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The exotic melon accession PI 161375 cultivar Songwhan Charmi (SC) shows resistance to 

most of Cucumber mosaic virus (CMV) strains. The resistance to CMV subgroup II strains was 

reported as recessive, controlled by the gene cmv1 which is able to prevent the phloem entry of 

the virus by restricting it in the bundle sheath cells. This restriction depends on the movement 

protein (MP), the determinant of virulence. Two more QTLs, cmvqw3.1 and cmvqw10.1 are 

required, working together with cmv1, for the resistance to the subgroup I strain CMV-M6. 

However, CMV-FNY, a more aggressive strain from subgroup I, was able to overcome the 

resistance conferred by cmv1/cmvqw3.1/cmvqw10.1. In this thesis we aim to (i) identify the 

additional QTLs responsible for the resistance to CMV-FNY, (ii) characterize the resistance 

conferred by the QTLs cmv1/cmvqw3.1/cmvqw10.1 and (iii) identify the virulence factors 

involved with these QTLs. 

QTL analysis was addressed developing several F2 populations made between the CMV-

FNY-resistant lines DHL142, DHL69 and several CMV-FNY-susceptible melon lines. Several 

putative minor QTLs were detected in LG II, LG IX, LG X and LG XII. However, none of these 

QTLs were reproducibly detected neither in several F2 populations nor using different methods 

of phenotyping. The evaluation of our QTL detecting system indicated that it is not appropriate 

for detecting minor QTL, being the most probable limiting factor the correct phenotyping of the 

infection for QTL detection in a F2 population. 

The study of the resistance conferred by combinations of two or the three QTLs showed that, 

although the plants were susceptible to CMV-FNY, there was a delay in the infection, indicating 

that the resistance involves a restriction of the viral movement. Further analysis showed that the 

restriction worked at the level of phloem entry, rather than at the level of movement within the 

phloem. Therefore, this indicates that cmvqw3.1 and cmvqw10.1 are impairing CMV-FNY 

movement at the same step of the viral infection where cmv1 restricts CMV-LS.  

Pseudorecombinants generated between CMV-FNY / CMV-M6 and between CMV-FNY / 

CMV-LS demonstrated that the determinant of virulence was not mapped in RNA3.  

Taken together, our results suggest that the resistance to CMV in SC accession is built by a 

series of resistance layers, being cmv1 the first layer, against subgroup II strains; the second 

layer, cmvqw3.1 and cmvqw10.1, that provide efficient resistance to CMV-M6; and the third 

layer being the unknown QTL, necessary for efficient resistance to CMV-FNY. At present, we 



know that the first two layers of resistance would be working in the restriction of CMV entry to 

the phloem.  
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La accesión de melón exótico PI 161375, cultivar Songwhan Charmi (SC) es resistente a la 

mayoría de las cepas de Cucumber mosaic virus (CMV). La resistencia a las cepas del subgrupo 

II de CMV es recesiva y controlada por el gen cmv1, que es capaz de prevenir la entrada del 

virus en el floema deteniéndolo en las células de la vaina que rodean la vena. Esta restricción 

depende de la proteína de movimiento (MP), el determinante de la virulencia frente a este gen. 

Para resistir a la cepa CMV-M6, del subgrupo I, se requieren dos QTL más, cmvqw3.1 y 

cmvqw10.1, funcionando en colaboración con cmv1. Sin embargo, CMV-FNY, una cepa más 

agresiva del subgrupo I, es capaz de superar la resistencia conferida por 

cmv1/cmvqw3.1/cmvqw10.1. En esta tesis, nuestro objetivo es (i) identificar los QTL adicionales 

responsables de la resistencia a CMV-FNY, (ii) caracterizar la resistencia conferida por los QTL 

cmv1/cmvqw3.1/cmvqw10.1 e (iii) identificar los factores de virulencia involucrados con estos 

QTL. 

El análisis de QTL se abordó desarrollando varias poblaciones F2 entre las líneas DHL142 o 

DHL69, resistentes a CMV-FNY, y varias líneas de melón susceptibles a CMV-FNY, donde se 

detectaron varios QTL menores en LG II, LG IX, LG X y LG XII. Sin embargo, ninguno de 

estos QTLs fue detectado reproduciblemente en varias poblaciones F2, ni utilizando diferentes 

métodos de fenotipado, lo que indicó que nuestro sistema de detección de QTL no es apropiado 

para detectar QTLs menores. El factor limitante más probable puede ser la dificultad del 

fenotipado de la infección para la detección de QTLs en una población F2. 

El estudio de la resistencia conferida por combinaciones de dos o los tres QTL mostró que, 

aunque las plantas eran susceptibles a CMV-FNY, hubo un retraso en la infección, lo que indica 

que la resistencia implica una restricción del movimiento viral. Un análisis posterior mostró que 

la restricción funcionaba al nivel de la entrada al floema, más que al nivel del movimiento dentro 

del floema. Por lo tanto, esto indica que cmvqw3.1 y cmvqw10.1 están dificultando el 

movimiento de CMV-FNY en el mismo paso de la infección viral donde cmv1 restringe CMV-

LS. 

Los pseudorecombinantes generados entre CMV-FNY / CMV-M6 y entre CMV-FNY / 

CMV-LS demostraron que el determinante de virulencia no mapeaba en el RNA3. 

Tomados en conjunto, nuestros resultados sugieren que la resistencia al CMV en la accesión 

SC está formada por una serie de niveles de resistencia, siendo cmv1 el primer nivel, efectivo 



contra las cepas del subgrupo II; el segundo nivel, formado por cmvqw3.1 y cmvqw10.1, que 

cooperarían con cmv1 para proporcionar resistencia frente a CMV-M6; y el tercer nivel sería el 

QTL no identificado aún, necesario para la resistencia frente a CMV-FNY. En la actualidad, 

sabemos que los dos primeros niveles de resistencia estarían participando en la restricción de la 

entrada de CMV al floema. 
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L’accessió exòtica de meló PI 161375 cultivar Songwhan Charmi (SC) presenta resistència a 

la major part de soques de Cucumber mosaic virus (CMV). S’ha descrit que la resistència a 

soques del subgrup II de CMV és recessiva i que està controlada pel gen cmv1, que és capaç 

d’evitar l’entrada del virus al floema mitjançant una restricció a nivell de les cèl·lules de la 

beina. Aquesta restricció depèn de la proteïna de moviment (MP) viral, que és el determinant de 

la virulència. Per tenir resistència a la soca CMV-M6, pertanyent al subgrup I, a part de cmv1, 

també es requereixen dos altres QTLs: cmvqw3.1 i cmvqw10.1. No obstant, una soca més 

agressiva del subgrup I, CMV-FNY, és capaç de superar la resistència conferida per 

cmv1/cmvqw3.1/cmvqw10.1. Aquesta tesis té com objectius (i) identificar altres QTLs 

responsables de la resistència a CMV-FNY, (ii) caracteritzar la resistència conferida pels QTLs 

cmv1/cmvqw3.1/cmvqw10.1, i (iii) identificar els factors de virulència implicats en aquests tres 

QTLs. 

L’anàlisi de QTLs es va dur a terme mitjançant diverses poblacions F2 obtingudes del 

creuament entre les línies resistents a CMV-FNY, DHL142 i DHL69, i línies susceptibles. Es 

van detectar alguns possibles QTLs d’efecte menor als LG II, LG IX, LG X i LG XII. No 

obstant, cap d’aquests QTLs va ser reproduïble a les diferents poblacions avaluades, ni pels 

diferents mètodes de fenotipat utilitzats. Un cop avaluat el sistema d’anàlisi de QTLs emprat es 

va demostrar que aquest no havia estat l’apropiat per QTLs d’efecte menor. Probablement el 

factor limitant hauria estat la robustesa de l’avaluació fenotípica de la infecció en poblacions F2. 

L’estudi de la resistència, conferida per combinacions de dos o tres QTLs, va mostrar que 

malgrat les plantes s’acabaven infectant per CMV-FNY, hi havia un retard en la infecció, 

indicant que la resistència intervé restringint el moviment viral. Més endavant es va demostrar 

que la restricció actua a nivell de l’entrada al floema, enlloc d’intervenir a nivell del moviment 

del virus un cop dins del floema. Així doncs, cmvqw3.1 i cmvqw10.1 actuen dificultant el 

moviment de CMV-FNY al mateix punt de la infecció viral on ho fa cmv1 amb CMV-LS. 

La generació de pseudorecombinants entre CMV-FNY / CMV-M6 i CMV-FNY / CMV-LS 

va demostrar que el determinant de la virulència no es troba al RNA3. 

Aquests resultats suggereixen que la resistència a CMV de l’accessió SC es construeix 

mitjançant diferents nivells, essent cmv1 el primer nivell conferint resistència envers el subgrup 

II; el segon nivell cmvqw3.1 i cmvqw10.1 conferint una resistència eficient envers CMV-M6; i 



un tercer nivell on altres QTLs encara per determinar serien necessaris per conferir una 

resistència eficient a CMV-FNY. Actualment, sabem que els dos primers nivells de resistència 

estarien actuant restringint l’entrada de CMV al floema. 
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1. Plant Viruses   

Plant pathogens can cause severe economic losses in agricultural production and a huge 

impact on the quality of the final product. Plant pathogens include fungi, bacteria, viruses, 

mycoplasmas, spiroplasmas and viroids (Anderson and Morales, 1994). Among all the plant 

pathogens, viruses are generally considered to rank second threat to plant production losses, after 

fungi. The first study of viruses was reported in 1898, when Beijerinck described for the first 

time Tobacco mosaic virus (TMV). 

Viruses are submicroscopic agents that cause infections in plants, animals, fungi and bacteria. 

As they can reproduce only in the host cells, they are considered obligate intracellular parasites. 

Viruses have relatively simple characteristics, with a nucleocapsid formed by the coat protein 

(CP) that protects the genomic nucleic acid. Some viruses have an additional envelop covering 

the capsid. The whole structure of virus is called virion. 

The viral genome can be double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), 

double-stranded RNA (dsRNA), or single-stranded RNA (ssRNA).  Most plant viruses are 

ssRNA virus (Waterhouse et al., 2001).Viruses replicate in the host cells by using their 

metabolism and assemble themselves in these host cells. Generally, life cycle of plant viruses 

includes transmission either by their insect vectors or by mechanical means, cell entrance, virion 

uncoating, genome replication and translation, movement cell-to-cell and long distance 

movement through the phloem (Hipper et al., 2013).    

 

2. Cucumber mosaic virus (CMV) 

Cucumber mosaic virus (CMV) belongs to the Bromoviridae family and Cucumovirus genus. 

CMV was firstly described in 1916 as the causal agent of a disease developed in melon in 

Michigan (Jagger, 1916) and in cucumber in New York (Doolittle, 1916). Since then, CMV has 

been described worldwide from temperate to tropical zones.   

 

2.1 Genome organization 

Like all the other members of family Bromoviridae, CMV is composed of three positive-

stranded genomic RNAs, RNA1, RNA2, RNA3 and two subgenomic RNAs, RNA4 and 

RNA4A.The genome structure of CMV is presented in Figure I-1. Each genomic segment has a 
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3' tRNA-like structure (Ahlquist et al., 1981; Rietveld et al., 1983) and a 5’cap structure (Symons, 

1975). The length of the different RNAs differs between virus strains. The length of RNA1 

ranges from 3357 to 3391 nucleotides (nt). The length of RNA2 differs from 3036 to 3060 nt 

while the length of RNA3 goes from 2197 to 2220 nt. RNA1 encodes the 111 kilodaltons (KDa) 

protein 1a, containing a putative methyltransferase and helicase motifs and is involved in viral 

replication (Habili and Symons, 1989). RNA2 encodes the 97 KDa replicase (or 2a protein), and 

a 11 KDa 2b protein, which is translated from a subgenomic RNA, RNA4A (630-702 nt) in a 

different frame and encodes a suppressor of RNA silencing. RNA3 encodes the 30 KDa protein 

3a, the viral movement protein (MP), involved in the cell-to-cell movement, and also the 3b or 

coat protein (CP), involved in coating the genomic RNA to form the virion. RNA1 and RNA2 

together were reported essential for virus replication (Nitta et al., 1988). Apart from the function 

in replication, RNA1 was shown to be related with viral cell-to-cell and long-distance movement 

(Gal-On et al., 1994). Is also related with the severity of symptoms and has a potential role in the 

induction of pathogenicity (Roossinck and Palukaitis, 1990). The 2a protein is a virus RNA 

polymerase that carries out the viral replication. This protein must interact with the 1a protein for 

a proper replication, because when N-terminal 126 amino acid region of 2a is phosphorylated, 

the 2a protein cannot interact with 1a protein and the replication is inhibited (Kim et al., 2002). 

Moreover, 2a was related to virus cell-to-cell movement and efficiency of symptom development 

(Choi et al., 2005).  The 2b protein was recognized as a suppressor of post-transcriptional gene 

silencing (PTGS) preventing initiation of gene silencing (Lucy et al., 2000). The 2b protein was 

also related with the salicylic acid (SA) mediated anti-viral resistance (Ji and Ding, 2001). The 

protein 3a, encoded by RNA3, is the viral movement protein (MP), involved in the cell-to-cell 

movement through plasmodesmata (PDs) by modification of their size exclusion limit (Vaquero 

et al., 1994). The virus moves through PDs as a ribonucleoprotein complex (Ding et al., 1995). A 

3a mutated virus could not infect normal tobacco plants, while the CMV 3a transgenic tobacco 

plants  could complement the 3a mutated virus for its cell-to-cell movement but also for long 

distance movement, indicating that the MP has also a role in long distance movement (Kaplan et 

al., 1995). The CP is a 24KDa protein encoded by the subgenomic RNA4 and was proved 

essential for both, cell to cell and long distance viral movement. A small satellite-like linear 

RNA named CARNA5, dependent on the helper RNA for the replication, was identified decades 

ago (Kaper and Tousignant, 1977). CARNA5 (CMV-associated RNA5) is a 300-400 nt long 
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heterogeneous mixture of cleavage of CMV RNAs1, 2 and 3. RNA5 is produced in subgroup II 

strains of CMV, but not in subgroup I strains (Thompson et al., 2008) and has a role in CMV 

recombination (De Wispelaere and Rao, 2009). CMV satellite RNAs, on the other hand, are 

small non-coding RNAs with no sequence similarity to the viral genome, but dependent on the 

viral genome (the helper virus). They modify the pathogenesis, accumulation and transmission of 

CMV depending on the strain of helper virus and satellite RNA and on the host plant species 

(Palukaitis and Garcia-Arenal, 2003). 

 

 

Figure I-1. Genome organization of CMV. The lengths of each genomic RNA are indicated in 

nucleotides (nt) and the mass of proteins are indicated in kilodaltons (K). The open reading frames (ORF) 

are indicated in boxes (adopted from (Roossinck, 2001)). 

 

2.2 Taxonomy and classification 

CMV was firstly classified into two subgroups, subgroup I and subgroup II, based on the 

serological data, peptide mapping of the CP, nucleic acid hybridization and sequence analysis 

(Palukaitis et al., 1992). CMV subgroup I was further divided into subgroups IA and IB 

according to the alignment of the 5′ non-translated regions of RNA 3 for 26 strains of CMV and 

the classification was also confirmed analyzing the CP genes of 53 CMV strains (Roossinck et 

al., 1999). Subgroup II and subgroup IA strains have a worldwide distribution, whereas subgroup 
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IB strains were described to originate only from Asia. The subgroup II includes strains like 

CMV-LS, CMV-Q and CMV-Ly. Strains CMV-Ix, CMV-Sd and CMV-C72 belong to subgroup 

IB while strains CMV-FNY, CMV-Y and CMV-O belong to subgroup IA. Subgroups I and II 

have about 70% sequence homology between them, whereas subgroups IA and IB are 92-94% 

identical. The phylogenetic analysis indicated that subgroup II strains had the least divergence 

while subgroup IB strains have the highest divergence (Roossinck et al., 1999).  

 

2.3 CMV viral cycle 

In nature, CMV is transmitted by aphids in a non-persistent manner. CMV could also be 

transmitted plant to plant mechanically by sap inoculation. First, after transmission, CMV enters 

into plant epidermal or mesophyll cells. Then, start the virion disassembly and viral translation 

and replication. Thereafter, the newly assembled viral complexes start cell-to-cell movement, 

long-distance movement and the replication in newly infected cells (Garcıa-Arenal and 

Palukaitis, 2008). A general view of virus cell-to-cell and long-distance movement in plant 

tissues is represented in Figure I.2. 

2.3.1 Viral replication 

As depicted in Figure I-2, once the genomic RNAs are released in the host cell, they are 

directly used as templates for translation producing the viral replication proteins1a and 2a, but 

some unknown host proteins are also needed. Protein 1a co-localize with protein 2a in tonoplast 

where CMV replication takes place (Cillo et al., 2002). The replication proteins, together with 

genomic RNAs, form the viral replication complex (VRC). Arabidopsis Tonoplast Intrinsic 

Proteins (TIPs) family members TIP1 and TIP2 interact with the1a protein and affect the 

replication of CMV (Kim et al., 2006). Additionally, some host proteins like RNA binding 

protein (BRP1), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 30S ribosomal 

subunit protein S11 (RPS11) were also found in the VRCs (Hayes and Buck, 1990; Chaturvedi et 

al., 2016; Wang et al., 2017). Then, the complementary negative strand RNAs are synthesized 

using the positive genomic RNAs as templates. Thereafter, a great amount of positive stranded 

progeny genomic RNAs are synthesized using the negative RNAs as templates and then released 

in tonoplast. The sub-genomic RNA4 and RNA4A are synthesized from the negative 

complementary strand RNA3 and RNA2, respectively, through recognition of the corresponding 

sub-genomic promoters. Satellite RNAs are synthesized by the viral replicase using the genomic 

https://www.sciencedirect.com/topics/medicine-and-dentistry/rna-binding-protein
https://www.sciencedirect.com/topics/medicine-and-dentistry/rna-binding-protein
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RNAs as templates. The progeny positive strand RNAs can undergo translation, replication and 

movement to adjacent cells as ribonucleoproteins or encapsulated into virions. 

 

Figure I-2. Schematic representation of a general cycle of positive-strand RNA viruses.  VRC: 

viral replication   complexes; RdRp:  RNA-dependent RNA polymerase (adopted from (Hyodo and 

Okuno, 2014)). 

 

2.3.2 Cell-to-cell movement 

CMV moves cell-to-cell from epidermal or mesophyll cells to bundle sheath cells, towards 

vascular parenchyma until companion cells before it reaches sieve elements (Figure I-3).Virus 

spread from infected cell to adjacent cells via plasmodesmata (Kumar et al., 2015). 

Plasmodesmata act as intercellular channels during the interaction with the surrounding 

environment. During this cell-to-cell movement process, the MP is reported as the main viral 

protein involved. It binds the viral RNA to form ribonucleoprotein complexes that interact with 

host proteins to modify the PD structure and function (Andreev et al., 2004). MP helps the virus 

movement by changing and increasing the gating capacity of PDs to allow viral pass (Ding et al., 

1995; Su et al., 2010). The MP has been involved in the ability of CMV to systemically infect 
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soybean (Hong et al., 2007) and melon (Guiu-Aragonés et al., 2015). In melon, it allows 

subgroup II strains, like CMV-LS to infect systemically melon plants. However, CMV-LS is 

unable to infect the melon line carrying the resistance gene cmv1 (Guiu‐Aragonés et al., 2016).  

