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Abstract 

Data on individual subjects provide a rich amount of information that can inform statis-

tical and policy analysis in a meaningful way. However, due to the legal obligations 

surrounding such data, this wealth of information is often not fully exploited in order to 

protect the confidentiality of respondents. While statistical disclosure control research 

has historically provided the analytical apparatus through which data on individuals can 

be disseminated in such a way so as to preserve both privacy and information way, in 

recent years the literature has burgeoned in many directions, leading to a lack of a com-

prehensive view on best practices. Against this backdrop, this thesis focuses on estab-

lishing some common grounds for individual data anonymization by developing some 

new universal tools. We begin by proposing some universal measures of disclosure risk 

and information loss that can be computed in a simple fashion and used for the evalua-

tion of any anonymization method, independently of the context in which they operate. 

Building on these measures, we then propose a new approach to data anonymization by 

formulating a general cipher based on permutation keys, which appears to be equivalent 

to a general form of rank swapping. Beyond the existing methods that this cipher can 

universally reproduce, it also offers a new, more efficient way to practice data anony-

mization, based on the ex-ante exploration of different permutation structures. Finally, 

we extend these new insights to two areas, longitudinal and synthetic data. For the for-

mer, we develop a specific anonymization framework, while for the latter it is estab-

lished that the distinction made in the literature between non-synthetic and synthetic 

data is in fact artificial. 
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Resum 

Les dades sobre subjectes individuals proporcionen una gran quantitat d'informació que 

pot ser molt útil per a l'anàlisi estadística i per a la planificació. Tanmateix, a causa de 

les obligacions legals que envolten aquesta mena de dades, sovint aquesta riquesa 

d'informació no s'explota totalment per tal de protegir la confidencialitat dels 

enquestats. Tot i que la recerca sobre el control de la revelació estadística històricament 

ha proporcionat l'aparell analític a través del qual es poden difondre dades útils sobre 

persones de manera compatible amb llur privadesa, en els darrers anys la literatura ha 

anat florint en moltes direccions, cosa que ha dut a una manca de visió de conjunt sobre 

les millors pràctiques. En aquest context, aquesta tesi se centra a establir un terreny 

comú per a l'anonimització de dades individuals desenvolupant algunes noves eines 

universals. Començarem proposant unes mesures universals de risc de divulgació i de 

pèrdua d'informació que poden calcular-se de manera senzilla i fer-se servir per avaluar 

qualsevol mètode d'anonimització, independentment del context en el qual operi. Partint 

d'aquestes mesures, proposem una nova aproximació a l'anonimització de dades mitjan-

çant la formulació d'un xifratge general basat en claus de permutació, que resulta equi-

valent a una forma general d'intercanvi de rangs. Més enllà de reproduir mètodes exis-

tents de forma universal, aquest xifratge també ofereix una manera nova i més eficient 

de practicar l'anonimització de dades, basada en l'exploració ex ante de diferents estruc-

tures de permutació. Finalment, ampliem aquestes noves idees a dues àrees, dades lon-

gitudinals i dades sintètiques. Per a les primeres, desenvolupem un marc específic 

d'anonimització, mentre que per a les segones constatem que la distinció feta a la litera-

tura entre dades no sintètiques i sintètiques és de fet artificial. 
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Resumen 

Los datos sobre individuos proporcionan una gran cantidad de información que puede 

guiar el análisis estadístico y de políticas de una manera significativa. Sin embargo, de-

bido a las obligaciones legales que rodean dichos datos, esta gran cantidad de informa-

ción a menudo no se explota completamente para proteger la confidencialidad de los 

encuestados. Si bien la investigacion en el campo del control de la revelación estadística 

ha proporcionado históricamente el aparato analítico a través del cual los datos sobre 

individuos pueden diseminarse de tal manera que se preserve la privacidad y la infor-

mación, en los últimos años, la literatura ha florecido en muchas direcciones, dando 

lugar a una falta de visión completa de las mejores prácticas. En este contexto, esta tesis 

se centra en establecer algunas bases comunes para la anonimización de datos indivi-

duales mediante el desarrollo de algunas herramientas universales nuevas. Comenzamos 

proponiendo algunas medidas universales de riesgo de divulgación y pérdida de infor-

mación, que pueden computarse de manera simple y utilizarse para la evaluación de 

cualquier método de anonimización, independientemente del contexto en el que operan. 

Sobre la base de estas medidas, proponemos un nuevo enfoque para la anonimización de 

datos mediante la formulación de un cifrado general basado en claves de permutación, 

que seria equivalente a una forma general de intercambio de rango. Más allá de los mé-

todos existentes, que este cifrado puede reproducir universalmente, también ofrece una 

forma nueva y más eficiente de anonimizar los datos, basada en la exploración ex ante 

de diferentes estructuras de permutación. Finalmente, ampliamos estos nuevos conoci-

mientos a dos áreas, datos longitudinales y sintéticos. Para el primero, desarrollamos un 

marco de anonimización específico, mientras que para el segundo se establece que la 

distinción hecha en la literatura entre datos sintéticos y no sintéticos es de hecho artifi-

cial. 
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1 INTRODUCTION 

1.1 Motivation 

 Data on individual subjects are increasingly gathered and exchanged. By their 

nature, they provide a rich amount of information that can inform statistical and policy 

analysis in a meaningful way. However, due to the legal obligations surrounding these 

data, this wealth of information is often not fully exploited in order to protect the confi-

dentiality of respondents and to avoid privacy threats. In fact, such requirements shape 

the dissemination policy of individual data at national and international levels. The issue 

is how to ensure a sufficient level of data protection to meet releasers’ concerns in terms 

of legal and ethical requirements, while still offering users a reasonable level of infor-

mation. Over the last decade the role of micro data has changed from being the preserve 

of National Statistical Offices and government departments to being a vital tool for a 

wide range of analysts trying to understand both social and economic phenomena. This 

has raised a range of questions and concerns about the privacy/information trade-off and 

the quest for best practices that can be both useful to users but also respectful of re-

spondents’ privacy. 
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 Statistical disclosure control (SDC) research has a rich history of addressing 

those issues by providing the analytical apparatus through which the priva-

cy/information trade-off can be assessed and implemented. SDC consists in the set of 

tools that can enhance the level of confidentiality of any data while preserving to a less-

er or greater extent its level of information. Over the years, the literature has burgeoned 

in many directions. In particular, techniques applicable to micro data, which are the fo-

cus of this thesis, offer a wide variety of tools to protect the confidentiality of respond-

ents while maximizing the information content of the data released, for the benefits of 

society at large. Such diversity is undoubtedly useful but has several major drawbacks. 

 First, there is a clear lack of agreement and clarity on the appropriate choice of 

tools in a given context, and as a consequence, no comprehensive view (or at best an 

incomplete one) of the relative performances of the techniques available. The practical 

scope of current micro data protection methods is not fully exploited precisely because 

there is no overarching framework: all methods generally carry their own analytical en-

vironment, underlying approaches and definitions of privacy and information. 

 As a consequence, beyond the choice of method is a second issue that the 

cross-evaluation of current micro data masking methods is also a challenging task, for at 

least two reasons. The first is analytical: the evaluation of utility and privacy for each 

method is metric and data-dependent. As a result, there is no common language for 

comparing different mechanisms, all with potentially varying parametrizations applied 

on the same data set or different data sets. Moreover, there is a variety of definitions of 

privacy and information loss, and picking one is often related to the context in which it 

is used and can result from an arbitrary choice. The fact that all evaluations can only be 

practical in nature and context-specific is clearly problematic, not least because this pre-

cludes a sound and simple communication on data anonymization as well as a wider 

democratization of the field that could allow for more data to be disseminated.  

 Finally, a third issue is related to the variety of parties involved in micro data 

exchange. Indeed, it is natural to suppose that across parties, different sensitivities to 
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privacy and information will prevail. Some may place greater emphasis on the preserva-

tion of privacy, e.g. typically the data releasers, while others may be more concerned 

with the extent to which information is preserved, e.g. typically the researchers. These 

sensitivities can additionally differ within groups, e.g. one researcher may have a low 

sensitivity to information loss and consider a release better than no release at all, while 

another could simply disregard the data above a certain threshold of loss set according 

to his intended use of the data. 

 It is based on these considerations that this thesis will focus on establishing 

some common grounds for individual data anonymization by developing a new, univer-

sal approach relying on permutations. In fact, permutations happen to be the essential 

principle upon which individual data anonymization can be based. This principle allows 

the proposal of a universal analytical environment that can be used to evaluate the in-

formation/privacy outcomes of any anonymization method applied on any type of data 

in a universal way. But such an analytical environment can also be used to conduct 

anonymization directly under the form of a cipher. This cipher can also replicate any 

methods currently available in the literature, whatever the original technical apparatus 

of these methods and independently of the nature of the data to which these methods are 

applied. Finally, this new environment offers the possibility to capture, in a continuous 

and selectable way, the variety of views across all agents interacting in an individual 

data exchange 

1.2 Structure and contributions of this thesis 

 This thesis and its contributions are organized as follows: 

 Chapter 2 presents a state of the art on individual data protection and 

transaction, notably the broad approaches available in the SDC literature. It also 

outlines the main commonalities and differences with cryptography. A 

description of the recent functional equivalence in anonymization for ex-post 
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evaluation, as established by the permutation-based paradigm and upon which 

this thesis relies, is also proposed. 

 Chapter 3 presents a context-oriented, specific contribution to the protection of 

indvidual data, with the goal of preserving positive skewness. While many 

economic variables are distributed according to a heavy tailed, asymmetric form 

that makes the normality assumption unsuitable, several popular perturbation 

techniques use this assumption nevertheless. The multiplicative masking method 

proposed, based on lognormal distributions, allows for the generation of 

perturbed data that are similar to the original data to a degree that is selected by 

the user, depending on his requirements regarding the protection of individuals 

away from the mean. This noise-based method is classical in its approach. But in 

addition to having its own potential range of application, it serves to illustrate 

that whatever the specific context upon which anonymization is meant to 

operate, and the context of this method is rather specific, anonymization all boils 

down to permutations. 

 Chapter 4 explores the first consequences of the permutation-based paradigm in 

anonymization. It proposes some universal measures of disclosure risk and 

information loss that can be computed in a simple fashion and used for the 

evaluation of any anonymization method, independently of the context under 

which they operate. In particular, they exhibit distributional independence. The 

construction of these measures allows for the notions of dominance in disclosure 

risk and information loss to be introduced in data anonymization, which 

formalise the fact that different parties involved in micro data release can have 

different sensitivities to privacy and information, and can inform as to which 

methods can be used to reach a consensus among all parties involved. These two 

notions of dominance can in fact identify which methods, under any tastes for 

privacy and information, will always perform better than others. A graphical 

representation of disclosure risk and information loss is also introduced. 
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 Chapter 5 develops a new approach to data anonymization by proposing a 

general cipher based on permutation keys, which appears to be equivalent to a 

general form of rank swapping. Beyond the existing methods that this cipher can 

universally reproduce, it also offers a new way to practice data anonymization 

based on the exploration of different permutation structures. This cipher can be 

used to perform anonymization in an ex-ante way instead of being engaged in 

several ex-post evaluations and iterations to reach the protection and information 

properties sought after. The subsequent study of the cipher’s properties 

additionally reveals certain new insights as to the nature of the task of 

anonymization taken at a general level of functioning. Finally, to make this 

cipher operational, permutation menus in data anonymization are introduced, 

where the measures developed in Chapter 4 are used ex-ante for the calibration 

of permutation keys. To justify the relevance of their use in an ex-ante context, a 

theoretical characterization of these measures is also proposed. 

 Chapter 6 tackles the specific issue of longitudinal data anonymization. Despite 

the fact that the SDC literature offers a wide variety of tools suited to different 

contexts and data types, there have been very few attempts to deal with the 

challenges posed by longitudinal data. This Chapter develops a general 

framework and some associated metrics of disclosure risk and information loss, 

tailored to the specific challenges posed by longitudinal data anonymization. To 

do so, it builds on a permutation approach where the effect of time on time-

variant attributes can be seen as an anonymization method that can be captured 

by temporal permutations. This approach allows the analytical alignment of the 

specificities of longitudinal data with the cipher developed in Chapter 5. 

 Using the insights of the preceeding chapters, Chapter 7 aims at challenging the 

information and privacy guarantees of synthetic data. It shows that in fact any 

synthetic data set can always be expressed as a permutation of the original data, 

in a way similar to non-synthetic SDC techniques. This result offers applications 
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for the disclosure risk assessment of synthetic data but also beyond. For one 

thing, it is always possible to release synthetic data sets with the same privacy 

properties but with an improved level of information, because the marginal 

distributions can always  be preserved without increasing risk. On the privacy 

front, it leads to the consequence that the distinction made in the literature 

between non-synthetic and synthetic data is not so clear-cut. The subsequent 

simulation of an attack on synthetic data shows that the practice of releasing 

several synthetic data sets for a single original data set entails privacy issues that 

do not arise in non-synthetic anonymization (where typically only one 

anonymized data set is released). Indeed, the multiple releases can lead to better 

privacy guarantees, by confusing the attacker, or instead facilitate attribute 

disclosure by narrowing the range of the possible values that the attacker is 

trying to retrieve. 

 Finally, Chapter 8 gathers a summary of the results presented in this thesis and 

the list of publications supporting them. Some guidelines for future research are 

also proposed. 
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2 STATE OF THE ART 

2.1 Introduction 

 In this Chapter we review the general approach to individual data transaction 

and the basics of SDC methods, as well as their commonalities and differences with 

cryptography. We then turn to the description of the recent functional equivalence in 

anonymization for ex-post evaluation established by the permutation paradigm, upon 

which the bulk of this thesis is based. 

2.2 Transaction on individual data 

 A general and standard way of describing a transaction of individual data is to 

consider two types of agents: a data releaser, that supplies individual data, e.g. public 

administrations, enterprises, and data users, who demand individual data, e.g. research-

ers, public administrations, enterprises. The former typically gathers, under some suita-

ble forms, a micro data set that is data collected from individuals. The latter will have 

various needs in terms of information and seek the data in order to conduct a potentially 

large variety of tasks. Note that in this simple setting we assume trustworthiness on the 

supplier side, meaning that the data releaser knows the identities of the respondents who 

contributed to the data set out of their good will. Moreover, we do not restrict the set of 
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potential tasks to be conducted by the data users, which thus can range from simple data 

mining tasks such as frequencies counts and computation of the mean and median of a 

distribution, to more elaborate tasks such as econometric techniques. This is equivalent 

to considering that the data releaser is not equipped with sufficient technical knowledge 

to conduct the different tasks that the users have in mind. Thus, data are released with-

out being tailored to specific needs. 

 The delivery of the micro data set by the data releaser to the data users, via any 

potential channel, is what characterizes a transaction of individual data. The users then 

go away with the data to perform some tasks on them without any further interaction 

with the releaser. As such and as previously defined in the literature, the transaction is a 

standard non-interactive one [21]. Naturally, other types of transaction are possible: for 

example, under the assumption that the data releaser has sufficient technical knowledge, 

data mining tasks could be performed on the data by the releaser upon request of the 

users, and the former will communicate the outputs of the tasks to the latter. For such an 

interactive transaction, differential privacy has gained strong momentum in the litera-

ture to conceptualize and tackle the issues that could arise in terms of privacy protec-

tion. However, some questions remain unresolved, such as the quality of the output that 

is delivered to the users in terms of information [48]. Moreover, and because in an in-

teractive transaction a mechanism is in place between the releaser and the users in order 

to perform the tasks, it is ultimately outputs that are delivered to the users, not data per 

se. As a result, one has to make some untenable assumptions about the users’ needs, by 

inevitably restraining them or similarly assuming a very expert data releaser that can 

perform any kind of task. As noted, this is not what we will assume in this thesis, not 

least because such assumptions would lead to unrealistic, or at most, highly specific 

forms of data transactions. Given these limitations, the scope of this thesis is thus volun-

tarily narrowed to the non-interactive exchange of data sets. 

 Non-interactive data transactions immediately raise the pressing question of 

privacy, even more so than in other forms of exchange. In modern societies with perva-
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sive data collection, it is a matter of general interest to grant access to individual data, 

but not to the detriment of privacy, a fundamental right for all individuals. The ex-

change of individual data in their original form, as collected by the releaser, generally 

entails a violation of individual privacy given the sensitive information that the data can 

contain. This is why privacy legislation that prevails in most countries precludes the 

dissemination of data that are linkable to individuals, or allows the recovery of only 

some of their characteristics. So, in order to prevent any disclosure of individuals' in-

formation/identity, data have first to be anonymized through the application of suitable 

statistical disclosure control (SDC) techniques. 

2.3 Statistical disclosure control 

SDC research has a long and rich history in providing data releasers with a set of tools 

for anonymizing individual data under various settings [26]. In a nutshell, for non-

interactive data exchange, the overall approach of SDC is for a data releaser to modify 

the original data set in some ways that reduce disclosure risk while altering the infor-

mation that it contains as little as possible. At a general level, SDC techniques can be 

classified into two main approaches: 

 Privacy-first: the method is applied with the primary goal of complying with 

some pre-requisites on the level of privacy, judged as acceptable and under 

which data exchange can take place. 

 Utility-first: the method is applied with the primary goal of complying with 

some pre-requisites on the level of information, judged as valuable enough to 

make data exchange worthwhile. 

 The privacy-first approach shares certain features with cryptography. Indeed, 

the act of protecting privacy through anonymization can be conceived as a form of en-

cryption, where it is the individuals’ identities that are encrypted. However, the utility-

first approach establishes a first fundamental difference with cryptography, as it would 

be pointless to release micro data that contain no information at all. So, while the very 
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goal of cryptography is to release a cypher text that discloses nothing whatsoever about 

the underlying plaintext, the purpose of individual data exchange is to release data (i.e. 

the cypher text) considered as safe as possible in terms of privacy, while purposefully 

leaking some information (and generally the more the better). A second fundamental 

difference lies in the types of agents involved and how the transaction operates. 

 In cryptography, a sender encrypts a message and the receiver decrypts it with 

the appropriate key, while an attacker tries to intercept the message and to decipher it 

using cryptanalysis techniques. In an individual data exchange, first, there is ideally no 

decryption phase: the data user takes the released data set as given for his analysis 

needs. Second, while in cryptography there is a clear distinction between sender, receiv-

er and attacker, in an individual data exchange the receiver can also be an attacker. In-

deed, a malevolent user could potentially try to re-identify individuals in a data set and 

the data releaser has no way of preventing this after the exchange takes place (nor 

would an ex-ante screening of the users to identify the reliable ones preclude, in princi-

ple, that they become attackers). Finally, a third difference is that the re-identification of 

individuals, which constitutes an attack in data anonymization, carries a different mean-

ing than an attack in cryptography. Indeed, while in the latter case the single objective is 

generally to retrieve the full plaintext, in the former this is not necessarily so: the re-

identification of at least one individual can be considered as a successful attack. Thus, 

the cryptographic viewpoint of an attack in data anonymization is about identifying 

some individuals (or retrieving some information about them) but not necessarily all of 

them, i.e. some of the plaintext but not necessarily all of it. To summarize, while in 

principle micro data are not meant to be deciphered, the releaser must sufficiently enci-

pher the data so as to prevent any re-identification of individuals, while at the same time 

ensuring that the data contain a sufficient level of information to be meaningful to most 

users. Here lies the fundamental trade-off in individual data exchange that is not present 

in cryptography: encryption, i.e. privacy preservation, versus information leakage. The 

goal of SDC techniques is to manage this trade-off in a meaningful and practical way. 
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 To achieve this goal, a wide variety of tools is available. In terms of operating 

principles, such tools can be classified as follows: 

 Non-perturbative: The level of details in the data are reduced or suppressed 

before release. Sampling (only a sub-sample of the original data is released), 

global recoding (some continuous variables are discretized and/or some 

categorical variables are coarsened) and local suppression (a combination of 

variables judged as unsafe are deleted) form the bulk of non-perturbative 

approaches.   

 Perturbative: data are altered before release yet it must be ensured that the 

altered data do not depart significantly from the original data, so that 

information loss does not reach a level that makes the release worthless to users. 

Noise-based methods (e.g. noise addition, multiplicative noise such as the 

method presented in Chapter 3), cluster-based methods (where records are 

clustered into small aggregates of size at least k, e.g. microaggregation, 

univariate or multivariate), rank-based methods (where the values of selected 

variables are exchanged among individuals according to some criteria, e.g. rank 

swapping) are amongst the most popular approaches for perturbative disclosure 

control. 

 Synthetic: the data released are simulated with the constraint that certain 

statistics and relationships across variables should be preserved. It represents a 

departure from non-perturbative and perturbative approaches in the sense that, 

generally, a synthetic release does not contain any original data, while for the 

former the original data, albeit altered, are disseminated. Chapter 7 notably 

shows that this distinction appears to be artificial and that synthetic data can in 

fact always be thought of in terms of the original data. 

Over the years, research in SDC has led to the development of a wide variety of 

tools, suited for many circumstances and spanning several possible types of data 

across different fields. This diversity of available techniques is undoubtedly an 
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asset but it entails certain drawbacks. As mentioned in Chapter 1, the lack of an 

overarching framework upon which the trade-off between utility and disclosure 

risk can be assessed is problematic because it leads to an absence of consensus 

regarding “best practices”. In fact, the current state of the literature, while high 

in quality, offers at best techniques that are tied to the context upon which they 

operate.  For example, comparing the level of utility and privacy achieved by 

different methods on different data sets is an awkward task as different metrics 

and/or different parametrizations are largely heterogeneous, so that no common 

ground exists for comparison. This is generally why only ad-hoc comparisons 

can be conducted [12]. Additionally, each metric embodies distributional de-

pendence and this feature has a significant impact on the performance evaluation 

of SDC methods across data sets [35]. Moreover, even in a utility (resp. priva-

cy)-first approach, it is advisable to check the value of privacy (resp. utility) 

achieved by a method before data dissemination, which thus always lead to the 

limitation of context-dependence discussed above. 

 To address these issues and the need to generalize the concepts used in SDC, a 

recent contribution to the literature proposed a general functional equivalence based on 

permutations to describe any data masking method (see [39] and its subsequent devel-

opment in [12]). This equivalence forms the building block upon which disclosure risk 

and information loss can in fact be measured in a universal fashion (Chapter 4), but also 

constitutes a general method in itself to conduct data anonymization (Chapter 5). 

2.4  The permutation-based paradigm 

 The permutation paradigm in data anonymization starts from the observation 

that any anonymized data set can be viewed as a permutation of the original data plus a 

non-rank perturbative noise addition. It thus establishes that all masking methods can be 

thought of in terms of a single ingredient, i.e. permutation. This result clearly has far 

reaching conceptual and practical consequences, in the sense that it provides a single 

and easily understandable reading key, independent of the model parameters, the risk 
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measures or the specific characteristics of the data, to interpret the utility/protection out-

come of an anonymization procedure. 

 To illustrate this equivalence, we use a toy example which consists (without 

loss of generality) of five records and three attributes X=(X1, X2, X3) generated by sam-

pling N(10,10
2
), N(100,40

2
) and N(1000,2000

2
) distributions, respectively. Noise is 

then added to obtain Y=(Y1, Y2, Y3), the three anonymized version of the attributes, 

from N(0,5
2
), N(0,20

2
) and N(0,1000

2
) distributions, respectively. One can see that the 

masking procedure generates a permutation of the records of the original data (Table 

2.1). 

