

UNIVERSITAT DE BARCELONA

Síntesis de agonistas dopaminérgicos periféricos: 2-aminotetralinas y bioisósteros

Carlos-Gabriel Pérez Orcero

Aquesta tesi doctoral està subjecta a la llicència <u>Reconeixement- NoComercial –</u> <u>Compartirlgual 4.0. Espanya de Creative Commons</u>.

Esta tesis doctoral está sujeta a la licencia <u>Reconocimiento - NoComercial – Compartirlgual</u> <u>4.0. España de Creative Commons.</u>

This doctoral thesis is licensed under the <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0. Spain License.</u>

UNIVERSITAT DE BARCELONA

DEPARTAMENT DE FARMACOLOGÍA I QUÍMICA TERAPÉUTICA

Programa de doctorado en Química Orgánica y Farmacéutica Bienio 1993-1995. Tutor: Dr. Joan Bosch i Cartes

SÍNTESIS DE AGONISTAS DOPAMINÉRGICOS PERIFÉRICOS. 2-AMINOTETRALINAS Y BIOISÓSTEROS

Memoria presentada por Carlos-Gabriel Pérez Orcero

para aspirar al título de doctor en Farmacia

Revisada por:

Dr. Tomas Roca Estrem

Dr. Joan Bosch Cartes

Barcelona, diciembre de 1998

Deseo expresar mi agradacemiento al Prof. Dr. Joan Bosch Cartes, catedrático del Departament de Farmacologia i Química Terapèutica de la Universitat de Barcelona, por su dedicación y interés, sin los cuales la realización de la presente Tesis Doctoral no habría sido posible.

También debo agradecer al Dr. Tomàs Roca Estrem, profesor titular del Departament de Farmacologia i Química Terapèutica de la Universitat de Barcelona, la ayuda y el apoyo que siempre me ha ofrecido, además de su paciencia.

Mi gratitud a Laboratorios Zambon por la ayuda económica recibida y por haber posibilitado la realización de la presente Tesis Doctoral. En especial, a los doctores Francesco Santangelo y Stefania Montanari de Zambon Group Spa, en Milano, y a los doctores Leo Bruseghini y Antonio Esteras de Zambon S.A., en Barcelona, por el seguimiento del trabajo y haber hecho posible la presentación de esta Tesis Doctoral.

Por último mi más sincero agradecimiento a todos aquellos amigos y compañeros de laboratorio porque gracias a ellos he disfrutado de buenos momentos (muchos) y superado los malos (unos pocos). El presente trabajo ha sido financiado por Zambon Group Spa. mediante contratos de investigación gestionados por la Fundació Bosch i Gimpera de la Universitat de Barcelona (proyectos nº 2140 y 2449).

1.INTRODUCCIÓN Y OBJETIVOS DEL TRABAJO1
2.MODIFICACIÓN DEL SUSTITUYENTE ALQUILO R SOBRE EL ÁTOMO DE NITRÓGENO DE
LAS 2-AMINO-5,6-DIHIDROXITETRALINAS I17
3.SÍNTESIS DE BIOISÓSTEROS DE CATECOLAMINAS: SUSTITUCIÓN DEL ANILLO DE
DIHIDROXIBENCENO POR UN NÚCLEO HETEROAROMÁTICO
3.1.Síntesis de las Aminas Heterocíclicas II, IV y XI
Serie piridina
Serie pirrol
Serie tetrahidroquinolina
Serie 2-hidroxitetrahidroquinolina
Serie tetrahidroindol
Serie 2-aminotetrahidrobenzotiazol
Serie 2-hidroxitetrahidrobenzotiazol
Serie tetrahidroisoindol
3.2. Preparación de las Diamidas IX y X (144-154) y su Conversión en las Moléculas
Objetivo III y V (155-165)
4.MODIFICACIÓN DE LA CADENA DE HEXAMETILENO. SUSTITUCIÓN DE UNO DE LOS GRUPOS
CH2 POR UN HETEROÁTOMO41
5.RESULTADOS FARMACOLÓGICOS45
6.PARTE EXPERIMENTAL
7.ESPECTROS
8.CONCLUSIONES
9.BIBLIOGRAFÍA Y NOTAS117

1. Introducción y Objetivos del Trabajo

Papel de los Agonistas Dopaminérgicos Periféricos en el Tratamiento de la Insuficiencia Cardíaca Congestiva

La insuficiencia cardíaca congestiva constituye el mayor riesgo cardiovascular en las sociedades industrializadas, afectando a más de un 1% de la población, con una mortalidad anual de entre el 15% y el 50%. En Estados Unidos el número de casos se ha duplicado durante los últimos diez años y tan sólo en 1991 supuso más de ochocientos mil ingresos hospitalarios. En Europa la situación es similar. El factor principal que condiciona su aparición es la edad. De hecho, la insuficiencia cardíaca constituye la primera causa de hospitalización en la población de más de 65 años^{1,2}.

La insuficiencia cardíaca es un estado fisiopatológico en el que una anormalidad de la función miocárdica es responsable de una circulación sanguínea inadecuada a las necesidades metabólicas de los tejidos³. La insuficiencia miocárdica que desencadena la insuficiencia cardíaca congestiva suele referirse al fracaso del ventrículo izquierdo, bien por descenso de su capacidad contráctil, o bien por incapacidad de relajarse durante el tiempo de la diástole.

Cuando se produce la disfunción ventricular se ponen en marcha una serie de mecanismos, que intentan compensar la reducción del volumen minuto, consistentes en una activación neuroendocrina: se incrementa la liberación de noradrenalina en las terminaciones nerviosas simpáticas de las glándulas suprarrenales con el consiguiente incremento de la resistencia periférica vascular (vasoconstricción) en un intento de mantener la presión arterial y de incrementar la contractilidad del corazón; en el riñón se libera renina, que activa la formación de angiotensina II, un potente vasoconstrictor arteriolar. Además, la angiotensina II incrementa la liberación de noradrenalina, de vasopresina, y de aldosterona de las cápsulas suprarrenales. Por tanto, se retiene sal y agua, incrementándose el volumen circulatorio.

Estos mecanismos son los mismos que utiliza un corazón con contractilidad normal para adaptarse a los cambios hemodinámicos habituales de cada día (p.ej. esfuerzo físico). En este caso, una vez restaurado el gasto, el sistema compensador es inactivado por el factor natriurético atrial (conjunto de aminoácidos liberados por la aurícula).

Por el contrario, si la función miocárdica está severamente limitada, la compensación hemodinámica no es del todo posible. Ello supone que se mantenga el estímulo

neuroendocrino, con sucesivos incrementos de la vasoconstricción y de la retención de sodio y agua, con lo que el grado de insuficiencia cardíaca no mejora y se inicia un *círculo vicioso*⁴.

Lógicamente, el tratamiento farmacológico de la insuficiencia cardíaca congestiva irá encaminado a bloquear o compensar los mecanismos que dan lugar a este círculo vicioso.

En grados leves de insuficiencia cardíaca se recomienda el tratamiento con inhibidores de la enzima conversora de angiotensina (ECA). En los casos de insuficiencia cardíaca severa el tratamiento recomendado incluye fármacos que aumentan la contractilidad cardíaca (digital), diuréticos (furosemida), inhibidores de la ECA (captopril, enalapril) y vasodilatadores (nitratos, molsidomina, prazosín). No obstante, ninguno de estos grupos de fármacos es capaz de modular enérgicamente la excesiva excitación del sistema simpático-adrenérgico que se produce en una insuficiencia cardíaca.

Haciendo hincapié en este último aspecto, existen fundamentadas razones para suponer que la estimulación dopaminérgica podría ser una de las nuevas aproximaciones para el tratamiento de la insuficiencia cardíaca congestiva, más aún si consideramos la distribución y función de los receptores dopaminérgicos periféricos^{5,6} (Figura 1.1).

Gracias a las técnicas de fijación de radioligandos y al hallazgo de agonistas y antagonistas selectivos, actualmente se acepta la existencia de dos familias de receptores dopaminérgicos periféricos, DA₁ y DA₂^{6,7} que, al parecer, guardan ciertas similitudes con los más estudiados receptores centrales D₁ y D₂, respectivamente^{6,8}.

En cuanto a su localización, en la unión neuroefectora, los receptores DA₁ son postsinápticos, mientras que los DA₂ son presinápticos (autorreceptores).

Su distribución y funciones se recogen en la figura 1.1 y se resumen a continuación:

Figura 1.1

La activación de los receptores DA₂ presinápticos de las terminaciones nerviosas simpáticas inhibe la liberación de noradrenalina, provocando una vasodilatación indirecta en los vasos sanguíneos, y en el corazón bradicardia.

Por otro lado, la activación de los receptores DA₁ da lugar, en los vasos sanguíneos, a una vasodilatación directa; en el riñón, estimula la diuresis y la natriuresis y, posiblemente, inhibe la liberación de renina; y, finalmente, en la corteza suprarrenal la activación de los receptores DA₁ inhibe la secreción de aldosterona, es decir, la reabsorción de sodio y agua.

Globalmente pues, la activación de los receptores dopaminérgicos periféricos DA₁ y DA₂ ejerce un profundo control hemodinámico y neurohormonal que tiende a disminuir la carga del corazón y a contrarrestar, en definitva, el *círculo vicioso* de la insuficiencia cardíaca congestiva⁹.

La dopamina (Figura 1.2, pág. 6) es el neurotransmisor capaz de activar los receptores DA1 y DA2. No obstante, su uso clínico no es recomendable en tratamientos crónicos de insuficiencia cardíaca congestiva a causa de sus efectos secundarios. La dopamina produce vasoconstricción al activar los adrenorreceptores α_1 , arritmias por estimulación de los receptores β_1 y, náuseas y emesis al activar de manera excesiva los receptores DA2. Además, su acción es de corta duración y su actividad oral escasa.

Con lo expuesto anteriormente, parece evidente que la búsqueda de compuestos con actividad agonista selectiva sobre los receptores DA₁ y DA₂ resulta de gran interés para mejorar la terapia contra la insuficiencia cardíaca congestiva. Hasta la fecha, tan sólo se han descrito unos pocos compuestos que actúan selectivamente sobre los receptores DA₁ y DA₂. Desafortunadamente, la mayoría de ellos también activan los adrenorreceptores α y β_1 , provocando los efectos secundarios característicos de la dopamina. Además, los receptores DA₂ y D₂ de la zona quimiorreceptora **del área postrema** de la médula (zona no protegida por la barrera hematoencefálica) están implicados en la mediación de la sensación de náuseas y, eventualmente, en la inducción de emesis. Por tanto, sería deseable encontrar una buena relación agonista DA₁/DA₂ que minimizase los efectos secundarios de rivados de una excesiva activación de los receptores DA₂ (náuseas y emesis), sin que ello comprometiera en demasía los efectos beneficiosos que conlleva su activación.

Todos estos aspectos, junto con otros relacionados con la biodisponibilidad (p. ej., posibilidad de administración oral en tratamientos crónicos de insuficiencia cardíaca) deberán ser considerados para dictaminar objetivamente las posibilidades terapéuticas de los nuevos compuestos sintetizados en la presente Tesis Doctoral.

Relaciones Estructura-Actividad de Análogos de la Dopamina

Durante las dos últimas décadas se han publicado numerosos trabajos⁶ que estudian las relaciones estructura-actividad (SAR) de los agonistas dopaminérgicos periféricos DA₁ y DA₂ con el objetivo de mejorar el diseño de este grupo de compuestos y de proponer un buen modelo de receptor dopaminérgico.

1. Introducción y Objetivos del Trabajo

Los análogos más simples de la dopamina son las **ariletilaminas** (Figura 1.2). La presencia del átomo de nitrógeno básico es fundamental para que este grupo de compuestos posea actividad agonista DA₁. En general, los sustituyentes alquilo sobre el átomo de nitrógeno disminuyen la actividad excepto si contienen un segundo átomo de nitrógeno unido a una segunda unidad de catecolamina o ariletilamina. El compuesto más representativo de este grupo es la dopexamina¹⁰ (Dopacard[®]), uno de los pocos fármacos selectivo sobre los receptores DA₁ y β_2 , con muy poca actividad sobre el receptor β_1 y nula sobre los adrenorreceptores α . Además, no presenta el problema de la emesis resultante de una excesiva actividad DA₂. Por otro lado, los compuestos con una cadena central de longitud n= 6 son los que presentan un mejor equilibrio de actividad DA₁/DA₂. Modificaciones sobre la cadena de etilo dan lugar a derivados menos activos, si bien tanto la adrenalina como la noradrenalina poseen actividad DA₁.

Es interesante destacar que sólo los compuestos que mantienen la unidad de catecol poseen una buena actividad sobre el receptor DA₁. La mayoría de análogos de la dopamina en los que se ha modificado el núcleo de catecol con el fin de superar los problemas de biodisponibilidad inherentes a las catecolaminas carecen de acción sobre el receptor DA₁. Tan sólo la benzotiazolona 1¹¹ presenta una actividad interesante sobre este receptor. Por contra, la sustitución del núcleo de catecol no afecta a la actividad sobre el receptor DA₂, y compuestos como la sulfonamida 2¹², la formanilida 3¹², e incluso la benzotiazolona 1¹¹ son activos oralmente aunque presentan el problema de la emesis.

La apomorfina (4)¹³ (Figura 1.3), uno de los agonistas dopaminérgicos más extensamente estudiados, puede considerarse como un análogo rígido de la dopamina. Su flexibilidad conformacional está disminuida al incorporar el sustituyente aminoetilo en un

sistema tetracíclico. Curiosamente, su isómero isoapomorfina (5) es totalmente inactivo (véase más adelante, Figura 1.6, pág. 9).

Como una simplificación de la apomorfina, se diseñaron las **2-aminotetralinas** (Figura 1.3), análogos semirrígidos de la dopamina, que incorporan la cadena de etilo formando parte de un anillo de ciclohexano sustituido con un grupo amino. De particular interés son sus dihidroxiderivados, por ejemplo, el 2-amino-5,6-dihidroxi-1,2,3,4-tetrahidronaftaleno y su isómero 6,7-dihidroxi, comúnmente conocidos como **5,6-ADTN** y **6,7-ADTN**, respectivamente¹³.

Las mismas modificaciones estructurales comentadas anteriormente para las ariletilaminas, se han utilizado en el campo de las 2-aminotetralinas y, de manera general, sus SAR son similares. Por ejemplo, compuestos con sustituyentes alquilo sobre el grupo 2-amino que contienen un segundo átomo de nitrógeno unido a otra unidad de catecolamina o ariletilamina (compuesto 6^{10}) son potentes agonistas DA₁. También se ha observado que la presencia de sustituyentes alquilo sobre el átomo de nitrógeno, especialmente *n*-propilo, incrementan la acitividad DA₁ (compuesto 7^{14}).

Uno de los aspectos más interesantes del estudio de SAR de las 2-aminotetralinas es la relación que debe guardar la configuración del centro estereogénico con la posición de los grupos hidroxi del anillo de tetrahidronaftaleno para que el compuesto sea un agonista DA₁ (Figura 1.4). Así, mientras para el isómero 2-amino-5-hidroxi-1,2,3,4-tetrahidronaftaleno (8)^{15,16} la forma activa es la de configuración (*S*), para el isómero 2-amino-7-hidroxi-1,2,3,4-tetrahidronaftaleno (9) la forma activa es la de configuración (*R*). Es decir, para que se

produzca respuesta biológica es necesario invertir la configuración absoluta del centro estereogénico al pasar del isómero 5-hidroxi al isómero 7-hidroxi. Estos resultados han sido corroborados^{14a} en el estudio comparativo de 5,6-dihidroxi-2-(dipropilamino)-1,2,3,4-tetrahidronaftaleno (7) y su isómero 6,7-dihidroxi **10**.

Los derivados hidroxilados de las series 5 (ó 5,6) y 7 (ó 6,7) representan, respectivamente, modelos rígidos de las conformaciones activas antiperiplanares α y β de la dopamina, en las que el anillo de catecol de la dopamina es coplanar con el plano formado por la cadena de aminoetilo^{14b}. Es por ello que para referirse a los derivados hidroxilados de las 2-aminotetralinas se utilizan indistintamente los términos serie 5,(6) o α , y serie (6),7 o β .

Basándose en los resultados anteriores, McDermed¹⁵ y otros autores¹⁷ han postulado modelos de receptores dopaminérgicos similares (modelo de Seeman, de Neumeyer, de Wikström). Fundamentalmente, el receptor DA₁ estaría constituido por dos sitios de unión: uno para el grupo hidroxi *meta* (es decir en posición 5 ó 7) respecto la cadena de aminoetilo, y otro para el grupo amino con una orientación espacial adecuada. Estos dos sitios representarían la *zona activa del receptor*, y junto a ellos habrían otros complementarios para el grupo hidroxi *para* y para el anillo aromático. Si se comparan las estructuras tridimensionales de las 2-aminotetralinas, pertenecientes a las series 5,(6)-hidroxi y (6),7-hidroxi, se observa que es necesaria la inversión del centro estereogénico para que el grupo hidroxi *meta* y el grupo amino de las dos series tengan la misma direccionalidad espacial y puedan interaccionar de forma correcta con los dos centros principales de unión del receptor. No obstante, estos modelos no consideran la distinta distancia que hay entre el grupo hidroxi *meta* y el átomo de nitrógeno en las dos series (6'4 Å y 7'4 Å, respectivamente), y postulan que el receptor sería suficientemente flexible para que los compuestos de ambas series pudieran interaccionar satisfactoriamente.

Más recientemente, Grol¹⁴ ha propuesto un nuevo modelo (Figuras 1.5 y 1.6), parecido a los anteriores y el más aceptado en la actualidad, con dos sitios de interacción (X) e (Y), en lugar de uno, para el átomo de nitrógeno, situados a una distancia del sitio de unión del grupo hidroxi *meta* (M) de 6'2 Å y 7'3 Å, respectivamente. Estas distancias se corresponden con las distancias existentes entre el grupo hidroxi *meta* y el átorno de nitrógeno en las series 5,(6)hidroxi y (6),7-hidroxi. De esta manera, se evita tener que recurrir a una supuesta flexibilidad del receptor para explicar la actividad de las dos series.

Figura 1.5

Los dos sitios de unión (X) e (Y) estarían situados en una posición relativa similar respecto al plano del anillo aromático, de manera que los compuestos de las series 5,(6) y (6),7-hidroxí, con configuración opuesta, al tener la misma direccionalidad interaccionarían correctamente con el receptor. Al igual que en los modelos anteriores, existirían dos sitios de unión complementarios, uno para el grupo hidroxi *para* (P) y otro para el anillo aromático (π).

Para justificar que la *N*,*N*-dialquilación, especialmente con sustituyentes *n*-propilo, incrementa la potencia de los derivados 5,(6)-hidroxi mientras que no afecta o incluso disminuye la de los (6),7-hidroxi, se postula la existencia de una cavidad lipófila en el receptor, que sería más accesible para los isómeros 5,(6)-hidroxi, es decir, que estaría situada más próxima al centro de unión (X). El nuevo modelo incluye también una zona de exclusión estérea que explicaría la inactividad de la isoapomorfina (5), a pesar de tratarse de un compuesto 6,7-dihidroxi con una direccionalidad adecuada (Figura 1.6).

1. Introducción y Objetivos del Trabajo

Las 2-aminotetralinas también son agonistas del receptor DA2. En general, se observan las mismas relaciones estructura-actividad, comentadas anteriormente, por lo que los modelos propuestos son prácticamente idénticos a los del receptor DA1. La diferencia más significativa es la capacidad del receptor DA2 de acomodar compuestos que no poseen necesariamente la unidad de catecol. Esta diferencia, aún no comprendida, hace que en realidad no exista ningún modelo convincente de receptor DA2.

Otra aproximación que permite reducir la flexibilidad conformacional de las ariletilaminas consiste en incorporar el átomo de nitrógeno en un anillo⁶. Entre las múltiples posibilidades (Figura 1.7), las más estudiadas han sido las 3-arilpiperidinas (p.ej. **11**), las 4-aril-1,2,3,4-tetrahidroisoquinolinas, como el dihidroxiderivado **12** de la nomifensina (**13**), los análogos tricíclicos de las 2-aminotetralinas, como las octahidrobenzo[*g*]quinolinas (p. ej. **14**) y las octahidrobenzo[*f*]quinolinas (p. ej. **15**), y las 2,3,4,5-tetrahidro-1*H*-3-benzoazepinas como el fenoldopam (**16**).

Figura 1.7

Antecedentes

Como se ha comentado anteriormente, en la literatura^{6,17} se han descrito numerosos compuestos análogos de catecolaminas con propiedades farmacológicas interesantes para el tratamiento específico de la insuficiencia cardíaca congestiva. No obstante, ninguno de ellos reúne todas las características que serían deseables, e incluso la dopexamina, que presenta una buena selectividad sobre los receptores DA₁ y β_2 , es menos activa que la dopamina y no se absorbe por vía oral.

Para el tratamiento específico de la insuficiencia cardíaca congestiva se requieren fármacos agonistas dopaminérgicos periféricos más potentes que la dopamina, que no interaccionen con otros receptores, especialmente α_1 y β_1 , con un buen balance DA₁/DA₂, que se absorban por vía oral, y que no sean, como la dopamina, de corta acción.

En la década de los ochenta, SIMES, Società Italiana Medicinali e Sintetici S.p.A., (actualmente, Zambon Group S.p.A.) inició una línea de investigación encaminada a la búsqueda de moléculas que cumplieran los requisitos anteriores.

En primer lugar, se prepararon compuestos de fórmula general **17**¹⁸ (Figura 1.8) que resultaron ser agonistas selectivos DA₁ y DA₂ pero que no eran activos por vía oral.

 R_1 , R_2 = H, acilo R_3 , R_4 = H, halógeno, alquilo, alcoxi n, p= 0, 1 m= 1,2,3,4 n + p= 1

Posteriormente, el mismo laboratorio farmacéutico preparó una gran variedad de 2aminotetralinas de fórmula general **18**^{2,19} (Figura 1.9), entre las cuales destacó el compuesto **Z1046** por su elevada actividad dopaminérgica (del mismo orden que la dopamina), su buena selectividad sobre los receptores DA₁ y DA₂, y porque era activo tanto por vía intravenosa como por vía oral. El compuesto **Z1046** se escogió como cabeza de serie para posteriores investigaciones.

Figura 1.9

1. Introducción y Objetivos del Trabajo

Del estudio anterior, se dedujo que la cadena lateral aromática debía influir en la capacidad de unión de la molécula al receptor, por lo que los primeros esfuerzos se dedicaron a optimizar esta parte de la estructura. Surgieron dos nuevos compuestos²⁰, **Z12453** y **Z12571** (Figura 1.10), que mostraron ser agonistas DA₁ más potentes que **Z1046** y con un mejor balance DA₁/DA₂.

Figura 1.10

Objetivos y Plan de Trabajo

A finales de 1993, Zambon Group inició un proyecto de colaboración con el Laboratorio de Química Orgánica de la Facultad de Farmacia de la Universidad de Barcelona, con el objetivo de proseguir la optimización de **Z12453** y **Z12571**, y de profundizar en el conocimiento de los requisitos estructurales que se requieren para que una molécula interaccione con los receptores dopaminérgicos. A nivel farmacológico, los nuevos compuestos deberían mantener la actividad DA₁, ser activos por vía oral y, lo más importante, mostrar un efecto prolongado.

Para ello se plantearon los tres objetivos químicos que se resumen a continuación:

 Sustitución del sustituyente n-propilo presente sobre el átomo de nitrôgeno de la unidad de dopamina por otros grupos alquilo, fluoroalquilo o hidroxialquilo de pequeño tamaño.

Figura 1.11

Es conocido¹⁴ que la presencia de sustituyentes alquilo sobre el átomo de nitrógeno de la dopamina, especialmente *n*-propilo, incrementan la actividad DA₁. En este sentido, creímos oportuno realizar un estudio más exhaustivo, con sustituyentes de tamaño parecido al del grupo propilo, que permitiera optimizar esta zona de la molécula. Sustitución del anillo de tetralina por un núcleo heteroaromático monocíclico o bicíclico, bioisóstero de catecolaminas.

Figura 1.12

Los agonistas dopaminérgicos que presentan unidades de catecol en su estrutura son metabolizados, fundamentalmente, por la enzima catecol *o*-metil transferasa (COMT) e, igual que los fenoles, son capaces de conjugarse eficazmente con ácido glucurónico y/o sulfato para ser eliminados posteriormente por vía renal. Como consecuencia, su acción suele ser de corta duración, su absorción por vía oral escasa y su uso en clínica limitado.

Estos inconvenientes han impulsado el diseño y la síntesis de nuevos agonistas dopaminérgicos en los que la unidad de catecol se ha sustituido por distintos sistemas heterocíclicos bioisósteros de catecolaminas²¹⁻²⁷. Una simple comparación de los compuestos **19-33** (Figura 1.13) sugiere que la subestructura molecular requerida para activar el receptor dopaminérgico es una heteroariletilamina que mimetice al farmacóforo *3-hidroxifeniletilamina* característico de muchas familias de agonistas dopaminérgicos. Los sistemas heteroaromáticos más utilizados, incluidos en las estructuras **19-33** de la figura 1.13,

son el pirrol (19-22), el pirazol (23), la 2-aminopirimidina (24), el 2-aminotiazol (25-27), la piridina (28-31) y la 2-hidroxipiridina (32, 33).

Figura 1.13

Los estudios de actividad de los compuestos **19-29** indican que se trata de agonistas dopaminérgicos DA₂ (sus actividades se determinaron sobre el receptor central D₂, similar al receptor DA₂). Por otro lado, los resultados de su interacción sobre los receptores DA₁/D₁ no se explicitan en la literatura, quizás simplemente porque los compuestos **19-29** no son activos sobre esta familia de receptores o bien porque no se contempló esta posibilidad. No obstante, no debería descartarse la posibilidad de que estos sistemas heterocíclicos tuvieran también la capacidad de unirse al receptor DA₁, más aún teniendo en cuenta que las 3-piridinas **30**, **31** y las 2-hidroxi-4-piridinas **32** y **33** muestran, sorprendentemente, una elevada afinidad por el receptor D₁, *a priori* no predecible.

Estas dudas nos impulsaron a sustituir el anillo de tetralina de nuestros compuestos por sistemas heterocíclicos que fueran capaces de mimetizar al catecol y a profundizar sobre los requisitos estructurales necesarios para que estos compuestos interaccionen con los receptores DA₁ y DA₂.

Los compuestos que nos propusimos sintetizar se recogen en la Figura 1.12 (véase pág. 14). Se trata de heteroariletilaminas primarias II, heteroariletilaminas secundarias III en las que se ha sustituido un átomo de hidrógeno por la cadena lateral del compuesto Z12571, y heteroariletilaminas terciarias IV y V en las que los sustituyentes alquilo R_1 y R_2 son grupos *n*-propilo o bien un grupo *n*-propilo y la cadena lateral de Z12571. Como cadena lateral aromática se escogió la del compuesto Z12571 ya que en este punto del trabajo era la que

había proporcionado, para los compuestos estudiados, un mejor balance de actividad DA1/DA2.

