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Thesis Advisors: Gonzalo Seco-Granados and José A. López-Salcedo
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Universitat Autònoma de Barcelona

Bellaterra, September 2018





Abstract

Global Navigation Satellite Systems (GNSSs) have become an indispensable tool of daily

life, since they offer us the possibility of accurately knowing our location in real time

and in open-sky environments. Since the advent of these systems, a large number of

successful GNSS applications have emerged. Some examples of these applications are:

car navigation, flight tracking, sport activity tracking and augmented reality games. Due

to the success achieved by GNSS, a great interest is emerging to extend its services to

harsher environments such as urban canyons and indoor scenarios. However, in these

environments GNSS receivers face great difficulties to detect the signals received from

the satellites, which are very weak since they suffer from severe attenuation due to the

presence of obstacles in the propagation path between satellites and the receiver.

This thesis addresses several problems of processing weak GNSS signals, such as the

detection at the acquisition stage, the determination of their signal quality and the time

delay and Doppler frequency estimations. To do so, detection and estimation tools are

used, which are based on the probability theory and statistics. In order to use these tools,

it is necessary to understand the architecture and the signals that GNSSs transmit. For

this reason, the first part of the thesis focuses on describing the main features of two of

the best-known GNSSs, the American GPS and the European Galileo. In addition, we

describe the fundamentals of the receivers and analyze the signals that are implemented

in these systems. After that, we explain the required fundamentals of detection theory,

namely the Neyman-pearson criterion, the Generalized Likelihood Ratio Test and the

Bayesian approach. Then, a review of the state of the art in the detection of GNSS

signals is carried out.

The main contribution of this thesis is provided in the second part, which tackles the

problem of deriving optimal detectors to acquire weak GNSS signals. We have found

that the optimal detector depends on the characteristics of the signal transmitted by the

satellite, which is different depending on the selected constellation. The theoretical and
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ii Abstract

simulated results show that the detectors proposed in this thesis clearly outperform the

detectors currently used in practice. In addition, we conclude when it is better to apply

each detector. Moreover, this thesis addresses the problem of estimating the carrier-to-

noise ratio of weak GNSS signals. This parameter provides essential information since

it is used in all stages of GNSS receivers. In this thesis, we propose new estimators of

the carrier-to-noise ratio, which are very simple to implement in high-sensitivity GNSS

receivers and offer an enhanced accuracy with respect to the estimators proposed in the

literature. Finally, the last part of the thesis focuses on the so-called high-order binary

offset carrier (BOC) signals, a kind of signal that is implemented in the Galileo system.

More precisely, this part is devoted to proposing accurate estimators of time delay and

Doppler frequency. These estimators improve the accuracy of the method usually applied

in practice to estimate these parameters.



Resumen

Los sistemas de radionavegación por satélite (GNSSs) se han convertido en una her-

ramienta indispensable de la vida diaria, ya que nos ofrecen la posibilidad de conocer

de manera precisa nuestra ubicación en tiempo real y en entornos al aire libre. Desde

la aparición de estos sistemas, han surgido una gran cantidad de exitosas aplicaciones

de GNSS. Algunos ejemplos de estas aplicaciones son los siguientes: navegación para

automóviles, rastreo de vuelos, seguimiento de actividad deportiva y juegos de realidad

aumentada. Debido al éxito alcanzado por los sistemas de GNSS, un gran interés está

surgiendo para extender sus servicios a entornos más complicados tales como cañones ur-

banos e interiores. No obstante, en estos entornos los receptores de GNSS tienen grandes

dificultades para poder detectar las señales recibidas desde los satélites, las cuales son

muy débiles ya que sufren una severa atenuación a causa de la presencia de obstáculos en

el camino de propagación entre los satélites y el receptor.

Esta tesis aborda varios problemas del procesamiento de señales de GNSS débiles como

la detección en la etapa de adquisición, la determinación de la calidad de la señal y las

estimaciones de la frecuencia Doppler y el tiempo de retraso. Para ello, se emplean las

herramientas de detección y estimación de la señal, que se basan en teoŕıa de probabilidad

y estad́ıstica. Para poder emplear estas herramientas es necesario tener un conocimiento

sobre la arquitectura y las señales que transmiten los sistemas de GNSS. Por este motivo,

la primera parte de la tesis se centra en describir las principales caracteŕısticas de dos de

los sistemas de GNSS más conocidos el americano GPS y el europeo Galileo. Además,

tratamos los fundamentos de los receptores y analizamos las señales que están implemen-

tadas actualmente en estos sistemas. Después, se explican los fundamentos de teoŕıa de

detección requeridos, que son el Neyman-pearson criterion, el Generalized likelihood Ratio

Test y el Bayesian approach. Más adelante, se realiza una revisión del estado del arte

sobre la detección de señales de GNSS.

Las principales contribuciones de esta tesis ocupan lugar en la segunda parte, las cuales
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tratan de derivar los detectores óptimos para adquirir las señales de GNSS débiles. Hemos

encontrado que el detector óptimo depende de las caracteŕısticas de la señal trasmitida por

el satélite, que puede variar dependiendo de la constelación seleccionada. Los resultados

teóricos y simulados demuestran que los detectores propuestos en esta tesis superan clara-

mente el rendimiento de los detectores utilizados en la práctica actualmente. Además,

se concluye en qué condiciones es mejor utilizar un detector u otro. También, en esta

tesis se aborda el problema de estimar la relación portadora a ruido de las señales de

GNSS débiles. Esta relación aporta información esencial ya que se utiliza en todas las

etapas de los receptores de GNSS. En esta tesis proponemos nuevos estimadores de la

relación portadora a ruido, que son muy sencillos de implementar en receptores de alta

sensibilidad de GNSS y ofrecen una mejora de precisión con respecto a los estimadores

propuestos en la literatura. Finalmente, la última parte de la tesis se centra en las binary

offset carrier (BOC) de alto orden, un tipo de señal que está implementada en el sistema

Galileo. Más precisamente, esta parte está dedicada a proponer estimadores precisos

de tiempo de retardo y frecuencia Doppler. Estos estimadores mejoran la precisión del

método generalmente aplicado en la práctica para estimar estos parámetros.
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Chapter 1

Introduction

Nowadays, Global Navigation Satellite Systems (GNSSs) have become an indispensable

tool, which is able to provide the position of any user at any time under line-of-sight

conditions. Since the emergence of GNSSs, there have appeared many positioning services

in the commercial market. Car navigation, commercial aircraft and sport activity tracking

are some examples of the most successful GNSS applications. The most popular GNSS

corresponds to the Global Positioning System (GPS), which is used by all, or almost all,

GNSS receivers. However, the increase of people’s needs for positioning has led to the

development of new GNSSs, such as GLONASS, Galileo or Compass, in recent years.

The modernization of GNSSs, and particularly of Galileo, has led to the use of Binary

Offset Carrier (BOC) signals, which can give a more precise estimation of the user’s po-

sition than the conventional BPKS modulation in moderately good conditions. However,

one of the drawbacks of BOC modulations is that their correlation function is ambigu-

ous since it consists of several peaks. These modulations allow the receiver to obtain an

extremely accurate position estimation as long as the main correlation peak is detected.

Nevertheless, this peak is really difficult to be tracked, especially in harsh environments

due to the strong attenuation of the received signal.

The combination of several GNSSs and the use of BOC signals can offer an accurate

location estimation of the receiver, achieving the positioning accuracy that most appli-

cations demand in outdoor environments. The excellent performance provided by GNSS

outdoors is attracting the interest in extending their applications to harsh environments,

such as urban canyons, building indoors and forested areas. Nonetheless, in these envi-

ronments, the presence of obstacles in the propagation path between the transmitter and

the receiver causes a high attenuation of the received signal, making the acquisition and

1
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tracking of weak GNSS signals a challenge. In this situation, conventional GNSS receivers

are not able to provide the position of the user since they are designed to work in open-sky

scenarios where the power of the received signal is reasonably high.

This fact has led to develop High-Sensitivity GNSS (HS-GNSS) receivers. These re-

ceivers usually acquire weak signals by coherently accumulating signals for a long period

of time, which provides an additional gain in signal detection. However, this duration

cannot be increased without bounds mainly due to the presence of residual frequency

offset, data bits and phase noise. If reliable signal detection requires a longer signal accu-

mulation than what is possible in a coherent manner, the receiver has to accumulate the

signal in a non-coherent way. This non-coherent accumulation is usually carried out by

the use of Post-Detection Integration (PDI) techniques, which overcome the limitations

of the coherent accumulation, and they allow the receiver to acquire satellites with very

low carrier-to-noise ratio.

Different PDI techniques have been proposed in order to improve the sensitivity of

non-coherent integrations. Nonetheless, the question about which is the best technique

to perform the non-coherent accumulation under practical conditions remains open. This

question does not necessarily has a unique answer, since depending on the characteristics of

the received signal the answer can differ. This motivates the application of advanced signal

processing algorithms and detection theory tools in order to find promising techniques to

acquire weak GNSS signals.

1.1 Motivation and objectives

Weak signals are certainly a dramatic problem for conventional GNSS receivers, which

have a critical impact on their performance. The strong attenuation suffered by the re-

ceived signal causes the signal level to be below the noise level after the correlation process,

thus making the acquisition of the signal a tremendous challenge. Hence, advanced de-

tection techniques, which are usually referred to as PDI techniques, must be proposed in

order to counteract the effect of the noise and to be able to acquire weak GNSS signals. In

light of this, the main purpose of this thesis is to investigate new PDI techniques, which

will allow the GNSS receiver to acquire these signals under practical conditions, using

the minimum amount of received signal. These detection techniques intend to improve

the overall performance of conventional GNSS receivers. The objectives of the research

carried out in this dissertation are the following:
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1. Performing a detection analysis of existing PDI techniques in conditions of weak

GNSS signal acquisition, including the presence of effects that are usually ignored

in the literature such as the presence of phase noise.

2. Derivation of new PDI techniques to detect weak GNSS signals, which provide

a signal detection gain with respect to the techniques proposed in the literature.

This derivation will be performed considering different impairments in the received

signal. To do so, several detection strategies such as the Bayesian approach and the

Generalized Likelihood Ratio Test (GLRT) will be applied.

3. Design of an accurate signal detection threshold for the new PDI techniques pre-

sented in this work. This design requires the knowledge about the distribution of

the metric of a PDI technique, which is usually unknown. The objective is to find

a closed-form expression of the distribution in order to be able to set a detection

threshold for each relevant PDI technique. This threshold permits the receiver to

distinguish whether the GNSS satellite is in view or not for a given probability of

false alarm.

4. Derivation of Carrier-to-Noise Ratio pC{N0q estimators in very weak reception con-

ditions, which are required by many applications of HS-GNSS receivers. These

estimators will be designed for only using the output of a relevant PDI technique

to carry out the estimation.

5. Mitigate the acquisition problems of high-order BOC modulations, especially for

low signal to noise regime. The objective of this part is focused on circumventing

the probability that the main correlation peak is not acquired, also referred to as

false lock probability, under conditions of weak signal reception. In addition to this,

exploiting the energy of the secondary peaks of the high-order BOC correlation to

obtain accurate estimates of the code-delay and Doppler frequency.

1.2 Thesis outline

This section provides a summary of the content of each chapter included in this thesis.

The work in this thesis has been presented in several publications, such as international

conference papers and journals, which are listed below the summary of each chapter.
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Chapter 2

This chapter provides a general overview of GNSS and the fundamentals of signal de-

tection. First of all, a brief historical review of GNSS is carried out. We also explain

the architecture of the system and the characteristics of the signals transmitted by the

satellites. After that, the main stages of the GNSS receivers are described. Finally, we

provide a background on detection theory, which includes the main approaches used to

derive signal detectors for binary hypothesis testing problems.

Chapter 3

This chapter analyses the state of the art about PDI techniques proposed to detect weak

GNSS signals. The advantages and disadvantages of each technique are described and

we specify that PDI techniques have a closed-form expression for their detection and

false alarm probabilities. Moreover, we discuss which is the best option to acquire GNSS

signals whether the use of PDI techniques that combine pilot and data components or

PDI techniques that only use a pilot component. Finally, the most relevant techniques

are benchmarked in the GNSS domain for low C{N0 levels in presence of phase noise in

the receiver clock and frequency offset. The results of this chapter have been published

in the following international conference papers:

• E. Domı́nguez, A. Pousinho, P. Boto, D. Gomez-Casco, S. Locubiche, G. Seco-

Granados, J. A. Lopez-Salcedo, H. Fragner, F. Zangerl, O. Peña, D. Jimenez-Baños,

“Performance Evaluation of High Sensitivity GNSS Techniques in Indoor, Urban and

Space Environments”, Proc. ION GNSS+, Sep. 12 2016.

• D. Gomez-Casco, J. A. Lopez-Salcedo, G. Seco-Granados, “Generalized Integra-

tion Techniques for High-Sensitivity GNSS Receivers Affected by Oscillator Phase

Noise”, Proc. IEEE Statistical Signal Processing Workshop (SSP), Jun. 27 2016.

Chapter 4

This chapter tackles the problem of finding the optimal PDI technique to detect weak

signals with time-varying phase. The first part of the chapter derives promising detectors

that are robust against the presence of data bits and variations in the carrier phase by

using the GLRT and the Bayesian approach. From these results, we perform a statistical
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characterization of the two most relevant proposed techniques, which leads to a closed-

form expression of their detection and false alarm probabilities. Finally, simulation results

present a performance comparison between the PDI techniques proposed in the literature

and those presented in this chapter for signals with time-varying phase. The results of

this chapter are summarized in the following papers:

• D. Gomez-Casco, J. A. Lopez-Salcedo, G. Seco-Granados, “Statistical Characteri-

zation of the Optimal Detector for a Signal with Time-Varying Phase Based on the

Edgeworth Series”, Proc. IEEE Statistical Signal Processing Workshop (SSP), Jun.

2018.

• D. Gomez-Casco, J. A. Lopez-Salcedo, G. Seco-Granados, “Optimal Fractional Non-

Coherent Detector for High-Sensitivity GNSS Receivers Robust against Residual

Frequency Offset and Unknown Bits”, Proc. IEEE Workshop on Positioning, Nav-

igation and Communications (WPNC), Oct. 25 2017.

Chapter 5

This chapter aims at deriving the optimal non-coherent detector for the reacquisition of

weak GNSS signals in the presence of bits and phase uncertainty. Two solutions are de-

rived based on the use of two detection frameworks: the Bayesian approach and the GLRT.

We also derive approximate detectors of reduced computation complexity and without no-

ticeable performance degradation. Simulation results reveal a clear improvement of the

detection probability for the proposed techniques with respect to the conventional de-

tectors implemented in HS-GNSS receivers to acquire weak GNSS signals. Finally, the

chapter draws conclusions on which is the best technique to reacquire weak GNSS signals

in practice considering a trade-off between performance and complexity. The results of

this chapter are summarized in one submitted journal paper:

• D. Gomez-Casco, J. A. Lopez-Salcedo, G. Seco-Granados,“Optimal Post-Detection

Integration Technique for the Reacquisition of Weak GNSS Signals”, submitted to

IEEE Transactions on Aerospace and Electronic Systems , May 2018.
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Chapter 6

This chapter addresses the problem of estimating the C{N0 in weak signal conditions.

There are several environments, such as forested areas, indoor buildings and urban

canyons, where HS-GNSS receivers are expected to work under these reception conditions.

The acquisition of weak signals from the satellites requires the use of PDI techniques to

accumulate enough energy to detect them. However, due to the attenuation suffered by

these signals, estimating their C{N0 becomes a challenge. Measurements of C{N0 are

really important in many applications of HS-GNSS receivers, such as the determination

of a detection threshold or the mitigation of near-far problems. For this reason, different

techniques have been proposed in the literature to estimate the C{N0, but they only work

properly in the high C{N0 region where the coherent integration is enough to acquire the

satellites. In this chapter, we derive four C{N0 estimators that are specially designed for

HS-GNSS snapshot receivers and only use the output of a PDI technique to perform the

estimation. We consider four PDI techniques and we obtain the corresponding C{N0 es-

timator for each one of them. Our performance analysis shows a significant advantage of

the proposed estimators with respect to other C{N0 estimators available in the literature

in terms of estimation accuracy and computational resources. The results of this chapter

are summarized in one journal paper:

• D. Gomez-Casco, J. A. Lopez-Salcedo, G. Seco-Granados, “C{N0 Estimators for

High-Sensitivity Snapshot GNSS receivers”, GPS solutions, (accepted for publica-

tion on Sep. 2018).

Chapter 7

This chapter deals with the analysis of two different problems of high-order BOC signals.

Firstly, we tackle the one of mitigating the false lock probability of weak high-order BOC

signals in the acquisition stage. To do so, we propose to use a PDI technique to acquire

the weak GNSS signal and after that, applying two code-delay estimators to solve the

ambiguity of the secondary peaks of BOC signals. Secondly, we address the problem

of refining the Doppler frequency estimation provided in the acquisition stage for high-

order BOC signals. In this part, we propose a new technique, referred to as multilag

least squares estimator, which improves the performance of a conventional least squares

estimator by exploiting the autocorrelation shape of high-order BOC signals. The results

of this chapter are summarized in the following papers:
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• S. Locubiche, D. Gomez-Casco, A. Gusi, J. A. Lopez-Salcedo, G. Seco-Granados, J.

A. Garcia-Molina, “Positioning Performance Analysis of High-Order BOC Signals

in Advanced Multi-constellation High-Sensitivity GNSS Receivers”, Proc. 6th In-

ternational Colloquium on Scientific and Fundamental Aspects of GNSS / Galileo,

Oct. 2017

• D. Gomez-Casco, E. S. Lohan, J. A. Lopez-Salcedo, G. Seco-Granados,“Multilag

Frequency Estimation for High-Order BOC Signals in the Acquisition Stage”,

Proc. 8th ESA Workshop on Satellite Navigation User Equipment Technologies

(NAVITEC), Dec. 15 2016

• D. Gomez-Casco, J. A. Garcia-Molina, A. Gusi-Amigo, M. Crisci, J. A. Lopez-

Salcedo, G. Seco-Granados, “Mitigation of False Locks in the Acquisition of High-

Order BOC Signals in HS-GNSS Receivers”,Proc. International Conference on Lo-

calization and GNSS (ICL-GNSS), Jun. 28 2016





Chapter 2

Fundamentals of detection and

GNSS

2.1 Fundamentals of GNSS

2.1.1 Introduction

Positioning is defined as the process of determining the geographical position of a device

such as a mobile phone, laptop or tablet computer, or tracking equipment. Nowadays,

positioning has become an indispensable tool for society. Positioning systems based on

satellite transmissions are the ones that have an important role at the present time [SG12].

By far, the most popular GNSS is the GPS. The GPS satellite radionavigation system

is certainly one of the most widespread and currently used systems. Its origin comes from

the interest that arose among several governmental organizations in the United States in

the 1960s to develop a positioning system with high precision and global coverage.

The success achieved by GPS to get the user’s location in outdoor environments has in-

spired European or Asian institutions to develop similar GNSSs [Mis06, Kap05]. The first

of these systems was GLONASS, which was developed in the late 1970s. Later, Europe

proposed the Galileo system, which was planned to be a global system fully compatible

with GPS, but independent from it. This system is implementing the so-called BOC

signals, which could offer better accuracy to estimate the user’s position than the BPSK

signal implemented in the GPS system. Other new systems such as Compass/Beidou

[Bei12] or the Indian Regional satellite system [Har15] are being developed nowadays in

9
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China and India, respectively. These systems are implementing signals quite similar to

the Galileo and GPS systems. Despite the fact that there are several GNSSs, we only

focus on the Galileo and GPS, which are two of the most representative systems and they

allow us to address all of the problems analysed in this thesis.

The aim of these GNSSs is to allow users to obtain an accurate estimate of their

Position, Velocity and Time (PVT) anytime, anywhere under line-of-sight conditions.

This estimation is carried out by using the received signals from the different satellites

orbiting around the Earth. In the following subsections, we explain the basic GNSS

concepts, which deal with the architecture, different kind signals and the stages of a

HS-GNSS receiver.

2.1.2 GNSS architecture

The architecture of the GNSS is divided into three different segments as follows [Mis06]:

• The GNSS space segment: consists of the system constellation of satellites, which is

a group of similar satellites that are synchronized to orbit the Earth. These satellites

are in charge of broadcasting radionavigation signals. Table 2.1 shows characteristic

parameters of the GPS and Galileo space segments.

GPS Galileo

Country United States Europe

Number of satellites 24 30

Orbital planes 6 3

Altitude (Km) 20200 23222

Table 2.1: Space segment of GPS and Galileo systems.

• The ground control segment is focused on monitoring and controlling the satellite

constellation. More precisely, the main functionalities of this segment are the follow-

ing: monitoring the navigation signals of the satellites, resolving anomalies of the

satellites and update navigation messages including the satellite clock corrections

and ephemerides.

• The user segment deals with the set of GNSS receivers, which can be divided into

civilian and military users. On the one hand, the civilian users have only access to
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the open service signals that broadcast the different satellites. On the other hand,

the military users can utilize the open service signals and restricted-access signals

that are though to provide a more accurate estimation of the user’s position.

2.1.3 GNSS signals

Galileo and GPS satellites broadcast the GNSS signals using different signal modulation

and carrier frequencies: E1/L1 (1575.42 MHz), L2 (1227.60 MHz), E5a/L5 (1176.45 MHz)

and E6 (1278.75 MHz). More details about the frequency bands and the transmitted

signals are included in [Nav14b].

In this thesis, we are only focused on three signals that are used in the E1/L1 frequency

band since they are a representative case of different kinds of GNSS modulations. These

modulations correspond to the BPSK, which is implemented in the GPS L1 signal, the

Composite Binary Offset Carrier (CBOC), which introduced in the Galileo E1BC signal,

and a high-order BOC signal that is included in the Galileo system.

2.1.3.1 GPS L1 signal

The open service signal implemented in the GPS L1 band utilizes a simple BPSK mod-

ulation, which uses a series of carriers with binary amplitudes 1 and -1. This signal

transmitted by the pth satellite, is given by the following expression [Bor07]:

sL1ptq “
a

Ppbpptqcpptq cosp2πfL1t` θq, (2.1)

where Pp is the signal power, bpptq are the navigation data bits, cpptq is the pseudo random

noise code and cosp2πfL1t ` θq is the carrier that modulates the GPS signal in the L1

frequency band. The cpptq codes are often referred to as spreading codes. These codes

consist of bit sequences, which are usually called chips to denote that they do not carry any

information. The chip period (Tc) is much smaller than the bit period of the navigation

message bpptq. More precisely, for the case of the former it is 1 / 1.023 ms, whereas the

latter has a period of 20 ms.

Each satellite has a specific cpptq code that is different of the rest of the codes trans-

mitted by the other satellites. All of these codes consist of 1023 chips, which are formed

from a binary sequence that can take values of 1 or -1. They are transmitted periodically

so that a complete sequence has a time period of 1 ms. Taking into account that the
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Figure 2.1: Autocorrelation function of a cpptq code.

transmitted bits in the navigation message bpptq have a duration of 20 ms, a navigation

bit contains 20 consecutive periods of the code.

The cpptq codes are deterministic sequences based on Gold codes, which have similar

correlation properties to the white noise. These properties cause that the autocorrelation

function of one of these codes, denoted by Rcpptqpτq, presents a maximum value, when

the two codes are synchronized, whereas for the rest of values the magnitudes of the

autocorrelation are really small. Specifically, the maximum value of the normalized au-

tocorrelation function, that is, Rcpptqp0q corresponds to 1 and the other correlation lags

can have a maximum magnitude of ˘65/1023. An example of the autocorrelation of a

cpptq code is illustrated in Figure 2.1. It is worth mentioning that the autocorrelation

Rcpptqpτq is unambiguous in the range between -1 and 1 chip, since it consists of a simple

triangle. However, when the cross-correlation between two different cpptq codes is com-

puted, small values of correlation are obtained, which do not surpass the magnitude of

˘65/1023. Figure 2.2 illustrates this phenomenon.

The GPS technology is known as Code-Division Multiple Access (CDMA), which

exploits the properties of the autocorrelation function of the pseudo-random sequences

cpptq codes. These codes permit the receiver to obtain good accuracy in the estimates of

the distances between the satellites and the users. This occurs because the cpptq codes
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Figure 2.2: Cross-correlation function between two cpptq codes.

are almost orthogonal to each other, thus allowing the receiver to distinguish different

satellites simultaneously, even though they use the same carrier frequency.

The navigation message bpptq contains the required information so that one user can

know the position of the different satellites and the transmission times of the received

signal. In addition, it provides useful information to make the acquisition of the satellites

easier. This information is broadcast each 50 bits per second, which corresponds to the

inverse of the bit period that is 20 ms.

The Power Spectral Density (PSD) of this open service signal considering that its

autocorrelation function is only a triangle can be expressed by following expression:

PSDL1pfq “ TcsincpTcfq
2, (2.2)

where sincpxq “ sinpπxq{pπxq. Much of the power of this signal is concentrated between

´1{Tc and 1{Tc, as it is shown in Figure 2.3. The BPSK modulation concentrates prac-

tically all of the energy at baseband. This is in contrast to the BOC signals that we will

see in the next subsection, which are intended to improve the accuracy that BPSK signals

can obtain in terms of positioning accuracy.
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Figure 2.3: Power Density Spectral of the GPS L1 signal.

2.1.3.2 Fundamentals of BOC signals

BOC signals are based on multiplying a pseudo-random code with a sub-carrier, which

is formed by the sign of a cosine or sine function. This multiplication leads to the

so-called cosine-phased BOC or sine-phased signals, denoted by BOCcospmB, nBq or

BOCsinpmB, nBq, respectively, as

BOCcospmB, nBq “ cpptqsignrcosp2πfsubtqs

BOCsinpmB, nBq “ cpptqsignrsinp2πfsubtqs, (2.3)

where the sign[ ] is a function that returns a sign of its argument, fsub is the sub-carrier

frequency, mB “ fsub{1.023e6, nB “ fc{1.023e6, and fc is the chip frequency. Although

there are two kind of BOC signals, the same advantages and inconveniences apply to

both of them. The main advantage of the BOC signals with respect to BPSK signals is

that they can provide a significant enhancement in terms of positioning accuracy. This

enhancement is due to the increase of the Gabor bandwidth, which leads to a reduction of

the Cramér-Rao bound (CRB) of the time-delay estimation. The CRB of the time-delay

can be expressed as [Kay98, Nur16]:

σ2
τ ě

1

SNR ¨GB2 , (2.4)
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Spreading modulation Number of positive and negative peaks

BOCsinpmB, nBq 2KBOC ´ 1

BOCcospmB, nBq 2KBOC ` 1

Table 2.2: Number of peaks of the autocorrelation function of BOC signals.

where SNR corresponds to the Signal-to-Noise Ratio and GB represents the Gabor band-

width as

GB2
“

ş8

´8
p2πfq2PSDpfqdf
ş8

´8
PSDpfqdf

, (2.5)

where PSDpfq is the power spectral density of the signal. The Gabor bandwidth is

inversely proportional to the CRB. Hence, the larger the Gabor bandwidth, the more

accurate the estimation of the time-delay between the receiver and the satellite can be.

This is the phenomenon that BOC signals exploit. The idea of these signals is to spread

the spectrum so that the signal power is concentrated on the sides of the spectrum to

obtain a large Gabor bandwidth.

Nevertheless, BOC signals present some drawbacks. The most important one is the

presence of secondary peaks in the autocorrelation function in the range of -1 and 1

chip. This causes that the autocorrelation of BOC signals is ambiguous. The existence of

secondary peaks is usually an important concern since they hamper the identification of

the main peak of the correlation function, particularly in scenarios with low C{N0 such

as deep urban canyons. The detection of a secondary peak, also referred to as a false

lock, must be circumvented since a positioning bias of some meters appears when the

time-delay is estimated from a secondary peak.

The number of peaks of a BOC autocorrelation function depends basically on the

parameters mB, nB, and if the signal is BOCcos or BOCsin [Bet15]. This number is

directly proportional to the BOC modulation order, which is defined as:

KBOC “
2mB

nB
. (2.6)

Table 2.2 indicates the number of positive and negative peaks of BOC signals. The BOCcos

autocorrelation contains two more peaks than the BOCsin for the same values of mB and

nB. The normalized PSD of BOC signals are also affected by the BOC modulation order

KBOC and the kind of BOC used. The PSD of a BOCsinpmB, nBq modulation for an even
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KBOC is

PSDsinpfq “
sinc2

´

πf
fc

¯

tan2
´

πf
2fs

¯

fc
, (2.7)

and for an odd KBOC it is

PSDsinpfq “
fc cos2

´

πf
fc

¯

tan2
´

πf
2fs

¯

pπfq2
. (2.8)

The PSD of a BOCcospmB, nBq modulation for an even KBOC is given by

PSDcospfq “
4sinc2

´

πf
fc

¯

sin4
´

πf
4fs

¯

cos2
´

πf
2fs

¯

fc
, (2.9)

and for an odd KBOC it is defined as

PSDcospfq “
4fc cos2

´

πf
fc

¯

sin4
´

πf
4fs

¯

pπfq2 cos2
´

πf
2fs

¯ . (2.10)

2.1.3.3 Galileo E1BC signal

The E1 open service signal uses a CBOC modulation, which is a particular implementation

of the MBOC (Multiplexed BOC) modulation [Nav14a, Com11, AR08]. Specifically, this

signal utilizes a MBOC(6,1,1/11), which is the result of combining a narrowband signal

BOCsin(1,1) with a wideband signal BOCsin(6,1) using a different power for each signal.

The whole broadcasted Galileo E1BC signal consists of two different signal compo-

nents: the data component E1B and the pilot component E1C. On the one hand, the

E1C signal is in charge of transmitting the signal that allows the receiver to obtain the

estimation of the time-delay between the satellite and the receiver. On the other hand,

the E1B signal contains the navigation message. The Galileo E1BC signal can be defined

in baseband for one satellite by the following expression:

SE1BCptq “
1
?

