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Abstract 

The evolution of the genome is driven, among other factors, by the 

composition of the genome, the functional output of the gene 

products, and by environmental pressures. Among the 

environmental factors, pathogens are one of the strongest selective 

pressures. In this thesis we describe two examples of this: i) the 

convergent evolution in immune-related genes in East Africa 

populations despite having different ethnical and genetic 

backgrounds, ii) the rapid adaptation in variants associated with 

differential cytokine production in the Roma people since their 

migration from the Indian subcontinent. We also propose that 

positive selection acted in the cytochrome P450 system after the out 

of Africa, whereas genetic drift is the main force behind the genetic 

variability present in taste receptors genes. Gene evolution is also 

affected by the location and connectivity of their products within 

the metabolic network. Positive selection detected at interspecific 

and intraspecific levels show opposite but complementary patterns: 

the first is detected in peripheric genes, whereas the second is 

detected mainly in central genes. 
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Resum 

 

L'evolució del genoma depèn, entre altres factors, de la composició 

del genoma, del paper funcional que realitzen els productes del gen, 

i de les pressions mediambientals. Dins dels factors 

mediambientals, els patògens són una de les pressions selectives 

més fortes. En aquesta tesi descrivim dos exemples d’aquest fet: i) 

l'evolució convergent en gens amb funcions immunològiques a 

poblacions de l’est d'Àfrica, malgrat pertànyer a diferent grups 

ètnics i fons genètics, ii) la ràpida adaptació als Roma en variants 

associades amb la producció diferencial de citocines des de la seva 

migració des del subcontinent Indi. També proposem que la 

selecció positiva va actuar a la súper família dels citocroms després 

de la expansió des del continent Africà, mentre que la deriva gènica 

és la principal força darrere de la variabilitat genètica observada als 

receptors del gust. L’evolució dels gens també és veu influïda per la 

ubicació i connectivitat dels seus productes dins de la xarxa 

metabòlica. La detecció de la selecció positiva a nivell 

interespecífic i intraespecífic mostra un patró oposat però 

complementari: la primera és detectada a la perifèria de la xarxa, 

mentre que la segona és detectada principalment en gens centrals. 
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Preface 

 

Not all human populations have been equally represented in genetic 

studies. One of the efforts of this thesis has been in including 

traditionally neglected populations to provide a wider representation 

of the existent human genetic variability. This generated new 

insights into the evolutionary history of two groups: African 

populations, specifically from East Africa (Sudan, South Sudan and 

Ethiopia), and an ethnic minority, the Roma people currently living 

in Romania. Besides, both studies supported the notion that 

pathogens and infectious diseases have been one of the strongest 

selective pressures during human evolution.  

 

Then, we followed a network approach to address one of the main 

problems in biology: the gap between genotype and phenotype, and 

how to interpret the findings from genome-wide scans of selection. 

This thesis presents the first comparison of the relationship between 

both, intra and interspecific variation, and the topological structure 

of the human metabolic network. The adoption of a network 

approach to detect and interpret signals of positive selection 

corroborated the idea that adaptive selection acts in distinct parts of 

the network depending on the evolutionary time-scale considered.  
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1. Origin of humans 

 

Modern humans originated in the African continent around 200 

thousand years ago (KYA). However, whether the Homo sapiens 

evolved from a single population or if there was ancient 

substructure early on our history is still debated (Scerri et al., 2018). 

Around 60 KYA a group of modern humans migrated out of Africa 

(OOA) and spread across the world (Henn, Cavalli-Sforza, & 

Feldman, 2012; Tishkoff et al., 2009) (Figure 1).  

 

During our evolution, humans have faced extreme environments, 

new pathogens, novel food sources, and encounters with other 

hominins. To survive and thrive, our species had to adapt. OOA 

populations interbred with archaic populations, resulting in between 

1% to 6% of modern genomes with Neandertal or Denisovan origin, 

that, in some conditions, has provided a selective advantage in 

humans (Abi-Rached et al., 2011; Green et al., 2010; Huerta-

Sánchez et al., 2013; Racimo, Sankararaman, Nielsen, & Huerta-

Sánchez, 2015; Reich et al., 2010). Around 10 KYA, the 

appearance of agriculture in several regions of world started the 

Mesolithic-Neolithic transition. Human populations, up until then, 

nomadic hunter-gatherers, changed into sedentary and semi-

nomadic communities of agriculturists and pastoralists. This was 

the seed for a dramatic population expansion that within the past 

4000 years, caused over 100 migration and admixture events 

between human populations (Hellenthal et al., 2014).  

 

This complex pattern of migrations and admixture seems a 

commonplace occurrence during the evolution of the Homo genus 

(Ackermann, Mackay, & Arnold, 2016). Only this year, the 

offspring of a Neanderthal mother and a Denisovan father was 

reported (Slon et al., 2018). If such an individual existed, how many 

are still to be discovered? How many others have existed and 

disappeared without leaving fossil remains? Without doubt the 

discoveries made by the latest genetic studies are challenging our 

definition of species and our ideas of how humans evolved.  
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Figure 1. Simplified model of human evolutionary history. 

Origin of present-day population. Arrows indicate known and 

theorized admixture events between modern humans and between 

archaic and modern humans. (Nielsen et al., 2017) 

 

1.2. Underrepresented human populations in 
genetic studies 

 

In the last 10 years, the cost of SNP genotyping arrays and genome 

sequencing has dropped considerably, allowing the genotyping and 

sequencing of hundreds of thousands of individuals from 

populations across the globe. This has been possible by projects led 

by international consortiums that, besides generating a wealth of 

genetic data, developed most the tools needed for its analysis 
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(Abecasis et al., 2012; Auton et al., 2015; †The International 

HapMap Consortium et al., 2003; T. I. H. Consortium et al., 2007).  

 

Commercial SNP arrays contain between 200,000 and 2,000,000 

SNP, usually with uniform coverage of the human genome - but see 

the Immunochip (Cortes & Brown, 2011; Trynka et al., 2011) for a 

special case. The main issue with genotyping arrays is SNP 

ascertainment bias, the SNPs to be genotyped must be known 

beforehand. Typically, genotyping arrays have been biased towards 

alleles discovered in European populations with a minor allele 

frequency (MAF) in the general population higher than 1% 

(Abecasis et al., 2012; Lachance & Tishkoff, 2013b).  

 

This in turn, has impacted the last decade of genome-wide 

association studies (GWAS) performed using these arrays and the 

imputation panels generated with representative populations 

sequenced at low coverage (Abecasis et al., 2012; Delaneau & 

Marchini, 2014; Visscher et al., 2017). GWAS studies have proved 

helpful in studying the etiology of common adult diseases (Visscher 

et al., 2017). However, due to the OOA non-African populations 

carry a subset of human genetic variation and it is not always 

possible to extrapolate the insights obtained from genetic studies 

outside the population that generated them. The replicability of 

GWAS results is high in populations of European and Asian 

ancestry (85.6% and 45.8%), but much lower for populations of 

African ancestry (9.6%) (Marigorta & Navarro, 2013).  

 

Thus, we need to increase the representation of neglected human 

populations to discover the true levels of genetic variability and 

how the genotype influences the phenotype. The scientific 

community is well aware of this, and it is trying to remedy it by 

generating next generation sequencing (NGS) data from the main 

geographic areas (Europe, Middle-East, North Africa, Sub-Saharan 

Africa, Central-South Asia, East Asia, Oceania and America). The 

latest phase of the 1000 Genomes Project includes a wide 

representation of African, and East and South East Asian 

populations (Auton et al., 2015). Specially interesting initiatives are 

the African Genome Variation Project (AGVP) (Gurdasani et al., 

2014), and open access platforms such as AfricArxiv 

(www.africaxiv.org), which are helping the inclusion of African 
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populations and, as importantly, African researchers and 

universities, in genetic studies.  

 

In this thesis, the two first chapters represent my small contribution 

to include underrepresented populations in genetic studies: East 

African populations (Results: 1. The genetics of East African 

populations: A Nilo-Saharan component in the African genetic 

landscape) and a European minority, the Roma (Results: 2. The 

shaping of immunological response through natural selection after 

migration: the case of the Roma). 

 

1.2.1. East African populations 

 

East Africa is a strategic region to study human genetic diversity 

due to the presence of ethnically, linguistically, and geographically 

diverse populations (Tishkoff et al., 2009). One of the main factors 

contributing to this diversity is the Nile River, which has acted as a 

genetic corridor allowing gene flow between North and Sub-

Saharan Africa.  

 

The first result of the thesis (Results: 1. The genetics of East 

African populations: A Nilo-Saharan component in the African 

genetic landscape) consists of a genetic study of East African 

populations from the Sudanese region, that comprises Sudan, South 

Sudan and Ethiopia. One issue to have in mind when working in 

genetic studies, is that national frontiers do not always correspond 

to population boundaries. In this work, we considered nine 

populations or ethnic-linguistic groups using the following 

definition: a group of people that share common culture, language, 

origin, practices, and live in the same geographic region.  

 

We described a genetic component that identifies Sudanese Nilo-

Saharan speaking groups (Darfurians and part of Nuba populations) 

and South Sudan Nilotes. The genetic homogeneity of these 

populations contrasted with the populations from the north and 

eastern parts of the region (Nubians, Arabs, Beja, and Ethiopians), 

which showed genetic admixture of the Nilo-Saharan component 

with a European genetic component. A broader study confirmed 
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these conclusions and estimated the admixture event to ~ 700 years 

ago (Hollfelder et al., 2017).  

 

Taking advantage of the genotyping array used, the Immunochip 

(Illumina Infinium single-nucleotide polymorphism microarray) 

(Cortes & Brown, 2011; Trynka et al., 2011), we also analyzed how 

infectious pressures affected the genetic variation of East African 

populations. We found that selective pressures on host defense 

genes generated lower genetic distances between populations in 

those genes, hinting at convergent evolution of the immune system. 

 

1.2.2. The Roma people 

 

The Roma people, with a population of 10-12 million, are the 

largest ethnic minority in Europe. Previous genetic studies indicate 

that the initial proto-roma population departed from the 

northwestern region of the India subcontinent around 1000-1500 

years ago (Mendizabal, Lao, & UM, 2012; Mendizabal, Valente, & 

Gusmao, 2011). After crossing Persia and Armenia, they settled for 

two hundred years in the Balkan peninsula between the 11th and 12th 

centuries (Achim, 1998; A. Fraser, 1992). Some groups kept 

migrating west, and by the 15th century their presence is mentioned 

in the Iberian peninsula (A. Fraser, 1992). Remarkably, the Roma 

diaspora can be considered the last human migration of Asian origin 

into Europe (Achim, 1998). 

 

The history of the Roma migration indicates that any selection study 

in this group will have to account for the confounding effects of 

small population size, strong genetic drift (multiple bottlenecks), 

isolation, and uneven migration patterns with the surrounding host 

populations.  

 

The second result of this thesis (Results: 2. The shaping of 

immunological response through natural selection after migration: 

the case of the Roma), consists of the analyses of whole-genome 

sequences of Roma individuals along with individuals from their 

host population, Romania. The main goal of the study was to 

identify the selective pressures the Roma faced before and after 

their migration. To understand how the immune system of the 
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Roma adapted to different pathogens, we performed a genome-wide 

scan of selection and combined the results with functional studies of 

an immunological quantitative trait loci (QTL): cytokine production 

(Figure 2). This integrative approach can help distinguishing 

between the real targets of positive selection and false positives 

(Barreiro & Quintana-Murci, 2010).  

 

 

 

Figure 2. Identification of adaptive immunological phenotypes. 

The combination of scans of selection with functional studies to 

detect immunological quantitative traits loci (QTLs) can identify the 

real targets of positive selection (Barreiro & Quintana-Murci, 

2010). 
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2. Detecting signals of positive selection  

 

In 1858, Darwin and Wallace, introduced the idea of natural 

selection to explain how species evolve. The main concept of 

natural selection is that a heritable trait that increases the 

individual’s fitness and its ability to survive and reproduce in a 

given environment, will eventually increase in frequency in the 

population.  