3. Modificar la cadena central de hexametileno, sustituyendo uno de los grupos metileno por un heteroátomo.

Figura 1.14

Los tres objetivos planteados se desarrollarán, respectivamente, en los capítulos 2, 3 y 4 de la presente Memoria.

2. Modificación del Sustituyente Alquilo R sobre el Átomo de Nitrógeno de las 2-Amino-5,6-dihidroxitetralinas I

Análisis retrosintético de las 2-(alquilamino)tetralinas I (69-81)

3. Síntesis de Bioisósteros de Catecolaminas. Sustitución del Anillo de Dihidroxibenceno por un Núcleo Heteroaromático La síntesis de bioisósteros de catecolaminas en los que se ha sustituido el anillo de tetralina del compuesto **Z12571** por un núcleo heteroaromático monocíclico o bicíclico constituye el segundo objetivo planteado en la introducción de la presente Memoria.

Los compuestos que nos propusimos sintetizar se recogen en la Figura 3.1. Se trata de heteroariletilaminas primarias II, heteroariletilaminas secundarias III en las que se ha sustituido un átomo de hidrógeno por la cadena lateral del compuesto **Z12571**, y heteroariletilaminas terciarias IV y V en las que los sustituyentes alquilo R₁ y R₂ son, respectivamente, o dos grupos *n*-propilo, o bien un grupo *n*-propilo y la cadena lateral de **Z12571**. Como cadena lateral aromática se escogió la del compuesto **Z12571** ya que en este punto del trabajo era la que había proporcionado, para los compuestos estudiados, un mejor balance de actividad DA₁/DA₂.

Figura 3.1

En la Figura 3.2 se muestra el análisis retrosintético para las aminas secundarias III y terciarias V, que presentan en común en su estructura dos de los sustituyentes del átomo de nitrógeno *dopaminérgico*: la cadena lateral aromática del compuesto Z12571 y el anillo heterocíclico. Su síntesis se llevaría a cabo de manera análoga a la de las 2-amino-5,6-dihidroxitetralinas I, descrita en el capítulo 2 de la presente Memoria; es decir, por reducción de las correspondientes diamidas IX y X, que a su vez podrían prepararse por acilación de una heteroarilamina primaria II o secundaria XI con un derivado del ácido 7-aza-9-[4-(metilsulfonil)fenil]-8-oxononanoico (99).

Figura 3.2

La síntesis de las heteroarilaminas primarias II y secundarias XI, que se describe en el apartado 3.1 del presente capítulo, resultó ser la parte más laboriosa del trabajo por la diversidad de heterociclos que tuvieron que prepararse. Para facilitar su lectura, las heteroarilaminas II y XI se han agrupado por series en función del heterociclo que las constituye. En este apartado también se incluye la preparación de las heteroarilaminas terciarias IV ya que se consideró interesante evaluar y comparar el efecto que ejerce sobre la actividad dopaminérgica la sustitución de la cadena lateral aromática presente en las estructuras III y V por la cadena lateral de *n*-propilo. Por otro lado, en el apartado 3.2 se recoge la preparación del ácido 7-aza-9-[4-(metilsulfonil)fenil]-8-oxononanoico (99), la

preparación de las diamidas IX y X, y su transformación en las diaminas III y V, objetivo final del presente capítulo.

3.1. Síntesis de las Aminas Heterocíclicas II, IV y XI

Serie piridina

La preparación de piridiletilaminas se halla extensamente documentada en la literatura química⁴⁵. Entre las distintas metodologías cabe destacar la síntesis de Gabriel a partir haloetilpiridinas, la transposición de Hofmann de piridilpropanamidas obtenidas a partir de ácidos piridilpropiónicos, previamente preparados ya sea por síntesis malónica de halometilpiridinas o bien por condensación de Knoevenagel de piridinacarbaldehídos, y la reducción de nitrilos obtenidos por sustitución nucleófila a partir de halometilpiridinas.

En nuestro caso (Figura 3.3), se optó por la reducción del 3-piridilacetonitrilo (compuesto comercial) con hidrógeno en presencia de níquel Raney como catalizador⁴⁶. Este procedimiento permite acceder, en una única etapa, aunque con un rendimiento moderado, a la 2-(3-piridil)etilamina (**30**). La reducción se llevó a cabo en el seno de hidróxido amónico concentrado en etanol, condiciones que evitan, en parte, la formación de la amina secundaria, bis[2-(3-piridil)etil]amina.

Figura 3.3

La preparación de la *N*-propil-2-(3-piridil)etilamina (31) se haya descrita en la literatura²² por reducción de la propanamida correspondiente a la amina primaria 30. Por otro lado, la *N*,*N*-dipropil-2-(3-piridil)etilamina (100) se había preparado por reducción de la propanamida derivada de la amina secundaria 31. Aunque los rendimientos descritos²² para estas transformaciones son satisfactorios, la alquilación reductiva de la amina primaria 30 con propanal utilizando como agente reductor hidrógeno a presión moderada (60 psi) en presencia de Pd/C al 10% como catalizador condujo en una única etapa, con rendimientos superiores, a las aminas deseadas 31 y 100. Concretamente, la alquilación reductiva de 30

con 1 equivalente de propanal rindió la amina secundaria **31** con un rendimiento del 66% junto con un 6% de la amina terciaria **100**, fácilmente separable. Por otro lado, cuando se utilizó un exceso de aldehído se obtuvo exclusivamente la amina terciaria **100** con un rendimiento del 61%.

Serie pirrol

Es conocido que la sustitución electrófila en el pirrol tiene lugar casi exclusivamente en la posición 2 del anillo pentagonal. Para la obtención de pirroles sustituidos en la posición 3 se han empleado diversas estrategias⁴⁷. Algunas de ellas, como las basadas en el cierre de anillo, las transposiciones de pirroles 2 sustituídos, o las que utilizan otros heterociclos convenientemente funcionalizados, evitan la sustitución electrófila. No obstante, estas metodologías no permiten la introducción de determinados grupos funcionales sobre el heterociclo por lo que su uso se haya limitado a casos particulares.

Consecuentemente, se han desarrollado metodologías alternativas encaminadas a dirigir la sustitución electrófila sobre la posición 3 del anillo pirrólico. En este sentido, la introducción de un sustituyente atractor de electrones en la posición 2, fácilmente eliminable, que dirija la sustitución electrófila sobre la posición 4, o bien la presencia de un grupo voluminoso sobre el nitrógeno pirrólico que bloquee la entrada del eléctrófilo en la posición 2 han sido las más extensamente estudiadas. En relación con este último método, la utilización del grupo triisopropilsililo (TIPS)⁴⁸ como bloqueante estérico resulta especialmente eficaz puesto que induce una elevada regioselectividad de la sustitución electrófila en la posición 3. Además, tanto la protección del pirrol con dicho grupo como la posterior desprotección se realizan sin dificultad y con rendimientos elevados.

Por lo que respecta a esta serie, solamente se preparó la 2-(3-pirrolil)etilamina $(101)^{47}$ (véase Figura 3.4). Las aminas secundaria y terciaria derivadas de 101, sustituidas con uno o dos grupos *n*-propilo, no llegaron a sintetizarse a causa de la dificultad que entrañó la preparación de 101, que limitó en gran medida la disponibilidad de suficiente cantidad de producto para acceder a sus derivados.

La síntesis del pirrol-3-carbaldehído (102)^{48b,50}, intermedio clave para acceder a la pirroliletilamina 101, se llevó a cabo en una breve secuencia de tres etapas, según se refleja en el esquema de la Fígura 3.4. En primer lugar, se introdujo el grupo protector TIPS por reacción de la sal lítica del pirrol con cloruro de triisopropilsililo. Posteriormente, el derivado protegido 103 experimentó sustitución electrófila regioselectivamente sobre la posición 3 con el reactivo de Vilsmeier-Haack 104 y, finalmente, la sal de iminio 105 se hidrolizó en medio básico al aldehído 102. La elevada regioselectividad de la sustitución electrófila (se forma casi exclusivamente el isómero β) indica que la desililación del anillo pirrólico, inducida por el ácido clorhídrico liberado en la sustitución electrófila con el reactivo de Vilsmeier-Haack, transcurre mucho más lentamente que ésta.

3. Síntesis de bioisósteros de catecolaminas

Figura 3.4

La pirroliletilamina **101** objeto de estudio debería ser fácilmente accesible por condensación del pirrolcarbaldehído **102** con nitrometano^{49,51} seguida de reducción del correspondiente nitrovinilo **106**.

No obstante, cuando la reacción sobre el pirrolcarbaldehído **102** se llevó a cabo a reflujo de nitrometano se obtuvo exclusivamente, con un rendimiento del 75%, el 2-(3-pirrolil)-1,3-dinitropropano (**107**) resultante de una adición de tipo Michael de nitrometano sobre el nitrovinilo deseado **106**, inicialmente formado. Temperaturas y tiempos de reacción inferiores permitieron obtener mezclas de **106** y **107**, si bien **106** resultó ser siempre el producto minoritario, a la vez que los rendimientos de la reacción disminuyeron sensiblemente (20-40%).

Dado que la adición de Michael de nitrometano está especialmente favorecida en βarilnitroestirenos en los que existe una elevada deslocalización electrónica hacia el grupo nitro⁵², decidimos proteger el nitrógeno pirrólico del aldehído **102** con un grupo tosilo (Ts) con el fin de disminuir la densidad electrónica del anillo heteroaromático.

Así pues, la tosilación de **102** en medio básico acuoso e hidrógenosulfato de tetrabutilamonio como catalizador de transferencia de fase rindió el 1-(*p*-toluenosulfonil)pirrol-3-carbaldehído (**108**)⁵³. La condensación de **108** con nitrometano a la temperatura de reflujo y tiempos relativamente cortos de reacción (1,5 h) proporcionó con buen rendimiento el nitrovinilo correspondiente **109**, no observándose la formación de producto de adición 1,4 de nitrometano sobre éste. Por último, **109** se transformó en la 2-(3-pirrolil)etilamina (**101**)⁴⁹ por tratamiento con LiAlH₄, en un proceso que implica la reducción de la cadena de nitrovinilo y la desprotección del nitrógeno pirrólico.

Serie tetrahidroquinolina

Las 6-aminotetrahidroquinolinas primaria **110**, secundaria **111**²¹ y terciaria **28**²¹ (Figura 3.5) pueden considerarse como análogos semirrígidos de las 2-(3-piridil)etilaminas.

En la Figura 3.5 se muestra el análisis retrosintético de las aminas 28, 110 y 111. Su síntesis se llevaría a cabo por aminación reductiva de la 7,8-dihidro-6(5*H*)-quinolinona (112) que, a su vez, podría prepararse mediante dos vías alternativas. La primera de ellas, descrita por Remers⁵⁴, se fundamenta en la reducción de Birch del anillo de metoxibenceno de la 6-metoxiquinolina, consta de dos etapas, y transcurre con un rendimiento global del 9%. Posteriormente, Rapoport⁵⁵ describió la preparación de 112 por ciclación de una 2,3-lutidina convenientemente funcionalizada, en una secuencia sintética que consta de ocho etapas con un rendimiento global superior (31%).

Figura 3.5

Tras valorar las ventajas e inconvenientes de ambas rutas, la 7,8-dihidro-6(5*H*)quinolinona (**112**) se preparó por reducción de Birch de la 6-metoxiquinolina con litio en amoníaco líquido y metanol, seguida de hidrólisis de la mezcla 1:2 de éteres de enol **113a** y **113b** (Figura 3.6).

La aminación reductiva de **112** con propilamina condujo a la amina secundaria **111**²¹ con un rendimiento del 27%. Análogamente, la amina primaria **110** se obtuvo, con un rendimiento similar, por reducción de la oxima de **112** con LiAlH4.

En este punto del trabajo, y a la vista de los bajos rendimientos obtenidos en la reducción de Birch y en las aminaciones reductivas, y de la dificultad que suponía la reproducción tanto de los rendimientos como de la pureza de los compuestos descritos en la literatura, ya de por sí poco satisfactorios, decidimos abandonar esta metodología y explorar una vía alternativa que nos permitiese acceder, de manera más directa, al sistema de 6-aminotetrahidroquinolina.

Un método de síntesis de piridinas y cicloalquenopiridinas consiste en la transposición térmica que experimentan ciertos *O*-aliléteres de oximas de cetonas acíclicas y ciclicas⁵⁶ en presencia de oxígeno (Figura 3.7). Esta metodología, ha permitido preparar algunas 5,6,7,8-tetrahidroquinolinas aunque en ninguno de los ejemplos descritos en la literatura el anillo saturado se encuentra funcionalizado en la posición 6.

La aplicación de la termólisis de *O*-aliléteres de oximas a la síntesis de 6-amino-5,6,7,8-tetrahidroquinolinas requeriría como precursor una ciclohexanona sustituida en la posición 4 por un grupo amino o derivado (Figura 3.7).

$$\underset{N}{\overset{\text{NHR}}{\longrightarrow}} \Rightarrow \underset{0}{\overset{\text{NHR}}{\longrightarrow}}$$

Figura 3.7

Dado que en el contexto de la síntesis de 2-aminotetrahidrobenzotiazoles habíamos preparado la propanamida 114 (véase Figura 3.15, pág. 41), la transposición térmica se ensayó, según se esquematiza en la Figura 3.8, a partir de la *N*-[4-(aliloxiimino)-ciclohexil]propanamida (115). Además, el grupo propanamido presente en 114 permitiría generar en etapas posteriores los sustituyentes 6-amino, 6-propilamino y 6-dipropilamino presentes en las aminas 28, 110 y 111 objeto de estudio.

Efectivamente, la termólisis de **115** condujo, como era de esperar, a la correspondiente tetrahidroquinolina **116**, con un rendimiento del 34%, aceptable para este tipo de reacciones, más aún si tenemos en cuenta la simplicidad experimental y el fácil acceso a la *N*-aliloxima **115**. La posterior hidrólisis ácida de la función amida rindió la 6-amino-5,6,7,8-tetrahidroquinolina (**110**) con una elevada pureza y un rendimiento global a

partir del *trans*-4-aminociclohexanol, precursor comercial de **114** (véase Figura 3.15, pág. 41), siete veces superior al obtenido vía reducción de Birch de la 6-metoxiquinolina (véase Figura 3.6, pág. 34). Por último, la alquilación reductiva de **110** con exceso de propanal, utilizando hidrógeno como reductor, en presencia de Pd-C al 10% como catalizador y presión moderada, proporcionó la 6-(*N*,*N*-dipropilamino)-5,6,7,8-tetrahidroquinolina (**28**) con un rendimiento moderado. Aunque no llegó a realizarse, la reducción de la amida **116** también debería haber permitido preparar la amina secundaria **111**, previamente obtenida por aminación reductiva de **112** (véase Figura 3.6, pág. 34).

Serie 2-hidroxitetrahidroquinolina

Recientemente, Glase y colaboradores²¹ prepararon y evaluaron la actividad dopaminérgica de las tetrahidroquinolinas **28**, **29** y **117**, análogos de la 5-hidroxi-2-(dipropilamino)tetralina (**5-OH-DPAT**) y llegaron a la conclusión de que mientras **28** y **117** presentaban una actividad dopaminérgica similar a la **5-OH-DPAT**, la 2-metoxipiridina **29** era poco activa *in vitro* e *in vivo*.

Figura 3.9

En relación con este trabajo, creímos interesante preparar y evaluar la actividad dopaminérgica del derivado desmetilado de 29, la 2-hidroxitetrahidroquinolina 118.

La síntesis de **118** se llevaría a cabo por ruptura del grupo metoxi de la tetrahidroquinolina **29**, previamente descrita por Glase²¹, cuya preparación presentaba como punto más conflictivo la formación de la piridona fusionada **120** a partir del monoetilenacetal de la 1,4-ciclohexanodiona.

Anteriormente, Kozikowski⁵⁷, en el contexto de la síntesis del alcaloide huperzina A, ya consideró la preparación de **120** como una de las limitaciones más importantes para acceder a sus análogos, hasta el punto que llegó a describir cinco vías alternativas para acceder a **120**, que se esquematizan en la Figura 3.10.

Obviamente, la condensación por calefacción del monoetilenacetal de la 1,4ciclohexanona con propiolato de metilo en una disolución metanólica saturada de amoníaco (apartado E, Figura 3.10) era claramente la opción a elegir ya que permitiría la formación de la piridona **120** en una única etapa con un rendimiento del 70%. Desafortunadamente, todos los intentos realizados para reproducir este procedimiento condujeron a mezclas de reacción de las que no pudo aislarse ni detectarse **120**. Por otro lado, resulta significativo el hecho de que en estudios posteriores realizados por el propio Kozikowski y colaboradores en el contexto de la síntesis de análogos del alcaloide huperzina A se utilizara el procedimiento descrito en el apartado A de la Figura 3.10, mucho más laborioso y con un rendimiento inferior.

Figura 3.10

Por otro lado, Glase y colaboradores²¹ comentan la necesidad de realizar una modificación en la química original descrita por Kozikowski, según el apartado E, para acceder a la piridona **120**. Estos autores, indican la necesidad de preparar previamente la enamina del monoetilenacetal de la 1,4-ciclohexanodiona por condensación con pirrolidina, para posteriormente calentar esta enamina a 100 °C en un reactor Parr en presencia de propiolato de metilo en disolución metanólica saturada de amoníaco.

La aplicación de este nuevo procedimiento (Figura 3.11) proporcionó un crudo de reacción con abundante material polimérico en el cual sí se detectó la piridona **120**, a pesar de que no pudo ser aislada. No obstante, la posterior metilación de la mezcla obtenida, con exceso de yoduro de metilo y carbonato de plata en DMF/CHCl₃, rindió la 2-metoxi-7,8-dihidro-5*H*-quinolina **121** con un rendimiento global del 17%, ligeramente inferior al descrito por Glase (21%).

El acceso a la 2-hidroxi-5,6,7,8-tetrahidroquinolina **118**, a partir del acetal **121**, se llevó a cabo en una secuencia de cinco etapas. En primer lugar, la hidrólisis del acetal **121** proporcionó la correspondiente 2-metoxi-7,8-dihidro-6(5*H*)-quinolinona (**119**). A continuación, la reducción de la oxima **122** con níquel Raney rindió la amina primaria **123**, que se alquiló reductivamente con exceso de propanal. Finalmente, la ruptura del grupo metoxi de la tetrahidroquinolina **29** proporcionó con buen rendimiento el hidrobromuro de la 6-(*N*,*N*-dipropilamino)-2-hidroxi-5,6,7,8-tetrahidroquinolina (**118**).

Por otro lado, la aminación reductiva de la quinolona **119** con propilamina rindió satisfactoriamente la amina secundaria **124**, que se utilizará más adelante en la preparación de la correspondiente amida terciaria de cadena lateral aromática (véase Figura 3.19; Tabla 3.1, pág. 45).

3. Síntesis de bioisósteros de catecolaminas

Figura 3.11

Serie tetrahidroindol

La síntesis de los 5-aminotetrahidroindoles **125-127** (Figura 3.12), análogos semirrígidos de las 2-(3-pirrolil)etilaminas, se fundamenta en la aminación reductiva de la 1,4,6,7-tetrahidro-5-indolona (**128**), metodología previamente utilizada en la preparación de las 6-aminotetrahidroquinolinas **110** y **111** (véase Figura 3.6, pág. 34).

La secuencia sintética que conduce a los 5-aminotetrahidroindoles **125-127** se recoge en la Figura 3.12 y se inicia con la reducción de Birch del 5-metoxiindol. En este caso, a diferencia de la reducción de Birch de la 6-metoxiquinolina que transcurría con un bajo rendimiento (véase Figura 3.6, pág. 34), la reducción con litio en amoníaco líquido en presencia de metanol proporciona una mezcla 8:1 de los correspondientes éteres de enol, **129a** y **129b**, con un rendimiento excelente^{54a}.

Figura 3.12

La reducción de la oxima de la 5-tetrahidroindolona 130, resultante de la hidrólisis de la anterior mezcla de éteres de enol 129, permitió acceder a la amina primaria 125. Por otro lado, la aminación reductiva de la indolona 128 con propilamina rindió satisfactoriamente la amina secundaria 126, a partir de la cual se obtuvo la amina terciaria 127 por acilación con cloruro de propionilo seguida de reducción de la amida resultante 131 con el complejo borano-sulfuro de dimetilo.

Serie 2-aminotetrahidrobenzotiazol

A finales de la década de los 80 investigadores de Boehringer Ingelheim publicaron un trabajo²⁶ sobre agonistas dopaminérgicos con estructura general de 2-aminotiazol. Los compuestos más activos de este estudio resultaron ser los dos enantiómeros del 2-amino-6-(*N*-propilamino)tetrahidrobenzotiazol (**26**); por el contrario, su precursor **25**, con un grupo 6amino primario, fue totalmente inactivo (Figura 3.13). Por otro lado, más recientemente²¹, también se cita al 2-amino-6-(*N*,*N*-dipropilamino)tetrahidrobenzotiazol (**27**) como un isóstero de las hidroxi-2-aminotetralinas.

Considerando estos antecedentes, decidimos preparar y evaluar los 2-aminotiazoles 26 y 27, y comparar los resultados de su actividad dopaminérgica con los de su análogo de cadena lateral aromática, cuya síntesis, a partir de la amina secundaria 26, se comentará más adelante (véase Figura 3.20; Tabla 3.2, pág. 46).

Figura 3.13

La síntesis de Hantzsch⁵⁸ de tiazoles constituye uno de los métodos más generales para preparar estos heterociclos y se basa en la ciclación entre una α -halocetona o un α haloaldehído y tiourea, o una tioamida. La reacción se inicia con un ataque nucleófilo del átomo de azufre sobre el carbono que sostiene al halógeno del compuesto carbonílico; el intermedio acíclico que se forma, aislado en alguna ocasión, cicla posteriormente de manera espontánea. Cuando se emplea tiourea como compuesto tiocarbonílico se obtiene un 2aminotiazol⁵⁹.

En el caso que nos ocupa (Figura 3.14), los precursores requeridos para acceder a los 2-aminotetrahidrobenzotiazoles 26 y 27, vía síntesis de Hantzsch, serían la 4-propanamidociclohexanona (114) y la tiourea. El grupo propanamido presente en 114 permitiría generar, posteriormente por reducción, la cadena de *n*-propilo presente en 26. Por otro lado, la amina terciaria 27 sería fácilmente accesible a partir de la amina secundaria 26.

Figura 3.14

El esquema sintético que conduce a los 2-aminotetrahidrobenzotiazoles 26 y 27 se representa en la Figura 3.15. La 4-propanamidociclohexanona $(114)^{60}$ se preparó en dos etapas por acilación del *trans*-4-aminociclohexanol con cloruro de propionilo seguida de oxidación del alcohol 132 con ácido crómico. Finalmente, la bromación de la posición α de la cetona 114 con bromo en ácido acético, seguida de tratamiento con tiourea de la 2-bromociclohexanona formada rindió el tiazol 133, que se redujo a la correspondiente propilamina 26 con el complejo borano-sulfuro de dimetilo. Una nueva acilación de 26 con cloruro de propionilo seguida de reducción de la amida terciaria resultante 134 proporcionó el 2-amino-6-(*N*,*N*-dipropilamino)tetrahidrobenzotiazol (27).

Figura 3.15
Serie 2-hidroxitetrahidrobenzotiazol

La ciclación de α -tiocianatocetonas constituye el método más general para preparar 2hidroxitiazoles⁵⁸. No obstante, dado que habíamos preparado 2-aminotiazoles satisfactoriamente mediante una síntesis de Hantzsch, optamos por esta segunda metodología para acceder al sistema de 2-hidroxitetrahidrobenzotiazol⁶¹. En este caso, los precursores requeridos serían de nuevo una α -halocetona o un α -haloaldehído y, como compuesto tiocarbonílico, tiocarbamato amónico o un tiocarbamato de *O*-alquilo.

En la Figura 3.16 se representa el esquema de síntesis de los 2-hidroxi-6aminotetrahidrobenzotiazoles 135 y 136 objeto de estudio.

Figura 3.16

La ciclohexanona **114**, previamente utilizada en la síntesis de 2-aminotetrahidrobenzotiazoles y de 6-aminotetrahidroquinolínas, por ciclación con yodo en presencia de tiocarbamato de *O*-etilo (**137**)⁶² proporcionó la amida **138** con un rendimiento del 35%. Posteriormente, **138** se redujo a la correspondiente propilamina **135** con el complejo boranosulfuro de dimetilo. Finalmente, la acilación de **135** con cloruro de propionilo, seguida de reducción de la amida terciaria resultante **139** proporcionó el 2-hidroxi-6-(*N*,*N*-dipropilamino)tetrahidrobenzotiazol (**136**) con un rendimiento moderado.

Serie tetrahidroisoindol

Entre los agonistas dopaminérgicos, los compuestos con estructura de ergolina han sido profundamente estudiados⁶³. En un trabajo comparativo entre derivados de la ergolina y la apomorfina, Kornfeld y colaboradores²⁴ llegaron a la conclusión de que la subestructura molecular que otorgaba a las ergolinas propiedades agonistas dopominérgicas no era la subunidad de β-fenetilamina (anillos A y C) sino la de pirroliletilamina (anillos B y C). De hecho, la subunidad de pirroliletilamina de las ergolinas y la subunidad de dopamina de la apomorfina presentan la misma configuración absoluta en el centro estereogénico que

soporta al nitrógeno dopaminérgico (configuración R) y por tanto, también, la misma direccionalidad espacial (Figura 3.17).

Considerando estos antecedentes, decidimos preparar y evaluar el 5-aminotetrahidroisoindol **21**²⁴ (Figura 3.18), un compuesto que contiene los anillos B y C de las ergolinas, y comparar los resultados de su actividad dopaminérgica con los de su análogo de cadena lateral aromática, cuya síntesis, a partir de la amina secundaria **140**, se comentará más adelante (véase Figura 3.20; Tabla 3.2, pág. 46).

En la Figura 3.18 se representa el esquema sintético que conduce al tetrahidroisoindol 21 y que difiere respecto al descrito en la literatura²⁴ en la manera de introducir las dos cadenas de *n*-propilo. La síntesis se inició de nuevo con la versátil 4-propanamidociclohexanona (114), que se condensó con dimetilformamida dimetilacetal. La enaminocetona 141 así obtenida generó el sistema de tetrahidroisoindol 142 por reacción con glicina en medio básico, seguida de acetilación, ciclación y descarboxilación del aducto formado con anhídrido acético. A continuación, el tratamiento de 142 con hidróxido potásico acuoso al 20% provocó la hidrólisis selectiva del grupo acilo unido al nitrógeno pirrólico. Finalmente, la reducción con hidruro de diisobutilaluminio rindió la amina secundaria 140 que se alquiló reductivamente con propanal.

