


Abstract

The study and application of general Machine Learning (ML) algorithms to the
classical ambiguity problems in the area of Natural Language Processing (NLP) is
a currently very active area of research. This trend is sometimes called Natural
Language Learning. Within this framework, the present work explores the applica-
tion of a concrete machine-learning technique, namely decision-tree induction, to
a very basic NLP problem, namely part-of-speech disambiguation (POS tagging).
Its main contributions fall in the NLP field, while topics appearing are addressed
from the artificial intelligence perspective, rather from a linguistic point of view.

A relevant property of the system we propose is the clear separation between
the acquisition of the language model and its application within a concrete disam-
biguation algorithm, with the aim of constructing two components which are as
independent as possible. Such an approach has many advantages. For instance, the
language models obtained can be easily adapted into previously existing tagging
formalisms; the two modules can be improved and extended separately; etc.

As a first step, we have experimentally proven that decision trees (DT) provide
a flexible (by allowing a rich feature representation), efficient and compact way
for acquiring, representing and accessing the information about POS ambiguities.
In addition to that, DTs provide proper estimations of conditional probabilities for
tags and words in their particular contexts. Additional machine learning techniques,
based on the combination of classifiers, have been applied to address some particular
weaknesses of our tree-based approach, and to further improve the accuracy in the
most difficult cases.

As a second step, the acquired models have been used to construct simple,
accurate and effective taggers, based on different paradigms. In particular, we
present three different taggers that include the tree-based models: RTT, STT, and
RELAX, which have shown different properties regarding speed, flexibility, accuracy,
etc. The idea is that the particular user needs and environment will define which
is the most appropriate tagger in each situation. Although we have observed slight
differences, the accuracy results for the three taggers, tested on the WSJ test bench
corpus, are uniformly very high, and, if not better, they are at least as good as
those of a number of current taggers based on automatic acquisition (a qualitative
comparison with the most relevant current work is also reported.

Additionally, our approach has been adapted to annotate a general Spanish
corpus, with the particular limitation of learning from small training sets. A new
technique, based on tagger combination and bootstrapping, has been proposed to
address this problem and to improve accuracy. Experimental results showed that
very high accuracy is possible for Spanish tagging, with a relatively low manual
effort. Additionally, the success in this real application has confirmed the validity
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of our approach, and the validity of the previously presented portability argument
in favour of automatically acquired taggers.
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CHAPTER 1

Introduction

~ In the eighties but especially throughout the nineties, an important resurgence
of empirical and statistical methods, applied to the automatic processing of natural
language, has been observed. This popularity has its origin in four main factors:

e The growing availability of big machine-readable corpora, from different
sources, levels of annotation, languages, etc.

e The improvement in performance of current software and hardware architec-
tures that allow the processing of huge amounts of information, by highly
time—consuming algorithms (as statistical models usually demand), at an
admissible cost of time and money.

e The initial success obtained with the statistical processing of low—level lan-
guage problems, such as those related with speech recognition and syntactic
tagging. '

e The appearance and development of a large amount of text—baseéd natu-
ral language applications with specific requirements, for which conventional
methods based on linguistic knowledge seemed not to be appropriate.

The choice of automatically processing such massive quantities of free text
(commonly referred to data—intensive approach or corpus-based approach) has con-
tributed to developing a number of methods and techniques with an application
to a great variety of natural language acquisition and understanding problems,
including: automatic extraction of lexical knowledge, lexical and structural disam-
biguation (part—of-speech tagging, word sense disambiguation and prepositional
phrase attachment disambiguation), grammatical inference and robust parsing, in-
formation extraction and retrieval, machine translation, etc. Additionally, corpora
have provided linguists with benchmarks for the empirical evaluation of theoretical
studies and models of language. The reader may find good and plain introductions
to the corpus-based NLP in [LF92, CM93, YB97].

Most of the initial corpus-based language acquisition methods applied by the
NLP community researchers were borrowed from statistics and information the-
ory. As a consequence of this collaboration, a significant progress was made in
the development and adaptation of well-known statistics based techniques to the
particular problems of automatic natural language modelling and processing. This
progress was especially noticeable in the low-level tasks of speech processing and
lexical knowledge extraction and disambiguation, but a considerable effort was also
devoted to grammatical inference, robust parsing and other semantic and discourse
level NLP tasks.

Several articles and introductory books, surveying statistical approaches in
Computational Linguistics, have appeared in recent years. We especially recom-
mend [Cha93, Cha97, KS97, MS99, JM99].
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16 1. INTRODUCTION

Starting in the early 90s, but particularly in recent years, the application of
machine learning (ML) based techniques to language learning and acquisition prob-
lems has been the focus of increasing attention in the NLP community. The core of
problems addressed by machine learning techniques are those of natural language
disambiguation (appearing at all levels of the language understanding process).
They are particularly appropriate because they can be easily recast as classifi-
cation problems, a generic type of problem with a long tradition in the artificial
intelligence (Al) area, and especially addressed by the ML community.

The connection and collaboration between NLP and machine learning com-
munities has become very productive. Common interests are clearly noticeable in
the international conferences and journals of both areas, which have experimented
a proliferation of special issues on natural language learning, applications of ML
techniques to natural language processing, etc.

This recent approach permits the use and adaptation of general purpose ma-
chine learning algorithms for classification ~which are well known and widely stud-
ied methods—, with the aim of providing general frameworks in which many disam-
biguation problems could be addressed simultaneously by homogeneous techniques
[Bri95a, Car96a, DWB97, Rot98].

Already applied ML based methods include several ¢raditional symbolic induc-
tive learning paradigms: instance-based learning, decision trees, threshold linear
separators, inductive logic, unsupervised clustering, etc.; and also a number of
subsymbolic and connectionist approaches, such as neural networks and genetic al-
gorithms. Finally, some new specific learning algorithms have also been proposed
in recent years. This is the case of Transformation-based Learning in [Bri95a).

For an extensive compilation of relevant articles about the current approaches
to natural language learning, one may consult the book [WRS96].

Within this presented framework, the aim of this work is to explore the pos-
sibility of applying well known ML techniques, namely the automatic induction
of decision trees, to improve results in a very basic disambiguation task, namely
part-of-speech (POS) tagging.

This is mainly an empirical work, that is, it proposes some new solutions or vari-
ants to a practical problem and it tests the appropriateness of such approaches by
a thorough set of experiments. All the proposals have been fully implemented and
the experimentation has been conducted by defining a clear and rigorous frame-
work, specifying the methodology and the reference domain in which prototypes
are tested. Direct comparisons with other works and approaches have been in-
cluded whenever they were feasible. Conclusions of experiments and comparisons
are always provided with a certain degree of confidence, on the basis of performing
statistical tests.

It must be said that the main contributions of this work fall in the NLP field
and that topics appearing are addressed from the artificial intelligence perspective,
rather from a linguistic point of view.

1. Setting

1.1. The Ambiguity Problem. Natural language is ambiguous in nature.
Ambiguity appears at many levels of the usual language processing chain, and it
represents many of the most difficult problems of language understanding. Some
classical examples of ambiguity are: Word selection in speech recognition, part of
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speech ambiguity (e.g. past vs. participle in regular verbs), semantic ambiguity
in polysemic words, structural ambiguity in parsing (e.g. PP-attachment), accent
restoration, reference ambiguity in anaphora resolution, word choice selection in
machine translation, context—sensitive spelling correction, etc.

Such ambiguity resolution problems can be generically characterized as follows:
At a certain moment, the NLP system reaches a segment of information for which
it has multiple interpretations, and it must decide which interpretation is appro-
priate in the current context. In order to resolve this difficulty, it is necessary to
disambiguate two or more semantically, syntactically or structurally distinct forms
based on the properties of the surrounding context [Car96al).

Consider, for instance, the following simple sentence, which was picked from
the Wall Street Journal (WSJ) corpus:

(1) He was shot in the hand as he chased the robbers in the back street.

First, the sentence contains a number of POS ambiguities that should be resolved
before the sentence can be understood. For instance, “shot” and “hand” can be a
noun or a verb; “chased” can be an adjective or a verb; “back” can be a noun, an
adjective, an adverb, and a verb; finally, “in” and “as” can be a preposition or an
adverb. Even if we know its part of speech, the intended meaning of the word in a
particular context often requires disambiguation. In the present example, the word
“hand” is highly polysemous. Among other interpretations, it could refer to a part
of the body in the anatomical sense, but also to a part of a clock in a mechanical
sense. In addition to these cases of lexical ambiguity we also find an example of
structural ambiguity: The prepositional phrase “in the back street” could modify

" the noun “robbers” or the verb “chased”. Both readings are syntactically legal and
the NLP system must access some kind of semantic information to make the correct
attachment decision. ‘

1.1.1. General Approaches. The current approaches to disambiguation prob-
lems, such as POS tagging, WSD, PP-attachment disambiguation, etc., can be
classified in two broad families: linguistic- and statistical-based.

On the one hand, the classical and most straightforward is the linguistic ap-
proach, which typically uses rule-based models manually written by linguists. The
linguistic models are developed by introspection (sometimes with the aid of refer-
ence corpora). This makes it particularly costly to obtain a good language model.
Transporting the model to other languages means starting over again. They usu-
ally do not consider frequency information and thus have a limited robustness and
coverage. Their advantages are that the model is written from a linguistic point of
view and explicitly describes linguistic phenomena, and that the model may con-
tain many and complex kinds of information. Both things allow the construction
of extremely accurate systems.

On the other hand, statistical approaches are based on collecting statistics from
existing corpora, either tagged (supervised training) or untagged (unsupervised
training). This makes the model development much shorter and the transportation
to other languages much easier, provided there are corpora in the desired language.
They take into account frequency information, which gives them great robustness
and coverage. The statistical approaches can be divided in two categories, depend-
ing on the complexity of the statistical model they acquire, and on the type of
algorithm they use. First, in the simple-model class, the considered knowledge
consist of a set of co-occurence frequencies for some predetermined features, which
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are straightforwardly acquired from a corpus. The combination of this knowledge
is usually performed by using the Bayes’ theorem with the corresponding inde-
pendence assumptions. Second, machine-learning algorithms are used to acquire
high-level language knowledge from a training corpus. Already applied paradigms
range from instance based learning and induction of decision trees, to neural net-
works and genetic algorithms. The knowledge acquired may take the form of rules,
decision trees, frames, etc. but it will be more complex than a simple set of fre-
quency countings. In this case the model is explicit, since usual machine-learning
produces symbolic knowledge, but it does not necessarily have a direct linguistic
interpretation.

1.2. The Part—of-speech Tagging Problem. POS tagging is a very basic
and well known NLP problem which consists of assigning to each word of an input
text the proper morphosyntactic tag in its context of appearance. In most cases
ambiguous words can be completely disambiguated by taking into account an ad-
equate context. For instance, recalling the previous example sentence 1, the word
“hand” would be disambiguated as a noun because it is preceded by the determiner
“the”. Although in this case the word is disambiguated simply by looking at the
preceding tag, it must be taken into account that the preceding word could be am-
biguous, or that the necessary context could be much more complex than merely
the preceding word. Furthermore, there are even cases in which the ambiguity is
non-resolvable by using only morphosyntactic features of the context, and require
semantic and/or pragmatic knowledge.

1.2.1. Utility. The utility of such disambiguation tasks is also well known.
Part-of-speech tagging is of interest for a number of applications, including: Speech
recognition and generation [NMKS90, HA97], access to text data bases [Kup93],
partial parsing [Abn91, KVHA95, Wau95, Abn97, VP97, Pad98] and general
parsing [DeM90, CCA194], grammatical inference [Mag96, STV96], machine
translation, information extraction, information retrieval, and lexicography. As a
curiosity, we mention that POS tagging has also been proposed in a particular tech- .
nique of stylometry as a way of investigating the authenticity of Rhesus (an ancient
Greek text) by the Attic dramatist EURIPIDES. The method tries to characterize
the style of the writer by observing the typical distributions of categories in his
texts [Lud97).

Additionally, since tagging can be seen as a prototypical problem in lexical
ambiguity, advances in part of speech tagging could readily translate to progress in
other areas of lexical, and perhaps structural, ambiguity.

Most language understanding systems are formed by set of pipelined modules,
each of them accounting for a specific level of analysis. That implies that results
of one module may seriously influence the performance of the following modules,
and that the errors may exponentially propagate along the pipeline. As POS tag-
ging is one of the very basic tasks to be performed, it is crucial not to introduce
many errors. Several authors have pointed out and quantified the influence of tag-
ging in further stages of natural language processing. See, for instance [Kro97],
fWS97], and [CCA*94] discussing the influence of POS tagging as a preprocess
for information retrieval, word. sense disambiguation, and parsing.

1.2.2. Approaches. A general representation of the POS tagging process is de-
picted in figure 1. We distinguish two main components. On the one hand, the
system uses some kind of knowledge about the language to be disambiguated. This
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knowledge may come from several sources and may have different representations.
We refer to it as the language modell. On the other hand, there is the proper
disambiguation algorithm which decides the best tag assignment according to the
language model. These two components are certainly related and we usually find
them embedded into a single tagger description. However, there are cases in which
algorithms and models are relatively independent and, therefore, easy to transport.

FiGure 1. POS tagging schemata

The input to the disambiguation algorithm consists of a list of lexical units with
an associated list of possible morphosyntactic tags. This information is usually
obtained by performing a previous morphological analysis, or by simply collecting
a word—form lexicon extracted from pretagged corpora, in the case of largely unin-
flected languages (such as English). The output consists of the same list of lexical
units with the ambiguity reduced, ideally, to a unique tag for each unit.

Existing approaches to POS tagging can be classified in many ways depending
on the focus of attention. First, according to the way in which the knowledge is
acquired, we could talk about manual, automatic or semi-automatic taggers. Sec-
ond, there are several ways of representing the language model. We find rule-based
systems, Markov models, neural networks, collections of examples, decision trees,
etc. Third, there are taggers that output a completely disambiguated sequence
of pairs word-tag, while others perform a kind of iterative algorithm to progres-
sively reduce the input ambiguity, thereby allow residual output ambiguity. This
difference becomes important when comparing the accuracy of different taggers,
because a study between recall and precision will be required for the latter. Fi-
nally, the most wide-spread categorization system takes into account the nature of
the knowledge used for the disambiguation algorithm. In this way we talk about:
linguistic, statistical and machine-learning families.

The real categorization should be, in fact, a combination of all these distinct
categorization systems, however, for the sake of simplicity, in this work we will use
only the last as the basic classification criterion. The other distinctions will be
mentioned only whenever they are relevant.

! Although sometimes it has a clear parallel, this term should not be confused with the
language model term used in the field of information theory. In that domain, the term is used to
refer to a probability distribution on the set of all word sequences for a fixed vocabulary.
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1.2.3. Performance. Accuracy reported by first rule-based linguistic English .
taggers was slightly below 80% of correct part-of-speech assignments. This is
certainly a low figure, especially so when a broad coverage word—form lexicon with
associated lexical probabilities would provide an accuracy of around 90% by simply
choosing the most frequent tag for each input word. The accuracy reported by
most current statistic and machine learning English taggers is consistently over
95%, achieving 96-97% in some cases, while linguistic Constraint Grammars report
the best results. For instance, in {[SV97], a CG for English tagging is presented
which achieves a recall of 99.5% with a very high precision around 97%. These
accuracy values are usually computed on a test corpus which has not been used in
the training phase. Some corpora commonly used as test benches are the Brown
Corpus, the Wall Street Journal (WSJ) corpus and the British National Corpus
{BNC).

Very few direct comparisons have been performed in the literature. The differ-
ences in the reference test corpus, the size and granularity of the tagset, the size
of the training set, etc., can significantly influence the obtained results and, so,
invalidate the conclusions of some comparisons.

Regarding to the tagging efficiency of such systems, very different experimental
figures have been reported in the literature, which range from a few dozen words per
second to the impressive result of 10,800 words per second [RS95]. Such high speed
is achieved by means of recasting rule-based tagging as a composition of finite state
transducers. Classic statistical taggers run about ten times slower (~1000 wps).

1.2.4. Improvements. Finally, we would like to mention some of the current
"open lines of research to further improve POS tagging. Providing more flexible
environments in which to incorporate many sources of knowledge of different levels,
is one of the current active areas. A second line refers to the study of the: real
portability of the automatic tagging paradigm, especially when they are moved to
different corpora, languages, and NLP systems with different goals. With respect
to the accuracy of current automatic taggers, we think that there is still room for
improvement towards the accuracy reported by current linguistic systems.

2. A Particular Approach to Tagging

Our particular approach to POS tagging belongs to the machine-learning fam-
ily, and it is based on the fact that POS tagging can easily be interpreted as a
classification problem, in which the finite set of classes is identified with the set of
possible tags, and the training examples are particular occurrences of words with
their respective contexts.

A relevant property of our system is the clear separation between the acqui-
sition of the language model and its application within a concrete disambiguation
algorithm, with the aim of constructing two components which are as independent
as possible. Such an approach has many advantages. For instance, the language
models obtained can be easily adapted into previously existing tagging formalisms;
the two modules can be improved and extended separately; etc.

We used induction of decision trees to acquire and represent the language mod-
els. This is a wide-spread formalism in the ML field that has recently been applied .
in basic NLP tasks such as speech recognition, tagging, parsing, sense disambigua-
tion, etc., with notable success. To avoid the harmful effects of data fragmentation
and to constrain the problem into manageable dimensions, we consider a different
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problem (and so a different tree) for each ambiguity class, i.e. the set of words than
can be a noun or an adjective form the noun—adjective ambiguity class, which will be
addressed independently from other ambiguity classes, as noun-verb, preposition—
adverb, etc. The set of all these trees is what we refer to as the language model.

The algorithm we used for constructing the statistical decision trees is a non—
incremental supervised learning—from-examples algorithm of the TDIDT (Top-
Down Induction of Decision Trees) family. Such an algorithm is very similar to
those of CART [BFOS84] and C4.5 [Qui93] systems, but it includes some varia-
tions to better adapt to our particular domain.

With respect to the application phase, we have constructed two taggers, based
on different principles, that overcome the application of the trees as direct classifiers.
For this reason, we benefited from the statistical information provided by the trees.
Additionally, we have investigated the integration of the tree-based model with
other kinds of information, within the framework of a third tagger.

3. Contributions

Although this work is closely related to the machine learning field, from which
we borrowed existing techniques and tools, its major contributions have to be placed
in the natural language processing area of artificial intelligence.

We summarize below the list of topics that, according to our opinion, constitute
the main contributions of this work. The first three points refer to real contributions
from a scientific perspective. However, we want to mention two additional relevant
aspects. The first refers to the effort that we carried out to provide a broad and
accurate survey of recent applications of machine learning techniques to natural
language learning problems. The second point aims at highlighting the results of
this work in terms of generated tools and resources, which may be of interest for the
NLP community, especially for those groups working with the Spanish language.

3.1. On the Application of Decision Trees. We have successfully applied
Statistical Decision Trees to a very basic NLP disambiguation problem, namely POS
tagging, obtaining very high levels of accuracy. This contribution is threefold:

e We have proposed decision trees as a method to automatically acquire the
statistical information that models part-of-speech ambiguities. We have
tested the acquired trees and we have proven that they are a quite compact,
accurate and efficient way of extracting and representing this information.
Decision trees are also a flexible way of handling several features, for which
the set of attributes describing each example can easily be enriched.

e Using the statistical information collected with the decision trees, we have
developed and implemented two practical taggers, following different ap-
proaches. We have shown that the obtained tagging accuracies are as good
(and better in some cases) as the results of a number of the non-linguistically
motivated state-of-the-art taggers.

o We have explored the possibility of combining different kinds of information
to improve tagging accuracy. On the one hand, by introducing n—gram sta-
tistical information in our tagger. On the other hand, by adapting the trees
into a constraint formalism to feed a flexible-model tagger based on relax-
ation labelling, once more including n-grams, but also including linguistic
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information. We have proved that in both ways the resulting accuracy is
significantly higher.

3.2. On the Combination of Classifiers. Combination of classifiers is a
very productive research direction within the ML community. We have investigated
whether the combination of different taggers can improve the results of a single
tagger. In our case the contribution is twofold:

o We have applied several algorithms, from the ML field, to grow ensembles
of weak classifiers from the same training data (namely bagging, boosting,
etc.), in order to improve tagging accuracy in the most relevant ambiguity
cases. Additionally, we propose two new methods in the same direction,
which have been carefully evaluated.

e We also have presented a bootstrapping method to develop an annotated
corpus, which is especially useful for languages with few available resources.
The method consists of taking advantage of the collaboration of several
taggers. The cases in which a majority of taggers agree present a higher
accuracy, and are used to retrain the taggers in an iterative approach. We
have applied this method to improve the tagging accuracy in the annotation
of the LEXESP corpus.

3.3. On the Evaluation and Comparison of Taggers. In chapter 7, we
point out several difficulties arising when evaluating and comparing tagger perfor-
mances against a reference test corpus, and we make some criticism about common
practices followed by the NLP researchers in this issue. One of the drawbacks of
such evaluation practices is that taggers are tested and compared against noisy
corpora. We have proven that in this case, no reliable conclusions can be extracted,
and that more rigorous testing experimentation designing is needed.

3.4. On the Survey. Although this is not the most important contribution,
we want to mention the work carried out in the compilation and organization of
an understandable, broad-coverage list of references linking the fields of machine
learning and natural language processing. We think that it provides valuable in-
formation that can contribute to ease the approach of any researcher to the use of
machine learning techniques in processing natural language.

Those interested can consult the following URL to find a comprehensive list of
the references appearing in this thesis:

http://www.lsi.upc.es/~1luism/BibTexDB.html

The available format is BibTex and several links are provided to help obtain
postscript versions of the original papers.

3.5. From a Practical Perspective. The present work has been developed -
inside the framework of European and Spanish research projects. As a result of
this, some practical tools and resources have been developed. In particular, there
are available taggers for English and Spanish, and a general framework for mor-
phosyntactic analysis, tagging and parsing of unrestricted Spanish texts.

The reader can access these tools (and others available) through the URL of
the Natural Language Research Group at the Software Department of the Catalan
Polytechnical University: http://www.1lsi.upc.es/~acquilex/nlrg.html

The LEXEs?P annotated Spanish Corpus will be also available for research pur-
poses. The contact information is included in appendix E.
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4. Overview of the Thesis

This section describes the contents and the organization of the rest of the thesis.

The body of the work is covered by chapters 3, 4 and 5. They describe the use
of decision trees for tagging English and Spanish languages. A complete empirical
evaluation is presented and, additionally, the annotation of a Spanish corpus of over
5 million words is described. These chapters are complemented with a survey of
the state of the art (chapter 2), a study about the ability of ensembles of classifiers
to improve tagging results (chapter 6), a review of evaluation and comparison of
taggers, including a comparison with closely related approaches (chapter 7), and a
final chapter providing general conclusions (chapter 8).

More particularly, the material presented in each chapter is summarized below.

Chapter 2 State of the Art. This chapter surveys the state-of-the-art
main approaches related with the thesis contents. It is divided into four sections,
accounting for. 1)} Corpus-based NLP; 2) Part—of-speech Tagging; 3) Applying
Machine-learning Techniques to NLP; and 4) Decision Trees. The main contribution
is the broad survey into the application of ML paradigms in addressing natural
language ambiguity problems.

Chapter 3 Tagging—oriented Language Modelling Using Decision
Trees. In this chapter our approach of applying Statistical Decision Trees to
model part—of-speech ambiguities is explained. We outline the general acquisition
algorithm and some particular implementations and extensions. The models ob-
tained are evaluated against a reference corpus with a rigorous methodology. The
problem of unknown words is also addressed and evaluated in this chapter. Finally,
two techniques are outlined to deal with the problem of data sparseness in training
sets with few examples.

Chapter 4 Tagging with the Acquired Tree-based Models. This
chapter is devoted to the construction and evaluation of taggers using acquired
tree~based models. In particular, we present two new taggers (based on different
approaches) that use the statistical information provided by the decision trees, in
a fairly simple way. A concrete problem of specificity is discussed and an extension
to the second tagger is presented in order to incorporate more general n-gram
information in a back-off approach. Additionally, the possibility of adding more
information is explored by adapting our trees to a flexible-model tagger based on
relaxation labelling.

Chapter 5 Spanish Part—of-speech Tagging. In this chapter we develop
taggers for Spanish in a framework defined by the LEXEspP project, consisting of
the annotation of a large, general-use Spanish corpus. We describe the annotation
of this corpus, and we also propose an approach of tagger combinations to improve
results when training material is scarce.

Chapter 6 Ensembles of Classifiers. In this chapter we explore the pos-
sibility of improving tagging results by paying more attention to the most relevant
ambiguity cases. The approach studied consists of constructing ensembles of in-
dividual classifiers, and combining them in a voting strategy. This is a currently
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emerging trend in the ML community, from which we explore some standard algo-
rithms. Other particular approaches are also proposed. Finally, some criticism is
given regarding the results obtained.

Chapter 7 Related Work: A Comparative Analysis. This chapter is
devoted to the study of the evaluation and comparison of taggers. It consists of
two parts. In the former, a list of problems regarding the comparison of taggers is
presented, with particular attention to the problem of the noise in testing corpora.
The latter provides a comparison between our work and other relevant approaches
appearing in the literature, and previously described in chapter 2.

Chapter 8 Conclusions. The last chapter provides general conclusions,
summarizes the research and contributions described in this thesis, and outlines
several directions for further research.

Appendixes. Some appendixes have been added in order to cover the com-
plementary details that, for the sake of brevity, have not been included in the
chapters.

More precisely, the list of included materials is:

e Appendix A which includes the references of some papers published in re-

lated conferences and journals, mainly covering the contents of the present
thesis. - .

e Appendix B which is devoted to presenting some definitions and technical
details of the parts of the thesis which are not original work. In particular we
describe the different measures for attribute selection, the pruning algorithm,
and the relaxation-labelling algorithm.

e Appendix C fully describes the tagsets used for tagging the English and
Spanish corpora.

e Appendix D includes a complete description of a real acquired decision tree
which is partially presented as an example in chapter 3.

o Appendix E provides extra information about the research projects in which
the present work has been developed.



CHAPTER 2

State of the Art

The chapter is intended to be a general survey of the state of the art in the
main areas related with the thesis contents. It is divided into four sections, ad-
dressing the following topics: (1) Corpus-based NLP; (2) Part-of-speech tagging;
(3) Applying machine-learning techniques to NLP; and (4) Decision trees from a
machine-learning perspective.

Roughly speaking, the first one contains an historical introduction to corpus-
based NLP, jointly with a broad set of references to introductory books and tutorial
notes about related topics. In addition, it contains the description (with some
comments about their degree of annotation) of several of the most popular corpora
that serve as test benches for many NLP applications, and some interesting pointers
to currently available tools and corpora.

Section 1 surveys the work performed around POS tagging, from the latest
seventies to the present, paying special attention to the current lines of research, and
including some discussion points about related issues, e.g., smoothing, treatment of
unknown words, existing comparisons of taggers, etc.

Section 2 provides a broad—coverage compilation of references about the ap-
plication of general machine-learning algorithms to address several NLP problems,
involving some kind of language learning. This line of collaboration between both
disciplines has been very productive in the latest years and we think that it would
be even more in the near future.

Finally, the fourth section contains a description of tree-structured classifiers,
from a machine learning perspective, with the aim of properly fixing the notation,
and identifying some important issues concerning supervised decision-tree induc-
tion that will frequently appear in the following chapters.

1. Corpus-—based Linguistics

In recent years many efforts have been devoted to to enrich the conceptual and
linguistic components of the systems for natural language processing. While the
more traditional NLP applications, such as natural language interfaces for access-
ing data bases, tutoring systems, expert systems, etc., could be designed within a
relatively coarse semantic domain with a limited linguistic coverage, other appli-
cations such as spelling or grammatical correction, machine translation, automatic
summarization, and especially information retrieval and information extraction are
potentially applicable to any domain and they are required to process big amounts
of information. Therefore, these systems should be able to surpass the reduced
scope limitations to guarantee a minimum coverage and robustness. Additionally,
most of these applications based on the massive processing of non restricted natural
language texts are the focus of interest not only for the research community but
also for industrials, since they may result in commercial products with a wide range

25
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of application. We mainly have in mind all the NLP applications related to the use
of Internet and WWW, which are nowadays clearly ‘in fashion’.

The above described situation led to a big resurgence of the empiricist (by op-
position to the rationalist) approach to natural language acquisition and processing
during the last decade. This approach is based on the belief that most of the lin-
guistic knowledge can be achieved through experience and that it can be acquired
from textual corpora, by means of a small set of simple mechanisms, including
association and generalization.

This new dimension of NLP has caused two main effects:

e The development of alternative (or complementary) techniques to the strictly
linguistic techniques applied so far (the use of statistical techniques for syn-
tactic analysis and for semantic interpretation of sentences is a significant
example).

e The development of techniques for automatically acquiring linguistic knowl-
edge (especially of lexical nature, but also structural), with the aim of sub-
stituting, or at least complementing, the very expensive manual construction
of models.

There are many currently available surveys, tutorial notes, and books describing
the application of these statistically-based techniques in the current NLP trends.
Among others we recommend the following list:

e Two general (and relatively old) introductory papers by Leech and Fligel-
stone [LF92], and Church and Mercer [CM93]. See also the tutorial notes
by Liberman [LS93]. '

e A compendium for a course on Statistical Approaches in Computational
Linguistics by Krenn and Samuelsson [KS97], which emphasizes the statis-
tical aspects. In the same direction, see also the tutorial notes [Dag98] by
Dagan.

e The first comprehensive book about all these topics, “Statistical Language
Learning” by Charniak [Cha93], and a useful complementary review of the
same book provided by Magerman [Mag95b). .

e From a more philosophical perspective, we recommend the article by Abney
[Abn96] which, in words of the same author, is “an apologize for statisti-
cal methods, written for a linguistic audience”. Also interesting from the
linguistic perspective, we find the book by McEnery and Wiison [MW96],
which also provides an introductory course on corpus linguistics accessible
on the Web. ’

e Two more recent books covering similar topics: “Corpus-based Methods in
Language and Speech Processing” [YB97], and “Foundations of Statistical
Natural Language Processing” by Manning and Schiitze [MS99]. Both are
excellent. The first puts the accent on speech processing. The second is
currently in press but a draft is available through Internet.

¢ Finally two more specific articles by Charniak [Cha97] and Abney [Abn97]
which talk about statistical methods applied to parsing, and a survey on
WSD by Ide and Véronis [IV98].

The last but not the least is the appearance of machine learning techniques
for performing natural language learning. This trend aims to overcome some lim-
itations of the pure statistical approach and is getting more attention every day.
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See [WRS96] for a collection of relevant articles around connectionist, statistical,
and symbolic approaches to learning for NLP. Additionally, in sections 2 and 3
of the present chapter, we provide specific information and references about ML
techniques applied to corpus-based NLP with an special emphasis on POS tagging.

The aforementioned success of statistical methods in natural language pro-
cessing would not have been possible without the existence of large amounts of
machine-readable text from which statistical data could be collected. A compilation
of naturally occurring linguistic phenomena in newspapers, literature, parliament
acts, etc. is known as a teztual corpus (or simply corpus), from which linguistic
information can be derived. Corpora are constructed with the aim of compiling a
representative sample of the usage of a language, a particular domain, a linguistic
use, etc.

Using corpora as a source of linguistic information has many advantages.

e Huge amount of information: Small corpora contain about one million words,
while the biggest contain over a hundred millions. As a consequence, statis-
tical methods for processing and acquiring linguistic information apply very
well,

e They are good benches to test and verify theories and intuitions about lan-
guage.

e They are easy to classify by styles, domain, epoch, etc., and thus they al-
low a selective study and comparison of language utterances relative to the
particular domains.

e They provide specific linguistic information which is very difficult to ob-
tain from other sources or from introspection, and which is very useful for
developing lexical resources, estimating parameters of statistical models, in-

- ducing grammatical structure, etc. We refer, for instance, to collocations
(co-occurrrence relations between words, senses, semantic classes, syntac-
tic categories, etc.), frequency counts of lexical units, typical contexts in
which these units appear, lexical relations, examples of real use, argument
structure (number, type, obligatory nature, etc. of the arguments that a
particular verb admits), selectional restrictions (semantic restrictions that
a verb can impose to its arguments), nominal compounds, lexicalized units,
idioms, etc.

1.1. Corpora Compilation. The compilation of raw text corpora is no longer
a severe problem, since nowadays most documents, books and publications are writ-
ten on a machine readable support. But corpus have a higher linguistic value when
they are annotated, that is, they contain not merely words, but also linguistic in-
formation on them (part—of-speech, semantic labels, syntactic analysis, etc.).

When a corpus compilation project is started, some important issues must be
taken into account. '

First, whether the corpus should be balanced or not. This is an open question
that has not found a definitive answer in years. As stated in [CM93], it comes down
to a tradeoff between quantity and quality: while American industrial laboratories
(e.g. IBM, AT&T) tend to favour quantity, the BNC, NERC, and many dictionary
publishers —especially in Europe— tend to favour quality. Biber [Bib93] claims
for quality, since poor sampling methods or inappropriate assumptions can produce
misleading results.
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Second, which annotation will be included in the corpus, and how will be the
annotation task performed. Automatic annotation introduces a certain amount of
errors in the corpus, while manual annotation is very expensive in terms of hu-
man resources. Some research aiming to reduce the human effort when annotating
training corpus is presented in [ED96]. It consists of algorithms which select the
most informative samples that should be annotated to be later used in training.
The same idea is present in the work by Lehmann et al. [LORP*86], who devel-
oped a database containing positive and negative examples of different linguistic
phenomena, so that a test or training corpus focused on a certain phenomena can
be built at a low cost. See [ACO92] for further information on corpus design and -
development.

1.2. Existing Corpora. The most well-known corpora are probably the Brown
Corpus (BC) and the London-Oslo-Bergen (LOB) corpus. The BC [FK82] contains
over a million words of American English and it was tagged in 1979 using the Tag-
GIT tagger [GRT71] plus hand post—edition. The LOB corpus contains the same
amount of British English was also tagged in 1979. These two corpora {and other
linguistic materials) can be obtained through the International Computer Archive
of Modern English {ICAME).

Nowadays, corpora tend to be much larger, and are compiled mainly through
projects and initiatives such as the Linguistic Data Consortium (LDC), the Consor-
tium for Lexical Research (RLC), the Electronic Dictionary Research (EDR), the Eu-
ropean Corpus Initiative (ECI), or the ACL’s Data Collection Initiative (ACL/DCI).

Those associations provide corpora as the Wall Street Journal (WSJ, 300 mil-
lion words of American English), the Hansard Corpus (bilingual corpus containing
6 years of Canadian Parliament sessions), the Lancaster Spoken English Corpus
(SEC), the Longman/Lancaster English Language Corpus, the Nijmegen TOSCA
corpus, the 200-million-word Bank of English corpus (BoE) —tagged using the
ENGCG environment [J&r94]—, or the 100-million—word British National Corpus
(BNC) tagged with the CLaws4 tagger [LGB94].

Surveys on existing resources can be found in [Edw93, WSG96]. Although |
most corpora limit their annotation level to part—of-speech tags, some offer higher
level annotations and constitute an important source of knowledge for those re-
searching in NLP. We find, for instance, syntactically analyzed corpora (also called
treebanks) such as the Susanne corpus, the Penn Treebank (3 million words from the
WSJ corpus) [MMS93], or the IBM/Lancaster treebank. Also, SemCor [MLTB93]
contains over 200,000 words of the Penn Treebank semantically tagged using Word-
Net synsets [MBF*91]. A review of the state of the art of the art in using parsed
corpora can be found in {[SA94].

Some corpora have been specifically developed to serve as test benches for
particular NLP tasks. This is the case of the corpora related with the Message
Understanding Conferences (MUC) on information extraction, those related with
the Text REtrieval Conferences (TREC) on information retrieval, and those of the
SENSEVAL workshop on semantic disambiguation.

