other
words, a filter can be applied in a context for which its properties are not appropriate.

This chapter is dedicated to summarise the filter models in the literature and
specify and describe their properties in order to ease application-depending selec-
tion of filters. Obvious properties are just mentioned while others are proved when
estimated convenient. Afterwards, the convenience of defining a minimum set of
properties characterising filtering in CFD is discussed.

In the following, we use φ(x) or simply φ to denote a general function φ : IRn →
IR. A filtering operator F is applied on φ giving

φ̂(x) = F(φ)(x)

or, simplyfying the notation
φ̂ = F(φ)
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. The symbol x denotes space coordinates.

Many of the properties can be written as relationships between the inner products
of the filtered and unfiltered functions. Thus, we define the inner product of two
functions φ, ψ : Ω ⊆ IRn 7→ IR

〈φ|ψ〉 =
∫

Ω
φ(ξ)ψ(ξ) dξ,

where ξ denotes space coordinates.

3.2 Convolution filter

The convolution filter reads:

φ̂(x) = KC ∗ φ =
∫

Ω
KC(ξ)φ(x− ξ) dξ, (3.1)

where KC is the filter kernel and is related to the cutoff scales (characteristic of the
filter) through a filter characteristic length. The kernel functions KC of convolution
filters are compact supported or rapidly decaying. Next, the most common convolu-
tion filters are listed.

3.2.1 n-Dimensional Box filter

The box filter is a convolution filter with the following kernel:

KBox(ξ, R) =

{
1

Vn(R)
i f |ξ| ≤ R

0 i f |ξ| > R
, (3.2)

where R ∈ IR+ and Vn(R) = π
n
2

Γ( n
2 +1)

Rn is the volume of an n-dimensional ball of

radius R and Γ is the gamma function (see figure 3.1).

3.2.2 n-Dimensional Gaussian filter

The Gaussian filter is a convolution filter with the following kernel:

KGauss(ξ, σ) =
1√

(2πσ2)
n

exp

(
− 1

2σ2
ξ · ξ

)
, (3.3)

where σ2 is the variance (see figure 3.2).



54 CHAPTER 3. ANALYTIC FILTERS

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3 -2 -1  0  1  2  3

box(x,1)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2  0  2  4

sinc(ω)

Figure 3.1: Kernel of the 1D box filter. Left:physical space, Right: Fourier space.
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Figure 3.2: Kernel of the 1D Gaussian filter. Left:physical space, Right: Fourier space.
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3.2.3 n-Dimensional sharp cut-off filter

The image in the physical space of the low-pass sharp cut-off filter in 1D is the con-
volution filter whose kernel is

Kcut =
sin(2kπx)

πx
= 2k sinc(2kx),

where k is the cut-off frequency (see figure 3.3). Its generalization to higher dimen-
sions is obtained after applying the inverse Fourier transform of a sphere in the mul-
tidimensional modal space. One gets

Kncut =
J n

2
(2πk|ξ|)
√

k|ξ|n
, (3.4)

where J n
2

is the Bessel function of the first kind with order n
2 .
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Figure 3.3: Kernel of the 1D sharp cut-off filter. Left: physical space, Right: Fourier
space.

3.2.4 Properties of convolution filters

We compile here the properties of convolution filters. Furthermore, the sufficient
conditions for their fulfillment in these kind of filters are also anounced. Then, as-
suming that convolution filters are the paradigmatic filtering operators, the degree in
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which other operators will be considered filters will depend on which of these they
fulfill. These properties can be divided into 2 subsets. The first set shall be required
to all KC kernels for CFD and is the common set of properties in the literature. The
second set imposes that KC should be positive and non-increasing and is not always
required in the literature. The reasons for adding this second set of necessary prop-
erties for operators to be allowable filters will be given later in section 3.6. For now,
let φ, ψ be bounded distributions defined on Ω ⊆ IRn and let a, b be real numbers.

Linearity
F(aφ + bψ) = aφ̂ + bψ̂. (3.5)

Sufficient condition: The convolution filter is linear after the linearity of the
integral.

Normalization Let φ be a constant function, then

φ̂ = φ ∀x. (3.6)

Sufficient condition: ∫

Ω
KG dξ = 1,

i.e.,
〈KG|1〉 = 1

Conservation ∫

Ω
φ̂ dξ =

∫

Ω
φ dξ. (3.7)

Sufficient condition: Same as normalization.

Commutation with differentiation Let D be a differential operator. Then,

D(F(φ)) = F(D(φ)). (3.8)

3.2.5 Diffusivity properties of convolution filters

The former properties do not relate with the concept of diffusion and filters fulfilling
only them can increase maxima, reduce minima, and increase the total variations of
the filtered fields. In section 3.6 the interest of filters with diffusive properties that
prevent these ill behaviours is discussed. Such properties are specified here whereas,
for the sake of clarity, the pertinent proofs are in Appendix 3.A.
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Total Variations Diminishing Taking the Lp norm || · ||p of a function φ

||φ||p =

(∫

Ω
|φ|pdξ

)1/p

, (3.9)

assuming that the gradient ∇φ exists and |∇φ|p is bounded (this is true for
fluid magnitudes with p > 0), the Total Variations of order p (TVp) of an home-
omorphism F on φ is defined as

TVp(F, φ) = ||∇F(φ)||p − ||∇φ||p. (3.10)

If TVp(F, φ) ≤ 0 for all φ, then we say that F is TVDp.

Suficient conditions for TVD1: Normalization Eq. (3.6) and

KC(ξ) ≥ 0 ∀ξ ∈ Ω. (3.11)

Global Extrema Diminishing Some filters can grow the local maxima or diminish
the global minima. This can open the door to blow-up in iterative calculations
where the newly calculated values depend on the formerly obtained. Global
Extrema Diminishing GED is the property that prevents this from happening.

For GED filters,
min(φ)Ω ≤ φ̂ ≤ max(φ)Ω (3.12)

Sufficient conditions: Same as for Total Variations Diminishing. For convolu-
tion filters, GED⇔ TVD1.

Extrema Diminishing Neither GED nor TVD1 prevent the creation of new local
maxima or minima. The property that prevents this from happening is Ex-
trema Diminishing ED, which is more restrictive.

It reads: For all maxima or minima in the filtered function φ̂, they come from
at least, respectively, one maximum or minimum in the unfiltered function φ.
For a more precise definition see Witkin [13]. This is:

∀x∗ | ∃r ∈ IR+ | φ̂(x∗) > φ̂(x) ∀x ∈ B(x∗, r)

⇒ ∃ (x∗∗, δ > 0) | φ(x∗∗) > φ(x) ∀x ∈ B(x∗∗, δ) (3.13)
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where B(x∗, r) is a ball of radius r centered at x∗. Furthermore, no extremum
in the filtered field “should be far” from its causing extremum(a) in the unfil-
tered field. Changing the inequalities directions, the same is true for minima.

Furthermore,

M (Ω, φ) = {x∗ ∈ Ω | ∃B(x∗, δ) | φ(x∗) ≶ φ(x)} ;

|M (Ω, φ) | ≥ |M (Ω, F(φ)) | ∀φ, (3.14)

where δ ∈ IR+ and |A| is the cardinality of the set A.

Sufficent conditions: KC is normalized, non-negative and non-increasing with
|ξ|. This is:

∇KC ·∇|ξ| ≤ 0 ∀ξ. (3.15)

3.3 The image of convolution filters in the Fourier space

Let ω be the wave number independent variable of the Fourier space. The Fourier
transform of a periodic or L1 function φ(x) is defined by:

φ̃(ω) =
∫

Ω
φ(x) exp (−2πix ·ω) dx. (3.16)

The image F̃ of a filter F by the Fourier transform is

ˆ̃φ = F̃(φ̃) = F̃(φ). (3.17)

Taking into account

f̃ ∗ KC = f̃ · K̃C,

the convolution filter in the physical space becomes a product in the modal space.

Next, the image of the properties of a convolution filter with a K̃C kernel is listed.

Linearity Comes from the distributive property of the product.

K̃C · (a f̃ + bg̃) = aK̃C f̃ + bK̃C g̃. (3.18)

Normalization Let φ̃ be the image in the modal space of a constant field in the
physical space. Then,

φ̃(ω) =

{
φ0 if ω = 0
0 if ω 6= 0
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then, the normalization property is:

ˆ̃φ = φ̃. (3.19)

The sufficient condition for convolution filters is:

K̃C(0) = 1

Conservation Substituting ω = 0 of Eq. (3.16) and plugging the result in the conser-
vation equation in the physical space (Eq.(3.7) ) we get:

F̃(φ̃(0)) = φ̃(0) (3.20)

Sufficient condition for the image of convolution filters: Same as normalisation.

Commutation with differentiation The image of this property in the physical space

D(F(φ)) = F(D(φ)),

where D is a differential operator. It becomes,

D̃F̃(φ̃) = F̃
(
D̃φ̃
)

(3.21)

If F is a convolution filter,

D̃
(

K̃Cφ̃
)
= K̃C

(
D̃φ̃
)

.

which is true by virtue of the distribution property of the product of real num-
bers.

Diffusivity in the Fourier space The image of a diffusion problem in the Fourier
space is (see, e.g. [14])

(
∂

∂t
+ νω ·ω

)
φ̃(ω) = 0, (3.22)

where ν ∈ IR+ is the diffusion coefficient. If we take Eq.(3.22) as the paradigm
for diffusive filters, it can be used to derive the properties of such filters in the
Fourier space. This equation can be easily integrated, giving

ˆ̃φ(ω) = φ̃(ω, t) = φ̃(ω, 0) exp
(
−ν||ω||2t

)
.
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Which is the transfer function of a Gaussian filter in the Fourier space whose
counterpart in the physical space is a convolution filter with Gaussian kernel.
At the same time, if φ̃ is considered to be the initial condition of the evolution

of ˆ̃φ(t), Eq. (3.3)

ˆ̃φ(ω) =
φ̃

1 + ν||ω||2t

is an implicit Euler integration step of Eq. (3.3). In both cases, writing the

results as ˜̂φ = K̃Cφ̃, we observe that

KC ≥ 0 ∀ω;

∀ {ω, ∆ω} | ||ω|| < ||ω + ∆ω|| ⇒ K̃C(ω + ∆ω) ≤ K̃C(ω). (3.23)

Generalizing the obtained result,

ˆ̃φ

φ̃
≥ 0 ∀ω;

∀ {ω, ∆ω} | ||ω|| < ||ω + ∆ω|| ⇒
ˆ̃φ

φ̃
(ω + ∆ω) ≤

ˆ̃φ

φ̃
(ω). (3.24)

In the following, operators fulfilling Eq. (3.24) in the modal space are going to
be considered diffusive problems in the modal space.

3.4 Other Models

The following filters are the approximations or extensions of Eq. (3.1) found in the
literature. However, only Eq. (3.25) verifies all the properties of convolution filters.

3.4.1 Germano’s differential filter

Germano’s differential filter [2] is based on the fact that the convolution filter with

KC(ξ, a) =
1

4πa2

exp
(
− |ξ|a

)

|ξ|

is the extension to an unbounded domain of the Green function of

φ =
(

1− a2∇2
)

φ̂, (3.25)
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where, a2 = ∆̄2

24 and ∆̄ stands for the filter width. The filter width is a magnitude
with length dimensions related with the cut-off length in the spectral space of the
low-pass filter. Thus, Eq. (3.25) defines Germano’s differential filters, which are a
particular case of positive, non-decreasing convolution filters.
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Figure 3.4: Germano’s filter Kernel. It has a vertical asymptote at ξ = 0.

3.4.2 General kernel filters

In some situations, the filter cut-off length should vary in space. Such adaptability
can be attained by means of the more general class of kernel filters:

φ̂(x) = 〈φ(ξ)|KG(x, ξ)〉 =
∫

Ω
KG(x, ξ)φ(ξ) dξ. (3.26)

For general Kernel filters normalization does not imply conservation and vice-versa
like in convolution filters. Vreman provided a good account of this fact and the
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relevance of the adjoint filter in [15]. Furthermore, he showed how to construct con-
servative and self-adjoint filters out of normalized filters. This, as he pointed out,
can be done when filter kernels are compactly supported both in x and in ξ.

Another difference in the properties of this family of filters concerning convolu-
tion is that neither positivity implies TVD1, nor positivity plus non-increasing ker-
nels imply ED (see App. 3.B).

3.4.3 Truncated Taylor series explicit filters

If in Eq. (3.26) the filter kernel vanishes sufficiently fast, φ(ξ) near x can be locally ap-
proximated with truncated Taylor series and the filtered field can be computed from
linear combination of the moments of the filter kernel function. Explicit polynomial
approximations to kernel filters (see [3]) are derived with this procedure:

φ̂(x) ≃ φ(x) +
i1+i2+i3=p

∑
i1+i2+i3=1

∂pφ

∂i1ξ1∂i2ξ2∂i3ξ3
(x)

∫
Ω

KG(x, ξ)ξ i1
1 ξ i2

2 ξ i3
3 dξ

i1!i2!i3!
. (3.27)

Since convolution filters are a subset of the set of kernel filters, Eq. (3.27) can also be
applied to approximate convolution filters.

Vasilyev et al. [4] and later his collaborators [16, 17] used this approximation to
build commutative filters up to a certain order. This implies that all the first even
moments of lower degree than the desired commutation order must vanish. Filters
with vanishing even moments require their KG(x, ξ) to be non-positive. As it has
been shown in section 3.2.4 , this makes this family of filters neither ED, nor TVD1,
nor GED.

When truncated Taylor series filters verify that KG(x,−ξ) = KG(x, ξ), all the odd
moments vanish. Then, only terms with even i1 + i2 + i3 remain in the right side
of equation (3.27). Higher-order approximations of kernel filters improve “scales”
separation [18]. However, since higher-order Taylor operators can be built by com-
position and linear combination of the lower-order ones, I restrict the analysis on
Taylor series based filters to

φ̂(x) =
(

1 + α(x)∆̄(x)2∇2
)

φ(x); (3.28)

which is the expression in Sagaut [3]. A restriction on α(x)∆̄2(x) should be imposed
for each φ∗ in order to get GED. In contrast with the other filters compiled here, this
diffusion-granting limitation depends on φ (see App 3.B for an example). Furhter-
more, in Taylor filters, a φ∗ verifying min(φ∗)Ω ≤ φ̂∗ ≤ max(φ∗)Ω is not necessarily
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TVD1(F, φ∗).

Laplacian Filters

Laplacian filters [15] with anisotropic filter length read:

φ̂(x) =
(

1 +∇ ·
(
A(x)∆̄(x)2 · ∇

))
φ(x). (3.29)

Where A is a positive semidefinite matrix. With a change on spatial cordinates
x → ξ Eq.(3.28) is recovered (see, e.g., [19]). Consequently, Laplacian and Taylor
filters are the same.

3.5 Filter Properties

The compiled properties are summarized in Table 3.1. When a filter has a property
for all φ, it is marked as fulfilled with “Yes”. When there is dependence with φ, then
the property is marked as not fulfilled with “No”. In the table, non-increasing means
that the corresponding kernel verifies Eq. (3.15). Increasing means the contrary; pos-
itive means that the kernel verifies Eq. (3.11) and non-positive means the contrary.
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Table 3.1: Properties and of analytical filters for CFD

Filter Cons. Norm. Comm. TVD1 GED ED

Positive non-inc.a Conv.b Yes Yes Yes Yes Yes Yes

Positive inc.c Conv. Yes Yes Yes Yes Yes No

Differential Yes Yes Yes Yes Yes Yes

non-Positive Conv. Yes Yes Yes No No No

Positive non-inc. Kernel Yes Yes No No Yes No

Positive inc. Kernel Yes Yes No No Yes No

non-Positive Kernel Yes Yes No No No No

EvendTaylor Yes Yes No No Noe No

Oddf Taylor Yes Yes No No No No

a Non-increasing kernel.
b Convolution.
c Kernel increases with the distance to the origin at some point.
d Truncated Taylor series filter with even terms only.
e GED can not be imposed ∀φ, but for each φ∗ a limitation on F makes min(φ∗)Ω ≤ φ̂∗ ≤

max(φ∗)Ω.
f Truncated Taylor series filter with at least one non-vanishing odd term.

3.6 Discussion

The global properties of analytical filter models that are eventually discretised and
used in CFD applications have been compiled and organised. Furthermore, condi-
tions for the fulfilment of the properties and examples and counter-examples have
been provided in the appendices.