Figura 3.18

3.2. Preparación de las Diamidas IX y X (144-154) y su Conversión en las Moléculas Objetivo III y V (155-165)

La síntesis de las diamidas **144-154** (Figura 3.19; Tabla 3.1) consta de una secuencia de siete etapas, análoga a la descrita en el capítulo 2 de la presente Memoria (véase Figura 2.5, pág. 24) para la preparación de las diamidas **56-68**, que se basa en la acilación de las heteroarilaminas primarias II o secundarias **XI**, descritas en el apartado 3.1 del presente capítulo, con un derivado del ácido 7-aza-9-[4-(metilsulfonil)fenil]-8-oxononanoico (**99**) que aporta la cadena lateral del compuesto **Z12571** (véase Figura 3.1 pág. 29).

Por tanto, en primer lugar, para acceder a las moléculas objeto de estudio era necesaria la obtención del ácido 99.

La condensación de tipo Knoevenagel entre el 4-metilsulfanilbenzaldehído y metil(metilsulfanilmetil)sulfóxido³⁹ proporcionó 1-(metilsulfinil)-1-(metilsulfanil)-2-(4-metilsulfanilfenil)eteno (166). El tratamiento de éste con HCI acuoso al 35% seguido de saponificación con hidróxido sódico en etanol del tioacetato de *S*-metilo formado proporcionó el ácido fenilacético 167, que se oxidó a la sulfona 168 con peróxido de hidrógeno al 20% en el seno de ácido acético. Posteriormente, el cloruro de ácido 169, obtenido por tratamiento de 168 con cloruro de tionilo y dimetilformamida como catalizador⁶⁴, se condensó con ácido 6aminohexanoico en las condiciones de Schotten-Baumann rindiendo el ácido 99 con un rendimiento del 82%. Finalmente, las diamidas 144-154 se obtuvieron por acilación de las heteroarilalquilaminas primarias II y secundarias IV, recogidas en la tabla 3.1 anexa de la figura 3.19, con el cloruro de ácido 170 en presencia de trietilamina.

Figura 3.19

Tabla 3.1		<i></i>	2.277 3.5M	- in the transition in
Aminas II, IV	Heterociclo	R	Diamida	Rendimiento
30		н	144	77%
31		C ₃ H ₇	145	77%
101	() N	н	146	52%
110	H	н	147	18%
111		C ₃ H ₇	148	41%
124	CH-O N	C ₃ H ₇	149	63%
125		н	150	56%
126	H N	C ₃ H ₇	151	58%
26		C ₃ H ₇	152	92%
135	HO	C ₃ H ₇	153	91%
140	HNI	C ₃ H ₇	154	59%

La conversión de las diamidas **144-154** en las diaminas **155-165**, objetivo final, requería tan sólo la reducción de las dos funciones amida y, en el caso de la 2-metoxitetrahidroquinolina **149**, además, la ruptura del grupo metoxi (Figura 3.20; Tabla 3.2, pág 46).

La reducción de las diamidas **144-153** se llevó a cabo por la acción del complejo borano-sulfuro de dimetilo, hidrolizando los complejos amino-borano formados con ácido clorhídrico acuoso (método A) o bien en el caso de los tetrahidroindoles **150** y **151** a reflujo de metanol (método B) ya que el medio ácido inducía la reducción del anillo pirrólico. Por otro lado, la diamida **154** se redujo con hidruro de diisobutilaluminio (método C).

Por último, la ruptura del grupo metoxi de **160** con ácido bromhídrico 48% permitió la obtención de la hidroxiquinolina **171** con un rendimiento del 92%.

Tabla 3.2

Diamida	Heterociclo	R	Método	Diamina	Rendimiento
144		н	А	155	78%
145		C ₃ H ₇	А	156	64%
146		н	A	157	59%
147		н	A	158	35%
148		C ₃ H ₇	A	159	83%
149	CH30 N	C ₃ H ₇	А	160	22%
150		н	в	161	17%
151	N N N N N N N N N N N N N N N N N N N	C ₃ H ₇	в	162	12%
152	H2N	C ₃ H ₇	A	163	34%
153	HO	C ₃ H ₇	A	164	22%
154	HNY	C ₃ H ₇	с	165	29%

 Modificación de la Cadena de Hexametileno. Sustitución de uno de los Grupos CH2 por un Heteroátomo

0

Análisis retrosintético de las diaminas VI (181, 182)

5. Resultados Farmacológicos

Amina	Heterociclo	R1	R ₂	DA1 (pD2)	DA2 (pD2)
30		Н	н	< 5	< 6
100	R1 N-R2	C ₃ H ₇	C ₃ H ₇	< 5	< 6
155	R1 N-R2	Н	A	< 5	5'5
156	R1 N-R2	C ₃ H ₇	A	5'5	< 6
110	R1 NR2	Н	Н	< 5	
28	R1 NR2	C ₃ H ₇	C ₃ H ₇	< 5	
158	R1 NR2	H	A	< 5	6'3
159	R1 NR2	C ₃ H ₇	A	< 5	8'4
118		C ₃ H ₇	C ₃ H ₇	< 5	
171		C ₃ H ₇	A	< 5	
101		н	Н	< 5	< 6

Actividades in vitro DA1 (test de la arteria esplénica del conejo) y DA2 (test de la arteria auricular del conejo) de las aminas II, III, IV, V y VI

157	R1 N N R2	Н	A	< 5	
125		н	н	< 5	
127		C ₃ H ₇	C ₃ H ₇	< 5	
161	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	н	A	< 5	< 6
162	R1 N R2 H	C ₃ H ₇	A	< 5	
27		C ₃ H ₇	C ₃ H ₇	6'8(1)	
163		C ₃ H ₇	А	6'3(1)	8'4
Z12571	HO OH R2	C ₃ H ₇	A	8'6	10'1
DPDA	HO HO HO	C ₃ H ₇	C ₃ H ₇	5'3	7'4
-)DP-5,6- ADTN	HO HO HO	C ₃ H ₇	C ₃ H ₇	6'5	9'8

(1): El efecto no es producido por la unión a receptores dopaminérgicos ya que éste no es antagonizado por SCH23390, un antagonista selectivo de los receptores DA₁

6. Parte Experimental

6.1. DATOS GENERALES

Los espectros de infrarrojo han sido registrados en un espectrofotómetro Nicolet-FT y sólo se indican las absorciones más significativas en cm⁻¹.

Los espectros de resonancia magnética nuclear de protón de 200 MHz han sido realizados en un espectrómetro Varian Gemini-200 (200 MHz), los de 300 MHz en un espectrómetro Varian Gemini-300 (300 MHz), y los de 500 MHz en un espectrómetro Varian VXR-500 (500 MHz).

Los espectros de resonancia magnética nuclear de carbono-13 han sido registrados en un espectrómetro Varian Gemini 200 (50'3 MHz) o bien en un espectrómetro Varian Gemini 300 (75'4 MHz) provistos de una sonda dual ¹H/¹³C.

Los desplazamientos químicos se indican en partes por millón (ppm) en la escala de δ , y como referencia interna se ha utilizado tetrametilsilano (TMS). Las abreviaturas utilizadas para la asignación de señales son: s, singulete; d, doblete; t, triplete; c, cuadruplete; q, quintuplete; sept, septuplete; m, multiplete; sa, singulete ancho; sc, señal compleja; dd, doblete de dobletes; dt, doblet de tripletes; dtd, doble doblete de dobletes; dt, doblete de tripletes; tc, triplete de triplete de cuadrupletes; tc, triplete de cuadrupletes; tc, triplete de cuadrupletes; cd, cuadruplete de dobletes.

Los puntos de fusión han sido determinados en tubos capilares abiertos en un aparato Gallenkamp y no se han corregido.

Los análisis elementales se han efectuado en un analizador Carlo Erba, modelo 1106, en el departamento de Química Orgánica Biológica del CID de Barcelona (CSIC).

Los valores de las rotaciones ópticas se han registrado en un polarímetro Perkin-Elmer modelo 241.

Los espectros de masas se han registrado en un espectrómetro Hewlett Packard 5989A.

Para la purificación de productos por cromatografía en columna flash, siempre que no se indique lo contrario, se ha utilizado como adsorbente gel de sílice 60 A CC (230-400 mesh ASTM, SDS, ref. 2000027). Para la cromatografía en capa fina se han utilizado cromatofolios de gel de sílice (sílica gel 60, Alugram[®]), localizando las manchas mediante luz ultravioleta (256 nm) o revelando con disolución 1:1 de yoduro potásico al 10% y ácido hexacloroplatínico al 3% en agua o bien disolución de permanganato potásico al 1% en agua.

Los extractos orgánicos han sido desecados con sulfato sódico anhidro antes de ser concentrados a presión reducida, siempre que no se indique lo contrario.

6. Parte Experimental

6.2 Síntesis de Bioisósteros de Catecolaminas : Sustitución del Anillo de Dihidroxibenceno por un Núcleo Hetereoaromático

6.2.1. Aminas heterocíclicas II, IV y XI

6.2.1.1. Serie piridina

Dibromuro de 3-(2-amonioetil)piridinio (30). Una disolución de 3-piridinaacetonitrilo (5 g, 42'4 mmol) en EtOH (70 ml) y NH₄OH 30% (17 ml) se hidrogenó (30 psi, 25-30°C) en presencia de níquel Raney W-2 (2-3 g) durante 18 h. La mezcla de reacción se filtró, se evaporó y el residuo resultante se vertió sobre una disolución saturada de K₂CO₃, y se extrajo con CH₂Cl₂ (2 x 60 ml). Los extractos orgánicos secados con K₂CO₃ anhidro se destilados a presión reducida (115°C; 15 mmHg) proporcionaron un aceite incoloro que se identificó como **30** (base libre). El dihidrobromuro correspondiente cristalizó (6'6 g, 55%) al adicionar HBr acuoso 48% (1 ml, 9'2 mmol) sobre una disolución de la base libre en AcOEt-EtOH (1:3, 30 ml). <u>Punto de fusión</u>: 258-259°C. <u>Análisis elemental</u>: véase Tabla 1 pág 106. Lit.²² Rdto. 45%. <u>Punto de fusión</u> (dihidrocloruro): 207-209°C. ¹H-RMN (D₂O, 200 MHz) δ 3'22-3'40 (m, 4H, NCH₂, PirCH₂); 8'03 (dd, 1H, 5-H, *J*= 8'2, 6Hz); 8'57 (d, 1H, 4-H, *J*= 8'4Hz); 8'71 (d, 1H, 6-H, *J*= 6Hz); 8'77 (s, 1H, 2-H). ¹³C-RMN (D₂O, 50'3 MHz) δ 32'9 (PirCH₂); 42'4 (NCH₂); 130'7 (5-C); 140'5 (3-C); 143'2, 144'3 (6-C, 2-C); 150'8 (4-C).

Dioxalato de 3-[2-(dipropilamonio)etil]piridinio (100). Una disolución de **30** (base libre, 0'35 g, 2'87 mmol) y propanal 97% (2'12 ml, 28'7 mmol) en EtOH absoluto (30 ml) se hidrogenó (60 psi, 25-30°C) en presencia de Pd/C (10%, 100 mg), durante 60 h. La mezcla de reacción se filtró y se evaporó obteniéndose un aceite amarillo que se identificó como la base libre **100**. El dioxalato correspondiente cristalizó (0'52 g, 61%) al adicionar una disolución de ácido oxálico dihidratado (0'76 g, 6'0 mmol) en EtOH (15 ml) sobre una disolución de la base libre en EtOH (15 ml). Punto de fusión: 158-160°C. Análisis elemental: véase Tabla 1 pág 106. Lit.²² Rdto. 72%. Punto de fusión: 159-161°C. ¹H-RMN (D₂O, 300 MHz) δ 0'77 (t, 6H, 2 CH₃, *J*= 5Hz); 1'55 (m, 4H, 2 CH₂CH₃); 3'01 (m, 4H, 2 NCH₂CH₂CH₃); 3'14, 3'30 (2 m, 4H, PirCH₂CH₂N); 7'85 (dd, 1H, 5-H, *J*= 8'5, 6Hz); 8'35 (d, 1H, 4-H, *J*= 8'5Hz); 8'52 (d, 1H, 6-H, *J*= 6Hz); 8'56 (s, 1H, 2-H). ¹³C-RMN (D₂O, 50'3 MHz) δ 12'9 (2 CH₃); 19'7 (2 CH₂CH₃); 29'3 (PirCH₂); 54'6 (PirCH₂CH₂N); 55'7 (2 NCH₂CH₂CH₃); 130'3 (5-C); 140'5 (3-C); 143'0, 143'9 (2-C, 6-C); 150'2 (4-C).

3-[2-(Propilamino)etil]piridina (31). Una disolución de **30** (base libre, 0'90 g, 7'4 mmol) y propanal 97% (0'57 ml, 7'7 mmol) en EtOH absoluto (30 ml) se hidrogenó (60 psi, 25-30°C) en presencia de Pd/C (10%, 100 mg) durante 4 h. La mezcla de reacción se filtró, se evaporó, y el residuo obtenido purificado por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 93:6:1) rindió 0'1 g (6%) de dipropilamina **100** y 0'79 g (66%) de monopropilamina **31**. Lit.²² Rdto. 85%. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'81 (t, 3H, CH₃, *J*= 10'2Hz); 1'49 (sext, 2H, CH₂CH₃, *J*= 10'2Hz); 2'59 (t, 2H, PirCH₂, *J*= 8Hz); 2'77-2'95 (m, 4H, PirCH₂CH₂N,

NC H_2 CH₂CH₃); 7'21 (dd, 1H, 5-H, *J*= 8, 6Hz); 7'55 (d, 1H, 4-H, *J*= 8Hz); 8'42-8'50 (m, 2H, 6-H, 2-H). ¹³C-RMN (CDCl₃, 50'3 MHz) δ 11'3 (CH₃); 22'7 (*C*H₂CH₃); 33'2 (PirCH₂); 50'4, 51'3 (PirCH₂CH₂N, N*C*H₂CH₂CH₃); 122'9 (5-C); 135'1 (3-C); 135'6 (4-C); 147'2, 149'7 (2-C, 6-C); 167'0 (C=O oxalato).

6.2.1.2. Serie pirrol

N-(Triisopropilsilil)pirrol (103). A una disolución de pirrol (7'3 ml, 0'1 mol) en THF anhidro (175 ml) enfriada a -78°C se adicionó, bajo atmósfera de argón gota a gota, n-BuLi 1'6 M en hexano (71'3 ml, 0'11 mol). La mezcla se agitó 10 min a -78°C y, posteriormente, se adicionó, lentamente, triisopropilclorosilano (22'2 ml, 0'1mol). Finalizada la adición, se agitó a temperatura ambiente durante 45 min, se concentró hasta un volumen de 50 ml y se adicionó agua (200 ml). La disolución resultante se extrajo con Et₂O (3 x 200 ml) y los extractos orgánicos lavados con agua (2 x 300 ml), secados y evaporados, proporcionaron un aceite que se purificó por destilación a presión reducida (125°C, 10 mmHg). Se obtuvieron 21'3 g (93%) de **F-250**, líquido incoloro. Lit.^{48b} Rdto. 92%. Punto de ebullición: 125°C, 14 mmHg. ¹<u>H-RMN</u> (<u>CDCl₃, 200 MHz</u>) δ 1'10 (d, 18H, CH₃, *J*= 7H); 1'46 (sept, 3H, CH, *J*= 7Hz); 6'32 (m, 2H, 3-H, 4-H); 6'80 (m, 2H, 2-H, 5-Hz).

Pirrol-3-carbaldehído (102). A una disolución de cloruro de oxalilo (8'75 ml, 0'1 mol) en CH_2CI_2 anhidro (225 ml) enfriada a 0°C se adicionó una disolución de DMF anhidra (8'5 ml, 0'1 mol) en CH_2CI_2 anhidro (10 ml). La mezcla se agitó a 0°C durante 20 min. A continuación, a la suspensión del reactivo de Vilsmeier-Haack se adicionó, rápidamente, una disolución de **103** (21'3 g, 95'3 mmol) en CH_2CI_2 anhidro (20 ml) y la mezcla se calentó a reflujo durante 30 min. Posteriormente, se enfrió a 0°C precipitando un sólido blanco (**105**) que se filtró en atmósfera inerte y se lavó con éter anhidro.

La sal de iminio **105** se adicionó a una disolución de NaOH acuoso 5% (300 ml) y la mezcla se agitó a temperatura ambiente durante 4 h. La disolución resultante se extrajo con CH_2Cl_2 (3 x 300 ml) y los extractos orgánicos secados y evaporados proporcionaron un residuo que se purificó por cromatografía en columna flash (AcOEt-hexano 6:4) obteniéndose un sólido amarillo que se identificó como **102** (5'7 g, 63%). <u>Punto de fusión</u>: 66-67°C. Lit.^{48b, 68c} Rdto. 69%. <u>Punto de fusión</u>: 68°C. 1<u>H-RMN (CDCl₃, 300 MHz)</u> δ 6'63 (m, 1H, 4-H); 6'83 (m, 1H, 5-H); 7'46 (m, 1H, 2-H); 9'76 (s, 1H, CHO); 10'0 (sa, 1H, NH). ¹³<u>C-RMN (CDCl₃, 50'3 MHz)</u> δ 107'9 (4-C); 121'0 (5-C); 126'4 (3-C); 128'1 (2-C); 186'4 (C=O).

N-(*p*-Toluenosulfonil)pirrol-3-carbaldehído (108). A una mezcla, enfriada a 0°C, del aldehído 102 (6'67 g, 70'1 mmol), hidrogenosulfato de tetrabutilamonio (1'23 g, 3'5 mmol), NaOH acuoso 50% (145 ml) y CH_2CI_2 (145 ml) se adicionó una disolución de cloruro de *p*-toluenosulfonilo (14'7 g, 77'1 mmol) en CH_2CI_2 (70 ml). La mezcla de reacción se agitó a 0°C durante 1 h, se vertió sobre una disolución acuosa saturada de NaCI (300 ml), se extrajo con CH_2CI_2 (2 x 300 ml), y los extractos orgánicos resultantes se lavaron con disolución acuosa saturada de NaCI (2 x 300 ml), se secaron, se filtraron y se evaporaron. El residuo

obtenido se purificó por cromatografía en columna flash (hexano-Et₂O 3:1) rindiendo 14'2 g (81%) de un sólido marrón que se identificó como **108**. <u>Punto de fusión</u>: 60-61°C. Lit.⁵³ Rdto. 88%. <u>Punto de fusión</u>: 61-62°C. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 2'44 (s, 3H, CH₃); 6'71 (m, 1H, 4-H); 7'18 (m, 1H, 5-H); 7'35 (d, 2H, Ph-*m*, *J*= 8Hz); 7'77-7'84 (m, 3H, Ph-*o*, 2-H).

3-(2-Nitrovinil)-*N*-(*p*-toluenosulfonil)pirrol (109). Una suspensión de 108 (7'67 g, 30'8 mmol) y acetato amónico (1'66 g, 21'5 mmol) en nitrometano (33 ml) se calentó a reflujo durante 1'5 h. Posteriormente, se evaporó el disolvente y el residuo resultante se disolvió en AcOEt (100 ml) y se lavó, sucesivamente, con Na₂CO₃ 2N (2 x 100 ml) y con disolución acuosa saturada de NaCl (2 x 100 ml). La fase orgánica se secó, se trató con carbón activado, se filtró y se evaporó a presión reducida. El residuo resultante triturado con AcOEt proporcionó un sólido amarillo que se identificó como 109 (6'57 g, 73%). Punto de fusión: 150-152°C. ¹<u>H-RMN</u> (<u>CDCl₃, 300 MHz</u>) δ 2'40 (s, 3H, CH₃); 6'50 (m, 1H, 4-H); 7'20 (m, 1H, 5-H); 7'34-7'38 (m, 3H, =CHNO₂, Ph-*m*); 7'52 (m, 1H, 2-H); 7'79-7'83 (m, 3H, PirrCH=, Ph-*o*).

Oxalato de [2-(3-pirrolil)etil]amonio (101). A una suspensión de LiAlH₄ (2'6 g, 68'4 mmol) en THF anhidro (110 ml) enfriada a 0°C se adicionó, bajo atmósfera de argón, una disolución de **109** (2 g, 6'84 mmol) en THF anhidro (70 ml). La mezcla se calentó a reflujo durante 2'5 h. Posteriormente, se enfrió a 0°C y se adicionó, consecutivamente, agua (2'5 ml), NaOH 15% (0'75 ml) y agua (8 ml). La suspensión resultante se filtró sobre Celite y el líquido filtrado se extrajo con CH₂Cl₂ (3 x 200 ml). Las fases orgánicas lavadas con agua (2 x 150 ml), secadas y evaporadas proporcionaron 0'58 g (77%) de un aceite que se identificó como la base libre **101**. El oxalato correspondiente cristalizó (0'84 g, 52%) al adicionar una disolución de ácido oxálico dihidratado (0'8 g, 6'31 mmol) en EtOH (10 ml) sobre una disolución de la base libre en EtOH (10 ml). <u>Punto de fusión</u>: descompone a 115°C. Lit.⁴⁹ Rdto. 69%. <u>Punto de fusión</u> (maleato): 93-94°C. <u>Análisis elemental</u>: véase Tabla 1 pág 106. ¹<u>H-RMN (D₂O, 300 MHz</u>) δ 2'64 (t, 2H, PirrCH₂, *J*= 7Hz); 2'98 (t, 2H, NCH₂, *J*= 7Hz); 5'95 (m, 1H, 4-H); 6'60 (s, 1H, 2-H); 6'66 (m, 1H, 5-H). ¹³<u>C-RMN (D₂O, 75'4 MHz</u>) δ 17'8 (PirrCH₂); 34'2 (NCH₂); 100'8 (3-C); 101'0 (4-C); 110'6, 112'8 (2-C, 5-C); 166'5 (C=O oxalato).

6.2.1.3. Serie tetrahidroquinolina

7,8-dihidro-6(5*H***)-quinolinona (112)**. A una disolución de 6-metoxiquinolina (4'77 g, 30 mmol), enfriada a -78°C, en MeOH anhidro (18 ml) y amoníaco líquido destilado (150 ml) se adicionó litio metal (0'84 g, 120 mmol) en pequeñas fracciones. A continuación se evaporó el disolvente y el residuo se disolvió en agua (200 ml) y se extrajo con Et₂O (3 x 200 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se destiló al vacío (85-90°C, 2 mmHg). Se obtuvieron 0'66 g (14%) de un aceite amarillo constituído mayoritariamente por una mezcla 1:2 de 6-metoxi-7,8-dihidroquinolina **113a** y 6-metoxi-5,8-dihidroquinolina **113b**.

Una disolución de los eteres de enol 113a y 113b (0'66 g, 4'1 mmol) en HCI 0'3N (55 ml) se agitó a temperatura ambiente durante 5 h. La mezcla se basificó con NaOH 5N y se extrajo

con CH₂Cl₂ (3 x 50 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se purificó por cromatografía en columna (AcOEt-MeOH 9:1). Se obtuvo un aceite amarillo que se identificó como **112** (0'27 g, 6% desde 6-metoxiquinolina). Lit.^{54a, 54b} Rdto. 12%. Punto de ebullición: 138°C, 8 mmHg. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 2'69 (t, 2H, 7-CH₂, *J*= 6'2Hz); 3'30 (t, 2H, 8-CH₂, *J*= 6'2Hz); 3'62 (s, 2H, 5-CH₂); 7'12 (dd, 1H, 3-H, *J*= 8, 6Hz); 7'44 (d, 1H, 4-H, *J*= 8Hz); 8'45 (d, 1H, 2-H, *J*= 6Hz). ¹³<u>C-RMN (CDCl₃, 50'3 MHz)</u> δ 30'4 (8-C); 37'0 (7-C); 43'2 (5-C); 121'5 (3-C); 127'8 (4a-C); 135'4 (4-C); 146'9 (2-C); 156'1 (8a-C); 208'0 (6-C). <u>IR (KBr)</u>: 1717 (C=O).

6-(Propilamino)-5,6,7,8-tetrahidroquinolina (111). A una disolución de **112** (1'25 g, 8'50 mmol), propilamina (0'75 ml, 9'30 mmol) y ácido acético (0'48 ml, 8'36 mmol) en CH₂Cl₂ (30 ml) se adicionó, bajo atmósfera de nitrógeno, triacetoxiborohidruro sódico (2'32 g, 11 mmol). La mezcla se agitó a temperatura ambiente durante 12 h, se vertió sobre agua, se basificó con Na₂CO₃, y la fase acuosa se extrajo con CH₂Cl₂ (2 x 30 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un aceite amarillo que se identificó como **111** (0'43 g, 27%). Lit.²¹ Rdto. 83% ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'95 (t, 3H, CH₃, *J*= 7Hz); 1'53 (sext, 2H, CH₂CH₃, *J*= 7Hz); 1'75 (m, 1H, 7-Hax); 2'15 (m, 1H, 7-Hec); 2'62 (m, 1H, 5-H); 2'69 (t, 2H, NCH₂CH₂, *J*= 8Hz); 2'85-3'18 (m, 4H, 5-H, 8-CH₂, 6-H); 7'05 (dd, 1H, 3-H, *J*= 8, 6Hz); 7'37 (d, 1H, 4-H, *J*= 8Hz); 8'36 (d, 1H, 2-H, *J*= 6Hz).

N-[4-(Aliloxiimino)ciclohexil]propanamida (115). Una mezcla de 114 (5'5 g, 32'6 mmol) y hidrocloruro de *O*-alilhidroxilamina (4'41 g, 39 mmol) en agua (35 ml) se neutralizó con NH₄OH 30%, y se calentó a 80°C durante 15 min. El sólido blanco precipitado se filtró, se lavó con agua y se secó con P₂O₅, obteniéndose 6'80 g (93%) de 115. <u>Punto de fusión</u>: 131-132°C. ¹<u>H-RMN (DMSO-d₆, 200 MHz)</u> δ 0'97 (t, 3H, *J*= 7'2Hz); 1'20-1'40 (m, 2H); 1'75-1'90 (m, 2H); 2'00-2'30 (m, 3H); 2'04 (c, 2H, *J*= 7'4Hz); 2'95 (dt, 1H, *J*= 15'2, 4Hz); 3'80 (m, 1H); 4'44 (m, 2H); 5'12-5'25 (m, 2H); 5'82-6'02 (m, 1H); 7'70 (d, 1H, *J*= 8Hz). ¹³<u>C-RMN (DMSO-d₆, 50'3 MHz)</u> δ 10'2 (CH₃); 22'7, 28'8, 29'3, 30'8, 32'1 (5 CH₂); 46'2 (CH); 73'6 (CH₂); 117'1 (CH₂); 135'2 (CH); 158'3 (C); 172'4 (C).

