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Summary

The seeking of process sustainability forces enterprises to change their operations. Additionally, the
industrial globalization implies a very dynamic market that, among other issues, promotes the
enterprises competition. Therefore, the efficient control and use of their Key Performance
Indicators, including profitability, cost reduction, demand satisfaction and environmental impact
associated to the development of new products, is a significant challenge. All the above indicators
can be efficiently controlled through the Supply Chain Management. Thus, companies work
towards the optimization of their individual operations under competitive environments taking
advantage of the flexibility provided by the virtually inexistent world market restrictions. This is
achieved by the coordination of the resource flows, across all the entities and echelons belonging to
the system network. Nevertheless, such coordination is significantly complicated if considering the
presence of uncertainty and even more if seeking for a win-win outcome.

The purpose of this Thesis is extending the current decision making strategies to expedite these
tasks in industrial processes. Such a contribution is based on the development of efficient
mathematical models that allows coordinating large amount of information synchronizing the
production and distribution tasks in terms of economic, environmental and social criteria.

This Thesis starts presents an overview of the requirements of sustainable production processes,
describing and analyzing the current methods and tools used and identifying the most relevant open
issues. All the above is always within the framework of Process System Engineering literature.

The second part of this Thesis is focused in stressing the current Multi-Objective solution strategies.
During this part, first explores how the profitability of the Supply Chain can be enhanced by
considering simultaneously multiple objectives under demand uncertainties. Particularly, solution
frameworks have been proposed in which different multi-criteria decision making strategies have
been combined with stochastic approaches. Furthermore, additional performance indicators
(including financial and operational ones) have been included in the same solution framework to
evaluate its capabilities. This framework was also applied to decentralized supply chains problems
in order to explore its capabilities to produce solution that improves the performances of each one
of the SC entities simultaneously. Consequently, a new generalized mathematical formulation
which integrates many performance indicators in the production process within a supply chain is
efficiently solved.

Afterwards, the third part of the Thesis extends the proposed solution framework to address the
uncertainty management. Particularly, the consideration of different types and sources of
uncertainty (e.g. external and internal ones) where considered, through the implementation of



preventive approaches. This part also explores the use of solution strategies that efficiently selects
the number of scenarios that represent the uncertainty conditions. Finally, the importance and effect
of each uncertainty source over the process performance is detailed analyzed through the use of
surrogate models that promote the sensitivity analysis of these uncertainties.

The third part of this Thesis is focused on the integration of the above multi-objective and
uncertainty approaches for the optimization of a sustainable Supply Chain. Besides the integration
of different solution approaches, this part also considers the integration of hierarchical decision
levels, by the exploitation of mathematical models that assess the consequences of considering
simultaneously design and planning decisions under centralized and decentralized Supply Chains.

Finally, the last part of this Thesis provides the final conclusions and further work to be developed.



Resumen

La busqueda de procesos sostenibles fuerza a las corporaciones a cambiar la manera en que operan.
Adicionalmente, la globalizacion industrial implica un ambiente dinamico en los mercados que,
entre otras cosas, promueve la competencia entre esas corporaciones. Por lo tanto, el uso eficiente y
control de las los indicadores de rendimiento, incluyendo rentabilidad, reduccion de costo,
satisfaccion de la demanda e impacto ambiental asociado al desarrollo de nuevos productos,
representa un desafio significativo. Todos esos indicadores pueden ser eficientemente controlados
mediante la gestion de cadena de suministro. Por lo tanto, las compafiias buscan la sostenibilidad
mediante la optimizacion de sus operaciones individuales dentro de un ambiente competitivo,
tomando en cuenta la flexibilidad proveniente de las pocas restricciones en el mercado mundial. Lo
anterior puede ser logrado mediante la coordinacién de los flujos de recursos a través de todas las
entidades y escalones pertenecientes a la red del sistema. Sin embargo, dicha coordinacion se
complica significativamente si se quiere considerar la presencia de incertidumbre, y se complica
aun mas, si se busca Unicamente una situacion de ganar-ganar.

El propésito de esta tesis es extender el alcance de las estrategias actuales de toma de decisiones
con el fin de acelerar/facilitar estas tareas dentro de procesos industriales. Estas contribuciones se
basan en el desarrollo de modelos matematicos eficientes que permitan coordinar grandes
cantidades de informacion sincronizando las tareas de produccion y distribucion en términos
econdmicos, ambientales y sociales.

Esta tesis inicia presentando una vision global de los requerimientos de un proceso de produccion
sostenible, describiendo y analizando los métodos y herramientas actuales asi como identificando
las areas de oportunidad mas relevantes. Cabe mencionar que todo lo anterior se centra en el marco
de ingenieria de procesos

La segunda parte de esta tesis se enfoca en enfatizar las capacidades de las estrategias de solucién
multi-objetivo. Durante esta segunda parte, primero se explora el como la rentabilidad de la cadena
de suministro puede ser mejorada Unicamente considerando multiples objetivos bajo incertidumbres
en la demanda. Particularmente, diferentes marcos de solucion han sido propuestos en los que varias
estrategias de toma de decision multi-criterio han sido combinadas con aproximaciones estocésticas.
Por otra parte, indicadores de rendimiento (incluyendo financiero y operacional) han sido incluidos
en el mismo marco de solucion para evaluar sus capacidades. Este marco fue aplicado también a
problemas de cadenas de suministro descentralizados con el fin de explorar sus capacidades de
producir soluciones que mejoran simultdneamente el rendimiento para cada uno de las entidades



dentro de la cadena de suministro. Consecuentemente, una nueva formulacién matematica
generalizada que integra muchos indicadores de rendimiento en los procesos de produccion dentro
de una cadena de suministro es eficientemente solucionado.

Mas adelante, la tercera parte de la tesis extiende el marco de solucion propuesto para abordar el
manejo de incertidumbres. Particularmente, la consideracion de diferentes tipos y fuentes de
incertidumbre (p.ej. externos e internos) fueron considerados, mediante la implementacion de
aproximaciones preventivas. Esta parte también explora el uso de estrategias de solucién que elige
eficientemente el nimero de escenarios necesario que representan las condiciones inciertas.
Finalmente, la importancia y efecto de cada una de las fuentes de incertidumbre sobre el
rendimiento del proceso es analizado en detalle mediante el uso de meta modelos que promueven el
analisis de sensibilidad de dichas incertidumbres.

La tercera parte de esta tesis se enfoca en la integracion de las metodologias de multi-objetivo e
incertidumbre anteriormente expuestas para la optimizacién de cadenas de suministro sostenibles.
Ademas de la integracién de diferentes métodos. Esta parte también considera la integracion de
diferentes niveles jerdrquicos de decision, mediante el aprovechamiento de modelos matematicos
que evallan las consecuencias de considerar simultaneamente las decisiones de disefio y planeacion
de una cadena de suministro centralizada y descentralizada.

Por ultimo, la parte final de la tesis detalla las conclusiones finales y el trabajo a futuro necesario
sobre esta linea de investigacion.
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Chapter 1

Introduction

The purpose of this chapter is to place the reader within the context of this Thesis giving an
overview of the main challenges to be addressed in the near future by the global industry in terms of
process economics and resources consumption. A brief overview of the current state of the art will
be provided (and extended in further chapters) in order to identify the most promising alternatives
used to improve the process sustainability. The search for sustainability approaches is focused but
not limited to design and supply chain management (SCM) optimization techniques. The chapter
finishes with the general objectives and the outline of this Thesis.

1.1.Introductory perspective and global market issues

During the last 30 years, the European Union (EU) has established itself in the top three of the
chemical producers worldwide, just below China and EEUU (European Chemical Industry Council
2017). In 2017, world chemical sales were valued at more than €3,000 billion, of which the EU
accounts for 15.5% approximately, directly contributing to 1.15 million working opportunities. In
particular, Germany, France, Italy, Netherlands, Spain, Belgium and the United Kingdom account
for 83% of the total EU chemical sales. Notice that EEUU holds the first place as exporter country
in the world (19%), while EU as a community was accounting near to 22% (€136.2 billion) of total
global trade in 2017. Although it is remarkable the good performance of the EU due to its well-
structured financial oriented network, a 20% decrease in EU chemical exportation has been
recorded during the last four years which reflects the effect of market globalization (Kato and
Okubo, 2018). Consequently, an intensive work in logistic strategies is needed for worldwide
enterprises to recover/maintain market leadership disregarding the chaotic and very competitive
environment. For this purpose, the following issues have to be simultaneously addressed:

o Efficient model and control of highly complex networks.
o A well-balanced policy for the material, energy, money and information flows.
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e Reducing and preventing unfavorable environmental and social impacts (e.g. “Green
engineering”).

e Intensive collaboration in multidisciplinary areas, promoting the development of integrated
frameworks.

o Efficient resource occupation (optimal process management)

The Process Systems Engineering (PSE) community is particularly well positioned to address the
above needs, combining the concepts of modeling, simulation, optimization, and process control for
the analysis, evaluation, optimization for the design and operation of chemical systems. Despite the
significant advances in the development of approaches, methodologies and computational
procedures to address the above issues, the following particular challenges remain as open issues
for PSE researchers (Grossmann, 2017):

e Improving the use and quality of the environmental indicators for the design of eco-friendly
processes

Integrating dynamic and discrete strategies (development of hybrid approaches)

Real-time scheduling and optimization

Synthesizing safe operating procedures

Multi-scale dynamic modeling

Developing integrated frameworks for the control of complex systems

The majority of these issues have their own limitations and specific application requirements to
process problems; however, the design and management of sustainable processes (i.e. integrating
dynamic and discrete strategies) are of special interest, since it has to be applied for all the industrial
activities worldwide. Thus, this Thesis focuses on the issues associated with sustainability
problems.

The accelerated environmental deterioration is one of the main side effects of the growth in both,
population and industrial presence/activities worldwide. Therefore, in order to preserve/ensure a
high quality in life standards, researchers are currently making an effort to develop approaches that
promote sustainable solutions facilitating the efficient management of natural resources (such as
water and biomass), reduce emissions (i.e. atmosphere issues), and develop alternative energy
production processes (i.e. reduce fossil-fuel dependency (Matson, 2001). In particular, these
approaches assist in the evaluation, identification and reduction of the most damaging industrial
activities; however, they were not applied in the industrial sector until the appearance of high
government subsidies.

In this scenario, an efficient water management strategy is essential to promote the sustainability of
any industrial network/process since it is unlikely to find an industry operating under a water-free
policy. For instance, pharmaceutical, petrochemical, food and energy production processes typically
require large amounts of freshwater (bigger amounts than any other resource). Besides, the water is
a non-renewable resource; therefore the alternative sources are very limited. Thus, there is a need
for a globally efficient water perseveration strategy.

1.2.Water situation
The overexploitation of water reserves has been intensified in the last three decades, due to the
inefficient use of water resources, industrial development, and the unproportioned population

growth and life standard enhancement. Fig. 1.1 displays the high correlation between water
withdrawal and population growth.
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Recent reports show that agriculture, public supply and industrial activities represent the majority of
global freshwater requirements. In particularly, agricultural sector uses 69% of the consumed water
worldwide, while industry achieves a 19% (Shiklomanov, 1999; Mirata and Emtairah, 2010).
Notice that these values change as a function of the geographical regions. Besides their different
water consumptions, agricultural and industrial activities have a global efficiency of 70% and 10%,
respectively. These values represent to which extent an activity take profit of freshwater, calculating
the ratio between the real exploited water (i.e. water withdrawal minus water losses) and the net
water withdrawal. Note that the water losses include evaporation, filtration, and wrong process
selection (Mirata and Emtairah, 2010). Fig. 1.2 illustrates the evolution of water efficiency over the
last 30 years. Notice that there is a significant opportunity area to improve the performances of
agricultural and industrial activities and ultimately reduce the water consumption.
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Figure 1.2. Behavior of water consumption in agricultural, industrial and domestic activities around the globe

(AQUASTAT, 2016).
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EU agricultural and industrial activities consume 25 and 54% of the total water withdrawals,
respectively. Notice that contrary to the global proportion, industrial activities represents a larger
proportion if compared with agricultural ones, and the reason is that in average EU economy is
based on industry (Hispagua, 2010). Nevertheless, Spain presents a different behavior since it is
one of the EU members that based its economy on agricultural activity, consuming for this purpose
55.9 km/year against the 25 km?3/year of freshwater used in industry. Thus, the annual waste for
Spain is estimated in 39.3 km® of freshwater (AQUASTAT, 2016; UNEP, 2007), which can be
potentially reduced through the optimal management of the basic water-based tasks in the chemical
industry (such as washing, diluting, cooling, or transporting). For this purpose, reuse and recycling
strategies have been used for achieving savings up to 50% (Mirata and Emtairah, 2010). In
addition, water regeneration strategies have been implemented in the industrial context for the
optimal design of water networks (Foo, 2009). Nevertheless, the application of these strategies is
sometimes limited to address problems with the following assumptions:

e The regionalized problem in which the variability of water availability and quality are
controlled/known beforehand (i.e. Small and/or medium scale problems).
e Single contaminant problems.

Thus, the use of Supply Chain Management (SCM) concepts represents a powerful tool to control
the use of resources.

1.3.Supply Chain Management concepts and Integration.

Historically, a set of interconnected entities representing a complete process and distribution
network is known as a Supply Chain (SC). The elements/entities within a SC typically play one of
the following four roles: supplier, producer, distributor and/or market center as displayed in Fig. 1.3
(Puigjaner and Guillén-Goséalbez, 2008).
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Figure 1.3. Example of different SC’s arrangements.



The efficient coordination of the exchangeable resources (i.e. material, energy and information)
within the entire SC leads to the concept of SCM (Beamon, 1998; Tang, 2006). The main SCM
purpose is to ensure a consumer satisfaction level while maximizing the process performance
(typically economic) by synchronizing the following activities:

e Acquiring the required basic supplies (e.g. raw material, water, and electricity).
e Converting raw materials into intermediate and/or specified final products.
e Distributing intermediate and final products across the whole system.

The global concern in environment preservation initially justified the inclusion of waste treatment
tasks as a mandatory activity for the SCM to reduce pollutants in residual flows (Lainez-Aguirre et
al., 2007; Tang, 2006). Nowadays, this concern has evolved and the concepts of “industrial
symbiosis” and “circular economy” play an essential role in the management of a SC (Zhang et al.,
2015). Notice that due to the accelerated globalization, the current network includes a huge amount
of alternatives for the material suppliers as well as potential customers increasing its complexity and
compromising its efficient coordination. Thus, to assist the solution of SCM problems, a
classification based on the horizon considered is commonly used.

e Strategic level (long-term planning): This category typically considers a yearly-based
discretization, in which the decisions include mainly the number and locations of facilities
as well as its capacities. Notice that these decisions have a significant economic impact
since large investments is made at this point.

e Tactical level (medium-term planning): This level typically assumes a monthly-based time
horizon in which the operations of the process are optimized to satisfy the product demand
in the most efficient way. Tactical decisions include the amounts of exchangeable resources
(i.e. acquisition and distribution), optimal production targets and inventory levels across the
time.

e Operational level (short-term planning or scheduling): Decision at this level includes the
detailed equipment operations (startup and shut down), the production quantities, and task
sequencing to specific equipment. For this level, a daily time horizon is commonly used and
consequently these decisions are constantly adjusted.

Notice that these levels are strongly dependent, therefore, SCM decisions at each level should be
coordinated with the decisions made in all the other levels.

1.3.1. Integrated Supply Chain Management.

The general idea behind SCM is to take efficient decisions despite the conceptual barriers produced
between the different hierarchical levels and geographical allocations as displayed in Fig. 1.4
(Varma, et al., 2007). Even if there are many works addressing this issue, the original challenge to
break down “walls” still remains due to the increasing pressure on respond to the customer
requirements with maximum enterprise-wide revenues, efficient facility utilization, minimum
inventory, and minimum ecological footprint simultaneously (Hameed, 2007). Such a coordination
of multiple SC’s at different hierarchical levels represents an Enterprise-Wide Modeling and
Optimization (EWMO) problems. Even if EWMO do not add new challenges to the ones associated
to SCM, it emphasizes them since many of them have to be addressed together.
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The coordination of an enterprise-wide network focuses on taking the planning, scheduling and
control, decisions that often requires specific knowledge of process engineering (Grossmann, 2005).
In addition, such a management increases in complexity when considering market dynamics,
uncertainties, and internal business operations (Shapiro, 2006; Blanchard, 2004). Therefore, an
integrated management framework considering uncertainties and SC dynamics is required. Such
approach should ensure a flexible, accurate, and robust response to changes in the business
environment.

1.3.2. SC Mathematical Modeling

Mathematical modeling aims to represent a defined system as close to the reality as possible
through a set of equations. The resulting model is expected to mimic accurately a system’s
behaviors promoting its control using performance measurements (Morris, 1967). In particular, SC
modeling is used for the proper network control and coordination, identifying potential bottlenecks
and, ultimately, producing the optimal management.

Structural arrangements

As commented, a SC is a set of different task-oriented entities; moreover, the same set of elements
can lead to different organizational problems depending on their particular arrangement. Commonly
two categories exist based on the decision-making domain (i.e. the “power”/influence of one
decision maker over the different elements of the process).

Centralized. Is the most commonly used scheme in the literature since it significantly eases the
network coordination by considering that a single entity has the full control to take all the SC
decisions. In particular, such a central entity collects the information describing the whole system
and uses it to optimize the performance from a global perspective. The main drawback of such an
approach is that the central entity (i.e. decision-maker) assumes a passive attitude for the rest of the
SC members and their individual performances are disregarded. Therefore, while addressing



dynamic market problems, the use of a centralized scheme is inefficient and very often leads to
decisions that are hardly accepted by all the process members (i.e. unbalanced/unfair solutions).

Decentralized. Contrary to the centralized one, this approach is a more accurately representation of
the reality considering an active attitude of the entire set of SC members. Thus, they should take
their own decisions as a function of their individual performances. Notice that, even if this scheme
promotes the generation of a well-balanced solution seeking the highest benefit for all the entities,
its application is complex for two main reasons:
0] The decisions of a SC member affect the system performances and, consequently,
condition the other elements decisions (Vonderembse et al., 2006).
(i) There is a lack of information between SC members regarding performances,
preferences and behaviors, compromising the robustness/confidence of the final
decisions.

Notice that among these two extreme approaches, an intermediate situation may be considered. This
third scheme is named Semi-centralized; however this approach has been seldom analyzed in the
literature.

1.4.Research Scope and Objectives

The general goal of this Thesis is to apply and extend general PSE methods and tools in order to
develop decision support systems assisting the systematic SC’s planning and management, focusing
on the case of water and energy networks. It is expected to achieve such an objective by the
complete fulfilling of the following specific objectives.

e Develop robust mathematical models that better represent the resource SC and the
distribution links between members. Here, it is necessary to address the following issues:
» Account for the traditional planning decisions and parameters forecasting (i.e.
endogenous and exogenous uncertainty).
» Develop a multi-objective model considering at least economic, environmental
and social aspects.
» Evaluate multiple efficiency indexes as decision criteria within a MO problem
(risk metrics, water stress, etc.) to, ultimately, provide a robust/confident
decision.
» Evaluate the effect of uncertainties over a decentralized scheme under a
competitive environment.
e Address decision-making issues for sustainability problems under uncertainty by extending
the current multi-objective approaches (i.e. optimization and post-optimization strategies).
e Integrate all the available information related to a SC (at different levels) to promote the
reuse of resources (i.e. closed-loop problem) for both, centralized and decentralized SC.
e Apply surrogate models as a data-driven decision-making for resource SC problems.

1.5.Thesis outline
The Thesis structure was devised to address the decision-making issues previously discussed (see

Fig. 1.5); along it, multi-objective optimization and uncertainty approaches were considered as the
two key elements across the different parts of the Thesis.
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In addition to the overview of the current sustainability problems, particularly in resource
management (Chapter 1), the Part | of this Thesis includes a detailed state of the art for the
decision-making applications (Chapter 2) and the description of the advantages and disadvantages
of the methods used address sustainable SCM developed until now (Chapter 3). Notice that at the
end of Part I, the main trends and challenges are identified. Basically, in Part | the different
optimization techniques used throughout this Thesis have been outlined. The main concepts behind
each technique have been briefly introduced with the purpose of providing the reader with a general
understanding of the theory behind the solution techniques applied in this Thesis. Special emphasis
has been made in techniques and algorithms for Multi-objective optimization, stochastic
programming and decomposition techniques since their application to sustainability problems
requires a solid knowledge of their principles.

Part Il evaluates different decision-making approaches aiming to identify the overall better solution
for sustainability problems using multi-objective optimization. In particular, Chapter 4 explores the
use of Fuzzy-based formulations to address MO problems as a way to expedite the solution
identification in terms of quality and time efficiency. Complementarily, Chapter 5 emphasizes on
identifying the advantages and limitations of ELECTRE-IV and Fractional approach as decision-
making strategies to handle a large number of objectives/criteria as well as the explicit
representation of decision maker interests.

In Part Ill, the main challenges associated with the efficient representation and management of
uncertainties within a sustainable energy SC are addressed. Chapter 6 explores the use of a scenario
reduction method as a way to narrow down the computational effort required to optimize a problem
considering well-represented process uncertainties. In the same way, Chapter 7 proposes a data-
driven decision-making strategy capable of considering multiple sources of uncertainty
simultaneously within an energy generation SCM problem.

Across the entire Part 1V, the above MO and uncertainty management strategies are combined
within different integrated decision-making frameworks, which are capable of address multi-
objective problems affected by uncertainty conditions. Chapter 8 combines the use of the sample
average approximation to relax the two-stage stochastic formulation with the Pareto filter method to
identify the overall better solutions, while in Chapter 9 the traditional two-stage stochastic
optimization is used within a decentralized water management SC to address the uncertainty
condition while identifying the most appealing solution for all the SC partners using the ELECTRE-
IV method.

Finally, Part VV summarizes the main contribution of this Thesis and draws up concluding remarks
for future work.
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Figure 1.5. Thesis outline.
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Chapter 2

STATE OF THE ART

This chapter summarizes the major contributions made so far related to the optimization of SCs. In
addition, contributions proposing the combination of decision-support strategies to traditional
optimization methods in a single framework for its application to individual and integrated
hierarchical optimization problems will be detailed commented. Studies addressing the challenges
associated with resource management (including process uncertainties) are also reviewed. Finally,
this chapter identifies the most relevant open issues addressed in this Thesis.

2.1.Hierarchical Decision Making for SCM

As described in Chapter 1, since mid-eighties, a hierarchical approach (based on the considered
time-horizon has been considered as the most effective way to assist SCM optimization (Hax and
Meal, 1975), however, a disconnection between the different hierarchical levels is assumed. Hence,
current optimization approaches try to integrate different hierarchical levels using upper-layers
results as constraints for the lower-level problems. Such an approach implies handling a large and
changing number of constraints that complicates the solution. The above represents a poor
approximation, but is still used due to the lack of better analytic and data processing methods that
support a holistic integrated optimization approach. Thus, further research improving both,
technology and data-based optimization techniques is needed. The following subsections present a
detailed literature review on the algorithms and methods used to solve PSE problems at different
hierarchical level individually and integrated.

2.1.1. Strategic level

This level provides a general overview of the entire process network by identifying the optimal
location and SC’s entity type (i.e. supplier, producer, distributor, etc.). Traditionally, any design is
optimized based on an economic perspective, which may combine multiple factors, including
annual profit, total capital cost, net present value, or financial risk. Particularly, design and
allocation problems have been addressed since 1950’s, however it was in 1965 when the first
mathematically structured model appears by the hand of Balinski, (1965). Later, many mathematical
models addressing design and distribution optimization problems were proposed as described in the
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reviews of Garcia and You (2015) and Govindan et al., (2017). These problems include networks of
increasing complexity, varying from a simple plant to a simultaneous design/operation of a multi-
site SC’s. Notice that the investment decisions taken at this level have a significant impact on the
global economic performance since design problems are solved for a time horizon ranging between
two and seven years. Even if the basic decisions at this level are centered in allocation, process
manufacturing and distribution activities are considered from a general perspective employing basic
(and very often inaccurate) models. Lower-level decisions provide accurate and detailed
information, thus, the development of integrated hierarchical decision frameworks are justified.

These problems are traditionally modeled using a Mixed Integer Linear Program (MILP)
formulation that promotes the simplified representation of both, continuous and discrete variables.
Actually, the use of MILP formulations to optimize the economic performance of industrial
problem has significantly increased, especially after being successfully applied by Brown et al.,
(1987). The driving force of a SC network design is the constant pursuit of process flexibility, as
demonstrated by Ferrio and Wassick (2008) which identify the potential production/distribution
links and use this information to re-design the existing configuration and increase the process
performance. In parallel, Naraharisetti, et al., (2008) extend the formulation to consider different
investment alternatives describing the increment in equipment capacities. Later, Li et al., (2016) use
different pricing policies for the design of green supply chains to represent the
unpredictable/uncertain behavior of pricing variations. These prices, as well as the changing
environmental conditions are represented using a set of scenarios

Before Li et al., (2016), Guillén and Grossmann, (2009) stressed that controlling the effect of
uncertainties is of great relevance to any process management. The most common uncertainties
management technique is the multi-stage stochastic formulation. Many studies use such a
formulation in SC design (Govindan et al., 2017), including but not limited to enterprise-wide
distribution (Santoso et al., 2005), retrofit problem of a production/distribution network under
process uncertainty (Mele, et al., 2007) and pharmaceutical industry and resource problems
(Keyvanshokooh et al., 2016; Sadghiani et al., 2015; Vahdani et al., 2012). Despite the effective
uncertainty management for industrial problems, additional efforts are needed to reduce the solving
time required (i.e. computational effort). For this purpose, the contribution by Lainez-Aguirre et al.,
(2015) can be mentioned, in which a framework that combines state-task-network based approach
(STN) and Lagrangian decomposition has been proposed. Such a framework addresses the
management of a large and detailed amount of information at each node to maximize the economic
benefit and network flexibility in a time-effective way. Notice that in addition to Lagrangian
decomposition, other decomposition strategies/methods have been considered for the design/re-
design of chemical production process and energy networks (Corsano et al., 2014).

Besides the improvements in the optimization strategies for the design of complex networks,
another important issue is the simultaneous consideration of multiple objectives and/or key
performance indicators. Among these studies, Lainez-Aguirre et al., (2010) produce a great
contribution in which a Mixed Integer Non-Linear Programming (MINLP) formulation was used to
manage the trade-off between marketing and SC design decisions. Similarly, the sustainable SC re-
design has been applied to a bioethanol production process considering the global economic
performance as well as multiple financial risk metrics as objectives (Kostin et al., 2012). All these
contributions consider only economic nature objectives; nevertheless, its combination with another
type of objectives (such as environmental ones) is basic for the pursuit of process sustainability. In
this line, Guillén and Grossmann, (2009, 2010) and Ruiz-Femenia et al., (2013) address the
sustainable design of chemical production processes, while Pérez-Fortes et al., (2012) and Lainez-
Aguirre et al., (2017) optimized a regional bio-based energy SC and Gao and You (2015) the
energy-water networks.
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Besides the significant advances in optimization strategies combining both, multi-objective
consideration and uncertainty management, further studies are still required, especially to address
problems under the effect of variable market environments. Therefore, open issues and challenges
regarding market behaviors (e.g. industrial cooperation/competition) and computationally
limitations (model requirements and technology improvements) must be addressed by the
simultaneous development of:

e Efficient multi-objective approaches that consider more than two objectives (or
performance indicators).

e New and more efficient numerical algorithms to solve complex non-linear models that
provide more accurate problems representation.

e An integrated decision-support strategy (i.e. a combination of multi-objective and
uncertainty management methodologies) to promote the identification of reliable solution in
terms of financial and environmental performance.

2.1.2. Tactical level

In mid-term planning the most efficient resources acquisition, production, inventory, and
distribution levels across the entire network are calculated. Planning problems base their
formulation on three main elements:

(i) Material and energy balances between each process equipment/location;

(if) The detailed information regarding resources availability and demand, distances between
SC members, selling/buying prices, raw material availability, production boundaries and
distribution/storage capacities.

(iii) Fixed configuration data defined in the upper-level (strategic decisions).

Alike in strategic level, here a MILP model is frequently used not only to include discrete and
continuous variables, but also to consider some financial behaviors (including investment cost, price
fluctuations, and price policies).

One of the first and outstanding contributions in planning problems is the one presented by
Wilkinson et al., (1996) in which a continent-wide network consisting of three multipurpose
production facilities that supply a vast variety of products across the European market was
coordinated. Lately, this kind of mathematical programming has been increasingly used to solve
this kind of problems, for instance, McDonald and Karimi (1997) extend the Wilkinson formulation
to address the optimization of a multi-period SC problem. Similarly, Jackson and Grossmann,
(2003) enhance even more the multi-period approach to consider a multi-site
production/distribution network considering non-linear relations in the production plants. These
non-linear behaviors have been modeled through a MINLP formulation and they have been
successfully applied to pharmaceutical (Papageorgiou et al., 2001; Sousa et al., 2011; Susarla et
al., 2012), agrochemical (Sousa et al., 2008), and refineries planning problems representing,
chemical recipes, cost functions, or product/resource properties. More recently, its application to
dynamic optimization problems has been considered to address bio-refinery processes by
incorporating a Model Predictive Control (MPC) approach (Santibafiez-Aguilar et al., 2015). It is
worth to mention that these studies improve the quality of the process representation by collecting a
large number of details; however, solving a well-represented problem is, most of the times, very
difficult (complex) due to a large number of required equations and constraints. Besides the
improvements in models development, the reduction of computational effort required to solve them,
remains a significant challenge. As well as in the upper-level cases, strategies based on Lagrangean,
spatial and temporal decomposition were proposed to address such an issue.
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Lagrangean decomposition techniques have been used to address non-linear multi-period
production/distribution problems (Jackson and Grossman, 2003). In essence, the large-scale
problem is decomposed in different temporal schemes (i.e. smaller instances) that solve it
sequentially. Similarly, bi-level decomposition strategies have been used for planning problems, for
example, Ryu and Pistikopoulos (2007) optimize the operations/distributions of a multi-period SC.
In this case, the first level defines the SC demands based on the geographical distribution, while, for
the second part, these values are used as parameters for the optimization of the single-site planning
problems. Remarkably, decomposition strategies that promotes a time-effective solution to
industrial planning problems have been also combined with tailor-made methods such as Vendor
Managed Inventory (VMI) formulation (Al-Ameri et al., 2008), Resource-Task Network (RTN)
(Pantelides, 1994) and Rolling Horizon (RH). Many PSE literature reviews on integrated strategies
to address design and planning problems agrees that The treatment of uncertainty requires further
research effort to capture aspects such as product prices, resource availabilities etc. In order to
ensure that investment decisions are made optimally in terms of both reward and risk, suitable
frameworks for the solution of supply chain optimization problems under uncertainty are required
(Papageorgiou, 2009; Mula et al., 2010; Diaz-Madrofiero et al., 2014).

Multiple PSE authors agree that most of the mentioned approaches, even if computationally
efficient, present two main limitations. First, they address the problem considering a unique
objective function and secondly, the effect of uncertain/variable conditions on the process behavior
is traditionally neglected. Hence, to promote the efficient SC’s management and the effective use of
resources (such as water and/or energy), it is imperative to address these challenges. In this regard,
several studies use a sort of multi-criteria approaches seeking for the process sustainability. For
instance, Fahimnia et al., (2015) evaluates the trade-off between carbon emissions, energy
consumption, and waste generation. In Parallel, Boukherroub et al., (2015) proposed a multi-
objective model, which considers simultaneously the economic, environmental and social impacts,
while Rojas-Torres et al., (2015) take into account the water savings and land use as additional
objectives to the global economic performance.

As commented, resource SCM has emerged as a seldom explored research field that required not
only the consideration of typical MO challenges, but also those associated with their
uncontrollable/uncertain conditions. In this regard, several studies have been proposed to promote
an environmentally conscious SC design under uncertain parameters/conditions (Cheng-Liang et
al., 2004; Ruiz-Femenia et al., 2013; Luo et al., 2016). Mathematical models have been used to
represent a wide variety of sustainability problems under uncertainty, including, chemical and
pharmaceutical production, food industry and energy/water networks (Seuring and Midiller, 2008;
Ahi and Searcy, 2013). Despite the significant improvements in uncertainty managements strategies
(at single and multiple hierarchical levels), they are limited to single objective problems; thus, there
is a need for further studies promoting the development of integrated frameworks combining MO
and uncertain management strategies at multiple hierarchical levels.

2.1.3. Operational level

At this level, the equipment allocation and use of resources are calculated for a short-time period,
which is critical for both, batch and continuous processes. Even if the basic concepts of this level
are similar to those in the upper ones, here the main purpose is to optimize process operation
solving the question of what, where, how and when to produce a specific product. In particular, the
decisions to be made, include the production dimensions (e.g. lot sizing for batch processes),
production allocation, and start-up and shut-down times. Remarkably, in operational models, the
main decisions defined in upper hierarchical levels (including, the SC configuration and
available/required resources) are generally considered as parameters.

16



To address scheduling problems, researchers have proposed mathematical models representing
different process situations, including short-term scheduling of batch plants (Pinto and Grossmann,
1995), multi-product batch plants (Méndez and Cerda, 2007; Marques de Souza Filho et al., 2013;
MirHassani and BeheshtiAsl, 2013) and multi-period optimization models (Kabra et al., 2013).
Particularly, MILP models have been used in multi-product, multi-task batch processes for single-
stage (Castro et al., 2008; Castro and Grossmann, 2012) and multi-stage production plants (Prasad
and Maravelias, 2008). Despite the usefulness of the above algorithms for short-term scheduling
problems, developing mathematical approaches for the systematic solution of multi-site scheduling
problems (i.e. complex enterprises) is a significant opportunity area and needs further efforts. In this
line, bi-level decomposition algorithms (Bok et al., 2000) and heuristic decomposition algorithm
based on variable-length slots (Jetlund and Karimi, 2004) appears as a promising alternative.

Alike in upper decision-levels, the effect of uncertain conditions significantly affects the
optimization methods. Actually, the use of STN formulation, firstly introduced by Kondili et al.
(1993), was used to promote a control of the tasks, raw matter, intermediate and final products at
each process node (Guillén-Gosalbez et al., 2006). Furthermore, several authors have used the STN
formulation for a discrete (Maravelias and Grossmann 2003b; 2006) and continuous time
representation (Maravelias and Grossmann, 2003a). Later, Bose and Bhattacharya (2009)
developed a MILP formulation to optimize the schedule of several continuous processing units
using the STN representation. These formulations require the management of a large number of
equations/constraints, thus, the use of decomposition strategies is required. Additionally, different
approximations techniques can be used including the rolling horizon and graphical approaches (S-
graph). Rolling horizon focuses on the management of the uncertain parameters while S-graph
seeks to reduce the computational effort comparing with conventional mathematical programming
techniques.

Scheduling decisions significantly affect process feasibility and sustainability, thus, in addition to
economic performance, environmental and financial robustness criteria must be considered. In fact,
many MO strategies assist such a consideration within scheduling problems including goal
programming (GP) (Zhou et al., 2000), mixed-integer linear fractional programming (MILFP) (Yue
and You, 2013), heuristic approaches (Lin et al., 2013), and Fuzzy programming (Zakariazadeh et
al., 2014). Most of have been applied to a wide variety of problems including energy generation,
petrochemical industrial processes (Inamdar et al., 2004) and discrete scheduling models (Capén-
Garcia et al., 2014) and its use assist in the generation of a single and well-balanced solution for bi-
objective problems. As commented, the solution of any MO problem increase in complexity when
considering more than two objectives as well as the effect of uncertainties over the system
performance, therefore, strategies addressing both, MO and uncertainty management are presented
in sections 3.3 and 3.4.

From this literature review, it is clear that the hierarchical levels share some challenges that can be
addressed by developing a solution framework capable of managing MO and uncertainty problems
individually and all together. Note that such a framework must be computationally efficient to
provide an optimal solution facilitating the decision-maker procedure. Addressing these issues will
settle the basis for further contributions regarding hierarchical level integration. Thus, the next
sections display the current state of the art on hierarchical level integration, MO and uncertainty.
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2.2.Hierarchical levels integration for the decision-making

During SCM, many decisions are taken at each hierarchical level; however, such an issue increases
in complexity when considering the interaction between them (Grossmann, 2004; Shah, 2005;
Varma, et al., 2007; Maravelias and Sung, 2009; Papageorgiou, 2009). Moreover, hierarchical
layers interactions between each pair of are of great relevance for PSE and can be categorized as: (i)
Design-planning; (ii) Planning-scheduling and; (iii) Design-scheduling.

To coordinate design and planning decisions, some integrated strategies have been proposed based
on decomposition strategies to address a wide variety of problems, including multi-site SCs
(Kallrath, 2002), multi-echelon multi-product multi-site SC (Tsiakis and Papageorgiou, 2008) and
non-linear multi-product SC (You and Grossmann, 2008). Later, You et al., (2011) use a multi-
period MILP model to optimize a multi-site multi-product large-scale chemical process. Even if
using decomposition approaches, they compare Lagrangean and bi-level algorithms to identify the
most efficient one in terms of computational effort, being bi-level the one that shows better results.
Notice that the increasing interest in developing sustainability process justifies the combination and
application of MO strategies within design-planning integration frameworks. A representative
example of this kind of problems is the closed-loop SCs (CLSC) in which, in addition to the process
performance, the efficient resource exploitation is promoted. In this line, Lee et al., (2009) propose
a model that manages the system using re-manufacturing activities, while Zhang et al., (2011) apply
the same reverse logistics to address the management of municipal solid wastes networks.
Remarkably, the integrated design-planning of sustainable frameworks also requires to address
uncertainty challenges. In this regards, Kostin et al., (2012) apply integrated frameworks to the
bioethanol and sugar production problem under demand uncertainty, while in the same year,
Zeballos et al., (2012) use them in a large-size glass industry SC considering quantity and quality
uncertainties for the backward flows. Similarly, Cardoso et al., (2013) optimize a CLSC model
under demand uncertainty, while Zeballos et al., (2014) optimize a multi-period multi-stage CLSCs
considering the emissions costs of the different logistic modes. More recently, Ng et al., (2015)
propose a strategy that exploits the concept of industrial symbiosis to integrate design and planning
decisions within bioenergy parks.

Within the wide variety of PSE studies addressing the SCM hierarchical levels integration, the ones
that deal with planning and scheduling problems have a positive impact on batch processes. In this
line, Maravelias and Sung (2009) published a very detailed review of the feasible strategies to
address these problems focusing on two main approaches:

i) Merge the scheduling decision variables within the tactical model.
i) Approximating the scheduling decisions by relaxing them.

In such a review, it was concluded that although the use of these approaches would lead to optimal
solutions, the problem size and its complexity significantly increases. Hence, several studies were
proposed to overcome these challenges. For instance, Neiro and Pinto (2004) use an integrated
strategy to solve the SCM of a petroleum industry, coordinating multiple refineries, equipment (e.g.
distillers), and pipelines networks as multi-period large-scale MINLP problem. Later, Sung and
Maravelias (2007) model the scheduling decisions as a set of linear surrogate constraints and
introduce them into the planning model for a multiproduct process network. In parallel, Erdirik-
Dogan and Grossmann (2007) use a bi-level decomposition technique combined with a RH
approach for the optimization of a single plant while afterward, Terrazas-Moreno et al., (2011)
extend such a formulation to consider multi-site multi-period SCs combining bi-level with spatial
Lagrangean decomposition. Notice that all these studies focuses on promoting the efficient
satisfaction of the computational requirements, which, is a challenge becoming more complicated
when multiple objectives and/or process uncertainties are considered. Therefore, in recent literature
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strategies addressing integrated planning and scheduling problems from a sustainability perspective
have been presented, including pharmaceutical industry (Colvin and Maravelias, 2008; Christian
and Cremaschi, 2014), but also for chemical processes (Shin and Lee, 2016) and energy generation
problems (Zhao et al., 2016). Commonly, studies in which resource utilization and acquisition are
optimized to satisfy the producer requirements under demand/availability uncertainties, uses a
decomposition strategy that simply splits the original problem into a planning problem controlling
the raw material procurements and a scheduling problem that manage its operations (work orders
satisfaction and material utilization). Very recently, Shang and You, (2018) propose a distributional
robust optimization as a novel approach for the planning and scheduling of a multi-purpose
pharmaceutical batch production process under demand uncertainty.

Opposite to the other two interactions, there are significantly low studies regarding complete
integration (design-planning-scheduling integration). In this line, the most significant contribution is
the one by Kallrath (2002) that integrate scheduling and strategic planning in a MILP multi-period
model for multi-site real production SCs.

Notice that despite the significant contributions for the integration of hierarchical levels, a large-
scale holistic model is required, even if it is likely to result in a very high complex optimization
problem. Therefore, in order to integrate different decisions at different time-scales the following
issues need more efforts:

» Developing/modifying algorithms to solve multi-objectives integration models.

» Considering new sustainability measures, risk, and resilience.

»  Combining planning and scheduling frameworks to promote the systematic decision-
making.

»  Combining different techniques to manage uncertainty.

» Developing/modifying algorithms to solve stochastic integration models.

» Incorporating different business functionalities and financial issues at different decision
levels.

« Considering logistics and inventory management.

Remarkably, the simultaneous consideration of planning and scheduling problems/issues has been
briefly addressed. For example, Gutiérrez-Limoén et al., (2016) propose a mixed integer dynamic
model for the optimal planning, scheduling and control of continuous reactors. A heuristic strategy
is developed as a reactive approach to tackle the uncertainty of demand, but still, more efforts are
required to extend such a holistic approach.

2.3.Multi-objective optimization

Traditionally, industrial processes focus on the optimization of the economic performance by
managing the basic operations such as product manufacturing, unit installation, and raw
material/product distribution. However, these activities have a negative effect on the environment,
hence, the control, as well as the emission reduction and wastes discharge, are the biggest industrial
concerns nowadays. Methods used to solve multi-objective optimization problems can be classified
into analytical and numerical approaches:

e Analytical methods consist of detailed mathematical calculations capable to reach an
exact solution. However, this type of methods very often requires a large number of
equations to approximate the problem in a realistic way.
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o Numerical methods seek to approximate the solution relaxing the complex
mathematical formulation and solving the problem iteratively. It has been traditionally
preferred to address realistic/complex problems rather than the analytical one.

Analytical methods are extensively used in PSE literature form which e-constraint can be
highlighted as the most widely used since it addresses multi-objective problems (Bojarski et al.,
2009; Guillén-Goséalbez and Grossmann, 2010; Ehrgott, 2005). This method systematically solves
the MO model at different defined objective constraints producing the well-known Pareto frontier,
which collects only dominant solutions (i.e. a solution that cannot improve one objective without
deteriorating any other). Even if g-constraint efficiently identifies the Pareto frontier, the associated
solution identification challenge remains unsolved. For this purpose, alternative approaches
including Pareto filters (Pozo et al., 2012; Antipova et al., 2015), data envelopment analysis
(Limleamthong et al., 2016), ELECTRE methods, and bi-level optimization (Guarnieri, 2015;
Limleamthong et al., 2017) can be used to narrow down the number of Pareto solutions. Even if
these strategies promote the efficient identification of a single overall optimal solution expediting
the decision-maker task, their application requires the definition of a set of parameters representing
the decision maker preferences. Such a definition (typically arbitrary), introduces subjectivity in
the solution identification procedure while compromise the solution optimality. In addition, the
evaluation of the feasible solution implies an additional computational effort to the one required to
build the Pareto frontier

In order to bypass such an additional time requirement, several approaches have been proposed that
promote the generation of a single overall optimal solution directly after solving the model. Those
approaches includes, goal programming (Charnes and Cooper, 1961), multiparametric
programming (Pistikopoulos et al., 2007; Oberdieck and Pistikopoulos, 2016), analytical
hierarchical processes (Saaty et al., 2008), weighted sum approach (Marler and Arora et al., 2010),
dictionary ordering (Cui et al., 2017), metaheuristics (Lin et al., 2013), lexicographic minimax (Liu
and Papageorgiou, 2013), surrogate modelling (Beck et al., 2015), and fractional programming
(Yue et al., 2013). These methods have been extensively used addressing a wide variety of MO
problems, including, chemical (Rodera et al., 2002), pharmaceutical, petrochemical (Zhong and
You, 2011), automotive, water networks (Grossmann and Guillén-Gosalbez, 2010; Zhang et al.,
2014; Rojas-Torres et al., 2015), and power plants (Gonzalez-Bravo et al., 2016) applications.
Remarkably, even if these approaches facilitate the solution comparison, they still need a
parameters definition. Therefore, the effect of the hierarchies/preferences has to be assessed in
further studies.

Recently, the PSE community has intensified the contributions addressing the integration of MOO
approaches for the simultaneous management of different hierarchical levels. For example,
Fahiminia et al., (2009) optimized the production and distribution planning of a two-echelon supply
chain network, while Li et al., (2012) solved a multi-objective integrated planning and scheduling
problem.

Remarkably, all the challenges associated with MO problems increase in complexity when
managing uncertain conditions. In this line, several metamodeling-based approaches have been used
to map the process performances at different uncertainty values. These approaches include data-
driven robust optimization (Ning and You, 2017) and meta-multiparametric analysis (M-MP)
(Shokry and Espufia, 2015a; 2015b). Particularly, M-MP has been successfully applied to several
industrial cases including the sustainable management of a utility plant (Shokry and Espufa,
2015b), energy production process (Shorky et al., 2017), control of batch processes (Shokry et al.
2016), and emission control through systems scheduling (Lupera et al., 2016). Nevertheless, M-MP
framework is limited to handle continuous variables; thus, further work is needed to use this
framework in Mixed-Integer optimization problems.
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From this section, it is clear that solving a pure MO problem is not a challenge anymore; however,
there is always an opportunity area to be improved. Actually, the efficient description of the
objective function (i.e. obtaining a value that accurately represents the cause-effect of a particular
objective) is one of the most relevant gaps. Another open issue is the efficient combination of MO
approaches with uncertainty management on which requires additional efforts.

2.3.1. Cause-effect relationships

New tendencies force process managers to take into account many process conditions seeking for a
unique and robust solution that simultaneously satisfies multiple objectives. Even if traditional
multi-objective approaches have been effectively used, there is an opportunity to improve the
objective function formulation, in order to provide detailed information about the process
performance as well as the consequences of future operations/decisions. In this regard, the inclusion
of different efficiency indexes and performance indicators into the objective function have gain
wide popularity. For example, financial metrics, which are the most commonly used, provide
information related to the probability of generating winning/loses for a certain solution.
Nevertheless, there is another type of indicators, the operational indicators, that provides
information about the different environmental/social impact of a process. More information about
efficiency indexes is next provided.

Financial indicators

Financial management seeks to reduce the rejection of robust solutions that are commonly
discarded for the use of obsolete performance measurements during optimization (Bonfill et al.,
2004). The use of risk metrics provides a more accurate and detailed information regarding the
economic behavior. Some of the most common financial risk metrics used in the literature is now
briefly described:

e Downside Risk (DR): provides information related to the potential winnings associated with
a particular solution compared to a fixed target (Minimum allowable/desirable revenues).
The DR mathematical formulation is relatively easy since it avoids the use of binary
variables, and thus, it is very computationally efficient. Nevertheless, the lack of linear
correlation with the probability of occurrence is the main disadvantage of DR application
(Barbaro and Bagajewicz, 2004).

e Financial Risk (FR): In this case, the probability of not achieving a target value is
measured. Contrary to DR, the use of FR metric within a mathematical model leads to a
complex model due to the necessity of several binary variables (Bonfill et al., 2004), and
consequently, a large computationally effort is required. Using FR, the decision maker
forecasts, in some way, the occurrence of favorable solutions and not only maps the
economic behavior of a set of solutions. In essence, FR describes whether the solution
produces winnings but not how much, thus, creating a lack of quantitative knowledge
compromising the FR metrics usefulness.

e Value at Risk (VaR) and Opportunity Value (OV): These metrics assess the performance of
a solution in a given region of the cumulative probability curve. More precisely, the VaR is
the difference between the expected profit and the one corresponding to a probability of 5%
in the cumulative plot, while the OV is conceptually equal to VaR, but covers the upper side
of the risk curve (typically a percentile of 95%). From a strict point of view, VaR and OV
should be classified as a robustness measurement and not a financial risk metrics (Aseeri
and Bagajewicz, 2004; Aseeri et al., 2004), nevertheless, since they have been used in
decision support they can be treated indistinctively.

e Worst Case (WC): This is the most commonly used alternative to control the probability of
meeting unfavorable solutions. Here, the decision maker defines a range of values for which
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variations in the process performance are neglected. Traditionally, WC has been considered
as a risk metric since it correlates the expected profit and worst performance for a set of the
solution (Guillén et al., 2005; Ruiz-Femenia et al., 2013) while ensuring a low
computational effort. Several contributions have proven that WC approaches are highly
efficient in identifying robust schedules (Bonfill et al., 2004). The main disadvantage of this
metric is that in order to be effectively applied it must be analyzed simultaneously with a
qualitative objective performance (i.e. profit, cost, etc.) unlike the former risk
approaches/metrics.

The use of robust decision support strategies that combines multiple financial metrics has been
proposed in the past (Bonfill et al., 2004). Nevertheless, despite the advantages of these integrated
strategies, developing a single one that efficiently correlates quantitative and qualitative
measurements (probability and potential level of winnings/losses) simultaneously remains an open
issue.

Operational indicators

Similarly than the financial metrics, operational indicators seek to reduce the rejection of robust
solutions commonly discarded by the use of obsolete performance measurements during
optimization. Actually, the use of this kind of indicators is not new, and they are known as Key
Performance Indicators (KPI). These indicators may contribute to evaluate the quality of the process
performance by using different environmental and social measurements. Despite their proven
usefulness, additional efforts are required to extend the use of these indicators within mathematical
modeling.

Regarding environmental performance, different resource efficiency indexes (and particularly
related to water) have been proposed, including Falkenmark indicator, social water stress, water
resources vulnerability, water supply stress and water stress index. The basic element behind these
indicators is the relation of the resource consumption with its actual effect on different sectors as
briefly described as follows:

o Falkenmark indicator represents the fraction of the total annual runoff water available for
human use. Thus, this indicator categorizes a region as no stress, stress, scarcity, and
absolute scarcity ones. Its main limitation is that it requires the definition of the water
conditions in each geographical area.

e Social water stress index. This index is an extension of the Falkenmark indicator that
considers and represents the “adaptive capacity” of a society affected by the consumption
of the overall freshwater availability in a region.

e Water resources vulnerability is one of the most complete metrics that calculates the ratio
of total annual withdrawals to available water resources. Alike Falkenmark indicator, this
metric allows classifying the level of potential scarcity of a region based on the
withdrawals, instead of their runoff. For instance, a country is considered water scarce if
annual withdrawals are between 20 and 40% of annual supply, and severely water scarce if
withdrawals exceed 40%. The main disadvantage of this method is that it requires a full
knowledge of the inputs and outputs of water, which is often difficult to collect or
uncertain.

o Water supply stress. This metric allows to quantitatively assessing the relative magnitude of
water supply and demand.

e Water stress index. Alike the above metrics, WSI describes and model the impact of water
consumption on its local availability. The main advantage of using the WSI as key indicator
tool is that the wastewater reduction or water perseveration can be significantly promoted.
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Developing a single operational metric that produces useful information for all the potential
environmental implications is a hard task to perform. Such an issue increase in complexity when
trying to combine multiple efficiency indexes together in order to produce robust solutions, which
justifies the study of decision support strategies capable to manage multiple financial and
operational metrics.

2.4.Uncertainty management

As commented across this entire chapter, different types of unexpected events affect processes
performance and their operating conditions. The most commonly used uncertainty management
techniques are presented in Chapter 3 of this Thesis but, in the meanwhile, this section describes the
idea behind addressing/managing uncertainty for the different hierarchical SCM levels. In fact,
uncertainty management is becoming crucial for the PSE community since they ensure
feasible/efficient processes in terms of quality and applicability.

Particularly, the modeling and solving of design, planning or scheduling problems under the effect
of uncertain conditions is a challenging task. Historically, product demand is the most commonly
studied uncertainty source due to its direct impact on the sales and, consequently, potential
revenues, but other sources of uncertainty can be easily identified, and different classifications for
them have been proposed. The first one was the defined by Ho, (1989) consisting of two groups:

(1) Environmental uncertainties, which mainly refer to market conditions (demand and
supply conditions).

(ii) System uncertainties, that take into account the main process variables (i.e. product
quality, equipment failure, and changes in the product structure).

Later, Davis (1993) proposed a new classification based on the part of the SC affected by the
uncertainty:

Q) Supply uncertainties are focused on both, raw material availability and quality;
(ii) Process uncertainties (for example machine breakdowns) and;
(iii) ~ Customer uncertainties (i.e. demand forecast).

More recently, Pistikopoulos, (1995) proposed a more detailed classification:

Q) Model-inherit uncertainties (i.e. kinetics factors)

(i) Process-inherit uncertainties (i.e. flow rate variations)

(iii) External uncertainties (i.e. feed stream availability and product demands)
(iv) Discrete uncertainties (i.e. equipment and distribution link availability).

Nevertheless, due to the increasing number of uncertainty sources considered, the simpler
classification proposed by Jonsbraten, et al., (1998) has been commonly accepted:

(1) Exogenous sources consider atmospheric and business environments (e.g. demand,
supply, raw material quality, weather conditions, etc.)

(i) Endogenous sources that consider all the variability inherent in the process
including yield, capacity, equipment failure, etc.