2
pE1BptqpαE1signrsinp2πfatqs ` βE1signrsinp2πfbtqsq

´E1CptqpαE1signrsinp2πfatqs ´ βE1signrsinp2πfbtqsqq , (2.11)

where fa “ 1.023 MHz and fb “ 6.138 MHz being the subcarrier frequencies, αE1 “

b

10
11

and βE1 “

b

1
11

. The E1Cptq and E1Bptq are different codes, both being deterministic



2.1. Fundamentals of GNSS 17

Correlation lag (chips)
-1 -0.5 0 0.5 1

A
bs

ol
ut

e 
va

lu
e 

of
 th

e 
au

to
co

rr
el

at
io

n 
fu

nc
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.4: Absolute value of the autocorrelation of a BOCsin(1,1).

sequences that provide good correlation properties to estimate the time-delay of the re-

ceived signal, similarly to the PRN codes of the GPS L1 signal. Both E1Bptq and E1Cptq

codes have a period of 4 ms and a chip frequency of fc “ 1.023 MHz. Each E1Cptq code

is multiplied by one bit of a secondary code. The secondary code consists of 25 known

bits that are periodically transmitted taking a total duration of 100 ms. The advantage

of using a known secondary code is that the receiver can easily increase the coherent inte-

gration time beyond the duration of the pilot bit by using a data-aided technique [SG12],

which is very beneficial to obtain a gain in signal detection. This is in contrast to the

GPS L1 signal where the navigation data bits are transmitted together with the PRN

used to estimate the time-delay and each 20 ms there are unknown bits, which limits the

coherent integration duration.

As previously said, the SE1BCptq expressed in (2.11) is a MBOC(6,1,1/11) modulation,

which combines the BOCsin(1,1) and BOCsin(6,1) modulations. However, much of the

energy of this signal is concentrated in the BOCsin(1,1). The autocorrelation of this

signal is ambiguous since it consists of three peaks in the range from -1 chip to 1 chip as it

is shown in Figure 2.4. Although the Galileo E1BC signal contains two BOC modulations,

they are independent from each other, which means that it is not necessary to use the

combination of BOC signals to acquire the received signal. For instance, to avoid the

complexity of generating two BOC signals in the local replica, the signal is often acquired
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Figure 2.5: Comparison among the absolute value of the autocorrelation of the

MBOC(6,1,1/11), BOCsin(1,1), and BPSK modulations.

only using the BOCsin(1,1) signal. The fundamental idea of the MBOC signal is to make

the main correlation peak narrower so that the time-delay estimation was more accurate

without increasing the number of secondary peaks of the autocorrelation function. This

effect can be seen in Figure 2.5, which illustrates a comparison among the absolute value of

the autocorrelation of the MBOC(6,1,1/11), BOCsin(1,1), and BPSK modulations. The

disadvantages of the MBOC signal are that they require a larger sampling frequency

value to guarantee the Nyquist criterion, and that the local replica generated to acquire

the satellite signal is more complex. This signal is often implemented at the tracking

stage, whose aim is to get an accurate estimation of the time-delay.

The PSD of MBOC(6,1,1/11), BOCsin(1,1), and BPSK modulations are illustrated

in Figure 2.6. As anticipated, the BOC and MBOC signals utilize a wider spectrum

than the BPSK modulation. The former ones split the spectrum of the signal, dividing

the power between lower and upper side lobes. This causes that the magnitude of the

Gabor bandwidth of these signals is larger, which leads to a reduction of the CRB of the

time-delay with respect to the conventional BPSK modulation. This is the reason why

the BOC and MBOC signals can exhibit quite good accuracy in estimating the user’s

position, outperforming the accuracy offered by the GPS L1 signal.
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Figure 2.6: Comparison among the PSD of the autocorrelation of MBOC(6,1,1/11),

BOCsin(1,1), and BPSK modulations.

2.1.3.4 High-order BOC signals

High-order BOC signals are a particular case of BOC signals, which have a relative large

BOC modulation order KBOC [Wu14]. An example of high-order BOC signal is the

BOCcosp15, 2.5q, which is being implemented in the E1 band of Galileo. The details of

this Galileo signal are unknown for civilian users since it is restricted to military users.

For this reason, in this section, we are going to focus only on the high-level properties of

the BOCcosp15, 2.5q modulation.

The autocorrelation of this signal, illustrated in Figures 2.7 and 2.8, includes a very

multi-peaked characteristic, which some of these peaks present a similar magnitude with

one another. More precisely, the correlation of these signal contains 25 peaks taking into

account the positive and negative peaks. Since many peaks are of similar amplitude and

are very close one another in time domain, it is very easy to erroneously track a secondary

peak, and therefore provide a bias position. However, when the main correlation peak

is tracked, this estimation is extraordinary accurate since the main peak of this signal

is much narrower than the correlation peak of a BPSK signal. The problem of tracking

a secondary peak is known in the literature as a false lock. The false lock problem can

easily be circumvented in good conditions of signal reception. Nonetheless, it becomes
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Figure 2.7: Autocorrelation of a BOCcos(15,2.5).
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Figure 2.8: Absolute value of the autocorrelation of a BOCcos(15,2.5).

much more difficult to solve in harsh environments such as indoor or urban canyons due

to the strong attenuation of the received signal.
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Figure 2.9: Comparison among the PSD of the BPSK, MBOCp6, 1, 1{11q and

BOCcosp15, 2.5q signals.

Figure 2.9 shows the comparison among the PSD of the BPSK, MBOCp6, 1, 1{11q

and BOCcosp15, 2.5q signals. The BOCcosp15, 2.5q signal concentrates practically all of the

energy on the carrier of 15 MHz. This signal has by far the widest spectrum. It is for this

reason that the estimation of the time-delay can be very accurate. Nevertheless, apart

from the disadvantage of the false locks, this kind of signals requires using a large frequency

sampling to accomplish the Nyquist theorem. Typical values of sampling frequencies for

this signal are usually between 40 and 60 MHz [Blu07b, O’D09]. These values of sampling

frequency are an impairment for HS-GNSS receivers since they have to process a larger

number of samples to obtain the position of the user, which leads to a greater complexity

in terms of computational load.

2.1.4 GNSS receiver

GNSS receivers are mainly in charge of determining the user’s location based on the

different received signals coming from the satellites in view. The main stages of a standard

GNSS receiver are illustrated in Figure 2.10, which consists of 4 stages: the front-end,

acquisition, tracking and PVT module. Next subsections explain with more detail these

stages.



22 Chapter 2. Fundamentals of detection and GNSS
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User time
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Figure 2.10: General architecture of standard GNSS receivers.

2.1.4.1 Front-end

The front-end module carries out the baseband conversion process of the band-pass signal

captured by the antenna. Basically, it consists of a low-noise amplification, one or several

intermediate frequency conversion stages, and an analog-to-digital conversion.

Once the received GNSS signal has been properly conditioned by the front-end, it can

be generically expressed in baseband form, assuming that there is only one subcarrier, in

discrete time as follows [Jay13, Wei06]:

rpnTsq “
Q
ÿ

h“1

a

PhbhpnTs ´ τhqchpnTs ´ τhqshpnTs ´ τhq

ˆ ejp2πfd,hnTs`θ̃hq ` ω̃pnTsq, (2.12)

where Q is the number of broadcasting satellites, Ts “ 1{fs is the sampling time, fs is

the sampling frequency, Ph is the received signal power of the hth satellite, chpnTs ´ τhq

is the pseudo random noise code, bhpnTs ´ τhq is the unknown navigation data message,

shpnTs´ τhq is the subcarrier (if shpnTs´ τhq “ 1, there is no subcarrier and the received

signal is a simple BPSK signal), τh is the time-delay from the hth satellite to the receiver,

fd,h is the Doppler frequency because of the movement of the satellite and the clock

receiver, θ̃h is the phase of the received signal and ω̃pnTsq is the complex Additive White

Gaussian Noise (AWGN).

2.1.4.2 Acquisition stage

The acquisition stage is the part that is explained in more detail since most of the content

of this thesis is focused on this stage. The main purpose of the acquisition stage is to detect

the different satellites currently in view and providing a coarse estimation of the time-delay

and Doppler frequency of the detected satellites. This process is carried out by correlating

the received signal rpnTsq with all of the Q local replicas of the transmitted signals with
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Figure 2.11: Acquisition process of GNSS receivers.

trial values of Doppler frequency and time-delay. However, in this work, we perform

this process only for the qth satellite because it is enough to analyze the performance of

detection problems. As there is no risk of confusion, we remove this subscript to simplify

the notation. Figure 2.11 represents the acquisition process of GNSS receivers. The local

replica of the qth satellite with different trial values of the time-delay τ and the Doppler

frequency fd as τ̃ and f̃d, respectively, is written as

gpnTsq “ spnTs ´ τ̃qcpnTs ´ τ̃qe
jp2πf̃dnTsq. (2.13)

The trial values f̃d and τ̃ evaluate all the possible values of Doppler frequency and time-

delay performing a bidimensional search in order try to acquire the satellites. The circular

correlation between gpnTsq and rpnTsq is called CAF [Pre09], which assuming that there

no exist bit transition is given by

xpτ̃ , f̃dq “
Mch
ÿ

n“1

rpnTsqcpnTs ´ τ̃kqspnTs ´ τ̃qbpnTs ´ τ̃qqe
jp2πf̃dnTsq

“ dÃejφsincp∆fTcohqBp∆τq ` ω “ Adejφ ` ω, (2.14)

where A is the amplitude obtained from computing the CAF with phase φ, d is the value of

the data navigation bits taking value of 1 or -1, ∆τ “ τ´τ̃ is the time-delay offset between
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Figure 2.12: Illustrative bi-dimensional search space of frequency and time-delay in ab-

sence of noise.

the local replica and the received GNSS signal, ∆f “ fd ´ f̃d is the residual frequency

offset, Tcoh is the coherent integration time, Bp∆τq is the circular autocorrelation function

of a GNSS signal, Mch is the number of samples integrated coherently and ω is AWGN after

computing the CAF with zero-mean and variance σ2. The sincp∆fTcohq term provides

the losses of coherent integration because of the residual Doppler frequency between the

received signal and the local replica.

The range of the bi-dimensional search depends on if the receiver has assisted data

about the uncertainties of Doppler frequency and the time-delay. Conventional GNSS

receivers without any a priori information about these uncertainties must perform a bi-

dimensional search from -5 KHz to 5 KHz in the frequency domain and check all the

different chips of the code. An example of the absolute value of a CAF in absence of noise

and without any assisted data is illustrated in Figure 2.12. However, if the receiver has

assisted data about the Doppler of the satellites in view, the search can be reduced to 1

kHz around this information [VD09].

The CAF is mainly affected by the signal transmitted by the satellite and the Tcoh.

In time domain, the CAF is given by the shape of the autocorrelation of the received

signal. In frequency domain, the CAF is always a sinc function, but its width depends
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Figure 2.13: Illustrative CAF of a BOCsinp1, 1q signal.

Figure 2.14: Illustrative CAF of a BOCcosp15, 2.5q signal.

on the Tcoh as shown in (2.14). This effect can be seen in Figures 2.13 and 2.14, which

shows the CAF of a BOCsinp1, 1q and BOCcosp15, 2.5q using a Tcoh of 4 ms and 10 ms,

respectively. In any case, the process to acquire the satellite is always based on computing
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the CAF independently from the modulation employed. After performing the CAF, its

absolute value is computed to remove the phase information. In order to detect whether

the satellite is in view or not, the maximum of the absolute CAF value is compared

to a signal detection threshold. The satellite is considered absent if the CAF does not

exceed the detection threshold. On the contrary, if the CAF surpasses the signal detection

threshold the satellite is considered in view and a coarse estimation of the time-delay and

Doppler frequency are provided.

In general, independently from the signal to be acquired, the objective is to find the

tentative values where the correlation peak is located in the CAF. To do so, there are

three main acquisition strategies to compare the CAF with the detection threshold:

• Serial search: Each trial value of time-delay and Doppler frequency is compared

individually to a detection threshold.

• Hybrid search: A group of trial values of time-delay and Doppler frequency (e.g. a

row/column of the CAF) are compared to a given detection threshold.

• Parallel search: The maximum value of all of the tentative values is compared to a

given detection threshold.

Most HS-GNSS receivers compute the CAF in the frequency domain by applying FFT-

based techniques, since it is more efficient in terms of computational load. The most

common way to carry out this process is by computing several circular correlations in

the frequency domain. One correlation is computed for each tentative value of Doppler

frequency. The result of each circular correlation gives all CAF values for the tested

Doppler frequency. This fact leads most HS-GNSS receivers to use the hybrid or the

parallel acquisition. Typically, in both acquisition searches, the accuracy of the time-delay

estimation is usually given by the sampling frequency used at the receiver. The error

of the estimation of Doppler frequency is comprised between the range r´fst{2, fst{2s,

where fst is the search step of Doppler frequency used in the local replica to compute

the CAF. The step fst is chosen taking into account a trade-off between complexity in

terms of computational burden at the receiver and accuracy in the estimation of Doppler

frequency. A typical value of fst to mitigate the coherent integration losses is 1{p2Tcohq.

The CAF usually allows the receiver to acquire the satellites in view in good conditions

of signal reception such as open sky environments. Nevertheless, it is not usually enough

to detect the presence of satellites in harsh environments such as indoor or urban since the

received signal arrives too attenuated. This degradation is due to the presence of obstacles
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in the working environment such as trees, walls and glass causing that the signal level after

computing the CAF is below the noise level. The optimal way to obtain some benefit

in terms of signal detection consists in extending Tcoh, which boils down to summing

several CAFs computed in consecutive time instants. The main reason why the coherent

integration provides a great gain is because the signal component of a few CAFs is strongly

correlated, while the thermal noise component is completely uncorrelated. Thus, the sum

of several CAFs allows the receiver to accumulate enough energy to detect the signal.

Despite the fact that the coherent integration offers a considerable gain in terms of

signal detection, it cannot be extended without bounds since several impairments that

affect the carrier phase of the received signal limit its length. These impairments are

mainly the frequency offset, the navigation data bits and the phase noise. If long coherent

integration times are implemented, the impairments reduce or cancel the improvement

obtained by the coherent integration. This is because the signal component suffers some

variations in the carrier phase causing an attenuation of the signal component in the CAF.

The existence of these impairments has originated the need to use a different strategy to

be able to detect weak signals surpassing the limitations of the coherent integration. This

strategy is based on combining several consecutive CAFs using a non-linear function as

Zxpxq “ f

˜

Nnc
ÿ

k“1

xkpτ̃ , f̃dq

¸

(2.15)

where f is some non-linear function, the sub-index k indicates the time instant where

the CAF has been calculated, Nnc is the number of non-coherent correlation and x is

a column vector containing the different CAFs. The non-linear combination of several

CAFs is typically called non-coherent correlation or PDI technique. The main advantage

of PDI techniques is that they are robust against most of the impairments that limit the

duration of the coherent integration. Therefore, they have the capability of lengthening

the total integration time beyond the limits of the coherent integration time. The price

to be paid for using the PDI techniques is some losses in terms of signal detection with

respect to the use of coherent integration in ideal conditions (in absence of frequency

offsets, phase noise and data bits). Nevertheless, PDI techniques become the only choice

that HS-GNSS receivers have to detect weak GNSS signals. The approach used by HS-

GNSS receivers to acquire weak GNSS signals usually involves combining a long Tcoh with

few Nnc using a PDI technique. By doing so, HS-GNSS receivers can detect weak signals

using the minimum total integration time, by combining the sum of the time used for

coherent and non-coherent integration. When PDI techniques are required to perform

the acquisition of the satellite signal, the output of the PDI technique is compared to
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the detection threshold to decide if the satellite is present or not. More details about the

definition of a detection threshold can be found in Section 2.2.2.

However, the problem of determining the best PDI technique to acquire weak GNSS

signals under real-life working conditions still remains open. As a matter of fact, this is the

main point that this thesis intends to address. Moreover, this question may have several

answers, which depend on the characteristics of the transmitted signal. For instance, the

optimal PDI technique would be different if the transmitted signal contains unknown data

bits or not, or whether the CAF contains a frequency offset or not. As will be shown later,

several theoretical derivations are carried out in this thesis in order to determine the best

PDI technique in each case.

The process of acquiring weak GNSS signals in HS-GNSS receivers can require a large

amount of computational load, though assisted data is exploited. This occurs because

an extremely long signal (of hundreds of milliseconds or even several seconds) must be

processed to detect these signals in harsh environments such as indoor or urban. This

process involves the computation of the CAF for different parts of the signal with many

tentative values of fd since the duration of the Tcoh can extend up to 1 or 2 seconds [Mus14].

One way to circumvent this huge computational load is by the use of cloud computing

services. In recent years, the emergence of cloud computing services has become an

exceptional opportunity to carry out the procedure of acquiring weak GNSS signals. The

user would only need to collect the samples of the received signal and transmit them

to the cloud service where the tasks of the GNSS receiver can remotely be performed

[LS16d, LS16c].

2.1.4.3 Tracking stage

The main task of the tracking stage consists in refining the coarse estimation of the

time-delay and Doppler frequency of the satellites declared in view in the acquisition

stage. These estimates are tracked to accurately follow any possible variation of time and

frequency either in the receiver or the satellite [Kap05]. There are mainly two approaches

to carry out this refinement, the so-called closed-loop and open-loop architectures [Tah12].

On the one hand, conventional GNSS receivers usually implement a closed-loop ar-

chitecture to perform this refinement. This consists essentially of two architectures in

parallel: one focused on tracking the time-delay, known as Delay Lock Loop (DLL), and

another dedicated to the track of the frequency, referred to as Phase Lock Loop (PLL).

Both architectures obtain an accurate estimate of the parameter of interest based on
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comparing the received signal to a local replica. This comparison is used to correct the

estimates of the parameters that have been used to generate the local replica, so that the

alignment with the received signal is achieved as accurate as possible.

These architectures are basically formed by three components: the discriminator, the

numerical controlled oscillator and the loop filter. The process of the tracking stage

is the following. In both architectures, the local replica is correlated with the received

signal and the result is introduced to a discriminator, which provides an error signal

that is proportional to the parameter of interest. The output of the discriminator in the

PLL is obtained from using one correlator known as prompt and focused on the time-

delay of interest. The output of the discriminator in the DLL is obtained by using three

correlators: the prompt and two correlators symmetrically located before and after the

prompt, which are referred to as early and late correlators, respectively. The output of

the both discriminators is subsequently smoothed through the loop filter, whose output

is then fed to the numerical controlled oscillator. The output of the numerical controlled

oscillator is used to generate a new local replica, thus closing the loop.

Closed-loop architectures have extensively been studied in the literature during last

decades, which has generated several contributions regarding the loop filters and the

discriminators. Recently, new tracking architectures are emerging, which implement

adaptive Kalman filter-based techniques. These techniques are more robust than the

classic PLL/DLL allowing the receiver to track the signal in harsher conditions, that

is, under high dynamics or even in the presence of ionospheric scintillation disturbances

[LS16b, Pou15].

On the other hand, in contrast to conventional GNSS receivers, HS-GNSS receivers

usually implement an open–loop architecture or often so-called snapshot-based architec-

ture. This architecture is based on computing one CAF from time to time with a narrow

search for the Doppler frequency. This narrow search is performed around the coarse

Doppler frequency estimation obtained from the first CAF. Open-loop architectures pro-

vide some advantages over closed-loop architecture. For instance, it is a well-known fact

that PLLs suffer from fading effects, particularly associated with harsh scenarios such as

urban or indoor, and cycle slips [Rib98]. In addition, the closed loop structures require

long signal time before giving a refinement of the estimation of time-delay and Doppler fre-

quency, and this might be an important disadvantage when the Doppler frequency rapidly

changes within this signal time. These problems can be circumvented by implementing

an open-loop architecture. However, the estimates of time-delay and Doppler frequency

offered by the CAF obtained in the open-loop architecture are not precise enough to



30 Chapter 2. Fundamentals of detection and GNSS

provide an accurate estimation of the user’s position.

For this reason, a fine acquisition stage is usually implemented after computing each

CAF [SG12]. The aim of this stage is to enhance the accuracy of the estimates of interest

only using the CAF generated in one determined time. One way to refine the time-

delay estimation is by performing an interpolation of the main correlation peak that

has the shape of a triangle. More precisely, this method deals with finding the position

of the vertex of this triangle by making a linear interpolation of each side slope of the

main correlation peak. The refinement of the Doppler frequency can be carried out by

minimizing a cost function, which compares the received CAF in frequency domain to the

ideal expected sinc function [Tan13].

In the tracking stage, apart from refining the estimation of the parameters of interest,

HS-GNSS receivers are capable of obtaining highly desirable information about the quality

of the signal. For instance, these receivers can estimate the C{N0, which indicates the

accuracy that we can obtain in the estimation of parameters. Moreover, they detect

and mitigate near-far interferences given in scenarios with strong and weak signals. Some

techniques to carry out this task are included in [LS16a, LR05]. In addition, these receivers

are also able to detect the presence of multipath effects abounding in urban canyon or

indoor environments. A relevant approach to detect quickly this effect has been proposed

recently, which is based on applying quickest detection theory. More details about this

technique can be found in [ER17, ER15].

2.1.4.4 Position, velocity, timing module

Even though the tracking stage aims at filtering noise, the time-delay estimates obtained

from this stage will still contain some residual noise. In addition, the presence of impair-

ments such as clock errors or multipath may also introduce some bias in the measurements

of the distance between the satellites and the GNSS receiver. In this sense, the goal of

the PVT module is to provide the most accurate estimate of the user’s position by using

these measurements.

One approach to estimate the PVT of the receiver is by the use of an iterative algo-

rithm. The most common method based on this approach deals with applying an iterative

least square estimator. This method boils down to solving a system of linear equations,

which contains several unknowns, the three coordinates of the receiver and the time in-

stant of the satellite transmission. The algorithm starts by considering an initial position

of the receiver. Once the position of the receiver is estimated the initial position is up-
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dated for this estimation [Kap05]. By doing this procedure, the position of the receiver

is refined and tracked accurately.

Another approach consists in finding a closed-form solution of the position of the

receiver. The most representative method following this approach is based on the Bancroft

algorithm [Ban85]. This method contains the same unknowns as the iterative least square

estimator, but it presents the advantage of not requiring a tentative value of the initial

position of the receiver. However, this kind of methods usually offer a worse performance

than the ones obtained from an iterative algorithm. This occurs because this kind of

algorithms usually have to use a squared operation to solve the problem, which leads to

increase the noise in the time-delay estimates.

2.2 Detection theory

Signal detection theory is a branch of probability theory widely applied in different elec-

tronics signal processing systems, such as radar, communications, speech and sonar. This

theory allows us to make decisions in the presence of uncertainty. Basically, simple de-

tection problems deal with distinguishing whether some signal embedded in the noise is

present or absent. The objective is to use the received signal as efficiently as possible

to perform a correct decision. This kind of problems are usually referred to as binary

hypothesis testing since only two hypotheses are involved: H0 and H1. Traditionally, the

hypothesis H1 is called the alternative hypothesis and the hypothesis H0 corresponds to

the null hypothesis.

2.2.1 GNSS signal detection as hypothesis testing

The binary hypothesis testing can tackle the problem of GNSS signal detection because

this problem can be broken down into two hypotheses: under H0 the signal from the

satellite is absent and under H1 the signal from the satellite is present. One of the two

hypotheses is considered to be true for any tested GNSS signal. Since GNSS signals are

described as a random variable, the decision between the two hypotheses is carried out

using statistical detection theory. The analysis of the problem starts with the character-

ization of the probability density function (pdf) that defines the received GNSS signal
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under each hypothesis. Rewriting the CAF1 xpτ̃ , f̃dq obtained from the acquisition stage

as simply x to avoid the complexity of the notation, the two following pdfs can be defined

as

ppx|H0q “ pdf of x given that the signal from satellite is absent.

ppx|H1q “ pdf of x given that the signal from satellite is present.

Detection problems also require finding appropriate models of these two distributions.

Generally, the detection process is based on using N samples of the data xk forming

a vector as x
.
“ rx1, ..., xk, ..., xN s

T . To do so, the N-dimensional joint pdfs ppx|H1q

and ppx|H0q are usually utilized. Taking into account the two joint distributions, several

required probabilities are described to characterize these problems [Ric05, McD95, Kay98]:

• Probability of false alarm (Pfa): is the probability of considering the satellite to be

present (H1 is chosen) when the satellite is absent.

• Probability of detection (Pd): is the probability that the satellite is declared (H1 is

chosen) when the satellite is present.

• Probability of miss detection (Pmd): is the probability that the satellite is considered

to be absent (H0 is chosen) when the satellite is indeed present.

It is worth noticing that Pmd “ 1 ´ Pd. Therefore, the Pd and Pfa are enough to specify

the probabilities of the detection problem. Moreover, since this is a statistical problem,

there is a certain probability that the assumed decision is wrong. The Pfa and Pd can be

defined by the following expressions, which depend on the signal detection threshold:

Pfa “ probpfpxq ě γ|H0q “ 1´ cdff pγ|H0q, (2.16)

Pd “ probpfpxq ą γ|H1q “ 1´ cdff pγ|H1q, (2.17)

where fpxq is a function of x, cdff is the cumulative density function of the fpxq and γ

is the detection threshold.

An illustrative plot of a binary hypotheses test problem is illustrated in Figure 2.15.

This figure shows the two pdfs under each hypothesis H0 and H1. The pdf under H0

is zero-mean since there is no presence of the satellite signal, while the pdf under H1

1The CAF is a process used in the acquisition stage of the GNSS receiver to acquire the satellites.

More details can be found in Section 2.1.4.2
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Figure 2.15: Illustrative plot of binary hypotheses problem for a given ppx|H0q and

ppx|H1q.

contains a non-zero mean owing to the presence of the satellite signal. The difference

of means between the two pdfs causes that the pdf under H1 is shifted to the right

side. Then, a detection threshold is defined in order to discriminate between the two

hypotheses. This threshold is usually established for a small value of Pfa, in order not to

suffer a larger number of incorrect detected satellites. The definition of an appropriate

detection threshold involves the knowledge of the cdf of the metric of interest under

the null hypothesis or a good approximation of this cdf. The probability of false alarm

represents the blue area of the H0 distribution. This area contains the values under H0

that exceed the detection threshold. The probability of miss detection corresponds to

the red area of the distribution of the H1 hypothesis, which consist of the values of this

distribution that do not surpass the detection threshold.

2.2.2 Detection threshold for the acquisition of weak GNSS sig-

nals

The detection of a weak signal deals with the comparison between the maximum magni-

tude of a PDI technique, denoted as Zx in Section 2.1.4.2, and an appropriate detection

threshold to determine whether the satellite is considered to be in view or not. If the
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detection threshold is surpassed, the satellite is assumed present and then, the process

moves forward to tracking. If the detection threshold is not exceeded, the satellite is con-

sidered not to be in view and the acquisition process is finished. The detection threshold

is affected by the Pfa to which we refer from now on as individual probability of false

alarm as

Pfa “ 1´ cdfZpγ|H0q, (2.18)

where cdfZpγ|H0q is the cumulative density function of the metric of a PDI technique

under the condition H0. However, the definition of the detection threshold is usually set

by fixing a value of global probability of false alarm (PFA). The PFA depends on Pfa as

PFA “ 1´ p1´ Pfaq
L, (2.19)

where L is the number of independent trial points of Doppler frequency and time-delay.

The difference between Pfa and PFA is that Pfa is the probability that one individual

tentative value of time-delay and Doppler frequency surpasses the detection threshold

when the satellite is not present. In contrast, PFA is the probability that the maximum

magnitude of the L independent tentative values exceeds the detection threshold when

the signal satellite is absent. After setting a small value of PFA, Pfa is computed from

(2.19). Then, the detection threshold can be computed from (2.18) as

γ “ 1´ cdf´1Z p1´ Pfa|H0q, (2.20)

where cdf´1Z is the inverse cumulative density function of the metric of the PDI technique.

2.2.3 Neyman-Pearson rule

This section consists in finding the optimal rule to decide between two hypotheses, pro-

vided that the parameters of both hypotheses are known. The Neyman-Pearson rule is

one of the most extended optimality criterion used for binary hypothesis testing. The

objective of the Neyman-Pearson rule is to maximize Pd while guaranteeing that Pfa does

not surpass an established value fixed by a detection threshold. This is a detection prob-

lem, which can be solved by using the Lagrange multipliers methods. The result of this

problem is well-known in the literature as the Likelihood Ratio Rest (LRT) [Kay98]

Λpxq “
ppx|H1q

ppx|H0q
ž γ. (2.21)
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The LRT establishes that the ratio between two pdfs, one under H0 and the other under

H1, must be compared with a detection threshold. If the LRT exceeds the detection

threshold the condition under H1 is considered to be correct, in our case meaning that

the signal from the satellite is present. Nonetheless, when the LRT does not surpass the

detection threshold, the condition under H0 is assumed to be true, in our problem meaning

that the signal from the satellite is absent. Since the decision depends only on whether

the LRT surpasses the detection threshold or not, a monotonic function can be applied on

both sides of (2.21) without affecting the performance of the detector obtained from the

LRT. A common monotonic function widely used is the logarithm function, which usually

decreases the computational cost required to calculate the LRT. Taking the logarithm

function in (2.21), we obtain the log-likelihood ratio test as

ln Λpxq ž ln γ. (2.22)

The result of the LRT is the optimal detector, or also sometimes referred to as PDI

technique in GNSS, to discriminate between the two hypotheses under the Neyman-

Pearson criterion. It is worth noting that models of the two pdfs are needed in order

to compute the LRT. Moreover, the pdf under each hypothesis must not contain un-

known parameters, otherwise we cannot calculate the LRT to compare to the detection

threshold. Finally, it should be added that the Neyman-Pearson rule does not require

assuming any knowledge about the a priori probability of the two hypotheses.