Reassembled CMV-LS, carrying the MP from CMV-FNY, from subgroup I, could break cmv1 

conferred resistance,  pass through bundle sheath cell PDs and systemically infect melon plants 

(Guiu‐Aragonés et al., 2015). Apart from the MP, CP also reported affects the cell-to-cell 

movement efficiency (Canto et al., 1997; Wong et al., 1999). Studies combining RNA3 of CMV 

and TAV showed that efficient movement requires compatibility between the 29 C-terminal 

amino acids of the MP and the C-terminal two-thirds of the CP (Salanki et al., 2004). 

 

Figure I-3. Viral infection movement through the different cells in the leaf. BS: Bundle sheath 

cells; CC: Companion cells; VP: Vascular parenchyma cells; SE: Sieve elements; X: Xyleme 

(Drawing adopted from C. Guiu).  

 

2.3.3 Long-distance movement 

Long-distance movement in the phloem starts after virus entry into sieve elements (SE) 

following the pathway: bundle sheath cells to vascular parenchyma to companion cells to SE 

(Figure I-3). SE are enucleated cells connected with companion cells, which have high metabolic 



Introduction 

9 
 

activity. The SE are interconnected by wide pores and form a low-resistance cellular connections 

for the flux of elaborated sap. Although some macromolecules can pass through SE without 

specific regulation, the virions or viral complexes are still difficult to move freely in the phloem. 

Thus, both viral and host proteins are involved in movement through the phloem. Different viral 

proteins were reported to affect CMV long-distance movement. Three amino acids of the βB-βC 

loop of CP were found essential but not the only factor for viral long-distance movement 

(Salánki et al., 2011). CMV 2a protein was found not only involved in the replication but also 

affect viral systemic infection via inhibiting long-distance movement (Carr et al., 1994). CMV 1a, 

previously considered only involved in the replication, showed a function in regulating the long-

distance movement rate (Gal-On et al., 1994). The CP is especially important, as observed in 

different hosts, including cucurbits, maize or Tetragonia expansa (Kobori et al., 2002; Palukaitis 

and Garcia-Arenal, 2003; Salánki et al., 2011). It is postulated that CMV disassembles in the 

cytoplasm of companion cells before entering the SE and move through the Pore Plasmodesmata 

Units (PPU). PPUs are specialized, branched PDs, with larger size exclusion limit than other PDs 

that communicate companion cells with SE (Roberts and Oparka, 2003). The virus moves 

through PPUs as a ribonualeoprotein complex with the aid of the MP and CP to reassemble in 

the SE as virions. Therefore, the CP has an essential role in the movement through the phloem 

(Blackman et al, 1998). Some host factors also partially affect CMV long-distance movement in 

crop plants like pepper, however the resistance mechanism is still not clear (Nono‐Womdim et 

al., 1993; Caranta et al., 2002). In cucumber, a phloem exudate protein, homologous to the 

protein PP1 from pumpkin, participates in translocating RNPs or virions within the phloem 

stream (Requena et al., 2006). In N.benthamiana plants, the host methyltransferase Tcoi1 

interacts with CMV 1a leading to methylation of the viral protein, finally promoting the long-

distance movement of CMV (Kim et al., 2008). 

Viral complexes start the unloading process and exit from the SE through the major veins 

when it reaches the sink tissues. Finally, the virus disseminates throughout the whole plant. 

2.4 Plant host 

CMV has the widest host range among plant viruses. The virus infects more than 1200 plant 

species of both monocots and dicots, including many important vegetables like most of 

horticultural crops in Cucurbitaceae and Solananceae families, ornamentals, woody and semi-

woody plants (Edwardson and Christie, 1991). The severity of infection varies from the plant 
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species infected and the age of the plants while the infection occurred. The infection symptoms 

vary from typical mosaic, severely stunted, malformed leaves, wrinkled, curled or small leaves 

or necrosis in leaves. CMV can also induce ring-spotting, roughness and deformation in fruits 

(Figure I-4) 

 

 

Figure I-4. CMV infection symptoms in pepper, spinach, lettuce, celery, tomato and 

beans (Figure taken from American Phytopathological Society, 

https://www.apsnet.org/Pages/default.aspx). 

 

2.5 Virus transmission and management 

CMV could be transmitted mechanically by humans through cultivating, grafting or even 

simply touching healthy plants after touching infected plants. CMV was also reported to be 

transmitted by seeds in pepper (Ali and Kobayashi, 2010), chickweed (Tomlinson and CARTER, 

https://www.apsnet.org/Pages/default.aspx
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1970), bean (Bos and Maat, 1974) and spinach (Yang et al., 1997). In natural conditions, CMV is 

transmitted by more than 60 aphid species in a non-persistent manner. The transmission 

efficiency depends on the aphid species (Raccah et al., 1985), host plants (Hobbs et al., 2000) as 

well as virus strains (Gera et al., 1979).  

The use of pesticides against viral infections is limited, therefore, the most efficient way to 

protect plants from CMV infection should be searching for natural resistant resources in different 

plant species, and study the resistance mechanism to transfer it to breeding programs. 

 

3. Resistance to CMV 

 3.1 Natural resistance 

A few natural resistant plants have been reported in different species (Table I-1). Some of 

them were reported to be monogenic and dominant, but mostly are recessive and polygenic, 

showing a complex quantitative resistance with major and minor quantitative trait (QTLs) 

regulating together the resistance. 

 

Table I-1. CMV resistance mediated by dominant, recessive genes or polygenic control in different 

plant species 

Type of 

resistance 

Plant 

species 
Resistance gene / QTLs 

Reference 

 

Dominant 
Arabidopsis RCY1 (Takahashi et al., 2002) 

Pepper Cmr1 (Kang et al., 2010) 

Recessive 

Arabidopsis cum1, cum2 (Yoshii et al., 2004) 

Pepper cmr2 (Choi et al., 2018) 

Melon cmv1 (Essafi et al., 2009) 

Quantitative Pepper 
qCmr2.1 and qCmr11.1 

cmvP1-5.1 and cmvP1-10.1 

(Guo et al., 2017) 

(Eun et al., 2016) 

 Cucumber cmv6.1 (Shi et al., 2018) 

 Melon 
cmv1, cmvqw3.1 and 

cmvqw10.1 

(Guiu-Aragonés et al., 

2014) 

 

In the model plant Arabidopsis thaliana, the ecotype C24 showed resistance to the yellow 

strain CMY-Y, accompanied by a hypersensitive response (HR), characterized by the 
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development of necrotic local lesions (NLL). This resistance is controlled by the dominant locus 

RCY1, encoding a CC-NBS-LRR-type protein, a RPP8/HRT family resistant gene. When the 

RCY1 from C24 was expressed in a susceptible line, it showed a restriction in virus systemic 

spread (Takahashi et al., 2002). Another example was cum1 and cum2 mediated recessive CMV 

resistance.  CUM1 and CUM2 encode, respectively, the translation factors eIF4E and eIF4G and 

the Arabidopsis cum1 and cum2 mutants specifically prevent the efficient translation of CMV 3a 

protein, leading to impairment of cell-to-cell CMV movement (Yoshii et al, 2004).  

In pepper, several resistant resources have been identified in China and Korea. In China, the 

inbred line ‘PBC688’ showed resistance to CMV-FNY controlled by two loci, qCmr2.1 on 

chromosome 2 and qCmr11.1 on chromosome 11. For qCmr2.1, a N-like protein homologous to 

the N protein associated with TMV-resistance in Solanum crops was described as a candidate 

gene (Guo et al., 2017). The Korean Capsicum annuum cultivar ‘Bukang’, resistant to CMV-

FNY and CMV-Korean strains, showed a dominant resistance controlled by Cmr1 gene, 

mapping at the centromeric region of LG2 (Kang et al., 2010). However, 20 years after 

deploying this resistant material in the Korean breeding program, a new isolate CMV-P1 

overcame the resistance conferred by Cmr1. Recently, an Indian C. annuum cultivar ‘Lam32’ 

and a Korean line‘A1’ were found to display resistance to CMV-P1 strain. The resistance of 

‘Lam32’ was controlled by a single recessive resistant gene, cmr2, mapping on chromosome 8 

(Choi et al., 2018). The resistance present in the line ‘A1’ was recessive and controlled by two 

QTLs cmvP1-5.1 and cmvP1-10.1, located on chromosomes 5 and 10, respectively (Eun et al., 

2016).  

In cucumber, several resources have been reported as resistant to CMV strains but few 

molecular mechanisms were investigated. The cucumber inbred line ‘02245’ shows resistance 

to CMV (without reporting which strain), with a QTL, cmv6.1 on chromosome 6, explaining the 

majority of the phenotypic variation. Furthermore, the gene Csa6M133680 was reported as a 

candidate gene for the resistance by genetic and expression analysis (Shi et al., 2018). In melon, 

the gene cmv1 encoding a Vacuolar protein sorting 41 (CmVPS41), confers resistance to CMV 

subgroup II strains (Giner et al., 2017), but not to subgroup I strains. For resistance to these 

strains, two other QTLs, cmvqw3.1 and cmvqw10.1, together with cmv1 were necessary (Guiu-

Aragonés et al, 2014).  
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Until now, only few CMV resistance genes like RCY1 (Takahashi et al., 2001), cum1 and 

cum2 (Yoshii et al., 2004) and VPS41 (Giner et al., 2017) were cloned. 

The natural resistance to CMV in monocot crops has been also reported. In maize, after 

analyzing 82 landraces in Japan, 12 out of them showed resistance to CMV-Y. Aso-3 showed 

necrotic local lesions and kept resistant to CMV-Y. The resistance was controlled by a single 

dominant gene but further molecular mechanism has not been reported. This maize-CMV 

resistant system was proposed to be a model to study the HR-mediated resistance in monocot 

crops (Takahashi et al., 2018). 

 

3.2 Transgenic plants 

3.2.1 Pathogen-derived resistance 

Plants transformed with some of CMV related sequences (CP, replicase or satellite RNA) 

showed an increase of virus resistance. CMV CP is the most used viral factor in the plant 

transformation. However, the resistance degree and efficiency differed in the donor strains as 

well as plant species. Transgenic tobacco plants expressing the CP could protect plants from 

CMV infection, independently of the viral load of the inoculum, however transgenic plants 

expressing antisense CP could protect plants only under low virus concentration (Cuozzo et al., 

1988). It was also reported that tobacco plants transformed with CP from CMV-O showed more 

resistance to CMV-O than to CMV-Y and also showed resistance to another cucumovirus 

member chrysanthemum mild mottle virus (Nakajima et al., 1993). In squash, the resistance of 

transgenic plants expressing CMV CP varied between transgenic lines, some showing absolute 

resistance while others infected with mild mosaic symptom or even totally susceptible. The 

squash transformed with the CP genes from CMV and Watermelon mosaic virus (WMV) 2 

conferred total resistance to both CMV and WMV viruses (Tricoll et al., 1995). RNAi (RNA 

interference) mediated resistance based on CMV CP resulted in varied CMV resistance among 

transgenic lines (Ntui et al., 2014). Replicase-related transgenic plants were also developed. 

Truncated CMV 2a replicase protein transformed plants suppressed CMV viral replication and 

long-distance movement (Carr et al., 1994). Transforming an altered form of CMV replicase 

inhibited CMV viral replication and restricted CMV from entering into the minor veins in 

tobacco plants (Wintermantel et al., 1997). Transforming a defective replicase gene of CMV in 

Lilium plants showed increase resistance level with no virus detectable in newly developed 
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leaves (Azadi et al., 2011). Tobacco plants transformed with CP of the subgroup I strain CMV-

Gladiolus resulted in a broad resistance to most CMV strains tested (Dubey et al., 2015). Apart 

from the CP and replicase related resistance, some microsatellite RNA were also used to obtain 

CMV resistant transgenic plants. Transforming a DNA copy of CMV satellite RNA resulted in 

the decrease of CMV replication as well as suppressed CMV symptom development in different 

plant species like tobacco (Harrison et al., 1987), tomato (Saito et al., 1992) and hot pepper (Kim 

et al., 1997). 

3.2.2 Non-pathogen-derived resistance strategies 

Extracellular ribonucleases were also proved to participate in defense against viruses with 

RNA genomes. Transgenic tobacco plants expressing bovine pancreatic ribonuclease (RNase 

A) showed increased resistance to CMV (Sugawara et al., 2016). Using yeast-two-hybrid system, 

the 30S ribosomal subunit protein S11 (RPS11) was found to interact with CMV 2b protein, its 

suppressor of gene silencing. NbRPS11 knockdown Nicotiana benthamiana plants showed the 

ability to inhibit CMV replication and accumulation (Wang et al., 2017). Some vitamins and 

plant hormones were also found to protect plants from CMV infection. Vitamin Bx could increase 

fruit yield and protect pepper plants from CMV infection (Song et al., 2013).  Tomato plants 

over-expressing prosystermin, the systemin precursor, showed increasing resistance to CMV 

infection (Bubici et al., 2017). Some plant growth-promoting rhizobacteria (PGPR) were also 

able to protect tomato plants from CMV infection (Dashti et al., 2012; Elsharkawy et al., 2012). 

Some other factors like Trichoderma asperellum SKT-1 could also function in defending CMV 

infection (Elsharkawy et al., 2013). 

 

4. Melon  

Melon (Cucumis melo L.) (2n = 2 × 12= 24) belongs to the Cucurbitaceae family, genus 

Cucumis. In Cucurbitaceae family, there are many agronomical important crops such as 

cucumber (Cucumis sativus L.), watermelon [Citrullus lanatus, zucchini squash (Cucurbita pepo 

L.) and pumpkin (Cucurbita moschata Duch.exPoir.). 

Melon is a worldwide important fruit crop. According to the data collected by Food and 

Agriculture Organization of the United Nations (http://www.fao.org/faostat/en/#data/QC), the 

melon production worldwide has increased over the past decades from 6.9 million tons in year 

1961 to 31 million tons in year 2016 (Figure I-5). China is the leading production country with 

http://www.fao.org/faostat/en/#data/QC)
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16 million tons production per year, more than half of the total production in the world. Spain is 

a melon exporting country, being the 7th in production. It showed an increase until 2009, and a 

sharp decrease since then. In year 2016, the melon production in Spain was 0.66 million tons.  

 

 

Figure I-5. Melon production A) worldwide and B) in Spain from 1961 to 2016. Green line, blue line 

and red line in the figure indicate the amount of melon production (tons), the melon planted areas (ha) and 

the melon yield (hg/ha) across years, respectively. (Data applied from 

http://www.fao.org/faostat/en/#data/QC)) 

 

 

4.1 Melon taxonomy and diversity 

Cucumis melo is divided into two subspecies, C. melo ssp. melo and C. melo ssp. agrestis 

(Jeffrey, 1980). The subspecies C. melo ssp. melo has pilose or lanate ovaries covered with 

spreading, long hair while C. melo ssp. agrestis has sericeous ovaries covered with appressed, 

short hair (Stepansky et al., 1999). Using high density SNP molecular markers distributed across 

the 12 melon chromosomes, the classical classification of genus Cucumis melo into C. 

melo ssp. melo and C. melo ssp. agrestis (Blanca et al., 2012; Esteras et al., 2013) was confirmed. 

To have more detailed knowledge about each subspecies, there has been different classifications 

performed according to their botanical morphological characters (flowering time, aroma, taste…) 

and DNA polymorphisms. Combining morphological traits like vegetative and flowering stages, 

mature fruit morphology and fruit quality parameters, together with DNA fingerprinting as Inter-

SSR (Simple Sequence Repeat)-PCR and RAPD (Random Amplified Polymorphic DNA), a 

worldwide collection of Cucumis melo varieties were classified into two groups, the first group C. 

melo ssp. melo including cantalupensis and inodorus types, and the second group C. 

melo ssp. agrestis including conomon, chito, dudaim, agrestis and momordica (Stepansky et al., 

http://www.fao.org/faostat/en/#data/QC
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1999). More recently, another classification system was proposed to divide C. melo ssp. melo 

into ten groups (Cantalupensis, Reticulatus, Adana, Chandalak, Ameri, Inodorus, Chate, 

Flexuosus, Dudaim and Tibish) and C. melo ssp. agrestis into five groups 

(Momordica, Conomon, Chinensis, Makuwa, and Acidulus) (Pitrat, 2008). 

The melon consumed daily is mostly from C. melo ssp. melo. Apart from the general 

classification between subgroup species, some studies were also performed to investigate C. 

melo ssp. melo intraspecific genetic diversity (Monforte et al, 2003). The morphology and 

molecular diversity of more than one hundred Spanish accessions in the Spanish germplasm 

collection, together with other reference accession were studied. It was found that Spanish 

accessions were genetically distinct from other accessions with USA or European origins, hence 

Spanish melons could be used as sources to broaden genetic diversity of USA and other 

European melon germplasm. (López-Sesé et al., 2003). In China, melon accessions collected 

across nearly the whole country were analyzed together with reference accessions. It was found 

that Chinese accessions, no matter if they were netted or non-netted, thin-skinned or thick-

skinned, they clustered together and separated from melon accessions from other regions such as 

Spain, Japan or USA (Luan et al., 2008). Genetic differences were also observed among African 

accessions (Mliki et al., 2001) and Japanese accessions (Nakata et al., 2005). Hence, introducing 

germplasm from other regions could improve the genetic diversity. 

Nearly all the disease resistant melon varieties were found in C. melo ssp. agrestis but most of 

these varieties have unfavorable fruit traits. The diversity analysis of 17 C. melo ssp. agrestis 

genotypes in southern Caspian sea region using AFLP (Amplified Fragment Length 

Polymorphism) markers revealed a high genetic diversity among the genotypes (Shamasbi et al., 

2014). In the diversity analysis combining cultivated and wild melons, C. melo ssp. agrestis was 

clearly separated from C. melo ssp. Melo; and the subgroup agrestis was structured according to 

their geographical origins (Serres-Giardi and Dogimont, 2012). 

 

4.2 Genetic and genomic resources in melon 

The big diversity observed in melon offers the opportunity to perform genetic studies to 

understand the basis of important agronomical traits such as plant development, fruit quality or 

disease resistance. 
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To decipher the genetic mechanism of interesting traits, different mapping populations have 

been developed, such as F2, backcross (BC) populations, recombinant inbred lines (RILs), near 

isogenic lines (NILs) or double haploid lines (DHLs). 

F2 or F2-derived F3 populations have been frequently used, since they can be easily developed. 

Based on the F2 population made between PI 414723 and the cultivar cv. Top Mark, a genetic 

map was constructed using RAPD, ISSR, SSR, and Restriction Fragment Length Polymorphism 

(RFLP) markers to clone the disease resistant homologous gene Pto-receptor-kinase family and 

the leucine-rich repeat R-genes family in melon (Brotman et al., 2000). For cloning the Melon 

necrotic spot virus (MNSV) resistance gene nsv from the melon accession PI 161375, F2 and 

BC1populations as well as the offspring derived were used (Morales et al., 2005). Based on the 

F2 population developed by crossing the multi-resistant genotype TGR-1551 and the susceptible 

Spanish cultivar ‘Bola de Oro’, a genetic map was constructed and one major QTL, Pm-R, was 

identified to confer resistance to some strains of powdery mildew (Yuste-Lisbona et al., 2011). 

