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Universitat Autònoma de Barcelona

A theoretical study on some
exotic quantum phase

transitions

by

Abel Vicenç Yuste Roca
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Abstract

My Ph.D. is devoted to the analysis of some exotic quantum phase transi-
tions arising in strongly correlated systems described by spin Hamiltonians.
On the one hand, my studies have focused on quantum phase transitions
occurring close to multicritical points. These points are particularly patho-
logical since several quantum phases coexist in a narrow range of Hamiltonian
parameters. This fact, as I will discuss in this thesis, has strong effects on the
properties displayed by the strongly correlated system. On the other hand,
I have also analyzed quantum phase transitions leading to quantum spin liq-
uids which are novel phases of matter occurring in some frustrated systems.
These phases are at the forefront of condensed matter research since their
characterization remains very elusive both experimentally and theoretically.

The research presented here can be split into three different parts. The
first part deals with the unusual behavior of bipartite entanglement in some
quantum spin chains. The role of quantum fluctuations is enhanced in low
dimensions, and thus 1D systems offer a plethora of possibilities to analyze
the role of quantum fluctuations in quantum phase transitions. Some studies
have been carried out for spin-1/2 models, while others have been realized
for spin-1 systems. The second part of my thesis covers disordered frus-
trated quantum systems and, in particular, the presence of quantum spin
liquids. Frustration reflects the impossibility of fulfilling simultaneously all
constraints posed by some Hamiltonians. It is an inherent property of some
strongly correlated systems, e.g., classical spin ice models or 2D quantum
antiferromagnets. Such incompatibility often translates into a severe prob-
lem of energy minimization when finding the ground state of the system.
Many frustrated systems order at zero or low temperatures but there also
states that do not order and lay beyond the Landau theory of phase tran-
sitions presenting a fascinating underlying structure. Quantum spin liquids
belong to this last type. My approach to address their study has been to de-
velop a new numerical method using engineered boundary conditions. Such
approach has allowed me to obtain some unambiguous signatures about the
nature of some quantum spin liquids. The last part of my thesis is devoted to
describe and analyze frustrated quantum spin models by means of modified
spin wave theory. The use of such analytical tool has allowed me to asses
the performance and validity of the numerical approach I have developed as
well as to deepen my understanding of quantum spin liquids.

Finally, I would like to mention that the first and third part of my thesis
were mostly developed during the months I spent as a Ph.D. research visitor
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at Queen’s University of Belfast (UK) on the group of Dr. G. de Chiara in
2016, and at the Universität Heidelberg (Germany) in the group of Junior
Prof. P. Hauke in 2018 respectively.
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Resum

El meu doctorat està dedicat a analitzar transicions de fases quàntiques de
naturalesa exòtica en sistemes fortament correlacionats descrits per Hamil-
tonians de spin. D’una banda, m’he centrat en l’estudi de transicions de fase
quàntiques localitzades a prop de punts multicŕıtics. Aquests punts són par-
ticularment patològics ja que diverses fases quàntiques coexisteixen en una
petita regió de paràmetres del Hamiltonià. Aquest fet, tal i com argumen-
taré al llarg de la tesis, condiciona palesament les propietats mostrades pel
sistema fortament correlacionat. De l’altre, també he investigat transicions
de fase quàntiques cap a ĺıquids de spin quàntics que són fases exòtiques de la
matèria que apareixen en alguns sistemes frustrats. Aquestes fases es situen
a l’avantguarda de la recerca en matèria condensada ja que són, teòrica i
experimentalment, molt dif́ıcils de caracteritzar.

La recerca presentada es pot dividir en tres parts. La primera part tracta
sobre comportaments insòlits que pateix l’entrellaçament quàntic, més cone-
gut com a entanglement, en algunes cadenes de spin. La rellevància de les
fluctuacions quàntiques creix en baixes dimensions i per tant els sistemes
unidimensionals ofereixen un bon ventall de possibilitats per analitzar el pa-
per de les fluctuacions quàntiques en transicions de fase quàntiques. Alguns
càlculs han estat realitzats en models de spin-1/2 i d’altres en sistemes de
spin-1. La segona part de la meva tesis tracta de sistemes quàntics frustrats
i, particularment, de la presència de ĺıquids de spin. La frustració reflecteix
la impossibilitat de satisfer simultàniament totes les restriccions imposades
per alguns Hamiltonians. És una propietat intŕınseca d’alguns sistemes for-
tament correlacionats, com ara els gels clàssic de spins o models quàntics
antiferromagnètics en 2D. Aquesta incompatibilitat fa que sovint sigui molt
dif́ıcil minimitzar-ne l’energia per a trobar l’estat fonamental. Molts sistemes
frustrats s’ordenen a baixes, o inclús zero, temperatures però també hi ha
estats que no s’ordenen i que queden fora de la teoria de les transicions de
fase de Landau, presentant aix́ı una estructura subjacent extraordinària. Els
ĺıquids de spin pertanyen a aquest segon tipus. El meu enfocament per a
estudiar-los ha consistit en desenvolupar un nou mètode numèric fent ser-
vir unes condicions de contorn degudament dissenyades. Això m’ha permès
detectar-ne ineqúıvocament algunes de les empremtes caracteŕıstiques de la
seva naturalesa. L’última part de la meva recerca l’he dedicada a descriure i
analitzar models frustrats de spin quàntics mitjançant una tècnica anomena-
da modified spin wave theory. L’ús d’aquesta tècnica anaĺıtica m’ha permès
contrastar l’aplicació i validesa de l’enfocament numèric que he desenvolupat
i també m’ha permès aprofundir en l’estudi dels ĺıquids de spin.
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Finalment, voldria mencionar que la primera i tercera part de la meva
tesis va ser principalment duta a terme durant els mesos que vaig passar com
a investigador predoctoral visitant a la Queen’s University of Belfast (Regne
Unit) en el grup del Dr. G. de Chiara al 2016 i a la Universität Heidelberg
(Alemanya) en el grup del Junior Prof. P. Hauke l’any 2018 respectivament.
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Resumen

Mi doctorado está dedicado a analizar transiciones de fase cuánticas de natu-
raleza exótica en sistemas fuertemente correlacionados descritos por Hamilto-
nianos de espines. Por un lado, me he centrado en el estudio de transiciones
de fase cuánticas localizadas cerca de puntos multicŕıticos. Dichos puntos
son particularmente patológicos ya que diferentes fases cuánticas coexisten
en una pequeña región de parámetros del Hamiltoniano. Este hecho, tal y
como voy a argumentar a lo largo de la tesis, condiciona notablemente las
propiedades mostradas por sistemas fuertemente correlacionados. Por otro
lado, también he investigado transiciones de fase cuánticas hacia ĺıquidos de
esṕın que son fases exóticas de la materia que aparecen en algunos sistemas
frustrados. Dichas fases se sitúan en la vanguardia de la investigación en ma-
teria condensada ya que son, teórica y experimentalmente, muy dif́ıciles de
caracterizar.

La investigación presentada se puede dividir en tres partes. La prime-
ra parte trata sobre comportamientos insólitos que sufre el entrelazamiento
cuántico, más conocido como entanglement, en algunas cadenas de espines.
La relevancia de las fluctuaciones cuánticas crece en bajas dimensiones y
por lo tanto los sistemas unidimensionales ofrecen un amplio repertorio de
posibilidades para analizar el papel de las fluctuaciones cuánticas en transi-
ciones de fase cuánticas. Algunos cálculos han estado realizados en sistemas
de esṕın 1/2 y otros en sistemas de esṕın 1. La segunda parte de mi docto-
rado trata con sistemas cuánticos frustrados y, particularmente, con la pre-
sencia de ĺıquidos de espines. La frustración es un reflejo de la imposibilidad
de satisfacer simultáneamente todas las restricciones impuestas por algunos
Hamiltonianos. Es una propiedad intŕınseca de algunos sistemas fuertemen-
te correlacionados como pueden ser los hielos clásicos de esṕın o modelos
cuánticos antiferromagnéticos en 2D. Dicha incompatibilidad hace que a me-
nudo sea muy dif́ıcil minimizar la enerǵıa para hallar el estado fundamental.
Muchos sistemas frustrados se ordenan a bajas, o incluso cero, temperaturas,
pero también hay estados que no se ordenan y que quedan fuera de la teoŕıa
de las transiciones de fase de Landau, presentando aśı una estructura subya-
cente extraordinaria. Los ĺıquidos de esṕın pertenecen a este segundo tipo.
Mi enfoque para estudiarlos ha consistido en desarrollar un nuevo método
numérico usando unas condiciones de contorno debidamente diseñadas. Esto
me ha permitido detectar ineqúıvocamente algunas de las huellas caracteŕısti-
cas de su naturaleza. La última parte de mi tesis la he dedicado a describir y
analizar modelos frustrados de esṕın cuánticos mediante una técnica llamada
modified spin wave theory. El uso de dicha técnica me ha permitido profun-
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dizar en el estudio de los ĺıquidos de esṕın.

Finalmente, me gustaŕıa mencionar que la primera y tercera parte de
mi tesis fue realizada principalmente durante los meses que estuve como
investigador predoctoral visitante en la Queen’s University of Belfast (Reino
Unido) en el grupo del Dr. G. de Chiara en el 2016 y en la Universität
Heidelberg (Alemania) en el grupo del Junior Prof. P. Hauke el año 2018
respectivamente.
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Seguint temporalment endarrere, vull agrair en Bruno Juliá-Dı́az, en Mi-
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fet mai el pas per a entrar a un doctorat en f́ısica teòrica, gràcies.
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ein wenig eure hartäckige Sprache lernen konnte.

Thanks to all the GIQas and GIQos, despite that I will periodically ha-
ve nightmares related to some strange definition of the entropy, I will miss
working in our headquarters. Sorry for not being able to attend to most of
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Preface

The Ph.D. thesis presented here is formed by the original research articles
resulting from my Ph.D. work ( Part II). It is preceded by a broad introduc-
tion which presents the main concepts used along the thesis together with
the original motivations of my work and the most important results that I
have obtained ( Part I).

The thesis is structured as follows. In Chapter 1, I present the moti-
vations and open questions which inspired my research. This chapter also
provides a general view of each article with their main results. In Chapter 2,
the phenomena on strongly correlated systems which are relevant along the
thesis are detailed. Chapter 3 contains different aspects on entanglement and
correlations in strongly correlated systems. The spin models under study in
my thesis are introduced in Chapter 4. The numerical methods which have
been used to solve non-integrable spin models are explained in Chapter 5. In
particular, in Sec. 5.2, I detail the novel method I have developed based on
exact diagonalization with random boundary conditions, clarifying aspects
of the algorithm which are not reported in the articles. I conclude Part I
by summarizing the results obtained and providing some open questions and
future perspectives in Chapter 6.

In Part II, the original research articles resulting from my Ph.D. are at-
tached in their printed journal version (Articles 1 and 2). Notice as well that
Article 3 is presently, at the time of the Ph.D. thesis handing, still in editorial
process. As a consequence, I attach the last version, before editorial correc-
tions. Finally, the publication of the last part of my research, covering the
study of 2D frustrated spin systems by means of modified spin wave theory,
is still being prepared at the time of this thesis handing. Consequently, the
motivations, results and conclusions belonging to this research line are just
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presented in Part I.
Finally, three appendixes are also provided. Appendix A contains a tech-

nical comparison between different modified spin wave theory approaches
present in the literature. It also includes some open questions which need
still to be elucidated in order to fully comprehend this approach in the tri-
angular lattice. In Appendix B the most important MATLAB codes which I
have written along the Ph.D. are provided. Finally, in Appendix C I include
also the articles that have resulted from my research during my Master thesis
after the graduation. Although these articles do not form part of my Ph.D.
thesis defense, I include them here for completeness.
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Part I

Condensed matter physics and
quantum information. A

startling interface





CHAPTER 1

Motivations and main results

I landed in the group of Quantum Information and Phenomena at the Uni-
versitat Autònoma of Barcelona with a background in the theoretical and
numerical study on ultracold atoms systems, the subject of my undergradu-
ate and master thesis (see Appendix C). My interest rapidly moved onto the
use of quantum information (QI) and, in particular, in the study and use of
entanglement to characterize some features of strongly correlated systems.
During my Ph.D., I have focused in the analysis of exotic quantum phase
transitions in spin models, where quantum correlations are particularly rele-
vant. My Ph.D. can be split into three different topics which I motivate and
briefly summarize in what it follows.

The first topic I have addressed, enclosed in Article 1, is the pathological
behavior of first order quantum phase transitions (1QPT) occurring in the
vicinity of a second order quantum phase transition (2QPT). As it is well
known, a classical phase transition (CPT) occurs as the consequence of a bro-
ken symmetry. A phase transition is crossed when an infinitesimal change on
one of the parameters describing the system results into a dramatic change
of the system and its order. This is the so-called Ginzburg-Landau theory
of phase transitions and can also be applied to a vast majority of quantum
phase transitions (QPT). In analogy to CPT, QPT can also be cataloged
by their order. A QPT is called of first (or second) order, if the first (or
second) derivative of the ground state energy with respect to the parameter
of interest has a singular behavior. In 2002, the seminal works of Oster-
loh and collaborators [1] and Osborne and Nielsen [2] show that QPT can
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Figure 1.1: Spike in the concurrence in the spin-1/2 Ising chain with lon-
gitudinal field at Bx = 0 (1QPT critical point) for different values of the
transverse magnetic field Bz (for more details see Article 1). This apparently
controversial results was the starting point of our research.

also be understood by means of singularities of their entanglement content.
Since then, many works have studied the behavior of entanglement close to
a QPT. Nevertheless, we realized that the vast majority of entanglement
studies were devoted to second order (also called continuous) QPT, while
first order (discontinuous) QPT were much less studied. Our initial motiva-
tion was to determine whether it was always feasible to distinguish a 1QPT
from a 2QPT in a spin model by means of measures of entanglement. We
used as benchmark 1D spin systems, since the ground state properties can
be obtained with high accuracy for reasonable large systems using density
matrix renormalization group (DMRG). Naively, it would seem that a 1QPT
should be easily identified by a discontinuity on a proper chosen measure of
entanglement. However, we found a first counterintuitive result, illustrated
in Fig. 1.1. There, the concurrence, which is a measure of bipartite entan-
glement between two spin-1/2 particles, shows a spike at the 1QPT critical
point instead of a discontinuity. The model studied is the quantum Ising
chain with transverse and longitudinal fields (see Sec. 4.2.1). As a matter of
fact, such behavior apparently contradicts the theorem stated in [3] which
states that for local Hamiltonians H =

∑
hi, where hi is a k-body interacting

Hamiltonian, the order of the QPT is indicated by the order of the singularity
of the derivatives of k-entanglement measures. Further analysis brought us
to understand that the expected discontinuous behavior of a 1QPT occurring
in the neighborhood of a 2QPT becomes smoother due to the diverging cor-
relation length associated to the later. To deal with such feature, a finite size
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scaling (FSS) for 1QPT had been recently proposed [4], though it had never
been applied to any measure of entanglement. We successfully applied the
FSS to the concurrence recovering the correct thermodynamic limit. Later,
in order to extend our work, we studied a spin-1 model (see Sec. 4.2.2),
which has a richer phase diagram with several multicritical points and crit-
ical phases. We could identify all the 1QPT present in the model by means
of the negativity, which is another measure of bipartite entanglement, and
by using, again, the FSS for 1QPT. The main part of this work was done
in collaboration with the group of Dr. G. de Chiara, where I spent several
months at the Queen’s University of Belfast.

The second part of my research, resulting in Articles 2 and 3, has focused
on the study of 2D frustrated spin models. In a quantum system, frus-
tration i.e., the impossibility of simultaneously minimizing all local energy
constrains, together with quantum fluctuations may lead to non trivial dis-
ordered phases of matter. In particular we have been interested in quantum
spin liquids (QSL) phases, (see Sec. 2.3), which are present in some spin mod-
els like for instance the Heisenberg model in the anisotropic antiferromagnetic
(AF) triangular lattice with nearest-neighbors (NN) interactions. Motivated
by the calculations performed to simulate the Fermi-Hubbard model on a
square lattice using random boundary conditions (RBC) [5], we realized that
a similar scheme could be implemented for detecting quantum spin liquids.
In Ref. [5], the quantities of interest were calculated by performing an av-
erage over all random configurations, a technique that strongly mitigates
finite size effects. Our initial idea was to apply in a similar way RBC to
the triangular lattice to mitigate finite size effects and obtain significant re-
sults in small lattices. As a benchmark we studied Heisenberg models in
the spatially anisotropic triangular lattice, a model also known as SATL (see
Sec.4.3), where previous works using variational methods pointed towards
the existence of a gaped QSL phase. In the first results obtained, we were
considering an average over all the random boundaries. However, the results
were not very promising. Then, we realized that when doing the average
there were random configurations which lead to the wrong order. That is
because every diagonalization in a small lattice imposes extra symmetries
which may lead to an erroneous ground state. The following reflection was
made. On the one hand, in the ordered phases, such configurations lead to an
increase of the energy with respect to the ones which do recover the correct
order. On the other hand, in quantum disordered phases, where no symme-
tries are broken, many of the random boundary configurations may lead to
an energy close to the minimal one. With this idea in mind, we decided to
count how many ground states generated with random boundary conditions
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Figure 1.2: Left, number of configurations, Nc, with a normalized energy
below a bias for the SCATL model with XY interactions with lattice geometry
4x3 (for more details see Article 3). Right, phase diagram of the SCATL as
obtained with MSWT taken from Ref [6]. The maxima in Nc are located
in the anisotropy values where the MSWT study signal gaped QSL phases
(white colored region).

could lead to the correct ground state energy of the system. We considered
that quantity, denoted as Nc (number of ”degenerate” ground state configu-
rations), as a figure of merit, since it could provide an important hint on the
real degeneracy of the ground state of a QSL. The comparison between Nc

and a proper study of the quantum phase diagram of the model is depicted
in Fig. 1.2. In the areas of the phase diagram where a QSL is predicted
in the literature, the number of configurations with an energy close to the
minimal one is substantially larger as our intuitive argument suggested. We
decided then, to post-select such configurations to do the average over the
quantities of interest. In Article 2, the study of the SATL model with our
method was provided and the quantum phase diagram of the model obtained.
Remarkable enough, such quantum phase diagram is pretty close to the ones
previously derived in the literature by means of much more sophisticated
methods. In Article 3, I successfully extended my method to two other more
complex models in the triangular lattice: the SCATL and the J1−J2 model,
which contains next-to-nearest neighbors (NNN) interactions (see Sec. 4.3).
Furthermore, this second article contained also an study on entanglement
whose results were in accordance of what we could expect for a QSL. In
the putative QSL phases it is observed both, an increase of the geometrical
measure of entanglement and large fluctuations of the arrangement of bipar-
tite entanglement among different configurations. These features are also in
accordance with the properties of QSL. To the best of my knowledge, our
method is the first one able to find QSL signatures in 2D quantum frustrated
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Figure 1.3: Scheme of the original idea consisting of connecting the gaped
QSL phases present in both the SATL (horizontal phase diagram) and J1−J2
models (vertical phase diagram). The red dot signals the intersection of both
models, the isotropic triangular lattice with NN interactions, which contains
spiral long-range order.

models for such small lattices.

Finally, during the last part of my research, I studied 2D frustrated spin
models by using modified spin wave theory (MSWT). This analytic semiclas-
sical tool consists of a mean field approach where quantum fluctuations only
slightly peruturb the long-range ordered state of the classical model, (see
Sec. 5.4). It was firstly developed for the AF square lattice by Takahashi, [7]
and has been recently applied on the triangular lattice by P. Hauke and co-
authors, [8], whom I visited and joined his group for a few months in 2018.
The initial motivation was twofold. First, we wanted to rigorously extend
the derivation of MSWT in the triangular lattice for the Heisenberg model
as it was done for the XY model [9]. As a matter of fact, we realized that the
original work using MSWT to solve the Heisenberg model in the triangular
lattice, [10], presented some caveats which we wanted to address. The second
motivation was to apply, for the first time, MSWT on the J1−J2 model which
we had previously studied in Article 3. For this model, in contraposition to
the SATL, all recent numerical works converge into a gapped QSL between
commensurate spiral and collinear Néel orders. However, our calculations
with MSWT could not signal any intermediate phase. Despite we cannot
formally prove it yet, our preliminary results indicated that MSWT cannot
detect a QSL phase which is located between two commensurate orders. A
possible way we found to check for such a conjecture was to invent a hybrid
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model which could smoothly connect the apparently different QSL phases
as schematically shown in Fig. 1.3. Our premises were that in the isotropic
NN case, the addition of anistropy (SATL model) leads to a QSL phase be-
tween non-commensurate spiral order and collinear Néel order which can be
detected by means of MSWT [8]. We wondered whether it was possible to
connect continuously the QSL present in both phase diagrams. We called
this new hybrid model the anisotropic J1 − J2 triangular lattice. We stud-
ied it using both MSWT and RBC leading to a positive answer to the above
question. Since the manuscript corresponding to this last part of my research
is not ready in the time of the thesis handing, I provide some of the results
in Sec. 4.3.3, which is devoted to the above mentioned hybrid model.

In what it follows, I provide the basic tools, techniques and concepts I
have used along my P.h.D. thesis. Chapter 2 summarizes some basic concepts
of physics in strongly correlated systems. In particular, I define first the
basic notions of QPT. Then, I focus on quantum frustrated Hamiltonians
providing a brief report of what is up to now understood by quantum spin
liquids. In Chapter 3, I present the main tools I have used to quantify and
detect entanglement in 1D and 2D spin models, both for spin-1/2 as well as
for spin-1 models. Chapter 4 and 5 constitute the main body of my Ph.D.
thesis and therefore are significantly more extended. Chapter 4 deals with
the spin models I have considered along the thesis, and explains the open
questions I have addressed and the solutions I have provided. Chapter 5 gives
a detailed explanation of the numerical approaches I have developed along my
Ph.D. thesis to address and solve the questions that puzzled me regarding the
exact nature of some exotic quantum phase transitions. Finally, in Chapter 6
I present the conclusions of my research as well as the open questions that
need still to be addressed in the path to understand how matter organizes
itself under strong correlations. These chapters contextualize the research
done in the articles presented in Part II and provide some of the most relevant
literature on the field.



CHAPTER 2

Strongly correlated systems

During my Ph.D., I have focused on several phenomena in strongly correlated
systems. In this chapter, I give a brief introduction to these topics providing
the most relevant features and literature. In Sec. 2.1 I introduce the concept
of a quantum phase transition. Sec. 2.2 is devoted to the phenomenon of
frustration in quantum systems. I conclude this chapter by providing an
introduction to quantum spin liquids in Sec. 2.3.

2.1 Classical and quantum phase transitions

In a classical system, thermal fluctuations may induce sudden changes on
physical quantities, such as e.g., the density, upon a variation of its thermo-
dynamic propierties. Classical phase transitions can be understood within
the Landau-Ginzburg theory, which associates the spontaneous breaking of
a symmetry with the change of one of the parameters describing the sys-
tem [11, 12]. The competition between the energy and the entropy of the
thermal fluctuations is the responsible for this sudden reorganization of the
particles. In a CPT, one finds singular behaviour in the thermodynamic func-
tions. First (second) order CPT display singular behaviour in the first (sec-
ond) derivative of the partition function Z. For second order (or continuous)
CPT this critical phenomena is well understood within the renormalization
group (RG) theory [13]. The critical behavior of the physical quantities can
be described by a few universal critical exponents which do not depend on
the details of the physical system but only on its dimension or on the range
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of the interactions, (see e.g.,[14, 15]). For first order (or discontinuous) CPT
finite size effects have also been studied [16–18].

As the temperature is lowered, thermal fluctuations, and therefore the
entropy related to them, become less relevant. For sufficiently small temper-
ature, T , any CPT is suppressed and in the limit of T = 0 any degree of
freedom is frozen. In a quantum system the situation changes due to quan-
tum fluctuations. Even at T=0, a system may change its properties by the
change of some external parameter, λ, of the Hamiltonian,

H = H0 + λH1, (2.1)

where [H0, H1] 6= 0. Quantum phase transitions [19] describe abrupt changes
in the ground state of a quantum system at a certain critical value λc. Note
that since the transitions occurs at zero temperature, the system is always
in the ground state and the transition is exclusively driven by quantum
fluctuations and not by thermal ones. Some QPT can also be classified
as first/second order when they show singular behavior on the first/second
derivative of the ground state energy respectively. These QPT can also be
associated to a symmetry breaking which leads to a change of an order pa-
rameter. This allows to apply similar finite size scaling ansatz as in the CPT
case. However, in quantum system there are other kinds of order, e.g., topo-
logical order [20, 21] which cannot be associated to a symmetry breaking.
In such cases, the classical Landau-Ginzburg theory falls and new kinds of
order, associated to rich patterns of many-body entanglement arise [22]. The
phenomena of QPT (which fall or not inside the Landau-Ginzburg theory),
has been reinterpreted by studying entanglement close to critical points, see
the seminal works [1, 2]. Since then, a large amount of work has been devoted
to deepen the connections between quantum information and QPT, see for
instance [23–33] and Article 1.
Finally, it is imperative to mention that QPT can also occur at non zero
temperature [19]. These cases, which are studied by means of quantum ther-
modynamics theory [34, 35], are out of the scope of this thesis.

2.2 Frustration

Often, the Hamiltonians representing strongly correlated systems are local
(short range) and can be written as,

H =
∑
i

hi. (2.2)
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?

Figure 2.1: Frustration in the AF triangular lattice. All the spins cannot be
simultaneously anti-parallel.

Frustration arises when all the local Hamiltonians cannot be simultaneously
in their ground state [36]. To determine whether a Hamiltonian is frustration-
free is a NP-Hard problem [37]. A paradigmatic example are 2D antiferro-
magnetic spin models (e.g.,[38–40]). An illustration of frustration induced
by the geometry of the triangular lattice can be seen in Fig. 2.1. It can also
take place in simple structures (e.g., a 2D square lattice), if some interac-
tions are ferromagnetic while others are AF or, for instance, there are second
neighbors terms. The study of frustrations is also relevant in the framework
of high-Tc superconductivity [41, 42], and in spin glasses, which are phases
appearing in frustrated disordered systems [43].

Frustration may lead to a degeneracy in the ground state and to a non-
trivial arrangement of the spins which can even suppress long-range order at
zero temperature leading to exotic phases of matter [44].

2.3 Quantum spin liquids

Quantum spin liquids are quantum disordered nonmagnetic phases that do
not spontaneously break the spin rotation and discrete translational sym-
metry of the spin Hamiltonian [45–47]. This lack of order, which survives
even at zero temperature, is originated by strong quantum fluctuations on
the spin orientations and prevents their characterization by means of local
order parameters. They are characterized by a massive degenerated ground
state which is highly entangled. They display unique physical features such
as exotic non-local excitations [47] and topological propierties [48, 49]. Re-
cently, they have been proven to be the ground state of some Hamiltonians
[39, 50] and QSL candidates have been experimentally discovered in a vast
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range of materials [51–61].
QSL are often caricatured as a liquid of singlets which are formed between
nearby spins and which strongly fluctuate from one configuration to another.
Due to such fluctuations, the ground state of the system is far from a product
state, implying that entanglement in QSL plays a crucial role. Ground states
of local spin Hamiltonians are normally short range entangled, as evidenced
by the fact that the entanglement entropy, S, of any bipartite cut of the
system follows an area law,

S(L) ∼ LD−1, (2.3)

where D is the dimension of the system and L the linear size of the bound-
ary separating both regions. Corrections to this law appear, for instance, in
critical gapless quantum phases or in topologically ordered states. In 2D, the
later fulfill S(L) ∼ L+b0γ, where γ is a universal correction, called topologi-
cal entanglement entropy, which is independent of the lattice size and signals
topological order [62–64]. In the following, I briefly describe the main char-
acteristics of both topological and critical QSL. For an extense comparision
I refer to Ref. [44].

Topological spin liquids

Topological QSL are characterized by a ground state degeneracy which
depends on the topology of the system. They are locally indistinguishable
meaning that they cannot be detected or distinguished using local measure-
ments which makes them a promising candidate for quantum storage mem-
ories. Indeed, they are thought to play a key role in topological quantum
computation, [65]. They are gaped and can hold exotic delocalized excita-
tions, as the so-called spinons, which are neutral in charge and have spin 1/2,
and can be seen as free delocalized spins which do not form any singlet.
Topological QSL can be classified according to their topological order [49].
For a detailed list on all the possible quantum topological phases of matter
known up to now see Ref. [21].

Critical spin liquids

Critical QSL, also denoted as algebraic QSL, have gapless bulk excita-
tions. They have decaying power law correlations but no true long range
order. They are usually pictured as valence bonds between pair of spins
separated by arbitrary distances. The spinons, in contraposition in topolog-
ical spin-liquids, interact with this valence bond background and cannot be
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considered as free particles. A prominent example of a critical QSL is the
ground state of the spin-1/2 AF Heisenberg chain which can be analytically
solved by Bethe ansatz [66].





CHAPTER 3

Entanglement in many-body systems

In this chapter, I briefly present the measures of entanglement which I use
along the thesis. First, in Sec. 3.1, I motivate the chapter by providing a brief
introduction to entanglement and its relevance within quantum mechanics
(QM). Then, in Sec. 3.2, I define the measures of bipartite entanglement (for
pure and mixed states) and multipartite entanglement. I conclude in Sec. 3.3
with an overview of the entanglement area law and some of its consequences.

3.1 Introduction

Quantum mechanics is inherently non local [67]. Entanglement, which is the
expression of this non local nature, has played a central role in the com-
prehension and development of quantum physics. This ”spooky action at
a distance” was initially seen, indeed, as the quantum effect which most
in contradiction got with the classical physics intuition [68]. It was after
Bell’s seminal work [69, 70] and specially after the experimental verifica-
tion of his inequalities [71] when entanglement became also a quantitative
measure of quantum correlations. During the 1990’s, with the birth and
development of quantum information [72], entanglement was reinterpreted
as a resource capable of realizing tasks which go beyond classical physics,
e.g., teleportation [73], quantum cryptography [74] or quantum computation
algorithms [75]. The study of entangled many-body systems lies at the inter-
face between QI theory, condensed matter physics and quantum field theory.
For a review on entanglement in many-body systems see Refs. [76–78]. A
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paradigmatic example is the development of tensor networks [79–82], a very
efficient numerical descriptions of many-body states which has been devel-
oped with QI tools.

What is entanglement?

The state of a quantum system which is composed of N subsystems given
by ρ1,2,...,N ∈ H1 ⊗H2 ⊗ ...⊗HN is separable when it can be written as,

ρ1,2,...,N =
∑
i

pi(ρ
1
i ⊗ ρ2i ⊗ ...⊗ ρNi ). (3.1)

Otherwise, it is said that the state is entangled.

3.2 Measures of entanglement

In general, to establish whether a system is entangled or not is, by no means,
an easy task. In addition, apart from certifying the presence of entangle-
ment, one is interested in quantifying it. A measure of entanglement, E(ρ),
quantifies the amount of entanglement in a quantum state ρ. Defining proper
measures of entanglement is a field of research itself [83, 84]. Some properties
which a measure of entanglement must fulfill are:

• For a separable state, E(ρ) = 0.

• E does not increase under local operations and classical communication
(LOCC), i.e., if Λ is a LOCC map, E(Λ(ρ)) ≤ E(ρ)

Other properties such as convexity, additivity and continuity can also be
required, [85, 86]. In what it follows I define some of the most relevant
measures of bipartite and multipartite entanglement which I have considered
along my research.

3.2.1 Bipartite entanglement: Schmidt decomposition and entan-
glement entropy

Consider a bipartite state, |ψ〉AB, acting on HA ⊗ HB. Any measure of
bipartite entanglement, E , is lower and upper bounded by two measures
which are conceptually very important [86]. The lower bound measure, called
entanglement of distillation ED, is defined as the optimal rate of maximally
entangled states (e.g., singlets in spin-1/2 systems) which can be distilled
from |ψ〉AB by means of LOCC. The upper bound is the entanglement cost,
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EC , and it is defined as the rate of maximally entangled states needed to
create |ψ〉AB using LOCC. Both quantities are defined in the asymptotic
limit and are not, indeed, very practical since they require an optimization
over the LOCC set.
It is always possible to write |ψ〉AB as the so called Schmidt decomposition,

|ψ〉AB =
M∑
i=1

√
λi(|ei〉 ⊗ |fi〉)). (3.2)

Here, |ei〉 and |fi〉 form an orthonormal basis in HA and HB respectively.
λi are the Schmidt eigenvalues which are positive, real and

∑M
i=1 λi = 1.

The Schmidt decomposition of a pure uncorrelated (entangled) state has one
(more than one) Schmidt eigenvalue.

As a measure of bipartite entanglement for a pure states, it is often used
the Von Neumann entropy,

S(ρA) = −Tr ρA log2 ρA = S(ρB). (3.3)

Using the Schmidt decomposition, it can be written as S(ρA) = −∑i λi log(λi).
This quantity is often also called entropy of entanglement. For pure states,
the Von Neumann entropy coincides with the entanglement of distillation
and the entanglement cost [87].

3.2.2 Pairwise entanglement in spin-1/2 mixed states: Concur-
rence

All the measures of bipartite entanglement for pure states are function of the
eigenvalues of the reduced density matrix with respect to the chosen partition
and all of them are in one to one correspondence [88]. For mixed states, such
correspondence only occurs for spin-1/2 systems. It is customary to choose
the concurrence, C [89], as the measure of bipartite entanglement which is
defined for any two spin-1/2 i, j in the mixed state ρij = Trk 6=ij(|ψp〉 〈ψp|). It
is defined as,

Cij = max(0, µ1 − µ2 − µ3 − µ4), (3.4)

where µk are the eigenvalues in decreasing order of the matrixRij = (ρijρ
′
ij)

1/2

and ρ′ij = (σy ⊗ σy)ρ∗ij(σy ⊗ σy). Here σ refers to the usual Pauli matrices.

