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Abstract 

 

The applications of electric traction systems currently focus on developing technologies with 

greater energy efficiency and lower environmental impact. Manufacturers of hybrid and electric 

vehicles are looking for ways to improve and optimize the efficiency of their models. 

 Manufacturers are looking for more efficient and more compact converter topologies. The 

use of new band gap materials in the construction of these topologies has generated many 

debates and new lines of research especially in the optimization of these topologies. The silicon 

carbide (SiC) based switching devices provide significant performance improvements in many 

aspects, including lower power dissipation, higher operating temperatures, and faster switching, 

compared with conventional Si devices, all these features make that these devices generate 

interest in applications for electric traction systems. 

This work presents a method for improving total harmonic distortion (THD) in the currents 

of output and efficiency in SiC current source inverter for future application in an electric 

traction system. The method proposed consists in improving the coupling of a bidirectional 

converter topology V-I and CSI. The V-I converter serves as a current regulator for the CSI and 

allows the recovery of energy. The method involves an effective selection of the switching 

frequencies and phase angles for the carriers signals present in each converter topology. With 

this method, it is expected to have a reduction of the total harmonic distortion THD in the output 

currents. In addition, an analysis of the losses in the motor and topologies of power converters 

is developed considering the optimization method previously analyzed. The weighted average 

efficiency of the whole system (power converters + motor) in differents conditions of operations 

is presented. 
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1. 
Introduction 

 

This chapter presents the main lines of research, general structure and delimitation of this 

research thesis. It describes a brief introduction of the field of research, hypothesis, specific 

objectives and chapter description that are presented within the document. 

 

CONTENTS: 

1.1  Research Topics 

1.2  Research Problem. 

1.3  Hypothesis. 

1.4  Objectives and Possible Contributions. 

1.5  Chapter Description. 

1.6  References. 
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1. Introduction 

1.1  Research Topics 

Electric and hybrid vehicles present a major challenge for car designers, especially in terms 

of size, weight, choice of electronic systems efficiency and controls. For the HEV and EV 

industry to continue to grow, these challenges must be overcome with efficient and cost-

effective solutions. Current hybrid and electric vehicle platforms, which use silicon-based 

power electronics, are subject to the challenges named above: size, weight and efficiency. One 

option to overcome the problems is the deployment of silicon carbide (SiC) [1]-[2]-[3]. This 

technology provides means to improve the efficiency of the electric vehicle system, reduces the 

need to develop robust thermal management systems that add size, weight and cost to vehicles 

in addition allows to work at a higher frequency of operation, which will reduce the size of the 

passive elements [4]-[5]. 

The voltage source inverter (VSI) topology controls the operation of electric motor in 

electric traction systems, it usually uses isolated gate bipolar transistors (IGBTs) as a switching 

element with return silicon diodes. Furthermore, if a DC-DC voltage booster is used it is 

coupled into a single module that is placed inside the compartment to the electric motor to 

minimize the parasitic inductance and reduce the weight of the wiring [6]-[7]. However, the 

operating limitations in silicon technology, means that the electronic components of silicon 

cannot meet the demands of new HEV platforms and then it appears an area to think about 

upgrading the electric car solutions. At this point it is possible to consider silicon carbide 

devices. The SiC devices can operate at higher temperatures, higher power density and higher 

switching frequencies. The combination of these features would allow to obtain more efficient 

electric traction systems and to increase power density of the whole powertrain. 

The SiC has a series of properties [8] that make it interesting to operate with high 

performance behavior. In particular, these properties can be summarized in the following 

points: 

• Power of the big band. 

• High thermal conductivity 

• High breaking electric field 

• High saturation speed 

• High thermal stability. 

• Good chemical behavior. 
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Several studies have developed different approaches to optimize topologies of converters 

with SiC devices for differents applications [9]-[10]-[11]-[12]. The results show the 

improvement in efficiency and reduction of power losses and the advantages of using these 

devices and their potential use to optimize the different topologies of inverters. 

SiC converters present challenges that must be overcome before they can reach the energy 

levels demanded by electric vehicles and become economically feasible, so the present thesis 

topic is considered as a contribution to the scientific community that will allow to consolidate 

this type of technology within the electric traction systems. 

1.2  Research Problem 

 The trend of manufacturers is focused on using a topology of voltage source inverter 

(VSI) with semiconductor of silicon and control techniques for electric motors. This 

topology involves a series of problems that reduce the efficiency and performance of 

the inverter [13]-[14], this leads to search and investigate new alternatives of topologies 

that allow improving the operating characteristics of the inverter. 

 VSI is a buck topology, the output AC voltage cannot exceed the input DC, so this is 

the reason to place a DC / DC converter at the input of the converter. This involves large 

passive elements such as capacitors on the DC bus that are used as filters, these get to 

occupy 30% of the size of the inverter. [15] 

 The IGBTs of each branch of the inverter cannot be activated at the same time, this 

would cause a short circuit that would damage the converter, therefore the need to use 

a dead time between the activation of each element, which produces distortion in the 

output AC current of the converter, which increases the ripple of the motor torque [15]-

[16]. 

 The size, power losses, weight and efficiency reduction are the most common problems 

in power converters designed for electric traction systems [17]. To this should be added 

the problems that can be generated when using a VSI topology with Silicon devices that 

have to work a temperature range less of 120 ⁰C and at switching frequency below 10 

kHz, thus adapting a very robust cooling system that adds more weight to the system 

[18]-[19]. 

As a conclusion, a research on topologies of alternative converters such as current source 

inverter and quasi Z source inverter with SiC devices switching at high frequency in electrical 
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traction systems applications is necessary to improve efficiency and power density, while 

maintaining control performances and voltage and current waves quality.  

1.3  Hypothesis  

The hypothesis that supports this thesis is summarized as follows: 

The analysis and investigation of an inverter with CSI topology based on a bidirectional 

DC / DC elevator, working with Silicon SiC carbide power elements, with high frequency 

operating ranges, allows reducing the converter volume, power losses and improving 

efficiency.  

In this way, this thesis will contribute to the development of this technology in the 

application of traction systems for electric vehicles and improve the efficiency of these systems. 

Therefore the hypothesis to be demonstrated is the design and optimization of an inverter 

system with SiC power elements, for an electric car powertrain system. This analysis should 

include: 

 Implementation of a PWM control technique, for the high frequency activation of the 

SiC power elements. 

 Implementation of a control technique to synchronize the Dc-Dc converter with 

regulated current for the CSI topology at different switching frequencies This implies 

the design of a method for reducing the harmonic distortion (THD) and improves the 

efficiency in the power converters topologies 

 Evaluate the power losses and efficiency of the proposed topology and carry out a 

comparative study with topologies implemented with conventional silicon devices. 

These exposed assumptions represent the basis of the resulting thesis research. The 

hypothesis is investigated by means of the research work reflected in this thesis document. 

1.4  Objectives and contributions. 

In this section we present the objectives within the proposed research thesis. 

a) The first objective proposes a model and control of CSI converter topology with a 

bidirectional Dc-Dc elevator with SiC devices at high frequency operating ranges. In 

addition, a study of CSI topology with different topologies of impedance networks 

bidirectional to analyze advantages and disadvantages in comparison with the topology 

proposed. This objective will be faced in chapter 3 of the dissertation. 

b) The second objective proposes the development of a control algorithm to couple the Dc-

Dc power converter and the CSI inverter to obtain constant current source. This includes 
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the search of a method for search the best frequency of switching and phase angle of 

carrier signals in each converter for obtained the best efficiency and reduction of total 

harmonic distortion (THD).  The entire study is implemented with SiC technology. 

c) The third objective of this study provides an evaluation on the efficiency of power 

converter in differents conditions of load and frequency of switching. This evaluation 

includes power losses by conduction, switching, and comparison with conventional 

Silicon devices. This section is present in the chapter 5 of the dissertation. 

1.5  Chapter description. 

Based on the flow of the possible contributions and objectives, this thesis is divided into 

six chapters. 

Chapter 1 present the differents research topics, problems detected as well as the 

hypothesis and objectives behind this research. 

Chapter 2 provides a general review of power inverters topologies in applications of 

electric traction systems. In addition, it includes a brief analysis on the current state of silicon 

carbide devices and their application in topologies of power converters. 

The chapter 3 presents the operations of CSI inverter topology with a bidirectional Dc-Dc 

for electric traction system. Finally, different topologies of CSI inverters with power converter 

for the DC link current control are discussed, the advantages and disadvantages between the 

topologies analyzed are presented. 

The focus of chapter 4 is propose a control algorithm to couple the Dc-Dc power converter 

and the CSI inverter with SiC devices. Two points of proposed controlling method are 

evaluated, including the coupling to DC-DC converter to CSI inverter for obtained the current 

of input constant  and a method for reduce the THD in the currents output in the power converter 

through the synchronization of the carrier signals. Proposed controlling method is evaluated by 

computer simulations are performed to validate the theoretical assessment. 

In chapter 5, the author evaluates the efficiency of prototype SiC power converter in 

different conditions of operation of frequency and loads. The different losses of power by 

conduction and switching are analyzed these experimental evaluations are conducted to 

evaluate the efficiency of the SiC topology of power converter, which verifies the theoretical 

developments, previously analyzed. 

In the chapter 6 the general conclusions are presented and the future works are discussed. 

Finally in the chapter 7 the dissemination of result of this research are presented. 
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2. 
Review of Power Converter Topologies and 

Silicon Carbide Technology for Electric 

Traction Systems EV/HEV 
 

The Electric Traction Systems have different elements between which emphasizes the 

power converters. The power converter internally is composed for various semiconductors 

devices (power transistors and diodes), and passive devices (resistors, capacitors and inductors), 

which are controlled by algorithms and modulation techniques to improve its operation and 

optimize its energy. Several manufacturers have concentrated their studies and research in the 

development of power converters with greater energy efficiency, dissipation power, size 

reduction and manufacturing costs.  

This chapter presents an analisys of the state of the topologies of power converters used in 

electric traction systems, focusing in the power supply and applications of devices 

semiconductors to improve the operation of the power converter.  Besides, it presents a brief 

analysis on the state of silicon carbide devices and the use in the topologies of converters in 

electric traction systems. 

 

CONTENTS: 

2.1  Introduction. 

2.2  Power converter review. 

2.3  Silicon carbide device. 

2.4  VSI topology in electric traction systems. 

2.5  CSI topology in electric traction systems. 

2.6              Impedances network sources power converters in electric traction systems. 

2.7  References. 
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2.1  Introduction 

The definition of power converter implies the transformation of one mode of energy to 

another. Usually there are converters that provide electrical energy from mechanics, or 

mechanics from energy released from chemical reactions or thermal energy [1]. 

The difference between the converters could be according to whether they are static or 

non-static. The denomination of static is related to the characteristic of not having moving parts. 

In contrast, an example of a converter with moving parts is the association of successive electric 

machines and electric motors [2]. The topologies of Dc-Dc converters and inverters are 

considered very important for the implementation of electric traction systems. As a result, 

several manufacturers and research groups focus their studies on the design of this type of 

topology to improve their efficiency and obtain optimal electric traction systems. 

The study of these types of power converters involves the adequate knowledge of the 

power electronics, which is considered as an efficient alternative in applications of power 

converters. Most of the energy innovations use power electronics as a fundamental part for the 

conversion of electricity for the control of electric motors, process control of industrial 

equipment, transport and distribution. The power electronics is an interdisciplinary branch that 

includes different topics, a new stage of research in materials and manufacturing processes that 

contribute with new studies and optimization of converters topologies to improve the efficiency 

and operating features. 

Due to the needs and demands of energy efficiency but with less pollutant emissions, the 

power electronics contribute with two fundamental roles. The first where the generation of 

alternative renewable energies is insufficient to meet current needs, so storage capacity is a 

priority and similarly coupling renewable energy systems with existing systems is very complex 

in this situation where the input power electronics allowing coupling the two structures [3]. 

The second role of power electronics is the development of systems with semiconductor 

elements that allow the activation of electric motors, which are implemented in traction systems 

in electric and hybrid vehicles [3]. The trend towards these systems has grown and the future 

needs for integration require great challenges. With current technology it is complicated (bulky 

and expensive) to reach large power densities in small spaces, the current trend is to work at 

higher frequencies by reducing the size of components that are normally bulky, inductors and 

capacitors for example. The current and voltage can be presented continuously or alternately. 

The power converters are responsible for transforming energy into both formats. Depending on 

the form of input or output of a power converter have different topologies (Fig.1). 
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Fig.1. Topologies of power Converters in function of input and output. 

The rectifier allows transforming to the voltage AC to constant or variable DC voltage, 

there are controlled rectifiers and uncontrolled rectifiers and uncontrolled rectifiers are those 

that use diodes as rectifying elements, whereas the controlled use thyristors or transistors.  

Phase control regulator allows to transform the AC current from constant voltage to AC of 

variable voltage, allows to regulate the voltage that receives a load supply with AC. Do not 

allow to vary the frequency. 

Inverter; allows transforming the DC voltage and current to AC voltage and current with 

variable frequency. These topologies are more use in electric traction systems. 

The frequency converter transforms the AC voltage to AC allowing varying the frequency 

always being the output frequency lower than the input frequency. 

The power converter DC/DC transforms the DC voltage to DC voltage or current fixed or 

variable. 

Rectifiers, DC-DC converters and power inverters can be found in electric powertrains for 

the electrical vehicles. 

2.2 Review of power converters 

A converter is a system that has the objective of converting electric energy into two 

different formats, DC voltage or current in AC voltage or current. In addition, important aspects 

such as efficiency, bidirectional, volume, reliability and technology should be considered in the 

system of power converter [4]. The Fig. 2 shows a basic converter structure. 
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Fig.2. Structure basic of power converter. 

The power converter for application in electric traction system can be classified in function 

of four parameters, for power supply, the switching activation, for topology and control 

technique (Fig.3).  

 

Figure 3. Classification of power converters. 

For the switching device the power converters can be designed with Mosfet, TBJ, IGBTs 

and thyristors [5]-[6], the number of devices depends on the selected topology if it is single-

phase, three-phase, etc. Also, consider whether they are two-level or multi-level stages where 

devices increase (Fig.4). 
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a) Two level topology  
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b) Three level Topology by fixed diode. 

Fig.4. Topologies with various devices of switching. 

 

Considering the power supply the power converters can be voltage source inverter VSI and 

current source inverter CSI [7]-[8], these two types of converters have the structure shown in 

Fig. 5. 

Vdc
LOAD

 

a) VSI Topology  

Vdc

LOAD

L

 
b)   b) CSI Topology 

Fig.5 Types of Power converters for power supply. 

 

The VSI topology is the  more used in  electric traction systems for electric and hybrid 

vehicles, this is because the  energy storage devices for electric and hybrid vehicles are battery 

voltage [9], it has three legs, and capacitor of high power, in each leg there are two activation 
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elements can be power transistors FETs, MOSFETs and IGBTs. For this topology in 

applications for  electric traction systems is need the use of a DC / DC bidirectional power 

converter for the purpose of increasing the input voltage in the case of commercial vehicles 

such as Toyota manufacturer, coupled in a single module assembly power converter for 

controlling two bidirectional motors (Fig.6), in conjunction with the DC / DC [10]. 
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Fig. 6. VSI topology with DC-DC power converter. 

 

This topology uses a large capacitor in the DC bus to filter the input pulse stream and 

maintain a constant voltage level. In HEV/EV applications, the cost and volume of capacitors 

could be more than 30% of the inverter [9]. The switching of the transistors must be at intervals 

and it cannot be active at the same time two of the same branch because that would cause a 

short circuit. Therefore, it implies the need for a time-out which will bring some distortion of 

the output current AC, which increases ripple torque [11]. This is particularly evident when the 

engine speed is low. 

The current source inverter (CSI) is a different topology that has a coil that replaces the 

capacitor and is used as the energy storage component (Fig.7). This topology have several 

advantages,  such as high voltage capability, short-circuit protection and sinusoidal output 

voltage by the effect of the output filter capacitors AC, which are much smaller than the 

capacitor in the voltage source inverter [12]. 

AcAC
C1 C2 C3

L

 

Fig. 7. Current source Inverter Topology. 



 Chapter 2: Review of Power Converter Topologies and Silicon Carbide Technology 

14               

 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

In electric traction systems, this topology has increased its research, in several works; 

analyze its reliability, performance within these systems [13] - [14]. The CSI topology offers 

important advantages for electric traction system: no need antiparallel diode, provides natural 

action natural protection circuit, provides sinusoidal voltages to the motor due to the effect of 

AC output filters capacitors, and can increase the output voltage at a higher level than the source 

voltage to activate the motor to operate at higher speeds. These advantages may translate into 

substantial cost reduction of the inverter in the volume, higher reliability and improved engine 

efficiency and lifetime. All these features make CSI topology generate interest for applications 

in EV / HEV [14]. However, the CSI converter need a current source as input satge. 

The impedance network source power converter (ZSI) topology can be used for this 

function.  This topology has an impedance network Z that is coupled to the input of the inverter; 

the voltage can be increased by controlling the shots through the interval times of the inverter, 

therefore it does not need a DC / DC converter, and it obtains a buck-boost topology [15]. 

L1

L2

C1
Vcc

C2

 

Fig. 8. Impedance Z Network Inverter Topology. 

 

This type of converter presents problems such as the discontinuous input current in the 

pulse mode when the converter is powered by voltage and high current of stress in the case of 

powered by current, although there are some proposals that allow to solve these disadvantages 

[16] - [ 17]. 

In addition, for the operation of power converter is necessary the use of modulation 

techniques, the techniques more used are the sinusoidal pulse width modulation (SPWM) and 

space vector modulation. The main objective of a modulation technique is to obtain low THD 

waveforms of current or voltage while maintaining minimal losses, and also to allow reduction 

of the common voltage [18]. Various authors present in [19]-[20]-[21]-[22] novel methods of 

techniques of modulations for differents topologies of power converters, they focus on finding 

better operating conditions, efficiency and loss reduction. 
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2.3  Silicon carbide devices 

Silicon carbide devices (SiC) are growing in importance in recent years due to its more 

mature manufacturing technology and increased market sales. Among the construction 

characteristics of these elements are its electric breakdown field eight times higher and three 

times more thermal conductivity this makes them much higher than Si devices, [23]-[24]. 

Recent research have shown that the SiC is a very promising electronic material especially for 

use in semiconductor devices with high ranks of work at higher temperatures, high power and 

higher frequencies, by these characteristics generate expectations in its application in electrical 

systems traction [25]-[26].  

The use of these devices at high frequencies activation reduces the size of the converters; 

the high frequency minimizes the size of the passive elements in converter topologies [5]. In 

addition, SiC has a significantly lower intrinsic carrier concentration, resulting in a much higher 

temperature capability [6], this allows to use cooling systems more compact and small.  

The SiC material has significant advantages over silicon (Fig.9), but has a disadvantage 

that is in the manufacturing process that is more complicated than conventional silicon; 

however, manufacturers such as CREE, Fuji Electric, Infineon, and ST devices have 

manufactured and developed with this technology at reasonable prices and quality some new 

methods that apply for construction. 

 

Fig. 9.  SiC advantages on Si devices. 
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The SiC devices are considered as a suitable replacement for silicon devices, comparing 

the key features 4H-SiC and conventional silicon are presented in Table 1 [27]. 

The SiC devices more used for converters are Diodes and Mosfet, but manufacturers have 

worked on developing various devices that are used in different power systems; in the Fig.10 a 

classification of SiC devices found on the market is presented. 

 

Fig. 10.  Classification of SiC devices. 

 

The SiC diodes have different features compared with ultra-fast silicon diode. The most 

important differences are the missing reverse recovery charge and the positive temperature 

coefficient of the forward voltage of the SiC diode [28]. The main advantages of these diodes 

are the recovery reverse and switching losses. These devices usually have a QRR low compared 

with the values of silicon diodes, and positive temperature coefficient that reduce EMI [29].At 

present there are three types of SiC diodes Sckotty barrier diodes (SBD), PiN y junction barrier 

Sckotty (JSB) presented in [23]-[30]. The manufacturers provide different types of diodes with 

ranges of very extensive work; usually can be found devices that are between ranges of 500V-

1200V and 5A-100A, the Fig. 11 shows a state of properties of SiC diodes and operating ranges 

maximum. 