N-(5,6,7,8-Tetrahidro-6-quinolil)propanamida (116). 7'27 g (32'45 mmol) de aliloxima 115 se calentaron a 190-200°C en un reactor cerrado durante 46 h. El aceite resultante se disolvió en CH₂Cl₂ (60 ml), se extrajo con HCl 2N (2 x 40 ml) y la fase acuosa se basificó con Na₂CO₃ y se extrajo con CH₂Cl₂ (2 x 60 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se purificó por cromatografía en columna flash (Al₂O₃, AcOEt). Se obtuvo un aceite amarillo que se identificó como **116** (2'30 g, 34%). ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 1'60 (t, 3H, CH₃, *J*= 7'7Hz); 1'91 (m, 1H, 7-Hax); 2'15 (m, 1H, 7-Hec); 2'21 (c, 2H, NCOCH₂, *J*= 7Hz); 2'66 (dd, 1H, 5-Hax, *J*= 15, 7Hz); 3'01-3'09 (m, 2H, 8-CH₂); 3'15 (dd, 1H, 5-Hec, *J*= 15, 3Hz); 4'30 (m, 1H, 6-H); 5'55 (sa, 1H, NH); 7'05 (dd, 1H, 3-H, *J*= 7, 5Hz); 7'35 (d, 1H, 4-H, *J*= 7Hz); 8'39 (d, 1H, 2-H, *J*= 5Hz).¹³<u>C-RMN (CDCl₃, 75'4 MHz)</u> δ 9'7 (CH₃); 28'3, 29'3, 30'2; (8-C, 7-C, 5-C); 34'5 (NCO*C*H₂); 44'3 (6-C); 120'9 (3-C); 129'4 (4a-C); 136'9 (4-C); 146'8 (2-C); 155'3 (8a-C); 173'5 (C=O).

6. Parte Experimental

Dibromuro de 6-amonio-5,6,7,8-tetrahidroquinolinio (110). Una disolución de **116** (1'72 g, 8'43 mmol) en H₂SO₄ 10% (50 ml) se calentó a reflujo durante 5 h. La mezcla de reacción se basificó con NaOH 2N y se extrajo con CH₂Cl₂ (2 x 30 ml). La fase orgánica se secó, se filtró y se evaporó obteniéndose un aceite amarillo que se identificó como la base libre **110.** El dihidrobromuro correspondiente cristalizó (1'5 g, 57%) al adicionar HBr acuoso 48% (2'54 ml, 22'28 mmol) sobre una disolución de la base libre en AcOEt-EtOH (5:1 10 ml). <u>Punto de fusión</u>: 304-306°C. <u>Análisis elemental</u>: véase Tabla 1 pág 106. Este compuesto también se preparó por reducción con LiAlH₄ de la oxima de la cetona **112** (Rdto. 20%). ¹<u>H-RMN (D₂O, 300 MHz)</u> δ 1'93 (m, 1H, 7-Hax); 2'27 (m, 1H, 7-Hec); 2'95 (dd, 1H, 5-Hax, *J*= 10, 17Hz); 3'03-3'22 (m, 2H, 8-CH₂); 3'31 (dd, 1H, 5-Hec, *J*= 17, 5Hz); 3'62 (m, 1H, 6-H); 7'65 (dd, 1H, 3-H, *J*= 8, 6Hz); 8'18 (d, 1H, 4-H, *J*= 8Hz); 8'37 (d, 1H, 2-H, *J*= 6Hz). ¹³<u>C-RMN (D₂O, 75'4 MHz)</u> δ 25'4, 26'2 (8-C, 7-C); 31'9 (5-C); 46'3 (6-C); 125'5 (3-C); 134'8 (4a-C); 140'4 (2-C); 148'1 (4-C); 151'1 (8a-C).

Dibromuro de 6-(dipropilamonio)-5,6,7,8-tetrahidroquinolinio (28). Una suspensión de **110** (base libre, 0'41 g, 2'75 mmol), propanal 97% (2'0 ml, 27'4 mmol) y Pd/C (10%, 100 mg) en EtOH absoluto (30 ml) se hidrogenó (60 psi, 25-30°C) durante 12 h. La mezcla de reacción se filtró y se evaporó, obteniéndose un aceite amarillo que se identificó como la base libre **28**. El dihidrobromuro correspondiente cristalizó (0'56 g, 52%) al adicionar HBr acuoso 48% (0'71 ml, 6'3 mmol) sobre una disolución de la base libre en AcOEt-EtOH 6:1 (15 ml). <u>Punto de</u> fusión: descompone a 110°C. <u>Análisis elemental</u>: véase Tabla 1 pág 106. Lit.²¹ Rdto. 77%. <u>Punto de fusión</u> (dihidrocloruro): 154°C. ¹<u>H-RMN (D₂O, 200 MHz)</u> δ 0'92 (t, 6H, CH₃, *J*= 7'4Hz); 1'74 (m, 4H, 2 NCH₂CH₂CH₃); 1'97 (m, 1H, 7-Hax); 2'46 (m, 1H, 7-Hec); 3'18-3'30 (m, 8H, 2 NCH₂, 5-CH₂, 8-CH₂); 3'95 (m, 1H, 6-H); 7'78 (dd, 1H, 3-H, *J*= 8, 6Hz); 8'34 (d, 1H, 4-H, *J*= 8Hz); 8'50 (d, 1H, 2-H, *J*= 6Hz). ¹³<u>C-RMN (D₂O, 50'3 MHz)</u> δ 13'3 (CH₃); 21'0, 21'2 (2 NCH₂CH₂); 24'3, 29'1, 30'4 (8-C, 7-C, 5-C); 55'5, 55'9 (NCH₂); 60'0 (6-C); 127'5 (3-C); 136'9 (4a-C); 142'3 (2-C); 150'2 (4-C); 152'9 (8a-C).

6.2.1.4. Serie 2-hidroxitetrahidroquinolina

Etilenacetal de la 2-metoxi-7,8-dihidro-6(5*H*)-quinolinona (121). Una disolución de monoetilenacetal de la 1,4-ciclohexanodiona (2'0 g, 12'8 mmol), pirrolidina (2'16 ml, 25'6 mmol) y ácido *p*-toluenosulfónico (0'08 g, 0'46 mmol) en benceno (40 ml) se calentó a reflujo en un aparato Dean-Stark durante 16 h. La mezcla se concentró a presión reducida y la enamina resultante se disolvió en metanol saturado de amoníaco (300 ml). Posteriormente, se adicionó propiolato de metilo (3'2 ml, 38'4 mmol) y se calentó a 100°C en un reactor Parr durante 15 h, alcanzándose una presión de 200 psi. A continuación, se ventiló el reactor, se evaporó el disolvente y el residuo se digirió con acetona obteniéndose un sólido marrón (2'89 g) que contenía el 6-etilenacetal de la 7,8-dihidro-2,6(5*H*)-quinolinadiona (**120**).

Una mezcla de yoduro de metilo (8 ml, 128 mmol), Ag₂CO₃ (7 g, 25'4 mmol) y **120** (crudo, 2'89 g) en CH₂Cl₂ (80 ml) y DMF (50 ml) se agitó en la oscuridad a temperatura ambiente durante

48 h. La mezcla se filtró, se evaporó a presión reducida y el residuo resultante se purificó por cromatografía en columna flash (AcOEt-hexano 4:6) obteniéndose un aceite incoloro que solidificó al enfriar, y que se identificó como **121** (0'48 g, 17%). Lit.²¹ Rdto. 21%. <u>Punto de fusión</u>: 77°C. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 2'01 (t, 2H, 7-CH₂, *J*= 7Hz); 2'89 (s, 2H, 5-CH₂); 2'98 (t, 2H, 8-CH₂, *J*= 7Hz); 3'89 (s, 3H, OCH₃); 4'04 (s, 4H, 2 OCH₂); 6'52 (d, 1H, 3-H, *J*= 8'4Hz); 7'23 (d, 1H, 4-H, *J*= 8'4Hz).

2-Metoxi-7,8-dihidro-6(5*H***)-quinolinona (119)**. Una disolución del acetal **121** (0'6 g, 2'71 mmol) en acetona (8 ml) y HCl acuoso 5% (8 ml) se calentó a reflujo durante 15 h. La mezcla se neutralizó con NaHCO₃ acuoso saturado (20 ml) y se extrajo con CH₂Cl₂ (3 x 50 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un aceite amarillo que se identificó como **119** (0'45 g, 94%). Lit.²¹ Rdto. 94%. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 2'66 (t, 2H, 7-CH₂, *J*= 7'4Hz); 3'16 (t, 2H, 8-CH₂, *J*= 7'4Hz); 3'51 (s, 2H, 5-CH₂); 3'93 (s, 3H, OCH₃); 6'61 (d, 1H, 3-H, *J*= 8'6Hz); 7'30 (d, 1H, 4-H, *J*= 8'6Hz).

2-Metoxi-6-(propilamino)-5,6,7,8-tetrahidroquinolina (124). A una disolución de la cetona **119** (0'44 g, 2'49 mmol) en CH₂Cl₂ anhidro (10 ml) se adicionaron, bajo atmósfera de argón, propilamina (0'23 ml, 2'74 mmol), triacetoxiborohidruro sódico (0'72 g, 3'21 mmol) y ácido acético (0'16 ml, 2'49 mmol). La mezcla se agitó a temperatura ambiente durante 12 h y posteriormente se adicionó agua (20 ml) y NaOH 5N hasta pH 10. La fase acuosa se extrajo con CH₂Cl₂ (3 x 50 ml) y los extractos orgánicos secados, filtrados y evaporados proporcionaron un aceite que se identificó como **124** (0'51 g, 93%). Lit.²¹ Rdto. 75%. ¹<u>H-RMN</u> (<u>CDCl₃, 200 MHz</u>) δ 0'95 (t, 3H, CH₂CH₃, *J*= 7'2Hz); 1'54 (sext, 2H, CH₂CH₃, *J*= 7'2Hz); 1'74 (m, 1H, 7-Hax); 2'1 (m, 1H, 7-Hec); 2'50 (dd, 1H, 5-Hax, *J*= 16, 10Hz); 2'68 (t, 2H, NCH₂, *J*= 7'4Hz); 2'82-3'00 (m, 4H, 5-Hec, 6-H, 8-CH₂); 3'89 (s, 3H, OCH₃); 6'50 (d, 1H, 3-H, *J*= 8'4Hz); 7'26 (d, 1H, 4-H, *J*= 8'4Hz). ¹³<u>C-RMN (CDCl₃, 75'4 MHz)</u> δ 11'7 (CH₂CH₃); 23'3 (CH₂CH₃); 29'1, 30'6, 34'8 (8-C, 7-C, 5-C); 49'0 (NCH₂); 53'0 (6-C, OCH₃); 107'6 (3-C); 122'1 (4a-C); 139'7 (4-C); 153'3 (8a-C); 161'8 (2-C).

Oxima de la 2-metoxi-7,8-dihidro-6(5*H***)-quinolinona (122).** A una disolución de la cetona **119** (0'17 g, 0'95 mmol) en EtOH (2 ml) se adicionó acetato sódico anhidro (0'082 g, 1 mmol), carbonato sódico anhidro (0'103 g, 0'97 mmol) y hidrocloruro de hidroxilamina (0'066 g, 0'97 mmol). La mezcla se calentó a reflujo durante 1'5 h, posteriormente se evaporó el disolvente, y el residuo resultante se disolvió en agua (10 ml) y se extrajo con CH_2Cl_2 (3 x 10 ml). La fase orgánica se secó, se filtró y se evaporó obteniéndose un aceite marrón que se identificó como **122** (0'14 g, 74%). ¹<u>H-RMN (CDCl_3, 200 MHz)</u> δ 2'64, 2'82 (2 t, 2H, 7-CH₂, *J*= 7Hz); 2'97 (m, 2H, 8-CH₂); 3'47, 3'74 (2 s, 2H, 5-CH₂); 3'92 (s, 3H, OCH₃); 6'58 (m, 1H, 3-H); 7'35 (m, 1H, 4-H); 7'80 (sa, 1H, OH).

6-Amino-2-metoxi-5,6,7,8-tetrahidroquinolina (123). Una disolución de la oxima 122 (0'36 g, 1'88 mmol) en EtOH (10 ml) se hidrogenó a presión atmosférica (20-25°C) en presencia de níquel Raney W-2 (0'5-1 g) durante 15 h. La mezcla de reacción se filtró, se evaporó y el residuo resultante se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH

30% 98:1:1), obteniéndose un aceite que se identificó como **123** (0'12 g, 36%). ¹<u>H-RMN</u> (<u>CDCl₃, 300 MHz</u>) δ 1'69 (m, 1H, 7-Hax); 2'05 (m, 1H, 7-Hec); 2'49 (dd, 1H, 5-Hax, *J*= 15, 7'5 Hz); 2'85-2'92 (m, 3H, 8-CH₂, 5-Hec); 3'21 (m, 1H, 6-H); 3'89 (s, 3H, OCH₃); 6'51 (d, 1H, 3-H, *J*= 8Hz); 7'25 (d, 1H, 4-H, *J*= 8Hz).

6-(Dipropilamino)-2-metoxi-5,6,7,8-tetrahidroquinolina (29). Una suspensión de la oxima 123 (0'12 g, 0'70 mmol) y propanal 97% (0'52 ml, 7'0 mmol) en EtOH absoluto (30 ml) se hidrogenó (60 psi, 25-30°C) en presencia de Pd/C (10%, 25 mg), durante 12h. La mezcla se filtró y se evaporó obteniéndose un aceite amarillo que se identificó como 29 (0'18 g, 98%). Lit.²¹ Rdto. 78%. Punto de fusión (dihidrocloruro): 136°C. 1H-RMN (CDCl₃, 200 MHz) δ 0'89 (t, 6H, 2 CH₂CH₃, J= 7'4Hz); 1'49 (sext, 4H, NCH₂CH₂, J= 7'4Hz); 1'70 (m, 1H, 7-Hax); 2'10 (m, 1H, 7-Hec); 2'50 (t, 4H, 2 NCH2, J= 7'8Hz); 2'70 (m, 1H, 5-Hax); 2'80-3'02 (m, 4H, 6-H, 5-Hec, 8-CH₂); 3'89 (s, 3H, OCH₃); 6'50 (d, 1H, 3-H, J= 8Hz); 7'24 (d, 1H, 4-H, J= 8Hz). Dibromuro de 6-(dipropilamonio)-2-hidroxi-5,6,7,8-tetrahidroquinolinio (118). Una disolución de 29 (0'18 g, 0'68 mmol) en HBr acuoso 48% (1'8 ml) y ácido acético (1'8 ml) se calentó a reflujo durante 3 h. A continuación, se evaporó el disolvente, se redisolvió el residuo en EtOH (5 ml) y la disolución resultante se evaporó de nuevo. Seguidamente, se adicionó AcOEt (5 ml) y se evaporó a sequedad. El residuo se digirió con Et₂O anhidro (20 ml), obteniéndose un sólido blanco amorfo que se identificó como 118 (0'2 g, 71%). Punto de fusión: descompone a 110°C. Análisis elemental: véase Tabla 1 pág 106. 1H-RMN (DMSOd₆, 300 MHz) δ 0'91 (t, 6H, 2 CH₃, J= 7'4Hz); 1'71 (sext, 4H, 2 CH₂CH₃ J= 7'4Hz); 1'90 (m, 1H, 7-Hax); 2'30 (m, 1H, 7-Hec); 2'79-3'20 (m, 8H, 5-Hax, 8-CH2, 5-Hec, 2 NCH2); 3'67 (m, 1H, 6-H); 6'52 (d, 1H, 3-H, J= 9Hz); 7'55 (d, 1H, 4-H, J= 9Hz); 9'47 (sa, 1H, OH), ¹³C-RMN (DMSO-d₆, 75'4 MHz) δ 11'2 (CH₃); 17'9 (2 CH₂CH₃); 21'6, 25'7, 26'2 (8-C, 7-C, 5-C); 51'9 (2 NCH₂); 58'0 (6-C); 114'0 (4a-C); 115'1 (3-C); 143'2 (8a-C); 145'1 (4-C); 161'0 (2-C).

6.2.1.5. Serie tetrahidroindol

5-Metoxi-4,7-dihidro-1*H*-indol (129a) y 5-Metoxi-6,7-dihidro-1*H*-indol (129b). A una disolución de 5-metoxiindol (5'90 g, 40 mmol) en MeOH (23 ml) y amoníaco líquido destilado (200 ml) se adicionó litio metal (1'2 g, 171 mmol) en pequeñas fracciones. Posteriormente, se evaporó el disolvente, el residuo se disolvió en agua (250 ml) y se extrajo con Et_2O (3 x 200 ml). Las fases orgánicas secadas, filtradas y evaporadas proporcionaron un sólido marrón que se identificó como una mezcla 8:1 de **129a** y **129b** (5'64 g, 94%). <u>Punto de fusión</u>: 67-69°C. Lit.^{54a} Rdto. 83%. <u>Punto de fusión</u>: 65-68°C.

129a: ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 3'27-3'35 (m, 4H, 4-CH₂, 7-CH₂); 3'61 (s, 3H, OCH₃); 4'78 (t, 1H, 6-H, *J*= 3Hz); 6'03 (m, 1H, 3-H); 6'71 (m, 1H, 2-H); 7'80 (sa, 1H, NH).

129b: ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 2'51, 2'82 (2 t, 4H, 6-CH₂, 7-CH₂, *J*= 8Hz); 3'62 (s, 3H, OCH₃); 5'41 (s, 1H, 4-H); 6'00 (m, 1H, 3-H); 6'58 (m, 1H, 2-H); 7'80 (sa, 1H, NH).

1,4,6,7-Tetrahidro-5-indolona (128). A una disolución de **129** (7'7 g, 51'6 mmol) en EtOH-H₂O (1:1, 150 ml) se adicionó H₂SO₄ acuoso 2% hasta pH 3. La disolución resultante se agitó a temperatura ambiente durante 2 h, se adicionó agua (100 ml) y disolución saturada de NaHCO₃ (150 ml), y se extrajo con Et₂O (2 x 250 ml). Las fases orgánicas secadas, filtradas y evaporadas proporcionaron un sólido marrón que se identificó como **128** (5'6 g, 80%). Lit.^{54b} Rdto. 76%. <u>Punto de fusión</u>: 136-138°C. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 2'67 (t, 2H, 6-CH₂, *J*= 6'8Hz); 3'00 (t, 2H, 7-CH₂, *J*= 6'8Hz); 3'43 (s, 2H, 4-CH₂), 6'01 (m, 1H, 3-H); 6'71 (m, 1H, 2-H).

5-(Propilamino)-4,5,6,7-tetrahidro-1*H***-indol (126).** A una disolución de la acetona **128** (5'6 g, 41'4 mmol) en 1,2-dicloroetano anhidro (120 ml) se adicionó, bajo atmósfera de argón, propilamina (3'75 ml, 45'8 mmol), triacetoxiborohidruro de sodio (11'95 g, 53'6 mmol) y ácido acético (2'66 ml, 41'4 mmol). La mezcla se agitó a 25°C durante 12 h. A continuación, se adicionó agua (120 ml), se basificó con NaOH 5N hasta pH 10 y se extrajo con CH₂Cl₂ (3 x 50 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 94:5:1), obteniéndose un aceite marrón que se identificó como **126** (4'7g, 61%). ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'93 (t, 3H, CH₃, *J*= 7'4Hz); 1'49-1'80 (m, 3H, CH₂CH₃, 6-Hax); 2'01 (m, 1H, 6-Hec); 2'35 (dd, 1H, 4-Hax, *J*= 15, 8Hz); 2'63-2'71 (m, 4H, NCH₂, 7-CH₂); 2'80-3'00 (m, 2H, 5-H, 4-Hec); 5'97 (m, 1H, 3-H); 6'62 (m, 1H, 2-H); 8'10 (sa, 1H, NH). ¹³<u>C-RMN (CDCl₃, 50'3 MHz)</u> δ 11'8 (CH₃); 21'4, 23'4 (*C*H₂CH₃, 7-C); 29'9, 30'1 (6-C, 4-C); 49'2 (NCH₂); 54'6 (5-C); 107'4 (3-C); 115'2 (3a-C); 116'3 (2-C); 126'1 (7a-C).

N-Propil-*N*-(4,5,6,7-tetrahidro-5-1*H*-indoli)propanamida (131). A una disolución de 126 (0'76 g, 4'27 mmol) y trietilamina anhidra (1'15 ml, 8'2 mmol) en CH₂Cl₂ anhidro (20 ml) se adicionó, bajo atmósfera de argón, una disolución de cloruro de propionilo (0'41 ml, 4'70 mmol) en CH₂Cl₂ anhidro (10 ml). La mezcla se agitó a temperatura ambiente durante 1 h y se lavó con Na₂CO₃ 2N (2 x 20 ml). La fase orgánica secada, filtrada y evaporada proporcionó un residuo que se puríficó por cromatografía en columna flash (AcOEt-hexano 1:1), obteniéndose un aceite amarillo que se identificó como 131 (0'57 g, 57%). ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'84-0'95 (m, 3H, NCH₂CH₂CH₃); 1'11-1'18 (m, 3H, NCOCH₂CH₃); 1'55-1'73 (m, 2H, NCH₂CH₂); 1'82-2'18 (m, 2H, 6-CH₂); 2'30-2'45 (m, 2H, NCOCH₂); 2'60-2'82 (m, 4H, 4-CH₂, 7-CH₂); 3'10-3'25 (m, 2H, NCH₂); 4'05, 4'68 (2 m, 1H, 5-H); 5'97 (m, 1H, 3-H); 6'65 (m, 1H, 2-H); 8'03, 8'20 (2 sa, 1H, NH). ¹³<u>C-RMN (CDCl₃, 50'3 MHz</u>) δ 9'7 (NCOCH₂CH₃); 11'4, 11'6 (NCH₂CH₂CH₃); 22'6, 22'8, 24'4, 26'4, 26'8, 27'0, 27'9, 28'7 (4-C, 6-C, 7-C, NCH₂CH₂, NCOCH₂); 4'4'0, 46'2 (NCH₂); 52'0, 54'7 (5-C); 107'2 (3-C); 115'0, 115'4 (3a-C); 116'5, 117'0 (2-C); 125'1, 125'5 (7a-C); 173'3, 173'8 (C=O).

Oxalato de dipropil(4,5,6,7-tetrahidro-5-1*H***-indolil)amonio (127). A una disolución de la amida 131** (1'9 g, 8'07 mmol) en THF anhidro (110 ml) se adicionó, gota a gota, bajo atmósfera de argón, complejo borano-sulfuro de dimetilo (6'5 ml, 64'6 mmol). Finalizada la adición, la mezcla se calentó a reflujo durante 2 h. Posteriormente, se enfrió con un baño hielo, se adicionó MeOH (300 ml), bajo atmósfera de argón, y se calentó a reflujo nuevamente durante 24 h. Finalmente, se eliminó el disolvente, y el residuo resultante se purificó por cromatografía

6. Parte Experimental

en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 96:3:1) obteniéndose un aceite amarillo que se identificó como **127** (base libre, 0'42 g). El oxalato correspondiente cristalizó (0'55 g, 22%) al adicionar una disolución de ácido oxálico dihidratado (0'26 g, 2'06 mmol) en EtOH (5 ml) sobre una disolución de la base libre en EtOH (5 ml). <u>Punto de fusión</u>: descompone a 115°C. <u>Análisis elemental</u>: véase Tabla 1 pág 106. ¹<u>H-RMN (DMSO-d₆, 300 MHz)</u> δ 0'90 (t, 6H, 2 CH₃, *J*= 7'4Hz); 1'68 (sext, 4H, 2 NCH₂CH₂, *J*= 7'4Hz); 1'88 (m, 1H, 6-Hax); 2'21 (m, 1H, 6-Hec); 2'60-2'74 (m, 3H, 4-Hax, 7-CH₂); 2'81 (dd, 1H, 4-Hec, *J*= 13, 5Hz); 3'05 (m, 4H, 2 NCH₂); 3'54 (m, 1H, 5-H); 5'77 (m, 1H, 3-H); 6'55 (m, 1H, 2-H); 10'42 (s, 1H, NH). ¹³<u>C-RMN (DMSO-d₆, 75'4 MHz)</u> δ 11'3 (CH₃); 18'1 (2 NCH₂CH₂); 21'6, 23'3, 24'0 (7-C, 4-C, 6-C); 52'0 (2 NCH₂); 60'3 (5-C); 106'4 (3-C); 112'2 (3a-C); 117'0 (2-C); 124'8 (7a-C); 164'9 (C=O oxalato).

Oxima de la 1,4,6,7-tetrahidro-5-indolona (130). Una suspensión de 128 (5'3 g. 39'2 mmol), acetato sódico anhidro (3'38 g, 41'2 mmol), carbonato sódico anhidro (4'24 g, 40 mmol) y hidrocloruro de hidroxilamina (2'73 g, 39'2 mmol) en EtOH (50 ml) se calentó a reflujo durante 2 h. A continuación, se evaporó el disolvente y el residuo obtenido se disolvió en agua (100 ml) y se extrajo con CH2Cl2 (3 x 100 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se purificó por cromatografía en columna flash (Et₂O) obteniéndose un aceite marrón que se identificó como 130 (4'2 g, 71%). 1H-RMN (<u>CDCl₃, 200 MHz</u>) δ 2'65, 2'79 (2 m, 4H, 6-CH₂, 7-CH₂); 3'38, 3'64 (2 s, 2H, 4-CH₂); 6'04 (m, 1H, 3-H); 6'67 (m, 1H, 2-H); 7'80 (sa, 1H, OH); 8'48 (sa, 1H, NH). IR (NaCl): 3600 (O-H). Oxalato de (4,5,6,7-tetrahidro-5-1H-indolil)amonio (125). Una disolución de la oxima 130 (1'03 g, 6'86 mmol) en EtOH (20 ml) se hidrogenó a presión atmosférica (20-25°C) en presencia de níquel Raney W-2 (0'5-1 g) durante 15 h. La mezcla de reacción se filtró y se evaporó obteniéndose un aceite marrón que se identificó como 125 (base libre, 0'96 g). El oxalato correspondiente precipitó en forma de sólido amorfo (0'4 g, 27%) al adicionar una disolución de ácido oxálico dihidratado (0'98 g, 7'79 mmol) en EtOH (5 ml) sobre una disolución de la base libre en EtOH (5 ml). Punto de fusión: descompone a 120°C. El análisis elemental no pudo realizarse debido a su inestabilidad. ¹H-RMN (D₂O/DMSO-d₆, 300 MHz) δ 1'70 (m, 1H, 6-Hax); 2'03 (m, 1H, 6-Hec); 2'40 (dd, 1H, 4-Hax, J= 14'8, 9'6Hz); 2'56 (m, 2H, 7-CH2); 2'76 (dd, 1H, 4-Hec, J= 14'8, 5'2Hz); 3'29 (m, 1H, 5-H); 5'75 (d, 1H, 3-H, J= 2'7Hz); 6'51 (d, 1H, 2-H, J= 2'7Hz). ¹³C-RMN (D₂O/DMSO-d₆, 75'4 MHz) δ 21'4 (7-C); 28'5, 28'8 (4-C, 6-C); 49'1 (5-C); 107'6 (3-C); 113'3 (3a-C); 118'2 (2-C); 126'0 (7a-C); 173'8 (C=O oxalato).