Looking at Table 3.1 it is surprising that only convolution filters with positive
non-decreasing kernels (Germano’s Differential filter belongs to this set) fulfill all
the properties that we commonly attribute to filtering in CFD. Furthermore, all these
properties are required in the derivation of LES equations from NSE (see, e.g. chap-
ter 2 in Sagaut [14]). The diffusivity (TVD and ED) properties described here are
neither enforced in Sagaut [14], nor Leonard [20], nor Pope [21], nor in most of the
literature where the LES equations are derived by applying a low-pass filter to the
NSE. In the following paragraphs, the convenience to require these properties to the
filters in the LES deduction is discussed.
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LES has two main purposes: On the one hand, LES is a mathematical model that
allows providing weak solutions of NSE to study their existence and unicity prop-
erties [22]. On the other other and most widely known hand, its practical interest
lies in reducing the number of necessary degrees of freedom and increasing the al-
lowable time integration steps when performing numerical simulations of fluid flow.
This more practical application was the original of the two, and was first introduced
by Smagorinsky [23]. LES simulations are becoming, with the increase of computing
capacity, more usually employed in the industry. When conducting numerical sim-
ulations of fluid flow, the main objective is to provide solutions with a desired level
of accuracy at a low cost in a short time. Then, the mathematical consistency of the
specific model put in practice is of lesser importance, specially in simulations for the
industry. Very differently, mathematical consistency is fundamental in the scientific
investigation of the properties of the Navier Stokes equations. Because of this, the in-
clusion of diffusivity in the set of properties required to the filters for LES deduction
can be also attended as purpose-dependant.

In the theoretical use of LES, it is most commonly expected that all the analy-
sis should be valid in the physical space, in the wavelengths space, and in any other
variables space with bijective transform under the pertinent hypothesis ensuring con-
vergence on φ. Because of this reason, when applying a filter with a set of properties
in one of the possible spaces of analysis, the image of such operation should ver-
ify the images of the same set of properties in all the other spaces where LES is to be
analysed. Then, the conclusions drawn in each space of study can be transferred and
interpreted to the others. Regarding the diffusivity properties of filters as they have
been described in section 3.2, it happens that it is not preserved when applying the
Fourier transform to the box filter nor when applying the inverse Fourier transform
to the spectral sharp cut-off filter. Thus, these two filters do not verify the same prop-
erties in, at least, one of the two most common spaces of study. Coletti [24] avoided
this problem assuming that the filter for the derivation of LES equations is Gaussian
and thus is diffusive in the both physical and the Fourier spaces (see Fig. 3.2) in a
proof of existence and unicity of solutions of the LES equations.

It is not enough with the aforementioned to discard using a specific filter. How-
ever, stronger reasons for this can be found observing the behaviour of these filters
in the spaces where they are not diffusive. Taking non-diffusive filters in the wave-
lengths space, e.g. the Fourier transform of the box filter, ∃ω∗ other than 0 (the analy-

sis is made in 1D for the sake of clarity) for which ∃ h > 0 ||K̃C(ω
∗)| > |K̃C(ω

∗± h)|.
We would have to find a reason why that particular ω∗ should not be as dumped as
its neighbours and why the resulting LES equations would be a good model of the
physics in the wavelengths space. All filters in the wavelengths space should tend
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to zero at the infinity (we were trying to separate long wavelength from the short

ones) and not affect the constant field K̃C(0) = 1. Consequently, in this space, any

non-positive filter has, at least, a local maximum |K̃C(ω
∗)| at the global minimum of

K̃C. Therefore, for all non-positive filters there is, at least, a filter-dependant special
wavelength ω∗. This arbitrariness to the LES model is clearly unphysical and, as I
see it, invalidates, in the wavelengths space, the use of non-positive filters for the
mathematical purpose of LES. Furthermore, since for this purpose of LES properties
should hold independently of the space of analysis, the image in any other space of a
non-diffusive filter in the wavelengths space should be discarded for the mathemat-
ical purpose.

I have not investigated the limits of how to describe diffusivity in the different
usual spaces of analysis. For those interested, I think that it would be of help to un-
derstand mathematical entropy concepts (e.g. [25], [26]) and their relationship with
kernel positivity. This is far out of my range of knowledge.

Focusing now on how the diffusivity properties affect the more practical numeri-
cal simulations purpose of LES, the hypothesis regarding conservation of properties
in the different space of representation must be relaxed. Else, all of today’s practical
formulations of LES should be considered not fully consistent. For example, Finite
Volumes methods lie on discretizing the domain by application of Kernel filters that,
for every control volume Ωo, read:

Ko(ξ, Ωo) =

{
1

V(Ωo)
i f ξ ∈ Ωo

0 i f ξ /∈ Ωo
,

where V ∈ IR+ and V(Ωo) is the volume of Ωo. It results that the image of such
filters in the spectral space is of non-diffusive type (see the image of the box filter
in Fig. 3.1). Imposing transform-independence would not allow Finite Volumes dis-
cretizations.

After relaxing space-independence regarding diffusivity, diffusivity should nonethe-
less be imposed on the filter in the space where the LES equations are to be derived.
In the practical purpose of LES, the ultimate goal is to reduce the amount of data
needed to represent a discrete fluid magnitude in a domain and to increase the al-
lowable time step by increasing the size of the smallest resolved flow scale, i.e., to
separate small-scale phenomena from larger-scale phenomena while keeping the re-
sults within acceptable accuracy. Thus, filters for the derivation of LES with the
simulation purpose should be capable of reducing the amount of data to be stored.
In the spectral space, the amount of required stored data grows with the amount of
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discrete wavelengths required to represent a flow, i.e., filters should be low-pass, or
put otherwise, should be diffusive in this space. In the physical space, small scales
are local events, i.e., local maxima and minima that increase the TV1 of fields. Also,
the number of data required to represent a field in the physical space grows with the
capacity to represent TV1. Furthermore, for a fluid in the physical space, the effect
of a slight local oscillation of a fluid magnitude, does not have any remarkable effect
on the evolution of the fluid at a large distance from the origin of the disturbance
(see, for example, how the effect of vortices or doublets diminish with the distance
in the potential flow model). In compressible flow perturbations travel at character-
istic speeds and the perturbations are even more local. Hence, it seems that in the
physical space filtering should be a local parabolic operation (L1 filter kernels) that
locally smeared fields (TVD1 and ED) instead of an elliptic operation that linked all
the points of the fluid domain.

Thus, in the practical purpose, LES should be derived and executed in the same
space. There, the filter used in the derivation should be diffusive. As I see it, this
is often overlooked because LES equations are most commonly deduced simultane-
ously in the physical and in the modal space, as to show the different aspects of the
model. Then, the sharp cut-off low-pass filter is introduced alongside the box filter
or the Gaussian filter in the physical space (see, e.g. chapter 13 in Pope [21]). Finally,
simulations with industrial interest are mostly run in discretizations of the physical
space assuming that LES equations in the physical space and in the Fourier space are
equivalent and drawn the conclusions exchangeable.

The reasons given here support the use of diffusive filters without prescribing
any particularity on the LES sub-grid model. Vreman et al. [27] deduced that only
positive filters should be used for LES models prescribing positive dissipation of
turbulent kinetic energy. They also provided a numerical test that supported their
theoretically derived assertion. After analyzing ED and TVD1 in this chapter, I ex-
pand to all LES models the necessity to use diffusive filters without considering the
properties of sub-grid dissipation. In the physical space, the recommendation now
follows from the fact that non ED and TVD1 operators should not be considered
low-pass filters. As for filters in the modal space, those with negative or increasing
transfer functions should also be avoided (see Eq. (3.24)).

These considerations are focused on the theoretical derivation of LES and the
properties that filters should have for that purpose. Later, the filters with this pur-
pose should further conditioned to force sub-grid stress Galilean invariance and
some other similar properties (see, for example, Sagaut [14]). I consider them subse-
quent of the properties studied here and out of the scope of this thesis.
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Regarding the other filter models compiled here, they are usually discretized and
applied on smooth functions when brought into practical use. Then, on these func-
tions, they most probably are Total Variations and Extrema Diminishing. Hence, in
general, I think that all the filters compiled here are well fit for practical simulation
purposes as long as the user is aware and respects the limitations they have. Else,
one could end up creating maxima and minima, transporting energy from big scales
to small scales while pretending to do the opposite or creating momentum, mass or
energy.

Another remarkable conclusion of this chapter is that all the analytical filters
in the CFD literature are conservative. In spite of this, it is common to find non-
conservative discrete filters when explicity filtering to calculate viscous stresses in
Eddy Viscosity models (see, for example, approximations for Finite Differences in
[3]). Furthermore, it seems that the consequences of using non-conservative filters
for such purposes have not been investigated. The use of non-conservative filters
seems even more arbitrary in view of the work of Vreman in [15], where he devel-
oped a methodology to derive normalized conservative adaptive discrete filters from
normalized ones.

Altogether, the filters in the theoretical derivations of LES in the physical space
should verify all the properties compiled here. On the other hand, when brought
to practice, discrete filters in CFD should be Normalized, Conservative, TVD1 and
ED when applied to the fields and functions of CFD, even when they would not
verify them on all functions. This discards any non-positive or increasing filter kernel
(Eqs.(3.11) and (3.15)). Regarding commutation, it is a necessary property for the LES
derivation but it is mutually exclusive with GED in explicit Taylor filters. Hence, as I
see it, filters based on explicit truncated Taylor series which eliminate commutation
errors up to a certain order greater than 2 are not filters and should be avoided.

Appendix 3.A Proofs and examples of the diffusive prop-

erties of convolution filters

In the following, φ(x) or simply φ to denote a general function φ : IRn → IR and a
and b positive real numbers.

Total Variations Diminishing If TVp(F, φ) ≤ 0 for all φ, then we say that F is TVDp.
If F is a convolution filter with kernel KC, using Young’s inequality

||∇φ̂||1 ≤ ||∇φ||1 · ||KC||1.
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If the filter is positive, ||KC||1 = 1 by virtue of normalization. Then,

||∇φ̂||1 ≤ ||∇φ||1,

so F is TVD1. For non positive convolution filters like the spectral cutoff,
||KC||1 > 1 and Young’s inequality do not imply TVD1.

The following example shows how the spectral cut-off filter (which is non-
positive and non-L1) increases TV: Let

φ(x) = sin(2πx) + sin(6πx)/9.

Applying the normalized spectral cut-off

Fspec(ξ) = 4
sin(4πξ)

4πξ
,

on it, one gets
φ̂(x) = sin(2πx).

Now,

||∂x φ̂||1 = 8π > ||∂xφ||1 =
64

9
π.

To check that L1 is not enough to ensure TVD we carry out a similar test with a
L1, non-positive and normalised kernel. Applying the convolution filter with

KC =
a2 + b2

2b
cos(aξ) exp(−b|ξ|)

to

φ(x) =
1

a
sin(ax)

one gets

φ̂(x) =
a2 + b2

2b

(
1

b
+

b

4a2 + b2

)
cos(ax).

With it,

TV1(F , φ) =
a2 + b2

2b

(
1

b
+

b

4a2 + b2

) ∫ ∞

−∞
| cos(ax)|dx ≥ 0.
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Figure 3.5: Normalized kernel filter like Eq.(3.30) with a = 1 and b = 1, KC(0) = 1.

Global Extrema Diminishing Let F be a normalized convolution with positive ker-
nel KC. Then, suppose that φ̂(x∗) is a local maximum in the ball B(x∗, a), but
∀ B(x∗, b) there is a x∗∗ such that φ(x∗∗) ≥ φ(x) ∀ x ∈ B(x∗, b). it follows that

φ̂(x) ≤ φ̂(x∗)

in the same ball (see [15]).

The following counter-example shows how a normalized, positive, increasing
kernel, makes the number of maxima of a function grow. Consider

Kc(ξ) =
g(ξ − a) + g(ξ + a)

2
,

where

g(ξ, σ) =
1√

2πσ2
exp
−ξ2

2σ2
.



3.A. PROOFS CONV. 71

This is, according to the definitions complied in the litterature, an allowable
kernel for a convolution low-pass filter. Moreover, it is a positive kernel and,
thus, the filter is TVD. Applying this filter to g(x, σ),

ĝ =
g(x− a,

√
2σ) + g(x + a,

√
2σ)

2
.

The filtered Gaussian distribution has two maxima instead of one. The growth
in the number of maxima or minima is a commonly undesired behavior for a
low-pass filter (see Figure 3.6 ).

Non-positive normalized filter kernels can not be non-increasing everywhere
because, after becoming negative, they should grow to vanish asymptotically.
For example, applying the L1 filter with normalized kernel (see figure 3.5).

Kc =
a2 + b2

2b
cos(ax)e−b|x| (3.30)

to
φ = cos(ax),

one obtains

φ̂(0) = 1 +
a2

2b2
> φ(0) = 1.

In this case φ(0) is a global maximum and filtering increased the value of the
global maximum. If the same filter is applied to the rapidly decaying

φ(x) = cos(ax)e−b|x|,

then, if a > b
√

2,

φ̂(0) =
1

4
1 +

a2

b2
> 1 = φ(0)

and filtering increases the value of the global maximum of the input field.

Extrema Diminishing As the Gaussian kernel is the fundamental solution of the
Heat Equation and Germano’s filter is the fundamental solution to Eq. (3.25),
a positive non increasing kernel KC(ξ) = KC(r) with r = |ξ|; KC ∈ C∞ is the
fundamental solution to an elliptic PDE. Filtering with normalised, positive,
non-increasing convolution kernel is, thus, the evolution in time of a parabolic
problem. The maximum principle [28] reads that given a parabolic or elliptic
PDE in a domain D ⊂ IRn × [t0, t f ], the extrema of all φ that verify the PDE

are in ∂D× [t0, t f ], i.e., the cylinder projecting the boundary of D or in D× t0.
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Since the maximum principle applies to a broader class of PDE than just the
Heat Equation, we can expect, at the very least, that those kernels which are
Green functions of PDEs verifying the maximum principle behave similarly to
the Gaussian kernel, i.e., not creating new maxima nor minima.

In computer vision, Babaud et al. [29] proved that the Gaussian kernel convolu-
tion filter is the only kernel that does not create first-order extrema (i.e. is ED)
in 1D when increasing the “bandwidth”, i.e. the standard deviation σ. How-
ever, to get to the proof they impose spherical symmetry, C∞ and a non-zero
derivative

∃p > 0 :
dK

(2p
C

dr2p
6= 0

of order 2p at the origin. They justify the C∞ requirement because any other
function or distribution kernel can be arbitrarily closely approximated by lin-
ear combination of these, and as one could create a convergent series of ap-
proximations, the theorem should be valid in the limit. They, nonetheless,
justify the non-zero 2p derivative for “technical reasons”. Furthermore, it is
shown that the ED property does not hold in 2D. Lindeberg [30] explained the
properties of ED filters for image processing relating them to Pólya frequency
functions. Also in image feature detection, Perona and Malik [31] showed that
their anisotropic diffusion filtering methodology does not add maxima or min-
ima because it belongs to a family of elliptic equations verifying the maximum
principle. They, however, did not relate their method to convolution filters.
In this regard, the family of ED is the family of the Green functions of the
parabolic differential equations satisfying the maximum principle.

Regarding mathematical analysis, the issue of reduction of variations and ex-
trema was addressed by Pólya in 1915 [32], defining the variations V(φ) of a 1D
function as the number of zero crossings of the function. See that if φ was C∞,
the number of critical points would be exactly the number of zero-crossings
of |∇φ|. Later, Schoenberg in the mid 20th century [33, 34] concluded that
in 1D, variation diminishing kernel filters are almost everywhere a Pólya fre-
quency function. Schoenberg provides a counterexample to show that convo-
lution kernels not belonging to the Pólya class are not variations diminishing
in the sense of Pólya. The chosen counterexample is a box convolution filter,
which is shown to increase the number of zero-crossings of a piece-wise contin-
uous but not derivable function. If we assume that φ should be, at least, C1, we
can reduce the problem of finding the conditions of ED to finding kernels that
do not increase the number of zero-crossings of ∇φ. And in this case, accord-
ing to Schoenberg, the conditions of ED are more strict than those provided
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here. But imposing restrictions to φ we can maybe relax the conclusions of
Schoenberg [33]. Imposing that φ should be C∞ or, at least C1 agrees with the
general assumptions of fluid dynamics and could open the door to box filters
and similar.

In functions φ : IRn 7→ IR with n > 1, Koendernik [35] studied the behav-
ior of extrema of differentiable functions in the space-scale in image-feature
detection. The researchers in the field of image processing keep advancing in
the understanding of filtering (see, e.g., [36]). However, they tend to create
anisotropic diffusion equations instead of convolution kernels. For our pur-
poses, recovering the convolution form is important in order to provide ker-
nels that can be used to derive the LES equations. This should be addressed
using functional analysis, which I am not familiar with. A functional, say E

accounting for extrema and “extremity ” should be built and the condition of
reduction of “extremity” imposed to every kind of extremum. For example,

if φ : IR2 7→ IR, and φ has a maximum plateau, ED should reduce the surface
where φ is maximum. Then, the constraints on a filter F that make it ED should
be derived from the functional. I have struggled to derive the most general
ED property of positive, non-increasing, filters with no success. I would ex-
pect a definition more related with the concept provided in section (3.2.4) than
the reduction of variations concept of Pólya. Even though a general develop-
ment is not provided here, I expose some reasons that support that positive,
normalised, monotonically decreasing convolution kernels are ED in the sense
described in this work. These reasons are based on simple analysis and are not
general or strong enough. This is an excessive restriction only justified by my
lack of knowledge of more modern mathematics.