 

Table1 

Features of materials SiC vs Si 

Features 4H SiC Silicon 

Ec Critical electric field [V/cm] 0.3 3 

Eg Energy Bandgap [eV] 3.26 1.12 

λ Thermal Conductivity [W/(cm K)] 4.9 1.5 

μ  Electron mobility [cm 2 /(Vs)] 900 1400 
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Fig.11. Properties of SiC diodes and operating ranges maximum. 
 

The BJT SiC is a bipolar device that is off by default, the features more important of these 

devices are low voltage drops and low voltage driving base-emitter cancellation of base-

collector and fast switching behavior of voltage [31]. The problem with these devices are 

controlled by current and the control driver are more difficult to implement. These devices 

improve compared with conventional silicon between these include the good performance of 

voltage and temperature preventing the oxide structure to deteriorate. 

The operating ranges of these devices are in the range of 3-160 amperes and an HFE of 

104. Fig. 12 shows the properties and operating ranges of the SiC BJTs and the manufacturers 

that produce them. 

 

Fig. 12. Properties of SiC BJTs and operating ranges. 
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The JFET device substrate SiC was improved, among the most important characteristics 

of these devices are the threshold voltage for the power off or not depends on the temperature, 

p-n junctions exist that enable high temperature operation without stability problems, and can 

be adjusted conduction resistance with temperature [32]. These SiC elements can be found two 

types: 

LCJFET “Lateral-Channel JFET” is a normally ON SiC JFET, where the load current can 

flow in both directions through the channel depending on the circuit condition [33]. 

The second commercially available SiC JFET is the Vertical Trench JFET (VTJFET). The 

type of the device, the cross-section is identical, except from the thickness of the vertical 

channel and the doping levels of the structure [34].The DMVTJFET does not take into structure 

an antiparallel diode, for that reason, it is of great interest for many applications. 

The SiC MOSFET combines the normally OFF behavior on the one hand, with the voltage-

controlled gate-source junction on the other hand [34]. Thus, it is a favorable power device to 

the designers of power electronics converters compared to the normally ON SiC JFET and the 

SiC BJT, which both have drawbacks from the systems perspective and employs simple driver 

circuits. These devices have a load similar to silicon gate IGBTs and, for these reasons, may be 

used with the same control circuits. The problem of these elements is the lack of robustness 

because the gate oxide can lose stability and reliability, but manufacturers are currently working 

to solve this problem [35]. The operating ranges of these devices are very broad the Fig. 13 

present an analysis of the properties and work ranges between manufacturers of these devices. 

 

 
Fig.13. Properties of SiC Mosfet and operating ranges maximum. 
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2.4 VSI Topology in Electric Traction Systems 

DC-DC boost converter followed by VSI is a common solution for the electric powertrain 

in EV. Manufacturers have selected this type of topology (Fig.14) based on their costs 

production and for being a technology already tested in vehicles present in the market. 

However, this topology present a series of problems that reduce the efficiency of the converter, 

these factors open new lines of research in alternative topologies that allow to improve 

efficiency and operation of the inverter. Recent research [36] has been found that the dv / dt in 

a converter VSI resultant modulation PWM, has a negative impact on the engine causing 

isolation of high frequency greater than 1 MHz with high fluctuations in the current, and 

electromagnetic noise on the drive system, this will involve the design of expensive filters to 

the output. Another disadvantage of this VSI high power density is the high temperature 

working systems in hybrid electric vehicle that deteriorates the capacitor bulky carrying that 

these systems adds [37]. High power density and high temperature deteriorate the bulky 

capacitor which carry these systems, increasing the risk of problems in the converter stage. So 

a large capacity cooling system is required [38]. Moreover, they are sensitive to EMI emissions 

that can generate loss of states of activation of the transistors [38].  

c

DC-DC VSI

PMSM

Si

Vdc

 

Fig.14 Voltage source inverter (VSI) topology for applications in Electric traction systems.   

 

Regarding the applications of SiC devices in voltage source inverter (VSI) drives, several 

design methodologies are considered in [39]-[40]. In [41] the authors provide a methodology 

for overall system level design of a high-power density inverter; they use interleaved   DC-DC 

boost topology and a three-phase voltage source inverter (VSI) with SiC modules, the aim is 

reduce the size, weight and loss of  passive  components.  

In [42] the design of a high power module in combination with a low inductance DC-link 

and analyzed the switching behavior is considered and the significant  improvements of SiC  

power devices  offer  in  terms  of  efficiency  over  silicon  IGBTs . The results show that the 
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proposed design is valid and minimizes losses, the frequency operating proposed in the design 

is of 40 kHz of switching. 

The power loss models  of  a  SiC VSI  inverter  based  on  the  test  results  of  latest  

JFET´s SiC devices  and the performance  of  HEVs  are  analyzed in [43]. The conditions of 

switching frequency is 20 kHz, the proposal and results are validated with a study comparative 

between the SiC technology and IGBT´s and reduces the  power  losses  in  the  motor  drive  

and  the  system  efficiency  is  improved,  and  the  vehicles  consume less energy. 

In [28] authors evaluated the impact of efficiency, power density in industrial inverter 

drives and of dc–dc converter with new SiC devices based on analytical optimization 

procedures and prototype, in a section specify that the VSI topology is the most used in the 

electric traction systems and is considered within the category of low voltage with operating 

ranges between 400-600 volts of DC link and with operating frequency between 4 to 16 kHz. 

The results demonstrate that improve the efficiency and the use of SiC devices contribute to 

increase the power density. 

The construction and implementation of system of air-cooling to 120 °C with the use of 

SiC power semiconductors (JFET´s) is presented in [44]. The topology proposed is the VSI SiC 

with a switching frequency of 50 kHz and the authors present a system more compact, flexible 

on position and low cost. 

 

2.5 CSI Topology in Electric Traction Systems. 

This topology has been gaining ground on the development of applications for electric 

vehicles traction systems (Fig.15) [13], with this topology is possible to get high power density 

and the use of this topology increases the option to implement to high frequencies, allowing the 

usage of SiC, and will reduce the size of the input inductor [37]. The CSI offers many significant 

advantages for electric vehicle applications: CSI do not need anti-parallel diodes in the 

switches, provides an action of short circuit protection and sinusoidal voltages to the motor due 

to the effect of AC output filter capacitors. Other feature is that it can increase the output voltage 

to a higher voltage source to activate the motor to operate at higher speeds level. 
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Fig.15 Current source inverter (CSI) topology for applications in Electric traction systems. 

But various factors have contributed to this topology not being consolidated in the 

production commercial and are described in [45]. The difficulty of the battery recharge is 

limited in the CSI topology but can be solved with the use of bidirectional Dc-Dc power 

converter [46], V-I power converter [11]-[12] and impedance network source [47]-[48]. 

The recent achievements of CSI which are the use of new generation silicon carbide (SiC) 

devices (SiC JFETs and SiC Schottky diodes) and lineal control are presented in [49], the 

authors present the advantages and efficiency improvements. The results prove the reduction 

of DC-link inductor and passive output filters is possible with the use of high frequency of 

switching. 

The research with frequency applications <20 kHz, with Si IGBTs elements are presented 

in [50]. Different CSI topologies are analyzed and compared to VSI topologies at the level of 

power losses and analyze the efficiency between the topologies presented. Recent 

investigations of high frequency activation> 100 kHz with JFETs and SiC diodes have created 

a huge influence on CSI-based applications and create possibilities for their implementation in 

EV / HEV traction systems [49]. 

The topology presented in [51]-[11], show the design of electric traction system of 55 kW 

of power based in CSI and V-I power converter. The V-I power converter is the solution for the 

problem of regeneration of the current to the battery [12]. The topology use RBIGBT modules 

to 15 kHz of switching frequency. The modeling and experimental results show the CSI can 

drive the motor to rated speed even at reduced dc source voltage levels. 
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2.6 Impedance Network Source Power Converter in Electric Traction 

Systems. 

Research and development of this topologies of converters have been increasing since 

2002; the use of news topologies of impedance network source have allowed increase the 

studies and analisys to the point of considering them as an emerging topology in electric traction 

systems due to their ability to work, and save component costs by using a single conversion 

stage [52]-[53]-[54]. The topologies of power converters with impedance network more used 

in electric traction systems is the Quasi Z for voltage-fed and current-fed (Fig.16). These 

topologies provide a buffer between the source and the inverter bridge and facilitates a short- 

and an open-circuit at any time depending on the mode of operation, that do not allow in the 

VSI and CSI conventional topologies in [55]-[56] detailing these advantages. 

S1 S3 S5

S2 S4 S6

 

a) Quasi Z Current Source Inverter. 

 

S1 S3 S5

S2 S4 S6

 

b) Quasi Z Voltaje Source Inverter. 

Fig.16. Quasi Z impedance Source network converter topologies in electric traction systems. 

 

A point to favor of this topology is the efficiency and low cost, compared with the 

conventional topologies, this requires smaller inductors and capacitors with high reliability with 

respect to the reduction of EMI emissions [57].  
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The authors present in [58], a control strategy for Z power converter VSI with conventional 

Si devices to 30 kHz of frequency of switching. The results show the reducing both the 

overestimation of the dc bus voltage and losses in the inverter.  In [59] the authors present a 

improved control strategy for a quasi Z power inverter (QZSI) in electric traction system, the 

aim is to improve the efficiency of the powertrain, they use the sliding-mode control (SMC) 

method in the power converter whereas flatness-based control is proposed to drive the actuator 

for generate the peak dc bus voltage reference. The result shows improvements in the efficiency 

and reduction of the size of passive elements. 

The research presented in [60] shows the comparison between differents topologies with 

alternative topologies such as Z-source inverter (ZSI) or quasi Z-source inverter (QZSI) and 

analyzed differents features such as stress in its elements passive elements weight, size, or cost.  

The currents rms values, the step-up voltage ratio and the power losses are also considered. For 

the analisys the IGBTs devices are used to 10 kHz of switching frequency. The results show 

that the QZSI present advantages in terms of passive elements size since the stored energy 

during one operating cycle is lower than that for the conventional topologies. 

The use of silicon carbide devices in Quasi Z power converters are analyzed in [61], the 

features and comparison with the Si devices are discussed. The results obtained confirm the 

beneficial influence of SiC power devices on the performance of these topologies of power 

inverter. Besides, the power losses of quasi-Z source converter with SiC power devices was 

significantly reduced in comparison with Si-IGBT, this indicates that the use of devices is 

promising within these topologies. 

The use of impedance source network in power converters in electric traction systems have 

added news lines of development in powertrain systems for electric vehicles; its use in 

applications and prototypes allows to overcome the barriers and limitations of the topologies 

VSI and CSI; improving the efficiency and relation of weight volume in the designs of electric 

traction systems.  

But the non-consolidation of these topologies within electric traction systems is due to the 

fact that in their design, modifications must be made to obtain bidirectional topologies that 

allow the recovery of energy. Furthermore still making these modifications the energy recovery 

is not constant only takes place for short times. 
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3. 
Current Source Inverter Bidirectional 

Topologies and Operation.   

 

The current source inverter (CSI) has been gaining ground in development of applications 

in electric traction system. This topology presents several advantages among which is the 

increase of the power density and the elimination of dc bus capacitors, tolerance of phase leg 

short-circuit conditions, better output voltage and current waveforms and the frequency of 

switching. For the correct operation of CSI in electric traction systems a V-I converter is 

required and it is responsible for the control of the regulation of input current to CSI and 

recovery energy in the battery system. 

This chapter present an analisys of the operations of CSI topology for applications in 

electric traction systems. Besides, a brief analysis on differents CSI inverters topologies with 

power converters for the DC link current control (DC-DC; V-I and impedance network) are 

discussed. 
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3.1 Introduction 

The topologies of converters with a current source are used more frequently in different 

industrial applications. Currently, the behavior of this topology within the electric traction 

systems is analyzed and studied, differents research show the several advantages and benefits 

of this topology.  

The current source inverter (CSI) is a topology of power converter that deserves to be 

studied in applications for electric traction systems. The topology has an inductor instead of a 

capacitor and uses it as the energy storage component [1]. It has several advantages such as 

high voltage capacity, short circuit protections, higher power density, and a sinusoidal output 

voltage because of the alternating current filter capacitors that are smaller in comparison with 

the VSI topology [2]. 

This topology has gradually been gaining ground in electric vehicle traction systems 

considering the advantages previously described with the VSI, also can increase the output 

voltage to a higher level than the source voltage to activate the motor to operate at higher speeds 

[3]. This topology is considerate as an emerging topology within electric traction systems.  

The use of this topology increases the option of working at high frequencies, which would 

allow of silicon carbide device (SiC) to be used, which in turn will reduce the size of the input 

inductor [4-5]. The comparison and features between VSI and CSI power converter are present 

in the Table 2. 

 

 

 

 

Table 2 

VSI and CSI Comparisson and Features. 

VSI CSI 

VSI is fed from a DC voltage source 

having small impedance. 

CSI is fed with adjustable current from a DC 

voltage source of high impedance. 

Input voltage is maintained constant The input current is constant but adjustable. 

Output voltage does not dependent on 

the load 

The amplitude of output current is independent 

of the load. 

The waveform of the load current as 

well as its magnitude depends upon the 

nature of load impedance. 

The magnitude of output voltage and its 

waveform depends upon the nature of the load 

impedance. 

VSI requires feedback diodes. The CSI does not require any feedback diodes. 

The commutation circuit is 

complicated. 

Commutation circuit is simple. 
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3.2 Current source inverter 

The current source inverter is one of which the input of current is constant and adjustable, 

the output of current is independent of the load. The CSI consist in six semiconductors (Mosfet, 

IGBTs or SCRs) or switches with gate drive for turn On/Off control and six diodes in series. 

The six devices form three phase legs (A, B and C) within the inverter, the center point of each 

leg being a connection point for the load being driven (Fig 17). Each device conducts for an 

interval of 120 °; when a device is fired, it that instant activate the transistor in the same group 

T1,T2,T3 from the top group and T4,T6 T2 from the bottom group [6]. This topology presents 

two problems; is a topology unidirectional and has voltage boost operation making impossible 

to be used in electric traction systems. 

Vdc
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T5
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Fig.17. Current source inverter topology. 

 

The activation signals for semiconductors T1 to T6 can be applied to the output frequency, 

for six-step operation, or using a high-frequency pulse width modulation scheme and space 

vector modulation. Six-step operation of a CSI is similar to a VSI system with each switch 

operating once during the output period, 2π (0.02 seconds), except with an ‘on’ duration of 2 π 

/3 radians. Each phase leg is offset by π /3 radians, creating six equal intervals (I to VI) during 

one output period [6]. The switching order is the number order of the switches and results in 

there always being one switch from top row and one switch from the bottom row conducting at 

all times. The Fig 18 shows the control signals for the switching devices for a constant voltage 

output. 
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Fig.18. Gating signals for CSI six-step operation. 

The CSI converter topology guarantees a good protection against faults, the same topology 

controls the output short circuit on simultaneous conduction in an inverter leg and therefore 

they are more resistant and very reliable apart from being a simple topology. This topology can 

be used in speed control applications of Ac motors, induction heating and permanent magnet 

motors. 

 

3.3 Modulation Techniques in CSI 

The pulsewidth modulation (PWM) technique have main objective obtaining waveforms 

of current or voltage where the losses are minimal, and this feature also allows reduction the 

common medium voltage and minimization of harmonics [7]. These techniques has been the 

subject of intensive research [8]-[9], different PWM techniques have been studied for CSI, [10-

12]; but for the consulted literature it can be established that the most used methods of PWM 

for current source inverter are the carrier sinusoidal PWM (CSPWM) [13-15], trapezoidal 

modulation (TPWM) [16-18], space vector modulation (SVPWM) [19-20] and selective 

harmonic elimination method (SHE) [21-23]. 

 

3.3.1 Carrier Sinusoidal PWM (SPMW) 

The carrier sinusoidal PWM, introduced by Schonung in 1964 [24] produce an output 

voltage or current waveform, this technique consists in the comparison between a sinusoidal 

control signal (modulating control signals) and a triangular signal (carrier signal) Fig.19. This 

generates gating signals for CSI using the mapping circuits, the CSPWM is generally employed 

with high switching frequency to obtain a near-sinusoidal output voltage and current [1].   
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Fig.19. Sinusoidal PWM (SPWM). 

In the CSPWM the modulation index m is defined as the relation between the peak 

amplitude A of  the sinusoidal wave and the amplitude of the and the triangular signal amplitude 

Am and can be represented by the expression (1) [11]: 

𝑚 =
𝐴

𝐴𝑚
      (1) 

The use of an SPWM technique allows the reduction of low frequency harmonics, for this 

modulates the first and the last of a half cycle (π/3 or 60°), with this condition the low frequency 

harmonics are reduced to a level that can be considered eliminated. For the operation of the CSI 

topology, it is necessary to generate typical patterns and add short-circuit pulses to obtain the 

activation signals (Fig.20). These pulses create a short bus through one leg of the inverter 

whenever either top or all bottom switches are open [25]. 

 

 

Fig.20. Carrier based sinusoidal PWM for CSI topology. 
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3.3.2 Space Vector Modulation SVPWM. 

Space Vector modulation (SVM) technique was originally developed as a vector approach 

to pulse-width modulation (PWM) for three-phase inverters [26]. An SVPWM uses complex 

voltage or current vector for control is a technique that consists of generating sinusoidal signals 

to supply a high current to the load (electric motors) with less harmonic distortion. Generates 

spatial vectors that are placed according to the region or zone where the vector of the output 

voltage o current is located. 

The first studies to use the complex voting vector in the PWM control were presented by 

Jardan [27] and the SVPWM technique was presented by Busse and Holtz [28]. It has been 

demonstrated that the SVPWM is an effective modulation technique for inverter topologies, 

because it reduces the switching time of the switches, reduces the harmonic distortion in the 

voltage and output current, also reduces the switching losses 

The SVPWM for current source inverter there are six states actives (𝐼1,⃗⃗  ⃗ to 𝐼6⃗⃗⃗  ) and three 

states zero (𝐼7,⃗⃗⃗⃗   𝐼8⃗⃗⃗  , 𝐼9,⃗⃗⃗⃗  ) Fig 21.The zero states represents the activation of two switches of the 

same leg which means a circulation of direct current through the coil of the converter. For an 

active state only one switch of the upper leg is turned on just like one of the lower leg at any 

time other three switches on either half leg turn on and off complementarily, this is to avoid 

short circuits since the output phases are connected to capacitors and if two legs are connected 

at the same time it can cause this problem; besides the input current must circulate through a 

direct circuit without causing deviations. [29]  

T1 T3 T5

T4 T6 T2I1 I2 I3

I4 I5 I6

I7
I8 I9

 

Fig.21. Space vector modulation for CSI (SVPWM-CSI). 
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The active states form a hexagon divided in six equal sectors and zero vectors are in the 

center of the hexagon Fig.22a [30]. The reference vector is given by a phase of the power 

converter and can be written by the expression (2) and (3): 

𝐼𝑟𝑒𝑓 =
2

3
(𝑖𝑤𝑎 + 𝑖𝑤𝑏𝑒

2𝜋

3
𝑗 + 𝑖𝑤𝑐𝑒

4𝜋

3
𝑗)                                            (2) 

𝐼𝑟𝑒𝑓 = 𝐼𝑟𝑒𝑓𝛼 + 𝐼𝑟𝑒𝑓𝛽 = |𝐼𝑟𝑒𝑓|𝑒
𝑗𝜃                                              (3) 

 

Where Irefα and Irefβ is the length of the axes α and β of the complex plane Fig. 22b. 
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a)                                                                            b) 

Fig.22 Vectors of current of SVM for CSI, a) Hexagon and sector of vectors of currents, b) Irefα, and Irefβ  

 

The technique of SVPWM approximated the reference vector Iref, using the nine vectors 

shown in Table III, when the vector Iref is between two vectors IK, IK + 1, and when these are 

combined with one I7, 8, 9 vectors null form the vector Iref [30]. 