Originally, the effect of uncertain conditions over a defined process was bypassed considering a
“safety factor” that adds a small percentage of the nominal/optimal operational value to the decision
variables (i.e. production amounts, inventory levels/capacities, and equipment size) as a way to
ensure the operability and, somehow, the robustness of the process. Nevertheless, such an
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oversizing approach typically leads to inefficient and costly solutions (You and Grossmann, 2008;
Jung et al. 2004), thus, there is a need for more sensitive uncertainty approaches. In the last decades
many approaches have been proposed addressing such an issue (Li and lerapetritou, 2007)

2.4.1. Reactive approaches

This kind of approaches focuses on developing a deterministic model, which is solved once the
uncertainty is unveiled. Consequently, reactive approaches lead to constant plan adjustments, which
hinder the use of these approaches for design problems. Within reactive approaches, the most used
ones include Model Predictive Control; Multi-Parametric programming; Rolling Horizon approach
and Real-Time Optimization, which are following described.

Model Predictive Control (MPCQC) is typically used to control the behavior of dynamic systems.
Particularly, a prediction of the process output (performance) as a function of some control
variables (i.e. process measurements such as temperature, flows, etc.,) is generated. Several
contributions address different hierarchical SCM industrial problems using MPC as described in the
extensive review by Camacho and Bordons, (1995) and this trend has been maintained. For
example, the management of multi-product multi-echelon problems was addressed individually for
tactical decisions (Mestan et al., 2006) as well as integrating them with operational ones (Bose and
Penky, 2000). MPC has been efficiently applied to design problems under demand and inventory
uncertainties including semiconductor networks (Braun et al., 2003; Wang et al., 2007)
management of process production (Niu et al., 2013), water distribution networks and energy
management of micro-grids (Velarde et al., 2017). Despite the use of MPC to address resource
problems, the evaluation of sustainability metrics requires additional efforts, specifically for the
control and optimization of Drinking Water Networks (DWNs) (Ocampo-Martinez et al., 2010;
2013). Even if resource problems are solved for multiple objectives, an oversimplification approach
is commonly employed, thus, there is a need to integrate robust and accurate MO approaches with
MPC strategies. Additional details on the use of MPC as a tool for the sustainable development can
be found in the literature (Kouvaritakis et al., 2015).

Multi-Parametric optimization (MP) is a strategy commonly used to map the optimized
performances (objective function and decision variables) as a function of the varying parameters.
Remarkably, MP programming results in a set of models (critical regions) that ensures the
optimality of the decision variables within the uncertainty space. Using these regions, the required
computational effort for future optimizations is significantly diminished (Pistikopoulos, 2009).
Since it reduces computational loads, MP approach has been widely used for scheduling industrial
problems, including multi-stage MILP inventory processes (Rivotti and Pistikopoulos, 2014) and
utility plants (Shokry and Espufia, 2015b). Additionally, by combining MPC and MP, online
parametric estimation was significantly promoted (Krieger and Pistikopoulos, 2014). Consequently,
the MPC-MP framework is particularly useful for applications such as control of batch processes
(Shokry et al. 2016), and the dynamic optimization of batch processes (Shokry and Espufia, 2017).
Besides the use of MP to manage multiple sources of uncertainty, its application to sustainability
problems has been recently exploited (Charitopoulos et al., 2016). In addition, recent studies
successfully combine MP approaches within surrogate models to promote the sustainability of the
solution of industrial problems (Lupera et al., 2016).

Rolling Horizon approach (RH) consists in an iterative process that solves the problem
deterministically for a defined prediction horizon (i.e. a small length of time compared with the
complete period) in which the value for the uncertain parameters are defined or can be easily
forecasted. Such a prediction is moved forward in every optimization until the whole time span is
covered. The application of the RH approach implies assuming a full knowledge of the parameters
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within the prediction horizon, based on the system feedbacks at each iteration. Due to its dynamic
nature, RH has been applied almost exclusively to scheduling problems, like in the case of the
problem associated to the daily energy generation and storage (Silvente et al., 2015). Additionally,
RH has been successfully combined with MP approaches to address reactive scheduling problems
for heat and power units (Kopanos and Pistikopoulos, 2014). Even if several authors agree that RH
has a significant potential to address sustainability problems, further studies are required to justify
its application to real industrial processes.

Real-Time Optimization (RTO) focuses almost exclusively on managing the operation of a
continuous process seeking to maximize the economic performance. Most RTO solution strategies
are based on parameter estimation techniques that update some key parameters. Typically, these
strategies have been applied to non-linear steady-state processes using the MPC to update the set
points after optimizing the process management. Remarkably, the application of pure RTO to
dynamic problems is complicated, thus, dynamic real-time optimization strategies (DRTO) have
been proposed to address processes in which the bottleneck moves frequently. Later, the use of non-
linear MPC has been used as an alternative to address non-linear dynamic optimization problems
(Tosukhowong et al., 2004). Notice that ultimately, the global optimization of a dynamic complex
process may not be achievable with the available computing resources (De Prada, et al., 2017) .

2.4.2. Preventive approaches

This type of approaches assumes a complete knowledge of the uncertain parameters behaviors
within the problem formulation (a stochastic model). In particular, three approaches can be
highlighted, including, stochastic, robust and fuzzy programming.

Stochastic programming is the most used method to handle process uncertainties. In general,
stochastic programming estimates the variables as a function of the unpredictable changes through
the set of scenarios with an associated probability distribution. The main purpose of scenario-based
approaches (such as stochastic programming) is to obtain the optimal decisions producing the best
expected performance disregarding the realization of the uncertainty parameters. The well-known
two-stage stochastic programming approach is the most common formulation to solve PSE
problems. In this line, a MILP and MINLP formulations were used to address the planning of an
industrial SC under supply and demand uncertainties (You and Grossmann, 2011; Grossmann and
Guillén-Goséalbez, 2010). In the same way, the design and planning of a multi-echelon SC under
demand (Cheng et al., 2003), price (Tsiakis et al., 2001; Gupta and Maranas, 2003) and raw
material availability uncertainties (Tong et al., 2014) have been addressed in the literature. Clearly,
there is a wide variety of studies using scenario-based approaches to manage problems under
uncertainty, which are of an increasing interest due to their potential to promote process
sustainability. One of the most remarkable example in this line is the closed-loop SC problem under
uncertainty, for which multiple studies can be found (Baptista et al., 2012; Gupta and Maranas,
2003; You and Grossmann, 2010; Klibi and Martel, 2012). Even if stochastic approaches can
promote the process sustainability a framework that combines stochastic programming with MO
approaches has been proposed to enhance the sustainability in planning SC under demand
uncertainty (Mirzapour Al-e-hashem et al., 2013). Remarkably, despite the recent interest in
efficient MO stochastic frameworks, a set of feasible solutions are generated, and consequently,
there is a need for further studies regarding decision-support strategies.

Robust Optimization (RO) seeks for a solution that remains feasible for the entire uncertainty space
by optimizing the problem deterministically for the worst-case scenario (Ben-Tal et al., 2009). This
approach is more tractable than the stochastic one (Li et al., 2011), however, due to its proactive
nature (i.e. it does not react to the different uncertain events) RO is inefficient for short-term
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problems (Zhang et al, 2015; Grossmann et al., 2016). In fact, this techniques have been effectively
applied to some PSE problems, including, SC operation (Ben-Tal et al., 2011; Verderame and
Floudas, 2009), process scheduling (Li and lerapetritou, 2008; Zhang et al, 2016b), and inventory
sizing (Ben-Tal et al., 2004). This kind of approaches is useful since it guarantees a minimum
performance level; however, its application implies a significantly high computational effort, which
represents an issue to be addressed. For this purpose, RO and decomposition strategies have been
combined in a single framework capable to solve complex process-scheduling problems (Zhang et
al., 2016b). The results justify the use of these effective strategies to address multi-objective
problems in order to promote process sustainability (Tong et al., 2014; Bairamzadeh et al., 2018).
Even if RO strategies have the potential to address MO problems, further studies are required to
ensure the systematic generation/identification of sustainable and robust solutions.

Fuzzy programming. The idea behind this formulation is the uncertainties representation using a set
of fuzzy constraints. Fuzzy-based optimization has been used to address many industrial problems
under uncertainty, including automobile SC (Peidro et al., 2010); water and wastewater reuse
networks (Schultmann et al., 2006; Peidro et al., 2010; Aviso et al., 2010) and design of chemical
products (Ng et al., 2015). The use of fuzzy programming has been also explored as an alternative
to solve multi-objective problems addressing the sustainable production of crude palm oil
(Kasivisvanathan et al., 2012) as well as the “green” operation of SC’s (Mirhedayatian et al.,
2014). In the same line, a strategy was proposed to address the design and management of
integrated networks (heating and cooling plants) by minimizing the operating cost and energy
requirements altogether (Sakawa and Matsui, 2013). Recently, Ehsani et al., (2016) proposed a
single nonlinear fuzzy membership function representing multiple objectives simultaneously.
Despite all the studies on fuzzy formulations, two main challenges remain unsolved to address
sustainability problems under uncertainty. First, the proper definition of membership functions so as
to capture the objectives’ behavior and the detailed importance/impact of the uncertain conditions
over the process performance. The second challenge consists of developing an approach capable to
consider the decision-makers’ preferences into the fuzzy model.

Remarkably, typed most of the above uncertainty approaches (i.e. the reactive and proactive ones)
suffers of at least one of the three main limitations that hinder their application to further and
complex problems as stated in and (Elluru et al., 2017; Moret et al., 2016, 2017)

Q) The study of uncertainties effect for the hierarchical levels individually;
(i) The consideration of a single uncertainty source, and;
(ili)  They are applied exclusively to a single objective problem.

These limitations, in addition to the increasing concern on sustainability and green engineering from
both, industry and academia, emphasize the need of integrated/holistic approaches to handling
multiple and unexplored uncertainty sources simultaneously for multi-objective/multi-criteria
problems. In particular, this Thesis tries to contribute to such a line, as described in Part V.

2.5.Trends and challenges

Across the entire chapter, an extensive literature review has been made focusing on practical and
integrated solution methods as well as the main decision support strategies for resource SCM
(particularly water and energy ones). Such a survey emphasizes the motivation to drive further
research efforts in four main topics (i.e. multi-objective decision-support; uncertainty management;
market dynamics and sustainability issues) and in the combined/integrated effect of the above
challenges.

26



Multi-Objective decision support

In general, strategies capable of simultaneously considering a large number of objectives/criteria in
a unique and systematic framework while identifying the best overall solution are necessary. The
above is of significant importance since nowadays, the largest proportion of the optimization
models focuses on an economic perspective, even if addressing multiple objectives (i.e. sum-
weighted approach and AHP). The above can be acceptable only under two assumptions: First, the
economic performance is significantly desirable over the rest of them, and second, the associated
economic formulations for the additional criteria successfully represent the system performance.
Nevertheless, these assumptions complicate the effective application of the environmental and
social regulations/concerns in industrial processes. Thus, so as to facilitate the process
competitiveness, the following challenges must be addressed:

e To develop and/or improve the objective and model formulations in order to increase the
accuracy with respect to real-life process industries performance, considering non-linear
functions.

» Most of the economic functions are subject to fixed capital costs and/or a
derivation of NPV with a fixed interest rate. A more realistic non-linear
cost/revenue function, as well as a set of financial risk metrics that provides
detailed information about the system behavior for these non-linear
functions, are to be developed.

» LCA has been historically used as a systematic environmental analysis
method. The effective calculation of LCA implies the knowledge of huge
amounts of data as well as process conditions/constraints. Thus, most of the
methods used to calculate LCA relaxes the MO problem by combining a
linear approach with weighted sum approaches. As a consequence, the
individual effect of resources consumption (such as water, biomass, etc.)
has been poorly addressed. Particularly, even if the integration of water
footprint within LCA enables a comprehensive assessment of the
environmental impact, its application over large-scale water supply chains
remains as an open issue. Thus, the use of efficiency indexes (such as water
stress) appears as a promising alternative to produce detailed information
and drive to a better/confident environmental friendly decision.

o Besides the proper formulation of the multi-objective functions, a detailed analysis of
individual objectives effect over the entire system (i.e. for each SC echelons) is needed. The
above will aim to identify those activities with the highest impacts for each objective.

» Ultimately, the objectives can be assessed to establish systematically a
hierarchy/importance from the decision maker perspective, which
potentially aims to propose effective industrial changes.

e In general, the large majority of problems addressed in PSE literature (including the
sustainability ones) seek to improve the accuracy and quality of the obtained solutions.
Nevertheless, even with the highest quality of the obtained solutions, the largest number of
them represents a huge decision maker issue, which has been poorly addressed. Thus, a
multi-objective/multi-criteria framework is needed for the aim of an accurate/sophisticated
decision support strategy.
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o Finally, and even if it is completely out of the scope of this Thesis it is important to state the
need of an assessment of the current environmental regulatory policies that lead to an
adequate definition of new ones.

Uncertainty management issues

Historically, one of the major industrial process issues is the management of endogenous and
exogenous uncertainties. In general, the major challenge is to develop a framework that allows
modeling these uncertainties and, ultimately, obtaining results which are easy to interpret and
implement. Nevertheless, even if huge advances in uncertainty management have been achieved,
more studies addressing the following challenges are needed for being successfully applied:

e Uncertainty modeling is an active research area and in fact, there are multiple works
exploiting individually the effect of demand and prices uncertainty. However, the
simultaneous analysis of uncertainty sources has been scarcely addressed. Such a study
would represent a huge opportunity area but, still, would lead to one particular and
interesting challenge:

» The detailed information on the effect of the different uncertainty
sources/parameters over the system behavior (individually and considering
their interactions) has been briefly studied through multi-parametric
programming. However, its potential to define the uncertainty
“importance/relevance” has been never exploited. The above is of great
interest considering that a set of patterns may be identified while generating
an accurate prediction.

» Managing large amounts of information is an important and complex task.
The above can be justified since the performance of any industrial process
highly depends on the quality of the input data. Considering that current
stochastic models generate a large amount of output information, there is
also a need for data-driven tools capable of integrating analytical tools with
tailor-made databases. Thus, future research efforts should be focused on
establishing a strategy that accurately manages a large amount of process
information as well as the different data flows. To fill this gap, knowledge
management systems such as surrogate models and ontologies appear as
promising alternatives.

e Besides the number of uncertainty sources, another important issue is the number of
scenarios a multi-stage stochastic programming system (which is the most used approach)
is able to manage. Even if the definition of the smallest number of scenarios has been
studied before, its application to medium-large scale industrial problems remains as an open
issue.

e Finally, there is a need to use performance indexes that represent uncertainties and
quantifies the robustness of the proposed solutions. The above will potentially expedite the
application of reactive and preventive approaches (as well as its combination) in the
framework of Multi-Objective/Multi-criteria problems, which represents a promising
research direction.
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Market dynamics and sustainability issues

Following the sustainability principles, the resource management problems turn to be of particular
interest. The above can be challenging since it requires addressing simultaneously a large number of
uncertainties affecting the resources, and results in MO problems due to the intrinsic multi-objective
nature of sustainability. Thus, research efforts are required to improve the strategies for reverse
logistics and close-loop problems. Even if these strategies have been intensively studied in the past,
their application to large-scale problems has not been efficiently achieved yet, and thus the
following challenges have to be addressed in further studies.

The primary issue to be addressed is to contribute to the integration of industrial symbiosis
(IS) strategies within a holistic approach. The symbiosis concept within an industrial
process framework seeks for the efficient exploitation of resources between
companies/processes (material, energy, information, etc.). In particular, IS problems have
specific properties if compared with traditional management issues:

>

IS strategies are particularly useful in addressing decentralized scheme
problems that consider, at least, two independent companies/actors that
manage the operations considering its individual performances/benefits.
Consequently, better process performances for all the actors are promoted
(i.,e. @ Win-Win solution). The above differs diametrically from the
traditional centralized scheme, in which a “selfish” behavior is assumed
from the decision maker which sacrifices the global benefit for the interest
of few participants.

It is necessary to evaluate the relationship between the network (i.e. supply
chain) players coordination/collaboration and to analyze their willingness
to collaborate.

For the proper application of IS strategies there is a need for an efficient
information flow between the different actors, thus the potential
links/collaborations may be accurately identified. Nevertheless, in most of
the real-life problems, such an information flow is limited, hindering the IS
strategies application. Recently, duality principles have been used to
optimize the whole system performance without knowledge of every SC
member, which is a better representation of the reality.

In addition to the above technical/conceptual challenges, the difficulties regarding model
formulation is another main issue to address. Notice that issues related to solver
development and coding efficiency are out of the scope of this Thesis. Thus, besides the
coding complexity, in this particular case we are focused on two main challenges:

>

Since the different SC’s players are allowed to take their own decisions,
studies are needed to create strategies capable of react to the constant
changes in the market conditions within a single model. In this line a
Scenario-based dynamic framework was proposed; however, such a
framework uses a simplified uncertainty approach compromising its
representativeness. Thus, the proper combination of the scenario base
dynamic framework with accurate uncertainty approaches remains an open
issue. Such a combined framework will potentially evaluate and assess the
effect of the partner's decisions over the system behavior taking into
account the uncertainties.

In addition, metrics, which are able to quantify/represent the
objectives/performance of each shareholder (an individual entity in the
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decentralized scheme) are worth to explore. Thus, ultimately, improved
decision-maker strategies are required.

Combined/Integration issues

PSE strategies are moving towards an enterprise-wide optimization framework that aims to
integrate different functional decisions into a global model. This model should optimize the
overall system performance. Therefore, the major challenge is to find a suitable
function/objective that simultaneously represents the individual and global system
performances as well as the effect of the interactions between different SC decision levels.
Thus, a set of particular challenges must be addressed:

> As already commented, an extension of Multi-criteria techniques in terms of
quality of the decisions that accurately represent the decision maker
preferences in a systematic and non-subjective way is required.

» The proper identification of common variables that allows connecting the
different hierarchical levels.

Currently, researchers guide their efforts to manage the coordination of pricing, production
and distribution decisions to break the traditional organizational barriers. The trade-offs
between the impact of operational decisions over the entire SC should be examined. Thus, a
proper framework is needed.

So far, an efficient single monolithic model that jointly optimizes each actor decisions is
unlikely to exist in the near future. Currently, the high computational burden required to
solve large size multi-scale optimization problems makes the computational effort reduction
a critical issue to be addressed to achieve a monolithic optimization model. In addition, it
can be anticipated that further research efforts address the development/improvement of
decomposition strategies in order to handle dual information flow (i.e. obtain and react to a
“feedback’) within a decentralized structure. In this line, knowledge-based algorithms are a
good option to expedite the identification of a feasible space for a specific problematic
(e.g., Metamodeling).

Ultimately, the key component in integrated SCM is the decision-making coordination and
integration. Thus, by addressing the above challenges, the general goal of this Thesis was achieved.
Such an objective can be summarized as the proposal of general PSE methods and tools in order to
propose an advanced decision support system for the systematic planning and management of
sustainable resource supply chains, and in particular water supply chains (WSC’s).
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Methods and Tools

In this chapter, the methods and tools used in the development of this Thesis are described. First,
the general principles of mathematical programming are identified, since this is the optimization
technique employed across the entire Thesis. The most relevant strategies addressing multi-
objective optimization and uncertainty management problems, individually and under a common
framework, are described in detail. Finally, the basic ideas behind decomposition techniques are
presented.

3.1.Mathematical programming principles

The most commonly used tool for assisting decision-making is mathematical programming, since it
is capable of combining different system optimization techniques. Its first records are linked to
military purposes managing the training schedules and operation logistics (i.e. deployment of
soldiers and supply of equipment’s/medicines) (Gill et al., 2008). Since early 1950’s, an increasing
number of contributions using mathematical programs for process systems engineering (PSE)
applications appears. Disregarding the field or subfield of application, a mathematical program must
define an objective function, decision variables and constraints, as shown in Eq. (3.1):

Maximize  f(x)
x
s.t. (3.1
h(x)=0
gx) <0
x€EXcR"

In this formulation, f(x), h(x) and g(x) are functions of vector x. The objective function (f(x))
typically represents a quantitative measurement of the system performance. The decision variables
(components of vector x) can be of a continuous and discrete nature, and their values are
determined during the optimization procedure. Finally, the mathematical formulation must include
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constraints (for this case h(x) and g(x)) in order to represent all the inherent restrictions of real
process system (such as physical, logical, thermodynamics, etc.). Identifying these components is
the core of modeling. However, depending on the properties of the characteristics of the scalar
functions the mathematical problem can be classified:

» Linear: If and only if the vector x is continuous and the functions f(x), h(x) and g(x) are
linear.

* Non-linear: If and only if vector x is continuous and at least one of the functions f(x), h(x)
and g(x) is non-linear.

» Mixed-integer linear: If vector x requires at least some of the x; elements to be integer (or
binary) and the functions f(x), h(x) and g(x) are linear.

» Mixed integer non-linear: If vector x requires at least some of the x; elements to be integer
(or binary) and at least one of the functions f(x), h(x) and g(x) is non-linear.

3.1.1. Convexity

A set of points X is convex if a straight-line segment connecting every pair of points (x;; x;) does
not break the boundaries associated to the set X as shown in Fig. 3.1.

a
/,
7/

N>

a) Convex b) Non-convex

Fig. 3.1. Convex and non-convex graphical representation.

The mathematical representation of convexity is as follows:

x  isconvex = V(xl-; xj) EXAB€[1,0]: ((1 —0)x; + ij) eEX

Ensuring the convexity of the solution subspace is of significant importance in order to ensure the
global optimality in a mathematical formulation. Actually, to handle no-convex problems and, thus,
identify the “global” best solution in presence of several local optimums, the global optimization
appears as an alternative. The following section describes the most commonly used optimization
strategies.
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3.2.0ptimization techniques

The use of mathematical programming approaches to address decision-making problems implies the
development of a framework that combines mathematical representation and optimization
algorithms. In particular, mathematical programs are coded considering the main problem
characteristics. Remarkably, such a formulation conditions the solution technique used to run the
optimization (Kallrath, 2002; Biegler and Grossmann, 2004; Grossmann and Biegler, 2004;
Kallrath, 2005; Méndez et al., 2006; Li and lerapetritou, 2007; Barbosa-Povoa, 2007). In addition
to mathematical programming techniques, in this Thesis other optimization methods have been also
explored, including logic-based optimization (e.g., constraint programming), heuristics and meta-
heuristics. Additionally, multi-criteria and stochastic optimization approaches have been considered
to address problems with multiple and conflicting objectives under uncertain conditions. The
following subsection describes the idea behind the most relevant mathematical programming
techniques.

3.2.1. Linear programming (LP)

Linear programming consists of a mathematical program in which all the functions involved
follows a linear behavior. The solution space or feasible region within a LP problem is
geometrically defined by the intersection of the hyperplanes representing each constraint (n-
variables). Thus, any LP problem has an optimal solution, in one of the vertexes of the feasible
polytope (See Fig. 3.2).

Constraint 1
Constraint 2
Constraint 3
Constraint 4
®  Optimal solution

Feasible Region

o I I 1 1 }
3
(x)

Fig. 3.2. Linear programming scheme and feasible area generation.
Traditionally, two solution methods are widely used to solve this type of problems:

Simplex method

Dantzig, (1963) developed the methodology in which the main idea is to move along the boundaries
of the feasible region from one vertex to the next one. More precisely, the algorithm starts with an
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initial vertex (i.e. feasible solution) in which it is verified if the optimality lies within a defined gap
(tolerance value); otherwise, the algorithm moves to an adjacent vertex testing its optimality again.
This algorithm is repeated for a finite number of vertexes improving the objective value for each
iteration (except in certain pathological cases) until an optimal vertex is finally found (Fig. 3.3(a)).

Interior-point methods

Contrary to the simplex method, the interior-point method search through the interior of the feasible
region without touching the border. An initial feasible point is assumed, and then the search for the
optimal solution (vertex) is started from the interior moving iteratively through the possible feasible
region (Fig. 3.3(b)). Further details can be found in Gonzaga, (1992) and Marriot and Hallo,(1998).

a) Simplex method b) Interior point method

Fig. 3.3. Graphical representation of LP solution algorithms. a) Simplex method; b) Interior point method.

There is still no valid way to classify the problems and identify the algorithm that produces better
results, thus, the commercial software incorporates both algorithms (and sometimes a hybrid one).
For a more detailed explanation regarding LP algorithms the reader is referred to (Dantzig and
Thapa, 1997a; 1997b).

3.2.2. Non-linear programming (NLP)

NLP corresponds to mathematical models in which all variables are defined as continuous but,
unlike LP the problem contains nonlinearities in either the objective function and/or the constraints.
The presence of nonlinearities is very common in real-life problems, and PSE problems are not an
exception. These nonlinearities may include kinetics associated with chemical reactions, pricing
policies, process characteristics, among others. The main complexity associated with solving NLP
problems is the presence and discarding unfeasible local optimal solutions.

There are many algorithms assisting solving NLP optimization problems with large amounts of
inequality constraints, including generalized reduced optimization algorithm (Abadie and
Carpenter, 1969; Abadie, 1978), sequential quadratic programming (SQP) (Fletcher, 1987), and
interior point methods (IPM) (Wright, 1996). These methods can be classified as unconstrained and
constrained optimization methods as described in the following section.
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Unconstrained optimization

Unconstrained optimization algorithms are divided into two groups, nevertheless, for both of them,
there is required to define an initial feasible solution (Xo) of the problem. These groups include:

(i) Line search methods. To apply this method, a direction (vector) is defined using the
steepest-decent direction, Newton direction, or Quasi-Newton search direction methods.
Once the direction has been selected, the algorithm searches along this vector for an
adequate step length (ax), so that it moves from the current “position” (x¢) to a new one
(xk+1) with a better objective value. The selection of an adequate step length is the main
issue. Since there is a need for an effective mapping to guarantee an objective
improvement, the smallest step length is preferred. In this line, methods such as the
interpolation method, the golden section method and the Fibonacci method assist in the
definition of a sufficiently small step length. Notice that, Even if by reducing such a step
the time required to solve the problem increases, the accuracy of the obtained solution
justifies the use of these methods.

(i) Trust region methods. For this method, a step-based direction approach is also used to
approximate the optimal solution. Unlike in the line search method, this one identifies the
trust region (feasible area) during the first step, while the further solution search uses the
same approach. The most commonly used strategy to identify the feasible region for this
method is the Taylor series expansion that has been explained in detail in (Lainez-Aguirre,

2009).

Constrained optimization

This kind of methods seeks an approximate solution by replacing the original constrained problem
by a sequence of unconstrained sub-problems. Hence, the underlying idea is to construct a closely
related unconstrained problem and apply the algorithms proposed for the unconstrained
optimization problems. There are many methods addressing this kind of problems that based their
solution strategy in either Lagrange or Karush-Kuhn-Tucker approaches (Kuhn and Tucker, 1951).

3.2.3. Mixed-integer programming

Typically, real-life processes need to take yes/no decisions as well as enforcing logical conditions,
modeling fixed costs or piecewise linear functions, thus, the use of binary variables turns out to be
necessary. Mathematical formulations including both, continuous and integer variables are called
mixed-integer programs, thus, LP and NLP models that also contain integer variables lead to:

* Mixed-Integer Linear Programming (MILP) is one of the most extensively explored
formulations due to its flexibility and extensive modeling capability. The methods to solve
MILP problems are enumerative algorithms that discard the less efficient alternatives.
Among the algorithms used to solve MILP problems both, Branch and Bound (B&B)
algorithm, and Branch & Cut (B&C) algorithm can be highlighted.

»  Mixed-Integer Non-Linear Programming (MINLP) has been mainly applied to synthesis
and design problems, and in less proportion to planning and scheduling ones. The
complexity of the MINLP problems is subject to the non-convexity of the feasible region.
Thus, different methods are used to solve MINLP problems, including Branch and Bound
(B&B), Generalized Benders Decomposition (GBD), and Outer-Approximation (OA).

The algorithms used to address both, MILP and MINLP problems are following described.
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Branch and Bound (B&B)

This is the basic method for solving integer programming problems. B&B was introduced by Land
and Doig (1960), and it operates following a tree-search approach splitting the original problem into
continuous sub-problems and solving them sequentially. The optimal solution is obtained by
analyzing the associated results and comparing them to each other. Notice that the root node
corresponds to the original problem (in its relaxed version), and each subsequent nodes represents a
sub-problem.

As implied by its name, B&B algorithm consists of two strategies; first, the branching part divides
the solution space creating nodes with additional constraints on lower and upper bounds. On the
other hand, the bounding part consists in discarding a node when is infeasible or when its objective
function is not improved (see Fig. 3.4). The main limitation regarding B&B is the exponential
generation of nodes creating a large number of solutions, thus, challenges such as data management
and large computational effort are promoted. It is important to comment that, B&B method only
grows the most promising nodes (i.e., partial solutions), which are identified by estimating a bound
on the best value of the objective function for further stages in each node.

® Current solution under analysis

® Infeasible solution

(_) Worst performance than current one

Fig. 3.4. Graphical representation of the Branch-and-Bound method.

The reduction of branches can be achieved by following these steps:

+ If a branch contains no integer feasible solutions with a better value than the incumbent
solution, such a branch can be directly eliminated.

* A lower bound of the final integer solution can be determined for any intermediate
node. In the worst case, the relaxed LP can be always used as lower bound.

Cutting-plane methods

As commented, B&B expedites the narrow down of nodes that are the most critical challenges of
the tree-search approaches; however, there is an additional alternative for this purpose using the so-
called cutting planes. The main idea behind the cutting-plane method is to introduce additional
constraints (called cutting planes) to a program until the optimal solution satisfies integrality
constraints. The cuts reduce the solution space (i.e. convex set) for a fractional solution as displayed
in Fig. 3.5.
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Fig. 3.5. Graphical representation of cutting-plane approach.

Some of the most known techniques to generate these cuts are the Gomory’s cuts, the Kelley’s, and
the Kelley-Cheney-Goldstein methods. Although initially this methodology was considered
unstable and ineffective, it can be effective in combination with branch and bound methods. In fact,
nowadays, all commercial MIP solvers use Gomory cuts in one way or another.

Generalized Benders Decomposition (GBD)

GBD algorithm was extensively studied in (Geoffrion, 1972) and since then, it has been widely
applied to MINLP. This algorithm assumes that the variables in the MINLP non-convex problems
can be divided into two categories: complicating and non-complicating variables, where the binary
variables are the complicating variables. By fixing the binary variables, the problem is divided into
a sequence of NLP sub-problems, and MILP master problems. Particularly, the NLP sub-problems
generate the upper bounds of the problem, and the MILP master problems generate a combination
of discrete variables to be used as lower bounds for the NLP sub-problems. The optimal solution
then can be found when the upper and lower bounds converge.

Outer-Approximation (OA)

Similarly than GBD, the OA algorithm splits the MINLP non-convex problem into NLP sub-
problems and a MILP master problem (Duran and Grossmann, 1986). Nevertheless, in OA a
feasible region is defined by solving the NLP sub-problems, while, the master problem is generated
by approximating the non-linear constraints of the feasible region (NLP sub-problems results).

Although the last two methods aim to solve MINLP problems, the identification of global optimum
solutions for non-convex MINLP problems remains as an open issue. For this purpose, different
solvers are used as displayed in Section 3.7.

3.3.Multi-Objective Optimization
Multi-objective optimization (MOO) addresses the optimization of a problem in which multiple
objectives should be considered simultaneously. These objectives result from modeling particular

impacts (such as social and/or environmental ones) as part of the optimization in addition to the
traditional economic performance. MOO assists the decision-making challenge and, in particular,
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plays an important role in engineering design and management. The MO mathematical
representation adopts the following form.

max {£, () -, fop (), . fio| (1)}
s.t. (3.2)
h(x)=0
gx)<o0

x€eEXcR"

Mathematically, a large amount of combinations (solutions) satisfies the conditions in Eq. (3.2),
thus, there is a need to define the “dominance” of each of these. Notice that the dominance concept
follows the following theorem:

» Theorem 3.1: A solution is said to be dominant if there is no other solution showing a
better performance in any of the possible k-elements (ob).

Remarkably, the set of feasible solutions includes both, dominated and dominant solutions. The
dominant ones are commonly called efficient or Pareto solutions and as a group they form the well-
known Pareto frontier (See Fig. 3.6).

ﬂl Pareto frontier
O Dominated solution

v

Fig. 3.6. Pareto frontier and dominated solutions.

The most commonly used approach for the systematic generation of the Pareto frontier is the well-
known g-constraint method. Despite its utility, it has been used together with other strategies that
identify one solution within the Pareto frontier that better satisfies all the decision maker criteria. In
general, these strategies can be categorized into two groups:

Q) During optimization strategies, are approaches that produce a feasible and optimal
solution directly after running the optimization procedure. These strategies include,
analytical hierarchical processes (Saaty, 2008), weighted sum approach (Marler
and Arora, 2010), dictionary ordering (Cui et. al., 2017), fuzzy programming and
fractional approach;
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(i) Post-optimization strategies. Unlike the former category, these strategies require an
additional analysis to sort the whole set of solution and identify the best one. These
strategies include ELECTRE method, Pareto filter and data envelopment analysis.

The next section focuses on to describe the core strategies of this Thesis, being the e-constraint, and
a set of identification methods.

3.3.1. The e-constraint method

The g-constraint method was introduced by Haimes et al., (1971), and its main purpose is to
generate the Pareto frontier by sequentially producing several dominant Pareto solutions. Each
solution is produced using a single objective (SO) optimization that is performed by constraining all
the additional objectives by some allowable levels &,. Notice that the optimization should be
repeated as many times as &, levels considered. The overall algorithm for the methodology is as
follows.

1. Solve a SO problem for each one of the objectives under analysis (ob € OB).
2. Let LB,, and UB,,be the lower and upper bounds for the objectives under analysis (limitation
of the feasible area).
3. Chose the objective to be optimized and to let the rest of them be constraints.
4. Let e represent the number of points to generate the Pareto frontier.
4.1. Fore =1:1:|E|.
; ; At . UBop—LByp
4.2. Define the value for the constrained objective (g,) as: e, = LB, + € * (lEIT)
4.3. Solve model MO problem subject to the constraint &,. Let solution xg ., be the optimal
solution, for point e at constrained objective ob.
5. Obtain the corresponding Pareto frontier.

Ultimately, this method leads to a set of feasible solutions that represents an appealing option for
the decision maker. It is important to mention that even if this algorithm is typically applied to bi-
objective problems, it can be easily extended to more objectives at the expense of increasing the
effort required to complete the loop. In addition to the Pareto frontier, there are three points that
must be identified to evaluate the desirability of the dominant solutions. Those points are the utopia,
nadir and p-anchor points (see Fig 3.7).

» Utopia point: This point represents that situation in which every individual objective
achieves its optimal value found by solving the SO problem for each objective individually.
Logically, this solution lies out of the feasible area.

» Nadir point: Opposite to utopia, nadir point consist on the worst performance for each
individual objective found using the same optimized values found during utopia point, but
this time identifying the worst values. Even if this solution may lie within the feasible area,
it Does not belong to the Pareto set since it represents the worst possible combination.

» The p-anchor points: These points are the extremes of the Pareto frontier.
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Fig. 3.7. Pareto frontier construction and its most significant points for a minimizing bi-objective situation.

Remarkably, even if many contributions address the systematic identification of a single solution
within the Pareto frontier, additional efforts are still required. In this line, many Multi-Criteria
Decision Making (MCDM) strategies have been proposed as described in the following subsections.

3.3.2. Multi-Criteria and Multi-Objective Decision Making

Multi-Objective Decision Making (MODM) along with MCDM are the two main categories that
cover a wide branch of decision-making strategies (Gal and Hanne, 1999). These categories include
methods based on both, outranking and distance normalization methods. Their main purpose is to
identify the most efficient solution considering multiple objectives/criteria/attributes. A view of
MCDM and MODM methods is shown in Fig. 3.8, while the basic ideas behind the most relevant
ones are briefly described in the following subsection.

MODM and MCDM Methods

Apriori Interactive Pareto dominated

Weighted sum » Normal Boundary Intelligent
Constraint Intersection Optimization
Objective » Normalized Normal Fractional
programming Constraint Programming
Dictionary Ordering

Analytic Hierarchy

Method

Fig. 3.8. Multi-Criteria and Multi-Objective decision-making.
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Predefined/Apriori methods

These methods are basically parametric linear programming techniques that measure the efficiency
of a set of entities by transforming all the objectives into single vector value.

Analytical Hierarchical Processes (AHP)

Analytical Hierarchy Processes (AHP) were developed by Saaty (1980) and later applied to PSE
problems (Zamarripa et al., 2012; Balinski, 1965). AHP decompose the problem into a multi-level
hierarchy structure as described in the following four steps general algorithm (Vaidya and Kumar,

2006):

1. Generate the mathematical model for the problem identifying the main objective as well as
the additional criteria.

2. Construct the hierarchy structure by decomposing the problem and correlating the different
levels. Such a structure must contain all essential elements relevant to the problem.

3. Introduce comparison judgments (typically using a matrix) that reflect the preferences of
each pair-wise of elements in each level of the hierarchy.

4. Using these preferences matrices, the priority of each solution is calculated and ultimately
the best solution can be identified.

Within these steps, the most critical one is the pair-wise comparison, in which a numerical
representation of the relationship between two elements is determined and, ultimately, one of them
is identified as the most important. The Saaty’s fundamental scale (Saaty, 1980) is most widely
used one to assess the intensity of preference between two elements as displayed in Table 3.1.

Using such a numerical representation, the method computes and aggregates the objectives
eigenvectors until the composite final vector of weight coefficients for alternatives is obtained. One
of the major advantages of AHP is that it calculates the inconsistency index as a ratio of the
decision maker’s inconsistency and randomly generated index. This index is important for the
decision maker since it guarantees the consistency in his/her judgments. On the contrary, the main
challenge of this approach is that the performance of the final solution is significantly affected by
the structure assumed at the very beginning.

Table. 3.1. Typical AHP numerical equivalences/preferences.

Importance Scale Definition of the importance scale
Equally preferred
Equally to moderately preferred
Moderately preferred
Moderately to strongly preferred
Strongly preferred
Strongly to very strongly preferred
Very strongly preferred
Very strongly to extremely preferred
Extremely preferred

O oo ~NOoO O b WwWwN -

Weighted Sum Approach (WSA)

This is the most commonly used approach to ease the identification of an overall optimal solution
for its mathematical representation and calculation. Such an approach allows identifying the best
alternative by optimizing and satisfying Eq. (3.3) in which multiple objectives are transformed into
a single objective:
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F(x) = minz fi(x)w; (3.3)
i=1

Eg. (3.3) converts the multi-objective problem into a scalar optimization one creating a convex
combination of the different objectives. In particular, m weights (w;) such thatw; >0,i=1,..., m
and Y7, w; = 1 are usually employed. Notice that the weights have a significant effect over the
final solution; nevertheless, they are generated beforehand based on the decision maker experience,
which compromises the robustness of the final solution. Despite WSA structure is very easy to
understand and apply; the commented limitations represent the main disadvantage and restrict its
use in many PSE applications.

Constraint/Objective programming method

Unlike in the previous methods, here, the decision maker defines a set of target values for each
objective (do = [doq,do,, ...,do,,]T) which are included into the optimization objectives as
constraints.

min f(x) = min2|fi(x) — do|
i=1

s.t (34)
X€EO

Since the desired values shall be set within the feasible region, the final solution is significantly
conditioned beforehand. Consequently, this method is effective addressing simply linear
programming problems but less effective in solving nonlinear complex problems. Alike WSA, this
method is simple to use and it is based on a prior experience, thus, the limitation regarding
robustness remains unsolved.

Lexicographic minimax method

All the above methods assume that the decision maker has a clear idea regarding its preferences for
any objective; however, very often this is not the case. When all the objectives are equally
important, the solution identification process is challenging. Then, a sensible solution can be
obtained after solving the minimax problem (Eg. 3.5).

min{max f,,(x)}
s.t 3.5)
x€0O;0b=1,..,0B

This method seeks to generate a fair solution in which all normalized objective function values are
as much close to each other as possible (Lui and Papageorgiou, 2013) where all the ob objectives
are first normalized to the same scale. However, the disadvantage of the minimax problem is that
the solution is not unique, and some of them may not be Pareto-optimal.

Data Envelope methods

Data Envelope Analysis (DEA) is a non-parametric linear programming technique that measures the
efficiency of a set of entities, known as decision-making units, each transforming multiple inputs
into multiple outputs (Charnes et al., 1978). In addition to calculating the efficiency scores, DEA
provides specific guidelines, expressed as quantitative targets, which can be used to improve the
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efficiency level, for instance the level of sustainability. Within these kinds of methods, Fractional
Programming is the most widely used.

Mixed-Integer Fractional Programming (MIFP)

MIFP is a class of nonconvex MINLP that includes both, continuous and discrete variables seeking
to optimize an objective function that is formulated to represent the ratio of two linear functions
subject to linear constraints as displayed in Eq. (3.7).

_NM)
max {Q () = D(x)}
s.t (3.7)
XES

Due to the non-convexities/nonlinearities associated with the objective function and the
combinatorial nature given by the existence of binary variables, large-scale MILFP problems are
hard to optimize with general solution methods. Three main characteristics can be highlighted for
the MIFP objective function (Yue et al., 2013):

0] It is either pseudo-convex or pseudo-concave;
(i) It is strictly quasi-convex and quasi-concave, and;
(iti)  Every local optimum is also its global solution.

Even if all the above MOO methods are simple to use, they cannot guarantee a globally optimal
solution for non-convex optimization problems. Thus, even if ensuring an optimal solution, the
complete Pareto frontier is not properly explored and consequently these methods do not reach all
the feasible solutions while considering non-convex problems as displayed in Fig. 3.10 (Pohekar
and Ramachandran, 2004).

A A priori methods Objective linearization methods
r 3

- -
\. .
N
S

P

Fig. 3.10. Behavior of some MCDM approaches for non-convex problems.

A

The above is important since the main purpose of these formulations is the identification of a well-
balanced solution rather than building the Pareto frontier. In this sense, the following additional
methods represent promising alternatives.

Dominance methods

Fuzzy Programming

Fuzzy-based strategies are based on reformulating the original MO model defining a membership
function for each objective. Typically, a linear relation is used following general expression
(Zimmermann, 1978) (Eqg. 3.6).
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3 1 B if Xob = Bob_
Aob(xob) =41- (bob - xob)/(bob - Qob) if Qob < Xop < bgp (3.6)
0 if Xob < Qob

Where x,,;, represents the objective performance, while 1, (x,,) can be interpreted as the degree of
x,;, for the specific objective (ob € {1, 2,...0B}). Moreover, b,, and b, represent the objective
boundaries (maximum and minimum value, respectively). The value of 1, (x,p) is expressed in the
range zero to one, where zero corresponds to the minimum value and one to the maximum one.
Notice that different “shapes” may be used to represent the cause-effect relationships as displayed
in Fig. 3.9.

Notice that, when compared with other transforming MO approaches (such as WS or AHP), the
capacity of the proposed fuzzy formulation to relax the non-linear objectives behaviour while still
clearly representing the cause-effect relationship behind the different objectives, lead to clear
advantages, especially in terms of quality of the final solution. More details regarding the
mathematical analysis that justifies the final solution optimality using fuzzy programming can be
found in the work of Li and Lai, (2000).
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Fig. 3.9. Membership function shapes.

ELECTRE methods

ELECTRE methods were first introduced in the mid-1960’s by and became widely known after the
work of Roy (Roy, 1991). These methods evaluate every possible pair of solution combinations
within a set of multiple options (solutions) for a set of criteria that quantify the level at which each
option outranks all others. Nevertheless, since an outranking relation must be constructed
beforehand, a strong source of subjectivity is assumed and, consequently, the reliability in the final
solution is not guaranteed (Figueira et al., 2013; Rogers et al., 2010). Moreover, the ELECTRE-IV
method has been used as a decision support system for multiple criteria problems and proposes an
alternative/derivation of the original ELECTRE method. ELECTRE-IV is an attractive one due to
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its capabilities to obtain a solution that guarantees the decision maker satisfaction while avoids
subjectivity sources using a systematical construction of fuzzy outranking relationships defining
three “preference” parameters as displayed in Fig. 3.11 (Hokkanen and Salminen, 1997; Shanian
and Savadogo, 2006,Greco et al., 2016).
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Fig. 3.11. Comparison of two solutions using the preference, indifference and veto thresholds.

These parameters express the thresholds at which one option will be considered preferred,
indifferent or undesirable for each criterion. Using the thresholds, a pairwise comparison is
performed and a classification is made as follows:

e m,(Soly, Soly) is the number of criteria for which Sola is strictly preferred to Sols,
e m,(Soly,Sol,) is the number of criteria for which Sols is strictly preferred to Sols,
e mg,(Solg, Soly) is the number of criteria for which Sola is weakly preferred to Sols,
e mg(Soly, Soly) is the number of criteria for which Sol, is weakly preferred to Sols,

o m;(Sol,, Soly) is the number of criteria for which Sol. is considered indifferent to Sol, but
such that Sol, has a better criterion value than Sol,

o m;(Soly, Sol,) is the number of criteria for which Soly is considered indifferent to Sol. but
such that Sol, has a better criterion value than Sol, and,

o m,(Sol,, Soly)=m,(Sol,, Soly,) is the number of equal criterion values of Sol, and Sols.

The above classification expresses the strongest domination relations between solutions for each
criterion; however, a second step of the classification procedure is required in order to rank the
candidate solutions accounting the entire set of criteria. Such a classification is made by defining
the outranking relationships constructed as follows:

e Quasi-dominance S,

aSqeb & my,(b,a) + my(b,a) =0 and
m;(b,a) <1+ my(a,b) + my(a,b)

e Canonic-dominance S,
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aSch & my(b,a) =0 and
mg(b,a) <1+ my,(a,b) and
mg(b,a) + my(b,a) <1+ m;(a,b) + my(a,b) + m,(a,b)

e Pseudo-dominance S,

aSyb & my(b,a) =0 and
my(b,a) < my(a,b) + my(a,b)

e Veto-dominance S,
aSyb & if my(b,a) =0

The above hierarchical outranking relationships are transformed into a numerical value, using the
following assumption:S, = 1, S, = 0.8, S, = 0.6, S;, = 0.4. Therefore, a new normalized matrix is
obtained and a ranking procedure is applied. The exploitation procedure is as follows:

e Construct a partial pre-order KO, and KO,
e Construct the complete pre-order KO =K0, n KO, as the result.

KO, and KO, are constructed through a descending and ascending discrimination procedure
respectively (Rogers et al., 2010). The combination of these two partial preorder alternatives
provides a unique and robust descending desirability hierarchically ordered list. From such a list, a
single feasible alternative (or a reduced set of them) is obtained. For more details regarding the
ELECTRE methodologies (including ELECTRE-IV) and its application, the reader should refer to
(Figueira et al., 2013; Rogers et al., 2010).

Pareto filters

Pareto filters are used to expedite the solution identification from the infinite number of solution
that composes the Pareto frontier. The overall strategy consists of a sequential application of
different methods to narrow down the number of Pareto solutions and retain for further inspection
solutions showing better overall performance (discarding in turn the rest). In this Thesis, 2 types of
Pareto filters will be used

Smart Pareto filter.

This filter uses a defined tolerance value (At) to discard solutions that are potentially repeated or
redundant as described in Mattson et al., (2004). The method selects one solution and scans the
tolerance area in order to find and discard points falling within it, thereby removing dominated
solutions considering such a tolerance. The tolerance value is defined by the user and has a strong
impact on the outcome of the algorithm. If it is too large, the final set of alternatives will be very
small, but appealing solutions may be lost, whereas if it is too small the opposite situation will
occur.

Fig. 3.12 illustrates the idea behind the smart Pareto filter. Given the set of solutions Sols, Sol; is
taken as core solution and compared with the rest. The dominated solutions and the ones inside the
tolerance area (shaded region) are removed from the pool. Afterward, the nearest Pareto solution
will be selected as core and the operation will be performed again until no Pareto solutions remain
unexplored. In this example, solutions Sols, Sols and Soly are dominated solutions and they were
removed from the pool of solutions when solutions Sol, and Sols; are evaluated, respectively.
Additionally, even if solution Solyo is Pareto optimal, it lies in the tolerance area of solution Sols, so
it is considered indistinguishable from it and thus eliminated.

46



Objective function 2

Objective function 1

Fig. 3.12. Representation of the Smart Pareto filter algorithm. A solution is considered indistinguishable from
another one if the first (red point) falls into the tolerance area (shaded gray zone) of the solution under
analysis (green points). Dominated solutions (orange points) are also identified and eliminated.

Order of efficiency filter.

A solution is said to be efficient of order k if it is not dominated by any other solution in any of the
possible k-elements subsets of objectives. This filter makes use of this concept, which assesses the
“level of optimality” of a solution, and ranks the Pareto points according to their order of efficiency,
k. The order of efficiency was originally introduced by Das (1999), and has been recently applied to
metabolic engineering (Pozo et al., 2012) and desalination plants (Antipova et al., 2015).

From this definition, it follows that if xx* is efficient of order Kk, it is also efficient of any order
greater than k. Note that lower orders of efficiency reflect a better balance among objectives in the
solution and, in some way, the more appealing for decision-makers.

L
‘ —@— Sol, Sol, g Sol, —m— So\q‘

gl

f(x)

0 L L 1
ob1 ob2 ob3
Objectives

Fig. 3.13. lllustration of the order of efficiency filter. There are 4 solutions that have to be minimized for all
the 3 objectives considered. Sol; is efficient of order 2 whereas Sol, and Sol, are efficient of order 3, and Sols
is inefficient (i.e., not Pareto optimal).

>
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The concept of Pareto efficiency of order k is illustrated in Fig. 3.13, which shows the parallel
coordinates plot where each line represents one of the solutions retained in the previous example
(i.e., Soly, Sol,, Sol; and Sol.). Note that 4 solutions are used for clarity purposes. As can be seen,
solutions Soli, Sol, and Sols are Pareto optimal, that is, they are at least efficient of order three
(recall that due to the normalization step, values equal to O is the best objective performance). On
the contrary, Sols is an inefficient solution because Sol; dominates it. The next step is to check
whether solutions Sols, Sol; and Sol, are also efficient of a lower order, for which all the possible
subsets of k<3 objectives must be considered. For instance, Sol; dominates solutions Sol,, and Sol,
in a subset {ob,, 0bs}, so they are no longer candidates to be efficient of order two. Conversely,
Sol; is not dominated neither in subset {ob,, 0bs} nor in {ob;,0b,} and is therefore efficient of
order two. An inspection of subsets of one objective reveals that both, Sol, and Sols dominate Sol;
in {ob1}, and thus Sol; is not efficient of order one. As a result, the minimum order of efficiency for
Sol;, Sol, and Sols is 2, 3, 3, while Sols is inefficient. Hence, solution S; would be the most
appealing, since it shows better average performance when considering all of the objectives
simultaneously.

Pareto filters application.

Based on these 2 filters, an overall application algorithm can be described as follows. We first
define the objectives to be analyzed ob € OB and set a tolerance value for the Smart Filter (At). Let
NOO be the number of objectives considered. The algorithm starts by applying the smart filter for a
given tolerance. Then, the order of efficiency filter is applied until further reductions in the Pareto
set cannot be attained.

1. Apply Smart filter to solutions NSS considering objectives ob | ob € OB using tolerance At.
Let M’ be the set of solutions retained after the application of the filter.
2. If M’= @, stop, further reduction is not possible. Else:
2.1. Fork=NOO:1:1
2.1.1.Apply Order of efficiency filter to solutions M for k. Let Vi be the set of solutions,
which are efficient of order k.
2.1.2.Make M’ = V.
2.2. End for
3. Endif.

Note that the use of Pareto filters implies stronger conditions than the conventional Pareto
optimality criterion. This concept avoids the use of any arbitrary ‘criterion of merit’”” or
visualization technique, thereby making the approach suitable for high-dimensionality problems
(Pozo et al., 2012; Das, 1999).

3.4.0ptimization under uncertainty.

Stochastic programming.

The efficiency of all the previously presented solution strategies and methodologies highly depends
on the consideration of deterministic problems (i.e. all the data required is assumed to be known in
advance). In this section, stochastic programs in which some data may be considered uncertain are
described. In particular, the most commonly used formulation to address problems under
uncertainty is the well-known two-Stage stochastic one, for which two sets of decisions variables
have to be identified:
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o First stage decisions. This set of decisions are taken before unveil any uncertain parameter.
They are also known as “here and now” decisions.

e Second stage decisions. They are determined after most of the uncertain data is unveiled.
These decisions are also known as “wait and see” decisions.

In order to simplify the problem representation, the function Q(x, 8) is introduced next.

Qx) = rgng (x,,0)
h(x,y,0) =0

9(x,y,0) <0
XEX;yEY; 0O

(3.8)

Here, x and y are the first and second-stage decision variables, respectively, whereas 8 denotes the
uncertain parameters values that belong to the space © of uncertain parameters. First-stage decisions
may contain integers due to allocation requirements. f(x,y,8) represents the objective function;
h(x,y,6) and g(x,y, ) are vectors of equality and inequality constraints. Notice that the efficiency
of the above formulation highly depends on the representation of the uncertainty parameters (8).
For such a reason, the use of scenario-based approaches has been used.

The scenario-based approach

Traditionally, uncertain parameters (8) are represented using a discrete number of possible
scenarios (i.e., a finite discrete distribution), thus, a deterministic equivalent program can be
formulated for a stochastic program as displayed in Eq. (3.9):

S

I}cliazx for = Z probs f(x: Vs 95)
s

(3.9)
h(x,y5,65) =0 Vs € S
g(x;YS: 95) S 0 vs € S

x€X,y; €Y, 0, €0

Here, 6, is the vector of values taken by the uncertain parameters in the scenarios s and proby is the
probability of occurrence of scenario s belonging to the set S. To approximate a feasible global
solution by using two-stage model (Eg. (3.9)) a set of scenarios that represent the problem
variability can be used by using a scenario tree representation (Fig. 3.14).