Table 2.1 An illustration of the permutation paradigm 

Original dataset X 
 

Masked dataset Y 

       X1 X2 X3 
 

Y1 Y2 Y3 

       13 135 3707 
 

8 160 3248 

20 52 826 
 

20 57 822 

2 123 -1317 
 

-1 122 248 

15 165 2419 
 

18 135 597 

29 160 -1008 
 

29 164 -1927 

       Rank of the original attribute 
 

Rank of the masked attribute 

       X1R X2R X3R 
 

Y1R Y2R Y3R 

       4 3 1 
 

4 2 1 

2 5 3 
 

2 5 2 

5 4 5 
 

5 4 4 

3 1 2 
 

3 3 3 

1 2 4 
 

1 1 5 

 Now, as long as the attributes’ values of a data set can be ranked, which is 

obvious in the case of numerical and categorical ordinal attributes, but also feasible in 

the case of nominal ones [14], it is always possible to derive a data set Z that contains 

the attributes X1, X2 and X3, but ordered according to the ranks of Y1, Y2 and Y3, 

respectively, i.e. in Table 2.1 re-ordering (X1, X2, X3) according to (Y1R, Y2R, Y3R). This 
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can be done following the post-masking reverse procedure outlined in [39]. Finally, the 

masked data Y can be fully reconstituted by adding small noises (E1, E2, E3) (small in 

the sense that they cannot re-rank Z while they can still be large in absolute values) to 

each observation in each attribute (Table 2.2). 

Table 2.2 Equivalence in anonymization: postmasking reverse mapping plus noise 

addition 

Original dataset X 
 

Reverse mapped dataset Z 

       X1 X2 X3 
 

Z1 Z2 Z3 

       13 135 3707 
 

13 160 3707 

20 52 826 
 

20 52 2419 

2 123 -1317 
 

2 123 -1008 

15 165 2419 
 

15 135 826 

29 160 -1008 
 

29 165 -1317 

       Noise E 
 

Masked dataset Y(=Z+E) 

       E1 E2 E3 
 

Y1 Y2 Y3 

       -5 0 -459 
 

8 160 3248 

0 5 -1597 
 

20 57 822 

-3 0 1256 
 

-1 122 248 

2 0 -229 
 

18 135 597 

0 -1 -610 
 

29 164 -1927 

 By construction, Z has the same marginal distributions as X, which is an ap-

pealing property. Moreover, as will be discussed in Chapter 5, the small noise addition 

turns out to be irrelevant: re-identification can only come from permutation, as by con-

struction noise addition cannot alter ranks. Reverse mapping thus establishes permuta-

tion as the overarching principle of data anonymization, allowing the functioning of any 

method to be viewed as the outcome of a permutation of the original data, independent-

ly of how the method operates. This result has been explicitly proposed by its authors 

for the ex-post evaluation of anonymization, but not as a new technique for conducting 

anonymization. As we will see, it can in fact be viewed and operationalized as a new, 

general framework for anonymization (Chapter 5). 
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 To conclude, it should be mentioned that this result may seem surprising, and 

one might ask why the fundamental principle of data anonymization ultimately appears 

to be as simple as permutation. After all, in cryptography, permutation ciphers and their 

cryptanalyses have been known for centuries. They are easy to detect because they do 

not affect individual symbols’ frequencies (the equivalent of this in the permutation 

paradigm being the preservation of marginal distributions). In fact, as will be discussed 

in Chapters 4 and 5, it turns out that the obvious weakness of a permutation cipher in 

standard cryptography shows up as a strength in data anonymization, in that the degree 

of permutation performed allows controlling for the amount of information that is 

leaked. Moreover, because the permutation paradigm proposes one single universal lan-

guage for data anonymization, it allows introducing some measures of disclosure risk 

and information loss that can be used in any context, that are flexible enough to capture 

the variety of views that can occur in a data exchange (Chapter 4). While these 

measures are originally proposed for the ex-post evaluation of the outcomes of any 

anonymization techniques on any data, they can in fact be used equally validly ex-ante 

to perform anonymization (Chapter 5). 
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3 A MASKING METHOD TO 

PRESERVE THE SKEWNESS OF 

INDIVIDUAL DATA 

3.1 Introduction 

 As we saw in the previous Chapter, a possible approach for data perturbation 

consists in the matching of the original data with random noise terms. This can be per-

formed in various ways, from a simple additive structure to non-linear transformations, 

applicable to both categorical and numerical variables. However, most of the perturba-

tion techniques focus on continuous variables and so will the methodology presented in 

this Chapter. 

 In practice, popular perturbation techniques [6,8,38] use an additive structure 

for noise application, where error terms are randomly drawn from a normal distribution, 

the latter being data-dependently parameterized in such a way that the resulting distribu-

tion of the perturbed values have the same first and second order moments as those in 

the original data. As information on these two moments is sufficient to fully identify a 
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normal distribution, this implies that if the original values follow a normal law then the 

original and the perturbed values will have exactly the same distribution. The loss of 

statistical information is thus low, in that only the values of the data points of the under-

lying distribution are altered but their overall shape is not. Such a high degree of preser-

vation is made possible by the use of the Gaussian framework. Apart from its peculiar 

properties, the choice of additive noise methods is motivated by the fact that normality 

underlies many statistical and econometric tools, extending thus the usefulness and au-

dience for these techniques. 

 Additive noise methods nevertheless have some drawbacks. The most obvious 

and crucial is the amount of information that is lost when the original data do not follow 

a normal law. In this case, analysis performed on perturbed data could produce quite 

different results from those performed on the original set. In particular, the Gaussian 

framework implies a strong assumption of symmetry in the original distribution. Clear-

ly, for numerous economic variables, this assumption is too strong to be tenable.  

 In fact, micro data often exhibit positively skewed distributions, as in the case 

of household income and wealth. Recent studies relying on a growing stream of re-

search on income inequality [41,3] have pointed out that in most developed countries 

top incomes contribute disproportionately to the overall level of income inequality in a 

country. As a result, skewness matters, and perturbation methodologies preserving it are 

of central interest for SDC, despite its lack of treatment in the literature (see [33] for an 

exception). In such cases, lognormal distributions appear to display a reasonable ap-

proximation for a large range of economic variables [28,31]. As such, Gaussian pertur-

bation methods would be of limited utility when applied to such distributions for at least 

two reasons: 

 First, the sum of skewed and non-skewed distribution provides an identifiable 

distribution in very rare cases [22,29]. Thus perturbed datasets will, in most 

cases, follow unknown and unidentifiable distributions. 
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 Second, as the presence of observations far from the mean leads to a skewed 

distribution, it follows that adding noise drawn from a normal distribution to 

those observations will only weakly perturb them. As an example, very large 

firms in business surveys will still be subject to high disclosure risk after 

perturbation, hence raising the issue of protection and confidentiality. 

 This Chapter presents a new multiplicative masking method that preserves pos-

itive skewness of the original data based on lognormal distributions. This method allows 

users to generate perturbed data that are similar to the original data to a degree that is 

selected by the user. The methodology preserves confidentiality constraints in particular 

for observations away from the mean, by permuting them in the sample during the per-

turbation process. Despite the fact that this method aims at offering a solution in a rather 

specific data-context, its outcome can ultimately be appraised in term of permutations. 

The contributions in this Chapter have been published in [47]. 

3.2 Methodology 

 This section describes the proposed methodology for preservation of asymmet-

ric distribution based on the identification of sufficiency conditions for lognormal dis-

tributions. To fully appraise the departure from additive Gaussian methods, we first de-

scribe the latter using a methodology proposed in [36], showing how it is possible to 

generate perturbed data that preserves the distribution of the original data set with a se-

lectable degree of similarity. 

3.2.1 The Muralidhar-Sarathy (MS) hybrid generator 

 Let’s assume that X is a confidential variable that we want to perturb, and that 

S is a non-confidential variable with a low level of identification risk. Without loss of 

generality, it is assumed that the means of X and S are equal to zero. Let 𝜎𝑋𝑋
2 , 𝜎𝑆𝑆

2  and 

𝜎𝑆𝑋
2  be respectively the variance of X, S and the covariance between X and S. We will 

denote by Y the perturbed value of X generated by the following equation (where 
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𝑦𝑖, 𝑥𝑖, 𝑠𝑖 ∀𝑖 = 1,… , 𝑛 
are the values of Y, X and S variables for the i

th
 respondent in the 

dataset): 

 𝑦𝑖 = [(1 − 𝛼)
1

𝑛
∑ 𝑥𝑖 − 𝛽

1

𝑛
∑ 𝑠𝑖
𝑛
𝑖=1

𝑛
𝑖=1 ] + 𝛼𝑥𝑖 + 𝛽𝑠𝑖 + 𝑢𝑖 ∀𝑖 = 1,… , 𝑛 

α and β are coefficients and 𝑢𝑖 is a random term generated from a normal distribution 

𝑁(0, 𝜎𝑢𝑢
2 ), satisfying  

1

𝑛
∑ 𝑥𝑖𝑢𝑖 =
𝑛
𝑖=1

1

𝑛
∑ 𝑠𝑖𝑢𝑖 = 0
𝑛
𝑖=1  (𝑥𝑖and 𝑠𝑖 are orthogonal to 𝑢𝑖). This 

equation shows that α can be interpreted as a similarity parameter between Y and X. 

When α=0, X and Y are completely dissimilar. For α=1 Y equals X and no perturbation 

is added. Thus, the choice of α allows the user (e.g. National Statistical Offices in the 

case of records from official sources) to control for the degree of similarity between the 

original and the perturbed variable that will be disseminated. 

 The conversion of X into Y through the preceding equation adds ‘noise’ to the 

original variable X. In fact, it is easy to verify that 𝐸(𝑦𝑖) =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  and thus that X 

and Y will have the same expectation: the first moment of X’s distribution is then pre-

served. To preserve the second moment, the following condition must be satisfied: 

 𝜎𝑋𝑋
2 = 𝜎𝑌𝑌

2 = 𝐸[(𝛼𝑥𝑖 + 𝛽𝑠𝑖 + 𝑢𝑖)(𝛼𝑥𝑖 + 𝛽𝑠𝑖 + 𝑢𝑖)] 

= 𝛼2𝜎𝑋𝑋
2 + 𝛽𝜎𝑆𝑆

2 + 𝜎𝑢𝑢
2 + 2𝛼𝛽𝜎𝑆𝑋

2  

 Finally, in order to preserve the covariance between the confidential and non-

confidential variables, the following equation must also hold: 

𝜎𝑆𝑋
2 = 𝜎𝑆𝑌

2 = 𝛼𝜎𝑆𝑋
2 + 𝛽𝜎𝑆𝑆

2  

⟺  𝛽 = (1 −  𝛼)
𝜎𝑆𝑋
2

𝜎𝑆𝑆
2  

 Combining the two preceding equations above, we obtain the following re-

striction for 𝜎𝑢𝑢
2 : 

𝜎𝑢𝑢
2 = (1 − 𝛼2) [𝜎𝑋𝑋

2 −
(𝜎𝑆𝑋

2 )2

𝜎𝑆𝑆
2 ] 
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 The term [𝜎𝑋𝑋
2 −

(𝜎𝑆𝑋
2 )

2

𝜎𝑆𝑆
2 ] is always greater than or equal to zero. Thus, the nec-

essary and sufficient condition to have 𝜎𝑢𝑢
2 >0 is that -1≤α≤1. As a negative α induces a 

negative correlation between the original and the perturbed value, this case is ignored in 

the following, i.e. we will focus only on 0≤ α≤1 to fulfil the above restrictions. 

 When α is set to 1, X=Y and no perturbation is added; when α=0, Y is not a 

function of the (confidential) value X but only of the non-confidential variable S and of 

an error term. The intermediary cases where 0<α<1 therefore create a hybrid dataset, as 

the released variable is a combination of its original value, of the non-confidential vari-

able S and of a noise term. Through this method, users can thus choose to which extent 

they want to protect their initial release. This procedure is perfectly secure in the sense 

that no reverse engineering is possible as the hybridation is performed using a random 

draw for 𝑢𝑖. A direct consequence of this algorithm is that users can choose to com-

municate transparently their chosen degree of dissimilarity: in other terms, knowledge 

of α provides access to the value of 𝜎𝑢𝑢
2  but not to the 𝑢𝑖 values themselves. 

 While it can be argued that this method implies significant information loss, 

statistical information is actually preserved to a greater degree than with other ap-

proaches [20]. In particular, the MS method preserves the first two moments of variable 

X’s distribution, these moments being the necessary and sufficient conditions for the 

identification of a normal distribution; it follows that if the distribution of X is normal, 

then Y will have exactly the same distribution as the original, undisclosed variable. 

Moreover, by using a non-confidential variable in the perturbation process, this method 

allows preserving the covariance between the confidential variable X and the non-

confidential variable S. 

 As appealing as this framework is, it relies on the pivotal normality assump-

tion. Normality underlies many statistical analyses commonly used (such as regressions 

and hypothesis tests), and ensures that analysis based on the masked data will lead to 

the same results that one would have obtained with the original data. But the methodol-
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ogy is rather limiting if, rather than being interested in using the data for econometrics 

and inference, users are interested in the intrinsic features of the distribution, e.g. to 

compute descriptive statistics such as fractiles or measures of dispersions. In this case, 

perturbation using additive Gaussian noise loses its usefulness as additional features of 

the original distribution have to be preserved in a privacy-safe way, in particular skew-

ness, which conveys substantial and relevant information. 

3.2.2 A sufficient multiplicative masking method for lognormal distribu-

tions 

 Using the same notations as before, we let X follow a lognormal distribution 

with parameters µ𝑋 > 0 and 𝜎𝑋𝑋
2 : 

𝑋 ⟼ 𝐿𝑁(µ𝑋 , 𝜎𝑋𝑋
2 ) 

where, by definition of a lognormal distribution, µ𝑋 =
1

𝑛
∑ ln 𝑥𝑖
𝑛
𝑖=1  and 𝜎𝑋𝑋

2 =

1

𝑛
∑ (ln 𝑥𝑖 − µ𝑋)

2𝑛
𝑖=1 . The first and second order moments of X are thus respectively: 

𝐸(𝑋) = 𝑒𝑥𝑝 (µ𝑋 +
𝜎𝑋𝑋
2

2
) and 𝑉(𝑋) = [𝑒𝑥𝑝(𝜎𝑋𝑋

2 ) − 1]𝑒𝑥𝑝(2µ𝑋 + 𝜎𝑋𝑋
2 ) 

 The same assumptions apply for the perturbation u, assumed to be independent 

of X and with parameters µ𝑢 =
1

𝑛
∑ ln𝑢𝑖
𝑛
𝑖=1 > 0 and 𝜎𝑢𝑢

2 =
1

𝑛
∑ (ln 𝑢𝑖 − µ𝑢)

2𝑛
𝑖=1 : 

𝑢 ⟼ 𝐿𝑁(µ𝑢, 𝜎𝑢𝑢
2 ) 

with 𝐸(𝑢) = 𝑒𝑥𝑝 (µ𝑢 +
𝜎𝑢𝑢
2

2
)  and 𝑉(𝑢) = [𝑒𝑥𝑝(𝜎𝑢𝑢

2 ) − 1]𝑒𝑥𝑝(2µ𝑢 + 𝜎𝑢𝑢
2 ). 

 The perturbed value of X, Y is generated through the following equation, a 

homothetic function: 

    𝑌 = 𝑋𝛼𝑢1−𝛼 with 0≤α≤1 

 As for the MS hybrid generator, α is also a similarity parameter: when α is set 

to 1, X=Y and no perturbation is generated; when α=0, Y is not a function of the confi-
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dential value X but only of the lognormal noise. The intermediary cases 0<α<1 create 

convex combinations of confidential values and noises. 

 The properties of lognormal distribution ensure that the α power distribution of 

X also follows a lognormal law [29]: 

𝑋𝛼 ⟼ 𝐿𝑁(𝛼µ𝑋, 𝛼
2𝜎𝑋𝑋

2 ) 

and the same applies for the 1- α power of u: 

𝑢1−𝛼 ⟼ 𝐿𝑁((1 − 𝛼)µ𝑢, (1 − 𝛼)
2𝜎𝑢𝑢

2 ) 

Given independency of u and X, Y has thus the following distribution: 

𝑌 ⟼ 𝐿𝑁(𝛼µ𝑥 + (1 − 𝛼)µ𝑢, 𝛼
2𝜎𝑋𝑋

2 + (1 − 𝛼)2𝜎𝑢𝑢
2 ) 

with the associated two first moments being: 𝐸(𝑌) = 𝑒𝑥𝑝 (𝛼µ𝑥 + (1 − 𝛼)µ𝑢 +

𝛼2𝜎𝑋𝑋
2 +(1−𝛼)2𝜎𝑢𝑢

2

2
)  and 𝑉(𝑌) = [𝑒𝑥𝑝(𝛼2𝜎𝑋𝑋

2 + (1 − 𝛼)2𝜎𝑢𝑢
2 ) − 1]𝑒𝑥𝑝[2(𝛼µ𝑋) +

(1 − 𝛼)µ𝑢 + 𝛼
2𝜎𝑋𝑋

2 + (1 − 𝛼)2𝜎𝑢𝑢
2 ]. 

 We can now derive the necessary and sufficient conditions that will ensure that 

Y has the same distribution as X. Unlike the additive framework, we cannot proceed by 

preserving the first two moments of Y. More generally any set of k-order moments with 

k≥1 is not isomorphic to any lognormal law: we can invariably find other laws (lognor-

mal or not) that have the same moments [29]. To achieve sufficiency we have to consid-

er the logarithmic transformation of Y: 

𝑙𝑛𝑌 ⟼ 𝑁(𝛼µ𝑋 + (1 − 𝛼)µ𝑢, 𝛼
2𝜎𝑋𝑋

2 + (1 − 𝛼)2𝜎𝑢𝑢
2 ) 

 Being now in a Gaussian case, we can derive conditions for the first two mo-

ments: 

𝛼µ𝑋 + (1 − 𝛼)µ𝑢 = µ𝑋 ⟺ µ𝑋 = µ𝑢 

𝛼2𝜎𝑋𝑋
2 + (1 − 𝛼)2𝜎𝑢𝑢

2 = 𝜎𝑋𝑋
2 ⟺ 𝜎𝑢𝑢

2 =
1 − 𝛼2

(1 − 𝛼)2
𝜎𝑋𝑋
2  
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As 𝜎𝑢𝑢
2 ≥0, we also have 1 − 𝛼2 ≥ 0 and thus 0≤α≤1, confirming α as a well-defined 

similarity parameter. Using the sufficiency conditions at the logarithmic level and ex-

ponentiating ln Y, we find that u must have the following lognormal distribution: 

𝑢 ⟼ 𝐿𝑁(µ𝑋 ,
1 − 𝛼2

(1 − 𝛼)2
𝜎𝑋𝑋
2 ) 

As exponentiation establishes a one to one correspondence (i.e. it is a bijective map-

ping), the sufficiency conditions at the logarithmic scale ensure sufficiency at the origi-

nal variable scale. Thus, this perturbation method preserves the features of the original 

distribution including its skewness, but allows the similarity of data points to be select-

ed. As shown in the following section, this method is also confidentiality efficient, in 

particular for observations far from the mean. 

3.3 Numerical validation 

 We simulated a vector consisting of one thousand data points drawn from a 

lognormal distribution with parameters 4 and 2, i.e. a deliberately highly skewed distri-

bution. Figure 3.1 shows the density of the original distribution. 

Figure 3.1: Density of original data. 
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 When α=0.9, the distribution of the perturbed data exactly matches that of the 

original data: as shown in Figure 3.2, the density of the former is strictly identical to the 

latter. 

Figure 3.2: Density of perturbed data with alpha =0.9. 

 

 As was established in the previous section, perturbed distributions will remain 

the same as the original one for 0≤α≤1. Thus, the multiplicative masking method pre-

serves the initial data structure. Data points are nevertheless altered in an interesting 

way, in particular for confidentiality purposes. Figure 3.3 depicts the changes that occur 

in the absolute values for each point (ranked in ascending order on the x-axis according 

to their original values). 
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Figure 3.3: Absolute differences between original and perturbed data for alpha 

=0.999. 

 

 One immediately sees that, for a small value of the dissimilarity parameter, 

most of the data points that are close to the mean are very close to the original values 

while, due to the multiplicative structure used, values that are far away from the mean 

are substantially altered. And as high values are those where disclosure risk is higher, 

this pattern of perturbation is that which is most appropriate. For lower values of α, and 

thus greater dissimilarity, perturbations start to spread along the distribution from the 

upper to the lower tails, as can be seen in Figures 3.4, 3.5 and 3.6. 

Figure 3.4: Absolute differences between original and perturbed data for alpha 

=0.95. 
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Figure 3.5: Absolute differences between original and perturbed data for alpha 

=0.9. 

 

Figure 3.6: Absolute differences between original and perturbed data for alpha 

=0.7. 

 

 As perturbations can both reduce and increase values of different data points, 

the ranking of data points is likely to change during the process, thus increasing data 

protection against disclosure risk (in particular, observations away from the mean could 

now near it, and conversely). As shown in Figures 3.7 and 3.8, the more dissimilarity is 

introduced, the more swaps occur in the data ranking, i.e. the more observations are 

permuted. 
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Figure 3.7: Initial vs. perturbed ranks for alpha =0.95. 

 

Figure 3.8: Initial vs. perturbed ranks for alpha =0.7. 

 

 Permutations reinforce the fact that greater dissimilarity lowers disclosure risk 

for the disseminated microdata perturbed by this method. Data points that are further 

away from the sample mean can be more easily identified due to two distinct problems: 

the classic issue of protection of the value recorded, plus a distance effect i.e. while 

perturbed, an observation away from the mean could again face high disclosure risk by 

still remaining far from it. Permutations circumvent this additional problem. This 

mechanism happens to be an alternative way to describe the method proposed. 
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 Rank swaps, however, can also be a drawback, as the swapping of ranks will 

perturb the covariances with other variables. In fact, the lower α is, the lower the 

correlation between the original and the perturbed variable will be (Table 3.1); this will 

also imply higher perturbation of covariance with other variables. 

Table 3.1: Correlation coefficients between the original and perturbed variable for 

different similarity degrees. 

 α 0.999 0.95 0.9 0.8 0.7 

Correlation coefficient  0.99 0.60 0.41 0.24 0.18 

 The MS hybrid generator outlined in the previous section automatically pre-

serves some covariances, at least for the non-confidential variable used in the perturba-

tion equation. However, it remains mute for covariances with other confidential varia-

bles external to the equation. Through its similarity parameter, the multiplicative meth-

od presented here allows preserving the covariance with any other variables, but with a 

trade-off as to the degree of protection that one wants to achieve in the disseminated 

data. This trade-off represents an inherent limitation to the multiplicative masking struc-

ture. For example, one cannot adapt the perturbation process by introducing a non-

confidential variable in order to exactly preserve some set of covariances: a necessary 

condition to do that would be that the non-confidential variable also follows a lognor-

mal distribution. But a heavy-tailed non-confidential variable is a very unlikely configu-

ration. In other cases, the use of the perturbation method with any non-lognormal distri-

bution would induce a distribution of the perturbed variable having a different function-

al neither exact nor closed form, or being too cumbersome an approximation to be trac-

table in a simple disclosure control environment [30]. 