3.2.3 Bipartite entanglement in mixed states: Negativity

The negativity [90, 91], N , is a bipartite measure of entanglement for mixed
states beyond spin-1/2. It is based on the partial transpose of the density
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matrix of the whole system with respect to one of the two subsystems. It is
defined as,

N (ρ) =
||ρTB ||1 − 1

2
, (3.5)

where the operation TB is the partial transpose defined now on the reduced
density matrix of two spins, ρij, and ||...||1 is the sum of the absolute value
of all singular values. Notice that the negativity is a lower bound to entan-
glement.

3.2.4 Multipartite entanglement: Geometrical entanglement

Quantifying multipartite entanglement is even a more challenging task. One
of the most used measure of multipartite entanglement is the geometrical
entanglement. It ”measures” the distance of a state to its closest separable
one

Λmax = max
|φprod〉

|〈ψp|φprod〉|, (3.6)

where |φprod〉 = ⊗Ni=1 |φi〉 and the maximization is performed over the set
of all separable (non entangled) states. The larger Λmax is, the lower the
entanglement of |ψp〉 is since it is closer to a product state. It makes sense
to define the geometric entanglement [92] as:

EG = 1− Λmax. (3.7)

Geometrical entanglement considers all type of possible multipartite entan-
glement and clearly goes beyond bipartite entanglement.

3.3 The area law

In black hole physics, it was already seen that the entanglement entropy of
the ground state of a free scalar bosonic field obeys the area law [93, 94],

S(ρA) = aLd−1 + ... (3.8)

where a is a constant and d is the dimension of the system. Such behaviour
is also found in condensed matter physics, where non critical ground states
which have a finite correlation lenght also fulfill that the bipartite entangle-
ment between the two parts of a system after an arbitrary cut depend on
the boundary between them and not the volume [95, 96]. Indeed, entangle-
ment is bounded for the ground states of gapped 1D quantum systems. On
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the contrary, critical 1D systems described by conformal field theory (CFT)
exhibit a logarithmic violation of the area law, [95]. Corrections to the area
law for higher dimensions have been reviewed in [97].
Density matrix renormalization group (see Sec. 5.3) is a numerical algorithm
which is very efficient for systems which contains a small amount of entan-
glement, [98]. This is so because they generate a very particular class of
states, the matrix-product state (MPS) [99], whose efficiency in describing
ground states of many-body quantum systems is deeply coupled to their en-
tanglement scaling [100]. This makes MPS (and in extension DMRG), a
very suitable tool to study 1D gapped quantum systems. The 2D version
of MPS, called projected entangled pair state (PEPS), represents 2D states
which strictly fulfill the area law [101]. PEPS can efficiently describe 2D
gapped spin systems and even also critical and topological ones. Finally, it
is worth mentioning that other approaches have been considered to study
critical states. One example is the multi-scale entanglement renormalization
ansatz (MERA), proposed by Vidal [102].





CHAPTER 4

Spin models under study

In this chapter, I briefly introduce the spin models under discussion during
my Ph.D. providing their main relevant characteristics and quantum phase
diagram. I start by a general introduction to spin models in Sec. 4.1. Then, in
Sec. 4.2, I introduce the spin chain models which are under study in Article 1:
the spin-1/2 Ising chain with longitudinal field (4.2.1) and the spin-1 XXZ
chain with uniaxial single-ion anisotropy (4.2.2). Finally, Sec. 4.3 is devoted
to the spin systems in the AF triangular lattice which are under study in
Articles 2 and 3. In concrete, the spatially anisotropic triangular lattice
(4.3.1), the J1 − J2 model (4.3.2) and a hybrid model merging both of them
(4.3.3).

4.1 Introduction to spin models

In the 1920s, statistical mechanics models, as the well known Ising model,
were studied in order to unveil the phase transitions present in ferromag-
netism. Contemporaneously, the birth of quantum mechanics introduced the
quantization of angular momentum and the concept of a spin, i.e., the in-
trinsic angular momentum of elementary particles. In 1926, Heisenberg and
Dirac independently discovered the exchange interaction which is a quantum
effect that rules the interaction among spins. Consequently, the study of
ferromagnetism was necessarily coupled to quantum mechanics. Since the
first proposed model, the so called Heisenberg model, quantum spin systems
have been a vast field of research providing a benchmark to mathematicians,
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theoretical and experimental physicists.
For the sake of concreteness, the quantum spin systems considered here have
N spin-S particles with 2S+1 internal degrees of freedom in a D-dimensional
lattice. The most general Hamiltonian considered in the thesis can be written
as,

H =
∑
i,j;i6=j
α=x,y,z

JαijS
α
i S

α
j +Hext (4.1)

where i and j run over all the lattice sites. The lattices under consideration
along this thesis are 1D lattices, the so called spin chains, and the 2D tri-
angular lattice. The Sαi are spin operators on lattice site i which fulfill the
usual angular momentum relations,

[Sαj , S
β
j ] = i

∑
γ

εαβγS
γ
j (4.2)

and commute when they are not on the same lattice site. The coefficients
Jαij quantify the exchange interaction among spins which may be positive
(negative) for antiferromagnetic (ferromagnetic) interactions. Finally Hext

accounts for any Hamiltonian term aside of spin-spin interactions, as for
instance, external magnetic fields interacting with all the spins. The spin
models which I introduce below can all be obtained from the Hamiltonian
above.

4.2 Spin chains

Numerical studies on 1D quantum spin systems, or quantum spin chains, are
a very suitable benchmark for the study of QPT. With the development of
DMRG, it is possible to obtain the ground state of non integrable 1D models
with very high accuracy. I briefly describe in this section the two models
considered in Article 1 and provide their quantum phase diagram.

4.2.1 Spin-1/2 Ising chain with longitudinal field

The spin-1/2 Ising chain with transverse field at zero temperature is a well
known integrable model which has a 2QPT between the ferromagnetic and
the paramagnetic phases,

H = −J
N−1∑
i=1

Sxi S
x
i+1 −Bz

L∑
i=1

Szi (4.3)
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Figure 4.1: Phase diagram for the spin-1/2 Ising chain with a longitudinal
and a transverse field. The dashed line (- - -) depicts the 1QPT while the
dotted line (. . . ) the 2QPT.

where Sαi are the Pauli matrices for spin-1/2 on site i. Without losing gen-
erality, it is settled J = 1 and Bz ≥ 0. The ground state of the model can
be found by means of a Jordan-Wigner transformation plus a Bogoliuvov
transformation. Adding a longitudinal field to the Ising chain removes the
integrability of the model,

H = −J
N−1∑
i=1

Sxi S
x
i+1 −Bz

N∑
i=1

Szi −Bx

N∑
i=1

Sxi . (4.4)

Nonetheless, the phase diagram remains quite simple, see Fig. 4.1. For Bx =
0, where the system reduces to the integrable Ising model, there is a 2QPT
at Bz = 1 between the ferromagnetic (Bz < 1) and paramagnetic phases
(Bz > 1). When the system is in the ferromagnetic phase, a 1QPT takes
place at Bx = 0 between the two ferromagnetic ground states, ferromagnetic
↑ and ferromagnetic ↓. This transition can be detected by a discontinuity
in the magnetization, Mx =

∑
i〈Sxi 〉, which passes from positive to negative

values.

4.2.2 Spin-1 XXZ chain with uniaxial single-ion anisotropy

The second model considered is the spin-1 XXZ chain with uniaxial single-ion
anisotropy,

H =
N−1∑
i=1

[
JSxi S

x
i+1 + JSyi S

y
i+1 + JzS

z
i S

z
i+1

]
+D

N∑
i=1

(Szi )2 , (4.5)
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Figure 4.2: Phase diagram for the spin-1 model in Eq. (4.5) with D > 0. The
dashed lines depict 1QPT. The black dotted line depicts the 2QPT between
Haldane and Néel phases. The red circles signal the tri-critical points present
in the phase diagram.

where Sαi are the spin-1 matrices for spin i and D is the uniaxial single-ion
anisotropy which is taken as positive. It is also settled J = 1 and used as
the unit of energy. This model has a rich phase diagram [103], schematically
shown in Fig. 4.2, with several 1QPT which are depicted with dashed lines.
Aside from the two ”classical” phases: ferromagnetic (all spins aligned along
one direction) and antiferromagnetic Néel order (spins orientated up-down
along one direction) the system presents several quantum phases which can-
not be found in spin-1/2 systems: a large D-phase (all spins in the component
Sz = 0 of spin 1), a Haldane phase (which is topological) and the XY phase
(ferromagnetic in the XY plane).

4.3 The spin-1/2 antiferromagnetic triangular lattice

The magnetic properties of spin-1/2 systems interacting in an AF triangular
lattice with NN Heisenberg interactions have been under study for several
decades. The present frustration in the triangular lattice geometry makes
the nature of the ground state a very subtle feature. In 1973, a spin-liquid
ground state was conjectured by Anderson in the form of a resonating valence
bound state [104]. However, many years later several numerical works sug-
gested a long range Néel ordered state [105–107], which was finally ratified in
[108, 109]. Nonetheless, these studies also pointed that the model could be
close to a quantum critical point towards a gaped QSL phase merging with
Anderson’s original idea. In what it follows I consider three models in the
triangular lattice where the enhancement of frustration leads to QSL phases.
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Figure 4.3: Scheme of the spatially completely anisotropic triangular lattice.
The different line styles depict the anisotropy present in the model.

4.3.1 Anisotropy in the triangular lattice, SATL and SCATL

One possible way to further enhance the frustration of the model is by adding
anisotropy in the direction bounds. The Hamiltonian reads,

H =
∑
<i,j>

tij (Sxi S
x
j + Syi S

y
j + λSzi S

z
j ), (4.6)

where 〈i, j〉 are NN in the triangular lattice. The parameter λ is intro-
duced to consider both the case of XY interactions (λ = 0) and Heisenberg
interactions (λ = 1). The anisotropy of the model is given by the differ-
ent interaction strengths (t1, t2, t3) along the lattice directions (see Fig.4.3).
Without loosing generality, it is settled t1 = 1 and t2, t3 can be considered as
free parameters. This model is known as the spatially completely anisotropic
triangular lattice (SCATL). Up to my knowledge, it has only been studied
by means of MSWT [6] and in Article 3. The case t2 = t3, known as spatially
anisotropic triangular lattice (SATL), has been, on the contrary, extensively
studied [8, 110–114]. This model has also been experimentally used to de-
scribe some materials as Cs2CuCl4 [61] or κ−(ET)2Cu2[N(CN)2]Cl [54].

Classical phase diagram

A better understanding of the quantum phases can be obtained by pre-
viously analyzing the classical phase diagram of the model. This helps to
identify ”classical” orderings appearing also in the quantum case. The spins
are substituted by classical unit vectors and therefore angular momentum
commutation relations are not fulfilled. Concretely, the spin operators in

Eq.4.6 are replaced by the classical rotor: ~Si = (cos( ~Qcl · ~ri), sin( ~Qcl · ~ri)),
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where ~Qcl corresponds to the classical ordering vector. The energy per site
is

H = cosQcl
x + t2 cos(Qcl

x /2 +
√

3Qcl
y /2) + t3 cos(Qcl

x /2−
√

3Qcl
y /2). (4.7)

Note that this expression is independent of λ and therefore the classical phase
diagram is the same for both Heisenberg and XY interactions. Minimizing

over the ordering vector, i.e.,
∂H

∂Qcl
x

=
∂H

∂Qcl
y

= 0, leads to a region in the phase

diagram with continuously varying ~Qcl, described by the following equations:

Qcl
x = ± arccos

[
t2t3
2
− t22 + t23

2t2t3

]
if

t2t3
2
− t22 + t23

2t2t3
≤ 1

Qcl
y = ± 2√

3
arccos

∓(t2 + t3
2t2t3

)√
t2t3 + 2− t22 + t23

t2t3

 ,

(4.8)

where the argument of Qcl
y is negative if the corresponding Qcl

x satisfies |Qcl
x | ≤

π, and positive otherwise. The classical phase diagram is depicted in Fig. 4.4,
together with the representative spin structure factor of each phase which is
defined as,

S(~k) =
1

N

∑
i6=j

e−i
~k·(~ri−~rj)〈SiSj〉. (4.9)

First, I describe the 1D lattice limit corresponding to (1) t2 = t3 = 0 ; (2)
t2 →∞, t3 = 1; and (3) t3 →∞, t2 = 1 as shown in Fig. 4.4. For these cases,
the lattice becomes a system of uncorrelated chains and the corresponding
phases are 1D Néel ordered along the dominant lattice coupling and uncorre-
lated along the other two. This is clearly shown in the corresponding static
spin structure factors which are constant along the direction perpendicular
to the correlated chains. At the isotropic point (t2 = t3 = 1), indicated by
(4) in Fig. 4.4, the system has spiral order (Néel 120o) with maxima in the
structure factor at all the vertices of the reciprocal lattice cell. This phase
extends as incommensurate spiral order smoothly merging with the classical
2D Néel phases corresponding to ti = tj >> tk, where the lattice deforms
into diamond lattices along the two dominant directions, indicated by (5,6,7).
This completes the classical phase diagram of the model. Finally, a symbolic
sketch of the spin orientations for each phase is also provided.
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Figure 4.4: Classical phase diagram for the SCATL for both XY (λ = 0)
and Heisenberg (λ = 1) interactions, obtained by plotting Qx in Eq. (4.8)
as a function of the anisotropy (top left). The other panels show the spin
structure factor and a sketch of the spin order for each classical phase.

Quantum phase diagram

The main features of the SATL quantum phase diagram have been ex-
tensively studied using several methods. For instance, by means of varia-
tional quantum Monte Carlo (QMC) in [110], using tensor networks (PEPS)
in [112], using MSWT in [8] and also by us in Article 2 by means of RBC.
Note that, although the classical phase diagram is the same for both Heisen-
berg and XY interactions, they may differ in the quantum case. In Fig. 4.5
(a), the phase diagram for XY interactions obtained with RBC is provided.
The addition of spatial anisotropy enhances quantum fluctuations which fa-
vors 2D-Néel order beyond the classical value t2 = 2. Around 1.4 . t2 . 1.6
(1.15 . t2 . 1.3) for XY (Heisenberg) interactions magnetic order is sup-
pressed and a gapped QSL is predicted. The incommensurate spiral phase
is shrunk in comparison with the classical case, specially for Heisenberg in-
teractions. A second gapped QSL phase is found around 0.5 . t2 . 0.7
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Figure 4.5: Panel a), quantum phase diagram for the SATL model (t2 = t3)
with XY interactions extrapolated from the computation of Nc (for details
see Article 2). Panel b), extension to the SCATL model with the explicit
calculation of Nc. The labels depict all the phases present in the quantum
phase diagram of the SCATL (see text).

(0.6 . t2 . 0.8) between the spiral phase and a gapless QSL. This gapless
phase, which is located in the region t2 . 0.5 (t2 . 0.6), contains correlations
decaying algebraically [112] and corresponds to the limit of 1D uncoupled
chains.

The quantum phase diagram of the SCATL, as I obtained using RBC, is
shown in Fig. 4.5 (b). The figure of merit is Nc, for more details see Sec. 5.2
and Article 3. Furthermore, the understanding of the different quantum
phases appearing in the figure has been realized by analyzing the spin struc-
ture factor, which unambiguously determines the way the spins orientate
among themselves. In accordance to the classical phase diagram, spiral or-
derer (labeled by (4) in Fig. 4.5) occurs around the isotropic point t3 = t2 = 1
and its extension is much reduced as compared to the classical case, in par-
ticular with Heisenberg interactions. Surrounding the spiral phase, a region
absent in the classical phase diagram is observed, which is highlighted by a
large Nc (labeled by (8)). In Article 3, we identify this region as a gaped
QSL. Continuously connected to this phase, there are three regions labeled
by (1,2,3). These regions lay between two 2D Néel ordered phases (5,6,7)
that span around ti = tj >> tk, and are connected to the respective classi-
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cal 1D limit of uncoupled chains: ti → ∞, tj = tk. The regions (1,2,3) are
commonly referred in the literature as gapless QSL and despite not being par-
ticularly enhanced in Fig. 4.5, they can be detected by other quantities. This
completes the whole quantum phase diagram of the system. The numerical
result depicted in Fig.4.5, is obtained using XY interactions. Nevertheless,
the general behavior is similar for Heisenberg interactions, the only difference
being the stronger shrinkage of the spiral phase.

4.3.2 Second neighbors model, J1 − J2, in the triangular lattice

As stated previously, the frustration present in the AF Heisenberg model
in the triangular lattice makes it a perfect candidate for displaying a QSL
phase. Nevertheless, the model with isotropic NN interactions exhibits long
range spiral order [105–109]. Another natural way to further enhance the
frustration present in the triangular lattice is by adding NNN terms,

HJ1−J2 = J1
∑
〈i,j〉

~Si~Sj + J2
∑
〈〈i,j〉〉

~Si~Sj, (4.10)

where it is fixed J1 = 1 leaving J2 as the free parameter and the sums run
over all NN and NNN pairs respectively. This model has been in the last
years a focus of interest since a QSL phase has been found in the region
0.08 . J2 . 0.16 [115–120].

Classical phase diagram

The classical phase diagram of this system is well known [121]. For J2 <
1/8, there is a three-sublattice 120o Néel ordered ground state (commensurate
spiral order). For 1/8 < J2 < 1 the classical phase diagram is degenerate with
the three different collinear 2D Néel orders and a tetrahedral noncoplanar
state. However, an order-by-disorder mechanism selects the 2D Néel orders
when quantum fluctuations are taken into account [121, 122]. For J2 > 1,
there is non-commensurate spiral order.

Quantum phase diagram

Recent studies have analyzed the quantum phase diagram of the model
with special attention in the surroundings of the classical phase transition
point, at J2 = 1/8, with 2D DMRG [116, 117], variational quantum Monte
Carlo [118], exact diagonalization [119] and Schwinger-boson mean-field [120].
A consensus has been reached in identifying a QSL phase for 0.08 . J2 .
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Figure 4.6: Sketch of the quantum phase diagram for the J1−J2 model with
chiral interactions.
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Figure 4.7: Sketch of the anisotropy of the model in Eq. (4.12) which is given
by t1, t2 (NN) and J2 (NNN) . For clarity, only the bounds of the central
spin are depicted.
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0.16. The nature of this phase, though, is still under debate. To shed more
light on the issue, an extra chiral term in the Hamiltonian has been proposed
[117, 119, 123–125],

Hχ = HJ1−J2 + Jχ
∑
i,j,k∈

a
~Si(~Sj × ~Sk), (4.11)

where the sum runs to all the up and down triangles of the lattice clock-
wisely. In Fig. 4.6, a sketch of the quantum phase diagram taken from
Refs. [119, 123, 126] and from our results in Article 3 is shown. For Jχ = 0,
the J1−J2 model is recovered. As Jχ is turned on, there is a phase transition
from the QSL under debate towards a topological chiral spin liquid (CSL)
which lies between the spiral, the collinear (2D Néel) and the tetrahedral
phases.

4.3.3 A hybrid model, the anisotropic J1 − J2 triangular lattice

As it has been motivated in Chapter 1, it is interesting to explore the Hamil-
tonian which connects the above SATL and J1−J2 models. The intersection
of both models corresponds to the the NN isotropic triangular lattice, whose
ground state displays commensurate Néel order. The Hamiltonian of the
proposed model reads,

H = t1
∑
〈i,j〉′

(Sxi S
x
j + Syi S

y
j + λSzi S

z
j )

+t2
∑
〈i,j〉′′

(Sxi S
x
j + Syi S

y
j + λSzi S

z
j )

+J2
∑
〈〈i,j〉〉

(Sxi S
x
j + Syi S

y
j + λSzi S

z
j ). (4.12)

The first two sums run over NN couplings with the anisotropy given by the
SATL model and the last sum over NNN without anisotropy. A sketch of the
model interactions is given in Fig. 4.7. In the following it is settled t1 = 1
and t2 ≥ 1 and J2 > 0 are left as free parameters. The value λ = 1 (0)
corresponds to Heisenberg (XY) interactions.

Classical phase diagram

The classical phase diagram can be obtained by minimizing the energy
once the spin operators of the above Hamiltonian are replaced by classical

rotors: ~Si = (cos( ~Qcl · ~ri), sin( ~Qcl · ~ri)), where ~Qcl is the classical ordering
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Figure 4.8: Classical phase diagram of the anisotropic J1−J2 model obtained
by a numerical plot of Qcl

x . Collinear Néel order corresponds to the region
Qcl
x /π = 2 and it is connected to non-commensurate (commensurate, Qcl

x /π =
4/3) spiral order for t2 > 1 (t2 = 1).

vector. In Fig. 4.8 a numerical plot of Qcl
x in the region t2 > 1 is shown. The

classical model contains two phases, collinear Néel and non-commensurate
(commensurate) spiral order t2 > 1 (t2 = 1).

Quantum phase diagram

The quantum phase diagram has been explored by means of both MSWT
and RBC. The results are summarized in Fig. 4.9 for both Heisenberg and
XY interactions. In the following, the region t2 ≥ 1 is described. The spi-
ral order phase is substantially shrunken with respect to the classical phase
diagram and collinear order is found beyond the classical value. The ex-
pected signatures of gaped QSL phases consists of large values of Nc and
non-convergence of MSWT respectively. Both RBC and MSWT find sig-
natures of a gaped QSL phase between both classical orders. This gaped
QSL connects the ones present in the phase diagram of the limiting cases
(SATL and J1− J2). However, MSWT cannot find the expected gaped QSL
region between commensurate spiral and collinear orders. In Chap. 6, it is
conjectured that MSWT cannot detect a quantum disordered phases which
lies between two commensurate orders. However, an analytical proof of the
above statement has not still been found.
The numerical analysis for RBC is extended also to the region t2 < 1, see
Fig. 4.10, and also shows that the J1 − J2 QSL phase can be continuously
connected to the QSL present in the SATL for t1 < 1.
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CHAPTER 5

Simulating strongly correlated systems

In this Chapter, I briefly describe the numerical methods I have used and
developed along my Ph.D. to study different spin models. In Sec. 5.1, I
provide general remarks concerning the difficulty to use numerical methods
to simulate many-body quantum systems. In Sec. 5.2, I introduce exact
diagonalization (ED) with random boundary conditions, an extension of ED
methods to calculate ground states of many-body Hamiltonians. This is a
tool which I have developed along the last years to address the study of QSL
(Article 2 and 3). In Sec. 5.3, I move to DMRG, which is the technique for
1D systems I have used to study some QPT (Article 1). Finally, in Sec. 5.4 I
introduce modified spin wave theory, which has been used to unveil properties
of the anisotropic J1 − J2 model introduced in Sec.4.3.3.

5.1 Introduction

Quantum Mechanics theory was born to give answer to some phenomena
which could not be explained by means of classical theories, for instance the
Sodium doublet or the photoelectric effect. Based on first principles, which it
is not at all the aim of this section to introduce them, a new theory together
with a new mathematical structure came out, grounded from just a few pos-
tulates. The way QM is built up is puzzling simple and elegant if compared,
for instance, to general relativity. Despite this apparent mathematical sim-
plicity, when a physicist uses quantum mechanics to compute quantities of
interest, as could be the angle of a water molecule or the ionization energy of
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an atom, faces with two relevant challenges. The first one arises directly from
the fact that an individual quantum systems with d degrees of freedom is de-
scribed by a vector in a Hilbert space of dimension Cd, and, by extension,
the description of an N -body quantum system lies in the tensor product
Hilbert space (Cd)N of dimension dN . In general, this exponential growth
makes impossible to simulate many-body systems in classical (or even quan-
tum) computers if their size is larger than some tens of particles. The second
challenge, comes from the fact that the Schrödinger equation has analytical
solution just for very few physical systems. When dealing with many-body
interacting systems, mean-field approaches are often used in order to solve
the Schrödinger equation. A mean-field approach reduces the N-body prob-
lem to a single particle problem with an effective potential. However, for
most of the strongly correlated many-body systems a mean-field approach
is not appropriated. In addition, only many-body systems whose conserved
quantities are larger than the system’s degrees of freedom, are analytically
solvable (integrable). The vast majority of strongly correlated systems are
not integrable, and therefore require a numerical solution. The numerical
methods used to diagonalize the corresponding Hamiltonian are often vari-
ational methods around a mean-field approach or purely quantum methods
like e.g. Tensor Networks algorithms.

5.2 Exact diagonalization with random twisted boundary

conditions

Solving the Schrödinger equation of a given system, is equivalent to diago-
nalize its Hamiltonian,

H |ψi〉 = Ei |ψi〉 (5.1)

so the first strategy which naturally turns up is to compute H, diagonalize
it H =

∑
iEi |ψi〉 〈ψi| and obtain the quantities of interest. This ED can be

analytic in just a very few cases and, in full generality, the numerical com-
putation is feasible just for small systems. Even quantum computers could
not support a computation of some hundreds of qubits, since the Hilbert
space of the system would be already larger than the number of atoms in
the universe. Nevertheless, if one still wants use ED, current computers can
diagonalize up to N ∼ 20 qubits or N ∼ 14 quitrits, using the Lanczos
algorithm [127] to obtain the lower energy eigenstates. However, most of
the quantum models contain symmetries in the Hamiltonian which allow to
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Figure 5.1: Upper panels: sketch representation of a quantum ordered Néel
phase (left) and a QSL phase (right) in a large lattice. Lower panels: sketch
of twisted boundary conditions in a 4× 3 triangular lattice with anisotropic
nearest-neighbor interactions. Boundary spins in blue are twisted in the XY
plane by an angle φ1, while red colored boundary spins are twisted by a phase
φ2. The pink colored boundary spin (top-left corner) is twisted by an angle
φ = φ1 + φ2. For the Néel phase (bottom left) the phases which reproduce
the order are φ1 = 0 and φ2 = π. For the QSL (bottom right) such a set of
phases cannot be defined.

perform the calculations in a reduced subspace. For example, in [128] the
spin-1/2 AF honeycomb lattice is diagonalized up to N = 42 and in [129]
a spin-1 chain up to N = 18. In particular, we are interested in the 2D
spin-1/2 frustrated models, described in Chapter 4. For such models, ED
can be currently performed up to 36 particles with PBC using translational
and spin reflection symmetries. The larger is the diagonalized system the
fewer are the finite size effects and calculations with N = 36 already lead to
very accurate predictions of the thermodynamical limit by means of a finite
size scaling [107, 111, 130, 131] or by a tower of states analysis [119, 132].
The approach proposed here has, nonetheless, a completely different philos-
ophy. Our goal is finding signatures of QSL phases in small lattices at a
low computational cost. In other words, instead of going to larger lattices
to mitigate the finite size effects, we keep on small lattices, N = 12, 16 or
24 and exploit some of the properties of QSL by means of engineering the
boundary conditions.
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5.2.1 Basic concepts and figures of merit

Twisted boundary conditions (TBC) were introduced in the seminal contri-
butions of [133, 134], and can be thought as PBC under a lattice twist. Since
then, they have been often used to calculate properties of quantum magnets,
as they provide better access to momentum space and help to mitigate finite
size effects, see e.g. [5, 53, 135–137]. However, here we use TBC in a con-
ceptually different approach. In Fig. 5.1, we sketch our philosophy. Consider
a generic AF Heisenberg model in the triangular lattice. For the ordered
phases of the Hamiltonian, the relative orientation of the spins is fixed due
to a broken symmetry, as depicted for example in the cartoon of a 2D Néel
phase in Fig. 5.1 (top left). If the lattice is large, the bulk spins dominate
over the boundary ones imposing the order expected in the thermodynamic
limit, independently of the chosen boundaries. However, for small lattices
this is not anymore the case. The boundaries must be properly chosen –in
accordance to the lattice geometry– to recover the underlying symmetries of
the ordered phase, Fig. 5.1 (bottom left). For quantum disordered phases
that are not associated to a symmetry breaking, we expect the ground state
of the system to be spanned over a large superposition of states, as schemat-
ically shown in Fig. 5.1. presumably, for small lattices different boundary
configurations should be compatible with the ground states of the system in
the thermodynamic limit. We cannot predict a priory which are the right
boundaries configurations since there is not an underlying local symmetry
in the phase. This feature is illustrated with the symbols ”?” in Fig. 5.1
(bottom right). Nevertheless, we can count how many random TBC lead to
the same ground state energy and post-select only those to calculate physi-
cal quantities of interest. This post-selection is the key point to engineer our
boundary conditions in Articles 2 and 3.

Specifically, for 2D spin-1/2 AF Heisenberg models, the spins lay in the
XY plane and TBC correspond to adding a phase in the spins i, j interacting
through the boundaries:

S+
i S
−
j → S+

i S
−
j e
−iφ,

S−i S
+
j → S−i S

+
j e

+iφ. (5.2)

To twist the lattice simultaneously in two directions requires two different
phases φ1 (φ2), for left-right (top-bottom) boundaries, as depicted in the
bottom panels of Fig. 5.1. The spins of the lattice laying at both boundaries
acquire a phase φ = φ1 + φ2. Notice that conventional PBC favor order
commensurate with the lattice dimensions, N = L×W , since in the reciprocal
lattice, momentum is selected at k1 = 2πn1/L and k2 = 2πn2/W for ni ∈ N.
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In contrast, TBC allow to test all possible momenta in the first Brillouin
zone [133, 134, 137]

k1 =
2πn1

L
± φ1

L
,

k2 =
2πn2

W
± φ2

W
. (5.3)

The method is carried out as follows. First, we fix the lattice size, N ,
and geometry. Then, we generate a set p of two randomly chosen phases,
{φ1, φ2}p, with φi ∈ [0, 2π) and p = 1, 2, . . . , 200. For each configuration, we
diagonalize the Hamiltonian, generating a ground state |ψp〉 with energy Ep,
and denote by |ψ0〉 the ground state with the lowest energy, E0. We post-
select those configurations whose ground state energy fulfills: εp = (Ep −
E0)/E0 < α. The election of the energy bias, α, is somehow arbitrary as
it depends on the lattice size and the ratio between bulk and boundary
interactions. Nevertheless, our results are independent of it, if the set p is
sufficiently large. Notice, however, that for small lattices the bias cannot be
vanishingly small.

Consequently, one relevant figure of merit is the number of configurations,
Nc, laying in the interval 0 ≤ εp < α. Typically, we choose α = 0.01 meaning
that only configurations whose ground state energies are less than 1% than E0

are retained. Actually, for ordered phases just very few random TBC accom-
modate the symmetry of the phase, and the ones which do not, correspond
to large Ep and are automatically discarded in our approach. In contrast, we
find regions in the Hamiltonian parameters where Nc increases dramatically.
The corresponding ground states, |ψp〉, strongly differ one from each other,
as observed by computing the overlap with the configuration with the lowest
energy, i.e., Op = |〈ψp |ψ0〉 |. Finally, as it is standard in disordered systems,
we calculate the quantities of interest for each post-selected configuration
and perform afterwards the corresponding average which we denote by 〈...〉d.
The average washes out the spurious symmetries introduced by TBC.

5.2.2 Technical implementation of the algorithm

In the following, the steps to build up from the scratch a code which imple-
ments the random twisted boundary conditions are detailed. In Appendix B,
the corresponding MATLAB codes are provided. The model implemented is
the AF spin-1/2 spin system with XY/Heisenberg interactions in the SCATL
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(see Sec. 4.3). Its Hamiltonian reads,

H =
∑
〈i,j〉

tij (Sxi S
x
j + Syi S

y
j + λSzi S

z
j ), (5.4)

where 〈i, j〉 run over all the first neighbors couplings and the Sαi are the
spin-1/2 Pauli matrices at site i. The anisotropy of the model is given by
the different interaction strengths (t1,t2,t3) along the lattice directions (see
Fig.5.1 (bottom)). The model conserves the z-component of the total spin,
Sz = 1/N

∑
i S

z
i , and the ground state lies in the Sz = 0 subblock. Hence,

it is sufficient to diagonalize in the subspace of Sz = 0 which substantially
reduces the number of coefficients and computational time. For instance, the
size of the whole Hilbert space for N = 24 is already of 16.777.216 which
is not feasible for current computers. The Sz = 0 subspace has 2.704.156
coefficients and diagonalization of sparse matrices can be performed by a
reasonable powerful computer [138] using ∼15GB of RAM memory in a time
∼ 300s. Using the spin creation and annihilation operators, S+

j = Sxj + iSyj ;
S−j = Sxj − iSyj , the above equation can be rewritten as,

H =
1

2

∑
〈i,j〉∈bulk

tij (S+
i S
−
j + S−i S

+
j ) +

1

2

∑
〈i,j〉∈twist1

tij (S+
i S
−
j e

+iφ1 + S−i S
+
j e
−iφ1)

+
1

2

∑
〈i,j〉∈twist2

tij (S+
i S
−
j e

+iφ2 + S−i S
+
j e
−iφ2)

+
1

2

∑
〈i,j〉∈twist3

tij (S+
i S
−
j e

+i(φ1+φ2) + S−i S
+
j e
−i(φ1+φ2)) + λ

∑
〈i,j〉

tijS
z
i S

z
j ,

(5.5)
where the Hamiltonian is split into bulk and TBC terms which have a com-
plex phase as described in Eq. (5.2). The sum over twist1, twist2 and twist3
run over the bounds depicted in Fig. 5.1 in blue, red and pink respectively.
The terms with SizS

j
z are not affected by the complex phases and are written

together. In fact, every term in the above expression is split into three terms,
one for each anisotropy value. In this way, the anisotropy can be taken out
of the sum and the matrices belonging to each sum have to be computed just
once. In the following I describe the steps to numerically build up the above
Hamiltonian. For the sake of concreteness, I refer in to a N = 12, 4x3 lattice
as the one in Fig. 5.1.
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• The spin-1/2 Fock basis is defined with 212 = 4096 elements,

|1〉 = |000000000000〉
|2〉 = |000000000001〉
|3〉 = |000000000010〉
|4〉 = |000000000011〉

...

|4096〉 = |111111111111〉

(5.6)

where 0 (1) means a spin up (down) in each lattice site. With this
basis, an element can easily by identified by the binary position, i.e,
|000000000011〉 = |21 + 20〉 = |4〉.
• It is just considered the subspace with Sz = 0,

|1′〉 = |64〉 = |000000111111〉
|2′〉 = |96〉 = |000001011111〉
|3′〉 = |112〉 = |000001101111〉

...

|924′〉 = |4033〉 = |111111000000〉

(5.7)

the ’ is the label denoting the Sz = 0 subspace basis.