𝐼𝐾 = {
2

√3
𝐼𝐷𝐶𝑒𝑗(𝑘−1)(

𝜋

3
−

𝜋

6
) 𝑘 = 1…6

0 𝑘 = 1…6
                                         (3) 

This implies that one, two or three zero vectors can be selected in each sector. In three-

phase balanced system the current output equation is given by the expression (4) 

𝐼𝑟𝑒𝑓𝑇𝑠 = 𝐼𝑖𝑇𝑖 + 𝐼𝑖+1𝑇𝑖+1 + 𝐼0𝑇0                                      (4) 

 

Where Ti, Ti+1, T0 are the dwell times for the adjacent vectors Ii, Ii+1,I0 and can be calculated 

by the expression (5),(6),(7) respectively. 

𝑇𝑖 = 𝑚𝑇𝑠𝑆𝑖𝑛 (
𝜋

6
− 𝜃 + (𝑛 + 1)

𝜋

6
                                           (5) 

𝑇𝑖+1 = 𝑚𝑇𝑠𝑆𝑖𝑛 (
𝜋

6
− 𝜃 − (𝑛 + 1)

𝜋

6
                                            (6) 
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𝑇0 = 𝑇𝑠 − 𝑇𝑖 − 𝑇𝑖+1                                                     (7) 

 

Where m is the modulation index and n is the number of sector. The Table 3 shown the 

state active and zero of the space vector modulation for current source inverter. 

 

This technique is the most used within three-phase inverter systems because has a wide 

range of modulation associated with the injection of the third harmonic automatically, has a 

better efficiency in DC power supply, increases the output capacity of SPWM without distorting 

the waveform of the output voltage of the line and avoiding unnecessary switching, which 

results in less power loss. Differents problems and new optimization are analyzed in [31-33] 

and establish several recommendations for use in different applications. 

 

3.3.3 Trapezoidal PWM Method. 

For the switching of the CSI topology the trigger pattern must satisfy two conditions: first, 

the input current must be continuous and second, the PWM current of the inverter must be 

defined. These conditions imply a restriction in the switching which consists in any instant of 

time there are only two switches working one in the upper part and another in the lower part of 

the inverter. If two switches are activated at the same time the PWM current is not defined by 

a commutation pattern and with only one activated the continuity of the input current 

deteriorates.  

 

To comply with this rule in addition to the techniques previously studied, the Trapezoidal 

PWM method can be used. This method consists in comparing a triangular carrier signal with 

a trapezoidal modulating signal and generating the sequence shown in Fig 23. [17]- [34] 

Table 3 

CSI space vectors. 

State On  Interrupt On Space Vector 

Zero States  

[14] 1-2 𝐼8⃗⃗⃗   
[36] 3-6 𝐼7⃗⃗⃗   
[52] 5-2 𝐼9⃗⃗   

Activate 

States 

[16] 1-6 𝐼1 
⃗⃗  ⃗=

2

√3
𝐼𝐷𝐶𝑒𝑗

𝜋

6  

[12] 1-2 𝐼2 
⃗⃗  ⃗=

2

√3
𝐼𝐷𝐶𝑒𝑗

𝜋

2  

[23] 2-3 𝐼3 
⃗⃗  ⃗=

2

√3
𝐼𝐷𝐶𝑒𝑗

5𝜋

6  

[34] 3-4 𝐼4⃗⃗⃗  =
2

√3
𝐼𝐷𝐶𝑒𝑗

7𝜋

6  

[45] 4-5 𝐼5 
⃗⃗  ⃗=

2

√3
𝐼𝐷𝐶𝑒𝑗

3𝜋

6  

[56] 5-6 𝐼6 
⃗⃗  ⃗=

2

√3
𝐼𝐷𝐶𝑒𝑗

11𝜋

6  
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Fig.23 Trapezoidal PWM Method for CSI.  

 

Where Vm is a trapezoidal modulating wave and Vcr is a triangular carrier wave. The 

amplitude modulation index is defined by (8): 

 

𝑚 =
𝑉𝑚̅̅ ̅̅

𝑉𝑐𝑟̅̅ ̅̅
        (8) 

Where, 𝑉𝑚̅̅̅̅  and 𝑉𝑐𝑟̅̅ ̅̅   are the values of amplitude of carrier signal and trapezoidal signal. The 

trapezoidal PWM method does not generate pulses in the segment of π/3 of the positive half-

cycle or in the negative half-cycle of the inverter fundamental frequency.  This is to comply 

with the switching restrictions in the CSI. 

 

3.3.4 Selective Harmonic Elimination Method (SHE). 

Selective Harmonic Elimination technique (SHE) is an alternative that has been researched 

along with the traditional PWM modulation technique. The objective of this technique is to 

generate a train of pulses such that the fundamental component of the resultant waveform has 

a specified frequency and amplitude [35]. 

His technique consists of simplifying a PWM waveform modifying his pulse pattern to 

eliminate the selected order of harmonics, this means that the technique uses the highest 
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frequency regions with the purpose of attenuating the harmonics that are in the low regions 

frequency 

SHE is an offline strategy technique based on obtaining angles that enable the on-off 

switching of the static converter devices (Fig.24), both inverter topologies voltage source and 

current source, with the purpose of obtain a content lower current harmonic [36]. The 

advantages of this type of modulation are the obtaining of low switching losses is desired to 

remove even if a large number of harmonics and remove more harmonics than conventional 

PWM techniques [22]. One problem this technique is the amplitude modulation index m has no 

wide operating range, because does not have adequate control over the amplitude of the voltage 

or current [36]. 

 

Fig.24 Selective Harmonic Elimination technique. 

 

If a comparative study is made between these three analyzed techniques applied to the 

operation of the CSI, several advantages and disadvantages can be established in each 

technique, which are presented in Table 4. 

 

 

 

 

Table 4 

Analysis of modulation techniques for CSI  

Technique Features 
Modulation 

Index 
Applications 

SPWM and 

TPWM 

Smaller low 

order harmonics 

for fS > 2 kHz 

Simple 

Modulation 

0≤m≤1 

It can be 

controlled 

Power 

Inverters  

Medium 

power IGBT 

and Mosfet 

SVPWM 

Low harmonics 

For fS > 2 kHz 

Complex 

modulation  

0≤m≤1 

It can be 

controlled 

Power 

Inverter 

SHE 

Minimum 

harmonics of 

low order 

 fS < 1 kHz 

controlled in 

discrete 

steps 

Medium and 

high power 

converters 
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3.4  DC-DC Topologies for Current Source Inverter. 

The CSI topology is considered as an alternative topology and it does not consolidate for 

its application in electric traction systems. The main reason for not being considered within 

these applications is the limitation in the regeneration of the current, this topology allows the 

flow of the current in only one direction. This factor has been very influential for the converter 

with current supply to be limited to electric vehicle traction systems.  

To solve this problem several solutions are presented in [37-39] - [3], several authors 

propose different topologies of DC-DC and V-I converters and bidirectional impedance 

networks. Each topology has certain operating conditions that in some points favors and not 

others, so the selection of an efficient topology is essential for the use of a CSI converter in an 

electric traction system (Fig.25). 

L

PMSM

Battery

DC-DC
Impedance 

Network
V-I

?

i

i   

Fig.25 Current source inverter and proposed of topologies bidirectional. 

In this section we study these proposed topologies to analyze their advantages and 

disadvantages in order to validate the most efficient for their application within the topology of 

CSI for electric traction system. 

 

3.4.1 DC-DC power converter full bridge for CSI. 

This topology is bidirectional (Fig.26), consists of four switches that are activated 

depending on the mode of operation. In general, this topology has two modes of operation, the 

first when it provides input current and the second when the current is regenerated to the battery 

[40]. 
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Fig.26. Current source inverter and proposed of topologies bidirectional. 

 

The fist mode of operation consists of the activation of T1 and T4, the current flows from 

the DC / DC converter to the CSI and electric motor (Fig.27), the current has to be controlled 

so it is necessary to use some type of control for the switching of the transistors. 
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Fig.27. First mode of operation DC-DC power converter. 

 

The second mode of operation consists of the activation of T2 and T3, the current flows 

from the electric motor through CSI to battery (Fig.28), this condition is known as regenerative 

braking.  

L

CSI PMSM

DC-DC

Vdc
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Fig.28. Second mode of operation DC-DC power converter. 
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Analyzing this topology in the first mode of operation in simulation with a control loop Pi 

for the current of output, we obtain the results shown in the Fig 29a. Without a control loop 

over the current, there is no stable current control output (Fig 29b), which hinders the correct 

functioning of the CSI converter topology. 

 

a) 

 
b) 

Fig.29. First mode of operation in simulation, a) with control loop b) Without control loop. 

 

 

The control strategy consists of defining the duty cycle to drive the switches using the 

sample of the circuit output current and PI control, so in this strategy we can remove the 

redundancy of the classic control where both current input and voltage are needed. Some of the 

advantages of this strategy comparing with the classic strategy is greater robustness and 

simplicity, less susceptibility to noise and a smoother turn-on characteristic [41]. The scheme 

of the control technique implemented is shown in Fig.30. 
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Fig.30. Control strategy for DC-DC power converter. 

 

This topology can be a solution to the problem of energy recovery in the CSI inverter for 

electric traction systems, but it is not the most efficient, the use of several semiconductor 

devices in this Dc-Dc topology increases the losses of power by conduction and switching, 

which reduces efficiency in the system. In addition, the control of the activation of the 

transistors in the two operating modes requires the use of PI controllers. 

 

3.4.2 Bidirectional Impedance Source Networks 

The impedance networks topologies in power converters used for the development of drive 

systems for electric vehicles help to overcome the voltage and current limitations that frequently 

occur in the conventional topologies VSI and CSI [42].  In the development of power converters 

with an input source current and impedance network coupling, the voltage and current can be 

increased by controlling shooting time intervals through the converter so there is no need for a 

DC / DC converter [43]. The common schematic of a network with an impedance converter 

using power semiconductor devices used in drive systems is shown in Fig.31. 
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Fig.31. Schematic of power converters with impedance network for applications in traction system. 

 

A basic network impedance is composed of linear energy storage elements, capacitors and 

inductors. There is also the possibility of implementing various configurations with the help of 

semiconductor elements such as switches and diodes [43]. For bidirectional impedance network 

topologies, it is necessary to know the different control strategies and modulations types for 

obtaining the phases, frequencies, voltage amplitude and current in the converter. A new zero 

switching state called Shoot-through exists in these converts. This state is caused by the short-

circuiting of one, two or all three legs of the inverter [44]. These types of topologies have 

problems such as discontinuous current input when the ZSI is powered by voltage, high current 

stress in the case of current ZSI, although there are some proposals that solve these problems 

[45] - [46]. In the inverter output, stage is similar to a conventional voltage source inverter or 

current source inverter with states actives and states zeros. However, in these topologies it is 

incorporated an additional zero state. This state is achieved by shorting of one, two, or three 

legs of power converter [47]. This short circuit condition is prohibited in the conventional 

topologies VSI because causes its destruction. In these topologies, this condition is permissible 

because the network input impedance prevents short circuit in the input source [48] - [49]. The 

advantages of this topology is efficiency and low cost, because they require smaller inductors 

and capacitors when working at high frequency and they have high reliability regarding EMI 

emissions [50]. 

 

 

 

 



 Chapter 3: Current Source Inverter Bidirectional Topologies and Operations 

 

44               

 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

Several modulation techniques are proposed for use in converters with impedance networks 

[51]-[52]; the use of these techniques allows obtaining waveforms of current or voltage. Also, 

this type of converters allow the reduction of harmonics by integrating the new switching state 

"shoot-through" in the classical methods of modulation, which is required to achieve a 

minimum and effective switching semiconductor harmonic distortion. In the Fig.32, a 

classification of modulation techniques for power converters of two levels with impedance 

networks are presented and serves to meet the needs in the development of electric traction 

system application. 

 

Fig.32. Classification of techniques of modulation. 

 

 

The simple boost method (Fig.33) for the topologies of the Fig.16; consists in the comparing 

a triangular carrier signal with the sinusoidal signals or modulating system reference. Short 

circuit states that allow the power converter with network impedance perform the function of 

increasing the input voltage is by the use of two additional levels of comparison (VP + and VP-

). This additional state is generated when the carrier signal is above the positive reference value 

VP or shoot-through signal and the modulating signal or below its negative reference signal. 

The modulating signal generate the shoot-through (ST) state or short-circuit and will be 

repeated during the application of modulation. A disadvantage of this modulation is the 

modulation index decreased (M) and rising state short circuit range; this increases the stress on 

network devices and semiconductors of the inverter [53]. 
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Fig.33. Simple boost method. 

 

In this case, the duty cycle D is calculated by (9): 

𝐷𝑜𝑝 = 1 − 𝑀       (9) 

The method known as maximum boost (Fig.34) used for the topologies of the Fig 16, 

presented in [54] was designed to reduce stress voltage devices, and it also reduces switching 

losses for the output voltage compared to the single boost. The method is based on maintaining 

the modulation index (M) as high as possible, and the boost factor (B) as low as possible. The 

problem identified in this method is the time variation shoot-through state; it generates low 

frequency harmonics, which generates ripple in the current passive elements of the network. 

 

 

Fig.34. Maximum boost method. 
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The duty cycle D for this method is calculated by (10): 

𝐷𝑜𝑝 = 1 −
3√3𝑀

2𝜋
          (10) 

 

The method of maximum boost constant [55] consists in slight modification of the 

reference signal of the shoot-through state; using this method, a shoot-through state is obtained 

with a time constant through a duty cycle ratio for each switching (Fig.35). This is achieved by 

modifying the two additional levels of comparison VP + and VP-, the advantage of using this 

method is that it minimizes low frequency harmonics the generation of and current ripple in the 

passive elements of the network impedance [26]. 

 

Fig.35. Maximum boost constant method. 

For this method, the duty cycle ratio is calculated by (11): 

𝐷𝑜𝑝 = 1 −
√3𝑀

2
                                                             (11) 

The injection method of the third harmonic (Fig. 36) consists of the application of a range 

of modulation index. It extends from 1 to 2√3   and third harmonic component is injected with 

1/6 of the fundamental component of the magnitude of the three phases of voltages of 

references; the use of two additional levels comparison VP+ and VP- is necessary to obtain 

shoot-through states constants [53] 
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Fig.36. Method of injection of third harmonic. 

The technique of space vector modulation (SVM) is a technique that is used constantly for 

vector control in power converters with impedance network and it presents some variations 

with respect to the conventional technique. This is because the presence of a new switching 

state called shoot-through. In [56- 58] some techniques for this type of converters are presents; 

its application has several advantages; the reduction of harmonics, low voltage and current 

stress on the passive elements and reduced losses in activation. There are three methods of space 

vector modulation. The first called ZSVM2 (Fig.37) where divided state while switching shoot-

through (Tsh) into four equal parts in a cycle with a modified two-time activation [59]. 
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Fig.37. Modulation ZSVM2. 
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3.4.3 Topologies of Impedance source network for CSI. 

The topologies of impedance source network used for CSI inverters are shown in the 

Fig.38. The first topology is the Quasi-z and the second topology is the Trans-z. This topology 

can increase the input voltage to meet the variable motor speed and achieve a bidirectional 

power flow. In addition, the impedance network allows a closed circuit for the input current 

during the open circuit state of the inverter and protects the switches and the inductor [60].  

The second topology has the same operating principle and voltage gain regions similar to 

the Quasi Z topology but different stress current conditions [61]. 

 

                                                          a) 

 

                                                           b) 
 

Fig.38. Impedance source network topologies for CSI inverters, a) Quasi-z b) Trans-z 

 

The topology Quasi Z has two modes of operation; continuous and discontinuous, in the 

continuous mode are three situations: during the first situation the inverter is in an active state 

and the DC link voltage Vout is equal to the equivalent output voltage VDC, the diode is not 

active [62] and this situation is called active state (Fig.39a). The second mode (Fig. 39b) shows 

the inverter equivalent to a short circuit by turning on the upper and lower switches in the same 

phase leg, in two-phase legs or three phase legs together, the dc link voltage is zero and diode 
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is off [63]. In the third mode (Fig. 39c), called open state, the switch devices are disconnected 

in the inverter, which is similar to a state open, the diode is turned on and the voltage of dc link 

is equal to sum of voltage in each capacitor [63]. 

 

 

a)                                                                                          b) 

 

                                               c) 

Fig.39. Modes of operation continuous in Quasi-z impedance network, a) first mode b) second mode c) 

third mode. 

 

The discontinuous operation has two modes of operation. During the open state (Fig. 40a) 

the diode is on and the devices of inverter are disconnected; in this moment the capacitor is 

charging. But, in other two states the capacitor keeps discharging because the unchanged 

inductor current. When the second mode continuous ends, if the voltage of the capacitor 

decreases to a value below the output voltage at the moment that the inverter is switched to 

active state again the diode is working because the voltage drop is positive, but the diode of the 

inverter is reverse biased and this similar to an open circuit and capacitor is charged again in 

this new open state [62]. In the second discontinuous mode (Fig. 40b), the voltage drop in the 

power converter is still smaller or equal to zero and continuous in state open, and diode is off. 
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a)                                                b) 

Fig.40. Modes of operation discontinuous in Quasi-z impedance network, a) first Mode b) second 

mode. 

The Trans-Z topology is a topology with coupling of transformer that can be represented 

by the circuit of Fig. 41 as seen from the inverter DC link. The topologies of impedance network 

Trans- Z and Trans- Quasi Z were designed to solve the problem of stress in the passive 

elements of the Z and Quasi Z topologies 

 
Fig. 41. Equivalent circuit of Trans-Z source inverter viewed from the DC link. 

 

This topology has three states of operation described in Fig 38, in the first state called 

active (Fig.42a) the inverter work in one of the actives states, the second state (Fig. 42b) when 

a short circuit occurs in a leg o several of the converter, and in the third state (Fig. 42c)  it is 

performed a shoot-through zero states [61]. 

 

  

a)             b) 
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c)  

Fig 42. States of operation of topology Trans-Z source inverter, a) State active; b) State Short 

Circuit, c) State shoot-through. 

 

3.4.3.1 Control Techniques for Impedance Network. 

For the control of these topology is important obtain a good dynamic of the power 

converter, this because an impedance network has a non-minimum phase behavior and can be 

a problem or limitation at the moment of the design of a control for the network. For the analysis 

of the small signal model, in this topology it is possible to work with different state variables, 

the input current, the current of the inductances, the voltages in the capacitors, the models 

obtained in this way provide a transfer function that is used for the design of the controller and 

also provides dynamic characteristics in the system. The circuit for small signal analysis in the 

topology Quasi Z is shown in Fig.43, where it is established that SD is the control variables and 

input voltages or capacitor the which variables to control. 

L1

C1

L2 C2

L3

SD

R

L

 

Fig.43. Quasi-Z impedance network source equivalent circuit for small signal analysis. 

 

In the small signal analysis of this topology it is considered that the impedance network is 

symmetric, this means that the values of capacitance and inductance are equal (C1=C2 and 

L1=L2) in differents researches the authors analyze the advantages of symmetry in the network 

[64-66]. The voltage or current that enters the inverter can be controlled by two methods: 

voltage or current control, which can be direct or indirect. 
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The direct method, that is shown in Fig.44, improves transient response and minimizes the 

perturbation and facilitates the network impedance controller design. 

v

Gc Tsh
Vdc Modulation

Load

Circuit of Protection peak voltage
Vdc

L1

+

- M

 

Fig.44. Quasi-Z impedance network direct control method capacitor voltage Vc. 

 

The indirect method, shown in Fig.45, work with the capacitor voltage or current output 

inductor, which are measured in order to compare them to a voltage or current reference. 

Vc Ic
V*

iL* =

-

+

-

+

Vc
iL

Modulation

D

L1

C2

L2 C1

L3
LOAD

 

 Fig.45. Quasi-Z impedance network indirect control voltage capacitor Vc and IL. 