3.4 Conclusion 

 When using SDC techniques to generate perturbed data, the/an analysis per-

formed on the altered datasets should yield results that are identical or at least very close 

to those that would have been obtained using the original data. The assumption of nor-
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mality in the distribution of the original variable and in the error term is a convenient 

way to achieve this objective. Unfortunately, many economic variables are distributed 

according to a heavy tailed, asymmetric form that makes the Gaussian framework lim-

ited. Moreover, and as underlined in many recent studies [41], fat tails are important for 

economic analysis as their impact could be substantial. It should nevertheless be noted 

that data points generating a heavy tailed distribution are often scarce in microdata sets, 

especially those that come from survey-based data (except if specific oversampling pro-

cedures are used). 

 Two reasons account for this under-representation of high values. The first is 

simply due to the sampling scheme, as observations away from the mean are less likely 

to be observed in surveys. The second is that, as observations away from the mean face 

a higher disclosure risk than data points closer to it, control of these risks forces data 

producers to rely on top coding, i.e. values above a certain amount are automatically 

censored to that amount. As a result, a survey’s skewedness is only a partial measure of 

the true population skewedness. In this case, one can still reasonably assume that nor-

mality is a sufficient assumption for surveys' data perturbation, but further research will 

have to be conducted to determine the relative performances of these additive masking 

methods when the original data differ from a normal distribution. 

 The case of register-based microdata is quite different from that of surveys, as 

all of the population is generally included. In this case, skewness is likely to occur very 

often, and our methodology will perform better than methods such as the MS hybrid 

generator. Moreover, as only heuristic rules are possible in practice for preserving co-

variances (one being, for example, choosing a degree of similarity between 0.99 and 

0.95 that will protect observations away from the mean while sufficiently preserving the 

covariance), register-based data are favoured; due to their nature and the fact that they 

are not originally collected for analytic purposes, fewer variables are available than in a 

survey for covariance computations. 
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 In conclusion, this Chapter has presented a simple technique that allows data 

producers to generate perturbed datasets according to a selectable degree of similarity 

when the underlying distribution is positively skewed, using the properties of lognormal 

distribution. Despite the fact that this method is meant to be applicable in a particular 

data-context, it must be emphasized that ultimately its outcome can be mainly character-

ized permutations. Obviously, this echoes the findings of the permutation-based para-

digm outlined in Chapter 2, i.e. whatever the analytical apparatus of method and the 

features of the data to be anonymized, anonymization can always be appraised through 

permutation. The next two Chapters aim at developing this insight, first for the ex-post 

evaluation of anonymization, and second, for performing anonymization directly 

through the ex-ante selection of permutation patterns. 
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4 UNIVERSAL MEASURES OF 

DISCLOSURE RISK AND 

INFORMATION LOSS 

4.1 Introduction 

  As we saw in Chapter 2, the permutation paradigm is not considered by 

its authors as a new anonymization method per se (a statement that can be reconsidered, 

see Chapter 5), but aims at offering the potential to evaluate all available techniques 

through the same lens. The development of a set of appropriate measures of disclosure 

risk and information loss based on permutation distances, however, remains to be seen. 

This is the objective of this Chapter, which explores the first consequences of the per-

mutation paradigm. Notably, it proposes some universal measures of disclosure risk and 

information loss that can be computed in a simple fashion and can be used for the eval-

uation of any anonymization method, independent of the context under which they op-

erate. The construction of these measures also allows introducing the notions of domi-

nance in disclosure risk and information loss in data anonymization, which formalise 

the fact that different parties involved in micro data release can each have different sen-
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sitivities to privacy and information, and can inform about the methods that can be used 

to reach a consensus among all parties. These two notions of dominance can character-

ize which methods, under any tastes for privacy and information, will always perform 

better than others. The contributions in this Chapter have been published in [45]. 

4.2 A class of universal measures of disclosure risk based on 

permutation distances 

 We start by observing that from the permutation-based paradigm, it is always 

possible to retrieve post-anonymization for any method applied on any data, the overall 

amount and distances of permutations performed. Thus, for a given attribute j, permuta-

tion distances can be retrieved and collected under the form of a vector of rank dis-

placement rj, i.e. a vector measuring for each record the amount of rank shifting that 

occurred. Note that to avoid some unnecessary technical difficulties, in what follows 

zero values in rj (i.e. no permutation took place) will be assigned, without loss of gener-

ality, an infinitesimally small value ε>0. An illustrative example of rank displacement 

vectors for three attributes is:  

𝑟1 =

(

 
 

ε
ε
ε
ε
ε)

 
 
 𝑟2 =

(

 
 

3
ε
ε
1
−4)

 
 
 𝑟3 =

(

 
 

ε
2
2
−2
−2)

 
 

 

 Now, rj has to be evaluated in some way for assessing disclosure risk based on 

permutation distances. A natural choice is to gauge rj by assigning a magnitude, taking 

its Euclidean norm and adopting the rule that the higher the norm, the lower the disclo-

sure risk (as the larger will be the permutation distances contained in rj). But other cases 

are possible. In general, any L(p)-norm is acceptable: for example, for r1, r2 and r3, the 

∞-norm (or Chebyshev distance) would give ε, 4 and 2, respectively. This variety of 

choice to evaluate vectors generally depends on the problem at hand, as one will select a 

L(p)-norm adapted to the meaning of the object that is meant to be quantified. In the 

case of a vector of permutation distances, it is not clear why a Euclidean length would 
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be more suitable and meaningful than a Chebyshev length, or why all the norms in-

between can or cannot be considered. Thus, there can be a fundamental arbitrariness in 

this choice. However, we argue that in the permutation paradigm, such choice can be 

given an intuitive interpretation in terms of disclosure risk.  

 To further illustrate this arbitrariness, consider the following example: if in r3 

the third record is now permuted one rank more and the second one rank less, r3 will be 

viewed as identical to r2 according to the ∞-norm. It is, however, not totally clear if the 

situation has really improved in terms of disclosure risk for the third attribute. On the 

contrary, it can be reasonably thought that the new situation is more problematic, as 

having a record permuted only one time increases the disclosure risk in a way that may 

not be offset by the additional permutation of an already sufficiently permuted record. 

In fact, being able to evaluate if the situation has improved necessitates a notion of aver-

sion to disclosure risk, which, to the best of the author's knowledge, is not present or 

formalized in the literature on SDC. The permutation paradigm allows introducing this 

notion in a simple way: 

Definition 4.1: In the permutation paradigm, aversion to disclosure risk is 

the preference toward less permuted records for the evaluation of this risk. 

 Aversion to disclosure risk accounts for the fact that different data releasers or 

subjects can have potentially different appreciations of disclosure risk (alternatively, 

this can also be viewed as different levels of privacy awareness). Some releasers may 

consider that achieving a certain average level of permutation is sufficient, while from a 

contributing subject’s point of view, or from the point of view of other data releasers 

(say, for example, when multiple releasers are involved in the release of a data set), this 

could be judged as insufficient. Because the permutation paradigm reduces the relevant 

information needed for the evaluation of any method to permutation, aversion to disclo-

sure risk can be modelled by assuming that different permutation distances have differ-

ent weights. On the one hand, a strongly averse data releaser/subject may put relatively 

more weight on the lowest permutation distances achieved; on the other hand, a weakly 
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averse releaser/subject may consider different permutation distances the same way and 

focus only on the average amount of permutations. 

 Indeed, existing measures of disclosure risk generally entail some implicit as-

sumptions regarding how the risk is assessed. This can be illustrated by considering the 

formula for rank order correlation coefficient, previously used in the permutation para-

digm for the assessment of disclosure risk [39,12], which for a non-masked attribute Xj 

and its reverse mapped version Zj can be written as (where di is the difference between 

the ranks of each record): 

𝜌𝑋𝑗,𝑍𝑗 = 1 −
6∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

It is apparent that the rank order correlation coefficient implies specific preferences on 

the permutation distances, as the square of the ranks’ differences magnifies the impact 

of large permutations compared to small ones. One could even argue that the rank order 

correlation coefficient is not an appropriate measure, as for the assessment of disclosure 

risk it is small, not large, permutation distances that matter. For example, according to 

𝜌𝑋𝑗,𝑍𝑗 an anonymization method permuting only one record 10 times will be judged as 

having reduced disclosure risk more than another method permuting 3 records 5 times. 

Again, it is difficult to rank the two situations in terms of disclosure risk. To overcome 

this issue, the following proposition establishes a measure of disclosure risk sensitive to 

different aversions, with an adjustable degree of focus on small permutation distances: 

Proposition 4.1: For any attribute j=1,…,p of a data set Y(n,p), a quantitative 

measure of disclosure risk in the permutation paradigm is given by: 

𝐷𝑗(𝛼) = [
1

𝑛
∑𝑎𝑏𝑠(𝑟𝑗(𝑖))

𝛼

𝑛

𝑖=1

]

1/𝛼

 𝑓𝑜𝑟 𝛼 ≤ 1 𝑎𝑛𝑑 𝛼 ≠ 0 

𝑎𝑛𝑑 𝐷𝑗(𝛼) =∏𝑎𝑏𝑠(𝑟𝑗(𝑖))
1/𝑛

𝑛

𝑖=1

 𝑓𝑜𝑟 𝛼 = 0 
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where rj(i) denotes the elements of rj and α the parameter of aversion to dis-

closure risk.  

 𝐷𝑗(𝛼) makes use of a power mean  (see [25] for a discussion of its various 

properties) for the aggregation of the components of rj, with the parameter α substantiat-

ing the notion of aversion to disclosure risk. The arithmetic mean becomes a special 

case (α=1) of 𝐷𝑗(𝛼), which forms a natural starting point by computing the average lev-

el of permutation distances. In that case, all distances are given the same weight and 

there is a one-to-one substitution between them, e.g. two records permuted two ranks 

are equivalent to one record permuted four ranks. From this benchmark, the more α de-

creases, the more weight is given to the smallest permutation distances. The more α ap-

proaches -∞, the more 𝐷𝑗(α) converges towards the smallest permutation distance in rj. 

As a result, for a given rj and 𝛼′ <  α, we have 𝐷𝑗(α′) ≤ 𝐷𝑗(α): the lower is α, the 

stronger is the aversion to disclosure risk. Note that as a general case of averages, 𝐷𝑗(α) 

is independent of the number of records, which eases the comparison across different 

data sets of different sizes. Moreover, for an attribute observed over n records, the max-

imum permutation distance for a record is abs(n-1). Thus, re-scaling 𝐷𝑗(α) by 1/n-1 will 

produce a measure of risk that ranges between 0 and 1, which is an appealing property 

for performing comparisons and quantifying the utility/privacy trade-off [26]. 

 One might be tempted to think that the notion of aversion to disclosure risk 

adds an unnecessary layer of complexity to the evaluation of this risk. We maintain that 

it provides a better grasp of the reality of individual data exchange (see Chapter 2). In 

the current state of the literature, it is not a notion that can be made analytically tractable 

in a straightforward way for all methods (or as we saw, is embodied implicitly rather 

than explicitly). But in the permutation paradigm, permutation distances are the only 

meaningful quantities under scrutiny, which makes natural the fact that these distances 

can be judged by different individuals differently. Given the number of parties involved 

in data dissemination, e.g. numerous data releasers and respondents, it is very unlikely 

that all of them will have the same judgment. The 𝐷𝑗(α) measures are a way to incorpo-
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rate this diversity. In practice, by computing the measure for several α, a data releaser 

can, for example, communicate about the prevention against disclosure risk through 

different points of view. This circumvents the issue involved in the empirical assess-

ment of disclosure risk [35], where a score based on different measures of disclosure 

risk is computed using an ad-hoc weighting scheme. Under such an approach, weights 

can drive the overall assessment that is made. But using the current proposal, a single 

measure can be computed on a continuum of weights which all carry an interpretation in 

terms of disclosure risk. 

 The measure 𝐷𝑗(α) can also be used to characterize in an unambiguous way 

which data anonymization methods perform better than others through the concept of 

disclosure risk dominance that we introduce below. The concept of dominance comes 

originally from the notion of stochastic dominance [32], which is widely used in eco-

nomics and finance. It can, however, be applied to any distribution, which is done here 

for the distribution of permutation distances. To the best of the author’s knowledge, this 

is the first time it is considered in the context of data anonymization: 

Definition 4.2: For an attribute j, an anonymization method A is said to 

dominate (i.e. unanimously performs better than) another method B for the 

protection against disclosure risk if it holds that 𝐷𝑗(𝛼)
′ ≤ 𝐷𝑗(𝛼) ∀ 𝛼 ≤

1 (where 𝐷𝑗(𝛼) (resp. 𝐷𝑗(𝛼)
′) are the measures of Proposition 4.1 comput-

ed from A (resp. B)). 

Disclosure risk dominance characterizes anonymization methods that will consistently 

ensure greater levels of permutation distances (and thus levels of protection against dis-

closure risk) from the mean to the bottom of their distribution. In practice, that means 

that whatever the aversion the agents involved in the data dissemination may have, a 

dominant method will ensure unanimity regarding its performance against disclosure 

risk. 
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 Obviously, dominance may not always be reached in practice. For example, a 

method A can happen to dominate B over -4≤ α ≤ 1 but being dominated by B over -

∞ ≤ α < −4. In that case, that means that the use of A is advisable for small up to me-

dium disclosure risk aversion, while for strong aversion B is more advisable. As a re-

sult, one can learn about the relative performance of methods by investigating where 

dominance holds but also where it ceases to hold. 

 One final remark on 𝐷𝑗(α) is in order. The domain of variation of the disclo-

sure risk aversion parameter has been set to range from one and below, which does not 

define a L(p)-norm strictly speaking. In fact, it would be 𝐷𝑗(α) with α > 1 that would 

rigorously define a L(p)-norm, up to a factor √𝑛
𝛼

 [4], leading to a standard notion of 

distance for the vector rj. However, we argue that in the context of data anonymization, 

the interpretation of the parameter α is not suited to that case. With α > 1, the more α 

increases, the more weight is given to the largest permutation distances (and the more α 

approaches +∞, the more 𝐷𝑗(α) converges towards the largest permutation distance in rj, 

i.e. a Chebyshev distance is computed). That would mean that large permutations make 

up for the bulk of protection against disclosure risk, but it is small permutations that can 

lead to greater disclosure risk. As a result, 𝐷𝑗(α) makes use of the aggregation structure 

of a p-norm but does not define one strictly. This has no incidence on the validity and 

interpretation of the measure. 

 In this section, the measures 𝐷𝑗(α) and the concept of dominance have been 

introduced with the aim of offering a more granular view of disclosure risk, with an 

easy-to-grasp notion of disclosure risk aversion. Given that in the permutation paradigm 

all the necessary information is reduced to permutation distances, they provide a com-

mon and understandable language for performing meaningful comparisons of anony-

mization methods, independently of their analytical environment or the distributional 

features of the data. The class of 𝐷𝑗(α) measures formalizes the tool for such compari-

sons and is very general in its scope, in that it allows incorporating different judgments 
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about disclosure risk and characterising methods that can be viewed as unanimously 

superior to others. 

4.3 A class of universal measures of information loss based on 

relative permutation distances 

 A key feature of the permutation paradigm is that it preserves exactly the mar-

ginal distributions of the data (as Z is simply a permutation of X; see Chapter 2). Thus, 

information loss can only come from the alteration of the dependency among attributes. 

Thus to achieve an exact preservation of multivariate distributions (here bivariate distri-

butions), the same permutation patterns must be applied to some block of attributes. In 

fact, any multivariate anonymization method can be viewed as a block permutation of 

attributes. It is a simpler view by comparison to the current multivariate anonymization 

methods available in the literature, which can be analytically complex [26]. Of course, 

the exact preservation of a multivariate distribution may impinge on the level of privacy 

achieved by the anonymized data. Additionally, it has been previously empirically es-

tablished that obtaining a safe anonymized data set that is resistant to an attack via rec-

ord linkage necessitates an amount of masking (or equivalently, of permutations) pro-

portional to the dependency between the attributes of the original data set [13]. Ex-

pressed in the permutation paradigm, this means that the permutation patterns must be 

more dissimilar. 

 In practice then, the question turns out to be more about the extent of preserva-

tion of multivariate distributions and an inescapable trade-off: the less preservation 

there is, the more the anonymized data set will be judged as safe. For a dataset with a 

strong dependence between its attributes, the trade-off may be particularly severe. But 

for a dataset with weak attributes dependence it is also a non-trivial issue, as (while less 

likely to occur in practice) an anonymization method can create an artificial dependence 

between the attributes, which in a way is also a loss of information. For example, it is 

possible that two completely independent attributes in the original data happen to be, 
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through a peculiar permutation, both ranked in increasing order of magnitudes in the 

anonymized version, fooling the data user as to the real strength of the relationship. 

 To assess information loss, a first avenue is to compare the rank order correla-

tions between attributes j and j’ in the anonymized data and the original data set [39]. 

The most likely case is that the former will be lower than the latter, indicating an altera-

tion of the attributes’ relationship and thus a loss of information by a weakening of the 

dependence (but in less likely cases the reverse can also happen). For such comparison, 

the original level of rank order correlation provides the starting point from which infor-

mation loss is assessed. As a result, it will differ according to each couple of attributes 

considered, which is rather inconvenient. Also, and for the same reason outlined above, 

an implicit and specific weighting structure is given to large ranks differences when 

using rank order correlation. Again, different data users can have different views about 

distances when assessing information loss. As for disclosure risk, this can be formalized 

through the concept of aversion to information loss (or stated otherwise, of information 

awareness): 

Definition 4.3: For two attributes j and j’ in the permutation paradigm, 

aversion to information loss is the preference toward large relative permu-

tation distances for the evaluation of this loss. 

 Thus a more general approach is to consider the degree of similarity between 

the permutations that took place for the two attributes and to allow different weights for 

different relative distances. To do so, it can be observed that a vector Δ(rk) of differ-

ences between the vectors rj and rj’ is a vector of dissimilarity between the anonymiza-

tion procedures that have been applied to the couple of attributes k=(j, j’) (with j≠ j’). 

When each of the components of Δ(rk) are equal to zero (here again zero values in Δ(rk)  

will be assigned, without loss of generality, an infinitesimally small value ε>0), j and j’ 

have been permuted the same way; the permutation patterns applied to them are identi-

cal, despite the fact that the anonymization methods used can be different in practice. 

There is no loss of information as the joint distribution of j and j’ is preserved. But 
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when Δ(rk) has some non-zero elements, information has been modified. This leads to 

the following proposition: 

Proposition 4.2: For two attributes j and j’ of a data set Y(n,p), a quantitative 

measure of information loss in the permutation paradigm is given by: 

𝐼𝑘(𝜃) = [
1

𝑛
∑𝑎𝑏𝑠(𝛥𝑟𝑘(𝑖))

𝜃

𝑛

𝑖=1

]

1/𝜃

 𝑓𝑜𝑟 𝜃 ≥ 1  

where 𝛥𝑟𝑘(𝑖) denotes the elements of Δ(rk)  and 𝜃 the parameter of aversion 

to information loss. 

 The measure 𝐼𝑘(𝜃) bears strong analytical similarities to 𝐷𝑗(α), but while the 

latter is concerned with average or small permutation distances across records for a giv-

en attribute, the former considers average or large relative permutation distances be-

tween two attributes across records. Note that this measure delivers a diagnosis inde-

pendently of the direction of the alteration of dependence between attributes, i.e. if de-

pendence has been weakened or strengthened as a result of anonymization. 𝐼𝑘(𝜃) = 0 

means no information loss, while for a given 𝜃, the larger 𝐼𝑘(𝜃) is, the more the rela-

tionship between attributes has been altered (and thus the more information has been 

lost in the process). It thus provides a general measure of information loss than can be 

applied to any anonymization methods. Note that 𝐼𝑘(𝜃) is a power mean but also de-

notes strictly a L(p)-norm of the vector Δ(rk)  up to the factor √𝑛
𝜃

. This factor allows 

performing a comparison independently of the size of the data set. Moreover, for two 

attributes with n records each, the maximum relative permutation distance for a record 

is n-1. Thus, re-scaling 𝐼𝑘(𝜃) by 1/n-1 will produce a measure of information loss that 

ranges between 0 and 1, which is convenient for comparison with 𝐷𝑗(α) as it can also 

range on the same scale (see above). 

 𝐼𝑘(𝜃)  aims at measuring the extent of dissimilarity that anonymization intro-

duced for j and j’, with 𝜃 capturing different emphasis on relative permutation distanc-

es; the greater 𝜃, the stronger the focus on large distances. In a similar fashion to disclo-
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sure risk, aversion to information loss accounts for the fact that different agents in-

volved in data dissemination can each have different perceptions of information loss. 

Typically, this aversion is likely to be stronger for data users than for data releasers. The 

parameter 𝜃 formalizes such diversity in tastes. As for 𝐷𝑗(α), it can also be used to un-

ambiguously rank couples of anonymization methods (or the same anonymization 

method with two different parametrizations) that perform better than others, by intro-

ducing the concept of dominance in information: 

Definition 4.4: For two attributes j and j’, two anonymization methods A 

and B are said to dominate (i.e. perform better than) two other methods C 

and D for the preservation of information if it holds that 𝐼𝑘(𝜃)
′ ≤

𝐼𝑘(𝜃)  ∀ 𝜃 ≥ 1, where 𝐼𝑘(𝜃)
′ (resp. 𝐼𝑘(𝜃) ) are the measures of Proposition 

4.2 computed on A and B (resp. C and D)). 

Information dominance characterizes anonymization methods that, when applied to two 

attributes, will consistently ensure lower levels of relative permutation distances (and 

thus a greater preservation of information) from the mean to the top of their distribution. 

In practice, this means that whatever the aversion to information loss agents involved in 

data dissemination may have, a dominant couple of methods compared to others will 

ensure unanimity regarding its performance in terms of information preservation. 

 Beyond establishing which couple of methods does best in preserving infor-

mation, 𝐼𝑘(𝜃) and information dominance can also be used to tune the extent of infor-

mation to be preserved. Under a different scenario of aversion to information loss, two 

anonymization methods can be evaluated ex-post in terms of information preservation 

through 𝐼𝑘(𝜃) and then be re-run to obtain the desired information loss. The permutation 

paradigm simplifies the implementation of multivariate scenario and the quantification 

of information loss in comparison to the current techniques available. 
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4.4 Experimental investigation 

 The goal of this section is to illustrate the use and effectiveness of the universal 

measures of disclosure risk and information loss developed above. The anonymization 

methods considered are some of the most popular, namely: independent additive noise, 

multiplicative noise and rank swapping. This selection is also representative of some of 

the diversity of principles used in microdata masking [26]. The experimental data set 

used is two attributes of the Census data set, observed over 1080 records. This data set 

has been taken to evaluate the properties of anonymization techniques in terms of dis-

closure risk and information loss numerous times in the literature [7]. 

 The experiment proceeded as follows: 

I. First, we generated the masked version of the data set using: additive 

noise with standard deviations equal to 50% of the standard deviations 

of the two attributes; multiplicative noises drawn from a uniform distri-

bution within the range (0.75,1.25); rank swapping [26] with a swap-

ping distance of 30%. For noise-based methods, the noise terms are 

generated independently for each attribute. 

II. We then reverse-mapped the masked data to compute the level of abso-

lute and relative permutations. 

III. From these levels, we computed the universal measures of disclosure 

risk and information loss 𝐷𝑗(α)  and 𝐼𝑘(𝜃)  for a quasi-continuum of 

aversion parameters, that is, by increments of 0.01. The results are dis-

played directly in the form of curves, with the aversion parameters on 

the x-axis and the value of 𝐷𝑗(α) (resp. 𝐼𝑘(𝜃)) for the evaluation of dis-

closure risk (resp. information loss) on the y-axis. Notably, this allows 

drawing conclusions using the dominance concepts developed above. 