• In the original basis, the Hamiltonian terms can be built using its binary
structure. The term S+

i S
−
j acting on a state of the reduced basis |in′〉

consists of a flip of a 1 in site j for a 0 in site i. Thus, the output of
S+
i S
−
j |in〉 is |out〉 = |in+ 2N−i − 2N−j〉 if |in〉 has a 1 in site j and a 0

in site i or is 0 otherwise. Running over all the reduced basis vectors,
three sparse matrix (one per anisotropy) are built up for each term in
Eq. (5.5). For example,

| 3′︸︷︷︸
112=96+25−24

〉 = S+
7 S
−
8 | 2′︸︷︷︸

96

〉 . (5.8)

This term corresponds to the interaction between site 7 and 8 which
is in the ”bulk” sum with anisotropy t1. Therefore the matrix corre-
sponding to that sum and anisotropy has a 1 in the position (3,2) and
(2,3) for hermiticity.

• The last term in Eq.5.5, is diagonal and is computed as,

〈j′|Szi |j′〉 = ±1/2, (5.9)

where the + (-) sign corresponds to a 1 (0) of the position i in the state
|j′〉.
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• All the sparse matrices are stored in the hard disk memory. For N = 24
the hard memory required is ∼ 500MB. These matrices need to be
computed just once for every lattice size and geometry.

The main program starts by loading the matrices belonging to every sum in
Eq.(5.5). The Hamiltonian is computed adding the anisotropy and random
complex phases. Then, H is diagonalized using the Lanczos method [127].
The ground state of the system ψ0 and its energy E0 are stored in the hard
disk and erased from the CPU memory (dragging all of them during the
computation may collapse the RAM memory of the computer). The proce-
dure is repeated around ∼ 200 times with different random complex phases,
which requires a hard disk memory of ∼ 1GB for every anisotropy value. As
every diagonalization does not depend on the others, the process can be done
parallelizing the computation to reduce the total time cost. The quantities
of interest (see Articles 2 and 3) are computed a posteriori with the stored
eigenvectors with the energy post selection protocol explained above.
In our articles we have also used this technique with NNN and chiral inter-
action terms. The procedure is quite similar to the explained above, but
it requires some small modifications which are explained in the appendix of
Article 3.

5.3 Density matrix renormalization group

The density matrix renormalization group is a variational technique to ob-
tain the low-energy physics of 1D quantum systems. As mentioned above,
the numerical study of quantum many-body systems is restricted by the
structure of the Hilbert space. However, for 1D systems the number of
parameters needed to describe the ground state of the system is very re-
duced [139, 140]. The strategy of DMRG is looking for this small relevant
subset of the Hilbert space to efficiently describe the ground state of the sys-
tem with much less parameters. DMRG was introduced by White[141, 142],
based on Wilson’s renormalization group idea [143]. In the last 25 years it has
been the method for numerical studies of one-dimensional quantum systems.
However, it was soon realized that it was not specially efficient for higher
dimensional systems [144–148]. Nevertheless, the 2D version of DMRG, has
provided remarkable results as the location of QSL in the triangular [116–
118, 124, 126, 149] and kagomé lattices [150–154]. Some years after its first
implementation, DMRG was reinterpreted in the framework of matrix prod-
uct states and tensor networks [99, 155]. For a review on the vast topic of
TN I refer to [156, 157] and for the connection between DMRG and MPS
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to [158]. At this point, it was evidenced that QI and, in particular, entangle-
ment play a crucial role in the efficiency of simulating quantum many-body
systems [79, 80, 159]. In particular, efficient simulations are possible given
that the entanglement of a subsystem with respect to the whole is bounded
or grows logarithmically with the system size. This is always the case for 1D
systems but not for higher dimensional ones [139, 140], since entanglement
obeys the well known area laws(see Sec. 3.3). In the TN framework, the
ground state of a DMRG calculation (even though it is applied to a higher
dimensional system) is an MPS which is a representation of a 1D state de-
fined as a contraction of local tensors aligned in a chain. The 2D extension of
an MPS is called PEPS [160, 161] and consist of a 2D plain of tensors. PEPS
can construct 2D quantum states which fulfill the area law of entanglement
entropy, in contraposition to DMRG. This makes them a promising tool to
study critical topological and gapped states in 2D systems. A broad view on
PEPS can be found in [156, 157].
The aim of this section is not cover the whole literature and technical details
of DMRG but to explain the basic idea behind the algorithm I have used in
Article 1. An extensive review of the method can be found in [98, 162].

5.3.1 Algorithm

Even a brief introduction on the physical idea and technical implementation
of DMRG can be quite extensive and it is out of the scope of this thesis.
For a concise introductory work to DMRG algorithm I refer to [163]. The
basic idea comes from the real space blocking renormalization group [143],
where firstly the computation is upon a small portion of a system, called
block, with a certain length L in a m−dimensional Hilbert space. Then, a
system of 2 identical blocks (with new size of 2L and dimension m2) which
are interacting is solved in the subspace of the m lowest energy eigenstates.
In this way the initial block is enlarged iteratively. The truncation avoids
the exponential growth of the Hilbert space and it allows to study systems
of very large sizes with a small number of parameters. Nevertheless, this
approximation fails in most of the models. DMRG proposes also the union
of 2 identical blocks, but the enlargement at every interaction step is of only
one site. The rest of the new block, serves as environment to the new added
site and it is afterwards removed from the computation by doing the partial
trace over the original block plus the new site.
The DMRG calculations performed in Article 1 are done with an open source
program [164], and for system size up to N = 500 (N = 150) for spin-1/2 (1)
systems. We use the static DMRG algorithm for a finite system with open
boundary conditions. Following the idea above, the steps of the algorithm
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Figure 5.2: Sketch of the steps of the finite system DMRG with OBC algo-
rithm (see text). The figure is extracted from Ref. [163].

are as following (see Fig. 5.2),

• The starting point is a block of size L and dimension m, which is called
left block.

• The block is enlarged by one site on the right.

• The block is reflected to create a second block: the right block.

• The left and right blocks are merged creating a super-block.

• The super-block is diagonalized with a Lanczos or Davidson diagonal-
ization [165].

• The eigenstates of the reduced density matrix, ρL+1 of the left block
plus the new site are computed. The truncation is done selecting the
mmax eigenstates with largest eigenvalue, where mmax is a parameter
which is fixed at the beginning of the computation. This step is the
core of the DMRG algorithm and the linkage with entanglement and
QI.

• At every step, the desired operators are also renormalized with the new
truncated basis.
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• The above steps are iteratively repeated until the desired size Lmax.

• By a ”sweep” procedure (see Fig.5.2 (right)), the system is divided in
two blocks and enlarge one while shrinking the other, in a similar way
than in the previous steps. Here, the total length of the system is kept
and normally with 3 full sweeps steps the quantities converge.

5.4 Spin wave theories in the AF triangular lattice

Spin-waves, firstly introduced by Block [166], provide a very suitable semi-
classical tool for the study of the properties of quantum magnets and anti-
ferromagnets [167, 168]. For a broad introduction on spin-wave theories see
e.g., Ref. [169]. The idea behind it is quite simple: as a reference state, one
chooses the state derived from the classical limit, which contains long-range
order given by the ordering vector Qcl, and associates it to the vacuum state
|0〉. Then, quantum fluctuations are taken into account and induce coher-
ently delocalized spin-flips, usually named spin-waves or magnons. A state
with one magnon of momentum λ is defined as,

|nλ = 1〉 =
1√
2S
S+
λ |0〉 , (5.10)

where S+
λ is the Fourier transform of the spin raising operator,

S+
λ =

1√
N

∑
i

e−iriλS+
i , (5.11)

S the spin quantum number and N the number of spins. At sufficiently low
temperature, the magnons are elementary excitations and the system can be
regarded as a dilute gas of weakly interacting spin-waves, providing a mean
field approach which can reproduce in many cases the physical properties of
quantum magnets and antiferromagnets. In the following we describe how
to apply a spin-wave theory at zero temperature for a 2D antiferromagnet in
a triangular lattice with Hamiltonian,

H =
∑
〈i,j〉

tij(S
x
i S

x
j + Syi S

y
j + λSzi S

z
j ), (5.12)

where 〈i, j〉 and tij > 0 depend on the model and the parameter λ = 1, (0)
corresponds to Heisenberg (XY) interactions.

The first step consists of a global rotation of the spin operators, ~S = (Sx, Sy, Sz),

in order to have a new set of spin operators, ~S = (Sν , Sζ , Sξ), which point
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towards the same direction as the classical spins. In the classical limit of the
above Hamiltonian, for both Heisenberg and XY interactions, the spins lie
in the xy-plane and the rotation reads [10],

Sxi → − sin(Qcl · ri)Sνi + cos(Qcl · ri)Sζi
Syi → + cos(Qcl · ri)Sνi + sin(Qcl · ri)Sζi
Szi → −Sξi .

(5.13)

Sζi is taken as the quantization axis. The above Hamiltonian is rewritten as,

H =
∑
〈i,j〉

tij[cij(S
ν
i S

ν
j + Sζi S

ζ
j ) + λSξi S

ξ
j ], (5.14)

where cij ≡ cos(Qcl ·rij), and rij ≡ rj−ri. The second step consists of a spin-
boson mapping. Usually, a Holstein-Primakov (HP) transformation [170] is
used,

S−i →
√

2S

√
1− a†iai

2S
ai

S+
i →
√

2Sa†i

√
1− a†iai

2S

Sζi →− S + a†iai.

(5.15)

Where S+
i ≡ Sξi + iSνj and S−i ≡ Sξi − iSνj . The physical intuition of this

transformation is as follows. Now, instead of having a spin on each site i,
we have an harmonic oscillator with creation and annihilation operators a†i ,
ai. Every excitation of these harmonic oscillators corresponds to a ’quanta of
vibration’ of the spins around their classical position. Therefore, as pointed
out above, spin-waves theories let quantum fluctuations perturb the classical
order by means of magnons in order to reproduce quantum features.

Linear Spin Wave Theory

The square roots of the HP are somehow problematic, since they are
imaginary when there are more than 2S bosons in one site and also because
they do not lead to an analytic diagonalization of the Hamiltonian. It is very
common to make an expansion of the square roots, 〈a†iai〉/(2S) << 1 to the
first order in 1/S. This assumption makes sense if the classical order is only
”slighlty” perturbed. This approach, called linear spin wave theory (LSWT),
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has been extensively used, see e.g., [167, 168, 171, 172]. After first order
expansion in the HP transformation, the Hamiltonian in Eq. (5.14) reads,

HLSWT =
1

4

∑
〈i,j〉

tij{(λ− cij)2S(a†ia
†
j + aiaj)

+ (λ+ cij)2S(a†iaj + aia
†
j) + 4cij[S

2 − S(a†iai + a†jaj)]}.
(5.16)

This Hamiltonian is quadratic in creation and annihilation operators and
therefore can be diagonalized using a Bogoliubov-transformation,

βk = cosh θkbk − sinh θkb
†
−k

β−k =− sinh θkbk − cosh θkb
†
−k

(5.17)

where bk are the bosonic operators in the Fourier space: bk =
1√
N

∑
i aie

−ik·ri .

The diagonalization leads to,

HLSWT =
∑
k

ωLSWT
k β†kβk (5.18)

and the problem reduces to finding which θk fulfill this last equation, i.e.,
diagonalize HLSWT . It can be shown [173] that the result can be written as,

sinh 2θk =
−Ak
ωLSWT
k

cosh 2θk =
Bk

ωLSWT
k

. (5.19)

The spin-wave dispersion relation is

ωLSWT
k = S

√
(t̃Qcl − λt̃k)[t̃Qcl − (t̃k+Qcl + t̃k−Qcl)/2], (5.20)

where t̃q denotes the q-Fourier transform of tij and

Ak =
S

N

∑
〈i,j〉

tij[(λ− cij) cos(k · rij)]

Bk =
S

N

∑
〈i,j〉

tij[(λ+ cij) cos(k · rij)− 2Scij].

With the spin-wave dispersion relation, Ak and Bk, it is possible to compute
quantities as, for instance, the classical order parameter,

MLSWT ≡ 〈
1

N

∑
i

(−Sζi )〉 = S − 1

2N

∑
k

Bk

ωLSWT
k

. (5.21)
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As it is well known in some quantum disordered phases the spins arrange in
a radically different way as in the classical limit,.e.g, topological or critical
phases. In such cases, the approximation 〈a†iai〉/(2S) << 1 is not a good
approach and LSWT turns to be extremely inaccurate. Another limitation
is that LSWT breaks down when using an ordering vector Q which is not
the classical one. Therefore, other long-range ordered states beyond the
classical limit cannot be normally explored. Finally, one last, but not least
weak point in LSWT is the assumption of spontaneous symmetry breaking,
since the spins are restricted to point into a certain direction. Therefore, the
ground state obtained with LSWT does not exhibit the same symmetries of
the initial Hamiltonian. In conclusion, it becomes clear that LSWT is not a
good tool for the study of the 2D frustrated AF models described in Sec. 4.3.
Nevertheless, we have provided the main steps of its derivation because they
are illustrative to enhance the strong points of the so-called modified spin
wave theory, a more sophisticated approach which is introduced in the next
section. For an extense study of frustrated spin models in the triangular
lattice by means of LSWT see Ref. [173].

5.4.1 Modified spin wave theory

Firstly developed for the AF square lattice by Takahashi [7] and contempo-
raneously by Hirsch and Tang [174–176], MSWT is a spin-wave theory which
has been succesfully applied to frustrated square lattice models[177–179] and
more recently to the honeycomb lattice [180]. It was early implemented in the
isotropic triangular lattice with Heisenberg interactions by Xu and Ting [10].
Using a mapping with Xu’s equations, Hauke and collaborators explored the
SATL [8] and SCATL [6] models for both XY and Heisenberg interactions.
A recent work of Celi and collaborators [9] rigorously derives MSWT for the
SATL model with XY interactions from the scratch. The results obtained are
close, though not equal, to the ones obtained by Hauke [8]. In the following I
provide the main steps of the MSWT formalism for both Heisenberg and XY
interactions. The derivation, although similar to the work of Hauke, leads
to different final set of equations. The results derived here exactly match
the ones obtained by Celi (XY interactions) but do not resemble the ones
obtained by Xu (Heisenberg interactions). A paralell derivation as the one
in [9] for Heisenberg interactions remains an open problem which I address in
Appendix A together with the discrepancies among the different mentioned
derivations.
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MSWT formalism

The starting point is the Hamiltonian in Eq. 5.14. MSWT has the advan-
tage that can consider an arbitrary ordering vector, Q, beyond the classical
one Qcl. Hence, it is redefined, cij ≡ cos(Q · rij). Instead of the usual HP, it
uses a Dyson-Maleev (DM) transformation [181],

S−i →
1√
2S

(2S − a†iai)ai

S+
i →
√

2Sa†i

Sζi →− S + a†iai.

(5.22)

Note that, in contrast with the HP transformation, now there is a one-to-one
correspondence between the physical spin-wave state and the DM bosons
space,

|nλ〉S =
∏
λ

1

(2S)nλ/2
√
nλ

(S+
λ )nλ |0〉S

|nλ〉DM =
∏
λ

1√
nλ

(b†λ)
nλ |0〉DM

(5.23)

where b†λ is now the Fourier transform of the DM operator. DM coincides
with HP transformation in the leading order and gets rid of the problematic
square root. Rigorously, it should be included a kinematic constraint which
restricts the DM-bosons density n to the physical subspace n < 2S. However,
it is usually neglected under the assumption that the population of bosons
is small. The Hamiltonian after the transformation reads,

HMSWT =
1

4

∑
〈i,j〉

tij{[2S(a†iaj + aia
†
j)− a†ia†jajaj − a†iaiaia†j](λ+ cij))

+ [2S(a†ia
†
j + aiaj)− aia†jajaj − a†iaiaiaj](λ− cij)

+ 4[S2 − S(a†iai + a†jaj) + a†iaia
†
jaj]cij},

(5.24)

where 6-bosons terms have been dropped as usual [9, 10]. Using Wicks’
theorem [182], the mean energy is obtained as the expected value of the
Hamiltonian,

E = 〈HMSWT 〉 =
∑
〈ij〉

tij{(f(rij)X −
g(rij)g(0)

2
)[λ+ cij]

+ (g(rij)X −
f(rij)g(0)

2
)[λ− cij]

+ (X2 + g2(rij) + f 2(rij))cij}

(5.25)
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where the mean field quantities are defined as:

〈a†iaj〉 = f(rij)−
1

2
δij

〈aiaj〉 = 〈a†ia†j〉 = g(rij)

X = S + 1/2− f(0)

(5.26)

Eq. (5.25) differs from Hauke’s work (see for instance Eq.A4 in Ref. [6]) and
does not lead to Xu’s [10] results for λ = 1. Nonetheless, for XY interactions
it recovers Celi’s energy (see Eq.17 in Ref [9]). In Appendix A, I provide a
technical description of the subtleties and mismatches among the mentioned
works, including the addition of the previously dropped six-boson terms.

As in the LSWT formalism, first one goes to the Fourier space of the

bosonic operators bk =
1√
N

∑
i aie

−ik·ri and then a Bogoliubov transforma-

tion (Eq. (5.17)) is performed. This leads to the definition,

f(r) =
1

2N

∑
k

cosh(2θk)e
−ik·r

g(r) =
1

2N

∑
k

sinh(2θk)e
−ik·r.

(5.27)

Instead of a diagonalization, MSWT performs an energy minimization under
the so-called Takahashi constraint of zero magnetization,

〈Sζi 〉 = −S + 〈a†iai〉 = −X = 0. (5.28)

This restores the reflection symmetry of the ground state with respect to the
quantization axis, (which was broken in the LSWT approach). The energy
minimization yields to,

tanh 2θk =
Ak
Bk

(5.29)

ωk =
√
B2
k − A2

k, (5.30)
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where,

Ak =
1

2

∑
〈ij〉

tij{[g(rij) + f(rij)]λ+ [g(rij)− f(rij)]cij

+ cos (k · rij)[g(0)λ+ (g(0)− 4g(rij))cij]}

Bk =
∑
〈ij〉

tij{
1

2
[f(rij) + g(rij) + 2g(0)]λ

+
1

2
[−5f(rij)− 3g(rij)]cij

+ cos(k · rij)[
−g(0)

2
λ+ (

g(0)

2
+ 2f(rij))cij]}

(5.31)

The definitions of Ak and Bk, as mentioned before, match the ones obtained
by Celi [9] setting λ = 0. However, for Heisenberg interactions, these equa-
tions lead to controversial numerical results and we use, for the numerical
studies presented in the thesis, the ones obtained by Xu [10],

Ak =
∑
〈ij〉

tij[1− cij]g(rij) cos(k · rij)

Bk =
∑
〈ij〉

tij{[1− cij]g(rij)− [1 + cij]f(rij)(1− cos(k · rij))}.
(5.32)

The quantities Ak, Bk are computed self-iteratively with g(rij) and f(rij)
using,

f(rij) = M0 +
1

2N

∑
k 6=0

Bk

ωk
cos(k · rij)

g(rij) = M0 +
1

2N

∑
k 6=0

Ak
ωk

cos(k · rij).
(5.33)

Where the occupation of the zero mode M0 ≡ 〈b†k=0bk=0〉/N = 〈bk=0bk=0〉/N
is removed from the sum. M0 is the Bose condensation of DM bosons in the
zero mode and it corresponds to the magnetic order parameter. Finally, the
Takahashi constrain is rewritten as,

S +
1

2
= M0 +

1

2N

∑
k 6=0

Bk

ωk
(5.34)

Algorithm

In the following, the steps to build up the MSWT algorithm are briefly
detailed. The system is considered in the infinite L limit, i.e., taking all the
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sums over k as integrals. The numerical implementation of the algorithm
written in MATLAB language can be found in Appendix B.

• As initial guess, it is standard to start with the LSWT Ak and Bk (see
Eq. 5.21) and therefore Q = Qcl.

• Then, f(rij) and g(rij) are computed using Eq. (5.33).

• The energy is computed (Eq. (5.25)) with the new values of f(rij) and
g(rij) and it becomes a function of the ordering vector, E = E(Q).

• A numerical energy minimization is performed in order to find the
optimal Q.

• The last step consists of updating the values of Ak and Bk with Eq. 5.31
for XY and Eq. 5.32 for Heisenberg interactions.

• The process is repeated until the difference between previous and up-
dated Ak and Bk are below a certain bias.

• When convergence is reached, both Q and M0 (Eq. (5.34)) are taken
as figures of merit.

• If the initial LSWT guess does not lead to a stable minimum, the
iteration is restarted with the corresponding Ak and Bk from nearby
converged MSWT.

• If both LSWT and nearby MSWT initial guesses do not lead to a stable
solution, it is suggested that the model may hold a phase with no long-
range order as it could be a topological QSL or a critical phase.



CHAPTER 6

Conclusions and future perspectives

Along my Ph.D. thesis I have dealt with complex quantum many-body sys-
tems acquiring knowledge, tools and competences in quantum information
science and condensed matter physics. I have contributed to the field of
strongly correlated systems with 3 (+1) research articles, including a novel
numerical technique to find signatures of quantum disordered phases in 2D
frustrated spin systems and providing a novel hybrid quantum spin model
that hosts different quantum spin liquids phases. I have given indications
that these different quantum spin liquids have putatively the same origin as
they can be smoothly connected one to another. To conclude this part of
the thesis (Part I), I would like to provide some broad perspectives and open
questions that have arisen along my research and which could serve as future
potential lines of investigation.

In the first part of my research, Article 1, I have shown that measures
of bipartite entanglement, such as the concurrence and negativity also fulfill
a FSS for 1QPT in short range Hamiltonians. FSS is a tool to recover the
thermodynamic limit in continuous transitions (2QPT) and its application to
1QPT is by no means trivial. This scaling, however, is needed to determine
the order of the transition close to multicritical points in finite size systems.
The two models under study in Article 1 contain 1QPT which had been found
in previous works. However, there are other models, as for instance 2D frus-
trated systems, which contain QPT whose order is still a controversial issue.
A question which remains to be answered is: ’Can a FSS be always applied to
entanglement measures? Can such entanglement FSS unambiguously deter-
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mine the order and nature of a quantum phase transition?’ Another future
line of research could be extending the work to multipartite measures of en-
tanglement and to spin models with interaction terms involving more than
two particles. For instance, is it possible to create a similar scaling which
is fulfilled by the geometrical measure of entanglement? The answer is not
straightforward since my work relies on the fact that both the concurrence
and negativity depend only on the reduced density matrix of two spins, ρij,
which contains the non-analyticities of the ground state in a QPT. Although
the study of QPT by means of measures of entanglement has been a vast
focus of research during the last 15 years, I would still state that many more
contributions to the field are about to come.

The second part of my Ph.D. work has been devoted to the study of quan-
tum spin liquids (Articles 2, 3 and 4*). I have developed a new numerical
technique to find signatures of QSL in spin models in the triangular lattice.
The method provides a feasible tool for the detection of novel quantum dis-
ordered phases and it explicitly unveils some properties of QSL. A further
line of investigation could be to engineer similar random boundary conditions
to other frustrated geometries as the kagome lattice. This could give some
new insight to the current open problems present in such models. It also
seems to me feasible to engineer the boundary conditions in a way which
preserves translational invariance. This symmetry, properly introduced in
the algorithm, could allow to perform ED of larger systems which would fur-
ther decrease the finite size effects of the results. Nonetheless, I have not
put more effort on the issue because the results up to 24 sites were already
quite stunning. I also attempted during the last months of my Ph.D., apply-
ing this RBC in the triangular lattice within a 2D DMRG algorithm. This
would allow to substantially increase the lattice sizes used which could make
feasible a finite size scaling in order to extract the results in the thermody-
namic limit. This remains an open research line worth to pursuing. Finally,
I still would like to mention that there are many relevant spin models in the
triangular lattice with quantum disordered phases which could be studied
with RBC. Examples of such models are the spin-1/2 XXZ or the spin-1 bi-
linear biquadratic models, (see Ref. [183]). Some of these models have still
phases which are under debate and RBC could provide a new perspective to
the issue.

In the last part of my research, I have used MSWT to extend my stud-
ies on 2D quantum antiferromagnets. In particular, I have obtained the
quantum phase diagram of the anisotropic J1−J2 model which continuously
connects the gaped QSL phases present in the SATL and J1−J2 models. The
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results are qualitatively in agreement with RBC calculations. This linkage
might provide a new insight to the open question about the nature of the
QSL present in the J1−J2 model. However, further studies with 2D DMRG,
QMC or PEPS should be done in order to shed more light onto the issue.
A rigurous derivation of MSWT in the triangular lattice for the XY interac-
tions has been perfomed by Celi and collaborators [9]. The final equations,
though, are slightly different as the ones presented in the seminal work of Xu
and Ting [10]. I have tried a similar derivation as the proposed by Celi for
Heisenberg interactions with non-conclusive results (see Appendix A). This
formal derivation remains and open problem.
Finally, the results obtained by means of MSWT, summarized in Fig. 4.9,
suggest the following two conjectures:

• Within the MSWT formalism, there is always a quantum disordered
phase between commensurate and incommensurate orders which are
connected by a 2QPT in the classical phase diagram.

• MSWT cannot detect a quantum disordered phase which lies between
two commensurate orders connected in the classical limit by a 1QPT.

The first conjecture was already suggested in [6] and is further supported
by all my results, including those obtained by means of RBC. Indeed, in
all the explored 2D frustrated models, the non-commensurate spiral order
is always surrounded by putative gapped QSL phases. The second conjec-
ture is exclusively formulated from the results in Fig. 4.9. In the limit of
the J1 − J2 model, it is known that a gapped QSL phase is found between
commensurate spiral and collinear orders. Nevertheless, the MSWT calcula-
tions detect a 1QPT between both orders without any intermediate phase.
When NN anisotropy is added, the spiral order becomes non-commensurate
and only then MSWT detects the expected signatures of an intermediate
quantum disordered phase. Hence, it seems hinted that MSWT formalism
is not appropriated for the detection of quantum disordered phases in such
conditions.
To analytically proof these conjectures remains another interesting line of
research as well as comprehending their implications beyond the MSWT for-
malism.





Part II

Articles





ARTICLE 1

Entanglement scaling at first order quantum phase

transitions

Initial questions and motivations

The phenomena of QPT, which is introduced in Sec.2.1, is a paradigmatic
example of how quantum information has given a completely new perspective
to the subject. Many QPT fall inside the classical Ginzburg-Landau picture
and can be studied with a very similar formalism as in the classical case. But
it is well known that in QM there are QPT which have no classical analo-
gous. It is precisely here where QI and entanglement might take a crucial
role. In the last 15 years, several measures of entanglement have been used
to study QPT. However, most of these works are focused in continuous or
2QPT whereas the discontinuous or 1QPT case has been less explored.
Our initial question was the following: ’Is it always possible to identify a
1QPT with just measures of entanglement?’ And, furthermore: ’Is it always
possible, in a finite system, to distinguish between a 1QPT and 2QPT by
means of entanglement?’ We show that this last question becomes particu-
larly relevant in the vicinity of multicritical points where QPT of different
orders are very close.
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Main results

We have observed that for finite systems, in 1QPT which are close to a 2QPT,
the measures of bipartite entanglement may have the apparent behavior of a
2QPT, i.e., they may be continuous with a non-analyticity in the first deriva-
tive. Under such conditions, we have successfully used, for the first time, a
finite size scaling of different measures of bipartite entanglement in a 1QPT.
It is thus the finite size scaling and not the order of the singularity which
can correctly distinguish the order of the transition. We have successfully
tested the finite size scaling for the spin-1/2 Ising model with longitudinal
field, 4.2.1 and for the spin-1 XXZ model 4.2.2.
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Abstract
First order quantumphase transitions (1QPTs) are signalled, in the thermodynamic limit, by
discontinuous changes in the ground state properties. These discontinuities affect expectation values
of observables, including spatial correlations.When a 1QPT is crossed in the vicinity of a second order
one, due to the correlation length divergence of the latter, the corresponding ground state ismodified
and it becomes increasingly difficult to determine the order of the transitionwhen the size of the
system isfinite. Herewe show that, in such situations, it is possible to applyfinite size scaling (FSS) to
entanglementmeasures, as it has recently been done for the order parameters and the energy gap, in
order to recover the correct thermodynamic limit (Campostrini et al 2014Phys. Rev. Lett. 113 070402).
Such a FSS can unambiguously discriminate betweenfirst and second order phase transitions in the
vicinity ofmulticritical points evenwhen the singularities displayed by entanglementmeasures lead to
controversial results.

1. Introduction

Understanding howmany-body interacting systems order into different quantumphases as well as the
transitions between them remains one of themost challenging open problems inmodern physics. Quantum
phase transitions (QPTs) are associatedwith the non-analytical behavior of some observable and/or correlator
which can be either local or non local.With the discovery of topological and new exotic phases [1], which fall
outside Landau’s symmetry breaking paradigm, the use of entanglement to describe quantummatter seems to
be, by allmeans, necessary [2].

Here, we restrict ourselves to study entanglement behavior for a large class of QPTswhich, in analogy to their
classical counterparts, are signaled by singularities in the derivatives of the (free) energy [3]. In such cases, phase
transitions are classified by theminimumorder of the derivative of the ground state energywhich is not
continuous. Accordingly, first (1QPTs) and second (2QPTs) orderQPTs show singular behavior on thefirst and
second derivative of the ground state energy respectively. For 1QPTs, the singular behavior translates into abrupt
discontinuities of some local observables while for 2QPTs the order parameters change continuously with a
power law. In this last case, the thermodynamic limit can be recovered using finite size scaling (FSS) [4]. The
scaling is characterized by the critical exponents allowing the classification of apparently different 2QPTs into
the same universality class.With such definitions at hand it looks straightforward to distinguish if a givenQPT is
offirst or second order. But this is not always the case whenfinite size effects are present. This question becomes
especially relevant in the vicinity ofmulticritical points where several QPTs of different order coexist in a narrow
range ofHamiltonian parameters.

First studies of the entanglement behavior close to aQPTwereperformedby analyzing bipartite entanglement
in simple spinmodels like thequantumIsing spin-1/2 chainwhich exhibits a 2QPT. In [5, 6], the authors showed
that, similarly to the ground state energybehavior, the bipartite entanglement between two adjacent spins, as
measured by the concurrence,  , has a derivativewhich diverges at the critical point in the thermodynamical limit.
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Moreover, they showed that, forfinite size systems, a FSS can beperformed allowing the correct extractionof the
critical exponents corresponding to the Ising transition. Since then, a large amount ofworkhas beendevoted to
deepen the connections between quantum information andQPTs, see for instance [7–17].

In [18], the above results were generalized by usingKohn–Sham theoremwhich links ground state
properties with reduced densitymatrices. ForN-partite localHamiltonians that contain atmost k-body
interactions, l l= åˆ ( ) ˆ ( )H Hk k , whereλ is a parameter in theHamiltonian phase-space, such as the
magnetization or an interaction strength. The energy of the ground state Y ñ∣ 0 can bewritten as

ål r= áY Y ñ =( ) ∣ ˆ ∣ ( ˆ ) ( )E H HTr , 1
k

k
k

0 0 0

where ρ k is the reduced densitymatrix acting on the local support of the corresponding localHamiltonian Ĥk.
For the usual case of localHamiltonianswith just two-body interactions, l l=ˆ ( ) ˆ ( )H Hk ij , where the indexes i

and j refer to two spins, it can be shown that r¶ ~ ¶l l( ˆ )E Hij
ij

0 . If the localHamiltonians are smooth functions
ofλ, then a one-to-one correspondence can bemade between the singularities of∂λE0(λ) arising in a 1QPT and
the singularities of (thematrix elements of) ρ ij. The above translates into discontinuous pairwise entanglement
measures, which depend exclusively on ρ ij. By the same reasoning, a singularity in ¶lE2

0, typical of a 2QPT, is
associated to a singularity in the first derivative of the corresponding pairwise entanglementmeasure.

A theorem casting all the above results is stated in [18] claiming that, unless there exist accidental
divergences, the order and properties ofQPTs of localHamiltonians are signalled by the entanglementmeasures
associated to the corresponding reduced densitymatrix of the ground state. The theoremworks in both
directions, i.e. a discontinuity in a pairwisemeasure of entanglement in a 2-localHamiltonian indicates a 1QPT
while a discontinuity/divergence in its derivative signals a 2QPT. The above theoremhas some known caveats.
For instance, in the spin-1/2XXZ chain, at the 1QPTbetween the ferromagnetic and critical phase, the
concurrence is a function of the energy at the critical point and it remains continuous in the thermodynamic
limit while its first derivative is discontinuous [19, 20]. For the same transition, it has been shown that a
symmetry breaking in the ferromagnetic phase alsomodifies the origin of the non-analytic behavior of the
concurrence [21]. In [22], a three-body localHamiltonianmodel was presented inwhich the pairwise
concurrence is non analytical in the absence of anyQPT [22]. For 2Dmodels even less is known.

Motivated by the above results, we analyze here scaling properties of pairwise entanglementmeasures for
2-localHamiltonians nearmulticritical points. Although FSS is a tool to obtain the thermodynamical properties
of the system for continuous (2QPT) phase transitions, herewe show that such a tool can be employed also for
entanglementmeasures for 1QPTs. Further, we demonstrate that when finite size effects are important, it is
precisely the scaling of the entanglementmeasure and not themeasure itself which determines the correct order
of the transition. This fact is especially relevant for a 1QPT crossed in the vicinity of a 2QPT and it is in
accordancewith the recent results reported byCampostrini and coauthors [23] showing that the order
parameter of a 1QPT can be continuous forfinite systems and admits an appropriate FSS.

The paper is organized as follows. In section 2, we focus on the spin-1/2 Ising chainwith longitudinal field
and report how bipartite entanglement, asmeasured by e.g. the concurrence, scales in the 1QPTwhen is crossed
near themulticritical point. This choice ismotivated by the fact that this is an integrablemodel when the
longitudinal field vanishes and serves as a playtool to analyze numerical results. In section 3, wemove to amuch
more complexmodel, the spin-1XXZ chainwith uniaxial single-ion anisotropy. The phase diagramof the
model is rich and has several QPTswhose boundaries are only known approximately.We focus on the 1QPTof
themodel and analyze bymeans of numerical techniques the behavior of bipartite entanglement in the vicinity
ofmulticritical points. In section 4, we discuss the results and, finally, in section 5we conclude.