Take a normalized, positive convolution filter kernel KC(ξ) with more than
one maximum and apply it to φ = KGauss(x; σ), φ has only one maximum at
x = 0 and decreases monotonically with the distance to the origin. Then, when
σ → 0+ the critical points of φ̂ tend to be the same as those of KC(ξ), increas-
ing the number of maxima and minima of φ (see [29, 35]). Consequently, KC

should not have more than one maximum/minimum and should henceforth
be weakly monotonically increasing (if KC(0) < 0) or decreasing with the dis-
tance from the origin in order to be ED. To allow normalisation, only weakly
monotonic decreasing kernels should be considered. A 1D example of how
a kernel with two extrema increases the number of extrema of a function is
shown in Fig. 3.6. In 1D, a non-centered uni-modal filter kernel would not
increase the number of extrema but would transport them. Transporting or
convecting data is not among the expected result of filtering and this is why I
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require the filter kernels to be weakly monotonically decreasing.
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φ(x)=g(x, 0.1)
KC(x)=(g(x-1, 0.1)+g(x+1, 0.1))/2

φ(x)*KC

Figure 3.6: Applying the sum of 2 gaussian normalized distributions to a gaussian
distributions increases the number of maxima. Yet, the convolution filter is normal-
ized, conservative, positive, and rapidly decaying.

As it has been shown, convolution filter kernels should not have more than one
extrema and should be non-increasing. Regarding saddle points ∇KC(ξ) = 0
and ∃ {λ1, λ2} eigenvectors of the Hessian of KC, |H(KC, ξ) − λI| =0 such
that λ1 · λ2 < 0. Convolution Kernels with saddle points can increase the num-
ber of saddle points of a function with only one maximum. This is straightfor-
ward from the former paragraph (take φ = KGauss(x; σ) with σ → 0+). The
extrema diminishing property should be redefined so that the only allowed
process for the creation of saddle points was by reducing the number of max-
ima and minima. Again, this analysis is out of my capabilities and the scope of
the thesis.
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Requiring monotonic decrease with the distance from the unique maximum
of the kernel (which should be at ξ = 0) may seem equivalent to impose
KC(ξ) = KC(|ξ|). However, this last requirement is not necessary for a filter to
be ED together with all the other desired properties. It seems, nonetheless, that
a possible redefinition of ED taking into account what has been said regarding
saddle points would lead to spherical symmetry of convolution kernels.

Appendix 3.B Proofs and examples of other models prop-

erties

3.B.1 Kernel Filters

Normalization and Conservation In Convolution filters, normalization implies con-
servation after Fubini’s theorem. This is not generally true in the broader fam-
ily of Kernel filters. These are normalized if

∫

Ω
KG(x, ξ)dξ = 1

∀ x in Ω. Whereas the condition for conservation is

∫

Ω
KG(x, ξ)dx = 1

∀ ξ in Ω.

Total Variations Diminishing and Extrema Diminishing In Kernel filters, one might
expect them to be ED or TVD when positive. The following example shows
the contrary. Let

φ(x) =





0 if x < −a
1 if −a < x < a
0 if a < x

and

KG(x, ξ) =





g(ξ − x) if x < −2a
g (ξ − (x + a)) if −2a < x < −a
g (ξ − (x− a)) if −a < x < 0
g (ξ − (x + a)) if 0 < x < a
g (ξ − (x− a)) if a < x < 2a
g(ξ − x) if x > 2a

,
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where

g(ξ, σ) =
1√

2πσ2
exp
−ξ2

2σ2

is the Gaussian function for a 0 < σ < a . This kernel function is conservative,
rapidly decaying, normalized and positive for all (x, ξ). Yet, its effect can be to
create new maxima and to increase the Total Variations (see figure 3.7). Indeed,
when σ→ 0+
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Figure 3.7: Result of filtering with a conservative and normalized positive non-
increasing filter kernel. Left: φ, Right: φ̂. Filtering creates a new maximum and
increases TV.

φ̂(x) ≃





0 if x < −2a
1 if −2a < x < −a
0 if −a < x < a
1 if a < x < 2a
0 if 2a < x

.

3.B.2 Truncated Taylor series explicit filters

Taking the first and most simple Taylor filter of Eq. (3.28), and testing it on a 1D
centerd Gaussian distribution

φ =
1√

2πσ2
exp
−x2

2σ2
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it is straightforward to find:

φ′ = − x

σ2
φ

φ′′ =
(

x2

σ4
− 1

σ2

)
φ

φ̂ =

(
1 + α

(
x2

σ4
− 1

σ2

))
φ

φ̂′ =
(

x

(
3α

σ4
− 1

σ2

)
− x3 α

σ6

)
φ

φ̂′′ =
((

2α

σ4
− 1

σ2

)(
1− x2

σ2

)
− α

σ6

(
3x2 − x4

σ2

))
φ .

Now, the TV1 of φ and φ̂ can be calculated.

TV1(φ) = 2
∫ ∞

o
φ′dx = −2φ

∣∣∣∣∣

∞

0

=
2√

2πσ2
(3.31)

and TV1(φ̂) depends on the values of α and σ.

TV1(φ̂) =





2√
2πσ2

(
1− α

σ2

)
if σ2 ≥ 3α

2√
2πσ2

(
α

σ2 − 1 + 4α
σ2 exp

(
σ2

2α − 3
2

))
if σ2

< 3α
(3.32)

Total Variations Diminishing . Hence, TV1(φ̂) < TV1(φ) if σ2 = 4α and TV1(φ̂) >
TV1(φ) if σ2 = 2α . This example shows that the Taylor filter, and by exten-
sion the Taylor series based filters, are not TVD1 but they reduce TV1 of some
φ functions. Another possibility would be to allow the filter parameter α to
depend on φ to force TVD1. Then, successive filtering with limited values of

alpha αi(φ̂
(n) could be applied until ∑i αi = α. Then filtering would be equiva-

lent to resolving the heat equation. This is out of the scope of the definitions of
filters found in the literature.

Extrema Diminishing Regarding ED, with the same φ function, φ̂ has 3 critical
points instead of only one maximum if σ2

< 3α. These 3 critical points are
a minimum at x = 0 and two new maxima at symmetrical positions each side
of the minimum, and the filter is not ED. However, when σ2

> 3α the filter
is ED as it does not create new maxima or minima and it reduces the existing
maxima.
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4

Discrete Explicit Filters for

CFD

4.1 Note

The contents of this chapter have been published in [1].

4.2 Introduction

The Navier-Stokes Equations (NSE) form a system of Partial Differential Equations
that describes the conservation of momentum, mass and energy of a Newtonian fluid
using the Eulerian formulation. Even though they were formulated over 150 years
ago, NSE are still a formidable mathematical problem for which analytical solutions
have been found for some simple cases only. For the vast majority of scientific or
engineering problems involving fluids, empirical data or simulations results are re-
quired.

CFD is the branch of Fluid Dynamics that produces and studies the algorithms
needed to numerically simulate problems involving fluid flow. Due to Kolmogorov’s
power law of the turbulent flow spectrum, the full resolution of most of the fluid flow
problems requires unaffordable computational resources and computation times. Mod-
eling the smallest turbulent flow scales can reduce the required computational re-
source and make problems affordable. Nevertheless, as the computer resource re-
quired for CFD is still large, algorithms must be efficient to allow the most accurate
simulations of the most complex problems in the shortest possible time for a given
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computer capacity.

Among the common operations of CFD, we focus on filtering fields on non-uniform
discrete spatial domains. In this paper we gather the essential properties of this op-
eration in the continuous field and propose constraints to transfer them to filters in
discrete spaces. Spatial filtering is also common in other fields of science and tech-
nology. However doing it on non-uniform spatial domains (unstructured meshes) is
very particular of CFD, so alien literature does not directly apply.

The use of spatial filtering operations on CFD has several objectives. The most
important and known use of filters in CFD is filtering the NSE to obtain the Large
Eddy Simulations (LES) equations [2]. This is a rather theoretical use for which filters
should be low-pass, linear, normalized and commutative with differentiation. Con-
volution filters match these properties. In practice, LES is not often performed with
explicit filtering as it is assumed that discrete differential operators have a filtering
effect [2] and eliminating explicit filtering reduces computation effort. Since the com-
putation cost of convolution filters would make explicitly filtered LES unaffordable
for most of the flows of interest and implicitly filtered LES has been reported [3] to
be inconsistent with the filtered NSE, alternatives to convolution filters have been
investigated. One of the main difficulties when designing appropriate filters for ex-
plicit LES is that if the simulated turbulent flow is inhomogeneous and thus is the
mesh, the error due to commutation between discrete filtering and differential oper-
ators can become harmful. Ghosal and Moin [4] elaborated a theory to estimate such
error on non-uniform meshes and later Vasilyev et al. [5] proposed a method based
on the cancellation of the filter kernel moments to derive filters that can reduce com-
mutation error to any order desired. Based on the same theory, methods to construct
filters with similar characteristics on unstructured meshes were more recently pro-
posed [6, 7]. Even though this family of filters is shown to fulfill the commutation
error reduction goal, the transfer fictions are greater than 1 [5] for some wave scales
when their stencils are not symmetric and their transfer function is not positive if the
order of the commutation error is greater than 2. Henceforth, reducing commutation
error to less than second order results on the not fulfillment of all the realizability
conditions of Vreman et al. [8]. Yet, this does not mean commutation errors reducing
filters should not be used, it means that the high-order ones should not be used in
conjunction with subgrid-scale models prescribing the generalized turbulent kinetic
energy defined in [9] to be positive. After these considerations, up to the date and
to our knowledge, there are no discrete filters able to reproduce all the properties
of convolution filters with a reasonable computational cost and thus allowing for a
totally consistent discretization of the LES equations with explicit filtering in the lit-
erature.
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Another well-known context in which filters are used in CFD is the calculation
of closures in simulations of turbulent flow with sub-grid scales models like the dy-
namical procedure [10], the global dynamical procedure [11, 12] or the variational
multi-scale methodology [13]. These are widely employed techniques in which the
filter performance has a noticeable influence on the overall results but where commu-
tation errors do not play the important role described in the preceding paragraph. In
this context, for example, the top hat filter is used to compare subgid scales models
on a turbulent mixing layer flow in Vreman et al. [14]. Still in LES, spatial filters are
also used in regularization models [15, 16], where filters should verify [17] specific
properties.

Filters are also commonly employed in simulations with steep body forces. In
these cases, filtering is used to prevent the growth of wiggles produced by large
body force gradients [18,19]. Filtering is also used for similar reasons on simulations
of compressible flow with shock waves [20].

In practice, most of the current CFD discrete spatial filtering technology derives
from the work of Germano [21],where a convolution filter kernel is found to be
the Green function of a second order differential equation and the fundamentals
to approximate other low-pass convolution-based filters (e.g. the Gaussian filter)
by means of the solution of differential elliptic equations on filtered fields φ̂ are set.
This enables computationally affordable approximations to convolution filters in a
discrete variables framework, but the resolution of an implicit system of linear equa-
tions is required to obtain discrete filtered fields φ̂ from the unfiltered ones φ. Sagaut
and Grohens [22] applied filter kernels to Taylor approximations of the unfiltered
fields to construct explicit discrete filters for arbitrary meshes. These filters were
compared to their theoretical continuous equivalents and tested both on ideal von
Karman spectra and within 3D eddy-viscosity LES. Results showed that filter pa-
rameters remarkably affect LES results. Vreman et al. [8] approached filters for LES
from the models properties. It was shown that only positive filters achieve turbulent
sub-grid tensors that always reduce kinetic energy. Vreman [23] later demonstrated
that normalized conservative filters can be constructed on non-uniform meshes. To
do this, he showed that the adjoint operators of normalized filters are conservative
and vice versa. Then, he provided a formula to construct conservative and self ad-
joint operators from normalized ones and announced two smoothing properties of
filters: kinetic energy dissipation and global extrema reduction. More recently, Trias
et al. [16] constructed discrete explicit filters fitted for regularization models. In the
field of compressible flow simulations, Engquist et al. [24] developed and tested a
non-linear filter methodology to capture shocks with conservative adaptative filters
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and provided a proof of convergence to the weak solution of the original Euler equa-
tions. However, the constructed non-linear solution-depending filters entangle fil-
tering and the wiggle detection problem; adding complexity and increasing filter
computation time. Also in the compressible flows field, Bogey et al. [20] used a high-
order conservative filter to avoid wiggles growth and an adaptative conservative
second-order filter at the shock waves. With it, they simulated shock-vortex inter-
actions and shown the capabilities of this methodology to resolve computational
aeroacoustics problems. From the results, it is seen that the adaptative filter does not
affect low frequency scales on 1D problems on uniformly spaced structured meshes.

The authors notice that there is, in the literature, a wide range of applications for
which the properties that filters should verify to be well fitted for differs. Analytical
convolution filters are appropriate for all purposes requiring a constant filter width.
However, for analytical or discrete filters approximating the effect of convolution fil-
ters, some of its properties are mutually exclusive or lost. For example, adaptative
kernel filters do not exactly commute with differentiation. Then, depending on the
application, discrete filters in the literature have different properties. As there is no
agreement about a minimum set of properties that discrete filters should satisfy in
order to be considered filters, there is also confusion about if a discrete operator is
really a filter or not. For example, in Finite Volumes (FV) simulations with steep vol-
umes size variations, some of the existing filters can locally “sharpen” fields.

The main objectives of this work are identifying the main properties of filtering,
defining discrete filters as operators in concordance with them and providing con-
straints ensuring their fulfillment. The reader will notice that we neither consider
local accuracy to continuous operators a fundamental property of discrete filters nor
suppose any set of governing flow equations. This is because the accent is put on
bringing the global properties of analytic filtering to discrete spaces and not to any
specific application described above. From our point of view, once a spatial dis-
cretization is performed, discrete properties of the discrete operators, filters among
them, should be derived and/or accomplished in the discrete space. Continuous
properties of continuous operators should be translated into discrete properties of
discrete operators and not to discrete approximations to continuous operators for
which some continuous property is true. Of course, local errors due to discretization
are important on simulations that reproduce continuous physics. But as has been
shown by Verstappen and Veldman [25], Rozema et al. [26], Trias et al. [27] and other
authors, preserving operator symmetries rather than making good local approxima-
tions can lead to important improvements and better understanding of physics in
the CFD science. Using these methods has enabled a better understanding of the
physics of fluid flow. For example, Lehmkuhl et al. put them in practice in [28] and
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captured a low frequency phenomenon affecting a Laminar Separation Bubble (LSB)
at the limit layer of a circular cylinder under uniform flow at Reynolds number 3900.
The LSB phenomenon is correlated to two different near-wake modes leading to scat-
tering of the results in the literature. Such low-frequency phenomena are sensitive
to the numerical discretization to the point that only non dissipative methods can
capture them with reasonable mesh refinements.

To reach our purposes, in section 4.3 we first discuss the analytical convolution
filter and its properties. Then, other analytical models of filters are gathered. In the
same section, the constraints that make discrete spatial filters satisfy the properties
of the convolution filter are detailed. Among the properties, local extrema and total
variations evolutions are studied alongside with entropy consistency. Their accom-
plishment leads to restrictions on local filter strength (filter width). After that, three
filters respecting the imposed constraints are presented in Section 4.4. In Section 4.5
it is tested if the proposed filters together with some of the existing in the literature
satisfy the aforementioned properties. This is done by means of the eigenvectors of
the graph Laplacian matrix that is introduced in Section 4.3. Tests regarding spatial
accuracy are carried out on a singularity field and on an isentropic vortex. Finally,
conclusions and possible extensions of the present work are provided in Section 4.6.

4.3 Conditions for Adaptive Filtering

For the rest of the document, we use sans serif capital letters to denote matrices, bold
letters to denote vectors and calligraphic letters to denote operators. The hat symbol
is used to denote filtered field. Plain letters denote scalars. With this, φ̂(x) = F (φ(x))
and φ̂ = Fφ. Elements of arrays relative to the control volumes are identified with
subscripts “o”, “p” and “q” . Elements of matrices establishing relationships between
arrays relative to control volumes are identified with two separated subscript in-
dexes “o p” and the element of the oth row and pth column of a F matrix is denoted
with the matrice’s letter in minuscule ,i.e., fo p. Elements of arrays corresponding to
interfaces between control volumes are identified with the underlined letters “op” of
the two adjacent control volumes. This notation, together with other symbols whose
meaning will be described at first appearance, is used for the rest of the document.

