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ABSTRACT/RESUMEN 

Abstract - Osteoporosis is the most common bone disease, with a 
significant morbidity and mortality caused by the increase of bone 
fragility and susceptibility to fracture. Dual Energy X-ray 
Absorptiometry (DXA) is the gold standard technique for osteoporosis 
and fracture risk evaluation at the spine. However, the standard analysis 
of DXA images only provides 2D measurements and does not 
differentiate between bone compartments; neither specifically assess 
bone density in the vertebral body, which is where most of the 
osteoporotic fractures occur. Quantitative Computed Tomography 
(QCT) is an alternative technique that overcomes limitations of DXA-
based diagnosis. However, due to the high cost and radiation dose, QCT 
is not used for osteoporosis management.  

In this thesis, a method providing a 3D subject-specific shape and 
density estimation of the lumbar spine from a single anteroposterior 
DXA image is proposed. The method is based on a 3D statistical shape 
and density model built from a training set of QCT scans. The 3D 
subject-specific shape and density estimation is obtained by registering 
and fitting the statistical model onto the DXA image. Cortical and 
trabecular bone compartments are segmented using a model-based 
algorithm. 3D measurements are performed at different vertebral 
regions and bone compartments. The accuracy of the proposed 
methods is evaluated by comparing DXA-derived to QCT-derived 3D 
measurements.  

Two case-control studies are also performed: a retrospective study 
evaluating the ability of DXA-derived 3D measurements at lumbar 
spine to discriminate between osteoporosis-related vertebral fractures 
and control groups; and a study evaluating the association between 
DXA-derived 3D measurements at lumbar spine and osteoporosis-
related hip fractures. In both studies, stronger associations are found 
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between osteoporosis-related fractures and DXA-derived 3D 
measurements compared to standard 2D measurements. 

The technology developed within this thesis offers an insightful 3D 
analysis of the lumbar spine, which could potentially improve 
osteoporosis and fracture risk assessment in patients who had a 
standard DXA scan of the lumbar spine without any additional 
examination
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Resumen - La osteoporosis es la enfermedad ósea más común, con una 
morbilidad y mortalidad significativas causadas por el aumento de la 
fragilidad ósea y la susceptibilidad a las fracturas. La absorciometría de 
rayos X de energía dual (DXA, por sus siglas en inglés) es la técnica de 
referencia para la evaluación de la osteoporosis y del riesgo de fracturas 
en la columna vertebral. Sin embargo, el análisis estándar de las 
imágenes DXA solo proporciona mediciones 2D y no diferencia entre 
los compartimentos óseos; tampoco evalúa la densidad ósea en el 
cuerpo vertebral, que es donde se producen la mayoría de las fracturas 
osteoporóticas. La tomografía computarizada cuantitativa (QCT, por 
sus siglas en inglés) es una técnica alternativa que supera las limitaciones 
del diagnóstico basado en DXA. Sin embargo, debido al alto costo y la 
dosis de radiación, la QCT no se usa para el diagnóstico de la 
osteoporosis. 

En esta tesis, se propone un método que proporciona una estimación 
personalizada de la forma 3D y la densidad de la columna vertebral en 
la zona lumbar a partir de una única imagen DXA anteroposterior. El 
método se basa en un modelo estadístico 3D de forma y densidad 
creado a partir de un conjunto de entrenamiento de exploraciones QCT. 
La estimación 3D personalizada de forma y densidad se obtiene al 
registrar y ajustar el modelo estadístico con la imagen DXA. Se 
segmentan los compartimentos óseos corticales y trabeculares 
utilizando un algoritmo basado en modelos. Se realizan mediciones 3D 
en diferentes regiones vertebrales y compartimentos óseos. La precisión 
de los métodos propuestos se evalúa comparando las mediciones 3D 
derivadas de DXA con las derivadas de QCT. 

También se realizan dos estudios de casos y controles: un estudio 
retrospectivo que evalúa la capacidad de las mediciones 3D derivadas 
de DXA en la columna lumbar para discriminar entre sujetos con 
fracturas vertebrales relacionadas con la osteoporosis y sujetos control; 
y un estudio que evalúa la asociación entre las mediciones 3D derivadas 
de DXA en la columna lumbar y las fracturas de cadera relacionadas 
con la osteoporosis. En ambos estudios, se encuentran asociaciones 
más fuertes entre las fracturas relacionadas con la osteoporosis y las 
mediciones 3D derivadas de DXA en comparación con las mediciones 
estándar 2D. 

La tecnología desarrollada dentro de esta tesis ofrece un análisis en 3D 
de la columna lumbar, que podría mejorar la evaluación de la 
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osteoporosis y el riesgo de fractura en pacientes que se sometieron a 
una exploración DXA estándar de la columna lumbar sin ningún 
examen adicional. 
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This chapter first describes the clinical, methodological and institutional 
context within which this thesis is carried out. Then, the aim, objectives, 
and outline of the thesis are described. 

1.1. Clinical context 

Osteoporosis is the most common bone disease characterized by low 
bone mass and microarchitectural deterioration of bone tissue [1], [2]. 
The absence of symptoms in the early stage leads to millions of people 
remaining undiagnosed and untreated, increasing their bone fragility 
and susceptibility to fracture. Worldwide, 1 in 3 women and 1 in 5 men 
aged over 50 years old experience osteoporosis-related fractures [3], [4]. 
The most common osteoporosis-related fractures occur at the spine, 
although can occur at almost any bone. 

Nowadays, the gold standard for osteoporosis diagnosis and fracture 
risk assessment at the spine is Dual Energy X-ray Absorptiometry 
(DXA). This technique supplies 2-Dimensional (2D) images with 
information about areal Bone Mineral Density (aBMD), but without 
information about 3-Dimensional (3D) shape, size or mineral content 
distribution of bones. The standard analysis of DXA images neither 
differentiates between bone compartments (integral, trabecular or 
cortical bone) or vertebral regions (vertebral body or posterior vertebral 
elements). Therefore, numerous patients with bone fragility are not 
diagnosed as such. Quantitative Computed Tomography (QCT) is an 
alternative technique that overcomes limitations of DXA-based 
diagnosis. However, due to the high cost and radiation dose, QCT is 
not used for osteoporosis management. 

To overcome current clinical limitations, this thesis proposes the 
development of methods to analyze in 3D the shape and density of the 
lumbar spine using 2D DXA images.  

1.2. Methodological context 

Human anatomy presents high similarity across individuals, but at the 
same time inter-subject variations are of importance and must be 
considered for subject-specific analysis. Statistical modeling approaches 
proposed by Cootes et al. [5]–[12] focus on capturing the variability 
within a population from a training set of data. Statistical models can be 
fitted to the range of variation found in the type of object which it is 
modeling, but only deforms in ways implied by the training set. The 
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objective is to build statistical models that could be used to characterize 
and interpret similar structures in new data.  

In the literature, methods are proposed to estimate the 3D subject-
specific shape of the proximal femur from several X-ray images using 
statistical shape models and 3D-2D registration methods [13]–[15]. 
Other methods are proposed to estimate, in addition to bone shape, the 
BMD distribution from DXA images [16]–[18]. In [19] and [20], besides 
estimating the 3D subject-specific shape and BMD distribution of the 
proximal femur from a DXA image, different approaches are developed 
to provide a separate assessment of the cortical and trabecular bone.  

However, applying such methodologies to obtain a 3D subject-specific 
shape and BMD estimation of the lumbar spine from DXA scans is not 
straightforward. In [21], a method to obtain 3D subject-specific 
estimates of the lumbar spine (from L2 to L4) using two DXA images 
(anteroposterior and lateral views) and a statistical shape and density 
model of each vertebra is proposed. However, no specific algorithm is 
proposed to quantify the cortical bone. Moreover, lateral DXA scans 
are not currently used in clinical practice for osteoporosis screening due 
to high precision errors [22].  

To the best of our knowledge, no method has been reported in the 
literature to model the shape and density of the lumbar spine and the 
cortical and trabecular bone, using a single anteroposterior (AP) DXA 
scan. To overcome current methodological limitations, this thesis 
proposes the development and validation of methods providing 3D 
subject-specific shape and density estimations of the lumbar spine from 
a single AP DXA image. The method is based on a 3D statistical shape 
and density model that is registered onto the DXA image. Cortical and 
trabecular bone compartments are segmented using a model-based 
algorithm. 3D measurements are performed at different vertebral 
regions and bone compartments. 

1.3. Institutional context 

The present thesis was carried out in the framework of Industrial 
Doctorate, under the supervision of Prof. Miguel Ángel González 
Ballester, ICREA Research Professor at the Department of Information 
and Communication Technologies of Universitat Pompeu Fabra (UPF) in 
Barcelona, and Dr. Ludovic Humbert, Musculoskeletal Unit Director at 
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Galgo Medical S.L, in Barcelona.  

The Industrial Doctorates Plan(http://doctoratsindustrials.gencat.cat/) 
is promoted by the Generalitat de Catalunya and helps companies to 
improve their competitiveness and productivity by making better use of 
knowledge, technology and skills within universities, colleges and 
research organizations. 

Furthermore, the work in this thesis was performed within the 
framework of the EuroStars Project “3D-DXA Spine: 3D 
reconstruction of the shape and bone mineral density distribution of the 
spine from 2D DXA images”, a European project including Galgo 
Medical, CETIR Grup Mèdic and DMS Group.  

1.3.1. Galgo Medical S.L. 

Galgo Medical S.L. (www.galgomedical.com) is a medical imaging 
software development company, spin-off from UPF, created in July 
2013 and based in Barcelona. Galgo Medical currently works in four 
medical disciplines: 

• Musculoskeletal imaging. 

• Vascular interventional radiology planning. 

• Interventional cardiology for arrhythmia treatment. 

• Image-guided neurosurgical planning and navigation. 

This thesis is part of the work of the Musculoskeletal imaging group, 
which develops the 3D-Shaper® software.  

1.3.2. 3D-Shaper® 

The musculoskeletal imaging group of Galgo Medical develops software 
solutions for advanced analysis of bony structure to improve the 
management of musculoskeletal diseases. Galgo has developed 3D-
Shaper® (www.3d-shaper.com): a software solution that provides 3D 
subject-specific analysis of bony structures from DXA images (Figure 
1.1). 3D-Shaper® provides additional information about the 3D 
geometry and bone mineral distribution that can be used to improve 
osteoporosis management.  

The 3D modeling algorithm integrated into 3D-Shaper® have been 
mainly applied to the femur [20] and validated in collaboration with 

file:///C:/Users/Mirella/AppData/Roaming/Microsoft/Word/Industrial%20Doctorates
http://doctoratsindustrials.gencat.cat/
http://www.galgomedical.com/
http://www.3d-shaper.com/
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several clinical centers, and in particular with CETIR Grup Medic [23], 
[24]. Lumbar spine and femur are preferred areas to measure bone 
density for diagnosis and management of osteoporosis. In this thesis, 
we will further develop the algorithm integrated into 3D-Shaper® for 
the femur to include the lumbar spine. However, this extension is far 
from being trivial (details can be found in Section 3.3).  

Apart from the 3D-Shaper® software developed by Galgo Medical, 
there is no technology in the market that analyzes the 3D bony structure 
in 3D from DXA scans. A software to analyze the lumbar spine in 3D 
from clinical practice DXA scans could be a game changer in the bone 
densitometry market, as it could potentially improve the management 
of osteoporosis and fracture risk prevention.  

1.3.3. EuroStars project 

This thesis was also performed in the framework of a EuroStars project 
(Project ID: 9 104 “3D-DXA Spine: 3D reconstruction of the shape 
and bone mineral density distribution of the spine from 2D DXA 
images”). This project involved 3 entities with a very specific and 
complementary know-how: Galgo Medical, which is a company 
specialized in algorithm and software development for in medical 
imaging; CETIR Grup Mèdic (Barcelona, Spain) which is a medical center 
with a large experience in bone densitometry; and DMS (Mauguio, 
France) which is a leading manufacturer of DXA scanners.  

This EuroStars project aims at developing a technology which will 
provide physicians with a 3D subject-specific estimation of the shape 
and bone mineral content of the lumbar spine from DXA images. The 
3D-Shaper Spine product includes:  

• An image acquisition protocol and a device to ensure the correct 
positioning of the patients on DXA scanner.  

• An algorithm generating a 3D spine’s subject-specific 
estimation from DXA images.  

• A software integrating the 3D-2D registration algorithm and an 
innovative user interface to visualize the data and help the 
physician to exploit these data in clinical routine.  

• A hardware solution embedding the 3D-2D registration 
software. 
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This thesis was in line with one of the work packages of the EuroStars 
project lead by Galgo Medical: the development and validation of a 
software for estimating the 3D subject-specific lumbar spine from 2D-
DXA images.  

1.4. Aim and objectives of this thesis 

The aim of this thesis is the development and clinical evaluation of 
methods to analyze in 3D the bone shape and density of the lumbar 
spine, using 2D DXA images. This aims to provide an insightful 3D 
analysis of the lumbar spine from clinical practice imaging modality, 
which could potentially improve osteoporosis and fracture risk 
assessment in patients who had a DXA scan of the lumbar spine 
without any additional examination. 

This thesis has been structured around the following specific objectives: 

• To develop a method for the construction of a statistical shape 
a density model of the lumbar spine from a database of QCT 
images. 

• To develop a method for the 3D subject-specific shape and 
density modeling of the lumbar spine from a single DXA image 
using statistical models and 3D-2D registration algorithms. 

  

Figure 1.1: 3D-Shaper® technology applied to the femur (Galgo Medical S.L., 
Barcelona, Spain). 
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• To develop a method to provide clinical measurements at 
different vertebral regions and bone compartments using the 
3D subject-specific model of the lumbar spine. 

• To validate the accuracy of the DXA-derived 3D subject-
specific shape and density models and measurements, in 
comparison with QCT.  

• To evaluate the association of DXA-derived cortical and 
trabecular measurements at lumbar spine with osteoporosis-
related vertebral fractures. 

• To evaluate the association of DXA-derived cortical and 
trabecular measurements at lumbar spine with osteoporosis-
related hip fractures. 

1.5. Outline of the thesis 

The core contents of this thesis are presented in five chapters. 

Chapter 2 describes the clinical background of this thesis. Osteoporosis 
disease, its main clinical consequence (the fracture) and the main 
diagnostic methods are described. 

Chapter 3 reviews the main concepts and methods used in this thesis, 
focusing on the description of statistical model generation and 
registration.  

Chapter 4 proposes a method to provide a 3D subject-specific 
estimation of the lumbar spine, including personalized shape and bone 
density distribution from a single AP DXA image using a statistical 
model and a 3D-2D registration algorithm.  

Chapter 5 evaluates the association of DXA-derived 3D measurements 
at lumbar spine with osteoporosis-related vertebral fractures. 

Chapter 6 evaluates the association between transcervical hip fractures 
and DXA-derived 3D measurements at lumbar spine. 

Finally, Chapter 7 concludes the thesis and discusses the outlook and 
future work. 

Chapters 4,5,6 are self-contained, and are adapted from articles that 
have been published or are under review in peer-reviewed journals.  
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This chapter describes the clinical background of this thesis. First, the 
anatomy of the spine and bone structure is presented. Then, 
osteoporosis and its main clinical consequence – the fracture- are 
described. Last, the main methods and tools for osteoporosis and 
fracture risk assessment are briefly introduced.  

2.1. Spine  

The spine consists of 26 vertebral bones connected to each other by 
ligaments and muscles. The spine provides structural support and 
balance for the head and trunk of the body to maintain an upright 
posture; protects the spinal cord, nerve roots and several of the body’s 
internal organs; provides connecting points for the ribs and muscles; 
and enables flexible motion.  

The 26 vertebral bones are divided into 4 main regions (Figure 2.1): the 
cervical spine, the thoracic spine, the lumbar spine, and the sacral spine. 
The cervical spine is composed by 7 vertebrae, from C1 through C7 
(top to bottom). Cervical vertebrae protect the brain stem and the spinal 
cord, support the skull and allow for a wide range of head movements. 
The thoracic spine is composed by 12 vertebrae, from Th1 through 
Th12 (top to bottom). Thoracic vertebrae are connected to the ribs and 
protect vital organs. The lumbar spine is composed by 5 vertebrae, from 
L1 through L5 (top to bottom). The lumbar spine has more range of 
motion than the thoracic spine, but less than the cervical spine. The 
sacral spine is composed by sacrum and coccyx, which are composed in 
turn by 5 fused vertebrae. The lower portion of the spine holds most of 
the body's weight. However, each segment relies upon the strength of 
the others to function properly. 

2.2. Vertebrae 

A vertebra can be divided into two main parts (Figure 2.2): vertebral 
body and posterior vertebral elements. The vertebral body has an 
irregular cylindrical shape, with a range of variations depending on the 
type of vertebra. It provides structural support for the head and trunk 
of the body. The posterior vertebral elements are the pedicles, laminae, 
transverse processes, articular processes, and spinous process. The 
pedicles protrude from the back of the vertebral body and connect the 
vertebral body to the processes. The pedicles and the laminae, also 
called vertebral arch, encase the spinal cord and its coverings. The 
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articular, transverse and spinous processes are projected from the 
laminae and are where muscle and ligaments attach enabling the 
articulation between vertebrae. The articular processes determine the 
direction of motion and restrict abnormal movement.  

The vertebral body is weight bearing, shock absorbing, and supportive; 
and it plays an essentially static role. However, the posterior vertebral 
elements are non-weight-bearing but play an essentially dynamic role.  

2.3. Bone 

2.3.1. Cortical and trabecular bone 

Bones are made of highly dynamic and metabolic active tissue, with an 
excellent capacity for self-repair and alter their properties in response to 
changes in mechanical demand. Bones are composed of 30% of organic 
materials, such as collagen, which provide flexibility and resilience; and 
70% of inorganic materials, such as minerals, which provide strength 

 

Figure 2.1: Main regions of the spine. 
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and stiffness. Organic and inorganic materials are not homogeneously 
distributed inside the bone. In fact, we can differentiate two main parts 
in bones: an outer compact shell, called cortical or compact bone; and 
a porous inner, called trabecular or cancellous bone (Figure 2.3).  

Cortical bone is strong, dense and tough. It is responsible for providing 
mechanical and metabolic functions. Cortical bone consists of multiple 
microscopic columns, called osteons. Each osteon is formed by 
multiple layers of osteoblasts and osteocytes around a central canal 
called the Haversian canal. The columns are connected by Volkmann's 
canals. Cortical bone accounts for 80% of the total bone mass of an 
adult human skeleton. The outer shell formed by the cortical bone is 
called cortex. The outer surface of the cortex is covered by a periosteum 
and the inner surface by an endosteum. The endosteum is the boundary 
between the cortical bone and the trabecular bone. 

 

Figure 2.2: Main regions of the lumbar vertebra.  
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Trabecular bone is formed by a less dense tiny lattice-shaped structure. 
Thin formations of osteoblasts covered in the endosteum create an 
irregular network of spaces, known as trabeculae. Within these spaces 
are bone marrow and hematopoietic stem cells. Trabecular marrow is 
composed of a network of rod- and plate-like elements that make the 
overall organ lighter and allow room for blood vessels and marrow. 
Trabecular bone accounts for the remaining 20% of total bone mass 
but has nearly ten times the surface area of cortical bone. 

The vertebral body is formed mostly by trabecular bone (80% of the 
volume) and covered with a thin cortical shell (20% of the volume). The 
posterior vertebral elements have thicker coverings of cortical bone. 
The pedicles are made of strong cortical bone. 

2.3.2. Bone through life 

Bones are constantly regenerated themselves throughout life (most of 
the adult skeleton is replaced about every 10 years). The regeneration 
process consists of two main antagonistic proceedings: resorption and 
formation. In the resorption stage, bone resorbing cells (osteoclasts) 
digest the existing bone matrix; whereas in the formation stage, bone 
forming cells (osteoblasts) deposit calcium phosphate over the bone 
surface and synthesize extracellular matrix around.  

During childhood and adolescence bones are sculpted by modeling. 
This process allows individual bones to grow in size and to shift in 

 

Figure 2.3: Trabecular and cortical bone compartments at the lumbar vertebra. 
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space. During childhood, bones grow because resorption occurs inside 
the bone while formation of new bone occurs on its outer surface of 
the cortex. During adolescence, bones get thicker because formation 
occurs on both the outer and inner surfaces of the cortex. Bones reach 
their peak mass typically by early 20s. Women achieve a lower peak bone 
mass than men [25].  

Once in adulthood, bones are sculpted by remodeling. In the 
remodeling process, resorption occurs on inner surfaces while 
formation occurs on outer surfaces, which can partially compensate for 
the loss of strength due to the thinning of the cortex.  

In healthy young adults, the overall amounts of resorbed and formed 
bone are balanced. The maintenance of the remodeling cycle in balance 
contributes keeping bones in strength and with a stable bone mass. 
However, sometimes building cells fail to form enough new bone or 
destructive cells dissolve too much, leading to a thinner shell and more 
porous inner than in a normal bone, Figure 2.4. This imbalance is the 
cause of osteoporosis disease.  

2.4. Osteoporosis  

Osteoporosis is derived from Greek, which literally means a bone with 
holes. It is defined by the World Health Organization (WHO) as “a 
systemic skeletal disease characterized by low bone mass and 
microarchitectural deterioration of bone tissue with a consequent 
increase in bone fragility and susceptibility to fracture” [1].  

The WHO recommends the evaluation of Bone Mineral Density 
(BMD) to diagnose osteoporosis [2], [25], [26]. BMD is a measure that 
quantifies the grams of bone mineral per area (aBMD) or volume 
(vBMD).  

The BMD is used to calculate the T-score, Eq.(1). This measure reveals 
how the resulting individual BMD deviates from a BMD reference 
measurement obtained in a healthy young adult population, represented 
by its mean and standard deviation (SD).  

𝑇 − 𝑠𝑐𝑜𝑟𝑒 =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐵𝑀𝐷 − 𝑌𝑜𝑢𝑛𝑔 𝑎𝑑𝑢𝑙𝑡 𝑚𝑒𝑎𝑛 𝐵𝑀𝐷

𝑌𝑜𝑢𝑛𝑔 𝑎𝑑𝑢𝑙𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑜𝑛 𝑆𝐷
 (1) 
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The diagnosis criteria established by the T-score for diagnosing 
osteoporosis disease on postmenopausal women and men aged 50 years 
are [26]: 

• Normal bone mass (Healthy): T-score ≥ -1 SD 

• Low bone mass (Osteopenia): -1 SD > T-score > -2.5 SD 

• Osteoporosis: T-score ≤ -2.5 SD 

The International Society for Clinical Densitometry (ISCD) 
recommends using the projected density along the anteroposterior 
direction to diagnose osteoporosis at the lumbar spine [22]. The BMD 
should be measured at the lumbar spine, total hip, or femoral neck. The 
T-score of other regions should not be used for diagnosis according to 
the Adult Official Positions of the ISCD [22]. The WHO BMD 

diagnostic classification based on T‐scores should not be applied in 
premenopausal women, men less than 50 years of age and children. In 

these groups, the ISCD recommends instead the use of the Z‐score. 
The Z-score describes how the individual BMD deviates from the mean 
value expected for age and sex.  

Osteoporosis is considered a “silent disease” since there is no evidence 
that bone loss itself causes any symptoms. Both women and men are 
likely to suffer osteoporosis, though several risk factors such as age, low 
body-mass index, previous fragility fractures, family history of fractures, 
glucocorticoid use, rheumatoid arthritis, or smoking, alcohol and poor 
calcium intake [27], [28]. However, osteoporosis is more common in 
women than in men, partly because women have a lower peak bone 
mass and partly because of the hormonal changes that occur at the 
menopause [25].  

Estrogens have an important function in preserving the balance 
between the overall amounts of resorbed and formed bone. With aging, 
usually from around the age of 50 years and especially in women during 
menopause, estrogen levels decline. Consequently, the remodeling 
balance becomes negative, resulting in a decreased bone mass. 
Therefore, menopausal transition has turned out to be an evident trigger 
of an earlier expression of osteoporosis as well [29].  

A distinction is made in the literature between the causes of 
osteoporosis. So-called primary osteoporosis is explained by the normal 
changes due to the aging process, as well as the hormonal changes at 
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menopause in women, whereas secondary osteoporosis is caused by 
other pathologies as: genetic, endocrine, gastrointestinal, hematologic, 
rheumatologic, nutritional, pharmacological diseases, or a combination 
of them. 

Osteoporosis is the most common and costly bone disease: 
approximately 22 million women and 5.5 million men older than 50 
years are estimated to have osteoporosis in the EU [30]. However, the 
absence of symptoms in the early stage leads to millions of people 
remaining undiagnosed and untreated [31], increasing their probabilities 
to suffer from a fracture. In fact, most people are diagnosed with 
osteoporosis after they suffer a bone fracture, the worst clinical 
consequence of osteoporosis. 

2.5. Osteoporosis-related fractures 

Each year 8.9 million osteoporosis-related fractures occur, resulting in 
a fracture every 3 seconds [32]. The estimated cost of osteoporosis-
related fractures in the EU in 2010 was €37 billion [33]. A cost which is 
expected to by 25% by 2015 due to the aging population. The annual 
risk of fracture is greater than the combined risk of all cardiovascular 
disease and invasive breast cancer [34]. 

Osteoporosis-related or fragility fractures occur after low impact 
trauma, typically following a fall from standing height or less, but some 
occur spontaneously. Osteoporosis-related fractures are more likely to 
occur in the spine, hip, distal forearm or proximal humerus (major 
osteoporotic fractures); but other bones, such as pelvis, ribs and distal 
femur or tibia, are also susceptible to break.  

 

Figure 2.4: Differences between a normal and an osteoporotic bone.  
Adapted from International Osteoporosis Foundation [166]. 
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Major osteoporotic fractures can be life-altering and/or life-threatening. 
The remaining life-time probability of a major osteoporotic fracture in 
postmenopausal women exceeds (approximately 12 %) that of breast 
cancer [35].  

Major osteoporotic fractures are a major cause of morbidity in the 
population [35]. Hip fractures cause acute pain and loss of function. 
Recovery is slow and often incomplete, with many patients permanently 
institutionalized in nursing homes. Vertebral fractures may also cause 
acute pain and loss of function but may also occur without serious 
symptoms. In fact, approximately two-thirds of vertebral fractures are 
clinically silent, i.e. they do not cause enough pain to arouse suspicion 
of a fracture or request imaging [36]. However, vertebral fractures often 
recur, increasing the consequent disability with the number of fractures. 
Distal forearm or proximal humerus fracture cause acute pain and loss 
of function but the recovery is usually faster.  

BMD is considered as the major determinant of bone strength and 
fracture risk [28], [37]–[39]. A standard deviation decrease in aBMD 
leads to a 1.5- to 3.0-fold increased risk of fracture depending on site-
specific measurement and fracture site [38]. However, a low aBMD is 
not sufficient to explain all osteoporotic fractures [40]. In fact, low 
aBMD only explains 60 to 80 % of bone strength under laboratory 
conditions [39], and only 50 % of osteoporotic fractures are observed 
in postmenopausal women with a T-score below -2.5 [41]. 

Bone quality is also an important fracture risk [39], [42]. Bone quality 
refers to 3D structural characteristics of the skeleton, such as bone size, 
shape, mineral content distribution, trabecular bone architecture, 
damage accumulation, cortical bone thickness and geometry, turnover, 
osteon and osteocyte density and other factors such as structural 
proteins and crystal properties [42]. 

Clinical risk factors such as age, sex, body mass index (BMI), family 
history of fractures, glucocorticoid use, rheumatoid arthritis or 
smoking, alcohol and poor calcium intake also contribute to 
osteoporosis-related fracture risk independently of aBMD [28], [37]. 

Osteoporosis-related hip fractures are classified by the specific area of 
the break. Common types of hip fractures are: femoral neck fractures, 
which occur 2.5-5 cm from the hip joint; intertrochanteric fractures, 
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which occur between the neck of the femur and the lesser trochanter; 
and subtrochanteric fractures, which occur between the lesser 
trochanter and an area approximately 6 cm below.  

Osteoporosis-related vertebral fractures are mainly located at the 
vertebral body, which is the area where the majority of compression 
load is borne [43]. Vertebral compression fractures are classified by type 
of deformity (wedge, biconcavity, or compression) and further by the 
degree of deformity (grades 0-3). A reduction in vertebral body height 
(anterior, posterior or middle) of 20- 25 % or more is considered a 
vertebral fracture [43]. The “semi-quantitative” method of grading 
deformities (the most popular one) distinguishes fractured vertebrae 
(grades 1, 2, and 3) from non-fractured vertebrae (deformities that do 
not reach the level of grade 1), Figure 2.5. 

2.6. Diagnostic methods and tools 

2.6.1. Dual Energy X-ray Absorptiometry 

Dual Energy X-ray Absorptiometry (DXA) is the most widely used 
technique to evaluate BMD [44]. It is a painless technique which radiates 
a small amount of X-ray to a body area using two narrow-angle fan 
beams, one of high energy and the other of low energy. The different 
radiation energies and tissue absorption generate two images. Bone 
mineral content (BMC) is extracted from the combination of these 
images and divided by the measured body area to get the BMD.  

DXA mainly benefits of the tissue absorption properties, being 
characterized by the high sensitivity that bone mineral has in front of 
the other body material compounds at these energies [45]. Thus, 2D-
DXA images offer high contrast at bony structures, require short 
scanning times and low radiation dose. Other advantages of DXA 
include good precision, stable calibration, ease of use and ability to 
measure BMD at both hip and spine. For these reasons, DXA scans are 
widely used to diagnose osteoporosis, assist making decisions in 
treatment, and as a follow-up response to therapy.  

However, this imaging modality also presents some limitations. BMD is 
computed from dividing the BMC (the amount of mineral at the specific 
scanned bone) by the measured area in the DXA. In consequence, the 
BMD is actually a projected areal density (in g/cm2), rather than a true 
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volumetric density (in g/cm3). This fact sometimes might turn to under- 
or over-estimation of the real value of BMD, when bones are smaller 
than usual or overlapping of bones occurs on the projection [21].  