IV. Given that all the methods considered involved randomness, this exper-

iment was replicated 100 times; the results thus report the average val-

ues of 𝐷𝑗(α) and 𝐼𝑘(𝜃) over the 100 replications. 
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 Figures 4.1 and 4.2 display the universal measures of disclosure risk for aver-

sion parameters ranging from 1 to -3, for the two attributes respectively. While additive 

noise and rank swapping offer a similar average level of absolute permutation distances 

(i.e. for 𝐷𝑗(1)) for both attributes, when the focus is progressively strengthened on the 

low permutation distances, the performances of the two methods happen to diverge rap-

idly, with noise addition offering no protection while data swapping consistently en-

sures permutation across all records. In fact, data swapping appears to strictly dominate 

noise addition as the level of absolute permutation achieved by the former is always 

greater than the latter for any level of risk aversion. As for multiplicative noise, it is 

dominated by noise addition and data swapping for both attributes. 

Figure 4.1: Disclosure risk assessment for the first attribute. 
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Figure 4.2: Disclosure risk assessment for the second attribute. 

 

 Figure 4.3 displays the universal measure of information loss for aversion pa-

rameters ranging from 1 to 10. As the three curves for the three methods do not inter-

sect, some dominance rules hold again. In fact, multiplicative noise dominates data 

swapping by providing the lowest levels of relative permutation distances across the 

range of aversion parameters, while data swapping dominates additive noise but appears 

to be dominated by multiplicative noise. From these results, we can conclude that by 

providing better protection against disclosure risk and better preservation of infor-

mation, rank swapping appears to outperform additive noise as an anonymization meth-

od in general, that is, whatever the degrees of aversion to disclosure risk and infor-

mation loss substantiated by the parameters α and 𝜃. On the contrary, the comparisons 

with multiplicative noise involve some trade-offs, as while being dominated by the two 

other methods for the protection against disclosure risks, it consistently provides lower 

levels of information loss. 
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Figure 4.3: Information loss between the two attributes. 

 

 As a result, the two classes of measures developed in this Chapter allow both 

the evaluation and comparison of any method. Given the fact that permutation appears 

to be the core principle of data anonymization, comparisons based on 𝐷𝑗(α) and 𝐼𝑘(𝜃) 

can be performed independently of the types of methods considered and the data upon 

which they are applied. In that sense, they embody a universal scope of application, 

while currently existing measures happen to be tied to their underlying parametrizations 

and the distributional feature of the data to be anonymized. To the best of the author's 

knowledge, this is the first time that such measures have been proposed in the literature. 

In the experiment considered, additive noise can be ruled out as an effective procedure. 

A large scale ranking of the variety of the methods currently available is an avenue for 

future research. 
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4.5 Measures of disclosure risk and information loss at the data 

set level 

 The class of disclosure risk measures introduced in Section 4.2 operates by 

attributes taken in isolation. While this is a standard approach, one may also be interest-

ed in having a quantification of the overall disclosure risk for a data set of p attributes. 

This kind of measure is in a way complementary to an assessment of disclosure risk 

attribute by attribute: while the latter is necessary to have a detailed view of the level of 

protection applied, which is likely to vary according to each attribute’s specificity and 

sensitivity, having a global view of the anonymized data set can be useful, not least for 

communication purposes. Considering as a starting point the measure 𝐷𝑗(α), which as 

outlined above bears close similarity with a L(p)-norm (i.e. a vector norm), for a data set 

with p attributes a possible overall measure can be constructed from a L(p,q)-norm (i.e. 

a matrix norm, see [23]): 

Proposition 4.3: For a data set Y(n,p), an overall quantitative measure of 

disclosure risk in the permutation paradigm is given by: 

𝐷(𝛼, 𝛽)  = [
1

𝑝
∑𝐷𝑗(𝛼)

𝛽

𝑝

𝑗=1

]

1
𝛽

 𝑓𝑜𝑟 𝛼 ≤ 1, 𝛽 ≤ 1 𝑎𝑛𝑑 𝛽 ≠ 0 

𝑎𝑛𝑑 𝐷(𝛼, 𝛽) =∏𝐷𝑗(𝛼)
1/𝑝

𝑝

𝑗=1

 𝑓𝑜𝑟 𝛼 ≤ 1 𝑎𝑛𝑑 𝛽 = 0 

 D(α, β) operates in two stages: it first measures disclosure risk for each attrib-

ute with 𝐷𝑗(α), then summarizes these p measures into a single one. Equivalently, it 

first aggregates the columns of the matrix formed by the collection of the p vectors of 

rank displacements rj and then aggregates the p measures. D(α, β) is based on the ex-

pression of a L(p,q)-norm but does not define one strictly due to the √𝑛
𝛼

 and √𝑝
𝛽

 factors 

and also the range of variation of (𝛼; 𝛽): following the same reasoning as for 𝛼  in 

𝐷𝑗(α), 𝛽 is set to range from one and below. This constraint is attached to the interpreta-

UNIVERSITAT ROVIRA I VIRGILI 
TOWARD A UNIVERSAL PRIVACY AND INFORMATION-PRESERVING FRAMEWORK FOR INDIVIDUAL DATA EXCHANGE 
Nicolas Ruiz 
 
 



Chapter 4: Universal measures of disclosure risk and information loss 

 

   

 47 

 

 

tion that can be given to the parameter 𝛽 in the context of data anonymization. 𝛽 = 1 is 

the benchmark case where all attributes in the data set are weighted equally: from a dis-

closure risk perspective, all attributes matter the same way. But when 𝛽 decreases, more 

weight is given to the lowest protected attributes in the dataset; in the limit case with 

𝛽 → −∞, the overall disclosure risk of the data set is assessed through the perspective 

of the least protected attribute (i.e. the one having the lowest 𝐷𝑗(α) value). As for 𝛼 in 

𝐷𝑗(α), 𝛽 in D(α, β) substantiates the variety of preferences in disclosure risk that users 

or releasers may have, but here this variety is expressed across attributes in the context 

of an overall diagnosis of disclosure risk for a data set.  

 Along the same lines, an overall measure of information loss for a data set can 

be constructed. Assuming that if in Y(n,p) its p attributes are to be masked, there are 

𝑗(𝑗 − 1)/2 potential sources of information loss (i.e. k distinct couples of attributes). 

Aggregating all these sources can be done by taking the norm of the matrix formed by 

the collection of the 𝑗(𝑗 − 1)/2  relative permutation distances vectors Δ(rk), which 

gives: 

Proposition 4.4: For a data set Y(n,p) with p attributes to be protected 

against disclosure risk, an overall quantitative measure of information loss 

in the permutation paradigm is given by: 

𝐼(𝜃, 𝜋) = [
1

𝑗(𝑗 − 1)/2
∑ 𝐼𝑘(𝜃)

𝜋

𝑗(𝑗−1)/2

𝑘=1

]

1
𝜋

 𝑓𝑜𝑟 𝜃 ≥ 1 𝑎𝑛𝑑 𝜋 ≥ 1 

𝐼(𝜃, 𝜋) also operates in two stages: it first measures information loss for every possible 

distinct couples of attributes, then summarizes these 𝑗(𝑗 − 1)/2 measures into a single 

one. Equivalently, it first aggregates the columns of the matrix formed by the 𝑗(𝑗 − 1)/

2  vectors of relative rank displacement Δ(rk) and then aggregates the collection of 

𝑗(𝑗 − 1)/2 measures. 𝐼(𝜃, 𝜋) is also based on the expression of a L(p,q)-norm and in 

fact does define one up to the √𝑛
𝜃

 and √𝑗(𝑗 − 1)/2
𝜋

 factors. In particular, the range of 
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variation of 𝜋 is interpretable in term of information loss. 𝜋 = 1 is the benchmark case 

where every couple of attributes in the data set are weighted equally and matter the 

same way in terms of information loss. When 𝜋 increases, more weight will be given to 

the couple of attributes with the largest information loss; in the limit case with 𝜋 → +∞, 

the overall information loss of the data set is assessed from the perspective of the least 

preserved couple of attributes (i.e. the ones having the highest 𝐼𝑘(𝜃) value). As for 𝜃 in 

𝐼𝑘(𝜃), 𝜋 in 𝐼(𝜃, 𝜋) substantiates the variety of preferences in information loss that users 

or releasers can have, but here such variety is expressed across attributes in the context 

of an overall diagnosis of information loss for a data set. 

4.6 Conclusion 

 In this Chapter, we have derived two general classes of disclosure risk and in-

formation loss measures, which we argued are easy to compute for most methods and 

data sets, and which are meaningful. These two classes are based on the aggregative 

structure of p-norms (albeit they do not always define p-norms strictly), and the degrees 

of these norms can be harnessed with an interpretation in terms of aversion. In the case 

of disclosure risk, the aversion translates to different emphases on the lowest permuta-

tion distances achieved among records for one attribute. For information loss, the aver-

sion translates in different emphases on the highest relative permutation distances 

among records between two attributes. While data releasers and users would similarly 

like to achieve the unattainable ideal of data with maximum protection against disclo-

sure risk and minimal information loss, in practice, they are likely to have different 

judgments regarding utility/risk trade-offs. The measures developed in this Chapter al-

low both the incorporation of this diversity and, importantly, communication about 

them, notably with the new graphical representations of risk and information proposed. 

In addition, these measures allow the derivation of unanimity of judgments following 

the concepts of dominance introduced. 
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5 A GENERAL CIPHER FOR 

INDIVIDUAL DATA 

ANONYMIZATION 

5.1 Introduction 

 The permutation paradigm unambiguously establishes a common ground upon 

which any anonymization method can be evaluated. However, this paradigm was not 

originally considered by its authors as a new anonymization method per se, but instead 

as a way to evaluate any method applied to any data set. This statement can be recon-

sidered. As will be proposed in this Chapter, the fact that it provides a post-

anonymization common ground makes it also suitable for an ex-ante approach to data 

anonymization where, in fact, anonymization can be performed directly from permuta-

tion. This is the objective of this Chapter, which develops a new approach to data anon-

ymization by proposing a general cipher based on permutation keys, bringing SDC 

closer to cryptography, and which appears to be equivalent to a general form of rank 

swapping [10,24]. Beyond the existing methods that this cipher can universally repro-

duce, it also offers a new way to practice data anonymization based on the exploration 
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of different permutation structures. This cipher can be used to perform anonymization in 

an ex-ante way instead of being engaged in several ex-post evaluations and iterations to 

reach the protection and information properties sought after. The subsequent study of 

the cipher’s properties additionally reveals some new insights into the nature of the task 

of anonymization taken at a general level of functioning. Finally, to make this cipher 

operational, this Chapter proposes the introduction of permutation menus in data anon-

ymization, where the universal measures of disclosure risk and information loss pro-

posed in the preceding chapter are used ex-ante for the calibration of permutation keys. 

To justify the relevance of their use, a theoretical characterization of these measures is 

also proposed. The contributions in this Chapter are currently under review (see [46]). 

5.2 Definition and properties of a cipher for data anonymization 

5.2.1 Data anonymization as a cipher 

 We start with a first proposition, which constitutes a direct consequence of the 

permutation-based paradigm: 

Proposition 5.1: For a data set X(n,p) with n records and p attributes 

(X1,..,Xp), its anonymized version Y(n,p) can always be written, regardless of 

the anonymization methods used, as: 

𝑌(𝑛,𝑝) = (𝑃1𝑋1, … , 𝑃𝑝𝑋𝑝)(𝑛,𝑝) + 𝐸(𝑛,𝑝) 

where P1,..,Pp is a set of p permutation matrices and E(n,p) is a matrix of 

small noises. 

Proposition 5.1 highlights the fact that because permutation appears to be the overarch-

ing principle ruling data anonymization, the functioning of any method can be ex-

pressed as a set of permutation matrices, plus a matrix of small noises. Despite the large 

heterogeneity in the methods currently available, e.g. rank-based, noise-based, cluster-

based, they can essentially all be viewed as the application of permutation matrices to 

the original data set. This proposition forms the basis upon which a cipher for data 
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anonymization can be built. However, it remains limited in the sense that the permuta-

tion keys are not isolated. Indeed, except in the particular case where all the pairwise 

correlations across the p attributes are equal to one, the set of P1,..,Pp matrices will not 

measure the amount of permutation. To do so, each attribute needs first to be sorted in 

increasing order, which can be viewed as preliminary permutations, then the levels of 

permutations aimed at anonymizing the data set are introduced, and finally the sorting is 

undone through the inverse permutation matrix of the first step. This leads to the follow-

ing proposition: 

Proposition 5.2: For a data set X(n,p) with n records and p attributes 

(X1,..,Xp), its anonymized version Y(n,p) can always be written, regardless of 

the anonymization methods used, as: 

𝑌(𝑛,𝑝) = (𝐴1
𝑇𝐷1𝐴1𝑋1, … , 𝐴𝑝

𝑇𝐷𝑝𝐴𝑝𝑋𝑝)(𝑛,𝑝) + 𝐸(𝑛,𝑝) 

where A1,..,Ap is a set of p permutation matrices that sort the attributes in 

increasing order, 𝐴1
𝑇,.., 𝐴𝑝

𝑇  a set of p permutation matrices that put back the 

attribute in the original order, D1,..,Dp is a set of permutation matrices for 

anonymizing the data and E(n,p) is a matrix of small noises. 

Proposition 5.2 describes the fundamental functioning of any anonymization method, 

with the permutation keys made explicit. Proceeding attribute by attribute, each is first 

permuted to appear in increasing order, then the key is injected, and finally it is re-

ordered back to its original form by applying the inverse of the first step (which in the 

case of a permutation matrix is simply its transpose). A small noise is also eventually 

added. Clearly, we have that 𝑃𝑗 = 𝐴𝑗
𝑇𝐷𝑗𝐴𝑗  ∀𝑗 = 1, … , 𝑝  with D1,..,Dp subsuming the 

properties of any anonymization method by capturing the amount of permutation per-

formed. For example, considering the following permutation matrix 𝐷𝑗  applied to a giv-

en attribute j: 
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(

 
 

0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0)

 
 

 

 and counting line by line how this matrix departs from the identity matrix: 

(

 
 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1)

 
 

 

i.e. how the 1’s have been shifted by assigning a negative (resp. positive) sign for a right 

shifting (resp. left shifting), one can conclude that the first record has been moved 4 

ranks down, the fourth 3 ranks up and the fifth 1 rank up, while the second and third 

records have been left in their original positions. These simple computations are a way 

of describing the functioning of any anonymization method, but in the language of per-

mutation. 

 Proposition 5.2 thus considers data anonymization at a general level of opera-

tion and, following the permutation paradigm, contains all currently existing methods. 

Interestingly, its nature is similar to the functioning of rank swapping, where data are 

first sorted in increasing order, permuted within a limited range and then re-ranked ac-

cording to their original values [26,24]. For example, consider the following permuta-

tion matrix for one attribute and 6 records: 

(

  
 

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0)

  
 

 

This matrix, when applied using Proposition 5.2, is a permutation key for rank swap-

ping with a swapping distance equal to one. Thus, data swapping has a functioning that 
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can in fact describe any anonymization method, while it is the swapping distance select-

ed that constrains the structure of the permutation keys. Other methods, such as noise- 

or cluster-based, will lead to a different permutation structure, but ultimately they all 

boil down to a form of general rank swapping. However, working directly with permu-

tation keys allows uncovering some permutation patterns that may not be mirrored by 

currently known techniques, which can potentially extend the set of anonymization 

tools available.  

 Now that a general key structure has been made explicit, we can define a ci-

pher for data anonymization: 

Proposition 5.3: The three-tuple 𝛤 = (𝛲, 𝛫, 𝛦) with the following conditions 

satisfied: 

 𝛲 is a finite set of possible original and anonymized data sets of 𝑛 ≥ 2 records 

and 𝑝 ≥ 1 attributes 

 𝛫  is the keyspace, a finite set of possible key groups k, each containing p 

permutation-based keys  

 For each key groups 𝑘 ∈ 𝛫  there exists a group of p permutation-based 

encryption rules 𝜀𝑘 ∈ 𝛦 , where each group 𝜀𝑘: 𝛲 → 𝛲  is a function such that 

𝜀𝑘(𝑥) = 𝑦 for ∀𝑥, 𝑦 ∈ 𝛲 

is a cipher for data anonymization. 

This proposition derives from Proposition 5.2 and establishes the whole task of data 

anonymization as a cipher composed of three entities. The first one is the set of possible 

data sets 𝛲 (i.e. the set of plaintexts in cryptography) of n records and p attributes, e.g. 

(X1,..,Xp), which also defines the set of possible anonymized data sets (i.e. the set of cy-

phertexts). The cipher is thus endomorphic [51]. It is indeed valid to define a cipher for 

data anonymization in the particular endomorphic case because, as outlined above, the 

essential principle of data anonymization is permutation. One can also add some small 

noises, which are in principle required to recompose exactly the outcome of some meth-
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ods (for example noise-based ones). But the small noises will not change any ranks and 

thus will not provide any additional protection against disclosure risk. Instead, they will 

alter the data in a small but unnecessary way that could be detrimental to information. 

For example, adding small noises will not exactly preserve the marginal distributions of 

a data set, though such preservation remains a desirable feature of any anonymization 

tools. Stated otherwise, in data anonymization it is desirable and somewhat intuitive to 

expect that any information loss must have as a counterpart improved protection. This is 

not the case for these non-rank perturbative small noises, as only permutations matter. 

Consequently, as they do not provide any additional protection but instead lead to su-

perfluous information loss, small noises can be disregarded from the definition of the 

cipher. Thus, and as for permutation ciphers in cryptography, the sets of plaintexts and 

cyphertexts are the same (while adding small noises would have made the two sets gen-

erally different). 

 The second entity of the cipher is the keyspace 𝛫. Here, it is important to note 

that a key is not defined as a single element, which is generally the case in cryptography 

but, following Proposition 5.2, as a group of p keys, i.e. (D1,..,Dp), with p being the 

number of attributes in the data set to be anonymized. Otherwise put, each attribute is 

equipped with its own key, i.e. a permutation matrix, but this is the group of these p 

keys that forms the key used for anonymizing the whole data set. As will be made clear 

below, the relative properties of the elements within the key group can be used to assess 

information loss, a feature that differentiates data anonymization from standard cryptog-

raphy.  

 Finally, the third element is the set of encryption rules, whereas for the keys an 

encryption rule is a collection of p specific rules for each attributes. From Proposition 

5.2, those rules are given by e.g. (𝐴1
𝑇𝐷1𝐴1, … , 𝐴𝑝

𝑇𝐷𝑝𝐴𝑝), and thus are all based on the 

products of permutation matrices. However, one crucial departure from standard cryp-

tography is that no decryption rules are postulated and nor are they necessary. As noted 

in Chapter 2, individual data exchange does not require decryption per se. Once data 

UNIVERSITAT ROVIRA I VIRGILI 
TOWARD A UNIVERSAL PRIVACY AND INFORMATION-PRESERVING FRAMEWORK FOR INDIVIDUAL DATA EXCHANGE 
Nicolas Ruiz 
 
 



Chapter 5: A general cipher for individual data anonymization 

 

   

 55 

 

 

have been anonymized with the desired levels of disclosure risk and information loss, 

they are meant to be released and used anonymized. The fact that decryption is not nec-

essary considerably reduces the potential practical difficulties in implementing the ci-

pher. For example, the problem of key exchange as in symmetric-key cryptography does 

not exist here. Moreover, in principle, one does not need to select only injective encryp-

tion functions to accomplish decryption in an unambiguous manner, albeit in practice it 

can be noted that because data anonymization relies on permutation, the encryption 

functions will necessarily be injective [51]. In any case, in the context of data anony-

mization, this concept appears to be irrelevant. 

5.2.2 Some general principles in data anonymization 

 Having defined a cipher that streamlines the permutation paradigm in data 

anonymization and that can universally mimic any masking method, we can now char-

acterize some of its properties that will de facto pervade the task of data anonymization 

in general. We start by a first property that establishes data independence in anonymiza-

tion: 

Property 5.1: Because it can be defined as a cipher, individual data anony-

mization can always be performed independently of the data to be anony-

mized. In particular, the distinction between a utility and privacy-first ap-

proach is fundamentally unnecessary. 

 This first property is a simple but nonetheless pivotal consequence that stems 

from the possibility of formulating the task of data anonymization as a cipher. It means 

that the keys, and thus protection, can be handled and calibrated independently of the 

data. This may be counter-intuitive to certain SDC practitioners, as most of the existing 

techniques and their performances are linked to the data upon which they are applied. 

For example, for multiplicative noise injection with a given parametrization, changes in 

the distributional characteristics of the data may have a large impact on the level of pro-

tection [47]. More generally, the parameter values of a given method may be a poor in-
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dicator of the protection level achieved, as it is the conjunction of these parameters and 

the distributional characteristics of the data that will ultimately deliver the protection 

level. This explains why a round of trial and error is generally necessary in data mask-

ing. Even in a privacy-first approach, ex-post disclosure risk analysis is advised to 

check if a sufficient level of protection has been effectively achieved. The permutation 

paradigm, and in this Chapter its formulation as a cipher, solves this issue, as the per-

mutation keys can be calibrated ex-ante with a given level of protection and thus of in-

formation that the encryption will automatically apply to, but independently of, the data. 

In particular, it turns out that both privacy and utility can be targeted simultaneously and 

one does not have to choose an approach ex-ante and check the other one (or even the 

two) ex-post. 

 Originally, the permutation paradigm was proposed to put the comparisons of 

different methods (and their different parametrizations) across different data sets on a 

common ground [39]. Thus, its main goal was the simplification of post-anonymization 

comparisons. But in fact nothing precludes, conceptually and practically, thinking about 

data anonymization only in terms of permutations. In turn, that means that permutation 

levels, and thus permutation keys, can be calibrated ex-ante to carry out anonymization 

instead of being retrieved ex-post to assess the effect of an anonymization method. Thus 

whatever the large heterogeneities in the analytical apparatus of SDC methods available, 

they all appear to have an underlying, common permutation-based structure that is inde-

pendent of the data upon which they are applied. 

Property 5.2: Information loss in data anonymization can only come from 

the alteration of the dependency among attributes, as the cipher 𝛤 requires 

a permutation key per attribute. 

 This property narrows the notion of information loss in data anonymization. As 

developed in Chapter 4, given the fact that the overarching principle of data anonymiza-

tion is permutation, marginal distributions are necessarily always preserved as small 

noise additions in the reverse mapping procedure are unnecessary. Although they can 
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still be considered, small noise additions are not a fundamental step for recreating the 

protection outcomes delivered by a method. As a result, the preservation of marginal 

distributions (non-disclosive in nature), a feature that could appear at first glance as a 

stringent requirement, is in fact implicitly fulfilled by any anonymization method. This 

property may also address some recurrent users’ concerns about the way data have been 

modified during the anonymization process, where the addition of noise is sometimes 

viewed as non-acceptable by some users [35]. But in fact, any method can ultimately 

preserve marginal distributions and thus can always be analyzed on the anonymized 

data set in the same way as on the original data. In the cipher Γ this fact is made clear by 

each attribute being equipped with its own permutation key, leaving the attributes’ dis-

tribution, taken in isolation, unchanged. Information loss can thus only occur from a 

change in the dependency among attributes, i.e. how attributes will be permuted relative 

to each other. 

Property 5.3: The compounding of two or more anonymization methods is 

always an inefficient procedure as the cipher 𝛤 is idempotent. 