Until a few years ago, the existing corpora were all of the English language.
Nevertheless, the success and applicability of corpus in linguistics as well as in NLP,
has raised a wide interest and caused its quick extension to other languages. The
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already mentioned ECl, the PAROLE project, or the ELRA association present sig-
nificant contributions. The following list (not exhaustive) provides some examples
of available corpora of languages other than English!.

e Spanish: The LEXEsP corpus [CCP95, CCM98] which contains 5.5 mil-
lion morphosyntactically tagged words, the corpus of the Real Academia
Espanola, which contains 200 million tagged and lemmatized words, the
CRATER corpus of morphosyntactically tagged telecommunication manuals,
and the ALBAYZIN spoken corpus. A good information source on Spanish
lexical resources is the report edited by the Instituto Cervantes [Cer96].

s German: The NEGRA corpus from the Saarland University, which contains
German newspaper texts with syntactic annotation.

e French: The ‘Trésor de la Lange Francaise’ (TLF) which contains 150 million
words of written French.

o Swedish: The ‘Bank of Swedish’ corpus and other materials collected by the
Department of Swedish of the University of Géteborg.

e Catalan: The CTILC corpus from the Institut d’Estudis Catalans, which
compiles over 50 million words of modern Catalan.

e Basque: The EEBS corpus, which contains a balanced sample of about four
million words of modern Basque, and which is morphologically annotated
and bracketed.

e Bosnian: The Oslo Corpus of Bosnian Texts, which consists of apprdxi—
mately 1.5 million words of general texts.

2. Part—of-speech Tagging

2.1. Linguistic Taggers. When automated part of speech tagging was ini-
tially explored in middle sixties and seventies [Har62, KS63, GR71], people
manually engineered rules for tagging, sometimes with the aid of a corpus. The
most representative of such pioneer taggers was TAGGIT [GR71], which was used
for an initial tagging of the Brown Corpus (BC). From that time to nowadays, a lot
of effort has been devoted to improving the quality of the tagging process in terms
of accuracy and efficiency.

Current linguistic-based taggers still represent the knowledge involved as a
set of rules, or constraints, written by linguists and obtained by introspection and
available statistical tools for corpus studying. However, current models are much
more expressive, comprehensive and accurate and they are used in very efficient
disambiguating algorithms. The linguistic models range from a few hundreds to
several thousand rules, and they usually require years of labour. The work of the
TOSCA group [Oo0s91] and, more recently, the development of EngCG, an English
shallow parser based on Constraint Grammars, at the Helsinki University [VJ95,
Vou95, KVHA95] can be considered the most important in this direction. The
Constraint Grammar formalism has also been applied to other languages, as Turkish
[OK94] and Basque [AAA195].

YA very useful annotated list of tools and resources for statistical natural lan-
guage processing and corpus-based computational linguistics can be found at the URL:
http://www.sultry.arts.usyd.edu.au/links/statnlp.html.
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2.2, Statistical Taggers. The most extended approach nowadays is the sta-
tistical, or probabilistic, family. This approach basically consists of building a
statistical model of the language and using this model to disambiguate a word se-
quence by assigning the most probable sequence of tags given the concrete sequence |
of words in a maximum-likelihood approach. The language model is coded as a set
of co—occurrence frequencies for different kinds of linguistic phenomena, commonly
reduced to a simple set of n—gram probabilities, collected from previously annotated
corpora.

The seminal work in this direction is the CLAWS system [LGA83, GLS87],
which used bigram information and was the probabilistic version of TAGGIT. It
was later improved in [DeR88] by using dynamic programming for efficiently cal-
culating the most probable sequence, and extended in a recent version CLAwS4
[LGB94] for tagging the British National Corpus (BNC). Other works that can be
placed in the statistical family are those of [Sam93, Sam95].

Statistical taggers can be, equivalently, modelled with Hidden Markov Models
(HMM). This approach has the advantage that the parameters of the model can
be re-estimated with the Baum-Welch (or. Forward-Backward) algorithm [Bau72]
to iteratively increase the likelihood of the observed data (in this case the corpus).
This permits to avoid the use of annotated training corpora or at least to reduce the
amount of training data needed to estimate a reasonably good model. HMM were
initially applied to speech processing in the 1970s by Baker at CMU and by Jelinek
and colleagues at IBM. HMM-based taggers were imported from speech recognition
and applied to tagging by [BM76, DM84]. The tagger by Church [Chu88],
which used a trigram model, has been a basic reference for all successors [DeM90,
MSW91]. The Baum—Welch re-estimation algorithm was first used in the XEROX
tagger, by Cutting et al. [CKPS92, Kup92]. Among the numerous successors we
may cite [WSP193, CHIP93, Mer94, Elw94, BCPS94, LGB94, SN95]. In -
particular, Merialdo [Mer94] presents a valuable overview of statistical tagging.

Despite no pretagged text is necessary for training the previously described
HMM-based taggers, a lexicon is still needed that supplies the possible parts of
speech for every word. There have been some efforts at learning parts of speech with
no a priori knowledge about grammatical categories, using unannotated corpora as
the sole source of information in a learning language from scratch approach (see
[Pow97]). Some examples in this direction are the works by Schiitze [Sch93,
Sch95b] considering only word distributions. Genetic algorithms have been used
for the same purpose in [Lan94a, Los94).

Some authors have performed comparisons between linguistic (inside the Con-
straint Grammar framework) and statistical taggers, with favorable conclusions,
in terms of tagging accuracy, to the linguistic family. This is the case of [CT95,
sVv9aT).

2.3. Machine-Learning—based Taggers. Although the statistical approach
involves some kind of, either supervised or unsupervised, learning of the parameters
of the model from a training corpus, and although machine learning algorithms for
classification tasks can be seen as statistical in nature, we place in the machine-
learning family only those systems that acquire more sophisticated information than
a n—gram model and those that use classical paradigms of symbolic and subsymbolic
machine learning.
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First attempts in acquiring disambiguation rules from corpus were done by Hin-
dle [Hin89]. More recently, Brill’s tagger and variants [Bri92, Bri94a, Bri95b,
RS95, AH96)] automatically learn a set of transformation rules which best repair
the errors committed by a most—frequent-tag tagger. The learning algorithm he
proposed is called Transformation-Based Error-Driven Learning and it has been
widely used in tackling several ambiguity problems of NLP. In [Bri95b] it is in-
cluded a version with semi supervised training that achieves roughly the same ac-
curacy.

Instance-based (or example-based) learning has been also applied by several
authors to resolve a number of different ambiguity problems, and in particular to
tagging. This is the case of {[Car93a, DZBG96].

Decision trees have been used in POS tagging and parsing. This is the case of
[BJL*92b, Mag95a]. The work that we present here also applies decision trees
induced from tagged corpora to part-of-speech disambiguation [MR97, MR98].
Additionally, the previously referenced work [DZBG96] can be seen as an appli-
cation of a very special type of decision trees.

Techniques borrowed from the grammatical inference field have been used also
for constructing competitive taggers [PP98]. The work in [STV96] is an effort of
automatically acquire Constraint Grammar rules from tagged corpora.

Within the subsymbolic approach, we would like to mention the works in
[NMKS90, Sch93, EG93, Sch94a, MI98] that apply neural net architectures
to POS tagging.

Finally, there also exist some mixed approaches. For instance the forward-
backward algorithm (used to reestimate the parameters of a HMM) is used to
smooth decision tree probabilities in the works of [BJL*92b, Mag95a], and, con-
versely, decision trees are used to acquire and smooth the parameters of a HMM
model in [Sch94b, Sch95a]. Chapter 4 of this thesis represents another step in
the same direction as it implements a HMM-based tagger that combines n-gram
information with the acquired decision trees. ’

2.4. Current Research. The most recent efforts have been done in the fol-
lowing six directions:

2.4.1. Increasing the complezity of the language models inside the statistical ap-
proach. The speech recognition field is very productive in this issue. Recent works
try to not to limit the model to a fixed order n—gram by combining different order
n-grams, morphological information, long—distance n-grams, non—adjacent words,
etc. In particular we find Aggregate Markov Models and Mixed Markov Models in
[BPSt92, SP97)], Nonuniform Markov Models [RT96), Hierarchical Non-emitting
Markov Models [RT97], Triggering Pairs [Ros96b], addition of linguistic infor-
mation [BFHM98], Mixtures of Prediction Suffix Trees [PST95], etc. Some of
these approaches have already been applied to POS tagging. It is the case of: Vari-
able memory Markov Models [SS94], Mixture of Hierarchical Tag Context Trees
[HM97] and Triggering pairs applied to tagging and parsing [BEKS98, BFK98].

Additionally, Samuelsson [Sam97] generalized the standard model for HMM-
based part—of-speech tagging of input word strings to handle input word graphs,
were each word has been assigned a probability.

2.4.2. Combination of statistical information. The combination of statistical
information of a different generalization degree has been proposed by several of
the statistically-based taggers previously mentioned, as a way of dealing with the
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sparseness of the data and to obtain more accurate estimations of the parameters of
the model. However, relatively simple techniques have been used: Back-off, linear
interpolation, successive abstraction, etc. Recently, there have been several efforts
in the direction of providing more flexible environments to integrate and combine
different sources of information (sometimes with the aim of providing a general
framework for solving several ambiguity problems at a time). The following are
some examples:

The Maximum Entropy (ME) approach —briefly described in section 2.5.3—
provides a general way for combining statistical information from different sources
[JPCK96, Rat96] that have proved to surpass the maximum-likelihood approach.

The combination of statistical and linguistic information has been performed
usually inside rule/constraint-based environments, as in [0T96, VP97, Pad96,
EAAt98, TO98, TRG97].

Part of the work described in this thesis (chapter 4) and referenced in [MP97,
Pad98] presents a hybrid approach consisting of applying relaxation techniques
over a set of constraints involving statistical, linguistic and machine-learned infor-
mation.

2.4.3. Improving the efficiency of taggers. Several rule-based taggers have been
impressively speedup by compiling the pattern—action rules into a single determin-
istic finite-state transducer (FST) [Moh97]2. This is the case of Brill’s tagger and .
others [RS95, TR97]. The more complex constraints appearing in the Constraint
Grammar formalism can also be properly compiled into a single deterministic FST
by using the replace operator [Kar95, KK96]. The resulting tagger [Tap96], also
applied to Turkish [T 098], is one of the fastest and the most accurate of the ex-
isting English taggers. In [Kem98] it is suggested that the composition of FSTs is
an adequate framework for the combination of several different rule-based taggers.

Finally, Hidden Markov Models can also be viewed as stochastic finite-state
transducers [PRS94] and it is possible to closely approximate them by compos-
ing FST in a deterministic way [Kem97, Kem98], without a significant loss in
accuracy. The achieved speedup is also very important.

2.4.4. Improving tagging accuracy by combining different taggers in a voting ap-
proach. The main contributions to this area are [Hal96, BW98, HZD98, M198,
MPRIS|. The experiments and results presented in chapter 6 are also in the same
direction. For more information see the introductory survey at the beginning of
chapter 6.

2.4.5. Construction of POS taggers for a great variety of languages. This is-
sue implies taking into account new problems as: Small training corpora, very
big tagsets, complex morphology in highly agglutinative languages with produc-
tive inflectional and derivational morphological phenomena, etc. See, for instance,
[Kem94, Lud97, 0K94, Sch95a, AAA*95, TR96, HH97, HH98, MPR98|.

In particular, taggers have been described for the following languages: Basque
[AAA195], Czech [HH98], Dutch [DK95a, DZB96], French [CT95, TRG95], .
German [Fel95, Sch95a, LRW96], Greek [DK95a], Italian [DK95a], Japanesse
[MMW93, HM97], Portuguese [ML96], Swedish [Cut93, BS95], Spanish [MT94
SN95, AH96, MPR98], and Turkish [0K94].

2FST techniques had been successfully applied previously to morphological analysis [KK 94,
Kos83]
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2.4.6. Providing adaptive and transportable taggers. The main goal here is to
provide taggers which are able to move from one domain to another at a very low
cost and without serious degradation in tagging accuracy. We think that relatively
little attention has been paid to this important topic. However, Roth and Zelenko
[RZ98] have recently presented the SNOW architecture: An adaptive tagger based
on a network of linear separators, which benefits from the ability of learning while
testing new examples (on-line learning), and, so, it becomes more adequate for any
tuning task.

2.5. Related Issues. The following subsections supply some information about
several important issues related to POS tagging, which can greatly influence the
performance of the employed taggers, as well as the process of evaluation and com-
parison of taggers.

2.5.1. The Tagset. With respect to the tagset, the main feature that concerns
us is its granularity, which is directly related with its size.

If the tagset is too coarse, the tagger accuracy will be much higher, since
only important distinctions are considered and thus the disambiguating task to be
performed is much easier. Nevertheless, the results would probably supply an ex-
cessively poor information. On the contrary, a too fine-grained tagset would enrich
the supplied information, while would probably decrease the tagger performance
—Dbecause the model will have to be much richer and so, more difficult to learn.

Even though a very complete tagset is used it has to be noted that some fine
distinctions in POS tagging cannot be solved on the basis of purely syntactic or
contextual information, but need some semantic, or even pragmatic, knowledge.

Some samples of commonly used tagsets can be found in [KS97], in which the
word level tags —such as POS tags— are divided into three classes, according to
the number of linguistic dimensions they specify:

o Single-dimension tags, which will usually contain the syntactic category of
the word, such as N (noun), V (verb), A (adjective), D (determiner), etc.

o Multiple-dimension tags, which incorporate additional word features such
as gender, number, person, etc. For instance the tag VIPS3 could indicate
that a word form is a verb with the features: indicative, present, third person,
and singular.

o Combination of separate multiple dimensions in sets (or readings). As in
Constraint Grammar formalism, a word would have a set of labels, each one
containing information on a single linguistic feature. For instance, ((SVO) V
PRES -5G3 VFIN) states that a word is a verb, transitive, present, non-third
singular, finite. This representation has the advantages of allowing a selec-
tive use of features (i.e. by selecting some subset of them), and enabling the
introduction of new dimensions, as for instance syntactic roles or semantic
information.

Some studies on the tagset size influence on a tagger results have been done.
For instance, Sdnchez and Nieto [SN95)] proposed a 479-tag tagset for using the
Xerox tagger on Spanish, and later reduced it to 174 tags since the first proposal
was considered too fine-grained for a probabilistic tagger. (this is the same situ-
ation that we will find in chapter 5 when applying the presented POS taggers for
disambiguating a Spanish corpus).
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On the contrary, rule-based linguistic taggers adapts very well to large tagsets.
In the paper by Samuelsson and Voutilainen [SV97] a statistical tagger is compared
to the Constraint Grammar based tagger. In order to make the comparison feasible,
a pre—processing step of tagset reduction is required for the statistical tagger.

Elworthy [Elw94] states that the tagset sizes (48 tags for the Penn Treebank
and 134 for the LOB corpus) do not affect greatly to the behaviour patterns of the
re~estimation algorithms. The work in [BCPS94] is also related with this topic,
since POS tagging experiments on different languages (English, Dutch, French and
Spanish), each with different corpus and tagset were tested and compared. Finally,
the work in [TSHS96] present an elaborate methodology for comparing taggers
which takes into account, among others, the effect of the tagset on the tagger
evaluation.

Allin all, when a tagset is about to be designed, some aspects should be care-
fully considered in order to take appropriate decisions. Such aspects include: POS
tagger technology to be used (e.g. statistical, rule based, supervised/unsupervised
learning?), available resources {e.g. for hand annotating a big enough training cor-
pus), type of NLP application (does category distinctions suffice or more complex
information is needed for interacting with subsequent modules?), etc.

2.5.2. Handling Unknown Words. Another factor that can affect tagger accu-
racy is the way in which unknown words are handled. An unknown word is a word
that it is not recognized by the NLP modules previous to the POS tagger. If a
broad coverage morphological analyzer is used (as it is normal for highly inflected
. languages), unknown words consist basically of uncommon proper nouns, odd nu-
merical expressions, typewriting or printing errors, etc., which represent a very
small proportion of the total number of words, and which are generally very easy
to identify and properly annotate. A more serious problem appears when a rela-
tively small word-form dictionary, derived from the annotated training corpus, is
used as the morphological analyzer (note that this is a common feature of existing
English POS taggers). In this case, unknown words represent a bigger proportion of
the total and they include many nouns, adjectives, verbs, etc., which do not occur
in the training corpus.

The most usual methods for dealing wit unknown words are the following:

e Do not consider the possibility of unknown words. That is, to assume a
morphological analyzer which provides any unknown word with the set of
possible tags (usually with no information about relative probabilities). This
approach, which is often referred to as the closed vocabulary assumption
tends to produce higher performance results, though it is in fact less robust
than the following (running under the open vocabulary assumption).

e Assume that unknown words may potentially take any tag —excluding those
corresponding to closed categories (preposition, determiner, etc.), which are
considered to be all known. Although this is more realistic than the previous
approach, it introduces more noise (and sometimes high levels of ambiguity},
and so the performance reported will probably be lower.

e Use available information to guess which are the candidate tags for a given
unknown word. This is the most robust solution, and it has been applied in
different ways by several researchers. For instance, Meeter et al. [MSW91],
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and Weischedel et al. [WSP+93] take into account inflectional and deriva-
tional endings as well as capitalization and hyphenation to guess the possi-
ble POS tags for a word, while Adams and Neufeld [AN93] use a statistical
model of fixed-length suffixes combined with capitalization features to guess
the possibilities for unknown words. In a similar way, Schmid [Sch94b]
and Samuelsson and Voutilainen [SV97] construct a statistical-based re-
verse suffix-tree. Ren and Perrault [RP93] perform a frequency study of
the cases when a word is actually unknown or when it is a typewriting
error, and a thorough subclassification of each case is exposed. Machine
learning techniques are also used to deal with unknown words: Mikheev
[Mik96b, Mik96a, Mik97] learns morphological rules from a lexicon and
a corpus using unsupervised statistical acquisition, which can be later used
to guess the possible tags for an unknown word. Finally, Brill [Bri95a]
uses transformation-based error-driven learning to acquire a set of trans-
formation rules for disambiguating unknown words, and Daelemans et al.
[DZBG96] uses memory-based learning to acquire a specific base of exam-
ples for the same purpose.

As it will be explained in following chapters we first used the closed vocabulary
assumption on the initial tagging experiments (chapter 4), and then we acquired
specialized decision trees for dealing with the real unknown words (chapter 6).

2.5.3. Smoothing Techniques. Most of the supervised-learning approaches to
POS tagging, and particularly the pure statistically-based ones, suffer from the
problem of data sparseness.

The low or zero frequency events produce innacurate estimations for the prob-
ability of events than happen scarcely in the training set. For instance if event A
is observed to happen once and event B to happen twice, the maximum likelihood
estimates (MLE) consider B double probable than A, while this is not necessarily
true. The zero—frequency events problem is even worse, since zero probability is as-
signed to events not observed in the training corpus, when they are not necessarily
impossible to happen.

The term smoothing is applied to describe any method used to counteract the ef-
fect of statistical variability (which is particularly relevant when using small training
sets). Smoothing can be done in many ways. For example by re-arranging the prob-
ability mass in order keep a part of it for unobserved events (count re-estimation
or discounting methods), backing off to lower—order models, or combining models
by linear interpolation (also called deleted interpolation). Maximum Entropy mod-
elling is an alternative to deal with sparseness and with the combination of several
statistical knowledge sources.

Count re-estimation methods, such as Add—One (also known as Laplace’s law),
or Good-Turing estimation [Goo053], try to correct the false estimations of rare
events by re—distributing the frequency countings before the estimation. Add-
One adds one to all frequencies, thus avoiding zeroes and reducing the proportion
between rare happening events. Lidstone’s law is a variation of Laplace’s which
adds not one but some smaller positive value A.

Good-Turing redistributes the amount of observations to favour those events
with less observations. Usually this redistribution is either smoothed or performed
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only on low—frequency events, because it produces unreliable results for high fre-
quency events. Church and Gale [CG91] presents a comparison of Add-One and
Good—-Turing techniques. .

Smoothing through linear interpolation [BJM83, BBDM89, Cha93] is per-
formed by computing the probability of an event as the weighted average of the
estimated probability of its sub—events (which represent more general, and thus .
more frequent, information). For instance, the smoothed probability of a irigram
could be computed as the weighted average of the estimated probability for the
trigram itself, and for the corresponding bigram and unigram, that is,

P(xn‘xn—lyzn—Z) N A 'ﬁ(xn) + A2 ‘ﬁ(xnh:n—l) 4+ As ’ﬁ(xnkcn—% xn—l)’

where the optimal values for \; are usually computed with the Expectation Maxi-
mization (EM) algorithm [DLR77}.

A particular case of linear interpolation is the Backing—off approach {Kat87], in
which the combination of knowledge sources is performed by selecting only the best
knowledge source among the available, instead of calculating a weighted average of
all of them. The criterion for choosing the best information source (or history) is
very simple: select the highest order history that has more than N examples (note
that this is equivalent to set all A weights to zero except that of the selected history,
which is set to one, in the interpolative approach).

Other approaches to smoothing include: estimation of n—grams by using de-
cision trees [Sch94b], Kneser-Ney smoothing [KIN95], Successive Abstraction by
Samuelsson [Sam96], using similarity metrics for smoothing in a Memory-Based
Learning environment [ZD97], etc. See [YB97] for an excellent survey, and [CG96)
for a complete empirical evaluation of several smoothing methods applied to lan-
guage modelling.

Finally, a recent approach which handles the scarce data problem is Maximum
Entropy Estimate [Ros94, Ris97, Rat97b], which on the contrary than MLE, -
assume maximum ignorancé (i.e. uniform distribution, maximum entropy) and ob-
served events tend to lower the model entropy. Under this approach, unobserved
events do not have zero probability, but the maximum they can given the observa-
tions. That is, the model does not assume anything that has not been specified.
Additionally, the ME approach allows an easy and natural combination of several
knowledge sources, from which very weak hypothesis need to be assumed.

2.5.4. Comparisons of Taggers. Unfortunately there are few rigorous compar-
ative studies of alternative approaches to POS tagging. By rigorous, we mean that
the different POS taggers should be trained and tested using exactly the same
corpora, and that simple performance figures do not suffice for extracting reliable
conclusions, but it is necessary to observe the behaviour of the taggers when chang-
ing the granularity of tagsets, the domain of application, etc.

However, we want to mention some works around the comparison and evalua-
tion of existing taggers. For instance, in two recent papers [HZD98, BW98] some
English POS taggers are combined in order to improve their individual results. As
a first step of this work, a comparison of all taggers is performed using the same
training and test sets.

The first of these papers puts together a statistical trigram—based tagger, the
MBT tagger [DZBG96], Brill’s TBL tagger [Bri95a], and the ME-based tagger
by Ratnaparkhi [Rat96]. The four taggers are tested on the LOB corpus with the
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following results: The statistical tagger performed worse than the rest; MBT and
TBL were indistinguishable; and ME performed better than the rest.

The second work considers the same set of taggers except of MBT. The test is
performed on the WSJ corpus and again the ME approach shows a slightly higher
performance than the others. Nevertheless, the comparison between the taggers
was not the ultimate aim of these works and thus only absolute accuracy figures
are reported.

Also regarding English POS tagging, Samuelsson and Voutilainen [SV97)] per-
formed a comparison between two antagonistic approaches, that is, statistical vs.
linguistic. To do so, they tested on the Brown corpus a classical HMM trigram tag-
ger and the EngCG-2 tagger [Tap96] based on Constraint Grammars. The results
obtained were definitely favourable to the linguistic approach.

A similar comparison between statistical and linguistic taggers is performed in
[CT95] for the French language. In this case the authors impose a time limit (one
month) for developing both taggers from the scratch. After a month the obtained
taggers achieved a similar performance to that of state-of-the-art English taggers.
Despite the limited time spent on the developing of linguistic rules, the constraint-
based tagger seemed to be superior than the statistical one.

. Finally, regarding German language, several comparisons have been made. Two
initial works [TSHS96, LRW96] compare the performance of a set of statistically
based taggers. More recently, Volk and Schneider [VS98] compare again the TBL
tagger with the statistical tree-based tagger by Schmid [Sch95a]. The test is
performed on a German corpus and the performance achieved by both taggers is
similar. However, the authors identify some types of words for which the behaviour
. of both taggers is different.

2.6. Acknowledgments. Part of the information appearing in the previous
survey has been borrowed from previously reported good introductions and survey
papers about POS tagging. Among others, we specially mention: [Cha93, Mer94,
KVHA95, Bri95a, Abn97, YB97, Pad98]. ’

3. Application of Machine—learning Techniques to NLP

Learning approaches are usually categorized as statistical (also probabilistic
or stochastic) methods and symbolic methods, belonging to the latter the typical
learning paradigms that do not explicitly use probabilities in the hypothesis (deci-
sion trees, instance-based learning, rule-induction systems, etc.)®. We will follow
this criterion in the following exposition merely for clarity reasons. Additionally, we
have treated separately the subsymbolic and connectionist approach, and we have
included a last category, containing unsupervised approaches (all other referenced
methods belong to the supervised family) and the recently emergent approach of
combining classifiers. The main focus will be on the symbolic family.

3.1. Stochastic Machine Learning Approaches. Dietterich [Die97] de-
fine a stochastic model as a model that describes the real-world process by which
the observed data are generated. The stochastic models are typically represented
as a probabilistic network that represents the probabilistic dependencies between

3However, as Roth points in [Rot88), all learning methods are statistical in the sense that
they attempt to make inductive generalization from observed data and use it to make inferences
with respect to previously unseen data.
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random variables. Each node in the graph has a distribution, and from these indi- '
vidual distributions, the joint distribution of the observed data can be computed.
Different approaches vary in how this probabilistic network is acquired and in which
is the method applied to combine individual probability distributions.

The most simple approach to stochastic classification is to use the Naive Bayes
Classifier (NB), originally described in [DHT73], which is based on the Bayes’ the-
orem and the assumption of independence between features. Despite its simplicity
it has been widely used in the ML and NLP communities with a surprising success.
NB provides a simple way to combine information from several sources, however,
when the statistical sources to combine are of different degree of generalization
NB is usually combined with back-off estimates. We can find the NB algorithm
(either the basic version or other variations and hybrids) applied to the following
NLP disambiguation tasks: Context—sensitive spelling correction [Gol95, GR98],
POS tagging [Sam93, RZ98], PP-attachment disambiguation [CB95}, Word sense
disambiguation {GCY93, LCM98] and Text Categorization [LR94, SS98a].

Recently, Lau, Rosenfeld and Roukos [LRR93, Ros94] have proposed a new
approach for combining statistical evidences from different sources, that is based
on the Mazimum Entropy Principle (ME). This work was originated within the
speech recognition field [Ros94], but it has also been successfully applied to: word
morphology [PPL95], POS tagging [JPCK96, Rat96], PP-attachment disam-
biguation {RRR94], identification of clause boundaries [RR97], partial and gen-
eral parsing [SB98b, Rat97a), and machine translation [BPP96]. See [Rat98]
for a broad introduction to ME methods and a survey of existing applications.

Hidden Markov Models [Rab90], already referenced in the previous section,
can be also seen as stochastic models of learning. HMMs had their major success
in the low-level tasks of language disambiguation, that is, speech recognition and
synthesis [Rab90, JMR92] and POS tagging [Chu88, CKPS92, Mer94] (see
the previous section). However, there have been also efforts to extend the use of
HMM to WSD [SSGC97], and partial parsing by tagging grammatical functions
and bracketing simple constituents [BSK97, SB98¢].

The Ezpectation Mazimization (EM) algorithm is an iterative algorithm that
starts with an initial value for the parameters of the model and incrementally
modifies them to increase the likelihood of the observed data [DLR77]. Particular
instances of the EM algorithm have been applied to a number of different problems
in NLP. For instance, the parameter estimation of HMM models is done by the EM
algorithm, namely the Baum-Welch or Forward-Backward algorithm [Cha93)]. The
Inside-Outside algorithm [Cha93] is another version of the EM algorithm related
to the estimation of parameters for probabilistic grammars (Stochastic Context—
Free Grammars, Stochastic Lexicalized Tree—Adjoining Grammars, etc.} and to
the grammar inference from annotated corpus to produce robust parsers [PS92,
Bri94b, Cha93, LS93]. The EM algorithm is also used in the Linear Interpolation
approach for smoothing in HMM-based models [Cha93, Mag95a], in a version of
unsupervised word sense disambiguation by Schiitze [SP95}, and, in combination
with the naive Bayes classifier, in a semi-supervised approach to text classification
[NMTM98].

Finally, log-linear models [Chr97] are also being applied to natural language
processing. In particular, log-linear regression [SD89], a popular technique for
binary classification, is used in {Sie97] to classify verbs for machine translation
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purposes. In the same direction, the work by Marques et al. [MLC98] use log—
linear models to induce verbal transitivity.
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3.2. Symbolic Machine Learning Approaches.

3.2.1. Decision Trees. Decision tree based methods of supervised learmng from
examples represent one of the most popular approaches within the Al field for deal-
ing with classification problems [BFOS84, Qui79, Qui86, Qui93]. See section 4
for details about the decision—tree paradigm of supervised learning.

Their application to NLP is also noticeable, and we find tree-based solutions
to address natural language ambiguity problems at several levels: Speech recog-
nition [BBDM89, BD99], POS tagging [Sch94b, Mag95a, MR95, MR97],
word sense disambiguation [BPPM91], parsing [Mag95a, HSO98], text catego-
rization [LR94], text summarization [MB98], dialogue act tagging [SCVS98a],
co-reference resolution [AB96, ML95], cue phrase identification [Lit94], and ma-
chine translation (verb classification) [Tan96, Sie97].

In Magerman’s approach [Mag95a], decision trees are used for a number of si-
multaneous different decision-making problems, such as: Assigning part~of-speech
tags to words, assigning constituent labels, determining the constituent bound- '
aries in a sentence, deciding the scope of conjunctions, etc. In a previous work
[BJL*92a] a mixed, statistical and tree-based, approach was used to pick up the
correct parse among all possibilities. Other mixed approaches are that of Schmid
[Sch94b] and Kempe [Kem94] who introduced decision trees for estimating the
transition probabilities in HMM-based taggers.

In concept—learning, decision trees are sometimes translated into rules (and
eventually pruned) for representing the target concept. The most representative
system is C4.5-RULES, a variant of C4.5 [Qui93], which is used for instance in
[MB98] for automatic summarization.

There are other popular logic-based rule-induction systems that employ dif-
ferent representations of concepts: Disjunctive normal form (DNF), conjunctive
normal form (CNF) and decision lists. The FoiL algorithm [Qui90] and some
variants [Moo95, WBM95] have been widely used to acquire first-order logic
representations, and, in relation to the NLP classification problems, we find them
tested in many of the already cited works as benchmarks for any other applied
inductive learning algorithm.

3.2.2. Decision Lists. Decision lists [Riv87] are ordered lists of conjunctive
rules (where rules are tested in order and the first one that matches an instance
is used to classify it) which have been applied in a number of concept-learning
systems [CN89, MC95, Qui96b].

Decision lists work well in domains with many attributes (or with attributes .
with many values) because they avoid to some extent the data fragmentation prob-
lem. Thus, regarding NLP, they have been applied to lexical ambiguity resolu-
tion. In particular: Word sense disambiguation, lexical choice in machine transla-
tion, homograph disambiguation in speech synthesis and accent restoration [Yar93,
Yar94b, Yar94a, Moo96].

3.2.3. Transformation-Based Error-Driven Learning (TBL). TBL was intro-
duced by Brill in the early 90s, as a new approach to corpus-based natural lan-
guage learning. The learning algorithm is a mistake-driven greedy procedure that
produces a set of rules. It works iteratively by adding at each step the rule that
best repairs the current errors. Concrete rules are acquired by instantiation of a
predefined set of template rules.
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This algorithm has been applied to a number of natural language problems,
including part—of-speech tagging [Bri92, Bri94a, Bri95b, AH96, RS95], PP-
attachment disambiguation [BR94], parsing [Bri93)], spelling correction [MB97],
and word sense disambiguation [DTS98].

One major drawback of TBL is its computational cost since all instantiations
of templates are tested at each iteration to find the best rule. Recently, Samuel
[Sam98] presented an efficient approximation called Lazy TBL which restrict the
search to a small subset of all possible instantiations, by applying Monte Carlo
sampling techniques, with a very slight decrease in accuracy. In this way, more
complex problems can be faced using LTBL. In particular, Samuel and colleagues
have applied this new algorithm to dialogue act tagging [SCVS98a, SCVS98b],
that is, to label each utterance in a conversational dialogue with the correct dialogue
act, which is a concise abstraction of a speaker’s intention.

Another rule-learning system successfully applied to text categorization is Co-
hen’s RIPPER algorithm [CS96]. In this case, the algorithm learns a classifier in
the form of a boolean combination of simple terms.

3.2.4. Linear Separators. Linear separators with multiplicative weight-update
algorithms®, have been shown to have exceptionally good behaviour when applied
to very high dimensional problems, in the presence of noise, and specially when the
target concepts depend on only a small subset of the features in the feature space.
Clearly, this is a usual scenario in the text processing domain. Roth and colleagues
have designed the SNow architecture [Rot98], a sparse network of linear separators
in the feature space, using the WINNOw algorithm [Lit88], for on-line and adaptive
learning. They have applied it successfully to a broad spectrum of natural language
disambiguation tasks, including context-sensitive spelling correction [GR98], POS
tagging [RZ98], and PP-attachment disambiguation [KR98], achlevmg state—of-
the-art accuracies and surpassing several alternative algorithms.

Other methods based on linear separators have been applied to the text cat-
egorization task. Cohen and Singer [CS96] presented EXPERTS (based on the
weighted majority algorithm [LW94]), Lewis et al. [LSCP96, DBUG98] used
Widrow~Hoff [WS85] and EG (Exponentially Gradient) [KW94] algorithms to
text categorization and routing. Again, another variation on the WinNow al-
gorithm, BALANCEDWINNowt [DKR97), has reported the best results up to
date in the text categorization task. All these algorithms proved to overcome
one of the most commonly used techniques, the Rocchio algorithm and variants
[Roc71, Har92, LSCP96, SS98a, DBUGHSS], which is a classifier that uses
vectors of numeric weights to represent the data (vector space model) and works in
a relevance feedback context.

3.2.5. Instance-based Learning. Instance-based learning algorithms [AKA91,
Aha97, LP97] have appeared in several areas of the Al with many different
names: Similarity—based, example-based, case-based, memory—based, exemplar—
based, analogical, etc. It is a form of supervised, inductive learning from examples,
based on keeping full memory of training material and classifying new examples by
using a sort of k—nn (k nearest neighbours) algorithm.

4Linear threshold algorithms, like WINNOW, are very simple on-line learning algorithms for
2—class problems with binary (i.e., 0/1-valued) input features. To classify new examples, they
simply calculate a weighted sum of input features (linear combination) and outputs 0 if the result
is below the threshold, and 1 otherwise. Wrongly predicted training examples make the weights
of the model change, in a multiplicative way, to better fit the training set.
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We find several uses of this kind of algorithms in NLP tasks. Particularly rele-
vant is the work by Cardie [Car93a, Car94], which addressed the lexical, semantic
and structural disambiguation of full sentences (in limited domains), within an in-
formation extraction (IE) environment. Additionally, her instance-based system
take advantage of decision—trees for identifying relevant attributes [Car93b]. More
recent work refers to relative pronoun resolution {Car96b}, and to the description of
the Kenmore Framework [Car96al, a general framework that embedded machine
learning algorithms for a global treatment of many natural language processing
tasks.

Equally essential is the recent work of the ILK Group at Tilburg Univer-
sity. Daelemans and colleagues have developed the TiMBL (Tilburg Memory-based
Learning Environment) which is a general instance-based algorithm that makes a
compression of the base of examples into a tree~based structure, IGTree [DBW97],
used later for classifying new examples. These trees have proved to reduce signifi-
cantly the space requirements and to be very efficient and accurate in several do-
mains, including: Phonology (stress, word pronunciation) and morphology [Dae95,
BDW96, DBG96, BWD98], POS tagging [DZBG96, DZB96, HZD98], PP-
attachment disambiguation [ZDV97], shallow parsing [Vee98], and smoothing of
probability estimates [ZD97].

The work of other authors include applications to: Partial parsing (chunking)
and context-sensitive parsing [SY92, ADK98], WSD [NL96, Ng97, FITT98],
text categorization [RL94, Y C94], semantic interpretation [Car94], machine trans-
lation [Jon96), and lexical acquisition by analogy [FP96, FMPC98].