2. Spin-1/2 Ising chainwith longitudinalfield

Thefirst spinmodel we explore is the spin-1/2 Ising chainwith a longitudinal field,

å å ås s s s= - - -
=

-

+
= =

ˆ ˆ ˆ ˆ ˆ ( )H J B B , 2
i

L

i
x

i
x

z
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L

i
z

x
i

L

i
x

1

1

1
1 1

where L is the number of spins, saˆ i are the Paulimatrices for spin i andwe set J=1 and B 0z . Infigure 1, we
provide the phase diagramof themodel. ForBx= 0, where the system reduces to the integrable Isingmodel,
there is a 2QPT atBz= 1 between the ferromagnetic (Bz<1) and paramagnetic phases (Bz>1). This 2QPTwas
thefirst one studied bymeans of bipartite entanglement [5].When ¹B 0x , the system is no longer integrable
andwe obtain the ground state of the systemusing both, the densitymatrix renormalization group (DMRG)
with open boundary conditions (OBCs) [24–26] and exact diagonalization (ED) calculations.When the system
is in the ferromagnetic phase, a 1QPT takes place atBx= 0 between the two ferromagnetic ground states,
ferromagnetic  and ferromagnetic . This transition can be detected by a discontinuity in themagnetization,
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s= å á ñˆMx i i
x , which passes frompositive to negative values.However, forfinite systems, numerical calculations

in a region sufficiently close toBx= 0 show a smooth slope inMx instead of a discontinuity. To deal with this
effect, in [23] a FSS is proposed forfirst order quantum transitions in a chain of size L driven by amagnetic field
h. There, on dimensional grounds, it is argued that around the critical point (h=0), if there is scaling behavior,
the relevant scaling variable,κ, should correspond to the ratio between the energy contribution of h, and the gap
at the critical point,D = D =( )L h, 0L L ,

k ~
D

( )hL
. 3

L

As a result, heuristically when ~ DhL L, the ground state energy becomes effectively continuous along the
transition and so does the order parameter. This feature becomesmore relevant the closer the critical point is to a
2QPT, since the correlation length of the system (ξ) diverges, enhancing the nearby finite size effects. In [23], it is
shown that across the 1QPTof the longitudinal Ising chain (equation (2)) occurring atBx= 0, thefirst energy
gap and themagnetization obey the following scaling ansatz:

kD » D D( ) ( ) ( )L B f, , 4x L

k»( ) ( ) ( )M L B m f, , 5x x M0

where fΔ(κ) and fM(κ) are continuousuniversal functions for allL andBz. Since themodel is integrable forBx=0, the
scaling variable canbedefined as [23]

k =
D

( )m B L2
, 6x

L
1

0

whereD = D » -= ( )B B2 1L L B z z
L

, 0
2

x
, is the first gap at the critical point,Bx= 0 forOBC and

s= á ñ = -
 ¥+

ˆ ( ) ( )m Blim lim 1 . 7
B L

x z0
0

2 1 8

x

Clearly, as one approaches the critical point,Bx= 0, in the nearby region of the 2QPT (Bz= 1), the gap closes and
even at very small values of the driving parameterBx around the critical point, the 1QPT transition looks
continuous. Here, we apply the above scaling concepts to the entanglement across the 1QPT transition. Since the
Hamiltonian is 2-local, discontinuities in entanglementmeasures have to be related to two-body (pairwise)
entanglement of twonearest-neighbor spins (i, j) described by the reduced densitymatrix, ρ ij. For pure states, all
measures of bipartite entanglement are in one-to-one correspondence and are all a function of the eigenvalues of
the reduced densitymatrix arising from the chosen partition. Formixed states, this is not the case anymore and
the entanglementmeasure has to be calculated as the convex roof of the corresponding pure statemeasure. An
exception formixed states ρ of two spin-1/2 particles or qubits, is the concurrence [27]which is equivalent to the
entanglement cost and has a closed analytical expression:

 r l l l l= - - -( ) ( ) ( )max 0, , 81 2 3 4

whereλi are the eigenvalues, in decreasing order, of thematrix rr r= ˜R with *r s s r s s= Ä Ä˜ ( ˆ ˆ ) ( ˆ ˆ )y y y y ,
where the product s sÄˆ ˆy y is defined in theHilbert space of the two spins and ρ* is the complex conjugate of ρ.
Since  is supposed to be discontinuous at the critical point for 1QPTs, naively wemight expect that it will follow
a similar scaling behavior asMx, equation (5). Infigure 2, we show  for the two central spins which, if border
effects are neglected, will also hold for the rest of neighboring spin pairs. In the left panel, we observe that  is a
continuous functionwith a spike at the critical point which signals a singularity in the first derivative, ¶Bx . The

Figure 1.Phase diagram for the spin-1/2 Ising chainwith a longitudinalfield. The dashed line (- - -) depicts the 1QPTwhile the dotted
line (...) the 2QPT.
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spike becomesmore pronounced as the transition gets closer to the 2QPT atBz= 1. It is worth pointing out that
such a behavior bears strong similarities with the geometric entanglement, a collectivemeasure of entanglement
indicating howmuch the ground state differs from a separable state [14]. Notice that forBz>1, when the system
is in the paramagnetic phase independently of the sign of the longitudinal fieldBx, (as indicated infigure 2 for
Bz=1.5) , the concurrence becomes a smooth function ofBx. In the central panel offigure 2, we plot the scaling
of the concurrence normalized by itsmaximumvalue,   = max, as a function of the scaling variableκ1 to
determinewhether  fulfills a similar scaling relation as in equation (5). It is enough to investigate what happens
forκ1>0 because  k( )1 has even parity, i.e.  k k= -( ) ( )1 1 . This is a consequence of theHamiltonian, and,
therefore, the ground state, being invariant under the change  -B Bx x and a localπ-rotation of the spins
around the z-axis. Finally, in panel c)wedisplay the scaling of the derivative of the concurrence normalized by its

minimumvalue   ¶ = ¶ ¶
~ [ ]Bx Bx Bx min. Interestingly enough, the concurrence does not scalewith thefitting

parameterκ1, but its derivative does. In the central panel, we can see that the data for differentBz and L do not
collapse in a universal function, while, in the right panel, there is a good data collapse for different values ofBz
and L. Thus, ¶Bx fulfills the scaling ansatz,

  k¶ = ¶( ) [ ] ( ) ( )L B g, , 9Bx z Bx min 1

where g(κ1) is a universal function for any L andBz.We further discuss all these results in section 4.

3. Spin-1XXZ chainwith uniaxial single-ion anisotropy

In this section, we extend the study of entanglement along 1QPTs to a spin-1 system. Since the concurrence,  ,
can only be easily computed for themixed states of qubits, in order to compute the entanglement between two
spin-1 particles we use the negativity [28, 29]

 r
r

=
-( ) ∣∣ ∣∣ ( )1

2
, 10

T
1B

where the operationTB is the partial transpose defined nowon the reduced densitymatrix of two nearest
neighbors spins, ρ ij, and ∣∣ ∣∣... 1 is the sumof the absolute value of all singular values. Notice that negativity is a
lower bound to entanglement. Themodel under scrutiny is the spin-1XXZ chainwith uniaxial single-ion
anisotropy,
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where
a

Ŝl are the spin-1matrices for spin l andD is the uniaxial single-ion anisotropywhichwe take as positive.
We set J=1, and use it as the unit of energy.We choose thismodel because of the richness of its phase diagram
[30], schematically shown infigure 3, with several 1QPTswhichwe depict with dashed lines. The behavior of 
along the different 1QPTs present in themodel is very different depending on their closeness to amulticritical
point which also involves 2QPTs.We start by examining the negativity as a function of the Jz for a constant
uniaxialfieldD= 3.5 and L=8. Two 1QPTs are crossed at such value ofD, as indicated in the phase diagramby
a gray horizontal line (see figure 3). Thefirst one corresponds to the transition from ferromagnetic order to the
large-D phase, which is crossed approximately at Jz=−4.2. Another 1QPT appears between large-D/Néel at
approximately Jz= 3.8. As clearly shown infigure 4, the former phase transition is clearly signalled by a
discontinuity in  , whereas the latter shows a smooth slope along the transition. Infigure 5, we show in detail

Figure 2.Concurrence of the longitudinal Isingmodel, equation (2), as a function ofBxnear the 1QPT, for different values of the
transversemagneticfieldBz. Panel (a): concurrence for L=40.We observe a spike at the 1QPT critical point,Bx= 0, forBz<0.
Panel (b): concurrence normalized by itsmaximum,  , as a function of the scaling variableκ1 defined in equation (6), there is no data
collapse. Panel (c): derivative of the concurrence normalized by itsminimum, ¶

~
Bx , plotted as a function ofκ1 showing a universal

behavior for the same set of values than in panel (b). The results are obtainedwithDMRGand bond dimensionχ=80 for which they
are converged.
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Figure 3.Phase diagram for the spin-1model in equation (11)withD>0. The dashed lines depict 1QPTs and the arrows pointwhere
we cross them. The black dotted line depicts the 2QPTbetweenHaldane andNéel phases. The ovals show the areas wherewe add an
external field to induce a 1QPT between the two-fold degenerated ground states in the ferromagnetic andNéel phases. The red circles
signal the tri-critical points present in the phase diagram.

Figure 4.Negativity as a function of Jz forD= 3.5 and L=8.We observe a discontinuity in the 1QPT from ferromagnetic to large-D
phases and a smooth slope for the 1QPTbetween the large-D andNéel phases. The results are obtainedwith ED.

Figure 5.Phase transition between ferromagnetic and large-D forD=2 and L=8. Left panel, we observe a jump in the negativity
(dotted line) for Jzc evenwhen using a step δ=10−13. Right panel, the corresponding energy crossing between the two-fold
degenerated ferromagnetic ground state at Jz<Jzc (circles and crosses) and the large-D ground state at Jz>Jzc (squares). The results
are obtainedwith ED.
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the generic behavior of  together with the corresponding level crossing along the ferromagnetic/large-D
phase transition.We cross the transitions at afixed valueD=2, as depicted by (1) infigure 3, in the nearby
region of a critical point (depicted by a red circle).We observe that even for small steps of the parameter Jz
driving the 1QPT,  is always discontinuous and a neat level crossing is shown between the two-fold
degenerated ferromagnetic ground state, for Jz<Jzc, and the large-D ground state, for Jz>Jzc. Thismeans that,
at Jzc, there is a sudden change in the ground state which is detected by a discontinuity in  . Therefore, in
figure 5, we observe the expected discontinuous behavior for  along a 1QPT even for a systemof just 8 spins
without anyfinite size effects.

We focus nowon to the large-D/Néel 1QPT. Infigure 6we display the negativity and the staggered
magnetization for afixed value Jz= 3.8 as a function of the anisotropy,D, around the critical pointDc,L denoted
by (2) infigure 3.We add the subindex L to indicate that this quantity nowdepends on the system size. In order
to show the behavior for larger systems, we useDMRGcalculations for L=32, 64, 128 and 150. In the two top
panels, we observe that both,  and the staggeredmagnetization, = å - á ñ= ( ) ˆM S1z

st
i
L i

i
z

1 , change smoothly
around the transition point. As L increases, the slope becomesmore pronounced getting closer to a discontinuity
andwe need values ofD closer to the critical point to observe the continuous slope. For instance, the necessary
step inD to observe a continuous behavior is d ~ -10 4 and d ~ -10 6 for L=64 and L=150, respectively.
Note that in this case, as in section 2, we are very close to a 2QPT. Aswe get further from the tricritical point, i.e.
as we increase the value to Jz?Jcrit=3.8, this effect progressively becomes less important and both  andMz

st

are effectively discontinuous. Since the transition is known to be offirst order, we propose a similar FSS as in the
previous section, defining a relevant scaling variable,κ2, as the ratio between the energy contribution ofD along
the transition and the gap at the critical point,

k ~
-
D

( ) ( )D D L
. 12c L

L
2

,

Now,ΔL is obtained numerically and -( )D D Lc L, is a bare estimation for the energy contribution of the
parameterD. In the bottompanels, we plot  andMz

st as a function of this scaling variableκ2. Aswe can
observe, both quantities seem to converge, though not perfectly, towards a universal scaling, as described by
equation (5). It is worthmentioning that equation (12) is an approximationwhereas, in the previous sectionwe
had analytic expressions forΔL andm0 in equation (6). Actually, in [31], a similar FSS, with non-analytic
expressions, is proposed for the Potts chainwith a similar convergence. It seems reasonable, thus, to state that for
this 1QPT, whenwe are close to the 2QPT,  is continuous due tofinite size effects and that it obeys the scaling
ansatz for 1QPT.

Figure 6. Left column: negativity. Right column: staggeredmagnetization. Results are for Jz= 3.8 and different L. In thefirst row, we
plot the quantities as a function ofD.We observe a smooth slope of both the negativity and the staggeredmagnetizationwhere the
1QPT is expected. Bottom row, quantities plotted as a function ofκ2 showing the tendency to converge towards a universal function.
The results are obtainedwithDMRGand bond dimensionχ=150 forwhich they are converged.
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Finally, we analyze the behavior of  when the 1QPT is due to a 2 symmetry breaking of a two fold-

degenerated ground state. To this aimwe add an extramagnetic field, å =
ˆB Sz i

L
i
z

1 (extramagnetic staggered field

å -= ( ) ˆB S1z i
L i

i
zst

1 ) in the ferromagnetic (Néel) phase of the XXZ spin-1model in equation (11). These new terms
lead to two new 1QPTbetween ferromagnetic / ferromagnetic  (Néel/AntiNéel)phases, depicted graphically
by ovals alongD=0 line in the phase diagramof themodel (see figure 3). The corresponding order parameter
for both transitions, themagnetization (Mz), and the staggeredmagnetization (Mz

st) respectively, are
discontinuous in the thermodynamic limit. For the first inducedQPTbetween the ferromagnetic phases, the
entanglement remains always constant and zero.More interesting features appear in theNéel/Anti-Néel
transitionwhose results are summarized infigure 7. These results are obtained using amixture of ED (panels (a)
and (b)) andDMRG (in the remaining panels). The bond dimension inDMRGwas chosen in such away that the
results converged, whichmeant using a bond dimension of 100 or 150. In panels (a) and (b)we show,
respectively,Mz

st and  as a function of the added staggeredmagnetic fieldBz
st.While the order parameter,Mz

st,
has the expected discontinuous behavior, the pairwise entanglement,  , has a dip at the critical point,
displaying a continuous  but a discontinuous derivative. In order to apply the proper FSS ansatz for the
negativity, we start by defining first the relevant scaling variable (aswe did in section 2):

k =
D

( )m B L2
. 13z

L
3

0
st st

In full analogywith the results presented in section 2, and due to the fact that the 2QPTbetweenHaldane/Néel
phases belongs to the same universality class as the spin-1/2 Ising, we use the expression of m0

st from equation (7)
by substituting B J Jz zc z , where Jzc≈1.186 corresponds the 2QPT critical point forD=0 [32]. Our scaling
results are summarized in panels (c) and (d) offigure 7, wherewe show, respectively,Mz

st and  as a function of
κ3. The scaling ansatz, equation (5), works properly forMz

st, but, as it happens for the concurrence,  , in the
spin-1/2 Ising chain, the scaling also fails for the negativity  in this phase transition. Finally, in panels (e) and
(f)we showhow the gap,ΔL, fulfills the scaling ansatz, equation (4), and how the derivative of the negativity,
¶ NBz

st , also verifies the scaling ansatz, equation (9). This last behavior strongly resembles the behavior of the
derivative on the concurrence for the spin longitudinal Ising spin 1/2 chain. To further ensure the correctness of
our results, infigure 7we also display the comparison between our numerical data,Mst(κ3) andΔL(κ3), with the
analytic expressions using an effective two level theory as derived in [23].

Figure 7.Panels (a) and (b),Mz
st and  as a function ofBz

st for different Jz and L=8 (D=0 in all the panels, calculated using ED).
Panels (c) and (d), M mz

st
0
st and   = =

~ ( )B 0z
st plotted against the scaling variableκ3, equation (13), (same legend holds and

DMRGused for panels (c)–(f)).Mz
st fulfills the universal scaling, equation (5) but  does not. Panels (e) and (f), both kD D( ) L3 and

 k¶
~( )B 3z

st (derivative normalized by itsmaximum) show, aswell, a good data collapse. Dashed lines in panels (c) and (e) are
analytically obtained in [23].
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4. Results discussion

Let us discuss here the origin of the concurrence’s continuity together with its discontinuous first derivative
across the the 1QPT in the spin-1/2 Isingmodel described in equation (2). A similar response is shownby the
negativity in the spin-1XXZ chain across the 1QPTbetween theNèel/Anti-Néel phases. These transitions
apparently contradict the expected behavior stated in [18] that links a singularity in the first derivative of the
pairwise entanglement to a 2QPT, given that this singularity originates exclusively from the elements of ρ ij, in
equation (1). To determine the origin of this unusual behavior, we focus on the Ising longitudinalmodel and
analyze the elements of the reduced densitymatrix of the two central spins (ij) that we denote by
r rº á ñ( ) ∣ ∣A B A B, ij as a function of longitudinal field,Bx, for different values of the transversemagnetic fieldBz.
For simplicity of notationwe remove fromnowon the super indices i, j. Given the symmetries of the
Hamiltonian, it suffices to consider just two differentmatrix elements, r r= á    ñ( ) ∣ ∣1, 1 ij and
r r= á    ñ( ) ∣ ∣1, 2 ij , for analyzing the behavior of the concurrence. As plotted in the top panels offigure 8,
ρ(1, 2) is discontinuous along the 1QPT transition, while ρ(1, 1) presents a spike signalling a singularity in itsfirst
derivative. In the bottompanels, we display our results regarding their scaling behavior as a function of the
relevant scaling parameterκ1 (see equation (6)). Interestingly enough, as shown in panel (c), thematrix element
ρ(1, 2) follows exactly the same scaling proposed for 1QPT [23], while it is derivative of thematrix element
ρ(1, 1) (∂Bxρ(1, 1)) and not thematrix element itself which scales properly for different values of L andBz.
Furthermore, it can be shown that all the discontinuities present in elements such as ρ(1, 2) cancel out when
computing the concurrence. As a result, the concurrence  shows a singularity in thefirst derivative as it would
happen in a 2QPT and it is precisely ¶Bx the quantity which fulfills the FSS and not  itself. The same analysis
applies to the spin-1XXZ chainwith on-site anisotropy, where a dip in the negativity,  , at the critical point
appears. This behavior has the same origin as the previously reported spin-1/2 case and, therefore, it is the
derivative of  and not the negativity itself which fulfills the FSS for 1QPTs.Hence, in these cases, a singularity
in the first derivative of the concurrence/negativity (given and the concurrence/negativity are continuous
functions), does not signal a 2QPT as it was conjectured in [18].

5. Conclusions

In conclusion, in this workwe have analyzed pairwise entanglement behavior in diverse 1QPT transitions driven
by 2-local Hamiltonians.We have shown the dramatic importance offinite size effects when 1QPToccur in the

Figure 8.Matrix component behavior for the reduced densitymatrix r r= á ñ( ) ∣ ∣A B A B,ij ij of the two central spins (i, j) for a chain of
length L=12 along the 1QPT for Isingmodel in the longitudinalfield (equation (2)). For simplicity of notationwe remove the indices
(i, j), see text. Panel (a) shows a discontinuity in ρ(1, 2) at the critical point for different values ofBz; (b) ρ(1, 1) presents a spike at the
critical point; (c) scaling behavior of renormalized ρ(1, 2) as a function of the scaling parameterκ1; (d) scaling behavior of r¶

~ ( )B 1, 2x

as a function ofκ1. Results obtainedwith ED.
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nearby region ofmulticritical point containing also 2QPT. To illustrate this fact, we have shown examples of
1QPT in 2-body-Hamiltonians inwhich pairwise entanglementmeasures are continuous across the phase
transitionwhile their first derivatives are not.We have extended our results by using non integrablemodels in
which the same behavior can be observed. A deeper analysis shows that the behavior is inherited from the two
body reduced densitymatrix elements, which for 2-localHamiltonians, are linked to the non-analyticities of the
ground state energy. Ourmain result has been to demonstrate that forfinite systems, the order of theQPT in
symmetry broken phases is given by the scaling behavior of their bipartite entanglement and not by its non-
analytical character. Our results should allow to better determine the order and boundaries ofQPTs near
multicritical points.
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ARTICLE 2

Using random boundary conditions to simulate disordered

quantum spin models in two-dimensional systems

Initial questions and motivations

The study of QSL phases, which are introduced in 2.3, is currently a hot
research topic within the condensed matter community. Due to its charac-
teristics, a QSL phase is very elusive for both theoretical and experimental
researchers. In the theoretical side, different numerical techniques have been
recently used to tackle the issue, for instance Variational Quantum Monte
Carlo, 2D-DMRG, or ED of up to 40 particles systems. In this article, we
provide a different approach to study the issue. The details of the method,
which consists of random boundary conditions, are extensively explained in
Sec.5.2. It is well know that for small systems, as the ones we are restricted,
the geometry of the lattice critically influences the results. A particular lat-
tice geometry may not be suitable to reproduce the ordered phase expected
in the thermodynamic limit and, thus, may give a different ground state in
the finite lattice. The question arisen at this point is the following: ’In a
QSL phase, where no symmetry is broken, has the lattice geometry a minor
influence?’ With random boundaries we can reproduce, in a small lattice,
different geometries which can allow different ordering vectors to fit in the
lattice. In an ordered phase, we expect that for a given lattice geometry,
the set of random phases which favors the thermodynamic ordering vector
will minimize the energy. The corresponding ground state will be the best
guess which we can make of the thermodynamic one. As we get away from
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this ”optimal” set of random phases we will obtain a larger energy and a
ground state which progressively gets away from this ”optimal” one. But is
this expected feature going to hold as well for a QSL phase? To check the
validity of our intuitive idea we take as a model the XY spin model in the
2D SATL. In this model two QSL phases are expected though there is no
totally consensus about their nature and exact extension.

Main results

In this article, we have successfully applied our novel method to the XY
model in the SATL. We can identify the two conjectured QSL phases with
several figures of merit which we report. Our work opens the door to use
RBC to study some other systems where a QSL phase is expected. However,
the limited size of the systems which can be diagonalized does not allow to
determine with precision the boundaries of the QSL phases. A finite size
scaling of our results has been discarded for the same reason.
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Disordered quantum antiferromagnets in two-dimensional compounds have been a focus of interest in the last
years due to their exotic properties. However, with very few exceptions, the ground states of the corresponding
Hamiltonians are notoriously difficult to simulate making their characterization and detection very elusive, both
theoretically and experimentally. Here we propose a method to signal quantum disordered antiferromagnets by
doing exact diagonalization in small lattices using random boundary conditions and averaging the observables
of interest over the different disorder realizations. We apply our method to study the Heisenberg spin-1/2 model
in an anisotropic triangular lattice. In this model, the competition between frustration and quantum fluctuations
might lead to some spin-liquid phases as predicted from different methods ranging from spin-wave mean-field
theory to 2D-DMRG or PEPS. Our method accurately reproduces the ordered phases expected of the model and
signals quantum disordered phases by the presence of a large number of quasidegenerate ground states together
with an undefined local order parameter. The method presents a weak dependence on finite-size effects.

DOI: 10.1103/PhysRevB.95.195167

I. INTRODUCTION

The characterization of disordered quantum antiferromag-
nets (AFs) is currently one of the open challenges in modern
condensed matter [1]. Ground states of ordered phases in
quantum spin systems manifest themselves by long-range
order (LRO) accompanied by the presence of local order
parameters. The situation is drastically different when disorder
arises due to quantum fluctuations and frustration, i.e., the
impossibility of simultaneously minimizing all local energy
constrains. Such disordered spin systems are expected to lack
LRO and do not have local order parameters associated with
them. Their presence can, in some cases, be confirmed by
the topological entanglement entropy, a subleading term in
the entanglement entropy which is invariant with the size
of the plaquette [2–4]. However, determining the topological
entanglement requires the precise knowledge of the ground
state wave function which is often impossible due to the
nonintegrability of most AF frustrated models. The importance
of these phases, often dubbed topological, is both of funda-
mental and practical importance. They are at the forefront
of present knowledge of strongly correlated systems and
possess several features that make them very appealing for
possible technological applications. They also lead to a rich
variety of exotica phenomena such as fractional excitations
and non-Abelian statistics [5].

Spin-liquid (SL) phases are quantum disordered nonmag-
netic phases that do not spontaneously break the spin rotation
and discrete translational symmetry of the spin Hamiltonian
[6]. Recently, they have been proven to be the ground state
of some Hamiltonians [7,8] and SL candidates have been
experimentally discovered in a vast range of materials [9–19].
Their existence seems to be intimately related to geometrical
frustrated systems. A prototypes of frustrated spin models are

*abel.yuste@uab.cat

antiferromagnetic Heisenberg Hamiltonians in the spatially
anisotropic triangular lattice (SATL), where the anisotropy is
due to the different spin couplings along the lattice directions.
Recently, first attempts to understand such systems have been
realized with ultracold bosonic atoms in optical lattices [20].
Despite the apparent simplicity of the model, there is presently
a clear disagreement in the phase diagram of the system,
in particular, in the existence, extension, and nature of the
disordered phases. It has been conjectured that for such a
model a quantum SL phase appears between commensurate
and incommensurate order [21]. Such claim is controversial in
the present literature. The AF Heisenberg model in the SATL
has been theoretically approached with different techniques.
These include, among others, mean-field methods such as
modified spin-wave theory (MSWT) [21–23] or the cluster
mean-field approach [24–26] and numerically variational
methods such as 2D-DMRG in a cylinder [27–29], projected
entangled pair states (PEPS) [30], and variational Monte Carlo
[31–33]. Exact diagonalization (ED) in small plaquettes (see
for instance [22,27,34–37]) have also been usually used to
contrast results with the much more sophisticated techniques
mentioned above.

Here, we present a different way to approach generic
disordered quantum spin systems by using random boundary
conditions in an otherwise ED method. As is customary in the
treatment of disordered systems, for each realization of the
disorder, i.e., for each set of random boundary conditions, we
calculate the observables of interest and perform at the end an
average. When performing ED, one of the observables of inter-
est that can be easily computed is the static spin structure factor,
S(�k), over the first Brillouin zone which is also a very relevant
measurement in the experiments. In the ordered phases, S(�k)
displays the relative orientation of the spins in the different
lattice sites and its maxima straightforwardly translate into
the ordered pattern that the spins acquire in the lattice. In the
disordered phases, it is reasonable to expect that S(�k) will
blur the well-defined peaks associated with ordered patterns
substantially broadening the maxima over the first Brillouin

2469-9950/2017/95(19)/195167(8) 195167-1 ©2017 American Physical Society
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zone. Our approach, therefore, has a twofold purpose: first, to
get rid of the rigidity imposed by periodic or open boundary
conditions which forces the system to order depending on
the size and geometry of the plaquette; second, to allow the
possibility of a large degeneracy of ground states (each corre-
sponding to different random boundary configurations) which,
in turn, can translate into a broader S(�k) in the Brillouin zone
obtained from the average of the different realizations. Our
method is inspired by the work of Santos et al. [38] which used
twisted random boundary conditions to study a Fermi-Hubbard
model in a two-dimensional optical lattice. Their results for
small lattices were in very good agreement with the ones
obtained by quantum Monte Carlo with much larger lattices
and did not present the sign problem inherent in this technique.
Here we show that ED with random boundary conditions for
really small clusters consisting of N = 12, 16, or 24 spins
provides relatively independent cluster size results whereas the
size and geometry of the cluster critically influence the open
boundary condition (OBC) or periodic boundary condition
(PBC) results. We focus here on the AF spin-1/2 XX model
in the SATL, although the method we present is completely
generic and can be adapted to study any other quantum spin
model. The Heisenberg model in the SATL has been recently
addressed in [37] using twisted boundary conditions but in a
different spirit since the set of twisted boundaries has been used
to select as the ground state the one that minimizes the energy
(or the first excited state). Such a choice still depends strongly
on the geometry and size of the plaquette and we will show that
it might be insufficient to study disordered quantum phases.

Before proceeding further with the details of our research,
we briefly outline our major results here. We analyze the
quantum phase diagram of the XX model in the SATL using
ED with random boundary conditions denoted generically
by {ϕi}. For each boundary configuration we diagonalize
the Hamiltonian and find the eigenstates and eigenvalues.
First, in the ordered phases of the model we find that there
is, in general, a single random configuration that leads to
the lowest ground state energy, E0,min. Any other random
configuration, {ϕl}, whose ground state energy E0,l is very
close to E0, min has a large fidelity with the latter (overlap)
Fmin ,l = |〈�0, min|�0,l〉|2 � 1. The expectation value of any
observable, Ô, obtained from such close states fulfills that
Tr(Ô |�0,l〉〈�0,l |) ∼ Tr(Ô |�0, min〉〈�0, min|). We also find in
some ordered phases configurations whose ground state
energies E0,l � E0, min and Fmin ,l = 0. We observe that such
configurations correspond to ground states whose spins are
locally rotated but compatible with the given order, as happens
with the different chirality of the spiral phase. Second, for
some values of the lattice anisotropy, we observe that there are
many random boundary configurations, {ϕs}, whose ground
state energies E0,s are quasidegenerate with the configuration
leading to lowest energy E0, min, but whose fidelity with
the latter can take arbitrary values, i.e., Fmin ,s ∈ (0,1). Such
energetically very close configurations can have very different
expectation values of the same observable. The values of the
lattice anisotropy for which such effects are present are in
very close agreement with the predicted values for quantum SL
using PEPS [30]. Third, the above features arise independently
of the size/geometry of the cluster used to perform ED although
finite-size effects are present.

The paper is organized as follows. In Sec. II, we introduce
the AF spin-1/2 XX model in the SATL and describe the
state of the art concerning its phase diagram. In Sec. III, we
introduce our approach and explain in which way random
boundaries are imposed. In Sec. IV, we present and discuss
our results, and finally in Sec. V we conclude.

II. AF SPIN-1/2 XX MODEL IN THE SATL

The Bose-Hubbard Hamiltonian in the triangular lattice
reads

ĤBH =
∑
〈i,j〉

(
tij

2
b̂

†
i b̂j + H.c.

)
+ U

2

∑
i

n̂i(n̂i − 1), (1)

where b̂
†
i (b̂i) creates (annihilates) a boson on site i, n̂i = b̂

†
i b̂i

is the boson number operator, tij is the tunneling parameter
on the link (i,j ), and U is the on-site repulsive interaction.
The anisotropy of the model is given by tij which translates
into two different tunneling parameters: t1 corresponding to
tunneling along the horizontal links and t2 for the diagonal
ones, as sketched in Fig. 1. In the limit of hard-core bosons
(U → ∞), the model can be mapped onto a spin model using
the Holstein-Primakov transformation,

b̂†
α −→ S+

α = Sx
α + iSy

α,

b̂α −→ S−
α = Sx

α − iSy
α, (2)

which maps creation and annihilation operators onto spin
operators Sα and the Bose-Hubbard Hamiltonian becomes the
spin-1/2 XX model,

Ĥs =
∑
〈i,j〉

tij
(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

)
. (3)

Although representations (1) and (3) are equivalent in the
hard-core limit, in what follows we diagonalize directly (1).
In this limit, the second term in Eq. (1) vanishes and the

t2/t1=0 t2/t1=1 t2/t1 2
1D-Néel 2D-NéelIsotropic lattice, spiral order

? ?

6 0 6
6

0

6

6

0

6

6 0 6 6 0 6
6

0

6

FIG. 1. Schematic phase diagram of the AF XX model in the
SATL as a function of t2/t1, where t2 (t1) corresponds to the spin-spin
interaction along the diagonal (horizontal) bonds. On the top, the static
spin structure factor, S(�k), for the three known ordered phases of the
system: Néel order in the 1D uncoupled chains (t2/t1 = 0), spiral
order in the isotropic lattice (t2/t1 = 1), and Néel order between the
different 1D chains for t2 � 2t1. On the bottom, schematic drawing
of the spin directions in the above mentioned phases. The ? symbols
mean that there is no consensus on the nature of these phases.
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lattice filling factor is 〈ni〉 = 1/2. To extract the ordering of the
different phases it is standard to analyze two-body correlations
in momentum space,

n(�k) = 1

N

∑
i 
=j

e−i�k(�ri−�rj )〈b̂†
i b̂j + H.c.〉, (4)

which in the experiments with ultracold gases is obtained
by means of the time-of-flight technique. This quantity
straightforwardly maps onto the static spin structure factor
for spin-1/2,

n(�k) → S(�k) = 1

N

∑
i 
=j

e−i�k(�ri−�rj )
〈
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

〉
, (5)

where the sum extends to all the lattice sites of the cluster
and the expectation value is taken over the ground state of the
system. From S(�k) can be extracted both the ordering vector
�Q = (Qx,Qy), which corresponds to the maxima of S(�k) and

indicates classical order, and an order parameter,

M =
√

S( �Q)/N, (6)

which signals LRO in ordered states. Before proceeding further
it is instructive to review the classical phase diagram which
is obtained by replacing at each lattice site the spin operator
for a classical rotor �Si = S(Qclas

x xi,Q
clas
y yi), up to a global

phase factor. The classical ordering vector �Qclas lies in the XY
plane and corresponds to the configurations that minimize the
energy given by the Hamiltonian when the spin operators are
replaced by spin vectors, H = ∑

tij �Si
�Sj . In spin-wave theory,

such classical ordering is the reference state to which quantum
corrections are added and then the energy is minimized self-
consistently. Minimization of the energy leads (at Qy = 0) to
the following conditions:

Qclas
x = ±π for t2 = 0,

Qclas
x = ±2 arccos

(
− t2

2t1

)
for 0 � t2/t1 � 2,

Qclas
x = ±2π for t2/t1 > 2. (7)

The classical phase diagram of the model is sketched in
Fig. 1, where the classical spin configurations together with
their corresponding S(�k) are displayed. Notice that at t2 = 0,
the system reduces to AF uncoupled 1D chains that order
classically in the Néel configuration. For such order, S(�k) has
a maximum along Qclas

x = ±π and is completely uncorrelated
(disordered) along the y direction. At the isotropic point,
t2/t1 = 1, the system has spiral order (Néel 120◦). The
maxima of S(�k) are given now at the vertex of the hexagon
(Qclas

x ,Qclas
y ) = ±�b1; ±�b2; (b2x, − b2y); (−b2x,b2y), provided

by the triangular lattice. Here, �b1 = (4π/3,0) and �b2 =
2π (1/3,1/

√
3) are the inverse vectors of the lattice while the

direct ones are given by �a1 = (1,0) and �a2 = (1/2,
√

3/2) with
unit lattice constant. Finally, for t2 � 2t1, classically the AF or-
der is given by a Néel configuration along the diagonal chains,
while horizontal chains display antiferromagnetic order, as
schematically represented in Fig. 1. In this case, the triangular
lattice becomes effectively a rhombic one and S(�k) displays the
square order with maxima at �Qclas = (±2π,0),(0,±2π/

√
3).