Besides, DXA does not provide information about the 3D shape, size 
or mineral content distribution of bones. Such information is of 
fundamental clinical importance, since it determines the mechanical 
response of the bone to external forces applied in real life, and hence 
the risk of fracture. Moreover, the trabecular and the cortical tissues are 
difficult to assess in separate ways through a DXA scan. Even so, this 
issue is also relevant for clinical experts, because both tissues have 
different metabolic processes and functions and should be treated 
through different medications. 

Finally, DXA images can be affected by external artifacts (jewelry, 
coins), internal artifacts (tables, leads, surgical implants, enhancements), 
patient positioning, or other pathologies (osteoarthritis, fracture, aortic 
calcification, Paget’s disease).  

The ISCD [22] establishes the following indications of the study of the 
spine for osteoporosis diagnosis: 

 

Figure 2.5: Classification of vertebral fractures by Genant [43].  
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• Use AP DXA from vertebrae L1 to L4 (L1-L4 segment) for 
spine BMD measurement. 

• Use all evaluable vertebrae and only exclude vertebrae that are 
affected by local structural change or artefacts. Use three 
vertebrae if four cannot be used and two if three cannot be used. 

• aBMD based diagnostic classification should not be made using 
a single vertebra. 

• If only one evaluable vertebra remains after excluding other 
vertebrae, diagnosis should be based on a different valid skeletal 
site. 

• Anatomically abnormal vertebrae may be excluded from 
analysis if:  

o They are clearly abnormal and non-assessable within the 
resolution of the system; or 

o There is more than a 1.0 T-score difference between the 
vertebra in question and adjacent vertebrae 

• When vertebrae are excluded, the aBMD of the remaining 
vertebrae is used to derive the T-score. 

• The lateral spine should not be used for diagnosis but may have 
a role in monitoring. 

Current DXA scan manufacturers include a software platform 
integrated with the hardware, in which the expert can evaluate the 
obtained image just after the acquisition, Figure 2.6. This software 
displays the aBMD at each single vertebra together with the total aBMD 
-the mean over the lumbar vertebrae-, computed over the segmented 
area (in red in Figure 2.6). It also locates the result over a reference 
curve established by the manufacturer, which relates the value of the 
total aBMD with the corresponding T-score and the age of the patient.  

New DXA scans are capable to measure, besides aBMD, other bone 
parameters such as hip axis length and trabecular bone score, and other 
body tissues including fat mass, lean mass, and aortic calcification.  

While only DXA can be used for diagnostic classification according to 
criteria established by the WHO, some other technologies may also be 
used for the management and follow-up of osteoporosis and fracture 
risk assessment. The main techniques are briefly introduced hereafter. 
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2.6.2. Quantitative Computed Tomography  

Quantitative Computed Tomography (QCT) is the main alternative to 
DXA to evaluate BMD levels for osteoporosis assessment (Figure 2.7). 
QCT measures volumetric BMD (vBMD) expressed in units of grams 
of hydroxyapatite per cubic centimeter using a standard X-ray CT 
scanner with a calibration standard to convert Hounsfield Units of the 
CT image to BMD values. From this technology, a 3D analysis of the 
bony structure can be performed, vertebral body vBMD can be 
measured independently of the posterior part of the vertebra, and even 
trabecular or cortical structures can be evaluated separately.  

 

 

Figure 2.6: Commercial DXA equipment to diagnose osteoporosis. 
Stratos dR platform (DMS, Montpellier, France) displaying: (left) the DXA-scan 
segmented with a red mask where the aBMD is computed; (middle) reference curve 
to locate the individual T-score; and (right) computation of the aBMD and T-scores 
for each single vertebra. 
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The main limitations are that QCT results in a higher dose of radiation 
(the CT radiation dose is between 1 and 3 mSv against 0.01 mSv used 
for DXA) and is more expensive than DXA (a CT scanner has a cost 
of between $175,000- $300,000 compared to a DXA scanner which 
costs from $30,000 – $90,000; and a DXA scan analysis costs between 
$85-$250, while a CT-scan analysis between $300-$1,500 [46]). In 
addition to the imaging device, the purchase of a QCT calibration 
phantom and a software to perform QCT measurements, such as the 
solution QCT PROTM proposed by Mindways (Austin, TX), is also 
necessary. Consequently, QCT is rarely used in clinical practice for 
osteoporosis management. 

QCT measurements of the spine and hip are performed with clinical all-
purpose, total body CT scanners equipped with special analysis 
software. QCT measurements of the forearm and tibia are performed 
with peripheral scanners specifically developed for the quantitative 
determination of BMD in these regions. According to previous ISCD 
Official Positions, QCT of the spine and peripheral QCT of the forearm 
can be used for fracture prediction and for treatment- or age-related 
monitoring of BMD, but not for the diagnosis of osteoporosis [47]. 
Peripheral QCT of the forearm can be used for fracture prediction. 
However, it is not appropriate for monitoring response to therapy at 
this time. 

 

 

Figure 2.7: Volumetric QCT scan of the lumbar spine. 
CT scan of Philips Gemini GXL PET/CT 16 (Philips Healthcare, Best, The 
Netherlands) and phantom of Mindways. 
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2.6.3. Complementary diagnostic tools  

Besides the standard assessment presented above, other tools are also 
used by experts for osteoporosis screening or assessing fracture risk. 

Quantitative ultrasound (QUS) is a peripheral technique which has been 
widely evaluated in the past years. QUS scans employ frequencies in the 
200 to 1500 kHz range and measure broadband ultrasonic attenuation 
and the speed of sound in the bone (QUS scans do not measure BMD 
directly). The skeletal sites currently studied by QUS techniques are the 
calcaneus, distal metaphysis of the phalanx, the radius and the tibia. 
Most of the studies focused on the calcaneus because it is an easily 
accessible trabecular bone site. Several prospective studies have 
confirmed that QUS measurements in elderly women patients have 
predicted hip fracture and all nonvertebral fractures nearly as well as 
DXA at the femoral neck [42]. Moreover, QUS scanners do not use 
ionizing radiation and are smaller, more portable and less expensive 
than QCT and DXA scans. However, QUS measurements are affected 
by long term stability and issues related to cross-calibration, reference 
databases, precision, and technical diversity [48]. 

The most common method for measuring the risk of fracture is the 
FRAX® tool (WHO Fracture Risk Assessment Tool, University of 
Sheffield, UK). FRAX is a free tool, accessible via the web, and has 
country-specific reference databases. Clinical risk factors analyzed by 
the FRAX algorithm are: age, sex, BMI, prior osteoporotic fracture, 
family history of fractures, oral glucocorticoids use, rheumatoid 
arthritis, current smoking, alcohol intake, secondary osteoporosis and 
femoral neck aBMD (optional) [37]. There are many other risk factors 
for fracture that are not incorporated in assessment algorithms, such as: 
biochemical markers of bone turnover, risk factors for falls, total 
number of fractures, location of the fractures or previous exposure to 
pharmacologic intervention. Furthermore, FRAX has been proved to 
predict well hip fractures, but it is not as effective in predicting other 
kind of osteoporosis fractures, as vertebral fractures, because of 
differences in population characteristics, so further investigation has to 
be developed to find the best clinical predictors.  

Another tool is TBS iNsight® of Medimaps (Geneva, Switzerland), 
which evaluates the quality of the vertebral bone in its micro-
architecture using grey-level textural metrics. This tool provides an 
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index, the Trabecular Bones Score (TBS), which predicts fracture risk, 
independently of aBMD or FRAX, by studying vertebral bone texture 
in DXA scans [49], [50]. 

2.7. Clinical challenges  

DXA is the most used technique to evaluate BMD, as it is a low 
radiation, painless and non-expensive technique. DXA provides 2D 
images in which the aBMD (g/cm2) is measured. The ISCD 
recommends using the projected density along the AP direction to 
diagnose osteoporosis at the lumbar spine [22]. Vertebral fractures 
mainly take place in the vertebral body [43]. However, in AP DXA scans 
of the lumbar spine, the vertebral bodies superimpose with the posterior 
part of the vertebrae (pedicles, spinous processes and facets). Therefore, 
the vertebral body BMD cannot be estimated in AP DXA scans without 
including the posterior part of the vertebra, which is a limitation of 
DXA-based diagnosis of osteoporosis at the lumbar spine. Moreover, 
bone strength and fracture risk do not only depend on BMD but also 
on bone quality [42]. Trabecular bone architecture and cortical bone 
thickness are important elements that determine bone quality [51]. In 
osteoporotic bones, trabecular and cortical vBMD decrease (with 
different rates), as trabecular bone becomes more porous and cortical 
bone thickness decreases [47]. However, trabecular and cortical tissues 
are difficult to assess separately in a DXA scan. 

An alternative technique to measure BMD is QCT. Using this 
technology, a 3D analysis of the bony structure can be performed, 
vertebral body vBMD can be measured independently of the posterior 
part of the vertebra, and even trabecular or cortical structures can be 
evaluated separately. However, QCT results in exposure to a higher 
dose of radiation and is more expensive, compared to DXA. Moreover, 
cortical thickness (especially at the vertebral body) has dimensions in 
the range of the spatial resolution of clinical QCT scans and thin 
cortices need advanced techniques to be measured accurately [52]. 
Consequently, QCT is rarely used in clinical practice for osteoporosis 
management [47].  

To overcome the limitations of DXA and QCT, methods to obtain 3D 
subject-specific models of the bone from DXA scans are proposed and 
evaluated in within this thesis. The 3D model provides measurements 
at different vertebral regions (vertebral body or posterior vertebral 
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elements) and bone compartments (integral, trabecular or cortical 
bone). The accuracy is evaluated by comparing DXA-derived to QCT-
derived 3D measurements for a validation set of women, men and 
subjects with normal bone healthy, low bone mass and osteoporosis. 
The ability of measurements from DXA-derived 3D models at lumbar 
spine to discriminate between osteoporosis-related fracture and control 
groups is also evaluated. Methodological challenges in relation to the 
objective of this thesis are described in the next chapter.
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Chapter 3 

3.  METHODOLOGICAL BACKGROUND
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This chapter reviews the methodological background of this thesis. 
First, statistical modeling methods that focus on capturing the statistical 
variability of anatomical structures within a population are briefly 
described. Then, methods to estimate a subject-specific 3D anatomical 
shape and appearance representation from 2D images are introduced.  

3.1. Statistical models 

3.1.1. Shape models 

a) Modeling object shape: Statistical Shape Model  

Statistical Shape Model (SSM) captures how the shape of an object of 
interest varies across a training set giving a compact representation of 
the allowable variation with enough specificity not to allow arbitrary 
variation different from that seen in the training set [5].  

Shape representation 

Different parameterizing techniques are used to encode a shape in some 
coordinate frame depending on its representation. The method 
employed to generate a statistical model strongly depends on the chosen 
shape representation. 

Landmark-based representation is one of the most popular 
parameterization techniques used in anatomical models, thanks to its 
simplicity and ease to deal with anatomical structures [9], [53], [54]. In 
landmark-based representation, each object is described as a set of 
labeled points (also referred as landmarks) represented in a vector. 
Labeled points usually represent biological features, geometrical 
features, or even boundaries such as contours that surround an area or 
volume. Often, the coordinates of points are recorded along with their 
connectivity (how they are joined to form the boundaries). A set of 
labeled points with connectivity information is called a mesh. Labeled 
points are recorded through manual identification and/or semi-
automated segmentation methods. The quality of the labeled points 
directly affects the statistical efficiency of the resulting shape model. 

Medial models [55], [56], moment invariants [57], implicit 
representations [58], or parametric representations [59], [60] are some 
of shape representations also used in the analysis of anatomical 
structures. Due to the dominant role of landmark-based representations 
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as basis of SSM, next sections are focused on them. The use of 
landmarks as basis of SSM was introduced by Cootes et al. [5] as Point 
Distribution Model (PDM). 

Shape correspondence 

An essential requirement for building a PDM is that all shapes of the 
training set have the same topology (i.e. number and arrangement of 
points and connections) and their landmarks represent the same 
anatomic positions within the training set. If labeled points are recorded 
manually by experts, which locate a fixed number of landmarks in 
consistent positions throughout the different training samples, a shape 
correspondence method is not needed. However, landmark-based 
representations obtained by automatic or semi-automatic segmentation 
usually have different topologies. Therefore, once the landmarks are 
obtained in all shapes of the training set, spatial transformations are 
used to create correspondences between them. Establishing point set 
correspondences between all shapes of the training set is generally the 
most challenging part of SSM construction and at the same time one of 
the major factors influencing model quality [61]. Some methods to 
automatically compute shape correspondence are presented in this 
section.  

Iterative Closest Point (ICP) [62] assumes that every point in shape 𝑿 

corresponds to the closest point in shape 𝒀. Rigid transformations are 
iteratively performed so that the sum of the squared distances between 
the corresponding points becomes minimal. This method works best if 
the initial poses of the shapes are close.  

Robust Point Matching introduced by Gold et al. [63] uses deterministic 
annealing and soft assignment correspondence between point sets. A 
minimum description length approach is proposed by Davies et al. [64] 
and Cootes et al. [65] in which point correspondence is optimized along 
with model parameters. Syrkina et al. [66] proposed an optimization of 
the minimal description length function, based on an adaptive, 
hierarchical organization of surface patches to consider arbitrary 
surfaces. 

Tsin and Kanade [67] introduced Kernel Correlation methods, which 

use multiple-linked registration algorithms and every point in shape 𝑿 

relates to every point in shape 𝒀 , making it more robust to noise. 
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Gaussian Mixture Models (GMM) described by Jian and Vemuri [68], 
[69] are an extension of Kernel Correlation methods using sum of 
Gaussians as kernel density estimates. A GMM is a probabilistic model 
which states that all generated data points are derived from a mixture of 
a finite Gaussian distributions that has unknown parameters. The 
correspondence of the vertices is considered as a probability density 
estimation problem where the reference point set is represented by the 
centroids of the GMM and the rest of the point sets of the training 
database are generated from the GMM. The correspondence is obtained 
using the maximum of the GMM posterior probability for a given data 
point. 

Coherent Point Drift (CPD), introduced by Myronenko and Song [70], 
[71] uses a probabilistic approach also based on GMM for rigid and 
non-rigid point set registrations. CPD takes the alignment of two-point 

sets as a probability density estimation problem. 𝒀 = (𝒚1, … , 𝒚𝑀)
𝑇 is 

the 𝑀 ×𝐷 matrix of the reference point set (source points) that should 

be registered onto 𝑿 = (𝒙1, … , 𝒙𝑁)
𝑇, where 𝑿 is the 𝑁 × 𝐷 matrix of 

the target point set. 𝐷 is the dimension of the point sets. The points in 

𝑿 are the points generated by the GMM, and the points in 𝒀 represent 
the Gaussian Mixture Model centroids. The GMM probability density 
function is: 

𝑝(𝒙) = ∑ 𝑃(𝑚)𝑝(𝒙|𝑚)

𝑀+1

𝑚=1

 (2) 

where 𝑝(𝒙|𝑚) =
1

(2𝜋𝜎2)
𝐷

2⁄
𝑒𝑥𝑝

−‖𝒙−𝒚𝑚‖2

2𝜎2 . An additional uniform 

distribution 𝑝(𝒙|𝑀 + 1) =
1

𝑁
 is added to the mixture model to account 

for noise and outliers. Equal isotropic covariances 𝜎2  and equal 

membership probabilities 𝑃(𝑚) =
1

𝑀
 are used for all GMM 

components. 

For rigid registration, the transformation is: 

𝑇(𝒀, 𝑹, 𝑡) = 𝑹𝒀 + 𝒕 (3) 



CHAPTER 3 

32 

 

where 𝒕  is a 3-dimensional translation vector, 𝑹  a 3 × 3  rotation 
matrix. The objective function to be minimized takes the form: 

𝑄(𝑹, 𝒕, 𝜎2) =
1

2𝜎2
∑ ∑𝑃𝑜𝑙𝑑(𝑚|𝒙𝑛)

𝑁

𝑛=1

𝑀

𝑚=1

‖𝒙𝑛 − 𝑹𝒚𝑚 − 𝑡‖2

+
3𝑁𝑃
2

 log 𝜎2 

(4) 

where 𝑃𝑜𝑙𝑑 denotes the posterior probabilities of GMM components 

calculated using the previous parameter values, 𝑁𝑃 =
∑ ∑ 𝑃𝑜𝑙𝑑(𝑚|𝒙𝑛)

𝑁
𝑛=1

𝑀
𝑚=1 . 

For non-rigid registration, the transformation is defined as the initial 

position plus a displacement function 𝑣:  

𝑇(𝒀, 𝑣) = 𝒀 + 𝑣(𝒀) (5) 

The objective function to be minimized takes the form: 

𝑄(𝑣, 𝜎2) =
1

2𝜎2
∑ ∑𝑃𝑜𝑙𝑑(𝑚|𝒙𝑛)

𝑁

𝑛=1

𝑀

𝑚=1

‖𝒙𝑛 − (𝒚𝑚 − 𝑣(𝒚𝑚))‖
2

+
3𝑁𝑃
2

 log 𝜎2 +
λ

2
‖𝑃𝑣‖

2 

(6) 

where 𝑃𝑜𝑙𝑑 denotes the posterior probabilities of GMM components 

calculated using the previous parameter values, 𝑁𝑃 =
∑ ∑ 𝑃𝑜𝑙𝑑(𝑚|𝑥𝑛)

𝑁
𝑛=1

𝑀
𝑚=1 , 𝑃𝑣 is a regularization term and λ a trade-off 

parameter. The variational calculus is used to minimize the objective 

function and derive the optimal displacement function 𝑣 that transform 

the points in 𝒀. 

Shape alignment 

Once correspondences between the shapes of the training set are 
established, shapes are aligned in a common coordinate system to 
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remove the pose variability. The objective is to maximize the alignment 
of the spatial position of the point sets, through similarity transform 
(translation, rotation and scaling). If shape correspondence methods are 
applied, shapes are already aligned. However, the shape correspondence 
process could be biased by the choice of the reference shape. In this 
case, an iterative shape alignment process is needed to correct the bias. 

Generalized Procrustes Analysis (GPA) [72] is the most common 
method used to this end. The algorithm minimizes the sum of distances 
of each shape to a reference shape. In this method a shape is arbitrarily 
chosen as reference shape, and all shapes are rotated, scaled and 
translated to align with it. A mean is estimated from the current set of 
aligned shapes, which then is rotate, scale and translate to align to the 
reference shape. Each shape is rotate, sale and translate again to match 
to the adjusted mean. Convergence is tested by examining the average 
difference between the transformations required to align each shape to 
the calculated mean and the identity transformation. If the distance is 
above a threshold, the reference is set to the calculated mean shape and 
the process is repeated until the mean shape does not significantly 
change. 

Dimensionality reduction 

Each 𝑖𝑡ℎ  shape obtained after the shape alignment process is 

represented by an 𝐷𝑛 element vector with 𝒙 gathering the position of 

its 𝑛 vertices in the D-dimensional space: 

𝒔𝑖 = (𝒙1, 𝒙2, . . . 𝒙𝑛)
𝑇 𝑤𝑖𝑡ℎ 𝒔𝑖 ∈ ℝ𝐷𝑛 𝑎𝑛𝑑 𝑖 = 1, . . . , 𝑘  (7) 

where 𝑘 is the number of images of the training set.  

All shapes in the training dataset are assumed to follow a Gaussian 
distribution (i.e. they form an ellipsoidal cloud in this high-dimensional 
space). Therefore, it is possible to model shape variations as: 

𝒔~ 𝓝(𝒔̅, 𝚺) (8) 

where the mean 𝒔̅  and covariance Σ of the training 𝑘  shapes are 
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calculated as:  

𝒔̅ =  
1

𝑘
 ∑𝒔𝑖

𝑘

𝑖=1

 
(9) 

 

Σ =  
1

𝑘 − 1
∑(𝒔𝑖 − 𝒔̅)(𝒔𝑖 − 𝒔̅)

𝑇

𝑘

𝑖=1

 (10) 

Principal Component Analysis (PCA) [73] is applied to determine 
common variations of the shapes and build a compact model of shape 

variability (with less than 𝐷𝑛 parameters) by computing the main axes 
of the cloud. The modes of variation (the ways in which the points of 

the shape tend to move together) are described by the eigenvectors 𝝆𝑗 

of the (𝐷𝑛 × 𝐷𝑛) covariance matrix Σ such that: 

Σ𝝆𝑗 = 𝜆𝑗𝝆𝑗  𝑤𝑖𝑡ℎ 𝑗 =  1, . . . , 𝐷𝑛 
(11) 

 

𝜌𝑗
𝑇𝝆𝑗 = 1 (12) 

where 𝜆𝑗  is the jth eigenvalue of Σ (with 𝜆𝑗 ≥ 𝜆𝑗+1 ) representing the 

variance of the data about the mean, in the direction of the 

corresponding eigenvectors 𝝆𝑗 . Therefore, a SSM is defined as the 

mean position of the vertices and the main modes of variation 
describing the linear displacements of the vertices from their mean 
position [6]. A new instance of the shape can be modeled as: 

𝒔 =  𝒔̅ + 𝑷𝒂 (13) 

where 𝑷 = (𝝆1𝝆2…𝝆𝑝)  is the matrix of the first 𝑝  principal 

components and 𝒂  is a vector of scalar coefficients weighting the 
contribution of each principal component. Therefore, each principal 



CHAPTER 3 

35 

 

component changes the shape by moving the landmarks 𝒙  along 

straight lines defined by the eigenvectors 𝝆𝑗 , passing through their 

mean position defined by 𝒔̅. An instance of an SSM of the lumbar spine 
is showed in Figure 3.1. 

Since the model parameters are uncorrelated, the variance of 𝒔̅ is equal 
to the sum of the individual component variances:  

𝑉𝑇𝑜𝑡𝑎𝑙 = 
1

𝑘
 ∑𝜆𝑗

𝐷𝑛

𝑗=1

 (14) 

The number of 𝑝 eigenvalues to use are typically selected according to 
the proportion of the total variance to be explained.  

The space domain of the shapes (subspace of allowed shapes) is derived 
by examining the distribution of the parameter values required to 

generate the shapes of the training set. Since the variance of 𝑎𝑗 over the 

training set can be shown to be 𝜆𝑗 , the space domain is approximated 

by a hyper-rectangle around the mean shape: 

|𝑎𝑗|  <  3√𝜆𝑗  (15)  

Alternative approximations for the subspace of allowed shapes are 
proposed by several authors. Stegmann et al. [74] proposed an 
alternative approximation using a hyper-elliptical space. Cerrolaza et al. 
[75] presented an efficient hyper-elliptical approximation based on the 
Newton-Raphson optimization method. Cootes and Taylor [76] 
proposed a mixture of Gaussians that approximates the probability 
density function of the shape. Ruiz et al. [77] proposed a weighted 
regularized projection where the contribution of each point of the SSM 
is weighted based on prior constraints. 

 PCA is the most used technique to reduce dimensionality in SSM, but 
other methods can be found in the literature such as: Principal Factor 
Analysis [78] [79], Independent Component Analysis [80], Kernel 
Principal Component Analysis [81], Isomap [82], Local Lineal 
Embedding [83], or Laplacian Eigen map [84]. 
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b) Searching object shape: Active Shape Model 

Active Shape Model (ASM) uses an instance of the SSM as template to 
characterize and interpret similar structures in new data [6], [9]. An SSM 

instance is generated by deforming the mean shape 𝒔̅ using (13) and by 

subsequently applying a similarity transform 𝑻: 

𝑻(𝑠) =  𝛼𝑹𝒔 + 𝒕 (16) 

where 𝛼  is the scaling, 𝑹  the rotation matrix and t the translation 
vector. ASM searches the set of parameters which best match the SSM 
instance to the new image. This set of parameters defines the shape and 
position of the target object in the new image.  

The first step of the ASM algorithm is to initialize the position of the 
SSM instance in the new image. Then, an iterative approach is 
performed to improve the fit of the model instance in the new image 
and find the best set of parameters. In this iterative approach, a region 

    

Figure 3.1: Statistical shape model of the lumbar spine. 
1st to 3rd principal components. The first variation mode shows variations of the spine 
curvature (lordosis), the second shows variations of the intervertebral space and the 
third shows variations of the transversal process aperture. 
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of the image around each point 𝒙𝑖 of the SSM instance is examined to 

find the best nearby match for the point 𝒙′𝑖. Shape and pose parameters 

are updated to fit the new points 𝒔′𝑖. Constrains are applied to the shape 
parameters to ensure plausible shapes using (15). Th new SSM instance 
is compared with the target image using a fit function and a local 
optimization technique, such as Powell’s method or Simplex, is used to 
find the local minimum. The process is repeated until convergence.  

If the SSM represents boundaries and strong edges of the object 
(Figure 3.2a), the distance between a given model point and the nearest 
strong edge in the image could be used as fit function:  

In this case, the region of the image around each shape model landmark 
is examined to determine a displacement of the landmark to a better 
position. Local deformations are transformed into adjustments to the 
pose and shape parameters of the SSM instance.  

An alternative approach is to sample the image around the current 
model point and compare with the intensity profile of the model learned 
from the training set (Figure 3.2b). The new landmark’s position of the 
SSM instance is computed by minimizing the distance between the 
measured intensity profile and profile computed from the training set. 
In this case, the Mahalanobis distance of the sample from the model 
mean is commonly used as fit function. 

3.1.2.  Appearance models 

a) Modeling appearance: Statistical Appearance Model  

Statistical appearance model (SAM) captures how the shape of an object 
of interest and the image texture within (or surrounding) that shape vary 
across a training set [7], [8], [10], [12]. The combination of shape and 
textural information is referred to as the appearance of an object. 

Appearance representation 

The image texture from statistical appearance models can be refer to 
simple grey level pixel values or other descriptors such as image 

𝐹(𝒂, 𝛼, 𝑹, 𝒕) =  |𝒔′ − 𝒔|𝟐 (17) 
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gradients. Moreover, the image intensity could be represented by the 
intensity in the object, the intensity profiles along the perpendicular 
direction of a surface mesh at each of the points, or the intensity in 
patches around the points of the mesh.  

Normalization  

The first step to build a SAM is to remove the shape variability of the 
training images generating a shape-normalized version of the object of 
interest. Therefore, each image of the training set is warped using a 
triangulation algorithm so that its control points match the mean shape 
of the SSM to assure that the statistical texture model captures only 
variations related to grey-level information. 

Then, grey level information is sampled from the shape-normalized 
image over the region covered by the mean shape. Intensity values are 
normalized to eliminate the effects of machine settings and global 
illumination properties. 

 

Figure 3.2: Active Shape Models. 
a) Searching strong edges in the normal direction to the model boundary; b) Searching 
in the intensity profile normal to the model boundary. Adapted from Cootes et al. [9] 
and [12]. 
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Each texture image obtained after the normalization process is 

represented by an 𝑚  element vector gathering the grey-level values 

contained in the 𝑚 points inside the object of interest.  

𝐠i = (𝑔1, 𝑔2, . . . , 𝑔𝑚)
𝑇, 𝒅𝑖 ∈ ℝ𝑚 (18) 

Dimensionality reduction 

PCA is computed over the training set of aligned texture vectors to 
describe the intensity patterns as described in Section 3.1.1.a). New 
texture patterns are defined as: 

𝒈 =  𝒈̅ + 𝑸𝒃 (19) 

where 𝒈̅ is the mean normalized grey-level vector, 𝑸 = (𝝆1𝝆2. . . 𝝆𝑞) is 

the matrix of the first 𝑞 principal components and 𝒃 is a vector of scalar 
coefficients weighting the contribution of each principal component. 

Once the texture model is obtained, it is combined with the shape 
model as follows: 

𝐜 =  (
𝐖𝐬𝐚
𝒃

) = (
𝑾𝒔𝑷

𝑻(𝒔 − 𝒔̅)

𝑸𝑻(𝒈 − 𝒈̅)
) (20) 

As the shape model parameters 𝒂 and the texture model parameters 𝒃 
work with different units (i.e. distance and intensity units respectively), 
weights Ws are imposed to commensurate these parameters: 

𝑾𝑠 =  𝛽𝑰 (21) 

where 𝑰 is a unit matrix a 𝛽 is the ratio of total texture variation to the 
total shape variation. 

Finally, a global PCA is applied to 𝒄 to obtain a SAM: 
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𝒄 =  𝑶𝒅 (22) 

where 𝑶 is the matrix of principal components and 𝒅 is a vector of 
appearance parameters controlling both the shape and grey-levels of the 
models. The shape and grey-levels could be expressed directly as: 

𝒔 =  𝒔̅ + 𝑷𝑾𝒔𝑶𝒔𝒅 (23) 

𝒈 =  𝒈̅ + 𝑸𝑶𝒈𝒃 (24) 

𝑶 = (
𝑶𝑠

𝑶𝑔
) (25) 

b) Searching appearance: Active Appearance Model 

Active Appearance Model (AAM) can be considered as an extension of 
ASM, since AAM uses models with texture besides shape information 
as template to characterize and interpret similar structures in new data.  

Given a SAM instance and a reasonable starting approximation, AAM 
searches the set of parameters which best match the SAM instance to 

the new image by iteratively minimizing the difference (𝜹𝑰) between a 

new image (𝑰𝒊) and one synthesized by the model (𝑰𝑴𝒐𝒅𝒆𝒍). An instance 
of the AAM can be generated applying (23) and (24), inverting the grey-
level normalization, applying the appropriate pose to the points and 
projecting the grey-level vector into the image.  

In AAM, three types of parameters are optimized to search for the 
target object in the image: pose parameters (scaling, rotation and 
translation), appearance parameters (shape and texture) of the 
combined model, and texture normalization parameters. As several 
parameters need to be adjusted, Cootes et al. [10], [11] observe that 
displacing each model parameter induces a particular pattern in the 
residuals. This pattern can be learned and provide a-priori knowledge 
of how to adjust the model parameters during image search. Therefore, 
instead of attempt to solve a general optimization each time, the AAM 
learns a linear model of the correlation between parameter 
displacements and the induced residuals, in a training phase; and it 
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measures the residuals and uses this model to correct the current 
parameters, during search.  