3.2.6. Inductive Logic Programming (ILP). This is a discipline devoted to the
inductive learning of Prolog programs from examples. The most relevant work in
relation to natural language learning has been carried out by Mooney and colleagues
at the University of Texas. A general survey of applications of ILP to NLP can be
found in [Moo097]. Particular works include applications to: Grammatical inference
[ZM93, ZM94], automatic induction of natural language interfaces for querying -
data bases [ZM96, TMT97], information extraction tasks [CM97], and learning
the past tense of English verbs [MC96].

3.3. Subsymbolic Machine Learning Approaches.

3.3.1. Neural Networks. In their relation to NLP, neural networks [Hay94]
have been used basically to address low-level problems, such as OCR [SB98a],
speech recognition and synthesis [SR87, Lip89, NMKS90, Lee96, WW96],
and POS tagging [NMKS90, Sch93, EG93, Sch94a, M198). The basic models
refer to feed-forward multilayer neural networks trained with the backpropagation
algorithm, but also include some examples of recurrent networks and ensembles of
several single neural networks.

Other examples addressing more complex problems, sometimes in combination
with symbolic approaches, are: Identification of clause boundaries {HP94], parsing
and sentence analysis [Leh91, CSL93, Lyo94, LD95], grammatical inference
[LSG95], PP-attachment disambiguation [SLL98, Lép98], WSD [TV98], text
categorization [WPW95], and detecting spelling errors [Lew98]. In [Lép98] it is
included a present day survey of neural networks with application to NLPS.

5This survey is written in Spanish.
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3.3.2. Genetic Algorithms. Genetic Algorithms [Gol89, SP94] have been basi-
cally used in language learning problems [SW95] from a non informed perspective,
that is trying to infer word categories and syntactic structure from the sole source
of unannotated corpora and with no a priori knowledge. This is an approach that it
has been also addressed with unsupervised learning algorithms for clustering. Rel-
evant contributions here are: [Lan94a, Lan94b, SW95] and [Los94}, in which
language learning is approached within an information retrieval and filtering frame-
work. The work by Yang [Yan93] also applies genetic algorithms to information
retrieval. Finally, in [Sie97] we find an application to verbal classification for ma-
chine translation purposes.

3.4. Others.

3.4.1. Clustering Algorithms. Concept formation and clustering algorithms are
instances of the unsupervised machine learning paradigm [Fis91, FPL91]. They
have been used in the NLP field in tasks such as: Document retrieval, automatic
hyphenation, semantic, syntactic and phonological classification, extraction of hier-
archical structure, machine translation, etc. See [Pow97] for a good survey includ-
ing pointers to relevant references. Additionally, conceptual clustering algorithms
were used by Cardie [Car92] to tackle relative pronoun resolution in a information
extraction framework.

3.4.2. Ensembles of Classifiers. An ensemble of classifiers is a set of classifiers
whose individual decisions are combined in some way (usually by weighted or un-
weighted voting) to classify new examples. These techniques have been mainly stud-
ied in the supervised learning area and it has been proven that ensembles are often
much more accurate than the individual classifiers that make them up®. Within the
voting (and variants) approaches, and related to NLP problems, we find ensembles
applied to part—of-speech tagging [HZD98, BW98, MPRY8], context—sensitive
spelling correction [GR98], word sense disambiguation [RAA97], and anaphora
resolution [MBS98, Mit98]".

More complex combination strategies, and algorithms for constructing the en-
sembles, including stacking, bagging, boosting, etc. can be found in text catego-
rization [SS98a] and text filtering [SSS98], where an adapted version of the pop-
ular ADABOOST algorithm is presented for information retrieval tasks. [BM98] is
another relevant example of the combination of classifiers applied to information
retrieval, in which the combination of classifiers allows the use of a big set of unla-
belled examples (semi-supervised approach) to iteratively improve the classification
accuracy in the task of filtering web pages.

Finally, chapter 6 and section 2 of chapter 5 are also devoted to apply this
methodology to POS tagging.

3.5. A Reversed Summary. The already described survey about the in-
teractions between the fields of NLP and ML has been organized by taking as a
reference the machine learning paradigms and showing which NLP problems have
been addressed by each of them. In the current section, we present a reversed sum-
mary, that is, indexing the information by the type of NLP task to be solved. The
information is presented in the form of tables.

6The reader will find a broader introduction and several pointers to the machine learning
methods for combining classifiers in the beginning of chapter 6.

"In these cases, the disambiguation is performed by straightforwardly combining a set of
pre-existing classifiers, heuristics, or predictors.
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The notation used for the machine-learning algorithms appearing in the tables
is the following: DTs stands for Decision Trees, HMMs stands for Hidden Markov
Models and statistical approaches, ME stands for the Maximum Entropy Approach,
IBL stands for Instance-Based (or memory-based) Learning, NNs stands for Neural
Networks, TBL stands for the Transformation-Based (error—driven) Learning, NB
stands for Naive Bayes classifiers and derived approaches, LSM stands for Linear
Separators (on-line classifiers with Multiplicative updating functions), GAs stands
for Genetic Algorithms, Clust stands for Clustering algorithms, DLs stands for De-
cision Lists, ILP stands for Inductive Logic Programming, Rocchio stands for Roc-
chio’s algorithm for text categorization, Rl stands for Rule Induction algorithms,
EC stands for any algorithm that uses ensembles of classifiers or simple combination
of heuristics, and, finally, Logl stands for Log-linear Models.

Table 1 contains information about low-level NLP tasks, such as speech pro-
cessing, morphology and POS tagging.

[ [ DTs [ HMMs | ME | IBL | NNs |
Speech recogni- | [BBDMS89, | [JMR92] [Ros94] [Dae95, [SR87, Lip89,
tion and syn- | BD99) DBGH96, NMKS90,
thesis BWD98] | Lee968, WW96]
Morphology [BDW98]

POS tagging See section 2 of this chapter

TABLE 1. References corresponding to some low-level NLP tasks

[ [ DTs [ HMMs | ME | 1BL |
Clause Boudaries ‘[RR97)
Shallow Parsing [Chuss, [SB98b] [ADK98,
Abn9o1l, Veed8]
BSK97,
SB98c]
Parsing [BJLt92a, [Rat97a) [SY92,
Mag95a, Car93b,
HSO098] Car93a,
Car94]
PP-attachment [RRR94] [ZDV97]
disambiguation
| | TBL [ NB | NNs | LSM |
Clause Boudaries [HP94]
Shallow Parsing [Bring] [Lyo94,
LD95]
Parsing [Leh91,
CSL93)
PP-attachment [BR94] [CB95] [L6p9s, [KR98]
disambiguation SLL98]

TABLE 2. References corresponding to syntactic analysis and
structural ambiguity NLP problems
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Table 2 contains the references about parsing (either shallow or general) and
structural ambiguity resolution.

Table 3 groups the references about semantic and discourse-level NLP tasks,
namely, sense disambiguation, co-reference resolution, anaphora resolution, dia-
logue act tagging, and text filtering and categorization, which are NLP tasks usually
associated to information retrieval and information extraction.

| [ DLs [ DTs [ NB [ TBL ]
WSD [Yar9s, [BPPMS1, {GCYss, [DTS98]
Moo98] Moo98] Moo?8,
LCMbo8]
Text categoriza- [LR94] {LRo4,
tion and filtering SS98a,
NMTM?9s]
Dialogue act tag- [SCVS98a) [SCVS98b,
ging SCVS98a]
Co-reference and [AB98,
anaphora resol. ML95]
Cue phrase iden- [Lito4)
tification
y ] 1BL | NNs | EC | Clust |
WSD [NLos, [Moosgs, [RAAGT) [Schos]
Ng97, TVes)
FITT98]
Text categoriza- | [RL94, fWwpPwes) [SSSes,
tion and filtering | YCo4] SS98a,
BMb#s)
Co-reference and | [Car98b} [MBS8#8, [Card2]
anaphora resol. Mit98]
[ | Rocchio [RI LSM | GAs |
Text categoriza- | [Roc71, [CS9s, [CS98, [Yan93,
tion and filtering | Har92, MB88) LSCP98, Los94]
LSCP98, DKR97,
$S98a, DBUGHS]
DBUGHS)

TABLE 3. References corresponding to the discourse-level seman-
tics NLP problems.

Table 4 summarizes the references corresponding to different levels (lexical,

syntactic, semantic, etc.) of language acquisition.

Finally, table 5 contains references about other NLP tasks, such those related

with machine translation, spelling correction, etc.

3.6. Acknowledgments. During the compilation of the above described ref-
erences, ‘we benefited from a number of good related introduction chapters and
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~]1BL e | NNs | GAs T Clust |
Lexical acquisi- | [FP96, [Pow9T]
tion FMPC98]
POS acquisition [Lan94a,
Los94]

Grammatical In- [zZMo3, [LSG9s) [Lan94b,
ference ZM94, Los94,

ZM9s, SWo5]

TMT$7)
Semantic acqui- | [Car94] [Pow9T]
sition  (concept
extraction)

TABLE 4. References corresponding to automatic language infer-

ence tasks.

[ [DTs I ME ] 1BL | TBL | NB |
Acquisition of | [Tan9s,
verbal properties | Sie97)

General machine [BPP98] [Jon9e]

translation :

Spelling  correc- [MB97) [GCY93,

tion Gol9s,
GR98]

{ [ DLs/ILP | NNs/Clust | GAs [ LSM [ LogL ]
Acquisition of | [MCs95, [Sieo7) [Sie97,
verbal properties | MCg6, MLC98]

CMb97)
General machine [YPM96)
translation
Spelling  correc- | [Yar84a] [Lew98] [GR98)
tion

TABLE 5. References corresponding to Machine Translation and
other NLP tasks

small surveys. They are roughly included in the following list: [WRS96, Car96b,
DZBG96, Die97, SCVS98b].

4. A Machine—learning Oriented Review of Decision Trees

Decision trees are a way to represent rules underlying training data, with hier-
archical sequential structures that recursively partition the data. They have been
used for years in several disciplines such as statistics, engineering (pattern recogni-
tion), decision theory (decision table programming), and signal processing. More
recently renewed interest has been generated by the research in artificial intelligence
(machine learning, expert systems, etc.).

In all these fields of application, decision trees have been used for data explo-
ration with some of the following purposes®: Description (i.e. to reduce a volume

8This classification is extracted from [Mur95).
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of data by transforming it into a more compact form), Classification (i.e. discover
whether the data contains well-separated and meaningful clusters of objects) and
Generalization (i.e. uncovering a mapping from independent to dependent variables
that is useful for predicting the value of the dependent variable in the future).

Due to this diversity, many redundant efforts have been carried out by the
different communities, and often quite different names are given to very similar
topics. For that, the related literature may be sometimes very confusing. We
recommend the introductory chapter in {Mur85] which provides a comprehensive
and multi—disciplinary survey of the work performed around decision trees.

In the present dissertation, we will see decision trees from a machine-learning
perspective and we will use them with the aim of acquiring an approximation of
the underlying mapping between words and morphosyntactic categories that will
permit us to predict the correct categories of new ambiguous words (i.e. using
decision trees for generalizing —or inducing— classification rules).

The rest of the section is devoted to properly fix the terminology and the
notation that will be used in the following chapters, and also to provide general
bibliographical references to the most relevant topics around decision—tree induc-
tion.

4.1. Supervised Learning for Classification. The goal in supervised au-
tomated learning for classification consists of inducing an approximation (or hy-
pothesis) of an unknown function f defined from an input space Q to a discrete
unordered output. space®: {1,...,K}, given a set of training examples: T =
{(x1, f(%1))5 - - -5 (Xny f(xn)) }-

The components of each example x; are typically vectors of the following form:
(®i,1,%i,2)+ + «» Ti,m)» Whose components, called features (or attributes) of x;, are dis-
crete or real-valued. Therefore the objects of the domain are completely described
by a set of attribute—value pairs, and a class label.

The function f: @ — {1,..., K} defines a K-partition of the input space into
sets f~1(k) called classes and denoted yx.'°

Given a training set T, a learning algorithm outputs a classifier, denoted h,
which is a hypothesis about the true function f. This process of deriving classifi-
cation rules from samples of classified objects is sometimes called discrimination.
Given new x values, h predicts the corresponding y values, i.e. it classifies the new
examples.

4.2. Decision Trees. Decision trees are n-ary branching trees that repre-
sent classification rules for classifying the objects of a certain domain into a set of
mutually exclusive classes.

A particular decision tree contains zero or more internal (or non-terminal)
nodes and one or more leaf (or terminal) nodes.

All internal nodes contain splits, which test the value of a mathematical or
logical expression of the attributes. For each possible outcome of this test there is
an edge to follow to the child nodes. Each internal node contains at least two edges
to child nodes.

SWhen a continuous output space is considered we talk about regression (and regression
trees) instead of classification (and decision trees).

103ometimes f is viewed as a distribution (and not a deterministic mapping). In this more
general situation f~! would be ill-defined. Nevertheless, we state it as deterministic for the sake
of simplicity.
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Each leaf node has a class label associated with it, which represent the most
frequent class of the examples associated to that leaf. If all of them belong to the
same class, the node is said to be pure.

A univariate decision tree is one in which the test at each internal node uses a
single attribute, while multivariate decision trees can use splits that contain more
than one atfribute at each internal node, typically a linear combination of them.
Unless the contrary is said, from now on we will consider only univariate trees with -
discrete—valued attributes!l.

Classifying a new example x consists of computing its class label given its at-
tribute values. Given a decision tree, this is done by simply following the convenient
path starting on the root of the tree until a leaf is reached. The test at each internal
node along the path is applied to the attributes of x to determine the next edge
along which x should go down. The label associated to the ending leaf node is
outputted as the class for x.

Sometimes decision trees are used to provide probabilities instead of single
classes. In this case we talk about statistical decision trees, which only differ from
common decision trees in that leaf nodes define a conditional probability distribu-
tion over the set of classes. These probabilities are usually estimated from relative
frequencies plus some kind of smoothing in order to get better estimations for the
less represented events.

Sometimes decision trees are translated into classification rules (or weighted
constraints) for using them in any rule-based system, or to get a logical representa-
tion of the concept learned!?. The most popular system for acquiring rules through
decision tree-induction is C4.5-RULES [Qui93].

4.3. Decision—tree Induction. The task of constructing the tree from the
training set is called tree induction. Most existing systems for learning decision trees
proceed recursively in a greedy top-down way. That is, they start by considering
the whole set of examples at the root level and construct the free in a top—down -
way branching at any non-terminal node according to the best split selected with a
goodness measure (which is normally called feature selection function). The different
outcomes of this test induce a partition of the set of examples. Then, the process
is recursively applied in the resulting subsets of examples in order to generate
the different subtrees. The recursion ends, in a certain node, when a predefined
stopping criterion holds, e.g., when all (or almost all) examples of the target node
belong to the same class, or when the number of examples is too small to make any
statistical inference.

More details on the basic algorithm and its variants can be found in chapter 3.

This family of algorithms is sometimes called TDIDT, standing for Top-Down
Induction of Decision Trees. Its most wide-spread representatives are: CART by
Breiman et al. [BFOS84], Quinlan’s ID3 [Qui86] and the successor C4.5 {Qui93],
and ASSISTANT [CKB87] and ASSISTANT-R [KSR95] by Cestnik and colleagues
at the Ljubljana University.

1 This is the simplest approach, which makes splitting equivalent to select the best attribute
and partitioning according its concrete values.

12The concept underlying a data set is the true mapping between the attribute set and the
class label. This is common terminology of concept—learning discipline.
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This list is by no means exhaustive and it does not include the more recent
evolutions of the systems, including several new features: windowing, resampling
techniques such as bagging, boosting, filtering of non-relevant attributes, etc.

In the following subsections we will comment some particular aspects of the
tree-induction algorithm, highlighting common problems and usual solutions and
extensions.

4.3.1. Greedy Search. Decision-tree inductive learning algorithms typically use
variants of greedy search to overcome the combinatorial explosion during the search
for good hypothesis (i.e. no backtracking is performed). The major component of
greedy search is a heuristic function that evaluates the potential successors, which in
the case of univariate-tree induction is the function that decides the best attribute
for branching typically by ranking them according to a goodness measure. The
goodness of an attribute is usually based on quantifying the impurity reduction
that results from partitioning the data according its values.

There is a large number of approaches to feature selection in the literature,
which can be classified into three categories according to the classification of Ben—
Bassat [BB87]: (1) Functions derived from information theory (i.e. on the concept
of Shannon’s entropy); (2) Functions derived from distance measures between class
probability distributions; and (3) Functions derived from dependence measures be-
tween random variables (also called statistical criteria).

There are also several empirical studies that compares different approaches for
feature selection. The following list include some of the more referenced in the ML
literature: [Min89, BN92, Lop91, WL94, LCG96]. In chapter 3 we also test a
number of feature selection functions belonging to the three proposed categories. As
in many other studies we find that not much significant differences can be observed
between them.

The problem of ranking features in tree-induction algorithms can be seen as
a particular instance of the more general problem of ranking a set of attributes
according their relevance to the problem at hand in order to obtain a good (and
ideally small) subset of features to work with. This general problem of feature
subset selection is recently the focus of much attention in the ML community since
scaling up inductive-learning algorithms to domains with thousands of features
requires to be able to previously select the relevant attributes and to filter the non—
relevant or highly correlated ones. Excellent surveys on the selection of relevant
features can be found in [BL97) and [Die97).

Some extensions of the purely greedy inductive-algorithms have been carried
out in order to overcome their ‘myopia’. They include: Designing of feature se-
lection functions for better capturing the correlation between attributes [KSR95],
searching with a limited lookahead [Mur95], performing a beam search, etc. These
approaches have been successfully applied to some {not all) domains, and in all
cases they introduce a clear trade-off between the myopia and the search com-
plexity, which has to be particularly considered for each domain of application.

4.3.2. Overfiting. Basic learning algorithms tend to derive hypotheses that fit
the learning data as much as possible. When this bias is exaggerated the general-
ization ability of the tree is substantially reduced. In this case, it is said that the
classifier overfits the training data. In the case of noise, the constructed hypothesis

-
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usually overfits the learning data (and thus also fits the misclassified examples) and
yield poor results on testing data at the same time.

Tree pruning is probably the most used mechanism for handling noise and over-
fiting. The basic idea is that branches in a tree that are not statistically significant
should be cut off. As a result, not only the prediction accuracy on an independent
data is improved but also the tree size is reduced significantly.

There are two variants of tree pruning depending on when the pruning process
actually occurs.

If the pruning is performed by deciding to stop the recursive partition of the
data on a certain impure node, i.e. pruning in advance during the construction of
the tree, we talk about pre-pruning (or forward pruning). This kind of pruning is
usually done by defining appropriate stopping criteria. Usual stopping conditions
are: (1) A very high proportion of the examples of the target node belong to the
same class; (2) The number of examples is less than a fixed threshold or not enough
to make any statistical inference; (3) All the examples share the same feature vector,
despite they may belong to different classes (i.e. they are indistinguishable); or (4)
The benefit attributed to all possible tests which partition the set of examples is
too low.

If the pruning is performed by cutting off some branches after constructing
a full-sized tree we talk about post-pruning (or backward-pruning). Many meth-
ods have been proposed for post-pruning decision trees. Among others we find:
Reduced Error Pruning [Qui87], Pessimistic Error Pruning [Qui87], Minimum
Error Pruning [NB86], Cost—-Complexity Pruning [BFOS84], Error-Based Prun-
ing [Qui93], etc. Several studies indicate that the second choice is preferred due
to its theoretical soundness.

An alternative to pruning would be that of smoothing (also backwards) the
conditional probability distributions of the leafs of the tree using a fresh part of the
training set [Mag96). '

See [EMS97] for a complete survey and an empirical comparison of several
decision—-tree pruning algorithms.

4.3.3. Splits. Univariate trees imposes a partitioning in the ordered attribute
space that can be geometrically represented as a collection of hyperplans and re-
gions. It is observed that this type of partition is not adequate in some classification
problems, and multivariate trees are proposed as a solution for those cases. Most
of the work on multivariate decision trees has been done by allowing some kind of
linear combination of attributes in the splits (oblique decision trees).

The induction of oblique trees lead to better results in some cases but the
acquisition of optimal linear splits is computationally very expensive, and heuristic
methods are required for finding good subobtimal combinations. See again [Mur95]
for a good survey on mutivariate decision trees.

4.3.4. Instability and High Variance. Decision-tree, as well as other supervised
learning methods such as neural networks and rule learning algorithms, are said to -
be unstable because small variations on the training set can provoke great variations
on the induced classifiers. Some methods, mainly based on resampling, randomiza-
tion, and recasting the set of classes, have been designed to construct ensembles of
unstable classifiers in order to reduce their high variance: Bagging [Bre96a)], Ap-
ABoosT [FS95], ECOC [DB95], etc., are some significant examples. It is observed
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that the combination of several classifiers contribute to reduce bias and variance
and to improve the global performance.

For a survey on constructing ensembles of classifiers see [Die97] and the intro-
duction to chapter 6.

4.3.5. The Problem of Small Disjuncts. For learning systems that describe a
learned concept as a disjunction of conjunctions of conditions (as decision trees do),
small disjuncts are disjuncts which cover a small number of training instances and
often entail high error rates. On the other hand, large disjuncts cover a large pro-
portion of the training instances and have low error rates. It is observed that the
learning system’s bias to ‘maximum generality’ is the main cause of small disjuncts
problem, while changing the bias to ‘maximum specificity’ for small disjuncts, suc-
cessfully improves their prediction accuracy [HAP89]. However, the same work
also concludes that it is difficult to eliminate the error-prone small disjuncts with-
out affecting the performance of large disjuncts. '

In decision—tree induction, the ‘maximum specificity’ bias would correspond to
construct full-sized trees with no post—pruning, which tend to produce overfiting.
The application of pruning methods biases the learning method to a more general
representation, but it emphasizes the problem of small disjuncts. Therefore, there is
a difficult trade-off between the generality of the representation and the prediction
accuracy on different types of examples.

Some authors [Tin94, Koh96] propose a solution of mixing decision trees with
instance-based learning, which has higher predictive accuracy on small disjuncts, to
create a hybrid classifier. General work on ensembles of classifiers also contributes to
~ alleviate the problem of small disjuncts. Qur proposal in chapter 6 of constructing
ensembles of decision trees using features at different levels of specificity can be
considered in the same direction.

4.4. Acknowledgements. The general overview on decision-tree induction
already presented has been developed using the information provided by three jour-
nal articles [BCK96, EMS97, BL97], a Phd dissertation [Mur95] and a book
on automated knowledge acquisition [SD94].
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CHAPTER 3

Tagging—oriented Language Modelling Using
Decision Trees

To enable a computer system to process natural language, it is required that
language is modelled in some way, that is, that the phenomena occurring in lan-
guage are characterized and captured, in such a way that they can be used to
predict or recognize future uses of language. Rosenfeld [Ros94] defines language
modelling as “the attempt to characterize, capture and exploit regularities in natural
language”, and states that the need for language modelling arises from the great
deal of variability and uncertainty present in natural language.

As described in chapter 1, language models can be hand-written, statistically
derived, or machine-learned. The present chapter is devoted to present the appli-
cation of decision-tree induction to acquire language models suitable for addressing
POS tagging!. In subsequent chapters we will see how these machine-learned mod-
els can be used to disambiguate a input sequence of ambiguous words, and how
to combine them with pure statistical information and even with hand-developed
linguistic information.

The chapter is organized as follows: Sections 1 and 2 present the general frame-
work for POS tagging and the particular implementation of the tree-induction al-
gorithm; Section 3 is devoted to the evaluation of the acquired models on a corpus
of reference; and section 4 supplies information about some extensions of the ba-
sic approach that we apply for improving performance and for handling unknown
words and low represented cases of ambiguity.

1. Setting

Our approach is based on the fact that POS tagging, as any NLP disambigua-
tion problem, can be easily interpreted as a classification problem (see section 4
of chapter 2). In this case, the finite set of classes is identified with the set of
morphosyntactic tags (the tagset), and the underlying concept to be learned is the
unknown mapping between a word and the appropriate tag in a particular context
of occurrence. A :

In the following subsections we will define at which level of granularity the
disambiguation problem is stated, and which are the common contextual features
for describing the learning examples that best help disambiguating.

1.1. Ambiguity Classes. The first problem that arises from this approach
is to determine an adequate level of granularity. For instance, POS tagging could
be straightforwardly stated as a unique classification problem for all words, with

! As we explained in chapter 2, decision trees have been successfully applied to many domains
in NLP, and, in particular, in POS tagging they have proven to be a very efficient and compact
way of capturing the relevant information for disambiguating.

53
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as many classes as tags in the tagset. However, this approach presents two clear
problems. On the one hand, the learning algorithm would probably have some
problems to efficiently handle and exploit the huge amount of examples present in
the training set (usual training corpora may have around one million words}), and,
on the other hand, the number of possible outcomes would be too high (tagset sizes
usually move from 40-50 to several hundreds) to obtain an accurate classifier.

The opposite pole is to consider a classification problem for each different word.
In this way, the number of classes is significantly reduced, since ambiguous words
admit a limited number of readings. The probiems here are the opposite, namely,
too many learning problems (thousands of different ambiguous word—forms can be
found in unrestricted English corpora) and not enough examples for many infre- .
quent words.

We have chosen an intermediate level consisting of identifying the different
types of ambiguity occurring in the corpus and treating them as separate classifi-
cation problems. These types of ambiguity, ambiguity classes from now on, group
the words of the training corpus into equivalence classes according to the set of
readings they can take (e.g., adjective-noun, noun—verb, adjective-noun-verb, etc.)?.
In this way, both the number of problems and the number of training examples keep
into reasonable bounds (for instance, in the one million word WSJ English corpus,
which is tagged with the Penn Treebank tagset, the number of ambiguity classes is
around 200 and the number of training examples range from few hundreds to 20-30
thousand}, while the number of classes is fairly small.

Figure 1 depicts some of the ambiguity classes appearing in the WSJ corpus®.
In this figure, ambiguity classes are presented in different layers according to the
degree of ambiguity (i.e. the number of possible tags), and the edges between
classes stand for an inclusion relation. For instance, all words that can be adjective,
adverb and noun, can be, in particular, adverb and noun}, that is, NN-RB is included
in JJ-NN-RB. Note that this taxonomic representation has a DAG structure.

2ty /N
NN-RB-VB JJI-NN-RB NN-NP-RB
3. antiguty . \
[JJ—NN-RB-—VB I fIN-JJ—NN-R?] ii?»NN—NP-RB ‘ JJ-NN-RB-UH
Asmoguy | -
IJJ-NN—R.B-RP-VB ] EJJ-@-PM-M ] ) ID'X‘-NN-NP-PM—RBJ
SN

FIGURE 1. A part of the ambiguity-class taxonomy for the WSJ corpus

2The use of ambiguity classes is not a new idea. In [CKPS92], and also in [TRG97] (under
the term genotype) ambiguity classes are used as way to alleviate the sparseness problem when
collecting lexical probabilities from small training corpora.

3The meaning of the tags contained in the figure can be found in appendix C, where a full
description of the Penn Treebank tagset is supplied.
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Even though ambiguity classes are considered, there still exist cases in which
there are very few examples for learning. This problem of ambiguity—class sparse-
ness will be especially addressed in the final part of this chapter (section 4.3), in
which two procedures for enlarging the set of training examples will be proposed
and tested: the first works by successively collecting more general examples through
the inclusion relation of the ambiguity—class taxonomy, and the second consists of
generating new examples from the existing data by applying a procedure of random
combination of features to pairs of examples. The latter will be tested in a real
tagger in chapter 6.

1.2. Context Modelling. Usual POS tagging algorithms, based on auto-
matic acquisition, use very limited contextual information to perform the disam-
biguation. Typically, the morphosyntactic categories of the surrounding words, in
a narrow window of two or three words, suffice to perform disambiguation at a very
good level of accuracy (statistically, and machine-leaning based English taggers,
show accuracies consistently over 95%). However, this fact makes POS tagging a
very particular problem since to perform the disambiguation the algorithm needs
to know the POS tags of the neighbour words, which implies that the text should
be previously disambiguated !

Statistical taggers solve this circularity by calculating the most probable se-
quence of tags given an estimated set of transition probabilities. Other approaches
to tagging have to make some kind of guessing about the category of the neighbour
words when it is required (e.g. by choosing the most probable reading). Other
possibilities are: to perform disambiguation in a particular direction and use only
the information of the already disambiguated part to continue disambiguating the
rest (e.g. to proceed from left to right and use the information about left context),
or to use the morphosyntactic information in a broader sense, i.e., considering the
set of all possible tags for the still ambiguous words, which can be weighted by -
relative probabilities.

Another relevant aspect of POS tagging is that the baseline accuracy is very
high. Using very naive information a global accuracy slightly over 90% can be
obtained for English tagging, which drastically reduces the room for improvement?.
This is due to two main reasons: (1) The amount of unambiguous words is usually
over 60%; and (2) Many readings are very infrequent at a word level, therefore a
heuristic function that picks the most probable tag for each ambiguous words gets
a very high accuracy (typically over 80% on ambiguous words). This fact makes
the estimation of lexical probabilities® a very important issue.

Due to the above described situation, our basic context modelling will consist
of: (1) The POS tags of the neighbour words in a window covering 3 tags to the
left and 2 tags to the right®; and (2) The target word form —as a way to capture

4Nevertheless, we saw in chapter 1 that 8-10% error rate on POS tagging is inadmissible for
most NLP applications.

5The term ‘lexical probabilities’ refers to the conditional probability distribution over the pos-
sible tags, given a particular word. They are usually estimated from frequency counts performed
on an annotated corpus.

The size of the window was empirically determined. The consideration of larger windows
reported no benefits but the acquisition of too specific, and sometimes non-relevant, information
which decreased the generalization ability of the acquired classifiers over unseen examples.
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specific behaviours of some words, and implicitly including information about lexical
probabilities”.

Table 1 presents this basic set of of discrete-valued attributes used for acquiring
decision trees. The Type column refers to the way of determining the set of values
that hold for the attribute in a particular step of the learning algorithm: S stands
for static, while D stands for dynamically-valued. This particularity that applies to
the attributes with many values will be explained in subsection 2.2.4.

[T Attribute | Values [ Type |
1| tag(-3) | Any tag in the Penn Treebank tagset | S
2| tag(-2) ” S
3| tag(-1) ” S
4} tag(+1) ” S
5| tag(+2) ” S
6 | word(0) Any word of the ambiguity class D

TABLE 1. Set of basic attributes

In section 4.2, the basic set of attributes is enriched with lexical features about
the local context, and the acquisition algorithm is tested with several combination
of features. The basic set of attributes is also extended with a number of features
about the orthography of the target word for dealing with unknown words. This is
addressed in section 4.1

For each ambiguity class, the set of training examples is built by selecting from
the training corpus all the occurrences of the words belonging to this ambiguity
class. Table 2 shows some real examples belonging to the training set for the words
that can be preposition and adverb (IN-RB ambiguity class).

[(3) teg(-2) tag(1) (word(0).tag(0)) teg(+1) teg(+?) |
R

B VBD IN {‘after’,IN) DT NNS
VB DT NN (‘as’,IN) DT A
DT J3 NNS {‘as’,RB) RB N
JJ NN NNS {'below’,RB) VBP DT

TABLE 2. Training examples for the preposition—adverb ambiguity class

In our work we do not deal with long distance syntactic relations to help part—
of-speech disambiguation. This is certainly a limitation because it is obvious that
simple context conditions cannot resolve all POS ambiguities®

Long distance conditions are rather common in the outstanding linguistic rule-
based taggers. In the work by Voutilainen around English POS tagging and shallow
parsing using the Constraint Grammar framework [Vou94], several especially de-
signed rules ask for some condition to hold in some non-limited position to left or
right of the target word (always inside the sentence boundaries).

7Lexical probabilities will be introduced also in the tagging algorithms presented in chapter 4,
as an informed starting point about word-tag probabilities for performing disambiguation.

8The semantic and pragmatic clues necessary to resolve some noun-adjective ambiguities are
beyond the scope of this work.
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However, these rules should be applied with much caution since the possibility
of generalize in a broader context is very uncommon. So they are usually provided
with a strong set of provisos (which are a list of exceptions called barriers) for
preventing undesired applications of the rule. As an example, see the rule defined
in section 4.2 of chapter 4 which states that a verb—participle tag should be assigned
when the target word is preceded (at any distance) by an auxiliary verb, provided
that there is no other participle, preposition, adjective nor any phrase change in
between.

This type of sophisticated rules are very difficult to acquire by general machine
learning procedures, because if the list of exceptions to be considered is large, the
underlying rule will be not much significant at the beginning and its chance to
appear will be very low.

Despite the local-context limitation, most statistical and machine-learning tag-
ging algorithms achieve good results because they look for a tag assignation that
maximizes a certain global compatibility on the input sequence. Thus, in some
sense local conditions are propagated along the sentence to find the best assign-
ment. Additionally, it has to be said that POS ambiguities fully depending on a
long distance condition are by no means the most frequent ones.

The above described characteristics make impossible to acquire decision trees to
completely classify the training examples®. Instead, we aspire to obtain statistical
decision trees representing fairly accurate probability distributions of the words
over their possible tags, conditioned to the more relevant contexts of appearance.

Therefore, instead of using the acquired trees as direct classifiers, we aim to
. incorporate them as a statistical module into more complex statistically—based tag-
ging algorithms. This inclusion could be performed under different internal repre-
sentations: decision trees, weighted rules, weighted constraints, etc., depending on
the type of POS tagging algorithm at hand.

2. Automatic Acquisition

2.1. Basic Algorithm. Regarding the tree-learning algorithm, we have im-
plemented a particular algorithm belonging to the ‘top—down induction of decision
trees’ family of supervised learning algorithms. This algorithm is quite similar
to the well-known CART [BFOS84], and C4.5 [Qui93], but it is adapted to our
particular domain.

Recall that classical a TDIDT-algorithm is a recursive procedure that departs
from considering the whole set of examples at the root level and constructs the
decision tree in a greedy top—down fashion by recursively partitioning the training
data at each internal node according to the possible outcomes of a test on some of
the available attributes. In this case we consider simple tests on a single discrete—
valued attributes, thus the partition is induced by the different values of the selected
attribute (i.e., one edge to follow for each value).

The basic inductive algorithm is depicted in figure 2. In that figure, X stands for
the set of training examples, and A stands for the set of attributes. The functions
involved are described below.

9 Another factor that should be mentioned here is the fact that there is a significant level of
noise in both the training and test data more commonly used (WSJ corpus is estimated to have
about 2-3% of mistagged words).
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function TDIDT (X: set-of-examples; A: set—of-features)
var: tree;,trees: decision-tree;
X': set—of-examples;
A'": set—of-features
end-var
if (stopping-criterion(X)) then
treey := create-leaf-tree(X)
else
3max 1= feature-selection(X,A);
tree; := create-tree(X,amax);
for-all val in values(amax) do
X' 1= select-ezamples(X,amax,val);
A= A-{amu};
tree; := TDIDT (X',A");
tree) := add-branch(tree, tree;,vai)
end-for
end-if
return (tree;)
end-function

FIGURE 2. Pseudo—code of the TDIDT algorithm

stopping-criterion(X): returns true if the stopping criterion holds for the set
of examples X, and false otherwise.

create-leaf-tree(X): returns a tree consisting of a single leaf node with the
most frequent class in X.

‘ feature-selection{X,A): selects, from the set of attributes A, the attribute
that best help distinguish between different-class examples of X.

create-tree(X,a): returns a tree consisting of a single internal node with the
information about the attribute a which will be used at the next step to
create the descendant subtrees.

values{a): returns the set of possible values for attribute a.
o select-ezamples(X,a,v): returns the subset of examples of X that have the
value v for the attribute a.

add-branch{ty,ta,v): returns the tree that results from adding the child tree
t2 to the root of the parent tree t;. The new branch is labelled with the
value v.

2.2. Particular Implementation. Our implementation roughly follows the
basic algorithm presented in the previous section, however, we have introduced
some variations in order to better adapt it to the particular domain of application.
The following subsections (from 2.2.1 to 2.2.7) are devoted to briefly explain some
choices and solutions applied to some particular problems.