 Relying on permutation Γ is idempotent, i.e. Γ × Γ = Γ. To see this, assume 

two unspecified anonymization methods applied sequentially on a given data set. Clear-

ly, each of them has an underlying permutation structure, i.e. they can be expressed re-

spectively as Γ1 = (Ρ, Κ1, Ε1) and Γ2 = (Ρ, Κ2, Ε2). The product cipher of  Γ1  and Γ2 , 

denoted Γ1 × Γ2, is defined to be the cipher (Ρ, Κ1 × Κ2, E) [50]. But, the product of two 

permutation matrices is always a permutation matrix [4]. Therefore, there is no point in 

encrypting the data set first with the key Κ1 and then with Κ2, as it could have been 

done directly using a permutation key equal to the product of  Κ1 and Κ2. In terms of 

anonymization, that means that compounding two methods necessitates two steps but 

cannot provide more protection than directly using a single step. Instead of targeting a 

protection level that is known to be reachable by the successive application of two 

methods (say, for example, additive noise addition then micro-aggregation), one can 

calibrate a group of permutation keys to reach this level directly. Consequently, the suc-
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cessive application of different methods is inefficient and anonymization can never 

reach different outcomes beyond the ones authorized within the set of all permutation 

keys. 

Property 5.4: The cipher 𝛤 is pure. Therefore, an adversary attacking an 

anonymized data set will always face the same kind of cryptanalytic prob-

lem, whatever the method used for anonymization. 

 Attacks on a data set to re-identify individuals are generally and realistically 

conceptualized through record linkage, which can be used in the context of any anony-

mization method and disclosure scenario [15]. Many different record linkage attacks 

have been suggested in the literature (see for example [16] for an in-depth comparison 

between distance-based and probability-based procedures), but Property 5.4 reduces the 

type of attacks that can take place on individual data to the same cryptanalytic problem. 

Because the cipher Γ is both endomorphic and idempotent, it is pure. But in a pure ci-

pher, all keys are essentially the same [50,27]: whatever key is selected for encryption, 

an attacker will in fact calculate the same ex-post probabilities of the plaintext. In data 

anonymization, this translates into the fact that different masking methods ultimately 

deliver the same kind of challenge for an attacker. Consider, for example, two arbitrary 

noise-based and rank-based methods, say additive noise addition and rank swapping. 

Because additive noise aims at altering the magnitude of the data, one could intuitively 

think that a distance-based record linkage attack would turn out to be more efficient 

than a rank-based attack, while the reverse would be true for data swapping. Yet this is 

not the case. Because the functioning of any method can always be fundamentally de-

scribed by an alteration of ranks through a pure cipher, it is ultimately rank-based record 

linkage attacks that are relevant for both, and in fact, for any anonymization methods.  

 Indeed, from a heterogeneous selection of methods it has been recently and 

experimentally remarked in the literature that rank-based record linkage attacks appear 

to seemingly and consistently outperform distance-based attacks [34]. While no firm 

explanation was proposed as to why this is the case, we believe that Property 5.4 sug-
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gests a response. However, it must be noted that this proposition does not convey any 

additional elements about how to define an adversary, notably which kind of back-

ground knowledge one must be empowered with to lead to a reasonable and realistic 

attack scenario, which is a long-standing issue in the literature [12]. What Property 5.4 

claims is just that whatever the background knowledge assumed, the task of cryptanaly-

sis is always the same and must be based on ranks. 

5.2.3 Remarks on the maximum-knowledge attacker model and the validity 

of the Kerckhoff’s principle in data anonymization 

 The issue of an attacker’s background knowledge has been recently pushed 

further in the literature through the notion of a maximum-knowledge attacker [12], 

which defines an attacker who knows both the original data set and its entire corre-

sponding anonymized version. This is a rather extreme configuration, unlikely to be 

mirrored by concrete situations, but it remains however conceptually very insightful, as 

anonymization that can pass the test of such a situation will in fact be able to pass any 

test. Note also that this concept provides an additional justification for the irrelevance of 

small noise additions in data anonymization, as a maximum-knowledge attacker can 

eliminate the small noise matrix of Proposition 5.2 (being able to perform reverse map-

ping himself), which leaves him to uncover the permutation keys only [12]. 

 The concept of a maximum-knowledge attacker is the equivalent of a known-

plaintext attack in cryptography. Other types of attack exist but carry less meaning in an 

individual data exchange. A cyphertext-only attack, where only the anonymized data set 

is available, is the opposite of a known-plaintext attack, and while the latter may be seen 

as too stringent, the former is too naïve [12]. As for chosen plaintext and cyphertext 

attacks, they are relevant only in cases in which the attacker can interact with the cipher. 

Note that a maximum-knowledge attacker, observing both the original data set and its 

anonymized version, has nothing to gain in terms of information. One can view his at-

tempt as purely malicious, trying to discredit the data releaser by revealing his permuta-

tion keys. 
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 Now, given the assumption that such a person might exist, this leads to one 

question: given his power, is the task faced by a maximum-knowledge attacker so diffi-

cult? The answer relies on a consideration that has not been made explicit in the formu-

lation of the cipher Γ: the record tracking numbers. Generally, data releasers can follow 

which anonymized record derives from which original record through a number that 

does not carry any information of any sort and is unaffected by encryption. Moreover, 

when the data are released, all numbers can be modified or deleted. But these numbers, 

known for practical purposes by the data releaser but not by the maximum-knowledge 

attacker, act in fact as a mask for the permutation keys. To make this clear, Table 5.1 

illustrates the attacker’s perspective, using a toy example. 

Table 5.1: Point of view of a maximum-knowledge intruder. 

 

Original dataset X 

  

Masked dataset Y 

         ID X1 X2 X3 

 

ID Y1 Y2 Y3 

         1 13 135 3707 

 

  8 160 3248 

2 20 52 826 

 

  20 57 822 

3 2 123 -1317 

 

  -1 122 248 

4 15 165 2419 

 

  18 135 597 

5 29 160 -1008 

 

  29 164 -1927 

 As previously mentioned, it is clear that the attacker can reverse-map the data 

and eliminate the small noise addition. In this example he has now to retrieve the per-

mutation key (made of three permutation matrices). In fact, he is already observing 

some permutation matrices, but those are masked by his ignorance of the tracking num-

bers, which marks the limit of his knowledge. More explicitly, for each attribute he is 

observing the product 𝐵𝐴𝑗
𝑇𝐷𝑗𝐴𝑗: because he has no clue as to who is who between the 
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original and the anonymized data, this is equivalent to assuming that, compared to the 

data releaser who obviously knows each and every term in the product 𝐵𝐴𝑗
𝑇𝐷𝑗𝐴𝑗 , the 

attacker is facing an additional, unknown layer of permutation expressed by 𝐵. He is 

therefore only observing the resulting permutations patterns from the product but not its 

decomposition. More precisely, despite his knowledge of 𝐴𝑗 and its transpose, the ma-

trix 𝐷𝑗  that he is trying to recompose is masked by 𝐵. As 𝐵 is also a permutation matrix, 

the attacker is observing an unknown permutation of the encryption keys. As a result, 

even with his postulated power, due to 𝐵 the attacker cannot avoid undertaking record 

linkage because 𝑛! possible permutation keys by attributes exist, and only one will be 

the correct key. 

 The fact that the knowledge of the permutation keys will necessarily be hidden 

when the cipher Γ is used makes the Kerckhoff’s principle fully relevant in data anony-

mization [12]. This principle states that the encryption method must be made available 

to the public while only the key must be kept secret. In data anonymization, the relevant 

key ultimately happens to be permutation, no matter how anonymization is practiced. 

Thus, that the cipher Γ has been used to protect the data can be made public, with the 

permutation keys remaining secret. Such a claim will not weaken the privacy guarantee 

offered by a data releaser but will contribute to greater clarity in individual data ex-

change, even in an environment comprised of maximum-knowledge intruders. 

 To summarize this section, we formulated data anonymization as an all-

purpose cipher that is able to replicate the core functioning of any anonymization meth-

od. The formulation in terms of a cipher allows deriving some properties which, while 

standard in cryptography, when applied in the context of data anonymization, deliver 

some general guiding principles that, to the best of the author's knowledge, have not 

been identified so far in the literature. Surely, additional principles could be derived. In 

particular, one could note that the cipher Γ is, theoretically speaking, a one-time pad 

[50]. A direct consequence of this is that in principle, perfect secrecy could be achieved 

in data anonymization [51]. However, this possibility is a theoretical curiosum which 
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has no empirical validity for at least two reasons, which we believe illustrate well the 

fundamental differences between cryptography and data anonymization. The first is 

that, as noted earlier, the notion of decipherment for individual data is not the same as in 

cryptography. While in the latter it took place when all the plaintext had been uncov-

ered, in the former it is the amount of correct matches in a record-linkage attack that 

matters, i.e. which pieces of plaintext have been uncovered, and it does not have to be 

all of them. So, even in a one-time pad some correct matches could still be claimed. 

Thus the notion of perfect secrecy has no real meaning in data anonymization, except if 

one requires that all records must be re-identified to qualify a data set as not secure. 

This is rather unrealistic. 

 The second reason is that, for Γ to be strictly qualified as a one-time pad then 

the key selection should be truly random. While in cryptography this is fully acceptable, 

in data anonymization it is not. In addition to providing some privacy guarantees to in-

dividuals in the original data, the anonymized data should also meet data users’ needs 

by providing some information. As a result, some structures and constraints must be 

applied to the permutation keys for the released data to be meaningful. The fact that in 

data anonymization the keys must be selected with both protection and information in 

mind precludes randomly generating them. In fact, this raises the question as to what 

should be the guidelines to calibrate the keys of the cipher in order to make it concretely 

usable. This will be discussed in the following section. 

5.3 Calibration of the cipher’s keys 

 In Chapter 4, power means have been proposed for the ex-post evaluation of 

disclosure risk and information loss, i.e. after having performed reverse-mapping for 

any method applied on any data set. But nothing precludes, neither conceptually nor 

practically, their use as ex-ante measures. In fact, it is one of the proposals of this Chap-

ter to use power means as a guidance to calibrate the cipher’s keys, as power means can 

be used equally effectively ex-ante or ex-post. However, before developing this notion, 
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we provide a novel theoretical characterization of power means which, we believe, of-

fers a powerful justification for their ex-ante use. 

5.3.1 A theoretical characterization of power means 

 Power means satisfy a set of basic properties and are already well-known out-

side the field of data anonymization [25]. Here, and in the context of this Chapter, de-

noting a distribution of permutation distances by p=(p1,…,pn), being relative or abso-

lute, J(p,α), the power mean of parameter α for the evaluation of p, satisfies the follow-

ing: 

 Neutrality in evaluation (NE): if q is a permutation of p, then J(q,α)= J(p,α) 

This condition ensures that all the information used to evaluate p is considered equally. 

 Size independence (SI): if q=(p,p,…,p) is a m-duplicate of p (with m≥2), then 

J(q,α)= J(p,α) 

This condition connects the comparability of J(p,α) across data sets of different sizes, by 

establishing the ground for comparison on a per record basis. 

 Normalization (NO): if pi= pj=a for i,j=1,…,n, then J(p,α)=a 

Normalization ensures that if all the permutation values in p are equal, then J(p,α) is 

equal to this permutation value. 

 First degree homogeneity (FD): if q=λp for a scalar λ>0 J(q,α)= λ J(p,α) 

If the levels of permutation are magnified by the same scalar, so is the power mean. 

 Continuity (CO): J(p,α) is continuous 

A standard assumption, continuity makes sure that the power mean does not change 

abruptly for small variations in p. 

 Sub-domain coherency (SC): For p’ and p of the same size and q and q’ of the 

same size, if J(p’,α) > J(p,α) and J(q’,α) = J(q,α), then J((p’,q’),α) > J((p,q),α)  
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Sub-domain coherency establishes that if the absolute or relative permutation distances 

from two sub-data sets change in a way that leads to an increase in the power mean in 

one and remains unaltered in the other, then the overall power mean must increase. Stat-

ed otherwise, if absolute permutation distances increase in one sub-set but remain un-

changed in the rest of the data set, then protection against disclosure risk must increase 

on the overall data set. Along the same lines, if relative permutation distances increase 

in one sub-set but remain unchanged in the rest of the data set, then information loss 

must increase in the overall data set. 

 The fact that the class of power means satisfies (NE), (SI), (NO), (FD), (CO), 

(SC) is trivial. However, less trivial is the fact that this is the only class of measures to 

do so: 

Theorem 5.1: An aggregative structure for the evaluation of disclosure risk 

and information loss satisfies (NE), (SI), (NO), (FD), (CO) and (SC) if and 

only if it is a power mean. 

Proof: For necessity, we left the proof to the reader. For sufficiency, we start by assum-

ing a function J(.) that satisfies (NE), (SI), (NO), (FD), (CO) and (SC). In what follows, 

permutation distances can be defined in relative or absolute terms indifferently.  

Consider the universe of all possible data sets of at least 3 records, i.e. n≥3, and pick in 

this universe four of them which, after anonymization, generate four distributions of 

permutation distances: p and q of size m<n, and p’ and q‘ of size m’=n-m. Then, as-

sume that J(p,p’) ≥ J(q,p’). (SC) precludes having J(p) < J(q), which thus implies J(p) ≥ 

J(q). If this inequality holds strictly, then by (SC) we have J(p,q’) ≥ J(q,q’). But if ine-

quality is not strict, then by (SC) J(p,q’) < J(q,q’) does not hold because J(p,q,q’) < 

J(q,q’,p) would contradict (NE). As a result, we have J(p,p’) ≥ J(q, p’) ⇒ J(p,q’) ≥ J(q, 

q’). That means, bearing in mind that J(.) is assumed to verify (CO), that J(.) is strictly 

separable in every data set partition, which implies, following [5], that J(p) can be ex-

pressed as: 
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𝐽(𝑝) = 𝛧𝑛 (∑𝛺𝑛(𝑝𝑖)

𝑛

𝑖=1

) 

for every p of size n and with 𝛺𝑛(. ) continuous and 𝛧𝑛(. ) continuous and strictly in-

creasing. 

So far, what has been demonstrated is that (SC), (NE) and (CO) leads inevitably to a 

separable function. Now, what follows works along the same line as [2], which uses 

separabality to characterize power means.  

By (NO) we have 𝑎 = 𝛧𝑛(∑ 𝛺𝑛(𝑎)
𝑛
𝑖=1 ) for a>0, which leads to 𝛧𝑛

−1(𝑎) = 𝑛𝛺𝑛(𝑎). As-

suming 𝛨𝑛 = 𝛧𝑛
−1(𝑎) with 𝛨𝑛(. ) continuous and strictly increasing, 𝐽(𝑝) can be rewrit-

ten as: 

𝐽(𝑝) = 𝛨𝑛
−1 (

1

𝑛
∑ 𝛨𝑛(𝑝𝑖)
𝑛
𝑖=1 ) for every p of size n≥3 

 From this last equation assume 𝛨 = 𝛨4 and m=4n. We can write: 

𝛨(𝐽(𝑝)) = 𝐻 [𝛨𝑚
−1 (

1

𝑚
∑𝛨𝑚(𝛨

−1(𝛨(𝑝𝑖))

𝑚

𝑖=1

)] 

= 𝛩𝑚
−1 (

1

𝑚
∑ 𝛩𝑚(𝛨(𝑝𝑖))
𝑚
𝑖=1 ) with 𝛩𝑚(. ) = 𝛨𝑚(𝛨

−1(. )) strictly increasing and contin-

uous  

Once again, we have 𝛩𝑚(𝑎) = 𝑎 and in particular 𝛩4(𝑎). From here set p with n=2, p’ 

its 2-duplicate and p’’ its m-duplicate. (SI) implies (with in what follows 𝑤𝑖 = 𝛨(𝑝𝑖)): 

𝛨(𝐽(𝑝′′)) = 𝛩𝑚
−1 (

1

𝑚
∑𝛩𝑚(𝛨(𝑝𝑖

′′))

𝑚

𝑖=1

) 

= 𝛩𝑚
−1(0.5 ∗ 𝛩𝑚(𝑤1) + 0.5 ∗ 𝛩𝑚(𝑤2)) = 𝛨(𝐽(𝑝′)) 

= 𝛩4
−1(0.5 ∗ 𝛩4(𝑤1) + 0.5 ∗ 𝛩4(𝑤2)) = 0.5 ∗ (𝑤1 + 𝑤2) 

Thus, 𝛩𝑚(. ) must satisfy: 
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0.5 ∗ 𝛩𝑚(𝑤1) + 0.5 ∗ 𝛩𝑚(𝑤2) = 𝛩𝑚(0.5 ∗ (𝑤1 + 𝑤2)) 

This last equation is a Jensen’s functional equation having the following solution [1]: 

𝛩𝑚(𝑏) = 𝑎𝑚 ∗ 𝑏 + 𝑐𝑚 for some scalars 𝑎𝑚 and 𝑐𝑚. 

This solution implies for m=4n: 

𝛨(𝐽(𝑝)) =
1

𝑚
∑𝐻(𝑝𝑖)

𝑚

𝑖=1

 

Now, for a given data set with n≥1 and its four-duplicate, with p and p’ the respective 

distribution of permutation distances, it holds by (SI) that 

𝛨(𝐽(𝑝)) = 𝛨(𝐽(𝑝′)) =
1

𝑛
∑𝐻(𝑝𝑖)

𝑛

𝑖=1

=
1

4𝑛
∑𝐻(𝑝𝑖

′)

𝑚

𝑖=1

 

In turn, this implies that:  

𝐽(𝑝) = 𝛨−1 [
1

𝑛
∑𝐻(𝑝𝑖)

𝑛

𝑖=1

] 

Now, consider a data set with two observations and a scalar 𝜗 > 0. By (FD) and the 

equation above it holds that (with in what follows 𝑤𝑖 = 𝛨(𝑝𝑖), meaning that 𝛨−1(𝑤𝑖) =

𝑝𝑖): 

𝛨[𝜗𝛨−1(0.5 ∗ 𝛨(𝑝1) + 0.5 ∗ 𝛨(𝑝2))] = 0.5 ∗ 𝛨(𝜗𝑝1) + 0.5 ∗ 𝛨(𝜗𝑝2) 

⟹𝛨[𝜗𝛨−1(0.5 ∗ 𝑤1 + 0.5 ∗ 𝑤2)] = 0.5 ∗ 𝛨(𝜗𝛨
−1(𝑤1)) + 0.5 ∗ 𝛨(𝛨

−1(𝑤2)) 

⟹𝛨𝜗[𝛨−1(0.5 ∗ 𝑤1 + 0.5 ∗ 𝑤2)] = 0.5 ∗ 𝛨
𝜗(𝜗𝛨−1(𝑤1)) + 0.5 ∗ 𝛨

𝜗(𝛨−1(𝑤2)) 

with 𝛨𝜗(𝑎) = 𝛨(𝜗𝑎) for a>0 

Now, assuming 𝐿𝜗(𝑎) = 𝛨𝜗(𝛨−1(𝑎)) we have: 

𝐿𝜗(0.5 ∗ 𝑤1 + 0.5 ∗ 𝑤2) = 0.5 ∗ 𝐿𝜗(𝑤1) + 0.5 ∗ 𝐿
𝜗(𝑤2) 

Following [1] the solution to this Jensen’s functional equation is: 
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𝐿𝜗(𝑏) = 𝑥𝜗 ∗ 𝑏 + 𝑦𝜗 for some scalars 𝑥𝜗 and 𝑦𝜗. 

Now, using H(b)=a it holds that: 

𝐻(𝜗𝑏) = 𝑥(𝜗)𝛨(𝑏) + 𝑦(𝜗) 

Following [19] the solution to this functional equation is: 

𝐻(𝑏) = {
𝑔 ∗ 𝑏𝛼 + ℎ 𝑓𝑜𝑟 𝛼 = 0
𝑔 ∗ 𝑙𝑛 𝑏 + ℎ 𝑓𝑜𝑟 𝛼 ≠ 0

 

But given that 𝐽(𝑝) = 𝛨−1 [
1

𝑛
∑ 𝐻(𝑝𝑖)
𝑛
𝑖=1 ] we thus have: 

𝐽(𝑝, 𝛼) =

{
 
 

 
 
(
1

𝑛
∑𝑝𝑖

𝛼

𝑛

𝑖=1

)

1
𝛼

 𝑓𝑜𝑟 𝛼 ≠ 0

∏𝑝
𝑖

1
𝑛

𝑛

𝑖=1

 𝑓𝑜𝑟 𝛼 = 0

 

 Thus, 𝐽(𝑝, 𝛼) is a power mean, which completes the proof. 

 This result establishes power means as the only aggregative structure which, 

alongside a set of standard properties, satisfies sub-domain coherency. It is a result valid 

beyond the context of data anonymization, in fact for any vector of any quantity to be 

evaluated. It must also be emphasized that power means have been previously theoreti-

cally characterized in the literature [2], but by postulating at the onset the condition of 

separability. The result in this Chapter extends this previous work by demonstrating that 

separability appears to be in fact based on three conditions: neutrality in evaluation, 

continuity and sub-domain coherency. It is this last condition that is of particular and 

practical importance for data anonymization, as it turns out that only power means can 

coherently cope with anonymization by block of records. 
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5.3.2 Ex-ante calibration of permutation and a new approach to data anon-

ymization 

 As stated earlier, data anonymization is currently practiced using a variety of 

methods, often very heterogeneous in nature and with some of them now very well-

established in the literature. However, regardless of the many choices available, at a 

general level they are all used the same way (Figure 5.1). A method is selected with the 

anonymization practitioner having in mind either a utility-first or a privacy-first ap-

proach, and is applied to a data set. The outcome of this is then evaluated using specific 

measures of disclosure risk and information loss. But as mentioned earlier, because the 

methods’ parameters in themselves are a poor guide to inform about the final levels of 

privacy and information obtained, as for a given parametrization different outcomes are 

possible according to the distributional features of the data, a necessary and specific ex-

post checking step leads generally to some re-runs before reaching an anonymized ver-

sion of the data viewed as acceptable. Additionally, because the ex-post checking is 

specific, the comparison of performances across different methods is an arduous task 

[35]. 

Figure 5.1: Current approach to data anonymization. 

 

 We have already seen that the use of power means on absolute and relative 

permutation distances provides a ground for universal ex-post checking, based on the 

retrieval of the permutations pattern that a method has generated. But at the conceptual 
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OUTPUT: Anonymised data set

Potential re-

anonymization 

steps
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level, the fact of using a method that unavoidably leads to a permutations pattern (plus 

eventually but unnecessarily a small noise addition), or applying this permutation pat-

tern directly by using the cipher previously developed, is equivalent. These two ways 

will lead strictly to the same outcome in terms of risk and information. However, the 

latter appears to be more efficient, as once the permutations pattern has been set, it will 

be automatically translated into the final, anonymized data set. In fact, this will avoid 

the empirical ex-post checking stage and some eventual iteration to attain the desired 

levels of disclosure risk and information loss. This leads to a new approach for the prac-

tice of individual data anonymization (Figure 5.2). 

Figure 5.2: New approach to data anonymization. 

 

 Of course, for this new approach to be practical, it requires thinking about 

anonymization only in terms of permutation. The permutation paradigm already pointed 

out that any anonymization method is equivalent to applying permutations. This is in a 

way a new language for data anonymization. With classical methods it is primarily their 

parameters (for example, the variance for noise addition or the parameter α in Chapter 

3), and their varying strengths the language, which allow translating some targeted lev-

els of disclosure risk or information loss into practice, albeit due to the varying nature of 

the data this translation is rarely perfect in the end. Now, to set permutation as a lan-

OUTPUT: Anonymised data set

EX-ANTE PERMUTATION REQUIREMENTS
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guage to perform anonymization ex-ante, it is needed to expand its vocabulary so as to 

provide guidance on how to build the cipher’s keys. 