4.3.1 The Analytical Convolution Filter

Most of the theory on filters for CFD has been derived as a part of the LES theory,
where filtering is generally approximated as a convolution operation. Following the
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notation used in [29]:

φ̂(x) = G ∗ φ(x) =
∫

Ω
KC(x− ξ)φ(ξ) dξ, (4.1)

where φ is a generic function, KC is the filter kernel and is related to the cutoff scales
(characteristic of the filter) through a filter characteristic width. The kernel functions
KC of convolution filters are compact supported or rapidly decaying and normalized,
i.e.

∫
Ω

KC(ξ) dξ = 1. Normalization and conservation, i.e.
∫

Ω
φ dξ =

∫
Ω

φ̂ dξ are
equivalent for convolution operators. Moreover, these filters commute with differen-
tiation and are not dispersive. Additionally, convolution filters can smoothen fields,
i.e. be dissipative. This last point is disputed because filtering can also be regarded
in the sense of eliminating high Fourier frequencies. Taking into account the appli-
cations of filters in CFD and considering that the dissipative property is necessary to
smoothen sharp fields, it is not contrary to the LES model and it is in agreement with
the realizability conditions in [8], we conclude that dissipation is a commonly neces-
sary property of filters for CFD. Unfortunately, dissipation is not always measured
in the same way and, thus, some operators can be considered dissipative according
to one criterion while they are not according to another. To us, dissipating is equiva-
lent to reducing a norm on a field gradient and avoiding growth of local maxima and
decrease of local minima. If “local” means a ball of radius the support of KC, normal-
ized positive, i.e. KC ≥ 0, filters with compact support verify the first property for
all bounded test functions (see [23]). If the filter kernel is not compact supported, the
accomplishment of the first property depends on the test functions. For the second
property we use the Total Variations Diminishing on the p norm (TVDp) criterion to
quantify the reduction of gradient norm:

Taking the p norm || · ||p of a function φ

||φ||p =

(∫

Ω
|φ|pdξ

)1/p

, (4.2)

assuming that∇φ exists and |∇φ| is bounded (this is true for fluid magnitudes), the
Total Variations of order p (TVp) o an operator F on φ is defined as

TVp(F , φ) = ||∇F (φ)||p − ||∇φ||p. (4.3)

If TVp(F , φ) ≤ 0 for all φ, then we say that F is TVDp. If F is a convolution filter

with kernel KC, using Young’s inequality ||∇φ̂||1 ≤ ||∇φ||1 · ||KC||1. If the filter is
positive, ||KC||1 = 1 by virtue of normalization. Then, ||∇φ̂||1 ≤ ||∇φ||1, so F is
TVD1. For non positive convolution filters like the spectral cutoff, ||KC||1 > 1 and
Young’s inequality does not imply TVD1.
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4.3.2 Other Analytical Filter Models

The following analytical filter models (4.4-4.8) justify discrete approximations of (4.1)
in the literature. However, they do not fulfill all of its properties, e.g. commutation
with differentiation is lost in all of them. A detailed analysis of all the properties
of each model is out the scope of this paper and is not carried out here. They are
included to allow for a smooth and more comprehensible transition from (4.1) to the
discrete filters.

The differential filter described in Germano [21] is defined by

φ = (1− ∆̄2

24
∇2)φ̂, (4.4)

where ∆̄ is the filter width. It corresponds to (4.1) if an exponential filter kernel is
used. Using (4.4) is, for simulations with a large number of nodes, less computation-
ally costly than using (4.1).

In some cases, the filter cutoff length should vary in space or according to some
dependence on the simulated evolving flow. Such adaptability can be obtained by
means of the more general class of kernel filters:

φ̂(x) =
∫

Ω
KG(x, ξ)φ(ξ) dξ. (4.5)

If the filter kernel vanishes sufficiently fast, (4.5) can be locally approximated
taking truncated Taylor series of φ(ξ) near x.Thus, one gets explicit polynomial ap-
proximations to kernel filters (see [22]):

φ̂(x) ≃ φ(x) +
i1+i2+i3=p

∑
i1+i2+i3=1

∂pφ

∂i1 ξ1∂i2 ξ2∂i3ξ3
(x)

∫
Ω

KG(x, ξ)ξ i1
1 ξ i2

2 ξ
i3
3 dξ

i1!i2!i3!
. (4.6)

As convolution filters are a subspace of kernel filters, (4.6) can also be applied to
approximate those. It is common in all the models considered so far to take filter ker-
nels with vanishing odd moments. Then, only elements with even i1 + i2 + i3 remain
in (4.6). In such case, higher-order differential approximations improve “scales” sep-
aration (the scales concept is developed in Section 4.3.8) as it is shown in [30]. How-
ever, as higher-order differential operators can be built by composition and linear
combination of the second-order ones, we restrict our analysis on differential filters
to those of second order. Thus,

φ̂(x) = (1 +
(
A(x)∆̄(x)2∇2

)
)φ(x). (4.7)
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When A � 0, i.e., it is a positive semidefinite matrix, and A(x)∆̄2(x) is limited to
take into account the 2nd law of thermodynamics, this model can be regarded as a
time integration step of an unsteady heat conduction problem in an anisotropic ma-
terial. For the heat conduction problem, moduli of gradients of φ should be reduced.
This is in accordance with the realizability condition on the convolution filters in [8],
with what has been discussed above about the dissipation property of convolution
filters for CFD and in consonance with a remark about the differential model (4.4)
in [21]:“we notice that the Gaussian filter corresponds in some sense to a diffusive
process of the original function (...)”. In the case of (4.7) the limitation on A(x)∆̄2 that
makes the filter diffusive depends on the values taken by the second derivatives of
φ or, in other words, (4.7) is conditionally diffusive. This contrasts with the fact that
positive convolution filters (4.1) are dissipative for all φ. Moreover, ”Germano’s” dif-
ferential filter (4.4) can not be written in the form of (4.7) and is therefore essentially
different from these. ”Germano’s” differential filters are inconditionally diffusive be-
cause they are equal to (4.1) with exponential positive kernels.

For isotropic filters or meshes, Equation (4.7) reduces to

φ̂(x) = (1 +
(

α(x)∆̄(x)2∇2
)
)φ(x) (4.8)

and the approximation described in Sagaut [22] is recovered. Again, a restriction on
α(x)∆̄2(x) should be imposed for the sake of consistency with the 2nd law of ther-
modynamics.

Filters based on (4.1) can separate scales of a field better than those based on (4.4),
(4.6), (4.7) or (4.8). The last three models introduce diffusion to all scales but are more
flexible on complex geometries and can be easily applied on both structured and un-
structured meshes. On account of this reason and the fact that higher-order filters
with better scale separations properties can be built from them, in the following we
study discrete versions of (4.7) and (4.8).

4.3.3 Discrete Filter Properties

Let F (·) : Rn 7→ Rn be a discrete filtering operation with φ̂ = F (φ). Then, for
all φ and depending on its application, the following properties derived from the
approximations (4.7) and (4.8) of (4.1) are usually required:

P-1 Filtering is a local, linear and explicit operation.

P-2 Normalization: Filters do not alter constant fields. F (1) = 1.
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P-3 Conservation: Filtering preserves the integral of φ on its domain.

P-4 Variations reduction: Filters reduce variations, maxima and/or minima.

P-5 Low dispersion between modes of a mesh.

From the above properties, it is remarkable that 4.3.3, 3.2.4, and 4.3.3 apply to
all situations and are intimately related to the continuous concept of low-pass filter
while 4.3.3 and 4.3.3 depend on the filter purpose. For example, conservation is not
regarded as strictly necessary on test filters of dynamic eddy-viscosity models and
low dispersion is not wanted for filters on steep gradient forces, where filtering is
performed to transport magnitudes from “small scales” to “larger scales” of meshes.

In the following paragraphs, we explain each property and observe its conse-
quences. We focus our analysis on FV discretizations, extensions to FD or Finite
Elements Methods (FEM) are straightforward.

4.3.4 Filtering is a local, linear and explicit operation [4.3.3]

Filtering is not a main operation of the NSE, it appears as a CFD tool. Hence, for
computer performance and analysis simplicity reasons, and according to the ana-
lytic convolution filter and all the other filter models of Section 4.3.2, linear explicit
filters are preferred to others. Then, φ̂ = Fφ.

Since the differential operators of Equations (4.7) and (4.8) are local and have
compact domains, and for computer performance reasons, filter matrices should be
sparse. Accordingly, fo p = 0 except for p ∈ No = {p1, p2, ..., pm} neighborhood of
the oth cell or for p = o. This property also corresponds to models of Equations (4.1)
and (4.5) with compactly supported kernels.

4.3.5 Normalization: Filters do not alter constant fields [4.3.3]

In agreement with the analytical models and because other possibilities do not seem
to have any interest for CFD, linear explicit filters should obey

(F− I)1 = 0. (4.9)

In such case, we say that the filter is normalized.
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4.3.6 Conservation [4.3.3]

Conservation is the basic principle from which the NSE are derived and the main
reason why in some applications FV discretizations are preferred over other possibil-
ities such as FD or FEM. In some simulations, magnitudes affected by conservation
equations are filtered to improve stability and/or avoid wiggles. Then, they should
be conserved in order to preserve the overall method physics. For example, when
filtering the body forces applied at some control volumes by an actuator line model
of a turbine on a simulation of wind turbine wakes [31], non conservative filters lead
to an imbalance between the turbine model power extraction and the energy change
in the free stream. Conservation

∫

Ω
φ̂ δΩ =

∫

Ω
φ δΩ (4.10)

is true for analytical convolution filters and models (4.7) and (4.8).
Defining Ω as the diagonal matrix with the cell volumes at the diagonal elements,

one gets the discrete version of (4.10):

1TΩφ̂ = 1TΩFφ = 1TΩφ (4.11)

Thus,

fo p =
Ωp

Ωo
fp o (4.12)

This can also be written as
ΩF = (ΩF)T (4.13)

Notice that the volumes of two neighbor cells are not necessarily equal on gen-
eral meshes (Ωo 6= Ωp). Hence, for conservative filters fo p 6= fp o at non-diagonal
elements. Consequently, filter matrices have a skew-symmetric part and transport
energy between “scales” of the mesh.

Conservation can be relaxed in some applications and non-conservative filters
are also useful. For example, test filters used in eddy viscosity methods are not
necessarily conservative to keep overall method conservation properties. Among
non-conservative filters, the symmetric ones F = FT attract special attention because
the aforementioned transport is avoided.

4.3.7 Variations reduction [4.3.3]

Roughly speaking, filtering aims at the smearing of maxima and minima and the
reduction of variations. This feature has been already discussed for the analytical



4.3. CONDITIONS FOR ADAPTIVE FILTERING 91

filters considered in this work and should be imposed on discrete filters by means of
an appropriate condition. However, to the best of our knowledge, there is not a clear
general consensus about what is the exact computationally affordable condition that
represents smearing of discrete fields. We also have noted that not all filters in the
literature necessarily fulfill this property for all input fields. For example, the conser-
vative filters introduced in [20] are shown to damp over a range of wavelengths but
their behavior on singularity fields, i.e. fields vanishing at all cells excepting one, is
not considered. Next, various variations reduction alternatives are discussed.

Local Extrema Diminishing

Local Extrema Diminishing (LED) ensures that if at a certain point φo > φp ∀p ∈
No, after filtering: φ̂o = φo + ∑ fo p(φp − φo) < φo. Changing the directions of in-
equalities, the same is true for minima. In the literature, LED is often assumed for all
meshes and for all input fields because all fo p are commonly positive by construction.
For normalized filters, the necessary and sufficient conditions to fulfill this property
are (see [32] and [8]):

fo p ≥ 0 ∀o p (4.14)

and
fo o = 1− ∑

p∈No

fo p ≥ 0 ∀o. (4.15)

LED is more restrictive than a bound on the L∞ norm of fields. However, in the
case of adaptative filtering with filters driven by complex combinations of variables
or in the case of non-uniform meshes, LED is not restrictive enough and does not
necessarily prevent filters from generating new extrema. Filters that can generate
new extrema are not consistent discretizations of the physically consistent analytical
models. To illustrate this, we provide the following example:

On the irregular 1D depicted in Figure 4.1, the volume of i is 1 while the volume
of all the other cells is ω < 1. A φ field evaluating φi = 1, and 0 elsewhere is filtered
with a one-neighbor stencil LED conservative filter. Since the filter is conservative,
according to (4.12), the values of the filtered field are φ̂i = 1− 2 f , φ̂i±1 = f /ω and
φ̂q = 0 for other cells, where the scalar f is the filter strength parameter. LED (4.14),
(4.15) imposes f ≥ 0, 1− 2 f ≥ 0 and 1− f /ω ≥ 0. Then, 0 ≤ f ≤ min(1/2, ω).

With ω = 0.25 as in the figure, for example, the maximum f allowed by LED
is f = 0.25. Using it, the values of the filtered field are φ̂i = 0.5 and φ̂i±1 = 1. In
such case, φ̂i±1 > φ̂i, so the filter would increase the number of maxima (2 after fil-
tering 1 before filtering). This result would break the heat equation interpretation
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of (4.8) and (4.7). For consistency with the 2nd law of thermodynamics, we impose
φ̂i ≥ φ̂i±1. Then, the condition 1− 2 f ≥ f /ω is obtained, so 0 ≤ f ≥ ω/(2ω + 1) >
min(1/2, ω). Unfortunately, the initial field had to be known prior to establishing the
inequality direction of φ̂i ≥ φ̂i±1. In order to be robust and practical, filters should
not depend on the field they are applied to.

In the present example, consistency with the 2nd law of thermodynamics can
be attained from another point of view. If the total of the variations of the whole
field is restricted, i.e. ∑o p |φp − φo| ≤ ∑o p |φ̂p − φ̂o|, the condition for φ̂i and φ̂i±1

is 2 ≤ 2φ̂i±1 + 2|φ̂i − φ̂i±1|. This inequality provides 2 possible bounds for f . One
is f < ω/2(ω + 1) and is dismissed because it violates LED. The other, leads to
f ≤ ω/(2ω + 1). TVD1, has coincided, in this example, with the restriction ob-
tained imposing φ̂i ≥ φ̂i±1, i.e. it has been equivalent to imposing consistency with
the dissipation properties of the analytical models. LED has not. Hence, it becomes
apparent that a further condition limiting the growth of maxima and minima is to be
imposed, together with LED, on discrete filters in general. TVDp is discussed next.

Figure 4.1: Left: Field values before filtering. Center: Filtered field values obtained
with a conservative LED filter. Right: Filtered field values obtained with a conserva-
tive, TVD1 and LED filter.

Total Variations Diminishing

TVp has been introduced above. It allows a quantification of the amount of wig-
gles/oscillation tat a field contains. Diminishing TV1 with can be related to the
to the differential filter models dissipation properties. In the field of compressible
flows simulations, TVD1 was identified as a sufficient property to construct numeri-
cal schemes that do not produce wiggles. First, Harten et al. [33] introduced TVD1 as
an equivalent condition to monotonicity preservation for 1D schemes. The extension
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of the concept to multiple dimensions was described, for example, in [34]. This exten-
sion was made by locally separating the multidimensional problem into various one-
dimensional ones by means of a linearization of the equations and enforcing TVD1

in each direction. This straightforward strategy does not resolve the extension of
TVD1 into multidimensional unstructured grids. Apart from the compressible flow
community, TV1 bounding was also used in image processing technologies (e.g. [35]).
However, in filtering literature for CFD it is not explicitly imposed. In our opinion,
it is generally accepted that good local approximations of the TVD1 continuous fil-
ters enforce discrete filters to be TVD1, but according to the results of Section 4.5
and previous experiences, this assertion is not necessarily true. We consider hereby
imposition of the TVD1 property together with LED on low-pass discrete filters to
force consistency with the properties of (4.8) and (4.7).

In the compressible flow literature, the usual TVp norm is the L1 norm of the
graph gradient of a field ||Gφ||1. Where G ∈ Mn f×n (n f is the number of interfaces
between cells) is defined as

gop r =





1 if r = p
−1 if r = o

0 if r 6= o and r 6= p.
(4.16)

The TVD1 condition on a discrete filter establishes that, for all discrete field φ,

||Gφ̂||1 = ∑
op

|φ̂o − φ̂p| ≤∑
op

|φo − φp| = ||Gφ||1. (4.17)

Working with absolute values is cumbersome. Hence, we use the square of the L2

norm to measure oscillations as it can be written in matrix notation. We obtain

2(||Gφ̂||2)2 = ∑
o

∑
p∈No

(φ̂o − φ̂p)
2 ≤∑

o
∑

p∈No

(φo − φp)
2 = 2(||Gφ||2)2. (4.18)

We remark that (4.17) ; (4.18) and (4.18) ; (4.17). Now, writing (4.18) in bilinear
form,

φTFTLFφ ≤ φTLφ. (4.19)

Where L = GTG is the graph Laplacian matrix whose elements are:

lo p =





−1 if o 6= p Ωp ∈ N(Ωo)
0 if o 6= p Ωp /∈ No

No if o = p.