 

The study of natural selection can help us clarify, among many 

other questions: how our species evolved, what is the origin of the 

phenotypic variation that we observe, and why some diseases are 

more prevalent in specific populations. 

 

All the phenotypic and genetic variability present in humans is the 

substrate in which natural selection acts on. Natural selection 

encompasses different modes of selection: positive, purifying, 

balancing, and sexual selection.  

 

Positive selection: also called adaptive selection, consists on the 

increase in frequency in the population of a beneficial mutation, 

usually until it reaches fixation. It is the process that allows the 

creation of new phenotypes and drives the adaptation to new 

environments. Its detection and how it is affected by other factors, 

such as network topology, is the main topic of this thesis.  

 

Purifying selection: also called negative selection, consists on the 

removal of deleterious mutations from the population. It is 

considered to be the main force acting on the functional elements of 

the genome, as a mutation with a functional consequence is more 

likely to have a damaging than a beneficial effect.  

 

Balancing selection: this process maintains different alleles in the 

population at medium-high frequency. In this case, neither of the 

alleles will reach fixation, as it is the presence of genetic diversity 

the advantageous factor.  
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Sexual selection: it is a special case of natural selection. It acts 

when there no random mating in the population, but mating choice 

favors a given phenotype. 

There are several methods to detect positive selection by comparing 

either the genetic variation between species (interspecific variation 

or divergence data) or the genetic variation between individuals of 

the same species (intraspecific variation or polymorphism data) 

based on the footprints left in the genome (Figure 3). 

Figure 3. Time scales for the signatures of selection. 

Positive selection creates different signatures in the genome that 

are erased at different time-frames. From (Sabeti et al., 2006). 

2.1. Using divergence data (interspecific data) 

One way to detect positive selection on protein-coding genes is to 

compare orthologous sequences and identify substitutions in the 

protein sequence (Figure 4). A synonymous mutation does not 

change the amino acid sequence and its effect can be assumed to be 

neutral. Thus, the number of synonymous substitutions per 

synonymous site (dS), can be considered the background level of 
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mutations in a protein before selection takes place. A 

nonsynonymous mutation will change the amino acid sequence and 

it is expected to affect the protein function. The number of 

nonsynonymous substitutions per nonsynonymous site (dN) will 

reflect the selective pressure on the protein. The ratio between these 

two rates will estimate the selective pressure acting on the protein 

(ω = dS/dN). If nonsynonymous mutations are deleterious, they will 

be removed by purifying selection (ω < 1); whereas is they are 

advantageous they will be fixed by positive selection (ω > 1). If ω = 

1 the protein evolves neutrally. 

 

It is expected than most amino acid sites will be under strong 

purifying selection, and only a few sites will be under positive 

selection. Thus, obtaining a global value of ω higher than one for a 

gene is very unlikely. To formally test for positive selection, we use 

a likelihood ratio test (LRT) to compare nested models and assess 

whether adding sites under positive selection explains better the 

data. The data consists of a multiple sequence alignment of a 

protein-coding gene, where the sequences belong to species neither 

too similar nor too divergent. The models are: a null model, where 

all sites in the multiple sequence alignment evolve neutrally (ω = 1) 

or under purifying selection (ω < 1); and the alternative model, 

where an extra category is added to the previous model and some 

sites are under positive selection (ω > 1). 

 

Through this thesis, six models, all implemented in the codeml 

package of PAML 4 (Yang, 2007), have been applied to study the 

evolution of protein coding genes. 

 

M0 (one ratio): It is the simplest model, as it assumes the same ω 

for all branches or sequences in the multiple sequence alignment. 

M0 averages the ω along all sites to estimate a global value for the 

multiple sequence alignment.  

 

M1a (NearlyNeutral) vs. M2a (Positive selection): The M1a 

model fits the data to two classes of sites: sites evolving neutrally 

(ω = 1) or under purifying selection (ω = 0). The exact value of ω < 

1 is estimated from the data. The alternative model (M2a) adds a 

third site class (ω > 1), where some sites can be targeted by positive 

selection. 
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Figure 4. Detecting positive selection using divergence data. 

The comparison of the rate of nonsynonymous substitutions (dN or 

Ka) to the rate of synonymous substitution (dS or Ks) is an 

indication of the selective pressure acting on a protein coding 

sequence. Modified from (Vitti, Grossman, & Sabeti, 2013).  

M7 (beta) vs. M8 (beta & ω): In the model M7 (beta), codons in 

the sequence alignment are fit to seven classes: one with ω = 1 and 

the rest with ω < 1 drawn from a β distribution. The model M8 

(β&ω) adds another site class allowed to reach ω values higher than 

1.  

Branch-site test of positive selection (Test 2): While the other 

models allow ω to vary between sites, this model also allows ω to 

vary between branches. It detects positive selection on a given 

branch. In the null model, sites are fit to two ω values on both the 

branch of interest (foreground) and the others (background): ω < 1 

and ω = 1. In the alternative model, a third ω value is added in the 

foreground branch: ω > 1. Both, M2a and the branch site test 2 are 

more conservative than the M8 model.  

2.2. Using polymorphism data (intraspecific data) 

A selective event leaves a genomic signature that can be identified 

by comparing sequence or genotype data from different individuals 

of the same species. In this thesis, the focus was on changes caused 
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by single nucleotide polymorphisms (SNPs), leaving out the effect 

of other factors that contribute to the phenotype: copy number 

variants (CNV), epigenetic changes, alternative splicing, secondary 

modification of proteins, and so on. 

 

When a new mutation appears that is highly beneficial, it can 

increase so rapidly in frequency in the population that 

recombination has not enough time to act and all the linked variants 

also increase in frequency, creating a valley of decreased genetic 

diversity around the selected allele (Figure 5a). This process of 

beneficial mutation allele “sweeping” its surrounding genomic area 

with it, is called genetic hitchhiking o selective sweep (Smith & 

Haigh, 1974).  

 

Site frequency spectrum-based tests: The increase of the 

haplotype carrying the beneficial allele will create a region with low 

diversity, an increase of rare and derived alleles, and a decrease of 

alleles with intermediate frequencies (Figure 5b). For example, 

Tajima’s D (Tajima, 1989) detects regions with an excess of rare 

alleles, but a population expansion after a recent bottleneck will 

cause the same signature. 

 

Haplotype-based tests: The rapid increase of frequency of the 

beneficial allele creates a long region of linkage disequilibrium 

(LD) around it (Figure 5c). For example, the Cross-Population 

Extended Haplotype Homozygosity (XP-EHH) test compares the 

length of haplotypes between two populations around a putatively 

selected variant (Sabeti et al., 2007).  

 

Population differentiation-based tests: Populations under 

different selective pressures will have different alleles selected, thus 

differences in allele frequencies can pinpoint local adaptation 

(Figure 5d). For example, FST (Weir & Hill, 2002) measures the 

proportion of genetic diversity due to allele frequency differences 

among populations. While FST is non-directional, deltaDAF 

measures the differences of derived allele frequency between one 

population and a reference, and by using the derived allele 

information it can point which population is under selection.  
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Figure 5. Detecting selective sweeps using polymorphism data. 

a) Valley of low genetic diversity around selected allele. Effects of a 

selective sweep in b) the site frequency spectrum, c) linkage 

disequilibrium, and d) allele frequencies in the selected region. e) 

Composite methods can combine information from multiple 

signatures and enhance the detection of a selective sweep. From 

(Vitti et al., 2013). 

 

Composite methods: However, tests applied individually are not 

enough support for proving positive selection, as only the 

combination of different tests may permit to distinguish the effects 

of demography (population expansion, population structure, 

isolation, admixture, bottlenecks and founder effect) from the 
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selection events (Zeng, Fu, Shi, & Wu, 2006) (Figure 5e). For 

examples, the Cross-population Composite Likelihood Ratio (XP-

CLR) test combines information of allele frequency differentiation 

(FST) in an extended genomic region with LD information (Chen, 

Patterson, & Reich, 2010). More complex methods, such as the 

Hierarchical Boosting (HB), use a machine-learning approach to 

classify different selection scenarios, while considering population-

specific demography (Pybus et al., 2015). 

  

2.2.1. Confounding factors  

 

There are several factors that affect the detection of positive 

selection using polymorphism data, some of them are caused by the 

genotyping and sequencing technics, while others are inherent to 

how populations originate and change with time.  

 

Ascertainment bias: This is a major consequence of using 

genotype data, in which the SNPs to genotype have to be selected a 

priori. Effectively, this caused genetic studies to favor the analysis 

of common variants of European origin (Lachance & Tishkoff, 

2013b). This factor was particularly relevant for the first study 

presented (Results: 1. The genetics of East African populations: A 

Nilo-Saharan component in the African genetic landscape) as the 

array used, the Immunochip (Trynka et al., 2011), presents an 

uneven coverage of the genome and thus, restricted the type of 

selection tests that could be applied. This bias is partially solved 

with the use of NGS, but NGS technologies carry their own set of 

biases, for example, genotype calling algorithms tend to 

underestimate the true number of heterozygous sites and coverage 

depth affects the discovery of rare variants (Abecasis et al., 2012). 

 

Background selection: in a comparable way than variants linked to 

a beneficial selected allele increase in frequency with it, neutral 

variants linked to a deleterious variant will we removed from the 

population along with the damaging allele, creating a similar region 

of low variability.  

 

Population structure: usually we assume that all individuals 

within a population have the same probability to reproduce. 
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However, there are geographic, linguistic, social, and religious 

barriers that separate groups of the population and prevent the 

random mating of individuals. If there is hidden substructure in the 

population it will generate an excess of variants at intermediate 

frequency and higher genetic variability than expected.  

 

Migration: when individuals move from one population to other it 

will increase the genetic variability within the population and, at the 

same time, decrease the genetic differentiation between the 

populations.  

 

Isolation: when a population remains separated from the others, 

without external genetic flow, it will increase the genetic 

differentiation with other populations. 

 

Population expansion: sudden increase of the population size. It 

will generate an excess of rare variants and a decrease of the overall 

variability of the population. 

 

Population bottleneck: sudden decrease of the population size, 

usually followed by the recovery or surpass of their original 

numbers. As with a sudden population expansion, it will generate an 

excess of rare variants and a decrease of the overall variability of 

the population, in this case, due to the removal of part of the 

variation.  

 

Founder effect: a special case of bottleneck, where a subset of the 

population splits and migrates to a different location. 

 

For these reasons, it is extremely important to have a clear sampling 

strategy to maximize the discovery of genetic diversity, to study of 

the population demographic history and ancestry and to keep in 

mind all the possible biases caused by merging datasets originated 

in different studies with different technologies. This is true for any 

genetic study, but especially if we intent to perform a selection 

analysis.  
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2.2.1. Examples of positive selection in humans 

There are few examples of positive selection in humans where there 

is strong and irrefutable evidence of both, the genotype and the 

phenotype under selection (Figure 6). Examples of recent human 

adaptation include immune-related genes, lactose tolerance, 

response to hypoxia, and polygenic traits such as height (Fan, 

Hansen, Lo, & Tishkoff, 2016; Lachance & Tishkoff, 2013a). 

However, in most cases we are left with either, a phenotype, clearly 

under selection, but with no knowledge of the molecular 

mechanism, or with a genomic signature in a gene with unknown 

function.  

Figure 6. Examples of population-specific adaptations in humans. 

For each selected trait or selective pressure is indicated the loci 

under selection. (Fan et al., 2016) 
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3. Network framework applied to evolutionary
studies

One of the challenges of genome-wide scans of selection is the 

interpretation of the signals. Most of the signals of selection fall 

outside coding regions, and of those that are in genes, they are 

likely to participate in several basic cellular processes or their 

function have not been described. That, and the evidence from 

GWAS that for any complex trait many genes contribute to the 

genetic variation in the population (Visscher et al., 2017) has 

prompted the formulation of the omnigenic model (Boyle, Li, & 

Pritchard, 2017). This model suggests that the strong 

interconnection between gene regulatory networks will cause that 

any gene co-expressed in a disease-relevant tissue will be related to 

the disease, even if it does not participate in the key pathway 

associated to the disease. Evolutionary studies about gene co-

expression and protein evolution support this idea: genes encoding 

interacting or co-expressed proteins co-evolve together (Clark, 

Alani, & Aquadro, 2012; Lovell & Robertson, 2010).  