2.2.4 ROC curves

The Receiver Operative Characteristic (ROC) curve is a graphical plot that illustrates

the Pd versus Pfa of one or several detectors or PDI techniques. These curves allow us

to compare the performance of several PDI techniques and predict their performances

[VT04, Poo13, Lev08]. An illustrative ROC plot of a common detector used in GNSS

and radar is shown in Figures 2.16 and 2.17. This detector corresponds to the absolute

value of the CAF, defined previously in Section 2.1.4.2. In this example, the relationship

between the detection and false alarm probabilities, denoted as PCAF
d and PCAF

fa , is given

by the following expression:

PCAF
d “ Q1

´?
2SNR,

b

´2 ln
`

PCAF
fa

˘

¯

, (2.23)

where Q1 is known as Marcum’s Q function. This example serves to describe the general

characteristics of the ROC curves of any detector. These curves contain all of the values
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Figure 2.16: Theoretical and simulated ROCs curves for a CAF displayed on a linear Pfa

scale. The SNR is in linear scale.
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in the square [0, 1] x [0, 1] since they are the ones that the probabilities can take. Each

point on the curve corresponds to a value of Pfa and Pd for a given detection threshold.

We can obtain any value of the curves changing the value of the threshold. If the detection

threshold increases, the Pd and Pfa decreases but whether the threshold decreases, the

two probabilities increase. All points on the ROC curve satisfy Pd ě Pfa. The comparison

among several detectors can be carried out fixing a value of Pfa. Then, the best detector

is chosen as the one that maximizes the Pd.

Moreover, these curves allow us to predict the performance of our detector for given

conditions as in the case of the Figures 2.16 and 2.17. For instance, we can find out the

detector performance for different values of SNR. For the case of SNR=0 (not dB), we

obtain that the Pfa “ Pd. This fact is expected because the pdf under H0 and H1 is the

same. For a given value of Pfa, the Pd increases if the SNR increases since there is more

distance between the two distributions under each hypothesis. It should be added that

these curves are often illustrated using a semi-log scale for the Pfa to show the detector

performance in this region.

ROC curves can be obtained by using Monte-Carlo simulations or theoretically. Unlike

the example described above, closed-form expressions for Pfa and Pd are usually difficult

to obtain owing to the complexity of the metrics of many detectors. This is a fundamental

problem because having access to such closed-form expressions allows us to know the de-

tector performance even for small values of Pfa, which are the ones typically implemented

in the receiver. These values of Pfa are difficult to find through simulations because they

require a huge number of Monte-Carlo iterations, involving many computational resources

and simulation time. In fact, this is precisely one of the problems that this thesis aims to

address in Chapter 4 for some relevant PDI techniques.

2.2.5 Bayesian approach

The Bayesian approach is a detection tool that is applied when the LRT contains unknown

parameters, for which some a-priori knowledge is available. Under H0, we consider that

the vector θ0 is unknown while under H1, the vector θ1 is unknown. The outcome of the

Bayesian approach is certainly the optimal detector under the assumed conditions. This

approach consists in computing the LRT and using a priori information about the vectors

θ0 and θ1. The impairment of the unknown parameters is circumvented by averaging the

conditional pdfs to obtain the unconditional pdfs, which are not affected by θ0 and θ1
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any more. The Bayesian approach is based on a ratio of pdfs as [Kay98, Sim95]

ΛBpxq “

ş

ppx|H1,θ1qppθ1qdθ1
ş

ppx|H0,θ0qppθ0qdθ0

“
ppx|H1q

ppx|H0q
ž γ, (2.24)

where ppx|Hi,θiq is the pdf of x conditioned on θi and ppθiq corresponds to the prior pdf

of θi. Nonetheless, the hypothesis H0 does not usually contain unknown parameters in

GNSS problems. Therefore, the Bayesian approach can be rewritten as

ΛBpxq “

ş

ppx|H1,θ1qppθ1qdθ1

ppx|H0,θ0q
“
ppx|H1q

ppx|H0q
ž γ. (2.25)

The drawback of the Bayesian approach is that the unknown parameters must be modelled

accurately with a certain prior distribution, whose knowledge is required. In addition, it

needs to compute a multidimensional integral, which does not usually admit a closed-form

solution or often provides a very complex solution in terms of computational load.

2.2.6 Generalized likelihood ratio test

The Generalized Likelihood Ratio Test (GLRT) is a general procedure for binary hy-

potheses testing problems. This test is the best well-known joint estimation and detec-

tion approach for finding promising detectors, which consists of two steps. First, the

Maximum Likelihood (ML) estimates of the unknown parameters are obtained for the

different hypotheses. Second, these parameters are replaced by their ML estimates under

each hypothesis and the LRT is computed as if the estimation of the unknown parameters

were in fact the correct values. The GLRT can be defined as follows [Lev08]:

ΛGpxq “
ppx|H1, θ̂1q

ppx|H0, θ̂0q
ž γ, (2.26)

where θ̂0 and θ̂1 are the ML estimates of θ0 and θ1, respectively. Nevertheless, in GNSS

detection problems, the hypothesis H0 does not usually depend on unknown parameters,

thus leading the GLRT to reduce to

ΛGpxq “
ppx|H1, θ̂1q

ppx|H0q
ž γ. (2.27)

Although the GLRT approach makes no claims about the optimality of its result in

general, it is widely implemented in practice since it usually provides good performance

and needs less restrictive assumptions than the Bayesian approach. Furthermore, the

GLRT result often gives an easier expression than the Bayesian approach since the latter is
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composed by the integral of products of several PDFs. This occurs because ML estimation

equations usually allow a closed-form solution, which can be easily introduced in the LRT.

However, the performance exhibited by the GLRT can be the same or worse than the one

obtained from the Bayesian approach, but it is never better as long as the conditions

assumed in the Bayesian approach were true.





Chapter 3

State of the art and performance

analysis of PDI techniques under the

presence of frequency offset and

phase noise

This chapter provides a review of the state of the art about PDI techniques applied in the

context of CDMA. This review serves to identify the existing PDI techniques, which will

be used as a benchmark to compare their performance with the PDI techniques derived

in the following chapters. Moreover, a performance comparison of the most relevant PDI

techniques described in this chapter is carried out in a scenario that the received signal

includes the impairments of frequency offset and severe or mild phase noise. This analysis

allows us to establish which is the best technique under the presence of these impairments.

In addition to this, we indicate the coherent integration time that can be implemented in

practice when the receiver clock is affected by severe or mild phase noise.

3.1 PDI techniques for the acquisition with pilot

component

This part analyses the different PDI techniques that have been proposed in the literature,

which make use of the pilot component only, while at the same time providing a critical

review of their advantages and disadvantages. These techniques can be used to acquire

41
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any GNSS signal either GPS or Galileo.

3.1.1 Non-coherent PDI technique

The Non-coherent PDI (NPDI) is the most common technique implemented in HS-GNSS

receivers to detect weak signals. This technique dates back to the early days of signal

detection problems in radar theory [Mar60]. The NPDI is an approximation of the result

of applying a Bayesian approach for a low SNR regime. This Bayesian approach is derived

for a received signal with a constant amplitude and unknown time-varying phase following

a uniform distribution [McD95]. The expression of the NPDI technique is given by [EB04],

ZNPDIpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2. (3.1)

By considering an unknown time-varying phase, it removes the carrier impairments that

limit the Tcoh duration such as the data bits and the frequency offset by combining Nnc

consecutive CAFs using the squared absolute value. The disadvantage of the NPDI tech-

nique is that it suffers from the squaring loss effect [Str07]. That is, the mean of the noise

is increased with respect to the coherent integration under ideal conditions (assuming that

there is no presence of variations in the carrier phase and the only disturbance is AWGN).

Thereby, the NPDI technique requires a total integration time longer than the coherent

integration to detect the signal. The metric of the NPDI technique involves the sum of

central and non-central Chi-square distributions with 2Nnc when the signal is absent and

present, respectively. The probability of detection and false alarm of this detector are

well-know in the literature and are defined as [Sim07, Bor09a]

PNPDI
fa “ exp

´

´
γ

σ2

¯

Nnc´1
ÿ

i“0

1

i!

´ γ

σ2

¯i

(3.2)

PNPDI
d “ QNnc

˜

c

2λ

σ2
,

c

2γ

σ2

¸

, (3.3)

where γ is the detection threshold, λ “ NncpAsincp∆fTcohqBp∆τqq
2 and QNnc is the

generalized (Nncth-order) Marcum Q-function [Mar50].

3.1.2 Differential PDI technique

The Differential PDI (DPDI) is a useful technique to acquire weak GNSS signals. The

origin of the this technique comes from radar detection theory to detect signals with
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unknown constant phase and unknown Doppler frequency [Sel65]. The metric of the

DPDI consists in multiplying one CAF xkpτ̃ , f̃dq with a delayed and conjugated version

of itself as xk´1pτ̃ , f̃dq. Then, sum Nnc´ 1 of these multiplications and finally it takes the

absolute value as [Sch05b, Vil07]

ZDPDIpxq “

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“2

xkpτ̃ , f̃dqx
˚
k´1pτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

, (3.4)

The DPDI technique is fully robust against the presence of frequency offsets, but it suffers

a strong degradation in presence of data bits [Cha11]. This technique may provide better

performance than the NPDI technique in the absence of data bits since it is not affected

by the squaring loss problem. The idea behind the DPDI technique is to exploit that

the signal components of two consecutive CAFs are highly correlated, while the noise

components are completely uncorrelated.

The exact distribution of the DPDI metric is not known in closed-form. However, a

closed-form approximation of the detection and false alarm probabilities of this metric can

be obtained using the Central Limit Theorem (CLT). According to this theorem, for large

number of Nnc, the pdf of the DPDI metric tends to be Rayleigh or Rician distribution

under H0 and H1, respectively. Then, the approximations of the probabilities of this

detector can be expressed as [Lan73]

PDPDI
fa « 1´ cdfZDPDI

´

a

pNnc ´ 1qσ4|H0

¯

(3.5)

PDPDI
d « 1´ cdfZDPDI

´

pNnc ´ 1qA2,
a

pNnc ´ 1qσ4|H1

¯

. (3.6)

where cdfZDPDI

´

a

pNnc ´ 1qσ4|H0

¯

and cdfZDPDI

´

pNnc ´ 1qA2,
a

pNnc ´ 1qσ4|H1

¯

corre-

sponds to the Rayleigh and Rayleigh and Rician and distribution, respectively.

3.1.3 Enhanced differential PDI technique

Another alternative was introduced in [Paj06], which is an improvement of the DPDI

technique. This alternative, which is given by (3.7), was found empirically by the use of

simulations based on Galileo signals.

ZEDPDIpxq “

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“3

x˚kpτ̃ , f̃dqxk´1pτ̃ , f̃dq ` x
˚
kpτ̃ , f̃dqxk´2pτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (3.7)

This technique can offer better performance than the NPDI and DPDI techniques in terms

of the probability of acquisition in fading channels. The drawback of this technique is
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that the computational complexity is greater than the ones implemented in the NPDI

and DPDI techniques because it requires more memory to save three consecutive CAFs.

Moreover, this technique is susceptible to suffer a performance degradation in presence of

data bits since it does not apply any non-linear operation that removes the bit information.

An analysis of the statistical characterization of this metric is not found in literature.

Intuitively, the metric of the enhanced DPDI technique does not seem to follow any

known pdf. However, according to the CLT, this metric may tend to have a non-central

chi square distribution if the signal is present or central chi-square if the signal is absent

for large Nnc values.

3.1.4 Non-linear Teager-Kaiser technique

The non-linear Teager-Kaiser technique has also been proposed to detect weak GNSS

signals. It consists of the sum and multiplication of the different delayed CAFs as follows

[Ham03],

ZTKpxq “

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“3

|xk´1pτ̃ , f̃dq|
2
`

1

2

´

x˚kpτ̃ , f̃dqxk´2pτ̃ , f̃dq ` xkpτ̃ , f̃dqx
˚
k´2pτ̃ , f̃dq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

. (3.8)

The Teager-Kaiser technique can slightly outperform the NPDI technique, but the former

requires a computational load much more larger than the latter [Loh13]. In addition,

this technique might not be robust against the data bits because only one term of this

metric removes the information of the bits. The statistical distribution of the metric of the

non-linear Teager-Kaiser technique is completely unknown neither H0 nor H1 hypotheses.

3.1.5 Generalized and average PDI techniques

An interesting approach was presented in [Cor03] and later extended in [Cor07] for CDMA

signals. This paper derives the quasi-optimal PDI schemes through a theoretical approach

taking into account the presence of two uncertainties: a constant phase during the whole

integration time and frequency offset. To do this task, the LRT is computed from the

pdfs under the null and alternative hypotheses. The uncertainty of the constant phase is

removed by applying the Bayesian approach assuming that this phase is a uniform random

variable from 0 to 2π. After that, two different approaches are considered to eliminate

the frequency offset uncertainty: the GLRT and Bayesian approach.

On the one hand, the approach used in the GLRT supposes that frequency offset is
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an unknown deterministic parameter. The resulting expression is known as a Generalized

PDI (GPDI) technique, which consists of the sum of several terms as follows,

ZGPDIpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2
` 2

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc´1
ÿ

d“1

Nnc
ÿ

k“1`d

xkpτ̃ , f̃dqx
˚
k´dpτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

“

Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2
` 2

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“2

xkpτ̃ , f̃dqx
˚
k´1pτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

` ¨ ¨ ¨ ` 2|xNncpτ̃ , f̃dqx
˚
1pτ̃ , f̃dq|,

(3.9)

where d “ 1, . . . , Nnc ´ 1. The fundamental of the GPDI technique is that it naturally

encompasses several PDI techniques. This technique includes the conventional NPDI

and DPDI techniques and beside all possible differential combination among the distinct

CAFs. The performance of the GPDI technique depends on the number of terms intro-

duced. The larger the number of terms used, the better the performance of the GPDI.

However, the incremental enhancement becomes smaller as more terms are introduced.

On the other hand, when the Bayesian approach is applied the frequency offset is

assumed to be a uniform random variable that can take values between ´∆fmax and

∆fmax. The resulting expression is referred to as the Average PDI (APDI) technique,

which also consists of the sum of several terms, and it can be expressed as

ZAPDIpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2
` 2Re

#

Nnc´1
ÿ

d“1

Nnc
ÿ

k“1`d

sincp2d∆fmaxTcohqxkpτ̃ , f̃dqx
˚
k´dpτ̃ , f̃dq

+

.

(3.10)

In the same way as the GPDI technique, the APDI technique encompasses various PDI

techniques. More precisely, it contains the sum of the NPDI technique with a kind of the

differential PDI technique. This differential technique takes the real part instead of the

absolute value and moreover multiplies each term by sincp2d∆fmaxTcohq.

The larger the number of terms of the APDI technique to perform the detection, the

better the results are obtained. However, the incremental enhancement becomes smaller

when APDI uses more terms until a saturation in the performance occurs.

There exist a trade-off between the GPDI and APDI techniques. If very small values

of frequency offset are present, the APDI technique offers the best performance, while

the GPDI becomes the best option for large values of the frequency offset. This happens

because the sinc terms used in the APDI become very small and possibly negative. For

the case of acquisition of weak GNSS signal, we often have a uncertainty of frequency

offset that cause that most of the terms in the APDI technique are close to zero. For this

reason, the GPDI technique should be more adequate to acquire weak GNSS signals.
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Both the GPDI and APDI techniques have an important drawback. They require a

significant amount of computational load since they both consist of many terms. As a

consequence, practical and efficient solutions with good performance are sought. For the

case of the GPDI, a practical solution is to combine the terms corresponding to NPDI

with DPDI. This solution is so-called Truncated Generalized Post Detection Integration

(GPDIT) technique can be expressed as the following equation

ZGPDITpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2
` 2

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“2

xkpτ̃ , f̃dqx
˚
k´1pτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

. (3.11)

Notice the weighting factor 2 applied to the differential correlation in the summation. The

solution proposed in (3.11) outperforms the conventional NPDI and the DPDI as long as

the present uncertainties are a constant phase and frequency offset. The same truncation

of terms can be applied for the case of the APDI, which leads to Truncated Average Post

Detection Integration (APDIT) technique and it results in:

ZAPDITpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2
` 2Re

#

Nnc
ÿ

k“2

sincp2∆fmaxTcohqxkpτ̃ , f̃dqx
˚
k´1pτ̃ , f̃dq

+

. (3.12)

The practical solution of APDI technique exhibits better performance than the NPDI and

DPDI techniques when there is no large frequency offset.

The disadvantage of the GPDIT and APDIT techniques is that they are not robust

against the data bits. This occurs because they contain the differential PDI technique,

which suffers a strong degradation in presence of this impairment. These techniques

might be very useful to acquire weak GNSS signals with pilot bits as it is the case of the

Galileo E1BC signal, since the impairment of the bits can be circumvented. However,

if the received signal contains unknowns bits as it happens in the GPS L1 signal, these

techniques may not be the best option to acquire weak GNSS signals.

The overall statistical characterization of the GPDI and APDI techniques is a chal-

lenging task and open problem. This occurs because these techniques are composed by

the sum of several different PDI techniques, which some of them are correlated with each

other. Even though this fact an analysis of the GPDI and APDI techniques excluding the

NPDI technique is carried out in [Cor07]. On the one hand, the metric of the GPDI tech-

nique is well approximated by a Rayleigh or Ricean distributions in presence or absence of

the signal, respectively, if the NPDI term is ignored. On the other hand, the APDI metric

omitting the NPDI term is close to a Gaussian distribution with zero-mean if the signal

is absent and non-zero mean when the signal is present. However, a statistical analysis of

the GPDIT and APDIT techniques, which are the practical solutions of the GPDI and

APDI, is not found in the literature.
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3.1.6 Combination of the NPDI with the squaring detector

Another method has been proposed recently in [Sat11], which is a new class of improved

acquisition technique for weak GNSS signals. Specifically, this technique has been de-

rived from an approximation of the GLRT, considering that the unknown parameter is a

constant phase during the whole integration time. The pdfs used to compute the GLRT

assume that the received signal contains unknown data bits, which are a random variable

and can take values of -1 or 1 with the same probability. The resulting PDI technique

from this approach can be defined as

ZNPDISDpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2
`

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“1

xkpτ̃ , f̃dq
2

ˇ

ˇ

ˇ

ˇ

ˇ

. (3.13)

The key point of this proposed technique is that combines the term corresponding to the

NPDI with a new term. This new term is referred to as Squaring Detector (SD) and it

consists of summing the squared values of the CAFs.

A statistical analysis of this PDI technique is performed in [Bor14b]. Due to the de-

pendence between the NPDI and the SD, it is not feasible to find the exact distribution

of the PDI technique expressed in (3.13). For this reason, an approximation of the false

alarm probability of this PDI technique is carried out, which uses a non-linear transfor-

mation to accelerate the convergence speed of the distribution of this metric to a Gaussian

distribution.

3.1.7 Combination of the GPDIT and the squaring detector

The last method that we introduce is referred to as GPDITSD. This technique is proposed

in this thesis and it results from putting together terms of the GPDIT with the SD terms

as

ZGPDITSDpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2
` 2

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc´1
ÿ

k“1

xkpτ̃ , f̃dqx
˚
k´1pτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“1

xkpτ̃ , f̃dq
2

ˇ

ˇ

ˇ

ˇ

ˇ

. (3.14)

The key point here is that this method exploits the performance and the low complexity

that the both the GPDIT and SD techniques individually have. The combination between

the GPDIT and SD techniques can exhibit good performance in terms of acquisition

probability in some scenarios, as we will see in Subsection 3.3. However, finding a closed-

form expression of the statistical distribution of this technique does not seem to be a

simple task to carry out.
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3.2 PDI techniques for the acquisition joining data

and pilot components

This subsection provides a state of the art of the PDI techniques that exploit the two

components the data and pilot to acquire GNSS signals. These techniques seem that

some gain in terms of signal detection can be obtained by using both the data and pilot.

Nevertheless, this gain can vanish if one takes into consideration the computational load,

especially for acquiring very weak signals where extremely long integration times are

required. That is to say, given some computational resources available, it is preferable to

devote then to process a longer fragment of the pilot component than shorter fragments

of the pilot and data. The reason is basically that the pilot allows the receiver to extend

much longer coherent correlations. If short coherent correlation of the data component

is combined with longer coherent correlations of the pilot, no significant gain is obtained

because the former are much nosier than the latter and does not help so much in improving

the quality of the coherent correlations.

So far, PDI techniques that have been proposed in the literature are based on com-

bining the data and pilot components using the same coherent integration time for each

component, which is limited by the data component. In the following subsections, we

describes the most relevant strategies, which can be found in [Ta10, Bor08].

3.2.1 Comparing Combination

The so-called “Comparing Combination” uses a comparator to select the squared absolute

value of the two channels, which are obtained combining the data and pilot components.

More precisely, the received signal is correlated with the codes of the pilot and data com-

ponents for different tentative values of time-delay and Doppler frequency. The decision

variable is obtained by choosing the maximum between two combinations of these corre-

lations. In particular, the first correlation is the sum of the correlations of the data and

pilot components and the second one is subtraction between the correlations of the data

and pilot components. This PDI technique can be expressed as follows,

ZCCpxq “
Nnc
ÿ

k“1

maxt|xk,pP´Dqpτ̃ , f̃dq|
2, |xk,pP`Dqpτ̃ , f̃dq|

2
u, (3.15)

where xk,pP´Dqpτ̃ , f̃dq and xk,pP´Dqpτ̃ , f̃dq are the CAF obtained from summing and sub-

tracting the pilot and data components, respectively.
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3.2.2 Dual Channel

In the dual channel technique, the conventional NPDI technique is simultaneously per-

formed on both the data and pilot components. Specifically, the received signal is cor-

related with two codes. The first code is the pilot component and the second one is the

data component. Then, the technique consists of summing up the squared absolute of the

different CAFs as

ZDCpxq “
Nnc
ÿ

k“1

|xk,pDqpτ̃ , f̃dq|
2
` |xk,pP qpτ̃ , f̃dq|

2, (3.16)

where xk,pP qpτ̃ , f̃dq is the CAF of the pilot component and xk,pDqpτ̃ , f̃dq is the CAF of the

data component.

3.2.3 Differential data and pilot

In this technique, the received signal is also correlated with two codes for different trial

values of time-delay and Doppler frequency. The first code is the pilot component and

the second one corresponds to the data component. After that, the CAF obtained from

the data component is multiplied by the conjugate of the CAF computed from the pilot

component. Thus, a new equivalent complex correlation value is obtained, and finally the

real part of this multiplication is taken as,

ZDXPpxq “
Nnc
ÿ

k“1

ˇ

ˇ

ˇ
Retxk,pDqpτ̃ , f̃dqx

˚
k,pP qpτ̃ , f̃dqu

ˇ

ˇ

ˇ
. (3.17)

This approach can be seen as a modification of the differential PDI technique. The CAF

of one component is multiplied by the conjugated CAF of the other component instead

of the delayed copy of itself as in the real differential PDI technique.

3.2.4 Results of joint data and pilot components

According to [Ta10], the best joint data/pilot technique depends on the received signal

power. When the received signal has low power C{N0 ă 24 dB-Hz, the dual channel

strategy has better performance than the other techniques. However, if the power is

C{N0 ě 24 dB-Hz, the comparing combination technique is a bit better than the other.

The best joint data/pilot method holds the sensitivity enhancement of 2.8 dB over the

NPDI using only one component when one non-coherent integration is performed and for
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a coherent integration time quite small as 4 ms. However, the problem of these techniques

is that when the number of non-coherent correlation or the coherent integration time is

increased, the detection gain of the joint data/pilot methods over pilot methods is reduced

using the former a larger amount of memory. For this reason, the use of only the pilot

component is the best option to acquire very weak signals, since the HS-GNSS receiver

must process several seconds of the received signals to make a reliable decision about the

presence of the signal.

3.3 Simulations results of PDI techniques for signals

with time-varying phase due to phase noise and

frequency offset

In the context of GNSS, this subsection carries out a performance comparison of the most

relevant PDI techniques described in Subsection 3.1. The comparison is divided into two

parts. The first one deals only with the simulations in presence of AWGN and frequency

offset, but not phase noise, while the second one includes the phase noise. The ROC curves

are used to analyze the performance of the detection techniques. Moreover, simulations

have been performed using the Galileo E1C signal for different values of C{N0 [Com11].

We remember that the E1C signal includes pilot bits, which makes the maximum Tcoh is

not limited by the duration of the bit. The acquisition of the signal is achieved by the

application of a HS-GNSS receiver, which uses the double-FFT algorithm [JB06, SG12].

This algorithm provides an efficient signal acquisition using a long coherent integration

time and assuming some assistance information about the Doppler of the satellite.

3.3.1 Simulation without phase noise

Figure 3.1 shows that the proposed GPDITSD defined in (3.14) offers a significant gain

in terms of probability of detection when the frequency offset is zero. The key aspect

of this method is that it combines the terms corresponding to NPDI with both DPDI

and SD. Comparing the performance of the terms that form the GPDITSD, the following

conclusions can be drawn:

• SD outperforms NPDI.
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Figure 3.1: ROC curves for C{N0=20 dB-Hz, coherent integration time=100 ms, Nnc=7

and ∆f=0 Hz.

• DPDI outperforms NPDI and SD.

• NPDISD outperforms NPDI and SD.

• GPDIT outperforms NPDISD.

In the first simulation, the frequency offset of the incoming signal was set to 0 Hz. The

following simulation considers the frequency offset to be a uniform random variable in the

range of [-50, 50] Hz. At first glance in Figure 3.2, it can be seen that the SD method suffers

significant degradation in presence of frequency offset. Due to this degradation, GPDIT

turns out to be the most performing technique, unlike the case with no frequency offset,

where GPDITSD outperformed the rest of detectors. The comparison between GPDITSD

and GPDIT reveals that there is a certain value of frequency offset below which GPDITSD

is advantageous; and above this value, GPDIT is preferable. This is an important result

because different applications, depending on the dynamics of the receiver, have different

Doppler uncertainty, and hence one technique may be more appropriate than the other.

Extensive simulations have shown that this thresholding frequency offset value is 1 Hz

for a coherent integration time equal to 100 ms. In general, in the acquisition stage the

uncertainty of Doppler frequency is larger than 1 Hz since the Doppler frequency step is
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usually given by 1{p2Tcohq. This result suggests that the best technique to acquire weak

GNSS signals in presence of Doppler frequency is the GPDIT.
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Figure 3.2: ROC curves for C{N0=20 dB-Hz, coherent integration time=100 ms, Nnc=7

and ∆f ‰ 0 Hz.

3.3.2 Simulation with phase noise

One of the main limitations of HS-GNSS receivers is caused by clock instabilities, which

translate into random deviations of the instantaneous phase, often referred to as phase

noise [PS10]. As a result, the coherent integration time cannot be increased without

bound and must be restricted to a limited time period.

More details about the generation of the phase noise can be found in Subsection 6.1.1.

In our simulations, we have used two clocks, namely, a Temperature Compensated Crystal

Oscillator (TCXO) and an Oven-controlled Crystal Oscillator (OCXO). The power of

phase noise introduced by a TCXO clock is larger than the power of phase noise introduced

by an OCXO clock. More precisely, the parameters used for the TCXO and OCXO clocks

are given by [Cur12] and they are shown in the Table 3.1.

The phase noise caused by TXCO clock is introduced in the simulation, as shown

in Figure 3.3. The ROC of the methods is obviously degraded with respect to the case
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h0 rss h´2 r1{s]

TCXO 9.43e-20 3.8e-21

OCXO 3.4e-22 1.3-24

Table 3.1: Clock parameters.

without phase noise. Nevertheless, it is still possible to use a relatively long integration

time (i.e. 100 ms) with this TCXO.
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Figure 3.3: ROC curves for C{N0=20 dB-Hz, coherent integration time=100 ms, Nnc=7,

∆f=0 Hz and using a TCXO. In the legend, ‘without PN” means ‘without phase noise”.

We recall that, when the frequency offset is null, the method that has the best perfor-

mance is the GPDITSD in absence of phase noise. However, when phase noise is added

to a large extent (as it is the case with a TCXO), the GPDIT turns out to be the best

method even when the frequency offset is zero. This occurs because the SD term suffers a

severe degradation. Moreover, the DPDI method also experiences a breakdown due to the

phase noise because, unlike the case without phase noise (Figure 3.1), it has a very similar

ROC to the standard NPDI. As a consequence, given the marginal advantage of GPDIT

with respect to NPDI, but its higher complexity, we can conclude that NPDI is the most
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Figure 3.4: ROC curves for C{N0=15 dB-Hz, coherent integration time=500 ms, Nnc=4,

∆f=0 Hz and using a TCXO.
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Figure 3.5: ROC curves for C{N0=12 dB-Hz, coherent integration time=1000 ms, Nnc=4,

∆f =0 Hz and using an OCXO.



3.4. Conclusions 55

robust method in case of large phase noise. Furthermore, the results in Figure 3.4 confirm

that a coherent time of 500 ms is not feasible with a TCXO; and in any case, the NPDI

would be the method providing the least degraded ROC.

An OCXO is used for the results in Figure 3.5. In this case, the coherent integration

is increased to 1 second. The results show that coherent integrations of 1 second are

perfectly feasible with this type of clock. As the phase noise is small, the GPDITSD

offers the best performance, and very similar to the case without phase noise. Actually,

the SD term is almost not degraded using this clock unlike the case with TCXO, which

is the reason why the GPDITSD maintains its advantage.

3.4 Conclusions

This chapter has provided the state of the art of PDI techniques. We have concluded that

the best option to detect weak GNSS signals is based only on using the pilot component.