Note that, the better the representation of the scenarios used, the better the approximation to the
robust solution. In this line, the most used strategy is the Monte-Carlo sampling. Such a method is
based on a random generation of uncertain parameters considering a mean value as well as a
standard deviation. Without loss of generality, in this Thesis, Monte-Carlo sampling has been used
as unique sampling technique, however, there are additional sampling techniques that may be used,
such as Sobol sampling, polynomial-based methods (cubature formula) and methods based on low-
discrepancy samples (also known as quasi-Monte Carlo methods).
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Scenario 1
Scenario 2

Scenario 3
Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8
Fig. 3.14. Scenario tree representation for a stochastic programming.

Besides the representativeness of the set of scenarios, its size significantly affects the computational
effort (i.e. optimization time). In this line, scenario reduction methods have been proposed. These
methods promote the selection of a small and representative set of scenarios as displayed in Fig.
3.15.

Complete set of scenarios Reduced set of scenarios

2 -1.5 -1 05 0 05 1 15 H 25 2 -1.5 -1 -0.5 ] os 1 1.5 2 25

Fig. 3.15. Graphical representation of the clustering technique for scenario reduction method.

Currently, the most effective method for scenario reduction is the transportation distance-based
scenario reduction initially proposed by Heitsch and R6misch, (2003) and later extended by Li and
Floudas (2014a). Such a method, systematically minimizes the distance (i.e. Kantorovich distance)
among scenarios, finding the optimal subset representing the original set of scenarios.

3.5.Relaxation strategies.

The accurate modeling of real-life problems typically requires the combination of many of the
above problems leading to a highly complex problem. For this purpose, decomposition technigques
have been proposed in order to produce an efficient computationally exploitation of the
mathematical programs.
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The idea behind decomposition techniques is to solve the problem in different steps (typically
sequential). In other words, instead of solving the entire problem in a monolithic manner,
independent sub-problems are solved iteratively while approximating the global optimal solution. It
is important to comment that, in some mathematical models there are constraints that hinder the
application of decomposition approach (i.e. a set of common equations also known as complicating
constraints). The problem can be directly optimized by solving each of the n-sub-problems only if
disregarding the complicating constraints. The most common decomposition strategies are
following described.

3.5.1. Sample Average Approximation (SAA).

The Sample Average Approximation (SAA) algorithm has its roots in the so-called stochastic
counterpart and the sample path optimization methods (Plambeck et al., 1996). To apply the SAA,
the problem has to be solved in its deterministic form considering only one scenario. Then, the
values obtained are fixed for the first-stage variables and the model is optimized again for the
stochastic problem considering the complete set scenarios. This process is repeated recursively for
each of the remaining scenarios, by replacing the corresponding scenario parameters. Note that the
standard SAA approximates the solution by solving a series of stochastic sub-problems, each of
them with fewer scenarios than the original full space stochastic model (Verweij et al., 2002;
Santoso et al., 2005). The overall algorithm is as follows.

1. Define the set of scenarios S and initialize the raw set of solutions RSS = @
2. Fore=1:1:1|S]|

2.1. Solve Model P considering only the scenario with index e (say scenario s.). Let solution x*
be the value of the first stage variables in this problem.

2.2. Fix first stage variables as in x*.

2.3. Solve Model P including all the |S| scenarios. Let x*, ys be the values of the first and
second stage variables in the full optimal solution (the solution with optimal second-stage
variables for the first-stage values generated in step 2.1).

2.4. Make RSS = RSS U x* and free the first-stage variables,

3. End for.

It is important to highlight that the problem with first and second-stage variables is not rigorously
solved and, consequently, the proposed methodology cannot guarantee global optimality for the
solutions obtained. However, the proposed approach is indeed an approximation method (i.e.,
heuristic) to solve the full space multi-objective stochastic model. Consequently, the resulting SAA
solution is proved as feasible, even other solutions may dominate them.

3.5.2. Bi-level programming.

The bi-level optimization splits the optimization problem into two problems: an upper-level
problem and a lower-level problem. The idea behind bi-level formulation is that the upper-level
optimization model is solved taking into consideration the optimal solution of the lower-level
problem, as both are solved simultaneously (the lower-level problem is embedded as constraints in
the upper-level problem). The general form of the bi-level formulation is displayed in Eqg. (3.10)

min f,(x,y)
v
s.t h(x,y) <0
y solves mi}rll 91 (x,y) (3.10)
s.t k(x,y)<0
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Where x € R™ and y € R™ represents the upper and lower-level variables. Similarly, f,,, g;: R™ X
R™ — R are the upper-level and lower-level objective functions respectively and h: R" x R™ —
R* define the upper-level constraints while k: R™ x R™ — R! the lower-level ones. Notice, that
the constraints of the upper-level problem depend on both the upper-level and the lower levels
decision variables (x and y). The application of Bi-level optimization is limited to small-size
problems up to date. Solving large-scale non-convex MINLP bi-level models is still a challenging
research topic.

3.6.Game Theory.

All the strategies described until now are oriented to centralized problems. However, since
industrial problems very often require decisions under a decentralized environment, the interaction
between different decision-makers has to be considered. For this purpose, Game Theory (GT) has
been proposed as a way to solve problems with different enterprises sharing interests (Cachon,
2003; Cachon and Netessine, 2004; Wang, 2015; Hennet and Arda, 2008; Leng and Parlar, 2010;
Zhao et al., 2010; Li et al., 2013; Yue and You, 2014; Chu et al., 2015; Ramos et al., 2016). In
general, GT allows considering stakeholders (as game players) with individual and conflicting
objectives within the same problem framework. The combination of the potential decisions of each
stakeholder represents a game strategy. Additionally, depending on the interaction and flow of
information among the different game players, the problem is classified as a cooperative or non-
cooperative game. In particular, cooperative games represent the situation in which a coalition is
assumed and the objective function is a common (shared) one. Contrary, non-cooperative (or
competitive) situation assumes an independent objective function for each player. For cooperative
and competitive situations, a zero-sum and non-zero sum situation is obtained respectively:

e Zero-sum-game: the amount gained by one game player is the same as the amount lost by
the other game player. In this case, cumulate revenue is not possible for their cooperation.

¢ Non-zero-sum game: the amount gained by one game player is not equal to the amount lost
by the other game player/s. This means that the gains of one player cannot be deduced from
the gains of the other players.

Depending on the knowledge about the strategy of the other players, solution strategies such as
Nash equilibrium or Stackelberg game can be devised.

3.7.Software.

There are some commercial tools for general optimization purposes, including GAMS (General
Algebraic Modeling System, (Rosenthal et al., 2012), AMPL (A Mathematical Programming
Language, (Fourer et al., 2002), AIMMS (Advanced Interactive Multidimensional Modeling
System, (Roelofs, 2010), Matlab and the recently developed PYOMO. All of them share similar
characteristics (general mathematical language, use different solvers to solve the modeled problems,
etc.). In this Thesis, GAMS has been selected since is the most widely used modeling and
optimization software in the PSE field, and thus, promotes future comparisons.
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3.7.1. GAMS - General Algebraic Modeling System

In addition to its popularity, GAMS has some important characteristics that promote its selection:

e The pool of solvers available can be updated, thus, once the model is developed; several
solvers are available to optimize the problem.

e The user interface is very friendly and simple which promotes its readability for both
humans and machines. Thus, links between different software’s are feasible such as import
and export data from/to Microsoft Excel and MATLAB.

¢ Allows unambiguous statements of algebraic relationships.
e The ability to extend formulations aimed to solve small size problems to address large-scale
ones at low coding effort.

Moreover, it is worthy to mention that optimization algorithms mentioned above are embedded in
some of the different GAMS solvers. Each solver is usually developed to tackle a specific type of
program (i.e., LP, NLP, MILP, MINLP, etc.).

3.7.2. Solvers

Many solvers can be used to solve NLP problems such as MINOS, CONOPT, IPOT, KNITRO, etc.
Similarly, some other solvers are used to address convex and non-convex problems, including
DICOPT (convex/non-convex), GIoMIQO (convex/non-convex quadratic), BARON (convex/non-
convex), and SCIP (convex/non-convex), among others. The main solvers used in this Thesis and
included in the GAMS library are displayed in Table 3.2.

Table. 3.2. Typical AHP numerical equivalences/preferences.

LP MIP NLP MINLP
BARON x X X X
CONOPT x X
CPLEX x X
DICOPT X
SCIP X X X

3.8.Final remarks.

In this chapter, different optimization techniques have been outlined. The main ideas behind each
technique have been briefly introduced in order to provide the reader with a general understanding
of the theory involved in the solution techniques applied in this Thesis. In order to implement
mathematical formulation in optimization software (i.e., GAMS), one requires having a good
understanding of their principles, to interpret results as well as to debug skills. For that reason,
special emphasis has been made to these topics. Particularly in this Thesis, the combination of MO
and uncertainty approaches frameworks has been developed. Additionally solution identification
strategies have been proposed.
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Chapter 4

Fuzzy programming as advanced MOO approach

Despite the efficiency of the current multi-objective approaches to assess more than two objectives
simultaneously, their application has been limited to optimize (increase or reduce) the objective
value. However, these approaches are useful to address complex sustainability problems, since they
have the potential to improve the process management by considering both, the quantified impact
and its effects over further process conditions. The above becomes more relevant, especially when
one of the objectives affects directly a limited and/or non-renewable resource (such as water and

energy).

In this chapter, a multi-objective optimization strategy based on a fuzzy formulation is proposed for
the sustainable design and planning of water supply chains in urban areas. As opposed to other
models that attempt to minimize water consumption, this study seeks to minimize the water stress
index, which quantifies the impact of freshwater consumption over the water reservoirs considering
the geographical conditions of the location where the withdrawals take place. The capabilities of
this approach are illustrated through its application to a real case study based on the city of Morelia
in Mexico, in which the use of alternative water sources along with an appropriate water
distribution plan allows reducing the pressure over natural reservoirs.

4.1.The Role of Multi-Objective approaches in the design and
management of water SC’s

The massive water requirements are driving to the fast depletion of worldwide available freshwater,
which compromises the water availability for the near future. Thus, one of the key global
sustainability challenges is the efficient management and conservation of water, since it is the
essential resource for all anthropogenic activities worldwide. Water scarcity affects differently each
geographic region across the world due to the uneven spatial distribution of groundwater
availability as well as the region-specific climatic conditions. Therefore, strategies that take into
account the spatial features of water consumption are needed to promote a sustainable water use.
For the particular case of industrial processes, the following three main challenges must be
addressed:
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() The integration of water reuse/recycle strategies in industrial processes;

(i) The development and application of efficient redesign/retrofit techniques to
wastewater treatment processes; and

(iii)  The integration of water efficiency indexes in decision-support strategies.

PSE community is able to tackle these challenges by adopting a holistic systems-based analysis.
Such an approach should seek for an integrated solution by minimizing the global impact while
considering feasibility constraints imposed by universal physical laws and current regulations. In
particular, MOO has been applied for the design and planning of a wide variety of industrial
systems (including water networks) (Grossmann and Guillén-Goséalbez, 2010). For example Zhang
et al. (2014) identify the potential benefits of reusing wastewater in regional sectors by performing
a trade-off between the recovered wastewater, regeneration costs and pollutants reduction. Later on,
the process challenges associated to the use of alternative water source (such as collected rainwater)
have been assessed considering three conflicting objectives (economic, freshwater consumption and
land use) (Rojas-Torres et al., 2015). More recently, the scope of the study was enlarged to
optimize the energy-water of hydrologic power plants considering economic, environmental and
social objectives (Gonzalez-Bravo et al., 2016). Furthermore, multi-objective models were applied
to optimize the use of water in agriculture concerning wheat production (Galan-Martin et al.,

2017).

The overwhelming majority of formulations dealing with water issues (either preservation or
conservation ones) considers directly the freshwater consumption as the environmental impact
associated with the water withdrawals. Nevertheless, the impact of freshwater withdrawals over
water availability depends on multiple factors and not only in the quantity. Thus, sophisticated
environmental indices that better express the cause-effect relationships between water use and
environmental impact have been promoted. In this line, the water stress index (WSI) was proposed
to model the impact of water consumption over the availability in its sources (Pfister et al., 2009).
Similar metrics have been proposed to use the water consumption level as a way to quantify the real
impact of water consumption considering the regional aspects of the withdrawals. Until now, water
efficiency indexes were never included as an environmental objective in a multi-objective (MO)
water management problem. Hence, there is significant room for improvement in the way water
management is optimized, particularly regarding the selection of appropriate environmental metrics.

Besides the definition of a customized environmental objective function, MOO methods need
additional improvements for the detailed analysis of the solution within the Pareto frontier, and the
further identification of the best option among them. Alternatively, the number of Pareto solutions
can be systematically narrowed down following other approaches, including, Pareto filters (Pozo et
al., 2012; Antipova et al., 2015), ELECTRE methods (Rogers et al., 2010) and data envelopment
analysis (Limleamthong et al., 2016). Traditional MOO and narrow down methods have been
described in detail in Chapter 3.

Seeking to overcome the typical limitations of MOO and solution reduction methods, fuzzy
programming appears as a promising alternative to reduce the complexity of MOO models while
promoting the generation of well-balanced solutions. In the recent past, these approaches have been
applied to solve manufacturing (Karsak and Kuzgunkaya, 2002) and energy systems problems
(Mazur, 2007). Similarly, MO-fuzzy formulations have been used for the planning of heat/cooling
networks considering linear and non-linear operating costs and energy requirements (Sakawa and
Matsui, 2013; Ehsani et al., 2016). Despite all the studies on fuzzy approaches to address MOO
problems, two main challenges remain unsolved. First, the proper definition of membership
functions to capture the objectives’ behavior and their associated impact (cause-effect). Second,
how to properly incorporate the decision-makers’ preferences in the fuzzy model.
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This chapter proposes a novel approach for the optimal retrofit and planning of water distribution
networks in urban areas based on a MO-fuzzy formulation that makes use of nonlinear membership
functions. Three conflicting objectives are considered: fob,, economic profit (Profit), fob,, water
consumption (WC) and fobs, land usage (LU). The first criterion is commonly optimized in
industrial processes reflecting the economic dimension of sustainability. The other two quantify
environmental aspects, with the third one measuring as well the level of complexity of the network
and the ease of operation. fob; and fob; are formulated assuming linear membership functions
following traditional fuzzy methods. For fob,, a nonlinear membership function is defined that
links the WC to the water availability. Hence, one of the main contributions of this chapter is the
adoption of a mathematical approach to capture the cause-effect relationship between water
consumption and the associated impact (rather than using WC as a proxy of environmental impact).

4.2.Problem statement

This chapter addresses the re-design and operation of a water network system considering both, its
economic performance and the environmental impact (see Fig. 4.1). To derive the mathematical
formulation, a standard high-level network is considered encompassing natural water sources k that
play the role of suppliers (including dams, springs and deep wells). The SC also includes industrial
u, agricultural h and domestic j sites acting as water consumers along with potential sites for
storage tanks and artificial ponds (indexed with the subscripts [ and n, for agricultural and domestic
sites, and b and w, for industrial sites, respectively).
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Fig. 4.1. Superstructure for water distribution at the macroscopic level.

Natural freshwater sources, k, can be recharged by direct precipitation, runoff water and by natural
tributaries m. Water from natural sources is treated in central facilities (henceforth know as mains)
and distributed to industrial u, agricultural h and/or domestic j sites. Reclaimed water can be either,
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used to meet the agricultural demands (without previous treatment) or be directly discharged to the
environment. Water can be acquired from external places, which distribute it directly to the final
users whenever natural sources cannot satisfy the water demand. Harvested rainwater is stored in
different facilities (storage tanks and artificial ponds).

The goal of the analysis is to identify the best design and planning decisions in terms of its
economic performance and water perseveration while reducing the land usage given the average
capacity of natural and alternative sources, water demands, purchasing prices and process
constraints.

4.3.Mathematical formulation

The following equations model the water network shown in Fig. 4.1. In particular, mass and energy
balances for each part of the network are next described.

4.3.1. Mass balances

Natural water sources

Eq. (4.1) accounts for the water in natural repositories (Gy ) using an inlet-outlet analysis. In
particular, r,, . . represents the water inlets from all the affluent m that contribute to flows k, while
p,fi . quantifies the water collected from both, the rainfall and runoff water. Similarly, the output
water is quantified through the sum of the water sent to domestic, agricultural and industrial sites
(98¢ 9% and gj ., respectively), the water losses (vy/,) and over-flooding (Dropy,). For

simplicity, water losses (due to evaporation, filtration, and losses in the distribution process), are
fixed at 20% of the total collected water, while the over-flooding is defined as the amount of water
exceeding the maximum capacity of source k.

Gt — Grr-1 = Z Tmk,t +pi<q,t - glcci,t — it — Gkt — vicg,t - DTOP}?; (4.1)

meM

The rainfall (ROWYV;, ;) and runoff water (DPWV,, ;) can be calculated as follows.
Pi: = ROWVy . + DPWV, keEKteT (4.2)

Notice that both, the runoff water and rainfall are calculated from the total annual precipitation (P),
and the collection area (Ay), considering a certain coefficient C,as described in Eq. (4.3) and Eq.
(4.4).

ROWV,,, = P, - AR°W - C, keK,teT (4.3)
DPWVy,, = P, - ARPV - C, keKteT (4.4)

Particularly in this case study C, = 0.1435, which can be obtained (with indirect methods) from the
annual precipitation and the parameter K, which takes into account the type and use of land.

Storage tanks

The mass balance for storage tanks follows the same logic than the balance for natural sources.
Thus, Eq. (4.5) models the water stored for domestic/agricultural use (S; ;).
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St —Syeoq = st — Z s{j;.f;'d — z spha? VIELVtET (4.5)
j€J hEH

si% accounts for the harvested rainwater, while s7'¢? and sPi7® represent the water sent for

domestic and agricultural use, respectively. In the same way, the balance for storage tanks in
industrial facilities is as follows.

Sl = Slyeoy = siffy = Y sightt VhEBVLET (4.6)
uevu
Artificial ponds

The mass balances for artificial ponds are equivalent to those applied to storage tanks. For domestic
and agricultural use, the balance is the following:

Ape—Apeoq = aly — Z a;’l}j.ff - Z agid VneNVteT (4.7)
I3 heH
Where A, . represents the amount of stored water in pond n at period t. al', corresponds to

harvested rainwater, while af* and ag'iy represent the water sent to domestic and agricultural

users. For industrial users, the balance is stated as follows:

Al — Aly g = ailll, — Z aidt YweEW,VteET (4.8)
ueu

Mass balance in mains

The mains can be considered as a pretreatment site in which all the natural water flows are treated
to attain the quality required by their final users, as shown by Eqgs. (4.9) to (4.11).

2 Jiee = 2 fie teT (4.9)
k

5]
Zg,‘ét = Z The teT (4.10)
k heH

> ke = au ter (#11)
k uevu

Where f;;, ,: and q,, . represent the inlet water for domestic (j), agricultural (k) and industrial (u)
sinks, respectively, at time t.

Domestic/agricultural sinks and domestic treatment plant

The demand for domestic use (Dj‘ff) can be satisfied using natural sources (domestic main) as well
as reused/harvested water (storage tanks and/or artificial ponds) as described in Eq. (4.12).

D = fo+ ) S04+ ) altd+ fpchy, jejeT (4.12)

leL NnenN

Notice that water can also be purchased from external sites (if required), as denoted by fpch;;. In
particular, Eq. (4.13) describes the mass balance in the domestic sinks, which contains two terms.
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The first one (cwj‘flt) accounts for the water consumed/lost during process/transportation, while the
second one (int}fé) represents the wastewater generated in domestics sinks.

Dﬂg = CWft + int}f} JEJtET (4.13)

Notice that wastewater can be regenerated in a wastewater treatment plant for its further use in
agricultural sinks (int?“*) or prior to being disposed (cwfp).

Z it/ = int?* + cw,? teT (4.14)
J
The regenerated water (int{%“*) can be sent to any agricultural sink as described in Eq. (4.15).

into%t = Z intyy49 teT (4.15)
h

Similarly than for domestic use, agricultural demands can be satisfied by different sources as shown
in Eq. (4.16).

D =1, + Z spni + Z afit® +rpchy, + ity % + intify™ hEeH,teT  (4.16)

leL nenN

Where int 4“* and intig““* represent the regenerated water from domestic and industrial

treatment plants. Notice that a “non-output™ situation is assumed which means that all the inputs
flows for the agricultural sinks are consumed.

Industrial sinks and treatment plants

Industrial sinks balances follow the same logic as domestic and agricultural ones (See Eq. (4.17)).

DI =qy. + Z sig"f:;f + Z ai;)v]ﬁf,'i +qpch,; u€UteT (4.17)
beEB wEW

Here, gpch,,, quantifies the water purchased from external sites. The water consumed/lost in the
production process (cwg_it) as well as wastewater produced (intiﬂ}t) are also considered.

DE = cwdl + inti VuEUVtET (4.18)

The treatment plant balances are described in Egs. (4.19) and (4.20).

Z intill, = inti®™ + cwi/P teT (4.19)
u
inti®“% = Z intipy teT (4.20)
h

Storage tanks and artificial ponds

Maximum capacity levels are defined by §/*** and A;'** for storage tanks and artificial ponds,
respectively (only for domestic and agricultural use). Similarly, SIJ*** and AI}}** represent the
maximum capacity for storage tanks and artificial ponds for industrial purposes. Egs. (4.21) to
(4.28) guarantee a storage accumulation below the maximum capacity.
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S =S, lel, teT (4.21)

AR = Ay, neN, teT (4.22)
Smax > sin, leL, teT (4.23)
Amax > gin | neEN, teT (4.24)
SI* > 1, 4, beB, teT (4.25)
Al > A, ., wEW, teT (4.26)
SIe* > sif, beB, teT (4.27)
ALx > qiln, wWEW, te€T (4.28)

The installation (or not) of storage tanks is controlled using a binary variable (z;,, for domestic and
agricultural usage, and zg}'t for industrial one) as displayed in Eq. (4.29) and Eq. (4.31). A similar

approach was used for artificial ponds using z;; , for domestic/agricultural use and zv‘f,ftfor industrial
purposes, as seen in Egs. (4.30) and (4.32).

szt <1, vielL (4.29)
t
Z 28, <1, Vnen (4.30)
t
Zzgft <1, Vb € B (4.31)
t
EZ‘% <1, vw e W (4.32)

t

Installing storage tanks and/or artificial ponds has an important impact on the cost function as
shown in Egs. (4.33) and (4.34).

a
Costs = (Z KeypVPy: - th> A+ (z Keye VP -Zagft) B, viel (4.33)
t t

a
Costy = (Z Ky VPt Z,‘{t> -C + (2 Kpp o VPt -Zagf{,t) -D, vn €N (4.34)
t t

In Egs. (4.33) to (4.34), both, A and B are parameters used to calculate the fixed and variable costs
of storage tanks (Cost7’), while C and D have the same purpose for artificial ponds costs (Costy). a
accounts for economies of scale, while, K, is used to annualize the investment in each facility
(described as Kpp . = 1/(1 + i)t). The total investment for storage installation is represented

through the variable VP, while Zagj, is an additional variable used to linearize the cost functions
through the Big-M reformulation (see Egs. (4.35) to (4.40)). Eqgs (4.33) to (4.34) describe the costs
of domestic/agricultural use. Until now, domestic, agricultural and industrial related equations have
been included. However, for simplicity, from now on just domestic/agricultural equations will be
described since the equations describing the industrial use follow the same logic as the
domestic/agricultural ones.

63



Chapter 4.- Fuzzy programming as advanced MO approach

Zags, < S"* + MLy, - (1 —z},), VIELVtET (4.35)
Zags, = S"™* — MLy, - (1 — z},), VIELVtET (4.36)
Zagi, < MLy, - (z},), VIELVtET (4.37)
Zagd, < AT + MN, .- (1—z2,), Vn€EN,VtET (4.38)
Zag, = A% — MN, .- (1 —z%,), Vn€N,VtET (4.39)
Zagd, < MNy, - (z%,), VnEN,VtET (4.40)

From Eqgs. (4.35) to (4.40), ML and MN represent a very large number that acts as an upper bound
on the volume of the installed tanks and artificial ponds, respectively. Thus, when binary variable
zj, is 1, variables Zag;, take the value of the maximum volume of storage S;™%* and the model
calculates the installation cost of the storage tank; otherwise, the installation cost is zero. In addition
to the economic impact, the installation of storage devices and artificial ponds has an impact on the
land use that is given by the surface occupied by these repositories, as described in Eq. (4.41).

SMax — ARS, - ATS,, viel (4.41)

Variable ARS,; denotes the land use required for the storage tanks installed, while ATS,; denotes the
tanks height of these tanks. Since the effect of such a factor over land use is significant, a set of
constraints for the tanks height were included. In addition to the occupied surface, the harvesting
equipment’s area has been explicitly calculated using the nominal area (A%) (as displayed in Egs.
(4.42) to (4.43)). Note that the total collected rainwater is hence a function of these areas. Similarly,
to storage tanks ATN,, denote the height of the artificial pond.

APX = ARL,, - ATN,, VneN 4.42
n n n

APA, = Z 2%, AS, vneN (4.43)
t

As commented before, the same logic is applied to the installation of storage tanks and artificial
ponds for industrial use.

4.3.2. Obijective functions

The model includes three objective functions, being the water sales revenue, the water consumption
and the land use (associated with the storage devices). A detailed description of the objective
functions calculation is presented below.

Economic Objective

The economic objective is calculated from the revenues and expenditures associated with the water
management (Eq. (4.44)). The profit is obtained by summing the water sales for domestic,
agricultural, and industrial purposes (WaterSales) while expenses account for the treatment
(TreatmentCost), distribution (PipingCost) and the installation/operation costs associated with
artificial tanks (StorageCost).

Profit = WaterSales — TreatmentCost — StorageCost — PipingCost (4.44)

Particularly, WaterSales is calculated as follows.
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WaterSales = ngét + ZZZ s{’}‘ﬁd + ZZZ fll;-,tid . DSC
Kkt 1

j t

+ (Zzggt £ QDL D) D a4 ) ) el ) asc
k t n h

Il h t

+<ZZg,i,t+ZZZSi§ﬁf+zzz “,’Vujz+22mtlﬂ“>-5€
k t b u t w o u
Zprchj_t+Zerchht qupChu,t - PSC
j ot h t u t

Where DSC and ASC are the prices of water for domestic and agricultural purposes, respectively.
ISC is the price of water for industrial users, and PSC is the price for the water purchased from
external suppliers. The treatment operations are applied to guarantee a satisfactory water quality
level, thus, treatment cost can be estimated using Eq. (4.46).

TreatmentCost = <Z 2 gL, CTND + 2 2 g CTNA + Z Z g,i,tCTN1>
k t k t k t
Z Z Z syt + Z Z Z agst® |- cTAD
I j ot n j t
+ <Z Z Z Sphet + Z 2 2 a,ﬂ}ﬁff) - CTAA
I h t n h t
+ (Z Z Z siput + Z Z Z aig ;) - CTAI (4.46)
b u
+ <Z z inty"*9 + z Z intipy" l) -CTPA
h h
Z Z foch; CTFP + Z Z rpchy . CTRP + Z Z qpchy, . CTQP
j ot h t u t
+ (Z cw,? + Z Cthl) - CTPE
t

Where CTND, CTNA and CTNI are the fixed treatment costs for natural streams to be used for
domestic, agricultural and industrial purposes, respectively. Similarly, CTAD and CTAA are the
rainwater treatment costs for domestic and agricultural purposes, respectively, while CTAI is for
industrial use. CTP is the wastewater regeneration cost for agricultural use and CTPE is the cost of
wastewater treatment. Finally, CTFP, CTRP, and CTQP are the costs for domestic, agricultural, and
industrial use respectively.

(4.45)

Storage tanks are allowed as a way to ensure the water demand satisfaction. Their associated cost is
calculated considering the installation/operation cost of artificial reservoirs for both domestic and
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agricultural (Cost{ and Costy for tanks and ponds, respectively) as well as for industrial use
(Costs' and Cost& for tanks and artificial ponds, respectively).

StorageCost = Z Costj + Z Costf + Z Cost§' + Z Costd (4.47)
l n b w

The water transportation between locations is described in Eq. (4.48).

PipingCost = Z Z Z spird PCSTD + z Z Z apih® PCASD
L n o j t
+ Z Z Z sphit PCSTA + Z Z Z apy s PCASA
Il h t n h
+ Z Z Z sigutt PCSTI + Z Z Z aitt PCASI
+ZZgRtPCND+ZngtPCNA+ZngtPCNI (4.48)
+ Z Z intyy"*9 PCTW + Z Z fpch;, PFP
h
+ Z Z rpchy ¢ PRP + Z Z qpch,,: PQP
h t u t
+ Z Z intins" PCTI
h

Where PCSTD is the unit transportation cost between the storage tank and domestic sink. PCASD
represents the unitary pumping cost from the artificial pond to the domestic sink. PCSTA is the unit
cost of the pipeline and pumping from the storage tank to agricultural sink. PCASA denotes the unit
cost of piping and pumping from an artificial pond to agricultural sink. PCSTI is the unit cost of
piping and pumping from industrial storage tank to industrial sink; PCASI is the unit cost of piping
and pumping from industrial artificial pond to industrial sink; and PCND, PCNA, and PCNI are the
unit costs of piping and pumping from natural sources to domestic, agricultural, and industrial
mains, respectively. The cost of piping and pumping purchased water for different users is
represented by PFP (domestic), PRP (agricultural), and PQP (industrial). Finally, PCTW (domestic)
and PCTI (industrial) are the unit costs of piping and pumping from treatment plants to agricultural
sinks.

Environmental Objective

The environmental objective is represented in Eq. (4.49).

wc = Z(NaturalF lowratel + NaturalFlowrateg + NaturalFlowrate})

(4.49)
+ Z WaterPurchased; + z WaterPurchased,;, + z WaterPurchased,,
h

J
Where the natural and purchased water flows entering to each main are calculated in Egs. (4.50-
4.55).

NaturalFlowratef = Z g,‘ét (4.50)
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NaturalFlowratey = Z Jit (4.51)
t

NaturalFlowrate} = Z g,i(,t (4.52)
t

WaterPurchased; = Z foch;, (4.53)
t

WaterPurchased; = Z Tpchy ¢ (4.54)
t

WaterPurchased,, = Z qpchy, ¢ (4.55)
t

Land Use Obijective

The land use objective is presented in Eq. (4.56).

LU = Z ARS, + Z ARSI, + Z ARL, + Z ARI,
l b n w
+ Z APA, + Z API,,
n w

4.4.Methodology

(4.56)

The proposed fuzzy-based approach comprises three main steps as shown in Fig. 4.2. First, a MOO
model is developed in step 1, which is reformulated into a single-objective optimization (SOO) one
by using membership functions (step 2). Finally, the SOO model is solved in step 3 using any
optimization strategy. A detailed description of each step is provided in the ensuing subsections.

4.4.1. Definition of the MOO model

The mathematical model presented herein capitalizes on the mixed-integer linear programming
(MILP) formulation introduced by Rojas-Torres et al. (2015). The model seeks to optimize
simultaneously the Profit, WC and LU objectives described in the multi-dimensional objective
function as presented in model M.

(M) Max[Profit,—WC,—LU]
s.t. constraints 4.1 — 4.56
x €R;y € (0,1)

From model (M), variables x denote operating and design decisions, while binary variables y model
the existence (or not) of artificial storage devices. Model (M) can be solved by standard MOO
methods. As will be later discussed in the next subsection, environmental objective (WC) does not
account for the spatial specificity of the impact, and therefore it is replaced by the water stress index
WSI, which provides a better estimate of the “true” impact of water consumption.
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Optimization

3

1.- Develop a MOO model

C I\/IOOgr'nodeI )
3

2.- Transform the model from a
MO into a SO reformulating
the objective function using
the associated membership
function of each individual

objective

¢

CSOO fuzzy-based model )
L 4

3.- Solve the SOO model

[ Fuzzy-Based Multi-Objective ]

[ Final solutions ]

Fig. 4.2. Algorithm for the proposed strategy.
4.4.2. Fuzzy-based model

A fuzzy-based strategy has been used as an alternative to solve the model (M) by reformulating the
objective function. Particularly, a membership function is defined for each objective using the
general expression (Zimmermann, 1978) displayed in Eq. (4.57). A detailed description of the idea
behind Fuzzy based approaches is presented in Section 3.3.2. For clarity of this section let’s
highlight that fuzzy formulation has as a main advantages its capability to relax the non-linear
objectives behaviour while properly representing the cause-effect relationships. Nevertheless, the
fuzzy approach is efficient to identify a well-balanced solution

_ 1 _ if Xob 2 Bob_
Aob(xob) =41- (bob - xob)/(bob — bop) if bop < Xop < byp (4.57)
0 if Xob < bop

Where x,, represents the performance for objective ob, while A,,(x,,) can be interpreted as the
normalized degree of x,;, within the limits for the specific objective (ob € {Profit, WC,LU}). The
value of 4,,(x,;) is expressed in the range zero to one, where zero corresponds to the minimum
value and one to the maximum one. Moreover, b,, and b,, represent the objective boundaries
(maximum and minimum value, respectively). Eq. (4.57) is applied to the objectives to be
maximized; otherwise, the membership function follows the form in Eq. (4.58).
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1 if Xop < bop
Aob(xob) = (bob - xob)/(bob - Qob) if Qob < Xop < bop (4.58)
0 if Xob = Eob

These membership forms facilitate the introduction of the objective fuzziness into the formulation.
Notice that Egs. (4.57) and (4.58) obeys a I'-shaped fuzzy formulation, which is appropriate in cases
where the impact increases linearly with the objective value (as in this particular application).

When assessing environmental burdens, a linear relationship is seldom found between burdens (e.g.
emissions, materials consumption and land and water use) and their associated environmental
impact. This is because damage assessment models are often nonlinear, yet they are simplified via
linear equations to facilitate their use. Therefore, rather than using WC as a proxy of environmental
impact, as was done in former studies (Rojas-Torres et al., 2015), herein the environmental
performance is modeled via the WSI. In order to calculate the WSI, the ratio WC to total water
availability (WA) is first determined as described in Eq. (4.59).

WTA we 4.59

WA (4:59)
By definition, WSI describes a nonlinear relation with respect to WTA in which for small values of
WTA (i.e. small water consumptions) the water reservoirs ensure water supply for future processes.
On the contrary, for larger values of WTA (for example, > 0.2), any increment in the water
consumption will significantly compromise the water availability for future applications; finally, for
large values in WTA (>0.9) the impact becomes irreversible and even when there is still water
available in the reservoirs, it is likely that other processes will operate under water limitations. The
most appropriate expression to represent this WSI behavior is a sigmoidal function as the shown in
Eg. (4.60), which provides a continuous range between 0.01 and 1 as discussed in the literature
(Pfister et al., 2009). Therefore, Eq. (4.60) can then be used as membership function for quantifying
the impact of water consumption:

1
WSI = (4.60)
1
—6.4xWTA __
I+e (o1 - 1)

The environmental objective related to water consumption is then calculated via Eq. (4.61):

Finally, the model (M) is reformulated into the model (M2) as follows:

OB = Z Aob (xob)]
ob

(M2) Max

The overall algorithm is then summarized as:

4. Solve model (M) individually for each objective ob € OB. Let b,,and b, be the maximum
and minimum values of each objective, respectively.

5. Reformulate the objective functions using the membership functions in Egs. (4.57-4.58) and
Eqg. (4.61).

6. Merge the membership functions to define a SO problem (model (M2)).

7. Solve the resulting nonlinear problem using any available solver.

Due to the nonlinear mathematical representation of the WSI, the model takes the form of a mixed-
integer nonlinear programming formulation (MINLP). Since, there are only two nonlinear terms
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(Egs. (4.59-4.60)), the MINLP can be easily approximate into a MILP by using well-known
piecewise techniques. This method, which reformulates univariate nonlinear terms into piecewise
linear functions defined using binary variables, was already applied to other problems addressed by
the authors (Pozo et al., 2010). Note that it is also possible to apply global optimization solvers to
the original MINLP problem, yet the aforementioned reformulation greatly facilitates the solution
procedure. A qualitative analysis of the piecewise linearization used in this study is presented in

Appendix B.1.

4.5.Case study: Design of water SC’s

The proposed formulation is illustrated through its application to a design and planning problem of
a water management system in a real urban area. The city of Morelia (Michoacan, Mexico) was
selected as a case study due to the high freshwater cost and the severe overexploitation suffered in
the last decades. Particularly, 12 natural water sources were considered, out of which ten are deep
wells, one a spring and the last one a dam. In order to prevent water depletion, water usage was
forced to lie below 80% of the current capacity. The water price is US$1.4/m3 (Zhang et al., 2014),
while wastewater generated in domestic and industrial sinks is treated to satisfy partially the
agricultural demand and the rest is disposed to the environment.

The problem addressed seeks the optimal distribution of water sources that satisfy the domestic,
agricultural, and industrial demands for a five-year time horizon (with monthly discretization). A
constant increase in water demand of 0.27% (over the average current demand) was considered.
Similarly, a linear decrease in precipitation was assumed, with a 3% reduction over the average
historical values. We follow the same geographical assumptions as in a former study with the same
case study (Rojas-Torres et al., 2015). The city was divided into five areas and the population and
location of both industrial and agricultural users were uniformly distributed. Due to the current
water usages for each sector, up to 20 storage tanks were considered for domestic and agricultural
activity, whereas 20 tanks are allowed for industrial purposes. Similarly, six artificial ponds can be
installed for domestic and agricultural users, and six artificial ponds for industrial users.

Additional parameters values are provided in Appendix B.2. The model optimizes simultaneously
the design of the SC network and the planning decisions. For comparison purposes, the problem is
first solved following a standard MOO approach and then the proposed fuzzy-based method is
applied to illustrate its advantages.

4.5.1. Fist approach: Traditional multi-objective method.

For this first case, the well-known e-constraint method was used to produce a set of Pareto solutions
in the space of the three original objectives, Profit, WC, and LU (Ehrgott, 2005). The SO-MILP
form of the model (M), contains 34,911 equations, 44,571 continuous variables and 3,120 binary
variables and was implemented in GAMS 23.9 and solved with CPLEX 12.4 on a Windows XP
computer with Intel®Core™i7 CPU(920)3.4GHz processor with 16.00GB of RAM. It takes
approximately 500 seconds to identify the global optimum in every instance. 45 Pareto points were
generated, as shown in Fig. 4.3a, in which nadir and utopia points have been also included. To
provide additional visual support, a 3-D surface is generated from the set of Pareto frontiers (Fig.
4.3b). Notice that the generation of such a surface is not an accurate prediction of the global Pareto
surface, however provides a useful overview.
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Fig. 4.3. Left. Pareto frontiers for the three objectives under analysis. Right) Projected Pareto surface.

In general, Fig. 4.3 shows that the LU and WC decrease at the expense of compromising the Profit
performance. Within the LU range, the Profit varies about $70x10° (from $219.15 x10° to
$270.26x10°%), while the WC oscillates in a range of 183x10°m® (from 459.63x10°m?® to
643.28x10°mq). The extreme solutions and some intermediate ones are discussed in detail in a
previous work (Rojas-Torres et al., 2015). In essence, in order to reduce the environmental impact,
it is needed to install 20 storage tanks (upper bound according to the problem formulation) and use
some amount of reclaimed water to partially satisfy the freshwater demands (up to 10% of the total
consumption). In addition, most of the water needed is covered purchasing water from external
suppliers (around 70%) in order to maintain a high level of water in the local water repositories.
Thus, the high transportation costs and the large number of storage tanks/land use required
deteriorate the performance in both, the Profit and LU objectives. From this set of solutions and
many potential more that could be generated within the aforementioned ranges, decision-makers
should select the most appealing one according to their preferences. This would introduce
subjectivity into the process and emphasize the need to manage their preferences. In order to
simplify this process, the fuzzy-based approach is applied as describes in the next subsection.

4.5.2. Second approach: Fuzzy-Based method

Here, the three objectives were modelled using their respective membership functions. The SO-
MINLP model (model M2) contains 35,050 equations, 44,708 continuous variables and 3,125
binary variables and it was implemented in the same computer as before. It took approximately
1,500 seconds to find the optimal solution. The obtained solution (henceforth known as fuzzy
solution) attains a performance 43%, 82% and 62% of the best possible values for Profit, WC and
LU, respectively ($225.517x10°, 491.437x10°m?® and 2.382x10°m?). The above solution obtained
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through the proposed fuzzy-based approach represents a single point within the Pareto frontier and
its graphical representation/allocation is displayed in Fig. 4.3. From such a graphic it can be noticed
how the final fuzzy solution lies within the global Pareto frontier/surface, even if it is not within the
individual Pareto frontiers for the bi-objective combinations. Additionally, by changing the
perspective of the Pareto surface (Fig. 4.3c), it can be noticed how the fuzzy solution is one of the
feasible dominant solutions that approximate to the utopia point. Notice that the fuzzy formulation
tries to provide a balanced solution, however its performance is conditioned by the decision maker
assumptions (as proved in the following section). In addition, Fig. 4.4 represents the corresponding
normalized radar plot in order to illustrate the performance of the fuzzy solution.

Fig. 4.4. Radar plot comparing the performance for the individual optimization of each objective and the
fuzzy approach.

In order to analyze and compare the resulting designs, the solution with the highest Profit in the first
case is used as a reference point (henceforth known as Reference solution). Such a design attains
$270.24x108, 661.437x10°m? and 4.766x10°m? for Profit, WC and LU, respectively. Compared to
this solution, the fuzzy solution leads to savings of 170.862x10°m® and 2.38x10°m? in freshwater
and land use, respectively, but at the expense of reducing in $44.723x10° the economic
performance.

4.5.3. Reference and fuzzy-based design comparison

The solution with the highest Profit in the first case is the best feasible solution, thus, it will be used
as a reference for comparison purposes (henceforth known as Reference solution). Such a design
attains $270.24x10°, 661.437x10°m® and 4.766x10°m? for Profit, WC and LU, respectively.
Compared to this solution, the fuzzy solution leads to savings of 170.862x10m? and 2.38x10°m? in
freshwater and land use, respectively, but at the expense of reducing in $44.723x10° the economic
performance.

The resulting designs are displayed in Figs. 4.5 and 4.6, respectively. By comparing them, three
main differences can be highlighted. First, for domestic and agricultural purposes, the fuzzy design
requires two artificial ponds, while for the reference design six are installed. Moreover, water from
artificial ponds in the reference and fuzzy designs amount to 5.99x10° m*® and 6.86x10° m3,
respectively. On the other hand, the reference design allocates 15 and 20 storage tanks for
domestic/agricultural and industrial use, respectively, while the fuzzy one includes 20 for both of
them. The storage and artificial ponds capacities had a significant impact on the economic
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performance due to their installation and transportation costs ($867,260 higher for the fuzzy
solution). However, the fuzzy design collects and distributes 9.83x10°m? of harvested rainwater,
30% higher than the reference case. The use of these alternative water sources reduces the
environmental impact at the expense of increasing the installation cost. A similar behavior was
found in the artificial ponds and storage tanks for industrial usages.

The final and most important difference concerns the amount of freshwater consumed in
agricultural activities. In the fuzzy solution, the water consumed in agriculture is fully satisfied
using regenerated water from treatment plants, ultimately attaining freshwater savings of 21.03x10°
m? compared to the reference solution. This reduces the environmental and land use impacts at the
expense of sacrificing economic benefits, as there is also an increment in water
treatment/distribution/storage costs (which amount to $27.347x10°). Although the purchase of water
was an option available, it was not selected in any of the optimal solutions. This was expected,
considering the high external prices and limited availability of resources.
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Fig. 4.5. Configuration of solution with highest Profit value for case 1.
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Fig. 4.6. Optimal overall configuration obtained through the fuzzy-based formulation.

In order to stress even more the capabilities of the proposed formulation, its flexibility and

robustness are evaluated in the following subsections.

4.5.4. Comparison among different non-linear membership functions

Here, in addition to the already commented sigmoidal function, an exponential impact associated
with the LU objective (4, = Log,o(LU)) has been considered and represented in Fig. 4.8. Alike in
the sigmoidal case, here, the same piecewise approximation (i.e. using five fixed intervals) was used
to relax the nonlinearities.
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Thus, using the LU exponential function, two particular situations can be defined and compared
afterward. First, the single non-linear membership function situation (SNLMF), when a sigmoidal
behavior for WC was assumed (the one explained in previous subsections). For the second case, the
exponential membership function for LU was considered in addition to the sigmoidal one (defined
as double non-linear membership function situation (DNLMF)). After solving model M2 for the
DNLMF case, the resulting objective values are displayed in Table 4.1, together with the ones from
the SNLMF solution.

Table 4.1. Results for single and double non-linear membership function cases.
Fuzzy-Based Optimization

SNLMF Performance DNLMF Performance

Profit 0.862 225.51x1068°2 0.846 221.51x1082

wC 0.873 491.44x108" 0.702 525.34x108°
LU 0.618 2.00 x10%¢ 0.736 1.00 x106¢

aValues expressed in $; P Values expressed in m3; ¢Values expressed in m?

From Table 4.1, it is evident that the definition of the membership function has a significant effect
on the final solution. The position of solutions for SNLMF and DNLMF within the Pareto set is
represented in Fig. 4.9. By comparing these points, it can be concluded that the optimal solution
moves mainly along the LU axis. In fact, the LU performance improves significantly when
compared with the SNLMF case (improvement of 11.8%) at the expense of reducing the Profit and
WC performances (about 0.2 and 17%, respectively). The above proves that the fuzzy-based
strategy is sensitive enough to account for different nonlinear cause-effect membership functions,
which represents a feasible option to aid decision-support tasks.

75



Chapter 4.- Fuzzy programming as advanced MO approach

280

260
£ 240
&
2 220
o
SNLMF _—
200 Profit($*10°)=225.51 DNLMF - \%\
WC(m®*10%)=491 44 Profit($*10°%)=221.51 o
LUM?>10%)=2.00 WC(m*10°)=525.38 Q@
2% 6y
_— LU(M?*10%=1.00 550 é‘\o
500 &
&
4 450
Use(rn2*1o6) 1 40 &
>
N

Fig. 4.9. LU representation using our cause-effect approach (Blue line) and the fixed piecewise discretization
used (gold line).

Similarly to the use different non-linear membership functions, other factors may also affect the
final result while using fuzzy-based approach, such as the decision maker preferences as evaluated
next.

4.5.5. Effect of different objective preferences.

Alike in the previous subsection, here, two different cases were defined in which different
weighting values were assumed for the economic objective, in order to promote the evaluation and
discussion of the approach sensitivity. The preferences are considered by introducing a coefficient
for each objective (WF,,;,) into the model M2 leading to the following model (M3).

(M3) Max OB = Z (WP 24(00)), (WEy 5 25(22))s o0, Wty % Ao (Xop) )
ob

Table 4.2 displays these values. For the first case, the economic performance was assumed twice
important than the rest of them, while for the other case Profit is half as important as the other
objectives. The performance for each objective is obtained by solving model (M3) and is presented
in Table 4.2.
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Table 4.2. Decision maker preferences for each objective.

First case Second case Reference Fuzzy (Original)
Weight Performance Weight  Performance Performance Performance
Profit 2 220.39x106 0.5 222.35x108 270.24x108 225.52x108
WC 1 529.06x10%° 1 522.76x10%° 661.48x10%° 491.48x10°®
LU 1 0.906 x10°¢ 1 0.997 x106¢ 4.766 x10°¢ 2.382 x10°¢

aValues expressed in $;  PValues expressed in m?; “Values expressed in m?

Numerical results in Table 4.2 confirm that the preference for each value significantly conditions
the final solution obtained.

4.6.Concluding remarks

A fuzzy-based formulation addressing the water management in urban areas was presented, whose
main novelty is the incorporation of the water stress index as cause-effect oriented objective and the
use of the fuzzy theory to simplify the post-optimal analysis of the Pareto set of solutions.

The capabilities of the proposed approach were illustrated through the design and planning of a real
water management system in an urban area (city of Morelia in Mexico). The case study accounts for
rainwater harvesting and regenerated wastewater as alternative water sources for satisfying water
demands (at industrial, domestic, and agriculture sectors).

Numerical results show that the final design reduces natural freshwater consumption by installing
storage devices and using alternative water sources. Altogether, the proposed tool identifies
solutions entailing savings of up to 13% and 38% in water consumption and land use, reinforcing
the idea that water reclamation and harvested rainwater are promising and feasible options to reduce
the use of freshwater in agricultural activities, even during drought seasons.

The successful application of this tool to urban water management can open up applications to other
industrial problems where sustainability criteria need to be accounted during the analysis.
Nevertheless, these results also prove that this method completely skips the consideration of
decision-maker  preferences.  Consequently,  additional  contributions are  needed
addressing/proposing an efficient integrated approach capable of identifying a unique and
representative solution explicitly considering the decision maker interests.

4.7.Nomenclature

Abbreviations

MOO Multi-objective optimization

SC Supply chain

MO Multi-Objective

MINLP Mixed integer non-linear programming
PSE Process system engineering

SO Single-Objective

SO0 Single-Objective Optimization

WSI Water Stress Index

AHP Analytical hierarchical processes

ELimination Et Choix Traduisant la REalité (ELimination and Choice

ELECTRE Expressing Reality)
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SNLMF
DNLMF

(=

Single non-linear membership function
Double non-linear membership function

Index

Set for location of industrial storage tanks (b|b =1, ..., B)
Set for agricultural sinks (h|h =1, ..., H)

Set for domestic sinks (j|j = 1, ...,])

Set for natural sources (k|lk =1, ...,K)

Set for location of storage tanks (I|l =1, ..., L)

Set for tributaries (m|m = 1, ..., M)

Set for location of artificial ponds (n|n = 1, ..., N)

Set for time periods (t|t = 1,...,T)

Set for industrial sinks (u|lu =1, ...,U)

Set for location of industrial artificial ponds (wlw =1, ..., W)
Set for objectives (oblob =1,...,0B)

Parameters

Collection area in location n for artificial ponds a

Maximum capacity of artificial ponds a in location n

Collection area in location | for storage tanks s

Avrea of collection for runoff water for natural source k

Area of collection for direct precipitation for natural source k
Maximum capacity of industrial artificial ponds Al in location w
Cost of water for agricultural use

Depth of artificial ponds in location n

Height of storage in location |

Treatment cost for rainwater for agricultural use

Treatment cost for rainwater for industrial use

Treatment cost for water purchased with domestic use

Treatment cost for natural sources with domestic use

Treatment cost for natural sources with agricultural use

Treatment cost for natural sources with industrial use

Treatment cost for rainwater for domestic use

Treatment cost for regeneration of wastewater for agricultural use
Treatment cost for regeneration of wastewater for final disposal
Treatment cost for water purchased with agricultural use

Treatment cost for eater purchased with industrial use

Agricultural users h demands in time t

Industrial users u demands in time t

Domestic users j demands in time t

Water collected from direct precipitation in natural sources k in time t
Water sale cost for domestic use

Cost of water for industrial use

Factor to take into account the annualized investment for storage tanks in
location I in time t

Factor to take into account the annualized investment for artificial ponds in
location n intime t

Large number with allow to constraint the volume for storage tanks in
location I in time t

Large number to constraint the volume of artificial ponds in location n and
time t

Precipitation over time period t

Annual precipitation



PCSTD
PCASD

PCSTA
PCASA
PCSTI

PCASI
PCND
PCNA

PCNI
PCTW

PCTI
PFP
PQP

PRP
PSC

Unit cost of transport from storage tank | to domestic sink j

Unit cost of pumping from artificial pond n to domestic sink j

Unit cost of pipeline and pumping from storage tank in location | to
agricultural sink h

Unit cost of transport water from artificial pond in location n to agricultural
sink h

Unit cost of transport water from industrial storage tank in location b to
industrial sink h

Unit cost of transport water from industrial artificial ponds in location w to
industrial sink u

Unit costs for transport from natural sources k to domestic main

Unit costs for transportation of water from natural sources k to agricultural
main

Unit cost of water transportation from natural sources k to industrial main
Unit water transportation cost from treatment plant to agricultural sink h
Unit water transportation cost from industrial treatment plant to agricultural
sink h

Unit water transportation cost from external water vendor to domestic users
J

Unit water transportation cost from external water vendor to industrial users
u

Unit water transportation cost from external water vendor to agricultural
users h

Water sale cost for water purchased sent to users

Water collected from direct precipitation and runoff water in sources k at
time t

Segregated flow rate from the tributaries m to natural sources k over time
period t

Runoff water collection in natural sources k over time period t

Maximum capacity of storage tanks s in location |

Maximum capacity of industrial storage tanks si in location b

Factor to consider the value of investment for storage tank in location | and
time t

Factor to consider the value of investment for artificial ponds in location n
and time t

Upper bound for objective ob

Lower bound for objective ob

Fixed cost for storage tank

Variable cost for storage tank

Fixed cost for artificial ponds

Variable cost for artificial ponds

Weighting criteria for each objective.

Variables

Existing water in artificial ponds a in location n at time t

Existing water in artificial ponds a in location n in previous time period t-1
Water obtained from rainfall sent to artificial ponds a in location n and time
t

Segregated flow rate from artificial ponds a in location n sent to domestic
users j in time t

Segregated flow rate from artificial ponds a in location n to agricultural
users h intimet

Existing water in industrial artificial ponds ai in location w and time t
Existing water in artificial ponds ai in location w in previous time t-1
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Water obtained from rainfall sent to artificial industrial ponds ai in location
w and time t

Segregated flow rate from industrial artificial ponds ai in location w sent to
industrial users u at time t

Total area occupied by artificial ponds in industrial location n

Total area occupied by artificial industrial ponds in location w

Area occupied by the artificial ponds in location n

Area occupied by the artificial industrial ponds in location w

Area occupied by the storage tank in location |

Area occupied by the industrial storage tanks in location b

Runoff coefficient

Cost of artificial ponds a in location n

Cost of industrial artificial ponds ai in location w

Cost of storage tank s in location |

Cost of industrial storage tank si in location b

Water consumed and losses in domestic sinks j in time t

Water consumed and losses in industrial sink u in time t

Water reclaimed in domestic treatment plant and sent to final disposal in
time t

Water reclaimed in industrial plant and sent to final disposal in time t
Water that exceeds the maximum capacity of natural sources k in time t
Segregated flow rate sent from the domestic main to the domestic users j in
time t

Obijective function.