 As we saw in Chapter 2, a data exchange generally requires two groups of 

agents: a data provider and the data users. The former wants to disseminate some indi-

vidual data for some users that are in need of them. But prior to the exchange the pro-

vider, equipped with some raw, non-anonymized data, needs to secure them so that no 

individuals could be reasonably identified, while at the same time providing an accepta-

ble level of information. To achieve this, he will undertake data anonymization himself. 

Now, we can introduce a new third agent, the permutation provider, whose task is to 

build some suitable permutation keys. Clearly, this new agent will never need to see the 

data. He can just work in isolation on the keys, having as information the number of 

attributes and individuals in the data, signalled by the releaser. However, what the re-

leaser has to do is to formulate some desiderata on how he wants the data to be anony-

mized. This can be expressed through a permutation menu. 

 First, and for disclosure risk, the data releaser must advise the amount of per-

mutation for each attribute. For example, for a given attribute, he can advise that he 

wants all records permuted at least one time, while at the same time a certain average of 

permutations must be achieved. For other attributes, these constraints can be modified, 

for example not all individuals must be permuted, or the average amount of permutation 

can be lower or reinforced, for example every individual must be permuted at least two 

times and the average amount of absolute permutation must be high. Second, and for 

information loss, the releaser must notify which couple of attributes are critical in terms 

of information and must be preserved to a large extent, with a small average of relative 

permutation distance. The other less valuable couples in terms of information can then 

be relatively permuted higher on average or within a certain portion of the distribution 

of relative permutation distances. Obviously, all the requirements in a permutation 

menu must be formulated simultaneously, as the keys taken in isolation make up for 

disclosure risk, while it is their relative properties taken by pair that make up for infor-

UNIVERSITAT ROVIRA I VIRGILI 
TOWARD A UNIVERSAL PRIVACY AND INFORMATION-PRESERVING FRAMEWORK FOR INDIVIDUAL DATA EXCHANGE 
Nicolas Ruiz 
 
 



Chapter 5: A general cipher for individual data anonymization 

 

   

 71 

 

 

mation loss. The data releaser must then formulate all his demands simultaneously to 

the permutation provider and must pay attention to the coherence of his requests, bear-

ing in mind for example that two attributes cannot be protected with very dissimilar 

keys if at the same time their joint distribution has to be reasonably preserved. Keeping 

up with such coherence simply means coping with the unavoidable protec-

tion/information trade-off in data anonymization. In fact, in an ex-ante approach infor-

mation and privacy must be dealt with simultaneously. 

 Now, power means constitute a way to create a permutation menu. For differ-

ent scenarios of risk and information aversion, different levels of power means can be 

required ex-ante, from which the permutation provider will reconstitute the permutation 

keys. Of course, technically speaking it is clear that there may be no unique way to cre-

ate permutation matrices from various values of power means. This will not affect the 

overall level of protection and information for the anonymized data set, while of course 

it could change the property of verifiability by the subjects [12]: for a given set of pow-

er means values and the associated levels of protection and information, different keys 

could lead to a given individual being permuted differently. This is, however, a minor 

issue. There may also be no permutation keys that can be derived from a set of power 

means, but this problem can be avoided to begin with by ensuring the coherence of the 

permutation menu proposed. 

 While power means is one way of creating a permutation menu for then gener-

ating keys, it must be recognized that there may be other ways. However, we just saw 

that power means are the only measures that are sub-domain coherent, which is a pow-

erful justification for using them. Notably, and as far as big data are concerned, it can 

offer some obvious practical benefits. For instance, anonymization can be performed by 

blocks to ease the computational workload: when the data are split in m blocks, with 

some given levels of protection and information on m-1 blocks, the anonymization of 

the m
th

 block will lead to an increase in protection of the overall data set. Such coher-

ence cannot be ensured by other measures. 
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5.3.3 Examples of permutation menus 

 We now provide some empirical examples of permutation menus. Those men-

us are conceived independently of any method, i.e. based on power means guidance on-

ly. One might note, however, that Figures 4.1, 4.2 and 4.3 are in fact permutation menus 

retrieved from existing methods. The experimental data set used is, as in Chapter 4, two 

attributes of the Census data set observed over 1080 records. Let’s assume the follow-

ing: 

 For the first attribute, we require that all records must be permuted at least one 

time and that the average level of absolute permutation must be high (menu 1). 

Alternatively, we require a low level of average absolute permutation in 

conjunction with a large chunk of records not being permuted (menu 2). 

 For the second attribute, we require quite similar menus with a large chunk of 

records not be permuted at all, while we also set menu 1 to have an average level 

of absolute permutation almost twice as high than menu 2. 

 As a result, we aim at two different scenarios for information loss. With menu 1, 

the keys for the two attributes are relatively dissimilar in their profiles, not least 

because the first key must permute all records while the other not. However, 

with menu 2 the keys are relatively similar. Consequently, we purposefully relax 

the constraint of information preservation for menu 1 while menu 2 must 

preserve it to a great extent. 

 Figures 5.3, 5.4 and 5.5 display the resulting permutation requirements when 

one starts from power means desiderata, creates the associated vectors of absolute and 

relative rank displacements and then generates the underlying permutation matrices. 

Notably, one can see that in the second menu relative permutation distances are small 

for whatever scenario of aversion to information loss, while the contrary holds true for 

the first menu (Figure 5.5). This result is ensured by the similar absolute permutation 

profiles for the two attributes requested in menu 2 (Figures 5.3 and 5.4). Now, when 

thinking about data anonymization only in terms of permutation as a universal ap-
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proach, as we just did, the data can then be anonymized using the created keys and the 

cipher of Proposition 5.3. The ex-post properties in terms of disclosure risk and infor-

mation loss will be strictly the same as the ones determined ex-ante. 

Figure 5.3: Permutation menus for the first attribute. 
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Figure 5.4: Permutation menus for the second attribute. 

 

Figure 5.5: Permutation menus for the joint distribution. 
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5.4 Conclusion 

 The permutation paradigm was not seeking a new anonymization framework 

per se, but instead tried to establish an analytical environment for the comparison of 

currently existing methods in a sound and universal way. In this Chapter, we have chal-

lenged this limitation of scope by arguing that it can be as effective pre-anonymization 

as post-anonymization. Borrowing from cryptography, we have developed for the first 

time a general cipher for data anonymization. This cipher is able to replicate the out-

come of any method, and some of its properties outline general lessons for data anony-

mization. In particular, at a general level of functioning, anonymization can always be 

performed independently of the data to be anonymized. As a result, beyond being a uni-

versal mimicker, the cipher is a tool in itself that can be used through the exploration of 

permutation structures. We then provided some guidance about how to explore these 

structures, notably by proposing to calibrate permutation keys using power means, for 

which we also suggested a new theoretical justification. The tools proposed in this 

Chapter can allow for a more efficient, ex-ante approach to data anonymization. 
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6 LONGITUDINAL DATA 

ANONYMIZATION AS 

PERMUTATION 

6.1 Introduction 

 There are several types of individual data that can be published in a privacy –

preserving way for fulfilling analysis needs, e.g. relational data, transaction data, se-

quence data, trajectory data, graph data… These data types differ in structure, properties 

and the information they contain about individuals. The dissemination of any specific 

type entails its own privacy risks and information preservation requirements, which 

should ideally be considered by the SDC approach selected to perform anonymization. 

Among these different types, longitudinal data are of particular interest in many areas, 

e.g. economics, medical research, sociology, finance, marketing... A dataset is longitu-

dinal if it contains information on the same variables of interest about an individual at 

several points in time. For example, the information collected in clinical trials to evalu-

ate the impact of treatments, or the dynamic of an individual’s income, is longitudinal 

data. They are built from the pooling of observations on a cross-section of individuals 
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over several time periods, achieved by surveying a number of individuals and following 

them over time.  

 However, despite the fact that the SDC literature offers a wide variety of tools 

suited to different contexts and data types [21], there have been very few attempts to 

deal with the challenges posed by longitudinal data. To the best of the author's 

knowledge, only one approach, formulated in the context of medical data and based on 

global suppression and generalization, has been proposed so far [49]. Hence, the objec-

tive of this Chapter, building on the permutation paradigm, is to contribute to filling this 

gap by proposing a general framework and some associated metrics of disclosure risk 

and information loss tailored to the specific challenges posed by longitudinal data anon-

ymization. The contributions in this Chapter are currently under review. 

6.2 Longitudinal data 

 Longitudinal data are repeated observations of the same respondents that are 

published at different points in time and are ubiquitous in a wide range of fields: medi-

cine, public health, education, business, economics, psychology, biology, and more. 

Economists generally refer to it as panel data. They vary from cross-sectional data, i.e. 

where individuals are observed at a single point in time, and from time-series data, i.e. 

where one single entity is observed along a generally long time-span, in the sense that 

the defining feature of longitudinal data is that the multiple observations within several 

individuals can be ordered across time. Longitudinal surveys generally use calendar 

time, months or years, as the dimension separating observations on the same subject. 

Although the notion of time in longitudinal data can be quite intricate [53], in this Chap-

ter we will focus on repeatedly measured attributes that can be ordered along a line to 

describe the sequence of measurement. 

 Compared to cross-sectional data, longitudinal data provide some clear ad-

vantages as they are generally more informative. Cross-sectional distributions that look 

relatively stable can in fact hide a multitude of changes that can only be captured if the 

UNIVERSITAT ROVIRA I VIRGILI 
TOWARD A UNIVERSAL PRIVACY AND INFORMATION-PRESERVING FRAMEWORK FOR INDIVIDUAL DATA EXCHANGE 
Nicolas Ruiz 
 
 



Toward a universal privacy and information-preserving framework for individual data exchange 

 

 

78   

 

 

same set of individuals is followed over time. For example, spells of unemployment, job 

turnover, residential and income mobility are better studied with longitudinal data. Lon-

gitudinal data are also well suited to study states durations, e.g. disease, unemployment 

and poverty, and if the time dimension is long enough, they can shed light on the speed 

of adjustments to medical treatments or policy changes. For instance, in measuring un-

employment, cross-sectional data can estimate what proportion of the population is un-

employed at a point in time. Repeated cross-sections can show how this proportion 

changes over time. But only longitudinal data can estimate what proportion of those 

who are unemployed in one period can remain unemployed in another period. 

 Longitudinal data has the potential to be plagued by several problems, the main 

one being attrition. While nonresponse from individuals is a standard issue in cross-

sectional data, it is a more serious problem in longitudinal data because different peri-

ods of the data can be subject to varying rates of nonresponse from individuals. This 

issue generally leads to what is called an unbalanced longitudinal data set, i.e. not every 

individual is observed every year, while in the case of a balanced data set all individuals 

are observed at all periods. While the former case may seem more realistic, it remains 

barely considered in practice, and unbalanced data are generally made de facto balanced 

by not considering as relevant information individuals not observed across all periods. 

For example, econometric analysis techniques are much easier to implement and more 

developed on balanced than unbalanced data [55]. In this Chapter, we will assume that 

the longitudinal data set to be anonymized is balanced; anonymization on unbalanced 

data remains an avenue for future research. 

 Now, it is clear that the anonymization of longitudinal data poses some specific 

challenges. While it is beyond the scope of the Chapter to exhaustively investigate the 

possible forms of an attacker’s background knowledge specific to longitudinal data, we 

can outline the main ones. Indeed, such knowledge may be thought of with its own 

characteristics compared to other types of data, and in particular cross-sectional data, 

and thus will carry specific privacy challenges. For example, an adversary may know 
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that someone has transitioned from unemployment to employment between two time 

periods. Thus, while the employment status can be considered as a quasi-identifier in 

cross-sectional data, the change in employment status over time is also in itself a quasi-

identifier in longitudinal data and can be used as additional background knowledge for 

the attacker. 

 Along the same lines, changes in confidential attributes, such as salary, can 

also be viewed as a quasi-identifier: an attacker may, for example, not know the salary 

of an individual at two periods, but may know that it has increased significantly be-

tween the two and can use that information to conduct the attack. Thus, the individual 

may consider as a privacy risk the fact that someone can learn about his salary variation, 

even if his salaries at the two time periods are not disclosed, e.g. the two salary values 

have been masked enough to avoid attribute disclosure but the masked values can still 

increase over time, providing the intruder with insights. Thus longitudinal data general-

ly expand privacy threats. 

 Now, this widening is also a widening of information specific to longitudinal 

data. This is in fact what makes them specifically valuable in the first place, and must be 

preserved to a lesser or greater extent for the dissemination of longitudinal data to be 

useful. The trade-off between privacy and information is thus very direct in longitudinal 

data: the information on the dynamics of several variables at the individual level is val-

uable but is also problematic from a privacy perspective. The metrics developed later in 

this Chapter for the measures of disclosure risk and information loss in the context of 

longitudinal data will rely on this direct link. 

6.3 A permutation-based approach to longitudinal data anony-

mization 

6.3.1 Backward mapping of attributes in longitudinal data 

 We start with an observation regarding the relationship between two attributes 

that are followed over time and over the same set of individuals, i.e. the data are bal-
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anced, as assumed above. In fact, and while the context and the goal are different, it can 

be noted that one attribute observed during two periods t and t+1 can also always be 

reverse mapped in a way to express the attribute in t+1 as a function of itself in t. This 

approach, general in its scope, will lead to a simple characterization of the essential in-

formation and privacy risks specifically contained in longitudinal data. 

 By definition, to be followed over time, an attribute must keep the same form 

and definition, e.g. if it is categorical in t it must remain categorical in t+1 and track the 

same categories; if it is numerical in t it must remain numerical in t+1 and capture the 

same variable. Let denote by 𝑋𝑗,𝑡 = (𝑥1,𝑗,𝑡, … , 𝑥𝑛,𝑗,𝑡) the values taken by attribute j in t 

and 𝑋𝑗,𝑡+1 = (𝑥1,𝑗,𝑡+1, … , 𝑥𝑛,𝑗,𝑡+1) its values taken in t+1. As noted above, n is assumed 

to remain constant between t and t+1. Note that no assumption is made as to the nature 

of the attribute j, except that it can always be ranked: it can be numerical, categorical or 

nominal. The knowledge of 𝑋𝑗,𝑡 and 𝑋𝑗,𝑡+1 allows expressing the later as a function of 

the former by disentangling the nature of information in longitudinal data, using the 

following algorithm: 

Algorithm: backward mapping of attributes in longitudinal data 

Require: attribute in t 𝑋𝑗,𝑡 = (𝑥1,𝑗,𝑡, … , 𝑥𝑛,𝑗,𝑡) 

Require: attribute in t+1 𝑋𝑗,𝑡+1 = (𝑥1,𝑗,𝑡+1, … , 𝑥𝑛,𝑗,𝑡+1) 

For i=1,…,n do 

 Compute k=Rank(𝑥𝑖,𝑗,𝑡+1) 

 Set zi=Rank(𝑥𝑘,𝑗,𝑡) (where 𝑥𝑘,𝑗,𝑡 is the value of 𝑋𝑗,𝑡 of rank k) 

End for 

Return 𝑍𝑗,𝑡 = (𝑧1,𝑗,𝑡, … , 𝑧𝑛,𝑗,𝑡) 

The resulting backward mapped attribute 𝑍𝑗,𝑡 expresses 𝑋𝑗,𝑡+1 as a permutation of 𝑋𝑗,𝑡. 

Because the point values of the attribute may change over time, particularly in the case 
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of a numerical attribute, one must also add 𝐸𝑗,𝑡,𝑡+1, the difference between 𝑋𝑗,𝑡+1 and 

𝑍𝑗,𝑡, to get an exact recomposition of 𝑋𝑗,𝑡+1 as a function of 𝑋𝑗,𝑡. Then, and because 𝑍𝑗,𝑡 

is a permutation of 𝑋𝑗,𝑡, it always hold that (with 𝑃𝑇,𝑗 denoting a permutation matrix) :  

𝑋𝑗,𝑡+1 = 𝑃𝑇,𝑗𝑋𝑗,𝑡 + 𝐸𝑗,𝑡,𝑡+1                  (6. 1) 

It must be noted that the backward mapping procedure used here is analytically similar 

to the reverse mapping procedure developed in [39] (and outlined in Chapter 2), but 

serves a completely different purpose. It does not deal with anonymization but allows 

characterizing the two types of temporal information available in longitudinal data by 

viewing time as an anonymization procedure. Indeed, equation (6.1) disentangles the 

effect of time on an attribute, leading to two entities. 

 First, time modifies an attribute by changing the ranks of the individuals in a 

distribution. Because 𝑍𝑗,𝑡 is a permutation of 𝑋𝑗,𝑡, the change of ranks through time can 

always be captured by the permutation matrix 𝑃𝑇,𝑗. Note that, for convenience, we use 

here the compact notation for the permutation matrices, as in Proposition 5.1, but 𝑃𝑇,𝑗 

can also be decomposed following Proposition 5.2, to make explicit the key for tem-

poral permutations. Equation (6.1) means that the main feature of longitudinal data can 

always be represented by the same entities used to express any anonymization method. 

As will be apparent below, this will turn out to be convenient for thinking about longi-

tudinal data anonymization in a very general way. 

 The second type of information produced by time is what can be qualified as 

residual trajectories, i.e. changes in the attribute’s values within two ranks, and is cap-

tured by 𝐸𝑗,𝑡,𝑡+1. Such information is contextual in nature. For a categorical attribute, 

𝐸𝑗,𝑡,𝑡+1 will be by definition null. In the case of a numerical attribute, it will capture the 

effect of time on an attribute not due to rank changes. For example, if the salary of an 

individual moves from rank 4 to rank 7 in the salary distribution, then his residual tra-

jectory will be such that his salary will still be contained between the values of ranks 6 

and 8. By nature, this information is less relevant than the permutation patterns con-
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tained in 𝑃𝑇,𝑗: the major effect of time is rank changes. However, it cannot be entirely 

discarded: if, for instance, the salaries in an economy grow at the same pace for every-

one between two periods and no rank changes occur, this overall increase can only be 

expressed by 𝐸𝑗,𝑡,𝑡+1 . Thus, 𝐸𝑗,𝑡,𝑡+1  will notably capture how the entire distribution 

shifts through time, while 𝑃𝑇,𝑗 will always capture how individuals move within the dis-

tribution over time. 

6.3.2 The effect of anonymization on temporal information 

 Now, using equation (6.1), the anonymized versions of 𝑋𝑗,𝑡 and 𝑋𝑗,𝑡+1, denoted 

respectively by 𝑋𝑗,𝑡
𝐴  and 𝑋𝑗,𝑡+1

𝐴 , can always be written, whatever the anonymization 

methods considered for the two periods, as: 

𝑋𝑗,𝑡
𝐴 = 𝑃𝑗,𝑡𝑋𝑗,𝑡 + 𝐸𝑗,𝑡          (6.2) 

𝑋𝑗,𝑡+1
𝐴 = 𝑃𝑗,𝑡+1𝑋𝑗,𝑡+1 + 𝐸𝑗,𝑡+1            (6. 3) 

where  𝑃𝑗,𝑡 and 𝑃𝑗,𝑡+1 are, following the permutation paradigm, the matrices used to de-

scribe the core functioning of the anonymization method used for the attribute observed 

in t and t+1 respectively, and 𝐸𝑗,𝑡  and 𝐸𝑗,𝑡  are the eventual matrices of small noises. 

Here again, we use the notation of Proposition 5.1 for the sake of convenience, while 

the decomposition of Proposition 5.2 allows to extract the permutation keys from 𝑃𝑗,𝑡 

and 𝑃𝑗,𝑡+1. 

 From an information perspective, it is clear that equation (6.1) has to remain 

exactly conserved for the specific temporal information conveyed by the longitudinal 

data to stay untouched. Now, by substituting (6.1) in (6.3), using the expression of 𝑋𝑗,𝑡 

in (6.2) as a function of its anonymized version and keeping in mind that the inverse of 

a permutation matrix is its transpose, one gets after rearrangements: 

𝑋𝑗,𝑡+1
𝐴 = 𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡𝑋𝑗,𝑡

𝐴 + [𝑃𝑗,𝑡+1(𝐸𝑗,𝑡,𝑡+1 − 𝑃𝑇,𝑗𝑃′𝑗,𝑡𝐸𝑗,𝑡) + 𝐸𝑗,𝑡+1]              (6. 4) 
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As a result, if the two anonymization methods used in t and t+1 do not alter temporal 

information, it must hold, by comparison of (6.1) and (6.4), that: 

𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡 = 𝑃𝑇,𝑗               (6. 5) 

𝑃𝑗,𝑡+1(𝐸𝑗,𝑡,𝑡+1 − 𝑃𝑇,𝑗𝑃′𝑗,𝑡𝐸𝑗,𝑡) + 𝐸𝑗,𝑡+1 = 𝐸𝑗,𝑡,𝑡+1             (6. 6) 

Equations (6.5) and (6.6) describe how the two anonymization methods in t and t+1 

must be related to preserve the temporal information. First, the principal source of tem-

poral information 𝑃𝑇,𝑗 appears to be encased by the two permutation matrices of each 

method. Thus, for 𝑃𝑇,𝑗 to remain unaltered in the anonymized version of the data set, we 

see by (6.5) that the product of the anonymizing permutation matrix used in t+1, the 

permutation matrix capturing the effect of time, and the transpose of the anonymizing 

permutation matrix used in t must be equal to the permutation matrix capturing the ef-

fect of time itself (note that because it is a product of matrices the terms cannot be rear-

ranged conveniently). 

 Second, using the fact that small noises turn out to be irrelevant to describe the 

core functioning of an anonymization method, we can simplify equation (6.6) to: 

𝑃𝑗,𝑡+1𝐸𝑗,𝑡,𝑡+1 = 𝐸𝑗,𝑡,𝑡+1                  (6. 7) 

Thus, for the residual trajectories to be preserved 𝑃𝑗,𝑡+1 must be the identity matrix, i.e. 

no anonymization must take place at all on the attribute in period t+1. Therefore, for 

equation (6.5) to be verified, 𝑃𝑗,𝑡 must also be the identity matrix, i.e. no anonymization 

at all must also take place in period t. This rather pointless and unsafe setting can be 

ignored given the fact that residual trajectories do not constitute the bulk of the relevant 

longitudinal information. In the remainder of this Chapter, we will thus focus on equa-

tion (6.5) and its implication for longitudinal data anonymization. 
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6.3.3 Universal measures of disclosure risk and information loss for longi-

tudinal data anonymization 

 The preceding section outlined a general way to conceive longitudinal data 

anonymization when time is seen itself as an anonymization procedure. It can be applied 

to any kind of attribute and stipulates that, compared to cross-sectional data, longitudi-

nal data offer an essential but specific feature, i.e. the permutation matrix 𝑃𝑇,𝑗 describ-

ing the effect of time on one attribute. This matrix contains the main source of infor-

mation that must be preserved somehow but which  simultaneously entails some privacy 

risks. Thus, as stated above, the flip side of disclosure risk in longitudinal data is infor-

mation. A data user will appreciate knowing how the attributes’ values of some individ-

uals change over time, but a data releaser may worry that such information could con-

tribute to the knowledge of an intruder and that it may be operationalized for re-

identification. As a result, any modification of 𝑃𝑇,𝑗 will decrease disclosure risk but will 

also induce some information loss. The information/privacy trade-off is thus of a very 

direct nature in longitudinal data. 