Moreover, we have analysed the performance of several detectors under several conditions

of frequency offset and assuming receivers with a standard TCXO or with an average-to-

good OCXO quality clocks. When there is no presence of phase noise, but we have the

presence of frequency offset the best technique is the GPDIT technique. In general, the

TCXO limits the coherent correlation interval to about 100 ms, and the large phase noise

wipes outs the advantage of all differential and squaring detectors, leaving the standard

NPDI as the best option. However, the OCXO permits the receiver to use coherent

integration times as long as 1 second, and the GPDIT behave much better than the

conventional NPDI.





Chapter 4

Weak GNSS signal acquisition in

presence of data bits

Weak signal conditions are certainly the main obstacle for HS-GNSS receivers since the

severe attenuation of the received signal makes difficult to reliably detect it [SG12]. In this

situation, the increase of the coherent integration time is the optimal way to reduce the

effect of noise so that the signal can be detected more easily. Nonetheless, as previously

discussed, the coherent integration time is limited in practice by the presence of residual

frequency offset, data bits, and phase noise.

The way to circumvent this limitation is to adopt PDI techniques or non-coherent

accumulations, which are more robust against frequency offset, data bits, and phase noise

than the coherent integration. Although PDI techniques suffer some degradation in the

signal detection performance with respect to the ideal coherent integration (without taking

into account the impairments that limit the coherent integration duration), the use of PDI

techniques is the only choice we have if long integration times need to be implemented

[Yan07]. Thereby, PDI techniques have become an indispensable tool to acquire weak

signals in the context of HS-GNSS receivers [Sch05b, Mus14].

Different authors have proposed several PDI techniques to detect weak GNSS signals.

The PDI technique most commonly used in GNSS is the NPDI, which is robust frequency

offset and data bits. Another alternative is the DPDI technique, which leads to better

detection probability than the NPDI technique in absence of data bits. Nevertheless, it

suffers a significant degradation in presence of data bits. Others alternatives that combine

two PDI techniques are the GPDIT, which uses the NPDI and DPDI, and the combination

of the NPDI with the squaring detector. These combinations can provide some gain in

57
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signal detection with respect to the NPDI technique. However, although several PDI

techniques have been proposed, the question about what is the optimal PDI technique to

acquire weak signals, which include data bits, is still unknown.

In Chapter 3, we have benchmarked the techniques used in the literature and propose

a new technique based on the observations that are extracted from existing techniques

in presence of frequency offset and phase noise. In this chapter, we derive the GLRT

and the Bayesian approach considering signals with phase changes owing to the presence

of frequency offsets, phase noise and also data bits. The resulting optimal detectors are

difficult to implement in practice because the amplitude of the signal must be known

a priori and it is not often possible to known. Then, two approximations of the both

optimal detectors (obtained from the GLRT and the Bayesian approach) are performed

leading in both cases to the NPDI technique for low SNR region and the Non-Quadratic

PDI (NQ-NPDI) technique for high SNR region.

Moreover, this chapter provides some statistical characterizations of metrics such as

the NQ-NPDI technique and the resulting detector obtained from the Bayesian approach.

These statistical characterizations allow us to find closed-form expressions for the de-

tection and false alarm probabilities of these techniques by using some approximations.

These probabilities are of paramount importance because they permit us to predict the

performance of the PDI technique of interest in any SNR region and set a detection

threshold from a false alarm probability value.

Finally, a performance comparison among the different PDI techniques proposed in

this chapter and found in the literature is carried out. Simulations results reveal a clear

gain in favour of the proposed techniques in terms of signal detection.

4.1 Signal model

As introduced in Chapter 3, HS-GNSS receivers use long correlation intervals to detect

weak signals in two steps. First, the CAF is calculated by performing the correlation

between the local replica and the received signal using an integration time as long as

possible. Second, several CAFs are combined non-coherently by the application of a PDI

technique to avoid the cancellation of the signal due to the residual frequency offset and

data bits. This process is usually done for all the satellites, but in this thesis, we focus

on acquiring only a satellite because it is enough to analyse the detection problem. The



4.2. Generalized likelihood ratio test 59

result of this process is the output detection metric, which can be expressed as

Zxpxq “ f

˜

Nnc
ÿ

k“1

xk

¸

, (4.1)

where x
.
“ rx1, ..., xNncs

T , k “ 1, ..., Nnc and Nnc is the number of non-coherent combina-

tions, xk is the CAF, defined in (2.14), in the instant k evaluated for a value of time-delay

and Doppler frequency. In this chapter, we omit the dependence of the time-delay and

Doppler frequency to simplify the notation. The problem of detecting signals can be

modelled under two hypotheses H0 and H1 since the satellite can be in view or not.

• Under H0: xk “ ωk is a complex Gaussian noise with mean zero and variance σ2

(the signal from the satellite is absent).

• Under H1: xk “ Adke
jφk ` ωk is the signal plus complex Gaussian noise (the signal

from the satellite is present).

where dk is a random variable that contains the unknown data bits taking values -1 or 1

and A is a constant amplitude affected by an unknown time-varying phase φk. We assume

that the phase of the signal can change every time instant since it is affected by frequency

offset and phase noise. We introduce the rectangular form of the CAF xk “ Ik ` jQk,

which will be used later on, being Ik “ Rpxkq, Qk “ =pxkq.

4.2 Generalized likelihood ratio test

In this subsection, we derive the GLRT assuming that the incoming signal contains data

bits of the GNSS signal and that the phase of the signal can change for different time

instants. To do so, we have to calculate the LRT and replacing the unknown phase by

its ML estimate [Kay98]. A related approach was used in [Sat11], but they used a ML

estimator assuming that the phase of the received signal does not change during the whole

observation interval. This causes that the detector in [Sat11] is not robust against the

frequency offset and variations in the carrier phase. However, in this chapter, we want to

find the optimal detector being robust against any variation in the carrier phase.

The pdf of the CAF xk, assuming that it is affected by data bits taking equiprobable
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values 1 and -1, is expressed under H1 as

ppx|H1, φkq “
1

pπσ2qNnc
exp

˜

´

Nnc
ÿ

k“1

1

σ2
pI2k `Q

2
k ` A

2
q

¸

Nnc
ź

k“1

cosh

ˆ

2A

σ2
pIk cospφkq `Qk sinpφkqq

˙

. (4.2)

Under H0, the pdf can be written as

ppx|H0q “
1

pπσ2qNnc
exp

˜

´

Nnc
ÿ

k“1

1

σ2
pI2k `Q

2
kq

¸

. (4.3)

The detector is derived by invoking the GLRT, which consists in applying the LRT and

replacing the unknown parameter with its ML estimate as follows,

Λpxq “
ppx|H1, φ̂kq

ppx|H0q
ž γ̃, (4.4)

where γ̃ is the detection threshold, Λpxq is the GLRT and φ̂k is the ML estimate of

φk. Substituting (4.2) and (4.3) into (4.4) and including the constants terms in a new

threshold γ1, the LRT can be rewritten as

Λ1pxq “
Nnc
ź

k“1

cosh

ˆ

2A

σ2
pIk cospφ̂kq `Qk sinpφ̂kqq

˙

ž γ1. (4.5)

Taking the logarithm operation on both sides of (4.5), we get the log-LRT as

Lpxq “
Nnc
ÿ

k“1

ln

ˆ

cosh

ˆ

2A

σ2
pIk cospφ̂kq `Qk sinpφ̂kqq

˙˙

, (4.6)

where Lpxq “ lnpΛ1pxqq. Now, we substitute the ML estimate of the phase assuming

that φk can take different values at each time instant. In this case, the ML estimate is

the arctangent discriminator as φ̂k “ atan pQk{Ikq [Bor09b, Kap05]. By replacing the

unknown phase and making some simplifications, the resulting detector is expressed as

follows,

Lpxq “
Nnc
ÿ

k“1

„

ln

ˆ

cosh

ˆ

2A|xk|

σ2

˙˙

ž γ, (4.7)

where γ “ lnpγ1q. Nevertheless, it is not desirable to use this detector because the

relationship between the amplitude A and the noise power σ2 must be known a priori

and, in practice, this is normally not possible. To circumvent this impairment, some

approximations can be made to the function ln pcosh pxqq.
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On the one hand, using the Taylor’s series, an approximation of cosh pxq for small

values of x is 1`x2{2. Moreover, the Taylor series expansion of the logarithm function is

lnpx ` 1q « x. Combining the two expressions, we obtain lnpcosh pxqq « x2{2. Thus, for

small values of x and including all of the constant terms in the threshold, the resulting

detector is well approximated by the conventional NPDI technique as

ZNPDIpxq “
Nnc
ÿ

k“1

|xk|
2
ž γZNPDI

. (4.8)

On the other hand, for large values of x, the cosh pxq can be approximated by e|x|{2.

Taking the logarithm function, the approximation of the function ln pcosh pxqq is |x| ´

lnp2q. Thereby, if x is large, the approximation of the resulting detector leads to another

technique, referred to as Non-Quadratic PDI (NQ-NPDI), since the constant terms can

be incorporated into the threshold as

ZNQ-NPDIpxq “
Nnc
ÿ

k“1

|xk| ž γZNQ-NPDI
. (4.9)

It is worth noticing that even though the NQ-NPDI can be found in radar systems, this

technique is practically unknown in GNSS systems. To date, most HS-GNSS receivers

implement the NPDI technique.

Figure 4.1 shows the fit among the function ln pcosh pxqq and its approximations for

small and large values of x as x2{2 and |x| ´ lnp2q, respectively. We can see that the

NPDI detector fits very well for small values of x and the NQ-NPDI detector has an

excellent fit for large values of x. From Figure 4.1, we obtain the trade-off between the

NPDI and NQ-NPDI techniques. For x ą 1.2, it is better to apply the NQ-NPDI detector

and whether x ă 1.2 it is preferable to use the NPDI technique. As we will see later on,

the implementation of the NQ-NPDI detector provides a gain over the NPDI detector

in HS-GNSS receivers. This occurs because HS-GNSS receivers adopt a long Tcoh and a

small Nnc value to detect the signal using the minimum total integration time (taking

into account coherent and the non-coherent integration time). Moreover, the signal must

be discriminated among a large amount of samples of noise, which causes that SNR at

the output of the CAF cannot be small since performing a small Nnc value the signal

is acquired. This SNR value is different from the C{N0 of the received signal since the

former depends on Tcoh used in the CAF. The longer the Tcoh used to compute the CAF,

the larger the magnitude of the SNR at the output of the CAF. If long Tcoh is used, the

term 2A|xk|
σ2 is usually a relative large number and for this reason, the resulting detector is

better approximated by the NQ-NPDI technique.
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Figure 4.1: Approximation of lnpcoshpxqq for small and large values of x.

4.3 Bayesian approach

The Bayesian approach is based on using a priori information about the unknown pa-

rameter (in this case phase of the incoming signal) to obtain unconditional pdf, which no

longer depends on the unknown parameter, and thus the LRT can be assessed without

problems. This approach is based on a ratio of pdfs and in this case it can be written as

ΛBpxq “

ş

ppx|H1, φkqppφkqdφk
ppx|H0q

“
ppx|H1q

ppx|H0q
ž γ̃B, (4.10)

where ppx|H1q is the unconditional pdf, ppφkq is so-called the prior pdf and the pdfs

ppx|H0q and ppx|H1, φkq are defined in (4.2) and (4.3), respectively. To apply the Bayesian

approach, let us start to calculate the ratio between ppx|H1, φkq and ppx|H0q. This result

neglecting some irrelevant constants leads to the following expression

Nnc
ź

k“1

cosh

ˆ

2A

σ2
pIk cospφkq `Qk sinpφkqq

˙

. (4.11)

Now, we calculate the Bayesian approach by removing the dependence on the phase

information by averaging (4.11). To do so, we assume that φk is a random variable,

which follows a uniform distribution from ´π to π. Proceeding in this way, the resulting
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Bayesian approach is

Λ1Bpxq “
1

p2πqNnc

ż π

´π

Nnc
ź

k“1

cosh

ˆ

2A

σ2
ξpIk, Qk, φkq

˙

dφk (4.12)

being

ξpIk, Qk, φkq “ Ik cospφkq `Qk sinpφkq. (4.13)

To solve the integral in (4.12), we make a transformation of (4.13) as

ξpIk, Qk, φkq “
b

I2k `Q
2
k cospφk ´ atanpQk{Ikqq “ |xk| cospφk ´ atanpQk{Ikqq. (4.14)

By doing so, (4.12) can be expressed as follows:

Λ1Bpxq “
1

p2πqNnc

ż π

´π

Nnc
ź

k“1

ep
2A
σ2
|xk| cospφk´atanpQk{Ikqqq ` e´p

2A
σ2
|xk| cospφk´atanpQk{Ikqqq

2
dφk

“
1

p2πqNnc

˜

ż π

´π

ep
2A
σ2
|x1| cospφ1qq

2
dφ1 `

ż π

´π

e´p
2A
σ2
|x1| cospφ1qq

2
dφ1q

¸

¨ ¨ ¨

˜

ż π

´π

ep
2A
σ2
|x2| cospφ2qq

2
dφ2 `

ż π

´π

e´p
2A
σ2
|x2| cospφ2qq

2
dφ2

¸

¨ ¨ ¨

˜

ż π

´π

ep
2A
σ2
|xNnc | cospφNnc qq

2
dφNnc `

ż π

´π

e´p
2A
σ2
|xNnc | cospφNnc qq

2
dφNnc

¸

“ I0

ˆ

2A

σ2
|x1|

˙

¨ ¨ ¨ I0

ˆ

2A

σ2
|x2|

˙

¨ ¨ ¨ I0

ˆ

2A

σ2
|xNnc |

˙

“

Nnc
ź

k“1

I0

ˆ

2A

σ2
|xk|

˙

, (4.15)

where I0 is the modified Bessel function of the first kind and order 0. Finally, applying

the logarithm on both sides, we get

L1Bpxq “
Nnc
ÿ

k“1

ln

ˆ

I0

ˆ

2A

σ2
|xk|

˙˙

ž γB. (4.16)

The optimal detector to acquire GNSS signals assuming that φk is a random variable

with uniform distribution is shown in (4.16). Nonetheless, this detector is difficult to

implement in practice since the amplitude A and the noise power σ2 must be known a

priori and it is not usually possible. For this reason, to avoid this obstacle two useful

approximations of the function lnpI0pxqq are applied. On the one hand, the function

lnpI0pxqq can be approximated by x2{4 for small values of x. On the other hand, a good
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approximation of the function lnpI0pxqq is x ´ ln
`?

2πx
˘

for large values of x. However,

this approximation has the same problem as the lnpI0pxqq function, which is the amplitude

A and the noise power σ must be known a priori. Then, the function x ´ ln
`?

2πx
˘

is

approximated by x for larger values of x. By using these approximations, the optimal

detector defined in (4.16) leads to the implementation of the NPDI detector for a low SNR

region in (4.8) and the NQ-NPDI detector for a high SNR region as in (4.9), reproduced

here for the sake of clarity:

ZNPDIpxq “
Nnc
ÿ

k“1

|xk|
2
ž γZNPDI

(4.17)

ZNQ-NPDIpxq “
Nnc
ÿ

k“1

|xk| ž γZNQ-NPDI
. (4.18)

Figure 4.2 shows the comparison among the functions lnpI0pxqq, x
2{4, x´ ln

`?
2πx

˘

,

and x´ ln
`?

2π
˘

. The function lnpI0pxqq is well approximated by x2{4 if x is lower than

2. However, the function x ´ ln
`?

2π
˘

is a good fit of lnpI0pxqq for x ą 2. This result

is quite similar to the one obtained in Figure 4.1, which was performed for the GLRT

approach.
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Figure 4.2: Approximation of lnpI0pxqq for small and large values of x.
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4.4 Discussion between the GLRT and the Bayesian

approach

In the two previous subsections, we have applied the Bayesian approach and the GLRT

to find the optimal technique to detect weak GNSS signals using a pdf that take into

account unknown data bits and phase changes of the received signal. In Section 4.2, we

have assumed that the phase of the received signal is unknown. The outcome of this

approach is shown in (4.7), which leads to the use of lnpcoshpxqq function. However, in

Section 4.3, we have applied the Bayesian approach considering that the phase information

of the received signal is a uniform random variable. The resulting detector expressed in

(4.16) leads to the use of the lnpI0pxqq function. Although the outcome from the two

approaches is different, the resulting detectors in both cases are well approximated by the

NPDI technique for small values of x and if x is large, the detectors have an excellent fit

using the NQ-NPDI technique.

Despite the fact that the lnpcoshpxqq and lnpI0pxqq functions can be approximated by

a quadratic term if x is small or by a linear term for large values of x, they are different

functions. The computational load of I0pxq is much larger than the one obtained from

the coshpxq because the former needs to be evaluated numerically and the latter can be

obtained from a simple formula. This is an interesting point since if these two techniques

provide similar performance and one has to choose between these techniques, the result

obtained from the GLRT approach would be a detector more useful to be applied in

practice owing to its computational load.

Moreover, another interesting issue is that it is not clear where is exactly the trade-off

between the NQ-NPDI and NPDI techniques in terms of SNR at the output of the CAF.

We have shown that approximately the turning point of using the NQ-NPDI or the NPDI

is when the term 2A
σ2 |xk| is close to 1.2 and 2 according to the GLRT and the Bayesian

approach, respectively. However, the term 2A
σ2 |xk| is not exactly the SNR, which is a

parameter of interest to characterize where is the compromise between the NQ-NPDI and

NPDI techniques. For this reason, in Section 4.6, we try to find the region of SNR values

that indicate when the NQ-NPDI technique works better than NPDI technique and vice

versa.
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4.5 Statistical characterization of PDI techniques

This section provides the statistical characterization of the NQ-NPDI technique and the

resulting detector from the Bayesian approach, which the latter must offer the optimal

performance under the assumed conditions. The literature still lacks a theoretical analysis

of these PDI techniques. The analysis involves obtaining closed-form expressions of the

detection and false alarm probabilities of these detectors. We do not make a statistical

characterization of the NPDI technique since its false alarm and detection probabilities

are well-known in the literature and were defined in (3.3) and (3.2), respectively.

Closed-form expressions of the detection and false alarm probabilities become neces-

sary to set an appropriate detection threshold or to be able to predict the performance of

a detector. These probabilities require the knowledge about the cdf of the metrics of the

PDI techniques under H0 and H1, as it is explained in Section 2.2.1. However, closed-form

expressions of these cdfs are not known owing to the complexity introduced by the sum

of Nnc independent random variables, which use the modified Bessel function and the

absolute value, for the result from the Bayesian approach and the NQ-NPDI technique,

respectively.

In this situation, approximations of the cdfs of the metric of these techniques are

needed to be able to compute the probabilities of interest. A simple approximation of

the sum of distributions involves the use of the CLT theorem because the metric of these

techniques asymptotically converges to a Gaussian distribution for large values of Nnc.

However, if the Nnc value is not large enough, the CLT does not offer an acceptable

approximation, particularly at the tail region, where the probabilities of interest are often

calculated.

One way to reduce the error introduced by the CLT approximation is by exploiting

the Edgeworth series, which use some coefficients that depend on the moments of the

variable of the metric of the technique [Pap02, Ken68, Cra46]. Another approach con-

sists in applying the saddle-point approximation, which could offer even better accuracy

than the Edgeworth series. Nevertheless, the saddle-point approximation requires the

prior knowledge about the moment-generating function for the distribution of interest

[Dan54]. Unfortunately, this function is not always known or it is very complex to ob-

tain a manipulable expression. An additional interesting approach consists in improving

the convergence speed of the distribution of the technique using a fractional exponential,

which is very practical in some cases as we will see for the NQ-NPDI technique. For this

reason, the best options to estimate the distribution of the techniques is by using the
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Edgeworth series or applying a non-linear function to improve its convergence speed to a

Gaussian distribution.

4.5.1 Edgeworth series

Edgeworth series are an indispensable tool to obtain an accurate approximation of the pdf

and cdf for a random variable, which has been obtained from summing several independent

random variables. These series provide some clues to enhance the CLT approximation

by introducing some terms that depend on Hermite polynomials and the moments of the

random variable. More precisely, Edgeworth series are a particular case of the Gram-

Charlier Type A series, which are defined as

fGCpZ̃q “
1

?
2πσZ

e´
Z̃2

2

«

1`
8
ÿ

n“3

Cn
n!
Hn

´

Z̃
¯

ff

, (4.19)

FGCpZ̃q “ ΦpZ̃q ´
1
?

2π
e´

Z̃2

2

«

8
ÿ

n“3

Cn
n!
Hn´1

´

Z̃
¯

ff

, (4.20)

where fGC and FGC are the Gram-Charlier Type A series approximation for the pdf and

cdf, respectively, Z̃
.
“

Z´µZ
σZ

, µZ and σZ are the mean and the standard deviation of

the variable Z, ΦpZ̃q “
şZ̃

´8

1?
2πσZ

e´
λ2

2 dλ, HnpZ̃q are the Hermite polynomials, which are

given by

HnpZ̃q “ p´1qne
Z̃2

2
Bn

BZ̃n
e
´Z̃2

2 . (4.21)
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being

H0pZ̃q “ 1

H1pZ̃q “ Z̃

H2pZ̃q “ Z̃2
´ 1

H3pZ̃q “ Z̃3
´ 3Z̃

H4pZ̃q “ Z̃4
´ 6Z̃2

` 3

H5pZ̃q “ Z̃5
´ 10Z̃3

` 15Z̃

H6pZ̃q “ Z̃6
´ 15Z̃4

` 45Z̃2
´ 15

H7pZ̃q “ Z̃7
´ 21Z̃5

` 105Z̃3
´ 105Z̃

H8pZ̃q “ Z̃8
´ 28Z̃6

` 210Z̃4
´ 420Z̃2

` 105

H9pZ̃q “ Z̃9
´ 36Z̃7

` 378Z̃5
´ 1260Z̃3

` 945Z̃

H10pZ̃q “ Z̃10
´ 45Z̃8

` 630Z̃6
´ 3150Z̃4

` 4725Z̃2
´ 945

H11pZ̃q “ Z̃11
´ 55Z̃9

` 990Z̃7
´ 6930Z̃5

` 17325Z̃3
´ 10395Z̃

H12pZ̃q “ Z̃12
´ 66Z̃10

` 1485Z̃8
´ 13860Z̃6

` 51975Z̃4
´ 62370Z̃2

` 10395. (4.22)

The coefficients Cn can be expressed as

Cn “

ż 8

´8

HnpZ̃qpZpZ̃qdZ̃, (4.23)

where pZpZ̃q is the pdf of the random variable Z. After some straightforward, but tedious

manipulations, it is found that

C3 “
µZ,3 ´ 3µZ,1µZ,2 ` 2µ3

Z,1

σ3
Z

, (4.24)

C4 “
µZ,4 ´ 4µZ,1µZ,3 ` 6µ2

Z,1µZ,2 ´ 3µ4
Z,1

σ4
Z

´ 3, (4.25)

C5 “
µZ,5 ´ 5µZ,4µZ,1 ` 10µZ,3µ

2
Z,1 ´ 10µZ,2µ

3
Z,1 ` 4µ5

Z,1

σ5
Z

´ 10
µZ,3 ´ 3µZ,1µZ,2 ` 2µ3

Z,1

σ3
Z

,

(4.26)

C6 “
µZ,6 ´ 6µZ,5µZ,1 ` 15µZ,4µ

2
Z,1 ´ 20µ3

Z,1µZ,3 ` 15µZ,2µ
4
Z,1 ´ 5µ6

Z,1

σ6
Z

` 30

´ 15
µZ,4 ´ 4µZ,1µZ,3 ` 6µ2

Z,1µZ,2 ´ 3µ4
Z,1

σ4
Z

, (4.27)

where µZ,p “ E rZps is the p-th moment of the random variable under analysis, which

has been calculated through some tedious manipulations. This result for the first most
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commonly used moments is shown as follows,

µZ,1 “Nncµx,1, (4.28)

µZ,2 “Nncpµx,2 ` pNnc ´ 1qµ2
x,1q, (4.29)

µZ,3 “Nncpµx,3 ` pNnc ´ 1qp3µx,2µx,1 ` pNnc ´ 2qµ3
x,1qq, (4.30)

µZ,4 “Nncpµx,4 ` pNnc ´ 1qp4µx,3µx,1 ` 3µ2
x,2 ` pNnc ´ 2qp6µx,2µ

2
x,1 ` pNnc ´ 3qµ4

x,1qqq,

(4.31)

µZ,5 “Nnc pµx,5 ` pNnc ´ 1qp5µx,4µx,1 ` 10µx,3µx,2 ` pNnc ´ 2qp10µx,3µ
2
x,1 ` 15µ2

x,2µx,1

` pNnc ´ 3qp10µ3
x,1µx,2 ` pNnc ´ 4qµ5

x,1qqqq, (4.32)

µZ,6 “Nncpµx,6 ` pNnc ´ 1qp6µx,5µx,1 ` 10µ2
x,3 ` 15µx,4µx,2 ` pNnc ´ 2qp15µx,4 µ

2
x,1

` 15µ3
x,2 ` 60µx,2µx,3µx,1 ` pNnc ´ 3qp20µx,3µ

3
x,1 ` 45µ2

x,1µ
2
x,2

` pNnc ´ 4qp15µx,2µ
4
x,1 ` pNnc ´ 5qµ6

x,1qqqqq. (4.33)

The µZ,p moments depend on the moments of the individual term inside the PDI

technique. On the one hand for the result of the Bayesian approach the moments

µZ,p are affected by the moments of ln
”

I0

´

2A|xk|
σ2

¯ı

variable, which are denote as

µx,l “ E

„

´

ln
”

I0

´

2A|xk|
σ2

¯ı¯l


. Because of the Rayleigh or Rice nature of |xk| for the

hypotheses H0 and H1, respectively, the moments can be computed numerically for H0

µx,l,H0 “

ż 8

0

ˆ

ln

„

I0

ˆ

2A|xk|

σ2

˙˙l

pp|xk|;H0qd|xk|, (4.34)

and for H1

µx,l,H1 “

ż 8

0

ˆ

ln

„

I0

ˆ

2A|xk|

σ2

˙˙l

pp|xk|;H1qd|xk|. (4.35)

The mean and variance of these random variable, which are also required for the problem

at hand, are also evaluated numerically.

On the other hand, for the NQ-NPDI technique, the moments µx,l depend on the

absolute value of the received CAF, µx,l “ Er|xk|
ls. Due to the complex Gaussian

nature of received CAF, the moments are given by for H0 and H1 as [McD95]

µx,l|H0 “ σlΓ

ˆ

1`
l

2

˙

, (4.36)

µx,l|H1 “ σlΓ

ˆ

1`
l

2

˙

Ll{2p´A
2
{σ2
q, (4.37)
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where Γpxq is the Gamma function and Lqpxq denotes a Laguerre polynomial. The mean

and the variance of the NQ-NPDI technique are given by for H0

µZNQ-NPDI|H0 “ Nncσ

?
π

2
, (4.38)

VarpZNQ-NPDI|H0q “ Nncσ
2
p1´ π{4q, (4.39)

and for H1

µZNQ-NPDI|H1 “ Nncσ

?
π

2
L1{2p´A

2
{σ2
q, (4.40)

VarpZNQ-NPDI|H1q “ Nncpσ
2
` A2

´ πσ2
{4L1{2p´A

2
{σ2
q
2
q, (4.41)

Figures 4.3 and 4.4 show the comparison between the theoretical formulas of the

moments µZ,p and the simulated moments using Monte-Carlo iterations for the NQ-NPDI

metric under H0 and H1, respectively. The outcome shows that the theoretical moments

obtained are exactly the same as the one obtained from simulations.
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Figure 4.3: Comparison between simulated moments using Monte-carlo iterations and

theoretical moments under H0 for the NQ-NPDI technique.

Although the series in (4.19) and (4.20) decrease as 1{n! in the coefficients, they suffer

from having poor convergence properties, which can cause an inaccurate estimation of the
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Figure 4.4: Comparison between simulated moments using Monte-carlo iterations and

theoretical moments under H1 for the NQ-NPDI technique.

pdf of interest. This problem is circumvented by taking a specific grouping of terms that

guarantees the convergence of the series expansion. These groupings of terms lead to the

approximations known as Edgeworth series, which are given by (4.42) and (4.43) [Cra46]

fEpZ̃q “
1

?
2πσZ

e´
Z̃2

2

«

1`
ÿ

nPL

C˚n
n!
Hn

´

Z̃
¯

ff

, (4.42)

FEpZ̃q “ ΦpZ̃q ´
1
?

2π
e´

Z̃2

2

«

ÿ

nPL

C˚n
n!
Hn´1

´

Z̃
¯

ff

, (4.43)

where fE and FE are the Edgeworth series approximation for the pdf and the cdf, respec-

tively. There are different group terms L that guarantee the convergence of the series.

These group of terms are affected by the coefficients C˚n . The relationship between the

group of terms L and the coefficients C˚n is shown in Table 4.1. The more coefficients are

included in the Edgeworth series approximation, the more accurate the approximation

tends to be. Nevertheless, if no coefficients are added, the Edgeworth series is the same

as the CLT approximation.

Taking into account the expressions in (4.42) and (4.43), it is possible to obtain the

approximation of the cdf of the PDI techniques of interest depending whether the moments

of the variable have been computed for the NQ-NPDI or the result from the Bayesian
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Series L C˚n

E. 1 3 C3

E. 2 3,4,6 C3, C4, 10C2
3

E. 3 3,4,6, C3, C4, 10C2
3 ,

5,7,9 C5, 35C4C3, 280C3
3

E. 4 3,4,6, C3, C4, C6

5,7,9, C5, 35C4C3, 280C3
3

8,10,12 35C2
4 ` 56C5C3, 2100C2

3C4, 15400C4
3

Table 4.1: Relationship between the group of terms L and the coefficients Cn.

approach and for H0 or H1. Finally, from the estimation of the cdfs, we can obtain the

false alarm and detection probabilities of the NQ-NPDI and the result from the Bayesian

approach using the expressions in (2.16) and (2.17), respectively.