 

It is very important to take into consideration that when working with the method of 

indirect control the voltage peak can generate problems, it can become uncontrollable and this 

could affect the output voltage, causing greater stress to the semiconductors in the inverter and 

increasing distortion. One way to solve this problem is by modifying the modulation index [67]. 

The design of this type of controllers consists of comparing the voltage peak generated in 

the capacitor of the network, with a reference voltage and current peak generated in the 

inductor,  in is very important obtained the transfer function for design a PI controller. These 



 Chapter 3: Current Source Inverter Bidirectional Topologies and Operations 

 

53 
 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

are calculated based on the desired response and dynamics, with this obtains the work cycle 

(D) that enters the modulator [68]. 

When working with the direct method, the output voltage peak of the impedance network 

is used and the same procedure is applied, that is, obtaining the transfer function and a PI 

controller which now regulates the modulation index (M) [69]. In general, when designing 

systems with regeneration or bi-directional, the load current is considered as another state 

variable, this allows to reduce the disturbances in the input voltage as well as the oscillations 

of the controller [53]. 

 

3.4.2.2 Development of indirect control. 

This sub-section present the development of a method indirect in impedance source 

network, the topology used for this application is the Current Fed Quasi-Z power inverter shown 

in Fig. 42. The devices used in the CSI power converter are Mosfet SiC to 50 kHz of switching 

frequency a scheme of control proposed is shown in the Fig. 46. The goal is validate the method 

and analyze the response of the topology of impedance network in to power converter to high 

frequencies of switching. 

PWM Modulator 
50KHz

Control 
Proposed

SiC SiC SiC

SiC SiC SiC

Control 
Current

Isa Isb Isc

 

Fig.46. Topology Current Fed Quasi-Z and control proposed. 

 

Considering that the average voltage over one switching period should be zero in steady 

state, Vout is calculated by (12): 

𝑉𝑜𝑢𝑡 =
𝐷𝐴+𝐷𝑠ℎ+𝐷𝑜𝑝

𝐷𝐴
=

1−2𝐷𝑜𝑝

𝐷𝐴
𝑉𝑖𝑛                     (12) 

 

Similarly, considering that; the average current of the capacitors over one switching period 

should be zero in steady sate. IL1 can be calculated by (13) and (14): 



 Chapter 3: Current Source Inverter Bidirectional Topologies and Operations 

 

54               

 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

𝐼𝐿1 = 𝐼𝐿2 =
𝐷𝑜𝑝

𝐷𝐴+𝐷𝐴+𝐷𝑠ℎ
                                             (13) 

                                      𝐼𝐿1 = 𝐼𝐿2 =
𝐷𝑜𝑝

1−𝐷𝑜𝑝
𝐼𝑖𝑛                                               (14)                 

Where the DA, Dsh and Dop are the duty cycles of the active states, shoot-through state and 

traditional zero state. 

The differential equations that describe the system shown in Fig.30 when SD is on and 

considering that L1 = L2 = L3 and C1 = C2 can be written as (15), (16) and (17): 

 

𝐿𝑑𝑖𝐿(𝑡)

𝑑𝑡
= (1 − 2𝐷𝑂𝑃)𝑉𝐶(𝑡) − 𝑉𝑜𝑢𝑡(𝑡)(1 − 2𝐷𝑂𝑃)     (15) 

 

𝐶𝑑𝑉𝐶(𝑡)

𝑑𝑡
= (2𝐷𝑂𝑃 − 1)𝐼𝐿(𝑡) + 𝐷𝑂𝑃𝐼𝐷𝐶      (16) 

 

𝐿𝐼𝑑𝑖𝐿(𝑡)

𝑑𝑡
= (−2𝐷𝑂𝑃)𝑉𝐶(𝑡) − 𝑟𝐼𝐷𝐶(𝑡) + (𝑉𝑖𝑛 − (1 − 𝐷𝑂𝑃)𝑉𝑜𝑢𝑡)                  (17) 

The system can be represented in matrix form as (18): 

𝑑

𝑑𝑡
[

𝑖𝐿
𝑉𝑐
𝐼𝐷𝐶

] =

[
 
 
 
 0

(1−2𝐷𝑂𝑃)

𝐿
0

(2𝐷𝑂𝑃−1)

𝐶
0

𝐷𝑂𝑃

𝐶

0
−2𝐷𝑂𝑃

𝐿𝑖

−𝑟

𝐿𝑖 ]
 
 
 
 

[

𝑖𝐿(𝑡)
𝑉𝑐(𝑡)
𝐼𝐷𝐶(𝑡)

] + [

𝑉𝑜𝑢𝑡

𝐿
(1 − 𝐷𝑜𝑝)

0
𝑉𝑖𝑛(1−𝐷𝑜𝑝)𝑉𝑜𝑢𝑡

𝐿

]           (18) 

The parameters of the impedance network and data used to obtain the transfer functions of 

IL and Vc are shown in Table 5. 

 

Resolving (17) we obtain the transfer functions (19) and (20): 

  

𝐺𝑉𝑐(𝑠) =
1.328𝑒−6𝑠2−0.0794504𝑠−99.96

3𝑒−11𝑠3+5𝑒−8𝑠2+4800𝑠+18
     (19) 

𝐺𝐼𝐿(𝑠) =
9.996𝑒−6𝑠2−6000.42𝑠−39.98

3𝑒−11𝑠3+5𝑒−8𝑠2+4800𝑠+18
     (20) 

Table I 

Parameters of impedance network. 

Parameter Value 
Dop 0.33 

L=L1=L2 50uH 

Lload 0.47mH 

C=C1=C2 660uF 

Vin 100V 

Rload 5Ω 

Modulation Technique Maximum Boost 
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With the obtained transfer function, the loop is closed by designing and implementing a 

PI. A diagram of the closed loop of the converter and impedance network source is presented 

in Fig 47. 

PI PI PWM 
Modulator

do-

+ +

-
abc

dq

PI

PI

Id*

Iq*
Id

Iq

Iref

IL Vc +

-

+
-

 

Fig.47. Close loop control of power converter. 

The Id* and Iq* are the currents of the converter after passing through a transformation. 

The PI control for these currents is designed to improve the response of the closed loop. For the 

tuning of the PI controller for the impedance network there are different methods, to minimize 

the time in the search of the Kp and Ki values  the SiSoTools of Matlab was used, which allows 

faster and effective tuning when compared with the analytical methods. Moreover it can work 

directly with the transfer functions. 

The modulation technique used is the maximum boost method (Fig.48), the duty cycle D 

is calculated by (21), and the index of modulation is M=0.8: 

 

𝐷𝑜𝑝 = 1 −
3√3𝑀

2𝜋
=  1 −

3√3∗0.8

2𝜋
= 0.33     (21) 

 

a) 

 

b) 

Fig.48. Modulation technique. a) Signals of reference. b) PWM current output in phase A. 
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For the tuning of the PI controller for the impedance network, the SiSoTools of Matlab 

was used (Fig.49), which allows faster and effective tuning when compared with the analytical 

methods. Moreover it can work directly with the transfer functions. 

 

 

Fig.49.Tuning of PI´s control with SiSoTools. 
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The parameters used for the simulations are presented in the Table V. The current of output 

in the impedance network that enters to CSI power converter with this parameters is shown in 

the Fig. 50. 

10 Ampers

 

Fig.50. Current of input to CSI power converter. 

 

The results obtained in the topology of power converter with the control proposed are 

shown in the Fig 51. The first part presents the sinusoidal output currents in the current source 

power inverter. The second part presents the behavior of current and voltage controls over the 

impedance network. The analisys of stress in the passive devices are shown in the Fig.52 and 

the stress is reduced by effects of the same control implemented in comparison with an open 

loop topology, this shows that the control proposed in closed loop helps to minimize these 

effects that can cause damage to the passive elements of the converter and allows to regulate 

the input current to the converter.  

 

Table 6 

Parameters for simulations for SiC Quasi-Z topology. 

Parameter Value 
VDC 100V 

L=L1=L2 50uH 

C=C1=C2 50kHz 

Frequency 660uF 

C filter 10uF 

Mosfet SiC SCT2450KE 

Diode SiC C3D08065I 

Pi Current P= 0.6 I=0.053 

Pi voltage P=0.8 I=0.0034 

Pi of Id and Iq P=2.2; I=0,23 
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a) 

Current reference

 

b) 

 

c) 

Fig.51. Result of control proposed. a) Currents of output in the CSI power converter, b) Current control 

in impedance network source, c) Voltage control (do) in impedance source network. 
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a) 

 

b) 

Fig.52. Stress in passive devices. a) Stress in passive device in close loop control, b) Stress in passive 

device in open loop. 

 

When the PI control in the impedance network is not properly tuned generates different 

problems and increases the distortion harmonic total THD (Fig.53) that can cause problems in 

the control of the load; this by the bad function of the loop of control, this effects would be a 

serious problem in an electric traction system for the losses that could generate. 

 

Fig.53. Results of control badly tuned. 
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For the Trans Z topology (Fig.54), a simulation with maximum constant boost control 

modulation (MCBC) is performed to analyze the stress in the passive components of the 

impedance network, the devices used are Mosfet SiC to 100 kHz. 

 

Maximum constant boost control 

modulation (MCBC) 

 

Fig.54. maximum constant boost control modulation (MCBC). 

The duty cycle ratio is calculated by (22), the index of modulation M is 0.9, the signals of 

PWM current and voltage are presented in the Fig.55. 

 

𝐷𝑜𝑝 = 1 −
√3𝑀

2
=   1 −

√3𝑀

2
= 1 −

√3∗0.9

2
= 0.220                              (22) 
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Fig.55. Signals of current and voltage in MCBC. 

 

The parameters and values of passive devices used for the simulations are presented in the 

Table 7. The results obtained in the simulations are shown in the Fig. 56.  

 

 

 

a) 

Table 7 

Parameters for simulations for SiC Trans-Z topology. 

Parameter Value 
VDC 100V 

L=L1=L2 50uH 

C1 100uF 

Frequency 100kHz 

C filter 50uF 

Rload 5Ω 

Load 0.47mH 

Mosfet SiC SCT2450KE 

Diode SiC C3D08065I 

PWM Technique MCBC 
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b) 

Fig.56. Results in simulations. a) Current of output, b) Stress in passive device in Trans Z SiC power 

converter. 

 

The analysis of stress in the passive devices of the Trans Z power converter allows 

to verify the behavior of the current in the inductors and the voltage in the capacitor. 

The study of these topologies in this first part allows to analyze their modes of operation 

when they are used with three-phase converters with current sources. These topologies 

allow solving the problem of current return in the CSI but this recharge is not constant, 

it happens only in instants of short times, this depends on the operating mode of the 

converter, therefore an optimal and constant recharge of the battery is not obtained. 
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3.4.4. V-I power converter. 

 

The V-I power converter transforms the voltage of the battery to current constant as source 

for the inverter. The topology V-I shown in Fig.57 is composed of two interrupt and two diodes. 

The configuration allows the energy to be reversible or bidirectional and can work with different 

topologies of current source inverter (CSI), then solving the problem of bidirectional in the 

current source inverter. 

Vdc

L1

D1

T1
Iout

Vout R

R

R

V-I Converter CSI

PMSMT2

D1

 

Fig.57. V-I power converter topology. 

 

The V-I power converter operates in four modes of operations [38]. In the first mode (Fig. 

58) when the mosfet T1 and T2 are turned on, the battery voltage is applied to the converter and 

charging the inductor, in this mode a current Iout and a voltage Vout are obtained being 

VS=VBattery. Current returns through the activation mosfet T2, and the Diodes D1, D2 are in 

reverse bias therefore does not activate. 

 

Fig 58. V-I power converter in the first mode. 

 

In the second mode (Fig. 59) the mosfet T1 is turned on and the T2 is off, this disconnects 

the battery of the power converter and Vs=0V, and the flows of current circulate through diode 

D1 [38].  
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Iout

Vout

T1

T2

D1

D2

On

Vs

L

DC

 

Fig 59. V-I power converter in the second mode. 

 

In the third mode (Fig.60) the mosfet T2 is turned on and T1 is off; this mode disconnects the 

battery of the power converter and Vs=0v, and the flows of current circulate through diode D2 

[38]. 

Vdc

Iout

Vout

T1

T2

D1

D2

Off

Vs

L

DC

On On

 

Fig 60. V-I power converter in the third mode. 

 

 In the fourth mode (Fig. 61) the mosfet are turned off and the current flows through the 

diodes D1 and D2; this mode is implemented in the case of the current converter returns to 

recharge the high voltage battery Vs=-VBattery [38]. 

 

Fig 61. V-I power converter in the fourth mode. 
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The model dynamic of V-I converter is governed by (20): 

     

𝐿
𝑑𝐼𝐷𝐶(𝑡)

𝑑𝑡
= 𝑉𝑆(𝑡) − 𝑉𝑖𝑛(𝑡)                                                   (23) 

 

Where the output voltage, VS, of the V-I converter can take three values: the battery voltage 

(VS = VBattery) when the V-I converter operates in first state, VS = 0 when T1 or T2 are OFF, and 

VS = −VBattery for charging the battery in fourth state. To maintain a desired level of the dc choke 

current, the V-I converter alternates between first state and On-Off of T1 or T2 in the motoring 

operation mode considering the load an electric motor, as shown in Fig. 62. 

Time

Iout

Vs

Vout
Vbattery

First State

Off T1 or 
T2

First State
Off T1 or 

T2

First State

 

Fig. 62. V-I operation in first state motoring. 

 

The V-I converter minimizes the problem of energy recovery in the CSI topology, the 

recovery is constant and not at intervals as with the topologies described in the previous section. 

The use of this topology allows controlling the input current to regulate at a constant level, and 

for doing this the implementation of a control for the output current is necessary depending on 

a desired reference and the design characteristics in power. 

 

3.4.4.1 Design of control of current for V-I power converter. 

The design of the control of current of output in the V-I converter consists in regulating and 

minimizing the current ripple for stabilize the value of output current. For the analisys and 

design of current control the two scenarios of the first and the fourth modes are analyzed. 

 

The circuit shown in the Fig. 63, represents the equivalent circuit in the first mode, a flow 

of current and voltage are generated when a load RLC is connected. Also for the analysis they 

are considered internal resistance of the SiC mosfet (Rds=Ron), inductance (RL) and capacitance 

(RC). 
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Fig. 63. Equivalent first mode circuit. 

In function of this circuit the equations of system are described in (21), (22), (23), (24): 

 

𝑉𝑖𝑛(𝑡) = 𝑉𝑅𝑜𝑛1
+ 𝑉𝐿 + 𝑉𝑂𝑈𝑇 + 𝑉𝑅𝐿 + 𝑉𝑅𝑜𝑛_2                                    (24) 

𝑉𝑖𝑛(𝑡) = 𝑅𝑜𝑛1
𝐼𝐿(𝑡) + 𝐿

𝑑𝑖𝐿(𝑡)

𝑑𝑡
+ 𝑅𝐿𝐼𝐿(𝑡) + 𝑉𝑜𝑢𝑡 + 𝑅𝑜𝑛2

𝐼𝐿(𝑡)                    (25) 

𝑉𝑖𝑛(𝑡) = 2𝑅𝑑𝑠𝐼𝐿(𝑡) + 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
+ 𝑅𝐿𝐼𝐿(𝑡) + 𝑉𝑜𝑢𝑡                              (26) 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑉𝑖𝑛(𝑡) − 2𝑅𝑑𝑠𝐼𝐿(𝑡) − 𝑅𝐿𝐼𝐿(𝑡) − 𝑉𝑜𝑢𝑡                                        (27) 

 

The value of Vout can be expressed in terms of Rload and RC by the equation (25): 

 

𝑉𝑜𝑢𝑡 =
𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑖𝐿(𝑡) +

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑉𝑐(𝑡)                                          (28) 

 

Substituting (25) into (24) we have the equations (26): 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑉𝑖𝑛(𝑡) − 2𝑅𝑑𝑠𝐼𝐿(𝑡) − 𝑅𝐿𝑜𝑎𝑑𝐼𝐿(𝑡) −

𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑖𝐿(𝑡) −

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑉𝑐(𝑡)           

(29) 

 

Resolving the system we obtained (27)-(28) 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑉𝑖𝑛(𝑡) − [ 2𝑅𝑑𝑠 + 𝑅𝐿𝑜𝑎𝑑 +

𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
] 𝐼𝐿(𝑡) −

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑉𝑐(𝑡)  (30) 

 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
=

𝑉𝑖𝑛(𝑡)

𝐿
− [

 2𝑅𝑑𝑠+𝑅𝐿𝑜𝑎𝑑+
𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
] 𝐼𝐿(𝑡) −

𝑅𝐿𝑜𝑎𝑑
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
𝑉𝑐(𝑡)   (31) 

The equation that is obtained from the output circuit it is given by (29), (30), (31): 

 

𝑪
𝒅𝑽𝑪(𝒕)

𝒅𝒕
= 𝑽(𝒕) − 𝑰𝑳(𝒕)       (32) 
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𝐂
𝐝𝐕𝐂(𝐭)

𝐝𝐭
=

𝐑𝐋𝐨𝐚𝐝

𝐑𝐋𝐨𝐚𝐝+𝐑𝐜
𝐈𝐋(𝐭) −

𝟏

𝐑𝐋𝐨𝐚𝐝+𝐑𝐜
𝐕𝐜(𝐭)       (33) 

𝒅𝑽𝑪(𝒕)

𝒅𝒕
=

𝑹𝑳𝒐𝒂𝒅
𝑹𝑳𝒐𝒂𝒅+𝑹𝒄

𝑪
𝑰𝑳(𝒕) −

𝟏
𝑹𝑳𝒐𝒂𝒅+𝑹𝒄

𝑪
𝑽𝒄(𝒕)       (34) 

Resolving the system we can set the equation of state space model (35), (36): 

 

     𝑿(𝒕) = 𝑨𝑿(𝒕) + 𝑩           (35) 

 

 𝒀(𝒕) = 𝑪𝑿(𝒕) + 𝑫           (36) 

 

The equations (34) and (35) can be expressed in in the matrix form: 

 
 

[

𝑑𝑖𝐿(𝑡)

𝑑𝑡
𝒅𝑽𝑪(𝒕)

𝒅𝒕

] =

[
 
 
 
  2𝑅𝑑𝑠+𝑅𝐿+

𝑅𝐿𝑜𝑎𝑑𝑅𝑐
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
−

𝑅𝐿𝑜𝑎𝑑
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶
−

1
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶 ]
 
 
 
 

[
𝐼𝐿(𝑡)

𝑉𝑐(𝑡)
] + [

1

𝐿

0
] 𝑉𝑖𝑛(𝑡)  (37) 

 

[
𝑉𝑜(𝑡)

𝑑𝑡

𝐼𝑖𝑛(𝑡)
] = [

𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

1 0
] [

𝐼𝑳(𝑡)

𝑉𝑐(𝑡)
] + [

0
0
] 𝑉𝑖𝑛(𝑡)    (38) 

 

The parameters and data used to obtain the transfer functions of the system are shown in Table 

8. 

 

 Resolving (37) and (38) by state space model we obtain the transfer functions on the current 

of output (39): 

𝐼𝑜𝑢𝑡(𝑠) =
10𝑠+1.5𝑒4

𝑠2+1503𝑠+1.144𝑒5     (39) 

Table VII 

Parameters for calculated transfer function. 

Parameter Value 
VDC 300 V 

Inductance L 20mH 

Resistencia inductance RL 0.15Ω 

Capacitor C 100uF 

ESR capacitor 0.05 Ω 

Rload 10 Ω 

L load 1mH 

Rds Mosfet 40m Ω 
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For the tuning of PI control, the Matlab PID tuner tool is used, the tool the tool allows to 

quickly obtain the value of the constants Kp and Ki for the control proposed. (Fig.64). 

 

 

a) 

 

b) 

Fig. 64. Tuner tool, tuning of PI a) Step plot response, b) Bode plot response. 
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The values of the constants Kp and Ki obtained by this method are shown in the Fig 65. 

 

Fig. 65. Values of Kp and Ki tuning. 

 

The signals of reference and control of the response in the design of PI control for the transfer 

function (36) are shown in the Fig.66. 