We have also depicted in Fig. 1 the regions where there
is presently not a clear consensus on the nature of the
quantum phases. Lately, the possibility has been pointed
out that quantum SL phases appear in the transition from
commensurate to incommensurate (i.e., the spins order with a
period which is irrationally related to the lattice space) order.
No direct evidence of such phases and their extension has
already been unambiguously provided. Numerical results for
the XX model using PEPS [30] supports such claim. However,
MSWT [22] only finds signatures of the SL phase between the
spiral and the 2D-Néel phases. Recently, calculations for the
Heisenberg model using ED with twisted boundary conditions
[37] and 2D-DMRG [28] seem compatible with yet another
ordering, the collinear antiferromagnetic (CAF) one.

III. METHOD: ED WITH RANDOM
BOUNDARY CONDITIONS

Exact diagonalization is normally performed either on
a cluster without considering links in the boundaries, the
so-called open boundary conditions (OBC), or closing the
plaquette with periodic boundary conditions (PBC). For
clusters as small as the ones to which we are usually restricted
for computational reasons, these boundary conditions have
a strong influence on the results. That is so because both
the cluster geometry and the boundary conditions act as a
rigid box and the results obtained are conditioned by these
two factors. Ideally, one should increase the size of the
cluster used for ED until border effects become negligible,
but this is usually not possible due to the fact that the
corresponding Hilbert space grows exponentially imposing
severe restrictions on computational resources. A way that we
believe can substantially mitigate the effect of the boundaries
and the geometry is imposing random boundary conditions.
We define a set of random phases {ϕij } corresponding to
complex tunneling elements hopping in/out from the cluster
ti,j → ti,j e

iϕij , tj,i → ti,j e
−iϕij . Where (i,j ) correspond to

the links which can be associated with periodic boundary
conditions. In the language of the Bose-Hubbard Hamiltonian
this corresponds to hopping in and out of the cluster with a
phase; in spin language this is equivalent to a spin twisting.

We have used two criteria to define the random boundary
conditions. The first one, denoted by RBC, has been used pre-
viously in [37,38]. In RBC, for each realization i two different
random phases are defined, (φ1,φ2)i , as sketched in Fig. 2.
The phase φ1 (in Fig. 2 denoted by blue color) corresponds
to tunneling in the cluster through the rightwards (leftwards)
boundary links, t1e

±iφ1 along horizontal couplings and t2e
±iφ1

along diagonal ones. The phase φ2 (denoted by red color) cor-
responds to the upwards (downwards) boundary links which
always occur through diagonal couplings and the tunneling
reads t2e

±iφ2 . The link in the corner, since it can be interpreted
as both a leftward and an upward, acquires a phase, φ3 =
φ1 + φ2 (pink line). The rest of the boundary links are defined
so as to keep the Hamiltonian Hermitian. Such set of boundary
conditions can be interpreted as a twist of the lattice along the
directions determined by the direct vector of the lattice.

We have also considered a less restrictive configuration,
denoted by RRBC and also schematically shown in Fig. 2 by
angles θi . These boundary conditions cannot be interpreted
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FIG. 2. Dashed lines indicate tunnelling along the horizontal
links (t1) while solid lines indicate tunnelling along diagonal links
(t2). Random Boundary Conditions (RBC) can be understood as the
simultaneous twisting of the lattice along the horizontal direction
with an angle φ1 (blue lines) and along the diagonal direction with
an angle φ2 (red lines). The link in the corner gets a phase φ1 + φ2

(pink lines). We also consider RRBC, depicted in the figure by the θi .
Here, all the boundary tunneling links depicted in the figure from site
i acquire the same random phase θi . For instance, in the figure, if a
boson in site 8 tunnels into sites 1 or 5, it acquires the same random
phase θ8. The phases of the boundary links which are not shown are
defined so as to keep the Hamiltonian Hermitian.

as a twist of the lattice anymore. However, they provide a
larger flexibility on searching for disordered quantum spin
systems.

With the above constraints, we have performed ED on
rectangular clusters of N = L × W = 12, 16, and 24 sites,
where L corresponds to the size of the chain and W the
number of chains in the plaquette. Diagonalization is done by
keeping only the sector Sz = 0 where the ground state lies. We
generate a set of random phases for the boundary conditions,
{ϕk}i , and for each configurations i calculate the ground state
energy E0,i , the static spin structure factor Si(�k), the ordering

vector �Qi , and the order parameter Mi =
√

Si( �Qi)/N . All the
above quantities obviously depend on {ϕk}i and on the size and
geometry of the lattice. Finally, we perform the average of the
quantities of interest over the random configurations, which
we denote with 〈. . .〉d . For each realization of RRBC, the set
of random phases needed is sensibly larger than for RBC.
For computational reasons we keep the number of realizations
equal to 200 in both cases. Therefore, the results obtained
from RRBC are less accurate. Nevertheless, as we shall see,
our averaged results remain quite similar.

IV. RESULTS AND DISCUSSION

For simplicity, unless stated otherwise in what it follows
we refer to the RBC method. The first thing which is worth
noticing is the relative independence of the results on the
geometry of the cluster. In Fig. 3, we show the averaged static
spin structure factor, 〈S(�k)〉d , at the isotropic point, t2/t1 = 1,
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FIG. 3. Static spin structure factor S(�k) obtained from ED for different cluster geometries at the isotropic point, t2/t1 = 1. Upper panel:
Open boundary conditions (OBC). Middle panel: Periodic boundary conditions (PBC). Lower panel: Random boundary conditions (RBC). For
the RBC, the averaged value over all the random configurations, 〈S(�k)〉d , is depicted. The limit of the first Brillouin zone is shown with a white
line.
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FIG. 4. Number of configurations, Nc(%), whose normalized
ground state energy fulfills εi < 1 (see text) for a fixed value of
the anisotropy t2/t1 using RBC. The two maxima signal the predicted
quantum SL phases.

for a cluster of 4 × 3, 4 × 4, and 6 × 4 sites and compare our
results with the ones obtained imposing either OBC and PBC.
On one hand, the rigidity of OBC reflects into a wrong CAF
order for all lattices sites, whereas it forces PBC to dramatically
fail for the 4 × 4 lattice since such geometry suppresses spiral
order. On the other hand, RBC is the only case which gives
the correct order for all geometries, signaled by maxima at the

corners of the hexagon in the first Brillouin zone that indicates
the correct spiral order.

More interesting is to look into the conjectured disordered
quantum phases. Notice that when sampling with random
boundary conditions there can be configurations, |�0,i〉, whose
corresponding ground state energy, E0,i , substantially differs
from the lowest achieved within the configurations, E0, min.
We define a renormalized energy, εi = E0,i−E0, min

E0, min
× 100, and

consider just those configurations with εi < 1, i.e., with an
energy not larger than 1% of E0, min. As a first proof of
concept, we plot the number of configurations, Nc, which lie
in such interval as a function of t2/t1. Our method shows
that, independently of the geometry of the lattice, there are
two regions around t2/t1 ∼ 0.6 and ∼1.5 where there exist
many configurations whose energy is close to the minimal
one as depicted in Fig. 4. These regions coincide with the
conjectured SL phases predicted in the literature. For all other
regions of the phase diagram—corresponding to the ordered
phases—the number of compatible configurations decreases
keeping a flat structure. It is also interesting to show that, in
agreement with all previous calculations, the ordered 2D-Néel
order seems to appear already for values of t2/t1 � 1.7 and
stabilizes before its classical value, t2/t1 � 2, due to quantum
fluctuations. From now on, all quantities averaged over the
disorder, 〈. . .〉d , correspond to the average only over those
configurations Ni whose ground state energy fulfills εi < 1
for each value of t2/t1.

In order to infer the possible orders of the ground states
for a given value of the anisotropy t2/t1, we examine the
ordering vector Qx at (Qy = 0). In Fig. 5, we show both
the distribution of Qx (color map) as well as its averaged
value over the random configurations (dashed black line).
It is important to recall that ordered classical phases have
a well-defined value of Qx . Thus, Qx/π = 1, 4/3, and 2
correspond to perfect 1D-Néel chains, to the isotropic lattice
t2 = t1, and to the 2D-Néel in the square lattice. ED studies
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FIG. 5. Color map distribution of the ordering vector, Qx/π , for a sample of 200 set of random phases {ϕi,j } defined as RBC (RRBC) in
panels (a) [(b)], as a function of the anisotropy t2/t1. Horizontal lines show the classical values for the ordered phases, Qx/π = 1,4/3, and 2,
corresponding to 1D Néel, isotropic lattice, and 2D Néel, respectively. The black dashed line depicts 〈Qx〉d , i.e., the averaged value over the
disorder, and the red solid line depicts Qmin

x corresponding to the ground state with minimum energy, Eo, min.

195167-5



A. YUSTE, M. MORENO-CARDONER, AND A. SANPERA PHYSICAL REVIEW B 95, 195167 (2017)

with the usual boundary conditions show that Qx/π presents
a smooth dependence on the anisotropic parameter t2/t1. It
increases from its lower value 1 (at t2/t1 = 0) until t2/t1 � 1.6,
where it abruptly jumps to the value 2 signaling the transition to
the 2D-Néel order. Neither ED with periodic or open boundary
conditions or MSWT show a signature of the presence of a SL
around t2/t1 ∼ 0.5. An inspection of Fig. 5 shows that, as
expected for t2 > 0, the ordering vector Qx increases over its
classical value 1 and the system is no longer in the uncoupled
1D chain limit. At values t2/t1 ∼ 0.5,1.4 we observe that the
distribution of Qx spreads significantly. This translates, as we
will see later, into a broader filling of the first Brillouin zone,
since a wide range of k vectors is, in these regions, allowed.
At the isotropic point, t2/t1 = 1, and only there, Qx/π = 4/3,
while the ordering vector smoothly changes along the spiral
phase. It is interesting to remark that the above features are
reproduced in all the plaquette sizes and geometries. They are
also quite independent on the way we choose the random
boundary conditions as indicated in Fig. 5 by comparing
panels (a) corresponding to RBC using the configurations
fulfilling the bias ε < 1 and panels (b) corresponding to RRBC
considering, here, the bias ε < 5. To complete the study, we
also display Qmin

x (thick red line) corresponding to the ordering
vector associated with the lowest ground state energy, E0, min,
as in the study of Ref. [37]. As expected, such quantity has
a more pronounced dependence on the lattice geometry and
size.

In Fig. 6 we plot 〈M〉d , i.e., the order parameter defined in
Eq. (6) averaged over the Nc configurations fulfilling ε < 1
for each t2/t1. The occurrence of a SL phase, in contrast to
ordered phases, is characterized by the absence of LRO, and
thus, the disappearance of the order parameter M . Notice that
while this should occur strictly speaking in the thermodynamic
limit, for finite-size lattices what it is expected is a decrease of
M , i.e., a broader maxima in S(�k) as compared to the ordered
phases. This is what we clearly observe around t ∼ 1.3 for all
the lattices sizes we have used. Another dip should appear also
around t ∼ 0.6, but we just vaguely detect it only for the 4 × 6
lattice. This is so because for t2 � 0.5 the system is in the 1D
weakly coupled AF chain limit meaning that it is completely
disordered along the y direction. As depicted in Fig. 1 and
Fig. 3, S(�k) in this limit corresponds to a constant value along
ky which in turn translates into a small value of M in this
region. This fact masks the decrease of M around t2/t1 = 0.6
for small lattices. However, as we will show latter, the presence
of a SL in this region can be unambiguously signaled by the
lack of convergence on the order parameter, M , obtained from
the different configurations that are compatible with the ground
state of the system.

The effect of random boundary conditions to study dis-
ordered quantum spin phases can be summarized in Fig. 7
where we concentrate most of our results taking as a repre-
sentative case a plaquette of 6 × 4 sites. In the first row we
plot |〈�0, min|�0,i(φi

1,φ
i
2)〉| as a function of the renormalized

energy, ε, for some representative values of the anisotropy
t2/t1. Note that when plotting as a function of ε, we are sorting
the configurations by their ground state energy. The vertical
dashed line indicates those configurations whose ground state
energy differs by less than 1% of E0, min (i.e., ε < 1) and
which are used to perform the averages. The first column
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FIG. 6. Order parameter, 〈M〉d , averaged over the disorder as a
function of t2/t1 for different lattice sizes and geometries. The results
are obtained using RBC.

displays for t2/t1 = 0.1 the generic behavior of the system for
0 < t2/t1 � 0.5. The overlap with any configuration smoothly
decreases as the ground state energy of the configurations
increases. Nevertheless, all configurations close in energy
to E0, min have the same order parameter M and 〈S(�k)〉d
corresponds to weakly coupled 1D Néel chains. As depicted
in the second column, for t2/t1 = 0.57 a drastic change
appears. Many different configurations are quasidegenerate
in energy, but their corresponding ground states can be very
different as indicated by all possible values of the overlap.
The order parameter of these quasidegenerate configurations
spans all possible values between the M associated with 1D
Néel chains and the one associated with spiral ordering.
Interestingly enough, the ground state energy of any random
configuration does not deviate more than ∼3% from the
minimal one. These features are compatible with a quantum
SL, a disordered system with a large variety of superposed
ground states, as for instance is a resonating valence bond
state (RVB). The associated 〈S(�k)〉d is depicted at the bottom.
Our calculations show that this phenomenon can persist till
t2/t1 ∼ 0.8. The precise border depends on the size/geometry
of the lattice. At the spiral phase, here depicted in the third
column by its most representative case, t2/t1 = 1, two almost
degenerate orthogonal ground states with minimal energy
appear. They correspond to the two chiral ground states known
to exist in the spiral phase. Two branches of ground state
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FIG. 7. First row: Overlap between the ground state which minimizes the energy for a fixed t2/t1, |�0, min〉, and the ground states obtained
for the other random configurations of the sample, |〈�0, min|�0,i(φi

1,φ
i
2)〉|, as a function of the renormalized energy, ε. The vertical dashed line

indicates the bias on the energy set to select from the random sample of boundary conditions only those ground states which are energetically
closed to the lowest one, with energies which are not larger than 1% of E0, min (ε < 1). Second row: Order parameter, M , as defined in the
text. In the ordered phases, M remains the same for all energetically close configurations; for quantum disordered systems this is not the case
showing that an order parameter can be defined on average but it is a meaningless quantity. Third row: Static spin structure factor, 〈S(�k)〉d ,
averaged over the configurations fulfilling ε < 1. Notice that, for the ordered phases, 〈S(�k)〉d is as expected and for the disordered ones the
maxima are blurred. Fourth row: Quantum phase diagram obtained from RBC with two possible SL phases between the ordered ones.

configurations appear close in energy; the upper one has
an overlap |〈�0, min|�0,i(φi

1,φ
i
2)〉| � 1 if they share the same

chirality and zero if they correspond to different chirality. The
order parameter, M , attains the same value independently of
the chirality, stressing thus the character of the ordered phase.
For t2/t1 ∈ [1.3,1,7] similar features to those in t2/t1 ∼ 0.6
appear. We depict the behavior of such phase at t2/t1 = 1.5
where again a large number of quasidegenerate configurations
give an overlap which runs between 1 and 0. In a similar
fashion to that which happens for t2/t1 ∼ 0.6, there is not
a defined value of M . In this way, the values in the SL
regions in Fig. 6 are merely the averages of the sampling
but are meaningless in the sense that M is not well defined
in these regions. The corresponding averaged spin structure
factor over the first Brillouin zone, 〈S(�k)〉d , shows indeed broad
maxima in the predicted disorder phases as compared to the
ordered phases. Finally, for t2/t1 > 1.7, we start to recover
the results corresponding to the 2D-Néel ordered phase in the
square lattice. There are very few configurations whose ground
state energy is close to the lowest one. The order parameter
for the lower energy configurations is quite similar, and the
averaged spin structure factor shows the expected peaks in
the first Brillouin zone corresponding to the 2D-Néel order
as indicated by the 4th row of Fig. 7. At the bottom of the
plot, we add the inferred phase diagram one can extract from
our results. It shows the ordered phases together with the
presence of two regions compatible with the existence of a
gapped SL.

V. CONCLUSIONS

We have approached quantum AF spin systems using ED
with random boundary conditions. In this work, we have
concentrated our efforts in the spin-1/2 XX model in the SATL,
aiming at obtaining a signature of the predicted quantum SL
phases. Our results show that there are regions of the phase
diagram where many different quasidegenerate ground states
are compatible. In these regions, the associated observables
(i.e., the static spin structure factor, ordering vector, and order
parameter) are, however, very different.

The presence of these regions, which we identify as
quantum SL, agrees quite closely with numerical predictions
obtained for the same model with a variational method like
PEPS [30]. Regarding finite-size effects, we would like to
remark that our results are general, in the sense that the two
regions characterized by a large number of quasidegenerate
energy ground states persist in all cases. However, the precise
location at which such degeneracy appears and how long it
extends depend on the lattice geometry and size.

Our method not only provides significant signatures of the
disordered quantum phases, but it is also robust in reproducing
the features of the ordered phases, independently of the
sample used to simulate random boundaries (if it is large
enough), the size of the plaquette, and the energy bias used
to select the compatible configurations. It seems reasonable to
conclude that the ordered phases are robust in front of quantum
fluctuations while the disordered ones are clearly enhanced
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by them. Finally, it is worth mentioning that the method we
propose is completely general and can be applied for any 2D
quantum spin disordered system not only with ED but also
with any numerical method relying on the specific choice of
boundary conditions.
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ARTICLE 3

Signatures of quantum spin liquids in small lattices

Initial questions and motivations

This work is an extension of the previous article. The motivation was twofold.
On the one hand, to apply our novel method to the study of other paradig-
matic spin models to further check its truthfulness. On the other hand, to
deepen into what we can and what we cannot observe using RBC. In con-
crete, we were concerned whether random boundary conditions could detect
or not two of the main characteristics of a QSL, i.e., massive ground state
degeneracy and long range entanglement. We focus in two models. The
first one, the AF spatially completely anisotropic triangular lattice, has been
previously studied just by means of MSWT and therefore there is a lack of
knowledge on its phase diagram. The second one, the J1 − J2 model, has
been recently studied in several works which point towards a phase diagram
with a QSL with a well defined location.

Main results

We successfully show that we can find signatures of QSL phases in both
studied models using small lattices (up to 24 sites). The first signature cor-
responds to a massive ground state degeneracy which in our framework means
that many different random boundary configurations lead to a ground state
which minimizes the energy. These degenerate or compatible ground states
differ a lot among each other giving a picture which resembles a resonating



86 Signatures of QSL in small lattices

valence bound solid. Furthermore, in the areas where the putative QSL is
located, we can detect an increase of geometric entanglement. For both mod-
els under study, the areas of the phase diagram where the QSL signatures
are found are in accordance with the present literature. However, strong
finite size effects avoid us to make a precise estimation of their extension and
location. In conclusion, this work provides a sharpened interpretation of the
RBC presented in the previous one with a clear description of the signatures
of QSL which can be obtained.



Signatures of quantum spin liquids in small lattices

A. Yuste,1 D. Castells-Graells,1 and A. Sanpera1, 2, ∗
1Departament de Física, Grup d’Informació Quantica, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

2ICREA, Psg. Lluís Companys 23, 08010, Barcelona, Spain.

Quantum spin liquids remain one of the most challenging subjects of quantum magnetism. Char-
acterized by massive degenerate ground states that have long range entanglement and are locally in-
distinguishable, highly demanding numerical techniques are often needed to describe them. Here we
propose an easy computational method based on exact diagonalization with engineered boundary
conditions to unveil their most significant features in small lattices. We derive the quantum phase di-
agram of diverse antiferromagnetic Heisenberg models in the triangular lattice. For all studied cases,
our results are in accordance with the previous results obtained by means of sophisticated variational
methods.

I. INTRODUCTION

Some entangled ground states of spin systems do not
order even at zero temperature. The lack of order, which
is originated by strong quantum fluctuations on the spin
orientations, prevents their characterization by means
of local order parameters. Such quantum disordered
states, termed generically quantum spin liquids (QSL),
are linked to a highly degenerated ground state and con-
tain long range entanglement. Moreover, they are locally
indistinguishable [1–3], meaning that they cannot be de-
tected or distinguished using local measurements.

QSL are often caricatured as a liquid of singlets, where
the singlets formed between nearby spins strongly fluc-
tuate from one configuration to another. Due to such
fluctuations, the ground state of the system is far from a
product state, implying that entanglement in QSL plays
a crucial role. Ground states of local spin Hamiltonians
are normally short range entangled, as evidenced by the
fact that the entanglement entropy,S, of any bipartite cut
of the system follows an area law: S(L) ∼ LD−1, where
D is the dimension of the system and L the linear size
of the boundary separating both regions. Corrections to
this law appear, for instance, in critical gapless quantum
phases or in topologically ordered states. In 2D, the later
fulfill S(L) ∼ L + b0γ, where γ is a universal correction,
independent of the lattice size that signals topological
order [4–6].

The combination of the above features makes unfea-
sible the description of QSL in terms of effective mean
field approaches with fluctuation corrections over the
mean field ansatz. Hence, finding the eigenstates of the
corresponding Hamiltonians mostly relies, for the time
being, in numerical approaches and/or complex varia-
tional ansatzes in very large lattice systems. The numer-
ical methods are, of course, severely hindered by the re-
quirement of large lattices.

Here we show, however, that the relevant signatures
of QSL in frustrated disordered 2D systems can be cor-

∗Electronic address: anna.sanpera@uab.cat

rectly obtained in surprisingly small lattices by properly
engineering the boundary conditions.
With this aim, we analyze several anisotropic spin 1/2

antiferromagnetic (AF) Heisenberg models in the trian-
gular lattice, where quantum fluctuations and frustra-
tion compete. The effect of frustration, which is, the
impossibility to simultaneously minimize the Hamilto-
nian locally, can be further tunned by introducing dif-
ferent spin couplings along all lattice directions. This
model, sometimes denoted as the spatially completely
anisotropic triangular lattice (SCATL) has been scarcerly
addressed in the literature. It is a generalization of the
model with anisotropy just between horizontal and di-
agonal bonds (SATL), which has been extensively ad-
dressed in the literature using different methods such
as tensor networks, quantum Monte Carlo, 2D DMRG,
exact diagonalization (ED) or modified spin wave the-
ory (MSWT) [7–19]. We also investigate here the J1 − J2
model, with anisotropy between nearest-neighbor (NN)
and next-to-nearest neighbor (NNN) couplings, also ad-
dressed recently in [20–25]. The abovemodels give room
to both, gapless and highly nontrivial gapped QSL.
Before proceeding further we summarize here our

main results. We derive the quantum phase diagram
of the above models using ED with engineered bound-
ary conditions in lattices of only N = 12, 16 or 24 spins.
Our results reproduce both, the ordered and disordered
quantum phases previously reported for such models
and show explicitly that massive superpositions of al-
most quasi-degenerated ground states are at the heart
of QSL. Despite we cannot calculate the topological en-
tanglement entropy in such small lattices, geometric en-
tanglement –quantifying how far an entangled state is
from its closest separable one–, shows that the predicted
gapped QSL have a large entanglement as compared to
their surrounding ordered phases. Remarkably enough
ourmethod puts at reach the study and detection of new
QSL in complex systems with a simple numerical ap-
proach.
The paper is organized as follows: in Sec. II, we ex-

plain the main features of our numerical method to-
gether with the relevant figures of merit used along. In
Sec. III, we derive the quantum phase diagram of the
SCATL model, with anisotropic couplings along all lat-
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tice directions. For this model, to the best of our knowl-
edge, only a study based in a MSWT exist [14]. There-
fore, alternative methods are clearly needed to settle the
presence of conjectured QSL. In Sec. IV, we move onto
another paradigmatic frustratedmodel, the so-called J1−
J2. We analyze it also in the presence of chiral interac-
tionswhich helps to elucidate the nature of the predicted
QSL and compare our results with the quantum phase
diagram obtained recently in [25] using 2D DMRG. Fi-
nally, in Sec. V, we conclude and present some open
questions.

II. RANDOM TWISTED BOUNDARY CONDITIONS

Twisted boundary conditions (TBC) were introduced
in the seminal contributions of [26, 27], and can be
thought of as periodic boundary conditions (PBC) un-
der a twist. Since then, they have been often used to
calculate properties of quantum magnets, as they pro-
vide better access to momentum space and help to mit-
igate finite size effects, see e.g. [17, 28–31]. However,
here we use TBC in a conceptually different approach.
In Fig. 1, we sketch our philosophy. Consider a generic
AF Heisenberg model in the triangular lattice. For the
ordered phases of the Hamiltonian, the relative orienta-
tion of the spins is fixed due to a broken symmetry, as
depicted for example in the cartoon of a 2D Néel phase
in Fig. 1 (top left). If the lattice is large, the bulk spins
dominate over the boundary ones imposing the order ex-
pected in the thermodynamical limit, independently of
the chosen boundaries. However, for small lattices this is
not anymore the case. The boundaries must be properly
chosen –in accordance to the lattice geometry– to recover
the underlying symmetries of the ordered phase , Fig. 1
(bottom left). For quantum disordered phases that are
not associated to a symmetry breaking, we expect the
ground state of the system to be spanned over a large
superposition of states, as schematically shown in Fig. 1.
Presumible, for small lattices different boundary config-
urations should be compatible with the ground states of
the system in the thermodynamic limit. We cannot pre-
dict a priory which are the right boundaries configura-
tions since there is not an underlying local symmetry in
the phase. This feature is illustrated with the symbols
"?" in Fig. 1 (bottom right). Nevertheless, we can count
how many random TBC lead to the same ground state
energy and post-select only those to calculate physical
quantities of interest. This post-selection is the key point
to engineer our boundary conditions [19].

Specifically, for 2D spin 1/2 AF Heisenberg models,
the spins lay in the XY plane and TBC correspond to
adding a phase in the spins i, j interacting through the
boundaries:

S +
i S −j → S +

i S −j e−iφ, (1)
S −i S +

j → S −i S +
j e+iφ. (2)

To twist the lattice simulteneously in two directions re-
quires two different phases φ1 (φ2), for left-right (top-
bottom) boundaries, as depicted in the bottom panels of
Fig. 1. The spins of the lattice laying at both boundaries
acquire a phase φ = φ1+φ2. Notice that conventional PBC
favor order commensurate with the lattice dimensions,
N = L ×W, since in the reciprocal lattice, momentum is
selected at k1 = 2πn1/L and k2 = 2πn2/W for ni ∈ N. In
contrast, TBC allow to test all possible momenta in the
first Brillouin zone [17, 26, 27]

k1 =
2πn1

L
± φ1

L
,

k2 =
2πn2

W
± φ2

W
. (3)

Let us briefly review our approach [19]. First, we fix
the lattice size, N, and geometry. Here, we use N = 4 × 3
or N = 4 × 4, but to ensure convergence, some of the re-
sults are also calculated for N = 6×4 and 4×6 . Then, we
generate a set p of two randomly chosen phases, {φ1, φ2}p,
with φi ∈ [0, 2π) and p = 1, 2, . . . , 200. For each config-
uration, we diagonalize the Hamiltonian, generating a
ground state |ψp〉with energy Ep, and denote by |ψ0〉 the
ground state with the lowest energy, E0. We post-select
those configurations whose ground state energy fulfills:
εp = (Ep − E0)/E0 < α. The election of the energy bias, α,
is somehow arbitrary as it depends on the lattice size and
the ratio between bulk and boundary interactions. Nev-
ertheless, our results are independent of it, if the set p is
sufficiently large. Notice, however, that for small lattices
the bias cannot be vanishingly small.
Consequently, one relevant figure of merit is the num-

ber of configurations, Nc, laying in the interval 0 ≤ εp <
α. Typically, we choose α = 0.01 meaning that only con-
figurations whose ground state energies are less than
1% than E0 are retained. Actually, for ordered phases
just very few random TBC accommodate the symmetry
of the phase, and the ones which do not, correspond
to large Ep and are automatically discarded in our ap-
proach. In contrast, we find regions in the Hamilto-
nian parameters where Nc increases dramatically. The
corresponding ground states, |ψp〉, strongly differ one
from each, as observed by computing the overlap Op =

|〈ψp |ψ0〉 |. Finally, as it is standard in disordered sys-
tems, we calculate the quantities of interest for each post-
selected configuration andperformafterwards the corre-
sponding average which we denote by 〈...〉d. The average
washes out the spurious symmetries introduced by TBC.
In ED, one quantity which can be easily obtained is the
static spin structure factor

S (~k) =
1
N

∑

i, j

e−i~k·(~ri−~r j)〈S iS j〉, (4)

where the expectation value is taken over the corre-
sponding ground state |ψp〉. From the spin structure fac-
tor, one can extract the following order parameter

M =

√
S ( ~Qmax)/N , (5)
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FIG. 1: Upper panels: sketch representation of a quantum ordered Néel phase (left) and a QSL phase (right) in a large lattice.
Lower panels: sketch of twisted boundary conditions in a 4 × 3 triangular lattice with anisotropic nearest-neighbor interactions.
Boundary spins in blue are twisted in the XY plane by an angle φ1, while red colored boundary spins are twisted by a phase φ2. The
pink colored boundary spin (top-left corner) is twisted by an angle φ = φ1 + φ2. For the Néel phase (bottom left) the phases which
reproduce the order are φ1 = 0 and φ2 = π. For the QSL (bottom right) such a set of phases cannot be defined. The anisotropy of
the SCATL model is depicted by the three different line styles in the bottom panels.

where ~Qmax are the k-vectors corresponding to the max-
ima of the spin structure factor in the first Brillouin
zone. This parameter signals long range order (LRO),
and helps to identify possible QSL. Regarding entangle-
ment, it is well known that local entanglement measures
cannot detect QSL, but they help to identify the under-
lying ordering of the phases. We choose the concur-
rence, C, as ameasure of bipartite entanglement between
any two spins i, j in the mixed state ρi j = Trk,i j(|ψp〉 〈ψp|)
which can be easly computed in EDmethods [32]. For lo-
cal Hamiltonians, the concurrence cannot capture long
range entanglement. To go beyond NN entanglement,
we calculate the geometrical entanglement. It "mea-
sures" the distance of a state to its closest separable one

Λmax = max
|φprod〉
|〈ψp|φprod〉| (6)

where |φprod〉 = ⊗N
i=1 |φi〉 and we maximize over the set of

all separable (non entangled) states. The larger Λmax is,
the lower the entanglement of |ψp〉 is since it is closer to
a product state. It makes sense to define the geometric
entanglement [33] as:

EG = 1 − Λmax, (7)
which clearly goes beyond bipartite entanglement.

III. SPATIALLY COMPLETELY ANISOTROPIC
TRIANGULAR LATTICE (SCATL)

Our staring point is AF Heisenberg spin 1/2 model in
a triangular lattice whose Hamiltonian reads:

H =
∑

<i, j>

ti j (S x
i S x

j + S y
i S y

j + λ S z
i S

z
j), (8)

where S α
i are the spin 1/2 Pauli matrices for site i, the

sum runs over all NN pairs, and all coupling constants
ti j > 0. We restrict ourselves to the cases λ = 0 (λ = 1)
which correspond to XY (Heisenberg) interactions. The
anisotropy of the model is given by the different inter-
action strengths (t1, t2, t3) along the lattice directions (see
Fig. 1 (bottom)). Without loosing generality, we consider
t1 = 1 and leave as free parameters t2 and t3. The case
t2 = t3 has been extensively studied [9, 11, 14, 19]. For
the sake of completeness, it is instructive to reproduce
first its classical phase diagram. The reader familiar
with it can skip this part.

Classical Phase Diagram.
The classical phase diagram provides an estimate on

the location and nature of the ordered phases. Order is
signaled by the points in the reciprocal space that max-
imize correlations or, equivalently, the ones that min-
imize the Hamiltonian energy. The classical ordering
vector, ~Qcl, is obtained replacing the spin operators in
Eq.(8) by a classical rotor laying in the XY plane, S i =

S ·
(
cos

(
~Qcl · ~ri

)
, sin

(
~Qcl · ~ri

))
, up to a global phase. En-

ergy minimization yields a region in the phase diagram
with continuously varying ordering vector, described by
the following equations:

Qcl
x = ± arccos


t2t3
2
− t2

2 + t2
3

2t2t3

 if
t2t3
2
− t2

2 + t2
3

2t2t3
≤ 1

Qcl
y = ± 2√

3
arccos

∓
(

t2 + t3
2t2t3

) √

t2t3 + 2 − t2
2 + t2

3

t2t3

 , (9)

where the argument of Qcl
y is negative if the correspond-
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FIG. 2: Classical phase diagram for the SCATL for both XY (λ = 0) and Heisenberg (λ = 1) interactions, obtained by plotting Qx in
Eq. (9) as a function of the anisotropy (top left). The other panels show the spin structure factor and a sketch of the spin order for
each classical phase.

ing Qcl
x satisfies |Qcl

x | ≤ π, and positive otherwise. The
classical phase diagram is depicted in Fig. 2, together
with the representative spin structure factor of each
phase. First, we describe the 1D lattice limit corre-
sponding to (1) t2 = t3 = 0 ; (2) t2 → ∞, t3 = 1; and
(3) t3 → ∞, t2 = 1 as shown in Fig. 2. For these cases, the
lattice becomes a system of uncorrelated chains and the
corresponding phases are 1D Néel ordered along the
dominant lattice coupling and uncorrelated along the
other two. This is clearly shown in the corresponding
spin structure factors. At the isotropic point, t2 = t3 = 1,
indicated by (4) in Fig. 2, the system has spiral order
(Néel 120o) with maxima in the structure factor at all the
vertices of the reciprocal lattice cell. This phase extends
as an incommensurate spiral phase merging smoothly
with the classical 2D Néel phases corresponding to
ti = t j >> tk, and the lattice deforms into diamond
lattices along the two dominant directions, indicated
in Fig. 2 by (5,6,7). This completes the classical phase
diagram. Finally, we also add a symbolic sketch of the
spin orientations for each phase.