2.2.1. Attribute Selection Functions. As we have seen in section 4 of chapter 2
the heuristic function for selecting the most useful attribute at each step of induction
is very important in order to obtain simple trees with a high degree of generalization. -
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We have implemented and tested several well-known feature selection criteria
belonging to the three existing families. They are listed below and explained in
detail in appendix B:

1. Functions derived from information theory, which measure the entropy de-
crease resulting from partitioning the data according to one or another at-
tribute. From this family we considered Quinlan’s Information Gain [Qui86]
and Gain Ratio [Qui86). We will call them IG and GR, respectively.

2. Functions derived from distance measures between class probability distribu-
tions, which look for the partition that obtains class probability distributions
as pure as possible (recall that a set of examples is said to be pure when
all the example belong to the same class). From this family we consider the
Glini Diversity Indez of impurity [BFOS84], and RLM, which is a distance-
based function by Lépez de Mantaras [Lop91] that uses Shannon’s entropy
to define the distance measure.

3. Statistically-based functions derived from dependence measures between
random variables. From this family, we used a x? Test [SD94] and the
Symmetrical Tau criterion [ZD91].

Apart from these functions we also implemented a variant of RELIEFF [KSR95]
that we will call RELIEFF-IG. RELIEFF is a non—myopic function that scores the
attributes by also considering the conditional dependencies between them (on the
contrary, all the above described feature selection criteria assume that attributes
are conditionally independent given the class). RELIEFF has been also used to
address the problem of finding the a subset of relevant features by preprocessing.
In our implementation, RELIEFF-IG use Quinlan’s Information Gain to weight the
features in order to make a better use of the k-nearest neighbour retrieval algorithm
inside RELIEFF.

2.2.2. Splits. When dealing with discrete attributes, usual TDIDT algorithms
consider a branch for each value of the selected attribute. However there are other
possibilities. For instance, some systems perform a previous recasting of the at-
tributes in order to have binary-valued attributes [Mag96]. The motivation could
be efficiency (dealing only with binary trees has certain advantages), and avoiding
excessive data fragmentation (when there is a large number of values). Although
this transformation of attributes is always possible, the resulting attributes lose
their intuition and direct interpretation, and explode in number.

We have chosen a mixed approach which consists of splitting for all values, and
subsequently joining the resulting subsets into groups for which we have insufficient
statistical evidence for there being different distributions (this statistical evidence
is tested with a x? test, with a previous smoothing of data in order to avoid zero
probabilities). In this way the resulting trees contains splits which test a disjunction
of some values of a concrete attribute.

The algorithm for merging redundant branches does not test all possible groups
of values (which would have an unfeasible exponential cost), but it takes greedy
decisions based on the exploration of the values in a fixed order. Despite the
problems introduced by the naive nature of the algorithm (for instance, the result
depends on the order in which values are considered), we obtained very good results
with this technique that helps preventing the data fragmentatlon (see section 3.3.1
for the results of the evaluation).

-

-
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2.2.3. Right-sized Trees. In order to decrease the effect of overfiting —which
in this domain is quite important due to the noise in the training set— we have
used a post pruning technique (although some simple stopping criteria are also
considered). In a first step the tree is almost completely expanded and afterwards is
pruned following a minimal cost—-complexity criterion (CART pruning [BFOS84]).

Roughly speaking this is a process that starts with the full-sized decision tree,
from which it iteratively cuts those subtrees producing only marginal benefits in
accuracy, obtaining smaller trees at each step. The trees of this sequence are tested
using a comparatively small fresh part of the training set (10%-15%) in order to
predict which is the most accurate tree on new examples.

The alternative, of smoothing the conditional probability distributions of the
leaves using a fresh corpus proposed by Magerman in his SPATTER tree-based
parser [Mag96], has been left out because we also wanted to reduce the size of the
trees.

2.2.4. Attributes with Many Values. Attributes with many values may produce
the undesired effect of contributing to the data fragmentation problem, when used
for branching in a certain node, even though the strategy of merging branches is
applied.

In our case we have to deal with several attributes with many values. For .
instance, this is the case of the ‘word-form’ attribute, since there are ambiguity
classes which contains many different words (up to 850 in the worst case). Other
examples will appear further on when dealing with unknown words, or when intro-
.ducing lexical attributes referring to words or sequences of tags/words.

These attributes are handled by dynamically adjusting the number of values to
the N most frequent, and joining the rest in a new otherwise value. ‘Dynamically’
means here that the set of values is recalculated at each node of the tree, even if the
attribute has been used before. In this way, a dynamic attribute may be used many
times along the tree-induction process involving different values at each time.

In the case of the basic set of attributes, only the word—form is dynamie, and
the maximum number of values N is fixed to the tagset size in order to have
homogeneous attributes with the same number of values. The other attributes will
be referred to as static, by opposition. This is the notation used in the descriptive
tables of attributes of this chapter.

2.2.5. Missing Values. In our domain we do not consider inter-sentential rela-
tions so the local context is restricted to be in the same sentence as the tagset word
(i.e. it is not allowed to cross any end-of-sentence marker).

Due to this restriction, some examples may contain non-valid values for some
contextual attributes. For instance, if the target word to be disambiguated is the
first of the sentence, then the left context attributes contain values that should
be considered uninformative. Otherwise they would introduce a counterproductive
noise in the training set. .

A usual way for handling training examples with missing values for some at-
tributes is to suppose a probability distribution over all possible values for those
attributes, and to complete the missing values with these probability distributions.
When completing an example, the probability distribution for a certain attribute
for which the example is undefined may be uniform, or estimated from the values
appearing in the other training examples. In the second case there are still two
possibilities: to estimate probabilities from unconditional counts of the different
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values, or from the counts conditioned to the class label of the target example.
This approach implies that during the tree induction the so completed examples
will be considered as many weighted examples regarding the incomplete attribute:
One for each possible value.

However in our case the situation is a bit different because the value is not ac-
tually unknown but it is uninformative, so we do not have to guess the possibilities.
The way we proceeded is to introduce a new value NULL standing for non relevant
information (interpreted as: ‘there is a sentence boundary in between the target
word and this attribute’) and do not change the learning algorithm at all. These
NULL values are assigned by preprocessing.

2.2.6. Probability Estimates. As previously said, we will deal with statistical
decision trees instead of common decision trees. This is done by storing, for each
node of the tree, the information about the number of examples relative to each
class. These figures are then used to estimate the conditional probabilities.

We tested alternative ways of estimating probabilities from the relative frequen-
cies present in leaf nodes. From more to less simple they are: maximum likelihood
estimates (MLE), discounting and redistribution smoothing methods [YB97], and
m-estimates [Ces90].

Given a concrete node of a decision tree with its associated set of examples
X, the probability of a certain tag ¢ is straightforwardly estimated by MLE as the
proportion of examples that have tag ¢ over the total number of examples, that is:

. f(tX)
Pt X) = ———.
1X]
In order to smooth the MLE probability estimates, one can consider the follow-
ing general formulation for discounting some probability mass from frequently seen
events to redistribute it among the less frequent events:

_ fEX) +A

pt|X) = TX[+K

where K is the number of possible tags, and X is a positive real value. When
A = 1 the above formula is known as Laplaces’s law of succession. As some authors
observe, the appropriate value for A in general problems of language modelling is
significantly lower than 1. We have set this value to A = (K—1)/K, which depends
on the number of possible tags. It starts in 0.5 for two-tags ambiguity classes
and increases asymptotically to 1 (Laplace’s law) as the number of possible tags
increase.

Another possibility of performing smoothing is to use m-estimates [Ces90],
which represents a kind of back—off interpolation using the a priori probabilities
of the ambiguity class (stored in the root node of the tree). Its formulation is the
following:

fEX) +mp(t)

where m is the parameter (that must be experimentally set) which regulates the
degree in which prior probabilities affects the estimates.
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From the three possibilities we observed better results applying smoothing, but
with no significant differences between the discounting method and m-estimates.
Therefore, we use the first which is simpler?®.

When classifying a new example using a decision trees it may be the case that
a certain internal node tests a concrete attribute for which it has no edge to follow
through the value of the example (this means that this type of examples was not
present in the training set). In this situation, the class probability of this internal
node is outputted as the “default” result!.

2.2.7. Subsampling. We had some problems with the computational effort in-
volved in: (1) The testing experiments, in which computationally expensive cross—
validation experiments were performed; and (2) The RELIEFF-IG function, which
is not as efficient as the other because it uses a k—nearest neighbour algorithm which .
is computationally expensive, unless sophisticated indexing techniques are used!Z.

In order to speed-up the learning algorithm on the large training sets (the
biggest contains around 38,000 examples) we used a simple strategy of selecting a
moderately big subsample of the whole training set to perform the selection of the
best split at the shallowest nodes of the tree. Subsamples are obtained by randomly
selecting a percentage of the set of examples belonging to the current node. This
percentage is 100% if the number of examples is lower than a minimum (say 5,000
examples) and linearly decreases up to 50% for the case of the maximum number
of examples in the domain (say 38,000 examples).

This is certainly a naive way of collecting subsamples (see, for instance, the work
[MCR92], which proposes a method for dynamically choosing the adequate sample
based on how difficult the decision is at each node of the tree), but due the high
redundancy in our domain, the performance observed by applying this simplifying
technique was almost the same as those obtained with full set of examples.

2.3. An Example. We present a real example of a decision tree branch
learned for the preposition—adverb ambiguity class (IN-RB) which has a clear lin-
guistic interpretation!3.

P(IN)=0013
P(RB)=0.987

FiGurE 3. Example of a decision tree branch

10We used smoothed estimates not only when classifying with the acquired decision trees,
but whenever that probability estimation was required from frequency counts. This includes:
the pruning algorithm, several functions for feature selection, lexical probabilities estimated from
training corpora, etc.

1Kononenko et al. [K§R95] suggest to use the probability estimates resulting from the
naive Bayes calculation over all the attributes involved in the partial path from the root to the
current intermediate node. We also tested this proposal with negative results.

12 Apart from the computational cost of the involved algorithms, another factor affecting
efficiency was the initial LISP-based implementation of the learning algorithms.

133ee appendix D for a complete listing of the decision tree.
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We can observe in figure 3 that each node in the path from the root to the
leaf contains a question on a concrete attribute and a probability distribution. In
the root it is the prior probability distribution of the class. In the other nodes it
represents the probability distribution conditioned to the answers to the questions
preceding the node. For example the second node says that the word ‘as’ is more
commonly a preposition than an adverb, but the leaf says that the word ‘as’ is
almost certainly an adverb when it occurs immediately before another adverb and
a preposition. This is the case of the collocations: “as much as”, “as well as”,
“as soon as”, etc., which are systematically tagged adverb—adverb—preposition in the
WSJ corpus.

3. Model Evaluation

This section is devoted to the evaluation of the appropriateness of statistical
decision trees for modelling POS ambiguities. It starts by describing the main
characteristics of the corpus of application in sections 3.1 and 3.2, and then, the
results of the evaluation are presented in section 3.3.

3.1. The Wall Street Journal Annotated Corpus. We have used a por-
tion of 1,170,000 words (1,17Mw) of the WSJ, tagged according to the Penn Tree-
bank tagset!*, from which 1,12Mw were randomly selected to form the training
corpus. The remaining 50,000 words were used for testing.

The training corpus has been used to create a word form lexicon —of 49, 206
entries— with the associated lexical probabilities for each word. These probabilities
are estimated simply by counting the number of times each word appears in the
corpus with each different tag and applying smoothing as described in 2.2.6.

‘Due to errors in corpus annotation, the resulting lexicon has a certain amount
of noise. In order to partially reduce this noise, the lexicon has been filtered by
manually checking the entries for the most frequent 200 words in the corpus —note
that the 200 most frequent words in the corpus represent over half of it. For instance
the original lexicon entry (numbers indicate frequencies in the training corpus) for
the very common word “the” was:

<the> CD:1 DT:47715 JJ:7 NN:1 NNP:6 VBP:1,

since it appears in the corpus with the six different tags: CD (cardinal), DT (de-
terminer), JJ (adjective), NN (noun), NNP (proper noun) and VBP (verb-personal
form). Nevertheless, it is obvious that the only correct reading for the word “the”
is determiner. Although in most cases the checking was done by filtering out wrong
tags, there are some entries for which some missing readings were also added.

As noted by Ratnaparkhi [Rat96], the WSJ corpus also have some inconsis-
tencies due to not completely coincident criteria applied by different annotators.
He observed that tag distributions for concrete words change as a function of the
article in which occur, and that this change has a big correlation with the concrete
annotator. This fact may negatively affect the use of lexical attributes (i.e. at-
tributes that refer to concrete words) to perform learning (see section 4.2 for the
application of such features). Nevertheless, this is an issue that we will not address
in this work. ’

14The Penn Treebank tagset contains 45 tags. A full listing can be found in appendix C.
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Taking the resulting filtered lexicon as a reference, the ambiguity figures about
the training corpus are: About 34.05% of the words are ambiguous, with 2.40 tags
per word on average (over all words, the ambiguity ratio is 1.48 tags/word)®

Regarding ambiguity sets, the training corpus contains 243 different ambiguity
classes. The number of tags per ambiguity class range from 2 to 6, and their number
of examples range from a few dozens to several thousands (with a maximum of
38,112 examples for the preposition—adverb—particle ambiguity). It is noticeable that
only the 37 most frequent ambiguity classes concentrate up to 90% of the ambiguous
occurrences of the training corpus. Tables 3 and 4 contain more information about
these issues.

[ | 2-tags 3-tags 4-tags 5-tags 6-tags |
[ # classes | 103 90 35 12 3 |

TABLE 3. Number of ambiguity classes containing n tags

[ | 50% 60% 70% 80% 90% 95% 99% 100% |
[#classes | 8 11 14 19 37 58 113 243 |

TABLE 4. Number of ambiguity classes that cover the % of the
ambiguous words of the training corpus

The already collected information provides a simple heuristic function for dis-
ambiguating, which consists of choosing for each word its most probable tag, tak-
ing as a reference the tag probability distribution corresponding either to the word

(called lexical probability), or to the ambiguity class which the word belongs to. We .

will call these naive taggers MFT, standing for Most—-Frequent—Tag tagger. The two
versions will be denoted by MFT; and MFT3, corresponding to the more general
ambiguity—class approach, and to the lexical probability approach, respectively.
Note that such taggers do not use any contextual information, but only the tag
frequencies of isolated words or ambiguity classes.

Figure 4 shows the performance of the baseline MFT taggers on the WSJ domain
for different sizes of the training corpus (first plot). The second plot is the same
but it includes a lower bound result of random selection. The reported figures refer
to ambiguous words.

Some conclusions can be extracted from those plots:

¢ Simple non-contextual information establishes a bench mark for POS tag-
ging accuracy which is far better than random selection.

e Both MFT heuristics perform equally on very small training sets, and in
fact MFT, has a higher starting point than MFT,. This is not strange since
general estimators work better than specific when sample data is scarce!®.
However, MFT, compares favourably to MFT; for training sets bigger than
25,000 words (25Kw), and it becomes much better for training corpus bigger

15The ambiguity figures before the manual processing were slightly higher: 36.5% of ambigu-
ous words, with an ambiguity ratio of 2.45 tags/word over the ambiguous words, 1.50 overall.

163ee, for instance, the the work by Tzoukermannet al. [TRG#87] in which ambiguity classes
are used instead of lexical counts to alleviate the problem of data sparseness in tagging French.
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FI1GURE 4. Performance of the MFT; and MFT; heuristics related
to the training set size. In both plots X-axis represents the num-
ber of training examples (divided by 10,000) and the Y-axis the
percentage of accuracy on ambiguous words

than 100Kw. This is due to the fact that English is not a morphologically
rich language and so the number of different word forms is quite limited.
Consequently, the lexical probabilities can be reasonably estimated even
with a small number of examples.

e For training corpora bigger than 400Kw, the accuracy of MFT; remains
unvarying at about 76% (which is clearly an upper bound for this heuristic}),
while the accuracy of MFT; is between 81-83%. Although the final tendency
for MFT;, is still slightly increasing, it is not reasonable to think that it could
be significantly raised simply by adding more training examples to better
estimate lexical probabilities. ’

3.2. Domain of Evaluation and Methodology. We selected the set of the
twelve most significant ambiguity classes for testing purposes. The importance of
each ambiguity class was measured in terms of the number of available examples,
and the difficulty to acquire accurate classifiers, since very representative and/or
difficult classes will greatly influence the final tagger performance. In particular,
only these 12 data sets cover about 58% of the ambiguous word occurrences in the
corpus (the total number of ambiguous words is 374,622), and they directly take
part in about 67% of the MFT tagging errors. The information about these twelve
classes is depicted in table 5. Basel and Base2 stand for the baseline estimated
error rates of the MFT heuristics, while the Test column presents the real number
and percentage of errors commited by MFT; on the 50Kw test set.

Table 6 contains example words belonging to each ambiguity class, as well as
the count of different word forms of each class appearing in the whole training set.

The comparisons between alternative methods that will be reported in the next
section (and also in the rest of the document) are generally done using a statistical
test of significance, based on 10-fold cross validation. When the repetition of 10
experiments was not feasible, we applied a test for the difference of two propor-
tions over the results of a single execution (see [Die98b] for a description of these
and other approximate statistical tests commonly used for comparing supervised
classification learning algorithms).
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[" 1 Amb. Class | Examples | Basel | Base2 | Test %Err |
1 | IN-RB-RP 38,112 (10.17) | 13.26 | 9.40 | 210 (1L.70)  7.56
2 | VBD-VBN 28,417 (7.59) | 33.56 | 19.90 | 267 (18.98) 9.61
3 | NN-vB-vEP 26,970 (7.20) | 29.78 | 20.22 | 255 (20.10)  9.18
4 | vB-vEP 19,718 (5.26) | 35.48 | 23.16 | 226 (24.42) 8.3
5 | 33-un 18,824 (5.02) | 40.48 | 16.91 | 144 (16.54) 5.18
6 | NNS-VBZ 16,928 (4.52) | 18.69 | 11.21 81 (11.40) 2.91
7 | NN-VB 16,239 (4.33) | 10.51 8.95 67 (9.10) 241
8 | 33-vBD-VBN | 12,607 (3.37) | 44.96 | 33.27 | 180 (31.64)  6.48
9 | nn-vee 10,560 (2.82) | 49.40 | 19.77 | 116 (21.68) 4.17
10 | J3-NNP 9,650 (2.58) | 25.32 | 14.04 | 68 (13.91) 2.45
11 | JJ-RB 9,628 (2.57) | 35.58 | 15.60 73 (16.49) 2.63
12 | DT-IN-RB-WDT | 9,237 (2.48) | 39.36 | 39.36 | 187 (40.34) 6.73

Total 316,890 (57.90) | — | — 1874 67.44

TABLE 5. Information about twelve selected significant ambigu-
ity classes. Examples: Number of examples and, in parenthesis,
percentage with respect to the total number of training examples;
Basel: Error rate of the MFT; heuristic (‘ambiguity class’ level);
Base2: Error rate of the MFT; heuristic (‘word’ level); Test: Num-
ber of errors and error rate of the MFT;, heuristic on the test set;
and %Err: percentage of the total number of errors on the test set

| | Amb. Class | Example words ] #Ws |
1 | IN~RB-RP up, in, about, on,... 14
2 { VBD-VBN named, said, stopped, heard, studied,... 845
3 | NN-VB-VBP show, rate, study, support, process, question,... | 301
4 | VB-VBP make, filter, result, use, have,... 422
5| JJ-NN common, standard, material, blue, human,... 676
6 | NNS-VBZ makes, filters, results, uses,... 392
7 | NN~-VB group, increase, inlerest, name,... 379
8 | JJ-VBD-VBN reported, used, expected, classified, ezxposed,... 268
9 | NN-VBG publishing, talking, making, finding, holding, ... 365
10 | JJ-NNP New, National, Western, Financial, Pacific,... 265
11 | JJ-RB likely, very, early, far, virtually, only,... 90
12 | DT-IN-RB-WDT | that 1

TABLE 6. Some example words from the twelve ambiguity classes
of reference. #Ws stands for the number of different word forms
belonging to that class

The measures employed to test the goodness of the induced decision trees were
the usual: classification accuracy (or, conversely, the error rate) exhibited on new
examples, and size (number of nodes), despite more sophisticated measures can
be considered. This is the case of using the average information score [KSR95] .
to complement classification accuracy, or considering optimally pruned trees (see
[EMS97]) when evaluating pruning performance of some concrete method. We
have not used them because our aim was not to perform a thorough comparison
between methods in order to strongly conclude that some approach outperform
others, but we only wanted to properly tune our learning algorithm.



3. MODEL EVALUATION 67

3.3. Results. Due to space limitations we are not able to reproduce the whole
set of experiments performed to properly tune the learning algorithm. Nevertheless,
we will report information about the most important ones, which are: (1) Testing
the appropriateness of pruning and stopping criteria; (2) Evaluating the benefits
coming from the branch-merging strategy; and (3) Selecting, from a set of 10, the
most adequate function for feature selection;

Regarding the model evaluation proper, apart from quantifying the accuracy
improvements when testing the classifiers on the test bench data sets, we also eval-
uate the appropriateness of the tree-modelling for a posterior use as a statistical
module in a more complex disambiguation algorithm (e.g. RTT, STT, and RELAX
taggers introduced in chapter 4). Since trees will be used to predict tag probabili-
ties conditional to some particular relevant contexts, we focus in class probability
estimates.

3.3.1. Branching Strategy and Pruning. Table T shows the results obtained
when introducing “branch merging” and CART post-pruning features to our basic
tree-induction algorithm.

The results are presented in three steps for each of the twelve data sets of
reference. The ‘Base’ column stands for the basic learning algorithm, which is run
with the basic set of six attributes of table 1, and the RLM criterion for attribute
selection. The ‘+Merging’ stands for the results obtained when introducing branch-
merging in the basic algorithm, and, finally, the ‘+Pruning’ column shows results
when adding post—pruning to the previous algorithm (i.e. including also branch-
merging).

The figures in table 7 are the average results of a ten fold cross—validation
experiment, thus in each fold the tree is learned from the 90% of the whole training
set and tested on the remaining 10%.

Base +Merging +Pruning

Amb. Class %Err  Nodes | %Err Nodes | %Err Nodes

1} IN-RB-RP . 9.00 2,062 8.81 1,430 8.55 147

2 | VBD-VBN 6.24 3,326 6.26 1,148 6.12 820

3 | NN-VB-VBP 383 1,295 3.71 614 3.84 502

4 | VB-VBP 4.22 1,133 4.10 528 4.18 320

5 | JJ-NN 15.46 3,598 | 14.87 1,772 | 14.75 702

6 | NNS-VBZ 6.08 1,465 5.75 498 5.72 450

7 | NN-VB 1.30 430 1.36 211 1.42 199

8 { JJ-VBD-VBN 18.15 3,301 | 18.66 1,538 | 18.12 751

9 | NN-VBG 13.66 2,833 | 14.16 1,151 { 13.54 539

10 | J3-NNP 5.15 643 4.81 295 4.97 270
11 | JJ-RB 10.88 1,144 9.97 887 | 10.57 712
12 | DT-IN-RB-WDT | 7.96 865 7.95 602 7.80 303
Average/Total 8.49 22,095 ] 8.36 10,674 8.30 5,715

"TABLE 7. Results of testing the branch-merging and post—pruning techniques

We obtain the following conclusions:

e The branch—merging' strategy significantly reduces the tree sizes. Globally,
we-jump from 22,095 to 10,674 nodes which is a reduction of almost 52%.
This substantial reduction is achieved with no loss in accuracy, since the
average error rate is even slightly diminished (not significant).
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e The CART post—pruning technique allows a further decrease of the size of
the trees: 46.4% reduction. Again, the error rate is slightly decreased. This
change is not significant but it allows to say that the induced trees are at
least as accurate as those learned in the absence of pruning.

We have seen that both techniques are very effective to substantially reduce
the size of the induced trees, and that these trees retain (if no increase) their
generalization ability. Therefore, they will be incorporated to the basic algorithm
from now on.

3.3.2. Attribute Selection Functions. We added three simple functions for fea-
ture selection to those presented in subsection 2.2.1 in order to serve as increasingly
better bench mark references. They are the following:

e Random selection.

e Minimum number of errors (MNE). That is, choosing for branching the at-
tribute which induces a partition with minimum number of errors. The
number of errors In a certain node is simply the MLE estimate of the error
rate, i.e. N—M where N is the total number of examples and M is the
number of examples of the most frequent tag.

o Global Scoring (GS-IG). In this case, the criterion consists of determining
an initial score for each attribute (based on the Information Gain measure
calculated over all examples) and selecting at each step the best scored of
the remaining attributes.

. The following table 8 shows the error rates obtained by using the ten different
functions for feature selection on the twelve ambiguity classes of reference. The
notation used to describe each function is that introduced in subsection 2.2.1, except
for the last column ‘RF-1G’ which stands for RELIEFF-IG. Again, figures reported
are calculated by averaging the results of the ten folds.

The main conclusions that can be extracted are the following:

e The seven basic attribute selection criteria perform roughly equal on average
(their relative differences lead to no statistical significance). The best is
RLM with an average error of 8.24% on the 12 data sets, while the worst is
Gini diversity index reporting 8.69%. RLM shows a slightly better stability
and obtains the best figure in several ambiguity classes (additionally, its
performance is within the best in all cases), therefore it will be the preferred

function!”.

o Regarding the baseline functions: (1) Random selection performs worse than
any other function; (2) GS-1G performs worse than any other function (except
Random selection). Observe that this is due to a great variance of GS-1G that
makes it to be the best on some data sets (IN-RB-RP and DT-IN-RB-WDT) but
the worst on many others (JJ-NN, JJ-VBD-VBN, NN-VBG, etc.); and (3) MNE
performs only slightly worse (not significant) than the seven basic functions.
This is surprising since some authors [Mur95] observe that MNE is very
unstable and has many problems of tuning.

17 An empirical study by Lépez de Mantaras [LCG986) states that RLM function lead to sta-
tistically smaller trees than Quinlan’s Gain Ratio and that it is not favourably biased to attributes
with many values
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[ [Amb. Class | Random [ MNE JGSIG| RLM | 1G]

1 | IN-RB-RP 11.21 | 9.15| 859 | 865 8.61
2 | VBD-VBN 16.05 | 6.57 | 13.80 | 6.17 | 6.14
3 | NN-VB-VBP 1212 | 334 | 383 3.73| 3.26
4 | VB-VBP 13.52 | 4.67 | 4.72( 4.08 | 4.27
5 | JI-NN 21.43 | 15.40 | 28.07 | 14.78 | 14.22
6 | NNS-VBZ - 7.50 | 6.50| 732 565 6.14
7 | NN-VB 544 | 177 | 150 1.36| 1.37
8 | JI-VBD-VBN 32.40 | 19.19 | 24.45 | 18.43 | 18.05
9 | NN-VBG 19.48 | 14.12 | 21.70 | 13.54 | 13.65
10 | JJ-NNP 1833 | 573 7.22| 481 | 5.50
11 { JJ-RB 16.04 | 10.40 | 11.34 | 9.94 | 10.31
12 | DT-IN-RB-WDT 3331 | 856 | 7.01| 7.93| 8.19
Average 17.24 | 878 { 11.63 | 824 | 831
[ TAmb.Class | GR | Gini [ x* | Tau | RF-IG |
1 | IN-RB-RP 870 9.08| 864 | 893 | 899

2 | VBD-VBN 6491 6.45| 637 6.10| 6.27
3 | NN~VB-VBP 338 3.71| 3.59| 395 3.19

4 | VB-VBP 438 | 4.72 1 4.55| 467 | 4.09

5 | JI-NN 14.75 | 15.52 | 14.40 | 14.29 | 15.30

6 | NNS-VBZ 6.47 | 5.56 | 5.50| 5.69 5.39

7 | NN-VB 1.44] 137 140]| 135 1.29

8 | JJ-VBD-VBN 18.05 | 19.63 | 20.07 | 18.84 | 18.71

9 | NN-VBG 13.75 | 13.85 | 12.92 | 13.54 | 13.44

10 | JJ-NRP 573 | 584 | 596 | 527 | 6.62
11 | JJ-RB 11.57 | 9.97 | 10.00 | 9.51 9.56

12 | DT-IN-RB-WDT | 8.19 | 8.55 | 879 | 8.07 | 7.95
Average 8.58 | 869 | 852 | 8.35 8.40

TABLE 8. Comparative results using different functions for feature selection

e We have seven functions, based on different principles, which are similarly
accurate!8. This fact will allow us to construct useful ensembles of decision
trees to reduce the combined error (this issue will be addressed in chapter 6).

3.3.3. Probability Estimation. One way to easily evaluate the quality of the
class—probability estimates given by a classifier is to calculate a rejection curve [DB95].
That is to plot a curve showing the percentage of correctly classified test cases whose
confidence level exceeds a given value 8, for increasing values of this parameter. In
the case of statistical decision trees this confidence level can be straightforwardly
computed from the class probabilities given by leaves of the trees. In our case we
calculate the confidence level as the difference in probability between the two most
probable cases (if this difference is large, then the chosen class is clearly much bet-
ter than the others; if the difference is small, then the chosen class is nearly tied
with another class). A rejection curve that increases smoothly, indicates that the

18When used within tagging algorithms (see chapter 4), the trees acquired using all seven
basic functions clearly improve the results of the MFT heuristics reported in table 5. This im-
provement is substantial in all data sets, except in two cases: IN-RB-RP and JJ-E, in which only
a moderate decreasing of error rate is observed.
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confidence level produced by the classifier can be transformed into an accurate prob-
ability measurement, while flat or decreasing segments of the curve indicate cases
where the confidence estimate of the learning algorithm is unrelated or inversely
related to the actual performance of the algorithm.

Figure 5 depicts the rejection curves corresponding to the decision trees ac-
quired for the twelve reference ambiguity classes. For calculating the curves the
parameter 6 was increased from 0 to 1 with a step of 0.01 (corresponding to 1%).

We list below the main conclusions:

e The rejection curves for most cases increase fairly smoothing, with very few
abrupt, flat, or decreasing segments, indicating that the acquired decision
tress provide good confidence estimates.

e We observe that some curves end much before rejecting 100% of the examples
(this is particularly noticeable in the NN~VB and IN-RB-RP ambiguity classes).
This situation occurs when the final increment in @ causes all examples to
be rejected (call Omax the last value of @ for which the rejection is lower than
100%), and indicates that there is a big amount of examples for which the
algorithm gives “equal” confident estimates (between Onax and Onax + 0.1).
In these particular domains this situation is explained because there exist
very strong indicators for some concrete readings which concentrates many
examples (e.g. after a a determiner or an adjective the “verb” reading is
prohibited in the NN~VB domain, and this is the contextual situation of almost
50% of the training examples of that ambiguity class) which are all classified
with a very high confidence.

4. Extending the Basic Model

We have extended the basic algorithm following three different directions: (1)
Considering the construction of specific decision trees for dealing with unknown
words'®; (2) Enriching the set of features that describe the training examples by -
adding lexical patterns; and (3) Specifically addressing the problem of small ambi-
guity classes.

These new features are described in the following sections.

4.1. Dealing with Unknown Words. Unknown words are those words not
present in the lexicon (i.e. in our case, the words not present in the training corpus),
for which we do not know in advance which are their possible tags (i.e., to which
ambiguity class they belong).

One might think that it is not necessary to consider the possibility of unknown
words, because a robust morphological analyzer that would supply the set of pos-
sible tags for each word form can be assumed. However, this is not the most
realistic scenario. First, a morphological analyzer is not always present {due to the
morphological simplicity of the language treated, the existence of some efficiency
requirements, or simply the lack of resources). Second, if it is available, it very
probably has a certain error rate that makes it necessary to consider the noise it
introduces. Therefore, it seems clear that we have to deal with unknown words in
order fo obtain more realistic figures about the real performance of the proposed
tagging approach.

19The precise meaning of the term ‘unknown words' is explained in section 4.1.
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FIGURE 5. Rejection curves for the twelve ambiguity classes. In
all of them, X-axis represents the percentage of rejection and the
Y-axis the percentage of accuracy

There are several approaches for dealing with unknown words (see section 2.5.2
of chapter 2 for a brief survey). In our case, we consider unknown words as words
belonging to a new ambiguity class containing all possible tags corresponding to
open categories (i.e. noun, proper noun, verb, adjective, adverb, cardinal, etc.).
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The number of candidate tags come to 20 in the Penn Treebank tagset, so we state
a classification problem with 20 different output classes. Therefore, unknown words
are treated exactly in the same way as the other ambiguity classes, except for the
attributes describing the examples.

We have used very simple information about the orthography and the context
to acquire decision trees for the unknown-word ambiguity class. More particularly,
from an initial set of 17 potential attributes, we have empirically decided the most
relevant (using the RELIEFF-IG function to score them by relevance, and testing
some combinations of attributes), which turned out to be the following ten: (1) In
reference to word form: the first letter, the last three letters, and other four binary-
valued attributes accounting for capitalization, whether the word is a multi-word or
not, and for the existence of some numeric characters in the word. (2) In reference
to the context: only the preceding and the following POS tags.

This set of attributes is fully described in table 9.

| | Attribute | Values | Type |
1 | tag(-1) Any tag in the Penn Treebank tagset S
2 | tag(+1) " S
3 | char(1) Any printable ASCII character D
4 | char(n) ” D
5 | char(n—-1) ? D
6 | char(n—2) : ? D
7 | capitalized? {yes,no} S
8 | other-capital_letters? id S
9 | multi-word? ” S
10 | has_numeric_characters? ? S

"TABLE 9. Set of basic attributes for dealing with unknown words

4.1.1. Fvaluation. We have estimated the relative proportions in which the 20
tags of the unknown--word class appear naturally in the WSJ as unknown words,
and we have collected the examples from the training corpus according to these
proportions. The most frequent tag, NNP (proper noun), represents almost 30% of
the sample. This fact establishes a lower bound for accuracy of 30% in this domain
(i.e. the performance that a MFT tagger would obtain on unknown words).

Table 10 shows the generalization performance of the trees learned from training
sets of increasing sizes up to 50Kw words (‘Dtrees’ columns). In order to compare
these figures with a close approach we have simulated IGTREE system [DZBG96]
and we have tested its performance exactly under the same conditions as ours.

IGTREE system is the core of a memory-based POS tagger which stores in
memory the whole set of training examples and then predicts the part of speech
tags for new words in particular contexts by extrapolation from the most similar
cases held in memory (k-nearest neighbour retrieval algorithm). See section 3.2.5
of chapter 2 for more details. The main connection point to the work presented
here is that huge example bases are indexed using a tree-based formalism, and '
that the retrieval algorithm is performed by using the generated trees as classifiers.
Additionally, these trees are constructed on the base of a previous weight assignment
for attributes (contextual and orthographic attributes used for disambiguating are
very similar to ours) using Quinlan’s Gain Ratio [Qui86].
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Note that the final pruning step applied by IGTREE to increase the compression
factor even more has also been implemented in our version. The results of [GTREE
are also included in table 10. Figures 6 and 7 contain the plots corresponding to
the same results. )

DTrees IGTREE
#Exs. Acc. #Nodes Acc.  #Nodes
2,000 | 77.53% 224 | 70.36% 627
5,000 | 80.90% 520 | 76.33% 1,438

10,000 | 83.30% 1,112 | 79.18% 2,664
20,000 | 85.82% = 1,644 | 82.30% 4,783
30,000 | 87.32% 2,476 | 85.11% 6,477
40,000 | 88.00% 2,735 | 86.78% 8,086
50,000 | 88.12% 4,056 | 87.14% 9,554

TABLE 10. Generalization performance of the trees for unknown words

Observe that our system produces better quality trees than those of IGTREE.
On the one hand, we see in figure 6 that the generalization performance is better
in all cases. On the other hand, figure 7 seems to indicate that the growing factor
in the number of nodes is linear in both cases, but clearly lower in ours.
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FIGURE 6. Accuracy vs. training set size for unknown words

Important aspects contributing to the lower size are the merging of attribute
values and the post pruning process applied in our algorithm, which allow a relevant
reduction of the tree size without loss in accuracy.