4.5.2 Detection threshold for the NQ-NPDI technique

Although the Edgeworth series provides a closed-form expression of the false alarm prob-

ability, it is not possible to isolate the detection threshold. For this reason, in this sub-

section, we propose another alternative to set the detection threshold for the NQ-NPDI

technique.

To do so, a non-linear transformation can be applied to enhance the convergence speed

of the NQ-NPDI metric to a Gaussian distribution with respect to Nnc. In this case, if this

metric is raised to an appropriate fractional exponent, the pdf of the NQ-NPDI metric

may converge faster to a Gaussian distribution. To define the detection threshold for the

NQ-NPDI technique following this approach, the mean and the variance of the metric of

interest raised to a fractional exponent must be calculated. To do this, we suppose that

Y is a random variable, which is raised to β as

T “ Y β. (4.44)

The mean and the variance of T , denoted by µT and VarpT q, can be calculated using a
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Taylor series, which results in [Bor14b]

µT « µβY

„

1`
1

2
βpβ ´ 1q

VarpY q

µ2
Y



, (4.45)

VarpT q « β2VarpY q

µ
2p1´βq
Y

, (4.46)

where µY is the mean of Y and VarpY q is its variance. Applying (4.45) and (4.46) in

our problem, the mean and the variance of the NQ-NPDI metric under H0 raised to the

power of β are given by

µZβNQ-NPDI|H0
« µβZNQ-NPDI|H0

«

1`
1

2
βpβ ´ 1q

VarpZNQ-NPDI|H0q

µ2
ZNQ-NPDI|H0

ff

, (4.47)

VarpZβ
NQ-NPDI|H0

q « β2VarpZNQ-NPDI|H0q

µ
2p1´βq
ZNQ-NPDI|H0

, (4.48)

where µZNQ-NPDI|H0 and VarpZNQ-NPDI|H0q are the mean and the variance of the NQ-NPDI

metric defined in (4.38) and (4.39). Finally, the threshold for the NQ-NPDI technique is

defined considering that the NQ-NPDI metric raised to β is a Gaussian distribution as

γZNQ-NPDI
« cdf´1N

´

1´ Pfa, µZβNQ-NPDI|H0
,
b

VarpZβ
NQ-NPDI|H0

q

¯

1
β

, (4.49)

where cdf´1N is the inverse cumulative distribution function of a Gaussian distribution.

It is worth mentioning that although the metric of the NQ-NPDI is raised to β the

detection performance of the NQ-NPDI technique is the same since probpZNQ-NPDIpxq ą

γZNQ-NPDI
q “ probpZβ

NQ-NPDIpxq ą γβZNQ-NPDI
q.

Optimum value of β

The problem is to find the optimum fractional exponent to improve the convergence speed

of the NQ-NPDI metric to a Gaussian distribution for small values of Nnc, which are the

typical values used in HS-GNSS receivers to acquire weak signals. In order to determine

which is the best value of β to enhance the convergence speed of the NQ-NPDI metric, we

use the Kullback-Leibler (KL) distance or divergence. The KL divergence is a measure of

the distance between two pdfs as

DKLpP ||Gq “
M
ÿ

i“1

P piq ln

ˆ

P piq

Gpiq

˙

, (4.50)
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Figure 4.5: Kullback-Leibler divergence between the empirical pdf and the Gaussian

approximation for different fractional exponents.

where i “ 1, ...,M , M is the number of points of the pdf, P piq is the pdf of the NQ-NPDI

metric and Gpiq is the Gaussian approximation of the NQ-NPDI metric.

The KL distance is computed by using different fractional exponent values i.e. raising

the term NQ-NPDI to β “ 1{3, 1{2, 2{3, 3{4, and 1 in Figure 4.5. The case of β “ 1

corresponds to the CLT approximation. The result shows that the minimum error between

the empirical pdf and the Gaussian approximation is obtained for β “ 2{3. As we will

see, the use of β “ 2{3 in the NQ-NPDI outperforms the accuracy of the computation

of the detection threshold compared to the conventional CLT approximation. We have

used the fractional exponent of 2{3 in the simulation on purpose since it is known the

convergence speed of a chi-squared random variable to a Gaussian distribution can be

improved with respect to Nnc using the fractional exponent of 1/3 [Bor14b]. In H0, the

term inside the summation of the NQ-NPDI follows a Rayleigh distribution. If a Rayleigh

distribution is squared, this distribution becomes a chi-square with 2 degrees of freedom.

Then, intuitively, if the NQ-NPDI metric is raised to 2/3, its convergence to a Gaussian

distribution will be faster, as we confirm in Figure 4.5.
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4.6 Simulation results

The results are divided into two parts. The first part consists in performing a comparative

analysis between the techniques obtained from the Bayesian approach and GLRT herein

and the most common detectors proposed in the literature described in Subsection 3.1.

The second one shows the comparison between the empirical false alarm and detection

probabilities and the approximations of these probabilities presented in this chapter for

the NQ-NPDI technique and the result from the Bayesian approach.

4.6.1 Detection performance under phase variations

This subsection consists of two parts. The first one deals with the comparison of the ROC

curves, which are obtained from generating several independent CAFs. The second one

is focused on comparing the performance of the NQ-NPDI and NPDI techniques using a

HS-GNSS receiver.

4.6.1.1 Detection analysis of PDI techniques

The first test presents a performance comparison between the different detectors derived

herein and those proposed in the literature, which are described in Section 3.1, by using

ROC curves. Simulations are carried out assuming the signal model explained in Section

4.1 and using 1 million of Monte Carlo iterations. This signal model applies to the GPS

L1 signal, which includes unknown data bits. The value of σ is 1 for all of the simulations

and the value of A and Nnc change for the different simulations. It should be noticed

that A and σ2 are the signal amplitude and the noise power at the output of the CAF,

respectively, which depend on the C{N0 of the received signal as C{N0 “ A2{pTcohσ
2q.

Thus, the ROC plots illustrated in the first part of this subsection are performed for one

value of A and σ, which correspond to a C{N0 value depending on the Tcoh considered

to compute the CAF. We perform two kind of experiments. Experiment 1: keeping the

value of φk constant for all the integration time. Experiment 2: assuming that φk is a

uniform random variable from 0 to 2π. This assumption is reasonable since the phase

of the signal can change randomly due to phase noise, frequency offsets, data bits. It is

worth mentioning that we have added in the figures the theoretical ROC curves for the

NPDI technique defined in (3.3) and for the coherent integration defined in (2.23) as a

benchmark.
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Experiment 1

Figure 4.6 shows the ROC curves of the several detectors presented herein and the

proposed detector in the literature. In this case, we can also compare the performance

of the optimal detectors derived by using the GLRT and the Bayesian approach since we

assume to know the value of A and σ. In this figure, we consider φk constant during all

the integration time and do not consider the presence of unknown data bits for A “ 1.8

and Nnc “ 6. The best detector under these conditions without any uncertainty is the

coherent integration, which sums coherently all the CAFs and performs the absolute

value. This result was expected since it is well-known that the coherent integration is

the optimal detector if there is no presence of change variations in the carrier phase.

The worst detector under these conditions is the NPDI technique. The PDI techniques

that come from the result of the GLRT and the Bayesian approach exhibit practically

the same performance. In this case, these techniques are outperformed by the others

proposed in the literature such as the GPDIT, NPDISD and DPDI techniques. This

occurs because the phase of the signal remains stable during all the integration time and

the proposed techniques herein have been derived assuming a more restrictive condition,

which considers that this phase can suffer variations. Finally, we can observe that the

NQ-NPDI technique provides a gain over the NPDI technique in terms of signal detection

since the SNR at the output of the CAF relatively large.

Experiment 2

Figure 4.7 illustrates the comparison among the different PDI techniques considering

φk as a uniform distribution from 0 to 2π with A “ 1.8 and Nnc “ 6. In this case, all

of the techniques that are not robust against phase variations owing to both data bits

and frequency offset such as the coherent integration, GPDIT, DPDI, NPDISD techniques

suffer a strong degradation. The best performing detectors are the ones obtained from the

Bayesian approach and the GLRT. They provide a performance really similar in terms of

signal detection. The NQ-NPDI technique is an excellent approximation of these optimal

detectors since the SNR at the output of the CAF is a value quite high approximately

5.1 dB. The approach used in this simulation is the typical one implemented in HS-GNSS

receivers to detect weak GNSS signals, where Nnc is usually a small number since a

long Tcoh is used to compute the CAF. From this result, we can conclude that the NQ-

NPDI technique is the best option to acquire GNSS signals because it provides similar

performance as the one obtained from the Bayesian approach and the GLRT, but it does

not require the knowledge about the A nor σ values.
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Figure 4.6: Comparison among the different PDI techniques assuming φk constant during

all the integration time and for A “ 1.8, Nnc “ 6 and σ “ 1. In the legend, BA means

Bayesian approach and Coh. refers to coherent integration. Moreover, we have included

the theoretical ROC curves for the NPDI technique and for the coherent integration as

Theoretical NPDI and Theoretical coh., respectively.

In Figure 4.8, we decrease the value of A in order to find the trade off between the

NPDI and NQ-NPDI techniques. The parameters used for the simulations are A “ 0.85,

Nnc “ 60 and φk is assumed to be a uniform random variable. The outcome shows that the

techniques that provide the best performance remain the derived from the GLRT and the

Bayesian approach. Comparing the NPDI and NQ-NPDI techniques, we can see that they

offer an identical performance. The value of SNR at the output of the CAF that provides

the same performance for the NPDI and NQ-NPDI techniques is approximately -1.4 dB.

Considering a Tcoh “ 20 ms, the C{N0 of the received signal would be approximately 15.5

dB-Hz. In this condition, we need a larger Nnc value such as 60 to be able to obtain

a similar detection probability as in the Figure 4.7. This values of Nnc are not often

implemented in HS-GNSS receivers, since they try to detect the weak signals extending

the Tcoh as much as possible and using a small number of Nnc to use the minimum duration

of the signal.

In Figure 4.9, we decrease further the value of A up to 0.45, and perform Nnc “ 500

and φk is considered to be a uniform random variable. The best techniques remain the
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Figure 4.7: Comparison among the different PDI techniques assuming that φk follows a

uniform distribution and for A “ 1.8, Nnc “ 6 and σ “ 1.
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Figure 4.8: Comparison among PDI techniques assuming that φk follows a uniform dis-

tribution and for A “ 0.85, Nnc “ 60 and σ “ 1.
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Figure 4.9: Comparison among PDI techniques assuming that φk follows a uniform dis-

tribution, A “ 0.45, Nnc “ 500 and σ “ 1.

ones that were derived from the Bayesian approach and the GLRT. In this case, these

techniques are well approximated by the NPDI technique since the SNR at the output of

the CAF is quite small approximately -7 dB. For these values of SNR, we suggest using

the NPDI technique instead of the NQ-NPDI technique.

Comparing the GLRT and the Bayesian approach for the different simulations, we can

conclude that they provide an identical performance for different values of SNR, though

they are different detectors. If we know the value or an approximation of A and σ and one

want to obtain the optimal performance to detect weak signals with time-varying phase,

we propose to use the result obtained from the GLRT approach defined in (4.7). Since

it provides the same performance as the one obtained from the Bayesian approach, but

it requires a lower computational load because it does not have to compute a numerical

integral.

It is worth mentioning that when the techniques obtained from the GLRT and the

Bayesian approach do not have the correct values of A and σ, the performance of these

detectors can be between the performance of the NQ-NPDI and NPDI techniques. For

instance, if we introduce an incorrect large value of A{σ2 in the resulting detectors from

the GLRT and the Bayesian approach, their performances are practically the same as the
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Figure 4.10: ROC comparison between

the NPDI and NQ-NPDI techniques for

Tcoh “ 20 ms, C{N0 “ 23 dB-Hz and

using the GPS L1 signal.
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Figure 4.11: ROC comparison between

the NPDI and NQ-NPDI techniques for

Tcoh “ 100 ms, C{N0 “ 20 dB-Hz and

using the Galileo E1BC signal.

one obtained from the NQ-NPDI technique. However, if we introduce an incorrect very

small value in the detectors, the performance of the detectors is quite similar to the NPDI

technique.

4.6.1.2 Comparison between the NPDI and NQ-NPDI techniques

The second part of these simulation results is based on acquiring a weak GPS L1 signal.

The acquisition of the signal is performed by the application of a HS-GNSS receiver, which

utilizes the double-FFT algorithm [JB06, SG12]. This algorithm provides an efficient

signal acquisition using a long coherent integration time and assuming some assistance

information about the Doppler of the satellite.

Figure 4.10 and 4.11 compare the ROC (i.e. the detection probability versus the global

false alarm probability) of the NPDI and NQ-NPDI detectors for the GPS L1 signal (left)

and Galileo E1BC (right). The results show that in both cases using a small value of Nnc

the NQ-NPDI technique outperforms the NPDI technique in terms of signal detection.

This fact occurs because the SNR at the output of the CAF is not a small number since

the signal can be detected by applying a few non-coherent integrations. Therefore, the

optimal detector is more accurately approximated by the NQ-NPDI technique providing

a gain over the NPDI technique. This is an important result because GNSS receivers

usually use the NPDI technique to acquire signals. Comparing the detection probability
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Figure 4.12: ROC curve approximations for the performance of the optimal detector using

the Edgeworth series and the CLT approximation for parameters: A “ 1.7, σ “ 1, and

Nnc “ 10.

for the two techniques, we can see that, for instance, on the right figure for Nnc “ 7 and

detection probability of 0.85, the NQ-NPDI technique has a false alarm probability of

1e-2 while the NPDI has a value close to 3.5e-2, a value more than 3 times larger.

4.6.2 Statistical analysis of selected PDI techniques

This subsection provides the statistical characterization of the NQ-NPDI technique and

the resulting technique from the Bayesian approach. This characterization is carried out

by the use of the Edgeworth series described in Subsection 4.5.1 for both techniques.

Moreover, for the NQ-NPDI technique, we also compare the accuracy of the Edgeworth

series to the approach explained in Subsection 4.5.2 to define the detection threshold.

4.6.2.1 Statistical analysis of the Bayesian PDI technique

Simulation results are based on comparing the performance of the optimal detector in

(4.16) obtained through the Monte Carlo simulations with the theoretical approximations

proposed herein. Figure 4.12 illustrates ROC curves for the optimal non-coherent de-
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Figure 4.13: Pd vs. SNR with Nnc “ 5, 10, 50 and Pfa “ 1e´ 4 for the E.4 approximation

and the optimal non-coherent detector obtained from simulations.

tector, the approximations obtained using the different Edgeworth series and the CLT

approximation. The result shows that the CLT approximation is a very inaccurate ap-

proximation, particularly for small values of Pfa. In this figure, we can see for instance,

for a detection probability of 0.94 the CLT approximation established a false alarm prob-

ability of 1.7e-6, when the empirical probability of false alarm is close to 3.5e-5. This

fact causes that the CLT approximation provides a false alarm probability value approx-

imately twenty times smaller than the empirical one. Nevertheless, the Edgeworth series

approximation reduces the error offered by the CLT approximation. The more coeffi-

cients we add to the series, the smaller the error between the simulated ROC curve and

the theoretical one. From this result, we can conclude that the E.4 approximation of

the Edgeworth series defined in the Table 4.1 is the most accurate approximation and it

allows us to predict the performance of the optimal detector even for small values of Pfa,

which are the most common values used in the receivers.

Figure 4.13 shows the Pd vs. SNR for the optimal non-coherent detector, the E.4

approximation obtained from the Edgeworth series and the CLT. The result shows that

the E.4 approximation is a very good fit and it is able to predict the detection probability

of the optimal detector for any value of Nnc and SNR. This is an important result since it

provides us prior knowledge about the Pd of this detector. The CLT approximation offers
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Figure 4.14: Pfa vs. detection threshold with Nnc “ 3, 20 and 50 for the E.4 and CLT

approximations and the optimal non-coherent detector obtained from simulations.

a considerably error for small values of Nnc. However, the larger the Nnc, the better the

accuracy of the CLT approximation is. This occurs because the statistics of the optimal

non-coherent detector tends to be Gaussian for large values of Nnc.

Figure 4.14 illustrates the error between the Pfa of the optimal detector with the E.4

and CLT approximations. The use of the Edgeworth series is preferable since it is a more

effective approximation than the CLT, particularly at the tail region. The Edgeworth

series allow us to set an extremely accurate detection threshold to distinguish if the signal

is present or absent. The error introduced by the CLT is really significant, especially

for small values of Pfa, which are typically implemented in receivers to avoid false alarm

problems.

4.6.2.2 Statistical analysis of the NQ-NPDI technique

This subsection presents the results of the statistical characterization of the NQ-NPDI

technique. The first simulation is based on comparing the approximated and empirical

ROC curves of the NQ-NPDI technique for Nnc “ 10, A “ 1.7 and σ “ 1 in Figure

4.15. In this figure, we have also added the empirical and theoretical ROC curves of

the NPDI technique. From this figure, the result illustrates that the Edgeworth series
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Figure 4.15: ROC curve approximations for the performance of the NQ-NPDI technique

using the Edgeworth series and the CLT approximation for parameters: A “ 1.7, σ “ 1,

and Nnc “ 10. ‘The. NPDI” represents the theoretical ROC curve of NPDI technique.

becomes necessary to predict the performance of the NQ-NPDI technique. The CLT

approximation provides an inaccurate approximation with respect to the simulated ROC

curve, in particular for small values of false alarm probability. Nonetheless, the error

of the CLT approximation is reduced by applying the Edgeworth series. The larger the

number of coefficients used in this series, the smaller the error between the empirical and

approximated ROC curve. In this case, the approximations E.3 and E.4 provide a perfect

math with the empirical curve.

Figure 4.16 shows the Pd vs. SNR for the NQ-NPDI and NPDI techniques, the E.4

approximation obtained from the Edgeworth series, the CLT approximation and the theo-

retical performance of the NPDI technique. The result shows that the E.4 approximation

is an excellent fit of the empirical detection probability of the NQ-NPDI technique. We

can observe that the CLT approximation provides a significant error with respect to the

empirical detection probability. Moreover, as we previously discussed, we can see that the

NQ-NPDI technique provides a signal detection gain over the NPDI technique.

Figure 4.17 illustrates the false alarm probability of the NQ-NPDI metric, the CLT

approximation, the Edgeworth approximation and the new approximation proposed herein
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Figure 4.16: Pd vs. SNR with Nnc “ 10 and Pfa “ 1e ´ 8 for the E.4 approximation,

the CLT and the NQ-NPDI technique obtained from simulations; and the theoretical and

empirical detection probability of the NPDI technique.
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by introducing the fractional exponent β “ 2{3 for different numbers of Nnc. The CLT

approximation provides a significant error with respect to the empirical value of false alarm

probability, especially for small values of this probability. The false alarm probability value

obtained analytically from applying the fractional exponent is much more accurate than

the CLT in the tail region. However, the Edgeworth series E.2 approximation even offers

a bit better accuracy than the approximation that uses the fractional exponent. From

this result, we can conclude that the Edgeworth series approximation allows us to define

a more accurate detection threshold for the NQ-NPDI technique, though the Edgeworth

approximation used was not the longest.

4.7 Conclusions

Based on the GLRT and the Bayesian approach, this chapter has derived the optimal PDI

technique for HS-GNSS receivers in presence of data bits and variations in the carrier

phase. Although the resulting PDI techniques from these approaches are different, they

provide similar performance in terms of signal detection. Due to this fact, we propose to

use the result from the GLRT approach defined in (4.7), as long as an approximation of

the received amplitude of the signal and the noise power were known. This is because the

result from the GLRT approach requires less complexity in terms of computational load

than the result from the Bayesian approach since it does not need to compute a numerical

integral.

If neither the amplitude nor the noise power are known, two approximations of the

technique defined in (4.7) can be used leading to the traditional NPDI and NQ-NPDI

techniques. Contrary to the traditional belief that the NPDI technique is the best option

to acquire weak GNSS signals with time-varying random phase and data bits, this chapter

proves that the NQ-NPDI is the most promising technique.

In addition, we have carried out a novel statistical analysis of the NQ-NPDI technique

and the result from the Bayesian approach by using the Edgeworth series. These analyses

have led to find closed-form approximations of the detection and false alarm probabili-

ties of these techniques. Simulation results have proven that the approximation of the

Edgeworth series allows us to predict the performance of the detector and set an accurate

signal detection threshold for both techniques.



Chapter 5

Optimal PDI technique for the

reacquisition of weak GNSS signals

As we have analysed in the previous chapters, several PDI techniques have been proposed

in the literature to detect weak signals at the acquisition stage. However, less attention

has been paid to the problem of reacquiring weak signals. A reacquisition must be carried

out when the receiver has just lost the signal from one satellite owing to, for instance,

strong attenuation caused by an obstacle in the path between the transmitter and the

receiver. If the receiver loses the signal, it has to re-detect the signal in order to obtain

the position of the user. However, the problem of detecting weak GNSS signals in the

reacquisition is less complex than in the first acquisition since in case of reacquisition

an accurate estimation of the Doppler frequency is available [VD09] and hence one of

the most problematic impairments to extend the coherent integration duration for signals

with data are the unknown bits.

Despite the fact that some strategies have been proposed to detect weak GNSS signals,

which have been analysed in the previous chapters, the optimal PDI technique for the

reacquisition remains still unknown. This occurs because PDI techniques are designed

for the first acquisition of the receiver, which has to mitigate the uncertainty of the

Doppler frequency. For this reason, the purpose of this chapter is to derive the optimal

PDI technique by applying the detection theory tools for the reacquisition of weak GNSS

signals. More precisely, the Bayesian approach and the GLRT are used to formulate

the detection problem and two PDI techniques are obtained, which require a significant

amount of computational resources. We also present lower-complexity approximations of

these two PDI techniques. Finally, the performance of the techniques proposed herein is

87
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compared to the PDI techniques used in previous work in terms of ROC curves, revealing

a clear gain in favour of our techniques.

5.1 Signal Model

The acquisition of a satellite provides a coarse estimation of code-delay and Doppler

frequency, which are obtained from the value that maximizes the CAF [GC16]. The

accuracy of theses estimations can be improved performing a finer search of Doppler

frequency and code-delay in the CAF. Then, the incoming signal is tracked by correlating

it with a local replica, which contains accurate estimations of Doppler frequency and code

delay. This process is usually carried out for a long period of time. However, the tracking

of the signal can be lost due to, for example, the attenuation caused by an obstacle

between the satellite and the receiver. In this situation, the HS-GNSS receiver tries to

reacquire the received signal from the satellite. To do so, a local replica, which includes

the estimations of code-delay and Doppler frequency obtained in the tracking stage before

losing the signal, is correlated again with the received signal for different time instants,

which becomes [Bor09b]

xk “ Ik ` jQk “ Adke
jφ
` wk, (5.1)

where Ik “ Rpxkq, Qk “ =pxkq, wk is the noise component, the index k “ 1, ..., Nnc

represents the time instant when the correlator output xk is computed, dk are the data

bits assumed to be a random variable taking values of 1 and -1 with the same probability.

The amplitude A and the phase φ are constant with k, and wk is assumed independent

for each k, but identically distributed. It is worth mentioning that the correlation output

xk is usually computed for several close values of the code-delay estimation since this

estimation may have changed slightly due to the movement of the satellite and the receiver.

Nonetheless, we omit this dependence since we can consider we are performing the analysis

only for one of these values.

Combinations of several correlator outputs are needed to detect the weak GNSS signal.

The best way to obtain a gain in terms of signal detection is increasing the Tcoh (i.e.

coherently combining different correlator outputs), though its duration is limited by data

bits. If the coherent integration is not enough to detect the signal in harsh conditions,

we must resort to apply PDI techniques, which provide signal detection improvements

since they can increase the integration time by using a non-linear function. In order to

known whether the satellite is present or not, the output of a PDI technique denoted
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as Zx is compared to a signal detection threshold. If the magnitude of Zx surpasses the

detection threshold the satellite is considered to be present, but if this magnitude does not

surpass the detection threshold, the satellite is assumed to be absent. A block diagram

representing the reacquisition process is shown in Figure 5.1. The problem of obtaining

the optimal PDI technique consists in finding a function fpx1, ..., xNncq that allows the

receiver to discriminate between the two hypotheses H0 (the satellite is absent) and H1

(the satellite is present) with the lower probability of false alarm and greater probability

of detection:

• Under H0: xk “ wk is a complex Gaussian noise with mean zero and variance σ2.

• Under H1: xk “ Adke
jφ ` wk is the signal plus complex Gaussian noise.

 (·)
𝑁𝑛𝑐

Figure 5.1: Block diagram of the GNSS signal reacquisition.

It is worth mentioning that if the phase of the signal was time-varying, the signal

detection problem would be completely different, which leads to other types of solutions.

Examples of this kind of signal detection problems have been analysed in Chapter 4.

5.2 Brief review of PDI techniques for HS-GNSS re-

ceivers

In this section we present a review of the most relevant PDI techniques, which will be used

as a benchmark to compare the performance of the PDI techniques presented in Section

5.3. The optimal detector assuming a received signal that only contains an unknown

phase during all the integration time is the coherent integration [Ric05]

Zcohpxq “

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“1

xk

ˇ

ˇ

ˇ

ˇ

ˇ

, (5.2)
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where x
.
“ rx1, ..., xNncs

T . However, the coherent integration is degraded, impaired in

presence of frequency offset and data bits. In presence of these impairments, the most

widely applied PDI technique is the NPDI, which is given by [Sch05b]

ZNPDIpxq “
Nnc
ÿ

k“1

|xk|
2 . (5.3)

The NPDI technique is robust against the phase variations caused by data bits and fre-

quency offset since it removes these variations by using the squared absolute value.

Alternatively, another technique to detect weak signals is the DPDI defined as follows

[EB04]:

ZDPDIpxq “

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“2

xkx
˚
k´1

ˇ

ˇ

ˇ

ˇ

ˇ

. (5.4)

This technique usually offers better performance than the NPDI technique, but it expe-

riences a performance degradation in presence of data bits. Another alternative is the

NQ-NPDI technique [GC17]:

ZNQ-NPDIpxq “
Nnc
ÿ

k“1

|xk| . (5.5)

The NQ-NPDI technique provides an improvement in signal detection performance over

the NPDI technique, especially if the signal can be detected using a small number of Nnc,

that is, Nnc ď 10. Moreover, it is robust against frequency offset and data bits. An

additional technique, denoted as GPDIT, combines the NPDI and DPDI techniques as

[Cor07]

ZGPDITpxq “
Nnc
ÿ

k“1

|xk|
2
` 2

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“2

xkx
˚
k´1

ˇ

ˇ

ˇ

ˇ

ˇ

. (5.6)

The GPDIT technique outperforms the NPDI and DPDI techniques as long as the signal

does not contain data bits. This occurs because the GPDIT technique consists of the

DPDI term, which suffers a significant degradation in presence of data bits.

5.3 Detection strategies

This section uses the Bayesian approach and the GLRT to find the optimal PDI technique

for the signal model described in Section 5.1. It should be noticed that the difference
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between the detection problem analysed in this chapter and in Chapter 4 is that in

Chapter 4 we consider a time-varying phase in the received signal and in this chapter we

assume that this phase is constant.

5.3.1 Bayesian approach

As we have seen in Chapter 2, the Bayesian approach is often used when the LRT contains

unknown parameters, to which a prior probability distribution can be assigned. Indeed,

under these conditions, the Bayesian approach leads to the optimal detector [Sim95].

This approach consists in calculating the expectation of the LRT with respect to the a

priori distribution of the unknown parameter. More precisely, the difficulty caused by

the unknown parameter is circumvented by averaging the conditional pdf to obtain the

unconditional pdf, which does not depend on the unknown parameter. The conditional

pdf of the correlators outputs assuming that these outputs include data bits uniformly

distributed with equal probability is written under H1 as [GC17]

ppx|H1, φq “
1

pπσ2qNnc
exp

˜

´

Nnc
ÿ

k“1

1

σ2
pI2k `Q

2
k ` A

2
q

¸

Nnc
ź

k“1

cosh

ˆ

2A

σ2
pIk cospφq `Qk sinpφqq

˙

. (5.7)

Under H0, the pdf of x can be expressed as follows,

ppx|H0q “
1

pπσ2qNnc
exp

˜

´

Nnc
ÿ

k“1

1

σ2
pI2k `Q

2
kq

¸

. (5.8)

The Bayesian approach is based on a ratio of the two pdfs above given by

LBpxq “

ş

ppx|H1, φqppφqdφ

ppx|H0q
“
ppx|H1q

ppx|H0q
ž γ̃B, (5.9)

where ppφq is the prior pdf of φ and γ̃B is the detection threshold. First, to apply the

Bayesian approach we obtain an expression of the ratio between the two pdfs: ppx|H1, φq

and ppx|H0q. After removing some irrelevant constants, the ratio can be written as

L1Bpx, φq “
Nnc
ź

k“1

cosh

ˆ

2A

σ2
pIk cospφq `Qk sinpφqq

˙

. (5.10)

Second, we eliminate the phase information in (5.10) using the prior information. The

prior pdf of φ is assumed to be a uniform random variable from ´π to π. The resulting
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Bayesian approach is given by the following expression:

L2Bpxq “
1

2π

ż π

´π

Nnc
ź

k“1

cosh

ˆ

2A

σ2
ckpφq

˙

dφ (5.11)

with

ckpφq “ Ik cospφq `Qk sinpφq. (5.12)

Note that the larger the value of Nnc, the larger the number of multiplicative terms in

the integral. Since in this detection problem the phase of the received signal is considered

constant, we need to apply the properties of the product of cosh functions to solve this

integral, that is, coshpxqcoshpyq “ pcoshpx` yq ` coshpx´ yqq{2. Proceeding in this way

the integral can be rewritten as a series of integrals, where each one contains the cosh of

a certain combination of sums and subtractions of the terms ckpφq as

L2Bpxq “
1

2π2Nnc´1

ˆ
ż π

´π

cosh

ˆ

2A

σ2
pc1pφq ` c2pφq ` . . .` cNncpφqq

˙

dφ ` . . .`

ż π

´π

cosh

ˆ

2A

σ2
pc1pφq ´ c2pφq ´ . . .´ cNncpφqq

˙

dφ

˙

, (5.13)

for which a more compact expression is

L2Bpxq “
1

2π2Nnc´1

2Nnc´1
ÿ

m“1

ż π

´π

cosh

ˆ

2A

σ2
pam cospφq ` bm sinpφqq

˙

dφ, (5.14)

where 2Nnc´1 is the number of cosh functions that appears after applying the property

of the multiplication of several cosh functions. The am and bm coefficients aim at en-

compassing all possible combinations of additions and subtractions of Ik and Qk, respec-

tively, excluding those that refer to others already considered but with opposite sign.