6.2.1.6. Serie 2-aminotetrahidrobenzotiazol

Trans-N-(4-hidroxiciclohexil)propanamida (132). A una mezcla, enérgicamente agitada, de hidrocloruro de *trans*-4-aminociclohexanol (25 g, 160 mmol) y K_2CO_3 (77'3 g, 559 mmol) en CHCl₃-H₂O 1:1 (900 ml) se adicionó, gota a gota, una disolución de cloruro de propionilo (17 ml, 196 mmol) en CHCl₃ (300 ml). La mezcla de reacción se agitó a temperatura ambiente durante 3 h y se evaporó a sequedad a presión reducida. El sólido blanco resultante se digirió

con acetona, se secó en presencia de P_2O_5 , y se extrajo de forma continua a reflujo de CH_2CI_2 durante 2 días. Se obtuvieron 24'1 g (85%) de **132**, sólido blanco de punto de fusión: 155-157°C. ¹<u>H-RMN (DMSO-d₆, 200 MHz)</u> δ 0'95 (t, 3H, CH₃, *J*= 7'8Hz); 1'08-1'20 (m, 4H, 2 C*H*₂CHNH); 1'62-1'84 (m, 4H, 2 C*H*₂CHOH); 2'00 (c, 2H, NCOCH₂, *J*= 7'8Hz); 3'35-3'50 (m, 2H, C*H*NH, C*H*OH); 4'52 (d, 1H, OH, *J*= 4'4Hz); 7'58 (d, 1H, NH, *J*= 8Hz). ¹³<u>C-RMN (DMSO-d₆, 50'3 MHz)</u> δ 10'3 (CH₃); 28'8 (NCOCH₂); 30'6 (*C*H₂CHNH); 34'3 (*C*H₂CHOH); 47'2 (CHNH); 68'5 (CHOH); 172'3 (C=O). <u>IR (KBr</u>): 1545, 1641 (C=O, amida); 3312 (NH, OH).

N-(4-Oxociclohexil)propanamida (114). A una disolución de 132 (8'2 g, 48'4 mmol) en acetona (500 ml) se adicionó, gota a gota a 20°C, una disolución de ácido crómico (preparado a partir de trióxido de cromo (12'35 g), ácido sulfúrico concentrado (11'5 ml) y agua (20 ml)) hasta que se obtuvo una coloración naranja persistente. Posteriormente, se adicionó EtOH (5 ml), las sales de cromo precipitadas se eliminaron por filtración y el líquido filtrado se evaporó a sequedad. El residuo obtenido se disolvió en CH₂Cl₂ (100 ml) y la disolución resultante secada, filtrada y evaporada proporcionó un sólido blanco que se identificó como 114 (4'87 g, 60%). <u>Punto de fusión</u>: 99-100°C. ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 1'19 (t, 3H, CH₃, *J*= 7'5Hz); 1'60-1'75 (m, 2H, NCHC*H*₂); 2'24 (c, 2H, C*H*₂CH₃, *J*= 7'5Hz); 2'24-2'34 (m, 2H, NCHC*H*₂); 2'40-2'58 (m, 4H, 2 COCH₂); 4'30 (m, 1H, CH); 5'40 (sa, 1H, NH). ¹³<u>C-RMN (CDCl₃, 50'3 MHz)</u> δ 9'8 (CH₃); 29'5 (*C*H₂CH₃); 31'7 (2 NCH*C*H₂); 39'0 (2 CO*C*H₂); 46'0 (CH); 173'6 (C=O amida); 210'1 (C=O cetona). <u>IR (KBr</u>): 1543, 1641 (C=O amida); 1718 (C=O cetona); 3306 (NH).

N-(2-Amino-4,5,6,7-tetrahidro-6-benzotiazolil)propanamida (133). A una disolución de 114 (1'5 g, 8'85 mmol) en ácido acético (15 ml), calentada a 60°C, se adicionó, gota a gota, bromo (0'45 ml, 8'85 mmol). La mezcla de reacción se agitó, a 60°C, durante 1 h, posteriormente se adicionó tiourea (1'36 g, 17'84 mmol), y se calentó a reflujo durante 1 h más. A continuación, se evaporó el disolvente y el residuo resultante se disolvió en agua (50 ml), se basificó con NaOH 50% (5 ml), se evaporó a sequedad y se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 93:6:1). La espuma amarilla obtenida digerida con Et₂O proporcionó un sólido blanco que se identificó como 133 (1'2 g, 60%). <u>Punto de fusión</u>: 194-195°C. Lit.²⁶ (-)-133 Rdto. 90%. Punto de fusión: 187-188°C. ¹H-RMN (DMSOd₆, 200 MHz) δ 1'00 (t, 3H, CH₃, *J*= 7'6Hz); 60-1'95 (m, 2H, 5-CH₂); 2'09 (c, 2H, CH₂CH₃, *J*= 7'8Hz); 2'25 (dd, 1H, 7-Hax, *J*= 16, 10Hz); 2'50 (m, 2H, 4-CH₂); 2'75 (dd, 1H, 7-Hec, *J*= 16, 6Hz); 3'98 (m, 1H, 6-H); 6'69 (s, 2H, NH₂); 7'85 (d, 1H, NH, *J*= 8Hz). ¹³C-RMN (DMSOd₆, 50'3 MHz) δ 10'3 (CH₃); 24'9, 28'7, 29'1 (CH₂CH₃, 4-C, 7-C, 5-C); 45'2 (6-C); 112'7 (7a-C); 144'4 (3a-C); 166'4 (2-C); 172'7 (C=O).

2-Amino-6-(propilamino)-4,5,6,7-tetrahidrobenzotiazol (26). A una disolución de 133 (1'42 g, 6'3 mmol) en THF anhidro (80 ml), en atmósfera de argón, se adicionó complejo borano-sulfuro de dimetilo (4'78 ml, 50'4 mmol). La mezcla de reacción se calentó a reflujo durante 2 h, se enfrió a 5°C, se adicionó lentamente una disolución de HCl concentrado (1'4 ml,

16'8 mmol) en agua (14 ml) y se calentó de nuevo a reflujo durante 1 h más. A continuación, se adicionó agua (20 ml), se lavó con Et₂O (2 x 50 ml), y la fase acuosa se basificó con NaOH 50% (10 ml) y se extrajo con AcOEt (3 x 100 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un sólido blanco que se identificó como **26** (1'19 g, 89%). <u>Punto de fusión</u>: 144-145°C. Lit.²⁶ (-)-**26** Rdto. 50%. Punto de fusión (dihidrocloruro): 296-298°C. ¹<u>H-RMN (CD₃OD, 200 MHz)</u> δ 0'96 (t, 3H, CH₃, *J*= 7'4Hz); 1'48-1'75 (m, 3H, CH₂CH₃, 5-Hax); 2'09 (m, 1H, 5-Hec); 2'35 (m, 1H, 7-Hax); 2'50-2'66 (m, 4H, NCH₂, 4-CH₂); 2'79-3'00 (m, 2H, 7-Hec, 6-H). ¹³<u>C-RMN (CD₃OD, 50'3 MHz)</u> δ 12'2 (CH₃); 23'8, 25'9 (CH₂CH₃, 4-C); 29'9, 30'0 (5-C, 7-C); 50'0 (NCH₂); 55'4 (6-C); 115'2 (7a-C); 145'0 (3a-C); 169'6 (2-C).

N-(2-Amino-4,5,6,7-tetrahidro-6-benzotiazolil)-*N*-propilpropanamida (134). A una disolución de la amina 26 (1 g, 4'73 mmol) y trietilamina anhidra (1'25 ml, 9 mmol) en CH₂Cl₂ anhidro (80 ml) se adicionó bajo atmósfera de nitrógeno, gota a gota, una disolución de cloruro de propionilo (0'45 ml, 5'19 mmol) en CH₂Cl₂ anhidro (20 ml). La mezcla de reacción se agitó a temperatura ambiente durante 3 h, se lavó con Na₂CO₃ 2N (2 x 50 ml) y se extrajo con HCl 4N (3 x 50 ml). La fase acuosa ácida se alcalinizó con NaOH 50% (75 ml) y se extrajo con CH₂Cl₂ (3 x 100 ml). Los extractos orgánicos se secaron, se evaporaron y el residuo resultante se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH 95:5) obteniéndose un sólido blanco que se identificó como 134 (0'9 g, 71%). <u>Punto de fusión</u>: 185-187°C. ¹H-RMN (CDCl₃, 200 MHz) δ 0'89, 0'93 (2 t, 3H, CH₂CH₂CH₃, *J*= 7Hz); 1'16 (t, 3H, NCOCH₂CH₃, *J*= 7Hz); 1'50-1'60 (m, 2H, NCH₂CH₂); 1'63-2'20 (m, 2H, 5-CH₂); 2'35 (c, 2H, NCOCH₂, *J*= 7Hz); 2'72 (m, 4H, 7-CH₂, 4-CH₂); 3'18 (t, 2H, NCH₂, *J*= 7Hz); 4'04, 4'61 (2 m, 1H, 6-H); 4'82, 4'86 (2 s, 2H, NH₂).

Dicloruro de (2-amonio-4,5,6,7-tetrahidro-6-benzotiazolil)dipropilamonio (27). A una disolución de 134 (0'9 g, 3'4 mmol) en THF anhidro (50 ml) se adicionó, bajo atmósfera de argón, complejo borano-sulfuro de dimetilo (2'55 ml, 26'9 mmol). La mezcla de reacción se calentó a reflujo durante 2 h, se enfrió a 5°C, se adicionó lentamente una disolución de HCI concentrado (0'8 ml, 9'6 mmol) en agua (8 ml) y se calentó a reflujo durante 1 h más. A continuación, se adicionó agua (30 ml), se lavó con Et₂O (2 x 50 ml), y la fase acuosa se basificó con NaOH 50% (10 ml) y se extrajo con AcOEt (3 x 50 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se purificó por cromatografía en columna flash (CH2Cl2-MeOH-NH4OH 30% 94:5:1) obteniéndose un sólido blanco que se identificó como 27 (base libre, 0'5 g). El dihidrocloruro 27 cristalizó (0'6 g, 55%) al adicionar éter saturado con HCI seco a una disolución de la base libre en EtOH (10 ml). Punto de fusión: 260-262°C. Análisis elemental: véase Tabla 1 pág 106. 1H-RMN (D2O, 300 MHz) δ 0'96 (t, 6H, 2 CH₃, J= 7'4Hz); 1'75 (m, 4H, 2 CH₂CH₃); 2'09 (ddd, 1H, 5-Hax, J= 23, 16, 8Hz); 2'32 (m, 1H, 5-Hec); 2'62-2'93 (m, 3H, 7-Hax, 4-CH2); 3'02 (dd, 1H, 7-Hec, J= 15'4, 5'1Hz); 3'18 (m, 4H, 2 NCH2CH2CH3); 3'85 (m, 1H, 6-H). 13C-RMN (D2O, 75'4 MHz) δ 11'3 (CH3); 19'0, 19'3 (2 CH2CH3); 22'4, 23'0, 23'7 (4-C, 7-C, 5-C); 53'8, 54'2 (2 NCH2CH2CH3); 59'5 (6-C); 112'5 (7a-C); 133'7 (3a-C); 170'7 (2-C).

6.2.1.7. Serie tetrahidroisoindol

N-[3-(Dimetilaminometiliden)-4-oxociclohexil]propanamida (141). Una disolución de 114 (5'68 g, 33'78 mmol), dimetilformamida dimetilacetal (28'7 g, 227 mmol) y trietilamina (0'5 ml, 3'63 mmol) en benceno (170 ml) se destiló hasta la mitad del volumen original durante aproximadamente 1'5 h. A continuación, se adicionó benceno (85 ml) y se mantuvo la calefacción por debajo del punto de ebullición durante 2 h. Se destiló de nuevo el disolvente hasta la mitad del volumen original, se adicionó de nuevo benceno (85 ml) y se repitió el proceso por tercera vez. Finalmente, la mezcla de reacción se enfrió a 5°C durante 12 h, obteniéndose por filtración un sólido amarillo que se identificó como 141 (5'6 g, 74%). ¹<u>H-RMN</u> (<u>CDCl₃. 200 MHz</u>) δ 1'16 (t, 3H, CH₂CH₃, *J*= 7'8Hz); 1'70-2'08 (m, 2H, 6-CH₂); 2'20 (c, 2H, NCOCH₂, *J*= 7'8Hz); 2'43 (t, 2H, 5-CH₂); 2'52 (dd, 2H, 2-Hax, *J*= 16, 10Hz); 3'09 (s, 6H, 2 NCH₃); 3'15 (m, 1H, 2-Hec); 4'19 (m, 1H, 1-H); 5'60 (d, 1H, NH, *J*= 7Hz); 7'54 (s, 1H, CH=).

N-(2-Acetil-4,5,6,7-tetrahidro-5-isoíndolil)propanamida (142). Una disolución de glicina (2'7 g, 35'8 mmol), 141 (7'24 g, 32'3 mmol) y KOH (2'37 g, 35'8 mmol) en EtOH (120 ml), en atmósfera de argón, se calentó a reflujo durante 1'75 h. La mezcla se enfrió a temperatura ambiente y se adicionó Et₂O (100 ml) precipitando un sólido que se separó por filtración. El sólido amarillo resultante se disolvió en anhídrido acético (120 ml) se calentó a reflujo durante 1 h. Posteriormente, la disolución se evaporó a presión reducida. El residuo resultante se disolvió en CHCl₃, se filtró, el filtrado evaporado se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH 99:1) obteniéndose un sólido blanco que se identificó como 142 (4 g, 53%). ¹<u>H-RMN (CDCl₃, 200 MHz</u>) δ 1'15 (t, 3H, CH₂CH₃, *J*= 7'6Hz); 1'64-1'95 (m, 2H, 6-CH₂); 2'20 (c, 2H, CH₂CH₃, *J*= 7'8Hz); 2'41 (dd, 1H, 4-Hax, *J*= 16, 8Hz); 2'46 (s, 3H, NCOCH₃); 2'66 (t, 2H, 7-CH₂, *J*= 6'2Hz); 2'94 (dd, 1H, 4-Hec, *J*= 16, 4Hz); 4'22 (m, 1H, 5-H); 5'69 (d, 1H, NH, *J*= 7Hz); 6'99 (sa, 2H, 1-H, 3-H). ¹³<u>C-RMN (CDCl₃, 50'3 MHz</u>) δ 9'8 (CH₂CH₃); 19'2, 28'5, 28'7, 29'7 (4-C, 7-C, 6-C, CH₂CH₃); 22'0 (NCOCH₃); 45'2 (5-C); 114'5, 115'1 (3-C, 1-C); 122'7, 123'3 (3a-C, 7a-C); 167'3 (NCOCH₃); 173'3 (NCOCH₂).

N-(4,5,6,7-Tetrahidro-5-isoindolil)propanamida (143). Una mezcla de 142 (4 g, 17'1 mmol), KOH acuoso 20% (140 ml) y dioxano (320 ml) se calentó a reflujo durante 12 h. Posteriormente, se adicionó agua (300 ml) y se extrajo con CH₂Cl₂ (3 x 250 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un aceite amarillo que se identificó como 143 (3'12 g, 95%). ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 1'15 (t, 3H, CH₃, *J*= 7'8Hz); 1'74-2'00 (m, 2H, 6-CH₂); 2'18 (c, 2H, CH₂CH₃, *J*= 7'8Hz); 2'27 (dd, 1H, 4-Hax, *J*= 15, 7Hz); 2'69 (t, 2H, 7-CH₂, *J*= 7Hz); 2'95 (dd, 1H, 4-Hec, *J*= 15, 5'5Hz); 4'30 (m, 1H, 5-H); 5'65 (d, 1H, CONH, *J*= 7Hz); 6'50 (d, 2H, 3-H, 1-H, *J*= 2'6Hz); 8'38 (sa, 1H, NH). ¹³<u>C-RMN</u> (<u>CDCl₃, 50'3 MHz</u>) δ 9'9 (CH₃); 18'9, 28'7, 29'1, 29'8 (4-C, 6-C, 7-C, *C*H₂CH₃); 113'2, 113'8 (3-C, 1-C); 116'6, 117'7 (3a-C, 7a-C); 173'3 (C=O).

5-(N-Propilamino)-4,5,6,7-tetrahidroisoindol (140). A una disolución de 143 (1'32 g, 6'86 mmol) en CH₂Cl₂ anhidro (180 ml) enfriada a 0°C se adicionó, bajo atmósfera de argón, hidruro de diisobutilaluminio 1M (61'7 ml, 61'7 mmol). La mezcla de reacción se agitó a

6. Parte Experimental

temperatura ambiente durante 1 h. Posteriormente, se adicionó a 0°C, gota a gota, MeOH (180 ml). La mezcla resultante se filtró y el filtrado se evaporó. El residuo obtenido se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 94:5:1) obteniéndose un aceite amarillo que se identificó como **140** (0'3 g, 25%). ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 0'96 (t, 3H, CH₃, *J*= 7'4Hz); 1'65-1'80 (m, 3H, 6-Hax, CH₂CH₃); 2'15 (m, 1H, 6-Hec); 2'51-2'68 (m, 2H, 4-Hax, 7-Hax); 2'72-2'81 (m, 3H, NCH₂, 7-Hec); 3'00-3'10 (m, 2H, 6-H, 4-Hec); 4'80 (sa, 1H, NH amina); 6'45 (s, 2H, 1-H, 3-H); 8'64 (sa, 1H, NH pirrol).

Oxalato de dipropil(4,5,6,7-tetrahidro-5-isoindolil)amonio (21). Una disolución de 140 (0'3 g, 1'68 mmol) y propanal (0'48 ml, 6'55 mmol) en EtOH (30 ml) se hidrogenó (60 psi, 25°C) en presencia de Pd/C 10% (60 mg) durante 24 h. La mezcla de reacción se filtró y el filtrado se evaporó a sequedad. El residuo obtenido se purificó por cromatografía en columna flash (Florisil[®], CH₂Cl₂-MeOH-NH₄OH 30% 97:2:1) obteniéndose un aceite amarillo que se identificó como 21 (0'21 g). El oxalato correspondiente precipitó (0'25 g, 48%) al adicionar una disolución de ácido oxálico dihidratado (0'13 g, 1 mmol) en EtOH (3 ml) sobre una disolución de la base libre en EtOH (3 ml). Punto de fusión: descompone a 110°C. Lit.24 Rdto. 38%. Punto de fusión (maleato): 134-137%. Análisis elemental: véase Tabla 1 pág 106. 1H-RMN (D2O, 300 MHz) δ 0'92 (t, 6H, 2 CH3, J= 7'4Hz); 1'72 (sext, 4H, 2 CH2CH3, J= 7'4Hz); 1'85 (ddd, 1H, 6-Hax, J= 23, 16, 9Hz); 2'19 (m, 1H, 6-Hec); 2'58 (ddd, 1H, 7-Hax, J= 16, 12, 5'2Hz); 2'79 (dd, 1H, 4-Hax, J= 11'5, 14'5Hz); 2'85 (ddd, 1H, 7-Hec, J= 16, 8, 2'7Hz); 2'95-3'12 (m, 5H, NCH₂, 4-Hec); 3'51 (m, 1H, 5-H). ¹³C-RMN (D₂O, 75'4 MHz) δ 11'3 (CH₃); 19'1, 19'3 (2 CH2CH3); 21'3, 23'4, 26'1 (7-C, 4-C, 6-C); 53'4, 53'8 (2 NCH2); 62'3 (5-C); 115'3, 117'4 (3a-C, 7a-C); 166'2 (C=O oxalato). Las señales correspondientes a los H y CH aromáticos no aparecen debido al intercambio con deuterio.

6.2.1.8. Serie 2-hidroxitetrahidrobenzotiazol

Tiocarbamato de O-etilo (137). A una mezcla de disulfuro de carbono (35 ml, 579 mmol), EtOH (100 ml, 1'72 mol) y NaOH (20 g) en agua (300 ml) se adicionó, gota a gota, una disolución de cloroacetato sódico, preparada a partir de ácido cloroacético (47 g, 497 mmol) y NaOH (20 g) en agua (200 ml). La mezcla resultante se agitó a temperatura ambiente durante 12 h, el disolvente se evaporó a presión reducida hasta un volumen de 150 ml y se adicionó NH₄OH 30% (30 ml). La mezcla se agitó nuevamente a temperatura ambiente durante 12 h más, se neutralizó con ácido acético y se extrajo con Et₂O (2 x 250 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un aceite incoloro que cristalizó al enfriar. Se obtuvieron 29'8 g (57%) de **137**. <u>Punto de fusión</u>: 40°C. Lit.⁶² Rdto. 58%. Punto de fusión: 38-40°C. ¹<u>H-RMN (CDCl₃, 200 MHz</u>) δ 1'34 (t, 3H, CH₃, *J*= 7'2Hz); 4'48 (c, 2H, CH₂, *J*= 7'2Hz).

N-(2-Hidroxi-4,5,6,7-tetrahidro-6-benzotiazolil)propanamida (138). Una mezcla de 114 (6'2 g, 36'9 mmol), tiocarbamato de *O*-etilo 137 (7'75 g, 73'7 mmol) y yodo (9'3 g, 36'6 mmol) se agitó a 90°C durante 4 h. Posteriormente se enfrió a temperatura ambiente y se adicionó

una disolución acuosa de Na₂S₂O₃ 10 % (50 ml). La mezcla se agitó a temperatura ambiente durante 5 min, se evaporó a sequedad y el residuo resultante se purificó por cromatografía en columna flash (Al₂O₃, CH₂Cl₂-MeOH 95:5), obteniéndose un sólido amarillo que se identificó como **138** (2'9 g, 35%). <u>Punto de fusión</u>: 182-184°C. ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 1'22 (t, 3H, CH₃, *J*= 8'2Hz); 1'80-2'00 (m, 2H, 5-CH₂); 2'10-2'45 (m, 3H, 7-Hax, 4-CH₂); 2'21 (c, 2H, CH₂CH₃, *J*= 8'2Hz); 2'72 (dd, 1H, 7-Hec, *J*= 15, 6Hz); 4'27 (m, 1H, 6-H); 6'23 (d, 1H, NH, *J*= 8'2Hz); 9'92 (s, 1H, OH). ¹³<u>C-RMN (CDCl₃, 50'3 MHz)</u> δ 9'8 (CH₃); 20'7, 27'2, 29'6, 29'7, 32'0, 39'1 (*C*H₂CH₃, 7-CH₂, 5-CH₂, 4-CH₂); 44'3, (6-C); 108'4 (7a-C); 126'9 (3a-C); 173'4, 174'6 (C=O, 2-C).

2-Hidroxi-6-(propilamino)-4,5,6,7-tetrahidrobenzotiazol (135). A una disolución de **138** (1'95 g, 8'6 mmol) en THF anhidro (110 ml) se adicionó, gota a gota, bajo atmósfera de argón, complejo borano-sulfuro de dimetilo (6'5 ml, 68'6 mmol). La mezcla de reacción se calentó a reflujo durante 2 h, posteriormente se enfrió a 5°C, se adicionó lentamente una disolución HCl concentrado (2 ml, 24 mmol) en agua (20 ml) y se calentó de nuevo a reflujo durante 1 h más. A continuación se adicionó agua (60 ml) y se lavó con Et₂O (2 x 70 ml). La fase acuosa se basificó con NaOH 50%, se lavó nuevamente con Et₂O (2 x 70 ml) y se extrajo de manera continua a reflujo de CH₂Cl₂. Por evaporación de la fase orgánica se obtuvo un sólido que se identificó como **135** (0'95 g, 52%). <u>Punto de fusión</u> > 300°C. ¹H-RMN (CDCl₃, 200 MHz) δ 0'93 (m, 3H, CH₃); 1'46-1'80 (m, 3H, 5-Hax, CH₂CH₃); 1'95-2'50 (m, 4H, 5-Hec, 7-CH₂, 4-Hax); 2'57-2'72 (m, 3H, NCH₂, 4-Hec); 2'99 (m, 1H, 6-H). ¹³C-RMN (CDCl₃, 50'3 MHz) δ 11'7 (CH₃); 21'6, 23'3, 28'4, 30'1 (CH₂CH₃, 4-C, 5-C, 7-C); 49'1 (NCH₂); 53'3 (6-C); 109'1 (7a-C); 127'2 (3a-C); 175'4 (2-C).

N-(2-Hidroxi-4,5,6,7-tetrahidro-6-benzotiazolii)-*N*-propilpropanamida (139). A una disolución de 135 (0'88 g, 4'14 mmol) y trietilamina anhidra (1'1 ml, 7'9 mmol) en CH_2CI_2 anhidro (80 ml) en atmósfera de nitrógeno se adicionó, gota a gota, una disolución de cloruro de propionilo (0'4 ml, 4'6 mmol) en CH_2CI_2 anhidro (20 ml). La mezcla de reacción se agitó a temperatura ambiente durante 3 h, y se lavó con Na_2CO_3 2N (2 x 50 ml) y HCl 2N (3 x 50 ml). La fase orgánica se secó, se filtró y se evaporó, obteniéndose una espuma marrón que se identificó como 139 (0'9 g, 86%). Este compuesto se utilizó sin purificación adicional.

Oxalato de (2-hidroxi-4,5,6,7-tetrahidro-6-benzotiazolil)dipropilamonio (136). A una disolución de **139** (0'9 g, 3'57 mmol) en THF anhidro (50 ml), en atmósfera de argón, se adicionó complejo borano-sulfuro de dimetilo (2'7 ml, 28'5 mmol). La mezcla de reacción se calentó a reflujo durante 2 h, se enfrió a 5°C y se adicionó, gota a gota, una disolución de HCl concentrado (0'8 ml, 9'6 mmol) en agua (8 ml), y se calentó de nuevo a reflujo durante 1 h más. A continuación, se adicionó agua (30 ml), se lavó con Et_2O (2 x 50 ml), y la fase acuosa se basificó con NaOH 50% (10 ml) y se extrajo con CH_2Cl_2 (3 x 50 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se purificó por cromatografía en columna flash (CH_2Cl_2 -MeOH-NH₄OH 30% 93:6:1), obteniéndose un sólido blanco que

se identificó como **136** (base libre, 0'36 g). Punto de fusión: 116-118°C. El oxalato correspondiente precipitó (0'45 g, 37%) al adicionar una disolución de ácido oxálico dihidratado (0'2 g, 1'55 mmol) en EtOH (10 ml) sobre una disolución de la base libre en EtOH (10 ml). <u>Punto de fusión</u>: 184-186°C. ¹<u>H-RMN (DMSO-d₆, 300 MHz)</u> δ 0'89 (t, 6H, 2 CH₃ *J*= 7'2Hz); 1'62 (m, 4H, 2 C*H*₂CH₃); 1'85 (m, 1H, 5-Hax); 2'15 (m, 1H, 5-Hec); 2'40-2'75 (m, 4H, 7-CH₂, 4-CH₂); 2'95 (m, 4H, 2 NCH₂); 3'55 (m, 1H, 6-H). ¹³<u>C-RMN (CDCl₃, 50'3 MHz)</u> δ 11'4 (2 CH₃); 18'7 (2 *C*H₂CH₃); 22'3, 22'8, 23'8 (4-C, 7-C, 5-C); 52'2 (2 NCH₂); 58'1 (6-C); 105'9 (7a-C); 128'0 (3a-C); 164'3 (C=O oxalato); 172'1 (2-C).