3.1.3. Individual and global models 

Statistical models must meet two requirements in order to accurately 
identify target objects in new data: generality and specificity. Models 
must be generic and extract as much variability as possible from the 
training set. Hence, the training set must be chosen carefully to collect 
the global and local variability of the population. Models also must be 
specific, and only allow for plausible characteristics of the population. 
Complex structures (i.e. with large variability or composed by several 
objects) could be also modelled with statistical models. However, more 
sophisticate methods are needed in order meet generality and specificity 
requirements. In this section, two traditional approaches to model 
complex structures are introduced: individual and global models.  

A simple approach to deal with complex structures is to model each 
organ individually [85], [86]. Dividing structures and modeling them as 
several individual statistical models increases generality and reduce the 
dimensionality of each statistical model, while limiting their capacity to 
represent high-level anatomical patterns. Individual models do not 
allow to enforce inter-object constrains. Therefore, they often require 
the pre-alignment of the training set, projecting the complex structure 
to a common normalized shape space to guarantee the anatomical 
coherence [85], [87].  

Another approach to model complex structures is to use a single 
statistical model. Integrating complex structures into a global model 
increases specificity, as global shape and spatial interrelations between 
organs are embedded intrinsically in the statistical model. Other 
advantages of global models are the computational simplicity of the 
approach, and the ability to overcome the weak image features that may 
be present in parts of multi-organ complexes. The use of a global model 
can thus help to impose strong anatomical constraints that may facilitate 
the definition of those parts suffering from missing data, occlusion, or 
image artifacts. On the other hand, global models capture global 
variability but underestimate the local variations, are often inflexible and 
can be severely affected by the high-dimension-low-sample-size 
(HDLSS) problem (i.e. the dimensionality of the problem is significantly 
higher than the number of training images available), of particular 
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relevance in a multi-organ context [88]. This approach has been 
extensively exploited by early [89]–[93], and more recent works [94]–
[96], and has been effectively applied to different anatomical contexts 
and image modalities.  

3.2. 3D subject-specific shape and intensity 
modelling from 2D images 

3D subject-specific models of anatomical structures are useful tools to 
improve the visualization, interaction and interpretation of the 
volumetric data from 3D imaging modalities. However, 3D imaging 
technologies are more expensive, have longer acquisition times, result 
in exposure to a higher radiation dose (in case of computed 
tomography, CT) and are not always available. In order to overcome 
those limitations, researchers have investigated ways to obtain 3D 
subject-specific models of anatomical structures from 2D imaging 
modalities [97], [98]. One solution is to use statistical models that 
capture the anatomical variability of the object of interest and a 3D-2D 
model-to-image registration methods. This approach makes use of a 
prior statistical 3D model of what it is expected in the image to find the 
best match of the 3D model to a new 2D image. 

First, 3D models and 2D images have to be brought into the same 
coordinate system. Dimensional correspondence can be achieved either 
by bringing the 3D data into 2D coordinate system, or by bringing the 
2D data into 3D coordinate system. In projection strategy, 3D data are 
projected onto the 2D data plane. In back-projection strategy, each 2D 
data is back-projected into the 3D space by connecting 2D points with 
the X-ray source.  

Moreover, 3D-2D model-to-image registration methods could be 
divided based on the nature of the registration. Feature-based 
registration methods search the correspondence between model 
features and image data. Intensity-based registration methods search the 
correspondence between intensity from voxels of the model and 
intensity from the pixels of the image. Feature and intensity-based 
methods for 3D subject-specific shape and density modeling of bones 
from 2D images and statistical models are commonly used in the 
literature. The main methods are briefly described in the next sections. 
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3.2.1. Feature-based methods 

Feature-based registration methods use geometrical entities (points, 
edges, contours, or surfaces) to minimize the distance between 3D 
features extracted from 3D data (images or models) and the 
corresponding 2D features obtained from 2D images. Feature-based 
methods can be further classified as point-to-point, curve-to-curve and 
surface-to-curve registrations.  

Point-to-point registration methods are normally based on anatomical 
landmarks which are manually identified. The proper extraction of 
landmarks depends on user ability. 3D-2D point-to-point registration 
methods are usually used as initialization step before applying more 
complex methods [99]–[101]. 

Boisvert et al. [102] estimate 3D subject-specific spines from posterior-
anterior and a lateral radiograph using an articulated statistical shape 
model and a point-to-point 3D-2D registration method. In this 
registration method, the 3D anatomical landmarks are projected to the 
2D plane. Then, the articulated shape model parameters that minimize 
the Mahalanobis distance and the quadratic error between the projected 
anatomical landmarks and respective landmarks on the radiographs are 
searched. The error is minimized for all the radiographs at a time. 
Intervertebral rigid transformations used to build the articulated model 
are also used to project the landmarks. Moura et al. [103] modified the 
method proposed by Boisvert et al. by adding a spline passing through 
the vertebra bodies, achieving a faster and higher accuracy. 

Fleute et al. [13] used a 3D SSM and a curve-to-curve 3D-2D registration 
method to recover the shape of the femur from four 2D X-ray images 
acquired with a C-arm. A generalization of the Iterative Closest Point 
(ICP) algorithm [62] to nonrigid registration is used to fitting the 3D 
model to the 2D images. First, a global search based on ICP is used to 
estimate rigid transformations. Then, registration is refined using local 
search based on simulated annealing technique and the downhill 
simplex algorithm.  

Benameur et al. [99] proposed a curve-to-curve 3D-2D registration 
method for scoliotic spine from two radiographs. 3D data are used to 
generate an SSM for each vertebra. Vertebrae contours in the 
radiographs are extracted using a Canny detector. Then, registration is 
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initialized with an estimation of the scale and pose parameters using 
anatomical landmarks and least square method. The squared distances 
between the anatomical landmarks of the mean shape and the associated 
points estimated from the stereo-corresponding landmarks is 
minimized. The second step of the 3D/2D registration is the 
minimization of a cost function composed by a likelihood energy term 
and a prior energy term. The first term is measured as the similarity 
between the external contour of the lateral and the posteroanterior 
perspective projections of the model and an edge potential field 
estimated on the two radiographic views. The second term is based on 
the Mahalanobis distance of the SSM. It is important to note that they 
worked with each vertebra individually, i.e. no multi-object statistical 
model was used. Besides, they did not use explicit 3D/2D feature 
correspondence. The initialization of the model instance over the image 
is a crucial step in the accuracy of this registration method. 

Baka et al. [15] estimated the 3D subject-specific shape of the femur 
from calibrated X-ray images. They relied on the method developed to 
Benameur et al. [99]. Instead of minimizing the distance between the 2D 
contours, Baka et al. [15] minimized the 3D distance of the silhouette 
landmarks. 

Zhen et al. [14] proposed a 3D-2D registration method to obtain a 
subject-specific femur surface from calibrated X-ray images; but using 
a more sophisticated 2D-3D correspondence method than ICP. The 
3D-2D registration method start generating an SSM with the 3D data. 
Then, apparent contours of the SSM surface are projected onto 2D 
image planes in which edges of the shape are extracted. The projected 
apparent contours and the edges are associated using an iterative non-
rigid 2D matching process. The proposed correspondence method uses 
a symmetric injective nearest-neighbor mapping operator and a thin-
plate spline deformation. Once correspondence is established, matched 
points are back-projected into 3D and a 3D-3D registration is done. 
Surface registration is solved in three stages: affine registration, 
statistical extrapolation and regularized shape deformation. Besides the 
image-to-model correspondence method, the regularized shape 
deformation is an advantage of this method. Due to regularized shape 
deformation allows to estimate pathology shapes even when the SSM is 
constructed from only normal anatomy shapes. 
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3.2.2. Intensity-based methods  

Intensity-based methods use all the information containing in the 
images to be registered and optimize similarity between them.  

A popular approach of the intensity-based 3D-2D registration methods 
is to project the 3D data (CT image or model) onto the 2D plane(s) 
using ray-casting. Rays start off a source point and pass through the 3D 
data up to the 2D plane generating a simulated X-ray projection image 
called Digitally Reconstructed Radiographs (DRRs). The value 
associated to each position of the DRR image is the sum of the 3D data 
lying on the connecting ray. After generating the DRR image, 
registration method optimizes the similarity measure between the 
generated DRRs and the X- ray image(s). 

The grey-level values of the model instance 𝑰𝑀𝑜𝑑𝑒𝑙  are projected to 

generate the simulated 2D image 𝑰𝑆𝑖𝑚: 

𝑰𝑃𝑟𝑜𝑗(𝑥, 𝑦) =  ∑𝑰𝑀𝑜𝑑𝑒𝑙(𝑥, 𝑦, 𝑧)

𝑧

 
(26) 

The w model instance parameters are optimized to maximize the 

similarity between the projection of the model instance 𝑰2𝐷_𝑃𝑟𝑜𝑗  and 

the 2D image 𝑰2𝑑_𝐼𝑚𝑔. The similarity between 𝑰2𝐷_𝑃𝑟𝑜𝑗 and 𝑰2𝐷_𝐼𝑚𝑔 is 

measured in the 2D binary mask region of interest as: 

𝑠𝑖𝑚𝑡𝑜𝑡(𝒘) =∑𝑠𝑖𝑚(𝑰2𝐷_𝑃𝑟𝑜𝑗 − 𝑰2𝐷_𝐼𝑚𝑔(𝑣))
2

𝑘

 
(27) 

Similarity could be measured using mutual information, cross 
correlation, sum of square differences, entropy of difference image, 
pattern intensity, gradient correlation, gradient difference, variance 
weighted sum of local normalized correlation, normalized mutual 
information, chi-square, and correlation ratio [98]. 

Lamecker et al. [104] proposed a 3D-2D intensity-based registration 
method for the pelvis. A multi-level approach is used to align and map 
the training images used to generate an SSM. From this SSM, a thickness 
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image which is the propagation length of simulated rays through the 
volume enclosed by the shape model. In order to compare the projected 
3D data with the 2D data, volume rendering technique is applied to 
generate synthetic x-ray images from the same CT data used to build 
the model. Then, a gradient-descent method is used to minimize the 
distance between the silhouettes of the shapes in the thickness image 
and the simulated X-ray image. Although they used multi-level methods 
to align the training images, they generated a single SSM. They evaluated 
their method with one and two simulated X-ray images. 

Tang and Ellis [105] generated a hybrid statistical atlas based on in-
spheres to estimate the shape of femur in 3D from X-ray images. They 
optimized a similarity measure (non-gradient-based optimization 
technique) between the DRRs of the shape model and the 2D 
interventional images. As their statistical atlas only provides the shape, 
the surface of the shape is increased inward to simulate image volume 
and the thickness of the cortical bone. 

Ahmad et al. [17] proposed a method to estimate not only the shape but 
also the BMD distribution of the femur from four 2D-DXA images. 
First, they generated a statistical atlas by fitting a deformable template 
(tetrahedral model) with shape and density information onto each CT 
of the training set. Then, deformation fields between each subject's 
tetrahedral model and an average of them is computed. Finally, PCA is 
applied to the deformation fields. The generated statistical model is used 
to estimate the 3D subject-specific shape and density of the femur from 
four 2D-DXA images. The parameters of the generated statistical 
model are varied to minimize the difference between the simulated 
DXA images from projections of the model and the four acquired DXA 
images. In the iterative 3D-2D registration method the summed mutual 
information of the four images is minimized. 

Humbert et al. [106] also proposed a method to estimate the shape and 
the BMD distribution of the proximal femur from a single 2D-DXA 
image. First, they used a semi-automatic method to segment the 
proximal femur in the QCT images of the training set. Then, point-set 
registrations methods are used to align the shapes, and PCA is applied 
to generate the 3D statistical shape and density model. Finally, pose, 
scale and statistical shape and density model parameters are iteratively 
modified to optimize the similarity between projection of the 3D 
statistical model and the DXA image. Powell’s multi-dimensional 
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optimization method is used as 3D-2D registration method to search 
for the parameters. The first registration is done using the mean shape 
and density and only pose and scale are optimized.  

Whitmarsh et al. [21], applied the method that they developed for the 
femur [18] to subject-specific modeling of the lumbar spine (from L2 
to L4) using two 2D-DXA images (AP and Lateral views). For each 
vertebra, a statistical shape and density model (based on the work of 
Cootes et al. [10]) is generated. The three models are simultaneously 
registered onto the AP and lateral DXA scans to generate a 3D model 
of the lumbar spine. The 3D-2D registration method is divided in three 
steps. First, mean vertebral shapes are aligned with both DXA views by 
coarse manual alignment. Second, rigid transformations and a simplified 
model composed by the first variation mode of the SSM (which 
describes the size of the vertebra) and the first variation mode of the 
SAM (which describes the global density) are optimized using the mean 
squared error as a similarity measure. Finally, fine registration is done 
using a more complex model composed by 13 shape modes and 5 
density modes.  

Featured-based methods produce faster registrations than intensity-
based methods as they use only a part on the information included in 
the data [107]. However, featured-based methods depend on the 
accurate feature extraction and correspondence. Intensity-based 
methods usually need a longer computation time, but generate more 
accurate registration by relying on intensity information included in the 
data [107].  

3.3. Methodological challenges  

3D subject-specific models of the bone are useful for a number of 
clinical applications such as surgery planning, postoperative evaluation 
as well as implant and prosthesis design [97]. In the literature, methods 
using statistical models and registration algorithms were proposed to 
estimate the 3D shape and density of bones from a limited number of 
DXA scans. 

SSMs, generated from CT images, are used to recover the 3D shape of 
the proximal femur from a few radiographs [13]–[15]. Other methods 
are proposed to estimate, in addition to bone shape, the BMD 
distribution, [16]–[18]. However, in the above-described methods, no 
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specific algorithm is proposed to quantify the cortical and the trabecular 
bone. Väänänen et al. [19] rely on a 3D-2D modeling method, and 
estimate the cortical thickness using thresholding and morphological 
operations. Thresholding techniques, however, have been shown to be 
less accurate when estimating thin cortices [108]. Humbert et al. [20] 
propose a method to assess the cortex and trabecular macrostructure of 
the proximal femur in 3D from an AP DXA scan. A model-based 
approach is used to estimate the cortical thickness and density [109], 
providing accurate measurements even for thin cortices. 

Applying such methodologies to obtain 3D subject-specific shape and 
density estimation of the lumbar spine from DXA scans is not 
straightforward: DXA spine images are much noisier than hip DXA 
scans because rays have more biological tissue to penetrate; geometry 
of the spine is more complex than the one of the femur; and the 
presence of more than one anatomical structure (i.e. 4 lumbar vertebrae) 
requires modeling inter-object relationships besides shape and density. 
Moreover, the cortex of the vertebral body is very thin (from 180 to 600 
µm with a mean thickness of 380 µm [110], [111]), which makes the 
segmentation of the cortical and trabecular bone very challenging. 
Whitmarsh et al. [21] obtain 3D subject-specific estimates of the lumbar 
spine (from L2 to L4) using two DXA images (AP and lateral views). 
Although measurements are performed in the trabecular compartment, 
no specific algorithm is proposed to quantify the cortical bone. 
Furthermore, lateral spine imaging with densitometric Vertebral 
Fracture Assessment (VFA) is used in clinical practices to evaluate the 
presence of vertebral fractures. However, VFA (which uses single-
energy X-rays) does not measure BMD. Due to high precision errors, 
lateral DXA (i.e. double-energy) scans should not be used for 
osteoporosis screening [22].  

To the best of our knowledge, no 3D modeling methods of the shape 
and density of the lumbar spine, including cortical and trabecular bone 
assessment, using a single AP DXA scan, has been reported in the 
literature. 
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Chapter 4 

4.  3D SUBJECT-SPECIFIC SHAPE AND 
DENSITY ESTIMATION OF THE 
LUMBAR SPINE FROM A SINGLE 
ANTEROPOSTERIOR DXA IMAGE 
INCLUDING ASSESSMENT OF 
CORTICAL AND TRABECULAR BONE 
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This chapter propose the development and validation of a method to 
provide a 3D subject-specific shape and density estimation of the 
lumbar spine from a single AP DXA image including assessment of 
cortical and trabecular bone. 

4.1. Introduction 

DXA is the standard exam for osteoporosis diagnosis and fracture risk 
evaluation at the spine. However, numerous patients with bone fragility 
are not diagnosed as such. In fact, standard analysis of DXA images 
does not differentiate between trabecular and cortical bone; neither 
specifically assess of the bone density in the vertebral body, which is 
where most of the osteoporotic fractures occur. QCT is an alternative 
technique that overcomes limitations of DXA-based diagnosis. 
However, due to the high cost and radiation dose, QCT is not used for 
osteoporosis management. 

To overcome the limitations of DXA and QCT, methods using 
statistical models and registration algorithms are proposed to estimate 
the 3D shape and density of the femur from a limited number of DXA 
scans [13]–[20]. A method to estimate the 3D subject-specific shape and 
density of the lumbar spine (from L2 to L4) using two DXA images (AP 
and lateral views) is also proposed in [21]. However, no 3D modeling 
methods of the shape and density of the lumbar spine, or its cortical 
and trabecular bone assessment, using a single AP DXA scan, has been 
reported in the literature. 

In this chapter, we propose a method to estimate the shape and vBMD 
at the lumbar spine (from vertebra L1 to L4) using a single AP DXA 
image. The method is based on a 3D statistical shape and density model 
built from a training set of 90 QCT scans. The model describes the 
principal statistical variations in shape and density observed in the 
training database. A 3D shape and density estimation of the lumbar 
spine is obtained by registering and fitting the statistical model onto the 
AP DXA image. Then, a model-based algorithm is used to segment the 
cortical layer and propose a separate assessment of the trabecular and 
cortical bone at the vertebral body. Clinical measurements are 
performed at different vertebral regions and bone compartments. 
Finally, the accuracy of the method is evaluated by comparing DXA-
derived with QCT-derived 3D subject-specific models and clinical 
measurements for a validation set of 180 subjects. 
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4.2. Materials and Methods 

4.2.1. Study subjects and medical images 

Two different databases collected by the CETIR Centre Mèdic 
(Barcelona, Spain) were used in this study: a training database (90 
subjects) to generate the statistical shape and density model (Section 
4.2.2), and a validation database (180 subjects) to evaluate the accuracy 
of the DXA-derived 3D measurements (Section 4.2.5). 

Subjects included in both databases were adult men and women. 
Exclusion criteria included skeletal disease other than osteoporosis, 
such as severe osteoarthritis, severe scoliosis or abnormal bone growth 
and vertebral fracture. An additional criterion to recruit the subjects 
included in the validation database was to obtain the same number of 
subjects in each category used to define bone density: 30 subjects with 
osteoporosis, 30 with osteopenia and 30 with normal bone density; with 
a 2/3 female and 1/3 male ratio.  

All subjects included in the training and validation database presented 
clinical indications for an AP DXA scan at the lumbar spine. When 
DXA scan confirmed that inclusion/exclusion criteria were met, the 
subjects were invited to participate to the study and abdominal QCT 
scans were performed. AP DXA and QCT scans were therefore 
performed for all participants. Both scans were analyzed and interpreted 
by radiologists. AP DXA scans of the training set were used to ensure 
inclusion/exclusion criteria were met; whereas AP DXA scans of the 
validation set were also used to generate the 3D subject-specific 
estimations. QCT scans of the training set were used to generate the 
statistical shape and density model; whereas QCT scans of the 
validation set were used as ground truth to evaluate the accuracy of the 
estimated DXA-derived 3D measurements. Volunteers were informed 
about the purpose of the study, the potential risks of undergoing 
explorations in which they would be subjected to ionizing radiations 
and the subsequent use of their anonymized scans. Volunteers were 
recruited until achieving the desired number of subjects in each group. 
The study was approved by the Committee of Clinical Investigation of 
“Fundació d’unió Catalana d’hospitals” and written informed consent was 
obtained from all subjects. Subjects included in the training and 
validation sets were collected prospectively within the European 
EuroStars Project (ID: 9 140). 
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The AP DXA scans were performed at CETIR Centre Mèdic using a 
Lunar iDXA scanner (GE Healthcare, Madison, WI) or a Stratos dR 
DXA scanner (DMS, Mauguio, France). aBMD at vertebrae L1 to L4 
(L1-L4 segment) was measured in the DXA images and T-score was 
computed using the enCORE software (GE Healthcare) or Stratos 
software (DMS), respectively. Participants were categorized using the 
T-score of the L1-L4 segment, following the ISCD recommendations 
[8], as: normal bone mass or healthy (T-score ≥ -1), low bone mass or 
osteopenia (-2.5 < T-score < -1) or osteoporosis (T-score ≤ -2.5). 
Vertebrae affected by local structural changes or artefacts were excluded 
to derive the T-score. However, this criterion was not used as exclusion 
criteria for the subject, neither to discard vertebrae for the statistical 
model generation nor for the 3D estimation. 

The QCT scans were performed at the lumbar spine, in a region of 
interest including at least vertebrae L1 to L4. The study subjects were 
scanned at CETIR Esplugues PET (Esplugues de Llobregat, Spain) using 
a Philips Gemini GXL 16 (Philips Healthcare, Best, The Netherlands) 
or a GE HiSpeed QX/I scanner (GE Healthcare), and at CETIR Clinica 
del Pilar (Barcelona, Spain) using a GE Discovery CT750 HD scanner 
(GE Healthcare). The QCT voxel size ranged from 0.64 mm × 0.64 
mm × 0.5 mm to 1.10 mm × 1.10 mm × 0.5 mm (average pixel size: 
0.86 mm × 0.86 mm), with a matrix size of 512 × 512 pixels. The scans 
were acquired with a distance between consecutive slices of 0.5 mm, 
slice thickness ranging from 1 to 1.25 mm, convolution kernel A 
(Philips scanner) and standard (GE scanners), x-ray source potential of 
120 kVp, tube current ranging from 138 to 188 mA, resulting in a dose 
index (CTDIvol) ranging from 10.0 to 11.6 mGy. A calibration 
phantom (Mindways Software Inc., Austin, TX) was scanned together 
with the subjects. 

Three subjects of the validation set were selected as examples for some 
of the figures presented in this chapter: a healthy female (T-score of 
1.1), a female with osteopenia (T-score of -2) and a female with 
osteoporosis (T-score of -3.9), Figure 4.1. 

4.2.2. Statistical shape and density model generation 

A statistical shape and density model was built using the 90 QCT scans 
collected from the training database as follows. 
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a) Data pre-processing 

DICOM images from QCT scans were converted in volumetric images 
(i.e. 3-dimensional matrices where each element is a sampled density) 
and calibrated using the Mindways phantom. The calibration process 
was performed for each L1-L4 segment, for the 90 subjects in the 
training set, following the protocol recommended by the manufacturer. 

The calibrated QCT volumes were filtered to enhance the contrast in 
the facet joints, thereby helping the individual segmentation of each 
vertebra [112], as follows. First, small groups of bright voxels at 
vertebral joint space were darkened using a 3D opening filter. Then, a 
top-hat filter was applied to highlight the brightest areas (vertebral 
bone); and a bottom-hat filter was applied to highlight the darkest areas 
(facet joints). Finally, the contrast between bone and facet joints was 
enhanced adding to the QCT volume the top-hat filtered volume and 
subtracting the bottom-hat filtered volume. The filtered QCT volumes 
were used only to help segmentation, not to generate the statistical 
density model. 
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Figure 4.1: Close ups of AP DXA and QCT images. 
Close ups of the L2 vertebra of subjects with normal bone density, osteopenia and 
osteoporosis. 1st column: AP DXA scan. 2nd to 4th columns: QCT scans (sagittal, 
coronal and axial view).  
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Vertebrae were semi-automatically segmented in the pre-processed 
QCT volumes using the software TurtleSeg [113], [114], which 
implements the following process. The vertebral contours are manually 
identified in a set of non-parallel slices. The software automatically 
interpolates the contours to form a 3D segmentation, resulting in a 
volumetric mask for each vertebra. If the results are not satisfactory, 
additional contours are identified and the interpolation is repeated. 
Local deformities, such as spurs, were manually segmented by painting 
and erasing techniques. The segmentation process was performed for 
each vertebra, and for the 90 subjects in the training set. The 
segmentation process took between forty minutes and two hours to 
segment each vertebra of the L1-L4 segment, depending on the image 
quality and the presence of local deformities of the vertebrae. 

Finally, the resulting 3D vertebral masks are subsampled and smoothed 
with a Gaussian filter. A triangulated surface mesh between 5638 and 
15368 vertices and between 11276 and 30772 faces is generated for each 
vertebra1.  

b) Shape alignment 

The surface meshes resulting from the segmentation process have 
different number and arrangement of vertices and faces. Point set 
registration techniques are used at each vertebral level (L1, L2, L3 and 
L4) to create correspondence between the vertices of the surface 
meshes. First, a lumbar spine having a normal aBMD (T-score ≥ -1) 
and without local deformities, such as bone spurs, is chosen among the 
subjects of the training set. The vertebrae L1 to L4 of the chosen lumbar 
spine are used as reference for its respective vertebral level. Then, the 
vertices of the reference mesh are non-rigidly registered onto the 
vertices of each surface mesh of the training set using the Coherent 
Point Drift (CPD) algorithm. Details of CPD algorithm can be found 
elsewhere [70], [71].  

To improve the accuracy of the meshes resulting from the CPD 
registration process, each surface mesh is projected onto its 

                                                 

 

1 Details and images showing the segmentation process are provided in Appendix A. 
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corresponding original surface mesh using the normal vectors of the 
vertices of the meshes. This sometimes results in meshes including 
flipped faces, which are detected by comparing the orientation of the 
normal vectors to the faces of the meshes after and before projection. 
Flipped faces are then corrected by replacing the projected vertices by 
its nearest point on the original surface mesh, and by smoothing the 
neighboring region. Projection of the mesh vertices and flipped faces 
detection/correction algorithm is repeated iteratively until no flipped 
face is detected. This results in a set of surface meshes having the same 
number and arrangement of vertices and faces within each vertebral 
level (4545, 5025, 5437 and 5421 vertices and 9090, 10050, 10874 and 
10842 faces for L1, L2, L3 and L4, respectively). The accuracy of the 
point set registration process was evaluated by computing the signed 
distance between each vertex of registered reference mesh and its 
nearest point in the original surface mesh. At the end of the process, 
the mean distance (± SD) computed for all vertebrae of the training 
database was -0.0017 ± 0.0765 mm, with a maximum distance of 1 mm.  

Finally, the surface meshes of the L1-L4 segment obtained for the 90 
subjects are aligned (scaled, rotated and translated) using Generalized 
Procrustes Analysis (GPA) [72]. 

The above-described registration process is biased by the choice of the 
reference shape that is used at the beginning of the process. The shape 
alignment process is thus iterated to correct for this bias (Figure 4.2). 

At each iteration 𝑖𝑡, the reference mesh is replaced by the average shape 

of the surface meshes obtained at the end of iteration 𝑖𝑡 − 1 (i.e. after 
GPA alignment). The point-to-surface distances between the reference 

shapes at iterations 𝑖𝑡  and 𝑖𝑡 − 1  are computed to study the 
convergence of the process. The process converged after five iterations. 

c) Statistical shape model 

The SSM of the lumbar spine is defined as the mean position of the 
vertices and the main modes of variation describing the linear 

displacements of the vertices from their mean position [6]. Each 𝑖𝑡ℎ 
lumbar spine (L1-L4 segment) obtained after the shape alignment 

process is represented by a 3n element vector 𝒔𝑖 = (𝒙1, 𝒙2, . . . 𝒙𝑛)
𝑇 

with 𝒙 =  [𝑥, 𝑦, 𝑧] gathering the position of its 𝑛  vertices. Principal 
Component Analysis (PCA) [73] is used to reduce the space 
dimensionality, assuming all lumbar spine shapes in the training dataset 
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follow a Gaussian distribution. The mean 𝒔̅ and covariance 𝜮 of the 
point cloud take the form: 

𝒔̅ =  
1

𝑘
 ∑𝒔𝑖

𝑘

𝑖=1

 (28) 

𝜮 =  
1

𝑘 − 1
∑(𝒔𝑖 − 𝒔̅)(𝒔𝑖 − 𝒔̅)

𝑇

𝑘

𝑖=1

 (29) 

 

Figure 4.2: Flowchart describing spine shape alignment.  
a) Point Set Registration (PSR); b) Projection using normal; c) Folded faces detection; 
d) Folded faces correction; e) Merge vertebrae L1 to L4 to reform spine; f) 
Generalized Procrustes Analysis (GPA); g) Mean of spine shapes. 
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where 𝑘  is the number of training shapes. Eigenvectors 𝝆𝑗  and 

eigenvalues 𝜆𝑗  with 𝑗 =  1, . . . , 𝑘 − 1 of the covariance matrix 𝚺 are 

computed as described by Cootes et al. [9]. The eigenvectors 𝝆𝑗 

represent the principal modes of variation, and the eigenvalues 𝜆𝑗 
represent the variance of the data around the mean in the direction of 

the corresponding eigenvector 𝝆𝑗 . Lumbar spine shapes in the PCA 

domain can be expressed as: 

𝒔 =  𝒔̅ + 𝑷𝒂 (30) 

where 𝑷 =  (𝝆1𝝆2. . . 𝝆𝑝) is the matrix of the principal components 

(the first 𝑝 modes of variation, corresponding to the most significant 

eigenvectors) and 𝒂  is a p-dimensional vector of scalar coefficients 
weighting the contribution of each principal component. 