Segregated flow rate of water purchased sent to domestic users j in time t
Existing water in natural sources k in time t

Existing water in natural sources k in time t-1

Segregated flow rate from the natural sources k to main agricultural a in
time t

Segregated flow rate from the natural source k to main domestic d in time t
Segregated flow rate from the natural source k to main industrial i in time t
Wastewater sent from site j to treatment plant in time t

Wastewater sent from site u to treatment plant in time t

Wastewater sent to treatment plant in time t

Water reclaimed in industrial treatment plant and sent to agricultural sinks h
in time t

Water reclaimed in industrial treatment plant and sent to agricultural sink h
in time t

Segregated flow rate sent from the industrial main to the industrial users u
intime t

Segregated flow rate of water purchased sent to industrial users u in time t
Segregated flow rate sent from the agricultural main to the agricultural users
hintimet

Segregated flow rate of water purchased sent to agricultural users h in time t
Existing water in storage tanks s in location | in time t

Existing water in storage tanks s in location | in time t-1

Water obtained from rainfall sent to storage tanks s in location I in time t
Water obtained from rainfall sent to industrial storage tanks si in location b
and time t

Segregated flow rate from storage tanks s in location | sent to agricultural
users h in time t

Segregated flow rate from storage tanks s in location | sent to domestic users
jintimet



Shy . Existing water in industrial storage tanks Sl in location b in time t-1

Shye—q Existing water in industrial storage tanks Sl in location b in time t-1

gjouti §egreg§ted flow rgte from industrial storage tanks si in location b sent to
but industrial users u in time t

Uyt Water losses in artificial ponds a in time t

vl Water losses in artificial industrial ponds ai in time t

Ve Water losses in natural sources k in time t

vy Water losses in storage tanks s in time t

vil Water losses in industrial storage tanks si in time t

WTA, Ratio of water usage at reservoir k

WA, Water available at reservoir k

WC,x Water consumption at repository k for industrial sites u

WChx Water consumption at repository k for agricultural sites h

WC; Water consumption at repository k for domestic sites j

WA, Water available at reservoir k for time t

WCy k.t Water consumption at repository k for industrial sites u and time t

WCh et Water consumption at repository k for agricultural site h and time t

WGt Water consumption at repository k for domestic site j and time t

Xop Best possible value for each objective ob

Aob Performance degree of optimal value for objective ob

Zag;, Variable for installing storage tanks in location | in time t

Zagy Variable for installing artificial ponds in location n at time t

WaterSales Total profit from water sales

TreatmentCosts Total cost associated to treatment processes

PipingCost Total cost associated to piping of water

StorageCost Total cost for water storage tasks

NaturalFlowrated Inlet flow rate of freshwater to domestic site

NaturalFlowrate} Inlet flow rate of freshwater to agricultural site

NaturalFlowrate, Inlet flow of freshwater to industrial site

WaterPurchased; Purchased amount of freshwater for domestic site

WaterPurchased, Purchased amount of freshwater for agricultural site

WaterPurchased,, Purchased amount of freshwater for industrial site.

Binary Variables

Zh, Variable to select the installation of artificial ponds a in location n at time t

i Variable to select the installation of artificial industrial ponds ai in location
wit w in time t

Zit Variable for installing storage tanks s in location I at time t

z5l Variable for installing industrial storage tanks si in location b in time t






Chapter 5

Comparing and Extending Multi-Criteria decision-making strategies

The increasing pressure on design and planning green processes promoting the best possible
economic performance force companies to make an efficient and detailed analysis prior to taking
any decision. As proved in the previous Chapter, traditional decision-support approaches, such as
Fuzzy ones have been proved effective for this purpose; however, they consider one objective as the
most important one while neglecting the effect of the additional criteria’s. Such a limitation, hinders
the application of traditional approaches for systems in which multiple actors are involved in the
decision making process. Thus, besides the management of the technical difficulties associated with
a SC design/planning optimization, this Chapter addresses the advantages and disadvantages of two
decision-support strategies under cooperative and competitive market schemes (i.e. centralized and
decentralized respectively).

5.1.Challenges in Decision-support frameworks

Along with the management of water resources discussed in the previous chapter, the integrated
management of water networks merged into energy production process is also a key challenge for
the process sustainability (Matson, 2001). As commented before, MOO approaches are necessary
for any solution framework addressing sustainability problems due to its capacity to evaluate
simultaneously multiple objectives of different nature (You et al., 2012). These frameworks
commonly use the g-constraint method as a first step to build the Pareto frontier while further steps
perform a selection/identification of the best option within these points. Even if MOO approaches
have been extensively studied, both, the definition of an adequate number of objectives and the
absence of a systematic identification procedure remains as open issues. In order to address them
while assisting the decision-making task, the fractional formulation and ELECTRE-IV method have
been used as advanced MO optimization alternatives. Details regarding these techniques can be
found in Chapter 3.
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Notwithstanding the huge number of MOO studies, most of them have been applied to the
management of problems under cooperative stakeholder’s environment (i.e. centralized scheme).
For example, the Fuzzy approach presented in the previous Chapter fails to produce a well-balanced
solution when each participant has the freelance take its own decisions based on their individual
interests, due to the lack of information available to represent such a behavior. Thus, in order to
strictly consider a freelance attitude of each participant (i.e. non-cooperative problem); a leader-
follower relationship was modeled through a bi-level formulation leading to the so-called
Stackelberg game (Bard, 1998; Dempe, 2002). In such a mathematical representation, the data used
to represent the lower-level part of the problem conditions the upper-level performance, ultimately,
compromising the global optimality of the resulting solution (Sinha et al., 2018). Thus, integrated
optimization frameworks combining MO and MCDM appear as a promising alternative to approach
the solution of this kind of problems (Kumar et al., 2017). These frameworks should be able to
produce a set of feasible solutions and identify the best one considering simultaneously the
individual objectives of each entity/participant in a time-effective way.

Therefore, in this Chapter a detailed comparison regarding the advantages and limitations of
different decision-making frameworks was performed. In particular, both, a mathematical
programming strategy based on the fractional formulation and the ELECTRE-IV method (as a post-
optimization approach) were compared. To stress the methods differences and discuss them, two
different real-life process and business environments were assumed (cooperation and competition).
Finally, to promote a useful comparison, a case study based on a shale gas SC design and planning
problem was used for both strategies. A brief background de on this kind of problems is next
provided.

5.2.Motivating example: Water management for shale gas
exploitation.

The search for natural gas alternatives has been promoted by the increasing energy demand. In this
line, the shale gas production processes have caught the attention of both industry and academia.
Shale gas is typically embedded in shale rocks, which must be fractured to extract enough gas for
commercial purposes. Hydraulic fracturing is the most commonly used technique in which a fluid (a
solution of almost 95% water) at high pressure is pumped into the wellbore (Yang et al., 2014).
Based on historical data, it is estimated that, each year, the shale gas extraction requires between 12
and 20 million gallons of freshwater per wellbore (Jiang et al., 2014), from which, 0.5 to 5 million
returns to the surface as highly contaminated wastewater (Rahm and Riha, 2012). Even if at a first
sight, the above may seems as a small amount (Less than 1% of any small reservoir which is around
1.5 billion gallons); each shale gas plant has at least 10 wellbores leading to major water
preservation issue. Currently only the U.S. and Canada exploit the shale gas production; however, it
is expected that in the coming years such an industry increase exponentially, particularly in these
countries with highest repositories (Countries such as China, Argentina, Algeria, and México) (Gao
and You, 2017). Apart from the geographic issues (i.e. availability and recoverability challenges)
there are three additional factors explaining the low use of shale gas production processes:

(1) Low economic efficiency (due to the low prices of natural gas and fossil fuels)
(Cafaro and Grossmann, 2014; Drouven and Grossmann, 2016),

(i) High environmental impact (due to the high water consumption) and

(iii) ~ The presence of multiple uncertainty sources (i.e. wastewater quality) (Gao and

You, 2017).

A recent study on shale gas processes (Gao et al., 2017) stress the multiple strategies used to
optimize its design and operations in a sustainable way. These environmentally friendly designs
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take into account the quality of both, wastewater and recovered wastewater streams, and use this
information to promote reuse/recycle activities. Fig 5.1 illustrates a global water network associated
to a Shale gas plant. Nevertheless, the combination of environmental and economic objectives has
been inefficiently applied for this kind of problems, compromising the solution reliability. In order
to achieve an accurate representation, the explicit satisfaction of multiple decision criteria, as well
as non-linear behaviors (i.e. wastewater treatment efficiencies and operational costs), in a single
solution is required. Therefore, robust MOO tools applicable to flexible water systems integrated
with other industrial processes (e.g. energy-production) are needed and, in fact, PSE community is
particularly well positioned to deal with such challenges.

Global water network within a Shale gas process
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Fig. 5.1. Water network associated to a Shale gas process.

5.3.Problem statement

The network associated to a water supplier-consumer SC is considered, based on the generalization
of the system illustrated in Fig. 5.1. It includes a set of freshwater sources s € S from which
supplier s can satisfy the freshwater requirements of consumer sites i € I in which a set of specific
consumption points can be chosen j € J. The wastewater produced can be treated either in
centralized wastewater treatment facilities (CWT; ¢ € C), disposal wells (d € D) or onsite treatment
plants. Notice that each onsite treatment plant consist on a set of treatment levels (o € 0) in order to
satisfy the output water quality. The water flows are managed through different transportation
modes (m € M). The use and allocation of wastewater storage tanks (st € ST) is assumed as
feasible before any treatment process for reuse and/or mixing purposes. A defined set of capacities
for the onsite treatment plant and transportation modes (q € Q and r € R, respectively) are used. It
is considered that recovered wastewater partially satisfy the site demands (Dem,;). Notice that Fig.
5.1 actually represents a two “players” decentralized scheme in which the water consumer is
defined as a leader while the wastewater treatment plant belongs to the follower. However, in
essence, the same SC configuration can be used for centralized and decentralized approaches.
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Disregarding the specific approach to be used, the following assumptions have been considered for
this problem:

o Profit from water consumer production is considered as a known parameter in accordance
with the work of (Yang et al., 2014).

o All the investment decisions are made at the beginning of the project.

e The freshwater has the same composition disregarding the water sources.

e There are no time delays due to operational tasks.

Similarly, the information regarding freshwater availability and cost at each source, water
requirements and wastewater production profile, unit operating cost, capacity, reused water
recovery factor at each treating facility, capital investment and unit operating cost for each
transportation mode is assumed to be known beforehand.

The main purpose is to optimize the design and planning of the water network within the water
consumer (e.g.: shale gas) production network, considering three main objectives functions: net
present profit, freshwater consumption, and their economic ratio. Such an optimization promotes a
balanced solution between cost-effectiveness and freshwater conservancy; however, a further and
deeper analysis will be performed evaluating these objectives together with a set of additional
performance indicators (such as installing, handling and operating costs). Finally, the results
comparison is given in Section 5.

5.4.Mathematical formulation

The mathematical model representing the water production, consumption, treatment, and disposal
networks was inspired in the one reported by Gao and You, (2015). The main difference in this
model is the specific consideration of the non-linear effect of the pollution level of the wastewater
flows over the final treatment cost and process efficiencies. Nevertheless for continuity purposes,
the mass and energy balances are presented.

5.4.1. Mass and energy balances

The total water requirements are satisfied using either freshwater and/or reused water from
treatment sites (onsite and CWT) as displayed in Eq. (5.1)

Z Z fWsimt + Z 2 wECr; e + 2 LO, -wto; 10t = Z RW; ;. Vi, t (5.1)

SES meM ceC meM 0e0 jeJ

The total freshwater acquired from sources s and distributed to consumption site i at time period t is
calculated in the first term (fwg; ). Particularly, the recycled water sent from CWT facilities to
consumption site i at period t is represented by wtcr; ., ¢, While the one treated onsite correspond
to wto; ;¢ Which is the third factor in the left-hand side of Eq. (5.1). Remarkably, regenerated
water coming from CWT already accounts for an efficiency value, while onsite treatment plants
employ a recovery factor for each level o (LO,). Finally, the right-hand side of the equation
describes the water demand for consumption at site i at period t (RW; ; ;).

Eg. (5.2) calculates the total wastewater generated by summing the one coming from the
consumption points at time t and the one stored in previous periods. In order to maintain the
conservation law, this value should be equal to the total water sent to the different water
treatment/disposal options (CWT, disposal, onsite treatment, and storage).
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Z WP;je +wsjt 1= Z Z WECicme + Z Z wtd; g mt

jej ceC meM deD meM Vi, t (5.2)
+ Z Wtoi,o,t + WSt
0€0

Particularly, WP; ; . denotes the amount of wastewater generated at site i and period ¢ with a TDS
concentration ranging between defined values according to the case study. wtc; ¢y ¢, Wtd; g m ¢ and
wto; o+ represents the amount of wastewater transported by mean m to water management facility
c,d or o (CWT, disposal and onsite treatment respectively) at time period t. Finally, ws; , denotes
the amount water stored at site i at period t.

Here, it is assumed that CWT facilities the management of treated water either disposing it directly
to surface water bodies or recycling it to consumer sites for reuse as described in Eq. (5.3).

Z Z LCi¢ - wtcicme = Wtch,tZ Z WtCricme VGt (5.3)

iel meM ie] meM

Here, the recovery efficiency for the CWT facility was described as (LC; ;) while wtcd, . calculates
the amount of treated water at CWT facility ¢ disposed directly to the surface. The total freshwater
supply should be lower or equal to the water availability on freshwater sources as described in Eqg.
(5.4), where, FR; ¢, accounts for the freshwater availability.

Z Z st,i,m,t < FRs,t Vs, t (5.4)

iel meM

The freshwater distribution should be lower or equal than the total capacity of transportation mode
m (tscs;m,r) as described in Eq. (5.5).

st,i,m,t < z tscs,i,m,r VS, i: m,t (5-5)

T€ER

Similarly, Eqg. (5.6) and (5.7) quantifies the amount of wastewater transported from site i to the
different wastewater management facilities ¢ and d (CWT and disposal respectively) constrained by
the total capacity of transportation mode m. Such a capacity is represented by tcc; ., and
tdc; g.m for CWT and disposal respectively.

WLCicmt < Z tccicmr Vi,c,m,t (5.6)
T€ER
Wtd;gme < Z tdc; g mr vi,d, m,t (5.7)
T€R

Additionally to the transportation capacities, the total amount of wastewater treated or disposed at
each CWT or disposal facility cannot exceed its capacity (WC, . and WD, ¢, respectively) as shows
in Egs. (5.8) and (5.9).

Z Z WEC; cme < WCe Ve, t (5.8)

iel meM

z z wtdy g me < WDg vet  (5.9)

ie] meM
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Similarly, the amount of water treated onsite is bounded by the capacities of onsite treatment
facilities where oc; , , denotes the capacity of level o with capacity range g for treating wastewater
at site i.

Wt o < z 0Cioq Vvi,l,t o0e0 (5.10)
qeqQ

Notice that, 0€0 is a subset of onsite treatments that are capable of treating wastewater at defined
TDS concentration ranges. The identification of the most promising distribution links are
formulated using binary variables and considering the associated bounding constraints. For
example, if transportation mode m is installed between freshwater source s to site i, its freshwater
transportation amount cannot exceed the availability of corresponding freshwater source (FRq);
otherwise, the transportation amount should be zero (Eq. (5.11)). Notice that the capacity of each
transportation mode is predefined using a set of nominal capacity ranges r.

st,i,m,t < Z xSs,i,m,r ' FRs,t VS' i' m,t (5-11)

T€ER

The binary variable xsg; ., » determines the installation (or not) of transportation mode m between
water source s and site i. If xsg;,,,» = 1, transportation mode m with capacity range r is installed
between water source s and site i; otherwise not installed.

The same logic is applied to connect site i and CWT and disposal facilities as shown in Egs. (5.12)
and (5.13) respectively.

WEC; et < Z XCicmy WCer Vi,c,m,t (5.12)
T€ER
Wtdy g me < Z xd; gmr - WDas viidmt  (5.13)
TER

The nominal capacities are used to limit the operation of the transportation modes as described in
the following equation.

MSsimr—1"XSsimr < tSCsimr < MSsimyr * XSsimr Vs, i,m,r (5.14)

From there, MS;; ., represents the maximum capacity of transportation mode m with capacity
range r from source s to site i. We have similar constraints for the capacity of transportation mode
m from site i to CWT and Disposal wastewater management facilities, given by

MCicmp-1 " XCicomr < UCCicmyr < MCicmy " XCicmr Vi,c,m,r (5.15)
MDi,d,m,r—l ' Xdi,d,m,r < tdci,d,m,r < MDi,d,m,r ' xdi,d,m,r vi,d,m,r (5-16)

The installation (or not) of onsite treatment plants are also bounded by the corresponding capacity
range as described by the following inequality.

WOi,o,q—l *Yiogq < 0Cioq < WOi,o,q *Yioq Vi,o0,q (5-17)

Here, y;,,4 is the binary variable that determines the installation of onsite treatment facilities.

Notice that, only one capacity range is allowed for transportation mode m at each transportation
link.
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Z XSgimr < 1 Vs, i,m (5.18)
Z XCicmr < 1 Vi,c,m (5.19)
Zxdi,d,m,r <1 Vi,d,m (5.20)

Zyi,o,q <1 Vi, 0 (5.21)

5.4.2. Economic constraints
The economic benefit associated with the production SC is described in Eq. (5.22).

SPtWPlt-CClt
NP = L J» Js 5.22
ZZZ (1 + DR)! (5:22)

iel je] teT

NP stands for the total net present profit gained by production excluding the water management
cost. SP; . denotes the average revenue per unit of final product production at site i at period ¢ while
WP, ;. represents the wastewater generation profile for consumer j at consumption site i and time
period t. Finally, CC;;, is a coefficient that correlates the water and final product production
profiles for consumer j at site i and DR is a commonly used discount rate per period.

The total cost in the water SC is described in Eq. (5.23). In particular, it is considered the total net
present cost for freshwater acquisition (cyg¢er), Water/wastewater transportation (c¢rqnsport), and
wastewater handling (chanaiing)-

CW = Cyqter + Ctransport + Chandling (5-23)

The detailed formulations of the individual terms are following described. Eq. (5.24) represents the
total net present cost for freshwater acquisition in which WA, denotes the unit freshwater
acquisition cost from freshwater source s.

Cwater = zz z Zwé +f ;V;;Z“ (5.24)

SeS iel meM teT

The total net present cost for water transportation is described by equations (5.25)—(5.31),
representing the transportation cost between freshwater sources to production sites and from these
sites to either CWT facilities or disposal wells. The general form for the total net present cost for
water transportation is presented in Eqg. (5.25).

source source cwt
Ctransport Ctrans-var + Ctrans— cap + Ctrans—var
cwt disposal disposal (5-25)

+Cerans— cap +c Ctrans-var +c Ctrans— cap

From EQq. (5.25), ciranssvar Calculates the total variable freshwater transportation cost as described
in Eq. (5.26), in which TS ; ,, represents the unit transportation cost of freshwater.
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TS,', 'fW,', ot
=) ) ) ) e (5.26)

SeS iel meM teT

The total investment required for freshwater transportation (cirgns<cqp) follows a nonlinear

behavior, thus, a piecewise formulation has been included in the cost function to provide an
accurate approximation of the original nonlinear cost curve (Eq. (5.27)).

source E § § E . .
Cirans—cap = FSs,i,m,r—l XSsimr

SeS iel meM reR

+ Z Z Z Z(tscs,i,m,r - Mss,i,m,r—l ’ xss,i,m,r) (5,27)

SeS iel meM reR

. < FSs,i,m,r - FSs,i,m,r—l )
MSs,i,m,r - Mss,i,m,r—l

Where, FSg;., is the reference capital investment for transportation mode m between the
freshwater source and production site with capacity range r.

A similar structure than in Eq. (5.25) has been used for the case of wastewater transportation costs.
In particular, Eq. (5.28) and (5.29) represents the transportation cost to CWT and disposal facilities
respectively where TC; . ,, and TD; 4 ,,, denotes the unitary cost of water transported using mode.

cowt Z 2 2 z TCiem * (WECi cme + WECT ¢ 1) (5.28)
trans—var (1+DR)t .

iel ceC meM teT

TD; - wtd;
d l i,dm i,dm,t
g, =YY Y Y 520

iel deD meM teT

The computation of the total capital cost required to distribute wastewater from and to water

management facilities follows the same structure than Eq. (5.28). CWT facilities (cf%s—cqp) are
given by Eq. (5.30), while disposal wells total capital investment costs (ctdr‘flﬁ‘s’s_ilap) are described

through Eq. (5.31) where FC;.,, and FC;4.,, denotes the reference capital investment

respectively.
t
thxzns cap ZZZZFClL‘mT 1 xclcmr

iel ceC meM reR

+ z z z Z(tcci,c,m,r - MCi,c,m,r—l ' xci,c,m,r) (5,30)

iel ceC meM reR

. < FCi,C,m,r - FCi,c,m,r—l )
M Ci,c,m,r -M Ci,c,m,r—l

dlsposal
Ctrans— cap Zz Z zFDlme 1 xdldmr

iel deD meM reR

+ Z Z Z Z(tdci,d,m,r - MDi,d,m,r—l ' xdi,d,m,r) (5,3 1)

iel deD meM reR

. < FDi,d,m,r - FDi,d,m,r—l >
MDi.d.m,T - MDi,d,m,r—l
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The total cost associated to wastewater management is modeled as the summation of both, capital
and operating costs for onsite treatment, as well as operating costs for CWT, disposal wells, and
onsite storage facilities (Eq. (5.32)).

capital

) _ operating
Chandlmg = Consitetreat

+ Consitetreat + Cewe t+ Cdisposal (5.32)

. . capital
The onsite treatment total investment (c,, sitetreat

interpolation formulation as shown in Eqg. (5.33).

capital _ ] o
Consitetreat = Z Z Z FOi0,4-1"Yioq
iel 0€0 qeQ

+ z Z Z(Oci,o,q ~W0i0,4-1"Yioq) (5.33)

iel 0€0 qeQ
. < FOi,o,q - FOi,o,q—l >
WOi,o,q - WOi,o,q—l
FO0,,, denotes the reference capital investment for level o onsite treatment with capacity range q at

production site i; W0, , , denotes maximum capacity for a level o in the onsite treatment facility
with capacity range q at site i.

) is calculated using a piecewise linear

Operational cost for onsite treatment (c7<7%:™9 y is described in Eq.(5.34) where VO, is the

unitary cost of treating wastewater treated by level o onsite treatment.

VO;,¢ - Wto;
operatmg i,0t i,0,t
Consitetreat 2 Z Z (1+ DR (5.34)

iel 0€O teT

The total operational cost for CWT facilities (c.,,.) is described in Eq. (5.35) where VC; ., is the
unitary cost of treating wastewater by CWT.

VCict'WtCicmt
- ot 2 bem, 35
Cewt 22 Z Z (1+ DR) (35)

iel ceC meM teT

Similarly, the total cost of disposal wells (cgisposar) IS Calculated by Eqg. (5.36) using the unitary
cost for dispose of wastewater at a disposal well.

VD',d, ’ Wtd',d, ,
Cdisposal = ZZ Z Z l(1t+ DR;t u (5.36)

iel deD meM teT

Finally, the freshwater mass balance is calculated in Eg. (5.37) in which the term nfw denotes the
net freshwater consumption.

nfw = Z z z Z FWs e — z z wecd, (5.37)

SeS iel meM teT ceC teT

Note that the water treated by CWT facilities and discharge directly to surface is actually returning
to the natural water cycle, and, therefore, does not contribute to freshwater consumption.
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5.4.3. Obijective functions

Multi-objective function.

The MO problem considered consists in the maximization of total profit while reducing the
freshwater consumption for the water supply chain network (henceforth known as model (MOP)) as
represented in the following objective function:

(MoP) max  {Profit;—nfw}

s.t. Egs.(5.1) — (5.37)

Where, Profit, represents the economic revenue of the process, while nfw accounts for the net
freshwater consumption. It is important to comment that Profit was calculated as Profit = NP —
cw. NP denotes the profit of final product production excluding water management cost and cw
denotes the total cost of the water network.

Fractional objective function.

In the case of the fractional approach, a single objective function that maximizes the profit per unit
of freshwater consumption was formulated leading to a single objective mixed integer linear
fractional programming (SO-MILFP) which will be known as model (F) for the entire chapter. The
form of the model (F) is given by:

Profit
F F =
(F) max rac nfw
S.t. Egs.(5.1) — (5.37)

Here, the Profit and the nfw takes the same meaning that in the model (MOP).

Non-cooperative objective function.

A non-cooperative objective assuming a decentralized scheme (see Fig. 5.1) was also considered
seeking for the simultaneous maximization of the individual profit of at least two entities (one
leader and one follower). Even if additional entities and/or objectives could be considered, this
study limits its scope to an economic performance for each entity. To efficiently calculate these
individual performances, the mathematical model should be extended to include a new subset that
represents the SC members (sc € L; sc € F) as well as their respective constraints (Egs. (5.38.)-
(5.42)).

Profit;, = NP, — cwg, Vsc€eL (5.38)

Profitp = Salesg,, — cWye, vsc' € F (5.39)

Salesg., = Z pricese, ¢ Qsert Vsc' € F (5.40)
terT

cwg. = (Cwatery, + Ctrang, + Chang, + Salesg,,) Vsc € L (5.41)

W = Chang,, Vsc'€F (5.42)

Particularly, Egs. (5.38) and (5.39) calculate the economic benefit for the leader and follower
respectively while Eq. (5.40) represents the total revenue for the follower. Egs. (5.41) and (5.42)
describe the water management and acquisition costs for each SC member. It is important to
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mention that the leader costs include water purchase, transport, production, and the
“disposal/treatment”, while the follower ones are only associated with the operational tasks. Notice
that the “disposal/treatment” term (Sales.,) affects both objectives (Profit; and Profitg)
representing the non-cooperative behavior and the conflict of interests between entities. Thus, the
resulting MO-MILP problem has the following form and it is henceforth known as Non-
Cooperative model (NC):

(NC) max  {Profit;; Profitg}

s.t. Egs.(5.1) — (5.42)
5.4.4. Wastewater recovery representation

The level of pollution in wastewater flows typically has a non-linear impact over the final treatment
cost and process efficiencies. Therefore, without loss of generality, it is assumed a sigmoidal and
exponential behavior for the process efficiency and recovered wastewater price respectively
(Alleman, 2010; Veil, 2010; Acharya et al., 2011). Eqgs. (5.43) and (5.44) present the non-linear
functions modeling these behaviors for the CWT facilities while Fig. 5.2 shows their graphical
representation.

LC = 0.75 025 5.43
— 2 7 \1 § ¢-0.0009(x~50000) (5.43)
VC =1— (4.5)~*/3500) (5.44)
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Fig. 5.2. The recovered wastewater cost and plant efficiency non-linear behaviors.

Even if Egs. (5.43) and (5.44) leads to a MINLP, these non-linearity’s can be relaxed using the
well-known piecewise approximation, which is based on dividing the non-linear space into a
sufficiently large amount of partitions and considering each one as an individual linear function.
The efficient number of divisions is obtained by systematically increasing them until a minimum
accuracy level is reached. However, since the accuracy of the piecewise formulation is out of the
scope of this work a set of five equidistant points was used in this problem.
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5.5.Solution strategy

To make a useful decision support tool evaluation, a set of optimal solutions has been first obtained
by solving the model (MOP) using the g-constraint method (resulting in the well-known Pareto
frontier). Afterward, the ELECTRE-IV method has been used to systematically compare all the
Pareto solutions to each other and identify the one that best reflects the decision-maker preferences.
In the case of fractional approach, the solution is obtained directly after optimizing the model (F)
that seeks for the maximum profit per unit of fresh water consumed. It is important to notice that
both decision-making strategies identify a dominant solution (i.e. belonging to the Pareto frontier),
thus, the final solutions (and decision-strategies) can be effectively compared.

This chapter also addresses the capabilities of the ELECTRE-IV method as a decision-support
strategy for decentralized problems, thus, the optimal solution of the model (NC) was compared
with the one identified using the ELECTRE-IV method. Such a comparison evaluates the effect of
considering the leader and follower economic benefits independently as decision criteria. The
general comparison methodology is illustrated in Fig. 5.3.

Multi-Objective problem
with feasible solution space

- N
Stackelberg leader-follower Traditional MO approach Fractional approach
approach Model (NC) Model (MOP) Model (F)
OPTIMIZATION
Use the traditional bilevel Use the g-constraint method Use the Parametric algorithm
model (NC) to solve Model (MOP) to solve Model (F) ]
J

~
/

Apply ELECTRE-IV method
for the set of solution POST-
(i.e. Pareto frontier) OPTIMIZATION
o
P
Non-cooperative Solution ELECTRE-IV Solution Fractional Solution

Fig. 5.3. General methodology diagram.

The results obtained after each step are discussed in the following subsections as well as their
comparison. The detailed information of the particular solution approaches was presented in

Chapter 3.
5.5.1. The fractional objective solution approach

The solution of models (MOP) and (NC) employs common methods described in Chapter 3;
however, the solution of the model (F) requires a tailor-made approach as described in this section.
First, notice that model (F) is clearly a sort of MINLP problem, in which its global optimization can
be computationally tractable by applying Dinkelbach’s algorithm (You et al., 2009). However, the
recent study of Gao and You, (2015) has proven the time-effective performance of parametric
algorithms to solve MILFP problems, thus, one of these parametric algorithms was used, which is
briefly described as follows.
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Parametric algorithm

The parametric algorithm used consists of four main steps. In the first one, the original MILFP
problem is transformed into an equivalent parametric MILP problem, denoted as function F ().
Such a function can be defined as the difference between the numerator and the denominator
multiplied by a parameter (). It is important to highlight that, when F(Q) = 0, the MILP problem
has a unique optimal solution, which is the same as the global optimal solution of the original
MILFP problem. Therefore, in the second step both a counter and a parameter are initialized (n = 0
and Q = |n|, respectively). Additionally, in the second step, an optimality gap is defined (6 = 0).
The third step seeks for the solution of the MIFLP problem finding the root of the equation (i.e.
F(Q) = 0). In this particular case, the Newton’s method is used to solve this problem; however, any
other numerical root-finding methods can be applied. For the exact Newton’s method applied, each
parametric MILP sub-problem was solved to the global optimum (0% optimality gap). Afterwards,
an iterative procedure was performed until F(Q) equals zero. Finally, the fourth step corresponds to
the definition of the optimal solution of this problem. The full procedure of this parametric
algorithm is described as follows.

1. Modify the original MIFLP to an equivalent parametric MILP problem. For this particular case,
the MILP formulation will be F(Q) = max{(NP — cw) — Q- (nfw)}

2. Letn be a counter for the Newton method and & the optimality gap equal to 0%. Initialize Q =
Inl.

3. Solve F(Q).
3.1. If |F(Q)| < 6, stop, global optimality was found. Else:

3.2. Let Q = 222 and return to step 3.

4. Let solution x;, be the optimal solution of this problem (design and planning variables). It is
important to notice that from the above algorithm, the objective value is represented by Q.

For more details about the parametric algorithm used in this study, readers are referred to (Gao and

You, 2015).

5.6.Case Study

The capabilities of the proposed solution approaches were illustrated using a case study based on
Marcellus shale play. The use of this case study does not only contribute to illustrating the
similarities and limitations of both, the fractional and ELECTRE-IV base decision-support systems
but also highlighting their effect on the optimal water management strategy. The optimal results
provide the basis for a useful discussion and comparison of the corresponding optimization
strategies.

This medium-scale case study consists of a network of two freshwater sources, three shale sites, and
10 water consumption wells in each site. Freshwater availability was estimated based on historical
data taking into account the seasonal fluctuation. As wastewater treatment facilities, three CWT and
10 disposal wells were considered. Wastewater TDS concentration is assumed to vary within 8,000
and 150,000 mg/L based on the range of TDS concentration at fracturing stages. Due to geographic
distribution, Marcellus shale play has disposal wells located far away from the shale sites, therefore
these wells became an unlikely (but not impossible) option due to the high transportation cost. The
onsite treatment contains three levels (primary, secondary, and tertiary one). For the primary and
secondary levels, water is partially treated, and a certain amount of freshwater water is required to
reduce the TDS concentration and satisfy the reuse specification. For tertiary level, around 20%
make-up water is required to reach a low enough value for the inlet TDS concentration to be
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treatable (around 120,000 mg/L). The connections between each one of the treatment levels have
been oversimplified by assuming that the TDS concentration in the wastewater conditions the
treatment level to be applied in the first instance. More precisely, primary treatment receives water
with TDS concentration lower than 20,000 mg/L; secondary treatment treats water with TDS
concentration lower than 40,000 mg/L, and tertiary treatment is able to treat wastewater of any TDS
concentration ranges (<120,000 mg/L). Pipelines and trucks are assumed as transportation modes
for freshwater management, but only trucks are allowed for transporting wastewater from shale sites
to CWT facilities and disposal wells. Three nominal capacities were considered for pipelines as
well as for each level of onsite treatment facilities. The planning horizon is 10 years weekly
discretized (520 periods). The main parameters used are included in the Appendix B.3.

The mathematical model has been written in GAMS and the problem was solved using CPLEX 11.0
on a PC Intel Corel i7-2600M CPU 2.70 GHz and 16.00 GB of RAM. The absolute optimality
tolerance for all solvers is set to zero. The optimality tolerance for the outer loop in the parametric
algorithm is set to 10,

5.6.1. MOQO results

Here, Profit and nfw were considered as objectives. According to the g-constraint algorithm
(described in Chapter 3), first, the model MOP has to be optimized for each objective individually
(SO optimization) and their results represent the bounds for the feasible solution space (see Table
5.1).

Table 5.1. Economical and freshwater consumption performance for the individual optimizations.

Max Profit Min nfw
Profit($-10°) 83.164 75.903
nfw(bbl-10%) 6.239 4.975

To apply the g-constraint method, the Profit was considered as main objective while the level of
nfw was constrained at each iteration. According to Table 5.1, nfw ranges between 4.97 and 6.25
millions of barrels of freshwater representing the feasible space within which the objective could be
constrained. Particularly, 12 constrained points were used producing the same number of solutions
as displayed in Fig. 5.4. Notice that each point represents different design and management
decisions.

630

Fractional Solution
Profit(MM$)=77.336
nfw(bbl)=5,009,676

1 | . | . L . I
74 75 76 77 78 79 80 81 82 83 84
Profit(MMS$)

Fig. 5.4. Pareto set of solutions for the Profit vs nfw problem. Red dot represents the solution obtained after
using the Fractional approach. Golden dot represents the best overall solution identified with the ELECTRE-
IV method.
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From Fig. 5.4 it is observed that as the freshwater consumption increases, the profit increases as
well, proving their conflicting behavior. At this point, the decision maker has to compare all the
solutions and select the one that better represents his preferences. The above justifies the evaluation
and comparison of two different decision-making strategies.

First method: Fractional objective

The objective (Frac) represents the relation between Profit and nfw. Their individual performances
were obtained and displayed in Table 5.2, which henceforth will be known as Fractional solution.
In this section, a description of the objective performances will be discussed, however, the optimal
design decisions and their impact over the water management strategy will be analyzed in the next
subsections.

Table 5.2. Economical and freshwater consumption performances for the fractional optimization.

Max Frac
Frac($/bbl) 15.473
nfw(bbl - 10%) 5.009
Profit($-10%) 77.336

The value of Frac is $15,437 per thousand barrels of freshwater consumed which represents a
profit of more than $15.4 per barrel. About 5SMM Bbl of freshwater along the complete time horizon
were required to achieve economic benefits of $77,336,340. In Fig. 5.4 the position of the
Fractional solution within the Pareto curve was displayed proving that, the fractional formulation
totally bypasses the decision-making effort and identifies a feasible optimal solution for bi-objective
optimization problems. However, the fractional formulation assumes a significant preference for the
objective in the numerator disregarding the potential undesirable/poor performance for the
denominator objective. Since such a preference is completely uncontrollable, the quality of the
resulting solution in terms of decision maker interests is compromised. By analyzing the idea
behind the fractional formulation such a limitation can be clarified, in which the solution identified
corresponds to the point with the minimum slope for a defined curve (in this case Pareto curve).
Thus, the position of the Pareto curve within the solution space determines the solution obtained,
being the fixed process conditions the ones that modify such a position (like fixed cost).
Consequently, the fractional approach may promote the identification of undesirable solutions from
the decision maker perspective. In order to stress even more such an issue a definition of seven
increasing fixed costs were included in the model (F). The results are displayed in Table 5.3.

Table 5.3. Economical and freshwater consumption performances for the fractional optimization (expressed in
x106).

Fixed cost added to the total cost in Model (F)
002 200 100 200 400 60.0 80.0

Case 0 Case 0’ Case 1 Case2 Case3 Case4 Case5 Case6 Case7 Case8

Total Water cost ($) 0.13  1.55 0.25 0.25 0.25 0.30 0.40 035 0.16 0.13
Management Cost

©)
Fractional Objective 13.33 15.28 15.57 1557 1517 1356 1155 7.60 3.87 051

Model (MOP)  Model (F)

0.295 7.63 6.02 6.02 6.00 592 574 422 161 0.295

Profit ($) 83.20 75.80 77.40 7740 7550 6750 57.70 39.20 2180 3.16
Withdrawal (bbl) 6.24 4.96 4.97 497 497 498 499 516 564 6.24
NP ($) 83.46 83.46 83.46 8344 8146 73.46 63.46 4346 2346 3.46
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In Table 5.3, the first two columns represent the anchor points of the original Pareto curve obtained
by optimizing the Profit and nfw individually in the model (MOP). Column 3 (i.e. Case 1) shows
the results of solving the original fractional model (F) while for the rest of the columns an
increment in the fixed costs for the wastewater management process was assumed. Logically lower
basic benefits (Profit) were obtained after each cost increment; however, it was surprising that the
freshwater consumed (nfw) increases as well. The above can be explained since the economic
margin is shortened at each iteration thus transportation and/or treatment costs are reduced to the
minimum (or not used) and, consequently, large amounts of freshwater are used instead.
Additionally, if the fixed cost is as high as the original basic benefit (Profit equal or near to zero),
the design/operating decisions from the optimum fractional solution matches with the decisions of
the extreme solution that maximizes the Profit (first column). As pointed out, these results suggest
that modifying the fixed cost “moves the scales” the Pareto space and, consequently, the fractional
approach is affected. More importantly, it is proved that fractional approach presents an
uncontrollable preference for the economic objective. A graphical representation of such an issue is
displayed in Fig. 5.5.
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Fig. 5.5. Effect of fixed cost over fractional approach behavior.

The results prove that the solution obtained using the fractional approach remains efficient only if a
strict control of the fixed costs is performed and/or when the fixed cost is sufficiently small to be
neglected. However, when the fixed cost is unknown or significantly variable across the time, the
fractional approach is not suitable (for example in non-cooperative problems where some of the
decisions may change to react to other players decisions). In summary two main drawbacks can be
pointed out; first, its application is limited to bi-objectives problems; and second, the specific
formulation of the fractional problem gives an indirect preference to one objective conditioning the
final solution. Consequently, it is evident that there is a need for a robust methodology that expands
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the application of the fractional methodology to evaluate multiple objectives while reflecting the
decision maker interests/criteria. In this line, the ELECTRE-IV method is a promising alternative as
supported by the numerical results presented in the following sections.

Second method: ELECTRE-IV

In order to identify a solution that satisfies the decision maker expectations within the Pareto
frontier the ELECTRE-IV method has been used. In accordance with the procedure described in
Chapter 3, the preference, indifference and infeasible thresholds for each one of the objectives used
in this section are presented in Table 5.4.

Table 5.4. Thresholds values for the three objectives considered in this case study.

Objective’s value

Thresholds

Profit ($ 10°) nf (bbl - 10°)
Indifference (qt) 79.0 4.90
Preference (pt) 83.0 5.30
Veto (vt) 100.0 5.40

These thresholds must reflect realistic decision-maker preferences for each criterion. In this
particular case, the indifference threshold for the Profit has been defined by adding close to 50%
of the difference between the economic bounds (i.e. maximum and minimum economic
performance) to the lowest feasible value ($75.9x10°). The above is assumed since in most of the
real-life problems, the decision maker trend to avoid solutions with the lowest economic
performances. Following the same logic, the preference threshold is set close to the maximum
feasible value. Finally, since Profit is a maximization objective it is undesirable to remove
solutions with high performances, thus, the veto threshold was set as a big number (larger than the
maximum value). On the other hand, for the minimization of the freshwater consumption the
thresholds definition is different. Particularly, the indifference and preference thresholds were
assumed as 4.9x10°bbl and 5.3x10°%bbl respectively. In order to drive the search to a solution with
the lower consumption as possible, a veto threshold of 5.40x10° bbl was defined even if there are
feasible solutions with higher values. Such a veto threshold promotes that, unless there is no other
better option, a solutions with freshwater consumption, higher than 5.40x10° bbl will hardly be
selected. Thus, using these thresholds, the 14 optimal solutions were evaluated by applying the
ELECTRE-IV method. It is important to highlight, that the selection of different thresholds will
influence in the final solution selected and they can be tailor-made to represent the decision maker
preferences.

After applying the ELECTRE-IV method, a solution within the set of Pareto options that satisfies
the decision maker preferences as much as possible was found (henceforth known as ELECTRE-IV
solution). In such a solution the Profit value was $ 76,536,340, the nfw about 4,980,000 bbl, and
their relation (Frac) reach a value of 15.36 $/bbl. Notice that the identified solution produce a
Profit value below the preference thresholds and, in particular, it lies within the indifference range
(between $77x10° and $79x10°). The above means that the economic objective cannot be
completely satisfied but still represents a good outcome according to the defined decision maker
expectations. Such a solution was identified as the best one by systematically defining the degree of
preference satisfaction of each objective as a function of the outranking relationships. In other
words, the strategy identifies the solution that has a “lower negative impact” on the decision maker
preferences by accepting a reduction in the Profit to significantly reduce the freshwater
consumption. Notice that even if the relation Profit/nfw is lower than in the Fractional solution,
ultimately the ELECTRE-IV method produces a balanced solution. In Fig. 5.4, Fractional and
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ELECTRE-IV solutions are displayed. The above proves that, with the ELECTRE-IV method, both
objectives are equally important, avoiding any subjective preference.

Alike the fractional approach, ELECTRE-IV method was applied for the seven different Pareto
curves obtained as a result of considering several fixed costs in the water management. Notice that
the thresholds for the economic objective must be proportionally modified to lie within the feasible
“solution space”. The above allows evaluating the effect of the Pareto space in the performance of
the ELECTRE-IV method. In Fig. 5.5 the position of the solutions obtained using the ELECTRE-IV
method are displayed. Notice that even if the objective performance were different (i.e. the Pareto
solution space is different) the associated design/management decisions are maintained. Therefore it
is proved that ELECTRE-IV method not only provides a reliable and robust solution for bi-criteria
problems but also bypass the uncontrollable preference assumption made in the fractional approach
without compromising the quality of the final solution.

In order to stress the sensibility of the ELECTRE-IV method, in the following subsection, a solution
selection procedure is illustrated by considering additional decision criteria (not only the objectives
themselves). Additionally, an analysis of the capabilities of the ELECTRE-IV method to identify a
solution that works for a non-cooperative environment is exploited.

5.6.2. Capabilities of ELECTRE-IV method.
In this section, the capabilities of the solution identification method are emphasized assuming
different interesting real-life conditions. Nevertheless, first, the definition of the feasible set of
solutions has to be generated, as explained next.

Analysis of multiple objectives

Here, additionally to Profit and nfw, the effect of their relation to the optimization is exploited
(Frac). As well as in previous sections, a table containing the results for the individual optimization
problem MOP for each objective is presented and used as feasible area boundaries (Table 5.5).

Table 5.5. Performance of the three objectives under analysis for their individual optimizations.

Max Profit minnfw max Frac
Profit ($-10°) 83.16 74.97 77.34
nfw (bbl - 10°) 6.239 4.998 5.009
Frac ($/bbl) 13.33 14.99 15.43

Similarly, the Profit was considered as main objective while nfw and Frac performance were
constrained within the feasible space. Both objectives were constrained at 12 defined points within
their feasible ranges (between 4.998x10° and 6.239x10° bbl, and 13.33 and 15.43 for nfw and Frac
respectively). In this case, the Pareto frontiers obtained may be projected to build a sort of 3D-
surface (see Fig. 5.6). Notice that the projection in the Frac axis has a clear a linear trend since this
objective depends directly form the remaining objectives. It is worth to comment that these
projections are not an accurate representation of the Pareto surface, but provide a good approach.
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Fig. 5.6. Pareto surface for the three-objective problem highlighting the Fractional and 1*ELECTRE-IV
solutions.

From Fig. 5.6 it can be observed that the Fractional solution corresponds to one anchor point (best
value for Frac). However, it is clear that the decision maker challenge has significantly increased in
complexity (compared with Fig. 5.4). Thus, the ELECTRE-IV method has been applied to identify
the best solution for the three conflicting objectives simultaneously.

Solution identification

In this section, similar assumptions were made for the definition of the preference thresholds for
both Profit and nfw. For the case of Frac an increment of 15% to the minimum bound was
defined for the indifference threshold since it is an objective to be maximized. The preference and

veto thresholds were defined following the same assumptions that in the previous section for
Profit (see Table 5.6).

Table 5.6. Thresholds values for the three objectives considered in this case study.

Objective’s value
Thresholds
Profit ($: 10%) nf (bbl-10°%) Frac ($/bbl)
Indifference (qt) 79.0 4.90 13.73
Preference (pt) 83.0 5.30 15.30
Veto (vt) 100 5.40 18.45

Using the data in Table 5.6, the ELECTRE-IV method was applied to evaluate the 144 resulting
optimal solutions. Thus, a unique solution was found (henceforth known as 1%-ELECTRE-1V
solution) in which the Profit value was $77,928,589, the nfw about 5,111,595 bbl, and their
relation is of 15.245 $/bbl. By comparing the Fractional and 1** ELECTRE-IV solutions it can be
noticed that the second one leads to a Profit increment while reducing the other two objectives
performance (See Fig. 5.6). Remarkably, Profit and nfw lie in the range of indifference and
preference values, while Frac reach a value in the preference range, proving again that ELECTRE-
IV method identified a balanced solution. Despite the differences in the objectives performance,
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both strategies identify solutions close each other in the solution space. The above proves that under
the same conditions the fractional approach and ELECTRE-IV method show a good performance.
However, the second method is particularly useful to consider more than three decision criteria
without compromising the quality of the final solution. The above is significantly important for real
industrial applications in which, for example, all the operations may have additional constraints that
restrict the solution (for example, budget limitations). In order to stress even more the sensitivity of
the solution selection method a set of additional decision criteria were considered and not only the
objectives themselves.

Additional criteria during solution identification

In this section, a set of budget limitations were considered. In particular, key factors such as water
acquisition, transportation, and wastewater treating costs were considered as selection criteria.
Thus, additionally to the pursuit for the highest profit, it is assumed that water acquisition,
transportation, and wastewater treating costs should not exceed 0.155, 5 and 3 million of dollars
respectively, as presented in Table 5.7. The rest of thresholds (preference and indifference) are
defined following similar assumptions than in the previous subsection.

Table 5.7. Thresholds values for the three objectives and the additional criteria considered.

Objective’s value Additional Criteria’s value
Thresholds Profit ($)* nf (bbl)® Frac ($/bbl)  Acquisition($)* Transport($)* Operating($)®
Indifference (qt) 79.0 4.90 13.73 0.135 0.100 0.001
Preference (pt) 83.0 5.30 15.30 0.140 0.900 1.00
Veto (vt) 100 5.40 18.45 0.155 5.00 3.00

Values at expressed in x10°

After applying the ELECTRE-IV method, a solution was identified (henceforth known as 2"-
ELECTRE-IV Solution) and its associated performance is presented in Table 5.8. From such a
solution, notice that all the criteria lie within the defined thresholds except for the operating cost.
The above suggest that this is the only solution that better balances all the criteria, even if the
operating cost is significantly undesirable.

Table 5.8. Optimal criteria values for the selected solution.
Criteria/Objective Value

Profit($)? 79.870
nf (bbl)? 5.305
Frac ($/bbl) 15.054
Acquisition($)? 0.145
Transport($)? 0.414
Operating($)? 3.029

aValues at expressed in x10°

Comparing the two ELECTRE solutions (1*ELECTRE-1V and 2"-ELECTRE-1V) it is evident that a
significant increase in the economic performance at an expense of increasing the total freshwater
consumption was obtained. Such a behavior was expected considering that the additional
constraints associated with transportation and wastewater regeneration costs force the solution to
use freshwater. However, the identified solution still represents an attractive compromise according
to the decision maker preferences. For example, from the six decision criteria, three of them
(Profit, Frac and Transport) lie in the indifference-preference range, while the rest presents
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values in the preference region. Fig. 5.7 provides a visual aid to identify the effect of the additional
criteria and allows a comparison with Fractional and 1*ELECTRE-IV solutions.
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Fig. 5.7. Pareto surface for the three-objective problem. Fractional, 1*ELECTRE-IV and 2"ELECTRE-IV
solution are highlighted.

These results prove that the ELECTRE-IV method is sensitive enough to account systematically for
additional constraints satisfying the decision maker preferences. Therefore, it is possible to identify
a single solution in a time-effective way. Nevertheless, two main drawbacks can be highlighted: (i)
The ELECTRE-IV method do not guarantee a single solution but it ensures a reduced set of feasible
ones. Therefore and even if ELECTRE-IV method represents an important advantage for the
decision maker, a more determinant tool is still needed. (ii) Even if the application of the
ELECTRE-IV method is very fast and reliable, the computational effort associated to the
production of the “pool of solutions” hinder its acceptance in the dynamic industrial problems, due
to its nature of post-optimization tool. Consequently, a combination of the ELECTRE-IV method
with other fast/accurate MOO strategies is an open and hot topic for the PSE community.

Analysis of non-cooperative environment

In this section, the model (NC) was solved considering as objectives only the economic benefit of
both entities, the leader, and follower (i.e. Profit; and Profity) disregarding the performance of
the environmental objective. The resulting solution will henceforth know as NC-solution, and its

associated objective performances are displayed In Table 5.9 together with the global economic
value (Profit).

NC-solution leads to $83,164,560 and $444.04 for Profit, and Prof ity respectively. Additionally,
even if the nature of both objectives was economic, the global water consumption and the relation
between global profit and water consumption were also collected (nfw=6,238,823 and
Frac=13.33). Since the economic benefit was considered as objective, it is not surprising that the
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final solution for the model (NC) is very similar to the solution obtained through the economic
optimization of model (MOP) (i.e. the best Profit). From the results in Table 5.7 and the position
of the NC-solution within the solution space (See Fig. 5.8) two main aspects should be emphasized:

Table 5.9. Economic performance of the individual entities and the global system.

Global Leader Follower
Profit ($) 83,165,014 83.16456 444
nfw (bbl - 109) 6.239 - -
Frac ($/bbl) 13.33 - -
0] The obtained solution from the bi-level model matches with the extreme solution of

the bi-objective Pareto frontier. However, this is not typical, since the solution of a
bi-level problem does not guarantee a Pareto solution of the collaborative case. In
this particular situation, the solution belongs to such a frontier due to the lack of
additional constraints associated with the formulation of follower part in the model
(NC).

(i) The undesirable follower’s performance (very low economic benefit) still
represents an optimal solution for the considered model conditions/constraints, but
obviously the follower’s performance may be improved. Thus, even if it is clear
that a very basic and crude example was used, the obtained results can be used to

demonstrate the capabilities of the proposed methodology as described in the
following section.
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Fig. 5.8. NC-Solution within the Pareto surface for the three objective problem.
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As commented before, from Fig. 5.8 it can be observed that the NC-solution is near to the economic
optimization of the collaborative model (MOP) (best value for Profit). However, in order to prove
once again the capabilities of the ELECTRE-IV method, the entire set of Pareto points will be
evaluated to identify the solution that shows better performance for both entities simultaneously.

Solution identification

In this section, the solution with the highest profit level for both entities is identified. In order to
avoid undesirable solutions, it was assumed that leader and follower profits should not be lower
than 79.0 and 0.2 million dollars respectively, as presented in Table 5.10. The rest of thresholds
(preference and indifference) are defined following similar assumptions than in previous sections.

Table 5.10. Thresholds values for the global and individual objectives for the non-cooperative situation.

Global objective Individual objectives
Thresholds , A

Profit ($ 10°) Profit, ($-10°) Profitg ($ 10°)
Indifference (qt) 79.0 79.0 0.2
Preference (pt) 83.0 83.0 1.00
Veto (vt) 100 100 10

After applying the ELECTRE-IV method, the solution henceforth known as NC-ELECTRE-
Solution was identified and the associated performances are displayed in Table 5.11. Notice that the
economic performance of the leader is slightly lower than the global one for this selected solution
(around 0.2%). The above is logical considering that in the global perspective all the network cost
were extracted to the shale gas revenues, while in the non-cooperative scheme, only some of the
costs are applied (those belonging to the leader). Thus, the leader reaches a higher individual profit.
Additionally, notice that the NC-ELECTRE-Solution promotes a high follower profit (higher than
the NC-Solution). Since the follower part of the problem is associated with the wastewater plant, a
significant amount of regenerated water was used and consequently reducing the freshwater use.
These performances are deeper discussed in the next section in which a detailed comparison of the
resulting designs is presented.