F2 populations produced between Indian wild melon “Trigonus” and Spanish cultivar “Piel de 

Sapo” was also successfully used to analyze QTLs related with domestication-related traits, such 

as fruit morphology, fruit size and pulp content (Díaz et al., 2017). 

RILs were also used as a powerful tool for the primary QTL analysis. Based on 81 melon 

(Cucumis melo L.) RILs derived from a cross between USDA 846-1 and “Top Mark.”, a few 

QTLs related with soluble solids and other fruit quality QTL were identified (Paris et al. 2008). 

Ninety-nine RI lines were developed from PI 414723 (subspecies agrestis) and ‘Dulce’ 

(subspecies melo) and used to construct a genetic map using SSR, SNP, INDEL and AFLP 

makers. Finally, 44 melon fruit QTLs, including sugar content, fruit flesh color and carotenoid 

content, were identified (Harel-Beja et al., 2010). In order to identify the QTL responsible for the 

resistance to powdery mildew in the highly resistant melon line AR5, a population of 93 RILs 

derived from crosses between melon line AR5 and the susceptible line ‘Earl’s Favourite’ were 

produced. The resistance was controlled by two loci (Fukino et al., 2008). A RIL population 

developed from a cross between PI 414723 (C. melo var. momordica) and ‘Dulce’ was used to 

analyze the genetic factors controlling fruit quality traits. More than 200 QTLs and some specific 

genes like Thiol acyltransferase (CmThAT1) gene were detected affecting flesh color, taste and 

aroma (Galpaz et al., 2018). 
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BC populations have been also easily produced and commonly used as a great tool for genetic 

analysis. Combining RAPD, microsatellite and AFLP markers, a linkage map  was constructed 

based on 66 backcross progenies produced between ‘AnanasYokneum’ and‘MR-1’. This map 

allowed to identify markers related to disease resistance genes (Fusarium wilt, downy, powdery 

mildew) (Wang et al., 1997). BC populations were also used combined with other populations in 

QTL analysis for powdery mildew resistance (Kim et al., 2016), virus resistance (Sáez et al., 

2017) and domestication related traits (Díaz et al., 2017). 

NILs are lines with small introgressions of the donor parental line in the background of the 

recurrent parental genome, so that the whole genome is covered within the entire NIL 

collection. NILs have been developed in many plant species and used frequently as a powerful 

tool for QTL analysis related with developmental traits (Keurentjes et al., 2006; Zhang et al., 

2006; Melchinger et al., 2007; Clark et al., 2008), fruit quality (Bernacchi et. al, 1998), crop 

production (Xie et al., 2006), and biotic and abiotic resistance (Martin et al., 1991; Brouwer and 

Clair, 2004; Niones, 2004). In melon, a NIL population was developed using the Spanish 

cultivar Piel de Sapo (PS) as recurrent parental line and the exotic Korean accession PI 161375, 

cultivar Songwhan Charmi (SC), as donor parent (Eduardo et al., 2005) (Figure I-6). SC has a 

relatively high genetic distance with PS (Garcia-Mas et al., 2000; Monforte et al., 2003). The 

collection was composed of 57 lines covering almost the whole genome of SC. As the fruit of PS 

differs from that of SC, these NILs were used for QTL analysis related with fruit quality traits, 

like fruit length, fruit shape, ovary shape, external color, flesh color (Eduardo et al., 2007; 

Obando et al., 2008; Fernandez-Silva et al., 2010). The NILs were also used to investigate the 

QTLs related to fruit ripening and softening (Moreno et al., 2008; Vegas et al., 2013; Ríos et al., 

2017), aroma volatile profile (Obando-Ulloa et al., 2010) or sugar and acid composition 

(Obando-Ulloa et al., 2009). As the exotic accession SC was described to have multiple disease 

resistances, the NILs were also used to analyze the resistance to CMV (Essafi et al., 2009).  
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Figure I-6. Spanish cultivar PS (on the left) and exotic Korean accession SC (on the right) used as 

parental lines to develop the melon NILs population (images from http://bulletin.upct.es/index.php/melon) 

 

DHL populations are a collection of completely homozygous lines that contain half of the 

genome of each parental line, representing a mosaic of both parental genomes. These lines have 

been developed and widely used for multi-trait analysis in many crop species as rice (Jiang et al., 

2004; Cha-um et al., 2009), cucumber (Claveria et al., 2005) as well as melon (Lotfi et al., 2003; 

Monforte et al., 2004). In melon a DHL collection was developed using PS and SC as  parental 

lines for the identification of QTLs related to fruit quality (Monforte et al., 2004) and CMV 

resistance (Guiu-Aragonés et al., 2014).  Later on, the DHL92 derived from this collection was 

used to generate the melon reference genome sequence (Garcia-Mas et al., 2012). 

The mapping populations have been genotyped using different molecular markers to allow the 

construction of genetic maps used for QTL analysis.  

 

4.3 Melon reference genome 

In 2012, the melon reference genome sequence was published using the homozygous DHL92 

line applying the whole-genome shotgun strategy based on 454 pyrosequencing technology. 

Finally, a 375 Mb assembled genome containing 1,594 scaffolds and 29,865 contigs was 

obtained. After the transposon annotation and masking the repetitive regions, 27,427 predicted 

genes were annotated (Garcia-Mas et al., 2012). Recently, the scaffold anchoring (Argyris et al., 

2015), assembly and annotation (Ruggieri et al., 2018) have also been improved to get a better 

melon reference genome.   

http://bulletin.upct.es/index.php/melon
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Apart from the genomic sequence, the melon cytoplasmic genome sequence was also 

determined. The chloroplast genome had156 Kb, while the mitochondrial genome size  was 2.74 

Mb (Rodríguez-Moreno et al., 2011).  

Based on the melon reference genome, whole genome re-sequencing or genotyping-by-

sequencing (GBS) have been also performed. These new cost-effective technology allowed the 

dissection of the genetics behind disease resistance (Natarajan et al., 2016; Hu et al., 2017), fruit 

traits (Nimmakayala et al., 2016; Chang et al., 2017) or for genetic variation and genetic 

structure analysis (Pavan et al., 2017). 

 

4.4 Melon diseases and resistance 

Not only melon production but melon fruit quality could be heavily affected by plant 

pathogens. The plant pathogens that could infect melon plants varied from insects, bacteria, fungi 

to viruses, being the most important the diseases caused by viruses and fungi.  

4.4.1 Insects 

The burst of insects always resulted in great losses in melon production. One of the most 

destructive insect diseases is melon fruit fly, distributed worldwide from Asia, South America, 

Africa and Australia. Melon fruit fly feeds inside the fruit, sometimes on flower or stems and 

could cause fruit distortion and also introduce other pathogens which facilitate fruit 

decomposition. Aphids were also described as another destructive pest, after sap-sucking by 

aphids, the yield of host plants will be reduced and the nutritional components will be also 

affected (Hales et al., 1997). Viruses like Watermelon mosaic virus and Cucumber mosaic virus 

(Raccah et al., 1985) are transmitted by aphids. Hence, it’s of great importance to identify the 

resistant genes. The Vat gene confers resistance to aphid infection in different melon lines, and 

has been widely used in plant breeding programs (Chen et al., 1997; Klingler et al., 2001; 

Boissot et al., 2010). 

4.4.2 Fungi and bacteria 

Melon diseases such as fusarium wilt, powdery mildew and downy mildew caused by fungi 

and bacteria could also produce severe infections. Fusarium wilt is one of the most devasting 

diseases in melon production. This disease is difficult to control because Fusarium 

oxysporum f.sp. melonis is a soil-borne pathogen and can keep its viability for a few years. Four 

F. oxysporum f.sp. melonis races (race 0, 1, 2, and 1.2) were reported to cause melon wilt 
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symptoms. Several resistance genes have been found conferring resistance to different races. The 

dominant resistant gene Fom-1 confers resistance to race 0 and race 2 (Risser, 1973; Brotman et 

al., 2013). Fom-2 confers resistance to race 0 and race1 (Risser et al., 1976; Joobeur et al., 2004). 

More recently, some minor QTLs, together with a major QTL that correlated with Fom-2, were 

found contributing to the resistance to race 1 (Branham et al., 2018).  The aggressive strain race 

1.2 can overcome the resistance conferred by Fom-1 and Fom-2. Some melon lines showed 

partial resistance to some strains of race 1.2, with polygenic control of the resistance (Perchepied 

and Pitrat, 2004; Perchepied et al., 2005) and some epistatic effects functioning in the resistance 

(Chikh-Rouhou et al., 2011). The genetics and mechanism of resistance to powdery mildew and 

downy mildew was also described in different melon lines (McCreight et al., 1987; Epinat et al., 

1992; Perchepied et al., 2005; Fukino et al., 2008; Zhang et al., 2013; Ning et al., 2014; KT, 2016). 

4.4.3 Virus 

Several virus species like Watermelon mosaic virus (WMV), Zucchini yellow mosaic 

virus (ZYMV), and CMV can infect melon plants. Until now, all the resistant materials found in 

melon belong to subspecies agrestis. The Indian melon line PI 414723 was resistant to some 

viruses including ZYMV. The resistance to ZYMV was described to be controlled by the 

dominant gene Zym (Pitrat and Lecoq, 1984).  Melon genotype TGR-1551 restricts WMV 

infection and this resistance was controlled by one major QTL in LG XI and some other minor 

QTLs (Palomares-Rius et al., 2011). Among all the plant viruses, CMV was found to cause 50% 

production losses when melon plants are infected in the early stage, before flowering (Alonso-

Prados et al., 1997).  However, only few resistant melon lines were described as resistant to 

CMV (Diaz et al., 2003). 

Five oriental cultivars, Yamatouri, Miyamauri, Mawatauri, Sanuki-shirouri, and Shinjong, 

confer resistance to the Indonesian isolate CMV-B2 (Daryono et al., 2003). Some other melon 

genotypes, like SC, and Freeman's cucumber were resistant to some CMV pathotypes.  Among 

these reported resistant melon lines, the genetic control and molecular mechanism of Korean 

accession SC has been studied deeply.  

4.4.4 Resistance to CMV in the melon line PI 161375  

The Korean accession SC is resistant to most of CMV strains except those of type CMV-

Song, which overcome all known resistances (Pitrat and Lecoq, 1980; Diaz et al., 2003). Using 

a RIL population made between the susceptible genotype ‘Védrantais’ and SC, a major QTL in 
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LG XII was detected explaining most of phenotypic variation for the resistance to all the CMV 

strains tested in the experiment. Some minor QTLs were also detected but were strain specific 

(Dogimont et al., 2000). In a collection of NILs with SC introgressions into PS background, a 

major QTL in LG XII, named cmv1, was mapped within a 5.78 Mb interval and conferred 

resistance to strains CMV-P9 and P104.82, but not to the strain TL (Essafi et al., 2009). Finally, 

it was determined to confer resistance to all subgroup II strains, but not to those of subgroup I 

(Guiu-Aragonés et al., 2015). The cmv1 acts as a gatekeeper preventing the virus cell-to-cell 

movement specifically from bundle sheath cells to vascular parenchyma or intermediary cells so 

that the virus cannot reach the phloem. In susceptible lines, the virus can pass through this 

barrier to systemically infect melon plants (Guiu‐Aragonés et al., 2016). Cmv1 was fine 

mapped to a 132 Kb interval containing three annotated genes. Among them, the Vacuolar 

protein sorting-associated protein 41 (VPS41) was further validated as the gene conferring 

resistance to CMV subgroup II strains by using a VPS41 TILLING mutant and VPS41 

transgenic melon lines. A deleterious CmVPS41 mutation among TILLING "Charentais" 

susceptible plants showed a decrease of susceptibility upon CMV-LS infection. The resistant 

SC plants transformed with susceptible PS CmVPS41 were susceptible to CMV (Giner et al., 

2017). Furthermore, the movement protein of CMV was found to be the virulence determinant 

against cmv1. When the viruses harbored CMV-LS MP, melon plants containing cmv1 showed 

resistance to CMV infection, while they were infected if the virus carried a CMV-FNY MP 

(Guiu‐Aragonés et al., 2015). Further analysis revealed that four amino acid positions were the 

only changes between both MPs necessary to overcome the resistance conferred by cmv1 (Guiu-

Aragonés et al, 2015). The subgroup I strain CMV-M6 can overcome cmv1-mediated resistance. 

In a screening inoculating the DHL collection with CMV-M6, Guiu-Aragonés et al, 2014 found 

two QTLs, cmvqw3.1 and cmvqw10.1, which must work together with cmv1 to confer resistance 

against CMV-M6 (Guiu-Aragonés et al., 2014). However, the strain CMV-FNY can still break 

the resistance conferred together by these three QTLs while SC still shows resistance. Hence, 

we hypothesize the existence of additional QTL(s) in SC responsible for the resistance to CMV-

FNY.
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Objectives 

 

The main objective of this PhD thesis is to study the complex resistance mechanism of the 

melon accession PI 161375 to different CMV stains. To achieve this goal, three specific 

objectives are addressed: 

 

1. Identification of minor QTL(s) responsible for the resistance to the CMV-FNY strain by 

using different F2 populations. 

 

2. Characterization of the resistance mediated by cmv1, cmvqw3.1, cmvqw10.1 and additional 

QTL(s). 

 

3. Identification of the viral factor that determines the virulence of CMV-FNY against the 

resistance conferred together by cmv1, cmvqw3.1 and cmvqw10.1. 
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1 Plant materials  

1.1 Melon lines 

The Spanish cultivar Piel de Sapo (PS), susceptible to all the CMV (Cucumber mosaic virus) 

strains tested in our experiments, was used as positive control in all the infection experiments. 

The exotic Korean melon accession PI 161375, cultivar “SongwhanCharmi” (SC), resistant to all 

the CMV strains tested in our experiments, was used as negative control.  

Double haploid lines DHL142, DHL69, DHL2012, DHL1046 (Gonzalo et al., 2005), the 

introgression line (IL) 20-91-15, and SC were used to produce the different F2 populations.  

ILs 20-91-15 (containing QTLs cmvqw3.1, cmvqw10.1 and cmv1), 20-28-62 (containing 

cmvqw10.1and cmv1) and 5-123 (containing cmvqw3.1 and cmv1) were used to characterize the 

resistance mechanisms of different QTLs and for the identification of the determinants of 

virulence. 

All the melon seeds used were treated with 3 g/L captan for 5 min, rinsed thoroughly and 

soaked in water overnight. Seeds were pre-germinated around 3 days in plates at 28 ℃ with 

photoperiod of 12 h under light and 12 h in the dark.  

For the infection experiments, the seedlings were planted either in a versatile environmental 

test chamber (MLR-350H, SANYO) or in a horizontal chamber (Fitotronic Version2, Inkoa) 

under long day condition consisting of 22 ℃ for 16 h with light and 18 ℃ for 8 h in dark 

throughout the whole infection.  

To produce the F2 generation for the identification of the additional QTL(s), first the seedlings 

were grown in the greenhouse at CRAG under long day conditions, with 22-24 ºC for 16 h and 

20 ºC for 8h until five-leaf-stage and then transferred to the greenhouse in Torre Marimon 

(Caldes de Montbui, Barcelona). Then, the lines DHL142, DHL69 and SC were crossed with 

DHL2012, DHL1046 or 20-91-15. Forty-five days after pollination (dap), the melons were 

harvested to get F1 seeds. F1 seeds were germinated and seedlings were transferred to 

greenhouses at Torre Marimon and self-pollinated to get enough F2 seeds from each cross for 

QTL analysis. 
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1.2 Nicotiana benthanimana and zucchini squash  

Nicotiana benthamiana plants and zucchini squash (Cucurbita pepo L.) Chapin F1 (Semillas 

Fitó SA, Barcelona, Spain) were grown under long day conditions as described for melon plants 

at CRAG greenhouses facilities. 

 

2 Viruses 

2.1 Viral strains  

The CMV strains used in this study were CMV-M6 (Diaz et al. 2003), CMV-FNY (Rizzo and 

Palukaitis, 1990) and CMV-LS (Rizzo and Palukaitis, 1990). Strains CMV-M6 and CMV-FNY 

belong to subgroup IA while CMV-LS belongs to subgroup II. 

2.2 Viral clones for in vitro transcription and agro-infiltration 

Infectious clones suitable for in vitro transcription pLS-CMV1, pLS-CMV2 and pLS-CMV3 

of the strain CMV-LS and pFny1, pFny2 and pFny3 of the strain CMV-FNY were provided by 

Prof. P.Palukaitis (Zhang et al, 1994). Infectious clones pCR1(+), pCR2(+) and pCR3(+), 

suitable for Agrobacterium-mediated transformation, were provided by Dr. Kim Kook-Hyung, 

from Seoul National University (Seo et al., 2009). For the strain CMV-M6, M6.1 and M6.2 are 

cloned into pGEM®-T, for in vitro transcription, and M6.3 is cloned in the binary vector 

pGREEN II (Guiu-Aragonés, 2014). 

Clones pLS-CMV1, pLS-CMV2, pLS-CMV3, pFny2, pFny3and M6.2 were transformed in 

competent cell DH5 . Clones M6.1 and pFny1 were transformed in competent SURE cells. The 

binary constructs pCR1(+), pCR2(+), pCR3(+) and M6.3 were transformed in Agrobacterium 

GV3101 for agroinfiltration. 
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3 Bacterial strains 

The E.coli strains and the genotype of each strain are listed in Table M-1. The A.tumefaciens 

strains used were GV3101/pSOUP and C58C1, both resistant to tetracycline and rifampicin.  

 

Table M-1. E. coli strains and their genotypes  

E. coli Strain Genotype 

DH5α 
F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

JM109 
endA1recA1gyrA96 thi hsdR17 (rk–, mk+) relA1 supE44 Δ( lac-proAB) 

[F´ traD36, proAB, laqIqZΔM15] 

10β 

Δ(ara-leu) 7697 araD139  fhuA ΔlacX74 galK16 galE15 e14-

 Φ80dlacZΔM15  recA1 relA1 endA1 nupG  rpsL (StrR) rph spoT1 Δ(mrr-

hsdRMS-mcrBC) 

Stbl4 
mcrA Δ(mcrBC-hsdRMS-mrr) recA1 endA1 gyrA96 gal-thi-1 supE44 λ-

relA1 Δ(lac-proAB)/F' proAB+lacIqZΔM15 Tn10 (TetR) 

SURE 

e14– (McrA–) Δ(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96 

relA1 lac recBrecJsbcCumuC::Tn5 (Kanr) uvrC [F' proAB lacIqZΔM15 Tn10 

(Tetr)] 

 

4 Virus Inoculations 

4.1 Sap inoculation 

Viral inocula were freshly prepared by grinding the new leaves of infected either zucchini 

squash or N. benthamiana in 0.2% diethyl dithiocaremate of sodium (DIECA) buffer in the 

presence of active carbon, to disrupt more efficiently the cells. The sap was then rub inoculated 

on the cotyledons of 7 to 10 day old melon plants previously sprayed with silicon carbide 

(Carborundum).  When necessary, the virus was inoculated to fully expanded first new leaves of 

14 to 16 day old melon plants. For this, around 1 g of infected tissue from infected zucchini 

squash was homogenized in 10 ml 0.2% DIECA buffer. Then, 50 μl of homogenized sap was 

mechanically inoculated on the first leaves previously sprayed with Carborundum.  
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4.2 Agro-infiltration and viral RNA inoculation 

To generate pseudo-recombinant viruses by using binary vectors or in vitro transcription 

clones, mixed inoculations were applied on 3-leaves-stage N. benthamiana plants. Agrobacteria 

were first induced for 1 to 2 h in the induction buffer and then agroinfiltration was performed in 

the underneath of the leaves. When combining agroinfiltration and in vitro transcription for a 

particular combination, forty-five minutes after the agroinfiltration, in vitro transcribed RNAs 

were inoculated on the same infiltrated leaves. When N. benthamiana plants showed systemic 

infection symptoms, the newly infected leaves were used to produce sap to inoculate the 

cotyledons of  7 to10 day old melon plants. 