The range of variation of the shape parameters 𝒂 is bounded to avoid 
that implausible lumbar spine shapes are modelled. After examining the 

distribution of the 𝒂  values required to generate the shapes of the 
training set [9], we choose to approximate the shape space domain 
(subspace of allowed shapes) by a hyperrectangular space, applying hard 

limits of ±3  times the standard deviations along each principal 
component: 

|𝑎𝑗|  <  3√𝜆𝑗   (31) 

d) Volume alignment 

The calibrated QCT volumes at the L1-L4 segment are aligned to 
remove the shape variability and to assure that the statistical density 
model captures only variations related to density. Thin Plate Spline 

(TPS) transformations [115] are computed between the mean SSM (𝒔̅) 
of the L1-L4 segment and each one of the spine shapes obtained before 
GPA alignment (and after the correspondence of the vertices), Figure 
4.3.a. 8000 vertices (resulting from the decimation of the mean shape) 
are used as control points to compute the TPS transformations. The 
accuracy of the TPS transformations was evaluated by applying the 

transformations to the mean shape 𝒔̅ and computing the signed distance 
between each vertex of the transformed shape and its nearest point in 
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the surface mesh obtained before GPA alignment. The mean distance 
(± SD) computed for all spine shapes of the training database was 

0.00023 ± 0.14830 mm. A volumetric grid initialized over 𝒔̅ is used as 
template for sampling. The grid size is set up so that it encompasses the 
mean L1-L4 segment shape plus 15 mm in each direction, with a voxel 
size of 1 mm3. The reference volumetric grid is filled with null values. 
The computed TPS transformations are applied to the reference grid to 
obtain 3D displacement fields, Figure 4.3.b. Density values at the 
deformed grid coordinates are computed by tri-linear interpolation in 
the original calibrated QCT volumes. The computed density values are 
used to fill the reference 3D template, Figure 4.3.c. This results in a set 
of volumetric images with the size and resolution of the 3D reference 
template, and the shape of the mean SSM, however maintaining their 
original density content.  

 

Figure 4.3: Lumbar spine volume alignment. 
a) Compute TPS transformations between the mean shape and surface shapes; b) 
Apply TPS transformations to the reference volumetric grid; c) Interpolate and assign 
density values to the reference grid. The alignment process is applied to the four 
vertebrae simultaneously (L1-L4 segment); in this figure, only one vertebra is shown 
for better visualization. 
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e) Statistical density model 

The statistical density model of the lumbar spine is defined as the mean 
density values, each one corresponding to a voxel in the reference 3D 
template image, and the main modes of variation describing the density 
distribution from their mean value. A binary mask is generated over the 

mean SSM (𝒔̅) and applied to the aligned volumetric density images to 
capture only the density variations inside the 4 lumbar vertebrae. Each 
lumbar spine obtained after the volume alignment process is 

represented by an 𝑚 element vector 𝐠i = (𝑑1, 𝑑2, . . . , 𝑑𝑚)
𝑇 gathering 

the bone density values contained in the 𝑚 voxels inside the binary 
mask. PCA is used to extract principal density variation modes using 
the computed density matrix as inputs. New density volumes are 
defined as: 

𝒈 =  𝒈̅ + 𝑸𝒃 (32) 

where 𝐠̅  is the mean density volume of the training set, 𝑸 =
(𝝆1𝝆2. . . 𝝆𝑞)  is the matrix of the principal components (the first 𝑞 

modes of variation) and 𝒃  is a q-dimensional vector of scalar 
coefficients weighting the contribution of each principal component. 
The parameters are calculated as in Section 4.2.2.c). Density parameters 

𝒃 are constrained as in (31). 

f) Model instance 

The statistical shape and density model built is composed by a mean 
shape and density volume, and a set of components modelling the 
principal variations observed in the training set, Figure 4.10. An 
instance of the statistical model is generated as follows. 

 Starting from the mean density 𝒈̅  and the mean shape 𝒔̅  of the 

statistical model, a temporary density instance 𝒈 is generated, using (32), 

over the mean shape 𝒔̅ , Figure 4.4.a. Then, a shape instance 𝐬  is 

generated by deforming the mean shape 𝒔̅  using (30) and by 

subsequently applying a similarity transform 𝑻: 

𝑻(𝑠) =  𝛼𝑹𝒔 + 𝒕 (33) 
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where 𝛼 is the scaling, 𝑹 the 3x3 rotation matrix determined by the 

rotation angles (𝜃 , 𝜃𝑦, 𝜃𝑧) around (𝑥⃗, 𝑦⃗, 𝑧) axes and t =  (𝑡 , 𝑡𝑦, 𝑡𝑧)
𝑇 

the translation vector, Figure 4.4.b. Then, the temporary density 

instance 𝒈 is deformed onto the shape instance 𝐬 as follows. A TPS 

transformation between the shape instance 𝐬 and the mean shape 𝒔̅ is 
computed using 1000 vertices as control points, Figure 4.4.c. The 
control points are obtained by decimation of the original shapes. A 

reference volumetric grid is created over the shape instance 𝐬 and the 
calculated TPS transformation is applied to the reference grid, Figure 
4.4.d. The density values at the transformed grid are interpolated in the 
temporary density instance. Finally, the reference volumetric grid is 
filled using the interpolated density values, Figure 4.4.e. 

4.2.3.  3D subject-specific shape and density 
estimation from DXA images 

A 3D subject-specific shape and density lumbar spine estimation is 
obtained by performing a 3D-2D registration of the statistical shape and 
density model onto the AP DXA scan of the patient, Figure 4.5. The 
AP DXA scans from the validation database are used to generate the 
DXA-derived 3D subject-specific estimations. 

 

Figure 4.4: Model instance generation.  
a) Generate density instance; b) Generate shape instance; c) Compute TPS 
transformation; d) Apply TPS transformation; e) Interpolate. The model instance is 
generated for the four vertebrae simultaneously (L1-L4 segment); in this figure, only 
one vertebra is shown for better visualization.  
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a) 2D Mask 

A 2D binary mask is automatically generated over the lumbar spine 
region to define the region of interest of the DXA image to be used in 
the 3D-2D registration process. A mask over the bony structures and a 
set of landmarks that defines a quadrilateral over each vertebra, both 
provided by the DXA scanner manufacturer software, are used. The 
mask over the bony structures is cropped over L1 and below L4, using 
the landmarks associated with these two vertebrae, (Figure 4.5 “Bone 
Mask” image). Then, the resulting mask is slightly dilated in the lateral 
direction using a disk-shaped structural element (radius 8), (Figure 4.5 
“L1-L4 Mask” image). 

b) 3D-2D Registration 

The 3D-2D registration is an iterative process of registration and fitting 
based on a 3D-2D intensity-based registration method, Figure 4.10. At 
each iteration, an instance of the 3D model is created, and a 2D image 
is generated using a parallel projection of the 3D model in the AP 
direction, Figure 4.5. (“Model Instance” and “2D Projection” images). 
Current narrow-angle fan beam DXA scanners, such as Lunar iDXA 

  

 

Figure 4.5: 3D-2D registration process.  
Left to right: instance of the statistical shape and density model, parallel projection of 
the 3D model in the AP direction, 2D mask over the L1-L4 segment, mask over bony 
structures and landmarks, and AP DXA image. 
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(GE) and Stratos dR DXA (DMS), generate AP DXA images essentially 
without magnification. Therefore, the density of the model instance 

𝑰𝑀𝑜𝑑𝑒𝑙  is projected, using a parallel projection in the 𝑧  direction, to 

generate the simulated 2D image 𝑰𝑆𝑖𝑚: 

𝑰Sim(𝑥, 𝑦) =  ∑𝑰𝑀𝑜𝑑𝑒𝑙(𝑥, 𝑦, 𝑧)

𝑧

 
(34) 

The following model instance parameters are optimized to maximize 

the similarity between the projection of the model instance 𝑰𝑆𝑖𝑚 and the 

DXA image 𝑰𝐷𝑋𝐴: the pose parameters (α, 𝜃 , 𝜃𝑦, 𝜃𝑧 , 𝑡 , 𝑡𝑦), the shape 

model parameters 𝒂  and the density model parameters 𝒃 . The 

translation in the 𝑧  direction is not optimized because the model is 
projected in that direction.  

The similarity between 𝑰𝑆𝑖𝑚  and 𝑰𝐷𝑋𝐴  is measured in the 2D binary 
mask region of interest as: 

𝐸(𝛼, 𝜽, 𝒕, 𝒂, 𝒃) =
1

𝑃
∑ (𝑰𝑆𝑖𝑚(𝑣) − 𝑰𝐷𝑋𝐴(𝑣))

2

𝑣 ∈𝑀𝑎𝑠𝑘

 (35) 

where 𝑃 is the number of pixels set to 1 in the mask. The parameters of 
the model are optimized in a 3-step process using Powell's conjugate 
direction method [116]. In the first step, translation and scale 
parameters are optimized. In the second step, the rotation is optimized 
in addition to the translation and scale parameters. In the third step, a 
non-rigid registration is performed, and all parameters are optimized. 
Each step is iterated until the cost function values at the current 
parameter and at the local extrema are within a tolerance of 0.01. 

c) Model initialization  

The model is initialized as follows. The scale is set to 1 and the rotation 
angles to 0. The initial translation is set up to align the center of the 
model with the center of the 2D mask (Figure 4.5, “L1-L4 Mask” 
image). The mean density and shape instance of the statistical model is 

used in the first iteration (shape and density parameters 𝒂 and 𝒃 set to 

0). Shape and density model parameters 𝒂 and 𝒃 are bounded by (31), 



CHAPTER 4 

64 

 

thereby guaranteeing new model instances deform into lumbar spines 
conforming to global constraints imposed by the training set. The 
accurate model initialization obtained using the L1-L4 mask (Figure 
4.5) and the coarse-to-fine registration described in Section 4.2.3.b) 
helps the convergence of the optimization process.  

4.2.4. Geometrical and bone mineral density 
measurements 

a) Periosteal and endocortical shapes 

The cortical layer is segmented in the density volumes resulting from 
the 3D-2D registration process to perform a separate assessment of the 
cortical and trabecular bone. The periosteal (outer) and endocortical 
(inner) surfaces of the cortical layer are found by adapting the model-
based algorithm described in Humbert et al. [109] as described below 
and illustrated in Figure 4.6. At each vertex of the shape model instance 

𝐬, the density profile along the normal vector to the vertebral surface is 

measured by linearly interpolating in the density volume 𝐠 (black line in 
Figure 4.6). The profile extends 2 mm outside the vertebral surface 
shape and 4 mm inside. The modelled density profile (grey line in 
Figure 4.6) is described as:  

𝑑𝑚𝑜𝑑(𝒙) = 𝑑0 +
𝑑1−𝑑0

2
 (1 + erf (

𝒙−( 1−
∆

2
)

𝜎√2
)) +

     
𝑑2−𝑑1

2
 (1 + erf (

 −( 1+
∆

2
)

𝜎√2
))  

(36) 

 

where 𝑑0 ,𝑑1  and 𝑑2  represent the density values in the surrounding 

tissue, within the cortex and within the trabeculae, respectively; 𝒙1 the 

central position of the cortical shell; ∆ is the cortical thickness; and 𝜎 is 
the standard deviation of the blur caused for the response of the 
imaging system and modelled as a normalized Gaussian function.  

The position of the outer and inner surfaces of the cortical layer are 

determined by searching the optimal values of the cortical thickness ∆ 

and the center position of the cortical shell 𝐱1, so that the modelled 
density matches the measured density profile. The Levenberg-
Marquardt algorithm is used to find the optimal values. Figure 4.6 
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shows a density model instance with line crossing the cortex shell where 
the density profile is measured. The measured density profile across the 
line is represented by the black dashed line.  

In the optimization the model is constrained using prior information 

about the relationship between the cortical thickness ∆ and the cortical 

density 𝑑1, in the form of a look-up table, thus eliminating 𝑑1 from the 
optimization. The periosteal and endocortical surfaces are only 
estimated at the vertebral body, Figure 4.10. The interior of the 
endocortical shape defines the trabecular compartment, and the volume 
between the periosteal and endocortical shapes the cortical one. The 
integral bone is the union of the cortical and trabecular bone 
compartments. 

b) Clinical measurements 

Geometry and density measurements are provided for clinical practice 

 

Figure 4.6: Model-based algorithm used to segment the cortical layer. 
(Left) Shape and density model instance (axial view) with red line crossing the cortex 
shell where the density profile is measured. (Right) Density profile measured along the 

red line (d𝑚𝑒𝑠) and modelled density (𝑑𝑚𝑜𝑑) resulting from the Gaussian blur applied 

to the underlying density variations. 𝑑0, 𝑑1, 𝑑2  are the density values in the 

surrounding tissue, within the cortex, and within the trabecular bone, respectively; ∆ 

is the cortical thickness, and 𝑥1 the location of the center of the cortex.  
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purposes. Volume, BMC and vBMD are measured at the integral bone 
of the total vertebra and vertebral body. These measurements are also 
obtained for the trabecular and cortical compartments individually at 
the vertebral body. The cortical thickness is obtained by measuring the 
distance between the periosteal and endocortical surfaces. The mean 
cortical thickness at the vertebral body (CTh) is provided. Besides 
individual measurements for each vertebral level, measurements of the 
L1-L4 segment are also provided. In total, 65 features are measured for 
each subject. Finally, a surface map of the cortical thickness distribution 
of each vertebra is generated. 

4.2.5. Validation method 

The developed method was validated by comparing DXA-derived with 
QCT-derived 3D subject-specific shape and density estimates and 
clinical measurements using the validation set (180 subjects). The DXA 
and QCT-derived shape and density obtained for the three subjects 
selected as examples are shown in Figure 4.7.  

3D subject-specific shape and density estimations (Figure 4.7 2nd 
column) were generated from the AP DXA scans of the validation set 
(Figure 4.7 1st column) by using the methodology proposed in Section 
4.2.3. Two surfaces delimiting the cortical shell (periosteal and 
endocortical surfaces) at the vertebral bodies were estimated, and the 
cortical thickness and density were measured at each vertex of the 
surface meshes as described in Section 4.2.4.a). The clinical 
measurements were computed as described in Section 4.2.4.b).  

On the other hand, QCT scans from the validation set were calibrated 
and segmented using the method described in Section 4.2.2.a) (Figure 
4.7 3rd column). Position and curvature of the L1-L4 segments slightly 
differed between QCT and DXA acquisitions. For comparison 
purposes, each DXA-derived vertebral surface was aligned with its 
corresponding QCT-derived surface using rigid transformations 
(Figure 4.7 4th column). Rigid alignments were performed using the 
CPD algorithm [70], [71]. The region corresponding to the vertebral 
body of each aligned DXA-derived mesh was projected onto its 
corresponding QCT-derived mesh. The resulting vertebral body regions 
of interest, defined over the QCT surfaces, were used to estimate the 
cortical shell (using the model-based approach described in Section 
4.2.4.a) and to compute the clinical measurements (Section 4.2.4.b). 
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At each vertebral level, shape accuracy was measured using the point-
to-surface distances between the vertices of the aligned DXA-derived 
and their corresponding QCT-derived periosteal surfaces. The cortical 
thickness and density distributions obtained with the two modalities 
were compared. The linear correlations between DXA and QCT-
derived measurements were evaluated using the Pearson’s correlation 
coefficient. The statistical significance of the differences between 
measurements was evaluated using the Student’s t-test. The experiments 
were done using an Intel Core i7-4790K CPU 3.60 GHz, 4 cores (8 
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Figure 4.7: Comparison of the DXA-derived and QCT-derived 3D subject-specific 
shape and density of the lumbar spine for three subjects selected as examples.  
1st column: AP DXA image with its 2D mask over the L1-L4 segment. 2nd column: 
Frontal slice of the 3D subject-specific shape and density estimated from the AP DXA 
image. 3rd column: Frontal slice of the QCT density and segmented shape. 4th column: 
QCT segmented shape and DXA-derived shape rigidly aligned onto the QCT shape. 
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treads), 64-bit, 16 GB of RAM with Windows 10. 

4.3. Results 

The training set was formed by 90 subjects (66 females and 24 males) 
with a mean age of 55.2 ± 11.3 years and a range between 30 and 83 
years. The set was composed by 36 subjects with normal bone mass, 37 
with low bone mass and 17 with osteoporosis. Mean T-score was -1.29 
± 1.31 with a range between -3.5 and 2.4.  

The validation set was formed by 180 participants. 90 subjects (60 
females and 30 males) with a mean age of 59.1 ± 10.5 years and a range 
between 28 and 84 years were scanned using the Lunar iDXA device. 
90 other subjects (60 females and 30 males) with a mean age of 54.1 ± 
12.3 years and a range between 22 and 84 years were scanned using the 
Stratos dR device. Mean T-score was -1.26 ± 1.83 with a range between 
-4.4 and 3.4. 

4.3.1. Shape accuracy 

Shape accuracy was measured at each vertebral level as described in 
Section 4.2.5. Average point-to-surface distance between subject-
specific periosteal surfaces obtained by DXA and QCT was 1.51 mm 
for the L1-L4 segments Table I. A shape accuracy of 0.66 mm was 
achieved at the vertebral body. Similar point-to-surface distances were 
obtained for different vertebrae (L1 to L4) and datasets (using GE and 
DMS scanner). The systematic error (or bias) for the total vertebra 
shape was low (-0.05 mm for the L1-L4 segment), however significant 
(p-value < 0.01). The systematic error at the vertebral body was slightly 
higher (0.13 mm for the L1-L4 segment, p-value < 0.01). The random 
error was lower for the vertebral body (SD of 0.84 mm), compared to 
total vertebra (SD of 2.02 mm), due to larger errors in modeling the 
back process. 

4.3.2. Cortical thickness and density distribution 

DXA-derived and QCT-derived cortical thickness and density were 
compared. An average difference of -0.01 ± 0.14 mm and a mean 
absolute error of 0.10 mm were found for the cortical thickness in the 
L1-L4 segment. An average difference of -4.07 ± 74.49 mg/cm3 and a 
mean absolute error of 47.00 mg/cm3 was measured for the cortical 
density. The systematic error for the cortical thickness and density were 
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low, however significant (p-value < 0.01). Differences for each vertebral 
level and each dataset were similar, Table II. 

The DXA and QCT-derived cortical thickness distribution obtained for 
the three example subjects are shown in Figure 4.8. Cortical 
thicknesses follow a similar distribution between each pair, although the 
DXA-derived cortical thickness tends to be slightly thinner than the 
QCT-derived. The figure also shows that the healthy subject has a 
higher cortical thickness, compared to the subject with osteopenia and 
osteoporosis. 

4.3.3. Clinical measurements 

DXA and QCT-derived clinical measurements for the L1-L4 segment 
were compared, Table III. DXA and QCT-derived clinical 
measurements and their comparison for each vertebral level (i.e. L1, L2, 
L3 and L4) are provided in Appendix B. A correlation coefficient (R) of 
0.91 was found between DXA and QCT-derived integral vBMD at the 
total vertebra, and of 0.85 at the vertebral body (whole database). 

Table I: Shape Accuracy. 
Point-to-surface distances (mm) between the aligned periosteal surfaces of the 3D 
subject-specific shapes estimated by DXA and QCT. 

 

All (N =180) GE (N =90) DMS (N =90)  

Mean ± SD 
Mean  
(uns.) 

Mean ± SD 
Mean  
(uns.) 

Mean ± SD 
Mean  
(uns.) 

L1 
Total 0.02 ± 1.80* 1.37 0.02 ± 1.82* 1.39 0.03 ± 1.78* 1.36 

Body 0.22 ± 0.85* 0.68 0.20 ± 0.86* 0.68 0.25 ± 0.85* 0.68 

L2 
Total -0.03 ± 1.82* 1.39 -0.03 ± 1.83* 1.39 -0.04 ± 1.81* 1.38 

Body 0.17 ± 0.83* 0.65 0.16 ± 0.84* 0.66 0.18 ± 0.83* 0.65 

L3 
Total -0.06 ± 4.05* 1.53 -0.09 ± 2.03* 1.52 -0.04 ± 2.06* 1.53 

Body 0.09 ± 0.82* 0.63 0.06 ± 0.81* 0.63 0.13 ± 0.83* 0.64 

L4 
Total -0.10 ± 2.35* 1.72 -0.15 ± 2.34* 1.71 -0.05 ± 2.35* 1.73 

Body 0.06 ± 0.86* 0.67 0.02 ± 0.86* 0.68 0.10 ± 0.86* 0.67 

L1-L4  
segment 

Total -0.05 ± 2.02* 1.51 -0.06 ± 2.02* 1.51 -0.03 ± 2.0* 1.51 

Body 0.13 ± 0.84* 0.66 0.11 ± 0.85* 0.66 0.16 ± 0.93* 0.66 

* p-value < 0.01, Student’s Test 

Mean ± Standard Deviation (SD) of the signed distances and mean of the unsigned 
(uns.) distances. Region of interest: vertebral shape (“Total”) and vertebral body 
(“Body”). 
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The R-values ranged from 0.81 to 0.97, depending on the clinical 
measurements and datasets used. R-values obtained for vBMD and 
BMC in the cortical layer were slightly higher than the ones found for 
the trabecular compartment. Using the whole database of subjects, the 
integral vBMD of total vertebra was on average higher when estimated 
by DXA, compared to QCT (4.63 ± 23.82 mg/cm3), although this 
difference was not significant. A statistically significant difference 
between DXA and QCT-derived measurements was found for the 
trabecular vBMD and BMC at the vertebral body (p < 0.01), when the 
whole database is compared. The DXA-derived vBMD value was 
plotted against its corresponding QCT-derived vBMD measure for each 
subject of the DMS validation set, Figure 4.9. 

Table II: DXA and QCT-derived cortical thickness and density measurements. 
Comparison between the cortical thickness and density computed at each node of the 
DXA-derived and QCT-derived periosteal surfaces: values, differences (Mean ± 
Standard Deviation (SD)) and Mean Absolute Error (MAE). 

  ALL (N = 180) GE (N = 90) DMS (N = 90) 

  
QCT-
derived 

DXA-
derived  

Difference 
(DXA - QCT) 

Difference 
(DXA - QCT) 

Difference 
(DXA - QCT) 

  
Mean  
± SD 

Mean  
± SD 

Mean  
± SD 

MAE 
Mean  
± SD 

MAE 
Mean  
± SD 

MAE 

Cortical 
Thickness 

(mm) 

L1 
0.69  
± 0.16 

0.71  
± 0.15 

0.02  
± 0.13* 

0.10 
0.02  
± 0.14* 

0.11 
0.01  
± 0.13* 

0.10 

L2 
0.71  
± 0.17 

0.69  
± 0.16 

-0.02  
± 0.13* 

0.10 
-0.01  
± 0.13* 

0.10 
-0.03  
± 0.12* 

0.09 

L3 
0.73  
± 0.18 

0.70  
± 0.17 

-0.02  
± 0.13* 

0.10 
-0.01  
± 0.13* 

0.10 
-0.04  
± 0.12* 

0.10 

L4 
0.75  
± 0.18 

0.73  
± 0.17 

-0.02  
± 0.14* 

0.11 
-0.01  
± 0.15* 

0.12 
-0.03  
± 0.13* 

0.10 

L1-L4 
segment 

0.72  
± 0.18 

0.71  
± 0.16 

-0.01  
± 0.14* 

0.10 
0.00  
± 0.15* 

0.11 
-0.02  
± 0.14* 

0.10 

Cortical 
Density 

(mg/cm3) 

L1 
783.01  
± 80.65 

792.84  
± 68.30 

9.83  
± 75.40* 

48.86 
12.92  
± 75.37* 

50.20 
6.73  
± 75.29* 

47.52 

L2 
793.46  
± 78.69 

784.11  
± 73.24 

-9.35  
± 70.78* 

45.74 
-4.94  
± 70.18* 

45.15 
-13.77  
± 71.11* 

46.33 

L3 
797.49  
± 81.70 

788.49  
± 75.50 

-8.99  
± 72.20* 

44.78 
-3.03  
± 72.07* 

44.06 
-14.95  
± 71.84* 

45.49 

L4 
804.86  
± 83.35 

797.81  
± 75.35 

-7.05  
± 77.84* 

48.78 
-2.70  
± 80.44* 

50.47 
-11.40  
± 74.90* 

47.11 

L1-L4 
segment 

794.83  
± 81.49 

790.76  
± 73.39 

-4.07  
± 74.49* 

47.00 
0.41  
± 74.91* 

47.41 
-8.55  
± 73.79* 

46.59 

*p-value < 0.01, Student’s Test 
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Figure 4.8: Comparison of DXA-derived and QCT-derived cortical thickness 
distribution for the three subjects selected as examples. 
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Table III: DXA and QCT-derived clinical measurements at L1-L4 segment. 
Values (mean ± standard deviation) and differences (mean ± standard deviation) 
between DXA-derived and QCT-derived clinical measurements: Values and 
correlation coefficients R are provided for the total vertebra (“Total”) and vertebral 
bodies (“Body”). 

L1 – L4 Segment 

All (N = 180) GE (N = 90) DMS (N = 90) 

QCT DXA  
Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 

Mean  
± SD 

Mean  
± SD 

Mean  
± SD 

R** 
Mean  
± SD 

R** 
Mean  
± SD 

R** 

vBMD 
(mg/cm3) 

Integral 

Total 
281.65  
± 55.38 

286.28  
± 57.31 

4.63  
± 23.82 

0.91 
11.32  
± 23.73 

0.91 
-2.05  
± 22.08 

0.93 

Body 
212.61  
± 44.88 

219.16  
± 43.32 

6.55  
± 23.84 

0.85 
8.23  
± 24.36 

0.83 
4.87  
± 23.33 

0.87 

Trabecular Body 
150.32  
± 40.35 

161.57  
± 38.85 

11.25  
± 23.31* 

0.83 
12.12  
± 23.30 

0.81 
10.37  
± 23.43 

0.85 

Cortical Body 
611.18  
± 46.26 

610.43  
± 40.77 

-0.74  
± 25.14 

0.84 
0.82  
± 26.82 

0.82 
-2.30  
± 23.38 

0.86 

BMC 
(g) 

Integral 

Total 
51.97  
± 13.90 

52.46  
± 14.28 

0.49  
± 4.29 

0.95 
1.49  
± 4.57 

0.95 
-0.51  
± 3.77 

0.96 

Body 
24.62  
± 6.79 

25.86  
± 6.99 

1.25  
± 2.82 

0.92 
1.31  
± 3.03 

0.91 
1.18  
± 2.61 

0.93 

Trabecular Body 
15.04  
± 4.75 

16.61  
± 4.95 

1.56  
± 2.49* 

0.87 
1.54  
± 2.65 

0.86 
1.59  
± 2.35* 

0.88 

Cortical Body 
9.58  
± 2.34 

9.26  
± 2.20 

-0.32  
± 0.88 

0.93 
-0.23  
± 0.92 

0.93 
-0.41  
± 0.84 

0.93 

Volume 
(cm3) 

Integral 

Total 
184.80  
± 34.37 

183.49  
± 33.78 

-1.31  
± 9.33 

0.96 
-2.24  
± 9.65 

0.96 
-0.38  
± 8.95 

0.97 

Body 
116.17  
± 22.42 

118.14  
± 21.83 

1.97  
± 6.56 

0.96 
1.31  
± 6.48 

0.96 
2.63  
± 6.61 

0.96 

Trabecular Body 
100.62  
± 20.12 

103.08  
± 19.55 

2.46  
± 6.34 

0.95 
1.69  
± 6.24 

0.95 
3.23  
± 6.39 

0.95 

Cortical Body 
15.55  
± 2.92 

15.05  
± 2.81 

-0.49  
± 1.04 

0.93 
-0.38  
± 1.09 

0.93 
-0.60  
± 0.99 

0.94 

CTh 
(mm) 

Cortical Body 
0.72  
± 0.08 

0.71  
± 0.08 

-0.02  
± 0.05 

0.83 
-0.01  
± 0.05 

0.82 
-0.03  
± 0.04 

0.86 

*p-value < 0.01, Student’s Test 

**R with p-value < 0.01 for all measurements. 
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Figure 4.9: Linear regressions between DXA and QCT-derived vBMD assessed in 
the L1-L4 segment for different regions of interest.  
Black circles represent healthy subject (T-score ≥ -1) and white circles represent 
patients with osteopenia or osteoporosis (T-score ≤ -1).  
*p-value < 0.05, Student’s Test. 
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The mean computing time to generate the DXA-derived 3D subject-
specific models and clinical measurements was 3 min 28 s and ranged 
between 2 min 38 s and 5 min 31 s.  

4.4. Discussion 

In this chapter, we introduced a method to estimate the 3D shape and 
vBMD distribution of the lumbar spine (L1-L4 segment) from a single 
AP DXA image, and to assess the cortical and trabecular bone. The 
method proposed is fully automated: no user iteration is needed, Figure 
4.10. Most of state-of-the-art 3D modelling methods require a set of 
landmarks to be positioned in the DXA image, [18], [19], [21]. We 
further developed the algorithm integrated into 3D-Shaper® for the 
femur to include the lumbar spine Figure 4.11.  

An Intel Core i7-4790K CPU 3.60 GHz was used to process the AP 
DXA scans and obtained the 3D subject-specific models. The mean 
(±SD) number of iterations was 1628 ± 218, achieving a mean 
computing time of 3 min 28 s. The computing time mostly depended 
on the size of the region of interest used in the 3D-2D registration 
process (L1-L4 mask, Figure 4.5). The larger or wider the L1-L4 
segment, the higher the computing time. Low computation time is one 
of the requirements of clinical practice. Humbert et al. [20] achieved the 
lowest computing time for the femur (1 min 30 s using an Intel Core i7-
4790K CPU 4.0 GHz), in comparison with Väänänen et al. [19] (40 
hours using an Intel Sandy Bridge 2.6 GHz) or Whitmarsh et al. [18] (1 
hour using an Intel Core i7 CPU 920 2.67 GHz). The method developed 
by Whitmarsh et al. [21] took more than 4 h (using an Intel Core i7 CPU 
920 2.67 GHz) to generate a 3D subject-specific estimation of the L2-
L4 segment. We use C++, ITK and multi-core system techniques to 
achieve low computation times. Geometry of the spine is more complex 
than the one of the femur (our model had 20428 nodes, against 5546 
for [20]; and four bone structures are assessed instead of one, which 
explains a higher computing time. This average computing time of less 
than 5 min, however, should be sufficiently low for the method to be 
used in clinical practice.  