The better performance is probably due to the fact that IGTREEs are not ac-
tually decision trees (in the sense of trees acquired by a supervised algorithm of
top-down induction, that use a certain attribute selection function to decide at each
step which is the attribute that best contributes to discriminate between the current
set of examples), but only a tree-based compression of a base of examples inside
a kind of weighted nearest-neighbor retrieval algorithm. The representation and
the weight.assignment for attributes allows us to think of IGTREEs as the decision
trees that would be obtained by applying the usual top-down induction algorithm
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with a simple attribute selection function consisting of making a previous unique
ranking of attributes using Quinlan’s Gain Ratio over all examples and later select-
ing the attributes according to this ordering, i.e. exactly the GS-IG function tested
in section 3.3.2. The experimental results of that section show that it is slightly
better to reconsider the selection of attributes at each step than to decide on an a
priori fixed order.
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FIGURE 7. Number of nodes of the trees for unknown words

Of course, these conclusions have to be taken in the domain of small training
sets, since the same plot in figure 6 suggests that the difference between the two
methods decreases as the training set size increases. Using bigger corpora for train-
ing might improve performance significantly. For instance, [DZBG96] report an
accuracy rate of 90.6% on unknown words when training with the whole WSJ (2
million words). So our results can be considered better than theirs in the sense that
our system needs less resources for achieving the same performance.

4.2. Enriching Features. This extension could be done in many directions,
e.g. by adding morphological, syntactic, or semantic features, by considering long-
distance or inter-sentential relations, etc. being, of course, conditioned by the
availability of the required extra information —something that is dubious in most
cases, because it corresponds to higher levels of language understanding in the usual
pipelined approach to NLP.

In this section we will report the results of some experiments performed around
the addition of new attributes, which are of different levels of specificity, and have
in common that need neither syntactic nor semantic knowledge about the domain.
Table 11 presents a full listing of the enlarged set of features.

The new set of attributes incorporates lexical information about words appear-
ing in the local context of the target word (rows 11-15), and the ambiguity classes
of the same words (rows 30-34). In this way, we consider information about the
surrounding words at three different levels of specificity: word form, POS tag, and
ambiguity class.

This model also includes some features, which are very similar to Brill’s lex-
ical patterns [Bri95a], for capturing collocational information. Such features are
obtained by composition of the already described single attributes and they are
sequences of contiguous words and/or POS tags (up to three items).
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[ ] | Attribute | Values [ Type |

1 | tag(-3) Any tag in the Penn Treebank tagset )

2 | tag(-2) ” S

A | 3| tag(-1) ” S
4 | tag(+1) » S

5 | tag(+2) » S

6 | word(0) Any word of the ambiguity class D

7 | tag(-1) x tag(+1) pairs of tags D

B | 8| tag(-2) x tag(-1) ” D
9 | tag(+1) x tag(+2) ” D

10 | tag(-3) x tag(-2) x tag(-1) trios of tags D

11 | word(-3) Any plausible neighbour word of word(0) | D

12 | word(-2) ” D

C | 13 | word(-1) ” D
14 | word(+1) ” D

15 | word(+2) i D

16 | tag(-1) x word(0) pairs (tag,word) D

17 | word(0) x tag(+1) ” b

D | 18 | tag(-2) x tag(-1) x word(0) trios (tag,tag,word) D
19 | word(0) x tag(+1) x tag(+2) trios (word,tag,tag) D

20 | tag(-1) x word(0) x tag(+1) trios (tag,word,tag) D

21 | word(-1) x tag(-1) pairs (word,tag) D

E | 22 | word(+41) x tag(+1) ” D
23 | word(-1) x tag(-1) x word(0) trios (word,tag,word) - D

24 | word(0) x word(+1) x tag{+1) trios (word,word,tag) D

25 | word(-2) x word(-1) pairs (word,word) D

26 | word(+41) x word(+2) ” b

F | 27 | word(-1) x word(0) ” D
28 | word(0) x word(+1) v D

29 | word(-1) x word(0) x word(+1) trios (word,word,word) D

30 | Aclass(-3) : Any ambiguity class D

31 | Aclass(-2) ? D

G | 32 | Aclass(-1) v D
33 | Aclass(+1) 7 D

34 | Aclass(+2) ” D

35 | Cap(word(-1))? {yes,no} S

H | 36 | Cap(word(0))? ” S
37 " S

Cap(word(+1))?

TABLE 11. Extended set of attributes

Finally, and also inspired on the original paper describing Brill’s tagger [Bri92],
we add three binary-valued attributes describing if the surrounding words are cap-
italized or not (rows 35-37).

Regarding the evaluation, we are not only interested on how does the basic
set of attributes perform compared to the enlarged set, but also on the particular
behaviour of each type of attribute. For this reason, we grouped them, according to
their degree of specificity, in eight types of attributes (A to H groups in the previous
table): POS tags, word forms, ambiguity classes, pairs of tags, pairs of words, etc.
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Most of these groups are too specific {or contain too few features) for per-
forming well alone, thus they were complemented with two basic features, namely
tag(-1) and tag(+1), before testing them. The results obtained are presented in
table 12. The first column corresponds to the basic set of attributes, while the last
column corresponds to the full set of 37 attributes. Columns in between show the
test of the different groups of attributes (“4X” stands for the addition of the two
complementary attributes).

[ JAmb.Class | A | B+X | C+X [ D+X | E+X |

1 | IN-RB-RP 8.64% | 8.78% | 8.15% | 9.13% | 8.32%
2 | vBD-VBN 6.27% | 6.41% | 5.71% | 7.65% | 6.91%
3 | NN-VB-VBP 3.711% | 3.78% | 3.54% | 4.36% | 3.95%
4 | VB-VBP 410% | 3.99% | 5.50% | 5.28% | 6.01%
5| JI-NN 14.87% | 13.58% | 14.70% | 14.64% | 14.17%
6 | NNS-VBZ 5.65%1{ 5.81% | 5.75% | 5.89% i 5.49%
7 | NN~-VB 1.37% | 1.29% 1.33% | 1.16% | 1.27%
8 | JJ-VBD-VBN 18.67% | 18.57% | 19.98% | 18.84% | 19.37%
9 | NN-VBG 14.07% | 13.54% | 12.39% | 13.75% | 11.87%
10 | JJ-NNP 481% | 527% | 5.50% | 5.61% | 5.84%
11| JJ-RB 9.97% | 9.85% | 10.08% | 9.94% | 9.62%
12 | DT-IN-RB-WDT | . 7.96% | 7.84% | 8.31% | 8.79% | 8.55%
Average error-rate 8.34% | 8.22% | 841% | 8.75% | 8.45%

num-nodes 480.1 488.0 519.6 504.6 524.6

[ JAmb.Class | F+X | G+X | H+A | Al |

1§ IN-RB-RP 8.06% § 8.35% | 8.84% | 8.64%
2 | VBD-VBN 7.72% | 6.60% | 6.10% | 5.84%
3 | NN-VB-VBP_ 4.61% | 3.67% | 3.70% | 3.54%
4 | VB-VBP 4.15% | 4.83% | 4.00% | 4.38%
5] JI-NN 13.52% [ 14.46% | 14.80% | 15.05%
6 | NNS-VBZ 5.48% | 5.40% | 5.77% | 6.01%
7 | NN-VB 1.09% | 1.44% | 1.36% 1.44%
8 | JI-VBD-VBN 18.05% | 19.01% | 18.76% | 17.70%
9 | NN-VBG 14.37% | 19.58% | 14.37% | 13.66%
10 | JI-NNP 5.91% | 5.48% ! 4.69% | 5.61%
11 | JJ-RB 9.60% | 9.74% | 9.85% | 11.11%
12 | DT-IN-RB-WDT 9.14% | 7.48% | 7.83% | 8.31%
Average error-rate 8.48% | 8.84% | 8.33% | 8.44%

num-nodes 561.9 463.8 479.2 398.8

TABLE 12. Testing the extended set of attributes

The previous results lead to the following conclusions:

o Comparing the ‘A’ and ‘All’ columns, we see that, despite some particular
differences on some data sets, they perform globally equal (average error
rates: 8.34% and 8.44%). Thus, adding the whole set of attributes at a time
leads to no accuracy improvement. However, when using the enlarged set of
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attributes smaller trees were acquired {average number of nodes: 480.1 and
398.8), since the big number of attributes allows to better fit the training
set.

o Regarding the particular groups of attributes, the best is B+X (tag patterns)
while the worst is G+X {ambiguity classes). The other combinations are in
between with fairly low global differences. Comparing to the A—set of basic
attributes, we see that the particular groups have a quite bigger variance
that affects both the more specific (e.g. F+X) and the more general sets (e.g.
G+X). For instance F+X obtains the best result (among all combinations)
in the JJ3-NN data set but also the worst in the VBD-VBN set. Similarly, G+X
obtains much worse results than the rest in the NN-VBG data set, but the best
score in the DT-IN-RB-WDT domain. On the contrary, the A set is much more
stable and despite achieving none of the best results is always among the
better groups. This may suggest that the perfect combination of attributes
depends on the concrete data set and that, in general, none is superior to
the rest.

Finally, note that the greater variability of particular groups of at-
tributes (with the exception of G+X) is clearly accompanied by a greater
size of the induced trees. This may be explained by the fact that a relative
small set of specific attributes is not enough to concisely fit the training
data,

e The fact that several groups of attributes result in trees that perform all
reasonably well allows the construction of ensembles of trees, which are able
to exploit the differences between them and obtain combined classifiers that
outperform all the individuals. This extension will be explained in detail in
chapter 6. Note that the set of features used to deal with unknown words
was also enlarged, up to 23 attributes (see table 3 of chapter 6), with the
sare purpose. .

4.3. Dealing with Sparseness. We mentioned in the introduction of the
chapter that even though the examples are grouped into ambiguity classes of equiv-
alence, there are some training sets that suffer from sparseness, i.e., they contain not
enough examples to reliably apply statistical inductive methods. We have proposed
two approaches to address the problem of small training sets. Both are discussed
below.

4.3.1. Global Smoothing. Taking advantage of the taxonomic structure of am-
biguity classes, we proposed a technique consisting of backing off to more general
ambiguity classes to increase the number of examples of low represented classes.
We will call this method global smoothing.

Figure 8 reproduces part of the WSJ ambiguity—class taxonomy (which was
previously presented in figure 1). Boxes with thick lines represent terminal nodes
in the DAG, while shadowed boxes represent the successive generalization of the
examples of the JJ-NN~RB ambiguity class (adjective-noun—adverb, e.g. “enough”).

To complete the training set of this class, the ‘global smoothing’ approach
would begin by adding examples belonging to the 4-ambiguity level superclasses:
e.g. adjective-adverb-noun-verb (e.g. “right”), adjective-adverb—noun—preposition
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2 _ambiguity

3_ambiguity

{gs-ms-nn-ve | for-zommens | | [oommraeing ] O\ Joo-rosnn-um

Jossn-xanw-va | frr-samiror-nn ] [or-mv-we-ror-ze |

§_ambiguity

FIGURE 8. A part of the ambiguity-class taxonomy for the WSJ corpus

(e.g. “outside”), etc., taking into account only adjective, noun, and adverb occur-
rences. In subsequent steps, more general examples could be added, i.e. those of
5-ambiguity level, and so on.

We tested this approach on four relatively small data sets, applying an in-
cremental procedure by considering a new level of generality at each step. The
aggregation of new examples was performed in a naive way consisting of adding
them all at the beginning of the tree-induction process. The four first rows of
table 13 contain the results obtained. The ‘Base’ column shows the results of the
trees learned with the basic training set, while the ‘Glevel-n’ columns stand for
successive steps of generalization. Error rates and the number of training examples
(the concrete increase is in parentheses) are reported in each case.

[ | AClass | Base | Glevel-1 | Glevel-2 | Glevel-3 | Glevel-4 |

1 | NN-RB 6.50% |- 6.29% 6.52% 6.78% —
2,621 | 3,716 (1,095) 4,199 (483) | 4,601 (402)

2 | JJR~RBR | 16.21% 13.94% 14.39% — —
3,178 4,001 (823) 4,313 (312)

3| JI-NN-RB | 14.37% 12.57% 12.44% 12.01% —
2,908 3,863 (955) 3,948 (85) | 4,062 (114)

4| J3-NN-VB | 13.18% 12.07% 11.90% 11.98% —
2,363 | 3,971 (1,608) 4,151 (180) | 4,343 (192)

5] JI-RB | 10.24% 12.09% 12.39% 12.42% —
9,628 | 10,922 (1,204) | 12,201 (1,279) | 12,430 (229)

6| JJ-NN | 14.66% 14.50% 14.78% 14.90% 14.90%
18,824 | 25,113 (6,289) | 27,300 (2,187) | 27,687 (387) | 27,527 (140)

7 | NN~VBG 13.89% 14.39% 14.30% — —
10,560 | 12,604 (2,044) | 12,782 (178)

8 | VBD-VBN 6.24% 8.33% 8.39% 8.51% 8.48%
28,417 | 40,150 (11,733) 40,504 (354) | 41,258 (754) | 41,494 (236)

TABLE 13. Results of applying the global smoothing technique

It can be seen that the accuracy was improved in three of the four data sets,
while in the fourth (NN-RB), the accuracy remained invariable. It is important to
note that the accuracy increased up to a maximum and then tended to stabilize (to
slightly decrease in some cases) as more general examples were added.
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We also tested if this approach could be a feasible way for improving accuracy
in general ambiguity classes. For that, we applied global smoothing to four of the
very frequent ambiguity classes. The results were negative in this case (see columns
5-8 of table 13), since in two of the four data sets the accuracy did not change,
while in the other two the smoothing was significantly counterproductive.

The presented approach suffers from two basic problems: On the one hand, the
scarceness of more general examples is evident in many ambiguity classes??. On the
other hand, the more back—off steps are carried out, the more degradation appears
on the quality of the added information. As previously noted, this last drawback
may have a serious influence on the achievable improvement with this technique.

Additionally, there are some open question that should require further research:
e.g, which is the best way to perform the aggregation of new examples, when to
stop, etc.

4.3.2. Generating Conver Pseudo Data (CPD). We have tested an alternative
based on a recent paper by Breiman [Bre98b], in which he describes a quite sim-
ple and effective method for generating new pseudo—-examples from existing data
and incorporating them into a tree-based learning algorithm to increase prediction
accuracy in domains with few training examples.

We describe it below, with a slight variation and assuming that all features are
discrete—valued, as it is the case in the our tagging domain.

The method for generating new data from the old depends only on a single
parameter d, 0 < d < 1, and it reminds the process of gene combination to obtain
new generations in genetic algorithms. More particularly, to create a new data
instance, these steps are followed: (1) Select two instances (x1, y), (x2,y) at random
from the training set?!; (2) Select a random number v from the interval [0, d], and
let v = 1~ v. (3) The new instance is (xs,y) is obtained by combination in the
following way. For each attribute i, 1 < i < m, let £1,; and z2; be the i-th attribute
values in first and second examples, respectively. Then z3; is assigned z;; with
probability 4 and z2 ; with probability v.

Additionally, Breiman proposes a particular method for introducing the pseudo-
examples in the CART tree-induction algorithm [BFOS84]. Let X be the initial
small data set, and N its number of examples. The tree-induction algorithm con-
siders the X set unchanged at the root of the tree, but for any subsequent internal
node the associated subset of examples is enlarged with dynamically generated
pseudo—examples, until it contains N examples. The induction process ends, for
each parent node, when either of the two children nodes (CART system learns binary
trees for classification) contain no examples of the original training set X.

The implementation of this method presents some computational problems, as
the proper author notes in his paper. For the sake of simplicity, we have tested
the application of this technique by adding a fixed amount of generated pseudo-
examples at a time, at the root level of the tree. In spite of the simplicity of the
proposal, very good results were obtained.

In the original paper, Breiman does not propose any optimization of the gen-
eration parameter d (the role of d is to regulate the amount of change allowed in

20For instance, the very basic JJ-VBN and JJ~VBG ambiguity classes, contain only 4 and 69
more general examples in the training corpus, respectively.

21 Breiman allows the classes of both examples to be different. However we empirically ob-
served that, in our domain, much better results were obtained by mixing only pairs of examples
of the same class.
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the combination of two examples), instead, he performs a limited amount of trials
with different values of d and simply reports the best achieved result. In our case,
we have observed a great variability on the results, depending on the value of d
(with a slight advantage of values bigger than 0.3). Instead of trying to optimize
it, we propose a new solution consisting of learning several decision trees, each
one corresponding to a different value of d, and combining the outcomes of single
decision trees by averaging the probabilities over the possible tags. In this way,
we generally obtain a combined result which is at least as accurate as any of the
individual classifiers, and therefore we make the global classifier more robust.

The results are impressive in some domains. For instance, dealing with the
preposition—adverb ambiguity class, an experiment was performed using an increas-
ing number of original examples as the base for generating new pseudo-data. The
results were that, starting with a set of only 100 examples, the addition of pseudo-
examples reported an accuracy similar to that obtained from 250 real examples;
the improvement achieved departing from 500 original examples was comparable to
that of training with 2000, etc.

These results are depicted in figure 9 which plots the curves of the error rate
with respect to the training set size. In that figure, ‘DTrees’ stands for the results
obtained by the trees learned from unchanged training sets, while ‘CPD’ stands for
the results achieved with the ensembles of trees acquired by enlarging the training
sets with a fixed amount of pseudo—examples generated using increasing values of
the generation parameter (between 0.3 and 0.8).

26 ——— oy
24 F DTrees —— |
2t |
2 | 4
18 b 4
16 |} 4
1411
12 F S 1
10 | ]
8 b , \ , , \ , , -

0 500 1000 1500 2000 2500 3000 3500 4000

FiIGURE 9. Performance of the CPD method vs. normal decision
trees on the preposition—adverb data set. The X-axis represents the
number of training examples and the Y-axis the error rate in %

Unfortunately, the resulting overhead was also noticeable. For instance, in the
third point of the previous example we are talking about jumping from one single
tree of about 170 nodes acquired from 500 examples, to the combination of six
trees learned from 3000 examples (500 original and 2500 generated) of about 300
nodes each. In addition, we can observe that the improvement becomes negligible
when the algorithm starts with a big enough number of training examples, so, as
the ‘global smoothing’ method, CPD is not guaranteed to be useful when applied
to very frequent ambiguity classes.
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Finally, compared to the global smoothing approach, the generation of convex
pseudo—-examples overcomes the two practical drawbacks mentioned in the las sec-
tion, and it was superior in the last reported experiment, where the average error
reduction was 25.3% higher.

4.3.3. Discussion. The above presented approaches for addressing the problem
of sparseness in ambiguity classes, especially the generation of convex pseudo-
data, seem very promising, moreover when some improvements are still to be done.
For instance, a more careful way of introducing the completing examples in the
decision tree particular nodes, instead of including them all at the beginning, would
probably report some benefits. In addition, it seems reasonable to think in assigning
confidence weights to the examples, so that it would be possible to place a greater
importance on the original examples than to the generated pseundo-examples, etc.

However, in chapter 6 we will empirically test the effect of CPD on several
real POS taggers and we will see that the global improvement is very small. Some
additional discussion will be provided in that chapter.

4.4. Pending Work. In another direction, further work should be carried
out to extend the capabilities of the learning algorithm. The limitations of usual
tree-induction algorithms are well known: greedy search, instability, difficulties to
deal with small disjuncts, univariate splits that lead to simple linear partitions on
the feature space, etc. (see section 4 of chapter 2 for more details).

Several techniques have .been proposed to partially reduce the effect of such
intrinsic problems. Among others, we should mention: Pruning, searching with
lookahead, multi-pass construction, multivariate splits, construction of ensembles
of decision trees, etc. Some of them have already been applied in the work pre-
sented in this chapter, and other regarding ensembles will be presented in chapter 6.
Nevertheless, we think that other two extensions should be investigated, namely,
searching with a limited lookahead and the inclusion of multivariate splits.
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CHAPTER 4

Tagging with the Acquired Decision Trees

Once the tree-based model has been acquired we have to decide how to use it
for tagging a sequence of ambiguous words. The most straightforward approach is
to use the trees as direct classifiers to decide the proper part—of-speech of each word
in a single pass, e.g., from left to right, through the sequence. Even this simple
approach has to face a specific problem because determining the part—of-speech of
a concrete word may depend on the POS of the some neighbour words that are still
ambiguous, e.g., the words to the right of the current word, if we proceed from left to
right. Even though this difficulty can be easily overcomed, we have experimentally
observed that the accuracy of such an algorithm can be significantly improved by
considering the statistical information provided by the trees within more complex
disambiguation algorithms. More particularly, we have implemented two taggers
following different approaches, namely:

e A reductionistic tagger (RTT), which uses an an iterative algorithm that
reduces the initial POS ambiguity at each step by filtering out low probable
tags. The update of probabilities at each iteration is performed by applying
the decision trees to the ambiguous words.

" e A statistical tagger (STT), which disambiguates the input sequence by as-
:signing the most probable sequence of tags, given the observed sequence of
words. In this case, decision trees are used for estimating the contextual
probabilities of the statistical model.

The former is presented and evaluated in section 1, while the latter is presented
in section 2. Some comments about the comparison of both taggers, and about
their limitations are presented in section 3. Finally, section 4 is devoted to present
some extensions with the aim of overcoming the previously outlined problems. In
particular, we show how the decision-tree~-based model can be adapted to a flexible
POS tagger based on relaxation labelling.

1. RTT: a Reductionistic Tree—based Tagger

We have implemented a reductionistic tagger in the sense of Constraint Gram-
mars [KVHAB95], i.e., in an initial step, a word-form frequency dictionary con-
structed from the training corpus provides each input word with all possible tags
with their associated lexical probability, and, after that, an iterative process reduces
the ambiguity (by discarding low probable tags) at each step until a certain stop-
ping criterion is satisfied. We will call this tagger RTT standing for Reductionistic
Tree-based Tagger. The architecture of RTT is represented in figure 1.

More particularly, at each step and for each ambiguous word the work to be
done in parallel is:

83
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Language Model

Tokenizer / ;._.‘._. hoole
Frequency lexicon r. er [~»1Tagged Text

Tagging Algorithm

FiGURE 1. Architecture of RTT

1. Classify the word using the corresponding decision tree. The ambiguity of
the context (either left or right) during classification may generate multi-
ple answers for the questions of the nodes. In this case, all the paths are
followed and the result is taken as a weighted average of the results of all
possible paths. The weight for each path is actually its probability, which -
is calculated according to the current probabilities of the POS tags of the
features involved in the nodes of the path.

2. Use the resulting probability distribution to update the probability distri-
bution of the word. The probability updating is done by simply multiplying
previous probabilities per new probabilities coming from the trees and renor-
malizing the results (so they sum to one again).

3. Discard the tags with almost zero probability, that is, those with probabili-
ties lower than a certain discard boundary parameter.

As an example, we present in table 2 the real process of disambiguation of a text.
In this figure we can see at each iteration which are the surviving part—of-speech
tags for each word and their associated probabilities. In this simple example the
text becomes unambiguous (and correctly disambiguated) at the second iteration
of the algorithm. Note that the text disambiguated in that example is a part of a
sentence collected from the WSJ corpus which is fully presented in table 1, together
with the possible parts-of-speech for the ambiguous words.

The DT first_JJ time NN he PRP was_VBD shot_VBN in_IN the DT
hand NN as_IN he.PRP chased_VBD the DT robbers.NNS outside.RB ...

first time shot in hand as chased outside
JJ NN NN IN NN IN JJ IN
RB VB VBD RB VB RB VBD JJ
VBN RP VBN NN
RB

TABLE 1. A sentence and its POS ambiguity. Appearing tags,
from the Penn Treebank corpus, are described in appendix C.

After the stopping criterion is satisfied, some words could still remain am-
biguous. Then there are two possibilities: (1) Choose the most probable tag for
each still-ambiguous word to completely disambiguate the text, or (2) Accept the
residual ambiguity (for subsequent treatment).
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as he chased the robbers outside .
it.0 IN:0.83 PRP:1 JJ:0.25 DT:1 NNS:1 IN:0.54 .:1
RB:0.17 VBD:0.28 JJ:0.36

VBN:0.57 NN:0.06
RB:0.04
it.1 IN:0.96 PRP:1 VBD:0.97 DT:1 NNS:1 IN:0.01 .:1
RB:0.04 VBN:0.03 JJ:0.01
RB:0.98
it.2 IN:1 PRP:1 VBD:1 DT:1 NNS:1 RB:1 .ol
stop

TABLE 2. Example of disambiguation

Note that a unique iteration forcing the complete disambiguation is equivalent
to using the trees directly as classifiers, and results in a very efficient tagger, while
performing several steps progressively reduces the efficiency, but takes advantage
of the statistical nature of the trees to get more accurate results.

Another important point is to determine an appropriate stopping criterion®.
Some experiments seem to indicate that the performance increases up to a unique
maximum and then softly decreases as the number of iterations increases. Figure 2
illustrates this behaviour.

Accuracy T T T T T T T
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FIGURE 2. Accuracy, on ambiguous words, of RTT depending on
the number of iterations

This phenomenon is studied by [Pad98] and the noise in the training and test
sets is suggested to be the major cause. For the sake of simplicity, in the experi-
ments reported the following section, the number of iterations was experimentally
fixed to three. Although it might seem an arbitrary decision, broad-ranging exper-
iments performed seem to indicate that this value results in a good average tagging
performance in terms of accuracy and efficiency.

1.1. Evaluation. We divided the WSJ corpus into two parts: 1, 120, 000 words
were used as a training/pruning set, and 50, 000 words as a fresh test set. See table 3
for some details about the training and test corpora.

! The disambiguation procedure is heuristic, and its convergence is not guaranteed. However,
in most of our experiments convergence was reached with a small number of iterations.
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| S W W/S AW T/W _ T/AW |
Training | 45,993 1,121,776 24.39 381,737 (34.05%) 1.48  2.40
Test 2,151 51,990 24.17 17,619 (33.80%) 145 2.40
Total | 48,144 1,173,766 24.38 309,356 (34.02%) 147  2.40

TABLE 3. Information about the WSJ training and test corpora.
S: number of sentences; W: number of words; W/S: average number
of words per sentence; AW: number and percentage of ambiguous
words; T/W: average number of tags per word; and T/AW: average
number of tags per ambiguous word

We used the lexicon described in section 3.1 of chapter 3, which is derived
from training corpus, and contains all possible tags for each word, as well as their
lexical probabilities. For the words in the test corpus not appearing in the training
set, we stored all the tags that these words have in the test corpus, but no lexical
probability (i.e. assigning uniform distribution). This approach corresponds to the
assumption of having a morphological analyzer that provides all possible tags for
unknown words, and it is often referred to as the closed vocabulary assumption. .
In following experiments (see chapter 6) we will treat unknown words in a less
informed way.

From the 243 ambiguity classes the acquisition algorithm learned a base of 194
trees (covering 99.5% of the ambiguous words) and requiring 565 Kb of storage.
The learning algorithm (implemented using Lucid Common Lisp) took about 12
CPU-hours running on a SUN SparcStation-10 with 64Mb of primary memory.

" The first four columns of table 4 contain information about the trees learned
for the twelve most representative ambiguity classes (those described in table 5 of
the previous chapter). They present figures about the number of examples used for
learning each tree?, and the classification error over the set of examples used for
pruning. This last figure could be taken as a rough estimation of the error of the
trees when used in RTT, though it is not exactly true, since in the pruning examples
the neighboring tags are given their correct tags from the supervised annotation,
while during tagging both contexts —left and right— can be ambiguous.

The tagging speed of the first RTT prototype, implemented in PERL-5.003
(which is an interpreted language), was slightly over 300 words/sec. running on a
Sun UltraSparc2 machine with 128MB of primary memory.

The results obtained can be seen at different levels of granularity.

o The right part of table 4 contains information about the performance of the
decision trees corresponding to the twelve reference data sets. The num-
ber and percentage of errors is presented in ‘RTT’ column, while the ‘%Red’
column reflects the percentage of error reduction due to the use of RTT, com-
paring to a most-frequent-tag tagger (MFT, heuristic). On the one hand,
we observe a remarkable reduction in the number of errors: 56.6% (recall
that the twelve data sets concentrate up to 67.4% of the errors committed
by the most—frequent—tag tagger). On the other hand, this table allows the
identification of some problematic cases. For instance, JJ-NN seems to be

2The Lisp-based implementation of the tree-learner had problems to work with more than
30,000 examples. This is why we did not use the full —38,112 examples— training set for the
IN-RB-RP ambiguity class. The proportion of examples considered for pruning varied from 0 (no
pruning for the small training set) to 15% depending on the training set size.
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{ [ Amb. Class [ #Exs #N  %Err | MFTo—err RTT-err %Red |
1| IN-RB-RP 30,000 99 7.13% | 210 (1L.70%) 164 (9.14%) 21.88%
2 | veD-vBN 28417 844  7.53% | 267 (18.98%) 91 (6.47%) 65.91%
3 | NN-VB-VBP 26,970 576 - 3.32% | 255 (20.10%) 51 (4.02%) 80.00%
4 | ve-vep 19,718 313 3.67% | 226 (24.42%) 46 (4.97%) 79.65%
51 JJ-NN 18,824 680 16.30% | 144 (16.54%) 122 (14.01%) 15.30%
6 | nns-vBz 16,928 688 4.37% | 81 (11.40%) 44 (6.19%) 45.70%
7 | nn-vB 16,230 221 1.11% | 67 (9.10%) 12 (1.63%) 82.09%
8 | 33-vBD-veN | 12,607 761 18.75% | 180 (31.64%) 95 (16.70%) 47.22%
9 | NN-VBG 10,560 564 16.54% | 116 (21.68%) 58 (10.84%) 50.00%
10 | 33-NnP 9,650 351 590% | 68 (13.91%) 26 (5.20%) 61.97%
11 | 33-RB 0,628 854 11.20% | 73 (16.49%) 48 (10.84%) 34.26%
12 | DT-IN-RB-WDT | 9,237 271  6.07% | 187 (40.34%) 56 (12.08%) 70.05%
Total 208,707 6,222 — 1,874 813 56.62%

TABLE 4. Information about the decision trees acquired for the
twelve ambiguity classes of reference. #Exs: number of training
examples; #N: size of the tree in number of nodes; %Err: estimated
error rate of the tree; MFT;—err: performance (‘number of errors’
and ‘error rate’ in parenthesis) of the most—frequent-tag tagger
on the test set. RT T—err: same meaning but considering the RTT
tagger; and %Red: percentage of error reduction

the most difficult ambiguity class, since the associated tree obtains only a
slight error reduction from the MFT baseline tagger (15.3%). This is not
surprising since semantic knowledge is necessary to fully disambiguate be-
tween noun and adjéctive. Results for the DT-IN-RB-WDT ambiguity reflect
an over—estimation of the generalization performance of the tree —the pre-
dicted error rate (6.07%) is much lower than the real (12.08%)— which may
be indicating that the decision tree overfits the pruning data set.

e Global results at the third iteration are the following: when forcing a com-

plete disambiguation, the resulting accuracy is 97.29%, while accepting the
residual ambiguity the recall is increased up to 98.22%. In this case, the
resulting ambiguity ratio is 1.08 tags/word over the ambiguous words and
1.026 tags/word overall, which corresponds to a precision of 95.73%3>. In
other words, 2.75% of the words remained ambiguous (over 96% of them
retaining only 2 tags). In chapters 6, and 7 it is shown that these results are
comparable to the best state—of-the-art taggers based on automatic model
acquisition.

In order to complement the previous information, we present in figure 3 the

performance achieved by our tagger with increasing sizes of the training corpus.
Results in accuracy are computed over all words. The same figure includes MFT,
results, which can be seen as a reference baseline.

3¢‘Recall’ and ‘precision’ measures, which are usually complemented with figures about cov-

erage, are the base for the standard evaluation of systems for information extraction. Regarding
POS tagging, these measures have a simpler meaning, and they are used to measure the quality of
taggers that perform an ambiguity reduction but do not necessarily a complete disambiguation.
Precisely, ‘recall’ stands for the percentage of words that retain the correct tag, while ‘precision’
stands for the percentage of correct tags among all retained.
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FIGURE 3. Performance of the tagger related to the training set size

Following the intuition, we see that performance grows as the training set size
grows. The maximum is at 97.29%, as previously indicated.

The rejection curve for our classifier was also calculated in order to test the
quality of the probability estimates given by the decision trees. Following the same
explanation than in section 3 of chapter 3, the confidence levels were calculated
as the differences between the two most probable predictions. As a difference,
in this case the rejection curve is not plotted for each individual tree, but it is
calculated from the predictions of all trees on the test set after one iteration of the
disambiguation algorithm (without filtering any part-of-speech tag).

The rejection curve, which is depicted in figure 4, increases fairly smoothly,
giving the idea that the tree-based classifier provide good confidence estimates.
This is in close connection with the aforementioned high recall figures yielded by
the tagger when disambiguation in the low—confidence cases is not forced.

T T ] T i L]
% accuracy

% rejection
1 1 s 1 1 1

0 10 20 30 40 50 60

FIGURE 4. Rejection curve for the RTT classifier, trained using the
whole training corpus. Accuracy figures are given over ambiguous
words
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2. STT: A Statistical Tree—based Tagger

First, we will present the general framework in which statistical taggers take
place, and second, we will explain how to introduce the acquired decision trees into
the statistical approach.

2.1. Statistical and HMM-based Tagging® The aim of statistical or
probabilistic tagging is to assign the most likely sequence of tags given the ob-
served sequence of words, that is,

arg max P(TagSeq|WordSeq)
TagSeq

Statistical taggers make use of two sources of information: (1) the lezical proba-
bilities, 1.e., the probability of a particular tag conditional on the particular word,
P(t|w), and (2) the contextual probabilities, which describe the probability of a
particular tag conditional on the surrounding tags. This second source is often re-
duced to the conditioning of the n—1 preceding tags, that is, P(tx|tk—n+1y*** ytk—1)-
Such probabilities are often referred to as transition probabilities or n—grams (e.g.,
bigrams, trigrams, etc.).

At runtime, the tagger typically works as follows: First, each word is assigned
a set of all possible tags according to the lexicon. This will create a lattice. A
dynamic programming technique, the Viterbi algorithm (described for instance in
[DeR88)), is then used to find the sequence of tags ¢y - - -, that maximize:

n
P(tl,...,tn]wl,...,wn) = HP(tkltl,...,tk_l;wl,...,wn) ~
k=1 ’

i n
P(telte—a,t—1) - Ptx|w
Ptg|tk—g,t—1, wx) =~ H (Lt 2’1:(t1)) (tk|we) _
k=1 k=1 k

n

H P(trlti—2 tk-1) - Plwklty)
k=1 P(wk)

The previous chain requires the application of Bayesian inversion and two sim-
plifying assumptions. The first is to assume that the probability of a certain tag
in position k only depends on the k-th word and the two previous tags (trigram
modelling). The second, assumes independence between information sources.

Finally, since P(wy) does not depend on the tag sequence, statistical POS
tagging can be stated as:

n
arg max kl:[l P(tilte—2,tk—1) - P(wltr)

Taggers based on Hidden Markov Models [Rab90] work exactly in the same
way, however its abstract formulation is a bit different. In its application to POS
tagging, each word is viewed as a signal emitted from some (hidden) internal state
consisting of a tag, [t'], in the bigram case, or a pair of tags, [t#/], in the trigram
case. The signal model refers to the set of parameters describing the probabilities of
each word being emitted by some state, e.g., P(w[t/) approximates the probability
of state [t;¢;] emitting w. Transitions between states contain n-gram probabilities,
e.g., for the trigram case, the edge between state [t't/] and state [t/t¥] would contain

4This introduction to statistical tagging follows that of Samuelsson and Krenn, in [KS97].
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the probability P(t5|ti _, ¢/, _,), that is the probability of tag t* being preceded by
the pair of tags t',#7. This set of parameters define what is often referred to as the
language model. The tagging task then consists of finding the most likely sequence
of states (i.e. the most likely sequence of tags) given the observed sequence of
words. The same dynamic programming based algorithm is applied in this case.

The already given presentation foliows the probabilistic formulation because
it allows a simpler and more brief explanation, and it better fits the extension to
decision trees presented below.