For this reason, one of the most common practices is to perform 

some sort of enrichment analysis on the signals. The goal is to test 

whether we found in our signals more genes associated to a given 

biological process, pathway, phenotype, or disease than we expect 

by chance. Following the idea of studying patterns of positive 

selection in genes with a common function, a study about the 

evolution of genes related to taste and phase I biotransformation in 

humans is presented in the third chapter (See Results: 3. Is there 

adaptation in the human genome for taste perception and phase I 

biotransformation). We propose that genetic drift and not adaptive 

selection caused the genetic variability observed in taste receptors 

genes. Conversely, we report important genetic adaptations in the 

cytochrome P450 system. 

3.1. Metabolic pathways as networks 

The human genome can be regarded as a group of interconnected 

elements, or in other words, as a network. In biological networks, 
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the elements or nodes, can be genes, or the proteins encoded by 

them. The connections, edges or links joining the nodes, can be 

protein-protein interactions, shared metabolites, and so on. Network 

theory can help us understand the evolutionary constraints imposed 

by the intrinsic structure of the system. 

 

The last chapter of this thesis presents the first evolutionary analysis 

of the human metabolic network at both intraspecific and 

interspecific level (Results: 4. Influence of network topology on the 

evolution of metabolic enzymes in humans and mammals). In this 

work we compared how the structure of the network and the 

connection between the nodes, affects their evolution. To do that we 

analyzed two different databases: i) the latest consensus metabolic 

network reconstruction, Recon3D (Brunk et al., 2018), and ii) the 

metabolic pathways from HumanCyc, a Pathway/Genome database 

(Romero et al., 2005). 

 

 

 

Figure 7. Giant connected component of the human metabolic 

network. 

Nodes size and color correlates with node out-degree. 
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The choice of these two sources was motivated by the problem of 

how to define a metabolic pathway and its boundaries. Where does 

it start and where does it end? It is naïve to treat pathways as 

separate entities when we are precisely interested in the connections 

between elements. But at the same time, it is impossible (yet) to 

include all interactions and obtain a meaningful and interpretable 

picture from a “hairball” (Figure 7). This poses the tricky question 

of, what is it better: an overly simplistic model or an overly 

complex model?  

 

 

In the end, both are approximations of the reality that we want to 

study and emphasize distinct aspects of it. In a large-scale network 

we will be able to infer global patterns and account for cross-talk 

effects between biological processes, with the drawback that the 

interactions are less reliable and might be incomplete. However, 

comparing hundreds of small-scale networks might allow us to 

uncover local shared patterns with an easier biological 

interpretation. Montanucci et al. (2018) followed this last approach. 

The analysis of hundreds of human metabolic pathways showed that 

purifying selection is stronger in enzymes performing the first 

reaction of a pathway and that have many connections. It also 

allowed the comparison of the strength of purifying selection across 

different the layers of metabolic functions: genes participating in 

inner core pathways are more constrained.  

 

3.3. How to characterize a network? 

 

In a reaction graph, nodes are enzymatic reactions, and by extension 

the genes that encode them. Edges are shared metabolites, and 

directed links indicate which enzymatic reaction produces the 

substrates of a given reaction. When we represent a metabolic 

pathway as a reaction graph, the transformation can create several 

connected components that are isolated (Figure 8).  

 

Number of connected components: A connected component of a 

network is a subset of the graph where each par the nodes is 

connected by a continuous path. Figure 8 shows a network with 

three connected components. When we transformed the metabolic 
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network to a directed reaction graph (Results: 4. Influence of 

network topology on the evolution of metabolic enzymes in humans 

and mammals), we obtained: a giant connected component (88.72% 

of the nodes), 145 small connected components (1.37% of the 

nodes), and 821 isolated nodes (7.75% of the nodes).  

 

 

 

Figure 8. From a metabolic network to a reaction graph. 

Transformation of a metabolic network into a reaction graph, 

where nodes are enzymatic reactions linked by shared metabolites. 

The transformation creates several connected components. 

 

3.3.1. Node centralities 

 

Each centrality measure rates the importance of a node differently, 

thus the need to apply different measures depending on how we 

define important nodes. Are important nodes the ones with more 

connections? Or the ones with fewer connections but that link 

distinct parts of the network?  

 

In the work presented in this thesis, the centrality measures used 

are: degree (in and out-degree), spin, closeness centrality, 

betweenness centrality, and eigenvector centrality. 
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Degree (in/out-degree): Number of neighbors of a node. The 

neighbors of a given node are the nodes connected by a link to that 

node. In Figure 9, the degree of node 0 is 0.5. In a directed network, 

we can separate degree in: in-degree (number of incoming links), 

and out-degree (number of out-going links). In this case, node 0 has 

in-degree 0.3333 and out-degree 0.1667. If nodes represent 

enzymatic reactions, a gene with high degree is a highly connected 

gene in which a mutation would affect many other genes.  

 

Spin: Difference between incoming and outgoing links of a given 

link, normalized by the node degree. A node with a negative spin 

has more outgoing than incoming links (node 2 in Figure 9), 

whereas a positive spin indicates more incoming than outgoing 

links (node 0). The extreme cases are: nodes with no outgoing links 

(spin = 1, nodes 4 and 6 in Figure 9), no incoming links (spin = -1, 

nodes 1 and 5) or with the same number of incoming and outgoing 

links (spin = 0, node 3).  

 

Betweenness centrality: Number of times a node acts as a bridge 

between two other nodes. This is calculated using the shortest path 

between each pair of nodes. Nodes with high betweenness connect 

different clusters of the network. A node with high betweenness 

could be describe as a node where “all paths go through it” (Node 3 

in Figure 9).  

 

Closeness centrality:  It is a measure of how “close” a node is from 

all the others, the higher the value, the closer or more central a node 

is. It is calculated as the inverse of the sum of all distances of the 

node to all other nodes. For directed networks, closeness has not a 

straightforward interpretation. A node with high closeness is a node 

where “all paths lead to it”, that would be node 2 in Figure 9. 

 

Eigenvector centrality: It is calculated based on the number of 

neighbors of a given node and on the centrality of those neighbors. 

A node with high eigenvector centrality is connected to one or more 

nodes with a high number of connections. 

 

Position within the pathway: In a directed graph, nodes have a 

position along the pathway: top (in-degree = 0), bottom (out-degree 

= 0) or intermediate. In Figure 9, nodes 1 and 5 are in top positions, 
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whereas nodes 4 and 6 are in bottom positions. The rest have 

intermediate positions.  

 

 

 

 

Figure 9. Small directed network.  

Depending on the centrality measured chosen, the more important 

nodes change, see Table 1 for the centrality values of each node. 
 

 
Node Degree Indegree Outdegree Spin Closeness Betweenness 

0 0.500 0.333 0.167 0.333 0.296 0.267 

1 0.167 0 0.167 -1 0.298 0 

2 0.500 0.167 0.333 -0.333 0.333 0.267 

3 0.333 0.167 0.167 0 0.300 0.300 

4 0.167 0.167 0 1 0 0 

5 0.167 0 0.167 -1 0.298 0 

6 0.167 0.167 0 1 0 0 

Table 1. Centrality measures of the directed network.  

Values of centrality measures (degree, in-degree, out-degree, 

closeness and betweenness) of the nodes in the directed network 

illustrated in Figure 9. 
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3.3.1. Network structure and gene evolution  

 

Previous studies have studied the relation between pathway 

structure and gene evolution in different systems (Table 2). Most of 

the studies focused on the effect of purifying selection on node 

evolution, measured as the dN/dS ratio (ω). Both in whole 

metabolic networks, protein-protein interaction networks (PIN), and 

in individual pathways from different organisms, the results show 

that purifying selection is stronger in highly connected and more 

central genes.  

 

It is important to mention that not all interactions between nodes 

have the same confidence or meaning. In PIN, links between nodes 

can represent at the same time several types of interactions 

(physical interactions, tissue co-expression). And more importantly, 

these have no directionality. In the case of metabolic networks 

directionality can be derived from the physiological route of 

metabolite production, but not all studies took advantage of that 

feature (Greenberg, Stockwell, & Clark, 2008).  

 

Accounting for the direction of the interaction allows to measure the 

action of natural selection depending on the position of the node. 

However, there are no clear results of the how the strength of 

purifying selection varies along pathways. The results obtained vary 

depending on the organism and type of network: in biosynthetic 

pathways in plants upstream genes are more conserved (Livingstone 

& Anderson, 2009; Rausher, Miller, & Tiffin, 1999), while 

downstream genes are more conserved in the Insulin/TOR signal 

transduction pathway in mammals and flies (Alvarez-Ponce, 

Aguade, & Rozas, 2008; Alvarez-Ponce, Aguadé, & Rozas, 2011).  

 

Few studies that have analyzed where positive selection acts within 

a network. Positive selection has acted in peripheric genes in the 

human (Luisi et al., 2015) and yeast PIN (Chakraborty & Alvarez-

Ponce, 2016). Remarkably, the same study found the opposite trend 

in the fly PIN: positive selection was detected mostly in central 

genes (Chakraborty & Alvarez-Ponce, 2016).  

 

Only two studies have analyzed the effect of positive selection 

based on polymorphism data (intraspecific) in the human PIN (Luisi 
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et al., 2015; Qian, Zhou, & Tang, 2015). Both studies reached the 

same conclusion: recent positive selection has acted in more central 

genes. A similar result was observed in the Insulin/TOR signal 

transduction pathway (Luisi et al., 2012).  

 

 
Type of network Organism Result Study 

Metabolic pathways  Fly Purifying selection stronger in highly 

connected genes (interspecific) 

(Greenberg et al., 

2008) 

Metabolic network  Yeast Purifying selection stronger in highly 

connected genes (interspecific) 

(Vitkup, 

Kharchenko, & 

Wagner, 2006) 

Metabolic network  Mammals Purifying selection stronger in central 

genes (interspecific) 

(Hudson & Conant, 

2011) 

Protein-protein 

interaction network 

Yeast Purifying selection stronger in highly 

connected genes (interspecific) 

(H. B. Fraser, Hirsh, 

Steinmetz, Scharfe, 

& Feldman, 2002) 

Protein-protein 

interaction network 

Mammals Purifying selection stronger in central 

genes  

(interspecific) 

(Luisi et al., 2015) 

Protein-protein 

interaction network 

Human Purifying selection stronger in central 

genes 

(intraspecific)  

(Luisi et al., 2015) 

Phototransduction 

pathway 

Mammals Purifying selection stronger in central 

genes 

(interspecific) 

(Invergo, 

Montanucci, 

Laayouni, & 

Bertranpetit, 2013) 

Asparagine  

N-glycosylation 

pathway 

Primates Purifying selection stronger in 

downstream genes (interspecific) 

(Montanucci, 

Laayouni, 

Dall’Olio, & 

Bertranpetit, 2011) 

Insulin/TOR signal 

transduction 

pathway 

Fly Purifying selection stronger in 

downstream genes (interspecific) 

(Alvarez-Ponce et 

al., 2008)  

Insulin/TOR signal 

transduction 

pathway 

Vertebrates Purifying selection stronger in 

downstream genes (interspecific) 

(Alvarez-Ponce et 

al., 2011)  

Anthocyanin 

biosynthetic 

pathway 

 

Plants Purifying selection stronger in 

upstream genes (interspecific) 

(Rausher et al., 

1999) 

 

Carotenoid 

biosynthetic 

pathway 

Plants Purifying selection stronger in 

upstream genes (interspecific) 

(Livingstone & 

Anderson, 2009) 

Metabolic pathways 

 

Mammals / 

Human 

Purifying selection stronger in 

upstream genes and genes with high 

in-degree 

(Montanucci et al., 

2018) 
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Purifying selection stronger in genes 

of the inner core layer (interspecific) 

Metabolic pathways Fly Positive selection acted in genes at 

branch points 

(intraspecific) 

(Flowers et al., 

2007) 

Asparagine 

N-glycosylation

pathway

Human Positive selection acted in genes at 

branch points 

(intraspecific) 

(Dall’Olio et al., 

2012) 

Metabolic pathways Mammals / 

Human 

Positive selection acted in genes with 

high out-degree 

(interspecific) 

(Montanucci et al., 

2018) 

Protein-protein 

interaction network 

Mammals / 

Human 

Positive selection acted in peripheric 

genes 

(interspecific) 

(Kim, Korbel, & 

Gerstein, 2007; 

Luisi et al., 2015) 

Protein-protein 

interaction network 

Yeast Positive selection acted in peripheric 

genes 

(interspecific) 

(Chakraborty & 

Alvarez-Ponce, 

2016) 

Protein-protein 

interaction network 

Fly Positive selection acted in central 

genes 

(interspecific) 

(Chakraborty & 

Alvarez-Ponce, 

2016) 

Protein-protein 

interaction network 

Human Positive selection acted in central 

genes (intraspecific) 

(Luisi et al., 2015; 

Qian et al., 2015) 

Insulin/TOR signal 

transduction 

pathway 

Human Positive selection acted in central 

genes 

(intraspecific) 

(Luisi et al., 2012) 

Table 2. Summary of previous studies relating network topology 

and evolutionary rates. 