By stacking the above-mentioned coefficients into vectors a
.
“ ra1, ¨ ¨ ¨ , a2Nnc´1s

T and

b
.
“ rb1, ¨ ¨ ¨ , b2Nnc´1s

T , we can compute their value as follows,

a “ MI (5.15)

b “ MQ, (5.16)

where I
.
“ rI1, . . . , INncs

T , Q
.
“ rQ1, . . . , QNncs

T , and M is a
`

2Nnc´1 ˆNnc

˘

matrix whose

rows contain all the possible combinations of +1 and -1, excluding those that differ from

another row in a global change of sign as

M
.
“

»

—

—

—

—

—

—

–

1 ´1 ´1 . . . ´1

1 1 ´1 . . . ´1
...

...
...

. . .
...

1 1 1 . . . 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.17)
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Now, the integral can be solved by the following procedure as

L2Bpxq “
1

π2Nnc

2Nnc´1
ÿ

m“1

ż π

´π

cosh

ˆ

2A

σ2

a

a2m ` b
2
m cos

ˆ

φ´ atan

ˆ

bm
am

˙˙˙

dφ

“
1

π2Nnc`1

2Nnc´1
ÿ

m“1

ˆ
ż π

´π

e
2A
σ2

?
a2m`b

2
m cospφqdφ`

ż π

´π

e´
2A
σ2

?
a2m`b

2
m cospφqdφ

˙

“
1

2Nnc´1

2Nnc´1
ÿ

m“1

I0

ˆ

2A

σ2

a

a2m ` b
2
m

˙

, (5.18)

where I0 denotes the zero-order modified Bessel function. Finally, removing some irrele-

vant constants the resulting detector can be expressed as

ZBAPDIpxq “
2Nnc´1
ÿ

m“1

I0

ˆ

2A

σ2

a

a2m ` b
2
m

˙

ž γB, (5.19)

where γB is the detection threshold.

The result expressed in (5.19) is referred to as Bayesian Approach PDI (BAPDI)

technique. This technique is optimum in presence of unknowns bits and an unknown

constant phase. Nonetheless, the BAPDI technique depends on the ratio of A and σ2.

Despite the fact that some receivers can know this ratio in tracking stage since they

use a carrier-to-noise estimator, the goal of this chapter is to derive a detector which

does not depends on the parameters A and σ2 so that it can be implemented in any

receiver. To do so, we propose to apply the approximation of I0pxq « expp|x|q, valid for

relative large values of x. This approximation can be applied for our problem since the

argument of (5.19) is not a small magnitude when the received signal has the same or

similar combination of bits as one of the rows of the matrix M. Then, by considering

I0pxq « expp|x|q, we get

2Nnc´1
ÿ

m“1

exp

ˆ
ˇ

ˇ

ˇ

ˇ

2A

σ2

a

a2m ` b
2
m

ˇ

ˇ

ˇ

ˇ

˙

ž γB. (5.20)

Introducing the logarithm of the LRT becomes

ln

˜

2Nnc´1
ÿ

m“1

exp

ˆ
ˇ

ˇ

ˇ

ˇ

2A

σ2

a

a2m ` b
2
m

ˇ

ˇ

ˇ

ˇ

˙

¸

ž lnpγBq. (5.21)

To simplify the expression above, we make use of the log-sum-exp approximation, which

consists in taking the maximum of the different exponentials. This approximation is

reasonable for a high SNR value at the output of the PDI technique. Such values of SNR
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are usually obtained at this output because otherwise the signal could not be detected.

In this situation, the largest term dominates in the sum of (5.21) as

max
m

ˆ
ˇ

ˇ

ˇ

ˇ

2A

σ2

a

a2m ` b
2
m

ˇ

ˇ

ˇ

ˇ

˙

ž γ1B. (5.22)

The larger the deviation of the argument of (5.21), the better the approximation becomes.

Finally, incorporating the now irrelevant constant 2|A|
σ2 into the threshold, the resulting

detector can be expressed as

ZMBAPDIpxq “ max
m

´

a

a2m ` b
2
m

¯

ž γ2B. (5.23)

The solution provided by (5.23) is referred to as Maximum BAPDI (MBAPDI) tech-

nique. The MBAPDI technique can be implemented in any HS-GNSS receiver because it

does not depend on the parameters A and σ2. It is worth mentioning that if the chosen

index m corresponds to the correct sequence of bits, then the result would be the same as

for the coherent detector in the hypothesis H1, but this will not always happen due to the

presence of noise. Moreover, although this happened, we would have some performance

degradation with respect to the coherent detector. This is because the MBAPDI requires

the use of the maximum function also in the hypothesis H0, making the receiver choose

the largest value among the different 2Nnc´1 samples of noise, which increases the number

of false alarms.

5.3.2 Generalized likelihood ratio test

As we have discussed in Chapter 2, a common approach to design detectors with unknown

parameters deals with the combination of estimation and detection. The best known joint

estimation and detection approach is the GLRT, which consists of two steps. First, the

ML estimate of the unknown parameters are found. Second, the unknown parameters are

replaced by their ML estimates under each hypothesis and the LRT is calculated as if the

estimated parameters were correct [McD95, Lev08].

Although no claims about the optimality of the GLRT can be made, it provides good

results in general. Moreover, the GLRT formulation usually provides simpler expressions

than the Bayesian approach, which requires the integral of products of several pdfs. This

occurs because ML estimation equations sometimes result in a closed-form solution. How-

ever, this is not the case of our problem where the ML estimate of the received phase

affected by bits does not admit a closed-form solution. In this situation, two options are
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feasible: making an approximation of the ML equation in order to get a closed-form so-

lution, which was done in [Bor09b] or using a one-dimensional search method to evaluate

the ML estimate.

A PDI technique has been already obtained in [Sat11] using an approximation of the

ML phase estimate provided in [Bor09b] and replacing it in an expression of the LRT

approximated for low SNR regime. Before proceeding, we make a brief description of the

work done previously by other authors and after that we present new PDI techniques

based on using different approaches of the GLRT. In [Bor09b], the authors computed the

ML solution of the signal phase, which contains unknown bits, from the pdf of x as

ppx|H1, φq “
1

pπσ2qNnc
exp

˜

´

Nnc
ÿ

k“1

1

σ2
pI2k `Q

2
k ` A

2
q

¸

Nnc
ź

k“1

cosh

ˆ

2A

σ2
pIk cospφq `Qk sinpφqq

˙

. (5.24)

The log-likelihood function for φ, removing the terms that are not affected by φ, can be

expressed as

Lpx, φq “
Nnc
ÿ

k“1

ln

ˆ

cosh

ˆ

2A

σ2
pIk cospφq `Qk sinpφqq

˙˙

. (5.25)

In order to find a closed-form solution of φ the lnpcoshpxqq function is approximated

by x2{2. Thus, the closed-form expression of φ that approximately maximizes (5.25) is

[Bor09b]

φ̂ “
1

2
atan2

˜

2
Nnc
ÿ

k“1

IkQk,
Nnc
ÿ

k“1

I2k ´Q
2
k

¸

, (5.26)

where atan2px, yq is the four quadrant atan function.

Another way to find the value of φ that maximizes (5.25) is numerically by evaluating

that expression, which can easily be carried out implementing a one-dimensional search.

The comparison between the estimators and the CRB is shown in Figure 5.2. The result

illustrates that the ML estimate obtained by a one-dimensional search method exhibits

practically the same performance as the approximation in (5.26). The CRB of the phase

estimate is 1{p2SNRNncq [Rif74], where the SNR is defined as A2{σ2.

In [Sat11], a PDI technique was presented based on the GLRT approach. The authors

used the log-LRT, which can be expressed as (5.25). They propose to approximate Lpx, φq

defined in (5.25) for a low SNR regime applying a Taylor series of the lnpcoshpxqq function
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Figure 5.2: Performance comparison of the estimators and the CRB for Nnc “ 10. The

approximation of the ML solution expressed in (5.26) is referred to as ML closed-form

and the one obtained from a one-dimensional search is indicate as ML iterative.

as x2{2, which leads to

Nnc
ÿ

k“1

ˆ

2A

σ2
pIk cospφq `Qk sinpφqq

˙2

ž γ1G. (5.27)

Replacing the approximation of the phase estimate in (5.26) into (5.27), and making some

simplifications, the NPDISD detector can be obtained as

ZNPDISDpxq “
Nnc
ÿ

k“1

|xk|
2
`

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“1

x2k

ˇ

ˇ

ˇ

ˇ

ˇ

. (5.28)

The NPDISD detector consists of two non-coherent detectors or PDI techniques. The first

detector is the conventional NPDI detector. The second detector is the squaring detector

(SD), which consists in summing the squared complex correlator outputs. Despite the

fact that this solution provides a good performance, an enhancement of this approach can

be carried out since HS-GNSS receivers do not usually work in a very low SNR regime at

the output of the coherent correlation. This occurs because the correlator outputs in HS-

GNSS receivers are obtained using a long Tcoh in general and combining few correlation

outputs the signal can be detected. Then, the approximation of Taylor series used in

(5.27) for low SNR values might not be the best option to obtain the best performance

of the GLRT approach.
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For this reason, the purpose of the following subsections is to propose several new

alternatives to the GLRT in order to enhance the performance of the NPDISD technique.

More precisely, we present three new approaches to obtain the best detectors using the

GLRT approach in the context of HS-GNSS receivers.

5.3.2.1 GLRT (strict)

The first one boils down to the strict application of the GLRT approach. This approach

is based on using the log-LRT and replacing the unknown parameter φ value by its ML

estimation, which must be obtained from a one-dimensional search in (5.25), as

Lpx, φ̂MLq “

Nnc
ÿ

k“1

ln

ˆ

cosh

ˆ

2A

σ2
pIk cospφ̂MLq `Qk sinpφ̂MLqq

˙˙

, (5.29)

where φ̂ML is the ML estimate of φ. This approach allows us to know, which is the optimal

performance of the GLRT method and how far it is from the Bayesian approach. This is

an important point because the outcome of the Bayesian approach is the optimal detector

under the assumed conditions. As we have seen in Subsection 5.3.1, the result of the

Bayesian approach implies the computation of a matrix, whose size increases exponentially

with the Nnc value. In fact, the computation of this matrix can become a handicap. For

this reason, if the difference between the performance of the Bayesian approach and the

GLRT was quite similar, the application of the GLRT could be the best option. We will

continue this discussion later on in the Section 5.4 where the performance comparison of

the PDI techniques is analysed.

5.3.2.2 GLRT approximation in closed-form

The second approach is based on the log-LRT in (5.29), but reducing the complexity of

this method to estimate φ. Given the phase estimate in (5.26) exhibits almost the same

performance as at ML phase estimate, while avoiding the one dimensional search, we

propose to replace φ̂ML in (5.29) with (5.26), resulting in:

Lpx, φ̂q “
Nnc
ÿ

k“1

ln

ˆ

cosh

ˆ

2A

σ2
pIk cospφ̂q `Qk sinpφ̂qq

˙˙

. (5.30)
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5.3.2.3 GLRT approximation for high SNR regime

The alternatives described in Subsection 5.3.2.2 and Subsection 5.3.2.1 require the knowl-

edge of the SNR, A{σ2. This is a drawback since this information is sometimes unknown

by the receiver. For this reason, the last method that we propose avoids the need of know-

ing the SNR a priori. The way to obtain a detector that does not depend on the SNR is

to adopt an approximation of the lnpcoshpxqq function as |x| ´ lnp2q. This approximation

gives an excellent fit for relative large values of x, which is a region appropriate to detect

signals in the context of HS-GNSS receivers. After using this approximation, the PDI

technique is independent of the scale factors A and σ2. Thus, the resulting technique can

be expressed as

LGLRTa.l.px, φ̂q “
Nnc
ÿ

k“1

ˇ

ˇ

ˇ
Ik cospφ̂q `Qk sinpφ̂q

ˇ

ˇ

ˇ
. (5.31)

This PDI technique may offer similar performance as the two previous techniques pre-

sented in Subsection 5.3.2.1 and Subsection 5.3.2.2 when the SNR at the correlator output

is relatively high. Besides not requiring the knowledge of the SNR, this technique avoids

the use of two non-linear functions such as the ln and cosh. It is worth mentioning that

(5.31) has some resemblance to the NQ-NPDI technique described in (5.5), which was

derived for time-varying phase signals. The NQ-NPDI technique offers a great perfor-

mance in scenarios where the SNR is relatively high and the received signal can suffer

phase changes [GC17]. However, the technique proposed in this subsection is derived for

signals with constant phase. This fact suggests that in scenarios where the received signal

includes a constant phase, the detector in (5.31) could provide a promising performance.

5.4 Simulation results

This section presents the simulation results based on ROC curves. These curves compare

the detection performance of the PDI techniques proposed herein to the more relevant PDI

techniques found in the literature. Results are obtained using Monte Carlo simulations

and the σ value is normalized to 1. Theoretical ROC curves of the coherent integration

and the NPDI technique are also included in the figures, which are given by [Ric05] and

[Jay13], respectively.

Figure 5.3 shows the comparison among the different PDI techniques in an ideal chan-

nel containing only Gaussian noise and an unknown constant phase, but in absence of data
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Figure 5.3: Performance comparison of the detectors in absence of bits for Nnc “ 6,

A “ 1.6 and σ “ 1. In the legend, GLRT, GLRT closed-form and GLRT approx refer to

the techniques explained in Subsections 5.3.2.1, 5.3.2.2 and 5.3.2.3, respectively.

bits in the received signal for Nnc “ 6 and A “ 1.6. As we expected, in this situation, the

optimal detector is the coherent integration since there are not effects that pose limits on

its duration. The worst performing technique corresponds to the NPDI technique. The

proposed five techniques, namely, BAPDI, MBAPDI, and the three obtained from the

GLRT method explained in Subsections 5.3.2.1, 5.3.2.2 and 5.3.2.3, exhibit similar per-

formance, which is also better than that of the DPDI, GPDIT, NPDISD and NQ-NPDI

techniques.

Figure 5.4 shows the comparison among the different detectors in a Gaussian channel

when the received signal is affected by phase changes owing to data bits using the same

parameters as in Figure 5.3. The result illustrates that the DPDI, GPDIT and the co-

herent integration techniques suffer a strong performance degradation since they are not

robust against the presence of bits. In this case, the proposed five techniques, two based

on the Bayesian approach and three established from the GLRT, provide very similar per-

formance outperforming the rest of the PDI techniques. In particular, it is interesting to

pay attention to the comparison between the proposed five techniques and the NPDISD

technique, which was derived by the application of the GLRT approach, but the author

used an approximation for a low SNR regime. The outcome reveals a clear improvement
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Figure 5.4: Performance comparison of the detectors in presence of data bits for Nnc “ 6,

A “ 1.6 and σ “ 1. In the legend, GLRT, GLRT closed-form and GLRT approx refer to

the techniques explained in Subsections 5.3.2.1, 5.3.2.2 and 5.3.2.3, respectively.

in favour of the techniques proposed herein.

Figure 5.5 illustrates the comparison among the different detectors in a Gaussian

channel when the received signal contains unknown data bits for A “ 1 and Nnc “ 15.

This simulation reveals that although the SNR of the correlator output is lower than

in Figure 5.3 and Figure 5.4, the proposed five techniques remain exhibiting the best

performances. The performance difference among the five techniques and the NPDISD

is smaller than in the previous simulations due to this lower SNR value. This value also

causes that the technique described in Subsection 5.3.2.3, which has been derived for a

relative large values of SNR, has a slight mismatch with respect to the techniques defined

in Subsection 5.3.2.1 and Subsection 5.3.2.2. The MBAPDI technique also offers a very

slight degradation with respect to the BAPDI because the SNR at the output of the PDI

technique is slightly lower than in Figure 5.4. This effect can be seen in the zoom view,

which appears in Figure 5.5.

Figure 5.6 shows the probability of detection with respect to the SNR for the different

detectors in a Gaussian channel and when the received signal contains data bits. We use

Nnc “ 5 and set the probability of false alarm to 1e ´ 3. The detection threshold for
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Figure 5.5: Performance comparison of the different detectors in presence of data bits for

Nnc “ 15, A “ 1 and σ “ 1. In the legend, GLRT, GLRT closed-form and GLRT approx

refer to the techniques explained in Subsections 5.3.2.1, 5.3.2.2 and 5.3.2.3, respectively.

each PDI technique is fixed through the Monte Carlo simulations. The result illustrates

that the techniques proposed in the chapter show the highest probabilities of detection.

The coherent integration, DPDI and GPDIT techniques suffer a severe degradation due

to the data bits. For this reason, these techniques are not useful in detection problems

where the received signal have sign changes produced by the bits. The NPDI, NQ-NPDI

and NPDISD techniques, which are robust against the presence of data bits, outperform

the coherent integration, DPDI and GPDIT techniques, but the former group does not

provide as good performance as the techniques presented in this work.

Given that the five techniques presented in the chapter offer very similar performance,

exceeding that of the other techniques, for the problem at hand, the selection of the

most suitable one can be based on the computational complexity. While the BAPDI

is the theoretically optimal PDI technique since it has been derived from the Bayesian

approach, it may present difficulties in practice because it uses a matrix, whose size grows

exponentially as Nnc grows. Moreover, the BAPDI requires the a priori knowledge of

the SNR and it needs to use the modified Bessel function, which in practice has to be

evaluated numerically. The MBAPDI also suffers the disadvantage of having to evaluate a

potentially large number of combinations, which introduces a large computational burden,
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Figure 5.6: Probability of detection vs. SNR with Nnc “ 5 and probability of false alarm

of 1e-3 for the different detectors in presence of data bits in the received signal.

especially for large Nnc values. The exact GLRT presented in Subsection 5.3.2.1 requires

the usage of a one-dimensional search method to estimate the phase of the received signal.

This fact poses difficulties in the implementation of this technique in a HS-GNSS receiver.

The GLRT approach described in Subsection 5.3.2.2 is a good option since it does not

depend on large matrices nor a one-dimensional search method, but it has the drawback

of requiring the knowledge of the SNR. Finally, the PDI technique presented in Subsection

5.3.2.3 becomes the best option to obtain a significant gain in terms of signal detection

because its computational load is the lowest one and it does not need a priori information

about the SNR.

5.5 Conclusions

In this chapter we have derived two PDI techniques by using the Bayesian approach and

the GLRT for the reacquisition of weak GNSS signals. We have also proposed approximate

techniques of reduced computational complexity, which can be easily implemented in HS-

GNSS receivers and do not require the knowledge of the SNR. Simulation results have

shown the superior performance of the techniques proposed in the chapter with respect
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to other PDI techniques, while the former group provides very similar performance. For

a balanced trade-off between computational burden and performance, we can conclude

that the most suitable technique for the reacquisition of GNSS signals is the one based

on the approximation of the GLRT approach for high SNR regime and on the use of the

approximate ML phase estimate.





Chapter 6

C{N0 estimators for high-sensitivity

snapshot GNSS receivers

In recent years, the use of PDI techniques has been considered for the design of HS-

GNSS receivers in order to offer the possibility of acquiring weak signals. Nevertheless,

the application of PDI techniques makes it difficult to obtain reliable information about

the C{N0 of the received signal. The reason is that PDI techniques apply non-linear

combinations of several consecutive CAFs, which affect to the relationship between the

signal level and the noise level at the output of this technique. The measurement of C{N0

becomes necessary since the C{N0 provides highly desirable information about the quality

of the received GNSS signal. This measurement is often used at many stages of GNSS

receivers. For instance, at the acquisition stage the knowledge about the C{N0 offers

a-priori information that can lead to establishing the optimum signal detection threshold

to distinguish whether the signal from the satellite is present or not [Sch05a]. At the

tracking stage, it is also useful to mitigate near-far interferences [LR05] and to avoid loss-

of-lock problems [Kap05]. In particular, at the PVT stage, the C{N0 value is used by

some positioning algorithms, such as the weighted least square method [HW12].

The C{N0 estimators most commonly implemented in GNSS receivers are the Narrow-

band Wide-band Power Ratio (NWPR) and Signal-to-Noise Power Ratio (SNPR) [Gro05,

Bhu14, Fal11]. In general, these estimators provide accurate estimates when the signal can

be detected using only coherent integrations. But, if the use of the coherent integration is

not enough to acquire the signal, the accuracy of the estimators may not be acceptable.

For this reason, in indoor conditions where the use of PDI techniques is mandatory to

acquire weak signals, we must resort to other alternatives, which use the output of a PDI

105
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technique to estimate the C{N0.

Obtaining a C{N0 estimate from a PDI technique is far from being a trivial task

since the C{N0 estimator depends on the pdfs of the metric used by the PDI technique

under the presence and absence of the signal satellite. Moreover, most pdfs of these

metrics are not known in closed-form, a fact that makes the derivation of an expression

for estimating the C{N0 even more difficult. The most widely PDI technique implemented

is namely NPDI technique, which involves the sum of central and non-central chi-square

distributions when the signal is absent and present, respectively [Sch05b]. Alternately,

the DPDI often results to be a good option to acquire weak signals, though the pdf of

this metric is not known in closed-form neither in the absence nor presence of a signal

[EB04]. An additional technique referred to as GPDIT deals with the combination of

the NPDI and DPDI techniques, which can offer some improvements in terms of signal

detection [Cor07]. However, the pdfs of this combination of random variables is completely

unknown. Finally, an additional alternative corresponds to the NQ-NPDI technique,

which requires the computation of the sum of Rician variables in the presence of the

signal and Rayleigh variables in its absence.

In this context, the purpose of this chapter is to formulate closed-form expressions

for the C{N0 estimates that can be obtained with each of the PDI techniques mentioned

above. These estimators are derived through the application of a theoretical approach

that is based on analyzing the distributions of each PDI technique. The idea is to use

the output of the PDI technique not only to acquire the satellites, but also to estimate

the C{N0, thus allowing the estimators to be easily implemented in HS-GNSS snapshot

receivers. Finally, a performance comparison between the estimators derived herein and

conventional C{N0 estimators is carried out, revealing an important gain in favor of the

former group in terms of estimation accuracy.

6.1 Signal model

In this section, we are only focus on the signal model of the acquisition stage, which

will be useful to derive the C{N0 estimator in Section 6.2.2. The CAF containing the

tentative values of the code-delay τ and the Doppler frequency fd as τ̃ and f̃d respectively,

is expressed, in absence of data bit transition, as

xpτ̃ , f̃dq “ dÃejφsincp∆fTcohqBp∆τq ` ω “ Aejφ ` ω, (6.1)
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where A is the amplitude obtained from computing the CAF with phase φ, d is the value of

the data navigation bits taking value of 1 or -1, ∆τ “ τ´τ̃ is the time-delay offset between

the local replica and the received GNSS signal, ∆f “ fd ´ f̃d is the residual frequency

offset, Tcoh is the coherent integration time, Bp∆τq is the circular autocorrelation function

of a GNSS signal and ω is AWGN after computing the CAF with zero-mean and variance

σ2.

In general, the CAF allows the receiver to distinguish between whether the satellite is

present or not by using a detection threshold in outdoor environments. Nevertheless, in

some scenarios such as urban or indoor environments, the satellite is not detected because

the signal level after computing the CAF is below the noise level. In this condition, the

best option to acquire the satellite signal consists in increasing the coherent integration

time. Although it gives a considerable gain in terms of signal acquisition, it cannot be

increased without bounds since frequency offsets, data bits, and phase noise effects limits

its duration. The impairment caused by the frequency offset can be mitigated computing

the CAF with a greater number of evaluated Doppler frequencies, though it requires

a greater computational load. Moreover, in some GNSS signals such as Galileo E1BC

the impairment created by the bits can be circumvented because they are composed by

a known pilot sequence. In this situation, one of the most problematic impairment of

HS-GNSS receivers nowadays is the phase noise of the receiver clock.

6.1.1 Phase noise

The GNSS receiver clock introduces a time-varying phase error in the received signal.

This error is usually referred to as phase noise and one of its main problems is that

limits the duration of the Tcoh [PS10]. The phase noise can be modeled using a two-

state model, which was developed in [Hwa92] and later implemented in [Bru06]. The

model of the phase noise, WPN , is represented in Figure 6.1, where ub and ud are two

1/s 1/s+

White noise ub

White noise ud

WPN

Figure 6.1: Clock error modeling.

independent Gaussian noise components with zero mean and variance Sf{Ts and Sg{Ts,
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h0 rss h´2 r1{s]

TCXO 9.43e-20 3.8e-21

CSAC 7.2e-21 2.7e-27

Table 6.1: Clock parameters.

respectively. The coefficients Sg and Sf are the spectral amplitudes of the noise, which

can be approximated as

Sf «
h0
2
, (6.2)

Sg « 2π2h´2. (6.3)

The parameters h0 and h´2, which depend on the quality of the receiver clock, represent

the white frequency noise and the random walk frequency noise, respectively. In this

chapter, we focus on two typical clocks used in GNSS receivers: Temperature Compen-

sated Crystal Oscillator (TCXO) and Chip Scale Atomic Clock (CSAC). The TCXO clock

usually introduces a greater amount of noise than a CSAC clock. An example of TCXO

and CSAC clocks parameters are given in [Bru06], as shown in the Table 6.1.

6.1.2 PDI techniques

The phase noise limits the duration of the coherent integration since it causes the can-

cellation of the desired signal if the CAF is computed by accumulating samples during

an excessively long interval. In this situation, when the receiver needs to accumulate

more energy than what is possible in a coherent manner, PDI techniques, which combines

non-linearly different CAFs, must be used.

The objective of all PDI techniques focuses on the discrimination between two hypothe-

ses: the satellite is absent under H0 pA “ 0q or the satellite is present under hypothesis

H1 pA ‰ 0q. The maximum value of the output of a PDI technique is compared to a de-

tection threshold to perform the distinction between the two hypotheses. If the satellite is

declared present, it is possible to estimate its C{N0 from using the techniques explained

in the following section.

The most relevant techniques to acquire weak GNSS signals are the NPDI, NQ-NPDI,

DPDI, and GPDIT techniques. These techniques are widely explained and analyzed in
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Chapters 3 and 4. We derive one estimator for each one of these techniques.

6.2 C{N0 estimators

This section is divided into two parts. The first one describes the most traditional es-

timators implemented in the literature. The second one presents four C{N0 estimators

that are specially designed for HS-GNSS snapshot receivers. These estimators only use

the output of one of the PDI technique, which has been used to detect the weak signal,

to carry out the estimation of the C{N0.

6.2.1 Traditional estimators

This section describes the two more common C{N0 estimators proposed in the literature,

the NWPR and the SNPR. These estimators require the use of specific metrics to estimate

the C{N0, which are different from those obtained at the output of the PDI technique

implemented to acquire a weak GNSS signal. This fact makes that the NWPR and the

SNPR estimators are not really suitable for estimating C{N0 in a HS-GNSS snapshot

receiver.

6.2.1.1 Narrow-band wide-band power ratio

The conventional NWPR involves evaluating the ratio between the signal wideband power

to its narrowband power as [Fal11]

NP “
NBP

WBP
, (6.4)

where WBP is a wideband measurement considering the noise bandwidth of 1{Tcoh as

WPB “ max
τ̃ ,f̃d

pZNPDIpxqq , (6.5)

where ZNPDIpxq is defined in (3.1). The NBP is a narrowband measurement assuming the

noise bandwidth of 1{pNncTcohq as

NPB “ max
τ̃ ,f̃d

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“1

xkpτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚. (6.6)
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The accuracy of NP can be improved by performing an average of the metric computed

within M consecutive integration intervals, which are hereafter indexed with the subscript

m,

µ̂NP “
1

M

M
ÿ

m“1

NPm, (6.7)

where the duration of each integration interval is determined by TcohNnc seconds. The

mean in (6.7) is then used to ultimately estimate the C{N0 as

zC{N0 “ 10 log

ˆ

1

Tcoh

µNP ´ 1

Nnc ´ µNP

˙

, (6.8)

where µNP is replaced for its estimation.