 

5 DNA isolation 

5.1 Genomic DNA extraction 

100 mg of young leaves were harvested and grinded to fine powder in liquid N2 in 1.5 ml 

eppendorf and then 500 μl of pre-heated Doyle buffer (65 ºC) was added. The samples were kept 

at 65 ºC for 30 min after vortex. Then 500 μl of chloroform: isoamilalcohol (24:1) was added, 

mixed and centrifuged at 11,000 rpm for 10 min. The aqueous layer was transferred to a new 

eppendorf where 500 μl of pre-chilled isopropanol were added, mixed gently and centrifuged at 

11,000 rpm for 5 min. The supernatant was removed and the pellet was cleaned by adding 200 μl 

of 75% ethanol, and centrifuged at 11,000 rpm for 3 min. The supernatant was removed and the 

pellet was air dried at room temperature. The pellet was re-suspended in 50 μl of milli-Q H2O. 

Finally, 1 μl of RNase was added to remove RNA contamination. An agarose gel was run to 

confirm the quality and quantity of extracted DNA. All the DNAs were stored at -20 ºC for 

further use. 

5.2 Genomic DNA extraction for re-sequencing melon lines 

One to three grams of melon young leaves were collected and grinded to fine powder in liquid 

N2 and homogenized in 7.5 ml/g pre-warmed CTAB buffer. Equal volume of chloroform-

isoamylalcohol (24: 1) were added, mixed and centrifuged for 20 min at 3,000 rpm. Upper layer 

was taken and mixed with 2/3 of the volume of pre-chilled isopropanol, followed by 5 min 

centrifuge at 2,000 rpm. After removing the isopropanol, the pellet was cleaned with 10 ml 

washing buffer and dissolved in 1 ml TE buffer. Later, DNA was treated with 50 μg/ml RNase 

for 1 h at 37 ºC and purified with phenol-chloroform-isoamylalcohol method and dissolved in 
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200 ml TE buffer. The integrity was assessed by gel electrophoresis and the quantity was 

checked using Qubit fluorometric quantification system (Thermo Fisher Scientific, Inc.).  Five 

μg of DNA were used for re-sequencing. 

5.3 Plasmid DNA extraction 

E. coli strains were cultured at 37 ºC in L medium in the presence of the appropriate antibiotic. 

Agrobacterium was grown at 28 ºC in the same medium. Then the plasmid extraction was 

performed with the GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific, Inc.) according to 

manufacturer’s instructions. The quality and quantity of plasmid was assessed using Nanodrop 

and agarose gel electrophoresis.  

 

6 RNA isolation 

6.1 Total RNA extraction using Tri-Reagent 

The plant tissues were collected and grinded to fine powder in liquid N2 in 1.5 ml eppendorf. 

Then, the powder was homogenized in the presence of 1 ml TRI Reagent (TRI Reagent® RNA 

Isolation Reagent, Sigma), followed by adding 200 μl of chloroform and vortexed for 15 s.  After 

leaving the mixture at room temperature for 2 to 15 min, samples were centrifuged 15 min at 

14,000 rpm at 4 ºC. Then, the supernatant was transferred to an RNase free tube, precipitated 

with 500 μl isopropanol and washed with 500 μl of 75% ethanol. The pellet was dissolved in 50 

μl RNase free H2O. Finally, DNA contamination was eliminated using TURBO DNA-free™ Kit 

(Thermo Fisher Scientific, Inc.) according to manufacturer’s instructions. All the RNAs were 

stored at -80 ºC for further use. 

6.2 Total RNA extraction using Plant mini kit  

To get high quality RNA for qRT- PCR, RNeasy Plant Mini Kit (Qiagen) was used. This 

method was used for RNA extraction from melon petioles. Around 100 mg petioles were 

collected and grinded in liquid N2. RNA was extracted following manufacturer’s instructions. 

After the extraction, the quality and quantity of RNA was checked using Nanodrop and agarose 

gel.  

 

7 Introgression lines re-sequencing  

Re-sequencing of the ILs 20-91-15, 20-28-62 and 5-123 was performed using HiSeq2000 

Illumina paired-end sequencing (2 × 125). The bioinformatic analysis was done in collaboration 
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with Dr. Kostantinos Alexiou, the bioinformatician of the Genetics and Genomics Vegetable 

Crops group at CRAG. The pipeline used for re-sequencing analysis was SUPER pipeline as 

described by Sanseverino et al. (2013). 

The resulting sequences were mapped to the newer version of the melon genome v3.6.1 

(https://www.melonomics.net/melonomics.html). General filtering was performed by fulfilling 

the criteria with bi-allelic sites, SNPs only. Minimum depth was set to 6, minimum genotype 

quality to 30, minimum SNP quality to 30, minimum count for alternative allele to 2. A 

chromosome 0 was also defined for sequences not belonging to any chromosome. The re-

sequencing data of each IL was then compared with the genome of PS and SC to determine the 

genotype origin of ILs. 

 

8 In vitro transcription  

Infectious clones pLS-CMV1, pLS-CMV2 were linearized with NotI and HindIII, 

respectively.  Infectious clones pLS-CMV3, M6.1 and pFny1 were linearized with PstI. RNAs 

were generated from 1 μg of linearized plasmid by using T7 mMESSAGEmMACHINE® in 

vitro transcription kit (Ambion, Thermo Fisher Scientific, Austin, USA). 

 

9 Plasmid construction 

RNA1 and RNA2 from CMV-M6 were cloned in the binary vector pSNU1. M6-RNA1 was 

amplified from the construct pGEM-6.1 (Guiu-Aragonés, 2014) using Phusion Green High-

Fidelity DNA Polymerase, with primer pair M6_1&2_Gibson-1F 

(gttcatttcatttggagagggGTTTATTTACAAGAGCGTACG) and M6_1_Gibson-3’R 

(gcgtgagctcggtaccgTGGTCTCCTTTTAGAGACC). M6-RNA2 was amplified, using the same 

DNA polymerase, with primer pair M6_1&2_Gibson-1F and M6_2_Gibson-3’R 

(gcgtgagctcggtaccgTGGTCTCCTTTTGGAGG). As vector, the construct pCR3(+), which 

contains the RNA3 from CMV-FNY cloned into pSNU1, was digested with EcoRI and BamHI 

to release the viral sequence. The digested fragment and PCR amplicons were then gel-purified 

by using High Pure PCR Product Purification Kit (Roche, Germany). DNA assembly was 

performed by using NEBuilder® HiFi DNA Assembly Cloning Kit according to the 

manufacturer’s instructions. The assembled products of M6.1 were transformed in E. coli strains 

10β and Stbl4, the late one, optimized for transformation of unstable fragments. The assembled 

https://www.melonomics.net/melonomics.html
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products of M6.2 were transformed in E. coli strains DH5α and JM109. The colonies were 

confirmed by colony PCR using primer pair M6.1-2650F (GATGTTGTACCGCTTGTGCGTT) 

and pCR3V-R (CGGCAACAGGATTCAATCTTA) for RNA1, and primer pair M6.2-2500F 

(GTATGGTGGAGGCGAAGAACG) and pCR3V-R for RNA2. Plasmids from positive colonies 

were extracted as described above. For analysis of the clones, triple enzyme digestion with PstI, 

SalI (TAKARA) and XmaI (Biolab) was applied for M6.2 constructions. Double enzyme 

digestion with XbaI and SacI (TAKARA) was performed for M6.1 constructions. After 

confirmation by enzymatic digestion, the constructs were sequenced.  The correct constructs 

were then transformed into Agrobacterium strain C58C1 and stored at -80 ℃ for further use. 

 

10 Virus detection  

10.1 ELISA (Enzyme-Linked Immuno Sorbent Assay) 

To confirm virus infection, young leaves (around 100 mg) of infected and non-infected melon 

plants were harvested and homogenized in the extraction buffer and then the homogenized 

solution was tested using DAS-ELISA (double antibody sandwich enzyme-linked 

immunosorbent assay). DAS-ELISA was performed as described by Essafi et al. (2009) using 

the polyclonal antiserum (Loewe Biochemica GmbH, Otterfing, Germany) which recognizes the 

coat protein (CP) of CMV-LS, CMV-M6 and CMV-FNY. The sample will be considered as 

infected if the value of ELISA is two times greater than that of non-inoculated samples. 

10.2 Visual phenotyping  

To identify minor QTLs, viral infection symptoms were recorded every day from 6-7 dpi until 

19-26 dpi with different methods: 

a) The infection scale was classified into 6 degrees varying from 0 to 5 according to the 

severity of symptoms (Guiu-Aragonés et al., 2014). 

b) The infection was recorded as a qualitative trait, where 1 was assigned for infected plants 

(any severity degree from 1 to 5), and 0 for the plants that do not show any symptom. 

c) In order to have a estimation of the progress of the infection, the Area Under the Symptom 

Progress Curve (AUSPC) (Shaner and Finney, 1977) was applied with the following formula: 
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 Where Si is the symptom intensity at the date ti, in days. 

10.3 Reverse transcription-polymerase chain reaction (RT-PCR) 

To detect virus infection, around 100 mg of leaf samples were used for total RNA extraction. 

Reverse Transcription was performed after RNA extraction with TRI REAGENT and DNase 

treatment. First, hybridization of primer-RNA was done with around 1 μg RNA in the presence 

of 1.54 μM oligo (dT)20 in 13 μl final volume at 70 ℃ for 10  min and then in ice for 5 min. Then, 

cDNA synthesis was carried out in the presence of 200 U PrimeScript Reverse Transcriptase 

(TAKARA, Japan), 40 U RNaseOUT™ Recombinant Ribonuclease Inhibitor (Invitrogen), 454.5 

μM dNTPs , 4 μl of 5× PrimerScript buffer in a final volume of 22 μl and incubated at 50℃ for 1 

h to synthesize the cDNA. The PCR reaction was performed in 20 μl final volume containing 1x 

NH4 reaction buffer, 0.2 mM dNTPs, 2.5 mM MgCl2, 0.5 μM forward primer, 0.5μM reverse 

primer, 1.5 U BIOTAQDNA polymerase (Bioline) and 2 μl cDNA. The reaction was performed 

on S1000 thermal cycler (Bio-Rad) with a denaturation cycle at 94 ℃ for 2 min, followed by 35 

cycles of 94 ℃ for 30 s, annealing for 1 min, and 72 ℃ for 2 min and a final extension at 72 ℃ 

for 5 min was followed. The annealing temperature was calculated with the formula Tm＝

4×N(G+C)+2×N(A+T)-5. The primer pair used to detect CMV-FNY was F109-400F 

(CCTTCATCAGGTCTGCGG) and F109-1400R (TTTCCAAGTTGTTCGTACTTC) or primer 

pair F109-900F (TTCATCAACGAGTCTACTATG) and F109-2000R 

(GGATCAACGGTAAAGTACG). The primer pair to detect CMV-LS was LS1-1F 

(GTTTTATTTACAAGAGCGTACG) and LS1-1400R (GAAGCATTCCACATATCGTAC). 

The primer pair used to detect ZYMV-AGII was pAG68F (GACAAAGAAGATGACAAAGGG) 

and pAG68R (GCATTGTATTCACACCTAGCA). 

10.4 Real time quantitative RT-PCR (qRT-PCR) 

The CMV-FNY accumulation in the petioles of inoculated leaves from different melon lines 

was measured by using qRT-PCR. For each melon line, at least 3 biological replicates were 

processed. The petioles were collected and grinded in liquid N2 for RNA extraction as indicated 

before. Reverse transcription was performed as described above, except for the RNA quantity 

that was decreased to 300 ng. Real-time PCR was done on LightCycler® 480 Instrument by 
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using SYBR Green I Master (Roche, Germany). The reaction system was as follows: 1× SYBR 

Green I Master, 0.5 μM forward primer, 0.5μΜ reverse primer, 2 μL cDNA and PCR-grade H2O 

to 20 μL final volume. The amplification protocol consisted of an initial step at 95 °C for 10 min, 

and 45 cycles of 95 °C for 10 s and 60 °C for 30s. The primers to detect virus accumulation were 

designed with Primer3, version 4.1.0 (http://primer3.ut.ee/) based on the movement protein 

region of CMV-FNY (Table M-2).  The presence of secondary structure was checked with Oligo 

Calculator version 3.27 (http://biotools.nubic.northwestern.edu/OligoCalc.html). 

 

Table M-2. Primers designed for qRT-PCR 

Primer name Sequence 5’-3’ nt 

MP_M6FNYqPCR_1F CATATCGCAGCTGGGAAGAC  20 

MP-M6FNYqPCR-1R CAAATATTGCGAAGATTCAATGT 23 

 

 

The primer specificity was tested by PCR amplification and agarose gel electrophoresis. Intra-

assay variation was evaluated by performing technical triplicates with all the amplifications.  Cp 

values were calculated using LightCycler® 480 (Roche Life Science) software. A five point 

standard curve, using different cDNA dilutions from 1:1, 1:5, 1:25, 1:125 to 1: 625, was 

performed to check amplification efficiency of different primer pairs. The efficiency was 

calculated as reported by  (Saladié et al., 2015). The relative amount of viral specific expression 

was determined using cyclophilin (CmCYP7) (Saladié et al., 2015) as reference housekeeping 

gene and then normalized to mock inoculated PS expression.  

 

11 Data analysis  

All the statistical analysis and figures of qRT-PCR were performed using R software (R 

version 3.4.1). ΔΔCt values, representing relative virus accumulation of each biological replicate 

of all the analyzed melon lines were visualized in boxplots or one dimensional scatter plots by 

using “Boxplot” function or “stripchart” function. To calculate the significance between each 

two variables among several individuals, “shapiro.test” function was first applied analyzing 

whether the data had a normal distribution or not.  If the data was normally distributed, one-way 

ANOVA was applied to assess if significant differences exists between group means. If so, the 

http://primer3.ut.ee/
http://biotools.nubic.northwestern.edu/OligoCalc.html
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significance value of each comparison was determined using Tukey's honestly significant 

difference (HSD) post hoc test. If the data was not normally distributed, Kruskal-Wallis test was 

applied to check if significant differences exist between group means.  If so, Dunn test post hoc 

test was applied to obtain the significance value of each comparison. To check whether the 

differences between relative virus accumulation in proximal and distal petioles in the same line 

were significant, two-tailed t-test was applied as normality was assumed for our biological 

replicates. 

 

12 Genotyping 

12.1 SNP genotyping (single-nucleotide polymorphism) 

SNP primers were designed by using PrimerPicker (KBioscience 2009) based on the SNPs 

validated by Illumina Assay Design Tool (ADT) (Argyris et al., 2015). Flanking sequences, 

including SNPs, were submitted to the software obtaining two forward allele-specific primers 

and one reverse common primer. Finally, a 48×48 SNP assay was run on the Fluidigm platform 

at the Genomics service at CRAG. The genotype data were obtained by using Fluidigm SNP 

Genotyping Analysis Software. The detailed information of SNP markers used is listed in Table 

S10. 

12.2 SSR (Simple Sequence Repeat) 

According to the genotypes of resistant and susceptible parental lines, polymorphic SSR 

maker ECM116 (Fernandez-Silva et al., 2008) was selected to fill the gap in LG X where the 

SNPs were not polymorphic or did not work well. SSRs were amplified by primers flanking the 

repetitive sequences, being one of the primers labeled with IRD-800(MWG Biotech AG, 

Ebersberg, Germany). The amplification product was then visualized by LICOR IR2 sequencer 

(Li-cor Inc, Lincoln, New England, USA). 

12.3 CAPS (Cleaved Amplified Polymorphic Sequences)  

CAPS makers PS-15-H02 and PS-40-E11 (Deleu et al., 2009) were also selected in linkage 

group X. For marker PS-15-H02, PCR amplification was firstly performed including 1x NH4 

reaction buffer, 0.5 mM dNTPs, 2 mM MgCl2, 0.4 μM primer Ce307-F 

(TGAGTACAAGTTCGTCATTCGACA), 0.4 μM primer Ce307-R 

(CATTTGATGCAGAGTTGATCACAG), 1.5 U BIOTAQDNA polymerase (Bioline), 2 ng/μl 

genomic DNA in 25 μl final volume. The reaction was performed on S1000 thermal cycler (Bio-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324690/#CR11
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Rad) with a denaturation step at 96 ℃ for 2 min, followed by 35 cycles of 96 ℃ for 30 s, 56 ℃

for 30 s, and 72 ℃ for 1.5 min. A final extension at 72 ℃ for 5 min was followed. After 

amplification, PCR products were digested with the enzyme AluI (TAKARA). In the case of 

marker PS-40-E11, PCR amplification was performed with the reaction system including 1x NH4 

reaction buffer, 0.1 mM dNTPs, 2.9 mM MgCl2, 0.4 μM primer w331 

(TATCACGTGCCAGACGACAT), 0.4 μM primer w332 (TTGACCTCCCCGTCACTAAC), 

2.5 U BIOTAQDNA polymerase (Bioline), 2 ng/μl genomic DNA, 0.5 μl DMSO to a final 

volume of 25 μl. The reaction was performed on S1000 thermal cycler (Bio-Rad) with a 

denaturation at 94 ℃ for 2 min, followed by 35 cycles of 94 ℃ for 20 s, 58 ℃ for 20 s, and 

72 ℃ for 30 s, followed with a final extension at 72 ℃ for 5 min. The PCR products were also 

digested with the enzyme AluI (TAKARA). 