Studies are classified based on the type of network, organism and 

whether they estimated purifying selection or positive selection 

based on divergence (interspecific) or polymorphism (intraspecific) 

data.  

Thus, while differences in the methodology to estimate evolutionary 

measures and the choice of database, could be behind some of the 

contradictory results, it is also possible that constraints imposed by 

network structure are lineage-specific (Chakraborty & Alvarez-

Ponce, 2016). 

More interestingly, the difference between long-term positive 

selection (as measured by interspecific data) and recent or short-

term positive selection (as measured by intraspecific data), suggests 

that positive selection has targeted distinct parts of the network at 
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different evolutionary time-scales (Luisi et al., 2015). The authors 

argued that this phenomenon is explained by the Geometric Model 

of Adaptation (FGM) (Fisher, 1930) and by the features of the tests 

to detect positive selection at intra and interspecific levels. 

 

The FGM describes the phenotype of an organism as point in a 

high-dimensional space, where the dimensions are independent 

phenotypic traits. As the phenotypic complexity increases (more 

dimensions), it will be less likely that a mutation will have 

beneficial effects, as it will be impossible to be advantageous in all 

dimensions or traits at the same time: it will be more likely to be 

beneficial if the effect of the mutations is small. However, this 

depends on how far from the optimum fitness is the organism. 

When an organism is far from the optimum, mutations with large 

effects are more advantageous, whereas if it is close to the optimum 

a mutation with small effect will be more advantageous (Fisher, 

1930; Tenaillon, 2014). One can draw a comparison with golf: a 

golfer’s first shot intends to get the ball as close to the hole as 

possible (without going too far), subsequent shots should be smaller 

and precise. 

 

This framework should be interpreted in the light of how we detect 

positive selection. Long-term positive selection is detected by 

calculating the rate of synonymous and nonsynonymous 

substitutions (ω). Therefore, it can be estimated only in protein-

coding regions. Conversely, short-term positive selection is detected 

on both coding and non-coding regions of the genome, as it is based 

on polymorphisms.  

 

Thus, if we join these two points, the result that positive selection 

acted in peripheric genes (interspecific) is explained by the study of 

adaptation over a long time-scale on protein-coding genes: it is 

more likely that mutations with smaller effects will be more 

advantageous. Thus, more events of positive selection are detected 

in genes with small effects on the phenotype (less central or less 

connected).  

 

The result that positive selection acted in central genes 

(intraspecific) is explained by the study of recent adaptation in the 

whole genome of a species far from the optimum (OOA, 

Mesolithic-Neolithic transition, extreme environments…): 
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mutations with larger effects will be more advantageous. We will 

detect more positive selection in genes with larger effects (more 

central or more connected) and in regulatory regions that affect 

many phenotypic traits (Luisi et al., 2015).  

 

Further studies, where positive selection is detected in the same 

system at both intra and interspecific level are needed to confirm 

this idea. Also, to know whether there is a general rule for the 

constraints imposed by network structure, or if the patterns are 

organism-specific, we need a systematic analysis of diverse types of 

pathways in more organisms. 
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OBJECTIVES 

The main objective of this thesis is to study how selection acted at a 

molecular level on human populations. To understand the forces 

driving adaptive evolution, two approaches were selected: one, the 

detection of population-specific adaptations and, second, the 

identification of the constraints given by the position and 

connections of the enzymes in a metabolic pathway. 

First, to increase the knowledge on human genetic variability and 

how infectious diseases affected the evolution of our genomes, two 

studies were performed. A genetic study on East African 

populations, highlighting the need of including diverse groups to 

truly capture the diversity of a region (See Results: 1. The genetics 

of East African populations: A Nilo-Saharan component in the 

African genetic landscape). Second, a study on the Roma people 

was carried out to analyze their recent evolutionary history and see 

how their migration affected the selective pressures shaping their 

immune response (See Results: 2. The shaping of immunological 

response through natural selection after migration: the case of the 

Roma).  

Then, based on the idea of studying patterns of positive selection in 

genes involved in the same process, a study about the evolution of 

genes related to taste and phase I biotransformation in humans was 

performed (See Results: 3. Is there adaptation in the human genome 

for taste perception and phase I biotransformation).  

Last, the structure of the human metabolic network was analyzed 

together with signals of positive selection estimated from intra and 

interspecific variation. The goal was to study how the events of 

positive selection are distributed across a large-scale network, and 

to compare the emergent patterns to the results obtained when 

studying individual metabolic pathways (See Results: 4. Influence 

of network topology on the evolution of metabolic enzymes in 

humans and mammals).  
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Abstract 

The Roma people departed the Indian subcontinent around 1000-

1500 years ago, and part of them settled in the Romanian territory 

around the 14th century. The analysis of whole-genome sequences 

of Roma individuals along with individuals from their host 

population, Romania, suggests that pathogens where an important 

selective pressure, before and after the Roma diaspora, and that 

Romanian Roma have suffered rapid adaptation in variants 

associated with differential cytokine production. 

 

Background 

The Roma people, also called Romani/Rroma or with the 

derogatory term of Gypsies, represent the largest ethnic minority in 

Europe. Due to the nomadic lifestyle of some of the groups and the 
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social exclusion that the Roma have suffered, their real number in 

the continent is unknown, but estimates vary between 10 and 12 

million. For still unknown reasons, the Roma departed the Indian 

subcontinent around 1000-1500 years ago. They traveled through 

Persia and Armenia, reaching the Balkan peninsula between the 11th 

and 12th centuries (Achim, 1998; Fraser, 1992). The first record of 

the presence of Roma in Romanian territory dates to the 14th 

century (Achim, 1998). Nowadays, they represent between 3-5% of 

the Romanian population, being the second minority in the country 

after Hungarians (6.5%).  

 

The study of the history of the Roma, which lacks written records, 

has relied on linguistic, sociological, and later, genetic studies. The 

main topics investigated in genetic studies about the Roma are: i) 

place of origin in the Indian subcontinent; ii) migrations from and to 

population from the host countries, and iii) similarities between 

Romani groups from different countries. The analyses of 

uniparental markers (mitochondrial DNA and Y-chromosome 

haplogroups) gave support to the linguistic studies suggesting the 

Indian origin of the Roma (Martínez-Cruz et al., 2015; Mendizabal, 

Valente, & Gusmao, 2011; Rai et al., 2012). Genome-wide data 

further narrowed the putative population of origin to those currently 

inhabiting the northwestern region of the Indian subcontinent 

(Mendizabal, Lao, & UM, 2012; Mendizabal et al., 2011; Moorjani, 

Patterson, et al., 2013).  

 

In this study we present whole-genome sequences of Roma 

individuals along with individuals from their host population, 

Romania, to investigate what selective pressures the Roma faced 

before and after leaving India. This approach has been proven 

successful to identify signatures of convergent evolution in 

immunological genes caused by the plague in the Roma (Laayouni 

et al., 2014).  

 

Methods 

Samples 

We generated whole genome sequences of 50 Roma (Romani) and 

50 Romanian individuals from Romania with an average of 15X 

coverage (see Supplementary Note 1 for technical details). 

Informed consent was obtained from all individuals. After strict 

quality control (Supplementary Note 2 and 3, Supplementary 
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Figures 1-6) we were left with 40 unrelated Romanians and 40 

unrelated Roma for the main analyses (see Supplementary Table 1 

for reasons of exclusion).  

 

Population demographic analyses  

We combined the new data generated in this study with populations 

covering the genetic diversity present on continental India: 10 

Rajput (RAJ), 10 Uttar Pradesh Upper Caste Brahmins (UBR), nine 

Vellalar (VLR), 10 Irula (ILA), 10 Riang (RIA), and nine Birhor 

(BIR) (Mondal et al., 2016). For further information about the 

Indian populations see Mondal et al. 2016. We also added 40 

unrelated individuals from each of the following populations from 

1000 Genomes Project Phase 3 (Auton et al., 2015): CEU (Utah 

Residents (CEPH) with Northern and Western European Ancestry), 

TSI (Tuscans in Italia), FIN (Finnish in Finland), GBR (British in 

England and Scotland), IBS (Iberian population in Spain), CHB 

(Han Chinese in Beijing, China), JPT (Japanese in Tokyo, Japan), 

CHS (Southern Han Chinese), CDX (Chinese Dai in 

Xishuangbanna, China), KHV (Kinh in Ho Chi Minh City, 

Vietnam), GIH (Gujarati Indian from Houston, Texas), PJL 

(Punjabi from Lahore, Pakistan), BEB (Bengali from Bangladesh), 

STU (Sri Lankan Tamil from the UK), ITU (Indian Telugu from the 

UK), YRI (Yoruba in Ibadan, Nigeria), LWK (Luhya in Webuye, 

Kenya), GWD (Gambian in Western Divisions in the Gambia), 

MSL (Mende in Sierra Leone), and ESN (Esan in Nigeria). 

 

We filtered the data with PLINK 2.0 (Chang et al., 2015) to keep 

only bi-allelic autosomal SNPs with MAF > 0.05, under Hardy-

Weinberg Equilibrium and without missing data, obtaining a dataset 

with 938 samples and 5,216,078 SNPs. This dataset was pruned for 

linkage disequilibrium (LD) in 515,723 SNPs. We performed a 

principal component analysis (PCA) with EIGENSOFT v6.1 

(Patterson, Price, & Reich, 2006) on the pruned dataset without the 

African populations (YRI, LWK, GWD, MSL, and ESN) and runs 

of homozygosity (ROH) were estimated by PLINK. The admixture 

analysis with ADMIXTURE v1.23 (Alexander et al., 2009) was run 

with values of K ranging from 2 to 9, each 25 times with 5-fold 

cross-validation and different seed to estimate the best supported 

model.  
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We applied the 3-Population Test implemented in qp3Pop, 

Admixtools (Patterson et al., 2012), to test whether Roma are an 

admixed population in the form of f3(Roma; European, Indian), 

where European and Indian are populations from the 1000 Genomes 

Project (Auton et al. 2015) and from Mondal et al. (2016). We also 

calculated the populations that Roma share more genetic drift with 

the outgroup f3(Romani; X, YRI), where X is a European, an Indian 

population, or the newly sequenced Romanians.  