. 2.2. The STT Tagger. Statistical decision trees can be seen as compact
representations of the contextual model for a statistical tagger. In particular, each
tree can be seen as a function 7(t;C), that return the probability of a tag ¢ for
a concrete word, given its context of appearance, C. Following exactly the same
formulation presented in the previous section, and making the same assumptions,
we can recast the problem of tagging as:

n
arg max P(ty,...,talwy,...,w,) & arg max H Tax (te; Cr) - Plwilts) ,
ti...8p t1...tn el

where Ay stands for the ambiguity class of word wg, and Ty, (tx; Cx) stands for
the probability of tag ¢; for the word wy in the context Ck. This probability is
provided by the tree corresponding to the concrete ambiguity class, that is, Ty, .
The point here is that the context conditioning the tag ¢x is not restricted to the
two preceding tags as in the trigram formulation. Instead, it is extended to all the
contextual information used for acquiring the decision trees, e.g. the three preceding
tags, the two following tags and the word form of the word to be disambiguated.

By using dynamic programming, this most-likely sequence of tags can be calcu-
lated with a linear cost on the sequence length®. The algorithm is the same Viterbi
algorithm, in which we substitute the n—gram probabilities by the application of
the corresponding decision trees. However, one problem appears when applying
conditionings on the right context of the word to be disambiguated, since the dis-
ambiguation proceeds from left to right and, so, the right hand side words may
be ambiguous. Although dynamic programming can be used again to calculate
the most likely sequence of tags to the right (in a forward-backward approach),
we propose a simple and cheaper approach consisting of calculating the contextual
probabilities by a weighted average of all possible tags for the right context.

Suppose that we denote the left context by C~ and the right context by C*,
and suppose that the right context consists of the two following tags. Then, the
contextual probability of tag ¢z for word wy is calculated by:

Tar(te; CFrtignitera) = Y Taultes CFstirty) - P((tin15)ICF)
(tots)ect

where P((t:,t;)|C;) stands for the probability of words wx41 and w42 being
tagged as ; and t;. These probabilities are extracted from lexical probabilities.

5In our implementation the disambiguation is performed sentence by sentence (i.e., the se-
quence length n in the formulation refers to the length of the currently addressed sentence), since °
we assume no inter-sentential dependencies.



2. STT: A STATISTICAL TREE-BASED TAGGER 91

2.2.1. Some Comments on this Approach. The main theoretical advantage of
the decision—tree approach is that it represents an easy, compact and efficient way
of extending the n—gram modelling in statistical tagging.

The usual problem in extending n-gram models is the exponential growth of the
number of parameters to be estimated, that makes available corpora not enough to
reliably estimate them. The sparseness problem comes together with a high space
requirement to store the huge matrix of statistical parameters.

Most systems use a kind of smoothing procedure to deal with sparseness, by
using statistical information of different levels of generality and applying it in a
back—off approach, that is, to apply concrete models when there is enough evidence
and back off to more general information when there is not. A brief presentation
of general methods for smoothing is included in chapter 2.

The induction method for acquiring decision trees is an easy way of automati-
cally decide a reduction of statistical parameters and perform a kind of smoothing,
alleviating both problems of sparseness and space requirements. For instance, tak-
ing a penta—gram model (which is the usual context taken into account in our
decision tree modelling) and assuming the Penn Treebank tagset, containing 45
tags, the potential number of parameters to be estimated® is 45° = 184,528, 125.
It is obvious that they can not be reliably estimated with a 1 million words corpus.

In our approach, the induction algorithm decides which of this information is
useful in each case. The final representation with trees contains only a subset of
the whole set of statistical parameters, mixing different levels of generality. For
instance, sometimes the bigram evidence is enough —this would be the case of a
depth 2 branch of a tree— but sometimes more precise information is required in

" the deeper nodes. Additionally, n-grams are not necessarily continuous and can
refer to the left or right of the word to be disambiguated. In the aforementioned
domain, the final model, consisting of less than 200 trees, requires a manageable
0.5Mb of storage, and, what is more important, captures relevant information that
allows to surpass the bigram and trigram models. . '

2.2.2. Evaluation. By the time in which the previously explained experiments
using RTT on the WSJ were performed (January ’97), STT was still not avail-
able. Therefore, we cannot provide the results obtained with the STT tagger under
exactly those experimental conditions.

Nevertheless, we performed more recent experiments, using the WSJ corpus,
in which both taggers were tested. Additionally, we could also reproduce the same
training and test sets for an experiment on a Spanish corpus. The former are
explained in chapter 6, while the latter appear in chapter 5. We reproduce below,
the global results obtained in both cases.

e Tested on the WSJ, under the conditions expressed in chapter 6, STT ob-
tained a global accuracy of 96.63%, which is almost equal than that obtained
by RTT, 96.61%. However STT was slower than RTT: 321 word/sec. vs.
426 words/sec.

81n fact the real number of syntactically valid sequences of 5 tags is much lower, but here
is precisely where the main problem appears, which is to distinguish the impossible sequences of
tags from those_that are simply very rare and do not appear in the corpus.
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o Tested on the Spanish LEXEsP corpus, STT achieved an accuracy of 97.51%,
while RTT was slightly less accurate, 97.44%7.

3. Comparison and Discussion

We think that none of the taggers is better than the other in absolute terms.
The choice of which tagger to use for a particular NLP application would strongly
depend on the user needs and on the kind of application. The following points
summarize some pros and cons of both approaches:

e Although both taggers have the same linear time complexity on the input
sequence, RTT has empirically proved to be faster than STT (especially when
STT incorporates n~gram information) . See chapter 6 for some comparative
figures.

e Due to its probabilistic formulation, STT obtains the most likely sequence
of tags, that is, exactly one tag for each input word. Instead, RTT, can be
adapted, by tuning the filtering threshold and the number of iterations, to
obtain the desired level of residual ambiguity, avoiding to decide in the most
difficult cases. Depending on the user needs, it might be worthwhile ac- .
cepting a higher remaining ambiguity (lower precision) in favour of a higher
recall. In this way a tradeoff between recall and precision can be easily
stated for RTT.

e STT achieved roughly the same accuracy than STT on the English corpus,
but it was slightly more accurate on the Spanish corpus. Nevertheless, this
difference is not significant, and broader comparisons should be performed
to verify a possible superiority of STT in terms of accuracy.

o The disambiguating procedure used in RTT is heuristic and so, the con-
vergence is not guaranteed. Despite this lack of theoretical support, our

- empirical experience shows that it is easy to properly tune the algorithm to
acquire fairly good levels of efficiency and tagging accuracy.

e STT allows a straightforward incorporation of n—gram information into the
disambiguation algorithm. In this way, the data sparseness problem coming
from the ambiguity—class approach can be better alleviated. This is an issue
that will be addressed in the following sections.

3.1. Identifying Problems. The already presented taggers suffer from one
problem, namely, the restriction to address the ambiguity problem through the
specific ambiguity classes, which in some cases presents the data sparseness problem.
This problem becomes evident in a sentence such as®:

El hombre bajo toca el bajo bajo las estrellas
(The short man plays the bass under the stars)

Here, the challenge is to disambiguate the word “bajo” which has several read-
ings: noun (“bass”), adjective (“short”), preposition (“under”), and, not present in
the above sentence, two additional readings: adverb (“softly”) and verb (1st per-
son, present form of the verb “to descend”). The problem is that this word is the

7These figures were obtained by using a training set of 71Kw and a retraining step consisting
of an extra set of 800Kw words automatically tagged with the first tagger, i.e., using the Céoo
training corpus, according to the notation presented in chapter 5.

8The sentence is given in Spanish because it corresponds to the real example that we were
studying when we first noticed the reported problem.
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unique word, in the training corpus, belonging to the noun-adjective-preposition-
adverb-verb ambiguity class (i.e., in this case the acquired tree accounts for a single
word), and that almost always appears as a preposition (99 occurrences vs. 2 oc-
currences as an adjective, 1 as a noun and none for the rest). With this training
set, is almost impossible to learn the cases in which “bajo” acts as an adjective or a
verb, and definitely impossible for the verb and adverb cases. The result is that in
the previous sentence all occurrences of “bajo” are tagged as a preposition, when
the correct tagging is: adjective, noun, and preposition, respectively.

However, in this case a simple bigram probabilities give strong evidence to
the correct tag assignment for the word “bajo”. For instance, the noun “hombre”
(“man”) restricts the first “bajo” to be basically adjective or preposition, and the
following verb “toca” (“plays”) gives ten times more evidence to the adjective
reading than to preposition. The determiner “el” preceding the second occurrence
of “bajo”, coerces it to be noun or, at a great distance, adjective. The noun
reading is highly compatible with the preposition and adjective readings for the
third “bajo”, and the adjective reading shows preferences to be followed by noun and
preposition. All these combinations are resolved by observing that the preposition
reading for the third “bajo” is the only really admissible in combination with the
following unambiguous determiner “las”. Apart from the preceding argument, the
tag sequence preposition-preposition, is very uncommon in Spanish and it should
never be assigned to the two adjacent “bajo”.

One should expect that presented evidence is strong enough to overcome the
lexical probability bias to the preposition reading. This is the case of a simple
bigram based statistical tagger, which succeeds in the tagging of the sentence,
while the much more complicated tree-based approach clearly fails.

This observation made us to consider the systematic addition of simple n-gram
information to ensure a minimum coherence in the final tag sequence. In a first
step (section 3.2), this was achieved by using n-grams within STT. In a second
step (section 4) we propose a more general solution which consists of combining
information from different sources (including n-grams and decision trees) by using
a constraint-based flexible POS tagger.

3.2. Adding n—grams to the STT. The statistical approach of STT allows
a straightforward incorporation of n—gram probabilities, by linear interpolation,
in a back-off approach including, from most general to most specific, unigrams,
bigrams, trigrams and trees. The general expression for such linear interpolation
is:

P(tk|Ck) =~ A Ta,(tx;Ck) + Az p(te|ti—a2 te—1) + Az p(te|te—1) + A1 - p(tx)

where n-gram probabilities are simply estimated by relative frequencies in the
training set. The A coefficients could be estimated by iteratively maximizing the
probability of held-out data (deleted interpolation), using the forward-backward,
algorithm (see, for instance [Cha93]). Nevertheless, for the sake of simplicity, the
weights have been experimentally—tuned and set to A\; = 0.5, A, = 0.29, Az = 0.19,
A4 = 0.02 for the following experiments and for those reported in chapter 6.

From now on, we will refer to STT as STT+ when using n-gram information
(this name will frequently appear in chapter 6). The results obtained using STT+
are better than those of STT in both the English and Spanish corpora, providing
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evidence for the utility of the presented approach. These results are summarized
in the two following points.
e When applied to the Spanish corpus, apart from correctly disambiguating
the example sentence, STTT increased the accuracy of STT up to 97.69%.
This figure was achieved by applying a simple strategy of backing off to more
general information sources whenever there is no samples in the current level
(i.e., to assign one to the ‘A;’ corresponding to the most specific information
source for which there exist evidence, and zero to the rest of ‘A’s). Slightly
better results where obtained, 97.81% accuracy, when using the hand tuned
set of weights for the A; parameters. Recall that the accuracy of simple STT |
was 97.51% on the same corpus.
e As we can see in table 4 of chapter 6, STT, which obtained an accuracy of
96.84%, also improved the 96.61% result of STT.

4. Using the Tree—-model in a Flexible Tagger

From a different perspective, decision trees may be seen as a compact way of
representing a set of classification rules. The transformation from trees to rules is
easily performed by converting each path from the root to the leaves into a single
rule. In our case, we take advantage from the probabilistic information of leaf nodes
to construct a set of weighted constraints (the weight is represented by the mutual
information between tags and contexts), to feed RELAX [Pad96], a flexible-model
tagger based on relaxation labelling (RL). This approach was first published in
[MP97], and lately applied to the annotation of a Spanish corpus [CCM*98].

We start by describing the main features of the RELAX POS tagger (section 4.1),
and then we address the inclusion of the decision trees in it (section 4.2). Regarding
this last point, we will see that results obtained by combining trees, n—grams and
linguistic rules surpass any other combination.

4.1. RELAX: A Relaxation-labelling based Tagger. Relaxation is a
generic name for a family of iterative algorithms which perform function optimiza-
tion, based on local information. They are closely related to neural nets [Tor89]
and gradient descent [LM95a].

Although relaxation operations had long been used in engineering fields to solve -
systems of equations [Sou40], they did not achieve their breakthrough success until
relaxation labelling —their extension to the symbolic domain— was applied to the
field of constraint propagation, especially in low-level vision problems [Wal75,
RHZ76).

Relaxation labelling is a technique that can be used to solve consistent labelling
problems (CLPs), as described by [LM95b)]. A consistent labelling problem consists
of, given a set of variables, assigning to each variable a value compatible with the
values of the other ones, satisfying —to the maximum possible extent— a set of
compatibility constraints.

In the Artificial Intelligence field, relaxation has been mainly used in computer
vision —since it is where it was first used— to address problems such as corner
and edge recognition or line and image smoothing [RLS81, Llo83]. Nevertheless,
many traditional Al problems can be stated as a labelling problem: the travelling
salesman problem, n—queens, or any other combinatorial problem [AK87].

The application of constraint satisfaction to perform NLP tasks is not a novel
idea. The relaxation labelling algorithm in particular was first proven to be useful
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for such tasks by [PR94, PM94], who used POS tagging as a toy problem to test
some methods to improve the computation of constraint compatibility coefficients
for relaxation processes. Applications to real NLP problems (including POS tagging,
shallow parsing and word sense disambiguation), dealing with large unrestricted
texts, are presented in the following works: [Pad96, VP97, MP97, Pad98].

The tagger we present here has the architecture described in figure 5: A unique
algorithm uses a language model consisting of constraints obtained from different
knowledge sources®. The disambiguation algorithm, which works by relaxation
labelling, applies the constraints contained in the language model in order to it-
eratively update the weights for each possible label for each word. If constraints
are consistent, the algorithm converges to a local optimum which satisfies as much
as possible the constraint set. For a deeper discussion on the convergence of the

algorithm, see [Pad98].

Language Model

! Tagged Corpus l

FIGURE 5. Architecture of RELAX tagger

Tagging Algorithm

From our point of view, the most remarkable feature of the algorithm is that,
since it deals with context constraints, the model it uses can be improved by writ-
ing into the constraint formalism any available knowledge. The constraints used
may come from different sources: statistical acquisition, machine-learned models or
hand coding. An additional advantage is that the tagging algorithm is independent
of the complexity of the model.

We summarize the main features of the RL based tagger in the following points:

o It uses a constraint oriented language model. This enables it to deal with
many kinds of information (n-grams, decision tree branches, linguistic in-
formation, etc.) provided they are expressed in the form of constraints.

e It performs parallel constraint satisfaction, that is, the constraints are not
applied in a predefined order.

e It enables the use of heterogeneous information. For instance, to perform
POS tagging, one can use constraints on the POS tags for words in context,
but also their morphological, semantic o syntactic features, if available.

o It enables the simultaneous resolution of several disambiguation tasks. For
instance, by choosing among a set of pairs (tag,sense) instead of among a
set of tags, one can perform simultaneously POS tagging and WSD, and
use constraints which take advantage of the cross information between both
tasks.

9The type of constraint formalism will be roughly described in the next section.



96 4. TAGGING WITH THE ACQUIRED DECISION TREES

For more details on the algorithm and its application to different NLP tasks,
such as WSD or shallow parsing, see [Pad98]. Additionally, appendix B contain a
detailed description of the relaxation labelling algorithm.

4.2. Incorporating Decision Trees into RELAX. In order to feed the
RELAX tagger with the language model acquired by the decision-tree learning algo-
rithm, the group of trees for the 44 most representative ambiguity classes (covering
83.95% of the examples) were translated into a set of weighted context constraints.
RELAX was fed not only these constraints, but also with bi/tri-gram information.

The Constraint Grammar formalism [KVHA95] was used to code the tree
branches. CG is a widespread formalism used to write context constraints for de-
veloping linguistic-based grammars for morphosyntactic disambiguation and shal-
low parsing. Since it is able to represent any regular context pattern, we will use
it to represent all our constraints: n—gram patterns, hand-written constraints, or
decision—tree branches.

Since the CG formalism is intended for linguistic uses, the statistical contribu-
tion has no place in it: Constraints can state only full compatibility (constraints
that SELECT a particular reading) or full incompatibility (constraints that REMOVE
a particular reading). Thus, we slightly extended the formalism to enable the use
of real-valued compatibilities, in such a way that constraints are not assigned a RE-
MOVE/SELECT command, but a real number indicating the compatibility between
the reading and the context represented in the constraint. This measure, which
should reflect the association between the two components of the constraint, was
computed as the mutual information between the focus tag and the context.

Although the compatibility values for each constraint could be computed in dif-
ferent ways, recent experiments [Pad96, Pad98] indicated that the best results in -
our domain are obtained when computing compatibilities as the mutual information
between the tag and the context. Mutual information measures how informative is
a discrete random variable with respect to another, and is computed as the expec-
tation of the expression in (2) for every possible pair of values [CT91]. Since we
are interested on events rather than on distributions, we will use the corresponding
expression for the outcomes A and B rather than its expectation [KS97].

P(A, B)

If A and B are independent events, the conditional probability of A given B
will be equal to the marginal probability of A and the measurement will be zero. If
the conditional probability is larger, it means than the two events tend to appear
together more often than they would by chance, and the measurement yields a
positive number. Inversely, if the conditional occurrence is scarcer than chance, the
measurement is negative. Although Mutual information is a simple and useful way
to assign compatibility values to our constraints, a promising possibility still to be
explored is assigning them by Maximum Entropy Estimation [Ros94, Rat97b,
Ris97].

4.2.1. Including n-gram Constraints. The translation of bi/tri-grams to con-
text constraints is straightforward. A left prediction bigram and its right prediction
counterpart would be, for instance:
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4.21 (NN) 3.82 (dT)
(-1 DT); (1 NN);

The training corpus contains 1,404 different bigrams. Since they are used both
for left and right prediction, they are converted in 2,808 binary constraints.

A trigram may be used in three possible ways (i.e. the ABC trigram pattern
generates the constraints: ¢, given it is preceded by AB; A, given it is followed by Bc;
and B, given it is preceded by A and followed by ¢). A real example corresponding
to the ‘DT NN VB’ trigram, would be:

2.16 (vB) 1.54  (NN) 1.82 (DT)
(-2 pT) (-1 DT) (1 NN)
(-1 NN); (1 VB); (2 VB);

In this case, the 17,387 tri~gram patterns in the training corpus produced
52,161 ternary constraints.

4.2.2. Translating Decision Trees. The usual way of expressing trees as a set of
rules was used to construct the context constraints. For instance, the tree branch
represented in figure 3 of chapter 3 was translated into the two following constraints:

—5.81 (IN) 2.366 (RB) :
(0 nasu "AS") (0 "as" “AS")
(1 RB) (1 RB)
(2 ID); ) (2 IN);

which express the compatibility (either positive or negative) of the tag in the first
. line with the given context {i.e. the focus word is “as”, the first word to the right
has tag RB and the second has tag IN).

The decision trees acquired for the 44 most frequent ambiguity classes resulted
in a set of 8,473 constraints. '

4.2.3. Including Linguistic Information. The main advantage of RELAX is its
ability to deal with constraints of any kind. This enables us to combine statistical n—
grams (written in the form of constraints) with the learned decision tree models, and
even with linguistically motivated hand-written constraints, such as the following,

10.0 (VBN)
(*-1 VAUX BARRIER (VBN) OR (IN) OR (<,>) OR
(<:>) DR (JJ) OR (JJS) OR (JJR));

which states a high compatibility value for a VBN (participle} tag when preceded
by an auxiliary verb, provided that there is no other participle, adjective nor any
phrase change in between.

4.2.4. Evaluation. The results obtained using the different knowledge combi-
nation are shown in table 5. The results produced by two baseline taggers —MFT:
most-frequent-tag tagger, HMM: bi—gram Hidden Markov Model tagger by Elwor-
thy [Elw93]— are also reported. B stands for bigrams, T for trigrams, and C for
the constraints acquired by the decision tree learning algorithm. Results using a
sample of 20 linguistically-motivated constraints (H) can be found in table 6. These
constraints deal with the participle-past tense ambiguity (1 constraint), with the
noun-adjective ambiguity (2 constraints) and with special constructions using par-
ticles such as “about” (4 constraints), “as” (7), “up” (3), “out” (2) and “more”

(1). .
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| [MFT, AMM] B T BT _C BC TC BIC |
Ambig. | 85.31 91.75 | 91.35 91.82 91.92 91.96 92.72 92.82 92.55
Overall | 94.66 97.00 | 96.86 97.03 97.06 97.08 97.36 97.39 97.29

TABLE 5. Accuracy results (%) of the baseline taggers and of the
RELAX tagger using every combination of constraint kinds

Since the cost of the algorithm depends linearly on the number of constraints,
the use of the trigram constraints (either alone or combined with the others) makes
the disambiguation about six times slower than when using BC, and about 20 times
slower than when using only B.

b | H BH TH BTH CH BCH TCH BTCH]
Ambig. | 86.41 91.88 92.04 92.32 91.97 92.76 92.98 92.71
Overall | 95.06 97.056 97.11 97.21 97.08 97.37 9745 97.35

TABLE 6. Accuracy results (%) of our tagger using every combi-
nation of constraint kinds plus the hand written constraints

The above results show that the addition of the automatically acquired context
constraints lead to an improvement in the accuracy of the tagger, overcoming the
bi/tri~gram models and properly cooperating with them. See also figure 6, which
complements table 5 by depicting the 95% confidence intervals for the accuracy
figures obtained by the different combinations.
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96.50 97.00 97.50

FIGURE 6. 95% confidence intervals for the RELAX tagger results

The main conclusions that can be drawn from those data are described below.

o RELAX is slightly worse than the HMM tagger when using the same infor-
mation (bi-grams). This may be due to a higher sensitivity to noise in the
training corpus.
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o There are two significantly distinct groups: Those using only statistical infor-
mation, and those using statistical information plus the decision trees model.
The n-gram models and the learned model belong to the first group, and
any combination of a statistical model with the acquired constraint belongs
to the second group.

o Although the hand-written constraints improve the accuracy of any model,
the size of the linguistic constraint set is too small to make this improvement
statistically significant. More work should be performed around the design
of a more complete linguistic model to properly test the collaboration of
linguistic information within the RELAX environment.

e The combination of the two kinds of model produces significantly better
results than any separate use. This indicates that each model contains in-
formation which was not included in the other, and that relaxation labelling
combines them properly.

4.3. Using Small Training Sets. In this last section we will discuss the
results obtained when using the previously described taggers to apply the language
models learned from small training corpus.

The motivation for this analysis is the need for determining the behaviour of
our taggers when used with language models coming from scarce training data,
in order to best exploit them for the development of Spanish and Catalan tagged
corpora starting from scratch. This issue will be addressed in the next chapter.

In particular, we used 50,000 words of the WSJ corpus to learn a set of decision
trees and to collect bigram statistics. Trigram statistics were not considered since
the size of the training corpus was not large enough to reasonably estimate the big
number of parameters of the model. Note that a 45-tag tagset produces a trigram
model of over 90,000 parameters, which obviously cannot be estimated from a set
of 50,000 occurrences. ' '

Using this training set the learning algorithm was able to reliably acquire over
80 trees representing the most frequent ambiguity classes (note that the training
data was insufficient for learning sensible trees for about 150 ambiguity classes).
Following the formalism described in the previous section, we translated these trees
into a set of about 4,000 constraints to feed the relaxation labelling algorithm.

The results obtained are presented in table 7. Those figures are computed as
the average of ten experiments using randomly chosen training sets of 50,000 words
each. B stands for the bigram model and C for the learned decision trees when
translated to context constraints.

| | MFT; | RTT  RELax(C) REeLax(B) RELAX(BC) |
Ambig. | 75.35% | 87.29%  86.29% 87.50% 88.56%
Overall | 91.64% | 95.69%  95.35% 95.76% 96.12%

TaBLE 7. Comparative results using different models acquired
from small training corpus

The presented figures may lead to the following conclusions:

e We think this result is quite accurate. In order to corroborate this state-
ment we can compare our accuracy of 96.12% with the 96.0% reported by
[DZBG96] for the IaTREE Tagger trained with a double size corpus (100
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Kw). In the next chapter we will see how this promising results also hold
for Spanish.

RTT yields a higher performance than the RELAX tagger when both use
only the C model. This is caused by the fact that, due to the scarceness
of the data, a significant amount of test cases do not match any complete
tree branch, and thus RTT uses some intermediate node probabilities. Since
only complete branches are translated to constrains —partial branches were
not used to avoid excessive growth in the number of constraints—, the RE-
LAX tagger does not use intermediate node information and produces lower
results. A more exhaustive translation of tree information into constraints
is an issue that should be studied.

The RELAX tagger using the B model produces better results than any of -
the taggers when using the C model alone. The cause of this is related with
the aforementioned problem of estimating a big number of parameters with
a small sample. Since the model consists of six features, the number of
parameters to be learned is still larger than in the case of trigrams, thus the
estimation is not as complete as it should be.

The RELAX tagger using the BC model produces better results (statistically
significant at a 95% confidence level) than any other combination. This
suggests that, although the tree model is not complete enough on its own,
it contains different information than the bigram model. Moreover this
information is proved to be very useful when combined with the B model by
RELAX.



CHAPTER 5
Spanish Part—of-speech Tagging

‘This chapter describes the work performed around the morphosyntactic anno-
tation of the LEXEsp Spanish corpus. It is divided into two parts. The first is
introductory and it is devoted to describe the corpus, the morphological analyzer,
and the adaptation to Spanish of the taggers presented in chapter 4. The main
contributions are in the second part, in which we show how to improve the tagging
performance obtained in the previous section.

More particularly, we present a bootstrapping method to develop an annotated
corpus, which consists of taking advantage of the collaboration of two different POS
taggers. The cases in which both taggers agree present a higher accuracy and are
used to retrain the taggers. This method, which is especially useful for languages
with few available resources, has been applied to obtain the final annotation of the
corpus.

1. Tagging the LExEsp Copus

The LEXEsP Project is a multi-disciplinary effort headed by the Psychology
Department of the University of Barcelona in collaboration with the Psychology
Department of the University of Oviedo. It aims to create a large database of
language usage in order to enable and encourage research activities in a wide range
of fields, from linguistics to medicine, through psychology and artificial intelligence,
among others. One of the main issues of this database of linguistic resources is the
LEXESP corpus, which contains 5.5 Mw of written material, including general news,
sports news, literature, scientific articles, etc., and which aims to be a balanced and
general sample of modern Spanish language usage.

The corpus will be morphologically analyzed and disambiguated as well as
syntactically parsed. The tagset used for morphosyntactic annotation is PAROLE
compliant, and consists of some 230 tags! in their fully expanded form (i.e. using
all information about gender, number, person, tense, etc.), which can be reduced
to 62 tags when only category and subcategory are considered.

The annotation of the corpus is being performed within a more general frame-
work, supported by two research projects, consisting of the creation and integra-
tion of several tools and resources for automatic morphosyntactic analysis, tagging
and parsing of unrestricted Spanish text, as well as their application to related
NLP tasks, such as information extraction. The research projects involved are:
ITEM {ref: TIC96-1243-C03-02, Spanish Research Department} and LEXEspP (ref:
APC96-0125). See appendix E for details about these projects, about the research
partners, and about the links to the available tools and resources,

1 There are potentially many more possible tags, but they do not actually occur.
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The syntactic analysis of the LEXEsP corpus is currently being performed,
and therefore it will not be explained here?. The morphological analysis and the
subsequent disambiguation is explained in the two following sections.

1.1. The Macot Morphological Analyzer. MACO* is a general purpose
morphological analyzer for unrestricted Spanish text developed at the Natural Lan-
guage Research Groups belonging the Software Department of the Polytechnical -
University of Catalonia, as an evolution of a previous MACO analyzer [AAC*94].

The architecture of the morphological analyzer is a modular pipeline of spe-
cialized recognizers, as showed in figure 1.

lRawTextl MACO+

Segmentation

Annotated
Text

FIGURE 1. General architecture of MACcot

The first block of modules, labelled Text Segmentation, performs a proper seg-
mentation of the text, labelling the punctuation marks and joining groups of words
identified as one lexical unit (e.g. proper nouns or compounds such as ‘aparte de’,
‘sin embargo’), date or numerical expressions, etc. They are a collection of specific
heuristics to identify the following special items:

e Simple date patterns: ‘23/3/79°, ‘ario 1983’, ‘13 de diciembre’, ‘30 de julio

de 1993, ...

e Abbreviations: ¢m., MHz., Sr., ...

e Proper nouns: ‘Maria Elena’, ‘San Cristébal de las Casas’, ‘Ministerio de
Cultura’, ‘Universidad de Lodz’, ...

2A robust partial parser for shallow bracketing is already developed and available.
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e Multi-word compounds: ‘sin embargo’, ‘no obstante’, ...
e Numbers and numerical expressions: ¢12,12°, 11.000, 1-3-1, 33942206-S, ...
e Punctuation marks.

These modules use a set of files containing compilations of typical abbrevia-
tions, proper nouns (personal, geographical, marks, enterprises, etc.), multi-word
compounds, functional words allowed to be inside compounds, punctuation marks,
and so on.

Modules can be activated or deactivated for each particular analysis and, ob-
viously, heuristics in each module can be improved independently.

All the tokens not recognized by any of the preceding modules are pipelined
to the word look—up module, which is the real analyzer, containing fast algorithms
for retrieving information from a Spanish comprehensive word form dictionary,
which is labelled SWFD in figure 1. This dictionary has about one million entries
(verbs, nouns, adjectives and adverbs), containing for each form the lemma and
a PAROLE compliant morphological tag describing information such as category,
subcategory, gender, number, person; mode, etc. The dictionary was constructed
by applying a set of about 400 semi-automatically derived inflectional rules to
a big root dictionary —consisting of about 12,000 verbal roots, 85,000 nominal
and adjectival roots and 3,000 closed-category roots— which was automatically
extracted from existing MRD’s and available corpora. For more detalls, we refer
the reader to [CCM*98].

Finally, a post process is performed on the non-recognized words in order to
identify verbal forms with suffixed pronouns (named cliticos). This is a type of
pronouns that are added as suffixes to the verb forms, acting usually as syntactic
objects. For instance, the form ddndonosla (‘giving it (fem.) to us’) has two suffixed
pronouns: ‘-nos’ and “la’ indicating first person plural indirect object and 3rd
person singular feminine direct object, respectively. These particular forms were
not generated and included in the dictionary because there exist potentially infinite
combinations due to the possible recursive application of suffixes. Even restricting
to the combinations of two pronouns, which is a realistic simplification, would result
in an unfeasible increase of the dictionary®.

An implementation of MACO*, using PERL-5.003, was run (with all modules
activated) on a SuN UltraSparc2 machine with 194Mb of RAM to analyze the
whole LEXESP corpus. It took 2.54 hours (including input/output processing time)
to analyze the 5.5 million words at an average speed of 600 words/sec?.

The main results of the morphological analysis are the following:

e The resulting coverage was about 99.5%, which is a remarkable figure work-
ing on an unrestricted text as LEXEspP. Those words that remained unrec-
ognized after the pipeline were labelled as unknown.

e The recall —i.e., the words that get the correct tag among the proposed—
is estimated to be 99.3%.

e Using the reduced tagset of 62 tags, the percentage of ambiguous words
is 39.26% and the average ambiguity ratio is 2.63 tags per word for the

3Further extensions to deal with the most productive classes of derivation and other mor-
phological variations are in progress.

4Comparatively, the time that would take running on a Pentium-120/24Mb architecture was
estimated to be 7.64 hours, at an average speed of 200 words/sec.

-
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ambiguous words, 1.64 overall. These figures on ambiguity are slightly higher
than those observed on the WSJ English corpus (see chapter 4).

1.2. Adapting the English POS Taggers. The ambiguous output produced
by MAcot, was used as the input for the POS taggers described in chapter 4, namely,
RELAX, RTT, and STT. .

Since both taggers require training data, 96 Kw from the morphological ana-
lyzed corpus, were hand disambiguated to get an initial training set (C°) of 71 Kw
and a test set (7) of 25 Kw.

It has to be noted that the size of the training set is much lower than the usual
one million word training corpus derived from the WSJ. This is a common problem
when dealing with languages with a reduced amount of available linguistic resources,
since the manual tagging of a big enough training corpus is very expensive, both in
time and human labour®.

The reduced set of tags was used for the tagging purpose —the use of the whole
set of over 200 tags would have unrealisticaily increased the number of parameters
of the model, and therefore it would have aggravated the sparseness problem—
which means taking into account the ‘category’ and ‘subcategory’ information of the
PAROLE labels, and ignoring the other features. Due to this simplification, some
ambiguities cannot be resolved since they do not appear at this level of granularity.
For instance, 1st and 3rd person (singular) of the past continuous verbs share the
same form in Spanish: corric both means ‘I’ or ‘he/she’ was running. A similar
situation occurs with noun word forms that have a different sense depending on the
genre: capital, which means an amount of money (masc.) and the main city of a
country (femn.). '

Therefore, these readings, which proportion on the LEXESP corpus is slightly
over 2%, are not differentiated and they are left ambiguous after the tagging pro-
cess. This type of ambiguity provokes an almost negligible effect on some NLP
applications, e.g., Information Retrieval, however it should be properly addressed, -
by a kind of post—tagging process, or by the parser itself, if the acquisition of deeper
linguistic knowledge was involved in the task at hand.

The training set was used to extract bigram and trigram statistics and to
learn decision trees to apply to RTT and STT. The taggers also require lexical
probabilities, which were computed from the occurrences in the training corpus —
applying smoothing (Laplace correction) to avoid zero probabilities— For the words
not occurring in the training set, the probability distribution for their ambiguity
class® was used. For unseen ambiguity classes, unigram probabilities were used.
This is a very simple smoothing procedure with a back—off strategy.

Initial experiments consisted of evaluating the precision of both taggers when
trained on the above conditions. Table 1 shows the results produced by each tagger.
The different kinds of information used by the relaxation labelling tagger are coded
as follows: B stands for bigrams, T for trigrams and BT for the joint set. A baseline
result produced by a most-frequent-tag tagger (MFT) is also reported.

5A trained human annotator reached a rate of 2000 words per hour (which corresponds to
an average of five seconds per ambiguous word), using a especially designed Tcl/Tk graphical
interface. So, the 100Kw were annotated in about 50 man hours.

6The number of ambiguity classes appearing in the training set was 137, while those given
by the morphological analyzer are 164.
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| Tagger Model | Ambig. | Overall |

MFT 88.9% | 95.8%
RTT -] 92.1% | 97.0%
STT 92.7% | 97.2%
STTt 93.2% | 97.4%

RELAX(B) 92.9% | 97.3%
RELAX(T) 92.7% | 97.2%
RELAX(BT) | 93.1% | 97.4%

TABLE 1. Results of different taggers using the C° training set

From these results, we may conclude that a 71 Kw training set manually dis-
ambiguated provides enough evidence to allow the tagger to get quite good results.
Nevertheless, it is interesting to notice that the trigram model has lower accuracy
than the bigram model. This is caused by the size of the training corpus, which is
too small to estimate a good trigram model. In the same direction, the sparseness
of data, which is more important at the ambiguity—class level, negatively affects the
tree-based model making RTT and STT to perform worse than the bigram-based
tagger. More evidence on this direction is given by the fact that STT* (which
uses n—-gram information by interpolation) corrects this deviation and gets better
results. :

The absolute accuracy figures are comparable to that obtained when tagging
the WSJ corpus (note that both corpora have similar ambiguity rates, and that
the granularity of the tagsets is also similar). Nevertheless, considering that the
training corpus was significantly smaller the results are fairly better’.

2. Improving Accuracy by Combining different Taggers

2.1. Motivation. Usual automatic tagging algorithms involve a process of ac-
quisition of a statistically-based language model from a previously tagged training
corpus. The statistical models contain lots of parameters that have to be reli-
ably estimated from the corpus, so the sparseness of the training data is a severe
problem.