To differentiate RNA1, RNA2 and RNA3 between CMV-FNY and CMV-M6, CAPS markers 

were also developed based on the sequence of the two viral strains. For RNA1, PCR 

amplification was done by using primer pair F109-3’R (TGGTCTCCTTTTAGAGACCC) and 

F109-3000F (GTACTGTGGTGTATTGAACG) and plasmids pGEM-M6.1 for CMV-M6 and 

pFny1 for CMV-FNY. For RNA2, PCR amplification was done by using primer pair F209-3’R 

(TGGTCTCCTTTTGGAGGC) and F209-2200F (GAATGTCTCAGTCGTGTATC) and 

plasmids pCR-M6.2 for CMV-M6 and pCR2(+) for CMV-FNY. For RNA3, PCR amplification 

was done by using primer pair F309-3’R (TGGTCTCCTTTTGGAGGCC) and F309-1600F 

(TTCGAGTTAATCCTTTGCCG), and plasmids pGREEN-M6.3 for CMV-M6 and pCR3(+) for 

CMV-FNY. PCR amplification was performed with the reaction system including 1x NH4 

reaction buffer, 0.2 mM dNTPs, 1.5 mM MgCl2, 0.5 μM forward primer, 0.5 μM reverse primer, 

1.5 U BIOTAQDNA polymerase (Bioline) and 0.4 ng/μl plasmid or H2O. The PCR reaction was 

performed on S1000 thermal cycler (Bio-Rad) with a denaturation step at 94 ℃ for 2 min, 

followed by 35 cycles of 94 ℃ for 30 s, 55 ℃ for 30 s, and 72 ℃ for 30 s, followed with a final 

extension at 72 ℃ for 5 min. PCR products of RNA1, RNA2 and RNA3 were digested with 

DdeI, BstXI and XhoI respectively. These CAPS markers were later used to confirm the origin of 

each RNA in recombinant viruses made between CMV-M6 and CMV-FNY. 
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13 Genetic map construction 

The genetic map was constructed using the JoinMap 4.1 software (Stam, 1993). Linkage 

groups were calculated using a LOD score of 10, the regression mapping algorithm and the 

Kosambi’s function. The rest of parameters were set as default. 

 

14 QTL analysis 

The QTL mapping was performed with MapQTL® 6 (VanOoijen and Maliepard, 1996). QTL 

analysis was performed by Interval Mapping and non-parametric Kruskal-Wallis test. A QTL 

was considered as significant when LOD (logarithm of odds) values were higher than 2 or had a 

significance level P ≤ 0.01. 

 

15 Sanger sequencing 

All Sanger sequencing was performed at CRAG by using the technology ABI 3730 DNA 

Analyzer (Applied Biosystems) for capillary electrophoresis and fluorescent dye terminator 

detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results 



 

 
 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part I QTL analysis for resistance to  

the aggressive CMV-FNY strain



 

 

 



QTL analysis for resistance to CMV-FNY 

43 
 

A screening of our DHL population showed that the resistance to the CMV subgroup I strain 

M6 requires the presence of cmv1 acting together with the QTLs cmvqw3.1 and cmqw10.1(Guiu-

Aragonés et al., 2014). However, further analysis showed that some double haploid lines, 

resistant to M6, did not carry either cmvqw10.1 (DHL1046 and DHL140), or cmvqw3.1 

(DHL1123). This suggests that although cmvqw3.1 and cmvqw10.1 are necessary to confer 

resistance to CMV-M6, they can be substituted by other QTLs present in the parental genotype 

SC. This unidentified QTLs would be present in DHLs 1046 and DHL140, substituting for 

cmvqw10.1, and in DHL 1123 substituting for cmvqw3.1. Hence, it is of great importance to 

understand the genetics of this complex resistance and to elucidate all the QTLs involved to 

manage the resistance in a breeding program.  

 

I.1 Screening for CMV-FNY resistance  

To check this hypothesis, the 12 DHLs, resistant to CMV-M6 found by Guiu-Aragonés et al 

(2014) were evaluated for CMV-FNY resistance. The parental genotype SC was used as a 

negative control, while the susceptible genotype PS was used as a positive control. The infection 

assay of each DHL was performed with six biological replicates. At 14 dpi, the susceptible 

control PS showed mosaic symptoms in all leaves while the resistant control SC did not show 

any infection symptom.  

Among those screened DHLs, only two, DHL142 and DHL69 (Figure R1-1), showed 

resistance, while the other ten lines, were susceptible (Table R1-1). Five out of six DHL142 

plants were asymptomatic, while one of them was infected with only mild mosaic in firstly 

developed leaves and the newly developed leaf recovered from infection.  Four out of six DHL69 

plants were also symptomless, whereas two were infected. The infection was also confirmed by 

DAS-ELISAas described in Material and Methods (section 10.1). Both DHL69 and DHL142 

harbor cmv1, cmvqw3.1, cmvqw10.1. However, they performed differently upon CMV-FNY 

infection. DHL142 is resistant whereas DHL69 is moderately resistant, which indicates that they 

contain different additional QTLs conferring CMV-FNY resistance. 
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Table R1-1. Screening of the 12 CMV-M6-resistant DHLs against CMV-FNY 

 cmv1 cmvqw3.1 cmvqw10.1 Resistance to FNY 

DHL29 SC SC SC S 

DHL41 SC SC SC S 

DHL46 SC SC SC S 

DHL69 SC SC SC r (4/6) 

DHL85 SC SC SC S 

DHL128 SC SC SC S 

DHL142 SC SC SC R(6/6) 

DHL2012 SC SC SC S 

DHL140 SC SC PS S 

DHL1046 SC SC PS S 

DHL1123 SC PS SC S 

DHL135 SC PS SC S 

 SC SC SC SC R 

PS PS PS PS S 

Note: First column indicates DHLs and controls. 2nd, 3rd and 4th rows indicate the allele of QTLs cmv1, 

cmvqw3.1 and cmvqw10.1 respectively. SC indicates the allele from the resistant line SC and PS indicates 

the allele from the susceptible line PS. The last row indicates the resistance or susceptibility to CMV-

FNY of each melon line. “S”, “r” and “R” mean susceptible, moderately resistant and fully resistant, 

respectively. The numbers in the brackets indicate the number of resistant plants against the total number 

of plants evaluated. 

 



QTL analysis for resistance to CMV-FNY 

45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R1-1. Phenotype of melon line upon CMV-FNY inoculation. A) Resistant genotype 

SC;B) Susceptible genotype PS; C) Susceptible DHL2012; D) Resistant DHL142 and E) 

Resistant DHL69 . 

 

 

I.2 Production of F2 populations 

 

In order to identify additional QTLs responsible for the resistance to CMV- FNY, eight F2 

populations were produced between different susceptible and resistant melon lines. The F2 

populations produced are listed in Table R1-2. The F2 populations were done by crossing the 

corresponding lines, with no attention to the direction of the cross, and then self-pollinating the 

F1. In this thesis work finally, four F2 populations were used for the QTL analysis: those obtained 

from the crosses between DHL142 x DHL2012, DHL69 x DHL2012, DHL142 x 20-91-15 and 

DHL142 x DHL1046. 
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Table R1-2. F2 populations generated by crossing resistant and 

susceptible parental lines 

Line DHL2012 DHL1046 20-91-15 

DHL142 √ √ √ 

DHL69 √ √ √ 

SC √ √ - 

Note:  “√” indicates that the F2 population between the two 

corresponding melon lines was developed. “-” indicates that it was not 

developed. 20-91-15 is a melon introgression line harboring three 

QTLs: cmv1, cmvqw3.1 and cmvqw10.1 (see Results part II). 

 

 

I.3 QTL analysis with the F2 population made from the cross DHL142 x 

DHL2012 

 

I.3.1 Phenotypic analysis of CMV-FNY resistance 

The infection of F2 population from the cross DHL142 x DHL2012 was performed in two 

versatile environmental test chambers as described in Material and Methods (section 4.1). In 

total, 78 F2 individuals were inoculated with CMV-FNY. Six SC plants and six DHL142 plants 

were inoculated as negative controls. Six PS plants were inoculated as positive controls. Two PS, 

two SC and two DHL142 plants were left as non-inoculated controls. The infection degree of 

both individuals and controls were scored at 6 dpi, 9 dpi, 12 dpi, 13 dpi and 19 dpi, with 

symptoms severity scoring from “0” to “4”. 

The systemic infection of PS started at 6 dpi, while none of the DHL142 and nearly none of 

the SC showed any infection symptom. One out of six inoculated SC plants, showed typical 

mosaic on the first two leaves but it was recovered at the third leaf. Among the F2 population, 

four individuals started the infection at 6 dpi while the rest of the population did not show any 

visible infection symptom at this time (Table R1-3). As the infection progressed, more 

individuals were infected with higher infection degree. At the end of the experiment, i.e. 19dpi, 

44.87% individuals were symptomless, while 55.13% of the population showed different 
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infection degrees. The segregation test of non-infected against infected plants in this population 

did not agree with any Mendelian inheritance model for one or two genes (Chi-square test). It 

should be noted that 20 individuals were infected with strong mosaic, and their growth was 

compromised.  

 

 

Table R1-3. Infection degrees of the F2 population from the cross DHL142 x DHL2012 at 

different days post inoculation with CMV-FNY 

Infection degree 6dpi 9dpi 12dpi 13dpi 19dpi 

0 74 66 50 45 35 

1 0 3 12 15 11 

2 2 4 6 1 5 

3 2 2 2 8 7 

4 0 3 8 9 20 

Note: The first column indicates the infection degrees from “0” to “4”. Fist rowindicates therecorded 

time points. The numbers in the cells indicate the number of infected plants under a certain infection 

degree at a certain time point. 

 

 

The infection was later confirmed using DAS-ELISA at the end of the experiment. The 

distribution of ELISA value among individuals was shown in Figure R1-2B. The plants with 

ELISA value bigger than two times that of non-inoculated plants were considered as infected, 

and the others were considered as non-infected. No clear correlation (correlation factor = 0.743) 

was observed between the ELISA determined infection and visible observed infection or 

between the ELISA value and the infection degrees (correlation factor = 0.703). Therefore, 

ELISA was not performed in the following experiments. 

The AUSPC value of each individual, which could be a simulation factor that represents the 

whole infection process, was calculated according to the equation (in Material and Methods 10.2) 

and presented in Figure R1-2. The smaller the values are, the more resistant the plants are, and 

vice versa. The AUSPC value of SC, DHL142 and PS were 4.75, 0 and 50.5 respectively. 

Among all the individuals, the average AUSPC value was 11. More than half of the individuals 
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had the value smaller than 10. The minimum AUSPC value was 0 (as SC) while the maximum 

value was 50.5 (as PS). The median among all the individuals was 3.  

 

 

Figure R1-2. A) The AUSPC value and B) DAS-ELISA value among the F2 individuals. The 

arrows indicate the corresponding values of PS, SC and DHL142. 

 

I.3.2 Genotyping and construction of genetic map 

The DHL population had previously been genotyped by 892 markers (Michael Bourgeois, 

personal communication) Therefore, we knew which regions were shared by the two DHL and 

which regions were not. Using these data, the segregating profile between DHL142 and 

DHL2012 was obtained and represented in a map chart (Figure R1-3) using GGT 2.0 software 

(van Berloo, 2008). Some polymorphic and monomorphic markers between DHL142 and 

DHL2012 were selected to define the polymorphic areas. From these defined polymorphic areas, 

a total of 33 SNP markers were selected to genotype the F2 population (underlined in Figure R1-

3). No markers were selected in LG I and LG XI as there were only small polymorphic areas 

between DHL142 and DHL2012. The alleles of DHL142 in those regions were from PS, which 

indicated that it was unlikely that the additional QTLs were located in those regions. The results 

of the KASPAR genotyping for the 78 individuals with 33 markers are shown in Table S1. 
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The genetic map was constructed using JoinMap 4.1 as described in Material and Methods 

(section 13). The data used were the genotypic data of 78 F2 individuals with 33 polymorphic 

SNP markers. In total, 10 LGs were constructed (Figure R1-4). Since LG V and LG X have only 

one maker, they are not included in the figure. 

In total, the map spanned a distance of 287.7cM with an average distance of 9.3 cM between 

two markers. The maximum distance was 23.1 cM between markers CMPSNP137 and 

CMPSNP356 in LG IX. The minimum distance was 2.2 cM between markers AI_03-F03 and 

CMPSNP990 in LG IV.  

 

 

Figure R1-4. Genetic map of the F2 population made from the cross DHL142 x DHL2012 defined 

using 33 SNP markers and 78 individuals. Each bar represents one linkage group. The name of the 

makers are shown on the right side of the bar and the numbers on the left are their genetic position of each 

marker in cM. 

 

 

I.3.3 QTL analysis 

QTL analysis was performed using all the phenotyping data (Table S5) obtained, including 

the infection degree at 6, 9, 12, 13 and 19 dpi, the calculated AUSPC value, or the ELISA value. 

The QTL analysis was performed as described in Material and Methods (Section 14).  

We defined a threshold of LOD 2 (for the interval mapping (IM) analysis) or level of 

significance p≤ 0.001 (for non-parametric Kruskal-Wallis (KW)) test to consider a putative QTL. 
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After the analysis, no LOD value bigger than 2 was found in this population for any of the 

phenotypic data evaluated. The biggest LOD value obtained was 1.85, corresponding to the 

marker CMPSNP147 in LG IV, for the infection degree at 12 dpi. In the KW test, we observed a 

P ≤ 0.01 for CMPSNP147 and also the same value for the marker CMPSNP300 in LG IX, in this 

case correlated with the ELISA data. Since the LOD and KW values were so low, we did not 

consider any of the QTLs as putative QTLs for CMV-FNY resistance. Moreover, they were not 

consistent for at least two different phenotypic data. 

The same experiment was repeated using another set of 40 F2 individuals and a QTL analysis 

was performed merging the data of both experiments to increase the number of individuals 

evaluated from 78 to 118. However, no significant QTLs were obtained in both, independent and 

merged, analysis. 

 

 

Table R1-4. QTL analysis for the resistance to CMV-FNY from the cross  

DHL142 x DHL2012. 

 LG Marker 
Test statistics 

LOD KW 

12 

dpi 
IV CMPSNP147 1.85 

K 6.03 

(**) 

ELI

SA 
IX CMPSNP300 1.62 

K 7.33 

(**) 

The significance of Kruskal-Wallis test is presented using “*”, where ** to P ≤ 0.01.  

 

 

 

I.4 QTL analysis with the F2 population made from the cross DHL142 x IL 

20-91-15 

 The IL 20-91-15 harbors three resistant QTLs, cmv1, cmvqw3.1 and cmvqw10.1, introgressed 

from SC in the genetic background of PS. Therefore if contains much less SC background than 

DHL2012 and there will be less background noise during QTL analysis using an F2 population 

produced between DHL142 and IL 20-91-15 than between DHL142 and DHL2012. 
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I.4.1 Phenotypic analysis of CMV-FNY resistance 

A population of 120 F2 individuals was tested for CMV-FNY susceptibility or resistance. 

Three SC plants and three DHL142 plants were inoculated as negative controls. Three plants 

from each line 20-91-15, PS and the F1 hybrid DHL142 x IL 20-91-15 were inoculated as 

positive controls. The phenotype of this infection assay was recorded from 7to23 dpi. All three 

PS started showing mild infection from 7 dpi and became severely infected at 13 dpi. One of 20-

91-15 plants showed infection at 7 dpi, and the other two plants were infected at 13 dpi and 18 

dpi, respectively. Finally, all the IL 20-91-15 plants resulted with a severe infection degree of 4 

or 5. One of F1 hybrid was infectedat7 dpi while the other two were infected later but finally all 

the F1 hybrid plants were heavily infected. Few mosaic spots were observed in SC, but the plants 

recovered without any systemic symptom. One out of three DHL142 were heavily infected at 13 

dpi, while the other two did not show any infection symptom until the end of the experiment.  

Overall, the infection in this F2 population showed heavier infection symptoms than the F2 

population made from the cross DHL142 x DHL2012 tested before. In this population, the 

infection points at 7, 13, 18 and 23 dpi were selected representing different infection stages 

(Table R1-5). Some individuals started showing infection symptomsat7 dpi, while 107 out of 120 

(89.17%) plants were symptomless. More plants showed infection symptoms at 13 dpi. Later on, 

when the infection progressed, the number of infected plants as well as the infection degree 

increased. At the end of the infection assay, only 5.8% of the population was absent of any 

infection symptom. Considering all the plants with infection degree 0 to be not infected, and 

infection degree from 1 to 5 to be infected, the ratio of non-infected versus infected plants was 

7:113, which fits the mendelian inheritance model of two recessive genes (chi-square test, ****). 



QTL analysis for resistance to CMV-FNY 

53 
 

 

Table R1-5. Infection degree of the F2 population made from the cross DHL142 x IL 20-

91-15 at different days post inoculation with CMV-FNY 

Infection degree 7 dpi 13 dpi 18 dpi 23 dpi 

0 107 45 16 7 

1 7 29 19 1 

2 3 24 23 6 

3 3 8 30 11 

4 0 11 17 65 

5 0 3 15 30 

The first column indicates the infection degrees from “0” to “5”. Fist row indicatesthe recorded 

time points. The numbers in the cells indicate the number of infected plants under a certain 

infection degree at a certain time point. 

 

The AUSPC value was calculated as described in Material and Methods (Section 10.2). The 

distribution of the AUSPC among all the individuals is presented in Figure R1-5.  The average 

AUSPC value for all the individuals was 29.86 with most of AUSPC values distributed from 20 

to 50. The minimum AUSPC value was 0 while the maximum value was 70, and the median was 

28.5.   
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Figure R1-5. AUSPC distribution of the F2 population made from the cross 

DHL142 x IL 20-91-15.The X axis indicates the AUSPC value and Y axis indicates 

the number of plants at AUSPC value.The arrows indicate the AUSPC values of the 

control lines. 

 

I.4.2 Genotyping and construction of genetic map 

A map chart based on the polymorphisms between IL 20-91-15 and DHL142 was drawn as 

described before in section 3.2. Within the polymorphic regions, 39 markers were selected for 

genotyping the F2 population (underlined in Figure R1-6). No marker was selected in LG I 

because the small polymorphic region in LG I does not segregate between DHL142 and 

DHL2012 (susceptible) (see section 3.2), which indicates that the additional QTL should not be 

there. Also, no marker was selected in LG XI as no polymorphism existed between DHL142 and 

IL 20-91-15 in this LG. Among the 39 polymorphic markers designed, four markers, 

CMPSNP1021 from LG VI, CMPSNP111from LG VIII, CMPSNP1056 and CMPSNP 1109 

from LGXII were discarded because they do not segregate as expected. The other 35 markers 

worked correctly in the Fluidigm genotyping platform and could differentiate genotypes among 

F2 individuals. The genotyping data of the 120 F2 individuals generated by 35 SNP markers were 

finally used to construct the genetic map (Figure R1-6 and Table S2). 
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The genetic map contained seven LGs (Figure R1-7). In total, the map covered 418.1 Cm of 

distance with an average distance of 11.9 cM between two markers. The maximum distance was 

44.3 cM between markers CMPSNP347 and AI_21-D08 in LG VIII. The minimum distance was 

2.2 cM between markers CMPSNP890 and CMPSNP472 in LG IX. 

 

 

 

Figure R1-7. Genetic map the of F2 population made from the cross DHL142 x IL 20-91-15 defined 

using 35 SNP markers and 120 individuals. Each bar represents one linkage group. The name of the 

makers is shown on the right side of the bar and the numbers on the left are their genetic position in cM. 

 

 

I.4.3 QTL analysis 

The QTL analysis was performed combining the genotypic data and all the phenotypic data 

(Table S6) including the infection degree at different days post inoculation and the AUSPC value 

using MapQTL® 6. All the LOD values bigger than 2 in the IM analysis, or significance with a P 

≤ 0.001 in the KW test are presented in Table R1-6. QTL analysis using the infection degree at 

14, 15 and 16 dpi showed one putative QTL in LGXII correlated with the marker P02.03. With 

KW test, it also showed significance at 20dpi.  
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Another putative QTL was found using the qualitative data “infected versus non-infected” 

plant, associated with the SNP marker CMPSNP502 in LG II, with a LOD value of 2.80 and P ≤ 

0.0001 (Table R1-6). 