 

 

Fig. 66. Signals of reference and control. 

 

Implementing control in close loop on the converter topology converter V-I in Simulink 

(Fig.67) are obtained the results shown in Fig (68). 
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Fig. 67. V-I power converter in Simulink, close loop. 

 

a) 

 

b) 

Fig. 68. Results in simulation of V-I power converter, a) Current of output response to control, b) 

Voltage output and current of input in the V-I converter. 
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The circuit shown in the Fig. 69, represent the equivalent circuit in the fourth mode, this 

situation analyzes the flow of the current when it returns to the battery. 

 

 

Fig. 69. Equivalent circuit fourth mode. 

 

−𝑉𝑖𝑛(𝑡) = 𝑉𝐿 − 𝑉𝑜 − 𝑉𝐷1     (40) 

−𝑉𝑖𝑛(𝑡) = −𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
− 𝑅𝐿𝐼𝐿(𝑡) − 2(𝑅𝑑𝐼𝐿(𝑡)) − 𝑉𝑜𝑢𝑡   (41) 

−𝑉𝑖𝑛(𝑡) = −𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
− 𝑅𝐿𝐼𝐿(𝑡) − 2(𝑅𝑑𝐼𝐿(𝑡)) − (

𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑖𝐿(𝑡) +

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑉𝑐(𝑡)) (42) 

−𝑉𝑖𝑛(𝑡) = −𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
− 𝑅𝐿𝐼𝐿(𝑡) − 2(𝑅𝑑𝐼𝐿(𝑡)) −

𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑖𝐿(𝑡) −

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐
𝑉𝑐(𝑡)  (43) 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
=

𝑉𝑖𝑛(𝑡)

𝐿
− [

𝑅𝐿+2𝑅𝑑+
𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
] 𝑖𝐿(𝑡) −

𝑅𝐿𝑜𝑎𝑑
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
𝑉𝑐(𝑡)  (44) 

 

In the analysis in the circuit of output are obtained the equations (41)-(42): 

 

 𝐶
𝑑𝑉𝐶(𝑡)

𝑑𝑡
= 𝑉(𝑡) − 𝐼𝐿(𝑡)     (45) 

𝐝𝐕𝐂(𝐭)

𝐝𝐭
=

𝐑𝐋𝐨𝐚𝐝
𝐑𝐋𝐨𝐚𝐝+𝐑𝐜

𝐂
𝐈𝐋(𝐭) −

𝟏
𝐑𝐋𝐨𝐚𝐝+𝐑𝐜

𝐂
𝐕𝐜(𝐭)      (46) 

 

The differential equations of the system in matrix form are expressed in (47) and (48): 

 

[

𝑑𝑖𝐿(𝑡)

𝑑𝑡
𝒅𝑽𝑪(𝒕)

𝒅𝒕

] =

[
 
 
 
  2𝑅𝑑+𝑅𝐿+

𝑅𝐿𝑜𝑎𝑑𝑅𝑐
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
−

𝑅𝐿𝑜𝑎𝑑
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶
−

1
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶 ]
 
 
 
 

[
𝐼𝐿(𝑡)

𝑉𝑐(𝑡)
] + [

1

𝐿

0
] 𝑉𝑖𝑛(𝑡)  (47) 

 

[
𝑉𝑜(𝑡)

𝑑𝑡

𝐼𝑖𝑛(𝑡)
] = [

𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

1 0
] [

𝐼𝑳(𝑡)

𝑉𝑐(𝑡)
] + [

0
0
] 𝑉𝑖𝑛(𝑡)    (48) 
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Solving the system in the same way as the previous analysis and considering the Rd of the 

diodes you get the transfer function (49): 

𝐼𝑜𝑢𝑡(𝑠) =
800𝑠+4.4𝑒6

𝑠2+26460𝑠+1.241𝑒8
     (49) 

3.4.5 Study comparative. 

This section details a comparative study between the bidirectional topologies for CSI 

presented in the previous section. The objective is to be able to analyze the advantages and 

disadvantages of each one in order to select the best performance and operation at high 

operating frequencies. 

 

The Dc-Dc full bridge topology have four transistors Mosfets, the use of this topology allows 

the regeneration of current to the battery, this recirculation of current is constant for this it must 

be active transistors T1 and T4 (Fig. 70). For the two operating situations it is necessary to 

switch at least two transistors, this would increase the power losses and the efficiency of the 

system would be reduced. In addition, a control is required for the operating situation.  

L

Vdc
ireg

T1

T3

T2

T4

PI
IREG

-

+

CSI

PMSM

 

Fig. 70. DC-DC full bridge topology in situation of current of regeneration. 

 

But this topology could work at higher switching frequency ranges through the use of silicon 

carbide devices, the use of this technology would allow to improve the design and size of the 

input coil.   To establish a relation of frequency inductance and to consider it for the design, the 

equation (50) allows us to find an approximate value of it.  

 

𝐿𝑑𝑐 =
∆𝐼∗𝑉𝑑𝑐

2𝜋𝑓𝑠𝑤𝐼𝑑𝑐𝑚𝑎𝑥
                (50) 
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Where ΔI is the ripple current; Vdc is the voltage of input, fsw is the switching frequency and 

Idcmax is the current maxima of output. The Fig 71 shown the relation frequency/inductance for 

values of 0.4 of current ripple, 300V of input and 20 Amperes of current out for a range of 5 

kHz to 100 kHz; while the frequency is increasing the value of the inductance is reduced, this 

allows to design a smaller and more compact coil. 

 

 

Fig. 71. Relation of frequency/ inductance. 

 

The use of impedance networks in topologies of power converters in applications of electric 

traction systems help to overcome the problems and limitations of voltage and current that 

frequently occurs in the VSI and CSI topologies detailed in the previous section. These 

topologies are formed by storage elements of linear energy, capacitors and inductors, in the 

quasi Z and trans Z topologies previously analyzed, the use of SiC devices in the CSI inverters 

(Fig.72) allows to work with a higher frequency of switching, this helps the design and 

reduction of size of the passive elements of the network, which generates a great advantage. 

 

                                                    

a)                                                                                b) 

Fig. 72. Impedance network source in SiC Inverters. a) SiC Quasi Z, b) SiC Trans z. 
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For the design of passive elements is considered the state of continuous in the two modes of 

operations in the expression (51) 

 

𝐷𝑜𝑝 + 𝐷𝑛𝑜𝑝 = 1                                             (51) 

 

Where Dop is the duty radio in first mode and Dnop is the duty radio in second mode. If the 

impedance network is symmetric, we have L2=L3 and C1=C2 the values of currents in the 

devices are the expressions (52),(53),(54) 

 

𝐼𝑜𝑢𝑡 = 𝐼𝐿1 + 𝐼𝐿2 + 𝐼𝐿3                                                        (52) 

 𝐼𝐿2 = 𝐼𝐿3 =
𝐷𝑜𝑝

1−2𝐷𝑜𝑝
𝐼𝐿1                                                                    (53) 

 𝐼𝑜𝑢𝑡 = 𝐼𝐿1 + 𝐼𝐿2 + 𝐼𝐿3 =
1

1−2𝐷𝑜𝑝
𝐼𝐿1                                            (54) 

The capacitance is calculated by (55): 

𝐶1 = 𝐶2 =
(1−𝐷𝑜𝑝)𝐷𝑜𝑝

𝑀

2√2𝐼𝐿𝑟𝑚𝑠

√3∆𝑉𝑐𝑓𝑠
                                                (55) 

Where fs is the switching frequency of switching of power converter and Dop is the duty 

cycle in the continuous mode. For the design and calculation of L1, L2 and L3 the current of 

ripple is about 25-30% of the inductor current and can be calculated by (56) and (57),  

𝐿2 = 𝐿3 =
𝑉𝑖𝑛𝐷𝑜𝑝

30%𝐼𝐿2𝑓𝑠
       (56) 

 

𝐿1 =
𝑉𝑖𝑛𝐷𝑜𝑝

30%𝐼𝐿1𝑓𝑠
                                                                           (57) 

Calculating the values of C1, C2, L1, L2 and L3, using the analysis described above and are 

presented in Table 9. 

 

 

 

 

Table 9 

Values of inductances and capacitors. 

Parameter Value Calculated 
VDC 100 V 

Capacitors C1=C2 165.66uF 

L2=L3 50uH 

L1 51.52uH 

IL1 22 A 

IL2= IL3 21.35A 

Dop 0.33 
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The relation of capacitor and inductance rms current and the Dop is shown in the Fig. 73. 

 

Fig. 73. Relation of Capacitor-Current rms Current vs Dop 

 

In order to obtain the approximate size and volume of the inductors, the core geometry 

approach is utilized [28], for determining the size and volume of the inductors are necessary 

several values and constants that are detailed in Table 10. 

 

Most of these constants are obtained by tables of the coil manufacturers and used for 

calculated the core geometric constant (58): 

𝐾𝑔 =
𝐴𝑐

2𝑊𝑎

𝑀𝐿𝑇
                                                                  (58) 

 

The air gap length lg is the relation (59): 

𝑙𝑔 =
𝜇0𝐼𝑚𝑎𝑥 

𝐵𝑚𝑎𝑥𝐴𝑐
x106                                                                           (59) 

 

The number of turns is calculated by (60): 

𝑛 =
𝐿𝐼𝑚𝑎𝑥

𝐵𝑚𝑎𝑥𝐴𝑐
x104                                                                (60) 

 

Table 10 

Constants and parameter use for analysis of size and volume 

Parameter Quasi Z SiC Trans Z SiC 

Magnetic Core Type T125-26 RM-14 

Frequency of Switching  100 kHz 100 kHz 

Inductance L 50uH 50uH 

MLT Length per turn 6.20 cm 7.20 cm 

Ac Sectional area 1.340cm2 1.880cm2 

Wa core window area 5.808cm2 2.561cm2 

BT Saturation of Core 0.5T 0.5T 

Ku winding fill factor 0.4 0.4 

μ0 Permeability [H/m] 4π x10 -7 4π x10 -7 

ρ wire resistivity 2.3x10-6 2.3x10-6 
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For evaluating the wire size, the wire cross-sectional area Aw is limited by the available core 

window (61): 

𝐴𝑤 =
𝐾𝑢𝑊𝐴

𝑛
                                                                 (61) 

 

With this value select the AWG and actual winding resistance is calculated by (62): 

𝑅 =
𝜌𝑛(𝑀𝐿𝑇)

𝐴𝑤
                                                                      (62) 

 

With the analysis the magnetic core is established, the weight and volume estimation can be 

done with the data provided in the datasheet. The results of analysis for two topologies are 

present in the Table 11. 

 
 

The Fig. 74 shows a comparison between the impedance network source SiC topologies to 

100 kHz and conventional topologies with silicon device to 20 kHz in function of the weight. 

 

Fig. 74 Comparisson of weigh between SiC topologies vs Si topologies. 

 

 

 

Table 11 

Results of analisys of volume and weight. 

Parameter Quasi Z SiC Quasi Z Si Trans Z SiC Trans Z Si 

Core geometric Constant Kg 1.68cm5 5.77 cm5 1.25cm5 4.52 cm5 

Air gap length lg 1.125 cm 2.18 cm 0.401 cm 0.459 cm 

Number of turns 44 174 60 180 

Winding resistance 11.8mΩ 179.2 mΩ 58.4mΩ 45.7 mΩ 

AWG 24 18 22 20 

Volume 0.015 L 0.094L 0.020 L 0.037L 

Weight 0.114 Kg 0.96 Kg 0.148 Kg 0.495 Kg 
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These results show that by increasing the frequencies in this type of topology, a reduction in 

the size of the passive elements of the network is obtained, this improves the design of the 

converters in size and weight, making them more compact. These converters still present 

problems such as discontinuous current input, this generates stress situations in the passive 

components. Besides the fundamental problem is the recovery of energy that is instantaneous 

and in short times and it is not continuous, this implies that the system does not reach a high 

efficiency, for this reason these topologies are considered as emerging within the traction 

systems electric. 

For the analysis of power losses in impedance network, the losses in a chokes or inductors 

are from the following sources, hysteresis loss, copper or winding loss and Eddy current loss. 

The hysteresis loss is due to the materials intrinsic properties due to the energy used to align 

and re-align the magnetic domains. The general form of the losses per unit volume Pm,sp is 

calculated by (63): 

𝑃𝑚 = 𝑘𝑓𝑎(𝐵𝑎𝑐)
𝑑                                                                     (63) 

 

Where k, a and d are constants depending of type of material, for this case is ferrite. Eddy 

current loss from the circulating currents within the magnetic materials due to differential in 

flux voltage inside the cores itself [28].  These losses are high dependent upon the thickness of 

the walls of the cores. The Eddy current loss per unit of volume can be calculated by (64): 

 

𝑃𝐸𝐶 =
𝑑𝑎𝜔2𝐵𝑑

24𝜌𝑐𝑜𝑟𝑒
                                                                      (64) 

The copper or winding loss. This is also dependent on the wire size, switching frequency, 

etc. Skin effect and proximity effect will contribute to this loss. The copper or winding loss per 

unit of volume by (65): 

𝑃𝑐𝑜𝑟𝑒 = 𝐽𝑟𝑚𝑠
2 𝜌𝑐𝑢          (65) 

Where Jrms is the Irms/Ac.  The power losses by conduction and switching in the SiC diode 

are calculated by (66) and (67): 

𝑃𝑐𝑜𝑛𝑑 = 𝐼𝑑_𝑟𝑚𝑠
2 𝑅𝑑 + 𝐼0𝑉𝑑                                                     (66) 

𝑃𝑠𝑤 = 𝑄𝑐 𝑉𝑜𝑓𝑠                                                                (67) 
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Where Io is the output current, Vd and Rd are the equivalent resistance and forward voltage 

drop at given junction temperature of the SiC Schottky diode. Qc is the total Schottky diode 

junction charge at specified voltage, Vo is the output voltage, and fs is the converter switching 

frequency. 

The power losses in Quasi Z impedance network (Fig. 75) with SiC devices are shown in 

the Table 12 and are they are compared with a conventional topology quasi z with Si devices. 

 

 

Fig. 75. Losses in Impedance Network. 

For the power losses in the CSI converter the important rule is that there must always be at 

least one switch forward biased in each half bridge of the converter [27]. The loss of conduction 

Pc of mosfet and diode are expressed as (68) and (69). 

 

𝑃𝑐𝑜𝑛𝑑_𝑚𝑜𝑠𝑓𝑒𝑡 = 𝑅𝑑𝑠(𝑜𝑛)𝐼𝐷𝐶
2       (68) 

𝑃𝑐𝑜𝑛𝑑_𝑑𝑖𝑜𝑑𝑒 = 𝐼𝑑_𝑟𝑚𝑠
2 𝑅𝑑 + 𝐼0𝑉𝑑     (69) 

 

Where the Rds is the Resistencia on of Mosfet SiC, IDC is the current of input in the converter; 

I0 is the output current in the power converter Vd and Rd are the equivalent resistance and 

forward voltage drop at given junction temperature of the SiC Schottky diode; Id_rms is the RMS 

current of the boost diode over one line cycle at given input voltage, output voltage and load 

current. 

 

 

Table 12 

Core Losses in Impedance Network and power losses in diode. 

Parameter Quasi Z SiC (100 kHz) Quasi Z Si (20 kHz) 

Hysteresis Losses 1.151mW/cm3 8.95 mW/cm3 

Eddy current loss 3.89mW/cm3 7.12W/ cm3 

Copper or winding loss 33.09 W/cm3 44.34 W/cm3 

Total Core Losses 33.095041W/cm3 51.46 W/cm3 

Conduction Diode 4.65 W 3.97 W 

Switching Diode 0.826W 2.71 W 
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The Mosfet and diode switching power losses can be calculated with the expression (70): 

𝑃𝑠𝑤 =
6

2𝜋
𝑓𝑠𝑤(𝐸𝑂𝑛 + 𝐸𝑂𝐹𝐹 + 𝐸𝑂𝐹𝐹𝐷)

𝑉𝐷𝐶

𝑖𝑅𝐸𝐹

𝐼𝐷𝐶

𝑉𝑅𝐸𝐹
                                      (70) 

The power losses in the topologies of power converters quasi Z and Trans Z with SiC devices 

in percentages are shown in the Fig 76 and Table 13, also are compared with conventional 

silicon topologies at low switching frequency. 

 

 

Fig. 76 Power Losses CSI power converters. 

 

In this way it is demonstrated that the use of SiC devices reduces the power losses in this 

type of converter topologies. In addition, to general expectation was demonstrated in the design 

of passive devices with the volume and size reduction by the application of SiC devices to high 

frequency of switching.  This optimization would improve the efficiency of the system but the 

main drawback remains the lack of continuous energy recovery that for these types of 

topologies is in short times being an intermittent recharge. 

 

Table 13 

Power Losses in Impedance Network SiC topologies vs Si topologies 

Features and Power 

Losses 

Quasi Z SiC 

100kHz 

Quasi Z Si 

10 kHz 

Trans Z SiC 

10kHz 

Trans Z Si 

10kHz 

Vdc 100 V 100 V 100 V 100 V 

Transistors SCT30N120 IRG7PH30K SCT30N120 IRG7PH30K 

Voltage and Current  1200v, 45A 1200v, 25A 1200v, 45A 1200v, 25A 

Rds 90mΩ  90mΩ  

Operation Junction 

Temperature  
200⁰C 100⁰C 200⁰C 100⁰C 

Thermal Resistance 0.65⁰C/W 0.7 ⁰C/W 0.65⁰C/W 0.7 ⁰C/W 

Turn on Energy Eon 500μJ 850 μJ 500μJ 850 μJ 

Turn off Energy Eoff 350 μJ 750 μJ 350 μJ 750 μJ 

Diodes SCS220KC FFH60UP60S SCS220KC FFH60UP60S 

Conduction Mosfets 31.92w 42.32w 66.72w 119.04w 

Conduction Diodes 21.12w 37.76w 44.76w 66.94w 

Switching Mosfets 12.82w 5.266w 14.308w 8.5w 

Switching Diodes  8.46w 7.62w 11.82w 10.8w 

Total Power Losses 74.32w 92.96w 137.60w 205.28w 
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Regarding the converter V-I topology (voltage-current), which has the operation presented 

in the previous section, it  is formed by 2 switches (Fig. 77), two diodes and a choke coil; the 

switches are turned on when it is necessary to transform the source feedback into current for 

the CSI, this current has to be constant and therefore a current control is necessary. The diodes 

work when energy is recovered, this recovery is constant and continuous this generates a great 

advantage over the other topologies analyzed. 

300V

L1

T2

D1
Iout

Vout

D2

M

V-I CSI

 

Fig. 77 V-I CSI power converter topology. 

 

The V-I topology has certain advantages: 

 This topology works with semiconductor devices, which can be conventional silicon 

or silicon carbide, the use of SiC devices increases the possibility of working at 

higher switching frequency. 

 If working at higher switching frequencies, there is the possibility of reducing the 

size and value of the passive elements in this case of the choke coil. 

 The regeneration of the current is constant and at all times and only depends on the 

conduction of the two diodes. The diodes do not need any type of control they are 

only used to direct the current for the return to the battery. 

 The power losses could be reduced when SiC devices are used, this would improve 

the efficiency of the traction system, besides the power density and temperature is 

improved, the SiC components work at higher current and temperature ranges. 

 The V-I converter works with a frequency independent of the CSI, this can be varied 

according to the needs, this generates an advantage at the time of design since 

increasing the frequency allows to reduce the ripple in the input current to the 

converter (Fig.78) 
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                                                    a)                                                                                   b) 

Fig. 78 Current output ripple a) V-I frequency 80 kHz, b) V-I frequency 10 kHz 

 

The power losses by conduction and switching of this topology with SiC devices are 

presented in Table 14. Also in the Fig 79 shows a comparison of the power losses with 

conventional silicon topologies. For the power losses the equations (68) - (69) and (70) 

presented in the previous analysis are used. 

 

 

Fig. 79. Comparisson of power losses in V-I CSI SiC power converter. 