Regarding the shape accuracy, we reported mean unsigned distances 
between DXA and QCT-derived surfaces in a range between 1.37 mm 
and 1.72 mm at the total vertebra and between 0.63 mm and 0.68 mm 
at the vertebral body (Table I). Whitmarsh et al. [21] reported lower 
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errors at the total vertebra (between 1.00 mm and 1.34 mm), but larger 
errors at the vertebral body (between 0.73 mm and 1.12 mm). We found 
similar correlation coefficients (R) for the vBMD. Our R-values ranged 
between 0.90 and 0.92 for the integral vBMD at the total vertebra, 
versus 0.86 and 0.93 in [21]. At the vertebral body, we achieved R-values 
between 0.82 and 0.85 (integral vBMD) and between 0.79 and 0.83 
(trabecular vBMD) versus 0.80 and 0.89 (integral vBMD) and 0.82 and 
0.90 (trabecular vBMD) in [21]. Reported results in [21] show lower 
errors in modeling the shape of the posterior processes, compared to 
our results, which can be explained using both AP and lateral DXA 
projection. However, a slightly lower accuracy in modelling the 
vertebral body shape was found. One important limitation of the 
method proposed in [21] is the use of the lateral DXA scans, which are 
not currently used in clinical practice. Moreover, no specific algorithm 
was proposed to quantify the cortical bone and L1 was not assessed. In 
Humbert et al. [20], a similar approach to the one proposed in our thesis 
was developed for the proximal femur. They reported R-values of 0.95, 
0.85 and 0.94 (integral, trabecular and cortical vBMD) at the total femur, 
against 0.85, 0.83 and 0.84 at the L1-L4 segment vertebral bodies in our 
work. Regarding the CTh, they achieved an R-value of 0.92, against 0.83 
in the present thesis. The slightly lower accuracy reported in our work 
can be explained by the fact that the geometry of the spine is more 
complex than the one of the femur, the cortex is on average thinner in 
the vertebral body, compared to the total femur region of interest, and 

 

Figure 4.10: Workflow of the proposed method. 
It can be seen in a video abstract available in: 
https://ieeexplore.ieee.org/document/8379363 
a) Statistical model variations in the three principal directions; b) 3D-2D registration 
process; c) Cortex analysis; d) Clinical measurements at different vertebral regions and 
bone compartments; e) Validation method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 

76 

 

the spine DXA scans are noisier than hip DXA scans. 

In the 180 subjects included in this study, bone masks and landmarks at 
L1-L4 segment (Figure 4.5, “Bone Mask”) automatically provided by 
the software of the DXA manufacturers were accurate enough to 
provide proper identification of the “L1-L4 Mask” (Figure 4.5) to be 
used to initialize the statistical model and performed the registration. 
However, this process might fail, especially in the presence of 
pathologies such as severe scoliosis or severe osteoarthritis. In this case, 
manual input for the operator would be required to modify the data 
provided by the software of the DXA manufacturer prior to run the 
2D/3D modeling process. 

Modeling the outer and inner surfaces of the cortical shell was only 
performed in the vertebral body. The complex geometry of the back 
processes would make the segmentation of the cortical bone in this 
region of interest particularly challenging. 

 

Figure 4.11: Screenshot of the developed method integrated into 3D-Shaper®. 
The workflow can be seen in a video abstract available in: 
https://ieeexplore.ieee.org/document/8379363 
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The lumbar vertebrae included in the training and validation databases 
are not only affected by bone density loss due to osteoporosis, but also 
by shape deformation due to degenerative osteoarthritis, compression, 
or the presence of calcifications (local accumulation of bone mineral) in 
the periphery of the vertebral body. Osteoarthritis is the most common 
of these conditions, with estimated rates as high as 40% in women older 
than 50 years, and 60% in those older than 70 years [117]. Our shape 
and density statistical model was mainly designed to capture global 
variations, while very local variations (as bone spurs, or osteophytes) 
were not included. Moreover, osteophytes are often not seen in the AP 
DXA scans. Therefore, the method proposed in our thesis could hardly 
model local deformities, which is an important limitation. The accuracy 
in measuring the cortical bone volume and CTh is directly impacted by 
this limitation. Future work should consider the development of 
advanced statistical models for the lumbar spine, including articulated 
and/or multi-level model, which should be more accurate in modeling 
local deformations and the posterior arch of the vertebra. 

The presence of osteoarthritis can also lead to a wrong diagnosis of the 
disease, since local accumulation of bone mineral at the periosteal 
surface might lead to an overestimation of the aBMD computed by 
DXA, and hence, to a higher T-score. In this sense, the DXA-derived 
3D measurements of the trabecular bone at the vertebral body could 
provide an alternative measurement, overcoming this limitation by 
discarding bone spurs, local deformations at the periosteal surface, or 
in the back processes. 

Our algorithm cannot model fractured vertebrae since the presence of 
fracture was an exclusion criterion for the subjects to be included to 
build the statistical model. This could, however, be handled by 
manually, or automatically, hiding the fractured vertebra(s) in the 2D 
mask to be used in the registration process. The L1-L4 model would be 
registered as described in Section 4.2.3. The excluded region of interest 
(for example L3) would be statistically estimated based on the regions 
included (L1-L2-L4) and could be subsequently discarded in the 
following processing steps (cortical shell modeling, and clinical 
measurements). As future research, other measurements that could arise 
clinical interest in the lumbar spine should include: the intervertebral 
space, the lumbar curvature (so-called lordosis) and vertebral body 
heights, which are parameters associated to fracture risk. 
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4.5. Conclusion 

To the best of our knowledge, the method proposed in this chapter is 
the first attempt in the literature to estimate the 3D subject-specific 
shape and density of the lumbar spine from a single AP DXA scan, 
which makes it fully compatible with current clinical practices. We 
proposed a separate assessment of the cortical and the trabecular 
compartments, and gave special emphasis to the vertebral body, which 
is the most affected region by osteoporotic fractures. A very good 
agreement was found between the DXA-derived and QCT-derived 
clinical measurements that were evaluated in this thesis. This method 
could potentially improve osteoporosis and fracture risk management 
in patients who had an AP DXA scan of the lumbar spine without any 
additional examination. 

 

 



 

 

 

 

Chapter 5 

5.  DISCRIMINATION OF 
OSTEOPOROSIS-RELATED 
VERTEBRAL FRACTURES BY DXA-
DERIVED 3D MEASUREMENTS: A 
RETROSPECTIVE CASE-CONTROL 
STUDY 



 

 

 

Abstract - The aim of the present study was to evaluate the association 
of DXA-derived 3D measurements at lumbar spine with osteoporosis-
related vertebral fractures. We retrospectively analyzed a database of 74 
postmenopausal women: 37 subjects with incident vertebral fractures 
and 37 age-matched controls without any type of fracture. DXA scans 
at lumbar spine were acquired at baseline (i.e. before the fracture event 
for subjects in the fractur group) and aBMD was measured. DXA-
derived 3D measurements, such as vBMD, were assessed using a DXA-
based 3D modeling software (3D-Shaper® Spine). vBMD was 
computed at trabecular, cortical and integral bone. Cortical thickness 
and cortical surface BMD were also measured. Differences in DXA-
derived measurements between fracture and control groups were 
evaluated using unpaired t-test. Odds ratio (OR) and area under the 
receiver operating curve (AUC) were also computed. Subgroup analyses 
according to fractured vertebra were performed. aBMD of fracture 
group was 9.3% lower compared to control group (p<0.01); a higher 
difference was found for trabecular vBMD in the vertebral body (-
16.1%, p<0.001). Trabecular vBMD was the measurement that best 
discriminated between fracture and control groups, with an AUC of 
0.733, against 0.682 for aBMD. Overall, similar findings were observed 
within the subgroup analyses. The L1 vertebral fractures subgroup had 
the highest AUC at trabecular vBMD (0.827), against aBMD (0.758). 
This study showed the ability of cortical and trabecular measurements 
from DXA-derived 3D models to discriminate between fracture and 
control groups. Large cohorts need to be analyzed to determine if these 
measurements could improve fracture risk prediction in clinical 
practice. 

 

 

 

The content of this chapter is adapted from the following publication: 

M. López Picazo, L. Humbert, S. Di Gregorio, M. A. González 
Ballester, and L. M. del Río Barquero. “Discrimination of osteoporosis-
related vertebral fractures by DXA-derived 3D measurements: A 
retrospective case-control study, Osteoporosis International (Under 
review)
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5.1. Introduction 

The absence of symptoms in the early stage of the osteoporosis disease 
leads to millions of people remaining undiagnosed and untreated, 
increasing their probabilities to suffer from a fracture. Vertebral 
fractures, the most common osteoporosis-related fracture [118], occur 
after low impact trauma or by compression slowly over time [119]. 
These fractures are associated with chronic back pain, spinal deformity, 
limited physical functioning and an increased risk of hospitalization and 
mortality [120]; although they can also be asymptomatic. It is estimated 
that only one-third of vertebral fractures get clinical attention [119].  

DXA is the standard exam for osteoporosis diagnosis and fracture risk 
[28], [37]. DXA provides 2D images in which the areal aBMD projected 
along the anteroposterior direction is measured. Low aBMD measured 
at AP DXA scans is among the strongest fracture risks [28], [37], [38]. 
A standard deviation decrease in aBMD leads to a 1.5- to 3.0-fold 
increased risk of fracture depending on site-specific measurement and 
fracture site [38]. However, a low aBMD is not enough to explain all 
fractures. State-of-the-art studies suggested that the risk of fracture is 
very high when a low aBMD is present, but by no means negligible 
when it is normal [28], [37], [38], [40], [121], [122]. Therefore, aBMD 
for fracture risk prediction has low sensitivity (detection rate) at 
acceptable specificity [121].  

The majority of osteoporosis-related vertebral fractures are located in 
the vertebral body [43]. In spine AP DXA images, the vertebral body 
superimposes with the posterior vertebral elements, therefore the BMD 
in the vertebral body cannot be estimated separately. Fracture risk also 
depends on bone quality. Trabecular bone architecture and cortical 
bone thickness are important elements that determine bone quality [52]. 
However, trabecular and cortical bone compartments are difficult to 
assess separately in AP DXA scans.  

As an alternative to DXA, QCT provides a 3D analysis of bone 
structures. vBMD in the vertebral body can be measured independently 
of the posterior vertebral elements, and even trabecular and cortical 
structures can be evaluated [28], [123], [124]. The association of QCT-
derived vBMD with vertebral fracture has been studied previously 
[122], [125]–[129]. QCT-based finite element analysis is also used to 
know mechanical properties of the vertebrae and predict vertebral 
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fracture risk [129]–[132]. However, QCT results in exposure to a higher 
dose of radiation and is more expensive, compared to DXA. 
Consequently, QCT is rarely used in clinical practice for fracture risk 
evaluation.  

To overcome the limitations of DXA and QCT, 3D modeling methods 
were proposed to estimate the 3D shape and density distribution of 
bones from a limited number of DXA scans [17], [19]–[21], [133]. 
Those approaches use a statistical 3D shape and density model of the 
bone, built from a training set of QCT scans, which is registered onto 
the DXA scans to obtain the 3D subject-specific QCT-like model of 
the bone. Whitmarsh et al. [21] obtain 3D subject-specific estimates of 
the lumbar spine (from L2 to L4) by registering a statistical model onto 
two DXA images (AP and lateral views). Although they performed 
measurements in the trabecular compartment, no specific algorithm is 
proposed to quantify the cortical bone. In the previous chapter [133], 
we proposed a similar method to estimate the 3D shape and vBMD at 
the lumbar spine (from vertebra L1 to L4) but using a single AP DXA 
image. This method also performs a separate assessment of the cortical 
and the trabecular compartments, giving special emphasis to the 
vertebral body. Accuracy of those methods [17], [19]–[21], [133] was 
evaluated by comparing DXA- and QCT-derived 3D models and 
measurements. However, to the best of our knowledge, no study has 
reported on the association of output measurements provided by DXA-
based 3D modeling techniques with vertebral fracture. 

This chapter presents a retrospective case-control study including 
postmenopausal Caucasian women who experienced a vertebral 
fracture event and age-matched controls. DXA-derived 3D 
measurements were obtained at baseline (at least one year before the 
vertebral fracture event for subjects in the fracture group) for each 
subject using lumbar spine AP DXA scans and a DXA-based 3D 
modeling technique [133]. The ability of DXA-derived 3D 
measurements to discriminate between fracture and control groups was 
assessed. As the fracture group included various types of vertebral 
fractures, subgroup analyses were performed to analyze the difference 
between groups depending on the type of fracture. 
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5.2. Materials and methods 

5.2.1.  Study population  

We retrospectively analyzed a database collected at CETIR Grup 
Mèdic (Barcelona, Spain). The database is composed by 
postmenopausal Caucasian women over 40 years old with baseline and 
follow-up visits, both performed between the years 2000 and 2010. 
Subjects of the database were stratified in two groups: patients with 
incident vertebral fractures related to osteoporosis (fracture group) and 
age-matched subjects without any type of fracture (control group). 
Inclusion criteria for the fracture group were no prior osteoporotic 
fractures in any skeletal site at baseline visit (i.e. no prevalent fractures 
at baseline), incident vertebral fracture(s) related to osteoporosis at 
follow-up visit between one to ten years from baseline, and no incident 
osteoporotic fractures in any skeletal site other than spine during the 
follow-up period. Conversely, inclusion criteria for the control group 
were no prior osteoporotic fractures in any skeletal site at baseline and 
during at least seven years from baseline visit (i.e. no prevalent fractures 
at baseline and no incident fractures at follow-up visit). Individuals in 
both groups were excluded if they had skeletal disease other than 
osteoporosis, such as severe osteoarthritis, severe scoliosis, spondylitis, 
spinal infection or abnormal bone growth; or undergone spinal surgery. 
Vertebrae affected by mild local structural changes were not used as 
exclusion criteria for the subject, neither to discard vertebrae for the 
analysis. Each subject of the fracture group was age-matched (±5 years) 
with a subject of the control group. Clinical parameters such as age, 
weight, height, and BMI were collected for each subject at baseline.  

Vertebral fractures were confirmed by a radiologist specialist using 
vertebral fracture assessment (VFA), in accordance with semi-
quantitative Genant classification criteria [43]. The absence of fracture 
was determined by revising the clinical history of the subjects, by 
analyzing the AP DXA scans at baseline and follow-up visits, and by 
discarding any subjects showing a height decrease of 2 cm or more 
between baseline and follow-up visit.  

Three subgroups were identified in the fracture group depending on the 
type of fracture. The first subgroup was composed by the subjects that 
had at least one lumbar vertebra fractured. The second subgroup was 
composed by the subjects that had at least the vertebra L1 fractured. 
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The third subgroup was composed by the subjects that had at least one 
thoracic vertebra fractured. Subjects from each subgroup may have, in 
addition to the type of fracture befitting with its group, other types of 
vertebral fractures.  

This study was conducted as prescribed by the latest version of the 
Declaration of Helsinki. Ethical approval was given by the CETIR 
Grup Mèdic scientific committee for the use of retrospective clinical 
data and of results of bone measurements in the scope of this study. 
Each subject was ensured of anonymity which was maintained by using 
subject-specific numeric codes on all records. 

5.2.2. Medical images and DXA-derived 2D 
measurements 

A lumbar spine AP DXA scan was acquired at baseline for all subjects 
included in the study. DXA scans were performed using a Prodigy 
densitometer (GE Healthcare, Madison, WI, USA) and analyzed using 
enCORE software (v14.10, GE Healthcare, Madison, WI, USA). DXA 
scans and analyses were performed by a trained radiologist at CETIR 
Grup Mèdic according to the manufacturer’s recommendations. DXA-
derived 2D measurements, such as aBMD (in g/cm2), BMC (in g) and 
area (in cm2), were measured in the spine AP DXA scans at L1-L4 
segment. T-scores were evaluated using GE-Lunar normative data for 
Spain. 

5.2.3. DXA-derived 3D measurements 

DXA-derived 3D measurements at L1-L4 segment were obtained using 
the software 3D-SHAPER (Galgo Medical, Barcelona, Spain) and the 
AP DXA scans acquired at baseline (before the fracture). 3D-SHAPER 
computes a 3D subject-specific shape and density model of the lumbar 
spine from a single AP DXA image, as described in the Chapter 4 [133], 
and briefly summarized thereafter. First, the 3D subject-specific 
estimation is obtained by registering and fitting a statistical shape and 
density model onto the AP DXA image. The statistical model was 
previously generated using a training database of QCT scans from 
Caucasian men and women. Then, the periosteal and endocortical 
surfaces of the cortical layer are searched by using a model-based 
algorithm [109], [133]. The algorithm computes the density profile along 
the normal vector at each node of the 3D surface mesh and fit to a 
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function of the cortical thickness and density, the location of the cortex, 
the density of surrounding tissues, and the imaging blur. Finally, DXA-
derived 3D measurements are performed at different vertebral regions 
and bone compartments. vBMD (in mg/cm3), BMC (in g) and volume 
(in cm3) were measured at the integral bone of the total vertebra and the 
vertebral body. These measurements were also obtained for the 
trabecular and cortical compartments at the vertebral body. The mean 
cortical thickness (CTh, in mm) and the cortical surface BMD (cortical 
sBMD, in mg/cm2) were measured at the vertebral body. The cortical 
sBMD is the amount of cortical bone per unit area integrated along the 
normal vector at each node of the 3D vertebral body surface mesh. It 
was computed as the multiplication of the cortical vBMD (in mg/cm3) 
and the Cort. Th. (in cm).  

5.2.4. Statistical Analysis 

Descriptive statistics, including means and standard deviations (SD), 
were used to analyze the fracture and control groups. Differences 
between groups at baseline were assessed using the parametric Student's 
T-test, after checking for normality. A p-value < 0.05 was considered 
statistically significant. Univariate logistic regressions were used to 
investigate possible correlations between independent variables (weight, 
height, BMI, DXA-derived 2D and 3D measurements) and the status 
of the fracture. The ability of DXA-derived measurements to 
discriminate between fracture and control subjects was evaluated by 
using the area under the receiver operating characteristic curve (AUC). 
Odds ratio (OR) with 95% confidence intervals (CI) were calculated to 
estimate the odds of a vertebral fracture occurring for every 1 SD 
change in the DXA-derived measurements. To visualize the differences 
between groups in vBMD distribution, the mean 3D shape and density 
were computed for each group. Slices in the mid vertebral body plane 
were used to visualize the anatomical distribution of differences in 
vBMD. Cortical sBMD distribution was also computed for each group. 
Differences in cortical sBMD distribution were displayed onto the 
average shape instance. The statistical analysis was performed for the 
whole database and for each subgroup separately. Statistical analyses 
were conducted using MATLAB Academic (release R2015b, 
MathWorks, Inc., Natick, Massachusetts, United States). 
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5.3. Results 

5.3.1. Subject´s characteristic 

74 postmenopausal Caucasian women were included in this study: 37 

patients with osteoporosis-related vertebral fractures (fracture group) 

and 37 age-matched subjects without any type of fracture (control 

group). No significant differences (p-value ≥ 0.05) were observed in 

terms of age, weight, height and BMI between fracture and control 

groups (Table IV). Patients in the fracture group had a vertebral fracture 

event on average (± SD) at 3.2 ± 2.4 years from baseline. Absence of 

osteoporotic fracture event was ensured for controls over an average 

period of 9.0 ± 1.6 years. 

The fracture group was composed by 30 patients with a single vertebral 
fracture and 7 with multiple vertebral fractures. A total of 48 incident 
vertebral fractures were found in the 37 patients of the fracture group: 
two T4, two T7, one T8, one T9, three T10, one T11, nine T12, fifteen 
L1, six L2, four L3 and four L4. The information of whether the patient 
in the fracture group had wedge, biconcave or crush deformity was not 
available for all the subjects. The grade of the fracture was classified as 
severe (grade 3) in 28 patients. 

5.3.2. DXA-derived 2D measurements 

Based on the WHO classification criteria, 97% of the patients in the 
fracture group and 84% of the subjects in the control group had a low 
aBMD (L1-L4 T-score < -1). The vertebral fracture group was 
composed by 29 women with osteoporosis, 7 with low bone mass and 
1 with normal bone mass; whereas the control group was composed by 
14 women with osteoporosis, 17 with low bone mass and 6 with normal 
bone mass.  

Mean aBMD at L1-L4 segment of vertebral fracture group (whole 
database) was 9.3% lower compared to control group (p<0.01, Table 
V). No significant differences were observed in BMC and area. aBMD 
discriminate between fracture group and controls with an AUC = 0.682. 
Each incremental decrease of 1 SD in aBMD was associated with an 
increase of twice of the odds of presenting a vertebral fracture (OR: 
2.033 95% CI [1.202 – 3.438]).  
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5.3.3. DXA-derived 3D measurements 

Integral vBMD at the total vertebra of fracture group was 10.2% lower 

compared to control group (p<0.01), (whole database, Table V). At the 

vertebral body, differences in vBMD were more pronounced in the 

trabecular bone (-16.1%, p<0.001) than in the integral bone (-11.3%, 

p<0.001). Cortical vBMD at the vertebral body was 1.5% lower in the 

fracture group, although not significant (p=0.438). Cortical sBMD of 

fracture group was 6.1% lower compared to control group (p=0.026). 

The anatomical distribution of the average differences in trabecular 

vBMD in the vertebral body between subjects included in the fracture  

Table IV: Characteristics at baseline of the subjects included in fracture and control 
groups according to fracture site. 

 Control Fracture p* 

Vertebral fracture (whole database) 

Number 37 37  

Age (years) 65.3 ± 8.1 [50.0 – 79.7] 65.5 ± 7.6 [48.8 – 78.2] 0.913 

Weight (kg) 60.7 ± 9.2 [46.0 – 85.0] 64.1 ± 8.7 [48.8 – 85.0] 0.115 

Height (cm) 155.0 ± 7.5 [140.0 – 170.0] 155.7 ± 5.5 [144.0 – 169.5] 0.666 

BMI (kg/m2) 25.3 ± 3.4 [19.6 – 32.8] 26.4 ± 3.3 [21.1 – 32.4] 0.146 

Lumbar spine fracture  

Number 26 26  

Age (years) 65.8 ± 8.3 [50.0 – 79.7] 65.6 ± 7.6 [48.8 – 78.2] 0.905 

Weight (kg) 60.8 ± 8.0 [46.0 – 75.0] 64.3 ± 9.3 [48.8 – 85.0] 0.151 

Height (cm) 155.3 ± 8.3 [140.0 – 170.0] 156.4 ± 6.2 [144.0 – 169.5] 0.578 

BMI (kg/m2) 25.3 ± 3.2 [19.6 – 31.6] 26.3 ± 3.5 [21.1 – 32.4] 0.279 

L1 vertebral fracture 

Number 15 15  

Age (years) 64.6 ± 7.7 [50.0 – 76.6] 64.0 ± 7.7 [48.8 – 75.7] 0.839 

Weight (kg) 62.7 ± 7.2 [46.0 – 75.0] 65.6 ± 9.3 [54.5 – 85.0] 0.336 

Height (cm) 154.3 ± 7.8 [140.0 – 170.0] 157.0 ± 7.6 [144.0 – 169.5] 0.359 

BMI (kg/m2) 26.3 ± 2.8 [21.1 – 31.6] 26.7 ± 3.4 [22.5 – 32.4] 0.780 

Thoracic spine fracture 

Number 16 16  

Age (years) 63.9 ± 7.7 [50.0 – 74.0] 64.9 ± 8.4 [48.8 – 75.7] 0.738 

Weight (kg) 61.7 ± 10.1 [46.0 – 85.0] 64.2 ± 8.2 [54.0 – 83.0] 0.444 

Height (cm) 154.0 ± 4.7 [143.0 – 161.0] 156.0 ± 5.1 [148.0 – 169.5] 0.251 

BMI (kg/m2) 26.0 ± 3.6 [21.0 – 32.8] 26.4 ± 2.9 [22.0 – 30.8] 0.733 

Results are expressed as mean ± standard deviation [minimum – maximum] 
*p-values from unpaired two-sample t-test 
BMI: body mass index 
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Table V: Vertebral fracture (whole database): DXA-derived measurements at baseline 
of control and fracture groups, differences between groups, AUC and OR. 

L1-L4  Control Fracture Differences p* AUC OR [95% CI] 

DXA-derived 2D measurements 

aBMD  
0.936  
± 0.144 

0.849  
± 0.115 

-0.087 (-9.3%) 0.005 0.682 
2.033  
[1.202 – 3.438] a 

BMC  
47.4  
± 9.9 

43.5 
 ± 8.1 

-3.9 (-8.2%) 0.070 0.615 
1.562 
 [0.957 – 2.550] a 

Area  
50.3  
± 4.5 

51.1 
 ± 5.4 

0.8 (1.6%) 0.477 0.521 
0.844  
[0.531 – 1.341] b 

DXA-derived 3D measurements 

Integral bone, total vertebra 

Int. vBMD 
(Total) 

255.7  
± 39.6  

229.7  
± 32.0 

-26.0 (-10.2%) 0.003 0.687 
2.158  
[1.262 – 3.691] a 

Int. BMC 
(Total) 

41.1  
± 8.8 

37.5 
 ± 7.1 

-3.6 (-8.8%) 0.056 0.616 
1.601 
[0.979 – 2.619] a 

Int. volume 
(Total) 

160.6  
± 21.8 

163.4 
 ± 20.8 

2.8 (1.7%) 0.574 0.541 
0.874  
[0.551 – 1.388] b 

Integral bone, vertebral body 

Int. vBMD 
(Body) 

204.6  
± 32.8 

181.4 
 ± 21.4 

-23.2 (-11.3%) <0.001 0.711 
2.547  
[1.410 – 4.603] a 

Int. BMC 
(Body) 

21.1 
 ± 4.4 

19.0  
± 3.4 

-2.1 (9.8%) 0.026 0.636 
1.757  
[1.051 – 2.937] a 

Int. volume 
(Body) 

103.3  
± 14.8 

104.8  
± 13.3 

1.4 (1.4%) 0.663 0.530 
0.901  
[0.568 – 1.428] b 

Trabecular bone, vertebral body 

Trab. vBMD 
(Body) 

132.7 
 ± 30.2 

111.3  
± 19.2 

-21.4 (-16.1%) <0.001 0.733 
2.637  
[1.422 – 4.890] a 

Trab. BMC 
(Body) 

11.9 
 ± 2.8 

10.2 
 ± 2.0 

-1.7 (-14.0%) 0.005 0.682 
2.101  
[1.217 – 3.627] a 

Trab. volume 
(Body) 

90.3  
± 13.5 

92.1  
± 12.1  

1.8 (2.0%) 0.540 0.541 
0.864  
[0.544 – 1.372] b 

Cortical bone, vertebral body 

Cort. vBMD 
(Body) 

702.4  
± 54.6 

691.7  
± 62.7 

-10.7 (-1.5%) 0.438 0.550 
1.203  
[0.758 – 1.912] a 

Cort. BMC 
(Body) 

9.2 
 ± 1.9 

8.8 
 ± 1.8 

-0.4 (-4.5%) 0.342 0.563 
1.256  
[0.787 – 2.005] a 

Cort. volume 
(Body) 

13.0 
 ± 1.8 

12.6 
 ± 1.5 

-0.4 (-3.0%) 0.317 0.577 
1.272 
[0.796 – 2.033] a 

Cort. Th. 
(Body) 

0.65  
± 0.06 

0.63  
± 0.05 

-0.03 (-4.3%) 0.026 0.632 
1.736  
[1.056 – 2.854] a 

Cort. sBMD 
(Body) 

51.2 
 ± 6.6 

48.1 
 ± 5.0 

-3.1 (-6.1%) 0.026 0.630 
1.736  
[1.055 – 2.854] a 

Measurements of control and fracture groups are expressed as mean ± standard deviation.  
Differences between groups are expressed as mean (percentage). 
*p-values from unpaired two-sample t-test. p-values < 0.05 are shown in bold. 
a Odds ratios corresponds to a 1 SD decrease in the measurement. 
b Odds ratios corresponds to a 1 SD increase in the measurement. 
AUC: area under the receiver operating curve; OR: odds ratio; CI: confidence intervals;  
aBMD: areal bone mineral density (g/cm2); BMC: bone mineral content (g); area (cm2); vBMD: volumetric 
bone mineral density (mg/cm3); volume (cm3); Cort. Th.: cortical thickness (mm); sBMD: surface bone 
mineral density (mg/cm2). 
Int.: integral bone; Trab.: trabecular bone; Cort.: cortical bone; Total: total vertebra; Body: vertebral body. 
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and control groups are shown in Figure 5.1. Differences in trabecular 

vBMD were found to be more pronounced near the endplates. 

Trabecular vBMD at the vertebral body was the measurement 
associated with the highest AUC (0.733) and OR (2.637 [1.422 – 4.890]). 
Slightly lower values were found for the integral vBMD at the vertebral 
body (AUC of 0.711 and OR of 2.547 [1.410 – 4.603]). Cortical sBMD 
were associated with lower AUC (0.630) and OR (1.736 [1.055 – 2.854]). 
The AUC map associated with trabecular vBMD values computed at 
each voxel of the volumetric images of subjects included in the fracture 
and control groups is shown in Figure 5.2. Only AUC higher than the 
90th percentile (AUC > 0.720) are shown. Maximum AUC was 0.815. 
Trabecular vBMD measurements show highest AUC when computed 
near the endplates. 

5.3.4. Subgroup analysis  

a) Lumbar spine fracture subgroup 

The lumbar spine fracture subgroup was composed by 26 subjects 
having at least one lumbar vertebral fracture. 19 subjects had a single 
lumbar vertebral fracture, and 7 subjects had multiple lumbar vertebral 
fractures. The 26 subjects had a total of 37 vertebral fractures: two T4, 
one T11, five T12, fifteen L1, six L2, four L3 and four L4.  