Table 5.11. Optimal values for the identified solution of a non-cooperative environment.
Criteria/Objective Value
Profit(MM$) 81.487
Profit, (MM$) 81.283

Profits(MM$) 0.204
nfw (MMbbl) 5.528
Frac ($/bbl) 14.67

Comparing the NC-ELECTRE-Solution against the NC- Solution makes evident that a more
balanced solution was obtained at the expense of reducing the economic performance of the system.
Particularly, NC-ELECTRE-Solution obtains a value of 14.67 $/bbl while NC- Solution is only
13.33%/bbl proving that the identified solution using ELECTRE-IV method takes a better economic
profit per unit of freshwater consumed. Both objectives (Profit and nfw) were significantly
affected, and in particular, a reduction of 2 millions of dollars in global benefits and 0.7 millions of
barrels of freshwater were obtained. Thus, despite the significant reduction in the global economic
performance of the system, a more balanced solution was obtained promoting a win-win situation.
Therefore, even if the Pareto points were obtained under a global perspective, the ELECTRE-IV
method is flexible enough to identify the solution that produce “better” performances for a non-
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cooperative environment. In Fig. 5.9 the position of the NC-ELECTRE-Solution within the solution
space is presented and compared with the NC-Solution.
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Fig. 5.9. Pareto surface for the three objectives problem highlighting the Fractional, 2"ELECTRE-1V, NC-
Solution, and NC-ELECTRE-Solutions.

The identification of a well-balanced solution for non-cooperative environments demonstrates ones

again the utility of ELECTRE-IV method to account for additional constraints to be satisfied
following the decision maker preferences.

5.7.Networks comparison

In order to provide a further analysis of the solutions obtained using the proposed solution
approaches, a comparison of the resulting designs associated with the water management decisions
for the cooperative and non-cooperative scenarios are presented. In particular, this section focuses
on the comparison of the design associated with the Fractional and 2"-ELECTRE-IV solutions for

the cooperative scenario. Similarly, the designs for the NC-Solution and NC-ELECTRE-Solution are
compared for the non-cooperative scenario.

5.7.1. Cooperative environment

Fractional solution design

The optimal water supply chain network in obtained as solution of the MILFP problem (Fractional
solution) is shown in Fig. 5.10. All the shale sites acquire freshwater from source one, which is the
cheapest one. The obtained water management strategy combines the CWT and onsite treatment for
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water regeneration purposes. As commented before, in this case no disposal well is available within
a short distance and, therefore, it is not surprising that the underground injection option was not
selected due to the high transportation cost.
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Fig. 5.10. Water supply chain network for model (F).

The profit obtained per barrel of freshwater is of $15.437. The associated cost for freshwater supply
tasks, including acquisition and transportation, is $250,653. This value represents only a 5% of the
overall distribution and management (treatment and disposal) cost. The reuse of water from onsite
treatments is the main reason of the significantly freshwater savings; however, a high treatment cost
of $5,007,958 is required (around 80% of the total water network cost).

By analyzing the network in detail, it can be noticed that the optimal water network transports all
the freshwater through pipelines. Despite the high capital investment required for construction, this
option is acceptable since a long time period is considered and such a high investment is
compensated with its lower transportation cost during the 10 years period. Additionally, the
smallest and cheapest capacity was employed for the pipeline capacity (30,000 bbl).

On the other hand, planning decisions (water handling) includes the choice of different water
management options for a specific amount of wastewater. In this particular case, onsite treatments
were preferred over the CWT option for reuse purposes. Onsite treatments simultaneously reduced
the transportation cost and freshwater consumption by treating wastewater onsite and blending it
with smaller amounts of freshwater for reuse. CWT option was used in the final design, however, it
is used almost exclusively for disposal purposes and the small amount of recovered water (<586
bbl/year) is used when onsite treatment cannot satisfy the demands. The above can be explained
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since the “double” transportation cost for a “round trip” to/from CWT makes its selection unlikely
even considering their low wastewater treatment cost. As to the detailed breakdown of total water
management cost, the CWT facilities contribute to 6% of the overall cost for water management
while onsite treatment accounts for 81% of the total cost, including capital investment and operating
cost. Finally, the extensive application of onsite treatment and reuse highly relieved the stress on
freshwater withdrawal while satisfying the required operational conditions.

2nd-ELECTRE-1V Design

The optimal water supply chain network associated with the solution of the model (MOP) (i.e. 2"-
ELECTRE-IV) is shown in Fig. 5.11. Alike the Fractional design, all the shale sites acquire
freshwater from “Sources 1”. Also, the associated water management strategy uses a combination
of onsite and CWT units for regeneration/reuse purposes for all the shale sites. Due to the lack of
close disposal wells, in addition to the additional constraint to the transportation cost, it is not
surprising that the underground injection option was not selected.
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Fig. 5.11. Water supply chain network for the 2"-ELECTRE-IV solution (model (MOP)).

For this case, the profit obtained while consuming one barrel of freshwater is of $15.054. In this
design due to the budget limitations for the transport and treatment investments, the associated cost
for freshwater supply tasks, including acquisition and transportation, is higher than the double in
comparison with the Fractional design ($559,836). This value represents a 19% of the overall
distribution and management (treatment and disposal) cost (14% higher than in the Fractional
solution). Despite the increment in the freshwater consumption, the total treatment cost was
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significantly reduced up to $3,029,316 (around 40% less than in the Fractional solution). Such a
reduction was obtained due to the substitution of regenerated water (coming from onsite treatment
plants) with freshwater, thus, imitating the operations of onsite treatment plants. Alike in the
previous design, all the freshwater distribution is achieved through pipelines, since the required
investment is compensated for its lower transportation cost during the 10 years period.

Due to the benefits of using onsite treatments, they contribute in almost 4 times more than the CWT
facilities to the wastewater management. In any case, CWT was used in the final design and the
small amount of recovered water from shale sitesl and 2 is still considerably larger than the one
obtained with the Fractional solution (<1500 bbl/year).

5.7.2. Non-cooperative environment

NC-solution design

The optimal water supply chain network obtained through the solution of the bi-level model (NC) is
shown in Fig. 5.12. As commented before, this solution matches with the solution that produces the
best global Profit performance. Notice that in this case and unlike the above designs, all the shale
sites acquire freshwater from two sources due to the considerable low price for freshwater. The
above is logic since only the economic benefit was considered as objective and thus the system
environmental impact was neglected. In the case of the water management options, the design is
quite simple since the onsite treatment is not used while the CWT is barely used. Remarkably, even
if the operation/installation cost of the CWT is considerably high and goes against the economic
optimization, the CWT was used in order to promote the follower operations and increase its
individual benefits.
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Fig. 5.12. Water supply chain network for NC-Solution.

The global profit obtained while consuming one barrel of freshwater is of $13.337. Notice that the
leader total cost, including acquisition, transportation and operation ones, is $294,315 while the
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follower is of $534. The design in Fig. 5.12 is considerably simple and in fact, the highest part of
the cost for both entities is associated with transportation tasks (higher than 80%). Similarly, the
benefits for the leader and follower part are $83,459,920 and $1,062.159 respectively. Even if the
leader benefit is considerably high, this comes from the shale gas sales while the follower benefit is
associated with the wastewater treatment services. Thus, such a small benefit is due to the small
amount of wastewater treated (<500bbl/year). Consequently, even if mathematically the above is a
feasible solution, the follower performance is too small to consider it feasible in a real-life process.

These results were obtained mainly for two reasons: (i) The small number of constraints associated
to the follower part of the system; (ii) the definition of a purely economic objective for a
sustainability problem. However, these issues were overcome in the solution identified by
ELECTRE-IV method as described in the next section.

NC-ELECTRE-Solution Design

The optimal water supply chain network associated with the identified solution for the model (NC)
using the ELECTRE-IV method is shown in Fig. 5.13. Similarly to the Fractional and 2"-
ELECTRE-IV designs, in this case only one source was used to supply freshwater to all the shale
sites. Also, the obtained water management strategy uses a combination of onsite and CWT units as
a regeneration/reuse purposes for all the shale sites. Similarly than in the NC-solution design, in this
case, CWT plants were used to promote the follower operations. Consequently, this option controls
the consumption of freshwater and uses the onsite treatments, proving a more balanced solution in
comparison with the NC-Solution design.
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Fig. 5.13. Water supply chain network for NC-ELECTRE-Solution.

The global relation between profit and water consumption reaches a value of 14.67$/bbl proving
that this option takes best economic profit for a barrel of freshwater. Leader and follower, costs are
$653,275 and $175,541 respectively while the benefits reach a value of $81,283,000 and $204,544
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respectively. Notice that in comparison with the NC-Solution design, a small increment in the leader
cost leads to an increase of three orders of magnitude in the follower benefits. The above clearly
represents a more realistic solution for both entities.

Notice that the NC-ELECTRE-Solution design leads to a clearly better win-win situation compared
with the design associated with the NC-Solution. Therefore, from these results it can be concluded
that depending on the formulation of a non-cooperative problem the optimal solution may lead to
non-desirable conditions. However, by applying the ELECTRE-IV method a feasible solution for
non-cooperative environments can be identified from the pool of solutions produced under
cooperative environments.

5.8.Final remarks

In this chapter, a systematic strategy to support decision-making processes for multi-objective
multi-criteria problems has been proposed. The methodology consists of a combination of the
traditional e-constraint method to solve multi-objective problems and the ELECTRE-IV method as
preference oriented multi-criteria decision-making tool to select the best one. The capabilities of
this strategy have been successfully proved using as a test bed a multi-objective design and
planning problem associated to a water network system within a shale gas production SC.
Numerical results show that the proposed strategy is flexible enough to consider many
objective/criteria’s while facilitating decision making tasks, ensuring quality and avoiding
subjectivity in the selection of the final solution. Additionally, a comparison against a fractional
optimization strategy has been performed in terms of robustness and reliability.

Numerical results have proved that the ELECTRE-IV method is useful enough to identify a solution
that better satisfies the decision maker preferences from different market situations (centralized and
decentralized decision-making problems). Despite the fact that in the non-cooperative formulation
several simplifications were considered and a traditional/simple solution strategy was applied, there
is not a reason that hinders the application of such a methodology for larger/complex problems.
Furthermore, the proposed strategy is a promising alternative to assess different challenges in the
field of process systems engineering (such as sustainability, negotiation, etc.). In order to expedite
the strategy performance, there is a need for a novel integrated strategy that allows defining a set of
decision criteria.

In the future, the combination of the ELECTRE-IV method with other optimization strategies (such
as fractional or fuzzy optimization) should be explored to expedite the generation of attractive and
feasible solution from the optimization stages rather than be limited to select from a defined pool
reducing the computational effort.

Despite the presented benefits of the ELECTRE-IV method to address decentralized schemes, a
significant opportunity area to extend the proposed strategy is the explicit consideration of
uncertainty for the third parties within an integrated framework. Chapter 9 shows such an extended
formulation.

Finally, another important opportunity area is the assessment of the impact of the defined threshold
over the final solution. The above becomes even more challenging if considering that the process
conditions may constantly change, thus, the definition of these thresholds is critical. All these issues
represent an important gap in the literature and such a limitation can be considered as one of the key
future research topics.
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5.9.Nomenclature

MOO
MO

SC
MILFP
MILP
PSE

ELECTRE
CWT

SO

AHP

WSA
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Demilj
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Abbreviations

Multi-objective optimization
Multi-objective problems

Supply chain

Mixed integer linear fractional programming
Mixed integer linear programming

Process system engineering

Elimination Et Choix Traduisant la Realité (Elimination and Choice Expressing
Reality).

Centralized wastewater treatment plant
Simple Objective

Analytical hierarchical processes

Weighted Sum approaches

Indexes

Number of solutions to be evaluated in the ELECTRE method (ala = 1, ..., A)
Number of solutions to be evaluated in the ELECTRE method(b|b = 1, ..., B)
Centralized wastewater treatment site (c|c = 1, ...,C)

Number of decision criteria (cr|cr = 1, ...,CR)

Disposal wells (d|d = 1, ..., D)

Number of points to evaluate for the multi-objective (ele = 1, ..., E)

Shale sites (ili = 1,...,1)

Wellbore (j|j = 1, ...,J)

Transportation modes (m|m =1, ..., M)

Counter for the parametric approach

Onsite treatment level (olo = 1, ..., 0)

Objectives under analysis (oblob =1, ...,0B)

Onsite treatment unit capacities (qlqg = 1, ..., Q)

Transportation unit capacity (r|r =1, ...,R)

Freshwater suppliers (s|s = 1, ...,5)

Storage tanks (st|st = 1, ...,ST)

Time periods (t|t =1, ...,T)

Parameters

Total demand for well j in the shale site i

Lower feasible bound for the objective ob

Recovery factor for the CWT treating wastewater from shale site i
Total net present profit gained by shale gas production excluding the water
management.

Preference threshold

Indifference threshold

Value for the solution a

Value for the solution b

Upper feasible bound for the objective ob

Veto threshold

Cost for treat wastewater coming from shale site i to CWT c at time t
Parametric approach parameter.

Optimality gap

Constraint value required for the e-constraint method



cw
Frac
fu(,y)
F(2)
91(x,y)
h(x,y)
k(x,y)
my(a, b)
my(b, a)
mq(a,b)
my (b,a)

m;(a,b)

m;(b,a)
m,(a,b)
nfw
Profit
Profit;
Profitg
x;,ob

x

y

Variables

Total net present cost for the water management in the supply chain
Ratio of economic performance per unit of freshwater consumed.
Upper-level objective function for bi-level problem

Fractional function.

Lower-level objective function for bi-level problem

Upper-level constraints for bi-level problem

Lower-level constraints for bi-level problem

Number of criteria for which a is strictly preferred to b

Number of criteria for which b is strictly preferred to a

Number of criteria for which a is weakly preferred to b

Number of criteria for which b is weakly preferred to a

Number of criteria for which a is considered indifferent to b but such that a has a
better criterion value than b

Number of criteria for which b is considered indifferent to a but such that b has a
better criterion value than a

Number of equal criterion values of aand b

Net freshwater consumption

Global system profit

Leader profit for the non-cooperative problem

Follower profit for the non-cooperative problem

Optimal solution for each point e and each objective ob
Upper-level variables for bi-level problem

Lower-level variables for bi-level problem
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Chapter 6

Efficient representation of uncertain parameters for energy generation

Besides the efficient operation management, the process sustainability highly depends on
environmental factors, which are subject to different variations, for example, quality/quantity
conditions for raw material resources. Analyzing and controlling the effect of these uncertain
conditions is particularly challenging, which has to be addressed along with a multi-objective
analysis seeking for the process sustainability. Thus, there is a need for integrated strategies that
consider both, MO and uncertainty management approaches. Nevertheless, prior to the development
of that holistic approach, the individual challenges associated to the uncertainty management should
be addressed. Particularly, the core of this chapter addresses the efficient definition of the number
of scenarios required to represent the unknown conditions; however, for continuity of this chapter a
solution identification method will be used together with a scenario reduction one. The details and
validation of the integrated framework will be addressed in the Part IV of this Thesis.

Thus, a solution strategy that combines a scenario reduction algorithm within the framework of a
multi-objective formulation is proposed and explained in this chapter. Such a strategy is able to
produce a fast and robust multi-objective optimization (MOO) while considering raw material
uncertainties (more precisely quality and availability). The result consists of a set of dominant and
feasible solutions, which are sorted using the ELECTRE-IV method as a way to identify the best
overall solution.

6.1.Representation of uncertain process conditions
The fast environmental deterioration has motivated the scientific community to consider

sustainability issues (such as water resources, atmosphere issues and alternative energy production)
as the key challenges to be faced. In addition to the scientific motivation, the development and
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application of sustainable industrial processes have been strongly stimulated by government
subsidies. Particularly, sustainability problems present multidisciplinary challenges at multiple
scientific levels, which lead to the necessity of an integrated solution strategy. In fact, mathematical
programming and, specifically, Process Systems Engineering (PSE) researchers are in a privileged
position to address these issues. PSE community agrees that, in order to meet the highest
sustainability standards, the optimization strategies should be improved within the framework of
industrial symbiosis systems (IS) (Cecelja et al., 2015). As commented in Chapter 2, there are two
main challenges while addressing sustainability problems. First, the limitation inherent to any multi-
objective (MO) problem (Rojas-Torres et al., 2015), and second, the high complexity associated to
the uncertainty assessment (Grossmann et al., 2015). A lack of a framework capable to
systematically address these challenges together introduces a significant bias in the solutions
identified by current strategies; therefore, there is a necessity to develop strategies leading to robust
and transparent methods to address them.

Studies regarding uncertainty approaches are vast in the PSE literature, focusing on the
representation of the effect of uncertainty conditions over a process. They include reactive
approaches, in which the knowledge of uncertainty is not explicitly taken into account, but most of
them rely on the basic concept of proactive approaches where the robustness of the solution is
guaranteed due to the in advance uncertainty description. The main advantages and disadvantages
of those strategies to address SCM problems are clearly identified in Chapter 3 and the recent
contribution of Elluru et al., (2017). Among the most critical challenges, finding the optimal size of
the uncertainty set so as to get an accurate forecasting of the uncertain parameters is the most
important ones (Moret et al., 2016, 2017).

Strategies such as two-stage stochastic programming (You et al., 2009), robust optimization (Deb
and Gupta, 2006; Ben-Tal et al., 2009) and chance constraint optimization (Shapiro et al., 2009) are
commonly used as a way to model the effect of uncertain parameters over a process. However, in
most of these strategies it is assumed that the larger the number of scenarios the better the
uncertainty representation. This ideal approach very often leads to intractable situations due to
computational limitations, which becomes a serious problem when addressing also a sustainability
problem (or any other kind of MO problem). Thus, the amount of scenarios describing the
uncertainty space remains as one of the main drawbacks for uncertainty management approaches. In
this line, the use of scenario reduction approaches is a promising alternative.

As indicated in the broad description in section 3.4.1, scenario reduction methods allow selecting a
small and representative amount of scenarios from a larger set (the original set). In spite of their
relevance on uncertainty management approaches, these methods have been seldom studied until
now. In fact, the most effective method to face such an open issue is the transportation distance-
based method initially proposed by Heitsch and Rémisch, (2003). Recently, Li and Floudas (2014a)
applied this strategy to minimize the Kantorovich distance among scenarios to find the optimal
subset of scenarios that better represents the original set. This strategy was extended to introduce a
sequential reduction framework with which a significant reduction in the computational effort was
achieved (Li and Floudas, 2016). In such a study, the selected set of scenarios is evaluated as a
function of both, the input space (i.e. the values of uncertain parameters) and the output space (i.e.
the objective value of optimization problem).

Despite their efficiency, most of the solution procedures based on scenario reduction techniques
presented in PSE literature are applied to tailor-made approaches rather than developing a general
framework. For example, Costa et al. (2006) use a discretization technique to reduce the scenario
specification problem in a hydrothermal scheduling case. Karuppiah et al., (2010) presented a
heuristic strategy for selecting scenarios based on an additive criterion to calculate the probabilities
of the new scenarios and applied it to chemical planning problems. In very recent contributions,
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Jeihoonian et al, (2017) use the L-shaped method to design closed-loop supply, while Alipour et al.,
(2017) stress the importance of a proper scenario reduction tool for the management of energy
uncertainties. Despite the efficient application of scenario reduction methods, systematic scenario
reduction strategies have been never used in large-scale MO SC design and planning problems.

In this chapter, a scenario reduction method is applied within an optimization framework for the
design and planning of a bio-based energy distribution network. For this purpose the study
presented by Pérez-Fortes et al., (2012) has been modified to consider raw material availability and
quality as uncertain parameters.

6.1.1. Background on the management of alternative energy sources

Energy management is a challenging sustainability issue addressed by the PSE community
worldwide. Particularly, the development of processes that contribute to reduce fossil-fuels-based
energy dependence (Nie et al., 2016) has gained attention, being biomass-based energy processes
the most widely studied alternative (Saxena et al., 2009; Dias et al., 2009). Since these processes
rely on the energetic valorization of the biomass, literature focuses on studying/developing these
techniques/strategies. Valorization techniques are based on either the reduction of the water content
through a drying treatment or the reduction of particle size (thus reducing energy losses in further
steps) by a chipping treatment. The definition of the conditions for biomass pre-treatment represents
a key step for the efficient application of this processes at large scale. In fact, multiple strategies
have been proposed, for example, Panichelli and Gnansounou, (2008) use torrefied wood (from
forest wood residues) to produce energy by means of gasification. Later, Magalhdes et al. (2009)
extend the evaluation of torrefaction and fast pyrolysis for the use of biomass in real processes.
Such an evaluation considers prices, yields and operation costs of these pretreatment operations. In
a recent literature review, Madanayake et al., (2017) presented a detailed description of the
advantages and disadvantages of the most used pre-treatment strategies (i.e. mechanical, thermal,
chemical, biological, or a combination of these). This review emphasizes the pre-treatment
technical challenges, which become more difficult if considering the inherent uncertainties
associated to raw material conditions, risk of equipment’s failure, price fluctuations, demand
variability, and weather conditions, among others.

Strategies addressing process management for MO problems under uncertainty have been already
proposed in the literature. For example, Guillén et al., (2005) combine the standard e-constraint
method and branch and bound techniques to address the optimal design and retrofit problem of a
SC, ensuring the maximum economic benefit and demand satisfaction. Later, Gebreslassie et al.,
(2012) use a mathematical model to minimize both, the annual cost and the financial risk for the
design of a bio-refinery under supply and demand uncertainties; in such a work, they use a multi-cut
L-shaped approach to circumvent the computational burden of solving large-scale problems. A
similar strategy was used by Ruiz-Femenia et al., (2013) for the multi-objective optimization of
environmentally conscious chemical SC under demand uncertainty; in such study, the variability of
the Global Warming Potential (GWP) was accounted and represented using scenarios with given
probability of occurrence. More recently, Sabio et al., (2014) propose a novel mathematical
programming strategy to combine MOQ tools and take advantages of the LCA modeling within an
optimization under uncertainty. Despite the significant number of studies in this area, all the above
strategies consider only bi-objective problems. Therefore, the application of these strategies for MO
problems under uncertainty is considerably limited when more than two objectives are considered.
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6.2.Problem statement

The design and planning problem of a centralized multi-echelon bio-based energy production SC
subject to raw material uncertainties, as schematized in Fig. 6.1, is used as a paradigmatic example
of the problem to be addressed.

fEe feEp fem
Supplier (e) » Production sites (p) » Markets (m)

Sourcing

Availability and
quality uncertainties

(i)
_—.[ Pretreatment (i) ]

Biomass ready
to use (s)

Biomass ready
to pretreat (s)

Energy
generation (i)

Energyat
consumptionsite

Fig. 6.1. General scheme for bio-based Supply Chain (Inspired on (Lainez-Aguirre et al., 2011).

Multiple types of uncertainty sources exist in bio-based energy generation systems. As commented,
there is a major interest on determining a small subset of scenarios such that it can approximate the
system behavior as close as the original set. The bio-based energy system used in this chapter has
two main actors considered as the supplier (e) and the producer (p). Both actors are modeled in a
unique supply chain management (SCM) problem, in which resource exchange is allowed. The
exchangeable resources include raw material, and the energy generated which satisfies the demands
(including the supplier requirements). Raw material availability and quality are considered
uncertain parameters. The proposed approach is tested using a modified version of the case study
presented by Pérez-Fortes et al. (2012). The raw material availability is modeled defining a given
expected profile for each short-term period and supplier. The goal is to optimize the traditional
design and planning decisions, such as the installation and capacity of the technologies (j)
performing tasks (i) at locations (f); the distribution links among facilities; the biomass utilization at
different conditions (s) and the expected storage levels at any period (t). The objectives considered
here include the expected net present value as an economic metric, the expected environmental
impact of the entire SC, and the expected social performance, quantified via the opportunities of job
creation. Remarkably, the most relevant mass and energy balances, as well as the associated
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constraints that describe the technologies involved are detailed in the following subsection while
further information about the process data, equipment description and available capacities are
described in Appendix B.4.

6.2.1. Mathematical formulation

The following mathematical formulation follows a state task network (STN) form in which each
activity is represented by a node and all the information is centralized in a single variable set. Such
a variable (P f¢) must represent the specific activity i performed, using technology j receiving
materials from site f and delivering to site f at time t for scenario c. It is important to highlight
that facilities f and f” are the same for treatment and pre-treatment activities, while for distribution
activities f and f' must be different.

Material balances for material s must be satisfied at each network node as expressed in Eq. (6.1). A
material conversion factor is used (represented by ag;; and @g;;). In order to facilitate the model
development and further solution, predefined subsets of tasks that consume and produce material s
are used (T, and Trespectively).

sztc T 9Isft—-1c — z Z 2 aSijPijf’ftC
fr i€Ts je(jingsr)

—ZZ Z siiPijfriec

fri€Ts je(jingy)

Vs, f,t,c (6.1)

For those activities in which the input is composed by a mixture of streams, the Eq. (6.2) should be
used.

Ssftc = Ssft-1c = zz Z sijPijrifec — ZZ Z AsijPijrricc

fr i€Ts je(jinis) fr i€Ts je(jingy)

+ Z Pvsijrtc vs, f,t,c (6.2)
iE(TsnD je(jingyr)
- Z Pvsijrtc
ie(TsnD) jE(jiﬂJ_f/)
Eq. (6.3) was used in order to enforce the energy balance in which changes in the biomass heating
value (HV,.) are allowed due to pretreatment activities or the mixture of different biomass sources.

D HViex Prggipee = ) Hie * Pogijpee vi€Lfte (63)

SETg S€eTy

Since the biomass heating value highly depends on the feedstock moisture content (Watery,.), EQ.

(6.4) is used to guarantee a Water;, value lower than its maximum (W ater{}'*).

Z Watery, * Pvgijrec < Water{['®* Z Pugijfec Vi €1,j,f,t,c (6.4)
SES; SESTE

Together, Egs. (6.3) and (6.4) model the energy required to achieve a certain degree of moisture
content in the processed biomass. Thus, by allowing biomass mixture, these equations might affect
the SCs design decisions.
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Egs. (6.5) and (6.6) represent equipment installation as well as capacity expansion, while the use of
the well-known SOS2 variable (&;f..) is used to bypass non-linearities. Eq. (6.7) describes the total
capacity Fjs. including its increment during the planning period t (FEjs¢. ).

ijfktc * FE{[[{'* = FEjp Vi€ Jjnf.tc (6.5)
3
ijfktc = Vigtc Vi€ Jjnf.tc (6.6)
3
Firte = Fjpr—1c + FEjfec Vi€ Jjnf tc (6.7)

Production rates are constrained by a minimum level (5;5) and the available capacity, as described
in Eq. (6.8). Similarly, Eq. (6.9) ensures the maximum biomass purchased from site f according to
the availability uncertainty Asf... The electrical network is built through Egs. (6.10) and (6.11) by
using the binary variable Zs,¢. for the energetic links. It is important to comment that the model
allows a partially unsatisfied demand.

BirFift-1c < Z Z Oijrrr * Pijepree < Fipe-ac Vj€ jpfitc (6.8)
fr iEIj
Z Z Z Pijrrite < Asfec Vs € RM,f € Sup,t,c (6.9)
f’ iETsjE]_i
Pijrfriee < M x Zg,pc Vs € FP,i € Mkt,f' ¢ Mkt,t,c (6.10)
z Z Z Pijfrirre < Demgpy Vs € FP,f € Mkt,t,c (6.11)

fr ieTs jejg;

Without loss of generality, the total expected revenue was modeled using product sales in period t
as stated in Eq. (6.12).

ESaless. = Z Z Salesgsfiic * Pricegs, Vfé¢& (Mkt USup),t,c (6.12)
SEFP f1'€ Mkt

Overall operating costs are estimated by means of indirect and direct costs. Direct costs include
fixed operating costs represented by Eq. (6.13), where FCFJj; is the fixed unitary capacity cost of
using technology j at site f. Indirect costs include the purchases from suppliers e, considering raw
material purchases, transportation, and production resources at any scenario ¢ (Eq. (6.14)).

FCostsye = Z FCFJjft * Fipec Vfé& (Mkt USup),t,c (6.13)
JjEJf
EPurchgy. = Purchl + Purchlf + Purchl/ Ve,t,c (6.14)

Raw materials acquisition (Purchyt ) from suppliers e are accounted in Eq. (6.15). The associated
cost is described by the variable X,; while Eq. (6.16) and Eq. (6.17) determine transportation and

production costs, respectively. r}j-?et represents the unitary production cost associated with

performing task i using technology j, whereas r}j@?et represents the unitary inventory costs of
material s storage at site f. The parameters lejsclet and r}‘jﬁ,t entail similar assumptions to the ones
considered regarding to ag;; and @, since the amount of utilities and labor required by an activity

are proportional to the amount of material processed.
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The required investment is calculated in Egs. (6.18) and (6.19).

FAsset,, = Z Z Z Price/["t  &jpyee + Z Z Invest™ Distancess,Zsp,e Vit =0,c (6.18)
j f k Vi il

FAsset,. = ZZ Z Pricejljifrtnit *$jfrtC Vt>0,c (6.19)
i f ok

Eq. (6.20) represents the calculation of profit at each period. Finally, the rate of return used in a
discounted cash flow analysis to determine the NPV is computed by means of Eq. (6.21).

Profits,. = ESalesfy. — (FCostftC + 2 EPurcheftc) * Xost vf,tc (6.20)
e
Profits,. — FAssetg.
= 6.21
NPV ZZ( (1 + rate)t ( )

All the environmental interventions are quantified through characterization factors (Eq. (6.22)). The
environmental impact of site f, due to the activities i, is calculated through the variable IC, .
Variable ;s is used to characterize the environmental impact factor for a specific task i

performed using technology j, receiving materials from node f and delivering them at node f’ for
each environmental category a.

[Cqofic = Z Z Z Yijrria * Pijrrrte Vaf,tc (6.22)

]Ejf iEIj fr
The value of the environmental impact factor ;¢4 is linked to transport as stated in Eq. (6.23).

Here, 1/Jl-Tja represents the a environmental impact factor associated to the material transported over

a given distance. It is important to emphasize that the environmental impact in distribution activities
is assigned to the origin node.

T . . . . l
lpl.jff,a = l/Ji].a * Dlstanceff' * Tortuosity vieTr,je],af,f (6.23)

Eqg. (6.24) introduces DamCgysy, Variable, which is a weighted sum of all environmental
interventions. They are combined using g endpoint damage factors {,,, normalized with NormF,
factors, as states the LCA method (Bojarski et al., 2009). Moreover, Eq. (6.25) calculates g
normalised endpoint damage along the SC (DamCj¢ ).
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DamCyyec = Z NormFy * {gq * [Cqfc Vg, f.tc (6.24)
aEAg
DamCj{ = Z z DamCyyy, vg,c (6.25)
f ot
Eqg. (6.26) sums the endpoint environmental damages for each site f,
Impact}%go2 = Z Z DamCy . vf,c (6.26)
g t

For further details regarding the operational and environmental formulation, the interested reader is
addressed to (Pérez-Fortes et al., 2012; Lainez-Aguirre et al., 2009).

Obijective function.
The expected NPV is defined as in Eq. (6.27)

ENPV = Z NPV, * prob, (6.27)
Cc

Where prob, represents the probability of occurrence of scenario c. Eq. (6.28) calculates the
expected environmental impact as a function of the probability of occurrence of scenario c.

Impact3S, an = Z Z Z Z DamCgy. * prob, (6.28)
f t g ¢

Without loss of generality, the social impact is associated with the number of required working
places, which promote the economic activation and will lead to an improvement in the lifestyle of
the community around the industry. Therefore, the social criterion employed is the number of sites
that have a treatment or pre-treatment system installed as shown in Eq. (6.29). Vjs is a binary
variable that characterizes the number of units installed per site so this criterion assigns a value of 1
to each unit installed per site f.

SoC, = Z z Z Vite Ve (6.29)
7Tt

It is worth noticing that in order to ease the formulation of the MO problem Eq. (6.30) introduces
the expected SoC impact as a function of the probability of occurrence prob..

ESoC = Z SoC, * prob, (6.30)
Cc

It is important to highlight that the proposed social performance calculation is less efficient than
other methods, such as social life cycle assessment. However, here the social performance it is used
as a crude assessment to illustrate its effect on the solution selection in the proposed method.

6.3.Methodology

The proposed solution strategy consists of four steps: deterministic optimization, scenario
reduction, stochastic optimization and solution selection. A detailed description of each step,
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including the specific methods/algorithms used, is provided in the following subsections.
Additionally, the general algorithm of the presented solution strategy is shown in Fig. 6.2.

| Start ]
it

Original set of scenarios=C
Reduced set of scenarios= C’
»<  Forc=1:1:C
iy
1.- Solve Model P1 for
scenario ¢

—Gwdividual solution D

2.- Solve scenario reduction
model (Model P2)

3.- Solve the two-stage
stochastic model for C’

~

O
(Pinal set of solutionD
-
4.- Solution Selection
( Finiolution )
v
.\ End |

Fig. 6.2. A detailed description of the solution strategy proposed.
6.3.1. Deterministic optimization.

The first step of the proposed strategy consists in an iterative procedure for the deterministic
optimization for each scenario in the original set of them. Such an optimization is required, since
the results of each scenario are later used for the scenario reduction part of this strategy.

The based model has the following general form (see Eqg. (6.31)), and will henceforth know as
Model P1:

Model 1 max (foy(x,%), fo(x, ), fos (6,70}

s.t. (6.31)
h(x,y.) =0 Ve € C
gx,y) <0 Vc € C

xeX,y. €Y
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Notice that even if this model is a MO, multi-scenario two-stage stochastic one, according to the
proposed solution strategy (see Fig. 6.2) the same model has to be solved twice. At stage 1, for each
one of the elements within the entire original set of uncertain parameters (deterministic MILP
optimization) and at stage 3 for the entire reduced set of the uncertain parameters (two-stage
stochastic MILP optimization). Additionally, note that during the deterministic optimization the
only objective function considered is the economic one (i.e., environmental and social impacts are
calculated in parallel during the process, but they never act as objective functions). It is important to
comment that a complex objective function that accounts for more than one objective can be
applied, however in order to facilitate the result reproduction and comparison a single economic
objective was used.

From Model P1, fo,pc0p represents the different objective functions considered in the problem (in
this particular case fo; = ENPV, fo, = — Impact2992,,,, fos = ESoC). x represents the first-stage
decision variables, y. the second-stage decision variables and ¢ the uncertain parameters values that
belong to the uncertain parameters space ¢. h(x.,y.) and g(x,y.) are vectors of equality and

inequality constraints representing the constraints described in the model (Egs 6.1-6.30).

Notice that in both, deterministic and stochastic model, the decision variables for the design and
planning are the same. Since the reduced set of scenarios is expected to “mimic” the performances
of the original set. Thus, the performance of the reduced set of scenarios is compared against the
expected performance considering the whole set.

6.3.2. Scenario reduction algorithm.

The second step of the proposed strategy consists of a scenario reduction method, able to produce a
reduced set of scenarios that properly represents the original distribution.

In order to apply such an algorithm the following elements are required:

e A general set of scenarios/samples C with their associated probability (summation equals
one). It is important to highlight that the scenario probabilities may not necessarily be the
same for all the samples.

e A reduced set of scenarios C’. All the elements in the reduced set are part of the main set
of scenarios C. The probabilities associated with the preserved scenarios have to be updated
(so that their summation is 1).

The scenario reduction strategy is inspired in the clustering-based algorithm proposed by Li and Li
(2016). Such a strategy considers that the subset of elements represents the cluster centers while the
nearest scenarios compose the clusters themselves.

The scenario reduction process compromises four sequential steps, being the cluster centers
initialization, the clusters generation associating the remaining scenarios to each cluster center, the
evaluation of the cluster centers performance, and the cluster centers updating. This process has to
be repeated until a defined tolerance is achieved. A graphical representation of the scenario
reduction algorithm is displayed in Fig. 6.3.
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Fig. 6.3 The scenario reduction algorithm.

During initialization step, a set of cluster centers are generated. Here, a random selection among the
already existing scenarios was used; however, this selection may be performed using a more
sophisticated sampling technique such as k-means clustering method. Since further cluster centers
updates will be required, the set of initial samples does not compromise the global performance of
the proposed strategy (Li and Floudas, 2016).

In step 2, the Model P2 has to be generated and solved. Model P2 adopts the form of a general
mixed integer programming-based scenario reduction model described by Li and Floudas (2014a).
A brief description of such a formulation is next presented.
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Model P2 min Distance = z Z Neer Cdeer + functer?
cecC crecr
S.t.
Z yy. =N (6.32)
cec
Z Veor = YYe VceC (6.33)
creC
0<v. <1-yy Ve, o' €C (6.34)
Z Neer = p?,ew vc' e’ (6.35)
cec
Z e =po9 VceC (6.36)
clecr
functs? > — Z pReY funct,, + Z p2™ funct, (6.37)
crecr cec
functer? > Z p&?Y funct,, — Z pe rig funct, (6.38)
cleCr cec
T
cdeer = ZME — A4 (6.39)
t=1
puew = (1 - yy Ipo™ + Z VDo ? ve' e (6.40)
cec
Nee 20, Vce(C,vc' el (641)
yy. €{0,1}, VceC (6.42)

From the above formulation ¢ and ¢’ represent scenarios in the superset (C) and the subset (C”)
respectively. The associated probability for each scenario in the original superset is represented by

ori

pe ¥ while v, ., express the probability of scenario c to be associated to scenario c’. yy, is the key
binary variable that denotes whether a scenario is “transported” (yy. =1 ) or a preserved one
(yy. = 0). The probability of scenario ¢’ is expressed through the variable p2?" (pZ¢" =0 if
scenario ¢ is removed). In the formulation, one of the key parameters is cd. ., which defines the
distance between two scenarios. Here, such a distance is modeled using the Manhattan distance (Eq.
6.39) in which the realization of the t uncertain parameter associated to each scenario is represented
by AL.

One of the most important features of the above model is that it minimizes the probabilistic distance
in both the parameter space and the output space (i.e. the expected performance of the objective
value). In order to model such a feature, the difference between the expected objective value

obtained by the original and by the reduced set of scenarios has to be explicitly included in the main

exp __

objective function of the scenario reduction algorithm (functey, = |functy} — functpe,|). At
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this point is where the deterministic optimization performed in the step 1 becomes relevant. Here,
orig

funct, is the objective value obtained by scenario c, funct;? =Ycccpe © funct, is the
expected value of the objective value of c the original scenario set, and funct .h, =

Yereo PEEY funct,, is the one for the ¢’ preserved scenario set. More details about the scenario
reduction algorithm can be found in Li and Floudas, (2014a).

From the Model P2 (step 2), the clusters are defined using as a basic idea that a scenario belongs to
a specific cluster when the distance between the scenario location and the cluster center is minimum
(compared with the rest of cluster centers). The above is justified assuming that the lower the
distance between c and c¢’, the smaller the difference in the uncertainty realization. Parallel to the
definition of the clusters, Model P2 allows the calculation of scenario probabilities for the reduced
subset. These probabilities are obtained through the summation of the individual probabilities of all
the scenarios belonging to the cluster.

Even if by introducing an initialization step, the clusters centers can be identified faster, this do not
affects the strategy performance, thus, the cluster initialization has been neglected. The third step of
the scenario reduction strategy consists on a dynamic evaluation of the clusters in order to update
the cluster centers according to the obtained distances associated to the value of the uncertainty
parameters. This evaluation consists of defining each scenario as the center of the cluster and
calculates the associated displacement (i.e. Manhattan distance). This procedure has to be repeated
until all the scenarios in the cluster were evaluated. The scenario with the lower overall distance to
the rest of scenarios in the same cluster is defined as the new cluster center since it better represents
the whole cluster. The probability associated with the new center is the same since the group
remains equal.

At the end of the evaluation step procedure (step 3), the elements in the reduced set of scenarios are
the best possible representation of the original distribution for the initially defined clusters.
However, since the cluster centers were moved, there is a chance that some of the scenarios
belonging to one cluster would be better allocated to another cluster. In order to avoid such an issue
and to ensure the representativeness of the subset of scenarios within the global original superset
(C), a relative error has to be calculated and compared with a defined tolerance value (typically
err=0.001). Such a relative error is calculated following the general form, which can be represented
as:

. Distance,_, — Distance,
relative error = - (6.43)
Distance,_4

Where Distance,, represents the displacement (i.e. Manhattan distance) obtained after solving the
overall procedure for iteration n. Therefore, until the relative error is lower than the tolerance value,
the entire process has to be repeated iteratively for the new cluster centers generated in the step 3.

6.3.3. General two-stage stochastic programming model.

As commented before, the Model P1 has to be solved for this section as well (Stage 3 of the
proposed strategy (Fig. 6.2)). In this section, the reduced set of uncertain parameters was considered
(two-stage stochastic MILP optimization). Note that this set (as well as the probabilities of
occurrence of each member of this set) differ from those used at the beginning of the scenario
reduction approach. In addition, for this part of the solution strategy all the SC decisions were taken
by the simultaneous optimization of the three objectives.

As commented before, the typical design and planning decision variables are considered in this step.
In addition, the variables that are subject to uncertainties includes exchange of materials (raw
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material, treated mass or energy), fraction of materials blended to produce energy, amount of water
extracted from the raw material, total revenues as well as location and amount of
treatment/pretreatment units installed.

6.3.4. Solution selection procedure (ELECTRE-IV algorithm)

Because of the second step in the proposed solution strategy (scenario reduction), a reduced set of
scenarios is obtained. However, even if such a reduction significantly expedites the uncertainty
representation task, the decision-making task associated with the MO part of the problem remains
unsolved. Therefore, a method that systematically selects a unique and robust solution is needed
(step 4 of the proposed solution strategy). The use of the well-known ELECTRE-IV method is
again a promising alternative to overcome this limitation.

6.4. Case study

A real-life case study previously studied by Pérez-Fortes et al. (2012) has been used to illustrate the
application of the proposed procedures. Particularly, nine communities in a rural area of Ghana,
Africa (Atebubu-Amantin district) may play simultaneously the role of biomass producers, energy
generators and consumers. For this case study, 40 different biomass states (s) have been identified
as the input/output conditions for the six available transformation technologies (j) considered,
which include treatment, pre-treatment and transportation tasks, resulting in 79 activities (i) each
one consisting on a pair of biomass state-processing or biomass state-transportation combinations.
These activities, if required, should be developed in one or more of the 31 considered sites (f): nine
suppliers, nine potential pre-treatment and/or treatment sites, nine markets and four additional sites
in which a treatment unit can be installed. Detailed data regarding the situation considered in this
study can be found in Appendix B.4. A planning horizon of 10 years with an annual interest rate of
15% is used which is a typical time horizon in this type of SC’s (Seider et al., 2009).

The scope of this chapter is limited to provide an effective strategy to address the challenges
associated with the use of a large set of scenarios to represent process uncertainties within a MOO
problem. Consequently, technical challenges such as temporal electricity supply (e.g., electricity
storage, switching on/off the transfer grid, availability of power supply in certain hours of a day
etc.) are out of this scope. Additional studies, extending this formulation and addressing electricity
supply challenges, are also required to explore the differences in the solution in terms of economic,
environmental and social performances.

Cassava Rhizome (CR) was considered as raw material for energy production, mainly for the
abundance of Cassava crop in the region under study. The raw material properties considered as
uncertain parameters in the analysis include Cassava availability, Lower Heating Value and
Moisture Content (LHV and MC respectively). From historical data, their average values per
community are used to generate an initial set of 100 scenarios assuming a normal distribution and a
variance of 30% (see Table 6.1).

The drying and chipping processes were considered as potential pre-treatments, since they are more
suitable for rural areas in developing countries. Cassava Rhizome is pre-processed before
gasification to obtain the required shape and MC for further processing steps. As commented
before, each community represents a unique supplier-production-consumer site. All the
communities could be connected to a specific-built low voltage (energetic self-sufficiency) or
medium voltage micro grid in order to export energy to other communities and/or receive energy
from the grid (LV and MV respectively).
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Table 6.1 Average values for biomass properties at each community in Atebubu-Amantin district.
Water” LHV(MJ/kg) Availability (Tons)

Senso 0.425 10.61 12.74
Old Konkrompe 0.426 10.56 24.39
Fakwasi 0.427 10.51 81.10
Kunfia 0.429 10.46 122.18
Trohye 0.431 10.40 16.22
Bompa 0.432 10.34 22.07
Nwunwom 0.434 10.28 5.272
Boniafo 0.436 10.22 21.08
Abamba 0.438 10.15 28.15

* This values are expressed as a weight fraction

As well as in the originally proposed case study, a LCA was performed using the Impact 2002+
indicator and the Ecoinvent database as a way to quantify the environmental impact (Ecoinvent,
2008; Simapro, 2008), in order to maintain coherence with previous results). The LCA analysis
considers the same traditional 15 mid-point categories associated to biomass production (Cassava
waste), transportation, pre-treatment (chipper and dryer) and generation of electricity through
biomass gasification. Detailed information about the environmental analysis of this case study can
be found in Pérez-Fortes et al., (2012).

The objective is to select the most suitable processing units (including their capacities and
locations), the best way to interconnect the various elements of the supply chain (i.e., providers,
intermediates and consumers), and the adequate biomass storage/transport flows in order to make
the best use of biomass as feedstock. The solution obtained will be compared with the originally
presented results, in order to highlight the effects of the reduction of scenarios over the overall
solution space.

6.4.1. Scenario reduction solution. First case.

Deterministic solution analysis and Scenario reduction

For this study, 100 scenarios have been randomly generated using as a mean value the average
values for the uncertain parameters (biomass availability and properties) as shown in Table 6.1.
Without loss of generality, such a set was used for two reasons. On the one hand, ensuring a
sufficiently large set of scenarios stresses the capabilities of proposed methodology to handle a
large number of scenarios in the original set, and thus, evaluating the computational effort required
(evaluating the methodology time efficiency). On the other hand and since in this case the model
uncertainties were assumed independent (alike in previous works) by considering a larger set of
scenarios it is ensured that the original set is representative enough. Besides, in order to ensure the
representativeness of the original set, an additional analysis was carried on varying the size of the
set of scenarios between 25 and 150. Using these results, the plot below (Fig. 6.4) demonstrates that
any increment in the original set of scenarios (<100) leads to a small variation in the final solution
(less than 1%), while lowering the number of scenarios exponentially increases such a difference.
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Fig. 6.4. ENPV performance for each set of scenarios

The mathematical model has been written in GAMS and the problem has been solved using CPLEX
11.0 on a PC Intel(R) Core(TM) i7-2600M CPU 2.70 GHz and 16.00 GB of RAM. The
deterministic model contains 17,328 equations, 144,703 continuous variables and 186 binary
variables and the whole optimization process entails a CPU time of approximately 10,000 seconds.

Deterministic optimizations were performed using the economic performance (NPV) as unique
objective, although a MO analysis will be performed in the following steps of the strategy. After the
optimization procedure, 100 solutions were obtained. Individually, they represent a poor
approximation for the global problem; however, they may be used to evaluate the “similarity”
among sets of scenarios of different dimensions. Thus, using the NPV values for the complete set of
100 solutions, a reduced set of 10 scenarios with their probability of occurrence can be obtained
following the algorithm described in Section 6.4.2. The scenarios are strategically allocated in order
to represent better both, the input (uncertain conditions) and output (expected economic
performance) data. Fig. 6.5 compares the original scenario distribution against the reduced set of
scenarios, while Table 6.2 shows the probability of occurrence for the new set of scenarios.
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Fig. 6.5 Input uncertainty representation for the original and reduced set of scenarios for the Senso
community (the diameter of each scenario represents the probability of occurrence).

Fig. 6.5 was used as a way to visualize the relationships between the original and the reduced sets of
scenarios for the three uncertain conditions (LHV, Biomass availability and MC). Notice that the
reduced set produces a well-balanced distribution considering simultaneously the three uncertain
parameters.

Remarkably, the strategy has the capacity to adjust the probability of occurrence as a function of the
number of scenarios belonging to the new subset. Such an adjustable probability provides the
required flexibility to mimic accurately the original uncertainty distribution. Notice that s;, S5, S¢ and
Sg are the scenarios with higher probability compared with the mean value (probability >> 0.1). On
the contrary, s, S4 and Sio can be considered as “minor” scenarios since their probability is lower
than the mean (probability << 0.1) suggesting that a further scenario reduction is still feasible (for
example, from 10 to 7). For example, s may be merged with one of the closest and “more
important” scenarios (such as Sz Ss and Sg). Nevertheless, the selection of these scenarios is
conditioned to both, the third uncertain condition as well as the output criteria in order to reduce the
gap between sets.
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Table 6.2 Probability of occurrence for each set within the reduced set of scenarios.
Scenario

S1 S2 S3 Sa S5 Se S7 Sg Sg S10
Probability  0.09 0.13 0.1 0.08 0.11 0.11 0.1 0.11 0.1 0.07

As commented before, the economic objective was used as the single “similarity” criteria in order to
evaluate the output performances. Therefore, the economic behavior between the original and
reduced set of scenarios was compared, obtaining a difference of less than 0.0005%. In other words,
the reduced set of scenarios reaches an optimal value of $ 636,143.5, while the best economic
performance for the original set was $ 636,146.4. A comparison between both designs is next
presented.

Design and Planning comparison for different sets of scenarios

In order to validate the reduced set representativeness, a comparison of the designs obtained after
solving the Model P1 for both, original and reduced sets was performed. Note that even if Model P1
is a MO model, the ENPV value was considered as the only objective function for comparison
purposes. The reason for this is that the application of any MOO approach for a large number of
scenarios leads to a computationally intractable problem.

Table 6.3 Equipment capacity for the optimum networks configurations obtained for the different sets of
scenarios.

Reduced Set of Scenarios Original Set of Scenarios
Dryer  Chipper G-ICE Dryer  Chipper G-ICE
(t/h) (t/h) (kWe) (t/h) (t/h) (kWe)
Senso - - - - - -
Old Konkrompe 0.126 0.1 168.97 0.17 0.1 168.98
Fakwasi 0.218 0.1 243.30 0.24 0.1 241.74
Kumfia 0.302 0.135 360.00 0.31 0.12 316.93
Trohye 0.1 0.1 90.88 - - -
Bompa - - - - - -
Nwunwom - - - - - -
Boniafo - - - - - -
Abamba 0.1 - - 0.1 0.1 97.48
Extrasitel - - - - - -
Extrasite2 - - - - - -
Extrasite3 - - - - - -
Extrasite4 - - - - - -

For the reduced set of 10 scenarios, a direct two-stage stochastic programming strategy was applied
while for the case of 100 scenarios, the Model P1 was solved following a sample average
approximation (SAA) strategy described in Chapter 3: first only one scenario at a time is considered
and only a single-objective (NPV) optimization is addressed; after this, the obtained first-stage
variables (i.e., the design of the supply chain) are fixed and the optimization of the ENPV in Model
P1 considering all the |C| scenarios simultaneously is addressed. Table 6.3 shows the technologies
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to be installed at each specific site as well as their capacities, according to the results obtained using
this is strategy.

Table 6.3 shows that the final design is different for each set of scenarios, being the location of the
treatment/pretreatment units their main difference. Remarkably, these units were installed as a
group (Dryer, chipper and G-ICE together). Note that the fact that the set of 100 scenarios was
solved using an approximation technique may explain the small differences in both designs. The
SAA procedure, although reliable, does not guarantee a globally optimal solution, as does the
stochastic programming. Therefore, since the difference in the expected economic objective is
lower than 0.001% and the design is partially the same, the solution for the reduced set of scenarios
should be considered accurate and at least equally reliable as the full-space solution.

Traditional MO analysis. Design and Planning

For the completeness of the work, after the validation of the reduced set of scenarios, a MOO is
carried out in order to identify the best solution. In this case, the economic, environmental and
social performances (ENPV, EImpact?39%,,, and ESoC respectively) were considered, and the
optimization was implemented through the well-known g-constraint method. The two-stage MO-
MILP model was written in GAMS and solved using CPLEX 11.0 on a PC Intel(R) Core(TM) i7-
2600M CPU 2.70 GHz and 16.00 GB of RAM. A total of 172,020 equations, 1,505,017 continuous
variables and 204 binary variables were obtained and each iteration entails a CPU time of
approximately 6,500 seconds.

Resulting from the individual optimization of each objective, the boundaries (i.e. anchor points)
were identified and collected in Table 6.4. The best expected economic performance is $5.83x10°,
which becomes zero for the best environmental and socially friendly networks respectively. In
environmental network due to the best environmental choice, do not operate at all, while in the
socially friendly network due to unnecessary expenses (installation and transportation costs for
instance) that reduces the benefit to zero. Logically, this result is highly economically undesirable,
but provides a feasible lower bound on the process performance.