Table 14 

Power losses in V-I SiC power converter 

Features and Power 

Losses 

V-I  Converter 

SiC 80kHz 

CSI SiC 

100kHz 
V-I Si 5kHz CSI Si 10kHz 

Vdc 300 V 300 V 300 V 300 V 

Transistors SCT3040KL SCT3040KL IXGH40N60 IXGH40N60 

Voltage and Current  1200v, 55A 1200v, 55A 1200v, 45A 1200v, 25A 

Rds 40mΩ 40mΩ   

Diodes GB50SLT12 GB50SLT12 ISL9R3060G ISL9R3060G 

Conduction Mosfets 54.62w 123.6w 55.16w 214.04w 

Conduction Diodes 7.68w 35.34w 12.7w 42.28w 

Switching Mosfets 16.96w 72.1w 14.68w 17.76w 

Switching Diodes  16.88w 38.64 11.6w 27.3w 

Power Losses 96.14w 269.68w 97.14w 301.38w 

Total Power Losses 365.82w 398.52w 
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This topology has many advantages in comparison with others studied, this allows a recovery 

of energy at all times which solves the problems detected in the other topologies and also you 

can apply some control technique of easy implementation, which makes it very interesting for 

application in an electric traction system 

A comparative study of all bidirectional topologies presented, the analysis is presented in 

Table 15 and focuses on the number of active and passive devices, advantages and 

disadvantages detected, this with the purpose of selecting the best performance and most 

efficiency, for its implementation. 

 

By performing a weighting (Fig.80) you can establish the topology with the highest 

performance and to be used, for this situation is the V-I power converter. 

 

Fig. 80. Topology weighting. 

 

 

Table 15 

Comparative Study 

Features Dc-Dc Quasi Z Trans Z V-I 

No. of Mosfets 4 0 0 2 

No. Diodes 0 1 1 2 

No. of Capacitors 0 2 2 0 

No. of Inductors 1 3 3 1 

Energy Recovery Continuous Discontinuous Discontinuous Continuous 

Buck Boost No Yes Yes Yes 

Stress in passive devices No Yes Yes No 

Reduce of Size of passive 
Yes only with SiC 

devices 

Yes only with SiC 

devices 

Yes only with SiC 

devices 

Yes only with 

SiC devices 

Power Losses  High Low  Low  Low 

Control  Complex Complex Very complex Easy 

Efficiency Low Moderate Low High 

High Frequency Yes Yes Yes Yes 
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3.5  Conclusions 

This chapter presents the operation mode of a bidirectional CSI converter topology plus the 

modulation techniques and their implementation. In addition, an analysis of the operation of 

different topologies of bidirectional Dc-Dc converters used in CSI topologies is presented. 

Different topologies are discussed, different analysis of their operation is carried out, 

determining the advantages and disadvantages of each of the selected topologies, especially in 

the recovery of energy to solve the problem of the CSI power converter topology.  

The main contribution is to show the advantages provided by SiC devices in this type of 

converter topologies for applications in electric traction systems with the aim of improving 

efficiency, size and volume. 

Based on all the analysis implemented and the comparisons made, it is concluded that the 

DC-DC V-I bidirectional topology has the highest performance and it allows improving the 

efficiency of the system to be implemented. 
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4. 
Method of optimization for the topologies V-I 

and CSI converters with SiC devices 
 

This chapter is dedicated to the search of a method of optimization for the synchronization 

of the two topologies of converters chosen, i.e., the bidirectional V-I and current source inverter. 

The method seeks to optimize total harmonic distortion THD of the output currents and to 

improve efficiency for future implementation in an electric traction system.  

The method involves an effective selection of the switching frequencies and the phase 

angle for the carrier signals present in each converter topology 

Several issues are discussed such as the operation modes of the topologies analyzed at the 

level of switching frequencies and optimal synchronization, and the phase angles required 

between carrier signals to obtain a reduction in harmonic distortion in the PWM output current.   

 

CONTENTS: 
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4.3  CSI Operation. 

4.4  Results and validation of Method Proposed. 

4.5             Conclusion. 
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4.1 Introduction 

The use of power converters with a current source for electric traction systems has not had 

a high growth within the industry. This is due to problems that have been detected such as 

energy recovery and an ideal current source that have contributed to this topology not being 

consolidated [1]. 

Several studies have been carried out to analyze the possible impact of the topology of 

current source inverter in electric traction systems. Some of these studies present solutions for 

the problems detected [2]-[3]. In general, the majority of investigations implement different 

types of topologies of DC-DC converters for energy recovery, but none of them focuses on the 

search for a suitable adaptation and synchronization between the topology that makes current 

source and the inverter topology CSI. 

On the other hand, investigations have been presented to minimize power losses and 

improve of the efficiency [4]; the topology most analyzed for electric traction systems is the 

voltage source inverter topology (VSI), but everyone use the conventional silicon devices and 

works to low frequency. The results obtained under these features of operation shown that the 

total harmonic distortion (THD) and power losses are high. 

In [5] the authors present the topology of CSI with a power converter V-I that controls the 

stabilization of the current of input and the recovery of the current for the battery of high 

voltage. For the implementation of this topology they are used insulated gate bipolar transistors 

(IGBTs) with reverse-blocking (RB) capability to low frequency of switching, 15 kHz for V-I 

power converter and 7.5 kHz for CSI. The result shows that the THD is high and the technique 

of modulation used is the simple signals of carrier without shift angle. 

To improve the V-I current source inverter topology is necessary analyzed differents 

topics, firstly the frequencies of operations in each power converter, and secondly the phase 

angle between signals carriers of V-I power converter and CSI inverter, to finalize analyzing 

the type of modulation technique of best performance. 

The research present in [6] analyze a control technique to minimize the effects of ripple on 

the output current of the V-I thereby improving the efficiency of the electric motor at high 

speeds controlled by CSI by using conventional silicon devices. The result in simulations shows 

the THD is higher and the frequency of operation of the converters is not detailed. 
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The main objective of this chapter is to find a suitable method that allows to synchronize 

effectively the two topologies of converters to obtain an optimization in the THD of the output 

currents and efficiency of the system. For this, SiC devices are selected that allow increasing 

the frequency of operation of the converters and improve their functionality. The search for the 

optimization method for this topology involves a series of processes and steps that must be 

considered and explained in the following sections of this chapter. 

 

4.2 Method Proposed. 

Various authors indicated that the CSI topology is ideal for operating at high frequency, 

allowing the input inductor converter and the output filter capacitors be reduced in size [7-8]. 

Certain advantages compared to the VSI topology are described in [9-10] as the high voltage 

capability, the auto short-circuits protection, and the sinusoidal output voltage due to the effect 

of the output filter AC capacitors. 

The topology proposed for the implementation of the method uses a V-I converter to 

regulate and control of the current input and three-phase CSI inverter that generates the three-

phase currents of output, the two topologies haven Mosfet and diodes SiC devices (Fig.81). 
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Fig.81. Topology proposed for the analysis. 

 

The configuration allows the bidirectionality of the energy flows. In the first state (Fig.2), 

the SiC Mosfets T1 and T2 are turned on and under this condition; the battery voltage is applied 

to the converter and charges the inductor. In this mode a current Iout and a voltage Vout are 

obtained. Current returns through of CSI and the load by the activation of SiC Mosfet T2, the 

Diodes D1, and D2 are in reverse bias therefore they are not activated Fig.82.  
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Fig.82. Topology proposed for the analysis fist state. 

 

For the activation of T1 and T2 is necessary PI control which is compared with a carrier 

signal that has a certain frequency and as a result the pulses that turn the transistors on and off 

are obtained in order to obtain a regulated current. The error is obtained by comparing a current 

reference signal with the current output signal through a current sensor 

 In the second state (Fig. 83) the Mosfets are turned off and the current flows through the 

diodes D1 and D2, this mode can be implemented in the case when the current converter return 

energy to recharge the high voltage battery Vout=-VBattery. 
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Fig.83. Topology proposed for the analysis state of recovery. 

 

The CSI inverter is switched by a PWM modulator, which generates different signals that 

are responsible for turning on the six SiC transistors of the CSI (Fig.84). The modulator consists 

of a carrier signal that provides the switching frequency of the transistors and three sinusoidal 

modulating signals. 
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Fig.84. CSI inverter modulator PWM. 

These two converter topologies can operate independently, each can take a given frequency 

value and a phase angle of each carrier signal. If an analysis is made with different angle 

conditions and leaving the frequency of the CSI fixed and varying the frequency of the V-I, 

different THD values are obtained for each situation; for example the Fig. 85 shown the results 

for Fvi= 5 kHz to 90 kHz, fcsi=90 kHz and phase angle 0 to 180°.  

 

 

Fig.85. Surface with THD results for Fvi= 5 kHz to 90 kHz, fcsi=90 kHz and phase angle 0 to 180°. 
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If the results are analyzed, it is observed that there are areas where the THD is reduced to 

different frequency values and angles between the carrier signals of each topology. Based on 

these results we can establish that the search for a method that allows obtaining the values of 

operating frequencies of each converter and the angle of lag between the carrier signals with 

the purpose of reducing the THD is necessary to obtain an improvement in the efficiency of the 

analyzed topology.  

The proposed methodology has two parts: the first part consists in implementing a control 

to regulate the output current of the V-I converter. To do that, the carrier signal A is compared 

with the control to regulate the input current to the CSI, the carrier A signal indicates the 

switching frequency for the V-I converter.  

The second part consist in search the best frequency of operation in the V-I converter and 

CSI inverter, also seeks the best angle of phase between the carrier signal A and B for the 

purpose of obtaining a reduction in the THD of current output signals. The carrier B signal is 

used for modulation technique in the CSI inverter to thus synchronize the two topologies. The 

scheme of the method proposed is shown in the Fig.86. 
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Fig.86. Schematic of operation and method proposed.   

 

For the control of current of input in the V-I converter is necessary the implementation on 

PI control. The equations of the system were detailed in the previous chapter, The system of 

the V-I converter is expressed in its differential equations (71) - (72) input and output. 
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𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑉𝑖𝑛(𝑡) − 2𝑅𝑑𝑠𝐼𝐿(𝑡) − 𝑅𝐿𝐼𝐿(𝑡) − 𝑉𝑜𝑢𝑡   (71) 

 

𝑑𝑉𝐶(𝑡)

𝑑𝑡
=

𝑅𝐿𝑜𝑎𝑑
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶
𝐼𝐿(𝑡) −

1
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶
𝑉𝑐(𝑡)                                        (72) 

For resolve the system, we can set the equation of state space model (73), (74): 

 

    𝑿(𝒕) = 𝑨𝑿(𝒕) + 𝑩        (73) 

 

𝒀(𝒕) = 𝑪𝑿(𝒕) + 𝑫         (74) 

 

Expressing the equations in the matrix function, we have: 

 

[

𝑑𝑖𝐿(𝑡)

𝑑𝑡
𝑑𝑉𝐶(𝑡)

𝑑𝑡

] =

[
 
 
 
  2𝑅𝑑𝑠+𝑅𝐿+

𝑅𝐿𝑜𝑎𝑑𝑅𝑐
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
−

𝑅𝐿𝑜𝑎𝑑
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐿
𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶
−

1
𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝐶 ]
 
 
 
 

[
𝐼𝐿(𝑡)

𝑉𝑐(𝑡)
] + [

1

𝐿

0
] 𝑉𝑖𝑛(𝑡)  (75) 

 

[
𝑉𝑜(𝑡)

𝑑𝑡

𝐼𝑖𝑛(𝑡)
] = [

𝑅𝐿𝑜𝑎𝑑𝑅𝑐

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

𝑅𝐿𝑜𝑎𝑑

𝑅𝐿𝑜𝑎𝑑+𝑅𝑐

1 0
] [

𝐼𝑳(𝑡)

𝑉𝑐(𝑡)
] + [

0
0
] 𝑉𝑖𝑛(𝑡)    (76) 

  

The value of the inductance for this case is calculated with the expression (77). The values 

and parameters used for the solution of the system are presented in Table 16. 

 

𝐿 =
𝛥𝑖𝑉𝑖

2𝜋𝑓𝑠𝑤𝐼𝑑𝑐
                                                                    (77) 

 

Where Δi is the ripple current Vdc is the input voltage, fsw is the frequency of switching 

and Idc is the maximum current of input to V-I. 
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The transfer function of the current of output obtained by solving the system is the 

expression (78). 

 

𝐼𝑜𝑢𝑡(𝑠) =
200𝑠+1.092𝑒7

𝑠2+54670𝑠+1.744𝑒7
     (78) 

 

For the tuning of PI control the auto-tuning tool of the PID block of Simulink is used the 

results are shown in the Fig. 87 and Table 17. 

 

 

Fig.87. Tuning of PI control for V-I converter.   

 

 

Table 16  

Parameters for calculated and solve the system. 

Parameter Value 
VDC 100 V 

fsw 35 kHz 

Idc 10 A 

Inductance L 5mH 

Resistencia inductance RL 0.15Ω 

Capacitor C 15uF 

ESR capacitor 0.05 Ω 

Rload 5 Ω 

L load 1.5mH 

Rds Mosfet 40m Ω 
  

  

 

Table 17.  

PI tuning results. 

Parameter Value 
Kp 2.05769580834167 

Ki 696.186624758197 

Rise time 0.00488 s 

Settling time 0.00838 s 

Overshoot 0.0198% 

Peak 1 

Phase margin 89 deg @ 439 rad/s 

  

  

  

 



 Chapter 4: Method of optimization for the topologies of V-I and CSI converters with SiC device 

98               

 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

For the implementation of the control, it is necessary to design the topologies of converters 

in Matlab-Simulink and with the help of the library simscape and simpower system, the 

topologies are built (Fig 88). 

 

Fig.88. Schematic topologies V-I converter and CSI implemented in Simulink. 

 

The block of the controller Pi (Fig.89) consists of capturing the signal of the output current 

of the V-I and comparing it with a reference, the error enters the block PI which has the 

constants kp and ki. The output signal of the PI is then compared with a carrier signal; this 

signal is the triangular shape and serves to supply the frequency for the switching of the 

transistors. As a result of the comparison, a pulsating signal is obtained that is distributed to 

each V-I transistor. 

 

Fig.89. PI control block. 
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The implementation of the output current control of the V-I converter generates the 

simulation results presented in Fig 90. 

Fig.90. Simulations results in V-I converter, a) Current of output with 10 amperes of set point, b). Zoom of 

the current of output, c) Signal carrier of V-I converter, d) Signals of pulses in the output of the control for 

transistors. 

 

Once the control has been implemented, the next stage of the proposed method is to find 

the optimum operating frequencies between the two topologies, to start an analysis we establish 

the three rules expressed in (79). 

 

( ) ( )

( ) ( )

( ) ( )

2

2

s vi s csi

s s vi s csi

s vi s csi

f f

f f f

f f

 


 
 

      (79) 

 

The first step is to select a frequency fs in a random range of 5 kHz to 100 kHz, the first 

rule assigns the same switching frequency value to the V-I converter (fs(vi)) and to the CSI 

inverter (fs(csi)). The second ruler indicates that the value of the switching frequency of the CSI 

is the double that of the V-I converter and third ruler indicates that the switching frequency of 

V-I converter is the double of the CSI (Fig.91). For each rule an analysis of THD is made, the 

result that obtains the lowest THD between the three rules is the condition that is used to 

continue to the next step. 

  

a)                                                                              b) 

  

        c)                       d)             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Schematic of operation and method proposed.   
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Fig.91. Rules and conditions for selection of frequency. 

 

For the development of the second part, with the rule selected and with lower THD, we 

proceed to perform an analysis of the phase angles. This analysis consists of defining the two 

carrier signals of each converter (signal carrier A and B) and offset between two signals carriers 

in a range from 0 ° to 180 ° grades, the carrier signal of the V-I is considered as the reference 

signal (Fig. 92). 

 

 

CSI

V-I
     

CSI V-I

 

Fig 92. Signals carriers to different frequencies and angles. a) Fs (csi) =30 kHz, Fs (v-i) =15 kHz, 

angle=0°; b) Fs(csi)=30 kHz, Fs(v-i)=30 kHz, angle=90°. 
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For each angle shift condition, a THD analysis is performed, if a THD reduction is obtained 

in any of these situations, the method can be validated in that phase shift situation and at the 

switching frequencies previously analyzed (Fig.93). 

 

Best ruler 
and THD

Analisys of 
THD

Lag angle 
between carrier 
signals 0°  a 180°   

If the THD is lower 
in some situation  

the method is valid
 

Fig 93. Second part of method. 

 

At the end of the proposed method it can be stated that the topologies are synchronized in 

a way that the minimum harmonic distortion is obtained. The following would be to perform 

an analysis of power losses and efficiency of the topologies considering the frequency and phase 

angle values obtained previously. 

4.3 CSI Operation. 

The CSI inverter is composed of six SiC power Mosfet and six diodes schottky connected 

in series, a load resistive-inductive and three capacitors of filter. The six transistors are activated 

using a PWM modulation technique for CSI.  The function of the CSI is to direct the current 

coming from the input source in this case of the V-I converter (Fig.94). The use of this topology 

has many advantages such as ruggedness to over current, short circuit protection, better 

efficiency in motor control, better filter design compared to VSI topology, voltages and 

sinusoidal currents which means less voltage dv/dt in the insulation of the machine [11-13]. 
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Fig 94. CSI inverte SiC topology. 

 

For the correct operation of the inverter, although switching is simple in this type of 

converter, the use of a modulation technique is very important. In general, the modulation 

techniques are focused on drives for VSI inverters, , the few works presented on PWM 

modulations for CSI presented in [14-15] indicate that it is a topology with little 

implementation, this is a factor in our favor so it can be contribute a little more about this 

topology. 

The PWM technique implemented for CSI allows the switching of transistors, in a 

converter with a current source it must always be conducting at least two transistors that can be 

from two different branches or from the same branch (short circuit), this condition is allowed 

in the CSI for the protections that it incorporates. If there is an open circuit or none of the 

transistors is activated generates a high voltage that can damage the components or a short 

circuit in the filter capacitors to the output. 

For the operation of the CSI converter of our analysis, we use the PWM technique on-line 

generation of carrier based gating three-phase signal that is studied in [16-17]. This technique 

incorporates a digital control stage for the generation of pulses that is analyzed in the following 

subsection. 
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4.3.1 PWM Technique 

For the implementation of the modulation technique, it is important to consider the 

following conditions: 

 The transistors must operate as long as an open circuit on the Dc-Dc bus is avoided, 

otherwise the output capacitors will be short-circuited or the switches will be damaged. 

 Only two switches will be activated at any time. If there are more than two waveforms 

of the PWM current, they cannot be defined, since the current distribution will depend 

on the nature of the load. This condition is naturally satisfied when using line-by-line 

patterns. 

It is also important to define the modulation index m, which is the relation between the 

peak amplitude A of the sinusoidal wave and the amplitude of the triangular signal amplitude 

Am in the expression (80). 

 

𝑚 =
𝐴

𝐴𝑚
                                                                            (80) 

 

The proposed technique allows the online generation of activation patterns for a three-

phase power source configuration an analog / digital combined circuit is implemented. It 

consists of four stages that are shown in Fig 95. 

1. Basic pulse generator

2. Complementary Pulse 
Generator

3. Distributor of 
complementary pulses

4. Pulse combiner

Carrier Signal

Modulating Signals

Comparators

 

Fig 95. Gating signals generators stages. 
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The first block is called the basic pulse generator and it is responsible for generating the 

basic PWM pulses P1 (Fig.96) and combining and generating a basic sequence P2. This 

sequence does not guarantee the continuity of the current in the Dc-Dc link. 

P1 P2

 

Fig 96. Block basic pulser generator, Basic PWM (P1). 

 

The second block is denominated generator of complementary pulses, this block 

guarantees the continuity of link current Dc-Dc by generating a pulse output to the upper and 

lower circuit breakers in the same branch (short circuit) (Fig.97). These pulses find a route for 

the Dc-Dc bus current, while the short circuit has no harmful effect because the Dc link bus is 

controlled. 

 

Fig 97. Block basic pulser generator. 