Mean aBMD of fracture subgroup was 10.1% lower compared to 
control subgroup (p=0.015, Table VI). Difference in integral vBMD 
was -11.2% (p<0.01) at the total vertebra and -11.8% (p<0.01) at the 
vertebral body. Trabecular vBMD at the vertebral body of fracture 
subgroup was 17.8% lower compared to controls (p<0.01). No 
significant differences were observed in measurements at the cortical 
bone. Trabecular vBMD was associated with the highest AUC (0.720) 
and OR (2.487 [1.242 – 4.979]). General and local findings for the 
lumbar spine fracture subgroup were similar to those obtained with the 
analysis of the whole database (Table VI, Figure 5.1 and Figure 5.2). 
The 90th percentile threshold and the maximum value at the trabecular 
vBMD AUC map was 0.712 and 0.812, respectively (Figure 5.2).  
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Figure 5.1: Anatomical distribution of the average changes (difference between 
subjects included the fracture group and subgroups, and controls) in trabecular 
vBMD.  
Differences are shown in the mid-coronal plane (top) and mid-lateral plane (bottom) 
in the vertebral body. Top left image indicates the cut planes. Red-yellow (respectively 
blue-green) colours indicates regions where ΔvBMD is on average lower (respectively 
higher) for vertebral fracture subjects compared to controls. Non-significant changes 
(unpaired two-sample t-test) are left in black. The contour in pink indicates the 
periosteal surface of the vertebral body. Differences were computing using (from left 
to right): the whole database (N=37 in each group), the lumbar spine fracture 
subgroup (N=26), the L1 vertebral fracture subgroup (N=15), and the thoracic spine 
fracture subgroup (N=16). 
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b) L1 vertebral fracture subgroup 

The L1 vertebral fracture subgroup was composed by 15 subjects 
having at least a L1 fracture. 9 subjects had only a L1 fracture and 6 
subjects had multiple vertebral fractures. The 15 subjects had a total of 
24 vertebral fractures: two T4, one T11, five T12, fifteen L1 and two 
L2.  

More pronounced differences were observed in this subgroup (Table 
VI), especially when looking at the trabecular vBMD in the vertebral 
body (-23.7%, p<0.01). No significant differences were observed in 
measurements at the cortical bone. Trabecular vBMD in the vertebral 
body was the measurement associated with the highest AUC (0.827) and 
OR (5.043 [1.448 – 17.556]). Differences in trabecular vBMD were 
locally more pronounced (Figure 5.1) and associated with higher AUC 
(Figure 5.2), compared to values found when analyzing the whole 
database. 

c) Thoracic spine fracture subgroup 

The thoracic spine fracture subgroup was composed by 16 subjects 
having at least one thoracic vertebral fracture. 11 subjects had a single 
thoracic vertebral fracture and 5 subjects had multiple vertebral 
fractures. The 16 subjects had a total of 25 vertebral fractures: two T4, 
two T7, one T8, one T9, three T10, one T11, nine T12, five L1 and one 
L2.  

No significant differences were observed in aBMD and cortical vBMD 
between the thoracic spine fracture subgroup and control subgroup 
(Table VI). In the vertebral body, differences in vBMD were more 
pronounced in the trabecular bone (-16.2%, p<0.01), than in the 
integral bone (-12.8%, p<0.01). 

Trabecular vBMD was associated with the highest AUC (0.801) and 
OR (5.060 [1.406 – 18.208]) compared to the other DXA-derived 
measurements. Differences in trabecular vBMD were locally less 
pronounced in the thoracic spine fracture subgroup, compared to the 
L1 vertebral fracture subgroup (Figure 5.1). However, trabecular 
vBMD values were locally associated with higher AUC, compared to 
values found when analyzing the whole database (Figure 5.2). 
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Figure 5.2: AUC map calculated using trabecular vBMD at each voxel of the 
volumetric images of subjects included in the fracture group and controls.  
Only AUC higher than the 90th percentile are shown. Differences were computing 
using (from left to right): the whole database (N=37 in each group), the lumbar spine 
fracture subgroup (N=26), the L1 vertebral fracture subgroup (N=15), and the 
thoracic spine fracture subgroup (N=16). 
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Table VI: Subgroups analysis according to fracture site: DXA-derived measurements 
at baseline of subjects included in the control and fracture groups, differences between 
groups, AUC and OR. 

L1-L4 segment Control Fracture Differences p* AUC OR [95% CI] 

Lumbar spine fracture 

aBMD 
0.945  

± 0.159 

0.850  

± 0.110 
-0.095 (-10.1%) 0.015 0.686 

2.109  

[1.117 – 3.982] a 

Int. vBMD 
(Total) 

258.9  
± 44.1 

230.0 
 ± 32.1 

-28.9 (-11.2%) 0.009 0.692 
2.226 
 [1.172 – 4.226] a 

Int. vBMD 

(Body) 

206.0 

 ± 37.8 

181.6  

± 22.9 
-24.4 (-11.8%) 0.007 0.695 

2.348 

 [1.202 – 4.589] a 

Trab. vBMD 

(Body) 

134.3 

 ± 35.1 

110.4  

± 21.6  
-23.9 (-17.8%) 0.005 0.720 

2.487 

 [1.242 – 4.979] a 

Cort. vBMD 

(Body) 

700.4 

 ± 55.0 

699.7  

± 53.8 
-0.7 (-0.1%) 0.963 0.501 

1.013 

 [0.585 – 1.754] a 

Cort. Th. 

(Body) 

0.66 

 ± 0.07 

0.63  

± 0.05 
-0.03 (-4.0%) 0.100 0.608 

1.623 

 [0.907 – 2.906] a 

Cort. sBMD 
(Body) 

51.5 
 ± 7.3 

48.6  
± 5.1 

-2.9 (-5.7%) 0.099 0.608 
1.625 
 [0.908 – 2.910] a 

L1 vertebral fracture 

aBMD  
0.982 
 ± 0.147 

0.868  
± 0.115 

-0.114 (-11.6%) 0.025 0.758 
2.557 
 [1.068 – 6.125] a 

Int. vBMD 

(Total) 

272.9  

± 38.5 

236.6 

 ± 33.6 
-36.3 (-13.3%) 0.010 0.747 

3.058 

 [1.186 – 7.886] a 
Int. vBMD 

(Body) 

220.7 

 ± 33.4 

186.5 

 ± 23.6 
-34.2 (-15.5%) 0.003 0.778 

4.013 

[1.354 – 11.894] a 

Trab. vBMD 

(Body) 

147.9 

 ± 30.8 

112.8 

 ± 22.5 
-35.1 (-23.7%) 0.001 0.827 

5.043 

[1.448 – 17.556] a 

Cort. vBMD 

(Body) 

705.6 

 ± 60.8 

718.1 

 ± 54.5 
12.6 (1.8%) 0.556 0.551 

0.795  

[0.380 – 1.661] b 
Cort. Th. 

(Body) 

0.67 

 ± 0.07 

0.64  

± 0.05 
-0.03 (-4.7%) 0.159 0.640 

1.757  

[0.803 – 3.846] a 

Cort. sBMD 
(Body) 

53.1 
 ± 7.4 

49.5 
 ± 5.7 

-3.5 (-6.6%) 0.158 0.644 
1.761  
[0.804 – 3.856] a 

Thoracic spine fracture 

aBMD  
0.931 
 ± 0.126 

0.856  
± 0.133 

-0.076 (-8.1%) 0.110 0.662 
1.862  
[0.862 – 4.022] a 

Int. vBMD 

(Total) 

256.2  

± 36.6 

230.0 

 ± 34.0 
-26.2 (-10.2%) 0.044 0.691 

2.296  

[0.974 – 5.413] a 
Int. vBMD 

(Body) 

207.6 

 ± 24.1 

181.0 

 ± 20.5 
-26.6 (-12.8%) 0.002 0.793 

4.557  

[1.411 – 14.718] a 

Trab. vBMD 
(Body) 

134.5 
 ± 21.2 

112.7 
 ± 16.3 

-21.8 (-16.2%) 0.003 0.801 
5.060  
[1.406 – 18.208] a 

Cort. vBMD 

(Body) 

704.3 

 ±47.9 

687.9 

 ± 77.2  
-16.3 (-2.3%) 0.477 0.543 

1.307  

[0.639 – 2.673] a 
Cort. Th. 

(Body) 

0.66 

 ± 0.06 

0.62 

 ± 0.05 
-0.05 (-7.1%) 0.017 0.734 

2.659  

[1.115 – 6.342] a 

Cort. sBMD 
(Body) 

52.2 
 ± 6.5 

47.0 
 ± 5.1 

-5.2 (-10.0%) 0.018 0.734 
2.649  
[1.111– 6.313] 

Results are given for the subgroups analysis: lumbar spine fracture, L1 vertebral fracture and thoracic spine 
fracture. Measurements of control and fracture groups are expressed as mean ± standard deviation.  
Differences between groups are expressed as mean (percentage). *p-values from unpaired two-sample t-
test. p-values < 0.05 are shown in bold. a Odds ratios corresponds to a 1 SD decrease in the measurement. 
b Odds ratios corresponds to a 1 SD increase in the measurement. 
AUC: area under the receiver operating curve; OR: odds ratio; CI: confidence intervals; aBMD: areal bone 
mineral density (g/cm2); vBMD: volumetric bone mineral density (mg/cm3); Cort. Th.: cortical thickness 
(mm); sBMD: surface bone mineral density (mg/cm2). Int.: integral bone; Trab.: trabecular bone; Cort.: 
cortical bone; Total: total vertebra; Body: vertebral body. 
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Unlike the other subgroup’s analyses, significant differences (p=0.018) 
were observed in cortical sBMD between the thoracic spine fracture 
subgroup and controls. Cortical sBMD was associated with higher AUC 
(0.734) and OR (2.649 [1.111 – 6.313]), compared to other 
measurements at the cortex. The anatomical distribution of the average 
differences in cortical sBMD between subjects included in thoracic 
spine fracture analysis and controls is shown in Figure 5.3 (top). More 
pronounced differences (magenta color) were found at the endplates of 
vertebrae L1, L2 and L4. Figure 5.3 also shows the AUC calculated 
using cortical sBMD at each vertex of the vertebral body surface. AUC 
higher than the 90th percentile (i.e. in the range 0.777-0.836) are circled 
in red and were mostly found at the endplates. 

 

  

    

Figure 5.3: Cortical sBMD at the vertebral body. 
Top: Anatomical distribution of the average differences in cortical sBMD at the 
vertebral body between subjects included in the thoracic spine fracture subgroup 
(N=16) and its respective controls (N=16). Non-significant changes (unpaired two-
sample t-test) are left in grey. Bottom: AUC calculated using cortical sBMD at each 
vertex of the vertebral body surface of the subjects included in thoracic spine fracture 
and control groups. Regions where the differences in cortical sBMD were not 
significant (unpaired two-sample t-test) at the total vertebra region of interest are left 
in grey. Regions showing AUC higher than the 90th percentile (i.e. AUC > 0.777) are 
circled in red. Maximum AUC was 0.836. 
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5.4. Discussion 

In the present study, the ability of DXA-derived 3D measurements at 
lumbar spine to discriminate between postmenopausal women with and 
without osteoporosis-related vertebral fractures was evaluated. The 
DXA-derived 3D measurements were performed at baseline (at least 
one year before the vertebral fracture event), using standard DXA scans 
and a 3D modeling technique [133]. To the best our knowledge, no 
retrospective case-control study evaluating the association of DXA-
derived 3D measurements at vertebrae L1 to L4 with osteoporosis-
related vertebral fractures has been reported in the literature. 

Age, sex and BMI are independent risk factors for osteoporosis-related 
fractures [28], [37]. In the present study, an age-matched database of 
postmenopausal women was used, in order to eliminate the 
confounding effect of age and sex. Although no inclusion criteria 
related to height or weight was used to recruit the subjects, no 
significant differences between groups were found in terms of height, 
weight and BMI at baseline (Table IV).  

Significant differences between fracture and control groups were 
observed for aBMD (-9.3%, p<0.01), integral vBMD (-10.2%, p<0.01) 
and trabecular vBMD (-16.1%, p<0.001, Table V). We found slightly 
higher OR for DXA-derived vBMD measurements in the vertebral 
body (2.547 [1.410 – 4.603] at integral bone and 2.637 [1.422 – 4.890] 
at the trabecular bone, Table V) compared to aBMD (2.033 [1.202 – 
3.438]). This is consistent with the literature, where OR for QCT-based 
vBMD measurements were found to be similar or higher, compared to 
aBMD measurements [126]–[128]. Melton et al. [126] reported slightly 
higher OR for vBMD at L1-L3 segment (2.2 [1.1 – 4.3] at the integral 
bone and 1.9 [1.0 – 3.6] at the trabecular bone), compared to aBMD 
(0.7 [0.4 – 1.2]). Anderson et al. [127] reported higher OR for vBMD at 
L3 (3.4 [1.7 – 6.8] at the integral bone and 3.4 [1.7 – 6.9] at the trabecular 
bone), compared to aBMD (1.9 [1.1 – 3.3]). Grampp et al. [128] reported 
higher OR for vBMD at L1-L4 segment (3.0 [1.5-6.1] at the integral 
bone and 4.3 [1.8 – 10.1] at the trabecular bone), compared to aBMD 
(2.4 [1.4 – 4.2]). 

Trabecular vBMD at the vertebral body was the measurement that best 
discriminated between fracture and control groups, with an AUC of 
0.733, against 0.682 for aBMD (Table V). Similar findings were reported 
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in QCT-based studies in the literature. Chalhoub et al. [125] reported an 
AUC of 0.79 for trabecular vBMD, against 0.72 for aBMD. Melton et 
al. [126] reported an AUC of 0.78 for trabecular vBMD, against 0.75 for 
aBMD. Grampp et al. [128] reported an AUC of 0.82 for trabecular 
vBMD, against 0.78 for aBMD. Imai et al. [132] reported an AUC of 
0.77 for trabecular vBMD, against 0.71 for aBMD.  

The use of QCT-based vBMD measurements to overcome limitations 
related to aBMD measurements has been proposed by several studies 
in the literature [28], [37], [123]–[129], [134]. DXA-derived 3D 
measurements have the potential to provide similar output 
measurements, but without the disadvantages of QCT (high financial 
cost and radiation dose, compared to DXA), [17], [19]–[21], [133].  

Spinal degeneration, abdominal aortic calcification, and other sclerotic 
lesions artificially increase aBMD as measured by DXA [28], [37], [123], 
[134]; although patients with such pathologies have higher fracture risk. 
DXA-derived measurement of the trabecular vBMD in the vertebral 
body could be less sensitive to artefacts produced by those diseases, that 
are often located at the vertebral surface (cortical bone) or in the 
posterior arch. This could explain the higher AUC values found for 
trabecular vBMD measurements found in our study. In this sense, 
DXA-derived 3D measurements of the trabecular bone at the vertebral 
body could provide an alternative measurement, overcoming the 
limitation of aBMD-based diagnosis by discarding bone spurs, local 
deformations at the periosteal surface, or in the back processes [134].  

In the present study, differences were less pronounced in the cortical 
bone (cortical sBMD: -6.1%, AUC=0.630) than in the trabecular bone 
(trabecular vBMD: -16.1%, AUC=0.733, Table V). Studies using 
biomechanical testing showed that contribution of the cortical bone to 
vertebral strength is usually low in normal subjects, but it could be 
important in older osteoporotic subjects [135], [136]. Accuracy of the 
DXA-derived measurements in the trabecular and cortical bone was 
assessed in previous work [133]. However, the cortex of the vertebral 
body is very thin (from 180 to 600 µm with a mean thickness of 380 µm 
[110]), and the DXA-based 3D modeling methods can hardly model 
local deformities, which could affect the accuracy of cortical bone 
measurements. The cortical sBMD is considered a more robust 
measurement of the cortical bone than cortical vBMD or Th, since it is, 
in general, easier to measure in low-resolution images [23], [137].  
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The fracture group included in this study included various types of 
vertebral fractures. Subgroup analyses assessing differences between 
groups depending on the type of fracture were also performed. The type 
of vertebral fractures found in the 37 cases included in this study was 
consistent with the literature, with a higher prevalence around the 
thoracolumbar junction (T12-L1) [127], [138]. Although the reason for 
this higher prevalence remain unknow, it has been suggested that 
thoracic kyphosis and the stiffness of the rib cage predispose this area 
to fracture by increasing vertebral loading in this location.  

Overall, similar findings were observed within the subgroup’s analyses 
(Table VI): significant differences for integral and trabecular vBMD; 
and no significant differences for cortical vBMD. Trabecular vBMD at 
the vertebral body was also the measurement that best discriminated 
between fracture and control subgroups. Interestingly, differences 
between fractured subject and controls were found to be more 
pronounced when analyzing the L1 vertebral fracture subgroup 
(trabecular vBMD: -23.7%), than when assessing the whole database (-
16.1%). This can be explained by the fact that measurements were 
performed at L1-L4 segment, which includes the vertebra that will 
fracture in all subjects of the L1 vertebral fracture subgroup. This is 
consistent with the literature, where site-specific measurements showed 
higher accuracy to discriminate osteoporosis-related fractures than 
other sites measurements [28], [37], [38]. 

Although site-specific measurements showed higher accuracy, the 
overlying ribcage prevents the use of DXA to determine BMD in the 
thoracic spine. Therefore, on the third subgroup analysis, we assessed 
the association of DXA-derived 3D measurements at the lumbar spine 
with thoracic spine fractures. Interestingly, no significant differences 
were observed in aBMD (p=0.110), whereas significant differences 
were observed in trabecular vBMD at the vertebral body (p<0.01). 
Budoff et al. [139] found a high correlation between trabecular vBMD 
measured at the lumbar vertebrae and trabecular vBMD at thoracic 
vertebrae. We found higher OR and AUC for trabecular vBMD (OR = 
5.060 [1.411 – 18.208], AUC = 0.801), compared to aBMD (OR = 1.862 
[0.862 – 4.022], AUC = 0.662). Anderson et al. [127] reported higher 
OR for vBMD at L3 (5.3 [1.3 – 21] at the integral bone and 5.6 [1.3 – 
23.4] at the trabecular bone), compared to aBMD (2.8 [1.0 – 8.0]). 
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Local differences between fracture and control groups were analyzed 
using color-coded images (Figure 5.1, Figure 5.2 and Figure 5.3). 
Average differences in trabecular vBMD between subjects included in 
fracture groups and controls (Figure 5.1) and associated AUC (Figure 
5.2) were higher near the endplates and lower in the center of the 
vertebral body. The endplates are the regions where tissue-level failure 
started, as measured in specimens with experimentally observed 
vertebral fracture [135], [140]–[142]. Those findings are consistent with 
biomechanical testing studies that show the maximum load fraction in 
the trabecular bone typically occurred near the endplates [132], [135], 
[142]. Anatomical distribution of differences in trabecular vBMD 
between subjects included in fracture and control groups was more 
uniform at the whole database than in the subgroups, and the highest 
difference was found in the L1 vertebral fracture subgroup (Figure 5.1). 
The L1 vertebral fracture and the thoracic spine fracture subgroups 
showed the highest AUCs, with maximum values of 0.907 and 0.930, 
respectively (Figure 5.2). The anatomical distribution of the average 
differences in cortical sBMD between subjects included in thoracic 
spine fracture subgroup and its respective control subgroup show more 
pronounced differences at the endplates (Figure 5.3) [135], [140]–[142]. 
Results showed in Figure 5.1, Figure 5.2 and Figure 5.3 were 
consistent with state-of-the-art studies using biomedical testing that 
show endplate thickness and density, and adjacent trabecular bone 
density as good predictors of local stiffness and strength. 

The most important limitation of our study is the small number of 
subjects included. The main difficulties to include subjects in the 
fracture group were to find patients with DXA images before the 
incident fracture, as most of patients go to the medical office after the 
fracture event, and to make sure that the subjects had no prevalent 
osteoporosis-related fracture at any skeletal site at baseline. Besides, our 
study is monocentric, only includes postmenopausal Caucasian women 
and not all of them have the same vertebra fractured. Therefore, results 
can be only extrapolated to populations with similar characteristics. 
Also, due to the design of our study (retrospective and case-control), 
we cannot directly imply a causative association between reduced DXA-
derived 3D measurements and osteoporosis related fracture. Another 
limitation is that participants included in this study did not undergo 
QCT examination. Therefore, we could not perform a direct 
comparison between the results obtained using DXA-derived 3D 
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measurements with QCT-derived measurements. Moreover, the 
presence/absence of vertebral fracture was confirmed using 
anteroposterior DXA scans and VFA. It would have been interesting to 
include other imaging modalities such as QCT or X-rays to further 
assess vertebral fractures. 

5.5. Conclusions 

This case-control study showed the association of DXA-derived 3D 
measurements at the lumbar spine with osteoporosis-related vertebral 
fractures. Lower vBMD at different vertebral regions and bone 
compartments were found in fracture group and subgroups compared 
to controls. Trabecular vBMD at the vertebral body was the 
measurement that best discriminated between fracture and control 
groups. DXA-based 3D modeling approaches could be a valuable 
option to complements standard DXA-derived 2D measurements in 
osteoporosis management. Similar studies including large cohorts will 
be performed in future work to determine if DXA-derived 3D 
measurements at the lumbar spine could improve fracture risk 
prediction in clinical practice. 

 

 





 

 

 

 

Chapter 6 

6.  ASSOCIATION BETWEEN 
OSTEOPOROTIC FEMORAL NECK 
FRACTURES AND DXA-DERIVED 3D 
MEASUREMENTS AT LUMBAR SPINE: 
A CASE-CONTROL STUDY 



 

 

 

Abstract - The aim of the present study was to evaluate the association 
between DXA-derived 3D measurements at lumbar spine and 
osteoporotic hip fractures. We analyzed a case-control database 
composed by 61 women with transcervical hip fractures and 61 age-
matched women without any type of fracture. DXA scans at lumbar 
spine were acquired, and aBMD was measured. Integral, trabecular and 
cortical vBMD, cortical thickness and cortical sBMD at different 
regions of interest were assessed using a DXA-based 3D modeling 
software. Descriptive statistics, tests of difference, OR and AUC were 
used to compare hip fracture and control groups. No significant 
differences (p-value ≥ 0.05) were observed in terms of age, weight, 
height and BMI between fracture and control groups. Lumbar spine 
aBMD of fracture group was 9.9% lower compared to control group 
(p<0.001). A more pronounced difference was found for total femur 
aBMD (-18.8%, p<0.001). Integral vBMD, and cortical vBMD, sBMD 
and thickness were the DXA-derived 3D measurements at lumbar spine 
that best discriminated between fracture and control groups, with 
AUC’s in the range of 0.685-0.726, against 0.670 for aBMD. The highest 
AUC (0.726) and OR (2.610) were found for integral vBMD at the 
posterior vertebral elements. Significantly lower AUC (0.617) and OR 
(1.607) were found for trabecular vBMD at the vertebral body. This 
study showed the association of DXA-derived measurements at lumbar 
spine with transcervical hip fractures. A strong association between 
vBMD of the posterior vertebral elements and transcervical hip 
fractures was observed, probably as a consequence of a global 
deterioration of the cortical bone component. Further studies should 
be carried out to investigate on the relative risk of transcervical fracture 
in patients with long-term cortical structural deterioration. 

 

 

The content of this chapter is adapted from the following publication: 

M. López Picazo, L. Humbert, R. Winzenrieth, S. Di Gregorio, M. A. 
González Ballester, and L. M. del Río Barquero. “Association between 
osteoporotic femoral neck fractures and DXA-derived 3D 
measurements at lumbar spine: A case-control study”, Bone 
(Submitted).  
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6.1. Introduction 

Osteoporosis is a common condition among postmenopausal women 
and is associated with a significant increase in morbidity and mortality 
[1], [2]. Despite being a major health condition, the absence of 
symptoms in the early stage of the disease leads to millions of people 
remaining undiagnosed and untreated, increasing their probabilities to 
suffer from a fracture. Hip fractures are the most serious and costly 
potential result of osteoporosis. Up to 20 % of patients die in the first 
year following hip fracture, and less than half of survivors regain the 
level of function that they had prior to the fracture [2]. The estimated 
cost of osteoporotic fractures in the EU is about 37 billion €, of which 
an estimated 54% account for hip fractures [33]. 

BMD is considered as the major determinant of bone strength and 
fracture risk. DXA is the reference technique in clinical practice to 
measure BMD for fracture risk assessment [2], [28]. DXA provides 2D 
images in which the aBMD (g/cm2) projected along the anteroposterior 
direction is measured. State-of-the-art studies suggested that the risk of 
fracture is very high when a low aBMD is present, but by no means 
negligible when it is normal [2], [28], [40]. In fact, low aBMD only 
explains 60 to 80 % of bone strength under laboratory conditions [143], 
and only 50 % of osteoporotic fractures are observed in 
postmenopausal women with a T-score below -2.5 [41].  

Bone quality is also an important determinant of fracture risk [42]. Bone 
quality refers to 3D structural characteristics of the skeleton, such as 
bone size, shape, mineral content distribution, trabecular bone 
architecture, damage accumulation, cortical bone thickness and 
geometry, turnover, osteon and osteocyte density and other factors such 
as structural proteins and crystal properties [42]. However, DXA-
derived standard measurements lack information about 3D 
characteristics of the bone, and trabecular and cortical bone 
compartments cannot be assessed separately in an AP DXA scan. 
Besides, lumbar vertebrae are composed of a vertebral body and 
posterior vertebral elements. The vertebral body is a weight-bearing 
structure and mainly composed by trabecular bone, while the posterior 
vertebral elements are non-weight-bearing structures and mainly 
composed by cortical bone. However, AP DXA scans do not allow 
physicians to perform specific measurements in the vertebral body or 
in the posterior vertebral elements. 



CHAPTER 6 

104 

 

As an alternative, QCT provides a 3D analysis of bony structures where 
vBMD can be measured separately at different vertebral regions and 
bone compartments [28], [123], [124]. However, QCT is rarely used in 
clinical practice for fracture risk evaluation as it results in exposure to a 
higher dose of radiation and is more expensive, compared to DXA.  

To overcome the limitations of DXA and QCT, 3D modelling methods 
were proposed to analyze bone structures in 3D from DXA scans [17], 
[19]–[21], [133]. Those approaches use a statistical 3D shape and density 
model of the bone, built from a training set of QCT scans, which is 
registered onto the DXA scan to obtain a 3D subject-specific QCT like 
model of the bone. Segmentation algorithms are used to identify the 
cortex in the 3D subject-specific model [19], [20], [133] and provide a 
separate 3D analysis of the trabecular and cortical compartments. 
Accuracy of those methods [17], [19]–[21], [133] was evaluated by 
comparing DXA-derived to QCT-derived 3D models and 
measurements.  

The most commonly measured sites for osteoporosis and fracture risk 
assessment are the lumbar spine and the proximal femur. Although site-
specific measurements showed higher accuracy to discriminate 
osteoporotic fractures than measurements at other sites [28], [37], [38], 
[144]–[146], the association between osteoporotic hip fractures and 
bone density at lumbar spine has been extensively studied using DXA 
[38], [144]–[147] and QCT [125], [148]–[152]. However, to the best of 
our knowledge, no study has reported on the association of output 
measurements provided by DXA-based 3D modeling techniques at 
lumbar spine with hip fractures. 

This chapter presents a case-control study including postmenopausal 
women with transcervical hip fractures and postmenopausal women 
without any type of osteoporotic fracture. DXA-derived 3D 
measurements at lumbar spine were obtained for each subject using AP 
DXA scans and DXA-based 3D modeling techniques [133]. The 
association between hip fracture and DXA-derived 3D measurements 
at lumbar spine in different vertebral regions and bone compartments 
was assessed. 
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6.2. Materials and methods 

6.2.1. Study population  

A retrospective case-control study was performed using a database from 
CETIR Grup Mèdic (Barcelona, Spain). The database included 
postmenopausal Spanish women over 50 years old, referred to CETIR 
by their general practitioner between the years 2000 and 2005. Subjects 
of the database were stratified in two groups: fracture group and control 
group. Criterion to include the subjects in the fracture group was to 
present a low-energy fracture at the femoral neck (transcervical 
fracture). Conversely, inclusion criterion for the subjects of the control 
group was not present any evidence of low-energy fracture at any 
skeletal site. Exclusion criteria for both groups included any evidence 
of prior osteoporosis-related fracture at lumbar spine, any treatment 
that would be expected to influence bone metabolism, hormone 
replacement therapies, skeletal disease other than osteoporosis, such as 
severe osteoarthritis, severe scoliosis, spondylitis, spinal infection or 
abnormal bone growth, or spinal surgery. Each case who met inclusion 
criteria of the fracture group was randomly age-matched (±5 years) with 
one subject of the control group (1:1). Anthropometric measurements 
such as weight, height, and BMI were collected.  

This study was conducted as prescribed by the latest version of the 
Declaration of Helsinki. Ethical approval was given by the CETIR 
Grup Mèdic scientific committee for the use of clinical data and of 
results of bone measurements in the scope of this study. Each subject 
was ensured of anonymity, which was maintained by using subject-
specific numeric codes on all records. 