Table 6.4 Individual performances at each single objective optimization

Economic Environmental Social
optimization optimization optimization
ENPV ($) 583917.4 0 0
ElmpactZ3%%.,, 1.2864 0 1.4054
ESoC 13 0 27

While optimizing ENPV, the Elmpact2)2?,,, indicator keeps a considerably high value since it is
reduced only by 9%, compared with its worst performance (ESoC optimization). The best expected
environmental performance is “reached” when the process is stopped at all. Logically, this situation
is undesirable; however, it is in fact a feasible extreme solution. The highest environmental impact
was found while considering a single ESoC optimization, mainly due to the large amount of
transported material and production emissions. It is important to notice that ESoC maximum value
was considered as 27 since it was assumed that all the pretreatments/treatments options were
installed at all the feasible locations.
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Without loss of generality, the three objectives were analyzed simultaneously using the well-known
g-constraint method. Such a method provides as a result a set of feasible solutions that belong to the
Pareto surface of ENPV vs EImpact2992,,,vs ESoC (see Fig. 6.6). From Fig. 6.6, it can be inferred
that for lower value of ESoC the economic objective (ENPV) increases, at the expense of the
depletion in the environmental objective function (Impact2222,,)), which demonstrates the conflict
between the objectives. As commented before, one of the extreme solutions is highly undesirable
(i.e. lower Impact2222,,)) and may be removed beforehand. However, although in Fig. 6.6 that
point has been removed, these easily identified undesirable solutions will be maintained in further
steps of the solution selection strategy in order to prove its sensitivity. From Fig. 6.6, it can be also
noticed that Pareto solutions with high environmental impact (high expected environmental
indicators) lead to the same ENPV and Elmpact239% ,, performances. Additionally, when the
social criteria range goes below 16, there is no significant change in the economic and
environmental performance. On the contrary, for social criteria values greater than 16, the
performance of the others gradually decreases. It is worth mentioning that these values range from
$5.6x10° to $5.44x10* and from 0.2 to 1.0 for the economic and environmental performance,
respectively. As can be seen from Fig. 6.6 the system is slightly sensitive to the social indicator. For
instance, a change in the social indicator (iso-lines) has a small impact in the performance for the
other two indicators. The above is evident since the social impact represents the number of
treatment/pretreatment units installed, however the location is not fixed and in fact such a location
depends on the rest of objectives. Conversely, for a defined/fixed social value, the other two
objectives have a significant impact over each other.
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Fig. 6.6 Pareto frontier for each set of solutions.

Although the solution obtained by optimizing environmental criteria is highly undesirable,
optimization under social criteria also achieves poor economic performance. The above can be
explained since the optimal social solution leads to install pre-treatment/treatment units at any site,
which reduces to zero the transportation loads (i.e. zero emissions). This is clearly illustrated in
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Table 6.5, which shows the technologies installed at each specific site as well as their capacities.
Consequently, the installation cost is significantly increased affecting the economic performance.

From Table 6.5 it can be also concluded that the best designs (installed capacity at every site) are
completely different for each objective and thus representing extreme solutions. So far, a reduced
set of solutions were obtained expediting the solution of the stochastic problem. However, from the
above Pareto surface analysis it is evident the necessity of a robust solution selection strategy that
enhances the decision-making procedure. Therefore, a solution selection based on ELECTRE-IV
methods was applied.

Table 6.5 - Equipment capacity for the optimum networks configurations obtained for the three selected
criteria.

Economic Optimization Environmental Optimization Social Optimization
Dryer Chipper G-ICE Dryer  Chipper G-ICE Dryer Chipper G-ICE
(t/h) (t/h) (kW) (t/h) (t/h) (KWe) (t/h) (t/h) (KWe)
Senso - - - - - - 0.1 0.1 18.0
gl)dnkrompe 0.126 0.1 168.98 - - - 0.141 0.1 75.0
Fakwasi 0.218 0.1 243.30 - - - 0.116 0.1 360.0
Kumfia 0.302 0.135 360.00 - - - 0.1 0.1 132.0
Trohye 0.1 0.1 90.88 - - - 0.1 0.1 75.0
Bompa - - - - - - 0.1 0.1 189.0
Nwunwom - - - - - - 0.1 0.1 38.08
Boniafo - - - - - - 0.1 0.1 148.16
Abamba 0.1 - - - - - 0.425 0.1 246.0
Extrasitel - - - - - - - - -
Extrasite2 - - - - - - - - -
Extrasite3 - - - - - - - - -
Extrasite4 - - - - - - - - -

Solution selection (ELECTRE-1V)

The decision maker interests are represented using a set of thresholds defined for each objective.
Table 6.6 shows the particular preference, indifference and infeasible thresholds used.

Table 6.6 Thresholds values for the three objectives considered in this case study.

Criteria
Thresholds
ENPV (3) ElmpactZi%.,, ESoC
Indifference (q) 408742.18 0 18.00
Preference (p) 525525.66 0.5 24.00
Veto (v) 613113.27 1.0 28.00

Here, the indifference threshold for the ENPV has been set as 30% lower than the best possible
performance while the preference threshold is set by reducing in 10% the upper bound. For the case
of the veto thresholds, a slightly higher value than its maximum is defined (5% higher) since no
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higher ENPV performance is expected. Similar assumptions were used for the ESoC since both are
objectives to be maximized. For the case of EImpact2922,,, (objective to be minimized) a different
thresholds definition was followed. Particularly, the indifference threshold is defined at the lower
bound (i.e. zero emissions) since no lower values can be reached. A preference threshold 0.5 was
defined since it is preferable to have values as low as possible. Finally, according with the previous
to analysis of the Pareto frontier, a veto threshold of 1.0 was defined (even if there are solutions
with higher environmental impact, these solutions are undesirable for the other defined criteria).
Using these thresholds, ELECTRE-IV method is applied in order to evaluate and rank a total of 45
feasible optimal solutions as a function of their desirability (see Fig. 6.7).

Ascending rank Descending rank
1 41,36,31,26,21,16,11,6
36 2
41 1,3,4,27,37
D
6 22-24,32,42
e
) 31 5
i
; 11 7-9,12-14,17,19,28,29,33,34
d 26 43
) 16,21 18,38,39,44
|
[ 2 25
I 4,37,42 10,30,35
t 7 15,40
32 20,45
12
17,22 27

43

3,5,8-10,13-15,18-20,23-25,
28-30,33-35,38-40,44,45

Fig. 6.7 Solution rank for both ascending and descending order.

Resulting from the solution ranking (Fig. 6.7), the “direct” definition of a dominant solution was not
possible since for both lists there is not a single solution at the first level of desirability. Even if at
this point the ELECTRE-IV method was unable to produce directly an overall optimal solution, the
hierarchically ordered reduced set of solutions obtained expedites the decision maker tasks.
Therefore, by making a visual comparison of these lists, solutions, 1 and 41 show a good
performance, representing interesting alternatives to be explored. Nevertheless, solution 36 was
selected as the overall dominant solution since it is the one with the highest rank in both lists. For
this solution, the ENPV value is $ 2.21x10°, and the environmental and social impact is 0.46847

138



and 24, respectively. The above solution entails a reduction of approximately 60%, 65% and 10%
form the best possible economic, environmental and social performance values (utopia point),
respectively. Fig. 6.8 shows the selected solution within the solution space. Additionally, Table 6.7
shows equipment units installed as well as their capacities for the SC network associated to solution
36.
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Fig. 6.8. Selected solution within the Pareto frontier space. Golden dots represent the communities in which
external dry material is required (only one in this case) while Orange dots identify the use of external chipped
material.

It is important to highlight that these decisions highly depend on the definition of the thresholds for
each criterion. Therefore, another solution might be selected using different thresholds.

From Fig. 6.8 it can be noticed that the final network needs a significantly low amount of material
distribution (raw and chipped) at the expense of treating that material at each particular site. The
above highly affects the final profit due to the installation costs that also penalize the energetic self-
sufficiency of the community. Table 6.7 shows the capacities of each installed technology required
to provide a robust structure for the complete uncertain solution space. This solution considers the
installation of energy generators at all the sites. Even if there are only two communities in which
pretreatment units (Dryer/chipper) are not installed, the rest of them have them at their lower
capacity (0.1 t/h). On the other hand, the capacity of G-ICE systems installed varies according to its
localization. For example, gasifiers with low capacity are installed near the smallest communities,
while the two gasifiers with the highest capacity are located close to the largest communities in
order to properly satisfy the energy demand and minimize at the same time the transportation tasks.
It is important to remember that the material flows highly depend on the conditions of each
scenario.
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The proposed strategy allows exploring a large number of uncertainty scenarios in a small amount
of time (and computational effort). The above allows not only to expedite the solution for problems
under uncertainty but also to solve problems that may be under multiple and/or independent sources
of uncertainty. This point represents an important improvement in the current PSE literature.
Additionally, it has been also proven that ELECTRE-IV method can be applied in a systematic
decision support strategy that considers a significantly large amount of objectives/criteria.

Table 6.7. Equipment capacity for the configuration of the robust network.
Dryer (t/h) Chipper (t/h)  G-ICE (kWe)

Senso 0.1 0.1 18
Old Konkrompe 0.1 0.1 18
Fakwasi 0.1 0.1 75
Kumfia 0.1 0.1 85.33
Trohye - - 18
Bompa 0.1 0.1 18
Nwunwom 0.1 0.1 18
Boniafo 0.1 0.1 18
Abamba - 0.1 18
Extrasitel - - -
Extrasite2 - - -
Extrasite3 - - -
Extrasite4 - - -

Computational effort comparison.

In order to evaluate the required computational effort, the same case study has been solved using a
decomposition-based formulation (particularly a SAA explained in Chapter 3). Such a description is
for a single objective problem under uncertainty. However here the same approach is used for a MO
problem and combined with ELECTRE-IV method to overcome the solution identification issue.

The computational effort required at each step of the solution strategy to solve the above-presented
case study using both the decomposition-based formulation and the scenario reduction formulation
presented are displayed in Table 6.8. It is important to notice that the complete stochastic Single
Objective model, that includes 100 scenarios and maximizes the expected profit as unique criterion
cannot be solved in less than 48h (172,800s) due to CPU limitations (i.e., after this CPU time,
CPLEX is unable to close the optimality gap below 5%); consequently, larger CPU times are
expected when dealing with multiple objectives. Thus, the decomposition-based strategy was solved
for the same number of scenarios and a comparison of the computational effort obtained with the
proposed scenario-reduction strategy using the same amount of scenarios is performed. Notice that
the analysis in computational time is centered in the application of the strategies and the algorithms
used. It is important to highlight that the computational efforts associated with different problem
formulations and/or optimization issues are out of the scope of this analysis.

From Table 6.8 notice that both approaches provide very different values for the objective
functions, which suggest that the considered decision criteria/objectives have a significant effect
over the results obtained with a reduced set of scenarios. Thus, further research lines should address
this issue. Table 6.8 also displays the time consumed for both solution strategies, which were
evaluated for five different conditions. Remarkably, each solution strategy presents its highest
computational effort at different points. Particularly, for the decomposition-based strategy the
stochastic optimization requires more effort, while for the scenario-reduction strategy the highest
computational effort was due to the deterministic optimization. It is important to comment that even
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for this case (100 scenarios) the difference in the computational effort is already significant (>900
seconds), such a difference becomes bigger when a larger amount of scenarios is considered (Fig.
6.9).

Table 6.8 Computational effort associated with the compared solution strategies.
Computational effort (CPU seconds/scenario)

Decomposition-based Scenario reduction

Solve optimization model deterministically 1000 1000
Scenario reduction model N/A 300

Fix binary variables 0 N/A

Solve stochastic optimization model 1700 540*
Solution selection strategy 0,6 0,6

Total 2700.06 1870.06
ENPV ($) 359,873 221,453
Elmpact229? 0.9 0.46847
ESoC 17 24

* This value is for 10 scenarios (the size of the reduced set)
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Fig. 6.9- Time-consuming comparison for decomposition-based and scenario reduction strategies.

From Fig. 6.9 it is clear that the solution for the deterministic model shows the highest CPU time in
the proposed strategy. Thus, one possible way to reduce this time consumption could be to
determine the size of the original set in a systematic way. Particularly the use of sophisticated
sampling techniques such as Sobol sampling or polynomial-based methods (cubature formula) is a
promising alternative. Notice that since these techniques seek for a sufficiently large set of
scenarios (i.e. original set) they only affect the first two steps of the proposed strategy. However,
the rest of the steps in the scenario reduction strategy will remain and will end up with a reduced set
(like in this case). In other words, these techniques may expedite the solution of the deterministic
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problem but their use does not affect the usefulness of the proposed scenario reduction strategy and
in fact, such a combination is possible due to the strategy robustness.

6.5.Conclusions

A strategy to efficient reduce the number of scenarios used to represent the complete uncertainty
space was presented. This strategy reduced the number of uncertainty parameter realizations
required to maintaining the best representation for both, input and output values. Numerical results
express that this strategy significantly contributes to the reduction of the computational effort
associated to the solution of problems under different uncertainty sources. For completeness of this
work, the proposed strategy combines a scenario reduction based formulation with a solution
selection algorithm to produce a flexible and robust formulation while reducing the computational
effort required for solving the problem. Such a strategy promotes the application of a stochastic
multi-objective approach to solve design-planning problems when the quality of the feed streams is
uncertain, facilitating decision-making tasks while avoiding subjectivity in the selection of the final
solution.

The capabilities of this approach have been successfully demonstrated using, as test-bed, the multi-
scenario and multi-objective design and planning problem of an energy distribution network using
biomass as raw material. It has been found that this method allows managing different material
flows with independent uncertain properties in a sustainable way, ensuring the energy availability
and reducing operational costs. Thus, the proposed strategy represents a step forward to overcome
problems such as long period forecasting of uncertainty conditions.

Additionally, it has been proven that this solution strategy is useful to solve sustainability problems
under uncertain conditions by explicitly considering multiple objectives. Such a solution strategy is
a promising alternative that fills in an important PSE gap. Besides, different lines have been
identified that need further research:

(i) Increase the robustness of the final solution in real life energy supply chains;

(i) Enhance the systematically identification of the elements and the size of the
reduced set of scenarios;

(iii)  1dentify the most important uncertainty sources as a function of their effect over the
process performance

(iv)  Evaluate the effect of additional criteria/objectives over the definition of the
reduced set of scenarios.

6.6.Nomenclature

Abbreviations

CR Cassava Rhizome

ELECTRE Elimination and Choice Expressing Reality for its abbreviation in French.
G-ICE Gasifier internal combustion engine

GWP Global Warming Potential

IS Industrial Symbiosis

LCA Life Cycle Assessment

LHV Lower heating value

LV Low voltage

MC Moisture content

MILP Mixed integer linear programming
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Multi-objective
Multi-objective optimization
Medium voltage

Process system engineering
Sample average approximation
Supply chain

Supply chain management
State Task Network

Indices

Midpoint environmental category

Scenarios

Supplier site

Origin sites

Destination sites

Endpoint damage category

Task

Technology (Treatment/Pre-treatment equipment’s)
Interval for Piecewise approximation (Economies of scale)
Market site

Producer

Material state

Time period

Sets

Set of scenarios

Suppliers e that provide raw materials
Suppliers e that provide production services
Suppliers e that provide transportation services
Materials s that are final products

Task i with variable input

Tasks i that can be performed in technology j
Technology j that is available at supplier e
Technology that can be installed at location f
Technology that can perform task i
Technologies to perform storage activities
Market locations

Not transport tasks

Materials s that are raw materials

Supplier locations

Task that produces material s

Task that consumes material s

Distribution tasks

Optimal set of solutions for scenario ¢

Space of uncertain parameters

Parameters

Maximum availability of raw material s in period t in location f and for scenario c
Demand of product s at market f in period t

Distance from location f to location f~

Tolerance value

Fixed cost per unit of technology j capacity at location f in period t
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Increment of capacity equal to the upper limit in interval k for technology j in facility f
Investment required for medium voltage

Big positive number

Number of scenarios to be removed

Normalizing factor of damage category g

Preference thresholds

New probability of occurrence for the scenario ¢’

Original probability of occurrence for the scenario ¢’

Price of product s at market f in period t

Investment required for an increment of capacity equal to the upper limit of interval k for
technology j in facility f

Probability of occurrence of scenario ¢

Indifference thresholds

Discount rate

Tortuosity factor

Veto thresholds

Moisture for material s and scenario ¢

Maximum maoisture for task i performed in equipment j

Mass fraction of task i for production of material s in equipment j

Mass fraction of task i for consumption of material s in equipment j

Minimum utilization rate of technology j capacity that is allowed at location j

g endpoint damage characterization factor for environmental intervention a

Capacity utilization rate of technology j by task i whose origin is location f and destination
location 1~

Unitary transportation costs from location f to location f” during period t

Unitary cost associated with task i performed in equipment j from location f and payable to
external supplier e during period t

Unitary cost associated with handling the inventory of material s in location f and payable to
external supplier e during period t

Unitary cost of raw material s offered by external supplier e in period t

a environmental category impact CF for task i performed using technology j receiving
materials from node f and delivering it at node f~

a environmental category impact CF for the transportation of a mass unit of material over a
length unit

Uncertain parameters vale

Variables

Represents the “displacement cost” from scenario ¢ to ¢’

Normalized endpoint damage g for location f in period t and scenario ¢
Normalized endpoint damage g along the whole SC for scenario ¢
Displacement distance (i.e. Manhattan distance) at iteration n
Expected net present value

Economic value of sales executed in period t during scenario ¢
Economic value of sales executed in period t and scenario ¢

Expected social performance

Investment on fixed assets in period t

Fixed cost in facility f for period t

Total capacity technology j during period t at location f

Capacity increment of technology j at location f during period t
Absolute difference among the objective function obtained using the original and the
reduced set of scenarios (c and ¢’, respectively).

Objective function obtained using one scenario (c € C)

Objective function obtained using one scenario (¢’ € C')
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Amount of money payable to supplier e in period t associated with production activities
Amount of money payable to supplier e in period t associated with consumption of raw
materials
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services

Relative error for the iterative procedure.
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Amount of stock material s at location f in period t and scenario ¢
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Variable to model the economies of scale (technology j in facility f at period t) as a
piecewise linear function
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Chapter 7

A decision support framework based on data-driven strategies.

In this chapter, a data-driven decision-making framework is applied to the problem addressed in the
previous chapter considering multiple uncertainty sources during the MO decision making process
within a bio-based energy generation supply chain.. The proposed framework exploits machine-
learning techniques as a way to approximate the optimal management decisions as a function of the
input uncertainties such as the energy demand or the environmental, social and economic scenario
that continuously influence the process behavior. A design of computer experiments technique is
also part of the integrated framework, generating representative information about the optimal
management values as a function of the uncertain parameters.

For applying the proposed framework, any conventional optimization method can be used to
determine the optimal decision values and an Ordinary Kriging meta-model is built to describe the
resulting data-driven relations (i.e. mapping the relationship between the optimal decision variables
and the uncertain parameters themselves). Then, the proposed framework uses this constructed
meta-model to predict the optimal decisions considering uncertain parameters as input data. The
above is challenging for two reasons: (i) The accuracy required by the parametric meta-models; (ii)
The significant computational effort usually needed to generate and validate the required samples as
well as running the optimization of the design of experiments in front of the effort required to
optimize the process when the uncertainty is unveiled.

7.1.Data-driven decision making
The limited availability of fossil fuels, together with the dependence on these non-renewable
resources and the hard environmental regulations has exposed the need for alternative energy
generation technologies. However, it was after the apparition of large government subsidies to eco-
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friendly processes when the development and application of green energy generation technologies
were actually promoted. One of the most significant initiatives is the use of agro-industrial wastes
(e.g., biomass) as a fuel for power generation systems. The proper and systematic management of a
bio-based energy production supply chain brings once again the two major challenges associated to
sustainability problems as already stressed along this Thesis. Particularly, the necessity of efficient
decision-making strategies to address multi-objective problems and highly complex uncertainty
assessment simultaneously is needed (Silvente et al., 2013; Guillén-Gosalbez and Grossmann,

2009).

Regarding MO problems, many approaches are available in the Process Systems Engineering (PSE)
literature addressing decision-making issues. From these studies, two main challenges/limitations
can be identified: (i) The reliance on the quality of the final solution most of the times are not
guaranteed and; (ii) the large computational effort required applying the decision making task
and/or running the optimization procedures. These limitations increase in complexity when the
problem is subject to single and/or multiple types/sources of uncertainty (Kopanos and
Pistikopoulos, 2014). Therefore, the enhancement of currently available decision-support systems
for the systematic identification of the optimal solution under uncertain conditions is still an open
issue and represents a significant step forward in uncertainty management (Greco et al., 2016).
Addressing this issue is the core of this chapter.

Until now, different methods and tools have been proposed to address the system uncertainties
while addressing the optimization of industrial problems (such as multi-hierarchical SC’s). In
general, uncertainty approaches are classified into reactive and proactive being the second ones the
most widely used. Studies for proactive approaches are vast in the PSE literature describing mainly
robust optimization (RO) (Ning and You, 2017) and scenario-based formulations (such as stochastic
optimization). In general, these approaches produce a conservative solution at the expense of
assuming a financial/performance risk against uncertain conditions. On the contrary, a risk-averse
attitude against uncertainties promotes the use of reactive approaches. Nowadays reactive
approaches are gaining interest since their right management guarantees a better overall
performance even under uncertain conditions. Within reactive approaches, the well-known model
predictive control (MPC) (Perea-Lépez et al., 2003), rolling horizon (Kopanos and Pistikopoulous,
2014; Silvente et al., 2015) and multiparametric programming (MP) (Pistikopoulous et al., 2011)
can be highlighted. Notice that even if most of these methods can handle multiple uncertainty
sources, MP surpass the capabilities of the others, due to its capacity to solve problems in which the
uncertainty affects the process conditions as well as the optimization parameters (including
decision-maker preferences and/or objectives hierarchy).

Particularly, MP aims to obtain a set of equations that reproduce the optimal solution as a function
of multiple uncertain/varying parameters (Charitopoulos and Papageorgiou, 2017). In addition, the
specific regions in which these equations remain feasible within the solution space are
identified/bounded. Besides the commented advantage of using MP, the significant reduction in
computational effort obtained by avoiding the repetitive optimization procedure when the
uncertainty is unveiled is currently its most interesting feature (Pistikopoulos et al., 2002). The first
record of MP is vague; however, its use has increased after being combined with MPC (Bemporad
et al. 2002; Kouramas et al., 2011). In such an integrated (MP-MPC) framework, a model is used to
control the process in a finite time horizon. However, two major conditions are required to be
successfully applied: first, a complex mathematical knowledge associated to the development of the
MP framework (Shokry and Espufia, 2015) and, second, the availability of a clear discrete-time
linear state space model of the process (Bemporad et al. 2002; Pistikopoulos et al., 2002; Kouramas
et al., 2011). These requirements hinder the application of MP analysis to problems in which a
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highly nonlinear, high dimensional, complex structure (sequential simulation models), and/or non-
transparent mathematical model must be considered.

To address these MP limitations, the use of sophisticated data-driven optimization techniques has
been proposed, including data-driven robust optimization (Ning and You, 2017) and meta-
multiparametric analysis (M-MP) (Shokry and Espufia, 2015a; 2015b). In the recent past, M-MP
has been successfully applied to several industrial cases including the optimal management of a
utility plant (Shokry and Espufia, 2015b) and energy production process (Shokry and Espuiia,
2017). Additionally, M-MP has been used for the control of batch processes (Shokry et al. 2016),
emission control in scheduling systems (Lupera et al., 2016) and the dynamic optimization of batch
processes (Shokry and Espufia, 2017). However, all these applications address continuous variables
and the use of this framework in Mixed-Integer optimization problems is dramatically
compromised. Even if recently in the works of Shokry et al., (2017) and Lupera et al., (2017) a
combination of M-MP with classification techniques have been successfully applied to simple
small-scale problems (i.e. managing continuous plus discrete variables), the applicability of M-MP
approaches to manage large-scale problems still requires a systematic definition of the most
significant decision variables.

The use of M-MP methodology to address SCM problems has been scarcely explored due to the
high dimensionality and complexity of these problems and the existence of different sources of
uncertainty that often interrupt the supply chain dynamics. The work presented in this chapter has a
special interest in the evaluation of data-driven strategy capabilities and its impact on the decision-
making process. The analysis aims to highlight the practical advantages of the M-MP as an
optimization approach and evaluate the time effectiveness and reliability of the obtained solution.

7.2.Problem Statement

Here, a centralized multi-objective multi-echelon bio-based energy production SC under raw
material uncertainties (the same one presented in Chapter 6) was used as case study. Fig. 7.1
provides an overview of the whole SC in terms of the potential equipment’s to be installed and the
distance between communities. The biomass availability is the primary source of variability in bio-
based energy generation systems and it addressed through a tailor-made approach (see section
7.4.1). Alike in Chapter 6, the main objectives considered are the net present value (NPV), the
environmental impact of the entire SC and the creation of job opportunities (social performance).
Through the simultaneous optimization of these objectives, the system sustainability is promoted.
Notice that even if in the previous section ELECTRE IV shows outstanding capabilities to aid the
decision-making process, for simplicity and in aim of highlighting the capabilities of the data-driven
framework to handle uncertainty problem, in this Chapter the resulting MO problem was assessed
using the weighted sum approach (WS). A set of weighting factors were defined for the
environmental and social performances to scalarize them into a single economic result.

The detailed description of the case study can be found in Chapter 6; however, for completeness of
this section the main elements that describe the problem are now commented.

e The set of states/materials s €S, which includes raw, intermediates and final products.

e The set of tasks i I, which include on-site treatments, pre-treatments, and transportation.

e The set of economic weights allowing normalize the environmental and social objectives
(WeightSoc. and WeghtEnv, respectively).

e The set of locations f eF, fixed in the initialization step.

e Atime horizonteT.
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e A given expected energy demand profile for each short-term period and market. Different
(uncertain) target values are considered.
Product and consumable prices.

e Environmental uncertainty, which influences expected raw material production, process, and
transportation systems performance.

e The social impact as a function of the size of the different installed processes, although again,
the future importance of this assessment on the decision-making procedure is uncertain.

Furthermore, the goal is to maximize the economic vector by modifying the following decisions
concerning the tactical management of the resulting SC:

¢ All the amounts of materials processed by task i using equipment j during period t, at site f.
e Storage levels at each site and time.
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In the next section, the main and basic mathematical constraints that model the case study are
presented. Further details about the process data, equipment description, and nominal capacities,
can be found in Chapter 6.

7.3.Basic mathematical formulation

The description of the main equations from the mathematical formulation is presented as follows.
Notice that, even if the solution strategy eases the process management under uncertainty, an
explicitly multi-scenario solution approach is not used. Therefore, unlike in Chapter 6, here, the
mathematical model used adopts a deterministic form (i.e. without a scenario index).

The material balance is represented in Eq. (7.1), in which the states not consumed (P;jz, ;) with a
defined efficiency (a;; and a@,;; for consumable or product states respectively) can be stored (Ssy.)
at any time.

Ssfe = Ssfe—1 + zz Z ®siiPijrife
fr i€Ts je(jingsr)

- 22 2 UsijPijrrie

fr i€Ts je(jingy)

Vs, f, t (7.1)

Similarly, Eq. (7.2) represents the energy balance of the system, in which the latent heat values
(HV;) of the materials (Pvg;;f.) are considered at all the input and output states (s € T and s € T,
respectively) of all the tasks across the entire system.

ZHVS'PvSijft = EHVs'vaijft Vi El_,f,t (7.2)

SET; s€eTs

A minimum energy and treated/pretreated material production level is guaranteed using g;5, which
represents the minimal proportion of the total available capacity used in technology j at site f and it
is defined by the decision maker. Similarly, Eqg. (7.3) limits the production to the respective
equipment capacities.

Bjs * Fife-1 < z z Pijrfie < Fjge Vi€ Jufit (7.3)

fr iEIj

In a similar way, Eq. (7.4) ensures that the raw material s purchased at site f and delivered to
location f' at time t satisfies the physical availability, while Eq. (7.5) limits the sales to a specified
demand. The above represents the assumption that the energy produced using biomass never
exceeds the forecasted demand.

Z Z Z Pijepie = Aspe Vs€ RM,f € Sup,t  (7.4)
f’ i€ Ts jE]_i

z Salessf re < Demgy, Vs € FP,f € Mkt,t (7.5)
flem
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Chapter 7.- A decision support framework based on data-driven strategies.

The economic performance (NPV) represents the net present value of the entire SC. Without loss
of generality, NPV is obtained considering the traditional incomes (Sales;) and costs function
annualized considering a defined interest rate (rate) as stated in Eq. (7.6). Note that process costs
considers the fixed/investment (FCost,) and variable ones including transportation, acquisition and
production costs (Purchg;).

Sales,. — (FCost; + Y., Purch
NPV = Z( te — ( t+ Qe etc)) vt (7.6)
t

(1 + rate)t

As well as in the base case study, a Life Cycle Impact Analysis (LCIA) is performed using the well-
known Impact 2002+ methodology. Thereby, a useful assessment of the process environmental
impact may be obtained by combining midpoint/damage approaches (Jolliet et al., 2003). Impact
2002+ needs a database to assess the system impact, which for this case is the Ecoinvent database
(Ecoinvent, 2008). Thus, the environmental impact quantification considers the traditional 14 mid-
point categories associated with biomass production (e.g., cassava waste), transportation, pre-
treatment (chipping and drying) and generation of electricity through biomass gasification. Eq. (7.7)
displays the resulting equation. For more details about the life cycle analysis and the
implementation of Impact 2002+ methodology readers are referred to Pérez-Fortes et al., (2012)
and Jolliet et al., (2003). Notice that it is possible to use alternative databases and methodologies;
however, the analysis of the effect of these elements over the strategy performance is out of the
scope of this Thesis.

ImpactZS®ay = .Y DY NormEyaglCape )
f g t

aeAg

Finally, Eq. (7.8) calculates the social impact and represents the number of treatment/pre-treatment
sites installed/used. Here, the binary variable V;f, represents the use or not of a particular unit.

S0C =Y > Y Vit (7.8)
i f t

In order to evaluate the effect of the proposed strategy in comparison with traditional decision-
support strategies, a fixed superstructure is assumed, thus, the number of units installed will be the
same for further comparisons. As commented, the non-economic criteria are scalarized into an
economic one to formulate the main objective. Such a scalarization is achieved by applying a
defined factor (WeightSoc and WeghtEnv, respectively) as described in Eq. (7.9).

OF = NPV + (WeightEnv * ImpactZ39%,, ) + (WeightSoc * SoC) (7.9)

Notice that the value of these factors directly affects the OF value, compromising the solution
reliability. For this reason, the creation of a meta-model facilitates future optimization for different
economic factors.
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7.3.1. Methodology: Meta-Multiparametric framework (M-MP)

The general idea of the M-MP is to replace complex functions with simpler approximations that
require less computational effort. These approximations are created by the training of a set of meta-
models (in this work, based on Ordinary Kriging as machine learning technique) using input-output
information (Shokry and Espufa, 2015a; 2015b; Lupera et al., 2016). In particular, the uncertain
parameters are considered input information while the corresponding optimal SC decision variables
and objectives are the outputs obtained through a multiparametric approach. The resulting meta-
models represent the multiparametric black box relations that describe the behavior of the decision
variables and objectives over the entire uncertainty space. Thus, for any future change in the
uncertain parameters, the meta-models can be used to perform simple interpolations and predict the
values of the new optimal decision variables and objectives. The M-MP method comprises three
main tasks (and five steps) as shown in Fig. 7.2. A detailed description of each step (including the
specific methods/algorithms used) is provided in the following subsections.

Start

¥

0.- Solve the |C|deterministic
optimization models

&

1.- Fix discrete values and other first stage
information:
Determine uncertain boundaries and the size
of the uncertain realizations to be considered
(C=Tr+Va)

eSize of the training subset (Tr)

eSize of the validation subset (Va)

G

2.- Design of experiments of
size C

For c=1:1:C  E—

3.- Solve optimization

model for scenario ¢ Multiparametric
Ik analysis

Individual solution X

Final set of solutions X ™

4.- Train the metamodel
using Tr.

!}

5.- Validate the metamodel
using Va.

Initialization

Y

Increase the size of
set C

End

Fig. 7.2. The detailed description of the solution strategy proposed.
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Chapter 7.- A decision support framework based on data-driven strategies.

Initialization

During initialization step, the original MILP problem is solved under deterministic conditions (i.e.,
for specific pre-defined values of the uncertain information). Using the results from the MILP
solution, the discrete variables are fixed. Thus, the original MILP is transformed into a Linear
Programming (LP) problem.

Design of computer experiments and data generation

To obtain accurate meta-model predictions, the training step requires as much information as
possible of the output behavior over the input domain (uncertainty space). Thus, to ensure the
reliability and feasibility of such a data, the main issue to be addressed is the identification of a
reasonable number of input combinations (i.e., sample points or sampling plan) well-distributed
through the input domain (uniformity) (Shokry and Espuia, 2014).

Within the different existing techniques for the design of computer experiments that generate well-
distributed sampling plans, in this work Hammersley sampling technique is used. The analysis of
the effect of the sampling technique over the final solution is out of the scope of this Thesis.
Therefore, interested readers are referred to Forrester and Keane, (2009) and Fang et al., (2006) for
more details.

The resulting sampling plan has the form of [XP].,.,, where ¢’ is the size of the training data set
(number of equiprobable generated scenarios), and k represents the number of uncertain parameters
affecting the system (i.e. input dimensionality). After designing the sampling plan, the optimization
problem has to be solved for each sample point (i.e. ¢ times) to obtain the associated
outputs[YP].,.,, where, u is the number of output variables including the main objective function
and the decision variables under control (z—1). In addition to the training set, a different validation
set must be generated in the same way, in order to assess the prediction accuracy of the meta-
models. Notice that the size uncertainty realizations must be augmented if the meta-model accuracy
is below a tolerance value.

Multiparametric analysis step

After fixing the superstructure during initialization steps, the mathematical formulation of the
problem follows the general form described next (Model P).

Model P max {Z NPV, — (WeightEnv, * ImpactZyotay ) + (WeightSoc, * SoC,)
X Ve
C
S.t.
h(x,y.) =0 Ve € C
glx,y.) <0 Vc € C

xeX,y. €Y

From such a formulation, x represents the first stage decision variables while y, are the second stage
ones, which are directly affected by the uncertain parameters c¢ belonging to the uncertain space ¢
while h(x.,y.) and g(x,y.) are vectors of equality and inequality constraints representing the
constraints described in the model (see Chapter 6). According to the proposed solution strategy (see
Fig. 7.2), Model P has to be solved iteratively for each sampling point within the design of
experiments. Therefore, first the LP model is solved and then, the values obtained are collected (e.g.
production, storage and flow levels across the supply chain). By replacing the values of the
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uncertain parameters used in the solution of the deterministic model by those associated with
another sampling point an iterative procedure is performed in order to obtain the optimal supply
chain plan for each of the remaining |C|-1 scenarios so that, at the end, |C| different solutions are
generated. It is important to highlight that, Model P is never solved for multiple scenarios
simultaneously, and the addition of index c is included only for informative purposes.

The results of all the scenarios represent a very inefficient approximation of the global problem.
However, the meta-model is built using the whole set of solutions for all the sub-problems. The
following subsection describes such a meta-model construction.

Meta-model training and validation

In many engineering applications, the well-known Kriging modeling (Krige, 1951; Cressi, 1993)
has exhibited two main outperforming features: (i) a high prediction accuracy using a relatively
small number of training data points; (ii) a transparent way to adjunt the required parameters to
obtain the best fit. Thus, Kriging models offer high flexibility for parameters tuning while
measuring the effect of each input variable over the output. The Kriging method is particularly
useful for the approximation of nonlinear models (Caballero and Grossmann, 2008; Shokry and
Espufia, 2014). Moreover, the Ordinary Kriging meta-model is generally used as the machine
learning technique (Fang et al., 2006; Forrester and Keane, 2009).

For this strategy, the result from steps one and two (Fig. 7.2) leads to a set of uncertain parameters
combinations [XP].,., and their corresponding optimal solutions [YP],.,,. Thus, a set of u Kriging
meta-models are constructed, each of them representing a data-driven multiparametric relation that
identifies the underlying mapping between the uncertain parameters and the optimal behavior of
each output. Notice that the Kriging meta-model assumes a stochastic process, where the error in
the predicted value is also a function of the input variables x.. The Kriging predictor y(x.) is
composed by two main parts: a constant term y, and a residual Z(x.) form that constant, leading to
the following equation (Forrester and Keane, 2009).

) = u+2Z(x) (7.10)

The residual Z(x.) is considered as a stochastic Gaussian process with expected value zero
E(Z(x.)) = 0, and a covariance between two points (in this case scenarios) x., x.+ calculated as:
cov(Z(x.), Z(x.+)) = 02R(x.,x.+), where ¢ is the process variance, and R(x,, x.+) is a spatial
correlation function which is usually selected exponential, see Eq. (7.11). The parameter Y,
represents a measure of the degree of correlation among the data along the 1™ input dimension, and
pi is a smoothness parameter that is usually fired at the value of 2.0 (Forrester and Keane, 2009).

k
R(x.,x.x) = exp (—ZYl |xc - xc*,l|pl) =12, ..,k (7.11)

=1

Maximizing the likelihood function (Eq. (7.12)) of the observed data [YP].,.,; yields the optimal
expressions of the parameters p, ¢* that depend on |. This task is accomplished through
differentiating the natural logarithm of the likelihood function concerning x and o2, and after some
mathematical derivations, their optimal formulas are obtained and displayed in Eqg. (7.13), and Eqg.
(7.14) (Jones et al., 1998). Being 1 in Egs. (7.12-7.13), the column vector of ones with length c.
Substituting by the optimal values of 4 and 62 in the likelihood function leads to obtaining a
concentrated log-likelihood function (Eq. (7.15)).
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Chapter 7.- A decision support framework based on data-driven strategies.

ik 1 e <—(Y —1)TRN(Y - 1#)) (7.12)
(2no?)/2|R[1/ 207
. 1TRYY (7.13)
K=1mr11
52 = Y —1)TRI(Y — 1) (7.14)
n

no o1 7.15
Max (y,p) [— Eln(az) - Eln(lRl)] (7.15)

The Kriging final predictor in Eg. (7.16) is obtained through deriving the augmented likelihood
function of the original training data set and a new interpolating point (X._,ew, Ye—new )- Where: r
is the ¢ x 1 vector of correlations between the predicted y,._,.,, and the sample design points (i.e.,
R(X¢_new, Xc)). Detailed information about the required mathematical development can be found in
(Caballero and Grossmann, 2008).

IKemnew) =+ R = 1)" (7.16)

The optimal parameters of the Kriging meta-model [Yi, pi, 2, 62 ] were obtained by the optimization
of the concentrated log-likelihood function. In this work, the Matlab “fmincon” algorithm is used to
solve this nonlinear optimization problem, while Cholesky factorization is used to find the inverse
of R..,to avoid the ill-conditioning. After fitting, the Kriging meta-models should be assessed to
verify that they show a range of accuracy for the intended application as recently used in (Shokry
and Espufia, 2014). Hence, the Kriging meta-model is used to estimate the outputs of the previously
generated validation set, and an accuracy measure can be then calculated via comparing the outputs
and their corresponding real values. The Normalized Root Mean Square Error (NRMSE %) is used
in the work as an accuracy measure, see Eq. (7.17). where Ycrew, J.—new are the real and the
estimated outputs, and c is the number of validation data points.

1 0.5
[E ’ gzl(yc—new - YC—new)z] (7.17)

NRMSE = 100 x
(Ymax - ymin)

As commented before, if the accuracy measure is not satisfactory enough (NRMSEc<err), the
training set size should be extended. Fig. 7.2 proposes an automatic sequential modeling framework
in which the size of the training set automatically changes to achieve a defined satisfaction level,
however, any other validation method can be used (any algorithm automation can be simply coded).

7.4.Case study

As already commented, the problem presented in Chapter 6 has been used as a Case Study to test
the performance of the proposed method. Thus, the problem description and details can be found in
such a chapter and Appendix B.4. The scope of this chapter is limited to provide an effective
management strategy to support the decision-making processes under multiple types of
uncertainties. In particular, in this section the effect of the changes in the electricity demand and
weighting criteria over the planning decisions is evaluated. Thus, Table 7.1 shows the considered
range for the uncertain parameters.
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Table 7.1. The range of the input data.

DATA TYPE Ranges
Lower Upper
Environmental Cost (€/unit) Input 10 100
Social Benefit (€/unit) Input 100 10,000
Electricity demand t; (kWh/month) Input 49,916 61,009
Electricity demand t; (kWh/month) Input 50,536 61,767
Electricity demand t; (kWh/month) Input 51,156 62,524
Profit (€/year) Output
Energy production level at each facility (kWh/month) Output

For comparison purposes, in this example, a significantly high variation in the energy demand for
the three time periods was assumed. Thus, a total of36 output variables were obtained after each
optimization (the detailed energy production and economic benefit of the nine plants at each period
((9*3) + (9*1))). Remarkably, even if the study considers the energy demand as one of the principal
uncertainty sources, addressing the challenges associated to the technical electricity supply is out of
the scope of this Thesis; previous studies address these issues, like the convenience of switching
on/off the transfer grid or the availability of the power supply during certain hours of the day
(Silvente and Papageorgiou, 2017).

7.4.1. SC superstructure

The fixed SC superstructure has been identified by optimizing the deterministic MILP problem
assuming the same energy demand (6,= Demand) for the three time periods (50,000 kWh/month) as
well as the nominal values of 50 €/Unit and 1000 €/Unit for the other two uncertain parameters
(6,=WeightEnv; and 8,=WeightSoC, respectively). The mathematical model has been written in
GAMS 23.8.2 and the problem was solved using CPLEX 11.0 on a PC Intel Core i7-2600M CPU
2.70 GHz and 16.00 GB of RAM. The model contains 27,015 equations, 830,554 continuous and
1,106 binary variables and it entails a CPU time of approximately 300 seconds. The result is
displayed in Fig. 7.3.
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Fig. 7.3. Optimal deterministic bio-based energy production superstructure.
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Chapter 7.- A decision support framework based on data-driven strategies.

Fig. 7.3 shows that the communities with the highest population and biomass availability (Kumfia
and Fakwasi) use all the pre-treatment/treatment available equipments. The above is logical
considering that it is cheaper to treat the raw material onsite rather than distribute it to communities
with a more convenient allocation (closer to the others). Similarly, for the case of Old Konkrompe
all the pre-treatment/treatment equipment were installed, to work as a central plant treating the
biomass for the closest communities. The above results match with the design found in the original
paper for the economic optimization (Pérez-Fortes et al., 2012) which justifies the use of such a
fixed structure for the following planning decisions.

Notice that the planning decisions are not displayed here, since these decisions will change
according to the realization of the uncertain parameters. At this point, all the binary variables are
fixed, thus, the model is transformed from MILP into an LP. Such as LP model reduces the
computational effort required to take the planning decisions, including raw material flows,
production levels and equipment/storage capacities, among others.

7.4.2. Meta-modeling training and evaluation

For this part of the method, 150 sample points were considered. Particularly, 50 points were used
for validation while the rest of them were divided into four sets with different sizes (being 25, 50,
75 and 100 sampling points) and used as training points as described during the design of
experiments. The above avoids the use of common points between the training and validation data.
Remarkably, the use of such an increasingly sampling size allows exploring its effect on the
accuracy of the performance prediction. Fig. 7.4 displays the sampling point’s distribution for the
four sets within the ranges proving the uniform representation of the complete uncertainty space.
Logically, the bigger the number of sampling points is, the better the representation will be.

The LP optimization problem is deterministically solved for each one of these points. In this case,
the mathematical model contains 27,015 equations and 830,554 continuous variables. The
optimization process entails a CPU time of approximately 33 seconds for each iteration.

The optimization procedure produces sets of 25, 50, 75 and 100 solutions, which individually,
represent a poor approximation for the global stochastic problem; however, they assist in the
evaluation of the obtained meta-model. The uneven behavior of the economic performance as a
function of uncertain parameters is demonstrated in Fig. 7.5. It is important to comment that such a
figure relates the ENPV, total demand and total WeightEnv. For simplicity, the other parameter
under evaluation WeightSoC is not represented in the figure; however, the resulting surface is
clearly irregular, confirming that the parametric function may be nonlinear although the basic
problem formulation is linear.
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Chapter 7.- A decision support framework based on data-driven strategies.

From Fig. 7.5 it is clear that there is a messy behavior across the meta-model space, which
compromises the reliable prediction of system performance. Thus, the accuracy of the resulting
Kriging meta-model (for ENPV and global energy production) for all the training sets is estimated
using the relationship between the values obtained by the surrogate model (estimation) and the
traditional optimization values (real values) as shown in Fig. 7.6.
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Fig. 7.6. Direct meta-model validation (Left) and Meta-model performance assessment as a function of the
training set size (Right). In the top, the ENPV is considered while the bottom plots represent the global
energy production.

Fig. 7.6 clearly demonstrates the high accuracy obtained. In particular, Fig. 7.6(left) shows a 45
degrees line suggesting an accurate prediction of the optimization results. Nevertheless, in order to
stress the strategy benefits, an analysis of the quality of the meta-model as a function of the size of
the training set was performed in Fig. 7.6(right). Such a figure proves that the accuracy of the
obtained solution increases as a function of the size of the training set. Notice that even if a better
accuracy is obtained with large training size sets, Fig. 7.6 proves and justifies the use of the
surrogate model even for small training sets (NRMSE<0.01).

In summary, we can conclude that, for this case, a design of experiments with 75 sampling points is
large enough to produce an accurate prediction of the objective function performance. Notice that
the methodology allows finding the minimum number of sampling points to obtain representative
results. The above has a significant impact on the computational effort, which represents a
significant step forward for the current state of the art in decision-making literature for PSE.

The meta-models analysis has been focused on the objective function (ENPV) and the global energy

production function, however, the detailed analysis of the rest of the decision variables is presented
as follows.
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7.4.3. Deeper meta-model analysis

In this section, a detailed analysis of the results for each meta-model is performed. In particular, the
effort (time) required to validate and train/fit the meta-model (See Fig. 7.7) is of significant interest.
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Fig. 7.7. The computational behavior of meta-model training and validation.

It can be noticed from Fig. 7.7 that, even if the time required for both, meta-model fitting and
validation highly depends on the number of training points, it can be negligible due to its small
value (1.5s and 0.03s for training and validation respectively). In addition, it is important to notice
that for the energy production meta-models (metamodels 1 to 27) a significantly fitting time is
required if compared with the Profit ones (above 27).. Logically, such a difference is not observed
in the validation step since for this part the meta-model has been already produced. The validation
of these meta-models guarantees the quality of the results obtained through the meta-model. Fig. 7.8
shows the relation of the results obtained by both, the traditional optimization (“Real values”)
against the M-MP optimization (“Estimated”).
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Fig. 7.8. The validation of the meta-models for each variable.

Currently, several studies of data-driven strategies suggest that the variables (meta-models) may be
jointed in clusters to improve the estimation of traditional optimization behaviors (Shokry et al.,
2017). Such a clustering strategy is particularly interesting when dealing with MI problems (due to
the presence of binary variables). Nevertheless, the benefits of such a strategy are limited if only
continuous variables are addressed (which is the case under study). Thus, Fig. 7.9 shows the
performance of the resulting meta-models using different clusters (from two to ten). Such a figure
proves that in this case the use of clustering strategies does not provide any significant
improvement.
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7.4.4. Computational effort analysis

This section describes the strategy performance in terms of the computational effort stressing the
advantages of using the meta-model strategy. Table 7.2 compares the computational effort required
to solve the problem using both, the traditional optimization formulation and the one based on
Kriging meta-modeling. In order to provide a better understanding of the presented values, it is
important to mention that the mathematical model contains 24,515 equations and 820,350
continuous variables. Also, notice that, since the stochastic MILP model that includes 100 scenarios
and maximizes the ENPV as a unique criterion cannot be solved in less than 48h (172,800 s), the
information of solving the LP problem deterministically are used instead (the difference may be
significantly higher).

Table 7.2 shows the time consumed for each solution approach in five different categories. Each
solution strategy presents its highest computational effort at a defined step. For the traditional
mathematical programming, the optimization step requires the largest effort, while for the Kriging
meta-modeling this is associated with the training/building one. For this case (i.e. 150 sampling
points), the difference in the computational effort is relatively low. However, a bigger difference
can be expected for a complex model. From Table 7.2 it is clear that training part requires the
highest CPU effort (time) in the proposed strategy.
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Table 7.2. Computational effort required.

Computational effort (CPU seconds/scenario)

Math. Programming Kriging meta-model
Model building Variable Variable
Solve optimization model (MILP)* 3,300 N/A
Training* N/A 3,300
Validation* N/A 70
Re-Optimization (LP)* 33** 0.00466**
Total 4,322 4,370
*(CPU s) ** This value is for a single sample point

Additionally, the last category (re-optimization) emphasizes the most important quality of the meta-
multiparametric strategy presented here. Although the solution of the 150 problems used for
training and validation requires a relatively high computational effort, after the definition of the
surrogate model the optimization time drops to irrelevant values. For this example, the time to
obtain the solution is more than three orders of magnitude lower (1/7,085) and, certainly, larger
reductions are expected for more complex optimization problems.

7.4.5. Optimal planning strategies

Until this point, the meta-models high accuracy and low computational effort have been discussed.
Moreover, this section describes the real effect of the meta-models results in the supply chain
operation and production management. For this purpose, two particular sampling points were
considered as case studies (Table 7.3).

Table 7.3. Input data for the two considered case studies.

0, (kWh/month)

Case Study 0, (€/unit) 0 (€/unit) a o 3
1 27.4 7215.63 57448.71 59610.78 53708.64
2 67.6 332.03 52838.21 54849.14 60701.91

Table 7.4 shows the associated production levels of each plant/location and period obtained from
the traditional optimization. Plants from one to nine represent Senso, Old Konkrompe, Fakwasi,
Kumfia, Trohye, Bompa, Nwunwom, Boniafo, and Abamba respectively. Table 7.4 also shows the
deviation of the results obtained through meta-model in comparison with the traditional
optimization results.

Notice that there is a significantly small difference in the quality of the solution, being the largest
differences below 0.0014% (highlighted in Table 7.4). Remarkably, even if these differences are
sufficiently small, all of them appear at the third period. The above shows the individual effect of
each uncertainty parameter/source to the process performance and stress the need for further
sensitivity analysis to identify the most significant ones.

It is also worth noting that planning decisions (such as production levels) are different for each case
study and that disregarding the different total productions, , the demand is ultimately satisfied
through different paths. For instance, plants two and three (Old Konkrompe and Fakwasi,
respectively) have the largest energy productions at time one and two for the first case while for the
second case the period with the largest production is achieved at time three. Similar behaviors were
found for different sampling points. These results show that M-MP strategy is significantly sensitive
and thus, the effects of even the smallest changes in the uncertainty values can be addressed.
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In addition to the sensitiveness of the strategy, it is important to illustrate that the M-MP allows also
to completely emulating the system behavior across the entire uncertainty space. For example Fig.
7.7 shows the energy production at locations 2, 4 and 7 (Old Konkrompe, Kumfia, and Nwunwom
respectively) for the whole uncertainty solution space. Notice that the obtained meta-models were
generated using five different uncertainty sources (inputs in Table 7.1), however, in order to
illustrate the process behavior, only two out of these five uncertainty values were plotted against the
output variable (energy production).

Table 7.4. Output data for the two considered case studies.

Mathematical optimization Meta-model deviation
52333 Plant Production (kWh/month) oF _Production(kWh/month) (x10%) — OF
tl t2 t3 Total t1 t2 t3  Total (x107)
1 2,011 2,087 1,880 5,978 -1.3 -1.1 +0.2 -21
2 4,201 4,358 3,927 12,486 -2.0 -1.8 +0.6 -3.2
3 15,796 16,391 14,768 46,955 +10.8 -7.5 +2.1 +54
4 20,056 20,811 18,751 59,618 +143 -95 +2.2 +6.9
1 5 2,780 2,885 2,599 8,264 170,768 -0.9 -1.2 +0.8 -1.3 +8.2
6 3,313 3,437 3,097 9,847 +2.1 -1.6 +0.5 +1.1
7 946 982 885 2,813 +0.2 -0.8 +0.6 +0.1
8 4,023 4,174 3,761 11,958 -1.3 -1.4 +0.9 -17
9 4,319 4,481 4,037 12,837 -1.5 -2.1 +0.2 -34
1 1,850 1,920 2,125 5,896 +1.2 -1.1 +3.1 +3.2
2 3,863 4,010 4,438 12,312 +1.6 2.1 +5,5 +5.0
3 14,529 15,082 16,691 46,302 -4.4 74 +125 +0.6
4 18,447 19,149 21,192 58,788 -5.7 +10.0 +15.2 +195
2 5 2,557 2,654 2,938 8,150 14.908 +0.5 -1.8 +4.1 +2.7 -5.2
6 3047 3,163 3,500 9,711 ’ -0.8 15 +42 +19
7 870 903 1,000 2,774 -1.0 -0.9 00 -19
8 3,700 3,841 4,251 11,792 +1.1 -2.4 +4.6 +3.2
9 3,972 4,123 4,563 12,659 +0.7 -2.4 +5.0 +3.3

From Fig. 7.7 it can be seen that the three displayed locations show a different energy production
performance (first row). The above suggests that using this strategy a particular process control can
be obtained. Particularly:

e For locations, Kumfia and Nwunwom, the uncertain parameters 6, and 6; have a
significant effect over the energy production while for Old Konkrompe the effect of
WeightSoc can be neglected.

o Similarly, for the second row, it is clear that for Old Konkrompe and Kumfia both uncertain
parameters (6;,¢1) and 6,) affect the energy production performance in completely
different ways.

e Finally, the third row represents the energy demand at two different time periods, showing
that there is not a significant effect in that combination of parameters at any energy
production site.

Remarkably, disregarding the application, the detailed process behavior (i.e. the effect of each
variation over the system performance) can be extracted. In this particular case, it is important to
highlight that the system behaviors shown in Fig. 7.7 represent only few outputs for few locations,
although similar conclusions may be obtained from different output variables. Traditional stochastic
optimization produces a single robust solution (i.e. one main plan works for any uncertainty
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realization) while for the M-MP the plan changes as a function of the uncertainty realization. Even
if the M-MP optimization results may be challenging due to the highly dynamic process obtained
(i.e. challenging logistic problem), the detailed system behavior is useful for the accurate
assessment of the uncertainty parameters even if they are evolving across the time.

Old Konkrompe <10* Kumfia Nwunwom

1.93475595

4052.144 1.9347559 —_—— 313‘128%
1.93475585 S 913.1591
4052.143 1.9347558 T 913.159

1.93475575 913.1589
8000,

100 80005500 100
400%000 500
6 5 .
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01,1
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01,1
Fig. 7.7. Energy production behavior for Old Konkrompe, Kumfia and Nwunwom and uncertainty parameters
variations in in 6,, 6, and 65.