 

The third block called the short-circuit pulse distributor guarantees the equitable 

distribution of the load current between the switches. It generates a pulse every 60 ° in half 

cycle for each phase to guarantee an equitable distribution of the current (Fig. 98). The input to 

this block are the modulating signals with an established format. The output are signals that are 

located in the center of the driving range for a given switch. 
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Fig 98. Short-circuit pulse distributor. 

 

      For the implementation, the reference signals are combined, in this case the modulating 

signals are used that use a defined combination and pass through a comparator where these 

signals are combined to finally obtain the pulse described above (Fig.99). 

 

 

Fig 99. Elements of block short-circuit pulse distributor. 

 

The fourth block called combiner of pulses creates a complementary pulse generator signal 

that is distributed equally between the three branches of the converter using the complementary 

signals of the pulse distributor generated in block two (Fig 100). 

 

Fig 100. Complementary pulse generator signal. 
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The results are added to the output of the basic pulse generator (one block) to form the 

appropriate activation signals for switches (Fig 101). 

 

Fig 101. Output signals for gating of switches. 

 

The scheme and circuit of the modulation technique to be implemented for the 

development of the present study is shown in Fig. 102.  
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Fig 102. Schematic on PWM modulation technique for CSI. 
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The modulation technique analyzed and selected for the drive of the CSI inverter is called 

PWM online generator. It complies with all the rules previously described, it is also easy to 

implement in a digital system. The Simulink system model PWM is built in the Fig.103a , with 

the help of the simscape library. The system has the three modulating signals and the carrier 

signal as well as the respective outputs to the switches. The model box contains all the blocks 

previously analyzed as well as the entire digital system composed of logic gates and their 

respective connections (Fig 103b). 

 

a) 

 

b) 

Fig 103. Simulink model system PWM. a) System box control, b) Circuit and schematic description. 

 

To check the Simulink model, different simulations are carried out under several 

parameters that are presented in the Table 18. 
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The figure 104 shows the results for situation A and B, the output PWM currents are 

obtained and it is observed that they comply with the input current condition supplied by the 

V-I converter. 

 

                                                      a)                                                                            e) 

 

                                                         b)                                                                        f) 

 

                                                        c)                                                                         g) 

 

                                                      d)                                                                           h) 

Fig 104. Simulink Result. a) Current input 5A, b),c),d) Output current PWM situation A. e) Current input 

15A , f),g),h)  Output current PWM situation B. 

 

Table 18  

Parameters of simulation for PWM technique. 

Parameter Value 
Situation A  

Current of Input  5 A 

Frequency of switching  15 kHz 

Index modulation  0.8 

Situation B  

Current of Input 15 A 

Frequency of switching 70 kHz 

Index modulation 0.8 
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The currents and the three-phase voltage that are obtained for the situation at the output of 

the converter are shown in Fig. 105. 

 

a)                                                                    c) 

    

b)                                                                                d) 

Fig 105. Currents and voltages in three phases. a) Currents output in situation A, b) Voltage output in 

situation A,c) Currents of output in situation B, d) Output voltages in situation B.  

4.4 Results and validation of Method Proposed. 

This section presents the implementation of the proposed method as well as the results 

obtained in simulation. The first part of the method consists in the regulation of the current 

through the V-I converter, this part was described analytically in the previous section. The main 

objective now is the integration and synchronization of the two converter topologies. This starts 

with the search for the switching frequency for each converter. A random frequency value (fs) 

is assigned to the rules presented in equality (79) to start the analysis.  

 

( ) ( )

( ) ( )

( ) ( )

2

2

s vi s csi

s s vi s csi

s vi s csi

f f

f f f

f f

 


 
 

                                                                        (79) 

 

Where fs(vi) is the frequency of switching of V-I converter and fs(csi) is the frequency of 

switching of  CSI inverter. With this first analysis, we intend to know which of the two 

topologies should work at a higher frequency of switching and obtain a starting point to reach 

our goal, which is the reduction of THD and improve the efficiency of the system. 
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Considering these three conditions, the method follows the scheme shown in Fig. 106. 

Fs=35kHz

In A
If THDout << 

B,C

Start

A=fs(Vi)=fs(CSI)
B=fs(Vi)=2fs(CSI)

C=2fs(Vi)=fs(CSI)

End

No No No

Yes Yes Yes

In A1
If THDout is 

low

No

Yes

No

Yes

No

Yes

Present Final 

Result of THD

End End End

In B
If THDout << 

A,B

End End

In C
If THDout << 

A,B

End

In B1
If THDout is 

low

End

In C1
If THDout is 

low

End

Present Final 

Result of THD 

Present Final 

Result of THD 

A1 Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

Condition A 

is the best

B1 Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

C1 Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

Condition B 

is the best

Condition C 

is the best

 

Fig. 106. Flow chart of method proposed for the three rulers or conditions. 

 

Each rule is assigned a variable, in this case A, B, C, and then we select a frequency value, 

for our case 35 kHz. For each situation a harmonic distortion analysis (THD) is performed, the 

situation that has the lowest THD will be selected to continue with the next process. For each 

situation a harmonic distortion analysis (THD) is performed, the situation that has the lowest 

THD will be selected to continue with the next process. 

The results of this part is presented in the Fig. 107, the value of current of input and 

controlled by the V-I converter is of 10 ampere. 

 

 



Chapter 4: Method of optimization for the topologies of V-I and CSI converters with SiC device 

 

111 
 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

 

a) 

 

b) 

 

c) 

Fig. 107. Results of THD a) THD results for variable A. b) THD results for variable B. c) THD result for 

variable C. 
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The results indicate that the variable B that contains the second rule obtains the best THD 

response (Fig108), the frequency of CSI is the double of V-I power converter. The selection of 

these 2: 1 frequencies could concentrate the harmonics of intermodulation in a specific range 

instead of scattering them throughout the spectrum. From this point on, this condition is used 

to perform the following steps.  

 

Fig. 108. THD comparisson of three variables. 

 

An analysis is made before finalizing this part of the method. The analysis consists in 

verifying the current output of V-I checking the behavior of the converters and how they 

synchronize when they work in this condition fsvi=2fscsi. This allow demonstrate the switching 

pattern that follows to get to obtain a current output in the V-I with less harmonic content. The 

analysis is implemented for fsvi = 35 kHz and fscsi = 70 kHz is shown in the Fig. 109

Ton
Ts1 Ts2 Ts3 ToffT1-T2

T3

T4

T5

T6

T7

T8

Iout  

Fig. 109. Switching pattern signals for V-I - CSI to fsvi = 35 kHz and fscsi =70 kHz.  



Chapter 4: Method of optimization for the topologies of V-I and CSI converters with SiC device 

 

113 
 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

The V-I has two states on and off, each state has a time duration Toff and Ton. The current 

of the CSI is short-circuited when two transistors of one leg are switch in the same time (Ts1), 

in Ts2 two transistors are closed one superior and another lower one of different branches (T3 

and T8) and the current flows through the load connected to the CSI. This happens as long as 

transistors of V-I TA-TB are turned on (Ton). If they are open, the current descends and has a 

slope of fall for the duration of the Toff. Then in time, Ts3 follows the conduction of the current 

but now it does it by the one of T3 that is in the branch one upper part and T6 that belong to the 

leg two lower parts through the load that has the CSI and the sequence is repeated. The result 

of THD in this case is shown in the Fig. 110. 

 

Fig. 110. THD in Dc current out in V-I - CSI to fsvi = 35 kHz and fscsi =70 kHz. 

 

For the other  situation when the frequency of V-I is the double of CSI, the current of CSI 

is short-circuited when two transistors of one leg are switch in the same time (Ts1), here the 

current have a slope positive. In the next time Ts2 the current flows by the turn on of the two 

transistors of two legs differents (T3-T8) and close for the load connect to CSI. This happens as 

long as transistors of V-I TA-TB are turned on (Ton) (Fig. 111). 

T1-T2

T3

T4

T5

T6

T7

T8

Iout

Ton

Ts2Ts1 Toff

 

Fig. 111. Switching pattern signals in V-I -CSI to fsvi = 70 kHz and fScsi = 35 kHz. 
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The result of THD in this situation is shown in the Fig. 112. 

 

Fig. 112. THD in Dc current out in V-I - CSI to fsvi = 70 kHz and fscsi =35 kHz. 

 

In this way, it is explained that the method in the first part seeks the optimum operating 

frequency for each converter in order to reduce the THD of the DC current of the VI output in 

order to reduce its effect on the current output in the CSI and to obtain a better total harmonic 

distortion response. 

The next step of method is to perform a phase analysis between the angles of the carrier 

signals each converter has. The next step is to perform a phase analysis between the angles of 

the carrier signals each converter has. This analysis consists of taking the two carrier signals 

and generating different lag situations between the two signals. The CSI signal moves the V-I 

carrier signal is considered as the reference and the signal from the V-I will be the signal that 

is displaced. The range of tests carried out will be from 0° to 180° degrees, for each value a 

THD result will be obtained. To implement this step in the simulink model implemented, a 

transport delay is added to generalize the phase shift between the two carrier signals (Fig. 113). 

 

 

Fig. 113. Model in Simulink with phase shift between angles. 
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The figure 114 shown differents situations of lag and THD analysis for those situations.  

  

a)                                                                                   b) 

  

c)                                                                     d) 

  

e)                                                                        f) 

 

g)                                                                    h)    

Fig. 114. Some results in simulation with phase shift. a) Situation to 0° between carriers signals. b) THD result 

for 0°. c) Situation to 30° between carriers signals. d) THD result for 30°.e) Situation to 60° between carriers 

signals. f) THD result for 60°.g) ) Situation to 90° between carriers signals. h) THD result for 90°. 
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Performing the respective simulations for each lag situation, we obtain the results shown 

in Table 19. 

 

Analyzing and compare the results obtained, it is observed that the harmonic distortion 

change for each situation. If the flow diagram of the method is followed, all these results are 

compared to reach a conclusion and determine the situation where the harmonic distortion of 

the currents is reduced. The angle where the THD is more reduced is in 100° and the results 

show that there is a THD change when the phase situations between the carrier signals modify 

and are generated in the simulation part (Fig.115); this allows us to continue with the final part 

of the proposed method that consists of the presentation of results. 

 

Fig. 115. Result of THD comparisson with lag of angle of signals carriers between 0° to 180°. 

Table 19 

Result of change phase between signals carriers. 

Angle THD 

0° 2.14% 

10° 2.02% 

20° 2.04% 

30° 2.18% 

40° 2.15% 

50° 2.21% 

60° 2.02% 

70° 2.11% 

80° 2.20% 

90° 2.38% 

100° 1.88% 

110° 1.91% 

120° 1.97% 

130° 2.35% 

140° 2.20% 

150° 2.10% 

160° 2.08% 

170° 2.16% 

180° 2.26% 
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To understand the change of harmonic distortion in each phase change between carrier 

signals, the CSI and V-I activation signal map is analyzed, where a conduction and short-circuit 

sequence is established for each instant of turning on and off in the V-I converter. For the 

situation of 0° degrees of phase shift the signal activation map of CSI and V-I is shown in Figure 

116. 

 

* * * * * * * *c c c c c c c c c c c c c c c c cc c

T3

T4

T5

T6

T7

T8

Iout
 

Fig. 116. Map signal in CSI and V-I in the 0° degrees of phase shift between the signals carrier. 

 

Where C is the situation of conduction and * is the situation of short circuit. The sequence 

for this situation is C*CC*CC|C*CC*CC and it is repeated for all cycles. The map signal for 

the situations of 90° and 120° are shown in the Figure 117, in these situations you get the highest 

and lowest value THD.  

T3

T4

T5

T6

T7

T8

Iout

T1-T2

* * * * * * * *c c c c c c c c c c c c c c c c cc c

 
a) 



 Chapter 4: Method of optimization for the topologies of V-I and CSI converters with SiC device 

118               

 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

T3

T4

T5

T6

T7

T8

Iout

T1-T2

* c c * c c * * c c * c c * *
c c

* c c * *
c c

* c c *

 
b) 

Figure 117. Map signal in CSI and V-I a) Situation for 100° degrees of phase shift b) Situation for 120° 

degrees of phase shift. 

 

In the first situation it is observed that there are two short-circuit states when the V-I 

converter is in the OFF state and two short-circuit states in the ON state. In the other situation 

it is observed that there are now three short-circuit states for each ON and OFF state of the V-

I. From this analysis, it can be concluded that the more short-circuit states that occur in the CSI, 

the THD generates an increase in the currents and when there are fewer short-circuit states, a 

reduction in the THD is obtained. The Table 20 shown the result of THD for each situation of 

angle shift and sequence of conduction-short circuit obtained.  

 

Table 20. 

 Result of THD with angle shift and sequence. 

Angle of shift Values of THD 
Sequence 

ON    |   OFF 

0° 2.10% C*CC*CC|C*CC*CC 

30° 2.22% CC*CC*C|CC*CC*C 

60° 2.39% *CC*CC*|*CC*CC* 

100° 1.88% C*CC*CC|C*CC*CC 

120° 2.25% *CC*CC*|*CC*CC* 

150° 2.13% CC*CC*C|CC*CC*C 

180° 2.15% C*CC*CC|C*CC*CC 

 

For the final part, the results obtained in the simulations with the analyzed values of 

frequency and phase in the development of the present method are shown in Fig.118. 
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a) 

 

 b) 

 

 c) 

Fig. 118. Results in simulation with values of fsvi=35 kHz, fscsi=70 kHz and phase of 100° 

At the conclusion of the validation of the simulation method and when interpreting the 

results, it is established that the application for the analyzed topologies reduces the harmonic 

distortion in the output currents of the converter, for this the phase shift between the carrier 

signals of the analyzed converters is important as well as the switching frequencies and their 

synchronization.  
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Besides its implementation allows to optimize and improve the operation of the CSI 

topology with a V-I converter as a current source, all these results analyzed contribute to the 

search of more efficient CSI topologies for future implementations in electric vehicles. 

4.5 Conclusions. 

This chapter presents the proposal and implementation of a method to reduce harmonic 

distortion in a CSI inverter topology with a V-I converter as current source. The results obtained 

and validated in simulation show that there is a reduction in the THD when the operating 

frequency of the CSI is double that of the V-I and the phases of the carrier signals move a 

certain angle. 

The method first focuses on the selection of the operating frequencies of the converters 

where a condition is defined and then it is passed to the selection of the angle of lag between 

the carriers and with this obtains the results. In each step of the method, the respective analyzes 

and validations are developed. 

In addition to the method the operation of the VI and the CSI inverter with SiC devices is 

analyzed, the use of this technology allowed to increase the switching frequency and improve 

the efficiency of the system discusses. 

 For the operation of the CSI, a PWM modulation technique is used that is known and 

presents by other investigations but adapts properly to the needs required in our study. The 

implementation of the PWM technique requires a digital analog circuit that is not complex and 

for its generation at a higher frequency it is necessary the help of a digital systems such as DSP 

or FPGA. 

The final results show a tendency to reduce the THD with a frequency of 35 kHz in the V-

I, a frequency of the CSI of 70 kHz and each carrier signal phase lag 100°, 1.88% harmonic 

distortion is obtained. These results show that in this type of topology the two topologies must 

work at different frequency ranges to obtain a better response in the output currents.  

The methodology can be applied to other frequency conditions and loads, thus allowing 

reducing as much as possible the THD in a real applications by combining high frequency SiC 

devices with a proper switching frequency selection.  
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5. 
Analysis of Power Losses and Efficiency. 

 

This chapter present the analysis of power losses and efficiency and includes the 

mathematical explanation of the conduction and switching losses equations. The calculations 

of power losses are based on the two topologies of power converters V-I Dc-Dc and CSI inverter 

with silicon carbide devices, in the condition of lower THD analyzed in the previous chapter. 

In addition, an analysis of the losses in the motor is developed considering the optimization 

method previously analyzed.  The analysis includes a study of the losses of power in the 

inductor, estimation of the size of the heatsink and analysis of the efficiency is implemented. 

Finally, the weighted average efficiency of the whole system (power converters + motor) in 

differents conditions of operations is presented. 
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5.1 Introduction 

The power losses calculations of semiconductor SiC devices in power converters is 

important since it allows efficiency forecasting of the topologies of the converters and provides 

a estimation for the thermal management system selection.  Once the SiC devices are selected, 

the losses of conduction and commutation in the inverters can be calculated as well as the 

thermal management, supported by the data provided by the data sheets of the devices and the 

operating conditions of the inverter. 

In several studies, [1-3] different methods are used to calculate power losses in 

semiconductor devices. Generally, for the development of converters, three types of devices 

diodes, Mosfets or IGBTs are used. The most used method for the calculation of the losses 

consists of using the data provide by the datasheet that the manufacturers offer, such as on-state 

resistance and switching energy losses. These data are used in mathematical equations that 

allow calculating the losses of conduction and commutation. 

This chapter presents the power losses of the topologies of converters with silicon carbide 

devices analyzed in the previous chapter. 

 

5.2 Selection of Devices. 

For the design of power converters is import the select of SiC devices and features of 

operation that depending on the current, voltage and power out of operating. For our design, 

the SiC SCT2450KE Mosfet and the SiC sckotty diode C2M0040120D are selected. The 

features of these devices are presented in the Table 22. 

 

 

 

Table 21  

Parameters of SiC devices selected 

SiC Mosfet Device Parameter SiC Diode Sckotty Parameter 

SCT2450KE Model  C3D08065I Model 

Voltaje drain source Vds 1200V Voltage Rectifier VRRM 650 V 

Resistance drain source  Rds  450 mΩ Continuous forward Current  8A 

Current Drain Id 10 A Capacitive Charge Qcc 21nC 

Power dissipation Pd 85 W Capsule TO-220-2 

Capsule  TO-247 Power dissipation  23.2W 

T resistance, junction - case RthJC 1.77 °C/W Package Thermal Resistance 2.8 °C/W 

Manufacture ROHM Manufacture CREE 

Applications 

Solar inverters, -

DC-DC 

converters, Motor 

Drivers 

Applications 

Boost diodes in 

PFC or DC/DC 

stages, DC/AC 

converters 
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After selecting the devices, it is important to describe the types of gate driver control. For 

this, it is necessary to know the different techniques that are currently used and that are 

described below. 

5.2.1 Gate Driver Control. 

For the design of the gate driver control, it is important to consider the type of technique 

to be used. The activation at high frequencies of these devices generate some advantages but 

also can cause some problems as parasitic current and voltage oscillations, electromagnetic 

interference (EMI) [4]-[5], to minimize all these effects have been implemented switching 

techniques of hard and soft- switching. To explain the operation of these two techniques, the 

analysis presented below is considered 

The hard-switching of a SiC mosfet consists in two pulses with variable widths that are 

supplied to the gate driver of transistor SiC. For understand the application of this technique 

may generate the circuit of Fig.119, the first pulse has a larger width which determines the 

current rise in the inductor L, when the current reaches the desired level, the mosfet is turned 

off and the turn off transient waveforms can be observed. At this transient, the load current 

commutates to the Schottky diode from the mosfet channel. During the off state of the mosfet, 

the inductor current remains virtually constant. Then the smaller width pulse is applied to the 

gate driver and the turn on transient waveforms can be observed at the same current and voltage 

level of the turn off transient. When the smaller pulse finishes, the inductor current slowly 

decays in the closed loop it forms with the Schottky diode [5]. 

 

Fig.119. Hard- Switching technique in SiC Mosfet. 

 

The soft-switching use a different circuit for analyze, the operation (Fig.120) a single gate 

pulse is given to the upper device, Q1,  so that the load current, IL increases in the inductor, L, 

to the desired level, Idd. Turning off Q1 will turn on the body diode of Q2 and IL will start to 

decrease because of the reverse voltage across the inductor, L. After a dead time, a second gate 
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pulse, approximately double the width of the first pulse is applied to the lower device, Q2. This 

forces the load current to change direction and reach Idd [6].  

 

Fig.120. Soft- Switching technique in SiC Mosfet. 

 

For the development of our application, a hard-switch technique is used. The next step is 

the description and mathematical analysis of the power losses in the silicon carbide devices 

used in our study. 