(4.20)

Where · is the size of a set. In this work, we call L the graph Laplacian matrix or
simply the Laplacian matrix. A study of its eigenspace in Section 4.3.8 shows that it
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is a good basis for the analysis of the effect of filtering on oscillations.

Condition (4.19) is also equivalent to

K = L− FTLF � 0. (4.21)

Forcing or checking (4.21) is cumbersome and computationally costly. In 4.B, its el-
ements are calculated for a general case. Also in in 4.B, the simpler situation when
fo p = O(ε) with ε→ 0 is studied by means of the Gershgorin circle theorem. Surpris-
ingly to the authors, we could not demonstrate the positive definiteness of K even in
this limit case, so the result of the analysis is not conclusive. Nonetheless, inequality
(4.19) can b imposed to the f i eigenvectors of F. This is equivalent to impose |ϕi| ≤ 1
for all ϕi eigenvalues of F. This can be done applying the Gershgorin circle theorem.

The Gershgorin circle theorem states the eigenvalues of a B matrix lie in SR ∩ SC
the intersection of the unions of the circles on the complex plane defined as

SR =
⋃

i

Ri Ri =

{
z ∈ C : |z− bi i| ≤ ∑

j 6=i

|bi j|
}

; (4.22)

SC =
⋃

i

Ci Ci =

{
z ∈ C : |z− bi i| ≤ ∑

j 6=i

|bj i|
}

. (4.23)

In this case, |ϕi| ≤ 1 is true if, for all o rows of F

fo o + ∑
p∈No

fo p ≤ 1 (4.24)

and
fo o − ∑

p∈No

fo p ≥ −1. (4.25)

For normalized filters, (4.24) is always true and (4.25) is equivalent to (4.15) because
fo o = 1−∑p∈No

fo p.

Conditions (4.25) and (4.24) on a filter matrix are necessary but not sufficient to
guarantee (4.18) for all φ = ∑i xi f i. In general, inequality (4.19) becomes

∑
i j

xixj f T
i F

TLF f j ≤∑
i j

xixj f T
i L f j, (4.26)

which we could not impose for all x. However, for filters verifying inequalities (4.24)
and (4.25) we can speculate that ∃D ⊂ Rn such that for x ∈ D inequality (4.26) is
true. Results in Section 4.5 confirm its existence.
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Entropy Consistency

It seems that TVDp is a good candidate to control variations of filtering operations to
prevent the creation of new maxima and minima. However, the difficulty to ensure
it restricts its practical use. To overcome this issue, we propose the Entropy Consis-
tency (EC) condition to achieve variations reduction. To explain this condition, we
recall that the studied filters are linear and the superposition principle applies. Now,
let eo be a vector of the canonical basis of fields on a mesh with periodic boundary
conditions, i.e. eo’s oth coordinate equals 1 and the rest equals 0. Let F be a filter,
hence êo = Feo. If F is such that 0 ≤ êo

p ≤ 1 for all p, and all êo
p decrease with some

geometric distance to Ωo so êo
o ≥ êo

p for all p 6= o, we say that F is EC for eo. If F is EC
for all o, we say that F is EC. Applying the superposition principle, EC filters respect
the 2nd law of thermodynamics and reproduce a heat conduction problem. Conse-
quently, EC filters smear fields. For a filter to be EC for a eo vector of the canonical
basis it is sufficient that the oth row of F verifies inequalities (4.27)

fo o ≥ ∑
p∈No

fo p (4.27)

and
fo p ≥ 0 ∀p. (4.28)

The interest is on filters that control oscillations for all input fields, i.e. EC filters
for which (4.27) and (4.28) are true for all o. This is accomplished with positive
semidefinite filter matrices with all elements positive. Then, for normalized filters,
EC reads

1 ≥ 2 ∑
p∈No

fo p ∀o, (4.29)

and (4.28), which is more restrictive than LED. It is straightforward that EC imposes
fo o ≥ 0.5. After these conditions and applying the Gershgorin circle theorem, all ϕ
eigenvalues of an EC filter verify 0 ≤ R(ϕ) ≤ 1. On the example of Figure 4.1, EC
gives 0 ≤ f ≤ min(ω/2, 1/4)⇒ φi ≥ φ̂i ≥ φ̂i±1.

4.3.8 Low dispersion between the modes of a mesh [4.3.3]

Given a mesh and a spatial discretization, if there was a B = {b1, b2, ...bn} orthonor-
mal basis with respect to the euclidean product of Rn such that it represented os-
cillations modes of the mesh on which the fields and operators are defined and
i > j ⇒ oscillations(bi) ≥ oscillations(bj), the oscillations of a vector φ = ∑i xibi

would be be related to its coordinates on that base. On Cartesian meshes, it is a
common practice to use the B of the Fourier modes. This can not be done on non-
uniform meshes where, to the best of our knowledge, there is not an established
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consensus about which B is the best solution to account for oscillations. The choice
of B is even less standardized on unstructured meshes because the relation between
Fourier modes and mesh modes is unclear.

A candidate basis that can represent oscillations whatever the mesh is Bl =
{l1, l2, l3, ...ln}: the basis of the normalized eigenvectors of the graph Laplacian ma-
trix L defined in (4.20). Indeed, L � 0 measures oscillations of a field φ on a spatial
discretization and defines a norm on Rn. Taking a pair of eigenvectors li and lj of L
corresponding to the eigenvalues λi and λj, if |λi| ≥ λj, li contains more oscillations
than lj and li · lj = 0 if i 6= j, lj · lj = 1. Hence, the vectors of Bl represent of the
modes of a mesh. To show this relationship, eigenvectors of L on an structured and
an unstructured meshes are depicted, respectively, in Figures 4.3 and 4.4. Eigenval-
ues of L for the same meshes are shown in Figure 4.2.

Other symmetric positive-definite matrices can be used as a basic norm for mea-
suring oscillations and computing a useful basis to represent mesh modes. Mainly,
candidates are expected among discrete differential Laplacian operators or graph
Laplacians matrices with volume weightings. Our experience during this work shows
that the operator defined in equations (9a-9c) of [36] with centroid as field points also
contains information about the mesh distortion and the φ fields maxima and minima
can be masked by cell volumes changes.

Now, given an endomorphism (a filter matrix) F : Rn 7→ Rn, the effect it produces
on the oscillations can be studied by means of the images of each of the vectors of
the modes basis. If F was such that Fbi = βibi, with βi ∈ R, we would say that
F does not produce dispersion because variations on oscillations modes would be
independent. Unfortunately, F generally projects bi on more vectors of B than itself.
This could be resolved changing the basis on which the analysis is performed, but
then the basis might not represent oscillations. Changing the coordinates with the
Ω−1/2 matrix, one gets a symmetric filter matrix from a conservative filter. Then, the
corresponding change on L would break its symmetry and its capacity to measure
oscillation would be lost. Still, one could use F′ = Ω1/2FΩ−1/2 the symmetric fil-
ter matrix on the new basis as oscillations norm. Then, its eigenvectors would be
mesh modes and no dispersion would occur; but these properties would be true on
a space where variables have Ω−1/2 dimensions and returning to the physically rel-
evant space would break them. Hence, we stick to an oscillations measuring matrix
and its associated basis and we say that filters that project bi on other vectors of B
than itself are dispersive. Note that if F is symmetric in the physically relevant space,
then it can define the oscillations norm and B, so dispersion would not occur.
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Regarding the analytical filter models of Section 4.3.2 and taking Fourier series,
adaptative filters are dispersive while non adaptative ones are not. Still, we consider
that transporting oscillations from low modes to high modes is a negative filtering
behavior but, as we could not deduce proper constraints to avoid it and it does not
disagree with adaptative filters, no further actions than observations are taken in this
sense.
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Figure 4.2: Eigenvalues of L on the structured mesh1 (left) and the unstructured
mesh2 (right) of Section 4.5.

Figure 4.3: Eigenvectors of the Laplacian matrix on the structured “mesh1” of Sec-
tion 4.5. From left to right: 2, 15, 99.
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Figure 4.4: Eigenvectors of the Laplacian matrix on the unstructured mesh “mesh2”
of Section 4.5. From left to right: 2, 12, 59.

4.4 Limited Filters for CFD

In this section, a set of filters accomplishing some of the conditions introduced in
Section 4.3 on cell-centered FV discretizations are presented. Extensions to other
discretizations can be envisaged.

4.4.1 Conservative Limited Filter (CLF)

A normalized conservative filter F for φ ∈ Rn has ∑o No/2 independent dimension-
less fo p elements. As it has been shown in Section 4.3.6, F̌ = ΩF is symmetric. We

write fo p = f̌o p/Ωo = go pΩop/Ωo where Ωop is a function of the volumes of cells o

and p. For consistency, Ωop(Ωo, Ωp) = Ωpo(Ωp, Ωo). There is laterality in the defini-

tion of Ωop. For example, Trias et al. [16] chose Ωop to be the volume of the staggered

cells. We use Ωop =
√

ΩoΩp for simplicity and the freedom to use vertex-connected

neighbors, which cannot be easily done with staggered cells constructions.

Now, supposing an input set of go p ≥ 0 for all o and p, LED or EC can be granted
by means of two different procedures: The first procedure consists of scaling the go p

input values only if

Sgo = σ ∑
p∈No

fo p = σ
1

Ωo
∑

p∈No

Ωopgo p > 1. (4.30)

In that case all {go p : p ∈ No} are divided by Sgo. The second procedure consists of
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bounding all go p with

go p ≤ min


 Ωo

σΩopNo

,
Ωp

σΩopNp


 . (4.31)

Here, σ is a number that can evaluate 1 or 2. LED is obtained with σ = 1 while EC is
obtained with σ = 2. Approximation (4.30) is less restrictive than (4.31).

Finally, using the normalization equation, fo o = 1−∑p∈No
fo p.

4.4.2 Differential Limited Filters

Both the Laplacian and the box 2nd order filters from [22] can be expressed, accord-
ing to equation (4.8) as

φ̂ = φ +
(ǫ∆)2

24
∇2φ +O(∆4) (4.32)

where ∆ is the characteristic length of a CV and ǫ the dimensionless parameter con-
trolling the filter width. We apply the model of equation (4.7) instead because it
allows adapting ∆ and ǫ to each interface. Then, depending on the chosen approxi-
mation to the Laplacian operator, conservation and symmetry can be imposed.

We propose a Conservative Differential Limited Filter (CDLF) which is a particu-
larization of CLF:

fo p =
ǫ2

op(ΩoΩp)1/3Aop

24Ωo(rop · nop)
if o 6= p ; fo o = 1− ∑

p∈No

fo p. (4.33)

And a Symmetric Differential Limited Filter (SDLF):

fo p =
ǫ2

opAop

24(ΩoΩp)1/6(rop · nop)
if o 6= p ; fo o = 1− ∑

p∈No

fo p. (4.34)

For both cases, rop is the vector that goes from the center of cell o to the center of cell

p, nop is the unit vector normal to the interface between the cells directed towards p,

Aop is the area between the two cells, and Ωo is the volume of cell o. The filter width

parameter ǫop is evaluated at interfaces.

To accomplish LED or EC, the elements of the filter matrix should verify σ ∑p∈No
fo p ≤

1 with σ = 1 for LED or σ = 2 for EC. This condition can be attained limiting ǫop
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in a similar fashion to what has been done for CLF. Again, there are two different
procedures to impose the mentioned limitations: The first, less restrictive than the
other, is applied only in the case that So = σ ∑p fo p > 1 at some o cell. If this occurs,
using

(ǫ∗op)
2 =

ǫ2
op

So
(4.35)

instead of ǫ2
op ∀p ∈ No resolves the problem. The second possibility is to limit all ǫ2

op

for all o and for all p so that

ǫ2
op ≤





1

σNo
∑

p∈No

Aop

24(ΩoΩp)1/6(rop · nop)
,

1

σNp
∑

q∈Np

Apq

24(ΩpΩq)1/6(rpq · npq)



 .

(4.36)
Both schemes approximate∇ · (A∇(·)). As stencils with all vertex-neighbors are not
straightforward, we propose a methodology to do this in the following paragraphs.

4.4.3 Filters with Vertex-Neighbors Stencils

In FV discretizations, the divergence theorem is the most common tool to obtain dis-
crete operators. Least squares approximations of the values of the fields at interfaces
would allow the use of vertex-neighbor stencils, but this results in the loss of control
on preservation of operator symmetries. To overcome this problem, we propose the
use of ghost surfaces connecting each cell to each of its vertex-neighbors and to ap-
ply the divergence theorem straightforwardly.

Let Lg be the discrete geometric Laplacian matrix of a given mesh. Then, for a cell
p sharing a face with cell o, lgo p = Aop/(Ωodsop), with dsop = rop · nop. To extend

this formula to a “q“ cell , vertex neighbor of o, i.e., sharing one v vertex with it, we
propose to use

Aoq =
Ωo + Ωq

hvo + hvq
(4.37)

and

noq =





(rvo∧rvq)∧(rvo+rvq)

||(rvo∧rvq)∧(rvo+rvq)|| if rvo ∧ rvq 6= 0
rvo

||rvo|| if rvo ∧ rvq = 0
(4.38)

Where rvq is the vector from the v vertex to the centroid of cell q and hvq is the volu-

metric height of the o cell that passes through vertex v, rvo and hvo are their equiva-
lents for cell o. The value of volumetric heights depends on the polyhedron types of
the cells they are referred to. For example, if o is a tetrahedron, hvo = hv/3, with hv
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the distance between v and the face of opposed to v. Other polyhedra induce some
laterality in the values of hvo and hvo but satisfactory casuistic solutions can be found.

Equations (4.37) and (4.38) are used to extend the introduced filters to vertex
neighbors stencils. LED and EC limitations are imposed in the same way as for their
face neighbor stencils equivalents.

4.5 Tests

There is a large variety of tests for filters available in the literature but the properties
they are designed to quantify differ appreciably between authors, so comparison of
filters developed in different works is not straightforward. For example, the test de-
scribed in Marsden et al. [6] is designed to study the filter commutation error while
tests in Sagaut et al. [22] are designed to compare the discrete filters to their analytic
models. Another factor that makes comparisons more difficult is that authors often
test 3D filters on full CFD simulations, not isolatedly, so the performance of filters
can be accidentally concealed. Following the ideas exposed in the introduction, the
tests conducted and reported in this document focus on global properties characteriz-
ing filtering. Namely, we propose tests to check the accomplishment of conservation,
variations evolution and dispersion properties introduced and developed in Section
4.3. After that, we conduct tests on a singularity and on an isentropic vortex to study
the performance of filter on situations more similar to CFD simulations.

In order to analyze dispersion and to clarify conservation and variations evolu-
tion we use the basis of the graph Laplacian matrix according to Section 4.3.8. In
software terms, we used the gsl_eigen_symmv routine of the gsl library [37] to cal-
culate the eigenvectors of L.

The tested filters are: a Laplacian approximation to a convolution Gaussian filter,
a box based filter and the filters developed in Section 4.4. The Laplacian filter is iden-
tified as “Laplacian” and the box as “Box”. Both of them are detailed in 4.A.

For the tests on the introduced properties, all filters are tested with both adapta-
tive and constant filter width parameters (filter drivers) on two different meshes. We
specify the following names code to identify the performed tests:

XXXX(V)-Y-Z

Here, ”XXXX“ stands for the filter name; ”V“ expresses that the filter uses vertex-
neighbor stencils (face-neighbors stencils are assumed by default), ”Y“ indicates how
the filter driver has been computed and ”Z“ identifies the mesh used for the test. The
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”Y“ parameter can be Constant (C) when the parameter equals 1.5 at all cells, Max-
ima (M) when it is computed as |Lφ| or Random (R) when it is has a probability
of 0.2 to be different to zero, in which case it is a random number between 0 and 4.
The constant filters parameters are common within LES, (M) filter parameters can be
used to filter inserted body forces like in [31] and (R) represents situations similar to
shock wave detection and conservative fields filtering (see [20]). Two different 2D
meshes respectively identified with 1 and 2 have been used: a uniform structured
mesh with 100 CV “mesh1” and an unstructured mesh with 60 CV “mesh2”, both
have been created with the ANSYS ICEM CFD software. These meshes are in practice
3D and 1 CV thick. The thickness of mesh1 is 0.1 while the thickness of mesh2 is
60−0.5. These thicknesses equalize the characteristic lengths of volumes in all dimen-
sions. All boundary conditions are Neumann: the tested fields evaluate the same at
the boundary face nodes than in the cell they are in contact with. Hence, boundary
face nodes are neither included in L nor in any F. On mesh1, CDLF and SDLF are
identical by construction but results of both are represented in all plots to confirm
this statement.

For the tests on singularity fields and the isentropic vortex, only the filter names
are necessary and the other parameters are specified in the corresponding sections.