6.2.2. Medical images and DXA-derived 2D 
measurements 

DXA scans at proximal femur and at lumbar spine were performed 
using a Lunar Prodigy® densitometer (GE Healthcare, Madison, WI, 
USA) and analyzed using enCORE® software (v14.10, GE Healthcare) 
according to the manufacturer’s recommendations. aBMD (in g/cm2), 
BMC (in g) and area (in cm2) were measured in both femur and lumbar 
spine DXA scans. Lumbar spine measurements were reported as the 
mean of the individual measurements for L1-L4 segment.  
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6.2.3. DXA-derived 3D measurements 

3D subject-specific shape and density models and measurements at the 
lumbar spine were computed using the software 3D-SHAPER (Galgo 
Medical, Barcelona, Spain), as described in Chapter 4 [133] and briefly 
summarized thereafter. First, a statistical shape and density model of the 
L1-L4 segment, previously generated using a training database of QCT 
scans from Caucasian men and women, is registered and fitted onto the 
DXA image obtaining the 3D subject-specific model. Then, trabecular 
and cortical bone compartments at the vertebral body are segmented 
using a model-based algorithm [109], [133]. The algorithm performs the 
fitting of a function of the cortical thickness and density, the location 
of the cortex, the density of surrounding tissues, and the imaging blur 
to the density profile measured along the normal vector at each node of 
the 3D surface mesh. Finally, DXA-derived 3D measurements, such as 
vBMD (in mg/cm3), BMC (in g) and volume (in cm3), are performed at 
different vertebral regions (total vertebra, vertebral body and posterior 
vertebral elements, i.e. pedicles, transverse processes, articular processes 
and spinous process) and bone compartments (integral, trabecular and 
cortical bone). The mean cortical thickness (CTh, in mm) of the 
vertebral body is also computed. The cortical sBMD (in mg/cm2) 
measures the amount of cortical bone per unit area integrated along the 
normal vector at each node of the 3D vertebral body surface mesh. It 
is computed as the multiplication of the cortical vBMD (in mg/cm3) 
and the CTh (in cm). 

6.2.4. Statistical Analysis 

Descriptive statistics, including means and standard deviations (SD), 
were used for each group. Differences between groups were assessed 
using parametric two tailed Student's T-test, after checking for 
normality. Odds ratio (OR) with 95% confidence intervals (CI) were 
calculated to estimate the odds of a fracture occurring for every 1 SD 
change in the DXA-derived measurements. Area under the receiver 
operating curve (AUC) was also computed for each DXA-derived 
measurement to investigate possible associations between DXA-
derived measurements and fracture. Statistical comparison between 
AUCs was also assessed. Statistical analyses were conducted using 
MATLAB Academic (release R2015b, MathWorks, Inc., Natick, 
Massachusetts, United States). A p-value < 0.05 was considered 
statistically significant. 



CHAPTER 6 

107 

 

To visualize the anatomical distribution of the differences in vBMD 
between fracture and control groups, the mean 3D shape and density 
volume were computed for each group and compared. Slices in the mid-
coronal plane and mid-lateral plane were used to visualize the 
anatomical distribution of changes in vBMD. The mean cortical sBMD 
distribution was also computed for each group. Differences in cortical 
sBMD distribution between fracture and control groups were displayed 
onto the average shape instance.  

6.3. Results 

6.3.1. Population characteristics 

One hundred twenty-two postmenopausal women met our 
inclusion/exclusion criteria and were included in this study: 61 patients 
with osteoporotic transcervical fractures (fracture group) and 61 
without any type of low-energy fracture (control group). No significant 
differences (p-value ≥ 0.05) were observed in terms of age, weight, 
height and BMI between fracture and control groups (Table VII). 

6.3.2. Differences in DXA-derived measurements 
between subjects with and without fractures  

Mean aBMD was significantly lower in fracture group (Total Femur: 
0.893 g/cm2 vs. 0.725 g/cm2, p< 0.0001; Femoral Neck: 0.823 g/cm2 
vs. 0.694 g/cm2, p<0.0001; L1-L4: 0.964 g/cm2 vs. 0.869 g/cm2, 
p<0.001) (Table VIII).  

Statistically significant differences were observed in all DXA-derived 
3D density measurements at L1-L4 segment between fracture and 
control group (p<0.05, Table VIII). Integral vBMD at the vertebral 
body was significantly lower in fracture group (261.6 mg/cm3 vs. 230.9 
mg/cm3, p< 0.01). A more pronounced difference between groups was 
found for the integral vBMD at the posterior vertebral elements (359.2 
mg/cm3 vs. 302.6 mg/cm3, p<0.0001). 

6.3.3. Association between DXA-derived 
measurements and hip fracture 

An AUC of 0.838 [0.747 – 0.896] was found for aBMD at total femur 
and each decrease of 1 SD in the measurement correspond to an OR of 
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6.240 [3.145 – 12.381] (Table VIII). An AUC of 0.670 [0.573 – 0.760] 
and OR of 2.044 [1.343 – 3.112] were found for aBMD at L1-L4 
segment. Comparison between AUCs showed that total femur aBMD 
was a significantly better predictor of transcervical fractures than 
lumbar spine aBMD (AUC=0.838 vs. 0.670, p < 0.001). 

An AUC of 0.691 [0.599 – 0.781] and OR of 2.319 [1.493 – 3.601] were 
found for the integral vBMD at the total vertebra (Table IX). Similar 
values were found for the cortical sBMD at the vertebral body (AUC of 
0.696 [0.598 – 0.781] and OR of 2.234 [1.448 – 3.447]). Lower AUC 
(0.617 [0.517 – 0.721]) and OR (1.607 [1.085 – 2.379]) were found for 
the trabecular vBMD at the vertebral body. The highest AUC (0.726 
[0.633 – 0.808]) and OR (2.610 [1.662 – 4.098]) were found for the 
integral vBMD at the posterior vertebral elements. Comparison 
between AUC showed that integral vBMD at the posterior vertebral 
elements was a significantly better predictor of transcervical fractures 
than trabecular vBMD at the vertebral body (AUC = 0.726 vs. 0.617, p 
< 0.001). A borderline significant trend was found in the AUC 
comparison between lumbar spine aBMD and integral vBMD at the 
posterior vertebral elements (AUC = 0.670 vs. 0.726, p = 0.068). 
Overall, total femur aBMD remains a significantly better predictor for 
hip fracture, compared to aBMD or vBMD measurements at lumbar 
spine (p < 0.05).  

 

Table VII: Characteristics of the subjects included in fracture and control groups.  

 Control Hip Fracture p* 

N 61 61  

Age (years) 67.0 ± 8.0  67.4 ± 7.9  0.776 

Weight (kg) 64.6 ± 8.8  62.1 ± 8.8  0.126 

Height (cm) 154.1 ± 5.8  154.0 ± 6.3  0.917 

BMI (kg/m2) 27.2 ± 3.1  26.2 ± 3.3  0.099 

Results are expressed as mean ± standard deviation [minimum – maximum] 
*p-values from unpaired two-sample t-test 
BMI: Body Mass Index 
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Table VIII: DXA-derived 2D measurements of control and fracture groups, 
differences between groups, AUC and OR.  

 Control Fracture Differences p* AUC [95% CI] OR [95% CI] 

DXA-derived 2D measurements at total femur 

aBMD 
0.893  
± 0.143 

0.725  
± 0.100 

-0.168 (-18.8%) <0.0001 
0.838  
[0.747 – 0.896] 

6.240  
[3.145 –12.381] a 

BMC 
26.8 
± 4.3 

22.3  
± 3.6 

-4.6 (-17.0%) <0.0001 
0.749  
[0.702 – 0.860] 

3.974  
[2.288 – 6.901] a 

Area 
30.1  
± 1.8 

30.7  
± 2.6 

0.6 (2.1%) 0.129 
0.561  
[0.455 – 0.664] 

1.335  
[0.916 – 1.945] b 

DXA-derived 2D measurements at femoral neck 

aBMD 
0.823  
± 0.126 

0.694  
± 0.071 

-0.129 (-15.7%) <0.0001 
0.798  
[0.705 – 0.870] 

5.206  
[2.725 – 9.946] a 

BMC  
3.9 
± 0.5 

3.4 
± 0.4 

-0.5 (-12.9%) <0.0001 
0.760  
[0.668 – 0.841] 

3.231  
[1.967 – 5.307] a 

Area  
4.7 
± 0.3 

4.9 
± 0.4 

0.1 (3.1%) 0.030 
0.603  
[0.494 – 0.703] 

1.512  
[1.031 – 2.217] b 

DXA-derived 2D measurements at L1 – L4 segment 

aBMD 
0.964  
± 0.153 

0.869  
± 0.133 

-0.095 (-9.9%) <0.001 
0.670  
[0.573 – 0.760] 

2.044  
[1.343 – 3.112] a 

BMC 
49.5 
± 10.3 

44.7  
± 9.5 

-4.8 (-9.8%) 0.008 
0.632  
[0.524 – 0.721] 

1.691  
[1.130 – 2.532] a 

Area  
51.1 
± 5.3 

51.1  
± 5.2 

-0.1 (-0.1%) 0.939 
0.497  
[0.391 – 0.595] 

1.014  
[0.710 – 1.448] a 

Measurements of control and fracture groups are expressed as mean ± standard deviation. Differences 
between groups are expressed as mean (percentage). 
*p-values from unpaired two-sample t-test. p-values < 0.05 are shown in bold. 
a (b) Odds ratios corresponds to a 1 SD decrease (increase) in the measurement.  
AUC: area under the receiver operating curve; OR: odds ratio; CI: confidence intervals; aBMD: areal bone 
mineral density (g/cm2); BMC: bone mineral content (g); area (cm2) 
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Table IX: DXA-derived 3D measurements of control and fracture groups, 
differences between groups, AUC and OR.  

 Control Fracture Differences p* AUC [95% CI] OR [95% CI] 

DXA-derived 3D measurements at L1 – L4 segment 

Integral bone, total vertebra 

vBMD 261.6 ± 43.4 230.9 ± 36.2 -30.7 (-11.7%) <0.0001 
0.691  
[0.599 – 0.781] 

2.319  
[1.493 – 3.601] a 

BMC 43.0 ± 9.1 38.6 ± 8.7 -4.4 (-10.3%) 0.007 
0.635  
[0.538 – 0.735] 

1.708  
[1.138 – 2.562] a 

Volume 164.8 ± 22.8 167.3 ± 27.2 2.5 (1.5%) 0.590 
0.529  
[0.432 – 0.628] 

1.104 
 [0.772 – 1.581] b 

Integral bone, posterior vertebral elements (pedicles, processes and facets) 

vBMD 359.2 ± 66.9  302.6 ± 61.0 -56.6 (-15.8%) <0.0001 
0.726  
[0.633 – 0.808] 

2.610 
 [1.662 – 4.098] a 

BMC 20.9 ± 5.1 18.4 ± 4.8 -2.5 (-12.0%) 0.006 
0.640  
[0.532 – 0.732] 

1.708  
[1.147 – 2.542] a 

Volume 58.3 ± 9.7 61.0 ± 11.9 2.7 (4.7%) 0.169 
0.568  
[0.457 – 0.665] 

1.298  
[0.892 – 1.887] b 

Integral bone, vertebral body 

vBMD 208.4 ± 34.8 190.6 ± 30.1 -17.8 (-8.5%) 0.003 
0.646  
[0.542 – 0.743] 

1.794  
[1.197 – 2.689] a 

BMC 22.1 ± 4.7  20.2 ± 4.5 -1.9 (-8.7%) 0.022 
0.626 
[0.517 – 0.718] 

1.564  
[1.053 – 2.322] a 

Volume 106.5 ± 14.7 106.2 ± 17.2 -0.3 (-0.3%) 0.925 
0.495  
[0.376 – 0.594] 

1.017  
[0.712 – 1.453] a 

Trabecular bone, vertebral body 

vBMD 150.8 ± 31.5 137.8 ± 26.1  -13.0 (-8.6%) 0.015 
0.617  
[0.517 – 0.721] 

1.607  
[1.085 – 2.379] a 

BMC 14.0 ± 3.4 12.8 ± 3.1 -1.1 (-8.0%) 0.063 
0.599  
[0.490 – 0.698] 

1.429  
[0.973 – 2.098] a 

Volume 92.9 ± 13.4 93.5 ± 15.5 0.6 (0.6%) 0.819 
0.524  
[0.420 – 0.628] 

1.043  
[0.730 – 1.490] b 

Cortical bone, vertebral body 

vBMD 598.2 ± 31.3 574.7 ± 35.3 -23.5 (-3.9%) <0.001 
0.685  
[0.591 – 0.772] 

2.122  
[1.395 – 3.226] a 

BMC 8.2 ± 1.4 7.4 ± 1.6 -0.8 (-9.9%) 0.003 
0.654  
[0.560 – 0.745] 

1.786  
[1.192 – 2.676] a 

Volume 13.6 ± 1.8 12.8 ± 2.1 -0.9 (-6.4%) 0.016 
0.625  
[0.524 – 0.727] 

1.588  
[1.080 – 2.335] a 

CTh 0.67± 0.06 0.63 ± 0.06 -0.04 (-6.53%) <0.0001 
0.696  
[0.597 – 0.788] 

2.229  
[1.446 – 3.437] a 

sBMD 53.1 ± 6.4 48.3 ± 6.7 -4.8 (-9.1%) <0.0001 
0.696  
[0.598 – 0.781] 

2.234  
[1.448 – 3.447] a 

Measurements of control and fracture groups are expressed as mean ± standard deviation. Differences 
between groups are expressed as mean (percentage). 
*p-values from unpaired two-sample t-test. p-values < 0.05 are shown in bold. 
a (b) Odds ratios corresponds to a 1 SD decrease (increase) in the measurement.  
AUC: area under the receiver operating curve; OR: odds ratio; CI: confidence intervals; BMC: bone mineral 
content (g); vBMD: volumetric bone mineral density (mg/cm3); volume (cm3); sBMD: surface BMD 
(mg/cm2). CTh: Cortical Thickness. 
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6.3.4. Anatomical distribution of differences between 
groups 

Anatomical distribution of differences between fracture and control 
groups were analyzed using color-coded images (Figure 6.1, Figure 6.2 
and Figure 6.3). The anatomical distribution of the average differences 
in integral vBMD between subjects with and without fracture is 
presented in Figure 6.1. Analysis of the distribution highlighted that 
differences in integral vBMD were more pronounces at the posterior 
vertebral elements than at the vertebral body. In the vertebral body, 
differences in vBMD were found to be more pronounced at the cortical 
bone than at the trabecular bone. In addition, differences in trabecular 
vBMD were more pronounced at the posterior part of the vertebral 
body.  

An AUC map calculated using vBMD values computed at each voxel 
of the volumetric images of subjects included in the fracture and control 
groups is shown in Figure 6.2. Only AUC higher than the 90th 
percentile (AUC > 0.649) are shown. vBMD measurements show 
higher AUC in the posterior part of the vertebral body and at the 
endplates. Maximum local AUC (0.768) was observed in the superior 
articular processes of L1.  

The anatomical distribution of the average differences in cortical sBMD 
between subjects included in fracture and control groups is showed in 
Figure 6.3 (top). More pronounced differences (magenta color) were 
found at the posterior part of the vertebral body. Figure 6.3 (bottom) 
shows the AUC map calculated using cortical sBMD at each vertex of 
the vertebral body surface. AUC higher than the 95th percentile (i.e. in 
the range 0.704-0.777) are circled in red. 

6.4. Discussion 

In the present study, we evaluated the association of DXA-derived 
measurements at L1-L4 segment with osteoporotic hip fractures by 
comparing women with transcervical hip fracture and age-matched 
controls.  

Although no inclusion criteria related to height or weight was used to 
recruit the subjects, no significant differences between groups were 
found in terms of height, weight and BMI (Table VII). The current 
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study therefore compares two groups with similar age and 
anthropometric measures. 

The OR associated with total femur aBMD (6.240 [3.145 – 12.381]) was 
three times the OR associated with lumbar spine aBMD (2.044 [1.343 – 
3.112]) (Table VIII). Similar results were found in state-of-the-art 
studies evaluating the ability of aBMD measurements at different 
skeletal sites to predict osteoporotic fractures [38], [144]–[146]. Marshall 
et al. [38] observed that aBMD had higher predictive abilities when 
measured at spine for predicting vertebral fractures (Relative Risk [95% 
CI] of 2.3 [1.9 – 2.8]) and when measured at hip for hip fractures (2.6 
[2.0 – 3.5]), compared to when measured at non- specific sites for any 
type of fracture (1.5 [1.4 – 1.6]), or when measured at lumbar spine for 
hip fracture (1.6 [1.2 to 2.2]). 

In the current study, trabecular vBMD at the vertebral body showed a 
weak association with transcervical hip fracture (Table IX). This 

 

 

 

Figure 6.1: Anatomical distribution of the average differences in vBMD between 
subjects included the fracture group and controls.  
Differences are shown in the mid-coronal plane (top centre) and mid-lateral plane (top 
right). Top left image indicates the cut planes. Red-yellow (respectively blue-green) 
colours indicate regions where ΔvBMD is on average lower (respectively higher) for 
hip fracture subjects compared to controls. Non-significant changes (unpaired two-
sample t-test) are left in black.  
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assertion is supported by findings reported in [148], [150], [152], where 
trabecular vBMD at lumbar spine were found to be mild or even no 
related with transcervical hip fractures. Moreover, studies suggested that 
trabecular bone measurements at lumbar spine were strongly associated 
with trochanteric fractures but weakly associated with transcervical ones 
[147], [150].  

Higher AUC were found for DXA-derived 3D measurements at the 
cortical bone (cortical vBMD, thickness and sBMD) compared to 
measurements at the trabecular bone (trabecular vBMD) (Table IX). 
From these results, we can hypothesize that transcervical hip fractures 
could be associated with a more pronounced impairment at the cortical 
bone, compared to trabecular bone. To the best of our knowledge, our 
study is the first one to evaluate the association between osteoporotic 
hip fractures and 3D measurements at the cortical bone at the lumbar 
spine. Previously published studies evaluating the association between 
osteoporotic hip fractures and bone density measurements at the 
lumbar spine using QCT [125], [148], [150]–[152] focused on integral 
and/or trabecular vBMD assessment, mainly because analyzing the 
cortical bone requires to segment the thin cortical layer of the vertebral 
body which is, indeed, very challenging. The previous assertion, 
however, could be supported by findings obtained by Yang et al. [153] 
at the proximal femur. Their case-control study using QCT and 
including patients with transcervical hip fractures reported higher AUCs 
for cortical vBMD and apparent CTh at the proximal femur, compared 
to trabecular vBMD. Those findings are also consistent with 
biomechanical studies performed with human cadaver femurs that 

  

Figure 6.2: AUC map calculated using vBMD at each voxel of the volumetric images 
of subjects included in the fracture group and controls. 
L1-L4 segment (left and middle) and L1 (right) are shown. Only AUC higher than the 
90th percentile (i.e. AUC > 0.649) are shown. Maximum AUC was 0.768. 
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showed the relatively small contribution of trabecular versus cortical 
bone in respect to bone strength in the femoral neck [154], [155].  

To the best of our knowledge, our study is the first one to evaluate the 
association between transcervical hip fractures and vBMD of the 
posterior vertebral elements. We found a strong association between 
the integral vBMD of the posterior vertebral elements and transcervical 
hip fractures. The vertebral body is composed mainly by trabecular 
bone, and the posterior vertebral elements by cortical bone. This 
suggests, once again, a stronger association of the cortical bone density 
with transcervical hip fractures, compared to the trabecular bone 
density.  

The strong association between transcervical hip fracture and cortical 
bone can also be seen in Figure 6.1, where local differences in vBMD 

 

Figure 6.3: Cortical sBMD at the vertebral body. 
Top: Anatomical distribution of the average differences in cortical sBMD at the 
vertebral body between subjects included in the fracture group (N =61) and control 
group (N =61). Non-significant changes (unpaired two-sample t-test) are left in grey. 
Bottom: AUC calculated using cortical sBMD at each vertex of the vertebral body 
surface of the subjects included in fracture and control groups. Regions where the 
differences in cortical sBMD were not significant (unpaired two-sample t-test) at the 
total vertebra region of interest are left in grey. Regions showing AUC higher than the 
95th percentile (i.e. AUC > 0.704) are circled in red. Maximum AUC was 0.777.  
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between subjects included in fracture groups and controls were shown 
to be more pronounced at the outer shell of the vertebral body and at 
the posterior vertebral elements, i.e. in regions that are mainly formed 
by cortical bone. This was confirmed by Figure 6.2, where vBMD 
measurements at each voxel showed locally high AUCs in the endplates, 
posterior part of the vertebral body, pedicles and articular processes. 
These regions were found in the literature to be associated with an 
abnormal load transmission as a result of intervertebral disc 
degeneration [156], [157]. These results are also consistent with studies 
that showed a strong association between CTh and endocortical 
trabecular vBMD (the average density in the trabecular compartment 
close to the cortex) at the femoral neck with transcervical hip fractures 
[158], [159]. The anatomical distribution of the average differences in 
cortical sBMD between subjects included in fracture and control groups 
showed more pronounced differences at the endplates and at the 
posterior surface of the vertebral body (Figure 6.3). This is consistent 
with state-of-the-art studies that showed that endplate and adjacent 
regions are the vertebral regions where tissue-level failure started, as 
measured in specimens using biomechanical testing [135], [140]–[142]. 
Figure 6.1, Figure 6.2 and Figure 6.3 suggest that endplates, posterior 
part of the vertebral body, pedicles and articular processes could be 
ROIs of importance in the assessment of transcervical hip fracture risk. 
Further analysis has to be done to investigate whether other type of hip 
fracture, such as trochanteric fracture, are associated with other specific 
patterns.  

An important limitation of the present study is the small number of 
subjects that were included. In addition, only postmenopausal 
Caucasian women were included. Therefore, larger cohorts will be 
analyzed in future work, including men and other ethnicities. The DXA-
based 3D modeling technique used in this study has the potential to be 
used in the context of very large, multicenter and prospective studies. 
One of the technical limitations of the present study is related to the 
segmentation of the cortex, which was only performed at the vertebral 
body. Therefore, DXA-derived 3D measurements at the posterior 
vertebral elements were only performed at the integral bone. However, 
as posterior vertebral elements are mainly formed by cortical bone, 
specific assessment of posterior vertebral elements cortical bone should 
provide similar results to those reported in the current study at integral 
bone. Another limitation is that participants included in this study did 



CHAPTER 6 

116 

 

not undergo QCT examination. Therefore, we could not perform a 
direct comparison between the results obtained using DXA-derived 3D 
measurements in our study with QCT-derived measurements. Lastly, in 
order to obtain a DXA-derived 3D measurement with the software 
(3D-SHAPER) that was used in our study, no vertebrae of the L1-L4 
segment could be fractured or have severe osteoarthritis. Therefore, 
subjects included in our study had to meet stricter criteria, compared to 
other study using QCT where having at least two non-fractured lumbar 
vertebrae was enough to perform the analysis [125], [148]–[152]. The 
method could be adapted to exclude vertebrae with fracture and/or 
severe osteoarthritis and compute the 3D subject-specific shape and 
density model using the non-affected vertebrae.  

6.5. Conclusion 

The association of DXA-derived 3D measurements at lumbar spine 
with osteoporotic transcervical hip fractures in postmenopausal women 
was assessed in this case-control study. Integral vBMD at the posterior 
vertebral elements, CTh at the vertebral body and cortical sBMD at the 
vertebral body were the measurements at L1-L4 segment that best 
discriminated between fracture and control groups. The association of 
trabecular vBMD at the vertebral body with fracture was significantly 
lower, compared to measurements at the integral or cortical bone. 
These findings suggested that cortical bone measurements at lumbar 
spine had stronger association with transcervical hip fractures, 
compared to trabecular bone measurements. The DXA-derived 3D 
model proposed in this study offers an insightful assessment of the 
lumbar spine at different vertebral regions (vertebral body and posterior 
vertebral elements) and bone compartments (integral, trabecular and 
cortical), which could potentially improve osteoporosis assessment and 
fracture prevention, using standard lumbar spine AP DXA scans. 
Similar studies including large cohorts will be performed in future work 
to determine if DXA-derived 3D measurements at the lumbar spine 
could improve fracture risk prediction in clinical practice. 
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7.1. Overview 

The main objective of this thesis was the development and clinical 
evaluation of methods to analyze in 3D the bone shape and density of 
the lumbar spine, using 2D DXA images. The main motivation resided 
in providing automatic methods to offer an insightful 3D analysis of the 
lumbar spine, which could potentially improve osteoporosis and 
fracture risk assessment in patients who had a standard DXA scan of 
the lumbar spine without any additional examination. We next 
summarize the main concepts introduced in this thesis and highlight the 
strengths and limitations of the contributions presented in each chapter. 

In Chapter 4, we developed a method for the construction of a 
statistical model encompassing shape, BMD, and pose variations of the 
lumbar spine using a training database of 90 QCT scans. Vertebral 
bones (from L1 to L4) were semi-automatically segmented in each QCT 
volume providing a surface mesh for each vertebra. Registration 
techniques were used to establish point-to-point correspondences 
between the surface meshes, and voxel-to-voxel correspondences 
between the QCT volumes. Statistical shape and BMD variations were 
computed in a global model of the L1-L4 segment. Subjects included in 
the model were adult men and women; with normal bone density, 
osteopenia and osteoporosis. However, the model did not included 
subjects with skeletal disease other than osteoporosis, such as severe 
osteoarthritis, severe scoliosis or abnormal bone growth and vertebral 
fracture. Moreover, the model was mainly designed to capture global 
variations, while very local variations (as bone spurs, or osteophytes) 
were not included.  

We developed a method for the 3D subject-specific modeling of the 
lumbar spine from a single AP DXA image using the generated 
statistical model and a 3D-2D registration algorithm (Chapter 4). The 
3D-2D registration algorithm used optimization methods searching for 
the pose, shape and density parameters of the statistical model that 
maximize the similarity between a simulated projection generated from 
the model and the DXA image. The use of a single AP DXA image 
makes the method fully compatible with current clinical practices. The 
accuracy of the method was evaluated by comparing DXA-derived with 
QCT-derived 3D subject-specific models. The validation was 
performed with 180 AP DXA images from two different 
manufacturers. Subjects included in the validation were adult men and 
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women; with normal bone density, osteopenia and osteoporosis. As the 
subjects were not in the same position in the two modalities (DXA and 
CT), registration methods were used to align them. The shape accuracy 
was 1.51 mm at the total vertebra and 0.66 mm at the vertebral body. 
The main drawback of the 3D modelling method is that it could hardly 
model local deformities (e.g. osteophytes), which are often not seen in 
the AP DXA scans and were not included in the statistical model.  

We developed a model-based algorithm to segment the periosteal and 
endocortical surfaces of the cortical layer at the vertebrae (Chapter 4). 
Model-based techniques have been shown to be more accurate than 
thresholding techniques when estimating thin cortices, as the vertebral 
body cortex. Modeling the outer and inner surfaces of the cortical shell 
was only performed in the vertebral body. The complex geometry of 
the back processes makes the segmentation of the cortical bone in this 
region of interest particularly challenging. 

We developed a method to provide clinical measurements at different 
vertebral regions (vertebral body and posterior vertebral elements) and 
bone compartments (integral, trabecular and cortical) using the 3D 
subject-specific model of the lumbar spine (Chapter 4). We validated 
the accuracy of the clinical measurements by comparing DXA-derived 
with QCT-derived 3D subject-specific shape and density measurements 
(Chapter 4). The accuracy of the measurements was evaluated by 
comparing the validation set of 180 subjects. Correlation coefficients 
between DXA and QCT-derived measurements ranged from 0.81 to 
0.97. The method proposed, integrated into the 3D-Shaper® software, 
is fully automated and compatible with current clinical practices.  

In Chapters 5, we evaluated the association of DXA-derived 3D 
measurements at lumbar spine assessed with osteoporosis-related 
vertebral fractures. We performed a retrospective case-control study 
including 37 postmenopausal Caucasian women who experienced a 
vertebral fracture event (at 3.2 ± 2.4 years from baseline) and 37 age-
matched controls. The ability of DXA-derived 3D measurements to 
discriminate between fracture and control groups was assessed at 
baseline using the DXA-based 3D modeling methods developed in 
Chapter 4. Trabecular vBMD was the measurement that best 
discriminated between fracture and control groups, with an AUC of 
0.733, against 0.682 for aBMD. As the fracture group included various 
types of vertebral fractures, subgroup analyses were also performed to 
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analyze the difference between groups depending on the type of 
fracture. Overall, similar findings were observed within the subgroup 
analyses. The L1 vertebral fractures subgroup had the highest AUC at 
trabecular vBMD (0.827), against aBMD (0.758). 

Finally, in Chapters 6, we evaluated the association of DXA-derived 
3D measurements at lumbar spine with osteoporosis-related hip 
fractures. We analyzed a case-control database composed by 61 women 
with transcervical hip fractures and 61 age-matched women without any 
type of fracture using the DXA-based 3D modeling methods developed 
in Chapter 4. Integral vBMD, and cortical vBMD, sBMD and thickness 
were the DXA-derived 3D measurements at lumbar spine that best 
discriminated between fracture and control groups, with AUC’s in the 
range of 0.685-0.726, against 0.670 for aBMD. The highest AUC (0.726) 
and OR (2.610) were found for integral vBMD at the posterior vertebral 
elements. Significantly lower AUC (0.617) and OR (1.607) were found 
for trabecular vBMD at the vertebral body. These findings suggested 
that cortical bone measurements at lumbar spine had stronger 
association with transcervical hip fractures, compared to trabecular 
bone measurements. 

Further studies including larger cohorts should be performed to 
confirm the results presented in Chapters 5 and 6 and determine if 
DXA-derived 3D measurements at the lumbar spine could improve 
fracture risk prediction in clinical practice. 

7.2. Outlook and future work 

The work carried out in this thesis constitutes a first step towards a new 
technique which could potentially improve osteoporosis and fracture 
risk management. For this new technique to be widely used in the daily 
clinical practice, some improvements of the presented work are 
required, as described in the following section. 

Precision study 

To monitor treatment- and age-related changes using the DXA-derived 
3D measurements, precision studies should be performed to derive the 
least significant change associated with each measurement [160]. Least 
significant change supports clinicians in the interpretation of the 
measured change, indicating if the changes calculated are meaningful 
and clinically relevant. Humbert et al. [161] assessed, for the first time, 
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the precision of 3D modeling techniques of the proximal femur from 
DXA scans. Subjects included in their precision study were scanned 
twice, with repositioning for duplicate hip scans. A similar study should 
be performed in future work to assess the least significant changes of 
measurements provided by the 3D modeling method of the lumbar 
spine developed in this thesis. 