5.3 Power Losses in V-I Dc-Dc Power Converter. 

For the analysis of losses in the V-I Dc-Dc converter, two Mosfet SiC transistors and two 

sckotty diodes are considered. The losses by conduction and of commutation to the frequencies 

of operation of the topologies of converters analyzed previously are calculated. 

5.3.1 Mosfet and Diode SiC Conduction Power Losses. 

In the conduction or state On, a Mosfet SiC the switch works as a resistance that varies 

with the temperature of the union Tj and can be represented by the equivalent circuit Fig 121. 

Ids Rds

Vds+ -
 

Fig.121. Equivalent circuit of state On OFF Mosfet SiC. 

 

The power losses in the SiC mosfet is represented by the equation (80). 

2P =Rds Irmscond_MOSFET (ON)
     (80) 



 Chapter 6 General Conclusions  

 

127 
 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

Where Rds is the drain-source resistor of SiC MOSFET, Irms were the effective current 

flowing in the device [7]-[8]. 

The power losses in sckotty SiC diodes could be expressed for (81) 

2
_

P I R I Vrms D DDCcond Diode
       (81) 

Where Irms is the effective current flowing in the device. IDc is the value of the current 

flowing through the diode and VD is the tension of the diode, respectively [7]-[8]. The power 

losses by conduction in the Mosfet and diode SiC are presented in the Table 22. 

 

5.3.2 Mosfet and Diode SiC Switching Power Losses. 

The switching losses in the Mosfet SiC and SiC diode are expressed in (82) and (83). 

 swM sw on offP f E E                                                   (82) 

 swD sw swDP f E       (83) 

Where EON is turn-on switching energy, EOFF is turn-off switching energy in the Mosfet 

SiC and EswD is the energy of switching in the SiC Schottky diode [9]. 

For the calculation of turn-on switching energy and turn-off switching energy it is 

necessary to obtain the time intervals, tfi, tri, tfu and tru, these play an important role in MOSFET 

switching power loss calculation Fig 122. 

Vds

Ids

Vgs

Vth

Td,on tri tfu t(ns)

Vds

Ids

Vgs
Vth

Td,off tru tfi t(ns)
 

a)                                                                    b) 

Fig.122. Mosfet signals of voltage and current in switching mode, a) Turn on situation b) Turn off 

situation. 

Table 22 

Conduction power losses in V-I power converter 

Parameter Power Losses  
Pcond Mosfet SiC 44.98 W 

Pcond Diodes SiC 43.16W 

Total Pcond x 2 devices  88.14 W 
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The Eon, Eoff and EswD in function of the time intervals are calculated by (84), (85) and (86). 

 

 ( ) ( ) _0 2

tri tfutri tfu
E V t I t dt V I Q Von on rms rrDds dc dc

 
    

 
              (84) 

 

( ) ( )
0 _ 2

tru tfitru tfi
E V t I t dt V I

Doff ds dc off rms

 
   

 
                  (85) 

 

1
( ) ( )

0 4

tri tfu
E V t I t dt Q VrrswD d f dc


      (86) 

 

Where VDS is the voltage drain source, ID continuous drain current Vdc is the voltage Dc 

link; The tri, tfu,tru,tfi are time intervals and Qrr is the interval of time for the diodes [8]. All these 

parameters are in the datasheet of the devices.  In this way, we can calculate the switching 

power losses for this type of devices. The parameters for calculations are presented in the Table 

23. 

 

The power losses by switching in the Mosfet and diode SiC are presented in the Table 24. 

 

 

 

The rated power of V-I converter with SiC devices is of 1.5 kW.  

 

 

 

Table 23 

Values of time intervals and parameters of functions 

Parameter Values  
tri 9ns 

tfu 6ns 

tru 14ns 

tfi 15ns 

Qrr 283nC 

Vdc 100V 
Idc 10A 

fsw 35 kHz 
  

  

 

Table 24  

Switching power losses in V-I power converter 

Parameter Power Losses  
Psw Mosfet SiC 22.87 W 

Psw Diodes SiC 0.0296 W 

Total Psw in V-I converter x 2 device 45.799 W 
  

  

 



 Chapter 6 General Conclusions  

 

129 
 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

5.3.3 Inductor Core Losses. 

The losses in the inductors are from the following sources, hysteresis loss, copper or 

winding loss and Eddy current loss.  

The hysteresis loss is due to the materials intrinsic properties due to the energy used to 

align and re-align the magnetic domains. The general form of the losses for hysteresis (Pm) is 

calculated by the expression (87) 

             max. a d

mP k f B       (87) 

Where a, d and k are constants depending of the type of material, for this case is ferrite. 

This form is known as Steinmetz equation. Steinmetz parameters given in most datasheets for 

sinusoidal excitation. 

Eddy current loss from the circulating currents within the magnetic materials due to the 

differential in flux voltage inside the cores itself [10]. These losses is high dependent upon the 

thickness of the walls of the cores. The Eddy current loss per unit of volume can be calculated 

by the expression (88). 

2 2 2

max

6
ec

f B
P






      (88) 

Where η is the Steinmetz hysteresis constant and ρ is the density of the material. The 

copper losses are an undesirable transfer of energy, as are core losses, which result from induced 

currents in adjacent components. The copper losses in the inductor are calculated by the 

expression (89) 

      

2

copper dc coilP i R
     (89) 

The total power losses in the inductor are obtained by the expression (90) and are shown 

in the Table 25. 

inductor m sc copperP P P P       (90) 

 

 

 

Table 25   

Inductor core losses 

Parameter Value  
Hysteresis losses  0.0517 W/cm3 

Eddy current losses 0.2738 W/cm3 

Copper losses 29.93 W/cm3 

Total of losses in the inductor 30.255 W/cm3 
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The total losses in the V-I power converter including the SiC devices and the passive 

elements is detailed in the expression (91). The total power loss obtained is 164,194W. 

 

TotalV i Tcond Tsw TinductorP P P P        (91) 

5.4 Power losses in CSI. 

In the case of the CSI converter, the important rule for the calculation of losses is that there 

is at least one device turned on in the converter [8]. The expressions that are implemented to 

calculate the losses for switching and conduction are as in the previous section. Now it is 

considered in the topology a Sckotty SiC diode connected in series with each SiC MOSFET, 

two for each branch that ultimately increases the losses. 

The results of power losses in CSI converter by switching and conduction to 70 kHz and 

100° of phase shift in PWM carriers are presented in Table 26. The rated power of CSI converter 

is of 1.5 kW. 

 

The results of these losses expressed in percentages for each one of the topologies of 

converters previously analyzed are presented in Fig 123. 

 

a) 

Table 26 

Conduction and switching power losses in CSI power converter with SiC devices 

Parameter Power Losses  
Pcond Mosfet SiC 134.94 W 

Pcond Diodes SiC 129.48 W 

Psw Mosfet SiC 26.88 W 

Psw Diodes SiC 1.45 W 

Total of power losses in CSI 292.75 W 
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b) 

Fig.123. Power losses expressed in percentages, a) V-I topology b) CSI topology. 

 

5.5 Power losses in Electric Motor. 

This section presents the analisys of power losses in the electric motor considering four 

situations of operation previously analyzed, 0 degrees, 60 degrees, 90 degrees (angle with lower 

THD), 120 degrees of phase shift in PWM carriers for V-I and CSI converters. This analysis 

aims to perform a comparative study and show that the reduction of harmonics allows 

improving the efficiency of the electric motor. 

In the PMSM are two main electrical losses, the core losses in the iron core and the copper 

losses in the winding. The fundamental iron loss consists of hysteresis loss and eddy current 

loss and copper losses, which are caused by the stator coil resistance Rs [11]-[12]. The copper 

losses are the losses due to the heat (Joule effect) that produces the current when it is circulated 

by a conductor and can be expressed by (92). In the analysis, it is considered the data of a 

PMSM engine implemented in another previous study [13-14]. 

2 2

,

3

CU s n n ac

h

P mR I I R




        (92) 

Where m is the number of phases, Rs is the resistance and I is the DC current, In is the rms 

of the nth current harmonic. Rn,ac is the value of the ohmic for the nth harmonic that is 

determinate by the expression (93).   

 , . ,n ac dc n se n peR R K K        (93) 

Where Knse is the resistance gain cause for the effect skin and the Kn,pe is the resistance gain 

caused for the proximity effect. The iron losses is calculated in bases to expression (94). 
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2 22

3
d ce

FEo d ce

o o o

B Bf
P kP M Miron f B B

    
                    

    (94) 

Where K is the coefficient of additional losses in iron, PFE0, for magnetic sheet M250-

50A, fo is the frequency, Bo is the maximum induction value, Bd maximum induction in the 

teeth, Bce is the maximum induction in the stator crown, Md is mass of the teeth and Mce is the 

mass of stator crown. The result of power losses in the PMSM for the four situations are show 

in the Fig. 124. 

 

 

Fig.124. Power Losses in PMSM with shift-angle in 0°, 60°, 100° and 120° in the power converters. 

5.6 Analysis of Efficiency. 

This section presented an analysis of efficiency for each topology of power converter 

previously analyzed. The goal is validate the method proposed and obtained a improve in the 

efficiency for each topology and electric motor. Then a whole system efficiency study is 

established (power converters + motor), this to establish a more advanced vision on the 

advantage of using silicon carbide devices in the analyzed topologies and electric traction 

systems. Finally, a comparison between converters analyzed with all-SiC technology and 

converters with hybrid technology is realized to verify the impact and benefices of the SiC 

devices in the power converters efficiency. 

The Efficiency for each topology is calculated with the expression (94).  

 

Pout

P Pout Losses

 


     (94) 
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The efficiency results for the V-I SiC topology in differents power of output is presented 

in the Fig. 125. 

 

 

Fig.125. Results of efficiency in V-I power converter with SiC devices. 

 

 

The efficiency results for the CSI SiC topology in differents power of output is presented 

in the Fig. 126. 

 

Fig.126. Results of efficiency in CSI power converter with SiC devices. 
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The representation of the efficiency of the motor for the situations of shift-phase angles 

(0°, 60°, 100° and 120°) are shown in Fig. 127 are compared for different power outputs. 

 

Fig.127. Efficiency in electric motor for shift angle in 0°, 60°, 90° and 120° in the power converters. 

 

The weighted average efficiency of the whole system (power converters + motor) in the 

situations of 0° and 100° is shown in Table 27 and Fig. 128. 

 

Table 27  

Average efficiency of the whole system 

System Efficiency in 0° Efficiency in 90° Power Out 

V-I  88.25% 90.1% 1.5 kW 

CSI 93.8% 94.22% 1.5 kW 

Motor 91.2% 91.38% 1.5 kW 

Average 91.08% 92% 1.5 kW 
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Fig.128. Efficiency average in all system for 0° and 100°. 

The study allows demonstrating that using the proposed method an improvement in the 

efficiency of the systems analyzed is obtained.  Application of the proposed modulation patters 

produces a gain in efficiency that is not highly significant (0.91%), but it is good enough to 

reduce the thermal stress of the power converters, the thermal behavior of the whole system, as 

well as the improvement of the wave shape of motor currents. 

 

5.7 Heatsink Estimation. 

The use of a cooling system or heat sink is important for the operation of converter 

topologies. Using a simple thermal model for SiC devices, containing a junction and a case 

before the heatsink and assuming all devices are placed on the same plate, a maximum thermal 

resistance for the heatsink can be estimated following the method described in [15]. The 

maximum allowable thermal resistance for the heatsink is calculated for the expression (24). 

 

,

1

-h a

thhs n

d i

i

T T
R

P




        (24) 

 

Where the Rthhs is the heatsink temperature, Ta is the temperature ambient and the Pd is the 

power dissipated by the component. Applying this method gives an estimate of the heatsink of 

0.68 °C/W for the V-I converter and 0.22 °C/W for the CSI inverter with an operating 

temperature of 142°C and 25°C of the temperature ambient.  
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5.6 Conclusions. 

This chapter describes the calculation of the power losses in the topologies of V-I and CSI 

converters with SiC devices, using the THD reduction method with the shift-angle phase for 

the synchronization of the two topologies. 

The results obtained show that the use of the proposed method allows to improve the 

efficiency in the whole electric traction system (power converters + electric motor) and reduces 

the harmonic distortion in the output currents when working with the appropriate phase angle. 

The reduction of THD in the currents allows reducing the losses in the electric motor and 

thereby improving the operation within an electric traction system. 

The use of the CSI topology with SiC devices and with higher switching frequency allows 

improving the design of the size of the passive elements in this case the input coil; by this way 

more compact systems with higher power density can be obtained. 

In addition, an improvement in the efficiency is observed by varying the phase angle 

between PWM carriers of both power converters switching modulators, V-I and CSI. According 

to the comparative analysis, the results shown that the efficiency increases from 91.08% to 92% 

by changing the phase angle from 0º degrees to 90º degrees of shift angle.  

The cooling system of the power converters is crucial for its optimal performance and 

operation. For a proper cooling, heatsink estimation is very important for the dissipation of 

temperature, because prevents excessive heating of the SiC devices and improves the heat 

dissipation of the system. The methodology here presented for the calculations of power losses 

helps for the better design of the cooling system.  

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 6 General Conclusions  

 

137 
 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

5.7 References. 

[1] X. She, A. Q. Huang, Ó. Lucía and B. Ozpineci, "Review of Silicon Carbide Power Devices 

and Their Applications," in IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 

8193-8205, Oct. 2017. 

 

[2] A. Merkert, J. Müller and A. Mertens, "Component design and implementation of a 60 kW 

full SiC traction inverter with boost converter," 2016 IEEE Energy Conversion Congress and 

Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-8. 

 

[3] Y. Attia, A. Abdelrahman, M. Hamouda and M. Youssef, "SiC devices performance 

overview in EV DC/DC converter: A case study in a Nissan Leaf," 2016 IEEE Transportation 

Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, 2016, pp. 214-

219. 

 

[4] J. Fabre, P. Ladoux, and M. Piton, “Characterization and Implementation of Dual-SiC 

MOSFET Modules for future use in Traction Converters,” IEEE Transactions on Power 

Electronics,vol. 30, no. 8, pp. 4079-4090, 2015. 

 

[5] M. R. Ahmed, R. Todd and A. J. Forsyth, "Analysis of SiC MOSFETs under hard and soft-

switching," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 

2015, pp.2231-2238. doi: 10.1109/ECCE.2015.7309974 

 

[6] W. Jun, Z. Tiefu, L. Jun et al., “Characterization, Modeling, and Application of 10-kV SiC 

MOSFET,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1798-1806, 2008. 

 

[7] F. Shang, A. P. Arribas and M. Krishnamurthy, "A comprehensive evaluation of SiC devices 

in traction applications," 2014 IEEE Transportation Electrification Conference and Expo 

(ITEC), Dearborn, MI, 2014, pp. 1-5. 

 

[8] M. H. Bierhoff and F. W. Fuchs, "Semiconductor losses in voltage source and current source 

IGBT converters based on analytical derivation," 2004 IEEE 35th Annual Power Electronics 

Specialists Conference (IEEE Cat. No.04CH37551), 2004, pp. 2836-2842 Vol.4. 

 

[9] M. Mohammadi, J. S. Moghani and J. Milimonfared, "A Novel Dual Switching Frequency 

Modulation for Z-Source and Quasi-Z-Source Inverters," in IEEE Transactions on Industrial 

Electronics, vol. 65, no. 6, pp. 5167-5176, June 2018. 

 

[10] Co Huynh Liping Zheng Dipjyoti Acharya Losses in High Speed Permanent Magnet 

Machines Used in Microturbine Applications Journal of Engineering for Gas Turbines and 

Power 2009. 

 

[11] Q. Guo, C. Zhang, L. Li, J. Zhang, J. Liu and T. Wang, "Efficiency Optimization Control 

of Permanent-Magnet Synchronous Machines for Electric Vehicle Traction Systems," 2016 

IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, 2016, pp. 1-5. 

 

[12] W. Hassan and Bingsen Wang, "Efficiency optimization of PMSM based drive system," 

Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin, 

2012, pp. 1027-1033. 

 



 Chapter 5 Analysis of Power Losses and Efficiency 

138               

 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

[13] Harry Nick Aguilar Gamarra Diseño de un motor síncrono con imanes de ferritas 2014. 

 

[14] Co Huynh Liping Zheng Dipjyoti Acharya Losses in High Speed Permanent Magnet 

Machines Used in Microturbine Applications Journal of Engineering for Gas Turbines and 

Power 2009. 

 

[15] A. Antonopoulos, H. Bangtsson, M. Alakula and S. Manias, "Introducing a silicon carbide 

inverter for hybrid electric vehicles," 2008 IEEE Power Electronics Specialists Conference, 

Rhodes, 2008, pp. 1321-1325. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 6 General Conclusions  

 

139 
 

Optimization of a CSI Inverter with DC/DC Elevator with Silicon Carbide Devices, for 

Application in Electric Traction Systems 

 

6. 
General Conclusions 

 

The main contributions of this thesis research, as well as the general conclusion, are 

presented in this chapter. 

 

CONTENTS: 

6.1 General Conclusions. 
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6.1 General Conclusions. 

The topologies of converters with silicon carbide devices for application in traction 

systems for electric vehicles are becoming interesting for researchers and manufacturers. The 

improvement in efficiency and size are important factors that contribute to the search for more 

compact and more power-density traction systems to meet the needs of electric vehicle brands. 

 

The main goal of this thesis has been to improve the efficiency of a topology with a current 

source inverter CSI and an elevator DC-DC type VI with the use of silicon carbide devices y 

the implementation of a method to couple the two topologies according to the frequency and 

shift-phase angle between carrier signals that generate the modulations to reduce the harmonic 

content in the output currents of the inverter. 

 

The first contribution of this study is to propose a simple method for the coupling of two 

converter topologies with SiC devices and with different operating frequencies. The proposed 

method consists in first analyzing different frequency conditions for each converter. With this 

a harmonic distortion response (THD) is obtained for each condition. The frequency ratio with 

the lowest THD is the one selected for the second part, which consists in shifting the angle 

between the carrier signals between a ranges of 0° to 180° in order to see if there is a THD 

reduction with the previously selected frequency ratio.  

 

The proposed method includes the implementation of a PI controller for the input of current 

to the CSI. The topologies of converters are simulated with the proposed method and it is 

observed that in the condition of frequency 2: 1 and with a phase angle of 100° the THD is 

reduced. As a result of the implementation of the method, the losses are reduced by analyzing 

in conjunction with the electric motor, which improves the efficiency of the entire system. 

 

The second contribution of the document is to carry out an analysis of the topologies and 

their behavior during the coupling with the frequency values used 2: 1 where it is verified 

according to the map of activation signals of the converters that the fewer states of short circuits 

present a lower THD reduction is obtained. With this analysis it is established that the most 

optimal selection of frequencies to obtain a better efficiency in converter topologies is that the 

V-I works with a frequency lower than the CSI in this case with a ratio of 1: 2 
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The third contribution of this study is to evaluate the efficiency of the topologies of the 

converters, the analysis includes the losses of power of commutation and conduction of the 

semiconductor devices, passive and of the electric motor, where it is shown that the biggest 

losses are concentrated in the CSI and the electric motor. The efficiency in the electric motor 

considering different conditions of shift -phase of the carrier signals and power output indicates 

that the most optimal for its operation is the one that has been selected within the proposed 

method (100° grades). After an efficiency analysis of the whole system is performed (electric 

motor + converters) where it is observed that the efficiency is of 92% using the conditions of 

the proposed method compared with the 91% of efficiency obtained when method is not used. 

 

The final conclusion of this study can be written as: 

 

The use of SiC devices in topologies of CSI converters with DC-DC type VI and the 

implementation of a coupling method considering the values of switching frequency of the 

devices and lag angles of the carrier signals of the modulations used for each converter, they 

allow to improve the efficiency of the converters and the electric motor, obtaining as a result a 

more efficient and compact traction system. 
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7. 
Thesis results dissemination 

 

The direct contributions resulting from this Thesis work, in international journals as wells 

as in specialized conferences, are collected in this Chapter.  

 

CONTENTS: 

7.1               Publications: Thesis contributions. 
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