When a new annotated corpus for a language with a reduced amount of available
linguistic resources is developed, this issue becomes even more important, since no
training corpora are available and the manual tagging of a big enough training
corpus is very expensive, both in time and human labour. If costly human labour
is to be avoided, the accuracy of automatic systems has to be as high as possible,
even starting with relatively small manually tagged training sets.

As we saw in chapter 2, some methods have been developed to avoid the need
of fully supervised training. In POS tagging we find the Baum—Welch re-estimation
algorithm which has been successfully used to improve tagger accuracies when lim-
ited disambiguated material is available [CKPS92, Elw94, Mer94]. Also Brill
[Bri9g5b] presented a weak-supervised version of the transformation-based learn-
ing algorithm for tagging. Recently, similar techniques that use unsupervised data

7In another experiment, reported in section 4.3 of chapter 4, we trained the English taggers
using a small set of about 50,000 words. The accuracy obtained on tagging the WSJ corpus was
96.12%. )
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to aid supervised training have been applied in the domain of text categorization
[BM98, NMTM98].

Bootstrapping is one of the methods that can be used to improve the per-
formance of statistical taggers when only small training sets are available®. The
bootstrapping procedure starts by using a small hand-tagged portion of the corpus
as an initial training set for a certain POS tagger. Then, the tagger is used to
disambiguate further material, which is incorporated to the training set and used
to retrain the tagger. Since the retraining corpus can be much larger than the ini-
tial training corpus we expect to better estimate the statistical parameters of the
tagging model and to obtain a more accurate tagger. Of course, this procedure can
be iterated leading, hopefully, to progressively better language models and more
precise taggers. The procedure ends when no more improvement is achieved.

According to the above formulation, the bootstrapping refining process is com-
pletely automatic. However each step of training corpus enlargement and enrich-
ment could involve a certain amount of manual revision and correction. In this way
the process would be semi-automatic.

The main problem of this approach is that the retraining material contains
errors (because it has been tagged with a still poor tagger) and that this introduced
noise could be very harmful for the learning procedure of the tagger. Depending
on the amount of noise and on the robustness of the tagging algorithm, the refining
iteration could lead to no improvement or even to a degradation of the performance .
of the initial tagger. Therefore, keeping a low error rate in retraining material
becomes an essential point if we want to guarantee the validity of the bootstrapping
approach,

We will propose the joint use of two taggers as a way to reduce the error rate
introduced by a single tagger by selecting as retraining material only those cases
in which both taggers coincide. This approach relies on the observation that the
cases in which both taggers propose the same tag present a much higher precision
than any of them separately, and that these coincidence cases represent a very high
coverage. Then, the corpus to retrain the taggers is built, at each step, on the
basis of this intersection corpus, keeping fairly low error rates and leading to better
language models and more precise taggers.

In addition, it is clear that the combination of taggers can be used to get a high
recall tagger, which proposes an unique tag for most words and two tags when both
taggers disagree. Depending on the user needs, it might be worthwhile accepting a
higher remaining ambiguity in favour of a higher recall.

2.2. Bootstrapping algorithm. The proposed bootstrapping algorithm is
described in detail in figure 2. The meaning of the involved notation is explained
below:

e C’ stands for the retraining corpus of i-th iteration. In particular, C° stands
for the initial hand-tagged training corpus.

e 7 stands for a hand-tagged test corpus used to estimate the performance of -
the subsequent taggers.

81In the case of English, existing resources are usually enough, thus current work on developing
corpora does not rely much in bootstrapping, although re-estimation procedures are widely used
to improve tagger accuracies [Chu88, BCPS94, Elw94]. .
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### Train taggers using manual corpus
MY := train(A,,C°);
Mj := train(A;,C°%);
### Compute achieved accuracy
Acc-current := test(T, A1, MY, A2, M3);
Acc-previous := 0;
### Initialize iteration counter
t:=0;
while (Acc-current significantly-better Acc-previous) do
N := fresh-part-of-the~raw-corpus;
### Tag the new data
M = tag(N, Ay, My);
Nz = tag(N, A2, M3);
### Add the coincidence cases to
### the manual training corpus
C* = combine(C°, MY N N5);
### Retrain the taggers
M{'“ := train(Ar, C'*);
Mt = train(Az,C‘“);
### Prepare next iteration
Acc-previous := Acc-current;
Acc-current := test(T, Ay, M;*!, Ay, MiH);
t:=1+1
end-while

FIGURE 2. Bootstrapping algorithm using two taggers

N stands for the fresh part of the raw corpus used at each step to enlarge
the training set. For simplicity we consider it independent of the specific
iteration.

e A; and A, stand for both taggers (including, indistinctly, the model acqui-
sition and disambiguation algorithms).

. M,’ stands for the j-th language model obtained by i-th tagger.

e train(A;,C’) stands for the procedure of training the i-th tagger with the
j-th training corpus. The result is the language model M,’ .

o test(T, A1, M}, A2, M}) stands for a general procedure that returns the best
accuracy obtained by any of the two taggers on the test set.

e tag(N, A;, M,J) stands for the procedure of tagging the raw corpus A with
the i-th tagger using the j-th language model, producing N]'

o combine(C®, NiNNj) is the general procedure of creation of (i+1)-th training
corpus. This is done by adding to the hand disambiguated corpus C°® the
cases from A in which both taggers coincide in their predictions (noted by
Ni O Nj).

Two properties must hold for this method to work: (1) the accuracy in the cases
of coincidence should be higher than those of both taggers individually considered,
and (2) the taggers should coincide in the majority of the cases (high coverage).

We empirically checked that these properties hold in our case, and that larger
training corpora with a fairly low error can be constructed using the combination



108 5. SPANISH PART-OF-SPEECH TAGGING

of RELAX and RTT taggers®. For instance, using a first set of 200Kw (A) and
given that both taggers agree in 97.5% of the cases and that 98.4% of these cases
are correctly tagged (as it is shown in table 5), we get a new corpus of 195Kw with
an error rate of 1.6%. Additionally, If we add the manually tagged 70Kw (assumed
error free) from the initial training corpus we get a 265Kw corpus with a 1.2% error
rate.

2.3. Applying and Evaluating the Bootstrapping Algorithm. In this
section we study the proper tuning of the algorithm in our particular domain by
exploring the right size of the retrain corpus (i.e: the size of A'), the combination
procedure (in particular we explore if a weighted combination is preferable to the
simple addition) and the number of iterations that are useful. Additionally, we test
if the relatively cheap process of hand-correcting the disagreement cases between
the two taggers at each step can give additional performance improvements.

2.3.1. Size of the Retraining Corpus. First of all, we need to establish which
is the right size for the fresh part of the corpus to be used as retraining data. We
have 5.4Mw of raw data available to do so, but note that the bigger the corpus is,
the higher the error rate in the retraining corpus will be —because of the increas-
ing proportion of new noisy corpus with respect to the initial error free training
corpus— Therefore, we will try to establish which is the corpus size at which further
enlargements of the retraining corpus do not provide significant improvements. For
doing so, we proceed in several steps increasing the retraining set by approximately
200,000 examples at each step. These corpora are denoted by Cl4, Cloos Cloos €tec-,
respectively. The main characteristics of these and other corpora appearing in the
chapter are summarized in table 2.

[Cp | Words | %Err |  %Cov | Big | Trig | Exs [AC |

T 25,128 1 O — — —_ —_ —

c° 71,833 10 100 / 100 1,297 7 7,643 27,398 | 137

Cioo 292,118 §1.22 }93.91/97.70 | 1,796 | 14,352 | 94,394 | 152

Cloo 507,017 | 1.40 ? 2,003 ) 18,006 | 161,573 | 155
1

Cso0 726,311 | 1.47 ? 2,120 | 20,607 | 229,325 | 155
Cioo 946,057 | 1.50 ” 2,209 | 22,507 ; 295,637 | 155
Ciooo | 1,165,432 | 1.53 ” 2,267 | 24,221 | 363,907 | 156
Cyq | 292,118 | 117 100 / 100 1,800 | 15,402 | 108,016 | 149
c? 507,017 | 1.40 | 95.59 / 98.33 | 2,013 | 18,327 | 166,122 | 155

Chest 946,057 | 1.46 | 95.13 / 98.16 | 2,274 | 23,242 | 309,794 | 155

TABLE 2. Information about the test, training and all retraining
sets. Cp: corpus; Words: number of words; %Err: estimated error
rate; %Cov: estimated coverage of the intersection on ambiguous—
words/overall; Big: number of different bigrams; Trig: number
of different trigrams; Exs: number of examples to learn the tree
base; and AC: number of ambiguity classes. All retraining corpora
contain C°. Coverage figures are calculated excluding C°

9We used RTT instead of STT for the combination since when the experiments were performed
the implementation of STT was still in progress.



2. IMPROVING ACCURACY BY COMBINING DIFFERENT TAGGERS 109

The results for each tagger when retrained with different corpus sizes are shown
in figure 3. Accuracy figures are given over ambiguous words only!?, and they are
computed retraining the taggers with the coincidence cases in the retrain corpus,
as previously described in section 2.2.

Joacc. T T T T

94.5 | TreeTagger -o— |
Relax -+---

#worgs (x1000)
0 200 400 600 800 1000

925 L L

FIGURE 3. Results using retraining sets of increasing sizes

It can be observed that the size at which both taggers produce their best result
is that of 800 Kw (namely Cl,), achieving 93.4% and 93.9% accuracy.

2.3.2. Two Taggers Better than One. Once we have chosen a size for the re-
training corpus, we will check whether the joint use of two taggers to reduce the
error in the training corpus is actually better than retraining only with a single
tagger.

Comparative results obtained for each of our taggers when using retraining
material generated by a single tagger (the size of the fresh part of the corpus to be
used as retrain data was also 800 Kw) and when using Cl,, are reported in table 3.
Those results point that the use of two taggers to generate the retraining corpus,
slightly increases the accuracy of any tagger since it provides a less noisy model.

[ Tagger Model [ single | C3p |
RTT 93.0% | 93.4%
RELAX(BT) |93.7% | 93.9%

TAaBLE 3. Comparative accuracy figures when retraining with a
new 800Kw corpus

The error rate in the retrain corpus when using the RELAX(BT) tagger alone
is 2.4%, while when using the coincidences of both taggers is reduced to 1.4%.
This improvement in the training corpus quality enables the taggers to learn bet-
ter models and slightly improve their performance. Probably, the cause that the
performance improvement is not larger must not be sought in the training corpus
error rate, but in the learning abilities of the taggers. '

10Unless the contrary is explicitly said, accuracy results given all along the chapter will refer
to ambiguous words.
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2.3.3. Number of Iterations. The bootstrapping algorithm must be stopped
when no further improvements are obtained. This seems to happen after the first
iteration step. Using the 800Kw from the beginning yields similar results than
progressively enlarging the corpus size at each step. Results are shown in table 4.

| Tagger Model | 350 | C3o0 |
RTT 93.4% | 93.5%
RELAX(BT) |93.9% | 93.8%

TABLE 4. Results when retraining with a 800Kw corpus in one
and two steps

Facts that support this conclusion are:

e The variations with respect to the results for one re-estimation iteration are
not significant.

o RTT gets a slight improvement while RELAX decreases —indicating that the
re—estimated model does not provide a clear improvement in all cases—

o One reason that explains this situation is that the intersection corpora used
to retrain taggers have roughly the same accuracy in both iterations (98.37%
in iteration one vs. 98.44% in iteration two), while the positive difference in
the number or coincidences (97.70% in iteration one vs. 98.33% in iteration
two) is not large enough to provide extra information. A complete descrip-
tion of the retraining corpora, including the performance of the combination
of taggers, is presented in table 5.

l | Ambig. | Overall |

1st retrain:  t1=t, 93.91% | 97.70%
t1=0K and t;=0K given t;=t; | 95.51% § 98.37%
t1=OK or t=OK given t17#ty | 96.36% | 96.36%

Combined recall 95.57% | 98.32%
Combined precision 90.08% | 96.11%
2nd retrain: t;=t, 95.59% | 98.33%

t1=0K and ty=0K given ti=ty | 95.77% { 98.44%
t1=0K or t=OK given t;#ts | 96.17% | 96.17%
Combined recall 95.79% | 98.41%
Combined precision 91.74% | 96.79%

TABLE 5. Relevant figures about the intersection corpus of the two
first iterations. ‘t;’ and ‘ty’ stand for the two POS taggers; ‘t; =0k’
stands for the cases that the first tagger correctly disambiguates;
‘ty=t9’ stands for the cases in which both taggers agree

2.3.4. Use of Weighted Examples. We have described so far how to combine
the results of two POS taggers to obtain larger training corpora with low error
rates. We have also combined the agreement cases of both taggers with the initial
hand—-disambiguated corpus, in order to obtain a less noisy training set. Since the
hand-disambiguated corpus offers a higher reliability than the tagger coincidence
set, we might want to establish a reliability degree for our corpus, by means of
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controlling the contribution of each part. This can be done through the estimation
of the error rate of each corpus, and establishing a weighted combination which
produces a new retraining corpus with the desired error rate.

As mentioned above, if we put together a hand-disambiguated (assumed error-
free) T0Kw corpus and a 195Kw automatically tagged corpus with an estimated
error rate of 1.6%, we get a 265Kw corpus with a 1.2% error rate. But if we
combine them with different weights we can control the error rate of the corpus:
e.g. taking the weight for the correct 70Kw twice the weight for the 195Kw part,
we get a corpus of 335Kw!! with an error rate of 0.9%. In that way we can adjust
the weights to get a training corpus with the desired error rate.

Figure 4 shows the relationship between the error rate and the relative weights
between C° and the retraining corpus.
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FIGURE 4. Relationship between the error rate and the relative
weights for training corpora.

This weighted combination enables us to dim the undesired effect of noise in-
troduced in the automatically tagged part of the corpus.

This combination works as a kind of back-off interpolation between the correct
examples of C° and the slightly noisy corpus of coincidences added at each step.
By giving higher weights to the former, cases well represented in the C° corpus are
not seriously influenced by new erroneous instances, but cases not present in the
CO corpus are still incorporated to the model. So, the estimations of the statistical
parameters for ‘new’ cases will improve the tagging performance while statistical
estimations of already well represented cases will be, at most, slightly poorer.

We have performed an experiment to determine the performance obtained when
the taggers are trained with corpus obtained combining C? and the first extension
of 200,000 words (M NN3) with different relative weights!2. The steps selected are
the weights corresponding to error rates of 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.756%
and 1%.

It is obvious that too high weighting in favour of initial examples will produce a
lower error rate (tending to zero, the same than the manual corpus), but it will also

1 Obviously this occurrences are virtual since part of them are duplicated.
12Weights were straightforwardly incorporated to the bigrams and trigrams statistics. The
decision tree learning algorithm had to be slightly modified to deal with weighted examples.

.
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bias the taggers to behave like the initial tagger, and thus will not take advantage
of the new cases.
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FIGURE 5. Results using the Cly, training set with different weightings

The results summarized in figure 5 show that there is a clear improvement in the
tagger performance when combining two training corpora with a proper weighting
adjustment. Obviously, there is a tradeoff point where the performance starts to
decrease due to an excessive weight for the initial data. '

Although the behaviour of both curves is similar, it is also clear that the dif-
ferent tagging algorithms are not equally sensitive to the weighting values: In par-
ticular, RTT achieves its highest performance for weights between 1 and 3, while
RELAX(BT) needs a weight around 10.

2.3.5. Hand-correcting Disagreement Cases. Another possible way to reduce
the error rate in the training corpus is hand correcting the disagreement cases
between taggers. This reduces the error rate of the new training corpus at a low
human labour cost, since the disagreement cases are only a small part of the total
amount.

For instance, in Cqo corpus, there were 5,000 disagreement cases. Hand-
correcting and adding them to the previous set we obtain a slightly larger corpus
of 270Kw with a slightly lower error rate (1.17%), which can be used to retrain the
taggers. We call this corpus C};, where M stands for manual revision.

It is interesting to note that the increasing in number of training examples is
especially noticeable in the case of decision trees, in which the 94K examples from
C3oo are increased to 108K examples in C}; (table 2 contains this information). This
is due to the fact that each example covers a context window of six items. After
hand-correction all sequences of six words are valid while before correction it was
quite probable to find gaps (cases of disagreement) in the sequences of six words of
the intersection corpus.

Results obtained with the corrected retraining corpus are shown in table 6,
together with the results obtained with fully automatic retraining corpus of 200 °
Kw (Cgo) and 800 Kw (Cog)-

The first conclusion in this case is that the hand-correction of disagreement
cases gives a significant accuracy improvement in both cases. However, the gain
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| Tagger Model [ C300 | Cn [ Caoo |
RTT 93.2% | 93.8% | 93.4%
RELAX(BT) | 93.3% | 93.8% | 93.9%

TABLE 6. Comparative results using Cloy, C; and Clgo training sets

obtained is the same order than that obtained with a larger retraining corpus au-
tomatically disambiguated. Unfortunately we had neither more available human
resources nor time to hand-correct the remaining 15,000 disagreement words of
Cdoo in order to test if some additional improvement can be achieved from the best
automatic case. Without performing this experiment it is impossible to extract
any reliable conclusion. However, we know that the price to pay for an uncertain
accuracy gain is the effort of manually tagging about 20,000 words. Even when
that would mean an improvement, we suspect that it would be more productive to
spend this effort in constructing a larger initial training corpus.

Thus, unless there is a very severe restriction on the size of the available retrain-
ing corpus, it seems to be cheaper and faster not to hand correct the disagreement
cases.

2.4. Best Tagger. All the the above described combinations produce a wide
range of possibilities to build a retraining corpus. We can use retraining corpus of
different sizes, perform several retraining steps, and weight the combination of the
retraining parts. Although all possible combinations have not been explored, we
have set the basis for a deeper analysis of the possibilities.

A promising combination is using the more reliable information obtained so far
to build a C},, retraining corpus, consisting of C; (which includes C°) plus the
coincidence cases from the C3y, which were not included in C};. This combination
has only been tested in its straightforward form, but we feel that the weighted
combination of the constituents of Ci.,, should produce better results than the
reported so far.

On the other hand, the above reported results were obtained using only either
the RTT with decision trees information or the RELAX tagger using bigrams and/or
trigrams. Since the RELAX tagger is able to combine different kinds of constraints,
we can write the decision trees learned by RTT in the form of constraints (C), and
make RELAX use them as in chapter 4.

Table 7 shows the best results obtained with every combination of constraint
kinds. The lists of retraining corpora which yield each maximum result are also
reported.

3. Conclusions and Further Work

In this chapter, we have presented the work that we have carried out towards
the morphosyntactic annotation of the general-purpose LEXESP Spanish corpus.

The first step consisted of applying MACOtT a broad-coverage morphological
analyzer. The second step consisted of adapting the taggers presented in chapter 4
to disambiguate the output of the morphological analyzer. Finally, in a third step,
we showed how the collaboration between different POS taggers can be used to
increase tagging accuracy without additional manual effort. Regarding this last
point we defined a bootstrapping procedure which we applied to carry out the final
annotation of the LEXEsP corpus.
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[ Tagger Model | Ambig. | Overall | Corpora |

RTT 93.8% | 97.1% | CY, Chowt
RELAX(B) 93.3% | 97.5% | Cheq
RELAX(T) 93.7% | 97.6% | Ci..
RELAX(BT) | 93.9% | 97.7% | Clyos Clooo
ReLAX(C) 93.8% | 97.7% | CL.q.
RELAX(BC) | 94.1% | 97.8% | Clg0y Clry Chest
ReELAX(TC) | 94.2% | 97.8% | Ciyo
RELAX(BTC) | 94.2% | 97.8% | Clooy Chest

TABLE 7. Best results for each tagger with all possible constraint
combinations

From the results obtained on our work on the LEXESP corpus we would like to

emphasize the following conclusions:

¢ A 70 Kw manually-disambiguated training set provides enough evidence

to allow our taggers to get fairly good results. In absolute terms, results
obtained on the LEXESP corpus are better than those obtained on the WSJ
English corpus. One of the reasons contributing to this fact may be the less
noisy training corpus.  However it should be further investigated if the part
of speech ambiguity cases for Spanish are simpler on average.

The combination of two (or more) taggers seems to be useful to obtain larger
training corpora with a reduced error rate, which enable the learning pro-

_cedures to build more accurate taggers. The main results obtained with

this approach are the following: Starting with the manually tagged training
corpus, the best tagger combination achieved an accuracy of 93.1% on am-
biguous words and 97.4% overall. After one bootstrapping iteration, using
the coincidence cases in a fresh set of 800 Kw, the accuracy was increased
up to 94.2% for ambiguous words and 97.8% overall. It is important to
note that this improvement is statistically significant and that it has been
achieved in a completely automatic re-estimation process. In our domain,
further iterations did not result in new significant improvements.

We have performed many experiments in order to properly tune the param-
eters of the bootstrapping algorithm in our domain. Although all possible
combinations have not been explored, we have set the basis for a deeper
analysis of the possibilities. Further experiments should establish which is -
the most appropriate bootstrapping policy, and whether it depends on the
used taggers or not.

The combination of two taggers is also useful to build a tagger which pro-
poses a single tag when both taggers coincide and two tags when they dis-
agree. Depending on user needs, it might be worthwhile to accept a higher
remaining ambiguity in favor of a higher recall. With the models acquired
from the best training corpus, we get a tagger with a recall of 98.4% and a
precision of 96.8%. This means a remaining ambiguity of 1.009 tags/word,
that is, 99.1% of the words are fully disambiguated and the remaining 0.9%
keep only two tags.
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The described bootstrapping procedure can easily be extended to a larger num-
ber of taggers. We are currently studying the collaboration of three taggers, using
a tagger based on techniques for grammatical inference [PP98] in addition to the
other two. Preliminary results show that the cases in which the three taggers
coincide, present a higher accuracy than when only two taggers are used (96.7%
compared to 95.5% on ambiguous words) and that the coverage is still very high
(96.2% compared to 97.7%). Nevertheless, the difference is relatively small, and it
must be further checked to establish whether it is worth using a larger number of
taggers for building low error rate training corpora.
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CHAPTER 6

Ensembles of Classifiers

The study of general methods to improve the performance in classification tasks,
by the combination of different individual classifiers, is a currently very active area
of research in ML supervised learning. In the ML literature this approach is known
as ensemble, stacked, or combined classifiers'. The aim of the current chapter is to
show how these machine learning techniques for constructing and combining several
classifiers can be applied to improve the accuracy on the already presented English
POS taggers.

We start by presenting a condensed survey of the main state-of-the-art ap-
proaches to classifier combination. Then we move to our particular application to
POS tagging.

1. Introduction

The goal of combining the predictions of multiple learned models is to form
an improved estimator. The general approach is to create an ensemble of learned
models (or hypothesis) by considering different learning paradigms, by repeatedly
applying some learning algorithm to different versions of the training data, or by
repeatedly introducing some modifications in the modus operandi of the learning al-
gorithm. Afterwards, the predictions of the individual learned models are combined
according to a prescribed voting scheme.

Given a classification problem, the main goal is to construct several indepen-
dent and complementary classifiers?, since it has been proven that when the errors
committed by the individual classifiers are uncorrelated to a sufficient degree, and
their error rates are low enough, the resulting combined classifier performs better
than all the individual systems [AP96, TG96b, Die97).

Several methods have been proposed in order to construct ensembles of clas-
sifiers that make uncorrelated errors. Some of them are general, and they can be
applied to any learning algorithm, while other are specific to particular algorithms.
From a different perspective, there exist methods for constructing homogeneous
ensembles, in the sense that a unique learning algorithm has been used to acquire
each individual classifier, and heterogeneous (or hybrid) ensembles that combine
different types of learning methods with the hope that the particular representa-
tion and/or search strategies of each learning algorithm would contribute to produce
different errors.

LA very good survey covering all these topics can be found in [Die87]. The following intro-
duction and the notation used roughly follows his proposals.
2Concepts like bias, variance, diversity and coverage of the base classifiers in the ensembles
are highly relevant to the potential improvement.
-
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1.1. Ensembles of Homogeneous Classifiers. Several effective methods
for improving the performance of a single learning algorithm through the combina-
tion of several learned models have been recently developed. The general methods
for constructing ensembles can be categorized in the following five groups (specific
methods will be mentioned later):

1. The methods in the first approach, manipulate the training examples (by
means of resampling) to generate multiple hypothesis. The learning algo-
rithm is run several times, each time with a different subset of the training
examples. The specific way of selecting these subsamples defines the concrete
method. The main representatives are bagging {Bre96a), cross-validated
committees [PMD96, Jel96], and ApaBoosT [FS95, FS96]. This tech-
nique works especially well with the so—called unstable learning algorithms?3, -
such as decision—tree, neural network and rule learning algorithms.

2. The second technique consists of giving the learning algorithm different in-
formation about the training examples at each time. This is done by se-
lecting adequate subsets of the input features. Of course, this approach
is only feasible when the training examples are described with many re-
dundant features. We find examples with application to neural networks
[Che96, TG96b), and to the Naive Bayes classifier {Zhe98].

3. The third approach, only applicable in multiclass problems, is based on the
manipulation of the output targets. The use of a decomposition scheme al-
lows the transformation of the K'—class problem into a series of L binary
class problems. A classifier is acquired for each bipartition and after, a re-
construction method is provided to make the fusion of the answers of all the
L classifiers for a particular input in order to select one of the K classes.
Several methods have been proposed varying the decomposition and recon-
struction schemes. Among others, we find one-per—class (OPC), pairwise
coupling (PWC), pairwise coupling with correcting classifiers (PWC-CC)
[PKPD95, HT98, MM98], and error—correcting output coding (ECOC) .
(DB91, DB95, MM97].

4. The fourth technique consists of injecting randomness into the learning al-
gorithm to produce slightly different classifiers at each time. This is done,
for instance, by randomly selecting the initial weights of a neural network
[PMD96], by randomly selecting the best split among the set of best ranked -
splits in a decision tree approach {DK95b, Die98a}, or by randomly select-
ing the best condition among the set of best ranked conditions in a rule
induction system (FOIL) [AP96]. More sophisticated techniques, related
to the Markov Chain Monte Carlo (MCMC) method, have been applied to
neural networks [Mac92, Nea93] and decision trees [CGM96].

5. Finally, we find hybrid methods in which some of the preceding paradigms
are considered jointly. For instance, Raviv and Intrator [RI96] mixed boot-
strap resampling with injecting noise in the input features, and Schapire
[Sch97] developed a new boosting algorithm, ApaBoosT.OC, in which
ADABOOST is combined with error—correcting output coding. Also, Ricci

3 A learning algorithm is said to be unstable when small variations on the training set can
provoke great variations on the induced classifiers.
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and Aha [RA98] applied a method that combines error—correcting output
coding with feature selection.

Regarding particular methods for constructing ensembles, i.e. those methods
highly dependent on the learning algorithm at hand, we basically find works ap-
plied to neural networks: [Ros96a, 0S96, Car96¢c, MP98], and decision trees:
[Bun90, KK97].

Once the ensembles have been constructed a method is needed to properly
combine their individual outcomes. The simplest aggregation consists of using the
majority rule in a simple (unweighted) voting system [Cle89, Mat96], which is
the case of bagging, ECOC, and many other methods. If continuous outputs like
posteriori probabilities are supplied, an average or some other linear combination
of class probabilities can be made.

A common variation on the simple voting rule is the weighted voting approach
[LW94], in which a weight is assigned to each base classifier reflecting how accu-
rate the classifier is. These weights are usually obtained by measuring the accuracy
of each individual classifier on the training data (or a holdout data set) and con-
structing weights that are proportional to those accuracies. This is the case of
ADABoOOST and other approaches [Bun90, AP96].

More sophisticated methods of combination are usually related to those tech-
niques for dealing with heterogeneous (hybrid) ensembles of classifiers. Some of
these methods will be mentioned in the next section.

Several studies, from both theoretical and empirical perspectives, have been
performed in order to explain why the ensemble approach works, and which are the
main differences between methods. All the following papers have some theoretical
remarks on this issue [KD95, TG96b, TG96a, DKM96, Die97, SFBL97,
Bre97, Bre98a, MBB98, Sch99]. See also [KHDM98] for a complementary
set of references from the Pattern Recognition community of Al.

Empirical comparisons have focused on bagging, boosting, ECOC, and random-
ization. They provide insight about the behaviour of the methods under different
experimental conditions, including variations on the training material (presence of
noise, redundancy, exceptions, etc.), and on the base learning algorithm. See, for
instance, [Qui96a, AP96, Ali96, MO97, Sch97, Die98a, BK99].

1.2. Constructing Ensembles of Heterogeneous Classifiers. In this ap-
proach, the ensembles o classifiers are constructed by applying different learning
algorithms to the same data. This is certainly an appealing approach since learn-
ing algorithms based on very different principles will probably produce very di-
verse classifiers. In the related literature we find combinations of different learning
paradigms that complement each other in several aspects. For instance Brodley
[Bro93] combined instance-based learning with decision trees and linear discrimi-
nant functions, Ting [Tin94] and Kohavi [Koh96] also merged decision trees with
instance-based learning, Vanhoof [Van96)] combined the rule-based and case-based
approaches, Ting [Tin97] used instance-based classifiers in combination with the
Naive Bayes algorithm, etc.

The hybrid approach presents some difficulties (and perhaps this is why less
work has been performed on using hybrid ensembles than that performed around the
homogeneous approach). For instance, the straightforward aggregation of several
learned models does not guarantee the success of the combination, since often some
of them globally perform much worse than others. If they are too much unbalanced
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the simple aggregation would perform bad and it will not be able to exploit the
potentially useful diversity of the base-level classifiers.

Therefore, the individual classifiers should be previously checked for accuracy,
diversity and coverage on the domain at hand [Bro96, Die97] and an adequate
combination function should be induced.

The combining strategy becomes a crucial point here, since it should be able to
robustly handle the inherent correlation, or multicollinearity, of the learned models
while identifying the unique contribution of each. The usual approach consists
of trying to determine the particular area of expertise of each model to properly
select the best model (or combination of models) [KE96] for classifying each new
example?. This issue is referred to as the model selection problem by Brodley
[Bro95]. Similarly, Ortega [Ort96] talks about learning a set of referees, one for
each model, which characterize the situations in which each of the models is able
to make correct predictions.

Some auxiliary learners are commonly used to address the model selection prob-
lem by means of a meta-learning step. Therefore, the resulting classifiers, which
may contain several generalization stages, are usually called meta-level classifiers.
The applied meta—learning strategy and the involved learning algorithms differen-
tiate the existing approaches. Among others we find: Model Class Selection (MCS)
[Bro95], stacking generalization and variants [Wol92, Bre96b, TW97, Ska96,
FCS96, SW99, Mer99], hierarchical mixture of experts [JJ94], and Principal
Components Regression (PCR*) [MP99].

1.3. Applying Ensembles of Classifiers. Fairly impressive results have
been obtained by using the already described techniques on the common unsta-
ble learning algorithms. Table 1 below contains a set of relevant publications in
which some empirical evaluation is reported (most of them have been already men-
tioned, however now they are listed by the type of weak learning algorithm they
boost):

Decision trees [DB95, DC98, Quigéa, MO97, KK97, CGM96, Bre98a,
Die98a, Quigs, MM98, BK9g9]

Neural networks | [Mac92, Nea93, DB85, PMD96, Che968, Lee96, RI986,
Ros86a, 0S86, Car86c, MO87, MP88, SB98a}
Rule-induction {AP98, Quigsb]

systems

Naive Bayes [Zheos, BK99]
Instance-based [DK95b, Jel98, Ska086)
learning

TABLE 1. References of works evaluating ensembles of classifiers
of several base-level learning algorithms

Most of the work described in the preceding papers was validated on the data
sets of the UCI Machine Learning repository [MIM96}, however several applications
to real tasks have been also carried out.

4The results of empirical comparisons of existing learning algorithms illustrate that each
algorithm has a selective superiority; each is best for some but not all tasks. This selective
superiority applies not only to complete tasks but also to particular areas of the instance space
[Bro®s].
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Regarding NLP, we find ensembles of classifiers in context—sensitive spelling cor-
rection [GR98], word sense disambiguation [RA A97], text categorization [SS98a,
BM98], and text filtering [SSS98]. The combination of classifiers have also been
applied to POS tagging. For instance, [Hal96] combined a number of similar tag-
gers by way of a straightforward majority vote. More recently, two parallel works
[HZD 98, BW98] combined, with a remarkable success, the output of a set of four
taggers based on different principles and feature modelling. In these works several
variants of weighted combination were used as well as stacked generalization using
decision trees and instance-based classifiers. Finally, in the work presented in the
previous chapter 5 the combination of taggers is used in a bootstrapping algorithm
to train a part of speech tagger from a limited amount of training material.

2. Improving POS Tagging by using Ensembles of Classifiers

This section is devoted to explain our most recent work on improving the POS
taggers presented in previous chapters (RTT and STT) by using homogeneous en-
sembles of decision trees. The fact that these taggers treat separately the different
ambiguity classes —by considering a different decision tree for each class— allows
a selective construction of ensembles of decision trees focusing on the most rele-
vant ambiguity classes, —which, as we have already seen, greatly vary in size and
difficulty—

Therefore, our work presents a slightly different approach to that of construct-
ing an ensemble of different preexisting taggers [BW98, HZD98], which consists
of internally applying the combination of decision trees within a single tagger (i.e.
to construct ensembles of some internal components of a classifier). This approach
could also alleviate a drawback of the external hybrid combination, which is that the
efficiency of the resulting tagger is proportionally divided to the number of taggers
included in the ensemble (since all of them have to vote for each input word)®. In
our case, we benefit from the decision-tree approach and the ambiguity—class par-
tition to propose the use of ensembles of classifiers only in the cases in which some
improvement is feasible, with the aim to improve accuracy with a small time/space
penalty. Additionally, it has to be said that our approach does not exclude some
further external combination with other taggers.

Another goal of the present work is to practically test two techniques that were
proposed in chapter 3 but they were not still incorporated into the taggers, i.e,
the tagging of unknown words, under the open vocabulary assumption® and the
generation of convex pseudo-~data to alleviate the data sparseness problem. Recall
that the latter was combined with the construction of an ensemble of classifiers in
order to avoid parameter tuning.

2.1. Setting. In order to better test the tagger under the open vocabulary
assumption and to facilitate the comparison to other taggers we used here a larger
test set. The same 1,17 Mw part of the WSJ corpus was randomly partitioned into
two subsets to train and test the system. The relative proportions were 85% and
15%, which means 998,354 words for training and 175,412 words for testing.

5 Against the presented argument there is the fact that the combined process of tagging can
be done in parallel for each tagger.

6Several authors talk about the closed vocabulary assumption when no unknown words are
considered
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The word form lexicon derived from the training corpus contains now 45,469
entries (compared to the 49,206 words of the previous experiments) and the manual
corrections for the 200 most frequent words were preserved.

Finally, the test set has been used as completely fresh material to test the
taggers. All results on tagging accuracy reported in this section have been obtained
against this test set. Figures about ambiguity rates of the test set are similar to
those of previous experiments: 2.40 tags per ambiguous word (1.45 overall). The
number of unknown words (with respect to the training set) was 3,941 (2.25%).
Considering that each unknown word was provided with the 20 possible tags for
open class words, the ambiguity rate per amblguous word increased up to 3.49
tags/word.

The training corpus contains 239 different ambiguity classes and the training
examples were extracted exactly in the same way as explained in chapter 3.

2.1.1. Some Words About Unknown Words. The training examples for the
unknown-word ambiguity class were also collected from the training corpus. In
principle, all occurrences of nouns, verbs, adjectives, etc. in the training corpus
could be valid examples for this class. This is, for instance, the approach followed
in chapter 3 and also that of [Bri95a, DZBG96] and others. In this way we would
collect a big training set of over 500,000 examples. However some problems arise
from this approach. -

On the one hand, the current implementation of the learning algonthm cannot
deal with a so huge set of examples. This flaw is not much important since it
could probably be overcomed by partitioning the training set into several small
enough sets (say, for instance, 10 sets of 50,000 examples), and applying classifier
combination. Additionally, some strategies of sub-sampling designed to work with
large data—bases [MCR92] could be applied in order to speed-up the acquisition .
algorithm. .