Age-related reference ranges 

The T-score is the recommended measurement for diagnosing 
osteoporosis disease in postmenopausal women and men over 50 years. 
T-score indicates how the individual aBMD deviates from reference 
measurements obtained in a healthy young adult population. Z-score 
indicates how the individual aBMD deviates from reference 
measurements obtained in a population of similar age. Reference 
measurements from different populations can be used. Therefore, as 
future work, age-related reference ranges will be established in order to 
use the DXA-derived 3D measurements obtained by the 3D modelling 
methods osteoporosis diagnosis and patient monitoring. 

Software integration 

3D-Shaper® software, developed by Galgo Medical, is currently the only 
technology in the market that provides 3D subject-specific analysis of 
bony structures from a standard DXA image (Figure 1.1). 3D-Shaper® 
provides additional information about the 3D geometry and bone 
mineral distribution of the proximal femur that can be used to improve 
osteoporosis management. Some of the features are: automated 
workflow, retrospective data analysis, follow-up and automated report 
generation. In the Industrial Doctorate in which this thesis was 
developed, we further developed the algorithm integrated into 3D-
Shaper® for the femur to include the lumbar spine, providing an 
automated workflow that analyzes the 3D bony structure of the lumbar 
spine in 3D from an AP DXA scan. However, to provide an insightful 
3D analysis of the lumbar spine, which could be widely used in the daily 
clinical practice to improve osteoporosis and fracture risk assessment, 
age-related reference ranges and least significant change of 
measurements have to be integrated. As future work, these 
improvements of the presented work will be integrated into the 3D-
Shaper® software. 
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Treatment 

Trabecular and cortical bone can respond differently to drug treatments, 
which cannot be monitored using standard DXA exams. Winzenrieth et 
al. [23] evaluated the ability of 3D modeling methods to monitor 
osteoporosis drug effect on the cortical and trabecular bone at the 
proximal femur. We performed a preliminary study to assess changes in 
trabecular and cortical vBMD and CTh in L1-L4 vertebral bodies using 
a cohort of patients treated with Denosumab (Dmab). We 
retrospectively analyzed a cohort of 18 patients treated with Dmab and 
33 controls naïve of treatment. Spine AP DXA scans were acquired at 
baseline and 24 months. Integral, trabecular and cortical vBMD as well 
as CTh were assessed using the DXA-based 3D modeling software 
developed in this thesis. Changes from baseline were analyzed using 
paired t-tests and differences between naïve and Dmab groups were 
analyzed using unpaired t-tests. As expected, no changes have been 
observed in the naïve group after 24 months of follow-up, while 
significant increases in density were observed in both the cortical and 
trabecular compartments in patients treated with Dmab. DXA-based 
3D measurement of the cortical and trabecular bone could potentially 
improve the monitoring of patient under pharmacological treatment for 
osteoporosis. Further studies including larger cohorts and other 
osteoporosis drug treatments should be performed to confirm these 
promising results. 

Osteoarthritis  

The presence of osteoarthritis at the lumbar spine can lead to a wrong 
diagnosis of the osteoporosis diseased, since local accumulation of bone 
mineral at the periosteal surface might lead to an overestimation of the 
aBMD computed by DXA, and hence, to a higher T-score [117]. 
Guglielmi et al. [134] evaluated the impact of degenerative changes at 
the spine on DXA- and QCT-derived BMD. They observed that 
degenerative changes influence DXA-derived aBMD and cortical and 
integral QCT-derived vBMD. However, they found no evidence 
supporting that degenerative changes influence trabecular QCT-derived 
vBMD. As future work, the association of DXA-derived 3D 
measurements introduced in this thesis with degenerative changes due 
to osteoarthritis at the lumbar spine could be studied. The trabecular 
vBMD at the vertebral body could provide an insightful measurement, 
by discarding the posterior vertebral elements and local deformations at 
the periosteal surface due to osteoarthritis that bias aBMD 
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measurements. 

Secondary osteoporosis 

Secondary osteoporosis is defined as osteoporosis that develops 
because of an unrelated underlying cause, including drug treatment 
(chronic corticosteroid use) or other pathologies as: genetic, endocrine, 
gastrointestinal, hematologic, rheumatologic, nutritional, 
pharmacological diseases, or a combination of them. The resulting 
increase in fracture risk is presumed to be mediated by low aBMD. 
Some exceptions, such as glucocorticoid exposure, rheumatoid arthritis 
and diabetes mellitus, have been identified as clinical risk independent 
of low aBMD [35], [162], [163]. However, DXA examination measures 
the aBMD of the integral bone, which induces a lack of sensitivity to 
monitor changes caused by these pathologies. Trabecular and cortical 
bone can also react differently to those diseases, such as under 
glucocorticoids where the trabecular bone is impaired before the 
cortical bone [162]. As future work, it would be interesting to assess 
changes in the DXA-derived 3D measurements at the lumbar spine 
associated with secondary osteoporosis.  

Vertebral fracture assessment  

Vertebral fracture is the most common osteoporosis-related fracture. 
However, only one-third of vertebral fractures get clinical attention 
[119]; yet, their presence is associated with an increased morbidity and 
mortality, a substantial increased risk for subsequent fractures 
(independent of BMD) and may alter the choice of pharmacotherapy. 
Conventional radiography was the primary modality used to identify 
vertebral fractures. De Bruijne et al. [164] proposed a method for 
vertebral fracture quantification from X-ray images using neighbor-
conditional shape models. Lately, lateral spine imaging with 
densitometric Vertebral Fracture Assessment (VFA) is used in clinical 
practices to evaluate the presence of vertebral fractures. Densitometric 
VFA images can be obtained at the same time as BMD measurement at 
lower cost and radiation exposure than standard radiography images of 
the spine. VFA images also avoids the projection parallax effects of 
radiographs. However, standard spine radiography images are less noisy 
and have higher spatial resolution than VFA images. There are different 
methods for diagnosing vertebral fractures with VFA. The ISCD 
endorses the Genant semi-quantitative method as the clinical technique 
of choice to this end [22]. Roberts et al. [165] presented a semi-automatic 
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determination of detailed vertebral shape from lateral DXA-based 
images using active appearance models. Although the accuracy in 
general is good, its performance is deteriorated when increasing the 
fracture grade. As future work, it would be interesting to develop and 
validate a method to assess vertebral fractures based on the statistical 
model developed in this thesis. A method for vertebral fracture 
quantification, similar than proposed by Bruijne et al. [164] but using 
DXA images, could be implemented. The fractured vertebra(s) would 
be hidden in the 2D mask to be used in the registration process. The 
L1-L4 model would be registered as described in Section 4.2.3. The 
excluded region of interest (for example L3) would be statistically 
estimated based on the regions included (L1-L2-L4). The difference 
between the true shape (obtained by the lateral DXA) and the estimated 
normal shape (obtained by the 3D modeling method) would be used as 
a measure of abnormality.  

Complex anatomical structures modeling 

In the present thesis, 3D statistical variations of shape and BMD were 
computed in a global model of the L1-L4 segment. As vertebrae are 
modelled together, not only shape and bone density are included in the 
model but also spatial relationships between neighbor vertebrae. Using 
a global statistical model of the lumbar spine instead one model for each 
vertebra increases specificity and avoid unlikely shapes and vertebrae 
overlapping. However, the generality could be impaired.  

Multi-organ approaches, unlike traditional organ-specific strategies, 
incorporate inter-organ relations into the model, thus leading to a more 
accurate representation of the complex human anatomy. In order to 
generate a specific but also generic model of the lumbar spine, a multi-
object statistical model could be developed in future work. 
Methodological framework for building accurate multi-object statistical 
shape models that incorporate both the relationships between objects 
and particularities of each object individually could be developed.  

During this thesis a thorough review of the state-of-the-art on multi-
organ analysis in medical imaging, with more than 300 papers reviewed, 
discussed, and categorized methodologically and anatomically, has been 
performed, and is currently under revision in Medical Image Analysis 
(Publications: 4). This review proposes, for the first time, a 
methodology-based classification of the different techniques available 
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for the analysis of multi-organ anatomical complex, from the simple 
global modelling, to the more sophisticated sequential and multi-
resolution techniques. The different methodologies for multi-organ 
analysis are classified using the following categorization: global and 
individual models, coupled deformable models, multi-level models, 
sequential models, atlas-based models, machine-learning models, 
graphical models, and articulated models. The manuscript also reflects 
on the trends and challenges of multi-organ analysis, the peculiarities of 
each anatomical region, and its impact on the future of healthcare. 

In the context of the 3D subject-specific modelling method of the spine 
introduced in this thesis, some ideas for further developments include: 
decomposing lumbar spine in patches and applying a multi-level 
statistical shape model to them, extending it looking for shape 
constraints between structures in hierarchical shape decomposition due 
to their proximity or connectivity, embedding pose priors into the 
statistical models for articulated models (i.e. include polar coordinates 
in the multi-level approach), incorporating texture models in the 
existing multi-object statistical method, analyzing alternative dimension 
reduction methods in the multi-object environment, and extending the 
matrix notation of the multi-level method relying on wavelet 
decomposition by introducing the multi-resolution analysis of surfaces 
with arbitrary topology. The 3D-2D registration method will also have 
to be adapted to include the multi-object statistical model. 

Fracture risk estimation using finite element modeling 

Finite element modeling simulates mechanical testing and assesses the 
response of bones to external forces. The effect of forces associated 
with low impact trauma can be simulated, and the risk of fracture 
estimated. In the literature, QCT-based finite element analysis is used 
to assess mechanical strength of the vertebrae and predict fracture risk 
[129]–[132]. As future work, we will explore the possibility to perform 
the finite element analysis from the 3D subject-specific shape and BMD 
model of the lumbar spine to evaluate for fracture risk assessment. 
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In summary, the methods developed throughout this thesis offers an 
insightful 3D analysis of the lumbar spine at different vertebral regions 
and bone compartments from clinical practice imaging modality. Future 
work presented above must be addressed for these new methods to be 
widely used in the daily clinical practice. Nonetheless, we believe that 
this thesis has presented key contributions towards the future 
development of new advanced tools for osteoporosis and fracture risk 
assessment.  





 

 

 

APPENDICES 

A. Segmentation 

A semi-automated method was used to segment the vertebrae in the 
QCT volumes. The segmentation process is briefly described in this 
appendix. The same process was used to semi-automatically segment all 
the QCT scans, i.e. the 90 QCT scans used to generate the model 
(training set) and the 180 QCT scans used to validate the method 
(validation set).  

DICOM images from QCT scans were converted in volumetric images 
(i.e. 3-dimensional matrices where each element is a sampled density) 
and calibrated using the Mindways phantom. The calibration process 
was performed for each L1-L4 segment, following the protocol 
recommended by the manufacturer. 

A series of filters were applied to the QCT DICOM images to enhance 
the contrast in the facet joints region of interest [112], thereby helping 
the segmentation of each vertebra. These filters are:  

1. An opening filter to dark small groups of bright voxels at 
vertebral joint space. 
 

𝑨′ =  𝑨 ∘ 𝑩 = (𝑨⊖𝑩)⊕𝑩 
 

2. A top-hat filter to highlight the brightest areas (vertebral bone).  

𝑨𝑇𝐻 = 𝑨′ − ((𝑨′ ⊖ 𝑩)⊕𝑩′ 

3. A bottom-hat filter to highlight the darkest areas (facet joints). 

𝑨𝐵𝐻 = (𝑨′ ⊕ 𝑩)⊝𝑩) − 𝑨′ 

4. Finally, the top-hat filtered volume 𝑨𝑇𝐻  is added, and the 

bottom-hat filtered 𝑨𝐵𝐻 is subtracted to the QCT volume 𝑨′. 

where 𝑨(𝑥, 𝑦, 𝑧)  is the QCT volume, 𝑩(𝑢, 𝑣, 𝑤)  a ball-shaped 
structural element, and erosion and dilatation operations: 
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A⊝B = min
𝑢,𝑣,w

{𝑨(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑧 + 𝑤) − 𝑩(𝑢, 𝑣, 𝑤)} 

A⨁B =max
𝑢,𝑣,𝑤

{𝑨(𝑥 − 𝑢, 𝑦 − 𝑣, 𝑧 − 𝑤) + 𝑩(𝑢, 𝑣, 𝑤)} 

Examples of images obtained as a result of each filter are show in 
Figure A. 1:. The QCT volumes before and after filtering are shown 
for the three subjects selected as examples for each group Figure A. 2, 
showing enhanced contrast in the facet joints region of interest. 

Vertebrae were semi-automatically segmented in the pre-processed 
QCT volumes using the software TurtleSeg [113], [114], which 
implements the following process. The vertebral contours are manually 
identified in a set of non-parallel slices. The software automatically 
interpolates the contours to form a 3D segmentation, resulting in a 
volumetric mask for each vertebra. If the results are not satisfactory, 
additional contours are identified and the interpolation is repeated. 
Local deformities, such as spurs, were manually segmented by painting 
and erasing techniques. The segmentation process was performed for 
each vertebra, and for the 90 subjects in the training set. The 
segmentation process took between forty minutes and two hours to 
segment each vertebra of the L1-L4 segment, depending on the image 
quality and the presence of local deformities of the vertebrae. 

The segmentation process resulted in a 3D binary mask for each 
vertebra. The binary masks were smoothed using a Gaussian filter. 

 A original         A’   ATH  A         A filtered 

 

Figure A. 1: Pre-processing filters pipeline.  
A’ is the resulting image after applying the 3D opening filter to A (the original 
calibrated QCT image). ATH is the image after applying the top-hap filter (brightest 
areas highlighted) to A’. ABH is the image after applying the bottom-hat filter (darkest 
areas highlighted) to A’. Finally, A filtered is obtained by adding to A’ the ATH filtered 
volume and subtracting the ABH filtered volume. 

 

 

 

 

 

Original image

Erode image top-hat image bottom-hat image

top - bottom image
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Surface mesh were obtained using the marching cubes algorithm. 
Surface meshes generated before and after smoothing (Figure A. 3) 
show the effect of smoothing.  
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Figure A. 2: Comparison of QCT volumes before and after pre-processing filters for 
the three subjects selected as examples. 
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Figure A. 3:  Segmented QCT volumes before and after smoothing for the three subjects 
selected as examples. 
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B.  Clinical measurements 

 

Table X. DXA and QCT-derived clinical measurements at L1, L2, L3, L4 and L1-L4 
segment. 
Values (mean ± standard deviation) and differences (mean ± standard deviation) 
between DXA-derived and QCT-derived clinical measurements: Values and 
correlation coefficients R are provided for the total vertebra (“Total”) and vertebral 
bodies (“Body”). 
 ALL (N = 180 study subjects) GE (N = 90) DMS (N = 90) 

 
QCT DXA 

Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 

Mean  
± SD 

Mean 
 ± SD 

Mean  
± SD 

R** 
Mean  
± SD 

R** 
Mean  
± SD 

R** 

v
B

M
D

 (
m

g
/

c
m

3
) 

In
te

g
ra

l 

T
o

ta
l 

L1 
274.73  
± 52.95 

288.00  
± 55.89 

13.27  
± 24.90 

0.90 
19.84  
± 25.18 

0.88 
6.70  
± 22.93 

0.92 

L2 
283.45 
 ± 55.30 

281.08  
± 56.86 

-2.37  
± 24.54 

0.90 
4.71  
± 24.61 

0.90 
-9.45  
± 22.46 

0.92 

L3 
283.03  
± 56.68 

284.03 
 ± 57.21 

1.00  
± 25.42 

0.90 
8.59  
± 23.78 

0.91 
-6.59  
± 24.85 

0.91 

L4 
298.16 
 ± 59.89 

303.90  
± 63.21 

5.74 
 ± 25.49 

0.92 
10.75  
± 25.95 

0.91 
0.73  
± 24.14 

0.93 

L1-L4 
281.65  
± 55.38 

286.28  
± 57.31 

4.63  
± 23.82 

0.91 
11.32  
± 23.73 

0.91 
-2.05  
± 22.08 

0.93 

B
o

d
y
 

L1 
208.55  
± 43.11 

233.27  
± 42.92 

24.72 
 ± 26.01* 

0.82 
25.76  
± 27.03* 

0.77 
23.68  
± 25.06* 

0.85 

L2 
212.77 
 ± 44.81 

213.64  
± 42.53 

0.88 
 ± 24.90 

0.84 
3.06  
± 25.04 

0.82 
-1.31  
± 24.70 

0.86 

L3 
212.26 
 ± 46.04 

213.46  
± 42.54 

1.20  
± 24.27 

0.85 
3.65  
± 24.02 

0.84 
-1.25  
± 24.41 

0.87 

L4 
216.46 
 ± 48.27 

217.62  
± 47.18 

1.16  
± 27.04 

0.84 
2.10  
± 28.58 

0.82 
0.22  
± 25.53 

0.86 

L1-L4 
212.61  
± 44.88 

219.16 
 ± 43.32 

6.55 
 ± 23.84 

0.85 
8.23  
± 24.36 

0.83 
4.87  
± 23.33 

0.87 

T
ra

b
e
c
u

la
r 

B
o

d
y
 

L1 
148.13  
± 38.88 

174.71 
 ± 38.94 

26.58  
± 24.98* 

0.79 
27.07  
± 25.39* 

0.75 
26.08  
± 24.69* 

0.83 

L2 
150.06  
± 39.87 

156.63  
± 37.88 

6.57  
± 23.67 

0.82 
8.21  
± 23.32 

0.80 
4.93  
± 24.03 

0.83 

L3 
149.43 
 ± 41.18 

157.07 
 ± 38.24 

7.64 
 ± 23.33 

0.83 
8.82  
± 22.84 

0.81 
6.46  
± 23.88 

0.84 

L4 
153.46 
 ± 43.04 

159.23  
± 41.88 

5.76 
 ± 25.55 

0.82 
5.97  
± 26.31 

0.80 
5.56 
 ± 24.92 

0.84 

L1-L4 
150.32 
 ± 40.35 

161.57 
 ± 38.85 

11.25 
 ± 23.31* 

0.83 
12.12  
± 23.30 

0.81 
10.37 
 ± 23.43 

0.85 

C
o

rt
ic

a
l 

B
o

d
y
 

L1 
595.57  
± 45.47 

617.64 
 ± 39.94 

22.07  
± 28.77* 

0.78 
23.34  
± 30.26* 

0.75 
20.79 
 ± 27.31* 

0.81 

L2 
610.81  
± 47.78 

603.70  
± 42.20 

-7.11 
 ± 28.92 

0.80 
-5.48  
± 31.21 

0.77 
-8.73 
 ± 26.51 

0.83 

L3 
616.59  
± 49.57 

603.59  
± 41.54 

-13.00  
± 28.84* 

0.81 
-11.10  
± 31.28 

0.79 
-14.90 
 ± 26.21 

0.84 

L4 
618.61 
 ± 50.43 

616.22 
 ± 45.16 

-2.39  
± 33.10 

0.77 
-1.10  
± 35.26 

0.75 
-3.67 
 ± 30.94 

0.78 

L1-L4 
611.18 
 ± 46.26 

610.43  
± 40.77 

-0.74  
± 25.14 

0.84 
0.82  
± 26.82 

0.82 
-2.30 
 ± 23.38 

0.86 
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Table X.b 

 ALL (N = 180 study subjects) GE (N = 90) DMS (N = 90) 

 
QCT DXA 

Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 

Mean  
± SD 

Mean 
 ± SD 

Mean  
± SD 

R** 
Mean  
± SD 

R** 
Mean  
± SD 

R** 

B
M

C
 (

g
) 

 

In
te

g
ra

l 

T
o

ta
l 

L1 
11.27 
 ± 3.02 

11.95  
± 3.25 

0.68  
± 1.13 

0.94 
0.92 
 ± 1.26 

0.93 
0.44 
 ± 0.95 

0.95 

L2 
12.73  
± 3.40 

12.57 
 ± 3.46 

-0.15 
 ± 1.08 

0.95 
0.16 
 ± 1.13 

0.95 
-0.46 
 ± 0.93 

0.96 

L3 
14.03 
 ± 3.79 

13.90 
 ± 3.70 

-0.14 
 ± 1.14 

0.95 
0.13 
 ± 1.09 

0.96 
-0.40 
 ± 1.13 

0.96 

L4 
14.84 
 ± 4.01 

14.79 
 ± 4.12 

-0.05 
 ± 1.35 

0.95 
0.08 
 ± 1.43 

0.95 
-0.18 
 ± 1.26 

0.95 

L1-L4 
51.97 
 ± 13.90 

52.46 
 ± 14.28 

0.49 
 ± 4.29 

0.95 
1.49 
 ± 4.57 

0.95 
-0.51 
 ± 3.77 

0.96 

B
o

d
y
 

L1 
5.46  
± 1.55 

6.34 
 ± 1.70 

0.88 
 ± 0.75* 

0.90 
0.88  
± 0.84* 

0.88 
0.88 
 ± 0.66* 

0.92 

L2 
5.98 
 ± 1.65 

6.16 
 ± 1.70 

0.18 
 ± 0.72 

0.91 
0.24 
 ± 0.76 

0.90 
0.12 
 ± 0.66 

0.92 

L3 
6.45 
 ± 1.82 

6.57 
 ± 1.74 

0.12 
 ± 0.71 

0.92 
0.14 
 ± 0.70 

0.93 
0.09 
 ± 0.72 

0.92 

L4 
6.72 
 ± 1.87 

6.79 
 ± 1.93 

0.07 
 ± 0.90 

0.89 
0.05 
 ± 0.98 

0.88 
0.09 
 ± 0.81 

0.90 

L1-L4 
24.62 
 ± 6.79 

25.86 
 ± 6.99 

1.25 
 ± 2.82 

0.92 
1.31 
 ± 3.03 

0.91 
1.18 
 ± 2.61 

0.93 

T
ra

b
e
c
u

la
r 

B
o

d
y
 

L1 3.36 ± 1.10 
4.12 
 ± 1.21 

0.76 
 ± 0.63* 

0.85 
0.75  
± 0.69* 

0.83 
0.78 
 ± 0.58* 

0.88 

L2 
3.65 
 ± 1.15 

3.94 
 ± 1.20 

0.30 
 ± 0.62 

0.86 
0.33 
 ± 0.65 

0.85 
0.26 
 ± 0.58 

0.88 

L3 
3.92 
 ± 1.26 

4.22 
 ± 1.24 

0.29  
± 0.62 

0.88 
0.28 
 ± 0.62 

0.88 
0.30 
 ± 0.62 

0.88 

L4 
4.11 
 ± 1.28 

4.33 
 ± 1.35 

0.22 
 ± 0.75 

0.84 
0.18 
 ± 0.81 

0.83 
0.25 
 ± 0.69 

0.86 

L1-L4 
15.04 
 ± 4.75 

16.61 
 ± 4.95 

1.56 
 ± 2.49* 

0.87 
1.54 
 ± 2.65 

0.86 
1.59 
 ± 2.35* 

0.88 

C
o

rt
ic

a
l 

B
o

d
y
 

L1 
2.10 
 ± 0.52 

2.22 
 ± 0.53 

0.12 
 ± 0.26 

0.88 
0.13 
 ± 0.29 

0.86 
0.10 
 ± 0.23 

0.89 

L2 
2.34 
 ± 0.57 

2.22 
 ± 0.54 

-0.11 
 ± 0.25 

0.90 
-0.09 
 ± 0.26 

0.90 
-0.14 
 ± 0.24 

0.90 

L3 
2.53 
 ± 0.64 

2.35 
 ± 0.55 

-0.18 
 ± 0.26* 

0.91 
-0.14 
 ± 0.27 

0.92 
-0.22 
 ± 0.25 

0.91 

L4 
2.61 
 ± 0.67 

2.47 
 ± 0.61 

-0.15 
 ± 0.31 

0.89 
-0.14 
 ± 0.33 

0.88 
-0.16 
 ± 0.28 

0.89 

L1-L4 
9.58 
 ± 2.34 

9.26 
 ± 2.20 

-0.32 
 ± 0.88 

0.93 
-0.23 
 ± 0.92 

0.93 
-0.41 
 ± 0.84 

0.93 
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Table X.c 

 ALL (N = 180 study subjects) GE (N = 90) DMS (N = 90) 

 
QCT DXA 

Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 
Difference 
(DXA  
- QCT) 

 

Mean  
± SD 

Mean 
 ± SD 

Mean  
± SD 

R** 
Mean  
± SD 

R** 
Mean  
± SD 

R** 

V
o

lu
m

e
 (

c
m

3
) 

 

In
te

g
ra

l 

T
o

ta
l 

L1 
41.14 
 ± 8.06 

41.57  
± 7.98 

0.42 
 ± 2.64 

0.95 
0.28 
 ± 2.65 

0.94 
0.56  
± 2.64 

0.95 

L2 
44.96 
 ± 8.45 

44.80 
 ± 8.44 

-0.16  
± 2.61 

0.95 
-0.22 
 ± 2.75 

0.95 
-0.10 
 ± 2.49 

0.96 

L3 
49.66 
 ± 9.23 

49.03 
 ± 8.84 

-0.63 
 ± 2.72 

0.96 
-1.01 
 ± 2.78 

0.95 
-0.25 
 ± 2.61 

0.96 

L4 
49.82 
 ± 9.07 

48.69  
± 8.75 

-1.13 
 ± 2.92 

0.95 
-1.55 
 ± 2.90 

0.94 
-0.70 
 ± 2.89 

0.95 

L1-L4 
184.80 
 ± 34.37 

183.49 
 ± 33.78 

-1.31 
 ± 9.33 

0.96 
-2.24 
 ± 9.65 

0.96 
-0.38 
 ± 8.95 

0.97 

B
o

d
y
 

L1 
26.30  
± 5.44 

27.23 
 ± 5.33 

0.93 
 ± 1.96 

0.93 
0.78 
 ± 1.95 

0.93 
1.09 
 ± 1.96 

0.94 

L2 
28.23  
± 5.54 

28.86 
 ± 5.48 

0.64 
 ± 1.82 

0.95 
0.58 
 ± 1.87 

0.94 
0.69 
 ± 1.78 

0.95 

L3 
30.48  
± 5.83 

30.81 
 ± 5.60 

0.34 
 ± 1.77 

0.95 
0.11 
 ± 1.69 

0.95 
0.56  
± 1.84 

0.96 

L4 
31.17 
 ± 5.87 

31.23 
 ± 5.62 

0.06  
± 1.99 

0.94 
-0.17 
 ± 1.94 

0.94 
0.29 
 ± 2.02 

0.95 

L1-L4 
116.17 
 ± 22.42 

118.14 
 ± 21.83 

1.97 
 ± 6.56 

0.96 
1.31 
 ± 6.48 

0.96 
2.63 
 ± 6.61 

0.96 

T
ra

b
e
c
u

la
r 

B
o

d
y
 

L1 
22.79 
 ± 4.92 

23.66 
 ± 4.76 

0.87 
 ± 1.85 

0.93 
0.70 
 ± 1.84 

0.93 
1.04 
 ± 1.85 

0.93 

L2 
24.43 
 ± 5.00 

25.21 
 ± 4.91 

0.78 
 ± 1.77 

0.94 
0.69 
 ± 1.81 

0.93 
0.87 
 ± 1.74 

0.94 

L3 
26.42 
 ± 5.23 

26.95 
 ± 5.03 

0.53 
 ± 1.75 

0.94 
0.26 
 ± 1.65 

0.94 
0.81 
 ± 1.80 

0.95 

L4 
26.98 
 ± 5.23 

27.26 
 ± 5.03 

0.28 
 ± 1.91 

0.93 
0.05 
 ± 1.86 

0.93 
0.52 
 ± 1.93 

0.94 

L1-L4 
100.62 
 ± 20.12 

103.08 
 ± 19.55 

2.46 
 ± 6.34 

0.95 
1.69 
 ± 6.24 

0.95 
3.23  
± 6.39 

0.95 

C
o

rt
ic

a
l 

B
o

d
y
 

L1 
3.50  
± 0.67 

3.57 
 ± 0.68 

0.07 
 ± 0.33 

0.88 
0.08 
 ± 0.36 

0.87 
0.06 
 ± 0.30 

0.90 

L2 
3.80 
 ± 0.72 

3.65 
 ± 0.70 

-0.14 
 ± 0.30 

0.91 
-0.11 
 ± 0.31 

0.91 
-0.18 
 ± 0.29 

0.91 

L3 
4.06 
 ± 0.77 

3.86 
 ± 0.71 

-0.20 
 ± 0.29 

0.93 
-0.14 
 ± 0.27 

0.94 
-0.25 
 ± 0.29 

0.93 

L4 
4.19 
 ± 0.84 

3.97 
 ± 0.76 

-0.22 
 ± 0.38* 

0.89 
-0.21 
 ± 0.42 

0.88 
-0.23 
 ± 0.33 

0.91 

L1-L4 
15.55  
± 2.92 

15.05 
 ± 2.81 

-0.49 
 ± 1.04 

0.93 
-0.38 
 ± 1.09 

0.93 
-0.60 
 ± 0.99 

0.94 

C
T

h
 (

m
m

) 

C
o

rt
ic

a
l 

B
o

d
y
 

L1 
0.69  
± 0.08 

0.71  
± 0.08 

0.01 
 ± 0.06 

0.73 
0.02 
 ± 0.06 

0.67 
0.01  
± 0.05 

0.79 

L2 
0.72  
± 0.08 

0.69 
 ± 0.08 

-0.03 
 ± 0.05* 

0.80 
-0.02 
 ± 0.05 

0.79 
-0.04 
 ± 0.05* 

0.82 

L3 
0.73 
 ± 0.08 

0.70 
 ± 0.08 

-0.03 
 ± 0.05* 

0.81 
-0.02 
 ± 0.05 

0.81 
-0.04 
 ± 0.05* 

0.83 

L4 
0.75 
 ± 0.09 

0.73 
 ± 0.09 

-0.02 
 ± 0.06 

0.79 
-0.01 
 ± 0.06 

0.77 
-0.03 
 ± 0.05 

0.82 

L1-L4 
0.72 
 ± 0.08 

0.71 
 ± 0.08 

-0.02 
 ± 0.05 

0.83 
-0.01 
 ± 0.05 

0.82 
-0.03 
 ± 0.04 

0.86 
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