 

Scan of selection 

The objective of this analysis was to identify the selective pressures 

that Roma people faced prior to leaving their place of origin (North 

India) and after their settlement in Romania. We used the Cross-

population Extended Haplotype Homozygosity (XP-EHH) test 

(Sabeti et al., 2007) to detect recent signals of positive selection that 

are shared by two populations but not the third: signals shared by 

Roma and North Indians (and not Romanians) will be older while 

those shared by Roma and Romanians (and not North Indians) will 

be more recent. XP-EHH was run using selscan (Szpiech & 

Hernandez, 2014) after phasing the data with SHAPEIT2 (Delaneau 

& Marchini, 2014) with the 1.000 Genomes phase 3 reference panel 

of haplotypes. As needed by selscan, we phased each population 

separately without allowing for missing data. We obtained the 

genetic position and ancestral allele information from the 1000 

Genomes Project (Auton et al., 2015).  

 

We analyzed 40 Roma and 40 Romanians and 10 Rajput individuals 

from Mondal et al. (2016). To minimize any biases due to 

sequencing technologies or variant calling algorithms, we selected 

as the best proxy for a North Indian population from the putative 

area of origin of the Roma people (Mendizabal et al., 2012), the 

Rajput population from our dataset Rajput. XP-EHH was run using 

default parameters, only reducing the maximum allowed gap 

between two SNPs from 200.000 to 20.000 bp to avoid spurious 

peaks. We performed three comparisons: Roma vs. Romanian, 

Roma vs. North India, and Romanian vs. North India. We 

calculated the average value of XP-EHH in 30kb windows with an 

overlap of 5kb.  

 

We selected the windows shared between the 5% upper tail 

genome-wide distribution of the Romanian vs. North India and 
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Roma vs. North India comparisons. From those we removed the 

windows belonging to the 5% upper and lower tail of the Roma vs. 

Romanian comparison. We removed SNPs with |XP-EHH| < 2. 

These signals would indicate the selective pressures that Roma 

people faced when they established themselves in Romania, from 

now on called “Recent Shared Signals”. Following the same 

rationale, we selected the windows shared between the 5% upper 

tail genome-wide distribution of the Roma vs. Romanian and North 

India vs. Romanian comparisons. From those we removed the 

windows belonging to the 5% upper and lower tail of the Roma vs. 

North India comparison. We removed SNPs with |XP-EHH| < 2. 

These signals would indicate the selective pressures that Roma 

people faced prior to leaving India, from now on called “Old Shared 

Signals”. We performed a two-sided Gene Ontology (GO) 

enrichment analyses (Enrichment/Depletion) and pathway 

annotation network tests with Cytoscape (Shannon et al., 2003) 

plug-in ClueGo (Bindea et al., 2009) in both Recent and Old Shared 

Signals. P-values were corrected for multiple testing by the 

Benjamini-Hochberg procedure.  

 

cQTL enrichment analysis 

Windows belonging to the Shared Signals, both Recent and Old, 

were pruned for LD (SNPs within 1Mb, R2 > 0.8) and intersected 

with the cQTL (cytokine QTL) dataset from (Li et al., 2016). We 

assessed whether there was an enrichment of cQTLs in the selection 

signals by a randomization test. We selected SNPs identified as 

cQTLs with a p-value threshold <= 1e-5.  

 

Functional validation of the pathways 

We tested how the inhibition of three pathways obtained in the 

selection analyses affected cytokine production capacity of the cell 

during an infection: i) mTOR mediated cellular metabolism 

pathway was inhibited with Rapamycine and Ascorbate; ii) 

Adenylate cyclase pathway was inhibited with KH7; iii) Histone 

deacetylation pathway mediated by HDAC9 was inhibited with 

TMP269. DMSO was used as control when testing the Adenylate 

Cyclase pathway, whereas RPMI was used for the other two 

pathways. A total of 6 stimulations were tested: RPMI as negative 

control; Y.pestis antigua (106/ml); Y.pestis antigua (105/ml); 

Influenza (x10); MTB (5 µg/ml); and C. albicans (106/ml). For 

every stimulation we measured the expression levels of 7 cytokines: 
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IL-1β, IL-6, TNF, IL-10, IFNγ, IL-17 and IL-22. These were all 

measured for a total of 8 subjects (3 batches of sizes 3-3-2). 

Differences were assessed by permutations within batches (paired t-

test, two-sided p-value). 

 

Results and Discussion 

The Roma people are genetically more similar to Europeans than 

to Indian populations 

To explore the genetic relationship between the Roma and other 

worldwide populations, after quality control, we performed a 

principal component analysis (PCA) (Figure 1a). PC1 separates 

between European and Indian populations from Asian, whereas PC2 

differentiates European populations (including Romanians) from 

Indian and Roma populations. Roma fall in a cline between 

European/Romanians and Indian populations, with the closest 

Indian populations being those geographically located in North 

India: Rajput (RAJ), Uttar Pradesh Upper Caste Brahmins (UBR) 

(UBR) and Punjabi (PJL). When only Roma and Romanians 

populations are analyzed PC1 separates Romanies from Romanians, 

with the later forming a tight cluster (Supplementary Figure 6). We 

observed several individuals, both Roma and Romanian, spread 

between the two clusters, indicating genetic flow between both 

populations and lack of genetic and social correspondence.  

 

In an admixture analysis (Figure 1b, Supplementary Figure 8a), the 

Roma appear as an admixed population with a 30% Indian and a 

70% European component (K = 3). It is at K = 4 when Roma show 

their own genetic component (best supported model, Supplementary 

Figure 8b). This component can also be seen in small proportions in 

the European Romanian (RMN), TSI and IBS populations 

(populations with a known presence of Roma in their countries). 

Then, we estimated how genetically similar are the Roma to other 

worldwide populations by the outgroup f3-statistics. Roma share 

more genetic drift with Central or Eastern European populations 

than with Indians (Figure 2). It has been suggested that the 

European ancestry present within India, increases the genetic 

similarity of the Roma with other European populations (Moorjani 

et al. 2013). Further analyses with more robust statistics, such as 

Dstat or qpAdmix (Patterson et al., 2012), and the combination of 

methods that complement the admixture analysis (Lawson, van 

Dorp, & Falush, 2018), are needed to disentangle the ancestry of the 
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Roma, as their putative population of origin has themselves a 

complex recent demographic history (Moorjani, Thangaraj, et al., 

2013). 

 
a)       b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. a) Principal component analysis of the Romani (ROM) from Romania 

in the context of other worldwide populations. Showing the first two principal 

components and the variance explained by them; b) Clustering analysis showing 

K = 3 and K = 4. Romanies show their own component in K = 4 (best supported 

model). See Samples section for a description on the populations.  



 

72 

 

 

 

Figure 2. Proportion of shared genetic drift between the Roma and extant 

worldwide populations measured using f3 (Roma; X, YRI); where X is either 

Romanians, another European population, or an Indian population. Roma share 

more drift with Europeans than with Indians populations.  

 

Signals of bottlenecks and endogamy in Roma people 

By comparing the number and length of runs of homozygosity 

(ROH) we can infer the demographic history of a population 

(Ceballos, Joshi, Clark, Ramsay, & Wilson, 2018). Romanies show 

a unique profile with respect to other European populations (Figure 

3a). As a population that suffered a strong bottleneck after the 

departure from India and kept a small effective population size, it 

has more of both longer and shorter ROHs that other populations 

with higher effective sizes (Figure 3b and Supplementary Figure 

10). The practice of consanguineous marriage in the Roma 

(Kalaydjieva, Morar, Chaix, & Tang, 2005) increases the variance 

in the length of ROHs as the offspring of those unions will have a 

small number of very long ROHs. Tribal Indian populations (RIA, 

BIR, VLR), present a similar profile, with ILA showing the 

strongest bottleneck signal.  
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Figure 3. a) Total number of ROH (NROH) versus the sum of the total length of 

ROH in Kb (SROH) in worldwide populations. Each dot represents population 

means. b) Distribution of the total length of runs of homozygosity (ROHs) 

classified by length categories in Romanies (ROM), Romanians (RMN), CEU, 

CHB, Rajput (RAJ) and Irula (ILA). See Supplementary Figure 10 for a 

comparison with all worldwide populations. 

 
a)

 
b) 

 
c) 

 
 

Figure 4. Enrichment of SNPs functional categories in the signals of selection. a) 

Recent Shared Signals (Pearson's Chi-squared test, 𝜒² = 632.89, p-value < 2.2e-

16); b) Old shared Signals (Pearson's Chi-squared test, 𝜒² = 541.57, p-value < 

2.2e-16); c) cQTL enrichment. Number of cQTLs found in the Recent Shared 
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Signals (red line) compared to a sampling distribution. Circle size is proportional 

to the contribution of each SNPs functional category to the total 𝜒² score 

indicated by the Pearson residuals. Positive values (in blue) indicate that the 

proportion of that category is higher than expected in the signals whereas 

negative values (in red) indicate that that signals are depleted in that functional 

category. 

 

Genome distribution of the selection signals 

In the analysis of the footprints of positive selection left in the 

genome, two levels of analysis are compared: recent and old signals 

of adaptive selection. The first will be composed of the common 

signals between Romanies and Romanians, and not in Indians 

(RAJ) (Supplementary Figure 11a) and the second of the common 

between ROM and RAJ and not the RMN (Supplementary Figure 

11b). 
 

In the Recent Shared Signals (28,640 SNPs) we found more SNPs 

located in the genic region (intronic and exonic) than expected by 

comparing with a genome-wide distribution; and less belonging to 

intergenic regions (Pearson's Chi-squared test, χ² = 632.89, p-value 

< 2.2e-16) (Figure 4a). In the Old Shared Signals (7,205 SNPs) we 

found more SNPs located in the intronic region of genes and 

ncRNAs than expected (Pearson's Chi-squared test, χ² = 541.57, p-

value < 2.2e-16) (Figure 4b), but not in exons, highly enriched in 

recent signals. Accordingly, we identified 28 non-synonymous 

changes potentially linked to Recent Shared Signals but only 4 in 

Old Shared Signals (Supplementary Note 4). Notably, for both 

Recent and Old Shared Signals, we found a striking enrichment in 

intronic regions (and a dearth in intergenic), indicating that most of 

the signals are expected to be related to gene regulation and not to 

amino acid changes in the coded proteins. Indeed, recent selection 

in Romani and Romanians targeted variants that affect the 

expression of cytokines (Figure 4c). No such enrichment was found 

in Old shared signals.  

 

What selective pressures faced the Romani people after settling in 

Romania? 

As a first approximation to identify the selective pressures faced by 

the Roma people in their new environment, we performed an 

enrichment pathway analysis on genes in the Shared selection 

signals (Figure 5a). Several of the pathways enriched in the Recent 

Shared Signals are related to housekeeping processes, involved in 
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functions that cannot be linked to specific phenotypes that could be 

at the base of the action of selection. This result seems to follow the 

omnigenic model (Boyle, Li, & Pritchard, 2017), in which the 

strong interconnexion among the gene regulation networks may 

cause to find signals (of susceptibility in GWAS studies, of positive 

selection in genome scans) that are not of direct relevance for the 

selected phenotype.  

 

For that reason, we have chosen specific pathways related to the 

immunological function. These pathways have been deeply 

characterized, and the knowledge of the regulatory networks and 

their physiological function may allow a direct link between a 

complex genotype and the phenotype. As a preliminary analysis 

detected an enrichment of cQTLs (cytokine QTL) in the signals, 

and among the enriched pathways we found the GO term regulation 

of cytokine-mediated signaling pathway, we selected two pathways 

likely to influence cytokine production capacity for further 

validation: mammalian target of rapamycin (mTOR) mediated 

cellular metabolism and signaling pathways (carbohydrate 

biosynthetic process and Ras GTPase binding) (Huang & Fingar, 

2014; Weichhart & Säemann, 2008) and adenylate cyclase pathway. 