The result of QTL analysis using the phenotypic trait AUSPC did not show any significant 

LOD value. 

 

Table R1-6. QTL analysis for the resistance to CMV-FNY from the cross DHL142 x IL 20-

91-15. LOD values >2 for infection degree at different dpi (14, 15, 16 and 20 dpi), and “infected 

versus non-infected” (Y/N) phenotype.  

 LG Markers 
Statistic test 

LOD KW 

14 dpi XII P02.03 2.07 8.34 (**) 

15 dpi XII P02.03 2.26 
9.36 

( ***) 

16 dpi XII P02.03 2.22 9.36 (***) 

20 dpi XII P02.03 ns 9.82 (***) 

Y/N II CMPSNP502 2.80 
11.29 

(****) 

The significance of Kruskal-Wallis test is presented using “*”, where * equal to P ≤ 0.05, ** to 

P ≤ 0.01, *** to P ≤ 0.001, **** to P ≤ 0.0001. “ns” indicates non significant value. 

 

 

I.5 QTL analysis with the F2 population from the cross DHL69 x DHL2012 

 

I.5.1 Phenotypic analysis of CMV-FNY resistance 

Two PS, two SC, three DHL69 and three DHL2012 plants and 80 F2 individuals were 

inoculated with CMV-FNY. All the PS started showing infection from 7 dpi and finally were 

heavily infected with severe typical mosaic. DHL2012 started showing infection two days later 

than PS but finally resulted fully infected, with small and curling plants. One out of three 

inoculated DHL69 plants was infected 17 dpi with mild symptoms. One out three SC was 

infected with mild mosaic in first two leaves at 10 dpi, but finally recovered without any 
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infection symptom. The infection degree of the 80 F2 individuals was recorded at different days 

post inoculation (Table R1-7).The infection started around 7 dpi in some F2 individuals. At this 

time, most plants (62 out of 80) did not show visible infection symptoms. At 10 dpi, almost 75% 

were infected with visible symptoms. At the end of the experiment, 19 dpi, only eight plants 

(10%) were not infected. The segregation of non-infected versus infected plants was 8:72, which 

does not fit the mendelian inheritance model for one or two genes (chi-square test). 

The AUSPC value of the F2 population is presented in Figure R1-8. The AUSPC values of the 

resistant lines DHL69 and SC were 2.3 and 6.6, respectively, while the values of the susceptible 

lines DHL2012 and PS were 47.5 and 48 respectively. The average AUSPC value of the 

population was 25.6. The minimum AUSPC value was 0 and the maximum value was 58.5. The 

median among all the individuals was 27.  

 

Table R1-7. Infection degree of the F2 population made from the crossDHL69 x DHL2012 at 

different days post inoculation with CMV-FNY 

Infect

ion 

degree 

7 

dpi 

10 

dpi 

11 

dpi 

12 

dpi 

13 

dpi 

14 

dpi 

17 

dpi 

18 

dpi 

19 

dpi 

0 62 23 20 16 15 15 9 8 8 

1 10 25 23 20 16 10 9 8 6 

2 4 14 5 7 6 10 11 12 12 

3 3 11 18 14 14 17 16 10 12 

4 1 3 9 16 15 13 18 24 25 

5 0 4 5 7 14 15 17 18 17 

 

The first column indicates the infection degrees from “0” to “5”. The fistrow indicates the recorded 

time points. The numbers in the cells indicate the number of infected plants under a certain infection 

degree at a certain time point. 
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Figure R1-8. AUSPC distribution of the F2 population made from the cross DHL69 x DHL2012. The 

X axis indicates the AUSPC value and Y axis indicates the number of plants at AUSPC value.The arrows 

indicate the AUSPC value of the control lines. 

 

I.5.2 Genotyping and construction of the genetic map 

A map based on the polymorphisms between DHL69 and DHL2012was constructed as 

described in section 3.2 to define the interesting polymorphic regions (Figure R1-9). With this 

information, 37 polymorphic markers (underlined in Figure R1-9) were selected across different 

linkage groups. Although polymorphic areas exist in LG VI and LG XI as shown in the map, any 

marker was selected because the alleles of the resistant parental DHL69 in these polymorphic 

areas are from PS. Only one marker was selected for each one of the small polymorphic regions 

of LG V and LG X, respectively. One marker was also selected for LG VII even the whole 

chromosome is PS allelic in DHL69. The selected markers were later used for genotyping (Table 

S3), map construction and QTL analysis.  

 

The genetic map was obtained with the genotypic data of 37 markers and 80 F2 individuals 

(Figure R1-10).  In total, the map covered 286.9 cM with an average distance 8.7 cM between 

two markers. The maximum distance was 41.1 cM between markers CMPSNP173 and 

CMPSNP320 in LG IX. The minimum distance was 0 cM between marker CMPSNP379 and 

CMPSNP770 in LG VIII.LG I was separated into two pieces, LG1-1 and LG1-2, because of the 

high recombination rate between markers CMPSNP484 and CMPSNP521 in this F2 population. 
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Figure R1-10. Genetic map of the F2 population made from the cross DHL69 x DHL2012 defined 

using 37 SNP markers and 80 individuals. Each bar represents one linkage group. The name of the 

makers are shown on the right side of the bar and the numbers on the left correlate with the genetic 

position of each marker in cM. 

 

 

I.5.3 QTL analysis 

QTL analysis was performed combining genotypic data with all the phenotypic data (Table 

S7). The QTL analysis that resulted in LOD values bigger than 2 or KW significance P ≤ 0.001 

are shown in Table R1-8. QTL analysis using infection degrees at 17 and 18 dpi showed one 

putative QTL in LG IX correlated with marker CMPSNP137 with LOD value 2.15 for the IM 

test. Another putative QTL was observed in LG X from the KW test, associated with the marker 

CMPSNP84 for the infection trait at 11 dpi, and with qualitative phenotyping at the end of the 

assay considering the plants as infected or not infected.  

Any other putative QTL was detected using the AUSPC data. 
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Table R1-8. QTL analysis for the resistance to CMV-FNY from the cross DHL69 x 

DHL2012. LOD values >2 for infection degree at different dpi (11, 17, and 18 dpi), and “infected 

versus non-infected” (Y/N) phenotype. 

 LG Markers 

Statistic test 

LOD KW 

11 

dpi 

X CMPSNP84 ns 9.230 (***) 

17 

dpi 

IX CMPSNP137 2.15 

 
8.254 (**) 

18 

dpi 

IX CMPSNP137 2.15 

 
8.288 (**) 

Y/

N 

X CMPSNP84 2.86 

 

12.008 

(****) 
The significance of the Kruskal-Wallis test is presented using “*”, where ** equal to P ≤ 0.01, 

*** to P ≤ 0.001, **** to P ≤ 0.0001. “ns” indicates non-significance values. 

 

 

I.6 QTL analysis with F2 population made from the cross DHL142 x 

DHL1046 

 

Since along the previous F2 populations and corresponding QTL analysis no common 

significant QTLs were detected, it is reasonable to think that either the phenotypic methods or 

the genotyping are not working. To test our method, we made a cross where we should detect a 

QTL already identified, so that, if the method was correct, we could identify it.The melon 

DHL1046, resistant to CMV-M6 but susceptible to CMV-FNY, contains cmv1 and cmvqw3.1, 

but not qwcmv10.1. The melon DHL142, resistant to both CMV-M6 and CMV-FNY,harbors 

cmv1, cmvqw3.1 and cmvqw10.1. The F2 population made between DHL142 and DHL1046 

should segregate for locus cmvqw10.1. Then, this F2population was chosen for QTL analysis that 

should detect at least cmvqw10.1 and perhaps additional minor QTLs. 

I.6.1 Phenotypic analysis for CMV-FNY resistance 

Eighty F2 individuals were tested for CMV-FNY resistance. Four PS and four F1 hybrid 

(DHL142 x DHL1046) were inoculated as positive controls. Four SC and four DHL142 were 

inoculated as negative controls. The infection symptom of this population was recorded at 13, 14, 
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15, 18, 20, 21 and 26 dpi. The results of the infection assay are presented in Table R1-9. Four out 

of 80 plants had a delay in growth affecting the phenotyping, so they were excluded. At 13 and 

14 dpi, around 35% plants did not show infection symptoms. Later on, more plants became 

infected, with an increase in the infection degree. At the end of the experiment, i.e., 26 dpi, 25% 

of the plants were healthy without any visible infection symptom. The segregation of resistance 

to CMV-FNY in this F2 population was 19: 57 (None infected/ Infected), which did not deviate 

from the theoretical segregation 1:3 (chi-square test, ****) based on the genetic control by one 

recessive gene model. Then, this suggests that these two parental lines would share the additional 

QTL, since the single recessive gene would be cmvqw10.1. 

 

Table R1-9. Infection degrees of the F2 population made from the cross DHL142 x DHL1046 at 

different days post inoculation with CMV-FNY. 

Infection degree 
13 

dpi 

14 

dpi 

15 

dpi 

18 

dpi 

20 

dpi 

21 

dpi 

26 

dpi 

0 29 26 23 19 18 17 19 

1 16 18 20 8 6 5 3 

2 12 13 11 13 6 6 5 

3 12 11 14 17 23 24 10 

4 7 8 6 17 17 17 27 

5 0 0 2 2 6 7 12 

Each number in the table indicates the number of plants in the population infected with a certain 

infection degree at certain time point. 

 

 

The AUSPC value of SC and DHL142 was 0 and 9.3, respectively. The value of PS and the F1 

hybrid was 51.5 and 50 respectively. The distribution of AUSPC value of all the individuals is 

presented in Figure R1-11. The biggest value among the individuals was 63 while the smallest 

one was 0. The mean and median among the population were 28.76 and 31.75, respectively.  
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Figure R1-11. AUSPC distribution of the F2 population made from the cross 

DHL142 x DHL1046. The X axis indicates the AUSPC value and Y axis indicates the 

number of individuals under certain AUSPC value ranges. The arrows indicate the 

AUSPC values of resistant lines DHL142, SC and susceptible lines PS and F1 hybrid. 

 

 

I.6.2 Genotyping and construction of genetic map 

The polymorphic or monomorphic flanking markers between DHL142 and DHL1046 were 

selected to define the polymorphic area (Figure R1-12). Forty-eight SNP markers (underlined in 

Figure R1-12) were selected across 11 LGs. No marker was selected in LG VII because it was 

not segregating in this population. Only one marker was selected for LG I and LG II, 

respectively. Forty-one out of 48 SNP markers worked in the Fluidigm platform while the other 

seven markers CMPSNP1176IR89, CMPSNP183, CMPSNP1117, CMPSNP762, CMPSNP238, 

CMPSNP671 and CMPSNP456 were excluded as they failed amplifying. In order to fill the gap 

in LG X where the SNP markers failed, one microsatellite ECM116 and two CAPS markers PS-

15-H02 and PS-40-E11 were used to genotype the same populations.  Finally, the genotyping 

data of 80 F2 individuals based on the 44 markers were used for genetic map construction and 

QTL analysis (Table S4, Figure S1, S2 and Figure S3). 

The generated map is shown in the Figure R1-13. In total, 12 LGs were constructed. The map 

covered 275.8 cM and the average distance between two markers was 6.3 cM. The maximum 
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distance was 27.6 cM between marker CMPSNP845 and marker CMPSNP253. The minimum 

distance was 0 cM between marker CMPSNP65 and marker PS-15-H02. LG X was separated 

into two pieces because there is high recombination rate between markers PS-40-E11 and 

ECM116. 

I.6.3 QTL analysis 

In the QTL analysis, maker CMPSNP113 from LG X had the most significance LOD value 

(2.40) for IM, and a P ≤ 0.001 in the KW test, concerning the infection degree at 26 dpi. 

However, CMPSNP113 is far from the region where QTL qwcmv10.1 maps. Apart from that, 

one marker CMPSNP159 in LG IX was found to be significant with LOD value equal to 2.15, 

corresponding to the trait infected/ non-infected at 26 dpi, where the analysis of KW showed a 

significance level P ≤ 0.01 (Table R1-10).  
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Figure R1-13. Genetic map of the F2 population made from the cross DHL142 x DHL1046 defined 

using 37 SNP markers and 80 individuals. Each bar  represents one linkage group. The name of the 

makers are shown on the right side of the bar and the numbers on the left correlate with the genetic 

position of each marker in cM. 

 

 

Therefore, as our F2 control population DHL142xDHL1046 did not allow us to detect the 

QTL qwcmv10.1, which had previously been identified in the DHL population (Guiu-Aragonés 

et al., 2014), we concluded that the method we were using to detect new minor unidentified 

QTLs, was not the appropriate and need further improvement. 

 

 

Table R1-10. QTL analysis for the resistance to CMV-FNY from the cross DHL142 x 

DHL1046. LOD values >2 for infection degree at 26 dpi and “infected versus non-infected” (Y/N) 

phenotype. 

 LG Markers 
Statistic test 

LOD KW 

26 dpi X CMPSNP113 2.40 
10.40 

(***) 

Y/N IX CMPSNP159 2.15 9.17 (**) 

The significance of the Kruskal-Wallis test is presented using “*”, where ** equal to P ≤ 0.01, 

*** to P ≤ 0.001. 
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Part II Production and re-sequencing of melon introgression  

lines 5-123, 20-28-62 and 20-91-15 
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The melon IL 5-123, harboring the introgression containing the QTLs cmv1 and cmvqw3.1; IL 

20-28-62, harboring the introgression containing cmv1 and cmvqw10.1; and IL 20-91-15, 

harboring the introgression containing cmv1, cmvqw3.1 and cmvqw10.1 were produced 

previously by our research group using marker assisted selection.  

The QTL cmvqw3.1, was mapped in a 15.2 cM introgression, between markers HS10A02 and 

A21C11; and the QTL cmvqw10.1 was mapped in a 7.4 cM introgression, between markers 

CMSNP65 and CMSNP183 (Guiu-Aragonés et al, 2014). To obtain the IL with QTLs cmv1 and 

cmvqw3.1, the NIL SC12-1-99, which contains cmv1 within an introgression of 2.2 cM, from 

CMN61_14 to CMN21_55 markers (Essafi et al, 2009) was crossed with the NIL SC3-3, which 

contains cmvqw3.1 within an introgression of 27.5 cM, from SNP marker AI_14-B01 to 

CMPSNP979. To obtain the IL with QTLs cmv1 and cmvqw10.1 the SC12-1-99 was crossed 

with the NIL SC10-2, which contains an introgression of the whole LG X and includes 

cmvqw10.1.  The F1 from both crosses were self-pollinated to obtain two F2 populations for 

selection of plants with introgression lines containing two QTLs each in homozygosis. First, the 

molecular marker sca02318.8 was used in both populations to select plants containing cmv1. 

Second, from these plants, the line with QTLs cmv1 and cmvqw3.1 was selected using flanking 

SNP markers AI_14-B01 and CMPSNP64, very close to the mapping flanking markers for this 

QTL. To obtain the line with QTLs cmv1 and cmvqw10.1, flanking markers CMPSNP1117 and 

SNP671, again, very close to the flanking markers of the QTL were used. 

To obtain the IL with the three QTLs, these ILs harboring two QTLs were crossed to obtain a 

F1 population that was later self-pollinated to obtain the F2 population where cmv1 was fixed and 

cmvqw3.1 and cmvqw10.1 were segregating. From this population double and triple homozygous 

ILs were selected using molecular markers. To obtain the line 5-123 SNP markers AI_14-B01 

and CMPSNP64, from LG III, were used to select the allele SC and markers CMPSNP1117 and 

SNP671, from LG X, were used to select for allele PS. To obtain the IL 20-28-62, the same 

markers were used but in this case, AI_14-B01 and CMPSNP64 selected for allele PS and 

CMPSNP1117 and SNP671 selected for allele SC. To obtain the line 20-91-15, all these markers 

were used to select plants with the SC allele in all positions. The scheme of development of ILs 

is presented in Figure R2-1. 
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Figure R2-1. Scheme of the development of introgression lines containing resistance QTL 

combinations at the background PS. In the figure, SC alleles are marked in red. 

 

To gain deeper knowledge about any possible additional unintended introgression from the 

resistant parental line SC introduced during the generation of these three lines, they were re-

sequenced.  Fifteen plants of each line were grown and leaf material was collected and pooled 

for high quality DNA extraction, as indicated in Materials and Methods, section 5. Samples were 

sent for sequencing to the Centre Nacional de Analisi Genomicos (CNAG). HiSeq2000 Illumina 

paired-end sequencing (2 × 125) was used for re-sequencing.  
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II.1 Mapping of Illumina reads 

The mapping statistics of re-sequencing data for the three ILs is listed in Table R2-1. In total, 

the genome-wide re-sequencing data yielded 150,379,786, 168,739,842 and 155,136,326 reads 

for melon ILs 5-123, 20-28-62 and 20-91-15, respectively. Out of them, 76.02%, 74.65% and 

79.19% of reads, respectively, were mapped to the melon reference genome (v3.6.1) 

(https://www.melonomics.net/melonomics.html#/) after filtering for quality parameters. The 

average sequencing depth was 41.22 x for line 5-123, 44.67 x for line 20-28-62 and 43.54 x for 

line 20-91-15. 

Table R2-1. Mapping statistics of re-sequencing data for the three ILs 

IL 5-123 20-28-62 20-91-15 

Number of reads 150,379,786 168,739,842 155,136,326 

Number of reads after mapping and filtering 114,316,278 125,968,713 122,863,615 

Percentage of reads mapped after filtering 76.02% 74.65% 79.19% 

Average sequencing depth 41.22x 44.67x 43.54x 

 

II.2 Genomic patterns in three re-sequenced ILs 

The SNP mining for three ILs 5-123, 20-28-62 and 20-91-15 was performed against melon 

reference genome version 3.6.1. The assignment of genotype was performed every 250 kb by 

comparing the re-sequencing data of the ILs against PS and SC (Figure R2-2, R2-3, R2-4). The 

detailed genotyping of all three ILs is listed in Table S9. 

 The introgression line 5-123 contains the introgression for the SC allele in homozygosis in 

LG III between physical positions 1,771,744 and 26,560,062 bp. The QTL cmvqw3.1 had been 

selected using SNP markers AI_14-B01 and CMPSNP64, which map at physical positions 

2,804,355 and 24,802,380 bp. Therefore, the introgression is larger than the QTL. The same is 

true for the introgression containing cmv1 in LG XII, although in this case, the region containing 

cmv1 (7,026,378 to 14,137,772 bp) is homozygous, but there is a large adjacent region in 

heterozygosis that has been undetected during the development of this line.  There is also a 

heterozygous area in chromosome 8 between physical position 6,579,259 and  

https://www.melonomics.net/melonomics.html#/
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Figure R2-2. Re-sequencing genotyping of melon introgression line 5-123 across 12 chromosomes 

(Chr). X axis indicated each chromosome divided by 10 Mbp. Y axis indicates the numbers of SNPs. The 

bars in pink indicates PS background, in green indicates SC introgression while in light purple indicates a 

heterozygous region between PS and SC. The blank area indicates low density or no SNP identified.  
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7,104,662 bp (Figure R2-2).  Therefore, the IL 5-123, apart from carrying the desired SC 

introgressions selected with the flanking markers used for LG III and LG XII, contained an 

additional 5.1 % of SC contamination, of which 3.7 % were in heterozygosity and 1.4 % in 

homozygosity.  