The physical interpretation of the filter strength differs between the studied fil-
ters and so does the filtering strength parameters. In order to achieve better compar-
isons, relationships between filter strength parameters have been deduced so that,
for “C” and on uniform meshes, all filters with face stencils produce very similar
outputs. These same parameters are also used on the vertex stencils filters coun-
terparts. These relations are also applied on situations with nonuniform meshes or
adaptative filters. Further details on filter strengths relationships are in 4.C.

Filter strength parameters of the filters proposed in Section 4.4 can be limited
using a cell based methodology like in equation (4.31) or an interface based method-
ology like in equation (4.30). Tests on the filters properties have been conducted
with both limiting methodologies but, as results are almost indistinguishable, only
those with the cell based methodology are included in this paper. Otherwise, tests
on the isentropic vortex and the singularity have been conducted with the cell based
methodology only.

4.5.1 Total Variations Evolution Tests

The main objective of a filter is to damp oscillated fields without affecting those with
few oscillations. In the basis of the Laplacian matrix, it is damping the li with high
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λi while not damping much the others. We denote λ ↑ the vector of eigenvalues of
L in increasing order. In Section 4.3.7 several approximations to damping measure-

ments have been considered. We provide here representations of ||Gl̂i||1/||Gli||1 vs.
i (where each li corresponds to a λi) as a measure of filter damping performance.
For the sake of conciseness and because they are very similar, we only show results
obtained with the LED condition and we only comment differences with EC at the
end of the analysis.

Overall, after the results obtained with the constant filter driver, all filters damp
as pretended: filtering effect grows with i. Focusing on results with mesh1 shown
in Figure 4.5, it appears that, after scaling filter drivers according to 4.C, all filters
except Box give indistinguishable results. Differences between Box and all the other
filters come from the filter driver scaling process, where we did not take into ac-
count that boundary cells have lower number of neighbors. Besides, on results with
mesh2 shown in Figure 4.6, it is observed that all filters damp in a similar fashion. In
consonance with their formulations, though, results are not equal. However, differ-
ences between Box or Laplacian with respect to the newly developed filters are not
much bigger than those between Box and Laplacian. Therefore, we consider that the
developed filters damp similarly to the previously existing ones provided that the
filter parameters are scaled. Finally, for a given filtering parameter, filters with ver-
tex neighbors introduce more damping. This is because of the larger size of vertex
stencils is not taken into account when scaling them.

Figures 4.7 and 4.8 show the results obtained with ”M“ filter parameters. All fil-
ters give similar results, specially on mesh1. Their transfer functions do not damp for
the low oscillated modes (i → 0) and become gradually more aggressive for more
oscillated ones (i → n). This behavior fits pretty well with the commonly expected
transfer function of low-pass filters. However, none of the studied filters reaches the
total elimination of the high modes on any of the tested meshes. With regards to the
differences between faces stencils and vertices stencils, what has been described for
”C“ applies.

Results with the random filter driver are shown in Figures 4.9 and 4.10 show that
CLF, CDLF and SDLF increase oscillations on both meshes at low i. This negative ef-
fect is more evident on mesh 2 and with vertices stencils. As the probability to filter
activation is relatively low compared to ”C“ and to ”M“ with high i, the damping
is lesser. However, all filters tend to reduce oscillation at high i, which is a positive
behavior. Among them, CLF, CDLF and SDLF cause the highest damping on most i.

Filters limited with LED are more damping than those limited with EC when the
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limitation is active. However, damping behaviors are qualitatively the same. The
most relevant quantitative differences have been found on the case with mesh2 and
”R“ pictured on Figure 4.11 for EC. In this situation, EC approaches better to the re-
duction of total variations at all modes. Still, at some low modes, total variations
increased on the order of 10−3 instead of 10−2 achieved with LED. Further experi-
ences have been carried with random fields and other settings of the ”R“ filter driver.
The conclusion is that total variations growth has only been observed in situations
where the filter driver equals zero at most of the cells while takes values as high as to
activate LED or EC at some of them and the base field is a low oscillated mode. This
setting is the most effective in the transport of fields from large (test field) to small
scales (filter activation field) but it does not correspond to CFD. Some tests without
LED nor EC restrictions have been also conducted. Oscillation growth is observed
for some bi with all filters and all meshes when the filter strength parameter is higher
than the permitted by LED. We include Figure 4.12 as an example.
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Figure 4.10: ||Gl̂i||1/||Gli||1 vs. i with the ”R“ filter driver, mesh2 and LED. Left:
faces stencils. Right: vertices stencils.
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Figure 4.12: ||Gl̂i||1/||Gli||1 vs. i with the ”R“ filter driver, mesh1 and no filter
strength limit. Left: faces stencils. Right: vertices stencils.

4.5.2 Conservation Tests

For a conservative filter, the magnitude 1TΩ(li − l̂i) equals zero. Here, its resulting
value calculated with the considered filters configurations is analyzed to study pos-
sible relations on the oscillations present in the test field. Results with the ”C“ filter
driver are plotted on Figures 4.13 and 4.14. On mesh1, only Box is not conservative
while on mesh2, only CLF and CDLF conserve the integral of φ in the domain. It is
also observed that vertex-stencils filters are less conservative, probably because they
have a greater effect when the filter strength parameter is the same. Results of tests
with the ”M“ filter driver are plotted in Figures 4.15 and 4.16. On mesh1, CLF, CDLF
and SDLF are conservative for all li while Laplacian and Box are remarkably non
conservative. On mesh2, SDLF is not conservative anymore but it is closer to it than
Laplacian or Box. Again, vertex stencils reduce conservation of non-conservative

filters. In all cases, a dependence of 1TΩ(li − l̂i) with respect to i is observed with
”M“. This can be attributed to the growth of the filter width with i for mesh2, while

for mesh1 1TΩ(li − l̂i) is higher for i around 60. Results of tests with ”R“ are not
reproduced. They differ from those with ”M“ because there is not a dependence on
i.
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Figure 4.13: 1TΩ(li − l̂i) vs. i with the ”C“ filter driver, mesh1 and LED. Left: faces
stencils. Right: vertices stencils.
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Figure 4.14: 1T
Ω(li − l̂i) vs. i with the ”C“ filter driver, mesh2 and LED. Left: faces
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Figure 4.15: 1TΩ(li − l̂i) vs. i with the ”M“ filter driver, mesh1 and LED. Left: faces
stencils. Right: vertices stencils.
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4.5.3 Dispersion Tests

An analysis focused on the study of the dispersion that a filter produces on each li

has also been conducted. 2D grayscale plots of the moduli of coordinates of l̂i in
the basis Bl represent the dispersion produced by each filter. For a position i j of the
graphs in Figures 4.17-4.20, the ordinate i represents the filtered mode li, the abscissa
value j represents the index of the coordinate j in Bl basis, and the gray intensity rep-

resents the absolute value of (l̂i)j in logarithmic scale. Accordingly, non-dispersing
filters produce dark gray in the diagonal and white elsewhere. However, filters trans-
porting energy from higher to lower modes are also considered satisfactory. In the
present test, such behavior would cause a dark gray diagonal, a lighter dark gray on
the lower right corner and a lighter gray at the other positions. Other criteria like
dispersing to close modes (gray only near the diagonal, white at the rest) can also
be useful for CFD purposes. Most of the figures that included here contain data ob-
tained with EC restricted filters only. Differences between EC and LED are described
at the end of the section.
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Figure 4.17: Dispersion tests on mesh1 with faces stencils and EC. Top: CDLF, bot-
tom: Box. Columns, from left to right: C, M, R.

Results show that the mesh, the filter driver and the stencil have a noticeable in-
fluence on the dispersion properties of the filters. Regarding the difference between
meshes for a given set of filter, driver and stencil, we notice that, for all situations ex-
cepting ”R“ drivers, filters produce remarkably more dispersion on mesh2 than on
mesh1. On mesh1 and given an stencil, Gauss, CLF, CDLF and SDLF are equal. With
this mesh, (Figures 4.17 and 4.18) and after the results obtained with the ”C“ and

”M“ filter drivers, (l̂i)j take values different to zero for most i and some j around
60 and for some i around 60 and j. So, the graphs are mostly white and exhibit or-

dered gray patterns symmetric respect to the diagonal. The eigenvectors l̂i for which
more dispersion is observed are the same than those towards which the test fields
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Figure 4.18: Dispersion tests on mesh1 with vertices stencils and EC. Top: CDLF,
bottom: Box. Columns, from left to right: C, M, R.
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Figure 4.19: Dispersion tests on mesh2 with faces stencils and EC. Top: CDLF, bot-
tom: Box. Columns, from left to right: C, M, R.
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Figure 4.20: Dispersion tests on mesh2 with vertices stencils and EC. Top: CDLF,
bottom: Box. Columns, from left to right: C, M, R.



4.5. TESTS 113

are mostly projected. They are also the lesser conservative ones with ”M“ and mesh1
in the conservation test. Figures 4.19 and 4.20 show results on mesh2. Only CDLF
and Box are represented because differences with other filters are irrelevant in this
test. No ordered patterns are distinguishable and the effect of the stencil is almost
irrelevant regardless of the mesh.

Finally, in Figure 4.21, a dispersion comparison between EC and LED is shown.

Dispersion is qualitatively equal but EC keeps, for all j, (l̂i)j/(l̂i)i relatively lower
than LED, so dispersion is lower. Such behavior has been observed with all meshes
and filter drivers. It is attributed to the lower filter strength limit of EC.
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Figure 4.21: Projection tests on mesh2 with CLF with vertices stencils. Top: LED
condition, bottom: EC condition. Columns, from left to right: C, M, R.

4.5.4 Tests on a singularity

Filtering of a singularity field has been carried out in order to compare EC to LED
variations reduction constraints. This test consists on filtering a field evaluating 0 in
all CV but one near the center of the mesh where it evaluates 1. Tests are performed
on mesh1 and mesh2 with constant filter strength parameters. The value of the fil-
ter parameter is 2 for the reference Laplacian filter while for the other filters it has
been adapted as detailed in 4.C. The variations reduction limit on the filter strength
parameter has been imposed with Inequality (4.31) on CLF, with Inequality (4.36) on
CDLF and SDLF and as it is described in 4.A for Box and Laplacian. Figures 4.22 and
4.23 show the filtered fields. With the LED constraint, the neighbors of the singular-
ity become maxima after filtering while, as it has been predicted in Section 4.3.7, EC
avoids it. After the results, EC filters seem more appropriate for cases with singular-
ities or elements with very sharp gradients like the body forces of the Actuator Line
Method (see, e.g. [31]) and the Immersed Boundary Methods (see, e.g. [19]). It also
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seems that vertex stencils are better fitted for these cases as they spread singularities
on areas with rounder shapes, better approaching analytic filtering in continuous
spaces.

Figure 4.22: Filtered singularity on mesh1, brighter gray shades are higher values.
LED (top) vs. EC (bottom) restrictions. From left to right: Box, BoxV, Laplacian,
LaplacianV, CLF, CLFV, CDLF, CDLFV, SDLF, SDLFV.

Figure 4.23: Filtered singularity on mesh2, brighter gray shades are higher values.
LED (top) vs. EC (bottom) restrictions. From left to right: Box, BoxV, Laplacian,
LaplacianV, CLF, CLFV, CDLF, CDLFV, SDLF, SDLFV.

4.5.5 Tests on a 2D isentropic vortex

Vortices are the simplest flow structure in cases without sources or sinks and one of
the basic flow elements of inviscid potential flow approximations. We filter a 2D isen-
tropic vortex to study the effect of the introduced filters on a typical configuration
with physical relevance. The vortex velocity field is:

u = ua exp

(
1− r2

2

){
η
−ξ

}
. (4.39)

with ξ = (x − x0)/b, η = (y− y0)/b and r2 = ξ2 + η2, b is a parameter determina-
tive of the vortex size and ua determines the vortex intensity. We use ua = 1 and
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b = 0.2/
√

log(2) on the unitary square sided 2D meshes, where the vortex is cen-
tered.

The analytic filtered vortex field is, according to Equation (4.8):

û∗ = ua exp

(
1− r2

2

){
η + ε2

24b2 (−1− 2η + ξ2η + η2)

−ξ + ε2

24b2 (−1 + 2ξ − ξη2 + ξ2)

}
. (4.40)

We perform two different tests: the first aims to provide data for comparison of
filters and the second aims to evaluate the accuracy of the filters on similar meshes
with appreciably different numbers of cells, i.e. cell sizes. For both of them, we use
the EC variations reduction condition for all computations and the constant input

filter parameter ǫ =
√

2.

In the first test, various relevant magnitudes are calculated from the filtered fields
obtained with the filters introduced in former sections. These magnitudes are circu-
lation, error with respect the analytical solution, total variations with respect to the
unfiltered field and average, maximum and minimum horizontal velocity. Circula-
tion is computed as

Γ =
∑o Ωo(uy− vx)o

∑ Ωo
, (4.41)

TV as

TV =
1

2

(
∑op |ûo − ûp|
∑op |uo − up|

+
∑op |v̂o − v̂p|
∑op |vo − vp|

)
, (4.42)

and the error as

Err =
1 + Vin/Vbound

Vin + Vbound

∑o∈in ||ûo − û∗o||Ω1/3
o

∑ Ωo
, (4.43)

upon which some considerations follow.

Since the effective filtering effect is proportional to (ǫ∆)2 and so is ||û∗o − ûo|| =
||(û∗o − uo) − (ûo − uo)||, we scale the volume averaged error dividing it by the

square of local characteristic lengths, i.e., Ω2/3
o . Doing thus, the filtering strength

dependence on the mesh is prevented from blurring the results. Furthermore, as at
cells next to boundaries the filters are far from reproducing Laplacians, the total er-
ror would be dominated by the error on these cells if they were taken into account.
Hence, only cells with no boundary faces are included in the sum of Equation (4.43).
After this, the error gets blurred again by the difference of volumes of the meshes
without boundary cells. We define Vin as the sum of the volumes of all cells without
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boundary faces and Vbound as the sum of the volumes of all cells with boundary faces
to add an scaling factor that resolves the problem. After all these considerations, the
error is only due to differences between filters spatial discretizations and analytic
Laplacians. It is expected to increase with coarser meshes as the discrete representa-
tion of the vortex becomes less accurate.

Results of the first test on mesh1 are shown on Table 4.1. Laplacian, CLF, CDLF
and SDLF are the same filter on this mesh. Filters with vertex stencils cause a more
noticeable reduction of extrema of the horizontal velocity than those with face sten-
cils. This was already observed and explained in tests on variations evolutions. It is
also relevant that the error committed with respect to the analytic filter with vertex
stencils is orders of magnitudes higher than the error committed with face stencils.
This shows that the method developed in Section 4.4.3 to extend filters to vertex sten-
cils does not accurately approximate the Laplacian operator. However, as stated be-
fore, we do not consider this a determinative criterion when designing filters. Com-
paring filters with face stencils, all excepting Box give the same results because the
filter parameters were adjusted to do this. The discrepancies of the Box filter on all
magnitudes but Err is because the different number of neighbors of boundary cells is
not taken into account when calculating filter strength parameters. This was already
observed in previous tests. We also remark that the Box filter does not reduce Γ and
BoxV increases it. Finally, it is noticeable that non-conservative filters can change the
average of the horizontal velocity on its order of magnitude.

Results with mesh2 are on Table 4.2. Vertices stencils produce larger errors than
faces stencils but they are on the same order of magnitude. Actually, on this 2D test,
they keep a ratio next to 10/3. This can be related to the ratio of the numbers of
neighbor cells that each stencil involves. The conservation behavior is the expected.
Again, non conservative filters change U on its order of magnitude. Circulation is
not reduced by LaplacianV and it is significantly increased by Box, showing the dif-
ficulty of filtering on unstructured meshes.

There are no remarkable accuracy differences between the developed filters and
the previously existing ones.