6.2.2. Cloruro de 7-aza-9-(4-metilsulfonilfenil)-8-oxononanoilo (170).

(*E*)-1-(Metilsulfinil)-1-(metilsulfanil)-2-(4-metilsulfanilfenil)eteno (166). Una mezcla de 4-(metilsulfanil)benzaldehído (57'8 g, 380 mmol), metil(metilsulfanilmetil)sulfóxido (FAMSO; 37 ml, 355 mmol) y Triton B metanólico (40%, 40 ml) en dioxano anhidro (400 ml) se calentó a reflujo en un aparato Dean-Stark durante 5 h, eliminando periódicamente el azeótropo dioxano-agua y añadiendo dioxano anhidro. A continuación, se adicionó agua a la mezcla de reacción y se extrajo con AcOEt. La fase orgánica se secó y se evaporó a presión reducida obteniéndose **166** como un aceite marrón (111 g), que se utilizó en la siguiente reacción sin purificarse. ¹H-RMN (CDCl₃, 200 MHz) δ 2'32 (s, 3H, =CSCH₃); 2'52 (s, 3H, PhSCH₃); 2'76 (s, 3H, SOCH₃); 7'27 (d, 2H, Ph-*m*, *J*= 8'8Hz); 7'57 (s, 1H, =CH); 7'86 (d, 2H, Ph-*o*, *J*= 8'8Hz).

Acido (4-metilsulfanilfenil)acético (167). A una disolución de 166 (111 g) en 1,2-dimetoxietano (200 ml) enfriada a 5°C se adicionó, gota a gota, HCl acuoso 35% (100 ml). La mezcla resultante se agitó a temperatura ambiente durante 2 h, se evaporó el dimetoxietano a presión reducida y la fase acuosa se extrajo con AcOEt (100 ml). La fase orgánica se extrajo con una disolución saturada de NaHCO3 (2 x 70 ml) obteniéndose una disolución orgánica (A) y una disolución acuosa (B). La fase acuosa alcalina (B) se acidificó con HCI concentrado y se extrajo con AcOEt (2 x 100 ml). Los extractos se secaron y se evaporaron proporcionando un sólido amarillo que se identificó como 167 (13'5 g). Punto de fusión: 90-92°C. La disolución orgánica (A) se evaporó y el residuo resultante se agitó a temperatura ambiente con una mezcla de MeOH (100 ml) y NaOH 10% (100 ml) durante 3 h. El metanol se evaporó y la fase acuosa se lavó con Et₂O (2 X 100 ml), se acidifico con HCI concentrado y se extrajo con AcOEt (2 x 100 ml). Los extractos orgánicos se secaron y se evaporaron obteniéndose un sólido amarillo que se digirió con Et₂O proporcionando una fracción adicional de 167 (10 g). Rendimiento total: 23'5 g; 36% desde 4-(metilsulfanil)benzaldehído. 1H-RMN (CDCl₃, 200 MHz) δ 2'47 (s, 3H, SCH₃); 3'60 (s, 2H, PhCH₂); 7'21 (s, 4H, Ph-H).

Acido (4-metilsulfonilfenil)acético (168). A una disolución de **167** (23'5 g, 129 mmol) en ácido acético (150 ml) se adicionó, gota a gota, H₂O₂ 20% (p/p) (76 g). Finalizada la adición, la mezcla se agitó a 100°C durante 2 h. Por evaporación del disolvente se obtuvo un sólido

blanco que se identificó como **168** (27'6 g, 99%). <u>Punto de fusión</u>: 129-131°C. ¹<u>H-RMN</u> (<u>DMSO-d₆, 200 MHz</u>) δ 3'20 (s, 3H, SO₂CH₃); 3'73 (s, 2H, PhCH₂); 7'53 (d, 2H, Ph-*o*, *J*= 8'4Hz); 7'87 (d, 2H, Ph-*m*, *J*= 8'4Hz). <u>IR (KBr)</u>: 1145, 1297 (SO₂); 1699 (C=O).

Cloruro de (4-metilsulfonilfenil)acetilo (169). A una suspensión de 168 (10'4 g, 48'6 mmol) en CH₂Cl₂ anhidro (100 ml) y DMF anhidra (0'3 ml) bajo atmósfera de argón se adicionó, gota a gota, cloruro de tionilo (4'88 ml, 67'20 mmol). La mezcla se calentó a reflujo durante 3 h. Por evaporación del disolvente se obtuvo el cloruro de ácido 169 que se utilizó, inmediatamente, sin purificación adicional. ¹H-RMN (CDCl₃, 200 MHz) δ 3'07 (s, 3H, SO₂CH₃); 4'28 (s, 2H, PhCH₂); 7'52 (d, 2H, Ph-*o*, *J*= 8Hz); 7'94 (d, 2H, Ph-*m*, *J*= 8Hz).

Ácido 7-aza-9-(4-metilsulfonilfenil)-8-oxononanoico (99). A una disolución de ácido 6-aminohexanoico (1'93 g, 14'7 mmol) y NaOH (97%, 0'60 g, 14'7 mmol) en agua (7 ml) se adicionó simultáneamente, gota a gota, una disolución del cloruro de ácido **169** (5'5 g, 16'2 mmol) en CH₂Cl₂ (14 ml) y una disolución de NaOH (97%, 0'73 g, 17'8 mmol) en agua (7 ml). La mezcla de reacción se agitó a temperatura ambiente durante 2 h, se adicionó NaOH 10% hasta pH 10 y se separaron las fases. La fase acuosa se lavó con CH₂Cl₂ (2 x 20 ml) y se acidificó con HCl concentrado. El precipitado resultante se filtró, se lavó con agua y se secó en presencia de P₂O₅ obteniéndose un sólido blanco (3'98 g, 82%) que se identificó como **99**. <u>Punto de fusión</u>: 104-106°C. ¹<u>H-RMN (DMSO-d₆, 200 MHz)</u> δ 1'20-1'57 (m, 6H, 3-CH₂, 4-CH₂, 5-CH₂); 2'17 (t, 3H, 2-CH₂, *J*= 7'2 Hz); 3'02 (c, 2H, 6-CH₂, *J*= 6Hz); 3'18 (s, 3H, SO₂CH₃); 3'51 (s, 2H, 9-CH₂); 7'49 (d, 2H, Ph-*o*, *J*= 8Hz); 7'84 (d, 2H Ph-*m J*= 8Hz); 8'15 (t, 1H, NH, *J*= 6Hz).

Cloruro de 7-aza-9-(4-metilsulfonilfenil)-8-oxononanoilo (170). A una mezcla de 99 (1'33 g, 4'07 mmol) en CH₂Cl₂ anhidro (65mL) y DMF anhidra (0'1 ml) en atmósfera de nitrógeno se adicionó cloruro de tionilo (0'44 ml, 6'10 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 1 h y se evaporó a presión reducida obteniéndose el cloruro de ácido 170 que se utilizó, inmediatamente, sin purificación adicional.

6.2.3. Diamidas IX y X (144-154)

7-Aza-9-(4-metilsulfonilfenil)-8-oxo-*N*-[**2-(3-piridil)etil]nonanamida (144)**. A una disolución de **30** (base libre, 0'45 g, 3'7 mmol) y trietilamina (1'0 ml, 7'1 mmol) en CH₂Cl₂ anhidro (15 ml), en atmósfera de nitrógeno, se adicionó, gota a gota, una disolución del cloruro de ácido **170** (1'5 g, 4'07 mmol) en CH₂Cl₂ anhidro (12 ml). La mezcla de reacción se agitó a temperatura ambiente durante 1 h, se vertió sobre agua (20 ml), se basificó con Na₂CO₃ hasta pH 8 y se extrajo con CH₂Cl₂ (2 x 50 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un residuo que se digirió con Et₂O (20 ml), obteniéndose 1'22 g (77%) de un sólido blanco que se identificó como **144**. <u>Punto de fusión</u>: 139-141°C. ¹<u>H-RMN (DMSO-d₆, 200 MHz)</u> δ 1'19 (m, 2H, 4'-CH₂); 1'31 (m, 4H, 3'-CH₂, 5'-CH₂); 2'02 (t, 2H, 2'-CH₂, *J*= 6Hz); 3'02 (c, 2H, 6'-CH₂, *J*= 6Hz); 3'21 (s, 3H, CH₃); 3'30 (c, 2H,

PirCH₂CH₂N, J= 6Hz); 3'54 (s, 2H, 9'-CH₂); 7'33 (dd, 1H, 5-H, J= 8, 6Hz); 7'53 (d, 2H, Ph-o, J= 8'4Hz); 7'64 (d, 1H, 4-H, J= 8Hz); 7'87 (d, 2H, Ph-m, J= 8'4Hz); 7'90 (m, 1H, NH); 8'15 (t, 1H, NH, J= 6Hz); 8'42-8'43 (m, 2H, 6-H, 2-H). ¹³C-RMN (CDCl₃, 50'3 MHz) δ 25'3 (3'-C); 26'3 (4'-C); 29'1 (5'-C); 32'4, 35'6 (2'-C, PirCH₂); 38'9, 39'8 (6'-C, PirCH₂CH₂N); 42'3 (9'-C); 43'9 (SO₂CH₃); 123'6 (5-C); 127'2 (Ph-m); 130'2 (Ph-o); 135'3 (3-C); 136'5 (4-C); 139'2 (Ph-*ipso*); 142'9 (Ph-p); 147'6 (6-C); 150'1 (2-C); 169'2, 172'3 (8'-C, 1'-C).

Los compuestos 145, 146, 148, 147, 149, 151, 150, 152, 154 y 153 se prepararon de manera análoga a partir de 31, 101, 111, 110, 124, 126, 125, 26, 140 y 135, respectivamente:

7-Aza-9-(4-metilsulfonilfenil)-8-oxo-*N*-[**2-(3-piridil)etil]-***N*-propilnonanamida (145). Se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 94:5:1). Aceite incoloro. Rdto. 77%. ¹<u>H-RMN (CDCl₃, 200 MHz</u>) δ 0'89 (t, 3H, CH₂C*H*₃, *J*= 7'5Hz); 1'30 (m, 2H, 4'-CH₂); 1'40-1'70 (m, 6H, 3'-CH₂, 5'-CH₂, NCH₂C*H*₂CH₃); 2'12, 2'29 (2 t, 2H, 2'-CH₂, *J*= 6Hz); 2'85 (t, 2H, PirCH₂, *J*= 6Hz); 3'04 (s, 3H, SO₂CH₃); 3'05-3'38 (m, 4H, NC*H*₂CH₂CH₃, 6'-CH₂); 3'46, 3'49 (2 t, 2H, PirCH₂C*H*₂N, *J*= 7Hz); 3'63 (s, 2H, 9'-CH₂); 7'20-7'30 (m, 3H, 5-H, NH); 7'52 (d, 2H, Ph-*o*, *J*= 8Hz); 7'58 (m, 1H, 4-H); 7'85 (d, 2H, Ph-*m*, *J*= 8Hz); 8'42-8'50 (m, 2H, 6-H, 2-H). ¹³<u>C-RMN (CDCl₃, 50'3 MHz</u>) δ 10'8, 11'3 (CH₂CH₃); 20'6, 21'8, 24'0, 24'2, 26'1, 26'2, 28'4, 28'6 (3'-C, 4'-C, 5'-C, NCH₂CH₂CH₃); 31'0, 32'2, 32'4 (2'-C, PirCH₂); 39'1 (6'-C); 42'7 (9'-C); 44'1 (SO₂CH₃); 47'1, 48'2, 50'0 (PirCH₂CH₂N, NCH₂CH₂CH₃); 123'2, 123'3 (5-C); 127'1 (Ph-*m*); 129'8 (Ph-*o*); 133'4, 134'4 (3-C); 136'2 (4-C); 138'4 (Ph-*ipso*); 142'9 (Ph-*p*); 147'2, 147'9, 149'5 (2-C, 6-C); 169'4, 172'4, 172'5 (8'-C, 1'-C).

7-Aza-9-(4-metilsulfonilfenil)-8-oxo-*N*-[2-(3-pirrolil)etil]nonanamida (146). Se purificó por cromatografía en columna flash (AcOEt-MeOH 95:5). Sólido blanco. <u>Punto de fusión</u>: 151-153°C. Rdto. 52%. ¹<u>H-RMN (CDCl₃/CD₃OD, 200 MHz)</u> δ 1'31 (m, 2H, 4'-CH₂); 1'40-1'70 (m, 4H, 3'-CH₂, 5'-CH₂); 2'11 (t, 2H, 2'-CH₂, *J*= 6Hz); 2'69 (t, 2H, PirrCH₂, *J*= 6Hz); 3'04 (s, 3H, CH₃); 3'23 (c, 2H, 6'-CH₂, *J*= 7Hz); 3'45 (c, 2H, PirrCH₂CH₂N, *J*= 7Hz); 3'61 (s, 2H, 9'-CH₂); 5'90 (m, 1H, NH); 6'10 (s, 1H, 4-H); 6'60 (m, 2H, 2-H, NH); 6'75 (s, 1H, 5-H); 7'51 (d, 2H, Ph-*o*, *J*= 8'4Hz); 7'88 (d, 2H, Ph-*m*, *J*= 8'4Hz).

7-Aza-9-(4-metilsulfonilfenil)-8-oxo-*N***-propil-***N***-(5,6,7,8-tetrahidro-6-quinolil)nonanamida (148).** Se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 97:2:1). Aceite amarillo. Rdto. 41%. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'92 (c, 3H, CH₂C*H*₃, *J*= 7'6Hz); 1'35-2'20 (m, 10H, 3'-CH₂, 4'-CH₂, 5'-CH₂, 7-CH₂, CH₂CH₃); 2'36 (t, 2H, 2'-CH₂, *J*= 6Hz); 2'80-3'35 (m, 8H, 5-CH₂, 6'-CH₂, 8-CH₂, NCH₂CH₂CH₃); 3'04 (s, 3H, SO₂CH₃); 3'62 (s, 2H, 9'-CH₂); 4'08, 4'57 (2 m, 1H, 6-H); 6'18, 6'35 (2 m, 1H, NH); 7'12 (m, 1H, 3-H); 7'40-7'50 (m, 3H, 4-H, Ph-*o*); 7'90 (m, 2H, Ph-*m*); 8'40 (m, 1H, 2-H).

7-Aza-9-(4-metilsulfonilfenil)-8-oxo-*N***-(5,6,7,8-tetrahidro-6-quinolil)nonanamida (147).** Se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 94:5:1). Aceite amarillo. Rdto. 18%. ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 1'50-1'95 (m, 8H, 4'-CH₂, 5'-CH₂, 3'-CH₂, 7-CH₂); 2'13 (t, 2H, 2'-CH₂, J= 7Hz); 2'71 (dd, 1H, 5-Hax, J= 16, 7'5Hz); 3'07 (s, 3H, SO₂CH₃); 3'07-3'30 (m, 5H, 5-Hec, 8-CH₂, 6'-CH₂); 3'63 (s, 2H, 9'-CH₂); 4'30 (m, 1H, 6-H); 5'69 (d, 1H, CHN*H*CO, J= 6Hz); 5'84 (m, 1H, CH₂N*H*CO); 7'12 (dd, 1H, 3-H, J= 7, 5Hz); 7'43 (d, 1H, 4-H, J= 5Hz); 7'52 (d, 2H, Ph-o, J= 8Hz); 7'90 (d, 2H, Ph-m, J= 8Hz); 8'41 (d, 1H, 2-H, J= 6Hz).

7-Aza-9-(4-metilsulfonilfenil)-*N***-(2-metoxi-5,6,7,8-tetrahidro-6-quinolil)-8-oxo-***N***-pro-pilnonanamida (149).** Se purificó por cromatografía en columna flash (AcOEt-MeOH 96:4). Aceite marrón. Rdto. 63%. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'90, 0'94 (2 t, 3H, CH₂C*H*₃, *J*= 8Hz); 1'35-1'70 (m, 9H, 4'-CH₂, 3'-CH₂, 5'-CH₂, *CH*₂CH₃, 7-Hax); 2'00 (m, 1H, 7-Hec); 2'37 (m, 2H, 2'-CH₂); 2'65 (m, 1H, 5-Hax); 2'90-3'30 (m, 7H, 8-CH₂, 5-Hec, 6'-CH₂, NC*H*₂CH₂CH₃); 3'04 (s, 3H, SO₂CH₃); 3'62, 3'63 (2 s, 2H, 9'-CH₂); 3'88, 3'89 (2 s, 3H, OCH₃); 4'05, 4'60 (2 m, 1H, 6-H); 6'30, 6'40 (2 m, 1H, NH); 6'49, 6'53 (2 d, 1H, 3-H, *J*= 8, 8Hz); 7'22, 7'28 (2 d, 1H, 4-H, *J*= 8, 8Hz); 7'51 (t, 2H, Ph-*o*, *J*= 8, 8Hz); 7'88 (t, 2H, Ph-*m*, *J*= 8, 8Hz). ¹³<u>C-RMN (CDCl₃, 50'3 MHz)</u> δ 11'4, 11'6 (CH₂CH₃); 24'0, 24'2, 24'5, 26'0, 26'1, 26'3, 27'3, 28'3, 28'4, 28'6, 31'1, 32'3, 33'1, 33'3 (*C*H₂CH₃, 5'-C, 2'-C, 5-C, 8-C, 4'-C, 7-C, 3'-C); 39'0, 39'1 (6'-C); 43'2, 43'7 (9'-C); 44'4 (SO₂CH₃); 46'3 (N*C*H₂CH₂CH₃); 51'3 (6-C); 53'2, 53'4 (OCH₃); 107'9, 108'2 (3-C); 121'5, 122'2 (4a-C); 127'6 (Ph-*m*); 130'1 (Ph-*o*); 138'9 (Ph-*ipso*); 139'7 (4-C); 141'8 (Ph-*p*); 152'2, 156'6 (8a-C); 162'1, 162'4 (2-C); 169'4, 172'3, 173'0 (8'-C, 1'-C).

7-Aza-9-(4-metilsulfonilfenil)-*N*-propil-*N*-(4,5,6,7-tetrahidro-5-indolil)nonanamida (151). Se purificó por cromatografía en columna flash (AcOEt-MeOH 97:3). Espuma blanca. Rdto. 58%. ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 0'89, 0'93 (2 t, 3H, CH₂C*H*₃, *J*= 7'5Hz); 1'38-1'70 (m, 8H, 4'-CH₂, 5'-CH₂, *CH*₂CH₃, 3'-CH₂); 1'90-2'10 (m, 2H, 6-CH₂); 2'35, 2'37 (2 t, 2H, 2'-CH₂, *J*= 7'5Hz); 2'60, (dd, 1H, 4-Hax, *J*= 15, 8Hz); 2'70-2'80 (m, 3H, 4-Hec, 7-CH₂); 3'15-3'35 (m, 4H, 6'-CH₂, NC*H*₂CH₂CH₃); 3'03, 3'05 (2 s, 3H, SO₂CH₃); 3'62, 3'64 (2 s, 2H, 9'-CH₂); 4'02, 4'61 (2 m, 1H, 5-H); 5'96, 6'00 (2 m, 1H, 3-H); 6'40, 6'65 (2 m, 1H, CONH); 6'65, 6'69 (2 m, 1H, 2-H); 7'54 (t, 2H, Ph-*o*, *J*= 8Hz); 7'83, 7'90 (2 d, 2H, Ph-*m*, *J*= 8, 8Hz); 7'90 (sa, 1H, Pirr-NH). ¹³<u>C-RMN (CDCl₃, 75'4 MHz)</u> δ 11'4, 11'7 (CH₂CH₃); 22'6, 22'9, 24'0, 24'5, 26'2, 26'7 28'0, 28'2, 28'4, 28'8 (3'-C, 4'-C, 5'-CH₂, 4-C, 6-C, 7-C, C*H*₂CH₃); 33'2 (2'-C); 39'0 (6'-C); 43'4, 44'2 (9'-C); 14'5 (SO₂CH₃); 46'6 (NCH₂CH₂CH₃); 52'7, 54'9 (5-C); 107'4 (3-C); 115'0, 115'4 (3a-C); 116'7, 117'1 (2-C); 125'1, 125'4 (7a-C); 127'6 (Ph-*m*); 130'2 (Ph-*o*); 138'9 (Ph-*ipso*); 142'0 (Ph-*p*); 169'4, 172'4, 173'0 (8'-C, 1'-C).

7-Aza-9-(4-metilsulfonilfenil)-8-oxo-*N***-(4,5,6,7-tetrahidro-5-indolil)nonanamida (150).** Se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH 92:8). Espuma blanca. Rdto. 56%. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 1'30 (m, 2H, 4'-CH₂); 1'39-1'70 (m, 4H, 3'-CH₂, 5'-CH₂); 1'85-2'10 (m, 2H, 6-CH₂); 2'11 (t, 2H, 2'-CH₂, *J*= 7'4Hz); 2'42 (dd, 1H, 4-Hax, *J*= 16, 7Hz); 2'62 (m, 2H, 7-CH₂); 2'88 (dd, 1H, 4-Hec, *J*= 16, 5Hz); 3'04 (s, 3H, CH₃); 3'21 (c, 2H, 6'-CH₂, *J*= 5'8Hz); 3'61 (s, 2H, 9'-CH₂); 4'28 (m, 1H, 5-H); 5'85 (d, 1H, CHN*H*CO, *J*= 8Hz); 5'96 (m, 1H, 3-H); 6'42 (t, 1H, CH₂N*H*CO, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 1H, 2-H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, *J*= 5'8Hz); 6'64 (m, 2H, 2H); 7'50 (d, 2H, Ph-o, 2H); 7'50 (d, 2H

8Hz); 7'86 (d, 2H, Ph-*m*, J= 8Hz); 8'18 (s, 1H, Pirr-NH). ${}^{13}C$ -RMN (CDCl₃, 50'3 MHz) δ 19'9, 24'8, 26'1, 28'2, 28'7, 29'4 (4-C, 6-C, 7-C, 3'-C, 4'-C, 5'-C); 36'2 (2'-C); 39'3 (6'-C); 43'2 (9'-C); 44'4 (SO₂CH₃); 45'4 (5-C); 107'4 (3-C); 113'8 (3a-C); 116'6 (2-C); 125'4 (7a-C); 127'6 (Ph-*m*); 130'2 (Ph-*o*); 138'9 (Ph-*ipso*); 141'9 (Ph-*p*); 169'6, 172'5 (8'-C, 1'-C).

N-(2-Amino-4,5,6,7-tetrahidro-6-benzotiazolil)-7-aza-9-(4-metilsulfonilfenil)-8-oxo-*N*-propilnonanamida (152). Se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH 9:1). Aceite amarillo. Rdto. 92%. ¹<u>H-RMN (CDCl₃, 300 MHz)</u> δ 0'88, 0'93 (2 t, 3H, CH₂CH₃, *J*= 7'5Hz); 1'35 (m, 2H, 4'-CH₂); 1'50 (m, 2H, 5'-CH₂); 1'60-1'70 (m, 4H, 3'-CH₂, CH₂CH₃); 2'00 (m, 2H, 5-CH₂); 2'36 (m, 2H, 2'-CH₂); 2'60-2'82 (m, 4H, 4-CH₂, 7-CH₂); 3'04 (s, 3H, SO₂CH₃); 3'12-3'28 (m, 4H, 6'-CH₂, NCH₂CH₂CH₃); 3'61 (s, 2H, 9'-CH₂); 4'08, 4'38 (2 m, 1H, 6-H); 4'49, 5'52 (m, 2H, NH₂); 7'04 (m, 1H, NH); 7'50 (d, 2H, Ph-*o*, *J*= 7'5Hz); 7'82, 7'83 (2 d, 2H, Ph-*m*, *J*= 7'5Hz). ¹³<u>C-RMN (CDCl₃, 75'4 MHz)</u> δ 11'2, 11'4 (CH₂CH₃); 22'4, 24'2, 24'4, 26'1, 26'2, 27'0, 28'6, 28'7, 28'9 (1'-C, 3'-C, 4'-C, 5'-C, 4-C, 5-C, 7-C, *C*H₂CH₃); 31'0 (2'-C); 36'0 (6'-C); 42'9 (9'-CH₂); 44'0, 45'0 (NCH₂CH₂CH₃); 44'2 (SO₂CH₃); 46'0, 47'0 (6-C); 114'4, 115'2 (7a-C); 127'2 (Ph-*m*); 129'9 (Ph-*o*); 138'4 (Ph-*ipso*); 142'0 (Ph-*p*); 144'0 (3a-C); 162'2 (2-C); 166'4, 166'6, 172'2, 173'0 (8'-C, 1'-C).

7-Aza-9-(4-metilsulfonilfenil)-8-oxo-*N*-propil-*N*-(4,5,6,7-tetrahidro-5-isoindolil)nonanamida (154). Se purificó por cromatografía en columna flash (AcOEt-MeOH 97:3). Espuma blanca. Rdto. 59%. ¹<u>H-RMN (CDCl₃. 200 MHz)</u> δ 0'90 (c, 2H, CH₂C*H*₃, *J*= 7'4Hz); 1'37-1'78 (m, 8H, 3'-CH₂, 4'-CH₂, 5'-CH₂, C*H*₂CH₃); 1'80-2'00 (m, 2H, 6-CH₂); 2'37, 2'39 (2 t, 2H, 2'-CH₂, *J*= 6Hz); 2'62-2'95 (m, 4H, 7-CH₂, 4-CH₂); 3'15-3'38 (m, 4H, 6'-CH₂, NC*H*₂CH₂CH₃); 3'02, 3'04 (2 s, 3H, SO₂CH₃); 3'61, 3'63 (2 s, 2H, 9'-CH₂); 4'00, 4'62 (2 m, 1H, 5-H); 6'48, 6'52 (2 d, 2H, 1-H, 3-H, *J*= 2'6Hz); 6'54, 6'68 (2 t, 1H, CONH, *J*= 6Hz); 7'49, 7'51 (2 d, 2H, Ph-*o*, *J*= 8Hz); 7'82, 7'88 (2 d, 2H, Ph-*m*, *J*= 8Hz); 8'15, 8'21 (2 sa, 1H, Pirr-NH).