 

Inhibition of mTOR mediated cellular metabolism pathway 

generates a pro-inflammatory profile characterized by a decrease of 

IL-10 and IL-17, and an increase of IL-1β (Figure 5c), supporting 

the idea that mTOR participates in the establishment of a 

proinflammatory or anti-inflammatory profile in immune cells 

(Weichhart & Säemann, 2008). The inhibition of this pathway 

affects the expression of cytokines in the presence of all pathogens 

tested except the influenza virus. We found a similar pro-

inflammatory profile when we inhibited the adenylate cyclase 

pathway. However, in this case the strongest stimulus is given the 

infection by the influenza virus, as it strongly increases the 

production of several cytokines (IL-1β, IL-6, TNF and IFNγ). This 

suggests that, even though these pathways respond preferentially to 

a specific type of pathogen, its response is executed through similar 

mechanisms. 

 

Moreover, a third pathway was selected due to the presence of 

MEF2B (Myocyte Enhancer Factor 2B) among the top 100 signals: 

the histone deacetylation pathway mediated by HDAC9. HDAC9 
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represses MEF2-related transcriptional activity (Zhou, Marks, 

Rifkind, & Richon, 2001) and MEF2 is required for B cell 

proliferation and survival after antigen receptor stimulation (Jain et 

al., 2015). We did not observe a clear pattern on how the inhibition 

of HDAC9 impacts cytokine production (Figure 5c). This could be 

because the histone deacetylation pathway is not immunological 

mediated, or it responds specifically to a given pathogen that we did 

not test for.  

 

What selective pressures faced the Romani people in India? 

Following the same rationale as when estimating the Recent Shared 

Signals, we identified the selection signals shared between 

Romanies and a North Indian population (Old Shared Signals). A 

general view of the enrichment pathway analysis in the Old Shared 

signals shows only 20 significant enriched pathways (Figure 5b), 

distributed in two main groups: terms related to the metabolism of 

nucleotides, and terms related to immunological processes.  

 

Among the pathways found, there was an enrichment in genes 

involved in tuberculosis. Tuberculosis is one of the main causes of 

death worldwide, with India and China being the countries with the 

highest incidence of the disease (Sulis, Roggi, Matteelli, & 

Raviglione, 2014). Further functional studies are needed to 

determine the importance and prevalence of this disease in the 

history of the Roma.  
 

Conclusion 

We have analyzed whole-genome sequences of Roma individuals 

together with individuals from their host population, Romania, and 

their source population, India. We show that immunological 

processes are one of the strongest selective pressures during human 

evolution (Barreiro & Quintana-Murci, 2010; Daub et al., 2013) and 

they have left their mark in the genome of the Roma. Specifically, 

positive selection targeted regulatory variants that affect cytokine 

production in the Roma. 
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Figure 5. Pathway enrichment analysis based on the genes belonging to a) 

Recent Shared Signals; b) Old Shared Signals. For each term it is indicated the 

number (at the end of the bar) and the percentage (length of the bar) of genes 

belonging to that term that are found under positive selection. Consecutive terms 

that share at least 50% of the genes are depicted with the same color. Only 

statistically significant terms are shown (p-value < 0.05, BH-FDR). c) Change in 

cytokine production after infection and inhibition of mTOR cellular mediated 

pathway, adenylate cyclase pathway and HDAC9 pathway. Statistically 

significant changes in expression are indicated with colors: red indicates an 

increase in cytokine production after inhibition, whereas blue indicates a 

decrease. P-values were corrected for multiple testing by FDR. 

 

 

Data availability 

Data (BAM, FASTQ and VCF files) is available at European 

Nucleotide Archive (Accession number: PRJEB28641) and will be 

released after publication.  

 

 

Supplementary Information:  

- Supplementary Notes 1-4.  

- Supplementary Figures 1-11.  

- Supplementary Tables 1-4. 
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DISCUSSION 

With the development of sequencing technologies, population and 

evolutionary geneticists have been able to interrogate the genome to 

understand the molecular basis of natural selection. By applying 

diverse statistical methods, we can analyze the changes in the 

genome and describe the evolutionary history undergone by 

different species and/or populations. The recent advances in 

genomics data, such as the improvement of sequencing technologies 

to the point of being able to sequence ancient samples, has supposed 

a revolution in the field of evolutionary biology and in the study of 

the molecular mechanisms behind natural selection. In this thesis, 

the principal goal was to detect, quantify and understand positive 

selection in several human populations. 

The study of positive selection is heavily affected by the 

approximations, methodologies and sampling strategy used in the 

study design. Genome coverage (specific loci or genome-wide 

data), genotyping or sequencing data will determine which part of 

the genome we are able to interrogate, while the detection of 

putative events of selection is a function of the sample size and the 

quality of the data. The four papers presented in this thesis aim to 

advance our understanding of natural selection using a diverse set of 

tools and approximations available at the time. In each work, 

careful considerations were taken to acknowledge, remedy, and take 

advantage of the limitations of these methods.  

The first study presented in this thesis (Results: 1. The genetics of 

East African populations: A Nilo-Saharan component in the African 

genetic landscape) is a good example of how to take advantage of 

the constraints imposed by the characteristics of the genotyping data 

used. We analyzed genetic data from 9 ethno-linguistic groups from 

the Sudanese region in East Africa (Sudan, South Sudan and 

Ethiopia). The inclusion of several ethnic groups from one of the 

most diverse regions in the world allowed us to characterize a 

genetic component that identifies a non-admixed set of East African 

populations: Sudanese Nilo-Saharan speaking groups (Darfurians 

and part of Nuba populations) and South Sudan Nilotes. The 

samples were genotyped in the Immunochip (Illumina Infinium 
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single-nucleotide polymorphism microarray), that contrary to other 

commercial arrays does not have a uniform coverage of the human 

genome. The Immunochip was designed for immunogenetics 

studies and contains 196,524 polymorphisms, most of them 

associated with major autoimmune and inflammatory diseases 

(Cortes & Brown, 2011; Trynka et al., 2011). The array also 

includes ancestry informative markers, but as it was primarily 

designed for use in white European populations (Cortes & Brown, 

2011), we were concerned about how this would affect the 

discrimination of population structure in African populations. To 

assess this, we repeated our analysis on population structure using 

different subsets of markers and we determined that our inferences 

on population stratification were robust to sample size, batch 

effects, and genome coverage. Then, as the Immunochip presents a 

dense SNP coverage of immune-related genes, we were able to 

analyze how different infectious pressures affected the genome of 

these populations. We found that selective pressures on anti-

malarial and anti-bacterial host defense genes generated lower 

genetic distances between populations of different genetic 

backgrounds.  

In the second work presented in this paper we investigated the 

evolutionary history of the Roma (Results: 2. The shaping of 

immunological response through natural selection after migration: 

the case of the Roma). Our hypothesis was that by analyzing whole-

genome sequences of Roma individuals along with individuals from 

their host population, Romania, and from their source population, 

North India, we would be able to detect selective events in the 

Roma from before and after they left India. The main benefit of 

whole-genome sequencing data is that our scans of selection are not 

restricted to a priori selected loci. This permitted us to detect 

adaptive selection in regulatory regions associated with cytokine 

production. We validated these results by detecting pathways 

enriched in signals of selection and with an immunological function 

and then, performing functional experiments trying to identify 

which pathogens drove the adaptation affecting cytokine 

expression.  

In the third work presented, we selected a list of candidate genes 

related to a common biological function: substance identification 

and detoxification (Results: 3. Is there adaptation in the human 
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genome for taste perception and phase I biotransformation). To 

analyze the evolution of these genes, we used the results of three 

publicly available scans of selection: the 1000 Genomes Selection 

Browser 1.0 (Pybus et al., 2014), the Hierarchical Boosting data 

(Pybus et al., 2015), and the Human population genomics browser 

PopHuman (Mulet et al., 2018). The main advantage of using 

several neutrality statistics and tests of selection calculated on 

genome-wide data is the ability to detect the signature of positive 

selection underlying the signal observed. Besides, the Hierarchical 

Boosting is a composite method that combines several selection 

tests and that is robust to the confounding effects of population-

specific demography. This allowed us to discover that genes related 

to taste and phase I biotransformation in humans followed different 

evolutionary trajectories. While it is clear that positive selection 

acted in the cytochrome P450 system after the out of Africa, it 

appears that genetic drift has been the main force causing the 

genetic variability that we observe nowadays in taste receptors 

genes. 

 

In the last work presented, we took a step forward and added the 

information provided by the interconnections among genes to the 

study of natural selection (Results: 4. Influence of network topology 

on the evolution of metabolic enzymes in humans and mammals). 

We transformed the human metabolic network into a reaction graph, 

then, by mapping the events of positive selection onto the structure 

of the network, we could analyze how the connections between the 

enzymes affect the distribution of the selective events. Results of 

this study show the great explanatory power of the topology of the 

network to explain part of the variation in the distribution of signals 

of selection through the metabolic network. For instance, purifying 

selection is stronger in genes catalyzing the last steps in metabolic 

pathways and, when looking at the strength of recent positive 

selection in human populations genes at the bottom of metabolic 

pathways have higher positive selection values than those nodes 

participating in top steps. One of the drawbacks of these analyses is 

that the sample size (number of genes analyzed) gives the 

impression that the correlation between two measures is very strong 

(highly significant). However, except in few cases, the effect size of 

the relationships is small (very low coefficient of determination: r2). 

Still, despite the difficult interpretation of some of the results, this 

study supports the idea that the structure of the network influences 
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and constrains the distribution of the selective events at different 

evolutionary times, as found in the human protein-protein 

interaction network (Luisi et al., 2015). 

 

This are exciting times to study human evolution, as the cost of 

sequencing technologies has lowered enough to allow the 

generation of data from different populations and big sample sizes 

to allow robust statistical analyses. Also, the sequencing of previous 

and newly discovered fossils of archaic hominins is painting a 

complex picture of the evolution of our species that will need the 

development of new and more sophisticated demographic models 

and selection tests to account for this complexity. 
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3.1. The shaping of immunological response 
through natural selection after migration: the 
case of the Roma 

 

Supplementary Note 1. Data preprocessing 
 

Samples 

We generated whole genome sequences of 50 Romani and 50 

Romanian individuals from Romania. To study the ancestry of 

Romani people and avoid any ascertainment bias in the variant 

calling (process described in Raw Sequence Processing and 

Mapping) we included whole genome sequences of a set of Indian 

populations that reflect the maximum genetic diversity on 

continental India described in (Mondal et al., 2016): 10 Uttar 

Pradesh Upper Caste Brahmins (UBR), 10 Rajput (RAJ), 10 Irula 

(ILA), 10 Birhor (BIR), nine Riang (RIA), nine Vellalar (VLR), one 

Punjabi (PUN), one Bengali (BEN), six Onge (ONG) and four 

Jarawa (JAR). We also included one individual from each of the 

following populations to have a worldwide representation of human 

genetic diversity: French (FRN), Sardinian (SAR), Dai (DAI), Han 

Chinese (HAN), Mandenka (MAD), Mbuti (MBT), Papuan (PAP), 

San (SAN), and Yoruba (YRI) (Meyer et al., 2012).  

 

Library preparations, sequencing, and base calling 

DNA was extracted from blood samples and were sequenced at the 

Beijing Genomics Institute (BGI; Beijing, China). For every 

sample, 1 μg of genomic DNA was sheared into short fragments on 

Covaris E210 system (CovarisInc). The overhang at the ends of 

DNA fragments were converted into blunt ends by T4 DNA 

polymerase and Klenow enzyme. After ligation with adapters on 

both ends, DNA fragments of ~500 bp were selected by agarose gel 

electrophoresis and purified. Polymerase Chain Reaction (PCR) was 

performed to obtain sufficient DNA for a sequencing library. The 

quality of the library was checked by agarose gel electrophoresis. 

Sequencing was performed on Illumina HiSeq 2000 to produce 

paired-end reads of 90 bp. Base calling was completed following 

the manufacturer’s base-calling pipeline. 
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Raw Sequence Processing and Mapping 

Fastq conversion, mapping and BAM processing was performed 

following the procedure described in the Supplementary material of 

Mondal et al., (2016).  