6.2.1.2 Signal-to-noise power ratio technique

The SNPR technique estimates the C{N0 assuming that all of the time interval of the

used signal has been integrated coherently [Bhu14]. Basically, it is based on comparing the

signal level with the mean of the noise, both obtained from the NBP metric. The signal

level corresponds to the subtraction between the narrowband measurement in (6.6) and

the mean of the noise (µNBP ) since the narrowband measurement contains information

about signal and noise. The mean of the noise is calculated from all noise samples provided

to compute the CAF for the incorrect trial values of code-delay and Doppler frequency as

µNBP “ E

»

–

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“1

xkpτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

fi

fl except for τ̃ and f̃d that max
τ̃ ,f̃d

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

Nnc
ÿ

k“1

xkpτ̃ , f̃dq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚. (6.9)

The SNPR expression is given by

SNPR “
NBP´ µNBP

µNBP
. (6.10)

Finally, the C{N0 can be expressed as

zC{N0 “ 10 log

ˆ

SNPR

NncTcoh

˙

. (6.11)

The resulting estimator offers a good performance as long as the signal level after com-

puting the NBP metric did not suffer a self-cancellation, which could be caused by the

impairments that limit the coherent integration time.
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6.2.2 C{N0 estimation from a PDI technique

This subsection explains the procedure to estimate the C{N0 from different PDI tech-

niques. The approach applied in this chapter is based on estimating the SNR at the

output of the coherent correlation, which is directly related to the C{N0 measure and the

Tcoh as

C{N0 “ 10 log

ˆ

SNR

Tcoh

˙

, (6.12)

where SNR “ A2{σ2. The Tcoh is a known parameter since it is chosen by the receiver.

Thus, we only need to estimate SNR to obtain the C{N0 measurement. The estimation

of SNR is carried out by solving a system of two equations, which contains information

about the hypotheses H0 and H1. More precisely, these equations are obtained from the

knowledge of the means of the PDI metric used under H0 and H1. The mean under

H0 can be estimated from all the noise samples provided from the CAF for the different

incorrect trial values of code-delay and Doppler frequency. The mean measure under H1

is estimated from the maximum value of the output of a PDI technique. We assume that

the value of ∆f and ∆τ in (6.1) are close to zero when the received signal is acquired.

Thus, the term Asincp∆fTcohqBp∆τq can be approximated by A. This process is applied

for all PDI techniques. However, the problem is that each PDI metric has a different

mean under H0 and H1, which are analyzed in the following subsections.

6.2.2.1 C{N0 estimation from the NPDI technique

The NPDI metric follows a central Chi-square under H0 and a non-central Chi-square

under H1. The mean of the NPDI metric under these hypotheses is given by

µN |H0 “ Nncσ
2 (6.13)

max pZNPDIpxqq « µN |H1 “ Nncσ
2
`NncA

2, (6.14)

where µN |H0 and µN |H1 are the mean of the NPDI metric under H0 and H1, respectively.

The mean µN |H0 is computed from all of the samples of the NPDI output without using

the maximum sample nor the samples around it. This selection of samples excludes those

samples affected by a possible correlation peak obtained from the satellite signal so that

purely noise samples are effectively selected. The parameter µN |H1 corresponds to the

maximum value of the output of the NPDI technique. Solving the system of equations,
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we get

zSNR “
µ1N |H1

Nnc

´ 1 (6.15)

where µ1N |H1
is µN |H1{σ

2 “ µN |H1Nnc{µN |H0 .

6.2.2.2 C{N0 estimation from the NQ-NPDI technique

The NQ-NPDI metric combines the sum of independent Rayleigh and independent Ri-

cian distributions under H0 and H1, respectively. A pdf expression for any of the two

hypotheses is not known in closed-form. However, there are closed-form expressions for

the mean of the sum of several Rayleigh and Rician distributions, though they do not

allow us to isolate the SNR parameter. This occurs because the mean of a Rician distri-

bution involves the calculation of the modified Bessel function. More precisely, the mean

of the NQ-NPDI metric under H0 and H1 can be expressed as

µNQ|H0 “
σNnc

?
π

2
(6.16)

max pZNQ-NPDIpxqq « µNQ|H1 “
σNnc

?
π

2
L1{2

ˆ

´A2

σ2

˙

, (6.17)

where L1{2 denotes a Laguerre polynomial of 1{2, which is given by

L1{2pxq “ ex{2
”

p1´ xqI0

´

´x

2

¯

´ xI1

´

´x

2

¯ı

, (6.18)

where I0pxq and I1pxq are the modified Bessel functions of the first kind with order zero

and one, respectively. From (6.16) and (6.17), we obtain an expression only affected by

SNR as

µ1NQ|H1
“
Nnc

?
π

2
e´SNR{2

„

p1` SNRqI0

ˆ

SNR

2

˙

` SNRI1

ˆ

SNR

2

˙

, (6.19)

where µ1NQ|H1
“ µNQ|H1{σ “ µNQ|H1Nnc

?
π{p2µNQ|H0q.

One way to estimate the SNR is applying an iterative algorithm. However, the imple-

mentation of an iterative algorithm is not usually desirable because it takes more time and

has a greater computational load than the application of a formula. Then, in this case,

the SNR estimation requires using approximations to find a simple expression. The I0pxq

and I1pxq functions can be approximated by the term ex{
?

2πx for relative large values of

x. We choose this kind of approximation because in HS-GNSS receivers, the value of SNR

at the output of the CAF is often a relative large number since it is obtained using a Tcoh
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as long as possible. This SNR value is different from the C{N0 of the received signal since

the former depends on Tcoh used in the CAF. The longer the Tcoh used to compute the

CAF, the larger the magnitude of the SNR at the output of the CAF. Although the SNR

is a relative large number, the signal is difficult to be detected without the application of

a PDI technique because in a snapshot receiver, the signal must be distinguished among

a large number of noise samples.

Figure 6.2 illustrates the comparison among the I0pxq, I1pxq, and ex{
?

2πx functions.

The result shows that ex{
?

2πx is an excellent fit of these two Bessel functions, especially

for large values of x. Introducing the approximation of I0pxq and I1pxq functions and
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Figure 6.2: Comparison of the I0pxq and I1pxq functions with the approximation ex{
?

2πx.

simplifying the expression, the result is

µ1NQ|H1
«
Nnc

2

ˆ

1` 2SNR
?

SNR

˙

. (6.20)

Using this approximation, the SNR value can be estimated from a simple quadratic equa-

tion as

4SNR2
`

¨

˝4´

˜

2µ1NQ|H1

Nnc

¸2
˛

‚SNR` 1 « 0. (6.21)
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The expression above contains two solutions, but only the following solution is correct

since it provides a large enough SNR value, which belongs to the range of values where

the approximation in (6.20) offers an accurate fit.

zSNR “

´

ˆ

4´
´

2µ1
NQ|H1

Nnc

¯2
˙

`

d

ˆ

4´
´

2µ1
NQ|H1

Nnc

¯2
˙2

´ 16

8
. (6.22)

The other possible solution gives a very small value of SNR, which does not make sense

owing to the approximation introduced in (6.20) for large values of SNR. This fact occurs

because the term pµ1NQ|H1
q2 is usually a large number compare to the rest of terms in

(6.21).

6.2.2.3 C{N0 estimation from the DPDI technique

The distribution of the DPDI metric is not known in closed-form neither under H0 nor

H1. More precisely, these distributions are far from being trivial to obtain since they

are composed by the absolute value of several sums of two multiplied consecutive CAFs.

In this situation, we must resort to approximate the distribution of the DPDI metric

in order to estimate the SNR. Invoking the central limit theorem, the distribution of

the DPDI can be approximated by a Rayleigh and Rician distribution under H0 and

H1, respectively. Since the term inside the absolute value in the DPDI defined in (3.4)

asymptotically converges to a Gaussian distribution as the Nnc value grows. In this case,

the mean of the DPDI metric under H0 and H1, denoted as µD|H0 and µD|H1 , respectively,

can be approximated as

µD|H0 «
σD
?
π

2
(6.23)

max pZDPDIpxqq « µD|H1 «
σD
?
π

2
L1{2

ˆ

´A2
D

σ2
D

˙

, (6.24)

where σD “
?
Nnc ´ 1σ2 and AD “ pNnc ´ 1qA2. Exploiting the expressions above and

approximating the modified Bessel functions I0pxq and I1pxq by ex{
?

2πx, which exhibit

an excellent fit for large values of x, we obtain

µ1D|H1
«

1

2

ˆ

1` 2pNnc ´ 1qSNR2

SNR

˙

, (6.25)

where µ1D|H1
is µD|H1{σ

2 and σ2 is obtained from (6.23). The estimation of SNR is obtained

from a quadratic equation as

2pNnc ´ 1qSNR2
´ 2µ1D|H1

SNR` 1 « 0. (6.26)
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The expression above contains two solutions. Nevertheless, the unique possible solution

corresponds to the following equation as

zSNR “
2µ1D|H1

`

b

4pµ1D|H1
q2 ´ 8pNnc ´ 1q

4pNnc ´ 1q
. (6.27)

The other possible solution gives a too small SNR value, which is incorrect since the

approximation of the modified Bessel functions introduced in (6.25) only makes sense for

relatively large values of SNR.

6.2.2.4 C{N0 estimation from the GPDIT technique

The pdf of the GPDIT metric is difficult to be obtained because it is composed of the sum

of two correlated random variables. However, this fact does not preclude the estimation

of the C{N0 from this PDI technique. Exploiting that the mean of the GPDIT metric

corresponds to the sum of the mean of the NPDI metric and twice the mean of the DPDI

metric, the C{N0 estimation can be obtained. The mean of the GPDIT metric under H0

and H1 denoted as µG|H0 and µG|H1 , respectively, is given by

µG|H0 « Nncσ
2
` σ2

a

πpNnc ´ 1q (6.28)

max pZGPDITpxqq « µG|H1 « Nncσ
2
`NncA

2
` σ2

a

πpNnc ´ 1qL1{2

`

´pNnc ´ 1qSNR2
˘

,

(6.29)

From (6.28) and (6.29), we introduce the approximation of the modified Bessel functions

I0pxq and I1pxq by ex{
?

2πx, which leads to

µ1G|H1
« Nnc `NncSNR`

ˆ

1` 2pNnc ´ 1qSNR2

SNR

˙

, (6.30)

where µ1G|H1
corresponds to µG|H1{σ

2 and σ2 is obtained from (6.28). The SNR can be

estimated by solving the following quadratic equation as

p3Nnc ´ 2qSNR2
` pNnc ´ µ

1
G|H1

qSNR` 1 « 0. (6.31)

The SNR estimator is given by the following solution:

zSNR “
´pNnc ´ µ

1
G|H1

q `

b

pNnc ´ µ1G|H1
q2 ´ 4p3Nnc ´ 2q

2p3Nnc ´ 2q
. (6.32)

The other possible solution from (6.31) provides an incorrect SNR value because it does

not belong to the range of values where the approximation applied in (6.30) has good

accuracy.
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6.3 Simulation results

Simulations are based on a HS-GNSS snapshot receiver, which uses the Double FFT

algorithm [SG12]. This receiver implements an efficient snapshot acquisition exploiting

some assistance information about the Doppler of the satellites. The objective of these

simulations is to compare the performance of the C{N0 estimators studied in the literature

to the ones presented herein. Moreover, we emphasize that the proposed estimators

are specially designed for a snapshot receiver, i.e., only exploiting the output of a PDI

technique. Simulations are performed using a Galileo E1BC signal and applying two

different long coherent integration times such as 100 milliseconds and 1 second.

We compute the NWPR method for two cases: M “ 1 and M ‰ 1. The former would

correspond to the approach applied typically in a snapshot receiver, where the output of

the NPDI technique, applied to acquire the signal, is also used to estimate the C{N0. In

the latter, this is the approach usually implemented in tracking architectures. In both

cases, the results of the intermediate coherent correlations obtained from the snapshot

receiver are required. For the case of M “ 1, these correlations are needed to compute

the NBP metric and for the case of M ‰ 1 they are needed to compute the NBP and

WBP metrics. Although these correlations are not usually stored by default in a snapshot

receiver, it is possible to do so, but at the expense of requiring more memory resources.

Despite this fact, simulations of these approaches are really useful since they allow us to

compare the performance of the estimators proposed herein for a snapshot receiver with

the performance of the NWPR method.

Figure 6.3 illustrates the estimators’ performance in terms of estimated C{N0 vs.

real C{N0 in an AWGN channel using a Tcoh “ 100 ms and Nnc “ 10. Two sets of

parameters are considered for the NWPR: i) Tcoh “ 100 ms, Nnc “ 10 and M “ 1, which

is labelled as NWPR in the figure and is representative of a snapshot implementation; ii)

Tcoh “ 4 ms, Nnc “ 25 and M “ 10, which is labelled as NWPRt and is illustrative of a

tracking architecture. In both cases, the total integration time to perform the estimation

corresponds to 1 second. In this scenario, the estimations provided by all techniques are

really accurate. However, the estimation from the NQ-NPDI technique suffers a small

accuracy degradation (less than 1 dB) for low values of C{N0 since the approximation

introduced in (6.20) is less effective in this region. The result shows that the closed-form

expression derived herein allows the snapshot receiver to estimate the C{N0 regardless

when any of the NQ-NPDI, NPDI, DPDI or GPDIT techniques is used for the signal

detection. This fact is really important since for estimating the C{N0 using the NWPR
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Figure 6.3: The C{N0 estimates for Tcoh “ 100 ms and Nnc “ 10 for all cases, except for

NWPRt with Tcoh “ 4 ms, Nnc “ 25 and M “ 10.

or SNPR techniques requires the computation of additional intermediate correlation values

that are not necessary for detection in a snapshot receiver, whereas the use of the proposed

estimators make it possible to obtain the C{N0 as a byproduct of the acquisition process.

Figure 6.4 shows in a box plot the comparison of the different techniques in an AWGN

channel for C{N0 “ 20 dB-Hz, using the same parameters as Figure 6.3. In this channel,

all techniques offer similar performance except for the NWPR technique, which exhibits

a larger variance. Nevertheless, the median obtained by all of the estimators is very near

to 20 dB-Hz. This happens because in this scenario it is possible to coherently integrate

during 1 second since there is no presence of phase noise.

Figures 6.5 and 6.6 compare the performance of the estimators in the presence of an

AWGN channel with the same parameters as Figures 6.3 and 6.4, but adding phase noise

from a TCXO clock. This type of clock allows for coherent integrations up to few hundreds

of milliseconds. Figure 6.5 shows the estimators’ performance comparing estimated C{N0

vs. real C{N0. Recall that, the SNPR and NWPR techniques need a coherent integration

as long as the non-coherent integration in the other techniques. As a result, they offer

an inaccurate estimation of the C{N0 owing to the signal self-cancellation caused by the
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Methods
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Figure 6.4: Box plot comparison for C{N0 “ 20 dB-Hz using the same parameters as

Figure 6.3. The central red line of each box illustrates the median of the distribution.

The top and bottom edges of each box provide the 75th and 25th percentiles, respectively.

The whiskers extend to the most inaccurate C{N0 estimation without considering outliers

and the outliers are plotted as individual points by applying the 1`1 symbol.

phase noise in the correlation process. The worst technique in these circumstances is the

NWPR. The rest of the techniques provide a precise estimation since they are integrating

only 100 ms coherently to compute the PDI metric. In this situation, the proposed

estimators become the best option to estimate the C{N0 in a snapshot receiver since they

have less computational than the NWPRt technique.

Figure 6.6 shows the box plot for the case of C{N0 “ 20 dB-Hz. The proposed

techniques and the NPRWt exhibit accurate estimations, though with a small negative

bias because the phase noise causes a small reduction of the signal component of the

CAFs. However, in this case, most of the estimations offered by the SNPR and NWPR

are quite inaccurate since they provide errors larger than 3 dB and 10 dB, respectively.

Figure 6.7 shows a box plot in presence of an AWGN channel. The parameters of the

simulation are Tcoh “ 1 s and Nnc “ 10 except for NWPRt, which uses a Tcoh “ 4 ms,

Nnc “ 250 and M “ 10. The simulation is performed using a C{N0 “ 10 dB-Hz. In this

figure, in absence of phase noise, all of the estimators can accurately estimate the C{N0,
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Figure 6.5: The C{N0 estimates for Tcoh “ 100 ms and Nnc “ 10 except for NWPRt with

Tcoh “ 4 ms, Nnc “ 25 and M “ 10 in the presence of phase noise introduced by a TCXO.
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Figure 6.6: Box plot comparison for C{N0 “ 20 dB-Hz in an AWGN channel and with

the presence of phase noise introduced by a TCXO clock.
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Figure 6.7: Box plot comparison for C{N0 “ 10 dB-Hz in an AWGN channel.
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Figure 6.8: Box plot comparison for C{N0 “ 10 dB-Hz in an AWGN channel with the

presence of phase noise introduced by a CSAC clock.

with the NWPR technique providing the larger variance. The rest of the estimator offer

a similar accuracy. This result is similar to the one obtained in Figure 6.4, since, in this
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case, it is feasible to integrate coherently 10 seconds because there is not any impairment

that limits the coherent integration time.

Figure 6.8 shows a box plot in presence of an AWGN channel with phase noise intro-

duced by a CSAC clock using the same parameters as Figure 6.7. Given that a TCXO

clock is not stable enough to allow the receiver to integrate coherently during 1 second,

we have used a CSAC. In this case, only our proposed estimators and the NWPRt of-

fer an accurate C{N0 estimation while the NWPR and SNPR techniques completely fail

providing most of the estimations with errors larger than 7 dB and 2 dB, respectively.

Given that the NWPRt involves the computation of additional intermediate results in the

acquisition process, it turns out that the proposed techniques are the most appropriate

ones in this low C{N0 scenario.

6.4 Conclusions

We have proposed new methods to estimate the C{N0 based only on the output of detec-

tion techniques combining coherent and non-coherent integrations, which are especially

suitable for snapshot receivers. Four simple closed-form expressions have been derived to

estimate the C{N0. Each expression applies to one of the PDI techniques, namely NPDI,

NQ-NPDI, DPDI or GPDIT. These expressions allow the receiver to estimate the C{N0

without the need to compute additional correlations or metrics beyond those needed for

the signal detection itself. Two conventional estimators taken from the literature have

been used as a benchmark. The estimators proposed offer a much more accurate C{N0

estimation than the benchmarks, especially in the presence of phase noise. Moreover, the

proposed estimators offer similar performance to a modification of one of the conventional

estimators, but this latter comes with an increased computational load due to the need

of obtaining correlation values that are not required by the acquisition stage.





Chapter 7

Problems of high-order BOC signals

With the upcoming full operability of the Galileo system, the trend of next-generation

GNSS receivers moves towards providing positioning services that use high-order BOC

signals. These signals provide a significant enhancement in terms of positioning accuracy

with respect to conventional BPSK signals. This improvement is owing to the increase of

the Gabor bandwidth, which leads to a reduction of the CRB of the time-delay estimate.

However, high-order BOC signals present several disadvantages. The most important

drawback is the presence of secondary lobes in the autocorrelation function that are very

little apart from each other and whose amplitude is very similar to the main correlation

peak. This causes the CAF of high-order BOC signals to be ambiguous due to the

difficulties to distinguish the main correlation peak, particularly in scenarios with low

C{N0 such as deep urban canyons. The acquisition of a secondary peak, also referred to

as false lock problem, leads to an incorrect estimation of the time-delay, introducing a

bias of some meters in the user’s position [Bor14a, GM16].

We focus in this chapter on two problems related to the correlation peaks of high-

order BOC signals. On the one hand, we address the problem of mitigating the false lock

probability for conditions of weak signal reception at the acquisition stage. To do so, we

propose to use a PDI technique to detect the weak GNSS signal and we suggest using the

output of this PDI technique to avoid the false lock problem by applying an estimator.

On the other hand, this chapter also tackles the problem of refining the Doppler

frequency estimation provided in the acquisition stage for high-order BOC signals in post-

correlation. The refinement of Doppler frequency must be done because the estimation

obtained from the acquisition stage is not usually accurate enough to track the signal in

the tracking stage. The characteristic multi-peaked of high-order BOC correlations can

123
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lead to a more accurate estimation of the Doppler frequency in post-correlation than the

conventional BPSK correlation. This is because the secondary peaks of high-order BOC

correlations contain enough energy and it can be used to improve the Doppler frequency

estimation provided by the acquisition stage. We propose a new technique to refine

the coarse Doppler frequency estimation provided by the acquisition stage, especially for

high-order BOC signals.

7.1 Mitigation of false locks in the acquisition of

high-order BOC signals

This section deals with the mitigation of the false lock probability for high-order BOC

signals. We start analysing the most relevant work carried out by previous authors in

this topic, which is usually addressed in the tracking stage. The most common techniques

to circumvent this problem in the tracking stage are bump jumping, double optimization

multi-correlator-based estimator and BPSK methods, which are described in the following

subsections.

Although many people have tackled the false problem in the tracking stage, less atten-

tion has been paid to the problem of the main peak detection or false locks at acquisition

stage. In latter stage, the code-delay estimation obtained from high-order signals is often

biased since it is obtained from a secondary peak. This fact causes that the tracking

of the signal starts in a secondary peak making the first estimates of the user’s position

biased. In this chapter, after the review of the techniques to solve the false lock problem,

we propose a method to solve the unambiguous estimation problem of weak high-order

BOC signals in the acquisition stage. First, we propose to acquire the weak GNSS sig-

nal by using the NPDI or DPDI technique. Then, we suggest applying the LS and ML

approaches to solve the false lock problem.

7.1.1 Brief review of mitigation of false lock techniques

7.1.1.1 Bump jumping

One of the most common method used to reduce the false lock problem is the bump

jumping, which was proposed in [Fin99]. The bump jumping works with five correlation

points at tracking stage: very early, early, prompt, late and very late [Blu07a]. This
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technique decides if the main correlation peak is being tracked or not by comparing the

magnitude of the peak currently being followed by the prompt to the magnitude of the

adjacent peaks, which are followed by the very early and very late correlators.

This technique adopts three counters, each associated with the very early, prompt or

very late correlator, to detect the false lock. The magnitudes of the very early, prompt and

very late correlators are compared each time instant. Whenever the very late correlator

contains the largest magnitude, the counter of the very late is increased one and the

very early counter is decremented one, when the very early is the largest magnitude the

opposite occurs. If the prompt surpasses both the very early and late, the former is

increased one and the latter counters are decreased one. A false lock is detected, whether

the very early and very late counters reach a threshold before the prompt counter. Then,

the prompt is changed by the counter that reaches the threshold. The counters are reset

when a threshold is reached and cannot have a value lower than zero.

7.1.1.2 Double optimization multi-correlator-based estimator

The double optimization multi-correlator-based estimator is a technique to circumvent the

unambiguous estimation of high-order BOC autocorrelations exploiting several correlator

outputs at the tracking stage [GM16, GM14]. The number of correlation outputs can

be chosen by the receiver. This technique is based on minimizing a ML cost function

comparing the received correlators outputs with an ideal autocorrelation function. This

minimization allows the receiver to obtain an accurate estimation of the time-delay, which

leads to identify the main correlation peak. Moreover, the performance of the technique

can be improved by combining several consecutive cost functions. Thereby, the effect

of the noise component in the correlator outputs is reduced permitting the receiver to

provide a more reliable decision about which is the main correlation peak.

7.1.1.3 Full BPSK methods

The full BPSK methods is a family of techniques whose objective is to transform the

autocorrelation of a BOC signal in an unambiguous one. Several of these techniques

are included in [Loh08, Bur06]. The most known technique consists in transforming the

autocorrelation of the received signal from BOC to BPSK [Hei04]. To do so, one of the

two lobes of the BOC signal spectrum is shifted towards the middle of frequency band.

This lobe contains a similar spectrum as a conventional BPSK signal. Then, the resulting
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signal is correlated with a local BPSK reference obtaining an autocorrelation of a BPSK

signal. The same process can be applied to the other lobe. The correlation provided by

the two lobes is combined non-linearly to obtain a gain in terms of signal detection. The

resulting correlation becomes an unambiguous triangle. This method allows the receiver

to obtain an unambiguous estimation of the time-delay, but it is less accurate than the one

offered by the BOC signals. Moreover, although the two lobes of the signal are exploited,

some degradation in terms of signal detection is suffered since the two lobes must be

combined non-linearly, which is less effective than a coherent combination.

7.1.1.4 Double estimator technique

The Double estimator technique is based on circumventing the ambiguity of the BOC

signal in the tracking stage by using three tracking loops: a DLL for the time-delay, a PLL

for the carrier and a sub-carrier lock loop (SLL) for tracking the sub-carrier component

[Blu07a]. The main idea of this technique is to use two estimates of the time-delay, one

from the DLL and another from the SLL. The estimate obtained from the SLL is very

accurate but ambiguous whereas the estimate obtained from the DLL is unambiguous

but less accurate. Assuming that the noise level in the latter is sufficiently low, it can be

used to solve the ambiguity of the measure based on the subcarrier. More precisely, the

time-delay estimate of this technique is provided by using a rounding operation, in which

the DLL time-delay estimate is applied to circumvent the SLL time-delay ambiguity.

7.1.2 Signal model

The conventional approach to acquire the satellites in view consists in computing the

CAF for a given coherent integration time. Considering that there is no bit transition,

the CAF can be expressed as

xpτ̃ , f̃dq “ dÃejφsincp∆fTcohqBp∆τq ` ω, (7.1)

where Ã is the signal amplitude with phase φ, d is the value of the data navigation bit

taking value of 1 or -1, ∆τ “ τ ´ τ̃ is the time-delay offset between the local replica

and the received GNSS signal, ∆f “ fd ´ f̃d is the residual frequency offset, Tcoh is the

coherent integration time, Bp∆τq is the autocorrelation function of the GNSS signal and

ω is AWGN after computing the CAF with zero-mean and variance σ2.

A PDI technique, defined as Zx, is applied by the use of a non-linear function of
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several consecutive CAFs computed in different time instants. PDI techniques allow the

receiver to accumulate the enough energy to be able to detect weak signals. The goal of

the metric of the PDI technique is to discriminate between two hypotheses. Under H0

the satellite is not in view (i.e. Ã “ 0) and under H1 the satellite is in view (i.e. Ã ‰ 0).

The discrimination between the two hypotheses is performed comparing the maximum

value of the metric of the PDI technique with a threshold. The satellite is declared in

view, if the maximum value of this metric exceeds the threshold. More details about the

definition of a detection threshold can be found in Subsection 2.2.2.

7.1.3 PDI techniques

As we have seen in Chapters 3 and 4, there are many PDI techniques to acquire weak

GNSS signals. The approach that we propose in this chapter to reduce the false lock

probability could be applied for all of them. However, as in this chapter we want to focus

on the false lock problem, we will only use two PDI techniques to acquire the weak GNSS

signal: the NPDI and the DPDI, which are the most used nowadays.

The most common technique used to perform non-coherent integrations is the NPDI

as

ZNPDIpxq “
Nnc
ÿ

k“1

|xkpτ̃ , f̃dq|
2. (7.2)

The NPDI technique removes carrier impairments such as frequency offset and data bits

by using the squared absolute value. The drawback of the NPDI technique is that it

suffers from the squaring loss effect. That is, the mean of the noise is increased with

respect to the coherent integration. Thereby, this technique offers a lower detection gain

than the coherent integration in an AWGN channel, but the former can be applied to

detect signals in presence of frequency offset and data bits.

Alternatively, the DPDI method can be implemented, which is defined as

ZDPDIpxq “

∣∣∣∣∣Nncÿ

k“2

xkpτ̃ , f̃dqx
˚
k´1pτ̃ , f̃dq

∣∣∣∣∣ . (7.3)

The idea behind this technique is to eliminate the uncertainty of the frequency offset

without increasing the mean of the noise. This is achieved by multiplying one CAF with

the next CAF conjugated. By doing so, the noise components of 2 consecutively CAFs

are uncorrelated, while the signal components are highly correlated. Using this approach
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Figure 7.1: Example of ROC curves for the NPDI and DPDI techniques with

C{N0 “ 20 dB-Hz, Tcoh “ 100 ms, Nnc = 20.

the mean of the noise is not increased, and therefore in an AWGN channel, the DPDI

technique provides a gain over the NPDI method in terms of signal detection as long as

there is no presence of data bits.

A performance comparison between the NPDI and DPDI techniques is shown in Fig-

ure 7.1. This figure illustrates the ROC curves of these techniques in presence and ab-

sence of bits. As we can be observed, the NPDI is insensitive to the presence of data bits,

whereas the performance of the DPDI technique suffers a strong degradation due to data

bits. However, if there is no presence of data bits, the DPDI illustrates a clear gain in

signal detection over the NPDI.

7.1.4 Mitigation of false lock probability

The acquisition of the main peak is a challenging problem because the secondary peaks of

its autocorrelation have practically the same energy as the main peak. The conventional

approach used at acquisition stage, that is, to estimate the time-delay as the position of

the maximum of the correlation, might not be a good solution to solve this problem in

certain conditions. These conditions include when the correlation function is impacted by
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Figure 7.2: Definition of the false lock region in the autocorrelation of a BOCcos(15,2.5)

signal.

the sampling frequency used, AWGN and distortions introduced by the receiver front-end.

Before proceeding, we define that a false lock is present when the estimation of the

code-delay belongs to a secondary peak. On the contrary, if the estimation of the code-

delay is the main correlation peak, there is no false lock. This region is delimited in

Figure 7.2, which shows the absolute value of the BOCcos(15,2.5) autocorrelation signal

as a representative case of high-order BOC modulations. Taking into account this figure,

we assume that a false lock is present when the estimated code-delay is outside the region

defined between the two green lines in Figure 7.2.

To solve the problem of unambiguous estimation at the acquisition stage, we propose

to use the ML and LS approaches. Although, these estimators have been already imple-

mented in [GM14] and [GM16], they have been applied for the tracking stage, where only

use coherent correlator outputs obtained from this stage. In [GM16], it is also mentioned

that it is possible to combine theses correlator outputs to improve the performance of

the technique. However, in this document, we use these estimators to solve the problem

at acquisition where PDI techniques must be used first to detect the weak GNSS signal.

After that, the ML or LS estimator are applied to solve the problem of unambiguous

estimation. We propose to use the output of the PDI technique not only to detect the
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satellite signal but also to mitigate false lock problem. This approach allows the receiver

to start the tracking of the signal in the main correlation peak. This is an advantage with

respect to the techniques implemented in tracking stage, since they usually need some

time to correct the false lock problem, which causes that the first position estimations of

the user can be biased.