The objective of the second test is to compare the accuracy of the different filters
on uniform and unstructured meshes with significantly different numbers of cells.
To do it, two structured Cartesian meshes with 25 and 225 CV respectively and two
unstructured meshes with 25 and 177 CV are additionally employed. Volumes thick-
ness is set with the same criterion as it has been done with mesh1 and mesh2 so the
characteristic length of mesh cell equals Ncells

−0.5. The Error calculated with Equa-
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Filter Γ Err TV U Umax Umin

noFilter 0.215 2.67 1 -1.24e-10 0.977 -0.977
Analytic 0.211 0 0.955 -3.84e-11 0.936 -0.936
Laplacian 0.214 0.114 0.948 7.23e-11 0.938 -0.938
LaplacianV 0.213 2.67 0.89 5.79e-10 0.897 -0.897
Box 0.215 1.19 0.914 -3.44e-10 0.919 -0.919
BoxV 0.217 2.97 0.867 -1.18e-10 0.892 -0.892
CLF 0.214 0.114 0.948 -1.24e-10 0.938 -0.938
CLFV 0.212 2.97 0.887 -1.24e-10 0.892 -0.892
CDLF 0.214 0.114 0.948 -1.24e-10 0.938 -0.938
CDLFV 0.213 2.67 0.893 -1.24e-10 0.897 -0.897
SDLF 0.214 0.114 0.948 1.71e-10 0.938 -0.938
SDLFV 0.213 2.67 0.893 4.95e-10 0.897 -0.897

Table 4.1: Results of some relevant parameters after filtering vortex on mesh1.

tion (4.43) is plotted as a function of the number of cells of the meshes on Figure
4.24. With structured meshes, the error tends to zero as the number of cells increases
when using faces stencils while it does not vary with a recognizable trend with ver-
tex stencils. A clear trend is not observed for any stencil or filter on the unstructured
meshes plot. The only clear conclusion from the vertex stencils plot is that vertex
stencils produce larger errors than face stencils. Finally, we highlight that the depen-
dence on meshes of the results obtained with filters developed in section 4.4 is not
significantly different to that of the the corresponding Box or Laplacian filters.
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Filter Γ Err TV U Umax Umin

noFilter 0.219 2.61 1 -0.00644 0.999 -0.986
Analytic 0.211 0 0.926 -0.00191 0.936 -0.87
Laplacian 0.218 0.913 0.901 -0.00651 0.932 -0.891
LaplacianV 0.219 3.44 0.801 -0.00405 0.855 -0.777
Box 0.223 2.06 0.898 -0.015 0.921 -0.864
BoxV 0.216 5.42 0.789 -0.0141 0.835 -0.731
CLF 0.218 1.36 0.943 -0.00644 0.959 -0.933
CLFV 0.211 4.46 0.808 -0.00644 0.836 -0.784
CDLF 0.218 1.12 0.904 -0.00644 0.929 -0.899
CDLFV 0.214 3.78 0.838 -0.00644 0.837 -0.856
SDLF 0.218 0.897 0.905 -0.00582 0.936 -0.886
SDLFV 0.211 3.98 0.826 0.0092 0.837 -0.794

Table 4.2: Results of some relevant parameters after filtering vortex on mesh2.
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Figure 4.24: Error with respect to analytical filtering computed with equation (4.43)
as a function of the number of cells. Left: Cartesian meshes. Right: Unstructured
meshes. The average characteristic cell length is Ncells

−0.5
.

4.6 Conclusions and future work

The properties of the analytical convolution filter have been revised together with
other analytical filter models used in CFD have been revised. The properties of the
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convolution filter that we have considered more characteristic of filtering have been
adapted to discrete operators. Then, constraints enforcing them have been derived.
Vreman [23] related normalization and conservation to the conservation of momen-
tum and dissipation of kinetic energy in the context of LES. We have derived and
successfully imposed these properties without need of relating filters to specific ap-
plications. It has been shown, by means of an example, that LED (positivity in [8])
is not sufficient to reproduce the diffusivity of the analytic models. Total Variation
Diminishing of order 1 has been suggested as an objective diffusivity enforcing re-
striction but we could not theoretically impose it. We could not impose it TVD2 for
all input fields either. Diffusivity, however, has been approached with two differ-
ent conditions: LED and EC. LED has been found to lead to the same condition as
preventing the growth of the square of the Euclidean norm of the gradient for eigen-
vectors of the filter operator. EC mimics the second law of thermodynamics in heat
transfer problems and is more restrictive than LED.

Three filters have been designed to satisfy one of the variations restrictions, nor-
malization and conservation or symmetry. These filters have been implemented with
faces-neighbors and vertex-neighbors stencils.Then, they have been tested alongside
with a Laplacian and a Box filters.

Tests on the basic properties have been conducted using the eigenvectors of the
graph Laplacian matrix of meshes as the tested fields because they are a good basis
to represent oscillations scales. Results show TV1 on most cases even when EC or
LED (instead of TVD1) is imposed. Still, low oscillated fields and filters active only
on some cells result on relative TV1 growths of 10−3 in the case of EC and 10−2 in the
case of LED. Since the pathological settings (smooth fields and sharp variations of
filtering intensity) are not usual in CFD, we consider the proposed variations restric-
tions surprisingly satisfactory. Tests also show that filters for which conservation is
not imposed are not conservative. Dispersion tests show that LED and EC are also
useful to bound the amount of dispersion that filtering produces between the modes
of meshes and that lesser dispersion is obtained with EC because it is more constrain-
ing. In summary, tests results confirm that the developed filters are good candidates
to be used in most of the CFD applications and that LED and EC conditions can re-
strain TV1 growth in almost all relevant CFD cases.

The proposed and the previously existing filters have been also tested on sin-
gularity fields providing results that show the advantage of EC over LED in cases
with very steep gradients. While LED allows dislocation of extrema, EC does not.
Thereby, it is in better consonance with the properties of the introduced analytic fil-
ters.
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Further tests on an isentropic vortex show that the introduced filters, compared
to existing ones, do not increase local errors. However, it has been seen that the local
inaccuracy with respect to the analytical explicit differential second order models in
Sagaut and Grohens [22] of the studied filters increases with unstructured meshes
and vertex stencils. We do not believe this is a major inconvenience as we consider
that operators should be first approximated in their characterizing global properties
and later provided with local accuracy. For example, the introduced CDLF with ver-
tex stencils leads to high local errors with respect to the analytic model it’s based on
but it is conservative and normalized. These are properties of the analytic model that
Least Squares approximations to Laplacians do not respect.

Tests on the isentropic vortex have also shown that the Box, BoxV and Laplacian
filters can increase vortex circulation even when the EC constraint is imposed. This
could cause a malfunction to LES models that use them, so our opinion is that fur-
ther research on filters effect to this kind of simple relevant configurations should be
performed.

The proposed restrictions are expected to be a good starting point for filter design.
Then, specific applications require further conditions that should be compatible with
those developed here. For example, commutation with differentiation is characteris-
tic of convolution but not of all other analytical filter models and this is why we did
not consider it a filter characterizing property. Meanwhile conservation is equivalent
to normalization in convolution and characterizing of most of the analytical models
presented in this work, so we recommend to impose is not always imposed on dis-
crete filters in the literature. To us, after the results on the isentropic vortex where
it is shown that non-conservative filters can increase circulation, an effort should be
made to clarify if relaxing conservation allows for physically consistent filters. Low
dispersion and TVD1 remain objective properties as we could not explicitly impose
them. However, smoothing of any input field, which is the most basic consequence
of filtering, has been practically attained for compact supported explicit filters with
the EC condition.

We emphasize the capabilities of the proposed testing techniques introduced in
this document to better separate and identify the performance of filters on each field
mode for all types of meshes. We consider that research on filters should try to find
better tests to isolate, as much as possible, filter behavior from any other operation.
In this sense, substituting the eigenvectors of the graph Laplacian matrix by those
of some volume-weighted symmetric semidefinite matrices with physical relevance
could improve the oscillations measurements performed here. This would take into
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account spatial variables while avoiding the inconveniences of the differential oper-
ators on unstructured meshes.

Most of the paper is focused on FV and finite discrete space, but all the theories
and properties studied can be easily extended to general Hilbert spaces or other dis-
cretizations.

Future work will focus on the use of the proposed filters in actual CFD simula-
tions.
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Appendix 4.A Tested filters

Adaptative filters are controlled at each o cell by a filter ratio ǫo parameter or a char-
acteristic cut-off ǫo∆o length. To ensure the accomplishment of conditions of Section
4.3, limitations on ǫo are imposed. Descriptions of filters used in 4.5 and the bounds
imposed on their filter ratios are included in this appendix.

4.A.1 The Laplacian filter

The Laplacian filter used in this work is an adaptation to any mesh of the differential
filter that approximates convolution filters in [22]. It reads:

φ̂o = φo +
(ǫoΩ1/3

o )2

24Ωo
∑

p∈No

(φp − φo)
Aop

nop · rop
(4.44)

Where Aop is the area of the interface between the o and p control volumes, nop is the

unitary vector normal to the interface oriented from o to p and rop is the vector from

the cell center of o to the cell center of p. Here, the characteristic ∆o = Ω1/3
o , and Ωo

is the volume of the o cell. LED or EC criteria can be imposed with:

ǫ2
o ≤

24Ω1/3
o

σ ∑p∈No

Aop

nop·rop

(4.45)

Where σ = 1 to impose LED and σ = 2 to impose EC. Tests in Section 4.5 have been
conducted using this limitations.
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4.A.2 The Box filter

The Box filter is computed as an averaging of the values of a neighborhood of a CV.
It is the adaptative version of the filter in [23].

φ̂o =
1

ǫo

(
φo +

(ǫo − 1)

∑p∈No
Ωp

∑
p∈No

φpΩp

)
(4.46)

LED is imposed with 1 ≤ ǫo and EC with 1 ≤ 2. This restrictions have been applied
on tests described in Section 4.5.

Appendix 4.B Filter TVD analysis on the infinitesimal

filter limit

Conditions (4.19) and (4.21) in Section 4.3.7 are equivalent. For a general filter, the
elements of K of equation (4.21) read:

ko o = No − f 2
o o No − ∑

p∈No

fp o


Np fp o − 2 fo o − ∑

q∈No∩Np

fq o




(4.47)

ko p
∗
= −1− fo p

(
No fo o − ∑

q∈No

fq o

)
− fp p


Np fp o − fo o − ∑

q∈No∩Np

fq o


− ...

...− ∑
q∈No∩Np

fq p


Nq fq o − fo o − ∑

r∈No∩Nq

fr o


+ ∑

q∈Np

q/∈No

fq p ∑
r∈No∩Nq

fr o

(4.48)

ko q
∗∗
= −1 + ∑

p∈No∩Nq


 fp o fq q − fp q


Np fp o − fo o − ∑

r∈No∩Np

fr o






(4.49)

Equality (4.48) stands for p ∈ No while equality (4.49) stands for q ∈ Np with
p ∈ No and q /∈ No. Now, we perform an analysis for normalized filter matrices F

with fo p = ε f ∗o p and fo o = 1− ε ∑p∈No
f ∗o p. Parameter ε ≪ 1 is positive and f ∗o p ∼
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1 ∀o 6= p. We write So = ∑q∈No
f ∗o q, Ro = ∑q∈No

f ∗q o and To p = ∑q∈No∩Np
( f ∗q o +

f ∗q p). With them, we get:

lim
ε→0+

ko o = lim
ε→0+

2ε
(

NoSo + Ro

)
+O(ε2) ≃ 0+ (4.50)

lim
ε→0+

ko p
∗
= lim

ε→0+
−ε
(

No f ∗o p + So + Np f ∗p o + Sp − To p

)
+O(ε2) ≃ 0− (4.51)

lim
ε→0+

ko q
∗∗
= lim

ε→0+
ε ∑

p∈No∩Nq

(
f ∗p q + fp o

)
+O(ε2) ≃ 0+ (4.52)

Now, for K to be � 0, it should be Diagonal Dominant, so

σo = lim
ε→0+

ko o − ∑
p 6=o

|ko p| ≃ 2ε
(

NoSo + Ro

)
− ...

− ε ∑
p∈No

(
No f ∗o p + So + Np f ∗p o + Sp − To p

)
+ ...

... + ε ∑
q∈Np

q/∈No
p∈No

∑
p∈No∩Nq

(
f ∗p q + f ∗p o

)
(4.53)

should be greater or equal to zero for all control volumes. We have studied various
common situations on uniform 1D, 2D and 3D meshes. It has been found that only
1D filtering with only one neighbor leads to TVD filters for all input fields fields.
Hence, K is not always diagonally dominant and we can not proof its positive defi-
niteness. In conclusion, filters are not necessarily TVD at the infinitesimal limit. We
remark that this result has been obtained with ||G(φ)||2 instead of ||G(φ)||1, which
is the common TVD norm in the compressible flow literature.

Appendix 4.C Equivalences between filter strength pa-

rameters

The relationships between the filter widths, filter strength and filter ratios that, for
constant meshes and filters, make the weights of neighbor cells equal are:

εB =

(
1− ε2

LN

24

)−1

(4.54)

εCLF =
ε2

L

24
(4.55)
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Where εB is the filter ratio of the Box filter, εCLF is the filter strength of the CLF

filter, εL is the filter width of the Laplacian filters and N is the average number of
neighbors of the stencil. These relations apply for every cell of a constant mesh.

However, fo o and fo p elements of the Box filters can not be equal to those of
differential filters and the same time at cells near boundaries or cells with a number
of neighbors in the stencil different to N. In any case, in order to compare filters with
parameters ”as equivalent as possible“, we use relation (4.54).
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5

Filtering on Numerical

Schemes for Compressible

Flows

5.1 Introduction

This chapter is focused on the analysis of the effects of the filters developed in chap-
ter 4 on the simulation of compressible turbulent flow with the Symmetry Preserving
(SP) schemes for compressible flows expounded in chapter 2. The primary purpose
of filtering in these simulations is to cure the solutions from wiggles. Wiggles (arti-
ficial numerical oscillations on the solutions) appear in simulations when energy is
injected faster than it is evacuated to the smallest flow scales. Then, the small scales
modes keep growing in amplitude until they affect the overall solution. Eliminating
wiggles or preventing their appearance in flows with shocks has been a common
research topic since the first years of numerical simulations of transport equations,
especially in compressible flow. Bram van Leer gives a historical account of this
in [1]. From a spectral point of view, a shock is a Heaviside step in the shock-normal
velocity component un. Thus, in the Fourier space,

ũn =
1

2

(
1

iπξ
+ δ(ξ)

)
,

which is not L1 and does not converge everywhere because it has too much energy
at high frequencies. Because of this, flows with discontinuities like shock waves
produce wiggles. Indeed, most of the numerical schemes for compressible flow are

129
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designed with the primary aim of counteracting wiggles. For example, the famous
JST method [2] detects, at each time iteration, zones where instabilities/wiggles are
produced and then applies local artificial diffusion to locally eliminate them while
the rest of the flow is treated with a lesser diffusive methodology. But the most com-
mon way to prevent wiggles growth is numerical flux splitting and using upwind-
biased solutions of the Riemann problem at interfaces. Some examples of this type
of approximation are Godunov, [3], Harten et al. [4], Roe [5] and the ENO Scheme [6].
Finally, others like Engquist et al. [7] and, more recently, Bogey et al. [8] have also
developed shock-capturing schemes based on isotropic (not direction-depending) fil-
ters.

But in LES simulations wiggles can also slowly and steadily grow in flows with-
out discontinuities. In this case, this happens because the discretizations admit so-
lutions that lie in the kernels of the fundamental operators of the equations. Thus,
when energy is injected to these modes (flow scales), there are no mechanisms that
can return it to the subspace of flow scales that lie on the pre-image of the opera-
tors. Energy then piles up in the kernel flow scales and, at a slow pace, it makes
them grow and distort the solutions until the boundaries are affected or some value
grows too much, turning the simulations unstable. This mechanism can be cured
by filtering the solutions or adding artificial diffusion because neither filtering nor
diffusion operators have non-trivial kernels. Furthermore, as diffusion and diffusive
filtering are more aggressive with small scales, their effect is more noticeable on the
targeted flow scales and lesser to the big flow scales. Actually, Eddy Viscosity LES
methods do essentially the same that has been described here in simulations where
convection sends an excess of energy to the smallest mesh scales that the molecu-
lar diffusion alone can not dissipate [9, 10]. For this reason, even in schemes that
can handle discontinuity-caused wiggles, it is also common to apply some degree
of artificial diffusion or filtering in smooth regions. This is done, for example, in [8]
and [11].

In this chapter I only apply filtering in regions with oscillations, keeping most of
the fluid domain unaffected. With this approach, the large flow scales should be less
affected by the introduced diffusion. The numerical methodology to include filtering
in the compressible flow scheme is detailed in section 5.2. Next, in section 5.3, the
methodology is assessed with the 2D isentropic vortex already studied in chapter 2.
Additionally, the effect of the discrete filtering with the filters developed in chapter
4 when simulating the Taylor-Green vortex using eddy viscosity with test filtering
is also reported. To show how the methodologies developed here can also be useful
in the simulation of compressible flows with shocks, simulations of the described
methodology on the Sod shock tube case are reported in section 5.5. Finally, the
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chapter is closed with conclusions.

5.2 Numerical Method

There are multiple possibilities to combine Symmetry Preserving numerical schemes
and explicit filtering methodologies. They are summarized alongside with the spe-
cific choices made for the tests in this chapter in table 5.1.

Table 5.1: Table : Parameters when filtering SP schemes.