Quantum phase diagram.
Our first main result for both, XY and Heisenberg in-

teractions, is summarized in the schematic phase dia-
gram of Fig. 3 (column 1 and 2). Our figure of merit

there is Nc, i.e., the number of configurations such that
εp < 0.01 for a lattice of size N = 4 × 3 and N = 4 × 4. For
the sake of comparison, we also plot in the last column
of this figure, the quantumphase diagramobtainedwith
MSWT from [34]. The dependence of our results on the
lattice size prevents a precise localication of the phase
boundaries but not, as we shall see, on their characteri-
zation.
In accordance to the classical phase diagram, spiral

ordering (labelled by (4) in Fig. 3) occurs around the
isotropic point t3 = t2 = 1 and its extension is much
reduced as compared to the classical case, in particular
in the Heisenberg model. Surrounding the spiral phase,
we observe a region, absent in the classical phase dia-
gram, with a massive number of energetically compat-
ible ground states (labelled by (8) in Fig. 3). This is a
signature of a disordered quantum phase and it is rec-
oncilable with the conjectured gapped QSL reported in
[9, 11, 14, 18, 34] for the isotropic line t2 = t3. Continu-
ously connected to this "gapped QSL" phase, there are
three regions labeled by (1,2,3) in Fig. 3. These regions
lay between two 2DNéel ordered phases (5,6,7) that span
around ti = t j >> tk, and are connected to the respective
classical 1D limit of uncoupled chains: ti → ∞, t j = tk.
The regions (1,2,3) are commonly referred in the litera-
ture as gapless QSL, and are not particularly enhanced
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in Fig. 3, because in them, the spins are ordered along
the corresponding dominant direction and totally disor-
dered along the other two. This constrain strongly re-
stricts the number of random TBC which are quasi de-
generate in energy. However, an inspection on the corre-

sponding ground states shows that indeed they are 1D
disordered quantum phases. All our results apply both
for the XY and the Heisenberg model, but for the sake of
concreteness we refer from now on the XY model.
In Fig. 4, we depict the averaged order parameter 〈M〉d

for the parameters along the vertical line displayed in
Fig. 3 which goes from the 2D Néel (5) to the 2D Néel
(7). We observe that between the two 2D Néel ordered
phases – faithfully identified by the average spin struc-
ture factor– , there is a region with lower LRO, signaled
by the decrease of 〈M〉d. The corresponding spin struc-
ture shows 1D Néel order. We identify this region as a
trivial gapless QSL. The same features are observed in
the two other limiting cases (1) and (3).
To further explore the nature of the truly quantumdis-

ordered phase, we restrict now our analysis to the quan-
tum phase diagram along the diagonal line depicted in
Fig. 3 which crosses several quantum phases including
the putative QSL (8). In the top row of Fig. 5, we display
〈S (~k)〉d for some selected points along this line. Its in-
spection allows for an easy identification of two 2D Néel
phases at the extrems of this quantum phase diagram,
the first one examplarized at t2 = 0.2, t3 = 0.6 and the
second one at t2 = 2.6, t3 = 1.65. Between them, we find
the expected spiral phase at t2 = 1, t3 = 0.95. Finally, be-
tween the 2D Néel phases and the spiral one, there are
two regions (circa t2 = 0.65, t3 = 0.8 and t2 = 1.5, t3 =

1.15) whose spin structure factor does not correspond to
any order. In the middle row of the same figure, we plot
the corresponding overlap Op = | 〈ψp|ψ0〉| for all config-
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FIG. 5: Quantum phase diagram along the diagonal white line in Fig. 3 for the 4 × 4 lattice with XY interactions. Top: averaged
structure factor 〈S (~k)〉d. Center: overlap, Op, versus normalized energy εp. Bottom: order parameter, Mp (see text). The dashed
vertical lines limit the region εp < 0.01, where the average is done.

urations p, sorted by energy. The energy bias for post-
selection is there indicated by a dashed vertical line. For
the 2D Néel order, Op slowly decreases as εp increases
meaning that quasi degenerate states correspond to alike
ground states. A similar behaviour is observed for the
spiral phase though Op has two branches around Op = 1
and 0. They correspond to the two orthogonal chirialities
of the spiral ground state. In contrast, the "gapped QSL"
phase, shows a radically different behaviour. All set of
post-selected configurations (i.e., εp < 0.01), might corre-
spond to very different ground states. This feature rec-
onciles with the description of a gapped QSL as a mas-
sive superposition of very different states, as could be a
resonating valence bound solid [35]. Finally, in the last
row of Fig. 5 we display the value of the order parameter
Mp (as defined in 4) for all configurations. While ordered
quantum phases have a very small dispersion of the or-
der parameter, the dispersion becomes much more sig-
nificant for the putative gapped QSL making its average
value meaningless.
We conclude our study by calculating entanglement
properties for the same parameters of the previous fig-
ure. In Fig. 6 (top panel), we show the averaged concur-
rence, Ci j, between NN along the three lattice directions
(t1, t2, t3) as well as its dispersion. The vertical arrows in
the figures point out the location of the different quan-
tum phases (2D Néel–QSL–spiral–QSL–2D Néel ) under
study in Fig. 5. As expected, the spiral phase has an
isotropic concurrence along all directions. The concur-
rence also signals the two preferred directions in the 2D

Néel phases. Though Ci j cannot detect long range en-
tanglement, in the putative QSL phases the dispersion
is larger than in the ordered phases meaning that the
NN entanglement can be different in energy compati-
ble configurations. Again, this merges with the idea of
a ground state which is a superposition of very different
states. In the bottom panel, we display the geometrical
entanglement. In the same figure, we also plot the over-
lap of the post-selected states with the classical prod-
uct state ansatz corresponding to a 2D Néel and spiral
phases. QSL have small classical order and a larger en-
tanglement as compared with ordered phases, display-
ing yet another characteristic feature of QSL beside their
massive ground state superpositions.

IV. J1-J2 MODEL

In this section, we extend our work to the AF
Heisenberg model with nearest (NN) and next-nearest-
neighbours (NNN) interactions,

HJ1−J2 = J1

∑

〈i, j〉
~S i~S j + J2

∑

〈〈i, j〉〉
~S i~S j, (10)

where we fix J1 = 1 leaving J2 as the free parameter and
the sums run over all NN and NNN pairs respectively.

Before proceeding further, let us mention that finite
size effects are now further enhanced by the presence of
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(Eq. (7)), andprojections to separable states (see text). All quan-
tities are averaged over the configurations with εp < 0.01, and
the dispersion of the values is represented by error bars. The
plotted region correspons to the while diagonal line in Fig.3,
where the values of t2 are choosen accordingly. The arrows in-
dicate the values used in Fig. 5which are representative of each
quantum phase explored.

NNN terms. However, in consonance with Sec.III, our
aim here is to find the signatures of the ground states
which are compatible with QSL rather than to provide
the precise location of the quantum phase boundaries.
It is important also to stress that implementing random
TBC for a Hamiltonian hosting both NNN and chiral
interactions, as we will later introduce, demands some
subtleties which are explained in the Appendix.

Classical phase diagram.
The classical phase diagram of this system is well

known [36]. For J2 < 1/8, there is a three-sublattice
120 Néel ordered ground state (spiral order). For
1/8 < J2 < 1 the classical phase diagram is degenerate
with the three different collinear 2D Néel order and a
tetrahedral noncoplanar state. However, an order-by-
disorder mechanism selects the 2D Néel order when

quantum fluctuations are taken into account [36, 37].
For J2 > 1, there is non-commensurate spiral order.

Quantum phase diagram.
Recent studies have analyzed the quantum phase di-

agram of the model with special attention in the sur-
roundings of the classical phase transition point, at J2 =

1/8, with 2D DMRG [20, 21], variational quantum Mon-
tecarlo [22], exact diagonalization [24] and Schwinger-
boson mean-field [38]. A consensus has been reached in
identifying a QSL phase for 0.08 . J2 . 0.15. The nature
of this phase, though, is still under debate. To shedmore
light in the issue, an extra chiral term in the Hamiltonian
has been proposed [23–25, 39, 40],

Hχ = HJ1−J2 + Jχ
∑

i, j,k∈4
~S i(~S j × ~S k), (11)

where the sum runs to all the up and down triangles of
the lattice clock-wisely.
In Fig. 7 (left panel), we show an sketch of the quan-

tum phase diagram taken from Refs. [23–25]. For Jχ = 0,
we recover the J1 − J2 model. As Jχ is turned on, there
is a phase transition from the QSL under debate into a
chiral spin liquid (CSL) which lies between the ordered
spiral, the 2D Néel collinear and the tetrahedral phase.
In Fig. 7 (right panel), we show our schematic quan-
tum phase diagram obtained by counting the number
of post-selected configurations, Nc, for εp < 0.005, as a
function of the parameters of the model, J2 and Jχ for
a lattice of just N = 4 × 4 spins. For this model, in
contrast with the analysis of previous models (Sec. III),
we choose a smaller energy bias, εp, for post-selection
of quasi-degenerate states, because the number of inner
bonds is much increased as compared to the Heisenberg
model. For Jχ = 0, we observe a regionwith a large num-
ber of quasi degenerate ground states that extends ap-
proximately from 0.05 . J2 . 0.10. As Jχ incrases, this
region is continuously enlarged and at, J2 = 0, it expands
aproximately between 0.1 . Jχ . 0.40. It is interesting to
compare both figures. Despite that the boundaries we
obtain are clearly different from those sketched in Fig. 7
(left panel), our results show a large increase of compat-
ible configurations in a region reconciliable with the lo-
cation of both, the CSL present in the model described
above (Eq.11) and the QSL of the J1-J2 model (Eq. 10).

Finite size effects can be spotted by calculating the
quantum phase diagram in larger lattices. In Fig. 8 (top),
we display, Nc as function of J2 (Jχ = 0) for different lat-
tice sizes and geometries; N = 4 × 4; 4 × 6; 6 × 4. As ex-
pected, by increasing the lattice size, the localization of
the maximum of Nc shifts to larger values of J2 in accor-
dance to the quantum phase diagram of the system. To
deepen further in the nature of the possible phases ob-
served in Fig. 7 (right panel), we explore other physical
quantities, like the averaged spin structure factor to de-
termine the corresponding orders for a lattice of N = 6×4.
Our results are depicted in Fig.8 and agree quite closely
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FIG. 7: Left, sketched quantum phase diagram of the J1 − J2 model with chiral interactions obtained from Refs.[24, 25]. Right, Nc

for the same model using a 4 × 4 lattice. The area with large Nc is a signature of putative gapped QSL phase.

with the expected orders. For 0 ≤ J2 . 0.05, spiral or-
der is dominant. As J2 further increases, there is a re-
gion with large number of random configurations, Nc,
which lead to a ground state energy Ep quasi degener-
ate with the smallest one E0. These configurations cor-
respond to different ground states, as demonstrated by
all possible values the overlap Op takes. In this region,
the averaged structure factor, 〈S (~k)〉d, is blurred, show-
ing that there are not clear preferable k-vectors. This in-
dicates disorder and, consequently, a decrease of LRO.
Again, it is instructive to compare our resultswith the re-
sults of the quantum phase diagram obtainedwithmore
sophisticated methods for larger lattices. In the bottom
row of Fig. 8, we attach for comparison, S (~k) obtained
with 2D DMRG from Ref.[21]. For the values where the
putative QSL is predicted, both S (~k) obtained from the
2D DMRG simulations and our 〈S (~k)〉d are impressively
similar. For J2 = 0.2, the 2D DMRG shows collinear or-
der corresponding the a 2D Néel order along two lattice
directions (see Fig. 2) while our results shows a super-
position of two of the 2D Néel collinear orders. This is
not relevant, as all collinear orders are degenerate and of
course any superposition of them as well. Finally, let us
remark that in the same spirit, we have also analyzed the
nature the quantum phases that appear when the chiral
term is included for a lattice of N = 4 × 4. The results
in this case suffer from strongly finite size effects but or-
dered phases can be easily identified by 〈S (~k)〉d.

V. CONCLUSIONS

We have shown that with a simple numerical method,
based in exact diagonalization with engineered random
twisted boundary conditions, it is possible to find clear
signatures of QSL phases in small lattice sizes. In partic-
ular, we have analyzed with this method the anisotropic
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〈S (~k)〉d and S (~k) obtained with 2D DMRG taken from Ref.[21].
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spin 1/2 triangular lattice with AF Heisenberg interac-
tions and the J1-J2 model. Our results closely reproduce
in both cases the quantum phase diagram obtained with
other methods. We have found regions which display
massive ground state degeneracy, large entanglement
and ill defined spin structure factors. We have identified
these regions as QSL. Our method provides a feasible
tool for the study and detection of novel quantum disor-

dered phases in frustrated systems, as it unveils explic-
tily the underlying properties of quantum spin liquids.
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Appendix

In this Appendix we show how TBC are imple-
mented for the next-nearest-neighbours and chirality
terms present in the model studied in sect IV. We show
the scheme for both cases in Fig. A.1. In the same way
than in the next neighbours interactions (Fig. 1) when a
interaction term crosses the left-right (up-down) bound-
ary the external spin gets twisted by a phase φ1, blue
colour (φ2, red color). The external spins in the top-left
corner of the figures, are twisted by φ3 = φ1 + φ2 (pink
color) because the interaction crosses both boundaries.
In the next-nearest-neighbours case, there is, as well, an
external spin in the bottom-left corner which crosses the
left-right down-up border. Note that crossing the down-
up border is the opposite as crossing the up-down one.
Therefore, the spin in the bottom-left corner gets twisted
by a phase φ4 = φ1 − φ2 (green colour).
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FIG. A.1: Scheme of twisted boundary conditions in a 4× 3 tri-
angular lattice with next-nearest-neighbours interactions (top
panel) and chiral interactions (bottom panel). In every interac-
tion term in the periodic boundary, depicted by a black oval,
the coloured spin is twisted by an angle φ1 (blue), φ2 (red) for
the left-right and top-bottom boundaries respectively. Inter-
action terms which cross two boundaries get twisted by both
phases, φ3 = φ1 + φ2 (pink) for the left-top boundary, and
φ4 = φ1 − φ2 (green) for the left-bottom one. The inner bounds
are not depicted for clarity.
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APPENDIX A

MSWT in the triangular lattice: comparison of the

existent derivations

In this Appendix, different derivations of the MSWT formalism in the trian-
gular lattice are compared. The seminal work by Xu and Ting [10] considers
Heisenberg interactions. The works by Hauke and collaborators [6, 8, 179],
generalize Xu’s work by using a parameter λ in the Hamiltonian allowing
to consider both Heisenberg (λ = 1) and XY (λ = 0) interactions. Both
derivations, although they lead to sound results, are not fully comprehended.
Paralelly, a MSWT for XY interactions has been rigurously derived by Celi
and collaborators [9]. Their final equations, though they resemble Hauke’s
for λ = 0, are not in fully agreement.

Initially motivated by deriving, in a similar riguorous way as [9], a MSWT
for Heisenberg interactions, I provide in Sec. 5.4 a derivation which considers
both Heisenberg and XY interactions following Hauke’s works. However, the
expression obtained for E = 〈H〉 (Eq. 5.25) differs from the ones of Xu/Hauke
and coincides with the one of Celi, when settling λ = 0. At the moment of
the thesis handing, the discrepancies between the proposed derivation and
Xu/Hauke’s are still not comprehended.

This Appendix has its grounds in some fruitful discussions maintained
with P.Hauke and A.Celi. It provides some technical details of the men-
tioned derivations pointing out the mismatches among them. It is aimed for
readers which are already familiar with the MSWT formalism presented in
the reported works. Therefore, most of the the steps, definitions and sub-
tleties of the approach are taken as known. It remains an open issue, to
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fully understand the discrepancies between the derivations and to provide a
general MSWT for both XY and Heisenberg interactions.

Takahashi’s MSWT in the square lattice with Heisenberg

interactions

In Takahashi’s seminal work [7], MSWT is derived for a square (bipartite)
lattice with AF Heisenberg interactions. Even though this Appendix focuses
on the triangular lattice formalism, some paradigmatic steps of Takahashi’s
derivation are detailed.

Two Dyson-Malev transformations, one for each sublattice, are performed.
In the different works here reported, the definition of the DM transformation
has some differences which are detailed here 1. Using Wick’s theorem, the
expected values obtained are,

〈SlSm〉 = −[X + g(r)]2 (A.1)

〈SlSl〉 = [X + f(r)]2, (A.2)

where the first (second) equation is for spins in different (same) sublattices.
Note that the energy, as obtained with 〈H〉, just includes the 〈SlSm〉 for NN
interactions. Here, it is defined,

X ≡ S + 1/2− f(0). (A.3)

This quantity is forced to be 0 (Takahashi’s constrain), but has to be kept
during the energy minimization. It is important to stress that in the square
lattice, by construction, there are no 6-bosons terms and that g(0) = 0.

1The DM transformations in the works considered are,
Takahashi sublattice A, S−l = a†l , S+

l = (2S − a†l al)al, Sz
l = S − a†l al

Takahasi sublattice B, S−m− = −bm, S+
l = −b†m(2S − b†nbm), Sz

m = −S + b†mbm
Xu:S−i = (2S − a†iai)ai, S+

i =, a†i , , Sz
i = −S + a†iai

Celi/Hauke: S−i =
√
2S(1− a†iai/(2S))ai, S+

i =
√
2Sai, Sz

i = −S + a†iai
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Xu and Ting: triangular lattice with Heisenberg interac-

tions

Xu and Ting [10] extend the work of Takahashi to the triangular lattice.
First of all, twisted coordinates are defined,

Sξi =− Szi
Sηi =− Sxi sinQ · ri + Syi cosQ · ri
Sζi =Sxi cosQ · ri + Syi sinQ · ri

(A.4)

and a DM transformation is performed. Then, it is literally written,:

It should be pointed out that DM transformation violates the Hermitian
conjugate relationship, which is different from the HP transformation. It is
expected that this will not affect the ground-state propierties. In fact, this
Hermitian can be recovered by an additional nonunitary transformation,

αk = coshθkak − sinhθka†−k. Using Wick’s theorem for the interaction terms

we can compute 〈H〉. We require that 〈Sζi 〉 = 0. Minimising the free energy
of the system...

After this quote, the final of Ak and Bk are presented,

AXuk =1/2
∑
〈ij〉

tij(1− cos (Q · rij))g(rij)e
−ik·rij (A.5)

BXu
k =1/2

∑
〈ij〉

tij[(1− cos (Q · rij))g(rij)

− (1 + cos (Q · rij))f(rij)(1− e−ik·rij)] + µ, (A.6)

together with the energy,

E = −1/2
∑
〈ij〉

tij[−(1 + cosQ · rij)f 2(rij) + (1− cosQ · rij)]g2(rij)]. (A.7)

In the following, some aspects of Xu and Ting’s work are pointed out:

1. Xu and Ting do not specifically write down the extensive derivation.
Nevertheless, the steps mentioned in the above quote are in accordance
with the ones followed in Sec. 5.4.
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2. The presence of the 6 bosons-terms is not mentioned. This is puzzling
since the 6-bosons terms need to be explicity dropped in the other
reported derivations.

3. The quantity g(0) does not appear anywhere in the derivation, (though
it is not specifically stated that g(0) = 0, as in the square lattice).

4. The expression for the energy, Eq. A.7, can be obtained from Takahashi
expected values (Eq.(A.1) and (A.2) taking X → 0),

E =1/2
∑
i,j

tij[(1 + cos (Q · rij))× Eq.A1

+ (1− cos (Q · rij))× Eq.A2] (A.8)

5. Ak andBk equations do recover the LSWT limit when S →∞, (G(r), F (r)→
S), (setting µ = 0).

ALSWk = S/2
∑
ij

tij[(λ− cos (Qcl · rij)) cos (k · rij)] (A.9)

BLSW
k = S/2

∑
ij

tij[(λ+ cos (Qcl · rij)) cos (k · rij)− 2 cos (Qcl · rij)].

(A.10)

All the points mentioned above, seem to indicate that there is a subtler con-
nection between Takahashi’s and Xu’s works. Yet, to follow the scrupulous
derivation performed by Xu is still a pending issue. Nevertheless, the above
equations lead to sound results which have been succesfully contrasted, with
QMC calculations in the square lattice limit [173].

Hauke’s derivation for XY and Heisenberg interactions

Hauke’s and collaborators extend Xu’s work to a Hamiltonian which can
have both Heisenberg and XY interactions (see for instance the Apendix in
Ref. [6]). Twisting the coordinates and performing a DM transformation,
the following Hamiltonian is obtained,

H =1/4
∑
〈i,j〉

tij{[2S(a†iaj + aia
†
j)− a†ia†jajaj − a†iaiaia†j](λ+ cos (Q · rij)))

+ [2S(a†ia
†
j + aiaj)− aia†jajaj − a†iaiaiaj](λ− cos (Q · rij))

+ 4[S2 − S(a†iai + a†jaj) + a†iaia
†
jaj] cos (Q · rij)}, (A.11)



103

where here, 6-bosons terms have been dropped. Then, using Wicks’ theorem,
the following expected value of the energy is provided,

〈H〉Hauke =1/2
∑
〈ij〉

tij[(λ+ cosQ · rij)(X + f(rij))
2

− (λ− cosQ · rij)](X + g(rij))
2], (A.12)

using the following definitions,

〈a†iaj〉 =〈aia†j〉 = f(rij); 〈a†iai〉 = f(0)− 1/2; 〈aia†i〉 = f(0) + 1/2;

〈aiaj〉 =〈a†ia†j〉 = g(rij) 〈aiai〉 = 〈a†ja†j〉 = g(0). (A.13)

The above expression of the energy does not follow from the Hamiltonian
above, it is a misleading step. Notice that it has been obtained by replacing
in Xu’s Energy (Eq.(A.7)) 1→ λ. This expression also resembles Takahashi’s
for the square lattice,∑

i,j

tij[(λ+ cos (Q · rij))× Eq.A.2 + (λ− cos (Q · rij))× Eq.A.1].

The following Ak and Bk are obtained,

AHaukek = 1/N
∑
〈ij〉

tij[λ− cos(Q · rij)]g(rij)e
ik·rij , (A.14)

BHauke
k =1/N

∑
〈ij〉

tij{[λ− cos(Q · rij)]g(rij)

− [λ+ cos(Q · rij)]f(rij)(1− eik·rij)} − µ. (A.15)

Note that, for λ = 1, these expressions are equivalent to Xu’s.

Celi’s derivation for XY interactions

Celi and collaborators [9] derive the formalism from scratch for XY inter-
actions in an inhomogeneous triangular lattice. Along this Appendix, just
the case without inhomogeneity is considered. After dropping the 6 bosons
terms, the following expected value of the energy obtained,

〈H〉Celi =1/2
∑
ij

tijcos(Q · rij)[(X + f(rij))
2 + (X − g(rij))

2

+ g(0)[f(rij)− g(rij)] + f 2(rij) + g2(rij)], (A.16)
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which, in order to be the same as Hauke’s (λ = 0) should be,

〈H〉Celi =1/2
∑
ij

tijcos(Q · rij)[(X + f(rij))
2 + (X���

+
− g(rij))

2

+
(((

((((
(((

((((
(((

(((hhhhhhhhhhhhhhhhhhhh

g(0)[f(rij)− g(rij)] + f 2(rij) + g2(rij)]. (A.17)

Immediately after this equation (Eq.17 in Ref. [9]), it is stated that the
discrepancies with Hauke’s simply come from the omission of the g(0) term.
Certainly, if Takahashi’s constraint is taken, X → 0, Eq.(A.16) resembles
Eq.(A.12) (λ = 0) except for the g(0) term and a global factor 1/2 in front.
However, it is not clear that in Hauke’s work such term is dropped. Moreover,
both the change of sign in front of g(rij) and the term g(0)[f(rij) − g(rij)]
are clearly relevant when computing Ak and Bk. At the present moment, the
discrepancies between Hauke’s and Celi’s works are still not fully understood.
The final expressions for Ak and Bk obtained are,

ACelik =1/2
∑
ij

tij cos (Q · rij)[g(rij)− f(rij)

+ cos (k · rij)(g(0)− 4g(rij))] (A.18)

BCeli
k =

∑
ij

tij cos (Q · rij)[
−3

2
g(ri,j)−

5

2
f(rij)

+ cos (k · rij)(g(0)/2 + 2f(rij))]. (A.19)

They are clearly different to Hauke’s (λ = 0), Eq. (A.14) and (A.15). How-
ever, they lead to similar, though not equal, results.

Comparision with the presented derivation

In Sec. 5.4, the derivation leads to the Hamiltonian derived by Hauke, Eq. (A.11).
Using Wicks’ theorem, it follows,

〈H〉Y uste =
∑
〈ij〉

tij{(f(rij)X −
g(rij)g(0)

2
)[λ+ cos (Q · rij)]

+ (g(rij)X −
f(rij)g(0)

2
)[λ− cos (Q · rij)]

+ (X2 + g2(rij) + f 2(rij)) cos (Q · rij)}, (A.20)
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which corresponds to Celi’s expresion Eq.(A.16),

〈H〉Y uste,λ=0 =
∑
〈ij〉

tij cos (Q · rij)[X(f(rij)− g(rij)) +
g(0)

2
(f(rij)− g(rij))

+X2 + f(rij)
2 + g(rij)

2] = 〈H〉Celi, (A.21)

but which clearly differs from Hauke’s,

〈H〉Hauke =
1

2

∑
〈ij〉

tij{cos (Q · rij)[2X2 + f 2(rij) + g2(rij) +X(f(rij) + g(rij))]

+ λ[+f 2(rij)− g2(rij) +X(f(rij)− g(rij))]}, (A.22)

1

2
〈H〉Y uste =

1

2

∑
〈ij〉

tij{cos (Q · rij)[��
2
X2 + f 2(rij) + g2(rij)

+X(f(rij)���
+

− g(rij)) +
��
���

���
���XXXXXXXXXXX

g(0)

2
(f(rij)− g(rij))]

+ λ[
��
���

���
���

��:f
2(ri,j)− g2(rij)

−g(0)

2
(g(rij) + f(ri,j))

+X(f(rij)���
−

+ g(rij)]}. (A.23)

Apart from a factor 1/2, the discrepancies between the obtained expression
and Hauke’s are pointed out. Notice that in the terms with cos (Q · rij), (i.e.,
present in the XY interactions derivation), the changes are all small in energy
since we will set X → 0 and f(rij)−g(rij) ∼ 0. However, this is not anymore
the case for the terms with λ which clear differ from Hauke’s expression.

The following Ak and Bk are obtained,

AY ustek =ACelik + λ/2
∑
ij

tij[g(0) cos (k · rij) + g(rij) + f(rij)]

BY uste
k =BCeli

k

+ λ/2
∑
ij

tij[−g(0) cos (k · rij) + 2g(0) + g(rij) + f(rij)]. (A.24)

The numerical implementation of such expressions with λ = 1 lead to incon-
sistent results.
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Addition of the six-bosons terms

As pointed out before, in Xu’s work the presence or neglection of 6-boson
terms is not even mentioned. Therefore, it could be a priori a possible origin
of the discrepancies between derivations. Using Wicks’ theorem with the
same definitions as in Eq.(A.13), the 6-boson terms leads to,

〈H〉6bosons =
1

2S

∑
ij

tij[λ− cos (Q · rij)]{f(rij)g(0)(f(0)− 1/2)

+ g(rij)(f(0)− 1/2)2 + f 2(rij)g(rij) + g(r)3/2 + g(rij)g
2(0)/4)}.

(A.25)

Thus, they only contribute in the [λ− cos (Q · rij)] term. Notice that in this
expression Takahashi’s constraint implies: (f(0)− 1/2) = S. It is clear that
the six-bosons terms cannot fix the mismatches signaled in Eq.(A.23).

Conclusions

A fully comprehension of the MSWT in the triangular lattice for both Heisen-
berg and XY interactions is still pending. In the XY case, a rigorous study
by Celi leads to similar, though not equal, results as the works by Hauke
which are obtained generalizing Xu’s equations to XY interactions. What is
the origin of these small discrepancies between both approaches? Is there a
subtle connection between Xu’s/Hauke’s works and Takahashi’s expressions
for the square lattice? The answer to these questions might provide a new
insight to formulate a rigorous derivation for Heisenberg interactions. This
complete MSWT formalism in the triangular lattice might provide the possi-
bility to study other frustrated models and to elucidate the two conjectures
formulated in Chapter 6.



APPENDIX B

MATLAB codes

In this Appendix, I provide some of the MATLAB codes I have written along
my Ph.D. The first 5 codes are the ones which implement exact diagonal-
ization in spin models in the 2D triangular lattice with random boundary
conditions. The 6th code implements modified spin wave theory on the same
models. Along my thesis I have also used 1D DMRG calculations but the
code is taken from an open source [164] and therefore I do not provide the
details here.

The codes are explained by steps and provide a helpful guide to implement
them from the scratch. The reader who actually desires to use the codes
should comment the section titles.



Basis in subblocks of constant Sz
This code computes the basis of a many body quantum system with L particles and d internal degrees of freedom. It
splits the basis in the diferent constant Sz sectors.

Input

• L---> System size (must be even!)

• d---> internal degrees of freedoom,e.g., d=2 for spin 1/2

Output

• basis_sz---> basis for each sector sz (each sector stored in one cell).

• order_sz---> position of each element of a subblock in the whole basis.

Whole basis computation

basis_spin=zeros(d^L,L);
for i1=1:1:L
    ba=0;
    for i2=1:1:d^L
        basis_spin(i2,i1)=ba;
        if mod(i2,d^(L-i1))==0
            ba=mod(ba+1,d);
        end
    end
end

Splitting the basis according to Sz

basis_sz=cell(L/2+1,1);
 M=L;
   for i1=L/2+1:-1:1
     val=1;
     for i2=1:d^L
if sum(basis_spin(i2,:))==M
     basis_sz{i1}(val,:)=basis_spin(i2,:);
     order_sz{i1}(1,val)=i2;
     val=val+1;
end
     end
 M=M-1;
   end

Published with MATLAB® R2017a
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Hamiltonian terms: SxSx+SySy
This code computes the terms of the Hamiltonian given a list of interacting pairs defning the lattice geometry

Input

• sz---> total magnetization subspace

• basis_sz, order_sz---> basis in the subblock and position of the elements in the whole basis

• L---> Number of sites

• z---> list of interacting pairs i,j

Output

• Two matrices containing the terms S_i^xS_j^x+S_y^xS_j^y of a given list of interacting pairs and their
complex conjugate. Stored in hard drive.

Defnitions

basis=basis_sz{sz+1};
order=order_sz{sz+1};
dimensio=size(basis,1);
cont1=1;
cont2=1;

Loop over interacting pairs. Can be paralelized

     ppp=parpool(6); % e.g, calculations with 6 cores
parfor  i1 = 1:size(z,1)

   cont1=1;cont2=1;
        n = z(i1,1); m = z(i1,2); %interacting pair
         value=2^(L-n)-2^(L-m); % Jump in the "binary" basis when
 destroying in m and creating in n

Loop over the basis elements

        for i2=1:dimensio
        if basis(i2,m)==1 && basis(i2,n)==0

            aux=order(i2)+value; %Output vector in the whole basis
            out=find(order==aux); %Output vector position in the
 subblock

We construct the matrix and the complex conjugate

v1{i1}(cont1)=out;
vc1{i1}(cont1)=i2;
w1{i1}(cont1)=i2;
wc1{i1}(cont1)=out;
cont1=cont1+1;

        end
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Hamiltonian terms: SxSx+SySy

end

end
 delete(ppp)

End of the loops and parallel computing

Merging the sparse matrices which are obtained in diferent paralel computations

vv1=[];ww1=[];
vv2=[];ww2=[];

vvc1=[];wwc1=[];
vvc2=[];wwc2=[];

for i1=1:size(z,1)
vv1=[vv1 v1{i1}];ww1=[ww1 w1{i1}];
vvc1=[vvc1 vc1{i1}];wwc1=[wwc1 wc1{i1}];
end

Store both matrices in hard drive memory

Hamiltonian=sparse(vv1,ww1,1,dimensio,dimensio);
Hamiltonian_com=sparse(vvc1,wwc1,1,dimensio,dimensio);

 filename = ['Hamiltonian_test.mat'];
  save(filename,'Hamiltonian','Hamiltonian_com');

Published with MATLAB® R2017a
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Hamiltonian terms: SzSz
Computation of the SzSz terms of the Hamiltonian given a list of interacting pairs.

Input

• sz---> total magnetization subspace

• d---> local dimension

• basis_sz, order_sz---> basis in the subblock and position of the elements in the whole basis

• L---> Number of sites

• z---> list of interacting pairs i,j

Output

• A matrix containing the terms S_i^z S_j^z of a given list of interacting pairs and its complex conjugate.
It gets stored in hard drive memory.

Defnitions

basis=basis_sz{sz+1};
order=order_sz{sz+1};
dimensio=size(basis,1);
Sigmaz=cell(L,1);

Sz operator for each site

for i1=1:L
     Sigmaz{i1}=sparse(1:1:dimensio,1:1:dimensio,(basis(:,i1)+1-(d
+1)/2));
end

Interacting Hamiltonian

  Hamiltonian_SzSz=sparse(dimensio,dimensio);
for 1:size(z,1)
 Hamiltonian_SzSz=Hamiltonian_SzSz+Sigmaz{z(i1,1)}*Sigmaz{z(i1,2)};

end

Hard drive saving

 filename=['Hamiltonian_SzSz'.mat']

  save(filename,'Hamiltonian_SzSz');

Published with MATLAB® R2017a
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ED with random boundary conditions
Computes and diagonalizes the Hamiltonian with RBC for a given anisotropy. The code changes as a function of the
model used.