The introgression line 20-28-62 contains the introgression for the SC allele in homozygosis in 

LG X between physical position 512,065 and 4,586,254 bp. The QTL cmvqw10.1 had been 

selected using markers CMPSNP1117 and CMPSNP671, which map at physical positions 

1,122,337 and 4,747,628 bp. The rest of LG X was almost covered in heterozygosity. Two 

homozygous SC alleles were detected in LG XII, one between physical position 10,878 bp and 

3,388,963 bp, containing cmv1 and another small introgression between 13,546,117 bp and 

13,745,919 bp. Two unintended small homozygous introgressions, each around 0.15 Mb, were 

also detected in LG VI. Moreover, some heterozygosis were detected in LG II, IV, VI, VII, VIII 

and IX ranging from size 10,545 bp (LG IV) to 1,505,061 bp (LG II). In total, the IL 20-28-62 

although containing the targeted introgressions that had been selected with the flanking markers 

used for LG X and LG XII, had also 8 % of SC contaminations, from which 6.4 % are in 

heterozygosity and 1.6 % in homozygosity. 
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Figure R2-3. Re-sequencing genotyping of melon introgression line 20-28-62 across 12 chromosomes 

(Chr). X axis indicated each chromosome divided by 10 Mbp. Y axis indicates the numbers of SNPs. The 

bars in pink indicates PS background, in green indicates SC introgression while in light purple indicates a 

heterozygous region between PS and SC. The blank area indicates low density or no SNP identified. 
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Figure R2-4. Re-sequencing genotyping of melon introgression line 20-91-15 across 12 chromosomes 

(Chr). X axis indicated each chromosome divided by 10Mbp. Y axis indicates the numbers of SNPs. The 

bars in pink indicates PS background, in green indicates SC introgression while in light purple indicates a 

heterozygous region between PS and SC. The blank area indicates low density or no SNP identified. 
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The introgression line 20-91-15 contains the SC introgression in LG XII between 2,809,018 

and 21,992,847 bp where cmv1 lays, the introgression in LG X between 834,447 and 5,145,816 

bp where cmvqw10.1 lays, and the introgression in LG III between 1,587,220 and 26,644,880 bp 

where cmvqw3.1 lays. Apart from these intended homozygous introgressions, some other 

homozygous introgressions in LG II, III, VI, VII and VIII were detected. In total, the IL 20-91-

15 contains around 12.5 % of background contamination in the whole genome during the process 

of IL development, from which 10.9 % is in homozygosity and 1.6% in heterozygosity. 

 

 

Overall, according to the re-sequencing results, 5-123 harbors the expected resistance SC loci 

cmv1 and cmvqw3.1; 20-28-62 harbors the resistance SC loci cmv1 and cmvqw10.1; and 20-91-

15 harbors the resistance loci cmv1, cmvqw3.1 and cmvqw10.1. All three ILs contain some 

unintended homozygous and heterozygous small introgression contaminations in some 

chromosomes. All of them were susceptible to CMV-FNY, and only 20-91-15 

(cmv1/cmvqw3.1/cmvqw10.1) was found to be resistant to CMV-M6 (data not shown). Our 

results indicated that even though they had some unintended extra introgressions, the ILs could 

be used for further analysis regarding the characterization of the resistance to CMV-FNY or the 

study of the determinants of virulence. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part III Characterization of melon resistance to the 

aggressive CMV-FNY strain  
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Recent studies have shown that in the resistance against CMV conferred by SC melon 

accession, there are at least three QTLs involved: cmv1, cmvqw3.1 and cmvqw10.1 (Guiu-

Aragonés et al., 2014). The inheritance of cmv1 has been characterized previously to be recessive 

(Essafi et al., 2009). The gene cmv1 prevents the virus movement from the bundle sheath cells to 

the intermediary cells or vascular parenchyma cells, hindering a systemic infection (Guiu‐

Aragonés et al., 2016). Here, we aim to characterize the resistance conferred by the other 

described QTLs, cmvqw3.1, cmvqw10.1, and unknown QTLs to the aggressive CMV strains 

belonging to subgroup I. 

 

III.1 Melon lines harboring different QTL combinations delayed the 

systemic infection.  

We evaluated three ILs containing different QTL combinations: 5-123, carrying cmv1 and 

cmvqw3.1, 20-28-62, carrying cmv1 and cmvqw10.1, 20-91-15, carrying cmv1, cmvqw3.1 and 

cmvqw10. All ILs are susceptible to CMV-FNY. The first leaf of seven plants from each line (5-

123, 20-28-62, 20-91-15), PS and SC were inoculated with CMV-FNY, and symptoms were 

evaluated at 7 and 14 dpi (Figure R3-1). One plant from each line was also mock inoculated as 

control. At 7 dpi, only the control PS showed viral symptoms, whereas lines with different QTL 

combinations and SC were completely symptomless.  
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Figure R3-1. Infection symptoms of different melon lines after 

inoculation with CMV-FNY at 7 dpi and 14 dpi. The red arrow in 

the figure indicates the systemic infection symptoms in the new 

leaf of PS at 7dpi. 

 

    However, at 14 dpi, all lines except SC were systemically infected and showed different 

infection phenotypes. PS showed the typical severe mosaic and curling leaves, and resulted in 

relatively small plants compared with mock inoculated plants. In the case of lines 5-123, 20-28-

62 and 20-91-15, they showed even more severe symptoms than PS, such as curling, necrosis in 

leaves and petioles, and some of the plants dead. SC remained symptomless until the plants were 

removed (around 20 dpi).  

The delay of the systemic infection was confirmed by RT-PCR using CMV-FNY specific 

primer pair (F109-400F and F109-1400R amplifying a 1,019 bp fragment) in the newly 

developed leaves. At 7 dpi, we only detected CMV-FNY in PS samples, whereas it was not 

detected in any of the other lines evaluated. At 14 dpi, the virus was detected in all samples, with 

the exception of the resistant control SC (Figure R3-2).  
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Figure R3-2. RT-PCR for CMV-FNY detection in the new leaves of melon lines (PS, 5-123, 20-28-62, 

20-91-15, SC) inoculated with CMV-FNY. M: size marker (50 bp DNA ladder); mock: mock inoculated 

PS; RT-H2O: negative control for reverse transcription using H2O instead of RNA; H2O: negative control 

for PCR with H2O instead of cDNA. 

 

Thus, we concluded that melon lines harboring resistance QTL combinations, even though 

they are susceptible to CMV-FNY, they differ in the timing of systemic infection. Melon lines 

harboring only cmv1/cmvqw3.1 (5-123), cmv1/cmv10.1 (20-28-62) or 

cmv1/cmvqw3.1/cmvqw10.1 (20-91-15) could not prevent CMV-FNY systemic infection, but the 

presence of these combinations of QTLs contribute to its delay, suggesting that they are involved 

in viral movement, like cmv1. In the resistant melon accession SC, which carries additional 

QTL(s) still undetected, the virus systemic infection was inhibited.   

 

III.2 Lines harboring at least two QTLs delayed virus accumulation in the 

petiole of the inoculated leaf 

The delay in CMV-FNY systemic infection in melon lines harboring different QTL 

combinations suggests that the function of these QTLs is related to preventing the transport of 

the virus within the plant tissue. Therefore, these lines should carry fewer viruses in their phloem 
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than PS at the beginning of the infection. To confirm this, we quantified by qRT-PCR the 

relative viral accumulation in the petioles of inoculated leaves at 7 and 14 dpi. 

In experiment 1, twelve plants of each melon line 5-123, 20-28-62, 21-91-15, PS and SC were 

rub inoculated with CMV-FNY in the first true leaf. After 7 dpi, the petioles of the inoculated 

leaves from six plants of each melon line were cut and immediately frozen in liquid N2. The 

same was done at 14 dpi. At this point, symptoms in the plants that had been infected were truly 

visible. Since not all the inoculated plants could be infected, at least three plants showing visible 

symptom of each line per time point were processed for RNA extraction, cDNA synthesis and 

qRT-PCR analysis. The detailed processes were carried out as indicated in Materials and 

Methods (section 6 and section 10). As shown in Figure R3-3 and Table R3-1, at 7 dpi the virus 

accumulation in the petiole of SC was lower compared with all other melon lines. This difference 

was statistically significant between SC and PS, and SC and 5-123. Melon lines 20-28-62 and 

20-91-15 had less virus compared with the susceptible line PS, although the difference was not 

statistically significant. Among the biological replicates of each melon line, PS did not show 

much dispersion, while lines harboring QTL combinations had more variation among biological 

replicates at the beginning of the infection (7 dpi).  

At 14 dpi, however, there was less dispersion of biological replicates. In this case, virus 

accumulation in the petioles of lines 20-28-62 (cmvqw10.1/cmv1) and 20-91-15 

(cmvqw3.1/cmvqw10.1/cmv1) were significantly lower than in those of PS, indicating that the 

QTL combinations present in these lines were somehow affecting the entry or the transport of the 

virus in the phloem. For line 5-123, although there was less virus accumulation than in PS, the 

difference was not significant, indicating that the QTLs present in this line (cmvqw3.1/ cmv1) 

delayed viral transport less efficiently than the other combinations. The resistant line SC had 

significantly less virus than nearly all the susceptible lines. 
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Figure R3-3. Relative virus accumulation (ddCt) in the petioles of the first leaf inoculated with CMV- 

FNY of different melon lines at 7 dpi and 14 dpi (experiment 1). X axis indicates melon lines and Y axis 

indicates the amount of relative virus accumulation. The line in the figure indicates the mean of ddCt of 

each line. 

 

Table R3-1. Significance test for the relative virus accumulation (ddCt) in the petiole of 

inoculated leaves among different melon lines at 7 dpi and 14 dpi (experiment 1) using Dunn test. 

       Note:  The numbers shaded in dark grey indicate significance value p ＜0.05. 

 

To confirm the results obtained in experiment 1, we performed a second experiment under the 

same conditions. In experiment 2, a total of 20 plants per line were inoculated with CMV-FNY, 

 Melon lines 5-123 20-28-62 20-91-15 SC 

7 dpi 

PS 0.4636 0.0855 0.0502 0.0023 

5-123  0.1006 0.0603 0.0031 

20-28-62   0.3921 0.0721 

20-91-15    0.1177 

14 dpi 

PS 0.1899 0.0395 0.0130 0.0006 

5-123  0.1899 0.0749 0.0096 

20-28-62   0.2563 0.0716 

20-91-15    0.2563 
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and petioles from three infected plants of each line per time point were processed as described in 

the experiment 1. The same virus accumulation trend was observed in the experiment 2 (Figure 

R3-4, Table R3-2). The susceptible line PS always had more virus accumulation compared with 

SC and other susceptible lines harboring different QTLs. The resistant line SC had the lowest 

level of virus compared with the rest of the lines evaluated. The melon line 20-91-15, harboring 

cmv1, cmvqw3.1 and cmvqw10.1, at 14 dpi seemed to have less virus accumulation compared 

with 20-28-62 and 5-123, although the results were not significant. In general, in the second 

experiment we saw a bigger dispersion of the data at 7 and 14 dpi compared to the first 

experiment, which can explain the lack of significant differences between lines.   

 

Figure R3-4. Relative virus accumulation (ddCt) in the petioles of first leaves inoculated with CMV-

FNY of different melon lines at 7 and 14 dpi (experiment 2). X axis indicates melon lines and Y axis 

indicates the amount of relative virus accumulation (ddCt). The line in the figure indicates the mean of 

ddCt of each line. 
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Table R3-2. Significance test for the relative virus accumulation (ddCt) in the petiole of the inoculated 

leaves among different melon lines at 7 dpi and 14 dpi (experiment 2) using Dunn test. 

 

 

 

Note:  The numbers shaded in dark grey indicate significance value p ＜0.05. 

 

Combining both experiments, we can conclude that the resistant melon line SC is able to 

prevent the virus movement to the vein to produce a systemic infection. Even all the other melon 

lines are susceptible to CMV-FNY, they differ in the infection they produce. The most 

susceptible melon line PS, without any QTL described in this study, had shown visible systemic 

infection and accumulated a high amount of virus at the early stage of infection (7 dpi). Melon 

lines harboring QTL combinations took much longer to accummulate enough virus in the petiole 

of the inoculated leaf and, consequently, viral symptoms can only be observed at later stages. All 

these results should indicate that the QTLs cmv1, cmvqw3.1, cmvqw10.1 and uncharacterized 

additional QTLs can somehow hinder long distance virus movement to produce a systemic 

infection.  

 

III.3 Movement of CMV-FNY is not affected within the vein 

    Once shown that the virus movement is affected in all the melon lines harboring QTLs of 

resistance, we decided to determine whether these QTLs work at the level of phloem entry, as 

cmv1 does (Guiu‐Aragonés et al., 2016), or if they act preventing the viral movement within 

the vein once CMV-FNY has already invaded the phloem.  

 Melon lines 5-123 20-28-62 20-91-15 SC 

 PS 0.0414 0.0855 0.0223 0.0010 

 5-123  0.3575 0.3921 0.0855 

7 dpi 20-28-62   0.2614 0.0414 

 20-91-15    0.1367 

 PS 0.1577 0.0502 0.0112 0.0005 

 5-123  0.2614 0.1006 0.0112 

14 dpi 20-28-62   0.2614 0.0502 

 20-91-15    0.1577 
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To decipher this, the petioles of the inoculated first leaves were cut into two parts, proximal 

and distal with respect to the leaf (Figure R3-5), and then the virus accumulation was quantified 

using qRT-PCR in the proximal and distal parts. We hypothesized that if the virus movement 

within the phloem was affected, a gradient of virus concentration would be observed from the 

proximal part to the distal part of the petiole, being the quantity in the proximal part consistently 

higher than that in the distal part. On the other hand, if the virus entry into the phloem was 

affected by the presence of the QTLs, the gradient of virus in the petiole would only be observed 

at the very early stages of the infection, and then later, the quantity of virus would be 

homogeneous in both petiole parts. 

 

 

Figure R3-5. Proximal and distal petiole of the inoculated melon first leaf. 

 

In total, the first leaf of 30 plants of each line 5-123, 20-28-60, 20-91-15, PS and SC were 

inoculated with CMV-FNY. The petioles of ten plants from each melon line per time point were 

collected and cut into proximal and distal halves. Sampling was performed at 7, 10 and 14 dpi. 

Finally, petioles from three to five infected plants of each line per time point were processed for 

RNA extraction, cDNA synthesis and qRT-PCR analysis. The detailed processes were the same 

as described in the virus quantification for whole petioles. 

Consistently with the previous experiment, in the susceptible line PS the virus accumulation 

was already high at 7 dpi in both parts of the petiole (Figure R3-6), whereas the rest of the lines 

showed lower virus accumulation, being SC the lowest value. At this very early stage of 

infection, a dispersion of virus accumulation in both proximal and distal petioles was seen in the 
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melon lines 20-28-62 and 20-91-15, in the distal part of 5-123, but not in the resistant line SC 

and susceptible line PS. At 7 dpi was difficult to compare both halves of the petiole because of 

the high dispersion of data. We only could observe that in lines 5-123 and 20-28-62 the virus 

accumulation was slightly higher in the proximal part of the petiole compared with that in distal 

petiole. For PS, 20-91-15 and SC we did not observe differences between both parts of the 

petiole. . Overall, at 7 dpi, no significant differences were observed between virus accumulations 

in both parts of the petiole for any of the lines tested (Table R3-3). 

At 10 dpi (Figure R3-6), more virus accumulation but less dispersion was observed in all the 

lines compared to 7 dpi. In line SC, a relative higher virus accumulation in proximal petiole was 

seen, while all the other lines had equivalent virus accumulation in the proximal and the distal 

petiole parts. No significant difference was observed between virus accumulation in both parts of 

the petiole for any of the lines tested (Table R3-3). 

 At 14 dpi (Figure R3-6), the amount of virus was increased in all the lines compared with 

values at 7 and 10 dpi. In all cases, all lines showed equal virus accumulation in both halves of 

the petiole of the inoculated leaves, with no significant differences between proximal and distal 

parts (Table R3-3). The higher dispersion of the data was observed  in the resistant line SC for 

both proximal and distal petiole, suggesting that not all the SC replicates accumulated virus at 

the same level. 
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Figure R3-6. Relative virus accumulation (ddCt) in proximal petioles and distal petioles of CMV-

FNY inoculated first leaves among melon lines at 7, 10 and 14 dpi. In each figure, X axis indicates melon 

lines and Y axis indicates the value of relative virus accumulation (ddCt). 

    

The absence of significant differences between the virus accumulation in both parts of the 

petiole for all the lines evaluated allowed us to conclude that once the virus enters the phloem, it 

moves within the phloem with no further restriction. Therefore, the combination of QTLs present 

in the introgression lines 5-123, 20-28-62 and 20-91-15 participate in restricting the entrance of 

CMV-FNY in the phloem, as does cmv1 for CMV strains of subgroup II (Guiu-Aragonés et al, 

2016). 
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Table R3-3. Two-tailed t-test for the relative virus accumulation (ddCt) between proximal 

petiole and distal petiole of inoculated first leaves of each melon line at different days post 

inoculation. 

 

 

 

 

 

 

 

To further determine if the viral movement is restricted in the bundle sheath (BS) cells, as is 

the case of cmv1 (Guiu-Aragonés et al., 2016), transmission electron microscopy combined with 

immune-gold labeling experiments will be necessary. In the course of this thesis it was not 

possible to address these experiments.  

III-4 A virus threshold can affect the resistance or susceptibility of SC 

Even though SC is an accession resistant to CMV-FNY, positive values of relative virus 

accumulation were observed in all experiments (Figure R3-3, Figure R3-4 and Figure R3-6). 

This means that a certain amount of virus can still reach the phloem of SC without causing any 

infection symptom. Interestingly, during some inoculation sets, some of SC plants showed mild 

mosaic infection symptoms in first leaf that then disappear in new leaves. Hereby, we 

hypothesize that a virus accumulation threshold might exist affecting the resistance of SC. 

Beyond the virus accumulation threshold, the plants will not show symptoms; but when the virus 

accumulation exceeds the threshold, mild symptoms will appear.  

Synergism between ZYMV and CMV was reported, showing that after co-inoculation of both 

viruses the amount of CMV was increased while ZYMV amount was maintained (Wang et al., 

2004). An engineered attenuated ZYMV-AG strain was found to be less pathogenic, without 

affecting plant growth, but it was still able to increase the CMV amount when co-inoculated. The 

  PS 5-123 
20-28-

62 

20-91-

15 
SC 

p value 

7dpi 0.7836 0.0690 0.2892 0.8701 0.6187 

10dpi 0.5980 0.7685 0.0507 0.6644 0.1213 

14dpi 0.8899 0.4037 0.4064 0.1600 0.6761 

t value 

7dpi 0.2937 2.4695 1.2207 0.1743 0.5387 

10dpi 0.5565 0.3080 2.7636 0.4561 1.9619 

14dpi 0.1475 0.8981 0.8928 1.6031 0.4303 
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binary clone of this strain, named ZYMV-AGII provided by Dr. Gal-on, was hereby used as a 

tool to increase the amount of CMV-FNY in this experiment (Arazi et al., 2001). 