Additionally, using such detailed information, the data-driven decision-making strategies may
significantly enhance, addressing the following issues:

(1) Systematic definition of the uncertainty parameters hierarchies over the objective
function.

(i) Optimal solution identification for multi-criteria problems (i.e. selecting an
alternative solution that performs better in the overall perspective even if it is a sub-
optimal for the traditional stochastic formulation).

Finally, it is important to comment that this work focuses on the M-MP strategy capabilities
evaluation to assess SC planning. The production levels were the only outputs under analysis
proving the usefulness of M-MP. So, in order to detail the resulting SC plan, additional meta-
models have to be built, one for each of the outputs to be detailed (such as material flows).

7.5.Concluding remarks

Here, a meta-multiparametric framework for the management of a SC production and distribution
problem under different types of uncertain parameters was proposed. This framework combines the
traditional optimization techniques and surrogate modeling, based on a Kriging meta-model, to
estimate the expected state of the system (predictor).

Numerical results show that the resulting surrogate model predicts the system performance with
high accuracy and time efficiency proving that the M-MP technique successfully addresses complex
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real-world problems. More importantly, M-MP can manage multiple uncertain parameters
representing a step forward for the management of sustainability issues becoming a
feasible/alternative to multiparametric programming since a single meta-model can cover the entire
uncertainty space. Even if compared with traditional optimization approaches (such as two-stage
stochastic programming), M-MP may be considered as a more challenging strategy since the
detailed information on the system behavior provides additional advantages to be potentially
combined with sophisticated decision-making strategies. For example, a proper evaluation of the
whole set of solutions produced with M-MP may be evaluated through a multi-criteria decision-
making strategies (ELECTRE-IV) and produce a systematic solution identification considering the
decision-maker preferences.

The results exhibit the very high accuracy of the parametric meta-models and justify its use for
predicting the optimal decision variables under process uncertainties. More importantly, a dramatic
reduction of the computational effort required to obtain these optimal values in response to the
change of the uncertain parameters is achieved, compared to the traditional optimization techniques.
Thus, the use of the proposed data-driven decision tool promotes a time-effective optimal decision-
making.

Disregarding the simplicity of the case study used, the results show that the methodology is robust
and flexible enough to handle problems with large number of optimization variables as well as
model complexity, including highly non-linear models formulations. It is important to emphasize
that a step forward is needed to consider mixed integer problems (for example, design supply chain
problems).

To wrap-up the two main advantages of applying the proposed data-driven decision strategy are:
I. It enables a detailed qualitative analysis of the effect of different uncertainty sources over
the process performance (further than the qualitative value), settling the basis to combine

this approach with other robust approaches (for example, scenario reduction strategies).

Il. It produces a highly accurate prediction of the process performance with relatively low
information.

7.6.Nomenclature

Abbreviations

ELECTRE ELimination and Choice Expressing REality
LCIA Life Cycle Impact Analysis

LP Linear programming

M-MP Meta multiparametric programming
MILP Mixed integer linear programming

MO Multi-objective

MP Multiparametric programming

MPC Model predictive control

MP-MPC Multiparametric model predictive control
NRMSE Normalized Root Mean Square Error
PSE Process Systems Engineering

RO Robust optimization
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SC Supply Chain
WS Weighted Sum
Indices
C Scenario/sampling point
e Supplier site
f Potential sites
i Treatment/distribution tasks
j Equipment’s
k Input dimensionality
| Input dimension counter
m Market site
p Production site
S Material states
t Time period
Set/Subset
FpP Biomass states associated with final products
Mkt Market sites
n Sampling plan size
RM Biomass states for raw material
RSS Raw set of solutions
Sup Supplier sites
Tr, Training samples plan subset
u Number of output variables
Va, Validation samples plan subset
(0] Space of uncertain parameters
Parameters
Agrec Maximum availability of raw material s in period t in location f and for
scenario ¢
Demgy, Demand for product s at market f in period t
err Tolerance value for the NRMSE
HV, lower heating value for material s at scenario c
NormF, Normalizing factor of damage category g
pi Smoothness parameter
WeightEnv, Economic equivalence for environmental objective
WeightSoc, Economic equivalence for social objective
X Input variables for scenario ¢
Vmax Boundary for the maximum output value
Vimin Boundary for the minimum output value
Z(x.) Residual term
Asij Mass fraction of material s produced by task i in equipment j
Asij Mass fraction of material s consumed by task i in equipment j
Bis Minimum utilization rate of technology j capacity that is allowed at location f
Y, Degree of correlation along the 1™ input
u Constant term for meta-modeling
1 Constant value that leads to the “optimal” values
Cag g endpoint damage characterization factor for environmental intervention a
Variables
Figt Total capacity of technology j during period t at location f
FCost, Fixed cost in facility f for period t and scenario ¢

168



ICaftc

2002
ImpaCtoverallC

NPV
OF

Pijfirec

Profit,.
Purch,;.
vaijftc

r
sztc
Salesgg st
SoC,
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Total environmental impact for the whole SC

Net present value

Global objective function

Production level of task i in equipment j in location /" and delivered (if
required) in location f at time t and scenario ¢

Profit achieved in period for each facility f at time period t and scenario ¢
Economic value of sales executed in period t during scenario ¢
Input/output of material s for i with variable input/output, by using technology
j during period t in location f and scenario ¢

Vector of correlation

Storage level of material s at location f in time t and scenario ¢

Amount of product s sold from location f in market /" in period t and scenario ¢
Social performance at scenario ¢

First stage decision variables

Input variables for scenario ¢

Point to be predicted at a particular time

Optimal set of solutions for scenario ¢

Second stage decision variables

Kriging prediction for specific input values

Process variance

Process variance that leads to the optimal values

Sampling plan

Outputs of the sampling plan

Binary Variables

Technology installed at location f in period t
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Chapter 8

Using decision-support tools to integrate risk management optimization

As discussed previously, process optimization under uncertainty is one of the most studied topics in
the recent past by the academic process systems engineering (PSE) community. Particularly, for the
proper uncertainty management, a major challenge to address is the reduction of the side-risks
(either, financial or operational) by controlling more effectively the influence of the unpredictable
conditions over the objective function. Traditional risk management methods focus on optimizing a
single risk metric along with the expected performance. The above, combined with the increasing
interest in promoting the process sustainability, leads to a necessity of a holistic approach that
guarantees an economically and environmentally feasible process.

As a first attempt to satisfy such a necessity, an alternative MO approach capable of efficiently
handle economic objective functions together with different risk metrics is proposed in this chapter.
Such an approach consists of two main steps. First, it is necessary to formulate a multi-objective
stochastic model considering a set of risk metrics besides economic performance. Such a MO model
is solved efficiently using a customized decomposition strategy inspired on the Sample Average
Approximation (SAA). The second part consists of an assessment of a set of feasible solutions
through a solution identification procedure based on a Pareto filters approach, which select the
solutions showing better performance in the uncertain parameters space. Even if a MO model under
uncertainty has been used before in this Thesis, a new batch problem was introduced in this Chapter
not only to illustrate the capabilities and benefits of this approach, but also to emphasize the
flexibility of the proposed framework.

8.1.Risk metrics and their use to assess uncertainty problems.

Besides its clear effect on business behaviour, market globalization compromises the prediction of
industrial and process trends. When analysing the decision-making processes around a typical
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supply chain (SC), uncertainties such as market demands and raw materials availability should be
considered to capture their direct and local effects over the individual echelons as well as their
indirect effects that propagate to other echelons through the existing links between them. However,
these effects and especially the indirect ones have often been overlooked by the traditional
mathematical models used in the industry, which are commonly built over the assumption that all
the information is known with accuracy beforehand (Zamarripa et al., 2014).

Stochastic programming is the most commonly used method to solve optimization problems under
uncertain conditions. Particularly, such a solution strategy addresses this challenge by defining
recourse actions that allow reacting against every possible uncertainty realization (Birge and
Louveaux, 2011). In this context, a given design might obtain different results depending on the
scenario in which it is evaluated, and it is very likely that the optimal design calculated for nominal
conditions might render suboptimal (or even unfeasible) under other circumstances. Commonly,
stochastic programs are solved over a number of stages, being the two-stage stochastic models the
most studied ones in Supply Chain Management (SCM) problems: stage-1 decisions involve the
selection of the design variables for the first time period, whereas stage-2 decisions are modelled
using variables that can be adjusted according to the realization of the scenarios (Grossmann and
Guillén-Gosalbez, 2010; Guillén-Gosalbez and Grossmann, 2009,2010; Ben-Tal et al., 2009). This
allows stochastic programming models to react after a scenario materializes (corrective action). As
acknowledged by different authors, the main weakness of the traditional stochastic approaches lies
in the lack of control on how the information regarding uncertain parameters affects optimal
decisions. lerapetritou et al., (1996) emphasized the need of an information index in order to
evaluate the quality of the solution associated to the uncertain input data (named Value of Perfect
Information (VPI)). Both, Bernardo et al., (2000, 2001) and Ahmed and Sahinidis (1998) proposed
a robustness index as a way to evaluate the confidence of the information used, and ultimately
provide a robust and confident solution. The robustness index has been applied and evaluated
recently in terms of computational effort and solution quality (Li and Floudas, 2014b), yet, the
quality of the predicted information used is out of the scope of the present work.

Standard stochastic approaches tend to optimize the expected performance of the objective function
distribution as a unique criterion. This strategy provides no control over the variability of the
objective function in the uncertain parameters space. One way to overcome such limitation consists
of incorporating risk metrics into the model. For instance, Cheng et al. (2003) solved a design and
planning uncertainty problem considering multiple objectives, in which one of these objectives was
the Downside risk (DR) metric. Additionally, the choice of the appropriate risk metric for the
problem at hand is another issue to be considered. Several types of risk metrics have been evaluated
in the literature. Barbaro and Bagajewicz (2004) included financial risk management in the
framework of two-stage stochastic programming for a planning problem using Financial risk
(henceforth known as risk) and DR as risk metrics. On the other hand, Bonfill et al. (2004) and You
et al. (2009) have used Risk, DR and Worst Case (WC) metrics as a way to handle risk management
in scheduling and planning problems under uncertainty. More recently, Sabio et al. (2014)
minimized separately the WC and DR metrics as a way to reduce the probability of not meeting
some environmental targets in the multi-objective optimization (MOO) of industrial networks.

According to Aseeri and Bagajewicz (2004), no single risk metric can be regarded as “complete”
risk metric, since they all present at least one of the following disadvantages:

(i) Lack of associated probability value, limited solution space exploration (i.e., they focus on
down, middle or upper side);

(if) Lack of capability of assessing simultaneously the probability and potential level of
winnings and/or losses. Indeed, in practice most metrics tend to concentrate on penalizing
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the worst scenarios rather than rewarding the best ones, thereby leading to “risk-averse”
solutions.

To overcome these limitations, Aseeri and Bagajewicz (2004) proposed a Risk area Ratio (RAR)
metric to compare the potential winnings against losses for the entire risk curve using a single
value. This metric is useful because it considers the full risk spectrum, yet it does not achieve a
simultaneous/complete financial risk analysis. In 2004, Barbaro and Bagajewicz (2004) found a
close relationship between DR and risk used to compute the latter without the need to define binary
variables, thereby simplifying the associated calculations. Here it is important to notice that the
minimum DR at a defined target profit (©2) does not guarantee that risk is minimum at every single
value of profit (< Q). Therefore, this relation is an indirect way of measuring financial risk, but not
a simultaneous analysis of economic metrics.

In summary, there is no single risk metric capable of providing a full control of the objective
function in the uncertain parameters space. Hence, ideally, several complementary risk metrics
should be optimized along with the expected performance. To the best of our knowledge, however,
the simultaneous optimization of several risk metrics has never been addressed in the literature,
which constitutes an important gap already acknowledged by several authors (Cheng et al., 2003;
Barbaro and Bagajewicz, 2004; Aseeri and Bagajewicz, 2004; Cardoso et al., 2016). One possible
reason why this approach has never been applied is that the incorporation of several risk metrics in
optimization under uncertainty leads to MOO problems containing a large number of objectives that
are difficult to solve for different reasons. First, because generating Pareto solutions of stochastic
models with a large number of objectives is computationally challenging. Second, because these
stochastic multi-objective models tend to contain an infinite number of Pareto solutions, so even if a
representative subset of them is generated, there is still the issue of interpreting and selecting the
best solution.

This chapter proposes a novel approach for the optimization under uncertainty where the risk
management considers several risk metrics simultaneously during the optimization step. First, a set
of solutions behaving in different ways in the uncertain parameters space are generated using an
algorithm based on the SAA algorithm. Then, the “Pareto filter approach”, developed by Mattson et
al., (2003, 2004) and later used by Pozo et al. (2012) and Antipova et al. (2015) is applied to rank
these solutions. In order to illustrate the capabilities of this approach, the strategic planning problem
over a supply chain under uncertainty is used as a benchmark. The problem is solved considering
different financial risk metrics and identifying strategic decisions that are particularly appealing for
decision-makers.

8.2.Problem statement

This chapter addresses the design of a SC of multi-product batch processes as schematized in Fig.
8.1. The problem formulation is essentially the same as the one presented in (Corsano et al., 2011,
2014), however, in this chapter several financial risk elements were evaluated. One of the main
advantages of this framework is that using simple modifications an independent problem
formulation can be adapted to address additional information to aid the decision-making process.

In order to illustrate the capabilities and limitations of the proposed methodological framework are
demonstrated using the MILP model presented by Corsano et al. (2014).Particularly, the SC
includes a set of raw material suppliers sp € N, from which supplier sp can provide one or more
types of raw materials r € N,., which are delivered to the batch plants [ € N;. Each multiproduct
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batch plant has a set of batch stages j € N;; , for producing a set of products i € N;. In phase and out
of phase unit duplication are considered for each multiproduct batch plant. The use and allocation of
intermediate storage tanks is assumed as feasible at each of the |Nj, | — 1 positions in plant [,
between two batch stages (j and j+1). Final products are transported from batch plants to different
warehouses m € N,,,, according to their capacity limitation. Products are then delivered from the
warehouses to different customer zones g € Ny, in order to satisfy a given product demand D
Further details on this SC design can be found in (Corsano et al., 2011, 2014).

Raw Material Batch Plants Warehouses Customer zones
Sites (sp) 0] (m) (9)

i =3 ' 1 = }_H =it |

\ Duplication out Duplication in Tank
N of phase phase allocation P

Fig. 8.1. Process scheme of the supply chain under analysis.

The goal of the analysis is to identify the best planning and design decisions (e.g. the number of
plants to be installed, equipment units selected, etc.) in terms of maximum expected economic
performance at the minimum risk.

To this end, the following data is required: discrete size of each batch unit to be eventually installed;
set of allowable tank sizes and data concerning raw material procurements, distribution cost from-to
different sites and overall batch plant parameters.

In this framework, product demands are modeled as uncertain parameters following known
probability distribution patterns whose characteristic parameters are also given.

The detailed mathematical formulation that models the problem is presented as follows:
8.2.1. Mathematical formulation

The main equations that model the SC and batch plant design are following described.
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Network mass balances

The produced amount of product i is quantified by Q, while zz;; is the binary variable that decides
whether a product i is produced in plant I (Eqg. (8.1)).

LO UP .
2z;1Q;7 < Qs < 22;;0Q;) vi,l,s (8.1)

In the same way, the use of each raw material type is conditioned by its availability in each supplier
site sp, as shown in Eq. (8.2). In addition, the distribution flow is restricted by Eq. (8.3).

ZQsp,r,i,l,s < QsUpPr Vsp,r (8.2)

UP ;
Qsp,r,i,l,s < ZZi,lep,r VSp,T, l:l (8-3)

The resources required for production processes considering the conversion factor (f1,;;) is
calculated using Eq. (8.4).

Ns
Z Qsp,r,i,l,s = flr,i,lQi,l,s vr,i,l,s (8-4’)

sp=1

In order to avoid infeasibilities, binary variable ex; model the installation of a particular plant, thus,
forcing the production to be zero if the plant does not exist.

ZZj < ex; Vl,l (85)

The distribution links between production plants | and warehouses m are controlled by Eq.(8.6),
while the use of potential warehouses is guaranteed by defining the binary variable, yy,, s, in
Eq.(8.7).

Nm
z Qi,l,m,s = Qi,l,s Vil s (8.6)
m=1
z Qi,l,m,s < anr}ax y}’m,s Vm, S (8-7)
il

Assuming a steady-state operation (i.e., lack of stock accumulation), the total amount of stored
product has to be delivered to any customer zones g, as expressed in Eq. (8.8).

N1 Ng
Z Qi,l,m,s = Z Qi,l,g,s Vi' m,s (8-8)
=1 g=1

The amount of products to be stored is limited, as shown in Eg. (8.9). On the other hand, product
demand is completely satisfied using Eq. (8.10).

z Qi,m,g,s < erﬁax YYm,s vm,s (8.9)
g
Nm
Dyg4 = z Z Qiim,s Vi, s (8.10)
m=1 1
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Batch units design equations

Without loss of generality, the batch unit size (VZ; ; ), is computed through Eg. (8.11).

Slzei,j,lBi,j,l,s

VZis >
J,4S N})],l

Vi, j, s (8.11)
Particularly, Size; ;, is the size factor (the size required at stage j to produce 1kg of final product i),
B; s is the batch size and NP;; is the number of units working in-phase at this stage. The total
amount of product i produced in plant | is defined by Eq. (8.12) assuming that Nb; ;, ; is the number
of batches of product i in stage j of plant I.

Qirs =NbijisBijis  Vijls (8.12)
By combining Eq. (8.11) and Eg. (8.12), the following constraint is obtained.

Size; j10Qi1s

Vi, jl,s (8.13)
VZj, NP,

Nb;j,s =
To formulate the problem as a MILP, such a non-linear constraint is rewritten using Eq. (8.14) in
which xz;,, is the binary variable that represents the existence of parallel units in phase.
Particularly, Eq. (8.15) states that at least one unit per stage must exist if plant I is allocated.

nepf
NPy, = Z d xzjq vj,1 (8.14)
d=1
npPiP
Z xzj,l,d = ex; VJ,l (815)
d=1

The unit size calculation was also reformulated considering a set of available discrete sizes p (Eq.
(8.16)) while Eg. (8.17) defines both, the existence of a plant and its size.

Pj1
VZjs = Z VZjipsVELp vj,ls (8.16)
p=1
Z VZjips = ex Vj,ls (8.17)
pESle

Thus, using Egs. (8.14-8.17) the Eq. (8.13) can be reformulated in terms of NP;, definition, leading
to Eq. (8.18).

Size; j1Qi1s

Nb;j,s =
VE,d

VjLpXZj1d Vi, j,Ls (8.18)

However, the product between Q;;s, vj., and xz;;4 in Eq. (8.18) is another non-linear term.
Therefore, a new nonnegative continuous variable, ee; ; ; ,, 4 s, has to be defined.

Qiis if  vjpandxz;q = 1} .
ee; ; = [t [l s Vl, ,l, ,d,S 8.19
LiLp.ds { 0 otherwise S 5P (8.19)
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And finally the following constraints (Egs. (8.20-8.23)) are used to substitute Eq. (8.18):

Slzel]l o
Nbijus = VE g 8Cuitpas Vi j,l,s (8.20)
Fiip
p.d
ee; : < QFv; Vi, j,l,p,s (8.21)
i,jLpds = ¥i,l Yjlp I]l ;p; .
d
Z eeijipas < Qi XZj1p Vij,ld,s (8.22)
14
Qi,l,S = Z eei,j,l,p,d,s Viljl ll S (8.23)
p,d

Intermediate storage equations

For N; batch stages, there exist at most N;—; possible positions for storage tanks. Therefore, Egs.
(8.24-8.25) define an upper bound for the storage vessels.

VT s = 28T; 1By 155U Vi l,s,j = 1,2, .., Ny (8.24)
VTj,i,S > ZSTi‘j‘lBi,j+1'l'ssuj‘l Vl, l, S,j = 1, 2, ey ]vj,l—l (825)

Here, VT;; ; represents the tank size, ST; ;; the size factor for each storage tank and su;, is a binary
variable that determines if a tank is allocated after batch stage j or not. Using Eq. (8.11) in Eqg.
(8.13) and Eq. (8.25), the storage constraints are rewritten as follows.

Nby s = Z%Qi'“suj,l Vi l,s,j = 1,2, .., Ny_y (8.26)
jlLs
ST: .. 0;
Nbiji1,1s 2 Zlyf;-?hl'ssuj.l Vi,l,s,j=1,2,.., Ny (8.27)
J,..LS

Again, in order to relax the nonlinearities, a set of available discrete sizes for the tank allocated after
stage j, STFj ={VTF; 1, VTFj 3, ..., VTFj;,,}, is selected. Let vt;,,, be the binary variable that
allows allocating the storage tanks of size w. Notice that the first tank, VTF;;;, has a size of zero to

represent “no tank allocation”. Consequently, Eq. (8.26) and Eq. (8.27) are rewritten as Eq. (8.28-
8.30):

mes_zz V‘#?”S Dt Vils,j=12,.., Ny, (8.28)
w*l w
Nbyjsrzs = 2 z TujaQuis Vilsj=12..,Niy  (8.29)
s VT,
w
Z vtj,l,W = ex; Vl,] = 1,2, ...,Ile_l (830)
w

Eq. (8.30) states that if plant I exists, then only one discrete size for a tank after stage j has to be
selected. Using the continuous variable ff; ;. =Qi; vtjw, EQ. (8.28) and Eq. (8.29) become
linear and give rise to Eg. (8.31-8.32) using the constraints represented in Eq. (8.33-8.34).
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Tij1

S

Nbijis22 ) i Vi l,s,j = 1,2, .., Ny (831)
L, TE
STij ) ,
Nbi,j+1,ls 2 2 z VTF fﬁ:,j,l,w VLI ll SI] = 1; 21 "'IIVj,l—l (8-32)
w#1 Jtw
flojiw < QX vt 1w Vi,l,j=1,2,..,Njj_q,w (8.33)
Quis = ) Fhijaw Vil =12, No  (834)
w

If there is an absence of storage tanks between two consecutive stages, then the number of batches
must be equal for both of them. In addition, the bounds for the ratio between the numbers of batches
of consecutive stages can be calculated as in Eq. (8.35).

1 Nb;jy1,s
Nb; ; +(——1) E Ut S —
L,j,Ls ¢ j,Lw Nbijls

w#1l

<1+ ((P — 1) X Z vtj,l,w

w#1l

Vi, l,s,j = 1,2, .., Ny (8.35)

Here, ¢ is a constant value corresponding to the maximum ratio allowed between the batches
number of consecutive stages.

Obijective Function

The investment cost considers both, the batch and storage tanks costs as described in Eq. (8.36).

EC = Z Z Z Z Z @1V Ej1p P10 vy iz g
I j p n d
+ & VTF v,
j,l j.Lw jlw
L j w

The first term corresponds to the batch units cost while the second represents the storage tanks cost.
Here, in order to avoid nonlinearities, the continuous variable p; j; 4 is defined given by Eq.
(8.37-8.38).

vj,1 (8.36)

Pijiond = Viip t Xjint+ XXj1q—2 vi,j,l,p,nd (8.37)
0 < Pijipnd <1 Vi, j, lp, n,d (838)

Thus, the equipment cost can be rewritten as in Eq. (8.39).

EC = Z Z Z Z Z aj,zndVFj,z,p(B”) PijiLpnd
I j p n d
— le
+ Z z Z aj,lVTF]‘"l,W vtj,l,w
Il j w

A fixed investment cost is considered (LC) in Eq. (8.40), in which Cpl; and Cdep,, are the
installation cost coefficients, while the total investment cost is described in Eq. (8.41).

vj, 1 (8.39)
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LC = Z Cpliex; + z Cdepy, Ym (8.40)
l m

IC = Cop(EC + LC) (8.41)

The operating cost, including raw material acquisition, storage, and production cost are considered
together in the following expression (Eq. (8.42)).

0Cs = Z Z Z Z CraWsp,rQsp,r,i,l,s + Z Z Z CdimQim,s
sp r i i 1 m
+ Z Z Cprod;;Q;.s
i l

Here, Crawg, ., Cd; ,, and Cprod;; are the associated costs for raw material acquisition, storage,

and production cost, respectively. The Q amounts are expressed in kg per time horizon, therefore
the cost parameters are given in $/kg. The distribution costs at the entire SC are also considered in
this model represented through the Eq. (8.43).

TC, = 2 Z 2 Z Ctrawsy 1 QspriLs + Z Z Z CtpiimQim,s
sp r i 1 m i 1
+ Z Z 2 Ctdi,m,k Qi,m,k,s
i m k

In Eq. (8.43), Ctrawsy 1, Ctp;;m, and Ctd, ., . are cost coefficients that depend on the product
transported and the covered distance. Eq. (8.44) summarizes the total cost for each scenario.

TCosts = TCy + OC; Vs (8.44)

Vs (8.42)

Vs (8.43)

Eq. (8.45) describes the economic revenue of selling the final product in each scenario, where
Price; is the selling price of product i in $/kg. The profit at each scenario is obtained through the
difference among economic revenue and associated costs at each scenario realization as represented

in Eq. (8.46).
Sales; = Z Z 2 QimxsPrice; Vs (8.45)
i m k

PROFIT, = Salesg — TCost, Vs (8.46)

In Eg. (8.47) the total expected profit is described, in which the associated probability of each
scenario is taken into account. Additionally, costs which do not depend on the scenario realization
are considered in this equation, denoted as IC.

EProfit = (z PROFIT, Probs) ~IC (8.47)
S

For more details on the model, the reader is invited to check Corsano et al., (2011).
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8.3.Methodology

As stated before, this proposed approach aim to evaluate different financial risk metrics along the
process performance as a way to promote the identification of an economically efficient solution.
Particularly, this approach comprises four essential steps as shown in Fig. 8.2. A stochastic MOO
model is formulated in step 1. Step 2 solves the stochastic MOO problem using a customized
strategy that provides as output a set of solutions that are later normalized in step 3. Finally, these
normalized solutions are filtered in order to obtain a reduced subset of alternatives with better
overall performance. A detailed description of each step is provided in the following subsections.

Multi-Criteria decision making
under uncertainty

1.- Develop stochastic MOO

mtﬁel
CStochasticﬁ/lOO model )
2.- Solve stochastic MOO
moﬁel
G{aw set of so\utwm@
2
3.- Normalize set of solutions
3

G\Iorma\ized set of so\utions)
il

4.- Apply Pareto filters

3

[ Final set of solutions }

Fig. 8.2. Overview of the proposed methodology.
8.3.1. Multi-scenario two-stage stochastic programming model

Hence, the original deterministic single objective (SO) model was reformulated into a multi-
scenario two-stage stochastic problem of the following form (see Eq.(8.48)), henceforth known as
model (P):

(P) max f(x,y,6)

s.t. (8.48)
h(x,y,8) =0
g(x,y,0)<0

xeEX,yEY,0 €O
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Here, x and y are the first and second-stage decision variables, respectively, whereas 8 denotes the
uncertain parameters values that belong to the corresponding space ©. First-stage decisions may
contain integers due to allocation requirements. f(x,y,0) represents the objective function;
h(x,y,0) and g(x,y,0) are vectors of equality and inequality constraints. Commonly, uncertain
parameters are described via scenarios, and, model (P) can be re-written as follows:

S
() max fp = ) prob, f(x,3,6)
S

s.t. (8.49)
h(x,ys,05) =0 Vs € S
9(x,v5,05) <0 Vs € S

x€X, ), €Y, 0,€0

Here, f,, represents the expected value for the objective function of the problem (P). 6 is the
vector of values taken by the uncertain parameters in the scenarios s and prob; is the probability of
occurrence of scenario s belonging to the set S.

Model (P) can be interpreted as follows: First stage decision variables (x) must be taken before a
realization of the uncertain variables (85) becomes known (here and now decisions). However, such
decisions need to satisfy as well the second-stage set of constraints. Therefore, recourse actions
need to be taken (second-stage decision variables for each one of the considered scenarios y;) with
an associated impact over the objective function. Hence, given a set of first-stage decisions x, each
realization of 6, leads to recourse costs given by the value of the second-stage decisions (y;). Note
that the characterization of the different scenarios to be considered can be evaluated via sampling
on the corresponding probability functions.

To manage the risk associated with the decision-making problem under uncertainty, some risk
metrics are included in the model as additional criteria to be optimized. A detailed description of
these metrics is presented next.

(i) Downside Risk (DR): DR represents the positive deviation from a defined target
(generally denoted by Q). DR can be expressed as shown in Eq. (8.50):

DRq = E[60s] = Z prob, 8o (8.50)
S

where

QO — Profit;  if Profits < Q} VSES (8.51)

Bos = {
s 0 otherwise
Here, Profit, accounts for the profit in scenarios € S.

(ii) Risk: This metric also requires the definition of a target, but it measures the probability
of not achieving this target rather than the deviation from it. Risk is mathematically expressed as
follows:

Riskq = Z prob, Zg, (8.52)

S

Where, Z is a binary variable whose value is determined as follows:

1 if Profity < Q}

Zoe = VseS 8.53
Qs {0 otherwise (8:53)

183



Chapter 8.- Using decision-support tools to promote risk management optimization.

Notice that even if both, DR and Risk, provide a measure of the deviation of the solution from a
given target, the calculation of the latter involves a bigger computational effort since it requires the
definition of binary variables for each scenario.

(ili) Value at Risk (VaR) and Opportunity Value (OV): These metrics assess the
performance of a solution in a given region of the cumulative probability curve. More precisely, the
VaR is the difference between the expected profit and the profit for a cumulative probability at a
defined confidence level (typically 5%), while the OV is conceptually equal to VaR, but covers the
upper side of the cumulative risk curve (typically a percentile of 95%). Hence, these values are
usually used together in order to explore both sides of the cumulative risk plot.

(iv) Worst Case (WC): The WC has been adopted as an alternative to control the
probability of meeting unfavorable scenarios. It leads to a simple formulation that requires a low
computational effort (see Eq. (8.54)).

WC < Profitg Vs € S (8.54)

For more details about the above risk metrics and their implementation in supply chain models, the
reader is referred to the works by Aseeri et al. (2004), Aseeri and Bagajewicz (2004), Bonfill et al.
(2004), Barbaro and Bagajewicz (2004) and_Applequist et al. (2000). Finally, the stochastic model
that optimizes a set of risk metrics can be formally expressed as follows:

(P) n;cl‘}x {fl (X, Vs 6)1 ---;fob (X, Vs 0)' ---)f|0B|(x' Vs 9)}

s.t. (8.55)
h(x,y,0) =0 Vs € S
9(x,y5,0) <0 Vs € S

x€X, ¥y, €EY,0€0

Where f,;, represents the different objective functions of the problem (e.g. f; = EProfit, f, = -
DR, f; = -Risk, etc.). A detailed mathematical model description from where the expected profit
was calculated is presented in the following subsection. Note that the proposed approach is general
enough to accommodate other risk metrics as well.

8.3.2. Solution strategy (Sample Average Approximation algorithm).

Solving (P) (step 2 in Fig. 8.2) is challenging due to the number of scenarios and objectives. To
expedite its solution, a strategy based on the SAA algorithm is proposed. A general overview of the
decomposition strategy used to solve model (P) is described as follows (Shabbir and Shapiro, 2002;
Kostin et al., 2012).

The model in its deterministic form considering only one scenario at a time and optimizing the
profit as the unique objective is first solved. Then, the values obtained for the first-stage variables
(i.e., the design of the supply chain) are fixed and the expected profit in the model (P) is optimized
again, but this time considering all the |S| scenarios. An iterative approach is employed by
replacing the parameters at each solution of the deterministic model solved in step one
(corresponding to one particular scenario) to obtain the optimal supply chain design for each of the
remaining |S|-1 scenarios. At the end, |S| different solutions are generated.

Note that the standard SAA approximates the solution of a single-objective stochastic problem by
solving a series of stochastic sub-problems, each of them with fewer scenarios than the original full
space stochastic model (Verweij et al., 2002; Santoso et al., 2005). These scenarios, sampled from
the original set of scenarios, approximate the expected objective value of the original problem.
After solving each sub-problem, the first stage decisions are fixed in the original model, which is
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solved iteratively for all the solutions generated. The solution that performs best in the full space
model is finally used to approximate the global optimum of the original stochastic model. Hence, in
this case, the sub-problems contain one single scenario (i.e., they are deterministic), as opposed to
what happens in the standard SAA, which solves sub-problems with more than one scenario.

Note that even if the model (P) is a multi-criteria model, the only objective function considered
during the process is the profit maximization (i.e., risk metrics are calculated in parallel during the
process, but they never act as objective functions). The reason for this is two-fold. First, it is not
possible to optimize any risk metric during deterministic optimization (i.e., it considers one scenario
only). Second, the stochastic model could allocate any risk metric as the objective function, yet this
would entail no significant benefit since the risk can be mainly controlled through modifications in
the design of the SC, which has already been fixed in the previous step.

8.3.3. Normalization of solutions.

The SAA method provides as outcome a raw set of solutions (RSS) to the problem (P). A
normalization step is then applied to facilitate the post-optimal analysis of these solutions. Different
normalization algorithms can be applied at this point (see Bolstad et al., (2003)). Here, we use the
basic interpolation method, which is formulated as follows:

f~fo
= fio

Here, f represents the normalized value (which varies between bounds f,, = 0 and f,, = 1)
associated to the real value f, while f;, and f,,,, represent respectively the minimum and maximum

values taken by this objective among the raw set of solutions RSS. At the end of this step, a
normalized set of solutions NSS is obtained.

f = flo + (fup flo) (8.56)

8.3.4. Application of Pareto filters.

Model (P) potentially contains an infinite number of solutions from which decision-makers should
identify the ones that better reflect their preferences. To facilitate this task, the already explained
Pareto filters (See Chapter 3) are applied to narrow down the number of Pareto solutions and retain
for further inspection solutions showing better overall performance (discarding in turn the rest). Fig.
8.3 illustrates the application of the Pareto filter to this problem.
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Start ]
h 4

Objectives, ob € OB

Tolerance, At=0.01%
Number of objectives, NOO=|ob |
Retained set of solutions, M’=NSS

L 2

Apply Smart filter to solutions
NSS considering ob and At

&

Yes

IfM'=0

> Forob= 1:1:NOD  >————
Apply order of efficiency to
solution M’ for k

V =Set of solutions
efficient of order k

Make, M’ = V,,
NOO =NOO -1

[ End ]

Fig. 8.3. Detailed description of the Pareto filter procedure used to reduce the set of optimal solutions.

A general description of each step in the above algorithm follows is explained in Chapter 3.

8.4.Case study.

The proposed approach is now illustrated through its application to the design and planning problem
of a supply chain with embedded batch facilities.

The system considers three raw material sources, which can feed five potential batch plants with up
to three phases. Different discrete sizes are considered for each batch unit (0.3 m?, 0.5 m?, 0.75 m?,
1 m® and 1.2 m®) and intermediate storage tank (3m3, 5 m?, 10 m®). Final products can be stored in
three warehouses before being sent to three customer zones. The remaining system parameters are

provided in Appendix B.5.

The model optimizes the design of the required supply chain network (i.e. allocation decisions,
production and capacity levels and flows between the SC nodes) considering the effects of the
potential planning decisions. The model also determines the optimal design of the embedded batch
plants (i.e. the plants structure) considering parallel unit duplication, allocation of storage tanks, and
unit size. Binary variables are used in the mathematical model in order to represent the allocation
decisions of a particular site/unit.
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Product demand was considered as the only uncertain parameter and modeled through a normal
distribution. One hundred scenarios were generated via Monte Carlo sampling in order to discretize
the normal distributions, assuming the mean values in Table B.11 (See Appendix B) and a variance
of 15%. It is important to highlight that Monte Carlo sampling is used as a crude method to
illustrate the generation of scenarios in the proposed methodology as explained in Chapter 3.

The minimum number of scenarios to be considered in order to ensure a representative solution was
determined by two methods. First, by solving the SAA for an increasing number of scenarios and
then stopping when the difference between the expected profits of the best two consecutive
solutions provided by the SAA was less than 5%. Second, the methodology proposed by Law and
Kelton (2000), which has been applied to stochastic problems (Sabio et al., 2014)was considered
(see Appendix B.6). This later approach was solved considering a relative error of 0.1 and a
confidence level of 1%, leading to a minimum number of scenarios of 73. Notice that the
identification of a reduced is out of the scope of this chapter. In fact, Law and Kelton (2000)
approach was used without generality since this approach is significantly faster than the one
presented in Chapter 6, even though the latest one is more efficient in terms of the size of reduced
set of scenarios.

The deterministic model contains 3,222 equations, 2,086 continuous variables and 223 binary
variables. Even if 73 were identified as representative enough, 100 scenarios were used so as to
evaluate the capabilities of the proposed approach to discard a significant number of non-dominated
or repeated solutions. The stochastic model (100 scenarios) has 178,552 equations, 153,061
continuous variables and the same number of binary variables (223). All the runs were implemented
in GAMS 23.9 and the problem was solved using CPLEX on a Windows XP computer with
Intel®Core™i7 CPU(920) 2.67GHz processor with 4.00 GB of RAM. It takes approximately 27.3
seconds to generate each solution of the deterministic model. It is important to mention that the
stochastic model that includes all the scenarios and maximizes the expected profit as unique
criterion cannot be solved in 86,400 seconds (24 hours) (i.e., after this CPU time, CPLEX is unable
to close the optimality gap below 5% even when optimizing only the expected profit; so much
larger CPU times are expected when dealing with several risk metrics simultaneously).

As shown in Table 8.1, two cases differing in the risk metrics are investigated. The targets required
in the calculations of the risk metrics were defined as follows. A SAA was applied and the
associated result for each deterministic optimization was plotted in (Fig. 8.6). Later, the target
values were defined by identifying the lower, middle and upper parts of these cumulative
distributions. Each curve in Fig. 8.6 represents a specific SC configuration with associated planning
decisions. Expected profit values range from $530,000 to $1,334,000. In the figure, we have
highlighted the solution with maximum expected profit (maxEProfit) as well as two curves that may
be appealing for risk-averse and risk-taker decision makers. A Risk-Averse solution corresponds to
that in which lower probabilities of small/high profits are found. On the contrary, a solution with
larger probabilities of high profits (at the expense of increasing as well the probability of low
benefits) is appealing for a Risk-Averse behavior.

Solutions behave differently in the uncertain parameters space, as it can be noticed by the
performance of the three highlighted solutions. For instance, maxEProfit has a probability of 19%
of not exceeding a target value of Q= $1.00M, while this probability increases gradually to 25% and
55% in the Risk-Averse and Risk-Taker solutions, respectively. Here, the maxEProfit solution
represents a very conservative choice that behaves better than the remaining solutions for a wide
range of target values (Q <$1.15M), however for higher target values this solution shows poor
performance. Notice that the better performance attained in the Risk-Averse and Risk-Taker
solutions in the upper part of the probability curve is obtained at the expense of a drop in their
expected profit. For instance, the Risk-Taker and Risk-Averse solutions show expected profits of
$971,179 and $1,057,684, respectively, whereas the maximum expected profit is $1,100,211.

187



Chapter 8.- Using decision-support tools to promote risk management optimization.

Between the Risk-Taker and Risk-Averse solutions, there are many intermediate solutions behaving
in different ways.

. Q=$1.00M |
Max EProfit [
Risk-Taker [T
0.97 Risk-Averse y
08
0.7F
06 55%
ﬁ 05k Risk-Taker=$971,179 g b | Risk-Averse=%$1,057,684
€ AV Ay I
041 MaxEProfit=$1,100,211
0.3F
0.2f
01F
0 — — = T - | I l I ]
05 06 0.7 0.8 0.9 1.0 1.1 1.2 1.3 145408

Profit,$
Fig. 8.6. Resulting cumulative risk curves for the 100 scenarios.

All the solutions show essentially the same overall supply chain configuration (see Fig. 8.7), but
differ in the detailed design of the plants, as will be explained later. More precisely, they all select
plant L4 regardless of the uncertain parameters values, mainly because the required investment and
production costs are the lowest. Raw material site S2 supplies all the materials required for
producing the four products, because the distribution costs between S2 and L4 are cheaper. The
products are delivered to two warehouses, M1 and M3.

I1,2,3 La

11,2,3,4
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Fig. 8.7 optimal SC design for the 100 demand scenarios.

Table 8.1. List of objectives and target values considered for both cases. Target values Q are expressed in
€103

First Case Second Case
Objective/metric Target value Objective/metric Target value
Eprofit N/A Eprofit N/A

Worst Case (WC) N/A Q=530

Q=800 Q=584

Downside Risk (DR) Q=950 Q=637

Q=1,050 Q=691

Value at Risk (VaR)* 5% Q=745

Opportunity Value (OV)* 95% Q=798

Q=852

Q=906

Q=959
Q=1,013
Q=1,066
0=1,120
Q=1,174
Q=1,227
0=1,281
0Q=1,335

*The percentage target value for VaR and OV are the probability value in the cumulative plot.

Risk

8.4.1. First case: Expected profit, worst case, downside risk, value at risk and
opportunity value

Here, WC, DR, VaR and OV were considered as performance criteria (objectives) in addition to
Eprofit. For the DR calculation, three target values were used corresponding to the lower, middle
and upper parts of the cumulative distribution curve. For the VaR and OV, the standard 5% and 95%
percentiles were set (See Table 8.1).

After the application of the proposed algorithm, 100 solutions were obtained, each one with specific
values of the decision variables, expected cost and financial risk metrics. From here, a 100 x 7
matrix was produced (henceforth known as matrix N) using the values of each performance criteria
in each scenario. Matrix N is normalized according to the procedure described in section 8.4.3. Note
that some of the deterministic solutions may be suboptimal (in the space of the objectives
considered in the analysis), or repeated (i.e. the model yields the same first-stage decision values
when solved for two different scenarios). The Pareto filters were applied next using this matrix.

Fig. 8.8 is a parallel coordinates plot that represents in the horizontal axis the normalized objectives
and in the vertical one the performance attained by every solution in each such objective. The
objectives are normalized as described previously (0 is the best value and 1 is the worst) and the
Smart filter (first step of Pareto filters, section 8.4.4) was executed with a tolerance value of
At=0.01%. As explained in Chapter 3, the dominated solutions are identified and removed by the
filter, so finally the number of solutions was reduced from 100 to the 20 which remain in Fig. 8.8
(depicted by polylines, which intersect each other in at least one point).
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Fig. 8.8. Parallel coordinate plot showing the interactions and relations among solutions for each objective in
the first case (matrix N).

Remarkably, some objectives behave similarly, that is, when one increase so do the others and vice
versa. This is confirmed by the p-values shown in Table 8.2, which are calculated for the filtered
solutions. Two metrics are assumed to be statistically correlated when the p-value is below 0.05
(typical significance value). According to this, metric DR(Q2=1050) is uncorrelated with WC, VaR
and QV (see highlighted values in Table 2).

Table 8.2. P-value for each pair of objectives considered for filtered solutions in case 1.

P-Value

Eprofit WC DR (Q=800) DR (Q=950) DR (Q=1,050) VaR OV
Eprofit
wcC 0.00
DR (Q=800) 0.00 0.00
DR (Q=950) 0.00 0.00 0.00
DR (Q=1,050) 0.01 0.43 0.01 0.00
VaR 0.00 0.00 0.00 0.01 0.76
oV 0.00 0.00 0.00 0.00 0.74 0.00

The order of efficiency step was next applied (second step of Pareto Filters, section 8.4.4) in order
to identify non-dominated solutions in all the subsets of objectives of cardinality k. Starting
from k = 7, the value of k was reduced gradually until no solution satisfies the corresponding
optimality level (no solution is optimal for all the subsets of k-objectives). For each value of k < 7,
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a reduced subset of solutions was obtained. Table 8.3 displays the size of the subsets for each order
of efficiency, in which a reduction of 80, 90 and 95% (from 20 to 4, 2 and 1, respectively) in the
number of solutions were obtained using k=6, k=5 and k=4, respectively.

Table 8.3. Number of solution retained in matrix N for each order of efficiency.
Matrix N
Order of efficiency k=7 k=6 k=5 k=4 k=3
Number of solutions 20 4 2 1 0

To guarantee the quality of the solutions kept in each subset, their performance for each objective
was analyzed. Fig. 8.9(a) shows the lower bound for the solutions (best performance) retained in
each subset of k-objectives for the group of objectives in matrix N. Note that the lower bound for
k=7 is O for all of the objectives, since this represents the original solution space (and consequently
includes the best solutions identified by the SAA). The efficient solutions of order k = 6 show
similar bounds as those solutions in the original set (k = 7), with just a small deviation in the value
of Eprofit (the best Eprofit in the original set is $1,100,211, and in the set k=6 is $1,047,408)
Moreover, solutions retained for lower orders of efficiency (k < 6), present worse bounds in
multiple objectives. On the other hand, Fig. 8.9(b) shows the upper bound for the solutions retained
in each subset of k-objectives. Here, the value of all the objectives in subset k=7 is 1, since it
includes the worst performance solution in the original solution space. In this case, a bigger
deviation from the original subset k=7 would be preferred, as this would imply that bad solutions
would have been discarded. By analyzing simultaneously Fig. 8.9(a) and (b), it can be seen that
solutions in the subset k=6 show good performance compared with the original set (k = 7). Hence,
the filter is stopped at k=6, when 4 solutions are kept. This represents an overall reduction of 96%
in the size of the original set of solutions (from 100 to 4).

(a) Lower bound

09k k=7
08k I k=6
[ k=5
8 07F I =4
S o06-
£ o5t g
€ 04f g
& 03 4
02 H -
01
: [ ]
Eprofit wWC DR(=800) DR(=950) DR(=1050) VaR oV
Objectives
(b) Upper bound
1 e
0.9+ -
0.8- -
8 0.7 ] o -
£ 06
E o5+
£ 0l
o 03+
0.2 -
0.1F -
~ Eprofit WC DR(=800) DR(=950) DR(=1050) VaR ov
Objectives
Fig. 8.9. Normalized bounds for solutions with efficiency of order k for the first case. (a) Lower bound. (b)
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Chapter 8.- Using decision-support tools to promote risk management optimization.

Fig. 8.10 shows the risk curves associated with each solution for the reduced set of k=6, while Fig.
8.11 and Table 8.4 show their configurations.

Table 8.4. Batch plant design for the reduced set of solutions in case 1.
First case (k=7)

Configuration e(f?fri(cjfern%fy Eprofit (M$) Sa;:ggtr?oa: ((j%) B?;Ch stagJezcapaC|t|esJ§m3) *S;f o0 tJaznks (T;)
1 k=4 1.047 71 1 0.75 0.5 0 3 10
2 k=5 1.007 82 12 075 0.5 0 5 10
3 k=6 0.971 100 1.2 1 0.5 0 0 0
4 k=6 1.010 82 1.2 075 0.5 0 5 0

*Storage tanks represent the capacity of the tank installed at the exit of each unit J.
** Demand satisfaction level corresponds to the worst-case scenario.
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Fig. 8.10. Cumulative risk curves for the solution in the reduced set of case 1.

To get insight into how the model manages the risk associated with the investment, solutions 1 and
4 (configurations 1 and 4, respectively), which are two of the alternatives kept after applying the
Pareto filters are studied in detail. Solution 1 reflects a conservative attitude towards risk, with low
probabilities of profits below $0.95M (9%), but a probability of large profits (say above $1.15M) of
0%. On the other hand, solution 4 reflects a riskier attitude, with a probability of 28% for profits
below $0.95M, but a larger probability of high profits (10% for a target of $1.15M). As seen in Fig.
8.11, the risk-averse solution (configuration 1) implements a design with small capacities for the
equipment units and storage tanks. This first case study aims to identify a solution reflecting a
conservative attitude towards risk, as most of the objectives focus on improving the performance in
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the lower part of the profit distribution. Hence, configuration 1 is therefore kept as it represents a
conservative arrangement (smaller equipment sizes and consequently lower potential loses that lead
to a higher expected profit).

It is worth to mention that in configuration 1 (see Table 8.4) demand satisfaction can be
compromised and in fact drops to 71% in the worst-case scenario, because the capacity of the
supply chain is reduced with the aim of avoiding risk. On the contrary, the risk-taker solution
(configuration 4) installs equipment units with higher capacity (and only one storage tank) that can
ensure a demand satisfaction of 82% in the worst case. Finally, Solution 3 is the riskiest design,
since no single storage is considered and the highest capacities are installed. This leads to higher
operation and installation costs as well as less profit on average, but on the other hand allows fully
satisfying the demand in all the scenarios. Hence, this design attains higher maximum profits in
scenarios with large demands, but this is accomplished at the expense of worse performance in
scenarios with low demand.
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Fig. 8.11. Batch plant configuration scheme for the reduced set of solutions found in the first case study.
8.4.2. Second case: Expected profit and risk at different target values

For this case, Risk was considered as the only additional objective to the expected profit. Sixteen
target values were evenly distributed in the complete solution space for this calculation (see Table
8.1).

The first step (Smart filter) was applied considering a tolerance of At=0.01%, thereby reducing
drastically the number of solutions from 100 to 10 (i.e. a reduction of 90%) by removing dominated
and repeated solutions. The relationships between objectives are shown in Fig. 8.12.
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Fig. 8.12. Cumulative probability for the solution in the reduced set of case 1.

Notice that most of the 17 objectives behave similarly. By calculating the p-values shown in Table
8.5, it can be seen how for 3 objectives (i.e., Risk(Q2=530), Risk(Q=1120) and Risk(Q2=1335)) a
complete lack of statistical correlation is found (p-values higher than 0.05). The highlighted values
in Table 8.5 represent the lack of correlation among metrics. The rest of the objectives correlate
each other and prove the correlation among risk metrics.

The second part of Pareto filter was next applied (order of efficiency filter) providing a deeper
reduction in the pool of available solutions. Starting with the solutions obtained from the Smart
filter (k = 17), the non-dominated solutions in all the subsets of objectives of cardinality k were
found by reducing gradually the value of k until no solution satisfied the corresponding optimality
level.
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Table 8.5. P-values for each pair of objectives in matrix P.

P-Value
Eprofit & € Q= 0= Q= 0= 0= 0= 0= 0= 0= 0= 0= 0= O
530 584 637 691 745 798 852 906 959 1013 1066 1120 1174 1227 1281
Eprofit
Q=530 0.51

Q=584 0.07 0.83

Q=637 0.00 0.52 0.03

Q=691 0.00 0.37 0.09 0.00

Q=745 0.01 0.45 0.02 0.00 0.00

Q=798 0.00 0.22 0.03 0.00 0.00 0.00

Q=852 0.00 0.35 0.05 0.00 0.00 0.00 0.00

Q=906 0.00 0.43 0.02 0.00 0.00 0.00 0.00 0.00

Q=959 0.00 0.35 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Q=1013 0.00 0.31 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q=1066 0.00 0.45 0.08 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Q=1120 0.23 0.90 0.60 0.70 0.83 0.82 0.73 0.96 0.77 0.79 0.54 0.22

Q=1174 0.05 0.09 0.83 0.04 0.01 0.02 0.02 0.01 0.03 0.01 0.01 0.05 0.78

Q=1227 0.08 0.16 0.77 0.04 0.00 0.02 0.03 0.02 0.03 0.01 0.02 0.09 0.88 0.00
Q=1281 0.01 0.25 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.85 0.02 0.01
Q=1335 0.66 0.00 0.76 0.67 0.49 0.55 0.30 0.48 0.56 0.52 0.50 0.71 0.91 0.16 0.22 0.32

Table 8.6 shows the results of this filter in which reductions of 40, 60 and 90% (from 10 to 6, 4 and
1, respectively) were obtained for subsets k=16, k=15 and k=14 (and k=13), respectively. For further
analysis k=13 will be omitted, since subsets for k=14 and k=13 are equal (i.e., they contain the same
solution).

Table 8.6. Number of solution retained in matrix N for each order of efficiency.
Matrix P
Order of efficiency k=17 k=16 k=15 k=14 k=13 k=12
Number of Solutions 10 6 4 1 1 0

Using the same procedure than in the previous subsection, in this case Fig. 8.13(a) shows that the
first subset (i.e., k=16) provides an important reduction in the number of available solutions,
showing similar performance than the original subset (k=17). For k=16 only the objective
Risk(=1227) shows a slight deviation from the best performance. This means that these solutions in
subset k=16 have 30% less probability of achieving a profit of $1,227,000 than the best solution in
the set k=17. Solutions with lower orders of efficiency (k<16) show a significant deterioration in
their performance, specifically in the last four objectives (i.e., Q > 1174). Analyzing both figures it
can be seen how the subset k=16 performs similarly to the subset k=17, but additionally eliminates
solutions with poor performances (see objectives (Q2<1066) in Fig. 8.13(b)). In view of the above, it
can be concluded that the last sets of solutions (i.e., orders k=15, k=14) perform better on average,
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Chapter 8.- Using decision-support tools to promote risk management optimization.

but discard points with significantly better performance in some criteria. Therefore, in this case the
filter is stopped at k=16 with a reduced subset of six solutions, which represents a total reduction of
94% in the original number of solutions (from 100 to 6).
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Fig. 8.13. Normalized bounds for solutions with efficiency of order k for the second case-(a) Lower bound.
(b) Upper Bound.

Table 8.7. Batch plant design for the reduced set of solutions in case 2.

Second case (k=17)

_ ) Order of _ **I_Dema_nd Batch stage capacities (m®) *Storage tanks (m®)
Configuration - Eprofit (M$) Satisfaction
efficiency (%) il 12 33 a1 12 33
5 k=14 1.073 76 1 0.75 0.5 0 5 10
6 k=16 1.024 93 1.2 0.75 0.5 0 0 5
7 k=16 1.047 71 1 0.75 0.5 0 3 10
8 k=15 1.028 92 1.2 1 0.5 0 5 5
9 k=15 1.027 89 1.2 1 0.5 0 5 0
10 k=15 1.024 85 1.2 1 0.5 0 5 0

*Storage tanks represent the capacity of the tank installed at the exit of each unit J.
** Demand satisfaction level corresponds to the worst case scenario.
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Table 8.7 displays information on the batch plant designs associated with each solution in the
reduced subset, while Fig. 8.14 shows the cumulative distribution curves for those solutions.
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Fig.8.14. Cumulative probability curves for the solution in the reduced set of k=16 for case 2.