As example: SATL (anisotropy t1=1 and t2)

Input

• lambda---> =0 XY interactions =1 Heisenberg interaction

• rasize---> Size of the random sampling

• tt2---> vector with the anisotropy values of t2

• lattice---> string with lattice used,e.g., '6x4'

Output

• Ground state and energy stored with a fag depicting the anisotropy and random sampling value.

Defnitions

pbc=1;  % pbc=1 ==>  PBC, pbc=0 RBC
sz=0;  %Subblock of sz for the computations
if(pbc==1)
       rasize=1;
end
dimensio=size(Ham_t1,1);
Ham=sparse(dimensio,dimensio);

Loading the stored matrices

load(['data/data_' lattice '.mat'])
%
% *Ham_t1, Ham_t2 NN in the bulk with anisotropy t1 and t2
% *Ham_tunt1 NN Tunneling with phase 1 and t1
% *Ham_tunt2 NN Tunneling with phase 2 and t2
% *Ham_tunt3 NN Tunneling with phase 1 and t2
% *Ham_tunt4 NN Tunneling with phase1+phase2 and t2
% *Ham_tun*_com Complex conjugate of the above matrices
% *Ham_SzSz_t1 NN SzSz terms with anisotropy t1
% *Ham_SzSz_t2 NN SzSz terms with anisotropy t2

Loops and computation

 parpool('local',2) %e.g, 2 cores
parfor i1=1:size(tt2,2) % Anisotropy loop, can be done in parallel
    t2=tt2(i1); %anisotropy value of the loop
    for i2=1:rasize    %  Random sampling Loop

     phase1=rand*2*pi; %random phase 1
     phase2=rand*2*pi; % random phase 2
      if(pbc==1)
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ED with random boundary conditions

    phase1=0;
      phase2=0;
      end
phase3=phase1+phase2; % random phase 3
    Ham=Ham_t1+t2*Ham_t2;     % Bulk Hamiltonian
    Ham=Ham+2*lambda*(Ham_SSz_t1+t2*Ham_SzSz_t2);  % SzSz terms
    Ham=Ham
+exp(1i*phase1)*(Ham_tunt1+t2*Ham_tunt3)+exp(-1i*phase1)*(Ham_tunt1_com
+t2*Ham_tunt3_com); %Left-Right Boundaries
    Ham=Ham
+exp(1i*phase2)*(t2*Ham_tunt2)+exp(-1i*phase2)*(t2*Ham_tunt2_com); %Up-
Down Boundary
    Ham=Ham
+exp(1i*phase3)*(t2*Ham_tunt4)+exp(-1i*phase3)*(t2*Ham_tunt4); %
 Corner Boundary

    [vep,vap]=eigs(Ham,1,'SR'); %Lanczos diagonalization
vep_ground(:)=vep(:,1); % Ground state
e0=vap(1,1); %energy

Storing the ground state and energy. File name with anisotropy and sampling value

 filename=['out/output_' lattice '_t2_' num2str(t2) '_rand_'
 num2str(i2) '.mat'] %example of output name
 save(filename,'vep_ground','eo')

    end
end

Published with MATLAB® R2017a
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Computing the overlap and Nc
The code computes the overlap of a confguration with the confguration that minimizes the energy. It sorts the output
by encreasing normalized energy epsilon. It also computes the number of confgurations below the energy bias Nc.
(go to Sec. ED with RBC for details)

Example:SATL model

Input

• rasize ---> Random sample size

• tt2 ---> Vector with the anisotropy values

• lattice---> Lattice used

• outfle--->Flag in the name of the output fles

• bias---> Energy bias to do the post selection and compute Nc

Output

• overlap---> Overlap of each confguration with the confguration that minimizes the energy. Results
sorted by increasing epsilon

• epsilon--> Energy of each confguration normalized by the minimal one

• Nc---> Number of confgurations with an energy below the bias

%%%%%%%%
%%%%%%%%%%
for i1=1:size(tt2,2) % Anisotropy loop

t2=tt2(i1);

Computing epsilon

for i2=1:rasize % Random sampling loop
 filename=['out/output_' lattice '_t2_' num2str(t2) '_rand_'
 num2str(i2) '.mat'] %example of input file
load(filename,'vep_ground','e0') % it loads ground state and energy
energies{i1}(i2)=e0;
end

[Y,I]=sort(energies{i1}(:));
out2{i1}=energies{i1}(I);
epsilon(:,i1)=abs(100*(out2{i1}(:)-out2{i1}(1))/out2{i1}(1)); %Epsilon
Nc(i1)=sum(epsilon(:,i1)<bias); %Number of configurations with
 normalized energy below the bias.

Computing the overlap

filename=['out/output_' lattice '_t2_' num2str(t2) '_rand_'
 num2str(I(1)) '.mat'] %configurations with minimal energy
 load(filename);
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Computing the overlap and Nc

vep_min=vep_ground;
overlap{i1}(:,1)=epsilon(:,i1);
for i2=1:rasize
 filename=['out/output_' lattice '_t2_' num2str(t2) '_rand_'
 num2str(I(i1)) '.mat'] %configurations sorted by increasing energy
 load(filename)
overlap{i1}(i2,2)=abs(ctranspose(vep_min)*vep_ground); %Overlap sorted
 by increasing energy
end

end

Published with MATLAB® R2017a
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Structure factor
This code computes the structure factor given an input state and a lattice geometry.

Input

• knum---> Discretization of kx and ky (odd!), typically 51

• SxSx_SySy_pairs,  SzSz_pairs  --->  For  all  interacting  pairs.  Obtained  similarly  as  in  the  Hamilton-
ian_XXX code.

• vep---> input vector

• position----> coordinates of each site (x_i,y_i)

• L system size

• lambda---> =0 XY interactions =1 Heisenberg interactions

Output

*skk---> structure factor

%*Definitions*
npairs=(size(SxSx_SySy_pairs,1));
distance=cell(npairs,1);
expect=cell(npairs,1);
cont=1;

%*Computation of the structure factor
for i1=1:L

for i2=1:i1-1
    l=i1;m=i2;
distance{cont}=transpose((position(m,:)-position(l,:)));
%Expected value of SiSj
expect{cont}=vep(:,1)'*(SxSx_SySy_pairs{cont})*vep(:,1)/2;
expect{cont}=expect{cont}+vep(:,1)'*(SxSx_SySy_pairs{cont}')*vep(:,1)/2;

expect{cont}=expect{cont}+lambda*vep(:,1)'*SzSz_pairs{cont}*vep(:,1);
        cont=cont+1;
end

end

kx=[-2*pi:4*pi/(knum-1):2*pi]; %momentum discretization
ky=[-2*pi:4*pi/(knum-1):2*pi];
skk=zeros(knum,knum);

      for j1=1:knum
      for j2=1:knum;
       k=[kx(j1) ky(j2)];
         Sk=0;
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Structure factor

         for i1=1:npairs;
        Sk=Sk+exp(1i*k*distance{i1})*expect{i1}; %Fourier transform
         end

        skk(j2,j1)=2*Sk/L; % Factor 2 to include j,i terms.
      end
      end

Published with MATLAB® R2017a
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MSWT for the anisotropic J1-J2
Modifed spin wave theory on the SATL model with NNN interactions in the infnite lattice limit (sums to integrals).

Input

• lambda---> =0 XY interactions =1 Heisenberg interactions

• NextNext ----> =1 J1-J2 model with anisotropy. =0 SATL

• S=1/2 ---> Spin

• backwards--->  =0(1)  Computes  forwards  (backwards)  the  anisotropy  values  (could  change  conver-
gence)

• j2 ---> Next-to-nearest neighbors interactions (Vector)

• anisotropia---> SATL anisotropy (Vector)

Output

• Files with Energy, Q, M (both LSWT and MSWT) and number of iterations.

Defnitions

nitera=100; %Maxim number of iterations if  convergence is not
 reached.
previous_msw=2; %  % if=1 self iterating equations just with LSW
 values if 2 uses previous MSWT result as well
tolerance=10^(-3); % ;tolerance in Mzero to stop iterations.
z=3; %number of first neighbors
Delta=[1,0;1/2,sqrt(3)/2;-1/2,sqrt(3)/2]; % r vectors between next
 neigbhors
if (NextNext==1)
z=6;
    Delta=[Delta; 0, sqrt(3); 3/2 , sqrt(3)/2;-3/2 ,
 sqrt(3)/2]; %second neighbors
end
if(backwards==1)
j2=abs(sort(-j2));
end
both_initial=1; %both initial conditions (LSWT and previous MSWT)
%%%%%%%%%%%%%%%%%%%%%%%%

Loop over anisotropy, can be done in parallel

parfor it3=1:size(anisotropia,2)

    extra_ani=anisotropia(it3)
% Quantities defined for the parfor loop to work, and initialize the
 j2 loop.
Qcl=zeros(size(j2,2),2);
Ecl=zeros(size(j2,2));
A_k=@(x)0;B_k=@(x)0;
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MSWT for the anisotropic J1-J2

A_lsw=@(x)0;B_lsw=@(x)0;
A_k_hauke=@(x)0;B_k_hauke=@(x)0;
cos2theta_lsw=@(x)0;omega_lsw=@(x)0;sin2theta_lsw=@(x)0;
omega=@(x)0;cos2theta=@(x)0;sin2theta=@(x)0;
Mzero_lsw=zeros(size(j2,2),2);
Q=zeros(2,1);Q_opt=zeros(2,1); Ene_msw=0;
A=zeros(2,1); B=zeros(2,1);
sin_initial=cell(2,1);cos_initial=cell(2,1);Q_initial=cell(2,1);
t_aft=0;t_bef=0;havent_converge=0;
output_iteration=0;
cosQ=zeros(z,1);
%%%%%%%%%

Quantities which are redefned in every step of the loop

 output_MSW=zeros(1,7);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sin2theta_msw_prev=@(x,y)0;
cos2theta_msw_prev=@(x,y)0; % values computed with MSWT of the
 previous iterations. We set them to zero to start the first iteration
 with a value.
Q_msw_prev=[0 0];
if (NextNext==0)
Qcl_before=2*acos(-extra_ani/2); % As initial value for the
 minimization we take Qcl analytic from the SATL
end
if (NextNext==1)
Qcl_before=2*pi; % As initial value for the minimization we take 2*pi
 (collinear)
end
havent_converge=0;   contador_aft=1; contador_bef=1;
converged_points=0; no_convergence=0;
%%%%%%%%%%%%%%%

Loop over second neighbours interactions

for it2=1:size(j2,2)

    t2=j2(it2);
    aniso=[1 j2 j2]; %Anisotropy SATL
    if (NextNext==1)
    aniso=[1 extra_ani extra_ani t2 t2 t2]; %AnisotropyNN+IsotropicNNN
    end
     converged_points(it2)=0;

Classical Energy and ordering vector

       E_clas=@(x)0;
    for iJ=1:z
        E_clas=@(x)E_clas(x)+aniso(iJ)*cos(x(1)*Delta(iJ,1));

    end

% Qy=0 is fixed in the classical order parameter
   if(NextNext==1)  % Analytic for the J1-J2
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      if(extra_ani==1) %comensurate spiral to 2D Neel
            if(t2<1/8)
                Qcl(it2,:)=[4/3*pi 0];
            end
            if(t2>1/8)
                Qcl(it2,:)=[2*pi 0];
            end
    if(t2==1/8)
                Qcl(it2,:)=[2*pi 0];
    end
    Ecl(it2)=E_clas(Qcl(it2,1));
    end
        if(extra_ani<1)
% Region not considered in the MSWT calculations
            'Error, no extra_ani<1 allowed'
        end
    if(extra_ani>1)
  opt = optimset('Display','off');
  %Energy minimization with different initial values of iteration to
 find
  %the global minimum.
[A(1) B(1)]=fmincon(E_clas,Qcl_before,[],[],[],[],[4/3*pi-0.1],[2*pi
+0.01],[],opt);
[A(2) B(2)]=fmincon(E_clas,2*pi,[],[],[],[],[4/3*pi-0.1],[2*pi+0.01],
[],opt);
[A(3) B(3)]=fmincon(E_clas,4/3*pi,[],[],[],[],[4/3*pi-0.1],[2*pi
+0.01],[],opt);

   %Global minimum .
   [a b]=min([B]);
   Qcl(it2,1)=A(b);
   Ecl(it2)=B(b);

Qcl_before=Qcl(it2); %Set Qcl_before for next iterations
  Qcl(it2,2)=0;
    end

   end

    % Clasical Order parameter SATL (Analytic)
   if(NextNext~=1)
    Qcl(it2,1)=2*acos(-t2/2); Qcl(it2,2)=0;
    if(t2>2)
     Qcl(it2,1)=2*pi; Qcl(it2,2)=0;
    end
      Ecl(it2)=E_clas([Qcl(it2,1)]);
   end

LSWT: Obtaining Ak and Bk

cont=1;
       A_lsw=@(x,y)0;
       B_lsw=@(x,y)0;
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    for iJ=1:z
 cosQ(iJ)=cos(dot(Qcl(it2,:),Delta(iJ,:)));
 A_lsw=@(x,y)A_lsw(x,y)+S/2*aniso(iJ)*(lambda-
cosQ(iJ))*cos(x*Delta(iJ,1)+y*Delta(iJ,2));
B_lsw=@(x,y)B_lsw(x,y)+S/2*aniso(iJ)*((lambda
+cosQ(iJ))*cos(x*Delta(iJ,1)+y*Delta(iJ,2))-2*cosQ(iJ));
    end

omega_lsw=@(x,y)sqrt(B_lsw(x,y).^2-A_lsw(x,y).^2);
cos2theta_lsw=@(x,y)sqrt(B_lsw(x,y).^2./(B_lsw(x,y).^2-
A_lsw(x,y).^2));
sin2theta_lsw=@(x,y)A_lsw(x,y)./B_lsw(x,y).*cos2theta_lsw(x,y);
integrand_lsw=@(x,y)B_lsw(x,y)./omega_lsw(x,y);
Mzero_lsw(it2,1)=t2;

Self iterative equations till convergence is reached

% Previous MSWT values
 sin_initial{1}=sin2theta_lsw; cos_initial{1}=cos2theta_lsw;
 sin_initial{2}=sin2theta_msw_prev; cos_initial{2}=cos2theta_msw_prev;
 Q_initial{1}=Qcl(it2,:); Q_initial{2}=Q_msw_prev;

 for starting_value=1:previous_msw  % This loop is over the starting
 value of costheta and sintheta, (LSWT and previous MSWT)

 cos2theta=cos_initial{starting_value};
 sin2theta=sin_initial{starting_value};
 Q_msw_before=Q_initial{starting_value}; %Starting value for the Q
 Mzero_old=0; Mzero=1; %Allows the first iteration to start
 cont=1;

 for iteration=1:nitera  %Loop for self iteracting equations

fprintf(1,'%s\n',['Computing for t2=:' num2str(t2) ' and anisotropy='
 num2str(extra_ani) ' . Iteration' num2str(iteration) '. M_zero='
 num2str(Mzero) ])

if(abs(Mzero-Mzero_old)<tolerance)     %Condition for convergence

    fprintf(2,'%s\n',['Convergence reached for t2=' num2str(t2) '
 and anisotropy=' num2str(extra_ani) '. Number of iterations'
 num2str(iteration)])
 %  Save output just when convergence
    output_MSW(it2,:)=[t2 Q(1) Q(2)  Mzero Ene_msw iteration
 starting_value];
       cos2theta_msw_prev=cos2theta; % Keep the values for next
 iteration
   sin2theta_msw_prev=sin2theta;
   Q_msw_prev=Q;
     converged_points(it2)=1;

   break
 end

121



MSWT for the anisotropic J1-J2

    % Takahashi constraint for the zero mode
    if(iteration>1)
    Mzero_old=Mzero;  %M_old is M_zero of previous interaction.
 end
      Mzero=S+1/2;
 [result] = integral(cos2theta);
Mzero=-result+S+1/2; %New Mzero

 if(abs(imag(Mzero))>0) %If Mzero imaginary breaks loop
    fprintf(2,'%s\n',['Error of convergence for t2=' num2str(t2) ' and
 anisotropy=' num2str(extra_ani) '., iteration=' num2str(iteration)])
       no_convergence(it2)=iteration;
              output_MSW(it2,:)=[t2 0 0  0 0 0 0];

    break
 end
  if(isfinite(Mzero)==0) %If Mzero infinite or NAN breaks
    fprintf(2,'%s\n',['Error of convergence (divergence of integral)
 for t2=' num2str(t2) ' and anisotropy=' num2str(extra_ani) '.,
 iteration=' num2str(iteration)])
       no_convergence(it2)=iteration;
              output_MSW(it2,:)=[t2 0 0  0 0 0 0];

    break
  end

Fr and Gr computation

for iJ=1:2
integrand=@(x,y)cos2theta(x,y).*cos(x*Delta(iJ,1)+y*Delta(iJ,2));
[Fr(iJ)] = integral(integrand);
integrand=@(x,y)sin2theta(x,y).*cos(x*Delta(iJ,1)+y*Delta(iJ,2));
[Gr(iJ)] = integral(integrand);
Fr(iJ)=+Fr(iJ)+Mzero;
Gr(iJ)=+Gr(iJ)+Mzero;
end
Fr(3)=Fr(2);Gr(3)=Gr(2); %equal bounds equal values of Fr Gr
if(NextNext==1)
for iJ=4:6   %%%integral in the Brillouin zone for second neighbours
integrand=@(x,y)cos2theta(x,y).*cos(x*Delta(iJ,1)+y*Delta(iJ,2));
[Fr(iJ)] = integral_second(integrand);
integrand=@(x,y)sin2theta(x,y).*cos(x*Delta(iJ,1)+y*Delta(iJ,2));
[Gr(iJ)] = integral_second(integrand);
Fr(iJ)=+Fr(iJ)+Mzero;
Gr(iJ)=+Gr(iJ)+Mzero;
end
end
Fzero=S+1/2;
[result] = integral(sin2theta);
 Gzero=Mzero+result;
%Check integral convergence
resultats_integral=[Gzero Fzero Fr Gr];
if(isfinite(sum(resultats_integral))==0) %If Mzero infinite or NAN
 breaks
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    fprintf(2,'%s\n',['Error of convergence (divergence of integral)
 for t2=' num2str(t2) ' and anisotropy=' num2str(extra_ani) '.,
 iteration=' num2str(iteration)])
       no_convergence(it2)=iteration;
              output_MSW(it2,:)=[t2 0 0  0 0 0 0];

    break
 end

%%%%%%%% F(r) G(r) Gzero computed.

Computation of Q optimal

  E_msw=@(x)0;

   for iJ=1:z
 E_msw=@(x)E_msw(x)+1/2*aniso(iJ)*(Fr(iJ)^2*(lambda
+cos(x(1)*Delta(iJ,1)+x(2)*Delta(iJ,2)))-Gr(iJ)^2*(lambda-
cos(x(1)*Delta(iJ,1)+x(2)*Delta(iJ,2))));
   end

%%%%  SATL Q is analytic
if(NextNext==0)
argument=-t2/2*(Fr(2)^2+Gr(2)^2+Gzero/2*(Fr(2)-Gr(2)))/
(Fr(1)^2+Gr(1)^2+Gzero/2*(Fr(1)-Gr(1)));
if(argument>-1)
Q_opt(1)=2*acos(argument); Q_opt(2)=0;
end
if(argument<-1)
 Q_opt(1)=2*pi;  Q_opt(2)=0;
end
if(argument==-1)
 Q_opt(1)=2*pi;  Q_opt(2)=0;
end
if(t2==0) %1D limit
 Q_opt(1)=pi;  Q_opt(2)=0;
end
Ene_msw=E_msw(Q_opt);
end

if(NextNext==1)
%Energy minimization with different initial values
    opt = optimset('Display','off');
  E_msw_qy0=@(x)E_msw([x 0]);
  [A(1) B(1)]=fmincon(E_msw_qy0,Q_msw_before(1),[],[],[],[],0,2*pi
+0.01,[],opt);
  [A(2) B(2)]=fmincon(E_msw_qy0,[4/3*pi],[],[],[],[],[0],[2*pi+0.01],
[],opt);
  [A(3) B(3)]=fmincon(E_msw_qy0,[2*pi],[],[],[],[],[0],[2*pi+0.01],
[],opt);
  [a b]=min(B); %absolut minimum
   Q_opt(1)=A(b);
   Q_opt(2)=0;
   Ene_msw=B(b);

123



MSWT for the anisotropic J1-J2

end

 Q_msw_before=Q_opt(:);   %Values used in next interaction
 minimization

Q=Q_opt; %Q which minimizes the energy
%%%%%%%%%%%%%%%%%%%

A_k B_k with MSWT

A_k=@(x,y)0;B_k=@(x,y)0;
for iJ=1:z
cosQ(iJ)=cos(dot(Q,Delta(iJ,:)));
A_k=@(x,y)A_k(x,y)+aniso(iJ)*(lambda-
cosQ(iJ))*Gr(iJ)*cos(x*Delta(iJ,1)+y*Delta(iJ,2));
B_k=@(x,y)B_k(x,y)+aniso(iJ)*((lambda-cosQ(iJ))*Gr(iJ)-(lambda
+cosQ(iJ))*Fr(iJ)*(1-cos(x*Delta(iJ,1)+y*Delta(iJ,2))));
end
Ak=A_k;
Bk=B_k;
%New values for next iteration
 omega=@(x,y)sqrt(B_k(x,y).^2-A_k(x,y).^2);
 cos2theta=@(x,y)sqrt(B_k(x,y).^2./(B_k(x,y).^2-A_k(x,y).^2));
 sin2theta=@(x,y)+A_k(x,y)./B_k(x,y).*cos2theta(x,y);

%Outputs at every iteration (Energy Magnetization Qx Qy)
  output_iteration(it2,iteration,1)=Mzero;
  output_iteration(it2,iteration,2)=Ene_msw;
  output_iteration(it2,iteration,3:4)=Q_opt;

 end  %end of the self consistent equations

if(iteration==nitera)
 %   no convergence obtained in  niterations.
       output_MSW(it2,:)=[t2 0 0  0 0 0 3];
end
 if(both_initial~=1) %If both_initial=1 uses both initial conditions
 if(abs(Mzero-Mzero_old)<tolerance) % If convergence reached, skip
 loop.
  break
 end
 end
 %If converged not reached with LSWT initial values, tries it with
 MSWT of
 %the previous iteration (if converged was reached)
 if(it2>1)
 if(previous_msw==2) & starting_value==1 & converged_points(it2-1)==1
 fprintf(1,'Trying now with previous MSWT')
 continue
 end
 end
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 end % end of the loop for the initial values of the self consisten
 equations

end % End of second neighbours loop

end

end %End extra  anisotropy loop

%Saving output
save(outfile,'output_MSW','Mzero_lsw','Ecl','Qcl','no_convergence','j2')

end

Integral function over NN Brillouin zone

function [ result] = integral(fun)
warning('off','all')
%Hexagon limit of the Brillouin zone
 Hexagon_y=[0 2/sqrt(3) 2/sqrt(3) 0 -2/sqrt(3) -2/sqrt(3) 0]*pi;
Hexagon_x=[4/3,2/3,-2/3,-4/3,-2/3,2/3 4/3]*pi;
% Integration limits
xx=[Hexagon_x(4) Hexagon_x(1) Hexagon_x(2) Hexagon_x(3)];
 yy=[Hexagon_y(4) Hexagon_y(1) Hexagon_y(2) Hexagon_y(3)];
 h = @(x,y) (inpolygon(x, y, xx, yy) .* fun(x,y));
integration = integral2(h, min(xx), max(xx), min(yy), max(yy));
area=4*pi^2/sqrt(3); % Area half hexagon
result=integration/(2*area); %factor 2 from the equations of MSWT
end

Integral function over NNN Brillouin zone

function [ result] = integral_second(fun)
warning('off','all')
%Hexagon
 Hexagon_y=[0 2/sqrt(3) 2/sqrt(3) 0 -2/sqrt(3) -2/sqrt(3) 0]*pi;
Hexagon_x=[4/3,2/3,-2/3,-4/3,-2/3,2/3 4/3]*pi;
% integration limits
xx=[Hexagon_x(4) Hexagon_x(1) Hexagon_x(2) Hexagon_x(3)];
 yy=[Hexagon_y(4) Hexagon_y(1) Hexagon_y(2) Hexagon_y(3)];
 h = @(x,y) (inpolygon(x, y, xx, yy) .* fun(x,y));
integration = integral2(h, min(xx), max(xx), min(yy), max(yy));
area=2*pi^2/sqrt(3);
result=integration/(4*area); %factor 4 from the equations of MSWT
end

Published with MATLAB® R2017a
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APPENDIX C

Previous articles

A Ph.D. thesis is also an opportunity for a young researcher to summarize
his first steps in research in a compact work which will be a valuable memory
for a lifetime. It is with this feeling in mind, that I provide in this appendix
the two articles I did during my master in Universitat de Barcelona (UB) in
collaboration with Artur Polls, Bruno Dı́az-Júlia and Miguel Àngel Garćıa-
March. Both works, which fall outside the scope of the rest of the thesis, are
not intended to take part of the Ph.D. defense.

The first article describes a protocol to change the Hamiltonian param-
eters of a bosonic Josepshon junction, i.e., the tunneling and the on-site
interactions, faster than an adiabatic protocol. In intermediate times of our
protocol, we may not have the ground state of the system, but at the final
time we end up with a state which is really close to the ground state of the
system with fidelity ∼ 1. Remarkable enough, this protocol provides a speed
up in experimental production of spin-squeezed states.

In the second article we study a one-dimensional bosonic system in the
limit of a contact interaction of infinite strength. Under such conditions,
two bosons cannot simultaneously be at the same position. This feature
mimics the effect of Pauli principle in fermionic systems. A 1D system of
this ”fermionized” bosons is called a Tonks-Girardeau gas and has been well
studied for harmonic traps. In this work, we consider a Tonks-Girardeu gas
in a double well potential and look into the fermionization process observing,
for the first time, the creation of NOON Tonks-Girardeau states.
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We extend a recent method to shortcut the adiabatic following to internal bosonic Josephson junctions in
which the control parameter is the linear coupling between the modes. The approach is based on the mapping
between the two-site Bose-Hubbard Hamiltonian and a one-dimensional effective Schrödinger-like equation,
valid in the large-N (number of particles) limit. Our method can be readily implemented in current internal
bosonic Josephson junctions and it substantially improves the production of spin squeezing with respect to the
usually employed linear rampings.

DOI: 10.1103/PhysRevA.88.043647 PACS number(s): 03.75.Kk, 42.50.Dv, 05.30.Jp, 42.50.Lc

I. INTRODUCTION

Practical applications of quantum technologies will require
the controlled production of many-body correlated quantum
states, in particular ground states. It is thus desirable to
find efficient mechanisms for their fast production. Bosonic
Josephson junctions (BJJs) are among the simplest systems
whose ground states already contain many-body correlations
beyond the mean field. Schematically, BJJs are ultracold
bosonic vapors in which, to a good approximation, the atoms
populate only two mutually interacting single-particle levels.
Recently, BJJs have been studied experimentally by several
groups [1–7]. Current nomenclature calls external Josephson
junctions those in which the two levels are spatially separated,
usually by means of a potential barrier [1,4,7,8]. In internal
Josephson junctions, instead, the two levels are internal to
the same atom [5]. The two-site Bose-Hubbard Hamiltonian
provides a suitable theoretical description of both internal and
external junctions [8–11]. A notable feature of this simple
Hamiltonian is that, within subspaces of fixed number of
particles, it can be mapped into an SU(2) spin model. This
makes these systems suitable to study very squeezed spin
states [12,13], as proven experimentally in Refs. [2,4].

In previous work [14], we described how a method to short-
cut the adiabatic following in elementary quantum-mechanical
systems could be applied to produce spin-squeezed states in
BJJs. In particular, we adapted a simple method developed for
harmonic oscillators in which the frequency could be varied in
time [15,16]. In [14], we described the most straightforward
application, where the interatomic interaction strength was
the control parameter. This is nowadays a parameter that can
be varied experimentally, but it is difficult to control with
good accuracy on the time scales considered. To overcome this
problem, here we will extend the earlier protocol by varying
instead the linear coupling between the states (atomic levels)
in internal junctions.1 This variation can be done with fantastic
accuracy [5,17,18], so we shall focus on this case.

1In external junctions, this can be done by increasing the barrier
height between the two wells.

The protocols to shortcut adiabatic evolution are generally
designed to drive, in a finite time, a system from some initial
state to a final state that could be reached adiabatically. An
important advantage of these protocols is that they can, in
addition, aim to control other properties during the evolution,
e.g., reducing transient energy excitation, noise sensitivity, or
optimizing other quantities of interest [19–21]. In addition,
formulas to achieve shortcuts to adiabatic following are
analytic for harmonic-oscillator Hamiltonians [15]. From the
experimental point of view, the methods are capable of
producing a stationary eigenstate of the Hamiltonian at the final
time, making it unnecessary to stop or freeze the dynamics.

The paper is organized as follows. First, in Sec. II, we
describe the theoretical framework. Next, in Sec. III, we
present our numerical results, including a specific subsection
with parameter values within reach with current experiments.
Finally, in Sec. IV, we summarize the results and provide some
concluding remarks.

II. THEORETICAL FRAMEWORK

The dynamics of a BJJ can be well described by a quantized
two-mode model [8,10,11], the Bose-Hubbard Hamiltonian
H = h̄HBH,

HBH = −2J Ĵx + UĴ 2
z , (1)

where the pseudoangular momentum operator Ĵ ≡ {Ĵx,Ĵy,Ĵz}
is defined as

Ĵx = 1
2 (â†

1â2 + â
†
2â1),

Ĵy = 1
2i

(â†
1â2 − â

†
2â1), (2)

Ĵz = 1
2 (â†

1â1 − â
†
2â2),

and â
†
j (âj ) creates (annihilates) a boson at site j . For

bosons, [âi ,â
†
j ] = δi,j . J is the hopping strength and U is

the nonlinear coupling strength proportional to the atom-atom
s-wave scattering length. In internal BJJs, U is proportional
to a1,1 + a2,2 − 2a1,2, with a1,1 and a2,2 the intraspecies
scattering lengths and a1,2 the interspecies one [5]. In this
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work, we consider repulsive interactions, U > 0. For internal
BJJs, the interspecies s-wave scattering length in 87Rb atoms
can be varied by applying an external magnetic field, thanks
to a well-characterized Feshbach resonance at B = 9.1 G, as
done in Ref. [5] for the setup that we are considering. In this
work, instead, we assume a time-dependent hopping strength
J (t), keeping U and N fixed during the time evolution, which
should be simpler and more accurate from an experimental
point of view.

The time-dependent Schrödinger equation (TDSE) is writ-
ten as

i∂t |�〉 = HBH|�〉. (3)

For a given N , an appropriate many-body basis is the Fock
basis, {|mz = (N1 − N2)/2〉}, with mz = −N/2, . . . ,N/2. A
general many-body state |�〉 can then be written as

|�〉 =
N/2∑

mz=−N/2

cmz
|mz〉. (4)

It is useful to define the population imbalance of the state as
z ≡ mz/(N/2).

For a given state, the Kitagawa-Ueda spin-squeezing pa-
rameter [13], termed also the number-squeezing parameter [2],
is defined as ξ 2

N (t) = �Ĵ 2
z /(�Ĵ 2

z )ref , where �Ĵ 2
z ≡ 〈Ĵ 2

z 〉 −
〈Ĵz〉2 and (�Ĵ 2

z )ref = N/4 is the value for a coherent state with
〈Ĵy〉 = 〈Ĵz〉 = 0. The many-body state is said to be number
squeezed when ξN < 1 [13]. The Wineland spin-squeezing
parameter [12], also referred to as the coherent spin-squeezing
parameter [3], is defined as [12,22] ξ 2

S = N (�Ĵ 2
z )/〈Ĵx〉2 =

ξ 2
N/α2, where the phase coherence of the many-body state is

α(t) = 〈�(t)|2Ĵx/N |�(t)〉. ξS takes into account the delicate
compromise between improvements in number squeezing and
loss of coherence. States with ξS < 1 have been proposed to
be the basis of a new Ramsey-type atom interferometer with
increased phase precision (compared to that of the coherent
spin states). This gain in precision can be directly related to
entanglement in the system [22].

Since we take J as the control parameter, we slightly
detour from the derivation in Refs. [23–25]. Following similar
steps as described in those references, one can obtain, in
the semiclassical η ≡ 1/N � 1 limit, a Schrödinger-like
equation,

iη∂tψ(z,t) = HNψ(z,t), (5)

for the continuous extrapolation of z, where

HN (z)ψ(z) ≡ −2η2J∂z

√
1 − z2∂zψ(z) + V(z)ψ(z), (6)

HN ≡ ηHBH, and V(z) = −J
√

1 − z2 + (1/2)(NU/2)z2.
Here, ψ(z) = √

N/2 cmz
is normalized as

∫ 1
−1 dz|ψ(z)|2 = 1.

For repulsive atom-atom interactions, the potential in Fock
space, V(z), is, to a very good approximation, a harmonic
oscillator. Neglecting the z dependence of the effective
mass term, and expanding

√
1 − z2 � 1 − z2/2 in V(z), the

Hamiltonian in Eq. (6) reduces to [24,25]

HN � −2Jη2∂2
z + 1

2 (J + NU/2)z2, (7)

an approximation which we have previously used [24,25] and
numerically verified. A difference with respect to Ref. [14]

and to previous applications of shortcuts-to-adiabaticity to
harmonic-oscillator expansions is that now the control param-
eter J (t) shows up both as a formal time-dependent (inverse
of) mass and as an additive term in the force constant. In
Appendix A, we provide the extension of the shortcut
technique for this type of time dependence when NU/2 � |J |,
so that we can approximate (J + NU/2) � NU/2. Defining
γ = NU/(2J ), this limit corresponds to γ � 1, which is
easily attainable in current experiments. It is also relevant
as it corresponds to very spin-squeezed ground states of the
bosonic Josephson junction. In Appendix B, we verify that the
method is not applicable when |γ | < 1.