 

- Fastq Conversion: Sequences from BGI were in Illumina 

1.5+ FASTQ format. All the BGI FASTQ files were 

converted to Illumina 1.8+ using seqtk () with the -VQ64 

flag (./seqtkseq -VQ64). FASTQ files from human 

populations from Meyer et. al (2012) were downloaded and 

converted to Illumina 1.8+ format using seqtk. The 

following steps (Mapping, BAM processing and Variant 

Calling) were applied to all sequences of Romani and 

Romanian populations, along with sequences from Indian 

and worldwide datasets. 

 

- Mapping: All sequences, in Illumina 1.8+ FASTQ format, 

were mapped using BWA (Li, 2013). Hg19 was used as a 

reference and mapped using the BWA mem algorithm. Only 

paired-end reads were kept. The BWA -w 50 flag was used 

to give the size of the band width. BWA output was then 

converted to binary format (bam) using SAMtools (version 

0.1.18) (Li et al., 2009) and sorted using SortSam from 

Picard tools (version 1.100).  

 

- BAM Processing: Bam processing was completed by 

following the “Best Practices” recommendations in GATK 

(version 3.5) (McKenna et al., 2010). After converting the 

mapped files to the binary format, CleanSam from Picard 

tools (http://picard.sourceforge.net) was used to remove 

unmapped sequences, and MarkDuplicates to mark 

duplicates. The bam files were then indexed using 

SAMtools. Since indels can cause inaccurate mapping in the 

genome, IndelRealigner from GATK was used to realign 

them, with 1000 Genomes Project phase 1 Indel as a 

reference file (interval file) (Abecasis et al., 2012). 

BaseRecalibrator and PrintReads were used from GATK to 

calibrate bases for various statistics (i.e. reported quality 

score, machine cycle, positions of the SNP in the read, etc.) 

for SNPs not present in dbSNP version 137 (Sherry, 2001). 
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MergeSamFiles from Picard tools was used to merge lanes 

for the same individuals before variant calling by GATK.  

 

Variant Calling 

Variant calling for Romani and Romanian sequences, along with 

Indian and worldwide sequences, were done by GATK. Per-sample 

calling was done with default options and using -- max-

alternate_alleles 20 (to capture all genetic diversity present in the 

populations) by running HaplotypeCaller in GVCF mode on each 

sample’s BAM file. Then, the joint genotyping of the gVCFs 

produced was done by running GenotypeGVCFs on all of them 

together to generate a raw SNP and indel Variant Calling File 

(VCF). 

 

VCF Recalibration 

The raw VCF was filtered using post variant calling recalibration 

steps as listed in GATK “Best Practices”. VariantRecalibration and 

ApplyRecalibration from GATK were used to calculate various 

statistics for novel variants (both for SNPs and indels) and then 

recalibrated according to their needs. We applied the following 

steps:  

SNPs with the flags -an QD -an MQRankSum -

anReadPosRankSum -an FS -an DP -an InbreedingCoeff. All other 

parameters were set to default values:  

- dbsnp version 137: -resource:dbsnp, known=true, 

training=false, truth=false, prior=2.0.  

- hapmap version 3.3: -resource:hapmap, known=false, 

training=true, truth=true, prior=15.0 (International Hapmap3 

Consortium 2010).  

- Omni genotyping array 2.5 million 1000G: -resource:omni, 

known=false, training=true, truth=true, prior=12.0.  

- 1000G phase 1 high confidence: -resource:1000G, 

known=false, training=true, truth=false, prior=10.0. 

Indels with the flags -- maxGaussians 4 -an FS -an 

ReadPosRankSum -an MQRankSum -an DP -an InbreedingCoeff. 

All other parameters were set to default values: 

- Mills 1000G high confidence indels: -resource:mills, 

known=false, training=true, truth=true, prior=12.0.  

- dbSNP version 137: -resource:dbsnp, known=true, 

training=false, truth=false, prior=2.0. 



 

140 

 

Supplementary Note 2. Quality control 
 

Depth of Coverage and Fraction Covered 

Genome coverage for each sample was estimated by 

DepthOfCoverage from GATK to check for bias in the probability 

of calling non-reference alleles due to different coverage between 

samples. The average coverage for autosomal chromosomes ranged 

from 12X to 21X, with an average of 15X (Supplementary Figure 

1).  

 

Sex determination 

We also estimated the coverage for the X and Y chromosomes to 

determine the genetic sex of the samples by DepthOfCoverage from 

GATK. We calculate the ratio of the coverage on the X and Y 

chromosomes with respect to the coverage on autosomal 

chromosomes. In females, we expect the ratio of the coverage on 

the X chromosome and the coverage on the autosomes to be around 

one; whereas in males, it should tend to 0.5 (males only have one 

copy of the X). In males, we expect the ratio of the coverage on the 

Y chromosome and the coverage on the autosomes to tend to 0.5, 

whereas it should be zero in females (males only have one copy of 

the Y, and females none). 

We observed a sample with ambiguous sex determination, sample 

RMN-17 (Supplementary Figure 2). This can indicate 

contamination of the sample and was further analyzed in the 

Estimation of heterozygosity and mitochondrial contamination 

sections. Four Romanian samples were identified as female (RMN-

7, RMN-12, RMN-14, and RMN-31), the rest were classified as 

male. All Romani samples were classified as male.  

 

Estimation of autosomal heterozygosity (inbreeding) 

The inbreeding coefficient (F) was calculated for each sample by 

VCFtools (version 0.1.14) (Danecek et al., 2011). Individuals 

showing an outlier value of heterozygosity or F could be the result 

of contamination. Sample RMN-17 showed an extremely low value 

of F compared to any other sample (Supplementary Figure 3) and 

was removed from the main analysis (Supplementary Table 1). 

 

Estimation of heterozygosity in males (X chromosome) 
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We estimated contamination levels based on the level of X-

chromosome heterozygosity in male samples with ANGSD 

(Korneliussen, Albrechtsen, & Nielsen, 2014). As requested by the 

software we used a list of polymorphic sites and their frequency for 

the following populations from 1000 Genomes Project: CEU (Utah 

Residents (CEPH) with Northern and Western European Ancestry), 

CHB (Han Chinese in Bejing, China), PEL (Peruvians from Lima, 

Peru), YRI (Yoruba in Ibadan, Nigeria), and GHI (Gujarati Indian 

from Houston, Texas). As a recommendation samples with X 

chromosome contamination estimates higher than 2.5% should be 

classified as contaminated. Only RMN-17 appears affected with a 

33-43% of contamination (Supplementary Table 2) and was 

removed from the main analysis (Supplementary Table 1). 

 

Estimation of mtDNA contamination 

Estimation of mitochondrial genome contamination was done by 

Rpackage contamMix (version 1.0-10) (Fu et al., 2013; Johnson, 

2014) to identify mitochondrial heteroplasmy. First, a mitochondrial 

consensus sequence was constructed for each sample with 

SAMtools mpileup (version 1.2) filtering for reads with excessive 

mismatches (-C 50), minimum mapping quality (-q 20) and 

minimum base quality for a base (-Q 20). Then, the mitochondrial 

reads were mapped against the mitochondrial consensus sequence 

using BWA with the -w 50 flag (size of the band width) and the 

output converted to bam format. Second, we generated a multiple 

sequence alignment with the consensus genome and the 

311potential contaminant mitochondrial genomes provided in 

contamMix package using Muscle (version 3.8.31) (Edgar, 2004). 

With these two inputs, the program estimates the proportion of 

endogenous (authentic) mitochondrial genome present in the sample 

(P.AUT). A P.AUT of 0.80 means there is 20% of contamination. A 

sample was classified as possibly contaminated if the proportion of 

reads that have a better match with the consensus sequence 

generated than with any of the 311 mitochondrial sequence 

provided is less than 95%, or if the 95% confidence lower bound of 

that proportion is less than 85%. There are 5 samples showing more 

than 5% of contamination in the mitochondrial genome 

(Supplementary Figure 4) even though only RMN-17 showed any 

sign of contamination in the other analysis. This could be due to 

different amplification of autosomal and mitochondrial reads, and 

samples RMN-17, S19, S25, S43, and S60 were flagged as 
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contaminated. This analysis was repeated adding the mitochondrial 

consensus sequence of RMN-17 to the set of 311 potential 

contaminant mitochondrial genomes as a potential source of 

contamination with the same results (data not shown). Samples 

marked as contaminated were removed from the main analysis 

(Supplementary Table 1). 

Transition versus Transversion Ration 

The transition vs. transversion ratio (Ts/Tv) can indicate whether 

there are problems with the variant calling of the samples. 

VariantEval from GATK was used to calculate Ti/Tv. In humans, 

the expected Ts/Tv ratios in whole-genome sequencing is around 2-

2.1, within the range of our results: Ts/Tv = 2.18 for known variants 

and Ts/Tv = 1.91 for novel variants (Supplementary Table 3). 

Supplementary Note 3. Population analysis 

Relatedness 

Kinship analysis was performed using KING (Manichaikul et al., 

2010) with only bi-allelic autosomal SNPs. We calculated the 

kinship score within the individuals of each population and between 

the individuals belonging to different populations. We did not find 

any individual related to one from another population, but we 

detected several 2nd and 3rd degree relations within populations 

(Supplementary Figure 5). We removed one individual from each of 

the 2nd and 3rd degree relations until we were left with only 

unrelated individuals (Supplementary Table 1).  

Principal component analysis 

We performed a Principal Component Analysis (PCA) using 50 

Romanies and 50 Romanians to detect possible mislabeled 

individuals or some unforeseen bias. We converted the VCF file to 

PED and MAP formats using PLINK 1.9 (Chang et al., 2015) 

keeping only bi-allelic autosomal SNPs, filtering by Minor Allele 

Frequency (MAF) (--maf 0.05), without missing information (--

geno 0) and under Hardy-Weinberg Equilibrium (--hwe 0.000001 

midp). The resulting dataset (5,216,078) was pruned (--indep 50 5 

2). PCA was performed with Eigensoft (version 6.1) (Patterson, 

Price, & Reich, 2006) in the remaining 515,723 SNPs 

(Supplementary Figure 5). The first principal component (PC1) 
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separates a tight cluster formed by most of the Romanian 

individuals from a more spread cluster of Romani individuals. We 

see several admixed individuals that do not clearly belong to one 

cluster or another; and a sample labeled as Romani clustered with 

Romanians (Supplementary Figure 6). Mislabeled samples and 

samples that could not be clearly assigned to a cluster were 

removed from the main analysis (Supplementary Table 1). After 

removing samples indicated in Supplementary Table 1, we were left 

with 40 Romanies and 40 Romanians. We merged these 80 samples 

with worldwide populations from 1000 Genomes Project Phase 3 

(Auton et al., 2015): CEU (Utah Residents (CEPH) with Northern 

and Western European Ancestry), TSI (Toscani in Italia), FIN 

(Finnish in Finland), GBR (British in England and Scotland), IBS 

(Iberian Population in Spain), CHB (Han Chinese in Beijing, 

China), JPT (Japanese in Tokyo, Japan), CHS (Southern Han 

Chinese), CDX (Chinese Dai in Xishuangbanna, China), KHV 

(Kinh in Ho Chi Minh City, Vietnam), GIH (Gujarati Indian from 

Houston, Texas), PJL (Punjabi from Lahore, Pakistan), BEB 

(Bengali from Bangladesh), STU (Sri Lankan Tamil from the UK), 

ITU (Indian Telugu from the UK), YRI (Yoruba in Ibadan, 

Nigeria), LWK (Luhya in Webuye, Kenya), GWD (Gambian in 

Western Divisions in the Gambia), MSL (Mende in Sierra Leone), 

and ESN (Esan in Nigeria). From each population we randomly 

selected 40 unrelated individuals. We also added the following 

populations from continental India: 10 Uttar Pradesh Upper Caste 

Brahmins (UBR), 10 Rajput (RAJ), nine Vellalar (VLR), 10 Irula 

(ILA), nine Birhor (BIR), and 10 Riang (RIA) (Mondal et al. 2016). 