7-Aza-*N*-(2-hidroxi-4,5,6,7-tetrahidro-6-benzotiazolil)-9-(4-metilsulfonilfenil)-8-oxo-*N*propilnonanamida (153). Espuma marrón. Rdto. 91%. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'90 (m, 3H, CH₂CH₃); 1'35 (m, 2H, 4'-CH₂); 1'50-1'75 (m, 6H, 3'-CH₂, 5'-CH₂, CH₂CH₃); 1'80-2'10 (m, 2H, 5-CH₂); 2'30-2'78 (m, 6H, 2'-CH₂, 7-CH₂, 4-CH₂); 3'10-3'30 (m, 4H, NCH₂CH₂CH₃, 6'-CH₂); 3'05 (s, 3H, SO₂CH₃); 3'62 (s, 2H, 9'-CH₂); 4'05, 4'25 (2 m, 1H, 6-H); 6'25 (m, 1H, NH); 7'52 (d, 2H, Ph-*o*, *J*= 8Hz); 7'89 (d, 2H, Ph-*m*, *J*= 8Hz).

6.2.4. Reducción de las Diamidas IX y X. Preparación de las Diaminas III y V (155-165)

Trioxalato de *N*-[2-(4-metilsulfonilfenil)etil]-*N*'-[2-(3-piridinio)etil]-1,6-hexanodiamonio (155). Método A. A una disolución de 144 (1'1 g, 2'55 mmol) en THF anhidro (20 ml) en atmósfera de nitrógeno se adicionó, gota a gota, complejo borano-sulfuro de dimetilo (2'0 ml, 20 mmol). La mezcla se calentó a reflujo durante 1'5 h, se enfrió a 5°C, se adicionó lentamente una disolución de HCl concentrado (0'65 ml, 7'8 mmol) en agua (5'5 ml) y se calentó de nuevo a reflujo durante 1 h más. A continuación, se adicionó HCl 2N (20 ml), se lavó con Et₂O (2 x 40 ml), se basificó con Na₂CO₃ hasta pH 8 y se extrajo con CH₂Cl₂ (2 x 40 ml). Los extractos orgánicos secados, filtrados y evaporados proporcionaron un aceite amarillo que se identificó como **155** (base libre, 1'02 g). El trioxalato correspondiente cristalizó (1'34 g, 78%) al adicionar una disolución de ácido oxálico dihidratado (1'05 g, 8'35 mmol) en EtOH (20 ml) sobre una disolución de la base libre en EtOH-H₂O (9:1, 30 ml). <u>Punto de fusión</u>: 187-189°C. <u>Análisis elemental</u>: véase Tabla 1 pág 106. ¹<u>H-RMN (D₂O, 300 MHz)</u> δ 1'30 (m, 4H, 3'-CH₂, 4'-CH₂); 1'60 (m, 4H, 2'-CH₂, 5'-CH₂); 2'95-3'10 (m, 6H, 1'-CH₂, 6'-CH₂, PhCH₂); 3'17 (s, 3H, CH₃); 3'20-3'40 (m, 6H, PirCH₂, PirCH₂CH₂N, PhCH₂CH₂N); 7'48 (d, 2H, Ph-*o*, *J*= 8'2Hz); 7'82 (d, 2H, Ph-*m*, *J*= 8'2Hz); 7'97 (dd, 1H, 5-H, *J*= 8, 6Hz); 8'48 (d, 1H, 4-H, *J*= 8Hz); 8'65 (d, 1H, 6-H, *J*= 6Hz); 8'70 (s, 1H, 2-H). ¹³<u>C-RMN (D₂O, 50'3 MHz)</u> δ 26'4 (2'-C, 3'-C, 4'-C, 5'-C); 29'5, 32'6 (PirCH₂, PhCH₂); 44'1 (SO₂CH₃); 47'6, 48'3, 48'5, 48'6 (PirCH₂CH₂N, PhCH₂CH₂N, 1'-C, 6'-C); 128'2 (5-C); 128'4 (Ph-*m*); 130'8 (Ph-*o*); 137'9 (Ph-*ipso*); 138'3 (3-C); 140'8, 141'9 (2-C, 6-C); 144'5 (Ph-*p*); 148'2 (4-C); 166'5 (C=O oxalato).

Los compuestos 156, 157, 159, 158, 160, 163 y 164, se prepararon operando de manera análoga a partir de 145, 146, 148, 147, 149, 152 y 153, respectivamente:

Trioxalato de N'-[2-(4-metilsulfonilfenil)etil]-N-[2-(3-piridinio)etil]-N-propil-1,6-hexanodiamonio (156). Punto de fusión: descompone a 125°C. Rdto. 64%. Análisis elemental: véase Tabla 1 pág 106. ¹H-RMN (D₂O/CD₃OD, 300 MHz) δ 0'92 (t, 3H, CH₂CH₃, *J*= 7'4Hz); 1'34 (m, 4H, 3'-CH₂, 4'-CH₂); 1'60-1'73 (m, 6H, 2'-CH₂, 5'-CH₂, CH₂CH₃); 2'97-3'22 (m, 8H, 1'-CH₂, 6'-CH₂, PhCH₂, NCH₂CH₂CH₃); 3'20 (s, 3H, SO₂CH₃); 3'26-3'34, 3'43-3'49 (2 m, 6H, PirCH₂CH₂N, PirCH₂, PhCH₂CH₂N); 7'52 (d, 2H, Ph-*o*, *J*= 8Hz); 7'87 (d, 2H, Ph-*m*, *J*= 8Hz); 8'00 (dd, 1H, 5-H, *J*= 8, 6 Hz); 8'51 (d, 1H, 4-H, *J*= 8Hz); 8'68 (d, 1H, 6-H, *J*= 6Hz); 8'72 (s, 1H, 2-H). ¹³C-RMN (D₂O/CD₃OD, 75'4 MHz) δ 11'1 (CH₂CH₃); 17'8 (CH₂CH₃); 24'0, 26'3 (2'-C, 3'-C, 4'-C, 5'-C); 27'5, 32'7 (PirCH₂, PhCH₂); 44'3 (SO₂CH₃); 48'6, 48'7 (6'-C, PhCH₂CH₂N); 52'9, 53'9, 55'4 (1'-C, NCH₂CH₂CH₃, PirCH₂CH₂N); 128'5 (5-C); 128'6 (Ph-*m*); 131'1 (Ph-*o*); 137'8 (Ph-*ipso*); 138'6 (3-C); 141'2, 142'1 (2-C, 6-C); 144'7 (Ph-*p*); 148'3 (4-C); 166'6 (C=O oxalato).

Dioxalato de N'-[2-(4-metilsulfonilfenil)etil]-N-[2-(3-pirrolil)etil]-1,6-hexanodiamonio (157). Punto de fusión: 171-173°C. Rdto. 59%. Análisis elemental: véase Tabla 1 pág 106. ¹H-RMN (DMSO-d₆, 300 MHz) δ 1'30 (m, 4H, 4'-CH₂, 3'-CH₂); 1'60 (m, 4H, 2'-CH₂, 5'-CH₂); 2'72 (m, 2H, PirrCH₂); 2'89 (m, 4H, 1'-CH₂, PhCH₂); 2'99-3'07 (m, 4H, 6'-CH₂, PirrCH₂CH₂N); 3'19 (m, 2H, PhCH₂CH₂N); 3'19 (s, 3H, CH₃); 5'91 (d, 1H, 4-H, J= 1'6Hz); 6'60 (d, 1H, 2-H, J= 1'4Hz); 6'66 (m, 1H, 5-Hz); 7'53 (d, 2H, Ph-*o*, J= 8'2Hz); 7'87 (d, 2H, Ph-*m*, J= 8'2Hz); 10'6 (sa, 1H, NH Pirrol). ¹³C-RMN (DMSO-d₆, 75'4 MHz) δ 23'7 (PirrCH₂); 25'4, 25'6 (2'-C, 3'-C, 4'-C, 5'-C); 31'6 (PhCH₂); 43'7 (SO₂CH₃); 46'7, 46'8, 47'4, 48'2 (1'-C, 6'-C, PirrCH₂CH₂N, PhCH₂CH₂N); 107'6 (4-C); 115'7, 118'1 (2-C, 5-C); 117'5 (3-C); 127'5 (Ph-*m*); 129'9 (Ph-*o*); 139'5 (Ph-*ipso*); 143'8 (Ph-*p*); 165'1 (C=O oxalato).

Tricloruro de N'-[2-(4-metilsulfonilfenil)etil]-N-propil-N-(5,6,7,8-tetrahidro-6-quinolinio)-1,6-hexanodiamonio (159). Punto de fusión: descompone a 110°C. Rdto. 83%. Análisis elemental: véase Tabla 1 pág 106. ¹<u>H-RMN (CD₃OD, 300 MHz)</u> δ 1'16 (t, 3H, CH₂CH₃, *J*= 7'1Hz); 1'61 (m, 4H, 3'-CH₂, 4'-CH₂); 1'87 (m, 2H, 5'-CH₂); 1'92-2'04 (m, 4H, 2'-CH₂, NCH₂CH₂CH₃); 2'34 (m, 1H, 7-Hax); 2'66 (m, 1H, 7-Hec); 3'14-3'69 (m, 14H, 5-CH₂, 8-CH₂, 1'-CH₂, 6'-CH₂, NCH₂CH₂CH₃, PhCH₂, NCH₂CH₂Ph); 3'21 (s, 3H, SO₂CH₃); 4'12 (m, 1H, 6-H); 6'69 (d, 2H, Ph-*o*, *J*= 8'5Hz); 7'99 (dd, 1H, 3-H, *J*= 8, 6Hz); 8'03 (d, 2H, Ph-*m*, *J*= 8'5Hz); 8'56 (d, 1H, 4-H, *J*= 8Hz); 8'77 (d, 1H, 2-H, *J*= 6Hz). ¹³<u>C-RMN (CD₃OD, 75'4</u> MHz) δ 11'3 (CH₂CH₃); 19'6, 19'8 (NCH₂CH₂CH₃); 22'7, 22'8, 25'7, 25'9, 26'8, 27'0, 27'6, 28'7, 28'8 (2'-C, 3'-C, 4'-C, 5'-C, 5-C, 7-C, 8-C); 33'1 (PhCH₂); 44'4 (SO₂CH₃); 48'7, 49'0 (6'-C, NCH₂CH₂Ph); 52'4, 52'7, 53'9, 54'2 (1'-C, NCH₂CH₂CH₃); 58'7 (6-C); 125'9 (3-C); 129'0 (Ph-*m*); 131'0 (Ph-*o*); 136'0 (4a-C); 141'0 (2-C, Ph-*ipso*); 144'5 (Ph-*p*); 148'6 (4-C); 152'0 (8a-C).

Trioxalato de *N*-[2-(4-metilsulfonilfenil)etil]-*N'*-(5,6,7,8-tetrahidro-6-quinolinio)-1,6-hexanodiamonio (158). Punto de fusión: descompone a 120°C. Rdto. 35%. Análisis elemental: véase Tabla 1 pág 106. ¹H-RMN (D₂O, 300 MHz) δ 1'20 (m, 4H, 3'-CH₂, 4'-CH₂); 1'50 (m, 4H, 2'-CH₂, 5'-CH₂); 1'88 (m, 1H, 7-Hax); 2'30 (m, 1H, 7-Hec); 2'85-3'20 (m, 11H, 5-Hax, 8-CH₂, NCH₂CH₂Ph, PhCH₂, 1'-CH₂, 6'-CH₂); 3'07 (s, 3H, CH₃); 3'35 (dd, 1H, 5-Hec, *J*= 17, 6Hz); 3'52 (m, 1H, 6-H); 7'40 (d, 2H, Ph-*o*, *J*= 8'4Hz); 7'65 (dd, 1H, 3-H, *J*= 7, 6Hz); 7'74 (d, 2H, Ph-*m*, *J*= 8'4Hz); 8'15 (d, 1H, 4-H, *J*= 7Hz); 8'35 (d, 1H, 2-H, *J*= 6Hz). ¹³C-RMN (D₂O, 75'4 MHz) δ 25'8, 27'7, 27'8, 28'0, 34'3 (2'-C, 3'-C, 4'-C, 5-C, 7-C, 8-C); 32'2, 34'2 (PhCH₂, 5'-C); 45'8 (SO₂CH₃); 47'7, 50'0, 50'2 (1'-C, 6'-C, NCH₂CH₂Ph); 54'5 (6-C); 127'1 (3-C); 130'2 (Ph-*m*); 132'6 (Ph-*o*); 136'1 (4a-C); 140'1 (Ph-*ipso*); 142'0 (2-C); 146'2 (Ph-*ρ*); 149'7 (4-C); 152'7 (8a-C); 167'4 (C=O oxalato).

N'-[2-(4-metilsulfonilfenil)etil]-*N*-(2-metoxi-5,6,7,8-tetrahidro-6-quinolil)-*N*-propil-1,6-hexanodiamina (160). Se purificó por cromatografía en columna flash (Al₂O₃, AcOEt). Aceite incoloro. Rdto. 22%. ¹<u>H-RMN (CDCl₃, 200 MHz)</u> δ 0'89 (t, 3H, CH₂CH₃, *J*= 7'2Hz); 1'30-1'58 (m, 10H, 2'-CH₂, 3'-CH₂, 4'-CH₂, 5'-CH₂, CH₂CH₃); 1'65 (m, 1H, 7-Hax); 2'07 (m, 1H, 7-Hec); 2'42-2'55 (m, 4H, NCH₂CH₂CH₃, 1'-CH₂); 2'60-3'05 (m, 11H, 5-CH₂, 6-H, 8-CH₂, 6'-CH₂, NCH₂CH₂Ph, PhCH₂); 3'04 (s, 3H, SO₂CH₃); 3'87 (s, 3H, OCH₃); 6'50 (d, 1H, 3-H, *J*= 8Hz); 7'24 (d, 1H, 4-H, *J*= 8Hz); 7'41 (d, 2H, Ph-*o*, *J*= 8'4Hz); 7'86 (d, 2H, Ph-*m*, *J*= 8'4Hz). ¹³C-RMN (CDCl₃. 50'3 MHz) δ 11'8 (CH₂CH₃); 22'0 (CH₂CH₃); 25'5, 27'2, 27'3, 28'9 (2'-C, 3'-C, 4'-C, 5'-C); 30'0, 30'2, 32'5, 36'3 (5-C, 7-C, 8-C, PhCH₂); 44'4 (SO₂CH₃); 49'8, 50'5, 50'6, 52'5 (1'-C, 6'-C, NCH₂CH₂Ph, NCH₂CH₂CH₃); 53'1 (OCH₃); 56'4 (6-C); 107'5 (3-C); 123'3 (4a-C); 127'4 (Ph-*m*), 129'5 (Ph-*o*); 138'2 (Ph-*ipso*); 140'0 (4-C); 146'8 (Ph-*p*); 153'4 (8a-C); 161'8 (2-C).

Trioxalato de *N*-(2-amonio-4,5,6,7-tetrahidro-6-benzotiazolii)-*N'*-[2-(4-metilsulfonilfenil)etil]-*N*-propil-1,6-hexanodiamonio (163). Se purificó por cromatografía en columna flash (CH₂Cl₂-MeOH-NH₄OH 30% 97:2:1). Rdto. 34%. <u>Punto de fusión</u>: descompone a 120°C. <u>Análisis elemental</u>: véase Tabla 1 pág 106. ¹<u>H-RMN (D₂O, 300 MHz)</u> δ 0'80 (t, 3H, CH₂CH₃, *J*= 7'4Hz); 1'21 (m, 4H, 3'-CH₂, 4'-CH₂); 1'48-1'59 (m, 6H, 5'-CH₂, 2'-CH₂, CH₂CH₃); 1'91 (m, 1H, 5-Hax); 2'13 (m, 1H, 5-Hec); 2'50-2'81 (m, 4H, 7-CH₂, 4-CH₂); 2'88 (t, 2H, PhCH₂, J = 7'7Hz); 2'96-3'11 (m, 6H, 6'-CH₂, 1'-CH₂, NCH₂CH₂Ph); 3'09 (s, 3H, SO₂CH₃); 3'20 (t, 2H, NCH₂CH₂CH₃, J = 7'8Hz); 3'67 (m, 1H, 6-H); 7'42 (d, 2H, Ph-o, J = 8'3Hz); 7'77 (d, 2H, Ph-m, J = 8'3Hz). ¹³C-RMN (D₂O, 75'4 MHz) δ 11'2 (CH₂CH₃); 19'0, 19'2 (CH₂CH₃);, 22'3, 22'9, 23'6, 25'1, 25'3, 26'2, 26'3 (2'-C, 3'-C, 4'-C, 5'-C, 7-C, 5-C, 4-C); 32'6 (PhCH₂); 44'3 (SO₂CH₃); 48'5, 48'7 (6'-C, NCH₂CH₂Ph); 52'0, 52'4, 53'7, 54'1 (1'-C, NCH₂CH₂CH₃); 59'5 (6-C); 112'3 (7a-C); 128'5 (Ph-m); 131'0 (Ph-o); 133'6 (3a-C); 138'5 (Ph-*ipso*); 144'7 (Ph-p); 166'2 (C=O oxalato); 170'6 (2-C).

Dioxalato de N-(2-hidroxi-4,5,6,7-tetrahidro-6-benzotiazolil)-N'-[2-(4-metilsulfonil-fenil)etil]-N-propil-1,6-hexanodiamonio (164). Se purificó por cromatografía en columna flash (AcOEt-MeOH-NH₄OH 30% 93:6:1). Rdto. 22%. <u>Punto de fusión</u> del dioxalato: 158-160°C. ¹<u>H-RMN (DMSO-d₆, 300 MHz)</u> δ 0'86 (t, 3H, CH₂CH₃, *J*= 8Hz); 1'29 (m, 4H, 3'-CH₂, 4'-CH₂); 1'56 (m, 6H, 5'-CH₂, 2'-CH₂, CH₂CH₃); 1'77 (m, 1H, 5-Hax); 2'25 (m, 1H, 5-Hec); 2'39-2'79 (m, 6H, 7-CH₂, 4-CH₂, PhCH₂); 2'92-3'05 (m, 4H, 6'-CH₂, 1'-CH₂); 3'14 (m, 2H, NCH₂CH₂Ph); 3'19 (s, 3H, SO₂CH₃); 3'41 (m, 3H, 6-H, NCH₂CH₂CH₃); 7'54 (d, 2H, Ph-*m*, *J*= 8'1Hz); 7'87 (d, 2H, Ph-*o*, *J*= 8'1Hz); 11'0 (sa, 1H, OH). ¹³C-RMN (DMSO-d₆. <u>75'4 MHz</u>) δ 11'5 (CH₂CH₃); 19'7 (CH₂CH₃); 22'5, 23'4, 24'1, 25'3, 25'4, 25'8, 26'1 (2'-C, 3'-C, 4'-C, 5'-C, 4-CH₂, 5-CH₂, 7-CH₂); 31'6 (PhCH₂); 43'8 (SO₂CH₃); 46'9, 47'3 (6'-C, NCH₂CH₂Ph); 50'3, 52'1 (1'-C, NCH₂CH₂CH₃); 57'5 (6-C); 106'5, (7a-C); 127'5 (Ph-*m*); 128'0 (3a-C); 129'9 (Ph-*o*); 139'6 (Ph-*ipso*); 143'7 (Ph-*p*); 164'8 (C=O oxalato); 172'1 (2-C).

6. Parte Experimental

Dioxalato de N'-[2-(4-metilsulfonilfenil)etil]-N-propil-N-(4,5,6,7-tetrahidro-5-indolil)-1,6-hexanodiamonio (162). Método B. A una disolución de 151 (1'6 g, 3'3 mmol) en THF anhidro (50 ml) en atmósfera de nitrógeno se adicionó complejo borano-sulfuro de dimetilo (2'6 ml, 26 mmol). La mezcla se calentó a reflujo durante 2 h, se enfrió a 5°C, se adicionó, gota a gota, MeOH (120 ml) y se calentó de nuevo a reflujo durante 12 h más. Posteriormente, se evaporó el disolvente a seguedad y el residuo obtenido se purificó por cromatografía en columna flash (CH2Cl2-MeOH-NH4OH 30% 96:3:1), obteniéndose un aceite amarillo que se identificó como 162 (base libre, 0'32 g). El dioxalato correspondiente cristalizó (0'27 g, 12%) al adicionar una disolución de ácido oxálico dihidratado (0'18 g, 1'46 mmol) en EtOH (10 ml) sobre una disolución de la base libre en EtOH (10 ml). Punto de fusión: descompone a 115°C. Análisis elemental: véase Tabla 1 pág 106. ¹H-RMN (DMSO-d₆, 300 MHz) δ 0'89 (t, 3H, CH2CH3, J= 7'4Hz); 1'32 (m, 4H, 3'-CH2, 4'-CH2); 1'63 (m, 6H, 5'-CH2, 2'-CH2, CH2CH3); 1'84 (m, 1H, 6-Hax); 2'19 (m, 1H, 6-Hec); 2'64-2'78 (m, 4H, 4-CH2, 7-CH2); 2'88-3'20 (m, 6H, 1'-CH2, 6'-CH2, NCH2CH2CH3); 3'18 (s, 3H, SO2CH3); 3'45 (m, 1H, 5-H); 5'74 (s, 1H, 3-H); 6'54 (s, 1H, 2-H); 7'53 (d, 2H, Ph-o, J= 8'2Hz); 7'86 (d, 2H, Ph-m, J= 8'2Hz); 10'40 (s, 1H, NH pirrol). ¹³C-RMN (DMSO-d₆, 75'4 MHz) δ 11'4 (CH₂CH₃); 18'6 (CH₂CH₃); 21'8, 23'5, 24'2, 24'8, 25'4, 25'7, 26'0 (2'-C, 3'-C, 4'-C, 5'-C, 4-C, 6-C, 7-C); 31'6 (PhCH2); 43'8 (SO2CH3); 46'8, 47'4 (6'-C, NCH2CH2Ph); 50'4, 52'1 (1'-C, NCH2CH2CH3); 60'0 (5-C); 106'4 (3-C); 112'5 (3a-C); 116'9 (2-C); 124'9 (7a-C); 127'4 (Ph-m); 129'9 (Ph-o); 139'5 (Ph-ipso); 143'8 (Ph-p); 164'2 (C=O oxalato).

El compuesto 161 se preparó operando de manera análoga a partir de 150:

Dioxalato de *N*-[2-(4-metilsulfonilfenil)etil]-*N'*-(4,5,6,7-tetrahidro-5-indolil)-1,6-hexanodiamonio (161). Se purificó por cromatografía en columna flash (Florisil[®], CH₂Cl₂-MeOH-NH₄OH 30% 91:8:1). <u>Punto de fusión</u>: descompone a 120°C. Rdto. 17%. El análisis elemental no pudo realizarse debido a su inestabilidad. ¹<u>H-RMN (D₂O/CD₃OD, 300 MHz)</u> δ 1'18 (m, 4H, 3'-CH₂, 4'-CH₂); 1'46 (m, 4H, 5'-CH₂, 2'-CH₂); 1'70 (m, 1H, 6-Hax); 2'05 (m, 1H, 6-Hec); 2'35 (dd, 1H, 4-Hax, *J*= 16, 10Hz); 2'50 (m, 2H, 7-CH₂); 2'85-2'90 (m, 7H, 4-Hec, 1'-CH₂, 6'-CH₂, PhCH₂); 3'03 (s, 3H, SO₂CH₃); 3'20 (t, 2H, NCH₂CH₂Ph, *J*= 7'5Hz); 3'25 (m, 1H, 5-H); 5'75 (s, 3-H); 6'55 (s, 2-H); 7'35 (d, 2H, Ph-*m*, *J*= 8'5Hz); 7'70 (d, 2H, Ph-*o*, *J*= 8'5Hz). ¹³<u>C-RMN (D₂O/CD₃OD, 50'3 MHz)</u> δ 20'7 (7-C); 26'2, 26'3, 26'5, 26'6, 26'7 (2'-C, 3'-C, 4'-C, 5'-C, 4-C, 6-C); 32'6 (PhCH₂); 44'2 (SO₂CH₃); 45'9, 48'5, 48'7 (1'-C, 6'-C, NCH₂CH₂Ph); 56'0 (5-C); 112'3 (3a-C); 126'6 (7a-C); 128'4 (Ph-*m*); 131'0 (Ph-*o*); 138'6 (Ph-*ipso*); 144'6 (Ph-*p*); 166'6 (C=O oxalato). Las señales correspondientes a los dos CH aromáticos no se observan debido al intercanvio con deuterio.

Dioxalato de N'-[2-(4-metilsulfonilfenil)etil]-N-(4,5,6,7-tetrahidro-5-isoindolil)-N-propil-1,6-hexanodiamonio (165). Método C. A una disolución de 154 (0'5 g, 1'03 mmol) en CH₂Cl₂ anhidro(20 ml) se adicionó bajo atmósfera de nitrógeno hidruro de diisobutilalumino 1M en diclorometano (15'4 ml, 15'4 mmol). La mezcla de reacción se agitó a temperatura ambiente durante 2 h, se enfrió a 5°C y se adicionó, gota a gota, MeOH (40 ml). El precipitado formado se filtró y el filtrado se evaporó a sequedad. El residuo se purificó por cromatografía en columna flash (CH2Cl2-MeOH-NH4OH 30% 94:5:1) obteniéndose un aceite amarillo que se identificó como 166 (base libre, 0'19 g). El dioxalato correspondiente cristalizó (0'19 g, 29%) al adicionar una disolución de ácido oxálico dihidratado (0'11 g, 0'88 mmol) en EtOH (10 ml) sobre una disolución de la base libre en EtOH (10 ml). Punto de fusión: descompone a 115°C. Análisis elemental: véase Tabla 1 pág 106. ¹H-RMN (DMSO-d₆, 200 MHz) δ 0'91 (t, 3H, CH2CH3, J= 7Hz); 1'35 m, 4H, 3'-CH2, 4'-CH2); 1'64 (m, 7H, 5'-CH2, 2'-CH2, CH2CH3, 6-Hax); 2'15 (m, 1H, 6-Hec); 2'55-3'20 (m, 14H, 4-CH2, 7-CH2, 1'-CH2, 6'-CH2, NCH2CH2CH3, NCH2CH2Ph, PhCH2); 3'21 (s, 3H, SO2CH3); 3'41 (m, 1H, 5-H); 6'23, 6'30 (2 s, 2H, 1-H, 3-H); 7'58 (d, 2H, Ph-o, J= 8Hz); 7'90 (d, 2H, Ph-m, J= 8Hz). ¹³C-RMN (DMSO-d₆, 50'3 MHz) δ 11'4 (CH2CH3); 18'8 (CH2CH3); 21'3, 23'1, 25'0, 25'3, 25'5, 25'7, 26'0 (2'-C, 3'-C, 4'-C, 5'-C, 4-C, 6-C, 7-C); 31'7 (PhCH2); 43'8 (SO2CH3); 46'8, 47'4 (6'-C, NCH2CH2Ph); 50'3, 52'2 (1'-C, NCH2CH2CH3); 60'3 (5-C); 113'0, 113'7 (1-C, 3-C); 115'3, 116'5 (3a-C, 7a-C); 127'5 (Ph-m); 130'0 (Ph-o); 139'5 (Ph-ipso); 143'9 (Ph-p); 165'4 (C=O oxalato).