The ML and LS estimators exploit the fact that the autocorrelation function of high-

order BOC signals is known. Taking into account this information the correct peak can

be acquired and the probability of false lock can be improved in certain conditions where

the usage of the maximum of the correlation is not the optimum approach. In this sense,

the procedure is as follows: the NPDI or DPDI technique is used to acquire a weak signal.

Then, a coarse estimation of the code delay τ and the Doppler frequency fd is obtained

as τ̂ and f̂d, respectively. From these estimations, we define the vector z containing a set

of 2Q` 1 samples as follows:

z
.
“ rZxpx, τ̂ ´Q, f̂dq, . . . , Zxpx, τ̂ `Q, f̂dqs

T , (7.4)

where Zxpx, τ̂ ´ Q, f̂dq, . . . , Zxpx, τ̂ ` Q, f̂dq is the output of the NPDI method or the

DPDI method for the estimation of the Doppler frequency f̂d and for the 2Q` 1 samples

of the correlation function contained around τ̂ in ˘ 1 chip; Q is the number of samples

contained in one side of the correlation function during 1 chip, that is, the ratio between

the sampling frequency and the chip rate of the BOC signal. The samples of the expected

correlation with an unknown code delay τ are known in advance and can be stacked in

vector form as,

bpτq
.
“ rBpτ ´Qq, . . . , Bpτ `QqsT . (7.5)

One way to estimate the code-delay that is more robust against the false lock problem

consists in finding the value of the delay that provides the best fit between the measured

correlation and the expected one. This value of the delay is obtained as the argument

that minimizes the following non-linear least square cost function:

Jpτ, ϕq “ ||z´ ϕbpτq||2, (7.6)

where ϕ is the unknown amplitude. This function depends on two unknown parameters

τ , ϕ and it can be solved by separation of variables. To do so, the unknown amplitude is

replaced by ϕ̂ “ pbpτqTbpτqq´1bpτqTz [Kay98]. After that, the problem can be solved by

using an iterative algorithm because an analytical solution does not exist in a closed-form.

Another approach consists in applying the ML estimator assuming that the output of

the NPDI and DPDI techniques were Gaussian. By doing so, the cost function can be
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reformulated as follows:

F pτ, ϕq “ pz´ ϕbpτqqTΣ´1
pz´ ϕbpτqq, (7.7)

where the pp2Q ` 1q ˆ p2Q ` 1qq covariance matrix Σ is non-diagonal matrix owing

to the colored noise generated at post-correlation level. This matrix is given by the

autocorrelation of the BOC signal [Gus16]. This cost function can be minimized by

the same procedure used to minimize the cost function in (7.6), but substituting the

unknown amplitude by the following expression that contains the covariance matrix

ϕ̂ “ pbpτqTΣ´1bpτqq´1bpτqTΣ´1z.

It should be added that this estimator is not strictly the ML for the NPDI and DPDI

techniques because the noise produced by these techniques is not Gaussian. Nonetheless,

the noise of the NPDI metric follows Chi-square distribution under hypothesis H0, but

when the number of Nnc is large the noise tends to be Gaussian by the central limit

theorem. On the other hand, the pdf of the DPDI metric is not known in a closed-form.

Therefore, the minimization of the cost function in (7.7) for the DPDI method might be

far from being the optimal ML estimator. However, this estimator has a good performance

for the DPDI method as we will see later on.

7.1.5 Simulation results

Simulations have been performed using a BOCcos(15,2.5) signal as a representative case of

a high-order BOC signal. The sampling frequency used is 50 MHz, which is the maximum

value of a good USRP nowadays [Res12]. The frequency search space is within -500 Hz

to 500 Hz because we assume that we have some assisted information about the Doppler

frequency of the satellite and we assume that there is no presence of data bits in the

received signal. The coherent time used is 10 ms and the steps of the search frequency

are every 50Hz.

In this subsection, the probability of false lock at acquisition is assessed for three

different methods: the conventional approach used at acquisition stage (to estimate the

time-delay as the position of the maximum of the correlation), the ML estimator, and

the LS estimator. It is clear that the performance of the three methods is affected by the

noise level of the received signal because it distorts the correlation function. Moreover,

the performance of the conventional approach used at acquisition stage is limited by the

sampling frequency or the space between the samples of the correlation function. This

happens because sometimes the maximum of the correlation is sampled in a secondary
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Figure 7.3: Example of a false lock due to the sampling frequency.

peak instead of a main peak. An example of the false lock owing to the sampling frequency

is shown in Figure 7.3.

Figure 7.4 shows the comparison among the conventional approach used at acquisition

stage (referred to as “max” in the plot), the ML estimator, and the LS estimator in an

AWGN channel. The simulation includes an unknown random time-delay at the received

signal, which follows a uniform distribution. We have a high probability of false lock owing

to the sampling frequency by applying the conventional approach used at acquisition

stage, though we have a high C{N0. Nevertheless, this effect can be mitigated by using

the ML and LS estimators as proposed in this work. These estimators are able to provide

small values of false lock probability for small values of C{N0. For instance, using a

total integration of 200 ms, we can obtain a false lock probability smaller than 0.1 for a

C{N0 value of 30 dB-Hz. For the particular case considered in the simulation, the best

method from the ones assessed to reduce the probability of false lock is the ML estimator,

which offers and improvement over the LS estimator. Moreover, the larger the number of

Nnc, the better performance the method offers. This is because we are increasing the total

integration time and it allows the receiver to reduce the effect of the noise. Comparing the

estimators applied over the NPDI and DPDI techniques, we can see that these estimators

have better performance by using the DPDI method in terms of probability of false lock.
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7.1.6 Conclusions

The probability of false lock obtained by applying the conventional approach used at

acquisition stage is limited by the sampling frequency. This approach is not able to

mitigate the false lock problem, though the received signal arrives with high C{N0. We

have proposed two estimators the ML and the LS to solve the problem of false locks.

These estimators reduce the probability of false lock with respect to the conventional

technique used at acquisition stage. The most promising technique corresponds to the

ML. In addition, the application of these estimators after using the DPDI method provides

a gain over the application of these estimators after using the NPDI method in terms of

probability of false lock.

7.2 Fine frequency estimation for high-order BOC

signals

The main task of the acquisition stage of a GNSS receiver is to obtain a coarse estimation

of the time-delay and the Doppler frequency for each satellite in view. After that, these
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estimations are tracked and refined to accurately follow any possible variation of time

and frequency at the tracking stage. Nevertheless, many times the coarse estimation

of Doppler frequency provided by the acquisition stage is not accurate enough to pass

directly to the tracking stage. In that situation, the accuracy of the Doppler frequency

estimation must be improved before starting the tracking stage.

According to the estimation theory, the ML estimator of the Doppler frequency is

the value that maximizes the magnitude of the CAF. Nonetheless, it is not possible to

apply this estimator in practice to find an accurate estimation of the Doppler frequency

since this estimator has a high computational complexity. Then, we must resort to other

alternatives to get a precise estimation of the Doppler frequency [Tan13].

One way to obtain a fine Doppler frequency estimation is by the use of a FLL. However,

the FLLs need a particular architecture using filters, numerical control oscillators and

some additional data. Moreover, the FLLs are usually integrated inside the tracking loop

and more and more GNSS receivers are using an open-loop architecture, which do not have

a tracking loop. Another approach is used [Tan13]. This method estimates the Doppler

frequency by application of a formula, but it only works properly when the receiver uses

a specific Doppler frequency step to acquire the signal. An additional technique was

proposed in [Tan12], which improves the Doppler frequency estimation based only on the

CAF obtained from the acquisition stage by using a LS estimator in post-correlation.

In this chapter, a new technique to refine the Doppler frequency referred to as Multilag

Least Squares (MLS) is proposed. The proposed technique herein exploits the character-

istic multi-peaked of high-order BOC signals to increase the accuracy of the Doppler

frequency estimation. The CRB and a conventional least square found in the literature

are used as a benchmark to compare the performance of the MLS estimator. Moreover, we

analyze how affects the sampling frequency used to acquire the signal in the performance

of the estimators. Before proceeding, we introduce some notation and definitions that

will be used throughout the chapter.

7.2.1 Signal model

The CAF computed to acquire one satellite in view assuming that there is absence of bit

transition can be written as follows:

xpτ̃ , f̃dq “ dÃejφsincp∆fTcohqBp∆τq ` ω, (7.8)
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where Ã is the amplitude obtained from computing the CAF with phase φ, d is the

value of the data navigation bits taking value of 1 or -1, ∆τ “ τ ´ τ̃ is the time-delay

offset between the local replica and the received GNSS signal, ∆f “ fd ´ f̃d is the

residual frequency offset, Tcoh is the coherent integration time, Bp∆τq is the circular

autocorrelation function of a GNSS signal and ω is AWGN after computing the CAF

with zero-mean and variance σ2. The sincp∆fTcohq term provides the losses of coherent

integration because of the residual Doppler frequency between the received signal and the

local replica. After performing the CAF, its absolute value is computed as

Zpτ̃ , f̃dq “ |xpτ̃ , f̃dq|. (7.9)

In order to detect if the satellite is in view or the satellite is not in view, the maximum

magnitude of (7.9) is compared to a signal detection threshold. The satellite is not in view

if the maximum magnitude of (7.9) does not exceed the detection threshold. Nevertheless,

if the maximum magnitude of (7.9) exceeds the signal detection threshold the satellite is

considered in view and a coarse estimation of the τ and fd is obtained as τ̂ and f̂d.

In acquisition stage, the accuracy of the τ̂ is usually given by the sampling frequency,

denoted as fs, used at the receiver. This occurs because the receivers compute the CAF

in frequency domain using FFT and IFFT operations. The accuracy of f̂d is comprised

between the range [´fst{2, fst{2], where fst is the search step of Doppler frequency used

in the local replica to compute the CAF. The fst is chosen taking into account a trade-

off between the complexity in terms of computational burden at the receiver and the

accuracy in the estimation of Doppler frequency. A typical value of fst to mitigate the

coherent integration losses is 1{p2Tcohq. However, many times the estimation f̂d is not

precise enough to track the signal in the tracking stage. For this reason, a more accurate

estimation of fd must be done before starting the tracking stage.

7.2.2 Least squares estimator

As we have already mentioned, the degradation produced in the CAF by the residual

Doppler frequency between the received signal and the local replica is affected by a sinc

function. This method exploits this fact to refine the coarse Doppler frequency estimation

obtained in the acquisition stage [Tan12]. More precisely, the method consists in finding

the Doppler frequency value that provides the best fit between the theoretical sinc function

and the measured one. To do so, let us define the received or the measured sinc function

in a vector g containing a set of 3 samples: the maximum value of the CAF in (7.8) and
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the two adjacent values of the CAF in the frequency domain for the estimation of τ̂ as

g
.
“

»

—

—

—

–

Zpτ̂ , f̂d ´ fstq

Zpτ̂ , f̂dq

Zpτ̂ , f̂d ` fstq

fi

ffi

ffi

ffi

fl

. (7.10)

We define the vector tpfdq containing also 3 samples of the theoretical sinc function with

an unknown Doppler frequency:

tpfdq
.
“

»

—

—

—

–

|sincppfd ´ f̂d ´ fstqTcohq|

|sincppfd ´ f̂dqTcohq|

|sincppfd ´ f̂d ` fstqTcohq|

fi

ffi

ffi

ffi

fl

. (7.11)

It is worth mentioning that we only take three points to define the vectors g and tpfdq

because we want to guarantee that the three chosen points are located in the main lobe

of the sinc function. We do not take more points of the sinc function since the rest of the

points contain almost no signal and in presence of noise, they may cause a worsening of

the fine Doppler estimation of fd.

Figure 7.5 shows an illustrative plot of the expected theoretical sinc function, the

measured sinc function obtained from the acquisition stage, and the Doppler frequency

of the received signal. The fine Doppler frequency estimation of fd is carried out by

minimizing the following non-linear LS cost function:

Jpα, fdq “ ||g ´ αtpfdq||
2, (7.12)

where α is the unknown amplitude due to the propagation effects of the received sig-

nal. The non-linear LS, which is affected by two unknown parameters fd and α, can be

minimized by separation of variables in two steps [Kay98]. Firstly, the non-linear LS is

minimized with respect to α so that the cost function depends only on fd. The unknown

amplitude that minimizes the function J is α̂ “ ptpfdq
T tpfdqq

´1tpfdq
Tg. Replacing this

expression in (7.12), we get

Jpα̂, fdq “ ||g ´ ptpfdq
T tpfdqq

´1tpfdq
Tgtpfdq||

2. (7.13)

Secondly, the problem now reduces to minimize (7.13). The cost function must be mini-

mized by the application of an a one-dimensional search method since there is no analytical

solution in closed-form for fd. In our simulation, we use simple for loop to estimate the

value of fd.
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Figure 7.5: Illustrative plot of the CAF in frequency domain.

7.2.3 Multilag least squares estimator

In this subsection, we propose a novel contribution for estimating the fd in the acquisition

stage referred to herein as MLS estimator, especially for high-order BOC signals. We

want to exploit the fact that the ideal CAF in time domain of a high-order BOC signal

contains a considerable number of secondary peaks. Moreover, the received signal is always

impacted by the sampling frequency used and this causes that many times the high-order

BOC signals are not sampled in the maximum of the CAF since the signal arrives with an

unknown random time-delay. One example of the ideal CAF of a BOCcos(15,2.5) signal in

time domain and the received CAF using a fs “ 50 MHz, which is the maximum value of

a USRP nowadays [Res12], is shown in Figure 7.6. The received CAF often exhibits some

high peaks with practically the same magnitude, which may be a useful tool to estimate

fd of a more effective way in terms of accuracy than the estimator explained in Subsection

7.2.2.

The method explained in Subsection 7.2.2 only uses the maximum value of the CAF

and the two adjacent values of the CAF in frequency domain. Nonetheless, we propose

to use the different high peaks of the CAF in time domain (including the highest peak)

and each high peak with their two adjacent values of the CAF in frequency domain. This

approach can be solved by minimizing the distance between two matrices. The method
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and the received CAF using a fs “ 50 MHz (without taking into account the noise and

the Doppler effect).

proposed herein deals with the estimation of Doppler frequency by finding the best fit

between the theoretical sinc functions and the different measured sinc functions. Before

proceeding, we denote the magnitude of the second highest peak of the CAF in time

domain as α2 with argument τ2 and the magnitude of the thirst highest peak of the CAF

in time domain as α3 with argument τ3 and so on. Thereby, let us define the Kˆ3 matrix

G, with K the number of chosen high peaks of the CAF in time domain, containing the

different measured sinc functions from each high peak as

G
.
“

»

—

—

—

—

—

—

—

—

—

—

–

Zpτ̂ , f̂d ´ fstq Zpτ̂ , f̂dq Zpτ̂ , f̂d ` fstq

Zpτ̂2, f̂d ´ fstq Zpτ̂2, f̂dq Zpτ̂2, f̂d ` fstq

Zpτ̂3, f̂d ´ fstq Zpτ̂3, f̂dq Zpτ̂3, f̂d ` fstq
...

...
...

Zpτ̂K , f̂d ´ fstq Zpτ̂K , f̂dq Zpτ̂K , f̂d ` fstq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (7.14)

The cost function can be expressed by the Frobenius distance as

Hpα, fdq “ ||G´α ¨ tpfdq
T
||
2
F , (7.15)

where the vector α “ rα, α2, α3, ¨ ¨ ¨ , αKs
T have all the unknown amplitudes, one unknown
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amplitude for each chosen high peak and tpfdq is defined in (7.11). The estimation of

fd is the value that minimize the cost function. To minimize this problem, we apply

separability of variable because the vector α is linearly dependent over t. Then, we must

replace α̂ “ G¨tpfdq
||tpfdq||2

by α in (7.15). Thus,

Hpα̂, fdq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

G´
G ¨ tpfdq

||tpfdq||2
tpfdq

T

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

F

. (7.16)

After that, the fine estimation of fd is found by applying a one-dimensional search method

since there is not any analytical solution in closed-form. In this case, we also use a simple

for loop to minimize the cost function.

7.2.4 Cramer-Rao bound

Theoretical lower bounds become necessary for evaluating the performance of the proposed

estimators in the Subsections 7.2.2 and 7.2.3. The CRB, which expresses a lower bound on

the variance of any unbiased estimator, provides a benchmark to compare the performance

of the LS and MLS estimators. The CRB is defined by:

varpf̂dq ě CRBpfdq “ ´

„

E

„

B2

Bf 2
d

ln prpr; fdq

´1

, (7.17)

where Er¨s is the expected operator, r is a vector containing the Mch samples of the

received signal defined in (2.12) and prpr; fdq is the probability density function of the

received signal. The CRB of the Doppler frequency estimation in an AWGN channel is

given by [Rif74]

varpf̂dq ě
6

p2πq2SNRT 2
sMchpM2

ch ´ 1q
, (7.18)

where SNR is referred to the signal-to noise ratio of the received signal at pre-correlation

level and Ts “ 1{fs. Assuming that Mch “ fsTcoh ąą 1 the CRB is written as follows:

varpf̂dq ě
6

p2πq2SNRfsT 3
coh

. (7.19)

Typically, the SNR is not a parameter used in GNSS since it depends on the receiver

front-end bandwidth denoted as Bw. The parameter usually utilized to analyze the per-

formance of techniques is the C{N0, which is not affected by the receiver bandwidth. The

relationship between the SNR at pre-correlation level and the C{N0 is given by

SNR “
C

N0Bw

, (7.20)
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where Bw is assumed ideally to be flat over the whole digital bandwidth. The CRB in

(7.19) is the bound for the estimation of fd because it takes into account the C{N0 from

the received signal. However, often in post-correlation, we do not get a C{N0 as high as in

pre-correlation since the received CAF many times exhibits some high peaks, but none of

them match with the real peak of the CAF (Figure 7.6). This fact causes a degradation

at post-correlation in terms of C{N0, which is due to the sampling frequency and the

unknown random code-delay of the received signal.

7.2.5 Simulation results

Simulations are carried out by the use of BOCcos(15,2.5) signals, as a particular case of

high-order BOC modulations, using a coherent time of 10 ms. We consider a frequency

search range from -500 Hz to 500 Hz since we assume knowing the assisted information

about the Doppler frequency from the satellite and the steps of the search frequency

are every 50 Hz. The implemented receiver computed the CAF in frequency domain by

using the FFT and IFFT operations. Moreover, simulations are performed in an AWGN

channel and including an unknown random time-delay at the received signal, which follows

a uniform distribution.

To measure the performance of the LS and MLS estimators, the mean square error

(MSE) is used

fMSE “ E

„

´

fd ´ f̂d

¯2


, (7.21)

which is computed by averaging 3000 Monte Carlo iterations for each value of C{N0.

Figure 7.7 shows the MSE of the LS estimator, MLS estimator and CRB for a fs “ 50

MHz. In this case, we use K “ 3 for the MLS estimator. The rationale for that will

be explained later on. The result shows that the MLS estimator is the best estimator

because it provides an improvement over the LS estimator in terms of accuracy in Doppler

frequency estimation. The MLS estimator allows us to recover a part of the energy lost

in the CAF by the unknown random difference between the time-delay of the received

signal and the local replica. Therefore, the usage of several peaks from the CAF leads

to a frequency estimation more accurate than only using the main peak from the CAF.

However, the MLS estimator is not able to reach the CRB value.

In order to find the optimum number of chosen high peaks of the CAF in time domain

K, we carry out an extensive number of simulations with different values of K. Figure
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Figure 7.7: MSE of the MLS and LS estimators using a fs “ 50 MHz.

7.8 shows the division between the MSE using the MLS estimator with K “ 3, K “ 5,

and K “ 10 and the MSE of the LS estimator. The result shows that it makes little

difference when the value of K is changed for values such as 3 or 5. Nevertheless, the

MLS estimator always provides the best performance for K “ 3 using a fs “ 50 MHz.

The larger the number of K, the more degradation the MLS suffers. Moreover, although

we do not use the optimal value of K, the MLS estimator might provide an improvement

over the LS estimator.

Figure 7.9 shows the comparison among the LS estimator, the MLS estimator and the

CRB for different values of fs. In this simulation, we analyze the effect of the sampling

frequency used in the receiver, which affects to the separation among the samples of

the CAF in the acquisition stage. This fact causes that the precision in the Doppler

frequency estimation must be different since this estimation depends on the magnitudes

of the chosen samples from the CAF. The larger the magnitudes of the chosen samples,

the more accurate the estimation tends to be since less degradation we have at post-

correlation level in terms of C{N0.

We choose several values of fs, such as 40 MHz, 62 MHz and 100 MHz, to perform

the simulation. In this case, the results show that the most accurate estimation of the

Doppler frequency is provided using 100 MHz. Intuitively, one can think the larger the
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fs, the more accurate the estimation of the Doppler frequency is because the separation

among the samples in the CAF is smaller, which usually allows the receiver to select

samples with a large magnitude. Nevertheless, this is not always true, as it can be seen

for the case of fs “ 40 MHz and fs “ 62 MHz. This happens because the separation

among the samples of the received signal using a fs “ 62 MHz is really similar to the

distance between the peaks in the CAF of the BOCcos(15,2.5) signal. More precisely,

the distance between the peaks of a BOC correlation is given by 1{p2fsubq, where fsub is

sub-carrier frequency. In particular, the fsub of a BOCcos(15,2.5) signal is 15 ¨ 1.023 MHz.

In this situation, using a fs “ 62 MHz, we have approximately two samples equidistant

for each peak of the correlation. The CAF of the BOCcos(15,2.5) signal is sampled in all

the different peaks of the correlation function of the same way, but any secondary peak

cannot outperform the magnitude of the main peak (without presence of noise). However,

using the fs “ 40 MHz, this effect does not happen because the separation among the

samples of the received signal is not equidistant compare to the distance between the

peaks of the BOCcos(15,2.5) correlation and, in this case, the magnitude of a secondary

peak can outperform the value of the main peak.

This fact causes that the value of fs “ 40 MHz usually provides larger magnitudes in

the CAF than using the fs “ 62 MHz. For this reason, the estimation of the Doppler
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Figure 7.9: Comparison between the MLS and LS estimators using fs “ 40, 62 and 100

MHz.

frequency can be more accurate using fs “ 40 MHz than using fs “ 62 MHz. Moreover,

this also causes that the MSE of the estimators using fs “ 62 MHz needs a larger C{N0

value to provide accurate estimations of the Doppler frequency since using this sampling

frequency, the receiver is more prone to suffer wrong detections. In addition to this, the

proposed MLS estimator improves the performance of the LS estimator for the different

values of sampling frequency.

7.2.6 Conclusions

A new technique has been proposed, which is so-called multilag least squares estimator, to

refine the Doppler frequency estimation obtained in the acquisition stage. This technique

exploits the secondary peaks provided by the CAF of a high-order BOC signal to get an

accurate estimation of the Doppler frequency. The MLS estimator outperforms the LS

estimator proposed in the literature. The optimum number of chosen high peaks of the

CAF is 3 to obtain the most accurate estimation of Doppler frequency using a sampling

frequency of 50 MHz. Moreover, the advantage of the MLS estimator is that it can be

applied in any receiver since it only uses the CAF generated in the acquisition stage.

In addition, we have analyzed the dependence between the sampling frequency used to
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acquire the signal and the accuracy to estimate the Doppler frequency. The values of

fs that offer the most accurate estimations of the Doppler frequency are the ones that

provide a separation among the samples of the received signal which is not equidistant

with the distance between the peaks of the BOCcos(15,2.5) correlation.



Chapter 8

Conclusions and future work

This thesis has tackled several problems of processing weak GNSS signals, such as the

detection at the acquisition stage, the determination of their signal quality and the miti-

gation of potential false lock. The main problem of this thesis has dealt with the detection

of weak signals, which arrive at the receiver highly attenuated owing to the presence of

obstacles in the path between the satellite and the receiver. The acquisition of these sig-

nals becomes a challenge since they are usually below the noise level. The receiver must

counteract the effect of the noise by accumulating the received signal for a long period of

time in order to detect it. However, the optimal detector depends on the impairments that

limit the duration of the accumulation of the received signal such as data bits, frequency

offset and phase noise. We have found the most promising techniques including all and

several of the impairments. Moreover, this thesis has addressed the problem of estimating

the C{N0 from a weak GNSS signal. The C{N0 estimates are very important in many

applications of HS-GNSS receivers such as the determination of a detection threshold or

the mitigation of near-far problems. Finally, this thesis has proposed accurate estimators

of the Doppler frequency and time-delay for high-order BOC signals. The conclusions of

the thesis are drawn in this section, alongside the open issues pending for future work.

8.1 Conclusions

In Chapter 2, the main features of the GNSSs and the fundamentals of the signal detection

theory have been described. More precisely, the architecture and the signals implemented

in the GPS and Galileo system have been explained to show the difference between the

145
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two systems and the advantages and drawbacks of using BOC signals. In addition to this,

we have described the main stages of GNSS receivers: acquisition, tracking and PVT, and

we have introduced more details in the acquisition stage, which is the stage where the

main issues of this thesis have been addressed. Finally, the detection tools required to find

optimal detectors to improve the acquisition of HS-GNSS receivers have been provided.

In Chapter 3, in order to understand the evolution of GNSS signal acquisition, the

state of the art of PDI techniques for GNSS has been provided. This survey has shown

that the NPDI is the most widely implemented technique in practice, since it allows the

receiver to detect weak signals and there are known expressions for its detection and false

alarm probabilities. Moreover, we have seen other alternatives such as the DPDI and

GPDIT techniques, which offer better detection probability than the NPDI technique in

an AWGN channel. The most relevant techniques of this chapter have been benchmarked

for low C{N0 levels in presence of phase noise introduced by a TCXO and OCXO receiver

clocks and frequency offset. We have concluded that the most promising technique in

presence of frequency offset is the GPDIT and the technique most robust against the

presence of phase noise is the NPDI. Moreover, the TCXO limits the coherent correlation

interval to about 100 ms, whereas the receiver can implement coherent integration times

as long as 1 second when use an OCXO.

In Chapter 4, we have addressed the problem of finding the optimal detector to acquire

weak GNSS signals. We have considered a scenario with a received signal which includes

the presence of data bits and a time-varying phase. Based on the GLRT and the Bayesian

approach, we have obtained two different PDI techniques, which offer very similar per-

formance. Given that the PDI technique obtained from the GLRT is less complex than

the one obtained from the Bayesian approach, we have concluded that the result from

the GLRT is a better option. However, the resulting PDI techniques from the Bayesian

approach and the GLRT have the drawback of requiring the SNR of the received signal.

In order to circumvent this problem, we have proposed approximations of these techniques

that do not depend on the SNR value leading to the NPDI and NQ-NPDI techniques.

Contrary to the traditional belief that the NPDI technique is the best option to acquire

weak GNSS signals, which include the presence of data bits and a time-varying phase,

in this chapter it has been shown that the NQ-NPDI is the most promising technique.

Finally, we have proposed closed-form expressions for the detection and false alarm prob-

abilities of the NQ-NPDI technique and the optimal detector obtained from the Bayesian

approach. We have drawn the conclusion that the use of the Edegworth series provides a

very accurate approximation of the probabilities of these techniques.
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In Chapter 5, we have tackled the problem of reacquiring weak GNSS signals. The

Bayesian approach and the GLRT have been applied to find the optimal detector for

weak GNSS signals. We have proposed five new techniques the BAPDI and MBAPDI

obtained from the Bayesian approach and three other obtained from the GLRT. All of

these techniques outperform the conventional PDI techniques proposed in the literature.

However, the former group provides practically the same performance. Due to this fact,

the chapter has drawn conclusions on which is the best technique to reacquire weak GNSS

signals in practice considering a trade-off between performance and complexity. The best

technique for the reacquisition of GNSS signals is the one based on the approximation of

the GLRT approach for high SNR regime.

In Chapter 6, we have proposed new C{N0 estimators based only on the output of

PDI techniques, which are especially designed for snapshot receivers. Four simple closed-

form expressions have been derived to estimate the C{N0. Each expression applies to

one of the most relevant PDI techniques, namely NPDI, NQ-NPDI, DPDI or GPDIT. We

have suggested using the output of the PDI technique not only to acquire the satellites,

but also to estimate the C{N0. The C{N0 estimators proposed herein have shown to be

very accurate and easy to implement in a HS-GNSS receiver. Moreover, these estimators

exhibit much more accurate C{N0 estimates than the benchmarks, particularly if there is

the presence of phase noise.

In Chapter 7, we have focused on two problems of high-order BOC signals. On the

one hand, we have mitigated the problem of false locks at the acquisition stage for weak

high-order BOC signals. We have suggested using the ML and LS estimators, which

outperform the conventional approach used in literature to estimate the time-delay of

the received signal. The proposed estimators have shown to be able to provide a small

value of probability of false lock, though the received signal arrives with a low C{N0

value. On the other hand, we have tackled the problem of refining the Doppler frequency

estimation provided in the acquisition stage for high-order BOC signals. We have proposed

a new estimator that exploits the energy of the secondary peaks of the autocorrelation

of high-order BOC signals to obtain an accurate estimation of the Doppler frequency.

This estimator improves the performance of the conventional estimator proposed in the

literature.
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8.2 Future work

The open issues addressed for future work are described in this section.

• Considering the GNSS detection problem including multipath effects in the received

signal. The introduction of this effect in the model could provide a new class of PDI

techniques.

• Performing a statistical characterization of the PDI techniques derived in Chapter 5,

which allow us to obtain closed-form expressions of their false alarm and detection

probabilities.

• Obtaining closed-form expressions for the C{N0 estimate of the techniques proposed

in Chapter 5.

• Finding algorithms to mitigate the false lock probability of high-order BOC signals

without having to use a one-dimensional search method.

• Applying the detection tools to the problem of GNSS spoofing. Thereby, we could

find optimal techniques to detect spoofing attacks.
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