For the case at hand, the inverse engineering described in
Appendix A translates into solving for J (t) in the following
Ermakov equation:

b̈ − 2
(ḃ)2

b
= 4k

J (t)
b − k2

η2
b5, (8)

where the dots indicate time derivatives, and k = NU/2 and
b(t) must satisfy the boundary conditions

bi ≡ b(0) =
[

8η2J (0)

NU

]1/4

, (9)

bf ≡ b(tf ) =
[

8η2J (tf )

NU

]1/4

,

(10)
ḃ(0) = b̈(0) = ḃ(tf ) = b̈(tf ) = 0.

For simplicity, we apply the polynomial [15]

bpoly(t) = bi + 10(bf − bi)s
3 − 15(bf − bi)s

4 + 6(bf − bi)s
5,

(11)

with s = t/tf . We also consider a nonpolynomial form in some
comparisons,

bnonpoly(t) = bi

(
bf

bi

)6s5−15s4+10s3

. (12)

III. NUMERICAL SIMULATIONS OF
THE SHORTCUT PROTOCOL

In all cases, we will consider the evolution from an initial
ground state corresponding to γ = γi to a final one with
γ = γf . The control parameter J (t) will go from J (0) = Ji to
J (tf ) = Jf in a time tf with a fixed value of U . In our first
application, we will measure the time in units of the initial Rabi
time, t

(i)
Rabi = π/Ji . Later, we will consider realistic values of

U and t taken from recent experiments. Let us emphasize that
the large-N limit discussed in the previous section leading to
the harmonic-oscillator approximation is used to design the
protocol. In what follows, all results are obtained by directly
solving the original many-body problem, given by Eq. (3),
using the function J (t) given by the shortcut protocol as
detailed above.

In Fig. 1, we consider a factor 2 change in γ , from γi =
10 to γf = 20 in a time tf = 0.08t

(i)
Rabi, with N = 100 and

NU/2 = 1/t
(i)
Rabi. We compare the shortcut protocol using the

polynomial ansatz for b(t) to a linear ramping: J (t) = Ji +
(Jf − Ji)(t/tf ). The shortcut method is shown to work almost
perfectly, and we obtain a final fidelity �1 (despite the process
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FIG. 1. (Color online) (a) J (t) used in the shortcut protocol
compared to the corresponding linear ramping. The initial and final
values of γ are γi = 10, γf = 20, and tf = 0.08t

(i)
Rabi. (b) The fidelity

(overlap) between the evolved state and the instantaneous ground
state. The number of particles and nonlinearity are N = 100 and
U = 1/(50t

(i)
Rabi), respectively.

being diabatic during the intermediate evolution). For this case,
the linear ramping produces a final fidelity of �0.9965. As it
occurred with the harmonic oscillator [15] or in Ref. [14],
for more stringent processes, i.e., shorter final times or larger
changes in γ , the method requires negative values of the control
parameter. For instance, if we require a factor of 10 change,
from γi = 10 to γf = 100 under the same conditions, then
J (t) becomes negative during part of the evolution. Although
for usual tunneling phenomena the hopping term is always
positive, e.g., in external Josephson junctions, there are several
proposals to implement negative or even complex hopping
terms in optical lattices [26,27]. For the internal Josephson
junctions achieved in Oberthaler’s group, negative tunneling
presents no obstacle as they are able to engineer a tunneling
term of the form (see Sec. 3.5 of Ref. [17])

J (t)[Ĵx cos φc(t) + Ĵy sin φc(t)], (13)

with φc(t) a phase which can be controlled externally.
Our results are shown in Fig. 2. First we see that for

both polynomial and nonpolynomial choices of b(t) described
above, J changes its sign at intermediate times; see Fig. 2(a).
This implies a transient loss of fidelity (overlap) between
the evolved state and the instantaneous ground state of the
system, as shown in Fig. 2(d). With the shortcut protocol, both
the coherence [Fig. 2(b)] and number squeezing [Fig. 2(c)]
evolve smoothly towards their adiabatic value. In contrast,
the linear ramping fails to provide the adiabatic values at the
final time. The instantaneous ground-state coherence [dotted
red line in Fig. 2(b)] is rather involved as it follows the J (t)
path. As seen in Fig. 2(c), the linear squeezing is �−6 dB,
while the adiabatic one, accurately reproduced by the shortcut
protocol, is �−10 dB. This is a notable feature which should be
experimentally accessible. The linear ramp gives a final fidelity
of 0.95, well below those of the polynomial and nonpolynomial
shortcut protocols which get final fidelities of nearly 1. It is
also worth stressing that the many-body state produced by the
shortcut method at t = tf is almost an eigenstate of the system,
which implies constant coherence and squeezing for t > tf ;
see Figs. 2(b) and 2(c).

It is also possible to engineer fidelity-one processes where
the control J (t) is constrained from below and above by pre-
determined values (in particular, we could make both bounds
positive). Prominent examples are the bang-bang protocols,

FIG. 2. (Color online) (a) Evolution of J (t), (b) coherence of the
state, (c) its number squeezing, and (d) the instantaneous fidelity.
N = 100 atoms, γi = 10, γf = 100, and tf = 0.08t

(i)
Rabi. For t > tf ,

we fix γ (t) = γ (tf ).

with stepwise constant J , which solve the time-minimization
variational problem for given bounds and boundary conditions
[16,19,28,29].

A. Simulations using experimental values for the parameters

As explained above, the variation of J with time can
be readily implemented experimentally. In this section, we
will consider realistic values of the parameters. Following
Refs. [4,17], we take a value of the nonlinearity U =
0.49 Hz, with N = 100 atoms, and make variations of γ

during typical experimental values of time: tf = 10,15,30,50,
and 100 ms. At t = tf , we fix γ (t) = γf and evolve the
system during an additional small time to check whether
or not the state remains close to the desired final ground
state.

In Fig. 3, we depict the final value of the fidelity [Fig. 3(c)],
number squeezing [Fig. 3(b)], and coherence of the many-body
state [Fig. 3(a)] as a function of the final time imposed tf . The
shortcut method (with polynomial ansatz) is compared to the
linear ramping. The first observation is that for tf > 40 ms,
the shortcut protocol produces a fidelity �1, while the linear
ramp stays always below 0.95; see Fig. 3(c). Similarly, for
tf > 40 ms, the final coherence and number squeezing are
essentially those of the corresponding ground state [Figs. 3(a)
and 3(b)]. This is an important finding, as for instance the linear
ramping produces roughly half of the number squeezing as
compared to the adiabatic or shortcut protocol. For tf < 40 ms,
the shortcut protocol is seen to fail and, in particular, the
achieved final fidelities drop to 0.7 for tf = 10 ms, which
is smaller than the linear ramping ones. As explained above,
our shortcut protocol has been derived assuming the validity
of a parabolic approximation for the potential in Fock space.
Therefore, we expect the method to fail when the intermediate
wave packet spreads far from the central region in Fock space.
In Fig. 4, we have plotted the spectral decomposition of the
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FIG. 3. (Color online) Properties of the state of the system at tf
after a shortcut protocol (black) and a linear ramp (red), for different
values of tf . (a) The relative coherence, α/αadiabatic. (b) The relative
number squeezing, ξ 2

N/ξ 2
N,adiabatic. (c) The value of the final fidelity.

(d) The maximum value of 1/γ required for the shortcut process. In
all simulations, γi = 10, γf = 100, N = 100, and U = 0.49 Hz.

many-body state |cz|2 as a function of time for the same final
times tf as above. When the final time is large, the process is
smooth and the wave function does not spread considerably.
When we use shorter final times, J (t) takes large values (so γ

is small at intermediate times) and the effective wave function
spreads considerably in z space. A parameter that affects the
J (t) functional form is the number of atoms N . The larger
N , the smoother the J (t) path and the better are the results
obtained. This is seen in Fig. 5, where we choose only two
values of tf , i.e., 10 and 20 ms, and consider N = 50,100,150,
and 400 atoms. We also depict J (t), which is on average
smaller for larger N .
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FIG. 5. (Color online) (a) Evolution of J (t) required by the
polynomial shortcut protocol for different values of N and tf =
20 ms. (b) The final fidelities attained in the process for tf = 10
and 20 ms. U = 0.49 Hz and γi = 10, γf = 100.

IV. SUMMARY AND CONCLUSIONS

We have presented a method to produce ground states
of bosonic Josephson junctions for repulsive atom-atom
interactions using protocols to shortcut the adiabatic following.
We inverse engineer the accurately controllable linear coupling
J by mapping a Schrödinger-like equation for the (imbalance)
wave function of the Josephson junction onto an ordinary
harmonic oscillator for which shortcut protocols can be set
easily. The original equation is a priori more involved for
that end, as the kineticlike term includes a time-dependent
formal mass. As detailed in Appendix A, the mapping
requires a reinterpretation of kinetic and potential terms,
which interchange their roles in a representation conjugate
to the imbalance. The time dependence of the formal mass of
the original equation (inversely proportional to J ) implies the
time dependence of the frequency of the ordinary (constant
mass) harmonic oscillator, and J plays finally the role of the
squared frequency. This mapping is different and should be
distinguished from the ones used to treat harmonic systems
with a time-dependent mass both in the kinetic and the
potential terms [30]. From the experimental point of view, our
protocol should help the production of spin-squeezed states,
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FIG. 4. (Color online) Left: Evolution of J (t) required by the polynomial shortcut protocol for different final times tf = 10,20,50,100 ms.
Right: Spectral decomposition of the many-body state |cz|2 for the same tf as a function of time. In all simulations, γi = 10, γf = 100,
N = 100, and U = 0.49 Hz.
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increasing the maximum squeezing attainable in short times.
In particular, an important shortcoming of recent experimental
setups [17] is that they have sizable particle loss on time
scales of the order of �50 ms for atom numbers on the
order of a few hundred. For these systems, our methods could
be targeted at shorter times, as in the examples presented,
providing an important improvement with respect to linear
rampings.
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APPENDIX A: SHORTCUT EQUATIONS FOR THE
JOSEPHSON JUNCTION WITH CONTROLLABLE

LINEAR COUPLING

In this Appendix, we shall transform the Schrödinger-like
Eq. (5) so that the invariant-based engineering technique for
time-dependent harmonic oscillators developed in [15,16] may
be applied. The structure of the Hamiltonian (7) is peculiar
as it involves a time-dependent (formal) mass factor in the
kineticlike term. The first step is to transform this Hamiltonian
according to

η → h̄, 4J (t) → 1

m(t)
,

NU

2
→ k, (A1)

to rewrite Eq. (7) as

H = 1

2m(t)
p2 + 1

2
kz2, (A2)

where p = −ih̄∂z is the “momentum” conjugate to z.2 These
and other transformations performed below are formal so that
the dimensions do not necessarily correspond to the ones
suggested by the symbols and terminology used. For example,
neither p, m(t), nor z have dimensions of momentum, mass,
and length, respectively.

Multiplying the time-dependent Schrödinger equation cor-
responding to Eq. (A2) from the left by momentum eigenstates
〈p|, we get

ih̄∂t�(p,t)=−h̄2k

2

∂2

∂p2
�(p,t)+ p2

2m(t)
�(p,t). (A3)

Finally, with the new mapping,

k → 1

mx

,

1

m(t)
→ mxω

2
x(t), (A4)

p → x ,

2We shall use the symbol p also for the momentum eigenvalues
since the context makes its meaning clear.

the Hamiltonian takes the standard time-dependent harmonic
oscillator form

H = − h̄2

2mx

∂2

∂x2
+ 1

2
mxω

2
x(t)x2 . (A5)

Note that thanks to the above transformations and ba-
sis change, the kineticlike and potential-like terms in the
Hamiltonian (7) have interchanged their roles so that the
time dependence of the formal mass has become a time
dependence of the formal frequency in Eq. (A5), whereas mx

is constant. Fast dynamics between t = 0 and tf , from ωx(0)
to ωx(tf ) without final excitations for this Hamiltonian may
be inverse engineered by solving for ωx(t) in the Ermakov
equation [15,16],

ρ̈ + ω2
x(t)ρ = ω2

0

ρ3
, (A6)

where ω0 is, in principle, an arbitrary constant, and ρ(t) is
a scale factor for the state that we may design, e.g., with a
polynomial, so that it satisfies the boundary conditions

ρ(0) =
(

ω0

ωx(0)

)1/2

, ρ(tf ) =
(

ω0

ωx(tf )

)1/2

,

(A7)
ρ̇(0) = ρ̇(tf ) = ρ̈(0) = ρ̈(tf ) = 0.

Defining b = h̄/ρ, choosing ω0 = kh̄, and undoing the
changes (A4) and (A1), we rewrite the Ermakov equation
as Eq. (8) and the boundary conditions become those in
Eq. (9).

APPENDIX B: LIMITATIONS OF THE METHOD

As explained in the main text, to perform the mapping
between the results in Appendix A and the Bose-Hubbard
Hamiltonian, we have assumed NU/2 � J (γ � 1). Thus
our mapping should not be valid for small values of γ .
Figure 6 demonstrates that this is indeed the case. It shows
the fidelity of the shortcut protocol for γi = 0.1 and γf = 1
when tf = t

(i)
Rabi. In this special case, one finds a better

fidelity with the linear ramping than with the shortcut
path.
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FIG. 6. (Color online) Instantaneous fidelity as a function of time.
γi = 0.1 and γf = 1 with tf = t

(i)
Rabi for the shortcut and a linear

path.
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We study a one-dimensional gas of repulsively interacting ultracold bosons trapped in a double-well potential
as the atom-atom interactions are tuned from zero to infinity. We concentrate on the properties of the excited states
which evolve from the so-called NOON states to the NOON Tonks-Girardeau states. The relation between the
latter and the Bose-Fermi mapping limit is explored. We state under which conditions NOON Tonks-Girardeau
states, which are not predicted by the Bose-Fermi mapping, will appear in the spectrum.
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I. INTRODUCTION

The ground state of an ultracold bosonic gas confined in
one dimension in which the atoms interact through a contact
potential of infinite strength is known to be the so-called
Tonks-Girardeau (TG) gas [1,2]. More generally, in this
regime, the Bose-Fermi (BF) mapping theorem allows one
to build bosonic wave functions from symmetrized versions
of the free-fermion ones, establishing a deep connection
between the infinite contact strength and the Pauli principle [3].
This fermionization mechanism takes place for any number
of atoms in both trapped and untrapped systems, the only
difference being the single-particle wave functions needed to
build the free fermionic states prior to symmetrization [4].
Interestingly, for a finite number of trapped atoms one can
reach strongly correlated states of the TG type for finite, albeit
large, interaction strengths [5–8]. Two experimental groups
have confirmed the latter, producing TG gases of �50 [9]
and 15 [10] ultracold atoms, respectively, and many more are
expected to explore the strong interacting limit following the
ground-breaking experiments with few trapped atoms [11–18].

Simultaneously, double-well experiments with ultracold
bosons [19,20] have already produced correlated many-body
states [21] and should sooner rather than later allow one to
produce macroscopic superpositions [22,23]. So combining
the two may allow one to produce macroscopic superpositions
of strongly interacting TG gases. In this article we settle
under which conditions the superpositions in the Fock regime,
so-called NOON (Schrödinger-cat-like) states [24–27], evolve
into superpositions of TG gases, denoted NOON TG, as the
interactions are tuned from small to infinity.

This article is organized as follows. First, in Sec. II we
present the model Hamiltonian and revise the case of spinless
fermions. Then, in Sec. III we concentrate on the case of
bosons trapped in the double well, going from the small to
large interactions and discussing the effect of a finite range
of the atom-atom interaction. Finally, in Sec. IV we discuss
further implications and give an outlook for our article.

II. MODEL HAMILTONIAN

Let us consider N atoms trapped in a one-dimensional
double-well potential, described by the first-quantized

Hamiltonian Ĥ = ∑N
j=1 [−(1/2)∂2

z2
j

+ VDW(zj )] + Vint, with

contact interactions Vint = g
∑

i<j δ(zi − zj ), where � = m =
1. We model the double well with a Duffing potential,
VDW(z) = V0[−8(z/V0)2 + 16(z/V0)4 + 1], with minima at
z = ±V0/2 and a local maximum at z = 0 (thus V0 is
the barrier height and the distance between the wells). Let
φn be the nth eigenstate of the single-particle Hamiltonian
Hsp = (1/2)∂2

z2 + VDW(z) with energy εn. As V0 is increased,
quasidegeneracies between the single-particle energies are
introduced [see Fig. 1(a)].

Spinless fermions

For N spinless fermions, the ground and all excited states
� f

k of Ĥ are the Slater determinants of N single-particle
eigenstates φn. Their eigenenergies are the summation of the
energies of the N states φn used in the corresponding Slater
determinant. The states �f

k fulfill the Pauli exclusion principle,
i.e., are zero whenever zi = zj , and therefore do not feel the
contact interaction.

For N = 2 fermions the ground state is �f
0(z1,z2) =

1/
√

2 Slater(φ0,φ1) = 1/
√

2[φ0(z1)φ1(z2) − φ1(z1)φ0(z2)]
and has energy E0 = ε0 + ε1 for all V0. For large V0,
the first two single-particle states are quasidegenerate,
ε1 = ε0 + ε01, with ε01 � ε0. The next four excited states are
�f

1 ∼ Slater(φ0,φ2), �f
2 ∼ Slater(φ1,φ2), �f

3 ∼ Slater(φ0,φ3),
and �f

4 ∼ Slater(φ1,φ3). For V0 � 4.5, the second and third
single-particle states are also quasidegenerate (see Fig. 1),
and then ε3 = ε2 + ε23, with ε23 � ε2. Thus, for V0 � 4.5
the first four excited states are quasidegenerate and have
energies E1 = ε0 + ε2, E2 = E1 + ε01, E3 = E1 + ε23, and
E4 = E1 + ε01 + ε23. For two atoms, the next excited state
has a finite energy gap with this manifold (see gap between ε3

and ε4 for large V0 in Fig. 1).
Let us define the following single-particle wave functions:

φj
n =

⎧⎨
⎩

φL
n = 1√

2
(φ2n + φ2n+1),

φR
n = 1√

2
(φ2n − φ2n+1), n = 0,1, . . . .

(1)

Here j = L (R) stands for left (right). These φ
j
n functions

are mostly localized either in the left or right well when the

1050-2947/2015/92(3)/033621(6) 033621-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) The first ten eigenvalues of the single-
particle Hamiltonian as a function of V0. The dashed line repre-
sents the condition E = V0. (b)–(d) One-body density matrix for
NOON Tonks-Girardeau states of N = 2,3, and 4 obtained with
g = 20 and V0 = 6,10, and 12, respectively.

pair of delocalized functions φn used to construct them is
quasidegenerate.

III. INTERACTING BOSONS IN A DOUBLE WELL

Using the single-particle eigenfunctions to build the Fock
basis, the many-body Hamiltonian for bosons reads

Ĥ =
M∑
i=1

εi â
†
i âi + g

2

M∑
k,l,m.n

Ik,l,m,nâ
†
kâ

†
l âmân, (2)

with Ik,l,m,n = ∫
dzφk(z)φl(z)φm(z)φn(z), where [â†

k,âi] = δik

and [â†
k,â

†
i ] = [âk,âi] = 0. A Fock vector is written as

|n0,n1, . . . ,nM〉 = N (a†
0)n0 , . . . ,(a†

M )nM |vac〉, where |vac〉 is
the vacuum, ni is the number of atoms in mode i, and
N −1 = √

n0! · · · nM !.

A. Beyond the Fock regime

For a barrier high enough to have a number
of quasidegenerate single-particle doublets, the sim-
plest picture is provided using the localized single-
particle basis defined in Eq. (1). Using this basis, the
Fock vectors can be written as |nL

0 ,nR
0 ,nL

1 ,nR
1 , . . . 〉lo =

N (aL †
0 )n

L
0 (aR †

0 )n
R
0 · · · (aL †

M/2)n
L
M/2 (aR †

M/2)n
R
M/2 |vac〉, with N −1 =√

nR
0 !nL

0 ! · · · nR
M/2!nL

M/2!. For small interactions the system

remains bimodal, allowing us to explore with a two-mode
model from the Josephson to the Fock regimes [28,29]. As
interactions are increased, the system approaches the strongly
correlated regime [5–7]. Let us explore in detail this transition,
using as driving examples the N = 2 and N = 3 cases.

For instance, when N = 2 and for interactions larger
than the first gap, the ground state is well approximated
by |1,1,0, . . . 〉lo. This state has one atom in each well and
is thus unaffected by the interaction. Its energy remains

FIG. 2. (Color online) Energy spectra for (a) N = 2 with V0 = 5
and (b) N = 3 with V0 = 10. The blue dashed lines represent the
energies expected in the fermionized limit, g → ∞ (we explicitly
label a few of them). We extrapolate these energies from the ones
calculated with an increasing number of modes, with a maximum of
30 (24) modes for N = 2 (3).

constant as g is increased [see Fig. 2(a)]. The first two
excited states, quasidegenerated with the ground state in
the noninteracting case, are the NOON states, |NOON2〉 =
(|0,2,0, . . . 〉lo ± |2,0,0, . . . ,〉lo)/

√
2, which contain a delo-

calized pair of interacting atoms (two atoms in the same
well). Their energy grows linearly with g for small g [see
Fig. 2(a)]. The next excited states involve more than two modes
and are clearly gapped in the absence of interactions [30–
32]. They read (|0,1,1,0, . . . 〉lo ± |1,0,0,1,0, . . . 〉lo)/

√
2 and

(|0,1,0,1,0, . . . 〉lo ± |1,0,1,0, . . . 〉lo)/
√

2. As before, the first
two are mostly noninteracting, and thus, their energies remain
constant as g is increased. The latter, however, have one pair
of interacting atoms; their energy grows linearly with a slope
similar to that of the |NOON2〉 states [see Fig. 2(a)].

For N > 2 there are no noninteracting states. For
N = 3 the lowest-energy manifold at small interac-
tions is (|1,2,0, . . . 〉lo ± |2,1,0, . . . ,〉lo)/

√
2 and the NOON

states, |NOON3〉 = (|3,0,0, . . . 〉lo ± |0,3,0, . . . ,〉lo)/
√

2. For
the first two, the energy increases linearly with g, with the
same slope as for N = 2 discussed above, due to the pair of
atoms in the same well. In contrast, the NOON states have
three interacting pairs, with a correspondingly larger slope
[see Fig. 2(b)].

In general, the lowest-energy manifold at small g

is |N,0,0, . . . 〉lo ± |0,N,0, . . . 〉lo, |1,N − 1,0 . . . 〉lo ± |N −
1,1,0 . . . 〉lo, etc. Our interest at this point is to disentangle
the fate of these states as the interaction is varied from the
Fock regime into the strongly interacting regime, in particular
what happens with the states in which more than one atom
populates each well in the Fock regime. The driving intuition
is twofold. First, we know that for bosons in a single well,
the system evolves into a TG gas; that is, the NOON would
directly evolve into a NOON TG gas. Second, the BF mapping
theorem can be directly applied to the system [3], providing
exact solutions in the infinitely interacting case, which will be
shown to be in contradiction with the first intuition.

B. From NOON to the NOON Tonks-Girardeau

The N = 2 and N = 3 cases are again very illustrative.
We note that, energetically, the fate of the NOON states in
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FIG. 3. (Color online) One-body density matrices of the first and
third excited states for two bosons and V0 = 5. The top (bottom) row
is computed with g = 0.5 (g = 20). The NOON state in (a) evolves
into the NOON TG in (c). The noninteracting state in (b) remains
mostly unchanged in (d).

N = 2 is very similar to what happens to the (|1,2,0, . . . 〉lo ±
|2,1,0, . . . 〉lo)/

√
2 states in N = 3 (see Fig. 2); that is, the

third particle in the N = 3 case plays a spectator role as g is
increased. The latter takes place also in the general N > 2
case, in which none of the eigenstates are noninteracting
and in which, upon increasing g, the system is expected to
increase correlations to avoid the interaction. Thus, let us
first disentangle the fate of the NOON states at N = 2. From
Fig. 2(a) we see that as g is further increased, their energies
saturate to a constant value which actually approaches ε0 + ε2.
This is also essentially the energy of the states evolved from
(|0,1,1,0, . . . 〉lo ± |1,0,0,1,0, . . . 〉lo)/

√
2, which are nonin-

teracting. Thus, in the strongly interacting regime, there are
four quasidegenerate states.

The evolution with increasing g of their one-body density
matrices (OBDM) is very telling. The NOON states evolve
from the |NOON2〉 states at g = 0.5 [see Fig. 3(a)] to distribu-
tions with two peaks per well [or three and four peaks per well
for N = 3 and N = 4, respectively; see Figs. 1(c) and 1(c)],
resembling the OBDM for two TG gases [Fig. 3(c)] at g = 20.
The OBDM for the noninteracting states similarly shows two
peaks per well, which would correspond to populating the
single-particle states φ2,3, which have one node in each well.

The rigorous BF mapping theorem is established by noting
that the bosonic problem in the g → ∞ case is equivalent to the
bosonic problem when imposing the boundary condition that
the wave functions have to vanish if zj = zj ′ . This boundary
condition is automatically obeyed by the fermions due to the
Pauli exclusion principle. Then, the bosonic wave functions �b

can be obtained from the fermionic ones �f after symmetrizing
them, �b = A�f with A = ∏

j>j ′ sgn(zj − zj ′), with sgn(z)
being the sign function. The analytic form of the wave
functions for the case of fermions was discussed above. The

FIG. 4. (Color online) Comparison of two of the four excited
numerical wave functions for g = 20 (top row) and the analytic ones
�b

1 [(e) and (g)] and �b
3 [(f) and (h)] obtained through the BF mapping

(bottom row). (a), (b), (e), and (f) are obtained with V0 = 4, and (c),
(d), (g), and (h) are obtained with V0 = 5. N = 2.

BF mapping theorem applies equally regardless of the value
of V0.

In Fig. 4 we compare the predictions of the BF mapping to
the actual numerical results for N = 2 and for V0 = 4 and V0 �
4.5. For V0 = 4, the BF mapping [Figs. 4(e) and 4(f)] provides
an accurate representation of the numerically obtained results
[Figs. 4(a) and 4(b)]. Both the NOON and the noninteracting
states evolve at g = 20 to the states predicted by the BF
mapping. Note that in this case, the barrier is not high enough
to produce two pairs of quasidegenerate single-particle states
(see Fig. 1). None of the states is, however, a NOON TG state.

A surprising result appears, however, as we increase the
barrier height, going from V0 = 4 to V0 = 5 in Fig. 4. In this
case, the prediction of the BF mapping [Figs. 4(g) and 4(h)]
and the numerical results [Figs. 4(c) and 4(d)] clearly disagree.
The numerical results show less left-right coherence than
the BF mapping prediction. That is, there is essentially zero
probability of finding two bosons in the same well, as seen
in Fig. 4(d), while in the BF mapping, the probability is
clearly non-negligible in all four states. It is worth mentioning
that these differences, which involve pair correlations, are not
reflected in the density profiles, i.e., the diagonal of the one-
body density matrices [Figs. 1(b), 1(c), 1(d), 3(c), and 3(d)].
What causes such a discrepancy? And, more important, what
would an experiment find? Let us note that in all cases, the
left-right symmetry is fully respected; that is, it is not a
consequence of spurious numerical biases in the numerics.

C. Finite-range effects

The BF mapping applies for contact interaction potentials in
the strict infinite interaction case. To understand what happens
with finite interaction we can build a perturbation theory on the
BF mapped states. Let us consider a finite-range perturbation
on the four states predicted by the BF mapping, e.g., Vpert(zj −
zj ′ ) = η/

√
2πσ 2 exp [−(zj − zj ′)2/(2σ 2)], and diagonalize it

in the restricted space spanned by {�b
1 ,�b

2 ,�b
3 ,�b

4 }. The
new eigenstates are the dressed states {�̄b

1 ,�̄b
2 ,�̄b

3 ,�̄b
4 }. The

perturbative calculation predicts an avoided crossing (see
Fig. 5). For η < 0, thus removing repulsion from the g →
∞ limit, we have the NOON TG as the lowest state of
the manifold, �̄b

1 � (�b
1 + �b

4 )/
√

2 (see Fig. 5) and �̄b
2 �
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M. A. GARCÍA-MARCH et al. PHYSICAL REVIEW A 92, 033621 (2015)

FIG. 5. (Color online) Detailed analysis of the g → ∞ limit for
V0 = 5.5 and N = 2 (top panel). Two of the first excited states
computed numerically (solid lines) are compared to the results of the
perturbation theory when the width of the perturbation is σ � 0.07
(dashed lines). The bottom panels depict the composition of the
dressed states, �̄b

1 and �̄b
4 : 〈�̄b

k |�b
1 〉 (solid red line) and 〈�̄b

k |�b
4 〉

(dashed blue line). A similar qualitative picture is obtained for states
�̄b

2 and �̄b
3 .

(�b
2 + �b

3 )/
√

2. For η > 0, the repulsive finite-size correction
sets the noninteracting states �̄b

1 � (�b
1 − �b

4 )/
√

2 and �̄b
2 �

(�b
2 − �b

3 )/
√

2 as the lowest in the manifold. Note that η = 0
corresponds to the strength of the perturbation at which the BF
mapping is fulfilled.

These predictions are actually in good agreement with our
full direct diagonalization results. To compare the two let us
first define gc as the value at which the eigenenergies of the
system coincide with the BF mapping prediction. With a strict
contact potential, gc = ∞. If the interaction has a finite range
(which effectively happens when using a finite number of
modes), gc becomes finite. For instance, in Fig. 5 we compare
the perturbation theory with the results using M = 28 modes.
In that case, the agreement is fairly good if σ � 0.07. Further
increasing M , gc is found to increase, and as expected, the
effective σ decreases.

To clarify the role played by the range of the interaction, we
have replaced the contact Vint by a finite-range, σ , Gaussian
atom-atom interaction (see the Appendix). By increasing the
number of modes used in Eq. (2) we can obtain converged
results and get gc as a function of σ . We find gc ∝ 1/σ ,
diverging in the σ → 0 limit, as expected from the BF mapping
prediction. In a realistic experimental setup with two 87Rb
atoms confined to 1 μm, the critical value gc can be attained by
combining a Feshbach resonance and the confinement-induced
one-dimensional resonance predicted in Ref. [33], as done
experimentally in Ref. [34].

IV. DISCUSSION AND OUTLOOK

These results have been checked for N = 2,3, and 4.
For arbitrary N , at least N quasidegenerate doublets are
needed, like in the fermionic case experimentally proven
recently [12,13,17]. The corresponding quasidegenerate man-
ifold predicted by the BF mapping in the g → ∞ limit has
2N many-body states. Finite-range interactions mix the states,
producing again the avoided crossing at gc between the two
NOON TG states and less interacting states (less localized) in
the manifold. Notice that in an actual experiment aiming to
realize the infinitely interacting limit, this residual interaction
will be present. These findings, which require two-body
correlations to be explicitly measured, will be of relevance
in future experimental efforts to build strongly correlated
states with intersite spatial entanglement. As an outlook, we
foresee that for a general trapping potential with an associated
single-particle eigenspectrum showing quasidegeneracies, the
effect of the finite range of the contact interactions may involve
discrepancies between the result predicted by the BF mapping
and the actual solution.
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APPENDIX: ESTIMATE OF THE CRITICAL
COUPLING STRENGTH

We provide the details to estimate the value of the critical
coupling strength for a realistic value of the atom-atom
interaction strength. To do so we have performed extensive
numerical simulations for different values of the range of the
atom-atom interaction σ ,

V (zj − zj ′) = g√
2πσ 2

exp[−(zj − zj ′)2/(2σ 2)]. (A1)

In all cases we have considered as the external potential the
Duffing potential with V0 = 5.5. In our numerical method,
which builds the Fock space on a finite number M of
single-particle modes, we can converge by considering a large
enough M up to σ = 0.1. The critical value gc is defined
as the one for which the energy of the numerically computed
states coincides with the prediction of the Bose-Fermi mapping
theorem. Let us recall that for σ → 0, we have gc → ∞; this
limit cannot be obtained numerically as any truncation of the
single-particle basis imposes an effective finite range of the
contact interaction. As we increase σ , the value of gc decreases.
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FIG. 6. (Color online) (a) Critical interaction strength gc for
different values of σ and different numbers of modes M .
(b) Critical interaction strength for different values of σ . The dotted
line is a fit of the form gc = b0 + b1/σ to the four lower values of
σ = 0.05,0.07,0.1, and 0.15.

In Fig. 6(a) we show the value of gc obtained for different
values of σ and for different M . As expected, the convergence
is much faster for larger values of σ . For σ � 0.3 convergence
is achieved with M � 14. For σ = 0.1 a large number
of modes, 50, is required to get an essentially converged
result. For smaller values, σ = 0.05 and σ = 0.07, we have

performed an extrapolation to larger M by fitting the computed
points with the form gc = g0

c − a1/M − a2/M
2.

The obtained values of gc are compiled in Fig. 6(b) as a
function of σ . The computed values are well approximated
by gc = b0 + b1/σ , which indeed diverges for σ → 0 as
expected.

In a realistic experiment we could consider a cloud of
87Rb atoms globally trapped by a harmonic oscillator (h.o.)
with ωz = 2π500 Hz. The associated distance would then be
az = √

�/(MRbωz) � 5 × 10−7 m. The size of the atom-atom
interaction can be taken roughly as the bare scattering length,
σ � 100aB (aB is the Bohr radius), and thus, in h.o. units
σ/az � 0.01. In our numerics we have been able to go down
to σ/az � 0.05, but we can use an extrapolation to get gc at
σ/az = 0.01, which turns out to be gc � 200.

As described in Ref. [33], in one-dimensional systems, g1D

can be written in terms of the three-dimensional scattering
length a3D and transverse confining a⊥ as

g1D = 2�2a3D

MRba
2
⊥

1

1 − B a3D

a⊥

, (A2)

with B = |ζ (1/2)|/√2 = 1.0326. Following a procedure sim-
ilar to the one in the experiment in Ref. [34], we can combine
the effect of a Feshbach resonance to increase a3D to the size of
the transversal confinement to achieve the desired g1D profiting
from the resonant behavior of Eq. (A2).
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