We applied the same filters as before resulting in a dataset of 938 

individuals and 4,574,497 SNPs. We performed a PCA on the 

pruned dataset without the African populations (YRI, LWK, GWD, 

MSL, and ESN) (738 individuals and 467,592 SNPs). Romani are 

differentiated from the rest in PC3 whereas PC4 is created by two 

tribal Indian populations: BIR and ILA (Supplementary Figure 7).  

Admixture analysis 

To infer the ancestral populations of the Romani individuals, we run 

ADMIXTURE (version 1.3.0) (Alexander et al. 2009) in the pruned 

dataset of 738 worldwide individuals. We tested values of K from 2 

to 9 with 5-fold cross-validation (Supplementary Figure 8a). Each 

run was run 25 times with different seeds and the run with the 

lowest CV was selected. The best supported model was K = 4 



 

144 

 

(Supplementary Figure 8b). As we are not including African 

populations, the first split is between Asian and European 

components (K = 2). In K = 3 appears an Indian component that is 

also seen in the Roma. Indian populations show both European and 

Asian components along with the Indian genetic component. The 

Roma populations show their own component in K = 4. In K = 5 we 

see the distinction between the Japanese (JPT) and the Han Chinese 

(CHB and CHS) from other Asian populations. Finnish (FIN) show 

their own component in K = 6. In K = 7 the Indian component is 

separated in tribal (ILA and BIR) and non-tribal. In K = 8, JPT 

separates from the other Asian populations. In K = 9, VLR show 

their own component. No admixture was detected in Romanies 

using the 3-Population test (Supplementary Figure 9). However, the 

f3-statistic will not detect the test population as admixed if after the 

admixture event the population has undergone strong population-

specific drift (Patterson et al., 2012), as is the case with the Roma 

people that suffered a series of bottlenecks (Fraser, 1992).  

 

Supplementary Note 4. Prioritization of candidate 

variants and genes 

 
SNPs in regions that were inferred to be under positive selection 

were annotated with ANNOVAR (Wang, Li, & Hakonarson, 2010) 

in GRCh37 (hg19) using RefSeqGene, dbSNP 147, and CADD 

(Combined Annotation Dependent Depletion) version 13 (Kircher 

et al., 2014). We then identified highly differentiated variants linked 

to the inferred selection signals by comparing those populations that 

share a given selection signal with the population in which the 

signal is absent. That is, for Recent Shared Signals, the Derived 

Allele frequency (DAF) differences between Romanies and Rajput 

and between Romanians and Rajput were computed, and variants 

were subsequently identified as strongly differentiated when the 

corresponding average DAF difference to Rajput was greater than 

0.25. Similarly, for Old Shared Signals the DAF differences 

between Romanies and Romanians and between Rajput and 

Romanians were computed and variants were identified as strongly 

differentiated when the corresponding average DAF difference to 

Romanians was greater than 0.25. Subsequently, those highly 

differentiated SNPs in both Recent and Old Shared Selection 

Signals that are either non-synonymous, annotated as cis-eQTLs in 
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the Genotype-Tissue Expression Project (Release V6p), present 

CADD values greater than 10 (meaning they are predicted to be 

among the 10% most deleterious in the human genome), or that 

appear clustered in exonic/splicing regions/ncRNAs/UTRs were 

classified as potential candidate variants for adaptation. In the 

Recent Shared Signals, 6,452 SNPs out of 28,640 markers are 

highly differentiated and of those, 293 were predicted to be among 

the 10% most deleterious changes in the human genome, 28 were 

non-synonymous changes (including 9 SNPs with CADD values ≥ 

10), 18 implied synonymous changes, and one stopgain change 

(with a CADD value = 40). As for the Old Shared Signals, 1,296 

SNPs out of 7,205 are highly differentiated and of those, 64 were 

predicted to be among the 10% most deleterious changes in the 

human genome, six cause synonymous changes and four imply non-

synonymous changes (three of them with CADD values ≥ 15). 

Whereas in the Recent Shared Signals up to 16 candidate genes 

presented highly differentiated nonsynonymous or stop gain 

variants, in the Old Shared Signals we only detected 4 highly 

differentiated nonsynonymous changes in 4 candidate genes 

(Supplementary Table 4). Overall, three candidate genes related to 

the immune system presented highly differentiated non-

synonymous SNPs with CADD values ≥ 10 in the recent (ELF1, 

SETX) and old (DOCK8) shared signals detected. 
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Supplementary Figures 
 
Supplementary Figure 1. Distribution of the average coverage for autosomal 

chromosomes in a) Roma and b) Romanian samples. Fraction of the genome that 

is covered by at least X reads in c) Roma and d) Romanian samples. 

 

 

a)       b) 

c)      d) 
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Supplementary Figure 2. Ratio of the coverage on the X and Y chromosomes 

with respect to the coverage on autosomal chromosomes for Romani and 

Romanian samples. Sample RMN-17 with ambiguous sex determination is 

labelled. For Romanian samples are classified as female: RMN-7, RMN-12, 

RMN-14, and RMN-31. 
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Supplementary Figure 3. a) Inbreeding coefficient (F) for Romani (ROM) and 

Romanian (RMN) samples. b) Same plot as a) after removing outlier sample 

RMN-17.  

a) 

 
 

b) 
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Supplementary Figure 4. Estimates of mtDNA contamination in Romani and 

Romanian samples. Samples with an estimated percentage of contaminant 

genome over 5% were classified as contaminated.  
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Supplementary Figure 5. Estimated kinship coefficient versus the proportion of 

SNPs with zero Identical-by-state (IBS0) in 50 Romanies (ROM) and 49 

Romanian (RMN; without contaminated sample RMN-17). Blue dashed line 

indicates threshold of 2nd degree relation (Kinship range = [0.0884, 0.177]); grey 

dashed line indicates threshold of 3rd degree relation (Kinship range = [0.0442, 

0.0884]). 
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Supplementary Figure 6. Principal component analysis of 50 Romani (ROM) and 

50 Romanian samples (RMN). Principal component (PC) 1 and PC2. The 

percentage of variance explained by each component is added in the labels. 
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Supplementary Figure 7. Principal component analysis of 40 Romani (ROM) and 

40 Romanian (RMN) samples with 1000 Genomes Project Phase 3 and mainland 

Indian populations from (Mondal et al., 2016). Principal component (PC) 1 and 

PC2 are shown in the main text. PC 3 and PC4. The percentage of variance 

explained by each component is added in the labels. 

 

 
 

 

 



153 

Supplementary Figure 8. a) Admixture plot of 40 Romani (ROM) and 40 

Romanian (RMN) with 1000 Genomes Project Phase 3 and mainland Indian 

populations from (Mondal et al., 2016). a) Admixture plot showing runs of K 

from 2 to 9; b) Cross-validation error of runs with K values from 2 to 9. 

a)
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b)
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Supplementary Figure 9. F3-statistic in the form f3(Romani; European, Indian), 

where European and Indian are populations from the 1000 Genomes Project 

(Auton et al., 2015) and from (Mondal et al., 2016). The analysis was repeated 

indicating that the Romanies were an inbreed population (flag inbreed = YES), 

obtaining the same results (data not shown). 
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Supplementary Figure 10. Distribution of the total length of runs of 

homozygosity (ROHs) classified by length categories in worldwide populations.  
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Supplementary Figure 11. a) Manhattan plot of XP-EHH test between Roma 

compared to Rajput, Romanians compared to Rajput, and the Recent Shared 

Signals (from top to bottom); b) Manhattan plot of XP-EHH test between Roma 

compared to Romanians, Rajput compared to Romanians, and the Old Shared 

Signals. 

a)
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Supplementary Tables 

Supplementary Table 1. Samples removed from the main analysis and reason for 

exclusion. 

Sample Population Reason 

RMN-17 Romanian mtDNA contamination; outlier X heterozygosity; outlier 

autosomal heterozygosity 

S19 Romanian mtDNA contamination 

S25 Romanian mtDNA contamination 

S43 Romanian mtDNA contamination 

S60 Roma mtDNA contamination 

S92 Roma 2nd-degree relation to S9 (Romani) 

S85 Roma 2nd-degree relation to S87 (Romani) 

S71 Roma 2nd-degree relation to S72 (Romani); Admix individual 

S72 Roma 2nd-degree relation to S71; Admix individual 

S79 Roma Discordant self-identification 

S74 Roma 3rd-degree relation to S70 (Romani) 

S21 Roma 3rd-degree relation to S9 and S17 (Romanies) 

S8 Roma 3rd-degree relation to S14 (Romanies) 

S66 Roma Admix individual 

S96 Roma Admix individual 

S100 Roma Admix individual 

RMN-11 Romanian Admix individual 

RMN-14 Romanian Admix individual 

S28 Romanian Admix individual 

RMN-21 Romanian Admix individual 

Supplementary Table 2. Estimation of X-chromosome heterozygosity in male 

samples due to contamination. ML = Maximum likelihood contamination 

estimate; SE = standard error estimated using jackknife. 

Sample Putative source of 

contamination 

ML SE(ML) 

RMN-17 CEU 0.438325 0.003455738 

RMN-17 CHB 0.359364 0.00285054 

RMN-17 GIH 0.392264 0.003129929 
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RMN-17 PEL 0.343802 0.002722593 

RMN-17 YRI 0.335109 0.00266473 

Supplementary Table 3. Transition versus transversion ratio for Roma and 

Romanian individuals. Reported values for all, known and novel variants. Novel 

variants are defined by using dbSNP137. 

Marker nTs nTv Ts/Tv 

All 14516088 6988721 2.08 

Known 9552023 4382784 2.18 

Novel 4964065 2605937 1.91 

Supplementary Table 4. Candidate genes and nonsynonymous candidate variants 

in Shared Selection Signals. Locations are in GRCh37 (hg19). 

Marker Chr Position Ancestral Derived Gene Type 

rs614486 chr1 47138819 T G TEX38 nonsyn 

rs2056899 chr1 47607851 A T CYP4A22 nonsyn 

rs1056820 chr13 41515286 T A ELF1 nonsyn 

rs7799 chr13 41533052 T C ELF1 nonsyn 

rs2287679 chr19 33600764 T C GPATCH1 nonsyn 

rs10416265 chr19 33605300 A G GPATCH1 nonsyn 

rs10421769 chr19 33605312 T C GPATCH1 nonsyn 

rs1402467 chr2 108994808 C G SULT1C4 nonsyn 

rs59900519 chr2 135988127 T A ZRANB3 nonsyn 

rs935615 chr2 135988416 C T ZRANB3 nonsyn 

rs1112438 chr3 39152345 G A TTC21A nonsyn 

rs1453241 chr3 130103709 G A COL6A5 nonsyn 

rs11917356 chr3 130110550 A G COL6A5 nonsyn 

rs12488457 chr3 130116696 A C COL6A5 nonsyn 

rs1497312 chr3 130125116 G C COL6A5 nonsyn 

rs16827497 chr3 130134492 T C COL6A5 nonsyn 

rs3762672 chr3 132218623 G T DNAJC13 nonsyn 

rs34358 chr5 74965122 G A ANKDD1B stopgain 
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rs2307111 chr5 75003678 T C POC5 nonsyn 

rs1550526 chr6 13295515 A C LOC100130357 nonsyn 

rs2305473 chr7 158536267 T C ESYT2 nonsyn 

rs2305475 chr7 158536345 A G ESYT2 nonsyn 

rs2788478 chr7 158672619 A G WDR60 nonsyn 

rs7019716 chr9 26116150 G T LOC100506422 nonsyn 

rs1056899 chr9 135139901 T C SETX nonsyn 

rs2296871 chr9 135173685 T C SETX nonsyn 

rs543573 chr9 135202829 T C SETX nonsyn 

rs1183768 chr9 135203231 C T SETX nonsyn 

rs1185193 chr9 135203409 A C SETX nonsyn 

rs7006 chr10 103368654 T C DPCD nonsyn 

rs9284879 chr3 44284584 G A TOPAZ1 nonsyn 

rs2272044 chr3 44692564 C G ZNF35 nonsyn 

rs529208 chr9 286593 C A DOCK8 nonsyn 
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