Parameter Present tests Reference

SP scheme KEP, RZM and MRZM chap. 2
Time int. scheme TVD Runge-Kutta 3 chap. 2
Discrete filter CDLF chap. 4
Filtering frequency Every Runge-Kutta sub-step alg. 1

Filter driver parameter(s)
{

ρ ρu1 ρu2 ρu3 ρEt

}
chap.4

Filter driver Operator FRo = AbsExto(φ•) eq. 5.1
Variations growth limit EC chap. 4

The filter driver is calculated with the oscillations detector defined hereby:

AbsExto(φ•) =
{

1 if (φo − φp)(φo − φq) > 0 ∀{p, q} ∈ No

0 otherwise
, (5.1)

which only activates filtering at points where φ is strictly a local maximum or min-
imum. This reduces the number of points where filtering is applied with respect
to the methodologies of chap. 4, achieving a lesser dissipative overall method. If
filtering was applied too often, this would result in early and excessive dissipation
of kinetic energy into internal energy. A mechanism to turn the dissipated kinetic
energy into internal energy has not been explicitly provided in the present methodol-
ogy, but the First Principle of Thermodynamics is respected after the conservation of
the filters applied on (ρEt)•. Therefore, all dissipated kinetic energy is transformed
into internal energy. The filtering intensity parameter described here is locally bi-
nary. For a certain mesh element (control volume) it applies full filtering (with the
EC restriction) or it does not filter at all. In the compressible flow literature, this
is not a common procedure and the intensity of filtering or artificial dissipation is
done according to some scaling factor. For example, Ducros et al. [12] used a scaling
factor based on the Laplacian of pressure multiplied by the ratio between the local
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divergence of velocity and the sum of the local vorticity and the local divergence of
velocity. I do not include this kind of analysis here.

Altogether, the algorithm to include filtering in the numerical scheme imple-
mented and tested here reads:

Algorithm 1 Time iteration including filtering

1: procedure EXPLICIT TIME ITERATION

2: for each s Runge-Kutta substep ∈ {1, 2, 3...NRK} do
3: for each φ ∈ {ρ ρu1 ρu2 ρu3 ρEt

}
do

4: for each o from 1 to Nnodes do

5: φo ← ∑k αskφ
n(+k)
o + ∆t ∑k βskL(φ

n(+k)
• )

6: end for
7: for each o from 1 to Nnodes do
8: FRo ← AbsExto(φ•)
9: end for

10: for each o from 1 to Nnodes do
11: Fo ← CDLF(EC)o(FR•)
12: end for
13: φ

n(+s)
• ← F•(φ•)

14: end for
15: end for
16: φn+1

• ← φ
n(+NRK)•

17: end procedure

where L(φ
n(+k)
• ) accounts for the sum of all the numerical fluxes (or spatial differen-

tial operators in the case of finite differences).

5.3 2D Isentropic Vortex

The 2D Isentropic Vortex case has been already studied for several different SP schemes
is chapter 2 and it was found that RZM and MRZM schemes are significantly more
stable in time than JST, KOK and KEP. Furthermore, it was seen that unstructured
meshes trigger early blow-ups. Filtering significantly delays these blow-ups (see ta-
ble 5.2), specially in the unstructured meshes, where filtering is more likely to be ac-
tivated because local maxima or minima are more prone to appear. The simulations
in coarse meshes also appear to be more stable when applying filtering because it is
more prone to be activated and more diffusion is added.
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Table 5.2: : Blow-Up times for the 2D Isentropic Stationary Vortex case. Unfiltered
(upper) and filtered (lower) algorithms values.

Mesh JST KEP KOK RZM MRZM

str80
38 26 26 529 277

323 223 817 > 1000 706

str200
20 34 33 358 282

331 385 386 472 810

uns80
5.8 9.3 13 76 137

> 1000 > 1000 > 1000 > 1000 > 1000

uns200
16 33 25 64 67
16 33 25 433 > 1000

But enhancing stability by means of diffusion destroys kinetic energy and the nu-
merical errors increase. Figures 5.1 and 5.2 show how this happens for the different
studied meshes and a selection of the studied schemes. These figures are comple-
mented with plots of the vertical velocity profiles over the same line at the same
simulation time to show that filtering smears the vortex but it still persists (Figs. 5.3
and 5.4).

Structured meshes with RZM or MRZM allow the simulations to match the an-
alytic values of both magnitudes very well. In the case of unstructured meshes, it
seems that the truncation error associated with them plays a density diffusion role
for all schemes (Fig. 5.2) which is in the same order of the diffusion associated with
the applied filtering. However, in terms of velocity fields on unstructured meshes
(Fig. 5.4), diffusion associated with filtering is clearly higher than that associated
with truncation errors for KEP and MRZM. Rozema’s scheme, however, behaves dif-
ferently and the specific combination of filtering and scheme tested here is not so
severe. This effect can be caused by the non-reflecting output boundary conditions
(BBCC) that have been imposed for the reasons given in chapter 2. If a scheme pro-
duces oscillations near the boundaries, these BBCC allow mass outflow, resulting in
what looks like a higher diffusion caused by the overall scheme. This would explain
the apparent high diffusion on unstructured meshes and that MRZM and KEP were
much more diffusive in terms of mass than RZM. Other kind of BBCC would help
to alleviate this problem, but then the tests would not be comparable to those per-
formed in chapter 2. Therefore, I avoid to perform this analysis here and only Fig.
5.5 is included to show how the periodic boundary conditions reduce the “apparent
dissipation”.
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Figure 5.1: Density ρ over line x ∈ [−10, 10]; y = 0 at t = 3 in the 2D isentropic
vortex case with different SP schemes on various meshes. From left to right and
from top to bottom: str80, unstr80, str200 and unstr200.

5.4 Taylor-Green Vortex

Some of the simulations on the Taylor-Green Vortex reported in section 2.4 are per-
formed including the filtering algorithm described in section 5.2 to observe the ef-
fects of filtering in the simulation of turbulent flow with the present schemes. In
homogeneous turbulent flows like this, filtering would prevent wiggle growth and
improve stability and accuracy of long-period simulations at the cost of some punc-
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Figure 5.2: Density ρ over line x ∈ [−10, 10]; y = 0 at t = 30 in the 2D isentropic
vortex case with different SP schemes on various meshes. From left to right and from
top to bottom: str80, unstr80, str200 and unstr200.

tual numerical diffusion. This test allows to qualitatively observe the effect the evo-
lution of kinetic energy. I want to stress here that the boundary conditions used for
this test are periodic and not of outlet-type like in the isentropic vortex.

Figure 5.6 shows the effect of filtering in a set-up with RZM, WALE and Cartesian
meshes. The finer the mesh, the lesser the effect of filtering. In all cases, filtering in-
creased the dissipation peak. Moreover, appears earlier with cart32. With this mesh,
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Figure 5.3: Vertical velocity v over line x ∈ [−10, 10]; y = 0 at t = 3 in the 2D
isentropic vortex case with different SP schemes on various meshes. From left to
right and from top to bottom: str80, unstr80, str200 and unstr200.

it seems that the major source of error is early transition to turbulence and its as-
sociated dissipation growth triggered by the lack of accuracy in the initial solution,
which becomes more unstable than in finer meshes. In Figure 5.7 the results with
the cart32 with a time shift of 1.44 have been plotted alongside the reference results
of [13]. The time shift was chosen to make the plots coincide at the point where
dK/dt = 0.002, i.e., the instant when dissipation starts to steeply increase following,
approximately, a straight line. I consider this is the instant of turbulent transition.
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Figure 5.4: Vertical velocity v over line x ∈ [−10, 10]; y = 0 at t = 30 in the 2D
isentropic vortex case with different SP schemes on various meshes. From left to
right and from top to bottom: str80, unstr80, str200 and unstr200.

Overall, filtering slightly modified the results but does not seem to spoil the simula-
tions.

Figure 5.8 compares the filtered and unfiltered results of RZM and MRZM on
unstr64. RZM was stable regardless of filtering while MRZM shown an early blow-
up when not applying the filter. Filtering does not spoil the results and enhances
stability, allowing the use of MRZM. Figure 5.10 shows the effect of filtering on un-
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Figure 5.6: Evolution in time of magnitudes of the Taylor-Green case with RZM,
WALE and various cartesian meshes. Comparison of unfiltered and filtered algo-

rithms. Left: Kinetic energy evolution. Right: Dissipation dK
dt .

structured meshes with RZM. The finer the mesh, the lesser is the effect of filtering.
One could not easily determine if filtered solutions are more or less accurate than the
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of unfiltered and filtered algorithms. Left: Kinetic energy evolution. Right: Dissipa-

tion dK
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unfiltered. Shifting the results 1.71 time units for the same reasons given before, one
gets Figures 5.9 and 5.11. Unstructured meshes trigger early instabilization of flows
as it happens with the cart32 mesh. A study with much finer meshes would allow
to determine if they end up by reproducing the initial flow evolution with enough
accuracy as to prevent this early instabilizations with unstructured discretizations.
Filtering does not seem to have any remarkable effect on this phenomenon with the
present settings.

5.5 Flows with shocks

The present methodology has also been used to stabilise the simulations of a shock
tube. The case studies the evolution of an ideal gas in a 1D pipe with adiabatic and
no shear stress boundary conditions at the walls. In the beginning, all the gas is at
rest with two distinct regions at different pressure and density. These regions are
separated by a membrane until the time starts to run. Then, it vanishes causing a
shock-wave travelling from the high-pressure to low-pressure (left to right) and an
expansion wave travelling in the opposite direction (right to left). Because there is
a shock wave, simulations with numerical schemes without dedicated shock captur-
ing methodologies blow up. For further details about the shock tube test see [14].
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Kinetic energy evolution. Right: Dissipation dK
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filtered algorithms. Left: Kinetic energy evolution. Right: Dissipation dK
dt .

The section of the pipe is a square L× 0.1L× 0.1L in the test reported here. Table
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5.3 summarizes the meshes employed in these simulations. The unstructured mesh
is produced from a surface seed of nearly equilateral triangles whose edge length is
0.01 times the length of the tube on the pipe walls, inlet an outlet.

Table 5.3: : Meshes in the shock tube case.

Name Description Cells

1d100 1D uniform hexa. 100
1d1000 1D uniform hexa. 1000
cart100 3D cartesian hexa. 10000
utube 3D unstruct. tetra. 93129

The results in Figure 5.12 compares the results with the present methodology
with the evaluation of the exact solution at 100 equally spaced points. It shows
how filtering on SP schemes allows the stable simulation of the 1D shock at the
cost of slightly smearing both the shock and expansion waves. Since the flow is
1D, the instability detector implemented here does not activate with the Cartesian
mesh cart100 as there are no control volumes where AbsExto 6= 0 (see equation 5.1).
The shock reaches at the same time all the CV in a square section and there are no
absolute extrema. Hence, the oscillations in the result with this mesh are because
the shock is not well detected. Implementing shock-specific filter activators like in
Ducros et al. [15] would resolve this problem. The research related with this topic is
out of the scope of this thesis.

5.6 Conclusions

An algorithm for the application of filtering on numerical simulations of compress-
ible flow has been reported and tested on the isentropic vortex and the Taylor Green
vortex cases.

From these tests, it has been shown that the proposed methodology improves
stability in the isentropic vortex case. However, it seems that the interference of
the methodology with the outlet boundary conditions necessary to reproduce the
test in chapter 2 distorts the comparisons. This has been shown with a specific test
in which results obtained with periodic boundary conditions have been contrasted
with results using outlet boundary conditions.

The tests on the Taylor Green Vortex show how the applied filtering does not
seem to spoil the results obtained without filtering. This result is interesting because
this case encompasses the destabilization of a laminar flow into turbulence and the



5.6. CONCLUSIONS 143

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

analytic 100 points
RZM-filt-1d100

MRZM-filt-1d100
RZM-filt-1d1000

MRZM-filt-1d1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

analytic 100 points
RZM-filt-cart100

MRZM-filt-cart100
RZM-filt-utube

MRZM-filt-utube

Figure 5.12: Pressure along longitudinal axis of the shock tube problem at t = 0.2136
with various meshes. The reference solution consists of the evaluation of the analyti-
cal solution at 100 equally spaced points. Left: 1D meshes. Right: 3D meshes.

ulterior dissipation of the kinetic energy. Strongly diffusive methodologies prevent
the simulations from reproducing this behaviour as kinetic energy is dissipated too
fast. Poorly represented initial conditions due to a coarse discretization have been
shown to trigger early transition to turbulence. However, a shift in the time variables
of the simulated results shows how, once the transition has occurred, the presented
schemes reproduce reasonably well, even in very coarse meshes, the reference solu-
tion. These results show that the principal objective of the thesis has been reached.

The results on the shock tube show that the developed methodology can also
be used for shock-capturing. However, to this end, the instability detector imple-
mented here is not satisfactory as shocks do not cause individual maxima or minima
but rather create strong gradients on connected control volumes. There are several
shock-dedicated detectors that would give better results than the one implemented
here. Despite this, the rest of the methodology (i.e. the algorithm and filtering) en-
ables simulations with shocks, even in unstructured meshes.
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6

Conclusions, Discussion

and future work

Each of the chapters of the thesis contains its own conclusions section. Hence,
the concluding remarks and conclusion here address the combination of the differ-
ent parts and the follow-up work.

Firstly, the objectives of the thesis have been fulfilled: a methodology that couples
filtering with SP simulations of compressible flow has been described and tested in
chapter 5. As a result of this thesis, there is now a new methodology that prevents
wiggle growth and enhances stability without significantly altering the accuracy of
the numerical simulations of compressible flow.

But as the reader may have already noticed, this primary goal is not what has in
the end required more innovation or effort. Quite unexpectedly, when I first tried to
couple filtering and SP schemes, I realised that filtering was rather poorly described
or understood in the literature. It forced me to improve the definition of filtering in
CFD.

This detour from the initial planning in which I expected to close the coupling
methodology in one chapter and then to report the results of simulations with com-
plex phenomena was far from straightforward. At first, I programmed a coupling
methodology. Then, the results I obtained with different filters made me question
the properties of the discrete filters. At this point, I became aware that I did not know
what properties were the filters should have. I decided to study them and I wrote the
research peer-reviewed article of chapter 4 with my findings. Then, while studying
the properties, I realized that the tests to compare filters reported in the literature
were always coupled with other parts of a numerical simulation of fluid flow, en-
tangling the study of filter properties with other matters that remained uncontrolled.

147
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Consequently, I developed original tests that allow comparing their properties in-
dependently. During this process, I decided to use the eigenvectors of the Graph-
Laplacian instead of the Laplacian matrix of a mesh as the test functions. I think that
this idea may have influenced Trias et al. [1] and part of the following development
of discretizations methodologies in the CTTC. Such a rather lateral contribution to
the work of other researchers is another positive outcome of my work. Furthermore,
I developed a technique to include vertex neighbours to operators derived from the
Gauss theorem and a family of discrete filters that I have later used in some simula-
tions.

During that period I also noticed that I could not find, in the literature, a justifica-
tion in the analytical filter models to impose Total Variations Diminishing to discrete
filters even when this property seemed necessary for proper discrete filter behaviour.
So I decided to take another detour to better organise the properties of the analytical
filter models reported in the literature.

In that study I revisited concepts of pure and applied mathematics to clarify the
line that defines spatial filtering and reported it in chapter 3. I think that the dis-
cussion in that chapter (i.e., section 3.6) constitutes an important step forward in the
understanding of the consistency of the LES models. It remarks the relevance of
what I have called diffusive properties of filters and, even when I failed to reach an
absolutely clear and unique fefinition of Extrema Diminishing in Appendix 3.A, I
have shown how this property is necessary for an operator to be considered a filter
in a space of representation. Furthermore, I have identified its mathematical context
and the ideas that may lead others with a more solid knowledge in functional analy-
sis to find the exact constraints that establish it.

Focusing on the other main branch of the thesis, that regarding SP schemes, I
did not plan to conduct a comparison of existing schemes. I thought that Jameson’s
KEP scheme [2] was good enough for my purposes. But I did not find the reasoning
behind the methodology to discretise the pressure gradient satisfactory, so I tried to
derive a SP scheme. Shortly after, I got notice about the developments of Rozema [3],
which seemed more consistent to me. Actually, seeing Rozema’s scheme made me
abandon my own research in this field because I thought that I could not improve his
well-founded work. So once there were two different schemes to choose among, it
followed that I needed a criterion to decide which one produced lesser wiggles and,
for this reason, I conducted the comparisons in chapter 2. The result is that Rozema’s
is more stable than any other. In that chapter, I slightly modified Rozema’s scheme,
achieving a new scheme that performs better in unstructured meshes. I suspect that
the improvement comes from the reduction of the dispersion error.
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After all this, I think that this thesis points out to several lines of future work.
First, the research in the comparison of SP schemes for compressible flow should
be extended to other configurations to take into account near-wall behaviour, sound
production and propagation, shear layer transitions and computing cost. Second,
some pure mathematics work should be done to more precisely define the diffusive
properties of filters and the consequences of not fulfilling them regarding existence
and unicity of LES equations solutions. Third, the filter properties should also be
imposed on explicit and implicit filters to evaluate the costs and benefits of using one
or the other approach. The filters developed in chapter 4 should be tested on Eddy
Viscosity methods with adaptive viscosity on both compressible and incompressible
flows. Finally, the methodology developed in chapter 5 can capture shocks. There is
a vast range of situations where this methodology should be tested in combination
with shock/instability detectors.
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