This second case study reflects a more balanced attitude towards risk. To get insight into how the
model manages risk, let us study solutions 5 and 6. At the lower part of the profit distribution, there
is a clear advantage of solution 5 over 6, since their probabilities of profits below $0.95M are 9%
and 32%, respectively. However, for large profits (say above $1.15M) these solutions behave
differently achieving probabilities of 95% and 75% in configurations 5 and 6, respectively. Notice
how for lower profits (Q2=$0.95M) solution 5 is more conservative and vice versa for larger profits
(Q=$1.15M).

According to Fig. 8.15, where the identified configurations have been displayed, solution 5
represents a very conservative configuration, but the most conservative one is configuration 7, as it
provides the smallest equipment capacity at the expense of small profits (compared with solution 5).
Analyzing the worst demand satisfaction level attained, configuration 6 is the best choice since its
satisfaction rate is the highest one (93% in their worst scenario), while configuration 5 is the least
reliable, with a satisfaction of 76% (See Table 8.7).
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Fig. 8.15. Batch plant configuration scheme for the reduced set of solutions found in the second case study.

8.5.Conclusions

A systematic methodology to support risk management in optimization under uncertainty problems
has been proposed. Such a solution framework incorporates several stochastic metrics that assess
the performance of a solution considering the whole space of uncertain parameters. The proposed
strategy combines optimization under uncertainty considering multiple risk metrics with a
systematic approach for the selection of the most promising alternatives. The capabilities of this
approach have been successfully proved using as test-bed a multi-scenario multi-objective design
and planning supply chain model of a batch process production process. Numerical results show
that the proposed approach accelerates the search for supply chain design alternatives behaving in
different manners in the uncertain parameters space. Furthermore, Pareto filters narrow down the
number of each such alternative, ensuring that the final design selected performs well for a wide
range of economic targets. In addition, by combining different risk measurements, the final solution
identified by the decision-maker is more robust and bypass significant losses.
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The proposed tool assists decision-making by incorporating several risk metrics in the modeling
framework and by avoiding subjectivity when selecting the final solution. This approach can be
used in a wide variety of engineering problems in which multiple conflicting objectives and/or
different performance criteria must be simultaneously considered.

Despite the significant advantages of the proposed approach, all the criteria have considered equally
important. However, if a more accurate representation of the decision-maker preference for each
objective might lead to subjectivity problem since the approach is not suitable for systematically
represents these preferences. Therefore, the following chapter uses ELECTRE-IV method to
overcome such a limitation.

8.6.Nomenclature

Abbreviations

MOO Multi-objective optimization
SC Supply chain
SCM Supply Chain Management
MILP Mixed integer linear programming
PSE Process system engineering
SAA Sample average approximation
RAR Risk Area Ratio
SO Simple Objective
VPI Value of Perfect Information
Indexes
sp Suppliers
r Raw material
| Plants
j Batch stages
i Products
m Warehouses
g Customer zones
S Scenarios
sol Solutions
d Parallel unit in phase
W Tanks sizes
p Batch unit discrete sizes
Parameters
Q Target value for risk metrics
Dy Demand product i for each customer zone g
proby Probability of occurrence for scenario s
fio Lower bound in normalized scale
fup Upper bound in normalized scale
fio Lower bound in objective value
fup Upper bound in objective value
At Tolerance value for Smart Pareto filter
fli Conversion factor of raw material r to produce product i in batch stage j
) Maximum ratio allowed between batches of consecutive stages.
Price; Selling price of product i
fflp Upper bound for production of product i in plant I.
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LO

il Lower bound for production of product i in plant I.

max Upper bound of storage capacity of warehouse m.
Cdim Storage cost of product i at storage m.
Cprod;,; Production cost of product i at plant I.
Crawgy, » Raw material acquisition cost from supplier sp and raw material r.
Ctpiim Distribution cost of product i among production plant | and storage site m.
Ctd;m g Distribution cost of product i among storage site m and customer zone g.
ST Size factor for each storage tank for contain product i at batch stage j in plant I.
VTF Discrete size w for storage tanks in stage j of plant I.

Sets/subsets
N, Set of supplier sites.
N, Set of raw materials.
N, Set of batch plants.
N; Set of batch stages.
N; Set of products.
Np, Set of warehouses.
N, Set of customer zones.
S Set of different scenarios.
SS Set of different solutions belonging to NSS.
Sol Set of different solutions form model P.
RSS Raw set of solutions.
X5 Optimal set of solutions for scenario s.
Vo Second stage variables in the full optimal solution.
xx* Optimal solution for order of efficiency algorithm.
Sq Optimal set of solutions for the entire set of scenarios s.
NSS Normalized set of solutions.
Ob Obijectives under analysis.
NOO Number of objectives under analysis.
Vi Set of solution efficient of order k.
RS Set of rejected solutions.
P Solution retained after Smart Pareto filter.
M Set of candidate solutions.
c Counter set.
cc’ Counter set.
K Order of efficiency.
0 Space of uncertain parameters.
Variables

X Vector of first-stage decision variables.
A Random vector associated to an uncertainty behaviour.
y Vector of second-stage decision variables.
Sas Positive deviation of the profit value from the target Q in scenario s.
Profit; Profit obtained for scenario s.
f Normalized value.
f Real objective value.
Eprofit Objective (Expected profit).

Material amount of raw material r send from supplier site sp to plant | in order to produce product i
Qsprils at scenario .

Bijus Batch size of product i at stage j in plant | for scenario s.
NP;, Number of in phase units for stage j in plant I.
Nbyjus Number of batches of product i in stage j of plant I.

200



VEjip
eei,j,l,p,d,s
VT,
SS,
Sizeiﬂ
DR
WC
VaR
oV
Risk
VZ;

j,i,s
ffi,j,l,w
pi,j,l,p,n,d
Cpl;
Cdep,,
LC

IC

EC

Can
0C,
TC,

Js

Ctrawgp i
TCost,
Sales;

ZQS
ex;
ZZi,l
YVm.s
xzj,l,d
Su]"l
th.l.w

Viip

Discrete size p for batch units in stage j of plant |

Non-negative continuous variable

Tank size installed for contain product i from batch stage j at scenario s
Normalized solution ¢

Size required for batch stage j to produce 1kg of final product i in plant |
Downside risk

Worst case

Value at risk

Opportunity value

Financial risk

Batch unit size of stage j of plant | at scenario s

Continuous variable that is equal to Q;; if batch stage j is installed with tank size w
Auxiliary variable to skip nonlinearities

Installation cost of plant |

Installation cost of storage m

Total allocation cost

Total investment cost

Equipment acquisition cost

Capital charge factor

Total operating cost at scenario s

Total distribution cost of scenario s

Distribution cost of raw material r among supplier site sp to production plant | in order to produce
product i

Total cost including operating and investment cost

Total revenue obtained by selling product i.

Binary Variables

1 if Profit for scenario s is lower than the target Profit Q.

Takes value 1 if plant I is allocated.

Is equal to 1 if product i is produced in plant I.

Takes value 1 if warehouse m is allocated for scenario s.

Takes value 1 if stage j of plant | has d parallel units in phase.

Determines if a tank is allocated after batch stage j.

Takes value 1 if a tank of size w is allocated in batch stage j and plant I.

Takes value 1 if a batch stage j is allocated to produce product i and with size p.
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Chapter 9

A multi-item negotiation approach for the management of resource SCs.

Previous chapters stress the importance of a detailed and accurate knowledge of the process
conditions for a decision-making (Chapter 6 and Chapter 7), while Chapter 4 and 5 present
strategies evaluating the effect of multiple decision criteria over the final solution. The capabilities
of these strategies have been tested independently and for a centralized decision-making scheme
(i.e. only one decision maker for the entire system); nevertheless, such a scheme may not represent
a realistic problem, especially when dealing with largescale networks with independent enterprises,
since these SC echelons can operate in standalone conditions. Therefore, in this chapter, the study
of non-cooperative environments introduced in Chapter 5 is extended to consider the uncertainty in
the reaction of the different players and the role of third parties, leading to an integrated negotiation
framework for the design and operation of a decentralized supply chains under competitive market
environments. Thus, departing from the mathematical formulation representing the competitive
leader-follower situation presented in Chapter 5, the uncertainty management strategies introduced
in Chapters 6, 7 and 8 are now applied in order to assess the consequences of the uncertain follower
behavior on the leader decisions and the overall system. The impact of the follower design decisions
over the leader objective is controlled in the optimization by the use of a pre-defined set of follower
designs. The framework uses a Scenario-Based Dynamic Negotiation (SBDN) formulation capable
to assess the system uncertainties to produce a set of potential solutions/options, which are later,
evaluated for several decision criteria (including economic and environmental) using the
ELECTRE-IV method. Ultimately, the proposed integrated approach promotes the identification of
single agreements that improve the process robustness, feasibility and sustainability altogether.
Remarkably, such solutions must represent the leader and follower interests under a win-win
negotiation partnership despite the uncontrollable/unpredicted behaviors resulting from the follower
decisions as well as the presence of third-parties also affecting the resulting negotiation (fixing
base-prices).

203



Chapter 9.- A game theory framework for the management of resource SC. A multi-item negotiation approach

9.1.Background on negotiation frameworks.

The market globalization as well as the constant changes in the market dynamics leads to a need of
strategies that provide stability to the resulting current complex industrial scenario. Therefore, the
Process System Engineering (PSE) research, which focuses on the development of fast, robust and
reliable tools for designing and managing industries, faces nowadays the main challenge associated
to the increasing presence of suppliers/producers competition in this worldwide volatile market
environment, leading to non-cooperative situations and, very often, conflicts of interest (i.e.
objective functions) (Zamarripa et al., 2014).

Few works have been carried out to analyze the SCs coordination in competitive environments. For
instance, Hjaila et al. (2016a) propose a framework capable of model the third parties’
role/interaction in a polystyrene production/distribution SC. The work was later expanded to
evaluate/coordinate the relations between two independent SC’s and their associated competitors
(third parties) in order to ensure a win-win situation (Hjaila et al., 2016b) using an Scenario-Based
Dynamic Negotiation (SBDN) framework. The competitor’s behaviors were described through a
defined set of scenarios, nonetheless, the reliability of the final solution is not guaranteed due to an
inaccurate uncertainty management. Therefore, an appropriate uncertainty formulation, like the
two-stage stochastic programming framework, has to be included in the SBDN strategy.

Similarly, in the line of integrated design and operation of a decentralized SCs under a competitive
environment, Yue and You (2015) evaluated the role of follower’s discrete decisions in a negotiation
leader-follower optimization problem using a novel mixed integer bi-level programming
framework. However, the main shortcoming of their formulation is the fact that the follower’s
discrete decisions highly depend on the leader decisions, which compromise the actual applicability
of the final design solution since it enforces the collaboration between the leader and the follower.
Consequently, a more sophisticated strategy that explicitly considers the follower’s design decisions
is needed (regardless of the leader's behavior).

Additionally, the dynamism in the current competitive business environment and the growing
interests on designing sustainable processes has created an opportunity area. Actually, negotiation
strategies and “Green” engineering must be combined to improve the traditional independent
economic and environmental assessments and, until now, the simultaneous representation of
multiple leader/follower objectives in the final solution remains as an open issue in the current
literature. In order to overcome such an issue, a robust multi-criteria decision-making tool should be
used within a negotiation strategy. Many methods can be used as decision-support tools,
nevertheless, due to its previously identified advantages, ELECTRE-IV have gain attention as the
most complete decision-making approach (Chapter 3).

In order to address these issues, a negotiation framework is proposed for the design and
management of MO (e.g.: sustainable) SC under non-cooperative environments. Such a framework
allows evaluating a set of negotiation contracts, identifying the best one for multiple criteria.
Ultimately, this solution strategy identifies a negotiation contract that holds feasible disregarding
the uncontrollable/unpredicted behaviors associated to a follower as well as the set of third parties
compromising the competitive system.

9.2.Problem Statement
Consider two independent SC’s working in a non-cooperative environment, being one a net

resource consumer (e.g wastewater generator) and the other one a resource regenerator (e.g
treatment plant) . Particularly, the resource consumer and regenerator are considered as leader and
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follower, respectively. Both are functional SC’s with their own independent suppliers/markets, but
the leader is the participant that takes the initiative to improve its benefits by searching for a
suitable resource disposal price as well as buying recovered water (being one of the options to and
from the follower SC respectively). Hence, in order to push the agreement towards a win-win
policy, the systematic search of a profitable collaboration is required. Remarkably, the identified
agreement must consider the uncertain behavior of the external conditions, the follower design
decisions (which remains unknown for the leader) as well as additional efficiency indicators from
both leader’s and follower’s perspectives. Therefore, the negotiation may be complex and under
some circumstances, a feasible agreement may not be found.

A water network within a shale gas (the same one presented in Chapter 5) was used as motivating
example. The general decentralized schemes of the water and shale gas networks are displayed in
Fig. 9.1, defining the two entities, the shale gas producer (as the wastewater generator or leader) and
the wastewater treatment tasks (as the wastewater regenerator or follower), as well as the third
parties (competitors). The detailed description of the case study can be found in Chapter 5;
however, for completeness of this section the main elements that describe the problem are
commented.

o A set of freshwater sources s € S from which supplier s can satisfy the freshwater
requirements.

e Shalesitesi € I in which a set of wells can be chosen j € J.

e Treatment facilities including centralized facilities (CWT;c € (), disposal wells (d € D) or
onsite treatment plants (o € 0).

In addition to these network elements, in order to represent the negotiation approach, a set of supply
chains (sc € SC) has to be defined in the mathematical model formulation linking each one to its
corresponding negotiation partner (being the leader (I € SC) and the follower (f € SC). Moreover,
a set of third parties are included (leader external providers xv, follower external clients xc, and
external customers m).

Global water network within a Shale gas process
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Fig. 9.1 Decentralized SC network.

Furthermore, the goal is to maximize the economic vector for each participant SC by modifying the
traditional strategic and tactical management decisions. Note that by activating the follower
operations, the global sustainability is promoted; thus, freshwater savings will be considered here as
an environmental indicator. Further details regarding process data, equipment description and
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nominal capacities, as well as the mathematical equations that describe this problem can be found in
Chapter 5. However, the following section presents the main equations modified to adapt the
negotiation approach to the original mathematical formulation.

9.2.1. Mathematical formulation

The equations affected are mainly the financial ones. For example, Eq. (9.1) represents the total sales
for each participant SC considering the prices associated with internal and external consumers (p, ¢, and
DTy m.t, respectively).

Saless, s < Z Z Z pr, ., xdem, s Vsc€ SC; f €SC;s€S (9.1)

teT r€ER meM

+ Z Z pr',f,t ) Qr,sc',s

teT rieR

Similarly, the cost for each participant is calculated considering the raw material purchase,
transport, storage, production, and the negotiation resource, as shown in Eq. (9.2). Finally, the
maximization of the individual SC profits Prof;. s is displayed in Eq. (9.3), which consist in the
difference between the individual economic sales and costs.

Costyes = Z (CRMgeys + CTRyers + CSTsees + CPRDgrs) L €SC;s€S  (9.2)

teT
£ D P Qs

teT rier
Profsc’s = Salesg.; — Costy s Vsc € SC (9.3)

It is important to highlight that the negotiation item (p, /. ;- Q,’sc ¢ s) @Ppears in both, sales and
cost functions. Remarkably, the leader partner seeks being robust against the unpredictable follower
behaviour (uncertain decisions and parameters). Mathematically, such an uncontrollable behaviour
is faced through a two-stage stochastic programming formulation. Therefore, the economic
objective adopts the following form.

EProf,, = Z(Salessc,S — Costg ) - proby Vsc € SC (9.4)

SES

Here, prob, represents the probability of occurrence of scenario s, each of which represents a
possible realization of the uncertaint behaviors of the follower and the 3" parties (suppliers,

customers, external clients) being for this particular case equiprobable (probg = m) but

easily extendible to uneven distributions. Parallely, the reaction of the follower in front of each
pricing agreement is modelled using the probability of acceptance over a set of scenarios. Such a
probability (prob_acceptancey) is computed by taking into account the number of scenarios that

improve the individual results for the follower SC (see Eq.(9.5)).

No.of scenarios improving EProfy

prob_acceptance;s = vfeSC (9.5

Total No.of scenarios

Due to the used formulation, the maximization of the economic revenues for all the participants
promotes the operations of the resource regenerators, and consequently, increases the use of
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recovered wastewater while reducing the freshwater consumption (For any freshwater price higher
than 0). Thus, Eq. (9.6) quantifies the net freshwater consumption, where fw;;,,. represents the
total freshwater withdrawals and wtcd,. . accounts for the wastewater recovered.

Bnfw= Y (Z S =Y Wd> prob, ©6)

seS \iel meM teT ceC teT

Remarkably, prob_acceptance; and Enfw represent additional decision criteria to EProfs.
Finally, the effect of the follower’s design decisions over the projections of the leader’s decisions
are evaluated by solving the leader’s model iterativeley for a defined set of follower’s designs.
Details on the solution strategy are presented in the following section.

9.3.Solution strategy

The competitive environment has been addressed before in this Thesis (Chapter 5), where the
balance between the objectives of the two participant SCs was obtained using a traditional bilevel
formulation (each level representing the individual economic performance of the leader and the
follower). The methodology proposed in this chapter integrates the SAA and the ELECTRE-IV
methods presented in previous chapters under the framework of SBDN approach. This strategy
allows the explicit consideration of uncertain/unpredicted conditions over the non-cooperative
systems associated to the follower and 3™ parties. The proposed strategy consists of four parts as
illustrated in Fig. 9.2.

[ Start ]

Follower Designs, ds € DS
Negotiation contracts, c € C
Scenarios, s €S

Define a set of performance indicators, pi € Pl

4
—)< For ds= 1:1:| DS]| >—
4
—)< For c= 1:1:|C| F
) 2

Solve the Two-stage stochastic
model

T

- Calculate all the performance indicators.
- Add performance indicators into a blank
matrix henceforth known as “Indicator-
contract matrix”(Pl x C)

Produce an “Indicator-contract
matrix” for each ds <

Apply ELECTRE-IV method to all the
“indicator contract” matrices

Produce a reduced set of
contracts

(o)

Fig. 9.2 Decentralized SC network.
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First, during an initialization step a set of follower designs, potential pricing agreements and
performance indicators are defined. The second and third parts consist of an iterative optimization
procedure and the collection of the resulting performance indicators respectively. Finally, a post-
optimization procedure is required to identify the best overall solution in terms of the decision-
maker preferences. The main parts of the algorithm are presented in the following section while the
whole algorithm is illustrated in Fig. 9.2.

9.3.1. Iterative optimization procedure.

The most important part of the proposed strategy consists in a reiterative procedure, in which a two-
stage stochastic optimization problem was solved for each design and agreement (Fig.9.2). The used
single objective (SO) stochastic problem follows the general form of Eq. (9.7).

1’;1231}2( {EProfl, EProff}

s.t. 9.7)
h(x,ys) =0 Vs € S
glx,y,) <0 Vs € S

xeX,ys €Y

Notice that even if additional performance indicators are considered/calculated (such as expected
freshwater consumption and follower reaction “prediction”) they do not act as objective functions,
and in fact, only the economic objective for both participant SCs were considered.

Additionally, a solution identification strategy was also included during the iterative procedure to
overcome the decision making challenge. In this particular case, and without loss of generality, the
ELECTRE-IV method was used, even if different solution identification algorithms may be
considered. The complete iterative procedure is described next.

1. For each design;
1.1. For each contract;
1.1.1.Solve the problem and collect the decision variables.
1.1.2.Add the results of each scenario into a blank matrix, henceforth known as “scenario
matrix”

1.1.3. Using the information of “scenario matrix” calculate all the post-optimal
performance indicators (such as the probability of acceptance, financial risk for
each actor, etc.).

1.1.4. Collect all the performance indicators (from either, optimization and post-
optimization calculation) into a blank matrix and generate a new matrix including
all these performance indicators for each contract, henceforth known as “Criteria-
Contract matrix”.

1.2. Select the solution (or reduced set of solutions) with the best overall performance for all
the criteria in “Criteria-Contract matrix” by applying the ELECTRE-IV method.
2. Compare the solution selected at each design to provide the best overall performance for all
the follower designs.

9.4.Case study

The capabilities of the proposed strategy are illustrated using a case study seeking for the
management of a water network within a shale gas SC originally presented in Gao and You (2015)
(see Fig. 9.1). This case study was previously used in Chapter 5, thus, problem description and
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details can be found there and in Appendix B.3. Remarkably, the point 1.1.1 of the solution
algorithm has been simplified into a SO function substituting the objective function as in Eq. (9.8)
so as to facilitate the solution of the problem and promote the results comparison/discussion.

max EProfgiopar = Z EProf, + EProfy vl f e€SC (9.8
N

As a way to explore variation in the unpredictable follower decisions two extreme follower designs
were considered modifying the complexity of the treatment sites as shown in Fig. 9.3. The most
conservative one account for the installation of a single treatment plant and disposal well, while
risky designs may install all the possible treatment/disposal units.

Conservative design. Risky design.
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Fig. 9.3 Follower designs.

These designs were analyzed for a set of negotiation contracts. In particular, 50 pricing agreements
were considered and generated by combining the 10 wastewater disposal prices and five recovered
water prices. These prices were defined based on their average historical values (see Table 9.1).

Table 9.1 Negotiation agreements.

Wastewater treatment price ($/bbl)
0.025 0.0412 0.057 0.073 0.09

1.00 1 11 21 31 41

1.44 2 12 22 32 42

1.88 3 13 23 33 43

2.32 4 14 24 34 44

Recovery treatment 2.76 5 15 25 35 45
Price ($/bbl) 3.20 6 16 26 36 46
3.64 7 17 27 37 47

4.08 8 18 28 38 48

4,52 9 19 29 39 49

496| 10 20 30 40 50

Finally, 100 scenarios were used as a way to model the unpredictable role of the third parties in the
system. Similarly than for the negotiation agreements, each scenario consists of a pair of values for
wastewater treatment and recovery wastewater prices that are randomly selected using the average
value of $0.075/bbl and $4.0/bbl respectively and an overall standard deviation of 30%. Without
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loss of generality, the well-known Monte Carlo sampling was used in order to discretize the normal
distributions leading to an equiprobable distribution.

For clarity in the comparison analysis, the following discussion will be focused on the conservative
follower design. Thus, using such a set of scenarios, the two-stage stochastic model was solved for
each one of the negotiation contracts resulting in 50 different solutions for each follower design.
Each solution (individual point in Fig. 9.4) accounts for a specific freshwater consumption, a
follower’s probability of acceptance and, more importantly an associated financial behavior for
both, the leader and the follower. These financial behaviors prove that even a small variation in the
pricing policies/agreements has a significant effect on the actor's performances. Notice that the
EProf ranges differently between the leader and the follower (being $230,000 and $338,000,
respectively) proving the conflict of interest between actors and confirming that the system in
represented by a non-zero-sum game. Fig. 9.4 also includes the player’s standalone situation, thus,
any contract showing higher economic performances than $77.05x10° and $1.11 x10° for leader and
follower respectively represents a feasible option, since they actually improve their best individual
performance.

x 10 x 10
7715 Leader 155 Follower
15
5 S 145
] 9] 4
& S 14
S . ~
E £ 1354
5 5"
- . e
a o 1.34
- - - ]
i) 3 o] .
S G 1254 Reused Water Prlqe=50.041
g Reused Water Price=$0.041 b g EE&?ﬁa:'g?zt?E;;g(%smss
Iﬁ Disposal Water Frice=$1.88 x 1.2 F
EProfit =§77,085.474 1 w e
]
1.15
O . A e S, S . s s — —
R 144 188 232 276 32 3.64 408 452 496 M 144 188 232 276 32 3.84 408 452 496
Disposal water price($lm3) Disposal water price($lm3)

Fig. 9.4. Negotiation behavior for the conservative follower designs.

Within all the negotiation contracts, the follower’s expected profit is improved. However, only a
small fraction of these contracts produce a win-win situation from the leader’s perspective.
Therefore, in order to suggest the best agreement, the leader has to measure the positive impact on
its economic performance and the probability that the follower accepts a specific contract.
Consequently, a set of decision criteria with their decision maker’s preferences was defined (Table
9.2) and used within the ELECTRE-IV method framework. It is important to comment that until
now only the results associated to the conservative design have been showed; however, the results
related to the risky design have been considered for the preference values definition.

Table 9.2. Thresholds values for the considered decision criteria.
Selection Criteria

Thresholds EProfit, EProfit, Water Savings™ Prob. acceptance
Indifference 7.70x107 1.20x108 6.0x10° 0.55
Preference 7.71x107 1.45x108 6.80x10° 0.75

Veto 10.0x107 10.0x107 7.00x10° 1

“Values expressed in$  ™Values expressed in bbl
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In general, the ELECTRE-IV method compares all the solutions identifying a single negotiation
agreement that leads to the highest positive impact on all the four decision criteria disregarding the
follower designs. After applying the ELECTRE-IV method, a single negotiation contract was found
as the overall optimum contract (highlighted in Fig.9.4). Such a negotiation contract consists of a
reused water price of $0.041 and a disposal cost of $1.88 per bbl of water and wastewater
respectively. Such a negotiation contract has an associated specific design and coordination plan for
the decentralized SC. By analyzing the optimal SC conditions presented in Table 9.3, it can be
concluded that, disregarding the follower decisions, the leader is able to propose an agreement
leading to an improvement in the entire set of performance indicators for both, leader and follower.
In addition, such a negotiation is acceptable for the follower (more than 60% of favorable results)
increasing the confidence in the obtained solution.

Table 9.3. Optimal criteria values for each player within the selected negotiation contract.

EProfit,” EProfit;” FreshWater™ Prob. Acceptance
Conservative 77.085 x10° 1.272 x108 0.820 x10° 0.73
Risky 77.085 x10° 1.192 x10°8 0.820 x10° 0.63
Standalone 77.005 x10° 1.117 x10° 1.253 x10° N/A
0.155 x10°
Improvement 0.080 x10°8 0.075 x10° 0.433 x10°
“Values expressed in $ “Values expressed in bbl

A detailed analysis of the resulting network configuration is discussed in detail in the following
section.

9.4.1. Network description and analysis

In this section, the network configuration obtained using the proposed strategy was compared with
the one resulting from the traditional centralized scheme in order to illustrate the benefits of
considering a decentralized approach.

Both networks are displayed in Fig. 9.5; in the centralized scheme, despite the dependency on the
follower decisions (wastewater treatment part), this configuration totally relies on an onsite
treatment to reduce the freshwater demands (contributing in around 1,000,000 bbl/year). Even if the
centralized treatment plants are employed, they are only considered for disposal purposes and there
is not regenerated water coming back to the system after its treatment in the follower sites. Such a
behavior is logical from a centralized perspective, since it is assumed that a return transportation
task is redundant and even unnecessary.

The decentralized network configuration (i.e. the one obtained with the proposed strategy) produces
a well-balanced design that promotes the use of regenerated water from both treatment options
onsite and centralized facilities, reusing at least 3,400,000 bbl/year. Such a massive water saving
was achieved at the expense of significantly increasing the distribution cost (an increase of about
52% if compared with the centralized approach). Certainty, the resulting configuration provides a
robust system that ensures a good process performance for different scenarios.
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Fig. 9.5. Complete network configuration for: a) centralized and b) decentralized schemes.

The total water management benefit in the centralized scheme is $79,024,590/year, which is 10%
greater than the one obtained with the decentralized scheme ($77,085,000/year). Besides the
significant difference in the final benefit, both strategies distribute their costs in very different
manners: the overall cost distribution of different water management sections is given in Figure 9.6.
These results prove that in the decentralized scheme the use of resource regenerator (treatment
plants) have been promoted treating the 86% of the total waste, while in the centralized one only
11% of the wastewater is treated. Similarly, it can be noticed that the transportation cost is
significantly higher in the decentralized configuration (57% more than in centralized network).

Decentralized

Disposal
77777777777777 2%

Centralized

- - =~~~ "Onsite treatment
14%

acquisition

3% er acquiisition- - _

3%

Fig. 9.6. Cost breakdown for: a) centralized/cooperative and b) decentralized/competitive schemes.
Despite their different cost distribution, the one corresponding to water acquisition is the same for
both configurations. Even if the above suggests that the resulting water management is the same,
Table 9.4 proves otherwise. In fact, the configuration resulting from the competitive approach

achieves more than three times more water savings than the cooperative configuration due to the
large investment in the use of recovered water.

Table 9.4. Detailed water management costs.
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Cooperative Competitive

Freshwater ($/year) 254,470 82,136
Recovered water ($/year) 2,116 180,700
Total consumed water (bbl/year) 6,000,000 5,000,000
Freshwater (bbl/year) 5,000,000 1,500,000
Water savings (bbl/year) 1,000,000 3,500,000

All the above results illustrate the advantages of the competitive configuration in terms of
individual economic benefit as well as global environmental ones.

9.5.Conclusions

This chapter proposes an integrated holistic approach for the effective SC desigh and management
under multiple types of uncertainties and competitive environment supporting the decision-making
processes. Particularly, a systematic strategy that allows designing and coordinating a decentralized
supply chain through the production of an attractive negotiation contract between two independent
SCs is presented. Numerical results prove that the solution strategy is capable of identifying an
attractive agreement that has a positive impact on the economic and environmental performances of
both partners.

The proposed strategy uses a proper formulation to manage the uncertainty associated to the
different actors participating in the system, increasing the reliability of the resulting design and
planning decisions associated with each negotiation contract. The above contributes to guarantee
the robustness in the design and planning network obtained considering a non-collaborative SC.
Additionally, the use of the ELECTRE-IV method as a decision-making tool not only expedites the
selection of a unique and reliable negotiation contract but also increases the flexibility of the
strategy, being able to consider multiple negotiation items and multiple decision criteria.

As a future work, the proposed strategy needs to be combined with other systematic approaches
capable of identifying the proper amount of follower designs and uncertainty scenarios to be
considered, in terms of their effect over the quality of the final solution. Such a framework could be
based on the scenario reduction methods used in previous chapters of this Thesis.

9.6.Nomenclature

Abbreviations

MO Multi-objective

SC Supply chain

SBDN Scenario-Based Dynamic Negotiation
MILP Mixed integer linear programming
PSE Process system engineering

CWT Centralized wastewater treatment plant
ELECTRE Life Cycle Assessment

IS Industrial Symbiosis

G-ICE Gasifier internal combustion engine
LHV Lower heating value

MC Moisture content

MILP Mixed integer linear programming
ANN Artificial Neuronal Network
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Indices/Subsets

Freshwater source
Wells

Shale sites

Leader external provider
Follower external client
External customers
Exchangeable item
Time period

Treatment plant
Disposal well
Treatment plants
Supply chain

Leader

Follower

Parameters

Freshwater demand of item r for each player sc
Prices associated to internal customer

Prices associated to external customer

Veto thresholds

Probability of occurrence of scenario a
Probability of acceptance of agreement

Variables

Amount of exchangeable/negotiation item
Cost of freshwater

Transportation cost of water management
Storage cost

Disposal cost

Profit for each player.

Total sales for each player and scenario s
Total cost for each player and scenario s
Expected profit for each player

Expected global profit

Expected net freshwater consumption
Freshwater extracted from freshwater suppliers
Wastewater disposed to surface
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Chapter 10

Conclusions and Future Work

10.1. Conclusions

The methodical combination of Multi-Objective strategies with uncertainty management
approaches has been attained in this Thesis. The numerical results have proved the positive effect of
this combination on the solutions flexibility and robustness compared with the ones obtained
through traditional approaches. These methods have resulted in contributions on the following
issues.

e Computational effort reduction for both, solutions identification and uncertainty
management.

o The scenario reduction strategies used here allow reducing the computational effort
necessary to obtain a robust solution through two-stage stochastic programming
methods.

o The Meta-Multiparametric programming approach expedites the reaction of the
decision maker once the uncertainty has been unveiled.

o The use of Pareto Filters and ELECTRE-IV methods simplify the decision maker
tasks, expediting the solution identification ensuring the quality of the decisions
through a systematic approach.

o Effective exploitation of modelling and optimization strategies in order to drive to
sustainable processes/solutions.

o Fuzzy based formulations allow reducing the difficulties associated with the
decision making, introducing a selection directly at the optimization step skipping
the traditional need of post-optimization algorithms.

The integrated discussion of the conclusions obtained from each chapter is next exposed.
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Part I1. - Efficient Multi-Objective strategies

Along this section, two different strategies were proposed supporting the decision-making process
associated with multi-objective and/or multi-criteria problems. These proposed solution strategies
can be classified as in-optimization and post-optimization methods. Both methods aim to solve the
issues associated to the selection of an optimal solution within the Pareto set. In particular, these
methods provide a framework for the systematic generation/evaluation of a single optimal solution
disregarding the amount of objectives/criteria at the time that reduce the effect of the decision
maker bias. For the in-optimization strategy, a fuzzy-based formulation was implemented
considering complex non-linear objective behaviors that accurately represent some cause-effect
relationships between raw material consumption/conservation. This fuzzy-formulation was used as
a way to bypass the decision making process and directly generate a well-balanced optimal solution
for the multi-objective optimization problem. On the other hand, the post-optimization method used
consists of a combination of the ELECTRE-IV method and the e-constraint method (as multi-
objective approach) to systematically generate the Pareto frontier and evaluate all the options
identifying the single solution that better satisfies the decision maker preferences simultaneously for
different criteria.

The capabilities of these approaches have been tasted through the design and planning of a real
water management system. For the fuzzy approach, an urban water network was considered. In
particular, the case study accounts for rainwater harvesting and regenerated wastewater as
alternative water sources for satisfying water demands (in the industrial, domestic, and agriculture
sectors) for the city of Morelia in Mexico. The ELECTRE-IV method was proved in a water
network system within a shale gas production SC problem.

Numerical results show that in both cases a freshwater consumption savings of at least 13% is
achieved, reinforcing the idea that a proper water management, including reclamation and harvested
rainwater, are promising and feasible options to reduce the use of freshwater even during drought
seasons. Even more, it has been proved that both, Fuzzy and ELECTRE-IV method are useful and
reliable to identify an overall better solution satisfying partially or completely the decision maker
preferences. Furthermore, these strategies represent alternative ways to assess different challenges
in the field of process systems engineering (such as sustainability in either centralized or
decentralized schemes).

Part I11. - Uncertainty management strategies

In this section, two strategies have been proposed to extend the current approaches to address
problems associated to the sustainable management of supply chains under uncertainty (i.e.
proactive and reactive approaches). These strategies were aimed to address two main challenges:
first, the reduction of the computational effort typically associated to the solution of problems under
uncertainty addressed by the traditional approaches and second, the efficient control of the effect of
uncertain/unpredictable conditions over the resulting solution.

In order to address the computational effort issue, a scenario-reduction strategy has been proposed
as a way to expedite the solution of multi-stage stochastic problems. The basic idea behind this
reduction strategy is to find the lowest number of sampling points that accurately represent the
uncertainty space. In addition, the reduction strategy has been efficiently combined with a solution
identification algorithm and hence, their coordinated application to address the design of a
sustainable supply chain under raw material availability and quality uncertainties was justified.
Thus, ultimately, a potentially flexible and robust formulation is obtained while reducing the
computational effort required for solving the problem.
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Conversely, in order to better control the effect of the uncertainty, a meta-multiparametric approach
(M-MP) was proposed in which traditional optimization and surrogate-modeling techniques were
combined. In particular, a Kriging meta-model was used in order to emulate/predict the expected
state of the system in front of parameter variations. The system behavior associated with the
uncertain conditions was obtained using an M-MP approach and this information was later used to
build and validate the meta-model. As a result, M-MP demonstrated its ability to emulate
successfully large complex real-world problems subject to multiple uncertainty sources. The above
is of great relevance for the management of sustainability problems since a single meta-model is
able to cover the entire uncertainty space enhancing the capabilities of the traditional
multiparametric programming.

The capabilities of both approaches have been successfully demonstrated using, as a common case
study, the multi-scenario and multi-objective design and management problem of an energy
distribution network using biomass as raw material. It is important to emphasize that both methods
address the management of different material flows with independent uncertain sources, ensuring a
sustainable energy demand satisfaction. Numerical results show that from one side, the scenario
reduction strategy systematically reduces the number of scenarios maintaining the accurate
representation of the uncertainty solution space, while the surrogate model predicts the system
performance with high accuracy and computational efficiency. If compared with traditional
optimization approaches (such as two-stage stochastic programming), M-MP may be considered as
a more “difficult to apply” strategy, but the detailed information on system behavior provides
additional advantages and justifies its potential combination with other sophisticated decision-
making strategies.

Notice that even if both strategies achieve computational savings, their focus is devoted to different
steps. For the scenario reduction strategy, its improvements are in the optimization step. On the
contrary, M-MP addresses the “re-optimization” step (i.e. once the uncertain information changes or
is unveiled). Thus, these results prove that both, the systematic reduction of scenarios and the
accurate and detailed descriptions of the system behavior are equally relevant for the development
of strategies that reduce the computational challenges on uncertainty approaches ensuring a feasible
solution.

Part IV. - Functional integrations

In this part, two different frameworks were developed to address MO and uncertainty management
strategies. Essentially, solution identification techniques (particularly, Pareto filter and the
ELECTRE-IV methods) were combined with an uncertainty management strategy (sample average
approximation) in order to address the optimization of a problem under uncertainty. The resulting
solution frameworks address the major challenge of considering a large number of decision criteria
simultaneously with a large (representative enough) amount of uncertainty parameters.

For the first framework, (let’s say Pareto filters one), a set of uncertainty-aware solutions are
generated using the sample average approximation. Later, the Pareto filters are applied to
systematically evaluate the solution based on their performances and optimality through a set risk
metrics. Remarkably, by employing the risk metrics, this strategy selects the solution with the
minimum worst performance.

The capability of this approach has been successfully proved using as test-bed a multi-scenario
multi-objective design and planning supply chain model. Numerical results show that both proposed
approaches accelerate the search for solution alternatives behaving in different manners within the
uncertain parameter space.
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The second framework presented also employs SAA approach as uncertainty management strategy
and ELECTRE-IV method is used as solution identification approach: However, these approaches
are integrated in a scenario-based dynamic negotiation framework (SBDN) that allows formulating
a water management problem under non-cooperative environment. Particularly, this framework was
exploited for the systematic design and coordination of a decentralized supply chain through the
production of an attractive negotiation contract between two independent SC’s was presented.

The consideration of negotiation contracts were successfully applied leading to a positive impact on
the performance of each one of the objectives considered for all the participants. The proposed
strategy uses a proper uncertainty formulation that promotes the generation of robust solutions,
increasing the reliability of the resulting design and planning decisions associated with each
negotiation contract. Remarkably, the use of ELECTRE-IV method not only expedited the selection
of a unique and reliable negotiation contract but also increased the flexibility of the strategy, being
able to consider multiple negotiation items and multiple decision criteria.

Besides their differences, both approaches allow to narrow down the number of alternatives,
ensuring that the final solution performs well for a wide range of criterion targets. These approaches
can be used in different engineering problems ensuring the quality of final solution even for those in
which the effect of process uncertainties has to be explicitly considered over the solution
performance.

10.2. Future works

The main future research direction may be classified in:
e Evaluate the quality/representativeness of the defined decision criteria.

There is a need for a novel integrated strategy that allows evaluating the quality/representativeness
of the selected decision criteria. For instance, in the ELECTRE-IV method, the impact and
significance of the defined threshold over the final solution has to be evaluated. Such an issue
represents an important gap in the literature and it can be considered as one of the more significant
future research topics.

Besides, this can lead to potential contribution in the proper quantification of objectives, since the
solution selection strategy is highly sensitive to the quality in the performance of the objectives
measurements.

e Include robustness calculation/valorization within a solution identification framework.

The proposed Pareto filters framework uses a very simplified version of the strict robust
optimization (Minimax), thus, the combination of minimax concepts on Pareto filters are a
promising research area. The above is particularly interesting for its further application on large and
complex problems, such as pharmaceutical and petrochemical processes.

e Evaluation of the uncertainty parameters in terms of its effect over the system behavior or
solution performances.

As a future work, the proposed strategy needs to be combined with other systematic approaches
capable of identifying the proper amount of follower design and uncertainty scenarios to be
considered, in terms of their effect over the quality of the final solution. Such a framework could be
based on the scenario reduction method used in previous chapters of this Thesis.
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Appendix B

Case studies data and validations

B.1. Piecewise validation for the case study of Chapter 4.

The relationship between WSI and WC is displayed in Fig. B1, which shows how the unitary impact
of water first goes up, then reaches a maximum, and then declines. Hence, after a given point,
further water consumptions do not result in a significant increase of the impact. The inclusion of the
sigmoidal behavior associated to the WSI thus enables a more realistic assessment of the effect of
freshwater usage. In addition, Fig. B1 shows the five intervals considered for the piecewise strategy,
which produce an accurate representation of the original sigmoidal behavior.

Non-linear Membership functiol
0.9 Piecewise discretization

Min Water Consumption (WC) Max

Fig. B1. Graphical membership function representation using our cause-effect approach (blue line) and the
fixed piecewise discretization used (gold line).

It is evident that a higher discretization will lead to a better representation of the sigmoidal function.
However, it would also lead to more binary variables and therefore larger CPU times. In our case,
five intervals produce an accurate enough approximation for the purposes of our study.
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Appendix B. Case studies data and validations

B.2. Complementary information for the case study of
Chapter 4.
Table B1. Expected monthly precipitation amount (mmH20).
Month Year
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Jan 1560 1551 15.41 15.32 15.23 15.14 15.05 14.96 14.87 1478 1469
Feb 7.70 7.65 7.61 7.56 7.52 7.47 7.43 7.38 7.34 729 725
Mar 8.60 8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.145 8.0
Apr 1010  10.04 9.98 9.919 9.86 9.80 9.74 9.68 9.63 957 951
May 4170 4145 41.20 40.95 40.71 40.46 40.22 39.98 39.74 39.50 39.26

June 150.70  149.80 148.90 148.00 147.12 146.23 145.36 144.48 143.62 142.76  141.90
July 167.50  166.50 165.50 164.50 163.52 162.54 161.56 160.59 159.63 158.67 157.72
Aug 17040  169.38 168.36 167.35 166.35 165.35 164.36 163.37 162.39 161.42 160.45
Sept 129.90 129.12 128.35 127.58 126.81 126.05 125.29 124.54 123.79 123.05 12231

Oct 52.80 52.48 52.17 51.86 51.54 51.24 50.93 50.62 50.32 50.02  49.72
Nov 10.00 9.94 9.88 9.821 9.76 9.70 9.65 9.59 9.53 9.47 9.42
Dec 3.90 3.88 3.85 3.83 3.81 3.78 3.76 3.74 3.72 3.69 3.67

Total 769 764 760 755 751 746 742 737 733 728 724

Table B2. Deviation from the mean value used to calculate the monthly demand.

Month %
January -8,5
February 4
March 4
April 17,9
May 141
June 6,9
July 0
August 0
September -2,2
October -2,2
November -2,3
December -7,9
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Table B3. Constant parameters for the storage devices.

] Coefficient
Device 3 3
A($) B($) C($/m) D($/m)
Tank 28,08 151,968
Artificial pond 4,9134 4,9895

Table B4. Available freshwater at natural sources.

Source Capacity (m®)
Deep well 8x10°
Spring 49x106
Dam 84.3x10°

Table B5. Freshwater demand.

. Demand
Site/Use (m¥/month)
Domestic 2.2x10°8
Agricultural 0.46x10°8
Industrial 0.54x10°

Table B6. Storage devises capacities.

Device Capacity (m®)
Storage tank 50,000
Artificial pond 600,000
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Appendix B. Case studies data and validations

B.3. Parameters for the case study of Chapter 5.

Table B7. Parameters for the shale gas case study.

Parameter Unit Index Value
CCije Mcf/bbl - 100-200
CS; $/bbl - 0.20-0.50
Cl; $/bbl - 100-140
DR per week - 0.0018
FCi,c,m,r $ rl 15,800

$ r2 20,000
$ r3 23,800
FDyqm,r $ r 238,000
$ r2 300,000
$ r3 357,000
FOi0,4 $ ql 15,800
$ q2 20,000
$ 93 23,800
FRs, bbl/week - 22,000-115,000
FSs,i,m,r $ mi,rl 158,000
$ mi,r2 200,000
$ m1,r3 238,000
$ m2,rl 986,000
$ m2,r2 1,500,000
$ m2,r3 1,910,000
LC; - - 0.6-0.7
LO, - ol 1.00
- 02 0.98
- 03 0.70
MCiconr bbl rl 30,000
bbl r2 45,000
bbl r3 60,000
MD; gm,r bbl rl 30,000
bbl r2 45,000
bbl r3 60,000
MSsim,r bbl mil,rl 30,000
bbl mi1,r2 45,000
bbl mi,r3 60,000
bbl m2,rl 200
bbl m2,r2 400
bbl m2,r3 600
RF, - ol 5.67
- 02 1.86
- 03 0.25
RW, ;. bbl/week - 300-500
SC; bbl - 15,000-25,000
SM; bbl - 50,000-80,000
SP;; $/Mcf - 0.10-1.00
TCicm $/bbl - 0.60-3.00
TD;am $/bbl - 9-18
TSsim $/bbl ml 0.20-1.00
$/bbl m2 10-30
VCict $/bbl - 1.00-5.00
VD;a: $/bbl - 0.80-1.20
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VO, $/bbl ol 1.60
$/bbl 02 2.00
$/bbl 03 4.50
WA, $/bbl - 0.04-0.06
wcC,, bbl/week - 6,000-20,000
WDy, bbl/week - 1,000-5,000
W04 bbl/week  o1,q1 5.000
bbl/week 01,92 10.000
bbl/week 01,93 15.000
bbl/week  02,q1 1.000
bbl/week 02,02 2.000
bbl/week 02,93 4.000
bbl/week  03,q1 5.000
bbl/week 03,02 10.000
bbl/week 03,93 20.000
WP bbl/week - 90-100
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Appendix B. Case studies data and validations

B.4. Technologies characteristic and parameters for
the case study of Chapter 6.

Technologies characteristics

The gasifier requires that the inlet material strictly satisfy a physical homogeneity (chipping) and a
MC lower than 20% (dried). It is assumed that chipper and dryer work an average of 8 h/d while the
gasifier works in average 16 h/d. Onsite storage represents an economic and simple option
providing assurance of biomass availability against seasonality as well as aims to reducing pre-
treatment/treatment capacities. It is important to notice that this kind of storages is only applicable
for primary waste and if secondary waste is considered other type of storage is required.

The chipper and dryer capacities are assumed to have the same capacities employed in micronized
food products (MFP) during one day. The required parameters and physical limitations used to
model the activities in the mathematical formulation are described below.

1. Biomass generation. The cassava is harvested and subjected to different treatments in Food
Industries, which produce a cassava waste with unpredicted properties.

2. Drying. A rotatory drum is used to produce raw material with a MC lower than 20%w/w.
This unit has an energy efficiency of 99% and use diesel as utility (with price of
$1133.31/t). Rotatory drums capacity is assumed in the range of 0.1 to 5 t/h as states in
(Hamelinck et al., 2005).

3. Chipping. Chipping task is mandatory placed after drying one. This unit has an energy
efficiency of 96% and similarly to dryer units its available capacities range from 0.1 to 5 t/h
(Velazquez-Marti and Fernandez-Gonzalez, 2009).

4. G-ICE system. The system capacity ranges are between 5 and 100 kWe. The main
parameters and outputs associated to this equipment are shown in Table A.1. Here, the
equipment efficiency represents the main parameter and will affect for Biomass required
(Hamelinck et al., 2002).

5. Transportation. Solid biomass should be distributed from its origin point to a storage place
or to a pre-treatment/treatment sites by tractors. The capacity of that equipment’s (Tractors)
was set at 10t, which represents the upper level of tractor capacity. The price of transport
task depends on the amount of material transported and the distance among sites. Lineal
distances among nodes expressed in km are corrected through a tortuosity factor of 1.8
(Hamelinck et al., 2005).

6. Distribution grids. This task represents another type of transportation, dealing with energy
transportation and not material. LV and MV are considered as “equipment”. The LV
distribution line has 6% losses in energy terms while MV distribution line losses are
proportional to the power demand as stated by Medina-Gonzélez et al., (2017a).

It is considered that the electricity demand should be partially or totally satisfied. The demand has
been estimated for each community considering a direct relation with its population density.
Particularly, the highest gross demand is 448.65 kwh/d, while the lowest is 21.17 kWh/d as shown
in Table A.2.
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Table B.8. Principal output values and specification for the G-ICE system.

Parameters Values
Tgasif(°C) 702
Flowrate (kg/h) 35.33
LHV(MJ/kg) 6.32
CGE(%) 68
Power(kWe) 15.8
n(%) 17

Table B.9. Energy demand and population distribution in Atebubu-Amantin district.

Community Population Net demand Grossdemand LV~ Gross demand MV
(2010) (kWh/d) (kWh/d) (kWh/d)
Senso 296 42.43 45 61.63
Old Konkrompe 566 88.6 93.96 119.48
Fakwasi 1881 333.2 353.35 393.67
Kunfia 2834 423.05 448.64 501.92
Trohye 376 58.65 62.2 78.84
Bompa 512 69.88 74.11 114.43
Nwunwom 122 19.97 21.17 31.57
Boniafo 489 84.86 89.99 115.51
Abamba 653 91.1 96.61 122.13
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Appendix B. Case studies data and validations

B.5. Parameters for the case study of Chapter 8.

Table B.10. Raw material costs.

Distribution Cost ($ kg) Procurement cost ($ kg?)

Iy l> I3 ls 3 r r2 rs
S1 0.02 0.1 0.08 0.06 0.08 0.02 0.02 0.01
S2 0.14 0.12 0.14 0.02 0.06 0.02 0.01 0.02

Table B.11.Product demand (Ton).

i1 i2 is i4

01 150 130 150 100
02 100 120 150 100
gs 115 130 150 120

Table B.12. Product distribution cost form plant to warehouse.

Distribution Cost ($ kg!)

mq ma ms
i1 i i3 i4 iy i i3 i4 i1 i i3 is
Iy 0.1 0.17 0.05 0.05 0.2 01 015 0.15 023 016 0.11 0.11
I2 02 019 025 0.25 0.19 0.18 0.35 0.35 0.18 0.19 0.15 0.15
I3 0.2 018 025 0.25 0.18 0.15 0.25 0.25 0.15 0.08 0.15 0.18
ls 005 01 0.2 0.15 0.15 011 0.2 0.2 01 015 015 0.05
Is 0.2 018 025 0.25 02 015 025 0.25 0.15 0.15 0.08 0.08

Table B.13. Product distribution cost ($ kg-1) from warehouse to customer.

ms m; ms
01 0.08 0.09 0.09
02 0.07 0.09 0.08
03 0.06 0.07 0.05
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Table B.14. Batch parameters.

Batch parameters

Raw material factor

Size factors Operating time (h) conversion Production Cost ($ kg?)
J P o2 s r ra rs Ih I, I3 l4 Is
iih 09 06 04 14 5 7 0.8 05 0.7 0.12 0.18 0.12 0.06 0.12
ip 06 05 04 12 6 4 06 08 08 0.08 016 0.06 0.12 0.10
is 07 05 04 16 8 5 04 05 0.5 0.12 014 014 0.08 0.14
is 08 06 04 10 4 5 05 05 05 0.14 0.08 0.14 0.04 0.12

Table B.15. Batch costs.

Batch investment cost

Unit cost coefficient a;; (annualized)

Raw material factor .
W I Production Cost ($ kg™t

conversion
1 I, I3 la Is r r s Ih I, I3 lq Is
ju 1620 2430 1350 1350 1890 08 05 07 012 0.18 0.2 0.06 0.12
jo 2160 1620 2160 1620 1890 06 038 0.8 0.08 0.16 0.06 012 0.1
js 1890 2700 1890 1890 2430 04 05 0.5 0.12 0.14 0.14 0.08 0.14
Tanks 500 500 500 500 500 05 05 05 0.14 0.08 0.14 0.04 0.12
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Appendix B. Case studies data and validations

B.6. Validation of the representativeness of the
selected number of scenarios (Chapter 8).

The number of scenarios (i.e., sample size) required to ensure a good estimation of the “real” values
in the domain of uncertain parameters is a critical issue in any multi-scenario problem. In this
regard, the method proposed by Law and Kelton (2000), represents a promising alternative and it is
completely applicable to any stochastic programming model. This approach relies on solving the
stochastic model iteratively for an increasing number of scenarios until a given relative error y is
satisfied for a confidence level of 100(1- aa)%. In the context of our problem, this method
comprises the following steps:

1. Define an initial number of scenarios nse, (as |S|=s=nsy) where s will be updated
dynamically during the execution of the algorithm.

2. Solve the specific stochastic model with |S|=s scenarios
3. Compute the confidence interval half-length 9(s, aa) for the mean value of the values in

each scenario using the following expression.

Var?(s)
s

19(5; aa) = tn_l'l—zaa

Where Var?(s) is the sample variance, and t,_,1-aa is the critical point of the t-

2

1
distribution.

4. 5(s,a) < L’
|Evalue| 1-y
estimator of the mean of the universe for the relative error and confidence interval
defined beforehand). Otherwise, make s = s + 1 and go to Step 2.

then stop (i.e., the expected value of the discrete distribution is a valid

The work of Law and Kelton (2000) provide more details about this procedure.
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