 For data anonymization to take place, equation (6.5) can never hold in practice. 

The question is thus more about how 𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡 will depart from 𝑃𝑇,𝑗 . Bearing in 

mind that the result of the product of some permutation matrices is always a permuta-

tion matrix, this question can be assessed considering that the encasing of 𝑃𝑇,𝑗 by 𝑃𝑗,𝑡+1 

and 𝑃′𝑗,𝑡 will lead to a different pattern of rank changes over time. 

 For instance, assume that between t and t+1 an individual moved 4 ranks up in 

the distribution, i.e. in the rank displacement vectors derived from 𝑃𝑇,𝑗 this individual is 

assigned +4 (see Chapter 4). Assume also that after anonymization of the attribute in t 

and t+1, the same individual is characterized by having moved 5 ranks up, i.e. in the 

rank displacement vectors derived from 𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡, this individual is assigned +5. 

Anonymization has altered information but in a minor way, as the individual is now 

characterized by a move between t and t+1 close to his ex-ante anonymization move. 

However, it implies that this individual is not equipped with sufficient protection 
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against disclosure risk, because his move in the anonymized data is very close to his 

move in the original data, and such closeness can still lead to a privacy threat by enlarg-

ing, albeit now imperfectly, the background knowledge of an intruder. 

 Now, assume that the same individual is, after anonymization, characterized by 

having moved 100 ranks up. Here, anonymization has altered information in a major 

way as the individual is now characterized by a move between t and t+1 quite dissimilar 

to his real, ex-ante anonymization move. But it also implies that this individual is now 

equipped with sufficient protection against disclosure risk, as his move in the anony-

mized data is far from his move in the original data. Such dissimilarity can now only 

poorly enlarge the background knowledge of an intruder, if not fool him. 

 As a result, small differences between the rank shifting vectors derived from 

𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡 and 𝑃𝑇,𝑗 mean high disclosure risk and low information loss for the anon-

ymization of longitudinal data, while large differences mean low disclosure risk and 

high information loss. Thus, the values in the vector of differences between the rank 

shifting vectors retrieved from 𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡 and 𝑃𝑇,𝑗 will account both for disclosure 

risk and information loss. How to evaluate this vector of differences leads to the follow-

ing proposition: 

Proposition 6.1: Denote by 𝑟𝑇,𝑗 and 𝑟𝐴,𝑗 the rank shifting vectors retrieved 

from 𝑃𝑇,𝑗  and 𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡  respectively, and by 𝑟𝑇,𝐴,𝑗,𝑖 = 𝑟𝑇,𝑗 − 𝑟𝐴,𝑗 =

(𝑟𝑇,𝐴,𝑗,1, … , 𝑟𝑇,𝐴,𝑗,𝑛) the vector of differences between 𝑟𝑇,𝑗 and 𝑟𝐴,𝑗 over the n 

individuals for which the attribute j is available in t and t+1. The following 

aggregative structure:  

𝐽(𝛼) =

{
 
 

 
 
(
1

𝑛
∑(𝑎𝑏𝑠(𝑟𝑇,𝐴,𝑗,𝑖))

𝛼
𝑛

𝑖=1

)

1
𝛼

 𝑓𝑜𝑟 𝛼 ≠ 0

∏(𝑎𝑏𝑠(𝑟𝑇,𝐴,𝑗,𝑖))
1
𝑛

𝑛

𝑖=1

 𝑓𝑜𝑟 𝛼 = 0
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forms a class of both disclosure risk and information loss measures for the 

evaluation of longitudinal data anonymization. 

𝐽(𝛼) aims at measuring the extent of dissimilarity that anonymization introduced on 

temporal information, with 𝛼 capturing the different emphasis on the rank changes. It 

inherits the universal properties of the measures of disclosure risk and information loss 

developed in the context of cross-sectional data in Chapter 4, by making abstraction of 

the interplay between the distributional features of the data and the analytics of the 

methods. As a result, it can be applied to any kind of longitudinal data and for the ex-

post evaluation of any anonymization methods applied to any attribute followed over 

time. 

6.4 Experimental investigation 

 The objective of this section is to illustrate the use and effectiveness of the uni-

versal measures of disclosure risk and information loss developed above. The experi-

mental data set used is one attribute of the Census data set, observed over 1080 individ-

uals. The experiment is the following, assuming that the attribute from the original data 

is considered observed in period t: 

I. Time scenario 1: Given that in period t the attribute is closely distributed as a 

normal law, we randomly generated the attribute for t+1 from a normal law with 

the same standard error as in t but with a mean of 2% more, assuming that over-

all the attribute’s value has increased. 

II. Time scenario 2: We randomly generated some growth rates for each individual, 

constrained between -20% and 20%. 

III. Anonymization methods: for each time scenario, the attribute in t has been 

anonymized using additive noise with a standard deviation equal to 50% of the 

standard error of the original values in t. For the attribute in t+1, we considered 

two versions: noise addition with half of the standard error in t+1 or the same 

standard error as in t+1. 
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IV. We then computed 𝑟𝑇,𝐴,𝑗,𝑖, the values in the vector of differences between the 

rank shifting vectors derived from 𝑃𝑗,𝑡+1𝑃𝑇,𝑗𝑃′𝑗,𝑡 and 𝑃𝑇,𝑗, for each time scenario 

and anonymization procedures. 

V. Finally, from these values we computed J(α) for a quasi-continuum of α parame-

ters, that is by increments of 0.01. The results are displayed directly under the 

form of curves with the α parameters on the x-axis and the value of J(α) on the 

y-axis. 

 In this experiment, the purpose of having two time scenario aims at setting dif-

ferent longitudinal data configurations. In the first, the movements of individuals be-

tween t and t+1 are of larger magnitudes in terms of rank changes, while it is the reverse 

in the second. This can be seen in Figure 6.1, which shows the curves derived from ap-

plying power means under the same range of 𝛼 to 𝑎𝑏𝑠(𝑟𝑇,𝑗), i.e. the absolute values of 

the rank shifting vector derived from 𝑃𝑇,𝑗 . These curves demonstrate how time has 

moved individuals between t and t+1 and are a display of the essential time information 

contained in the longitudinal data, following the backward mapping procedure. In fact, 

for both curves a large chunk of individuals kept the same ranks between t and t+1, as 

both curves flat out at zero for α around -0.5. However, in the first time scenario the 

average level of rank changes (i.e. for α=1) is higher than for the second time scenario. 

When the focus is made on large rank changes (i.e. for α>1), scenario 1 also shows far 

greater magnitudes of rank changes. 
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Figure 6.1: Temporal information: time rank changes. 

 

 The effect of anonymization on longitudinal information can be seen in Figures 

6.2 and 6.3. The curves displayed are the outcomes of anonymization on both disclosure 

risk and information. Indeed, individual trajectories through the attribute space represent 

the essential source of information brought by longitudinal data, but are also a specific 

source of disclosure risk. Thus a curve close to the x-axis means that anonymization 

didn’t alter time rank changes: disclosure risk is high but information loss is low. Con-

versely, a curve far above the x-axis means that time rank changes have been substan-

tially distorted: disclosure risk is low but information loss is high. 

 One alternative way to consider this is viewing Figures 6.2 and 6.3 as two pan-

els, taking α=1 as a dividing line. On the left, one is looking at disclosure risk first (by 

focusing on measures according relatively more weight to less altered time rank changes 

but with less information loss), while on the right one is looking at information first (by 

focusing on measures according relatively more weight to more altered time rank 

changes but with less risk of disclosure). 
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Figure 6.2: Disclosure risk and information loss: time scenario 1. 

 

Figure 6.3: Disclosure risk and information loss: time scenario 2. 

 

 It seems that anonymization, when performed in a similar way between t and 

t+1, leads to less information loss and low protection against disclosure risk. This is a 

rather intuitive finding. When the attribute is anonymized with noise addition set as half 

of the standard error of the original data in t and t+1, the resulting curves are consistent-

ly lower than when the attribute in t+1 has been anonymized with the same standard 

error (Figures 6.2 and 6.3). It is thus clear that the dissimilarity in anonymization meth-
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ods or parametrization through time will lead to better protection (but more information 

loss) of longitudinal data. However, and whatever the dissimilarity in methods, a large 

chunk of individuals is left with their time rank changes unmodified: across time scenar-

io and anonymization methods, all curves are flat when crossing the geometric mean 

(i.e. for α=0) and below.  

 Finally, the dissimilarity in anonymization methods delivers the same out-

comes whatever the time scenario considered. In Figure 6.2, time rank changes are al-

tered in similar ways whether half or the same standard error of the original data is used 

to generate noise in t+1. This is also the case in Figure 6.3, albeit the differences are 

larger for the second time scenario when one is putting relatively more weight on the 

largest disruption in time rank changes. 

6.5 Conclusion  

 The objective of this Chapter has been to investigate longitudinal data anony-

mization. We first presented a backward mapping procedure that allows expressing any 

kind of attribute observed in t+1 as a function of its values in t. This procedure has noth-

ing to do with anonymization per se but allows viewing the supplementary information 

contained in longitudinal data, in particular compared to cross-sectional data, mainly as 

a permutation matrix. Thus the backward mapping procedure appears to analytically 

align the specificities of longitudinal data with the overarching tool of data anonymiza-

tion. 

 From this general view on longitudinal data, we then characterized the effect of 

anonymization on temporal information: anonymization of an attribute over two periods 

always appears to encase temporal information, leading to a specific alteration of time 

rank changes. This alteration can then be evaluated using a class of universal disclosure 

risk and information loss, two outcomes that are tightly linked in longitudinal data. This 

Chapter established such measures using a power-mean based aggregative structure, 

following Chapter 4, and provided some illustrations. 
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 Intended to be very general in its scope, this framework for longitudinal data 

anonymization supports a research question that has so far been over-looked in the SDC 

literature. 
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7 SYNTHETIC DATA AS 

PERMUTATION 

7.1 Introduction 

 While generally considered as part of the SDC literature, the publication of 

synthetic data is an appealing alternative to, but also a significant departure from, pure 

SDC methods. The idea is simple: instead of disseminating an anonymized version of a 

dataset, i.e. the original data altered by the application of a SDC method, some data are 

instead created by drawing from a model fitted to the original data. At first glance it is 

clear that, since all values are synthetic and none of the individuals in the original data 

are included, disclosure risk must be low if not zero. The original data are used to build 

the synthesizer, and thus the contribution of an individual to a data set is not pointless 

but is in fact used only as an informational basis. As a result, synthetic data seem to of-

fer a clear and almost definitive advantage compared to other SDC methods: it would 

seem that synthetic data can be made as close as possible to the original data without 

any strong consideration for disclosure risk, while for non-synthetic SDC methods simi-

larity to original data must be traded off against disclosure risk (and hence utility is nec-

essarily limited).  
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 However, further scrutiny appears to weaken the advantage offered by synthet-

ic data. For the sake of illustration, assume a dystopian society in possession of a perfect 

synthesizer, i.e. one that is able to perfectly replicate the statistical information observed 

over its population. In this case, an intruder using the synthetic data to conduct his at-

tack may be able to re-identify some individuals or acquire some sensitive information 

about them. From the point of view of the individuals, the fact that the information ac-

quired by the intruder is synthetic does not much alter the situation: their right to priva-

cy has been violated. While from a legal perspective this situation may not be unlawful 

[54], from an ethical perspective this can clearly be qualified as a negative outcome. Of 

course, in real life the perfect synthesizer does not exist. But the better the job done by 

the data releaser to create the synthetic data, the closer an attacker can be to obtaining 

valuable information about some respondents in the original data. Thus it can be rea-

sonably argued that, ultimately, synthetic data are somehow subject to the same kind of 

risk/information trade-offs faced by non-synthetic SDC methods. This is the purpose of 

this Chapter. Its contributions are currently under review 

7.2 Synthetic data 

 Synthetic data rely on a principle that is by nature similar to the imputation of 

missing values in a data set. The idea is to fit a model, called a synthesizer, to the origi-

nal data; values are then drawn from the synthesizer to replace original data rather than 

merely imputing missing data. Three types of synthetic data can be distinguished [26]:  

 Fully synthetic data: no original data are released and the values of all attributes 

across all records are synthetic. 

 Partially synthetic data: across some if not all records, only sensitive attributes 

are synthesized while, for example, quasi-identifiers are original values. 

 Hybrid data: original and fully synthetic data are combined, and the resulting 

data can be more or less similar to the original or fully synthetic data. 
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 The above distinction will not have any consequences in what follows in this 

Chapter, so we will use the term synthetic data indistinctively to point to any of the 

three types. However, what is common to them is obviously the pivotal role of the syn-

thesizer. Generating synthetic data worth disseminating is work-intensive, not least be-

cause creating a synthesizer that can replicate the intricate features of a micro data set 

necessitates some time and an involved level of expertise. It is beyond the scope of this 

Chapter to discuss the relative merits of the several approaches available to create a syn-

thesizer, as well as the criteria that can be used to gauge it (see [17] for an extensive 

discussion), but a general principle is that the level of information offered by a synthetic 

data set can be only as good as the quality of the underlying synthesizer used to gener-

ate it. In what follows, we will simply assume that the data releaser did a good enough 

job so that the resulting synthetic data are worth disseminating and being analyzed by 

users. 

 Regarding the practical characteristics of synthetic data, let us emphasize that 

they do not always come under the same format as the original data. First of all, they do 

not have to be of the same size, although having the same number of synthetic records 

as the number of original records seems a natural choice. To the best of the author’s 

knowledge, no firm guideline exists in the literature on this criterion (see, however, [43] 

for an empirical discussion). Depending on the context, an argument can be made for 

releasing synthetic data smaller than, same size as, or larger than the original data. Giv-

en this, we will assume that the number of synthetic records is the same as the original 

data. However, we will not restrict an equal number of synthetic and original records to 

the case, as one of the features of synthetic data is that they can come under any size. 

Specifically, we will outline below a pre-sampling procedure that can be applied before 

undertaking the evaluation of the privacy guarantees of synthetic data; this will allow 

gauging synthetic data sets of any size. 

 A second difference with non-synthetic SDC methods is that synthetic data 

generally lead to the dissemination of several data sets, while for the former methods 
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only one set is released. This practice is motivated by the goal of capturing the different 

designs of the original data [44]. Clearly, such a feature can quickly become cumber-

some for the users (as well as for the releasers, who need to generate the sets under var-

ious design configurations) and thus has to balance cost and accuracy [43]. Moreover, in 

the case where the original data are numerical and approximately multivariate normal, a 

sufficiency-based perturbation approach will perform at least as well as synthetic data 

for the preservation of information, while at the same time necessitating the release of 

only a single data set, which eases the tasks of the users [37]. 

 Here again, no firm guideline exists as to the right number of data sets to be 

released. The original proposal of releasing multiple data sets postulates as a rule-of-

thumb a typical number between 3 and 10 [44], but this number is in fact context-

dependent and may vary according to the analytical needs of the users and the properties 

of the employed synthesizer [42]. In this Chapter, we will assume that an arbitrary 

number M of synthetic data sets is released. As we will demonstrate, this number will 

turn out to be critical for the privacy guarantees of synthetic data. 

 Finally, in the introduction of this Chapter we briefly touched upon the fact that 

disclosure risk in fully synthetic data must always be by nature non-existent. Such a 

claim has been made on various occasions in the literature, e.g. [17,18,42,43], though it 

must be mentioned that this conclusion is less clear-cut for partially synthetic or hybrid 

data [17,18] (which by construction will contain some of the original data). In these last 

two cases however, it is again generally assumed that the risk is very low. Recent con-

tributions to the SDC literature concerning the notion of intruders cast a new light on 

this crucial feature of synthetic data. In this Chapter, we will use the notion of a maxi-

mum knowledge intruder presented in Chapter 5. But using synthetic data does have 

some implications for such an intruder. For non-synthetic SDC methods, the releaser 

has the advantage over the maximum-knowledge attacker in knowing the mapping be-

tween the tracking numbers in X and Y. The releaser can use this knowledge, for exam-

ple, to assess how an individual has been protected; even the individual herself can veri-
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fy her protection, if she can identify her own record in the non-synthetic data set. But 

for synthetic methods the mapping between original and synthetic records does not 

make much sense: a synthetic record does not derive from any specific single original 

record. Thus, the advantage of the releaser over the maximum-knowledge attacker van-

ishes: both possess the same level of knowledge. The privacy risk in synthetic data is not 

tied to a mapping: rather, it is connected with knowing that synthetic records exist that 

are very close to some original records. In fact, real and synthetic individuals are linked 

by information. This can be assessed by a multivariate version of a rank-based record 

linkage procedure that is developed below. 

7.3 Synthetic data from the maximum-knowledge attacker per-

spective 

7.3.1 Multiple reverse mapping of synthetic data 

 We begin by observing that a synthetic data releaser can always transform the 

data such that each attribute in each synthetic data set can be expressed as a permutation 

of the original data. This procedure, called reverse mapping, has been recently proposed 

in the literature for non-synthetic SDC methods [12,39]. This is the first time that it is 

developed for synthetic data. 

 Assume that a releaser generates 𝑚 = 1,… ,𝑀  synthetic data sets 𝑌𝑚 =

(𝑌1
𝑚,… ,𝑌𝑝

𝑚)  based on an original data set 𝑋 = (𝑋1, … , 𝑋𝑝) ; denote by 

𝑋𝑗 = (𝑥1,𝑗,… , 𝑥𝑛,𝑗) and 𝑌𝑗
𝑚 = (𝑦1,𝑗

𝑚 ,… ,𝑦𝑛𝑚,𝑗
𝑚 ) the values of attribute j=1,…,p over n rec-

ords in the original data and 𝑛𝑚 records in the m
th

 synthetic data set, respectively. No 

further assumptions are made, except that the values of an attribute can always be 

ranked, which is obvious in the case of numerical or categorical attributes, but also fea-

sible in the case of nominal ones [14]. 

 In particular, the synthetic data sets need not be of the same size as the original 

data set. However, in order to perform reverse mapping we need to compare sets of the 
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same size. This issue can be fixed as follows: when the synthetic data have more (resp. 

less) records than the original data, synthetic data can be randomly sub-sampled (resp. 

super-sampled):  

 When 𝑛𝑚 > 𝑛, a subset 𝑄𝑚 of size n is randomly selected; 

 When 𝑛𝑚 < 𝑛, a superset 𝑄𝑚 of size n is created by randomly generating n-n’ 

additional records from the original n’ ones; 

 When 𝑛𝑚 = 𝑛, the synthetic data are not modified and 𝑄𝑚 = 𝑌𝑚. 

Such a preliminary sampling procedure is viable provided that the original data set is 

large enough for it to be analytically interesting and representative. In the remainder of 

this Chapter, we will assume that 𝑛𝑚 = 𝑛,∀𝑚 = 1,… ,𝑀, keeping in mind that the pre-

sampling procedure can be eventually used to align the sizes of every synthetic data sets 

with the size of the original data. The multiple reverse mapping of synthetic data is then 

performed as follows: 

Algorithm: multiple reverse mapping of synthetic data 

Require: original data set X, with attributes 𝑋𝑗 = (𝑥1,𝑗,… , 𝑥𝑛,𝑗), for j=1,...,p 

Require: synthetic data sets 𝑌𝑚 , for m=1,..., M, where 𝑌𝑚  has attributes 

𝑌𝑗
𝑚 = (𝑦1,𝑗

𝑚 ,… , 𝑦𝑛,𝑗
𝑚 ), for j=1,...,p 

For m=1, ..., M do 

For j=1,...,p do 

For i=1,…,n do 

  Compute k=Rank(𝑦𝑖,𝑗
𝑚) 

  Set 𝑧𝑖,𝑗
𝑚= x(k,j) (where x(k,j) is the value of 𝑋𝑗 of rank k) 

  Next i 

Let 𝑍𝑗
𝑚 = (𝑧1,𝑗

𝑚 ,… , 𝑧𝑛,𝑗
𝑚 ) 
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Next j 

 Let data set 𝑍𝑚 = (𝑍1
𝑚
,… ,𝑍𝑝

𝑚) 

Next m 

Return data sets, 𝑍1, … , 𝑍𝑀 

The resulting reverse-mapped attribute j in the m
th

 synthetic data set 𝑍𝑗
𝑚

 expresses 𝑌𝑗
𝑚

 as 

a permutation of 𝑋𝑗. Since the point values of a synthetic attribute are unlikely to be the 

same as the point values of the original data, particularly in the case of numerical attrib-

utes, one must also add 𝐸𝑗
𝑚

, the difference between 𝑌𝑗
𝑚

 and 𝑍𝑗
𝑚

, to get an exact recom-

position of 𝑌𝑗
𝑚

 as a function of 𝑋𝑗. Then, and since 𝑍𝑗
𝑚

 is a permutation of 𝑋𝑗, it always 

holds that (with P𝑗
𝑚

 denoting a permutation matrix; see Proposition 5.1): 

𝑌𝑗
𝑚 = P𝑗

𝑚𝑋𝑗+𝐸𝑗
𝑚, ∀𝑗 = 1,… ,𝑝  and  ∀𝑚 = 1,… ,𝑀           (7.1) 

 Equation (7.1) shows that, conceptually, a synthetic data set is functionally 

equivalent to i) permuting the original data; ii) adding some noise to the permuted data. 

But, since the noise added has to be necessarily small, as it cannot by construction alter 

ranks, it does not offer protection of any sort against disclosure risk. In fact, it repre-

sents an information loss (as it modifies the marginal distributions of a data set) that is 

not matched by a decrease in disclosure risk: if, for example, an attacker learns from a 

synthetic data set that the income of an individual is 102 while in reality it is 100, priva-

cy has been violated in the same way as if the intruder was able to retrieve the exact 

value. Thus, the imprecision due to the small noise is not relevant for privacy. But any 

anonymization method, synthetic or not, must intuitively comply with the basic princi-

ple that any information loss triggered by anonymization must have a counterpart in 

terms of improved protection. Clearly, the small noise addition does not comply with 

this principle and can thus be discarded. As a result, the synthetic version of a data set 

invariably has an underlying structure that exactly preserves the marginal distributions 

of the original data (as they are simply a permutation of the original ones), but alters the 

relative ranks across attributes (see [46] and Chapter 5). Stated otherwise, what ulti-
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mately brings protection (and also information loss), even in synthetic data, are the 

changes in relationships between attributes. 

 At first glance, viewing synthetic data as a rank permutation may seem coun-

ter-intuitive. After all, as mentioned above, there is no mapping between the synthetic 

records and the original records. However, the synthetic data set tries to mimic the in-

formation in the original data set. In turn, this mimicked information can be expressed 

as a function of the original data, but with a different rank structure. Thus, at a funda-

mental level of functioning, a synthesizer can be viewed as a generator of different per-

mutation structures of the original data, or equivalently, as a way to generate some per-

mutation matrices for the cipher of Chapter 5. The generation of M synthetic data sets is 

thus equivalent to the generation of M permutation keys. As any non-synthetic SDC 

method is also equivalent to the generation of specific permutation matrices, the distinc-

tion between synthetic and non-synthetic approaches to anonymization does not seem a 

fundamental one. As a consequence, synthetic methods must undergo disclosure risk 

scrutiny just like their non-synthetic counterparts. 

 The ramifications of the above conclusion can be articulated further by re-

calling the example of a perfect synthesizer. In that case, with a perfect mimic of the 

information, all multivariate relationships must be exactly preserved. As a result, the 

permutation matrix has to be the identity matrix (which is a particular case of a permu-

tation matrix where no permutation takes place) and the synthetic data set is the same as 

the original data set. More realistically, the better a synthesizer is, the closer to the iden-

tity matrix each of the underlying permutation patterns contained in the multiple syn-

thetic data sets being generated will be. 