6.2.5. Ruptura de Grupos Metoxi. Preparación de la Diamina V (171)

Trihidrobromuro de N-(2-hidroxi-5,6,7,8-tetrahidro-6-quinolil)-N'-[2-(4-metilsulfonilfenil)etil]-N-propil-1,6-hexanodiamina (171). Una disolución de 160 (0'15 g, 0'30 mmol) en HBr acuoso 48% (1'5 ml) y ácido acético (1'5 ml) se calentó a reflujo durante 4 h. Se evaporó el disolvente, el residuo se disolvió en EtOH (5 ml), y la disolución resultante se evaporó de nuevo. Posteriormente, se adicionó AcOEt (5 ml) y la suspensión se evaporó a seguedad. El residuo resultante se digirió con Et₂O anhidro (20 ml) obteniéndose un sólido blanco amorfo que se identificó como 171 (0'2 g, 92%). Punto de fusión: descompone a 100°C. Análisis elemental: véase Tabla 1 pág 106. ¹H-RMN (DMSO-d₆/D₂O, 300 MHz) δ 0'86 (t, 3H, CH2CH3, J= 7Hz); 1'28 (m, 4H, 3'-CH2, 4'-CH2); 1'50-1'65 (m, 6H, 5'-CH2, 2'-CH2, CH2CH3); 1'82 (m, 1H, 7-Hax); 2'17 (m, 1H, 7-Hec); 2'70 (m, 3H, 5-Hax, 8-CH2); 2'85-3'18 (m, 14H, 5-Hec, 1'-CH2, 6'-CH2, NCH2CH2CH3, PhCH2, NCH2CH2Ph); 3'10 (s, 3H, SO₂CH₃); 3'55 (m, 1H, 6-H); 6'41 (d, 1H, 3-H, J= 9Hz); 7'46 (d, 1H, 4-H, J= 9Hz); 7'51 (d, 1H, Ph-o, J= 8'5Hz); 7'81 (d, 1H, Ph-m, J= 8'5Hz). ¹H-RMN (DMSO-d₆/D₂O, 75'4 MHz) δ 12'0 (CH2CH3); 19'2 (CH2CH3); 22'8, 25'3, 26'4, 26'5, 26'6, 26'9, (2'-C, 3'-C, 4'-C, 5'-C, 5-C, 7-C, 8-C); 32'6 (PhCH2); 44'7 (SO2CH3); 48'2, 48'4 (6'-C, NCH2CH2Ph); 51'6, 51'9, 53'2, 53'5 (1'-C, NCH₂CH₂CH₃); 59'2 (6-C); 114'5 (4a-C); 116'8 (3-C); 128'6 (Ph-m); 131'2 (Ph-o); 139'8 (Ph-ipso); 143'4 (8a-C); 144'5 (Ph-p); 146'4 (4-C); 163'6 (2-C).
6. Parte Experimental

6.3. Análisis Elementales

Tabla 6.1 Análisis Elementales

Compuesto	Fórmula	Calculado			Hallado		
		С	н	N	С	н	N
21	C14H24N2·C2H2O4.3/4H2O	59'33	8'56	8'65	59'45	8'35	8'79
27	C13H22N3S-2HCI-H2O	45'48	7'63	12'24	45'14	8'03	12'05
28	C15H23N2.2HBr.3/2H2O	42'88	6'72	6'67	43'39	7'02	6'40
30	C ₇ H ₁₀ N ₂ ·2HBr	29'60	4'26	9'86	29'59	4'24	9'87
35	C ₁₆ H ₂₅ NO ₂ ·HBr	55'82	7'61	4'07	55'96	7'67	4'13
36	C ₁₄ H ₂₁ NO ₂ ·HBr	53'17	7'01	4'43	53'24	7'18	4'49
37	C ₁₆ H ₂₅ NO ₂ ·HBr	55'82	7'61	4'07	55'90	7'71	4'13
38	C ₁₅ H ₂₃ NO ₂ ·HBr	54'55	7'32	4'24	54'61	7'49	4'16
39	C ₁₆ H ₂₅ NO ₂ ·HBr	55'82	7'61	4'07	55'77	7'73	4'01
40	C ₁₆ H ₂₂ F ₃ NO ₂ ·HBr	48'25	5'82	3'52	48'28	5'96	3'50
41	C ₁₇ H ₂₅ NO ₂ ·HBr	57'31	7'35	3'93	57'30	7'22	3'95
42	C15H20F3NO2	46'89	5'51	3'65	46'80	5'53	3'70
43	C14H21NO3-1/4H2O	65'73	8'47	5'48	65'74	8'46	5'50
44	C ₁₅ H ₂₃ NO ₃ ·HBr	52'03	6'99	4'05	52'10	7'10	4'01
45	C ₁₅ H ₁₈ F ₅ NO ₂ ·HBr	42'87	4'56	3'33	42'84	4'55	3'30
46	C14H18F3NO2·HBr	45'42	5'17	3'78	45'34	5'16	3'88
47	C ₁₃ H ₁₉ NO ₂ ·HBr	51'67	6'67	4'63	51'66	6'70	4'67
69	C29H44N2O3.2HBr.2H2O	52'26	7'56	4'20	52'74	7'56	4'27
70	C27H40N2O3.2HBr.H2O	52'27	7'15	4'51	51'79	7'11	4'61
71	C29H44N2O3.2HBr.2H2O	52'26	7'56	4'20	51'54	7'25	4'06
72	C28H42N2O3.2HBr.3/2H2O	52'26	7'36	4'35	52'38	7'28	4'27
73	C29H44N2O3.2HBr.2H2O	52'26	7'56	4'20	51'69	7'60	4'43
74	C29H42F3N2O3.2HBr.2H2O	48'28	6'71	3'88	48'76	6'72	3'89
75	C ₃₀ H ₄₄ N ₂ O ₃ ·2HBr·H ₂ O	54'55	7'32	4'24	54'26	7'50	4'05
76	C28H39F3N2O3.2HBr.3/2H2O	48'22	6'36	4'02	48'04	6'21	4'00
77	C27H40N2O4.2HBr.7/2H2O	47'59	7'25	4'11	47'07	6'67	3'98
78	C28H42N2O4.2HCI.2H2O	58'02	8'35	4'83	57'79	8'38	4'73
79	C28H37F5N2O3.2HBr.H2O	46'42	5'70	3'87	45'98	5'80	3'70
80	C27H37F3N2O3.2HBr.H2O	48'08	6'13	4'15	48'07	6'20	3'94
81	C26H38N2O3.2HBr.4H2O	47'28	7'32	4'24	47'18	6'35	4'18
100	C13H22N2.2C2H2O4	52'84	6'78	7'25	52'79	6'85	7'17
101	C6H10N2·C2H2O4·3/4H2O	44'96	6'37	13'11	45'67	6'09	13'71
110	C9H12N2·2HBr	34'87	4'55	9'04	34'60	4'62	8'85
118	C15H24N2O·2HBr·4/3H2O	41'50	6'65	6'45	41'45	6'35	6'67
127	C ₁₄ H ₂₄ N ₂ ·C ₂ H ₂ O ₄ ·372H ₂ O	56'96	8'66	8'30	57'34	8'25	8'07
136	C13H22ON2S-C2H2O4	52'31	7'02	8'13	52'12	7'17	7'95
155	C22H33N3O2S·3C2H2O4·H2O	48'62	5'97	6'07	48'46	6'29	6'17
156	C ₂₅ H ₃₉ N ₃ O ₂ S·3C ₂ H ₂ O ₄	52'02	6'34	5'87	51'98	6'46	5'71

157	C21H33N3O2S-2C2H2O4-1/2H2O	51'71	6'60	7'24	51'73	6'64	7'19
158	C24H35N3O2S·3C2H2O4·1/2H2O	50'84	5'97	5'93	50'79	6'17	6'12
159	C27H41N3O2S.3HCI.7/2H2O	50'35	7'98	6'52	50'18	7'96	6'43
162	C26H41N3O2S.2C2H2O4.1/2H2O	55'54	7'15	6'48	55'43	7'42	6'59
163	C25H40N4O2S2·3C2H2O4·2H2O	46'61	6'31	7'01	46'89	6'53	7'15
164	C ₂₅ H ₃₉ O ₃ N ₃ S ₂ ·2C ₂ O ₄ H ₂	49'70	6'62	6'00	49'69	6'81	5'85
165	C26H41N3O2S-2C2H2O4-H2O	54'78	7'02	6'39	55'01	7'45	6'09
171	C27H41N3O3S-3HBr-2H2O	42'31	6'31	5'48	42'16	6'29	5'52
181	C27H40N2O4S2.HCI.HI.2H2O	44'97	6'43	3'88	44'27	6'11	3'71
182	C27H40N2O4S2.2HI.H2O	40'81	5'58	3'53	40'32	5'53	3'38

7. Espectros

¹H-RMN (DMSO-d₆/D₂O, 300 MHz)

¹³C-RMN (DMSO-d₆/D₂O, 75 MHz)

¹H-RMN (DMSO-d₆, 200 MHz)

¹H-RMN (DMSO-d₆, 300 MHz)

¹H-RMN (D₂O, 300 MHz)

¹H-RMN (DMSo-d₆, 300 MHz)

¹³C-RMN (DMSO-d₆, 75 MHz)

¹H-RMN (D₂O/CD₃OD, 300 MHz)

¹³C-RMN (D₂O/CD₃OD, 75 MHz)

¹H-RMN (CD₃OD, 300 MHz)

¹³C-RMN (CD₃OD, 75 MHz)

¹H-RMN (D₂O, 300 MHz)

¹³C-RMN (D₂O, 75 MHz)

¹H-RMN (DMSO-d₆, 300 MHz)

¹H-RMN (D₂O, 300 MHz)

¹³C-RMN (D₂O, 75 MHz)

¹H-RMN (H₂O, 300 MHz)

¹³C-RMN (H₂O, 75 MHz)

¹H-RMN (CDCl₃, 300 MHz)

¹H-RMN (DMSO-d₆, 300 MHz)

¹³C-RMN (DMSO-d₆, 50 MHz)

¹H-RMN (CDCI₃, 200 MHz)

¹³C-RMN (CDCl₃, 50 MHz)

¹H-RMN (DMSO-d₆, 300 MHz)

¹H-RMN (CDCl₃, 200 MHz)

¹³C-RMN (CDCI₃, 50 MHz)

¹H-RMN (D₂O/DMSO-d₆, 300 MHz)

¹³C-RMN (D₂O/DMSO-d₆, 75 MHz)

¹H-RMN (CDCl₃, 200 MHz)

¹³C-RMN (CDCl₃, 75 MHz)

¹H-RMN (CDCl₃, 300 MHz)

¹H-RMN (DMSO-d₆, 300 MHz)

¹³C-RMN (DMSO-d₆, 75 MHz)

¹H-RMN (CDCl₃, 200 MHz)

¹H-RMN (D₂O, 300 MHz)

¹H-RMN (D₂O, 200 MHz)

¹³C-RMN (D₂O, 50 MHz)

¹H-RMN (D₂O, 300 MHz)

¹³C-RMN (D₂O, 50 MHz)

¹H-RMN (CDCI₃, 200 MHz)

¹³C-RMN (CDCI₃, 50 MHz)

¹H-RMN (D₂O, 200 MHz)

¹³C-RMN (D₂O, 50 MHz)

¹H-RMN (D₂O, 200 MHz)

¹³C-RMN (D₂O, 50 MHz)

¹H-RMN (D₂O, 300 MHz)

¹³C-RMN (DMSO-d₆, 75 MHz)

¹H-RMN (CD₃OD, 200 MHz)

¹³C-RMN (CD₃OD, 50 MHz)

¹H-RMN (D₂O, 300 MHz)

¹³C-RMN (D₂O, 75 MHz)

8. Conclusiones

CONCLUSIONES

1. Se ha establecido una vía de síntesis de carácter general para la preparación de estructuras de tipo I, tal como se esquematiza a continuación:

Esta vía permite la preparación de una gran cantidad de 2-(alquilamino)tetralinas I, presentando diferentes sustituyentes R, a partir de un intermedio avanzado común 34.

 Se ha establecido una vía de síntesis de carácter general para la preparación de estructuras de tipo III y V,

las cuales pueden contemplarse como potenciales bioisósteros de catecolaminas, tal como se esquematiza a continuación:

Esta vía permite la incorporación de una gran variedad de sistemas heterocíclicos a partir de un intermedio avanzado común 99.

3. Se ha establecido una vía de síntesis de carácter general para la preparación de estructuras de estructuras de tipo VI,

en las que se pretende modificar la movilidad conformacional y las propiedades físicoquímicas de la molécula, sustituyendo uno de los grupos metileno de la cadena central por un heteroátomo.

- 4. Se han efectuado ensayos in vitro de actividad agonista dopaminérgica periférica mediante el test de la arteria esplénica del conejo para la actividad DA₁ y el test de la arteria auricular del conejo para la actividad DA₂, con los siguientes resultados generales:
 - a) Las 2-(alquilamino)tetralinas I (69-81) poseen una actividad DA₁ claramente inferior respecto al compuesto cabeza de serie Z12543. Esta reducción de la actividad llega a ser en algunos casos de tres órdenes de magnitud. Tan sobo el compuesto 70 presenta una actividad DA₁ y DA₂ similar al compuesto de referencia. De todo ello, se puede concluir que este grupo de compuestos presenta una elevada especificidad estructural en el sustituyente R para su unión a los receptores DA₁.
 - b) Para las aminas II, III, IV y V en las que se ha sustituido el anillo de tetralina del compuesto cabeza de serie Z12571 por diversos núcleos heteroaromáticos, se observa una casi total ausencia de actividad, tanto DA1 como DA2. Únicamente, la serie tetrahidroquinolina (compuestos 158 y 159) presenta una significativa actividad DA2 careciendo de actividad DA1, mientras que los compuestos de la serie 2-aminotetrahidrobenzotiazol muestran actividad DA1 y DA2 aunque se ha demostrado que ésta no es debida a la unión a receptores dopaminérgicos. Por consiguiente, los compuestos ensayados estos sistemas heterocíclicos no pueden considerarse bioisósteros del catecol en su interacción sobre los receptores DA1.
 - c) En las diaminas de tipo VI (181 y 182) en las que se ha sustituido un grupo metileno de la cadena central por un heteroátomo se aprecia una disminución significativa de la actividad DA₁ respecto al compuesto de referencia Z12571, probablemente causada por un cambio conformacional inducido por la presencia del heteroátomo.

9. Bibliografía y Notas

- 1. Kannel, W. B. Cardiol clini. Heart fail.; current concepts and managements. WB Saunders Company: Philadelphia, 1989; p 1.
- Montanari, S.; Bertoloni, G.; Casagrande, C.; Cavalleri, P.; Ferlenga, P.; Marchini, F.; Pradella, L.; Pocchiari, F.; Santangelo, F.; Semeraro, C. *Bioorg. Med. Chem. Lett.*, 1996, 6, 2795
- 3. Smith, W.; Braunwald, E. Heart disease, 1988,485.
- 4. Aguilar, J. C.; Hernández, A.; Andrés F.; Diago, J. L. Medicine, 1993, 44, 1907.
- Semeraro, C.; Marchini, F.; Ferlanga, P.; Masotto, C.; Morazzoni, G.; Pradella, L.: Pocchiari, F. Clin. Exp. Hypertens., 1997, 19, 201.
- Para una revisión sobre agonistas dopaminérgicos periféricos véase:
 Ince, F. Peripheral Dopamine Receptors en *Comprehensive Medicinal Chemistry*; Hansch, C. (Ed); V 3, pp 291-328, Pergamon Press: Oxford, 1990.
- 7. Goldberg, Ll.; Kohli, J. D. Commun. Psychopharmacol., 1979, 3, 447.
- 8. Kebabian, J. W.; Calne, D. B. Nature, 1979, 277, 93.
- 9. Kohli, J. D. Hypertension, 1991, 17, 700.
- Brown, R. A.; Brown, R. C.; Hall, J. C.; Dixon, J.; Farmer, J. B.; Foulds, R. A.; Ince, F.; O'Connor, S. E.; Simpson, W.T.; Smith, G. W.; Springthorpe, B.; Tinker, A. C. Spec. *Publ. R. Soc. Chem.*, **1986**, *55*, 169.
- Weinstock, J.; Gaitanopoulos, D. E.; Stringer, O. D.; Franz, R. J.; Hieble, J. P.; Kinter, L. B.; Mann, W. A.; Flaim, K. E.; Gessner, G. J. Med. Chem., 1987, 30, 1166.
- 12. Gallagher, G.; Lavanchy, P. G.; Wilson, J. W.; Hieble, J. P.; De Marinis, R. M. *J. Med. Chem.*, **1985**, *28*, 1533.
- 13. Kaiser, G.; Jain, T. Med. Res. Rev., 1985, 5, 145.
- (a) Grol, C. J.; Jansen, L. J.; Rollema, H. J. Med. Chem., 1985, 28, 679. (b) Grol, C. J.; Rollema, H. J. Pharm. Pharmac., 1977, 29, 153.
- 15. McDermed, J. D.; McKenzie, G. M.; Freeman H. S. J. Med. Chem., 1976, 19, 547.
- 16. Seiler, M. P.; Markstein, R. Mol. Pharmacol., 1982, 22, 281.
- Para una revisión sobre modelos de receptores dopaminérgicos, véase: Katerinopoulos,
 H. E.; Schuster, D. I. en *Drugs Future*, 1987, 223.
- Casagrande, C.; Norcini, G.; Santangelo, F.; Semeraro, C. European Patent: EP 0321968, 1989.
- Santangelo, F.; Bertoloni, G.; Casagrande, C.; Marchini, F.; Montanari, S.; Semeraro, C. International Patent: WO93/19036, 1993.
- 20. Montanari, S.; Santangelo, F. Lab. Zambon. Comunicación personal.
- Glase, S. A.; Corbin, A. E.; Pugsley, T. A.; Heffner, T. G.; Wise, L. D. J. Med. Chem., 1995, 38, 3132.
- 22. Claudi, F.; Cingolani, G. M.; Giorgioni, G.; Cardellini, M.; Amenta, F.; Polidori, C. *Eur. J.* Med. Chem., **1995**, *30*, 415.

- McQuaid, L. A.; Latz, J. E.; Clemens, J. A.; Fuller, R. W.; Wong, D. T.; Mason, N. R. J. Med. Chem., 1989, 32, 2388.
- 24. Bach, N. J.; Kornfeld, E. C.; Jones, N. D.; J. Med. Chem., 1980, 23, 481.
- 25. Schaus, J. M.; Kornfeld, E. C.; Titus, R. D. Acta Pharm. Suec., 1985, suppl 1, 471.
- 26. Schneider, C. S.; Mierau, J. J. Med. Chem., 1987, 30, 494.
- 27. Demopoulos, V. J.; Tani, E.; Long, J. P. Arch. Pharm., 1989, 322, 827.
- 28. La tetralina (48) fué proporcionada por Laboratorios Zambon S.A. (ee: 99,8%). La utilización del enantiómero de configuración absoluta (*S*) se debe a que las tetralinas sustituidas en posición 5 con un grupo hidroxi precisan esta configuración en el carbono 2 para interaccionar con el receptor DA₁^{15,16}. No obstante, la puesta a punto de la metodología de síntesis se ha realizado con la amina racémica: Bertoloni, G.; San Giovani, S.; Casagrande, C.; Santangelo, F. United States Patent 5,221,770.
- 29. Taguchi, K.; Westheimer, F.H. J. Org. Chem., 1971, 36, 1570.
- 30. Kyba, E. P. Org. Prep. Proced. Int., 1970, 2, 149.
- Hudlicky, M. "Chemistry of organic fluorine compounds", p. 269, Pergamon Press: New York, 1961.
- 32. Tidwell, T. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 20.
- 33. Olah, G.; Pittman Jr. C. U. J. Am. Chem. Soc., 1966, 88, 3310.
- 34. Middleton, W. J.; Krespan, C. G. J. Org. Chem., 1965, 30, 1398.
- (a) Fuchigami, T.; Nakagawa, Y.; Nonaka, T., J. Org. Chem., 1987, 52, 5489. (b)
 Brown, H. C.; Heim, P. J. Org. Chem., 1973, 912. (c) Brown, H. C.; Narasimhan, S.;
 Choi, Y. M. Synthesis, 1981, 441.
- 36. Husted, D. R.; Ahlbrecht A. H., J. Am. Chem. Soc., 1953, 75, 1605.
- 37. Filachione, E. M.; Lengel, J. H.; Fischer, C. J. J. Am. Chem. Soc., 1943, 66, 494.
- 38. Krishnamurthy, S. Tetrahedron Lett., 1982, 23, 3315.
- 39. Ogura, K.; Tsuchihashi, G. Tetrahedron Lett., 1972, 15, 1383.
- 40. Katagiri, N.; Kato, T.; Nakano, J. Chem. Pharm. Bull., 1982, 30, 2440.
- 41. (a) Hudlicky, M., "Chemistry of organic fluorine compounds", Pergamon Press: New York, 1961, p. 310. (b) Henne, A.L; Stewart, J. J. J. Am. Chem. Soc., 1955, 77, 1901.
 (c) Bissell, E. R.; Finger, M. J. Org. Chem., 1959, 24, 1256.
- 42. (a) Basha, A.; Lipton, M.; Weinreb, S. M. *Tetrahedron Lett.*, **1977**, 4171. (b) Lipton, M.
 F.; Basha, A.; Weinreb, S. M. *Org. Synth.*, **1979**, *59*, 49.
- Para una revisión de métodos de ruptura de arilmetiléteres, véase: Greene, T. W.; Wuts,
 P. G. M. en "Protective groups in organic synthesis", p. 145, John Wiley & Sons INC: New York, 2nd Ed, 1991.
- 44. Williard, P. G.; Fryhle, C. B. Tetrahedron Lett., 1980, 21, 3734.
- Para una revisión sobre preparación de piridilalquilaminas véase: Mayer, J. M.; Testa,
 B. en *Helv. Chim. Acta*, 1982, 65, 1868, y referencias citadas.

- (a) Robison, M. M.; Robison, L. R. J. Am. Chem. Soc., 1955, 77, 6554. (b) Liska, K. J.; Tadepalli, A. S. J. Pharm. Sci. 1968, 57, 2157.
- Para una revisión sobre síntesis de pirroles sustituidos en la posición 3 véase: Anderson, H. J.; Loader, C. E. en Synthesis, 1985, 353.
- (a) Ruecker, C. Chem. Rev., 1995, 95, 1009. (b) Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.; Artis, D. R.; Muchowski, J. M. J. Org. Chem., 1990, 55, 6317. (c) Bray, B. L.; Muchowski, J. M., J. Org. Chem., 1988, 53, 6115.
- 49. Hamdan, A.; Wasley, J. W. F. Synth. Commun., 1985, 15, 71.
- (a) Plieninger, H.; El-Berins, R.; Hirsch, R. Synthesis, 1973, 422. (b) Hamdan, A.;
 Wasley, J. W. F. Synth. Commun., 1983, 13, 741.
- 51. (a) Kohno, M.; Sasao, S.; Murahashi, S-I. Bull. Chem. Soc. Jpn., 1990, 63, 1252.
- 52. Meyers, A. I.; Sircar, J. C. J. Org. Chem., 1967, 32, 4134.
- 53. Demopoulos, V. J. J. Heterocycl. Chem., 1988, 25, 635.
- 54. (a) Remers, W. A.; Gibs, G. J.; Pidacks, C.; Weiss, M. J. J. Org. Chem., 1971, 36, 279.
 (b) Remers, W. A.; Gibs, G. J.; Weiss, M. J. J. Heterocycl. Chem., 1971, 8, 1083. (c) Remers, W. A.; Gibs, G. J.; Pidacks, C.; Weiss, M. J. J. Am. Chem. Soc., 1967, 89, 5513.
- 55. Ghera, E.; Ben David, Y.; Rapoport, H. J. Org. Chem., 1981, 46, 2059.
- 56. (a) Kusumi, C.; Yoneda, K.; Kakisawa, H. *Synthesis*, **1979**, 221. (b) Irie, H.; Katayama,
 I.; Mizuno, Y. *Heterocycles*, **1979**, *12*, 771. (c) Koyama, J.; Sugita, T.; Suzuta, Y.; Irie,
 H. *Chem. Pharm. Bull.*, **1983**, *31*, 2601.
- (a) Xia, Y.; Kozikowski, A. P. J. Am. Chem. Soc., 1989, 111, 4116. (b) Kozikowski, A. P.;
 Xia, Y. U. S. Patent: 4929731, 1990. (c) Kozikowski, A. P. J. Heterocycl. Chem., 1990, 27, 97. (d) Kozikowski, A. P. Reddy, E. R.; Miller, C. P. J. Chem. Soc., Perkin Trans. 1, 1990, 195. (e) Kozikowski, A. P.; Xia, Y.; Reddy, E. R.; Tückmantel, W.; Hanin, I.; Tang, X. C. J. Org, Chem., 1991, 56, 4636.
- Para una revisión acerca de la síntesis de Hantzsch de tiazoles, véase: Katritzky, A. R.; Rees, C. W. en *Comprehensive Heterocyclic Chemistry*; Potts, K. T. (Ed); Vol. 6, 296-300, Pergamon Press: New York, 1984.
- Para un ejemplo de preparación de 2-aminotiazoles, véase: Eriks, J. C.; van der Goot,
 H.; Sterk, G. J.; Timmerman, H. en J. Med. Chem., 1992, 35, 3239.
- La 4-propanamidociclohexanona (114) se preparó de manera análoga a la 4acetamidociclohexanona: (a) Hall, H. K. J. Am. Chem. Soc., 1958, 80, 6412. (b) Fraser, R.; Swingle, R. Can. J. Chem., 1970, 48, 2065.
- Para una revisión acerca de 2-hidroxitiazoles, véase: Barrett, G.C. en *Tetrahedron*, 1980, 36, 2023.
- 62. Davies, W.; Maclaren, J. A. J. Chem. Soc., 1951, 1434.
- Para una revisión acerca de derivados de la ergolina como agonistas dopaminérgicos, véase: referencia 6, pág. 308-309.

- 64. Patai, S. The chemistry of acyl halides, p. 50, John Wiley & Sons: London, 1972.
- La (S)-5,6-bis(benciloxi)-N-propil-1,2,3,4-tetrahidro-2-naftilamina 172 fué proporcionada por Laboratorios Zambon S.A. (ee: 99,2%).
- Shostakovskii, M. F.; Rabinovich, M. S.; Levitov, M. M.; Verkhovtseva, T. P.; Preobpazhenskaya, E. V.; Kulikova, G. N.; Kalinovskii, O. A. J. Gen. Chem. USSR (Eng. Transl.), 1961,31,1345.
- 67. Yamanari , K.; Hidaka, J.; Shimura, Y. Bull. Chem. Soc. Jpn., 1977, 50, 2299.
- 68. Jung, M. E.; Lyster, M. A. J. Org. Chem., 1977, 42, 3761.