On the other hand, and more important, we observed that the syntactic con-
texts and the morphological features of these examples are not fully representative
of the “real unknown words” (those words not appearing in a medium-big size lex-
icon), since the relative frequencies are not conserved. For instance, the percentage
of adjectives that are multi-word compounds is around 2% in the general training
corpus (which does not give a very strong association), while this percentage is five
times bigger for the unknown words in the test set (and so, it is a much more indica-
tive feature of the adjective reading than it seemed). Another significant example is
that of distinguishing between common and proper nouns. In the general training
corpus the proportion of capitalized common nouns is less than 1%, and so the
“capitalized?” feature is almost sure for differentiating common nouns from proper
nouns. However, in the real cases of unknown words the percentage of nouns that
are capitalized is around 15%, and therefore the learned feature fails to characterize
common nouns in a relevant percentage of cases.

Although the trees for unknown words were able to properly generalize over an
unseen part of the training set (see chapter 3 in which an accuracy close to 90% is
obtained using a 50,000 example training set), the previously explained differences
make the real accuracy on unknown words to be much lower (below 80%) than we
expected.

‘We obtained far better results collecting the examples with a similar procedure
to that employed for constructing training sets for N—fold cross validation: First,
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the training corpus is randomly divided into twenty disjoint parts of equal size.
Then, the first part is used to extract the examples (tagged with open class cate-
gories) which do not occur in the remaining nineteen parts, that is, taking the 95%
of the corpus as known and the remaining 5% to extract the examples. This pro-
cedure is repeated with each of the twenty parts, obtaining approximately 22,500
examples which behave much more likely the real unknown words (in particular, the
resulting proportions of each of the 20 tags are very similar than those appearing
in the test set). The choice of dividing by twenty is not arbitrary. 95%-5% is the
proportion that results in a percentage of unknown words very similar to the test
set (i.e., 2.25%). Table 2 shows the percentage of unknown words resulting from
other proportions.

| [50% 45% 40% 35% 30% 25% 20% 15% 10% 5% |
[Unk.Words [ 3.21 3.06 2.88 2.77 2.62 249 240 2.36 2.27 2.23]

TABLE 2. Percentage of unknown word occurrences in the £% of
the training corpus with respect to the remaining (100-2)%

We used a k-nearest neighbour algorithm in order to test the appropriateness
of this collection of examples. The k was experimentally set to 10 and the features
were weighted by using the Information Gain measure. The accuracy obtained on
tagging the unknown words of the test set was 75.46% when using the straightfor-
ward training set of 536,415 words, while using only the 22,793 examples extracted
according to the described procedure the accuracy raised up to 77.21%.

This procedure allows a very significant space saving and a moderate accuracy
improvement. In following sections we will see how this performance can be boosted
again by using ensembles of decision trees. .

2.2. Baseline Results. Before going into the combination of classifiers, we
will test the conventional RTT and STT taggers on the above described domain in
order to establish a reference baseline. '

In this first experiment we used the basic set of six discrete-valued attributes as
the unique information to disambiguate known ambiguous words (i.e, the part-of—
speech tags of the three preceding and two following words, and the orthography of
the word to be disambiguated). For tagging unknown words, we used an extended
set of 23 attributes —fully descibed in table 3— which can be classified into three
groups”: '

A. Conteztual information: part—of-speech tags of the two preceding and fol-

" lowing words.

B. Orthographic and Morphological information (about the target word): pre-
fixes (first two symbols) and suffixes (last three symbols); Length; Multi—
word?; Capitalized?; Other capital letters?; Numerical characters?; Contain
dots?

C. Dictionary-related information: Does the target word contains any known
word as a prefix (or a suffix)?; Is the target word the prefix (or the suffix)
of any word in the lexicon?

7Note that the information used to disambiguate unknown words presupposes neither lan-
guage specific knowledge nor previous morphological analysis.
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The features of the last group are inspired in those applied by [Bri95a] when
addressing unknown words. It has to be noted that these features are not binary-
valued attributes but all of them take as values the ambiguity class of the word
that match the query, or 0 when it does not exist. In the case of existence, the
uniqueness is guaranteed because prefixes and suffixes are searched from longest to
shortest and the first match is assigned.

C | 21 | contains.word_suf?
22 | contained._word_pref?
23 | contained word_suf?

»

[ ] [ Attribute [ Values | Type |
1 | tag(-2) Any tag in the Penn Treebank tagset | S
A 2| tag(-1) ” S
3 | tag(+1) ” S
4 | tag(+2) 7 S
5 | length Integer S
6 | multi-word? {yes,no} )
7 | capitalized? ” S
8 | other_capital_letters? ” S
9 | all.capital letters? ” S
10 | contain_numeric.character? » S
11 | contain_periods? ” S
B | 12 | char(l) Any printable ASCII character D
13 | char(2) ” D
14 | char(n) . " D
15 | char(n—1) ' ” D
16 | char(n—2) - » o D
17 | chars(1...2) Possible prefixes of two symbols D
18 | chars(n—1...n) Possible sufixes of two symbols D
19 | chars(n—2 ... n) Possible sufixes of three symbols D
20 | contains.word_pref? Any ambiguity class D
» D
D
D

»

TaBLE 3. Complete set of attributes for dealing with unknown words

In these conditions, the learning algorithm acquired, in about thirty minutes,
a base of 191 trees which required about 0,68 Mb of storage. The programs are
new implementations using PERL-5.003 and they were run on a SUN UltraSparc2
machine with 194Mb of RAM.

The results of the taggers working with this tree-base are presented in table 4.
MFT stands for the baseline most-frequent—tag tagger. RTT, STT, and STT* stand
for the basic versions of the taggers presented in chapter 4. Two technical comments
should be done regarding the concrete implementation of taggers. First, RTT was
forced to completely disambiguate the input text. The second refers to the fact that
the straightforward inclusion of unknown words in the statistical tagger resulted in a
severe decreasing of performance (due to the high ambiguity of unknown words the
number of partial paths to calculate at each step of the Viterbi algorithm increases .
drastically). To avoid this situation, we applied the tree for unknown words in a
pre—process for filtering low probable tags. In this way, when entering to the tagger
the average number of tags per unknown word was reduced from 20 to 3.1.

Going back again to table 4, the overall accuracy is reported in the first column.
Columns 2,3, and 4 contain the tagging accuracy on some specific groups of words:
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unknown words, ambiguous words (excluding unknown words) and known words
which is the complementary of the set of unknown words. Column 5 shows the
speed of each tagger. The absolute figures are merely informative (the taggers
could be drastically speed up by using an optimized C' implementation). What is
relevant here is the performance of each tagger relative to the others. Finally, the
‘Memory’ column reflects the size of the used language model (the lexicon is not
considered here).

| Tagger | Overall Known Ambiguous Unknown [ Speed [ Memory |

MFT | 92.75% 94.25%  83.40% 27.43% |[2818 w/s | OMb

RTT |96.61% 97.01%  91.36% 79.22% | 426 w/s | 0.68 Mb
STT |[96.63% 97.02%  91.40% 79.60% | 321 w/s | 0.68 Mb
STTY | 96.84% 97.21%  91.95% 80.70% | 302 w/s | 0.90 Mb

TaBLE 4. Tagging accuracy, speed, and storage requirement of
RTT and STT taggers

Three main conclusions can be extracted:

e RTT and STT approaches obtain almost the same results in accuracy, how-
ever RTT is faster.

e STT obtains better results when it incorporates bigrams and trigrams, with
a slight time-space penalty.

e The accuracy of all taggers is comparable to the best state—of-the art taggers
under the open vocabulary assumption (see section 2.5).

2.3. Ensembles of Decision Trees. Our purpose is to improve the perfor-

mance on two types of ambiguity classes, namely:

o Most frequent ambiguity classes. We focused on the 26 most representative
classes, which concentrate the 86% of the ambiguous occurrences. From
these, eight (24.1%) were already resolved at almost 100% accuracy, while
the remaining eighteen (61.9%) left some room for improvement.

e Ambiguity classes with few ezamples. We considered the set of 82 ambiguity
classes with a number of examples between 50 and 3,000 and an accuracy
rate lower than 95%. They agglutinate 48,322 examples (14.24% of the total
ambiguous occurrences). ‘

We have applied several of the methods, described in the first part of the
chapter, for constructing homogeneous ensembles of decision trees for the eighteen
frequent ambiguity classes of our interest plus the unknown-word ambiguity class.
We briefly describe the methods that reported major benefits in the following sub-
sections. Additionally, some comments on methods that failed to apply in our
domain are provided in section 4 of the present chapter.

" Regarding the sparse ambiguity classes, we applied the CPD method (see chap-
ter 3) to increase the number of examples. This is explained in section 2.3.4.

2.3.1. Bagging. From a training set of n examples, several samples of the same
size are extracted by randomly drawing, with replacement, n times. Such new
training sets are called bootstrap replicates. In each replicate, some examples appear
multiple times, while others do not appear (on the average, they contain 63.2% of
the original training set). A classifier is induced from each bootstrap replicate and
then they are combined in a voting approach. The technique is called bootstrap

».
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aggregation, from which the acronym bagging is derived. In our case, the bagging
approach was performed following the description of [Bre96a], and constructing
10 replicates for each data set (several authors indicate that most of the potential
improvement provided by bagging is obtained within the first ten replicates).

2.3.2. Combining Feature Selection Criteria. In this case, the idea is to obtain
different classifiers by applying several different functions for feature selection inside
the tree induction algorithm. In particular, we have selected, from those tested in
chapter 3, a set of seven functions that achieve a similar accuracy, namely: Gini
Impurity Indez, Information Gain and Gain Ratio, Chi-square statistic (x*), Sym-
metrical Tau criterion, RLM (a distance-based method), and a version of RELIEFF
which uses the Information Gain function to assign weights to the features. See
chapter 3 for the references to these methods, and appendix B for detailed defini-
tions.

2.3.3. Combining Features. For this purpose we used the extended set of fea-
tures presented in section 4 of chapter 3 (and summarized in table 11 of that -
chapter) which incorporates lexical information about words appearing in the local
context of the target word, and the ambiguity classes of the same words. In this
way, we consider information about the surrounding words at three different levels
of specificity: word form, POS tag, and ambiguity class.

This model also includes some features, which are very similar to Brill’s lexical
patterns [Bri95a], to capture collocational information. Such features are obtained
by composition of the already described single attributes and they are sequences of
contiguous words and/or POS tags (up to three items).

The resulting features were grouped, according to their specificity, to gener-
ate ensembles of eight trees. The idea here is that specific information (lexical
attributes and collocational patterns) would produce classifiers that cover concrete
cases {(hopefully, with a high precision), while more general information (POS tags)
would produce more general (but probably less precise) trees®. The combination
of both type of trees should perform better because of the complementarity of the
information.

Being A, B, C, ... the letters appearing in table 11 of chapter 3, and being X
the set of three features including the target word, and the part—of-speech of the
preceding and following words, the eight groups of features used for learning each
individual tree are, precisely: A, B+X, C+X, D+X, E+X, F+X, G4X, A-G.
Note that X has been included to prevent an excessive degradation of the general-
ization ability of obtained trees in the ambiguity classes where specific attributes
does not properly fit. _

The features for dealing with unknown words were combined in a similar way
to create ensembles of 10 trees. Following the notation of table 3, we used the
following groups of attributes: A+B, A4-C, A+D, B+C, B4+D, C+D, A+B+C,
A4+B4+D, A4C+HD, B4+CHD, and A+B+4+C+D. The groups A, B, C, D were
not considered alone because they did not guarantee enough accurate trees to work
well in the combination (accuracies using those features ranged from 46% to 67%,
while combinations of two or more groups were all over 70%).

2.3.4. Generating Pseudo-Ezamples. We used a method by Breiman {[Bre98b],
which was previously described in chapter 3, to increase the number of examples

81n other words, we expect to perform the combination of two types of sources: the first with
a high precision, but a lower recall, and the second with a high recall and an acceptable precision.
g g
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of the sparse ambiguity classes. We call this method CPD, standing for generation
of Convex Pseudo—-Data.

Recall that the method for obtaining new data from the old is similar to the
process of combination of genes for creating new generations in genetic algorithms.
First, two examples of the same class are selected at random from the training set.
Then, a new example is generated from them by selecting attributes from one or
another parent according to a certain probability. This probability depends on a
single generation parameter (a real number between 0 and 1), which regulates the
amount of change allowed in the combination step.

In chapter 3 we showed that a practical solution to avoid the tuning of the
generation parameter is to construct several training sets using different values of
the generation parameter, to learn a different decision tree for each set, and to
combine their results. In this way, we make the global classifier independent of
the particular choice, and we generally obtain a combined classifier that is more
accurate than any of the individuals.

In this experiment we used 6 fixed values for d ranging from 0.3 to 0.8, while
the number of examples generated in order to complement a training set of N
examples was the maximum between 4,000 and 2.5 times /N. All the examples were
introduced at the the beginning of the induction process.

It has to be noted that in the original paper, Breiman proposes a more com-
plex method of introducing the pseudo-examples within the CART decision tree
induction algorithm, which consider the introduction of examples at each node
of the tree, generating them under demand, and until no more original examples
are misclassified by the current learned tree. However, the implementation of this
method presents some computational problems, as the proper author notes in his
paper. For the sake of simplicity, we decided to add a fixed amount of generated
pseudo—examples at a time, at the root level of the tree. Despite the simplicity of
the proposal, very good results were obtained, as explained in chapter 3. We know
that this is an arbitrary decision that relies on a weak empirical basis, and that
further work should be done in this direction.

2.4. Constructing and Evaluating Ensembles. The three types of ensem-
bles were applied to the 19 selected ambiguity classes in order to decide which is the
best in each case. The evaluation was done by means of a 10—fold cross-validation
using the training corpus. The combination was performed by averaging the results
of each classifier in the ensemble (simple voting when probabilities are available).
The results obtained confirm that all methods contribute to improve accuracy in
almost all domains. The absolute improvement is not very impressive but the
variance between trials was generally very low and, so, the gain was statistically
significant in the majority of cases.

These results are reported in table 5, in which the error rate of a single basic tree
is compared to the results of the ensembles for each ambiguity class. In this table,
BAG stands for bagging, FSC for the combination of different functions for feature
selection, and FCOMB stands for the combination of different input features. These
figures are calculated by averaging the results of the ten folds. The last column,
‘BestER’, represents the percentage of error reduction for the best method in each
row.

Summarizing, BAG wins in 8 cases, FCOMB in 9, and FSC in 2 (including the
unknown-word class).
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[ TAmb. Class | #exs | %exs [ Basic | BAG [ FSC | FCOMB [ BestER |
1 | IN-RB-RP 34,489 | 10.16 8.30 7.31 7.79 7.23 12.89
2 | VBD-VBN 25,882 7.63 7.44 5.93 6.64 6.28 20.30
3 | NN~-VB-VBP 24,522 7.23 4.10 3.70 3.84 3.58 12.68
4 { VB~VBP 17,788 | 5.24 | 4.13 3.62 3.94 3.76 12.35
5| JI-NN 17,077 | 5.03 | 14.71 | 13.30 | 13.50 13.55 9.59
6 | NNS-VBZ 15,295 4.51 5.14 4.37 4.59 4.34 15.56
7 | NN-NKP 13,824 4.07 | 9.67 9.10 8.37 6.83 29.37
8 | JJ-VBD-VBN 11,403 3.36 | 19.18 | 17.91 18.05 17.27 9.96
9 | NN-VBG 9,597 283 | 14.11 | 12.53 12.93 12.99 11.20

10 | J3-NNP 8,724 2.57 5.10 4.50 4.56 4.35 14.71
11 | JJ-RB 8,722 2.57 { 10.45 8.86 9.75 9.68 15.22
12 | DT-IN-RB-WDT 8,419 2.48 7.01 6.49 6.84 6.53 7.42
13 | JIJR~RBR 2,868 0.85 ] 1640 | 15.84 15.28 14.72 10.24
14 | NNP-NNPS-NNS 2,808 0.83136.50| 36.50 | 35.14 35.00 4.11
15 | JJ-NN-RB 2,625 0.77 1 15.31 | 13.32 | 11.83 12.44 22.73
16 { JJ-NN-VB 2,145 0.63 11332 | 13.87 | 12.99 12.75 4.28
17 | JI-NN-VBG 1,986 0.59 | 20.30 | 17.98 18.79 18.23 11.43
18 | JI~-VBG 1,980 | 0.58 | 21.11 | 18.89 | 19.39 19.60 10.52

Total 210,154 { 61.93 9.35 8.38 8.61 8.25 13.40
19 | unknown-word | 22,594 — | 20.87 | 17.47 | 16.86 17.21 19.26

TABLE 5. Comparative results —error rates in %— of different
ensembles on the most significant ambiguity classes

In the case of CPD, it was applied to the 82 selected ambiguity classes, with
positive results in 59 cases, from which 25 were statistically significant (again in a
10-fold cross-validation experiment). These 25 classes agglutinate 20,937 examples -
and the error rate was diminished, on average, from 20.16% to 18.17% (a reduction
of 9.87%).

2.5. Tagging with the Enriched Model. Ensembles of classifiers were con-
structed for the ambiguity classes explained in the previous sections using the best
technique in each case., These ensembles were included in the tree-base used by the
basic taggers of section 2.2 by substituting the corresponding individual trees, and
both taggers were tested again using the enriched model.

At runtime, the combination of classifiers was done by averaging the results
of each individual decision tree. Some better strategies for combination could be
performed, for instance by weighting each tree in the ensemble with a measure
of goodness. However, the acquisition of these weights would require a previous
testing of the trees in a kind of tuning supervised corpus.

In order to test the relative improvement of each component, the inclusion
of the ensembles is performed in three steps: ‘cpD’ stands for the inclusion of
the ensembles generated using the CPD method (basically to address the smallest
ambiguity classes), ‘ENS’ stands for the inclusion of ensembles dealing with frequent
ambiguity classes and unknown words, and ‘CPD+ENS’ stands for the inclusion of
both. Results are described in table 6 (the results of the basic versions previously
reported in table 4 have been also included in order to ease the comparison).

Some important conclusions are:
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[ Tagger | Overall  Known Ambig. Unknown [  Speed [ Memory |
RTT 96.61% 97.00% 91.36% 79.21% | 426 w/s | 0.68Mb
RTT(cpp) 96.66% 97.06% 91.51% 79.25% | 366 w/s | 0.93Mb
RTT(ENs) 96.99% 97.30% 92.23% 83.25% | 97 w/s | 3.53Mb
RTT(cPD4ENS) | 97.06% 97.37% 92.48%  83.30% 89 w/s | 3.78Mb
STT 96.63% 97.02% 91.40% 79.60% | 321 w/s | 0.68Mb
STT(cpD) 96.69% 97.07% 91.56% 79.69% | 261 w/s | 0.93Mb
STT(ENs) 97.05% 97.36% 92.38% 83.78% | 70 w/s | 3.53Mb
STT(cPD+ENS) | 97.10% 97.40% 92.51% 83.68% | 64 w/s | 3.78Mb
STTH 96.84% 97.21% 91.95% 80.70% | 302 w/s | 0.90Mb
STT+(CPD) 96.88% 97.25% 92.09% 80.77% | 235 w/s | 1.15Mb
STT*+(ENs) 97.19% 97.48% 92.73% 84.47% | 65 w/s | 3.75Mb
STT+(cPp+ENS) | 97.22% 97.51% 92.81% 84.54% | 60 w/s | 3.97Mb

TABLE 6. Tagging accuracy, speed, and storage requirements of
enriched RTT and STT taggers

e The best result of each tagger is significantly better than each corresponding

basic version, and the accuracy consistently grows as more components are
added.

e The relative improvement of STT* is lower than those of RTT and STT,
suggesting tharn the better the tree-based model is, the less relevant is the
inclusion of n-gram information.

e The special treatment of low frequent ambiguity classes results in a very
small contribution, indicating that there is no much to win from these classes,
unless we were able to fix their errors in a much greater proportion than we
really did.

e The price to pay for the enriched models is a substantial overhead in storage
requirement and speed decreasing, which in the worst case is divided by 5.

e Unknown words are better handled by STT taggers, indicating that the pre—
process of filtering low probable tags is useful both for accelerating the tagger
and for eliminating the excessive noise due to the big amount of possibilities.

In order to compare our results to others, we list in table 7 the results re-
ported by several state-of-the-art POS taggers, tested on the WSJ corpus with the
open vocabulary assumption®, In that table, TBL stands for Brill’s transformation—
based error-driven tagger [Bri95a], ME stands for a tagger based on the maximum
entropy modelling [Rat96], SPATTER stands for a statistical parser based on de-
cision trees [Mag96), IGTREE stands for the memory-based tagger by Daelemans
et al. [DZBGY6], and, finally, TComb [BW98] stands for a tagger that works by
combination of a statistical trigram-based tagger, TBL and ME.

Comparing to all the individual taggers we observe that our approach reports
the highest accuracy, and that it is comparable to that of TComb obtained by the
combination of three taggers!®. This is encouraging, since we have improved an

9Chapter 7 presents a more exhaustive comparison between these, and other, relevant ap-
proaches to POS tagging and ours.

19Note that the results obtained by the other successful tagger—by—combination mentioned
in the introduction [HZD98] has not been included here. The reason is that it was evaluated on
the LOB corpus instead of the WSJcorpus.
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[ Tagger [ Train Test [ Overall Known Unknown Ambig. |
TBL 950 Kw 150 Kw | 96.6% — 82.2% —
ME 963 Kw 193 Kw | 96.5% — 86.2% —
SPATTER ~975 Kw ~47 Kw | 96.5% — — —
IGTREE 2,000 Kw 200 Kw | 96.4% 96.7%  90.6% —
TComb 1,100 Kw 265 Kw | 97.2% — — —
STTT(cep+ENs) | 998 Kw 175 Kw | 97.2%  97.5% 84.5%  92.8%

TaBLE 7. Comparison of different taggers on the WSJ corpus

individual POS tagger which could be further introduced as a better component in
an ensemble of taggers.

Unfortunately, the performance on unknown words is difficult to compare. On
the one hand, many authors do not provide the corresponding figures. On the other
hand, it strongly depends on the used lexicon. For instance, IGTREE does not in-
clude in the lexicon the numbers appearing in the training set, and, so, any number
in the test set is considered unknown (they report an unusually high percentage
of unknown words: 5.5% compared to our 2.25%). The fact that numbers are
very easy to recognize could explain their outstanding results on tagging unknown
words.

In order to support this thesis we tested a 10-nearest neighbour algorithm on
the unknown words of the test set, using exactly the same features as IGTREEs
(following the description in [DZBG96]), and weighting these features with the
Information Gain measure. Note that the IGTREE approach is a way to compress
and index a set of learning instances (this is why it is presented as a memory—
based learning method), and, therefore, the performance should be similar to that
of the k-nn algorithm. Using the same training set of 22,793 examples than in our
experiments, the k-nn algorithm obtained an accuracy of 77.21%, which is slightly
below than the accuracy of a single decision tree tested alone (outside the taggers)
and without any type of boosting (78.36%).

Finally, note that ME also reports a higher percentage of unknown words, 3.2%,
while TBL says nothing about this issue.

3. Discussion of Results and Further Work

In this chapter, we have applied several ML techniques for constructing en-
sembles of classifiers to address the most representative and/or difficult cases of
ambiguity within a decision-tree-based English POS tagger. As a result, the over-
all accuracy has been significantly improved. Comparing to other approaches, we
see that our tagger performs better on the WSJ corpus and under the open vocab-
ulary assumption, than a number of state—of-the-art POS taggers, and similar to
another approach based on the combination of several taggers.

The cost of this improvement has been quantified in terms of storage require-
ment and speed of the resulting enriched taggers. Of course, there exists a clear
tradeoff between accuracy and efficiency which should be resolved on the basis of
the user needs. Another factor that should be mentioned is that, although all pro-
posed techniques are fully automatic, the construction of appropriate ensembles -
requires a significant human and computational effort.

More generally, one may think that, after all the involved effort, the achieved
improvement seems small. It is true that, up to the present, the results that he have
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obtained by combining several classifiers are not as impressive as some previously
published works in other domains. On this particular, we think that we are moving
very close to the best achievable resulis using fully statistically-based techniques,
with a limited amount of contextual information, and ignoring long-distance de-
pendencies, and semantic and pragmatic knowledge.

We think that the key is in the treatment of exceptions and infrequent linguistic
phenomena. The infrequent events have, in isolation, a very low statistical signif-
icance, and so they are very difficult to acquire with automatic machine learning
algorithms (which are statistical in nature), especially in the presence of a cer-
tain amount of noise!!. It is our belief that some kind of specific human linguistic
knowledge should be jointly considered in order to achieve the next qualitative step.

All in all, we think that the work of this chapter can be considered a valuable
starting point on the application of classifier combination to POS tagging, however,
it is clear that further study should be devoted in many directions. Some of them
have been already mentioned, other of our interest are listed below, and finally
some remaining lines are suggested in the following section 4.1.

e There are several points regarding the methods used for constructing the
ensembles of decision trees, and the way they are combined and included in
the taggers that are not enough mature. As we have mentioned all along
the chapter, some of the implementation decisions are primarily arbitrary,
some methods are applied in the most naive and straightforward way, etc.
Apart from this fact, some of the already applied methods for constructing
ensembles could be jointly considered in a mixed approach.

e We are now quite interested on experimenting with the inclusion of our
tagger as a component in an ensemble of preexisting taggers, in the style of
{(Bwos, HZD98].

e Regarding the combination step, we are interested on testing more sophisti-
cated methods for combining the results of individual classifiers. We think
of weighted voting rules, or about introducing some intermediate steps of
meta-learning (in the style of stacked generalization [Wol92]), in order to
learn the best way of combining the components. The construction of such
a meta~-classifier could involve the use of alternative learning algorithms to
complement the decision trees.

o In some of the applied methods, the information used to acquire each tree
of the ensemble is fundamentally the same. As a consequence, the obtained
trees have a low variance and their outcomes are highly correlated, leaving
few room for improvement in the combination approach. Therefore, once
an ensemble of decision trees is constructed it would be useful to be able
to evaluate how ‘different’ are the trees of the ensembles in terms of redun-
dancy, inconsistency, complementarity, etc. This would allow us to eliminate
highly—correlated members, to predict whether it is worthwhile to include
this ensemble or not, etc.

e Finally we will be interested on testing other methods for constructing en-
sembles that naturally applies to decision trees, e.g. injecting randomness.

1 Certainly, the noise is a handicap in our domain of work. See, for instance, the paper by
Ratnaparkhi [Rat96] for some comments and evaluation on the labelling inconsistencies of the
WSJ corpus due to the different criteria applied by the annotators.

.
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4. Methods that did not Work

Apart from the methods described in section 2 we tested a number of other
methods for constructing ensembles of decision trees, which are explained below.

4.1. Boosting. Like bagging, boosting algorithms perform an iterative sub-
sampling of the training set of examples to generate multiple hypothesis. The
difference here is that boosting defines a probability distribution p;(x) over the
training examples, instead of assuming a uniform distribution, and that successive
steps are not independent. Initially, pi(x) is assigned a uniform distribution. In
each iteration i, it draws a training set of size /N by sampling with replacement ac-
cording to the probability distribution p;(x). The learning algorithm is then used
to acquire a classifier h;. The error rate of this classifier on the training examples
—weighted according to p;(x)— is calculated and used to adjust the probability
distribution on the training examples for the next iteration, p;+1(x). The weight
adjustment is oriented to place more weight on those training examples that were
misclassified by h; and less weight on examples that were correctly classified. In
subsequent iterations, therefore, more difficult learning problems are progressively
constructed. In the combination, the vote of classifier h; is weighted according to
its error rate.

-The recent literature contains many references regarding boosting algorithms
and their application. The original work can be found in the papers by Freund
et al. [FS95, FS96], in which the ADAB0OST algorithm and some variants are
introduced and tested as a way to boost the performance of ‘weak’ learners. ‘arcx4’,
by Breiman[Bre98a), and ‘Mini Boosting’ by Quinlan[Qui98] are some simplified
variants of ADABoo0sT. Other variations and improvements of ADABOOST can be
found in the following references [MD97, SS98b, FISS98, TZ98, MBB98].

In our case, we used the ADABOOST algorithm following the description in
[SFBL97], but instead of resampling from the set of examples according to a prob-
ability distribution, we implemented a new version of the decision-tree induction
algorithm that deals with weighted examples —in a similar way to that followed by
Quinlan [Qui96a] to adapt ADAB0OST to C4.5— Some authors note that working
with weighted examples is better than resampling when boosting decision trees.

The results of ADABOOST on our domain were disappointing. From the 18
ambiguity classes , only in four it was observed a significant change in accuracy,
two positive and two negative (the rest were also tied seven to seven). Additionally,
the loss of the negative cases was far more significant than the gain of the positive,
and, therefore, the average result on all domains was slightly negative, and so
performing clearly worse than bagging. '

This is quite surprising since there are many empirical studies in the recent ML
literature showing that ADAB0OST outperforms the other resampling methods, and
bagging in particular. See, for instance, the following references: {Qui96a, MO97,
Die98h, BK99].

One possible explanation for such bad results is the noise present in the training
corpus, since many authors {Qui96a, MO97, Die98a] have observed that boost-
ing produces severe degradation on some data sets, especially in the presence of
noise. For instance, Dietterich [Die98a] performs a comparison between bagging,
boosting, and randomization using decision trees, in which is shown that boosting
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is clearly the best method in noiseless data sets, but becomes the worst when in-
Jecting a 5% of wrongly classified examples. In this particular experiment, a 5% of
classification noise, makes boosting to loss all the initial gain, while higher levels of
noise make it even counterproductive. The same study concludes that bagging is
the most error-tolerant method.

In our case, the percentage of mislabelled words in the WSJ corpus is around
2-3%, which would probably be higher on the ambiguous words, and, therefore,
such an explanation could be valid. However, this hypothesis should be further
verified by incrementally adding artificial noisy examples in the training data and
observing the behaviour of bagging compared to boosting.

There are many other papers studying the behaviour of boosting. For instance,
in [Bre98a} boosting is primarily described as a variance-reducing procedure, and
therefore a low effectiveness should be expected when a low—-variance (stable) algo-
rithm is boosted. Schapire et al. {[SFBL97] argued that stability in itself may not
be sufficient to predict boosting’s failure, and they characterize two situations in
which boosting might fail, which are: (1) there is insufficient training data relative
to the complexity of the base classifiers, and (2) the training errors of the base
classifiers (weighted according to the current probability distribution of examples)
become too large to quickly.

The first clearly does not apply to our domain, which is the set of most frequent
ambiguity classes. However we empirically observed that the second happened in
our experiments, indicating that the learning algorithm does not adapt very well to
the most ‘difficult’ examples, i.e, those in which more weight is placed and which
are the more important to calculate the error rates of successive base classifiers.

Bauer and Kohavi [BK99] performed a very exhaustive empirical study around
bagging, boosting and their application using decision trees. One of the conclusions
of the study is that the iterative algorithm for reweighting instances used by boost-
ing emphasizes not only ‘hard areas’ but also outliers and noise '

Joining the two previous paragraphs mean that although the learning process
is focused to learn these kinds of examples, the acquired decision trees generally
fail to classify them. This is not strange if they were majority noisy (and therefore
contradictory) examples. Otherwise, it would indicate some limitation of the learn-
ing algorithm or, more probably, that the set of used features is not rich enough to
properly describe all examples of the domain.

This is very interesting since a manually study of the highly emphasized exam-
ples in the final distribution should provide useful insight about difficult examples,
infrequent events, and noise in the training set. The first two would be useful to
determine which type of information is needed to resolve the most difficult cases,
perhaps treating them separately. The third would be useful to apply some kind of
pre—process to filter out noisy examples from training data.

This is an issue that we plan to devote further investigation.

4.2. Pairwise Coupling Classification with Correcting Classifiers. In
this method, that we will call PWC-CC, the ensemble of classifiers is constructed
by recasting multiclass problems into a set of binary classification problems, so
it belongs to the family of methods that manipulate the output targets. More
particularly, the decomposition scheme, converts a K —class problem into %K (K-1)
2—class problems, one for each pair of classes. The bipartition for the. pair (3, j)
focuses on the separation of class y; from class y;. The learning algorithm is then
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used for acquiring one classifier h;; for each of these 2-class problems. Additionally,
a new set of classifiers is obtained to prevent that a certain classifier h;; could
take part in the classification of new examples not belonging to y nor y;. So,
each classifier h;; is paired with a correcting binary classifier, trained to separate
classes y; and y; from all the rest. Provided that classifier outputs are expressed as
probabilities, the final combination is performed by averaging the weighted results
of all classifiers.

We implemented the PWC-CC method according to the description given in
[MM98], and we applied it on the eight multiclass domains appearing in the eigh-
teen ambiguity classes of our interest. ' '

The results of PWC-CC were comparable to those of bagging. A significant
improvement in accuracy was achieved in six of the eight multiclass problems. In
the other two problems, the difference was also slightly positive. The global error
reduction was of 10.12% (11.78% in the significant cases). The method was not
finally used in the experiments because it brought no significant improvement to
the other methods, it only applies in a reduced number of ambiguity classes, and it
introduces some complexity in the algorithm that uses the acquired decision trees
‘(the tagger proper) due to the introduction of the reconstruction scheme.

4.3. Partitioning of Large Training Sets. In the style of Chan and Stolfo
[CS95], we tested the appropriateness of addressing the ambiguity classes with
many training examples by dividing the whole training set into a number of rela-
tively small disjoint subsets and combining the corresponding individually induced
classifiers. For that, we selected the five largest ambiguity classes —with a number
of examples over 17,000— and we estimated the right size of the subsets for each
case, with the idea that subsets have to be big enough to obtain fairly accurate
individual classifiers. In this way the number of combined trees in each domain
varied from 4 to 10.

The ensembles constructed by partitioning the training set into disjoint subsets
performed better than any individual tree in each of the five data sets (and in
any of the combinations, varying the size of the subsets'?). Unfortunately, the
improvement was not enough to compensate the accuracy loss of the individual
trees, which are grown from relatively small training sets. Compared to the trees
acquired with all the available examples, the ensembles performed better in three
cases (1 significant) and worse in the remaining two (1 significant). Therefore the
improvement should be considered negligible, and the effort probably worthless.

4.4. Resampling Training Data for Unknown Words. We applied an-
other method for constructing a set of decision trees for the unknown-word am-
biguity class. It is based on the fact that the procedure for collecting, from the
whole training set, the training examples for that class —explained in detail in
section 2.1.1— can be seen as a kind of subsampling method, and thus it can be
iterated many times, in the style of bagging, to construct more training sets (which
will have a high degree of overlapping).

Following this idea, we repeated the extraction process six times, collecting
training sets of about 22,500 examples each (recall that the number of examples

12The size of the disjoint subsets was relevant to the accuracy of the ensemble {with a
positive bias to the ensembles with few, and, so, more accurate, trees), suggesting that an effort
in estimating an adequate size is required in each case.
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selected is about 2.5% of the 1 million word training corpus). More precisely, the
six sets sum 136,435 examples, from which only 39,272 were actually different.

With the purpose of further complementing these highly redundant sets we
collected six additional training sets, but now using the straightforward procedure
(i.e., any occurrence of an open category is an example) preserving the relative
proportions of the 20 tags for unknown words.

Then, we constructed 12 decision trees —say, Aj,...,Ag for the trees corre-
sponding to the first six training sets, and B,, ..., Bg for the remaining— and we
made several experiments combining them. In particular, we test the effect of
incrementally adding A-trees, B—trees, and both, to the ensemble.

The best result was obtained with the combination {A;,A2,A3,A4,As,B1},
which allowed to reduce the error rate from 20.87% (obtained with the best single
tree) to 17.81%, indicating that this method is potentially useful, and that “B-
type” examples can positively complement the training set if they are introduced
in a lower proportion.

The achieved error reduction is significant, however the reduction obtained
by more simple methods introduced in section 2.3 was even higher: Recall that
the combination of functions for feature selection allowed the construction of an
ensemble that reported an error rate of 16.86%. Additionally, note that we only
report the best result here, and that in order to make this method applicable we
should establish a procedure for automatically tuning the parameters involved.
These two facts were the main cause for not including the presented method in the
general experimental setting.
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