 Finally, while the purpose of this Chapter is to investigate the privacy guaran-

tee of synthetic data, it must be noted that the results developed above have broader im-

plications. A releaser could, for example, decide to release only reverse-mapped syn-

thetic data sets. This solution would not entail additional privacy risks as we saw, but 

will always offer superior information quality due to the exact preservation of the mar-
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ginal distributions. Each synthetic data set will thus convey a different rank structure 

according to the targeted design feature of the original data. Such a possibility is an av-

enue for future research. 

7.3.2 Multiple rank-based record linkage attack 

 The multiple reverse mapping procedure can be easily engineered by the data 

releaser because he has at his disposal both the original and the synthetic data sets, as in 

the case of non-synthetic SDC techniques [39]. But as we have argued, in the case of 

synthetic data, the releaser and the maximum-knowledge attacker are at the same level 

of knowledge. Thus the attacker, who tries to perform the equivalent of a known-

plaintext attack in cryptography, can also reverse map each synthetic data set, eliminate 

the small noise addition and ultimately be confronted with a collection of data sets that 

contain only the original data but with different permutation structures. Here, a funda-

mental departure from non-synthetic anonymization is that the attacker is entitled to 

several attempts to perform his attack. For instance, if trying to learn, say, the level of 

income of an individual, the attacker will try on the M data sets to retrieve the value. 

Intuitively, one can see that the question of privacy in synthetic data may be trickier 

than previously thought: the attacker, by retrieving M values of income during his at-

tack, could be confused (if the values are very different), comforted (if the values are 

close), or most likely be helped by narrowing the range of potential values. That is, it is 

in fact possible that synthetic data may entail a higher degree of privacy risk than non-

synthetic anonymized data (in the latter type of data, only one anonymized data set is 

typically released). 

 To mount the attack against synthetic data, the recently developed procedure of 

rank-based record linkage [34] can be repeated M times. We privilege this specific link-

age type ahead of other types, e.g. distance-based linkage or probabilistic linkage, be-

cause data anonymization can basically be described as rank perturbation. Thus, rank-

based record linkage appears to be the overarching procedure for evaluating disclosure 

risk (see [46] and Chapter 5 for a detailed explanation). 
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 Denote by 𝑂 = (𝑜𝑖𝑗) and 𝑆𝑚 = (𝑠𝑙𝑗
𝑚) the rank matrices of the original data set 

and of the m
th

 synthetic data set, respectively. The procedure of multiple rank-based 

record linkage on synthetic data is as follows: 

Algorithm: multiple rank-based record linkage 

Require: rank matrix 𝑂 of the original data 𝑠𝑒𝑡 

Require: rank matrices 𝑆1,… , 𝑆𝑀 of the M synthetic data sets 𝑌1,… ,𝑌𝑀 

For m=1,..., M do 

For i=1,…,n do 

For l=1,…,n do 

      Compute 𝑑𝑖𝑙
𝑚
= 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛[𝑎𝑏𝑠(𝑜𝑖1− 𝑠𝑙1

𝑚),… , 𝑎𝑏𝑠 (𝑜𝑖𝑝− 𝑠𝑙𝑝
𝑚)]  

Next l 

 Linked index of i in 𝑌𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑙(𝑑𝑖𝑙
𝑚
) 

 Next i 

Next m 

Return linked indices of i in the M synthetic data sets 

 This procedure is the multi-data set version of the procedure outlined in [34]. It 

reports the M possible matches of an original record with the M synthetic data sets. Sev-

eral criteria can be selected, such as the sum or the minimum of rank differences. To 

evaluate the privacy guarantees of non-synthetic methods, the criterion will generally 

depend on the method, e.g. the sum for noise addition or the maximum for data swap-

ping [34]. In the context of synthetic data, this choice is less clear and several criteria 

should ideally be considered. 
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7.4 Empirical illustrations 

 We now illustrate the concepts of multiple reverse mapping of synthetic data 

and multiple rank-based record linkage. The experiment is based, without loss of gener-

ality, on a small data set of 20 observations and three attributes, and proceeds as fol-

lows: 

 The assumed original data set is generated by sampling N(50,10
2
), N(500,50

2
) 

and N(2500,250
2
) distributions, respectively. The correlation coefficient 

between the first and the second attribute is 0.56, 0.25 between the first and the 

third, and 0.16 between the second and the third. 

 M=3 synthetic data sets are generated using a similar sampling procedure. The 

synthetic data are directly generated with the same size as the original data, 

although one can use the pre-sampling procedure developed above to eventually 

align the sizes of the former with the size of the latter. 

 For the sake of illustration, we consider three different levels of closeness to the 

original data. As stated previously, the goal of this Chapter is not to discuss the 

issue of how to generate a satisfying synthesizer. Rather, by using three different 

sets, we try to account for the difficulty in generating a satisfying synthesizer: 

o The first synthetic data set is very close to the original data (but does not 

replicate them perfectly). It was sampled from the same normal 

distributions from which the original data set was sampled. As a result, 

the joint relationships between the three attributes are slightly altered 

(the correlation coefficient between the first and the second synthetic 

attribute is 0.52, 0.18 between the first and the third and 0.21 between 

the second and the third). 

o The second synthetic data set also has the joint relationships between the 

three attributes slightly altered (the correlation coefficient between the 

first and the second synthetic attribute is 0.44, 0.25 between the first and 
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the third and 0.21 between the second and the third) but with the 

properties of the marginal distributions not exactly preserved, i.e. the 

attributes are sampled from N(45,8
2
), N(450,40

2
) and N(2200,200

2
) 

distributions, respectively. 

o The third synthetic data set has its marginal distributions sampled from 

the same as the second one. However, no particular effort is made to 

preserve the joint relationships (the correlation coefficient between the 

first and the second synthetic attribute is 0.17, 0.12 between the first and 

the third and 0.09 between the second and the third). 

 Table 7.1 shows the multiple reverse-mapping procedure for the first attribute 

in the three synthetic data sets. It can be seen that each synthetic data set is expressed as 

a permutation of the original data. As outlined in the previous section, these versions do 

not entail more disclosure risk than the first generated synthetic data sets, but offer an 

improved level of information by exactly preserving marginal distributions. 

Table 7.1: Example of multiple reverse mapping on synthetic data sets 

 

ID X1
Rank 

of X1
X1

Rank of 

X1

Reverse-

mapped X1

Small 

noises
X1

Rank 

of X1

Reverse-

mapped X1

Small 

noises
X1

Rank 

of X1

Reverse-

mapped X1

Small 

noises

1 38 3 46 9 51 -5 33 2 37 -4 38 4 39 -1

2 66 19 36 1 31 5 54 19 66 -12 46 14 57 -11

3 56 12 43 5 41 2 50 16 63 -13 42 8 50 -8

4 53 11 59 14 57 2 37 6 45 -8 41 6 45 -4

5 31 1 41 4 39 2 43 13 56 -13 49 16 63 -14

6 63 16 61 16 63 -2 45 15 61 -16 49 17 63 -14

7 39 4 44 7 49 -5 33 3 38 -5 56 20 70 -14

8 63 17 56 13 56 0 41 11 53 -12 42 9 51 -9

9 51 9 76 20 70 6 40 9 51 -11 45 12 56 -11

10 56 13 49 10 51 -2 37 5 41 -4 53 19 66 -13

11 70 20 65 17 63 2 37 4 39 -2 42 7 49 -7

12 61 15 59 15 61 -2 43 12 56 -13 35 3 38 -3

13 41 5 40 3 38 2 32 1 31 1 44 11 53 -9

14 49 7 43 6 45 -2 51 17 63 -12 47 15 61 -14
15 51 10 53 12 56 -3 58 20 70 -12 28 1 31 -3

16 64 18 51 11 53 -2 39 8 50 -11 50 18 64 -14

17 45 6 66 18 64 2 45 14 57 -12 33 2 37 -4

18 57 14 44 8 50 -6 39 7 49 -10 42 10 51 -9

19 37 2 72 19 66 6 41 10 51 -10 40 5 41 -1

20 50 8 39 2 37 2 53 18 64 -11 46 13 56 -10

Original data set Synthetic data set 1 Synthetic data set 2 Synthetic data set 3
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 Now, a maximum-knowledge attacker can exactly perform reverse mapping for 

all attributes and can attempt to recreate the correct linkage. A releaser can also do the 

same to gauge the privacy of his synthetic data sets before release.  Of course, identity 

disclosure may seem to be an odd notion for synthetic data but it is still conceivable: an 

attacker may try to identify which synthetic individuals are most similar to real individ-

uals, i.e. trying to retrieve some clones. However, we believe that more interesting in 

the context of synthetic data is attribute disclosure, i.e. when confidential information 

contained in the synthetic data sets can be revealed and will closely or exactly corre-

spond to the information of a real individual. 

 A maximum-knowledge attacker can conduct an attack on a specific attribute 

by ignoring his knowledge of this attribute in the original data; this is part of the flexi-

bility offered by the maximum-knowledge attacker model [13]. The maximum-

knowledge attacker can then use the multiple rank-based record linkage procedure to 

see how well he can recreate the ranks of the ignored attribute; that would simulate a 

partial-knowledge attacker who did not know the third original attribute and wanted to 

guess it. Table 7.2 shows the result of such an attack when knowledge of the third at-

tribute of the original data set is ignored and the sum of rank differences criterion is 

used to perform multiple rank-based record linkage on the first and second attributes. 
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Table 7.2: Example of multiple rank-based record linkage: third attribute disclo-

sure scenario 

 

 In this example, one can see that the outcome of an attack on synthetic data can 

either create confusion to a partial-knowledge attacker, or on the contrary help to nar-

row his knowledge of the attribute. Consider for example record no. 1 in the original 

data, with a value of rank 2 for the third attribute. What the attacker acquires infor-

mation-wise is incorrect in each of the synthetic data sets, with a possible rank identi-

fied as ranging between 8 and 11. In fact, in that case, having multiple sets consistently 

orientates the partial-knowledge attacker in the wrong direction. The same is true for 

several records, e.g. nos. 7, 15, 17. For these individuals, it can be reasonably argued 

that synthetic data sets offer more privacy in that they fool the attacker consistently 

across all sets released. 

ID X3
Rank 

of X3

Synthetic 

data set 1

Synthetic 

data set 2

Synthetic 

data set 3

1 2228 2 11 9 8

2 2299 4 12 18 4

3 2534 10 1 8 12,17

4 2526 9 5 17 11

5 2336 5 16 13 2

6 2598 13 19 19 3

7 2736 16 2 9 8

8 2557 11 12 3 10.9

9 2704 15 17,4,5 16 12,2

10 2513 8 5 17 13

11 2942 19 17 3 10

12 2737 17 18 7 3

13 2559 12 2 2 8

14 2809 18 8 16 16

15 2195 1 4.5 16 11

16 2655 14 6,19 11 4

17 2963 20 15 5 15

18 2298 3 3 7 7

19 2382 6 11 9 8

20 2428 7 15 15 3,14

Multiple rank-based record linkage: 

ranks identified by the intruder for 

X3

Original data set
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 Now consider records nos. 2 and 18. Respectively the third and first synthetic 

data sets perfectly disclose the attribute values of these records. But because the other 

sets point in another direction, the partial-knowledge attacker is again confused. As a 

result, synthetic data sets seem to provide better protection than non-synthetic ap-

proaches for these records. However, the partial-knowledge attacker can claim with rea-

sonable confidence that the real value for record no. 2 is between ranks 4 and 18 of the 

original data and for record no. 18 between 3 and 7. That is, he can claim that the eight-

eenth individual has a value for the third attribute comprised between 2298 and 2428. 

Clearly, he has still gained some information from the synthetic data sets. 

 The information can also be narrowed for records where no exact attribute dis-

closure occurs across the three synthetic data sets in the first place. Consider, for exam-

ple, records nos. 4 and 20. For the former, the attacker can claim that the real value is 

comprised between 2336 and 2737; for the latter, he can claim it is between 2298 and 

2704. 

 Alternatively, assuming that the maximum-knowledge attacker now ignores his 

knowledge of the first attribute in the original data leads to the similar presence of edges 

in information (Table 7.3). For example, for records nos. 9 and 18 the knowledge of the 

first attribute is narrowed to a significant extent. 
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Table 7.3: Example of multiple rank-based record linkage: first attribute disclo-

sure scenario 

 

 While these examples are meant to be illustrative, they tend to suggest that syn-

thetic data do not come completely disclosure risk-free. Releasing multiple data sets can 

in fact be viewed as an additional privacy threat. Even if, by definition, no real individ-

ual is present in the synthetic data, some clones nonetheless are, and these clones can be 

re-identified to acquire some information about certain real individuals. 

 Originally, the proposal of releasing multiple data sets aimed at enhancing the 

quality of information offered by synthetic data. But, considering that such a  practice 

can be cumbersome for users and that the quality of information can in some cases be 

made at least as well with a single data set [37], having multiple releases seems to entail 

some previously uncharacterized privacy risks that render this practice questionable. 

ID X1
Rank of 

X1

Synthetic 

data set 1

Synthetic 

data set 2

Synthetic 

data set 3

1 38 3 15,1 6 14

2 66 19 12 16,17 20

3 56 12 20 2,4 19,15

4 53 11 3,6 19 7,10

5 31 1 12,11 13 20

6 63 16 7 19,5 4,11

7 39 4 1,7,18 10 17

8 63 17 19 2,4 9

9 51 9 16 8 12

10 56 13 6 1,14 7,3

11 70 20 10 20 5

12 61 15 18 12,10 6

13 41 5 8,2 3 17,1

14 49 7 17 8 8

15 51 10 12 17 2

16 64 18 16 5 4

17 45 6 1 15 18

18 57 14 15 7 16

19 37 2 9 7 1,13

20 50 8 9,3,14 1,14 7,3,13

Original data set
Multiple rank-based record linkage: 

ranks identified by the intruder for X1
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7.5 Conclusion 

 It has frequently been claimed in the literature that disclosure risk in synthetic 

data must always be very low, if not zero. This Chapter challenges such statements. De-

spite the fact that no real individuals are included in a data release, at least as far as fully 

synthetic data are concerned, synthetic and real individuals remain linked by the infor-

mation they convey. If an attacker is able to retrieve some information on real individu-

als that happens to be correct, it ultimately does not matter that this information is based 

on simulated data. Even if such a disclosure does not fall under the purview of any leg-

islation on privacy, it can still be viewed as unethical insofar as it affects real individu-

als. 

 The objective of this Chapter was thus to investigate the privacy guarantee of 

synthetic data. Using recent advances in the literature on the definition of an attacker in 

data anonymization, we confronted synthetic data to an attack by a maximum-

knowledge intruder. While conservative in its stance, this model has the ability to estab-

lish a common benchmark to gauge the privacy guarantees of non-synthetic anonymiza-

tion methods. It thus seems plausible to consider synthetic data in the same context. Ac-

tually, the maximum-knowledge attacker is the counterpart of the popular and widely 

used notion of known-plaintext attack in cryptography. 

 We first presented an extension of a reverse-mapping procedure that can be 

performed both by an attacker and a synthetic data releaser. Under a reasonable assump-

tion as to the size of the synthetic data sets to be released, this procedure shows that any 

synthetic data set can invariably be expressed as a permutation of the original data, in a 

way similar to non-synthetic SDC techniques. This result offers applications beyond 

disclosure risk assessment. For one thing, it is always possible to release synthetic data 

sets with the same privacy properties but with an improved level of information, be-

cause the marginal distributions can always be preserved without increasing risk. On the 

privacy front, reverse mapping leads to the consequence that the distinction made in the 
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literature between non-synthetic and synthetic data is not so clear-cut. Both approaches 

must thus be evaluated against the same privacy challenges. 

 Next, we proposed an extension of the rank-based record linkage procedure 

that can also be performed both by the attacker and the synthetic data releaser. In partic-

ular, the latter can use it to assess the privacy guarantee of its synthetic data before re-

lease. This procedure shows that the practice of releasing several synthetic data sets for 

a single original data set gives rise to privacy issues that do not arise in non-synthetic 

anonymization (where typically only one anonymized data set is released). Indeed, the 

multiple releases can lead to better privacy guarantees, by confusing the attacker, or can 

facilitate attribute disclosure by helping the attacker narrow the range of the possible 

values that he is attempting to retrieve. An empirical investigation in the previous sec-

tion illustrated these issues. 
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8 CONCLUSIONS 

8.1 Summary of contributions 

 This thesis has dealt with privacy-preserving data publishing at a general level 

of functioning. Practitioners in this field currently benefit from a wide variety of meth-

ods and concepts available in the literature to foster dissemination and unleash new 

sources of information for the benefits of society at large. But such variety does not 

come without difficulties. Over the years, this literature has developed dynamically in 

numerous directions but with no overarching framework emerging. As a result, the cur-

rent diversity of concepts, models and tools available makes complicated the task of 

selecting the optimal analytical environment in which to conduct anonymization and to 

evaluate privacy and information outcomes, due to the multitude of available choices. 

 Relying on recent contributions from the literature which established permuta-

tions as the core functioning of data anonymization, our main contributions are as fol-

lows. 

 We have derived two general classes of disclosure risk and information loss 

measures, which we argued are easy to compute for most methods and data sets 

and can be used for the comparisons of any methods on any data sets. These two 
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classes are based on the aggregative structure of p-norms, i.e. power means, and 

the degrees of these norms can be harnessed with an interpretation in terms of 

aversion. In the case of disclosure risk, the aversion translates to a different 

emphasis on the lowest permutation distances achieved among records for one 

attribute. For information loss, the aversion translates to a different emphasis on 

the highest relative permutation distances among records between two attributes. 

In addition, these measures can derive unanimity of judgments following the 

concepts of dominance introduced. Finally, some graphical representations of 

disclosure risk and information loss can be derived from these measures, which 

we believe can ease communication around privacy and information’s outcomes. 

 We then brought data anonymization closer to cryptography. Borrowing from 

the latter, we developed a general cipher for data anonymization which leads to a 

new approach to data anonymization. This cipher is able to replicate the 

outcome of any method, while some of its properties outline general lessons for 

data anonymization. In particular, at a general level of functioning, 

anonymization can always be performed independently of the data to be 

anonymized. As a result, beyond being a universal mimicker, the cipher is a tool 

in itself that can be used via the exploration of permutation structures. We then 

provided some guidance as to how to explore these structures, notably by 

proposing to calibrate permutation keys using the power means-based measures 

developed in Chapter 4, for which we also suggested a new theoretical 

justification. We believe that this allows for a new and more efficient, ex-ante 

approach to data anonymization. 

 We then derived a general view on longitudinal data anonymization based on 

permutations. By noting that time can be conceived as an anonymization 

method, we presented a backward mapping procedure that allows expressing any 

kind of attribute observed in t+1 as a function of its values in t. This procedure 

allows: i) viewing the supplementary information contained in longitudinal data, 
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which has to be preserved but can also be a source of privacy risk, mainly as a 

permutation matrix; ii) analytically aligning the specificities of longitudinal data 

with the cipher developed in Chapter 5. From this approach, we then 

characterized the effect of anonymization on temporal information: 

anonymization of an attribute over two periods always appears to encase 

temporal information, leading to a specific alteration of time rank changes. This 

alteration can then be evaluated using the class of measures developed in 

Chapter 4. 

 Finally, we reconsidered the privacy guarantees of synthetic data. Despite the 

fact that no real individuals are included in a synthetic data release, synthetic and 

real individuals remain linked by the information they convey: if an attacker is 

able to retrieve some information about real individuals that happens to be 

correct, it ultimately does not matter that this information is based on simulated 

data. Thus through a permutation-based approach, we first demonstrated that the 

distinction made in the literature between non-synthetic and synthetic data is not 

so clear-cut and, as a result, both approaches must be evaluated against the same 

privacy challenges. We then proposed an extension of a recently developed 

rank-based record linkage procedure that can be used to assess the privacy 

guarantee of synthetic data. This procedure shows that the practice of releasing 

several synthetic data sets for a single original data set entails privacy issues that 

do not arise in non-synthetic anonymization. Indeed, the multiple releases can 

lead to better privacy guarantees, by confusing the attacker, or facilitate attribute 

disclosure, by helping the attacker narrow the range of the possible values that 

he is attempting to retrieve. 
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8.2 Publications 

 The publications supporting this thesis are: 

 ISI JCR Journals: 

o Nicolas Ruiz, "On some consequences of the permutation paradigm for 

data anonymization: Centrality of permutation matrices, universal 

measures of disclosure risk and information loss, evaluation by 

dominance", Information Sciences, Vol. 430–431, pp. 620-633, March 

2018. Impact factor: 4.832. (Contributions presented in Chapter 4) 

o Nicolas Ruiz, "A general cipher for individual data anonymization", 

under review for Information Sciences, 2018. Impact factor: 4.832. Arxiv 

link: https://arxiv.org/abs/1712.02557 (Contributions presented in 

Chapter 5) 

o Nicolas Ruiz, “A multiplicative masking method for preserving the 

skewness of the original micro-records”, Journal of Official Statistics, 

Vol. 28, No.1, pp. 107–120, 2012. Impact factor: 0.411. (Contributions 

presented in Chapter 3) 

 Lecture Notes in Computer Science: 

o Nicolas Ruiz, Krishnamurty Muralidhar and Josep Domingo-Ferrer, “On 

the privacy guarantees of synthetic data: a reassessment from the 

maximum-knowledge attacker perspective”, Lecture Notes in Computer 

Science, (Privacy in Statistical Databases - PSD2018), 2018. Submitted. 

(Contributions presented in Chapter 7) 

o Nicolas Ruiz, “A general framework and metrics for longitudinal data 

anonymization”, Lecture Notes in Computer Science, (Privacy in 

Statistical Databases - PSD2018), 2018. Submitted. (Contributions 

presented in Chapter 6) 
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 Other papers: 

o Nicolas Ruiz, “Universal measures of disclosure risk and information 

loss for individual data anonymization”, Proceedings of the 4
th

 URV  

Doctoral  Workshop  in  Computer  Science  and  Mathematics, 2017. 

8.3 Future work 

 From the contributions of this thesis, several avenues for new research can be 

pursued: 

 An inventory of popular SDC methods under different parametrizations and data 

contexts should be established, using the class of measures developed in Chapter 

4, in particular for benchmarking the values of these measures into existing 

practices. This could allow for characterizing the existing methods that are 

dominant in terms of disclosure risk and information loss, and in particular if 

some methods can be dominant in both, which could provide a strong rational 

for their use. 

 As data anonymization relies on the single principle of permutation, which could 

be phrased as a general principle as “to be protected, become someone else”, an 

intuitive privacy guarantee and thus a new privacy model around the cipher 

developed in Chapter 5 should be formulated. 

 Exploring the composition of an approach by permutation is warranted, i.e. 

when merging two data sets with certain permutation patterns, the result of the 

merge with its subsequent privacy and information guarantees should be 

identified. 

 The assessment of the notion of disclosure risk in longitudinal data 

anonymization should be deepened. In particular, how disclosure risk from time-

variant attributes relates and combines with disclosure risk stemming from time-
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invariant attributes, as generally longitudinal data sets contain both, should be 

examined. 

 The possibility of considering synthesizers as tools to generate different 

permutation patterns, which could offer some insights for non-synthetic 

anonymization techniques, should be assessed. 
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