To see if an increase of CMV-FNY amount could be enough to overcome the putative 

threshold and induce systemic symptoms in SC, we designed an experiment in which SC 

cotyledons were inoculated with three different treatments: (i) infiltrated with ZYMV-AGII, (ii) 

inoculated with CMV-FNY, and (iii) co-inoculated with ZYMV-AGII and CMV-FNY. As a 

control, we used non-inoculated SC plants, and three biological replicates were done per 

treatment. For the co-inoculated treatment, CMV-FNY was inoculated two days after ZYMV-

AGII infiltration. The infection of SC was observed at 14 dpi, and a piece of the newly 

developed leaf of each SC was collected for ZYMV and CMV molecular detection. RNA 

extraction, cDNA synthesis and RT-PCR were performed as described in Material and Methods 

(Section 10.2). 

At 14 dpi, CMV-FNY inoculated SC plants did not show any visual infection symptom, as in 

the non-treated plants. ZYMV-AGII infiltrated SC plants showed mild mosaic with vein clearing. 

In the case of co-inoculated plants with ZYMV-AGII and CMV-FNY plants had much stronger 

symptoms with leaf curling and typical mosaic in all leaves (Figure R3-7). 

The detection of ZYMV-AGII infection in all SC plants was performed by RT-PCR using 

ZYMV specific primer pair pAG68F and pAG68R, which amplify a 790 bp fragment. ZYMV 

was detected in all ZYMV-AGII infiltrated plants, and ZYMV-AGII_CMV-FNY co-inoculated 

plants (Figure R3-8). The amplification in non-inoculated SC plants was assumed as 

contamination during PCR process (Figure R3-8A).  
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Figure R3-7. Phenotype of melon SC plants inoculated with CMV-FNY, infiltrated with ZYMV-

AGII, co-inoculated with CMV-FNY + ZYMV-AGII, and mock inoculated at 14 dpi. Magnification leaf 

area of a) mock inoculated, b) ZYMV-AGII infected, c) CMV-FNY inoculated and d) ZYMV-AGII + 

CMV-FNY co-inoculated SC including minor veins. 

 

The detection of CMV-FNY infection was performed by RT-PCR using the same specific 

primer pair used for qRT-PCR which could amplify a 123 bp fragment (see table M-2 in 

Materials and Methids. CMV-FNY specific amplification was detected only in ZYMV-

AGII_CMV-FNY co-inoculated SC plants, while it was not detected in CMV-FNY inoculated 

plants (Figure R3-8B).  

ZYMV-AGII and CMV-FNY co-inoculated SC plants were systemically infected while 

CMV-FNY inoculated SC kept resistant, which indicated that the resistance of SC could be 

broken when the amount of CMV-FNY increases.  
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Figure R3-8. Detection of A) ZYMV-AGII and B) CMV-FNY infection in SC plants at 14 dpi using 

RT-PCR. M) size marker (50bp DNA ladder); 1-3) ZYMV-AGII infiltrated; 4-6) CMV-FNY inoculated; 

7-9) ZYMV-AGII and CMV-FNY co-inoculated; mock) mock inoculated; and c-) H2O. 
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Previously, it has been described that the viral determinants against recessive QTL cmv1 

resided in the movement protein of CMV-FNY (Guiu-Aragonés et al., 2015). The melon 

introgression line 20-91-15, harboring the resistance QTLs cmv1, cmvqw3.1 and cmvqw10.1, is 

resistant to subgroup II strain CMV-LS. When testing 20-91-15 against subgroup I strains, this 

IL was shown to be resistant to CMV-M6, but susceptible to CMV-FNY. The total genome 

similarity between CMV-FNY and CMV-M6 was 98.5 %, and between CMV-FNY and CMV-

LS was 72.7% (Cèlia Guiu, PhD thesis). Here, we aim to determine the viral factor(s) of CMV-

FNY responsible for overcoming the resistance conferred together by cmv1, cmvqw3.1 and 

cmvqw10.1 via producing pseudo recombinants between CMV-FNY and CMV-LS or between 

CMV-FNY and CMV-M6. 

 

IV.1 Development of molecular markers to differentiate between CMV-

FNY and CMV-M6. 

To differentiate RNAs between CMV-FNY and CMV-M6 in our experiments of generating 

combinations of these two viruses, one CAPS marker was developed for each RNA as described 

in Material and Methods (section 12.3).  

For RNA1, primer pair F109-3000F and F109-3’R was used for PCR amplification. Both 

viruses amplify a 338 bp fragment. The CMV-FNY fragment was digested with DdeI, producing 

four fragments of 29 bp, 51bp, 129 bp and 129 bp. The CMV-M6 fragment produced only three 

fragments of 51 bp, 129 bp and 158 bp (Figure R4-1). 

For RNA2, primer pair F209-2200F and F209-3’R was used for PCR amplification. CMV-

FNY could amplify an 863 bp fragment and, after digestion with BstXI, producing two fragments 

with size 30 bp and 833 bp. CMV-M6 amplified an 860 bp fragment and, after digestion with the 

same enzyme, produced three fragments of 30 bp, 405 bp and 425 bp (Figure R4-6). 

For RNA3, primer pair F309-1600F and F309-3’R was used for PCR amplification. CMV-

FNY amplified a 635 bp fragment and after digestion with XhoI, the amplicon was digested into 

two fragments of 255 bp and 380 bp. CMV-M6 amplified a 633 bp fragment that will not be 

digested by XhoI (Figure R4-6). 

The CAPS markers developed for differentiating RNA1, RNA2 and RNA3 between CMV-

M6 and CMV-FNY were named CAPS-M6FNY-1, CAPS-M6FNY-2 and CAPS-M6FNY-3 
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respectively. These three CAPS markers were later used to confirm the RNA origin in the 

chimeric viruses when necessary.  

 

 

 

Figure R4-1. CAPS-M6FNY-1 marker used to differentiate RNA1 between CMV-

FNY and CMV-M6. M) 50bp DNA mass marker, the size of corresponding bands is 

listed on the right.1) PCR amplicon of pGEM-M6; 2) pGEM-M6.1 DdeI digested; 3) 

PCR amplicon of pFny; 4) pFny1 DdeI digested 3; 5) negative control for PCR, with H2O. 

 

IV.2 Construction of  binary vectors of CMV-M6 

To establish an agroinfiltration based system to get the chimeric virus combinations, binary 

vectors were constructed. Binary vectors pCR1(+), pCR2(+) and pCR3(+), which express 

respectively, RNA1, RNA2 and RNA3 of CMV-FNY, were kindly provided by Dr. Kim Kook-

Hyung (Seo et al., 2009). Binary vector pGREEN-M6.3 for agroinoculation of  CMV-M6 RNA3, 

was constructed previously (Guiu-Aragonés, PhD thesis) in our laboratory. In order to get RNA1 

and RNA2 binary vector for CMV-M6, the corresponding cDNAs of RNA1 and RNA2 were 

inserted into pCR1(+), pCR2(+) based binary vector pSNU1 after removing the CMV-FNY 

genomes, as described in Material and Methods (section 9). The expected constructs were named 

as pCR-M6.1 and pCR-M6.2, respectively. 

As most of RNA1s from CMV strains were unstable in E. coli (A. M. Martín-Hernández, 

personal communication), the Gibson assembly (see Material and Methods, section 9 ) of CMV-
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M6  RNA1 product was transformed in commercial E.coli 10β and also into Stbl4, which is 

deficient in recombination. Some colonies were obtained using both strains of competent cells. 

Eight colonies from Stbl4  and two colonies from10β cells were selected. The plasmids were 

checked by PCR using M6.1-2650F and pCR3V-R primers (see Material and Methods, section 9) 

that must amplify a 900 bp fragment. All colonies tested, except Stbl4-4, produced the right band 

(Figure R4-2A). Nevertheless we digested all clones to confirm the results. When digested with 

SacI  and XbaI, only colony Stbl4-2 produced the expected fragments of 2,992 and 7,967 bp 

(Figure R4-2B and C).The colony was sequenced and compared with the original M6 RNA1 in 

the construct pGEM-M6.1, showing a T to A transition at position 2,153 of the coding sequence 

of the 1a protein, and a 7 nt deletion 7 nt downstream the SNP T/A (Figure R4-2 D). As this 

construct would not be functional due to a change of frame in the coding sequence of the 1a 

protein, we assumed that a sequence around this area would be detrimental for E. coli, which 

would tend to eliminate it. Therefore, to break this putative sequence, we decided to introduce an 

intron IV2 from the potato ST-LS1 gene (Eckes et al., 1986) upstream or downstream of the 

deletion detected, to avoid the recombination in the bacteria. However, finally we did not get any 

colonies in both upstream or downstream cases (data not shown). Therefore, we could not use a 

binary vector for CMV-M6 RNA1 and we continued with the in vitro transcription vector 

pGEM-M6.1 to generate the recombinant viruses carrying CMV-M6 RNA1. 

The Gibson assembly reaction of CMV-M6 RNA2 into the vector pSNU1 produced only one 

colony after transformation into competent E.coli strain JM109. After analysis by digestion with 

the restriction enzymes PstI, SalI and XmaI, the plasmid produced bands with the expected size 

(896 pb, 2,929 bp and 6,820 bp) (Figure R4-3). The construct  was confirmed by sequencing. 

Then, the construct was transformed to agrobacteria strain C58C1. 
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Figure R4-2. Confirmation of the pCR-M6.1 colonies. A) Colony PCR, Stbl4-1 to Stbl4-8 represent 

eight colonies selected in the assembly transformed to competent cells Stbl4, while 10 β-1 and 10 β-2 

represent two colonies selected in the assembly transformed to competent cells 10 β; B) enzyme digestion 

of  the constucts with SacI and XbaI. 1 to 8 indicate the constructs non-digested and 1-D to 8-D digested 
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with SacI and XbaI.C) In silico construction of pCR-M6.1 showing the RNA1 genome in green and the 

restriction enzyme sites for SacI and XbaI. D) The deletion found in the construct pCR-M6.1 compared 

with template pGEM-M6.1.  In A and B, letter M indicats DNA molocular marker Promega™ Lambda 

DNA/EcoRI + HindIII, the numbers on the left side of M indicate the size of the corresponding marker 

bands. c- indicates negative control for PCR, with H2O. 

    

 

 

 

Figure R4-3. Construction of the plasmid pCR-M6.2. A) In silico construction of pCR-M6.2; B) 

Digestion of the construct with the enzymes PstI, SalI and XmaI. M, Promega™ Lambda DNA/EcoRI + 

HindIII marker showing the size of corresponding bands. 

 

IV.3 Production of pseudo recombinant viruses 

Once we had generated the viral vectors, we were able to make combinations between RNAs 

from both strains. In theory, eight recombinants could be produced between CMV-M6 and 

CMV-FNY (Figure R4-4). 
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Figure R4-4. Theoretical pseudo recombinants between CMV-FNY and CMV-M6. Purple bar 

indicates RNAs with CMV-FNY origin. Red bar indicates RNAs with CMV-M6 origin. The name of 

each recombinant is listed on the left. 

 

IV.3.1. Recombinants produced between CMV-FNY and CMV-M6.  

The infectious vectors pCR1(+)/pFny1, pCR2(+), pCR3(+) were used to produce RNA1, 

RNA2 and RNA3 of CMV-FNY, represented by F1/F1’, F2 and F3 in the recombinants, 

respectively. The infectious vectors M6.1, pCR-M6.2 and pGreen-M6.3 were used to produce 

RNA1, RNA2 and RNA3 of CMV-M6, represented by M1, M2 and M3 in the recombinants, 

respectively. The production of recombinant viruses was performed via mixed inoculation, as 

described in Material and Methods (section 4.2). Several sets of experiments were carried out to 

inoculate N. benthamiana plants. In each experiment set, for each recombinant, at least two N. 

benthamiana plants were inoculated. Two mock inoculated N. benthamiana plants were also 

included as negative control. CMV-M6 inoculated N. benthamiana was used as positive control. 

    None of recombinants carrying RNA1 from CMV-M6 infected N. benthamiana plants. All 

the recombinants with RNA1 from CMV-FNY produced infection in N. benthamiana plants, 

showing mild systemic infection in the upper leaves (Figure R4-5 A-E). The infections of CMV-

FNY resembled F1F2F3/F1’F2F3 and recombinant F1F2M3/F1’F2M3 were slightly more 

symptomatic than other recombinants.  

The infection of N. benthamiana was confirmed by RT-PCR using the primer pair F109-900F 

and F109-2000R, amplifying 1,115 bp to detect the presence of RNA1 from CMV-FNY (Figure 
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R4-5 F). The mock-inoculated plant showed certain background amplification, negligible 

compared with the intensity of the bands in the infected plants. 

The infection of some N. benthamiana plants was also confirmed by RT-PCR amplifying 

specific fragments around 860 bp from RNA 2 and fragments around 630 bp from RNA3 (Figure 

R4-6A). As shown in Figure R-4-6 B, CAPS-M6FNY-2 confirmed CMV-FNY origin of RNA2 

in recombinant F1F2M3 and F1F2F3; and CMV-M6 origin of RNA2 in recombinants F1M2F3 

and F1M2M3. The control inoculated with CMV-M6 virus surprisingly showed a less intense 

amplification with the FNY genotype in RNA2, which probably was an error in sampling or a 

contamination during amplification. The CAPS–M6FNY-3 confirmed that in combination 

F1F2F3 and F1M2F3 the RNA3 is from CMV-FNY origin, whereas combinations F1F2M3 and 

F1M2M3 corresponded to CMV-M6 origin. In lane 2, CMV-M6 control, the RNA3 was CMV-

M6 genotype, although there are mild bands in the gel, suggesting a slight contamination with 

CMV-FNY in this sample. 
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Figure R4-5. Phenotype of N. benthamiana plants inoculated with recombinants generated between 

CMV-FNY and CMV-M6. A) F1F2F3, B) F1F2M3, C) F1M2F3, D) F1M2M3 and E) mock inoculated 

N.benthamiana plants. Red arrows indicate the magnification of leaf area. F) RT-PCR for virus detection 

in the plants inoculated with different recombinants, c- indicates negative control for PCR with H2O, M 

represents 50 bp DNA mass marker with the arrow indicating the corresponding size band on the left. 
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Figure R4-6. Confirmation of the infection and RNA origin of recombinants 

produced between CMV-M6 and CMV-FNY in N. benthamiana. A) RT-PCR 

amplification of RNA2 and RNA3 used to confirm the infection of N. 

benthamiana plants with pseudo recombinants; 1: F1F2F3; 2: CMV-M6; 3: 

F1F2M3; 4: F1M2F3; 5: F1M2M3 and 6: H2O. B) CAPS markers to 

differentiate RNA2 and RNA3 between CMV-FNY and CMV-M6. M) 50 bp 

DNA Mass marker, corresponding size of some bands are listed on the right. 

 

The sap from verified infected N. benthamiana plants was used to inoculate the cotyledons of 

the three testing melon lines PS, 20-91-15 (cmv1/cmvqw3.1/cmvqw10.1) and SC. At least, four 

biological replicates of each melon line were inoculated with each viral recombinant. The 

phenotype was recorded at 14 dpi. 

The results summarizing all sets of experiments are listed in Table R4-1. All the recombinants 

could infect the susceptible melon line PS but with different infection degrees (Figure R4-7). 
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F1F2F3/F1’F2F3, F1F2F3/F1’F2M3 and CMV-M6 infected nearly all the PS plants with severe 

mosaic and leaf curling, while F1M2F3/F1’M2F3 and F1M2M3/F1’M2M3 were able to infect 

PS plants with only mild mosaic spots in all the leaves. Only the recombinant F1’F2M3 was  

able to infect all inoculated 20-91-15 plants, with mosaic and curling in all leaves (Figure R4-8). 

However, since there was no infection in line 20-91-15 inoculated with F1F2F3/F1’F2F3, we can 

only conclude that the viral factor of CMV-FNY that could overcome the resistance conferred by 

cmv1, cmvqw3.1 and cmvqw10.1  lay in RNA1 or RNA2. We could not determine the virulence 

in more detail with this information. 

 

 

Table R4-1. Melon infection of viral recombinants produced between 

CMV-FNY and CMV-M6 

 PS 20-91-15 SC 

CMV-M6 15/15 0/15 0/15 

F1F2F3 4/5 0/5 0/5 

F1’F2F3 21/21 0/21 0/21 

F1F2M3 5/5 0/5 0/5 

F1’F2M3 4/4 4/4 0/4 

F1M2F3 5/5 0/5 0/5 

F1’M2F3 9/17 0/17 0/17 

F1M2M3 5/5 0/5 0/5 

F1’M2M

3 
4/8 0/8 0/8 

 

Note: The numbers in the table indicate numbers of infected plants/ inoculated plants 
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Figure R4-7. Phenotype of PS inoculated with viral recombinants between CMV-FNY and CMV-M6 

A) F1F2F3, B) CMV-M6, C) F1F2M3, D) F1M2M3, E) F1M2F3.  

 

 

 

 

Figure R4-8. Infection of melon lines PS, 20-91-15 and SC by the viral recombinant F1’F2M3 
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Since none of the recombinants containing F1 could infect the line 20-91-15, while the 

recombinant F1’F2M3, containing F1’ from the construct pFny1 , was  able to infect 20-91-15, 

we hypothesize that there was a problem in the F1 original vector pCR1(+). Therefore, the viral 

genome of the construct pCR1(+) was sequenced. A point mutation T to C was detected in 

pCR1(+) at position 2,568 compared to the original viral sequence of CMV-FNY RNA1 (Figure 

R4-9), but no mutation in F1’ original vector pFny1 was found. This point mutation changes the 

amino acid from Met (ATG) to Thr (ACG) at position 825 in 1a protein, which is predicted as a 

deleterious change. This deleterious change might change the secondary structure or tertiary 

structure of the CMV 1a protein, hence affecting the virulence. 

 

 

 

Figure R4-9. The point mutation detected in the binary vector pCR1(+) compared with the sequence 

of CMV-FNY RNA1. The red rectangle shows the T to C mutation. 

 

 

IV.3.2 Recombinants produced between CMV-FNY and CMV-LS  

Here, we aimed to produce the recombinants between CMV-FNY and CMV-LS to gain more 

knowledge about virulence determinants of CMV-FNY. RNA1 of CMV-FNY and all RNAs of 

CMV-LS were obtained using in vitro transcription as described in Material and Methods 

(section 8). RNA2 and RNA3 for CMV-FNY were based on agro-infiltration. The mixed 

inoculation was performed as described in Material and Methods (section 4.2). RNAs of CMV-

FNY were represented by F1-F2-F3 and CMV-LS by L1-L2-L3. 
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Figure R4-10. Phenotype of N. benthamiana plants inoculated with different viral recombinants 

between CMV-FNY and CMV-LS A) F1F2L3, B) F1L2F3, C) F1L2L3, D) L1L2L3 and E) mock 

inoculated.  

 

Four out of eight possible recombinants were found able to infect N. benthamiana plants in 

this experiment set. The infection of N. benthamiana plants was recorded at 14 dpi (Figure R4-

10).  The recombinant F1F2L3 heavily infected N. benthamiana plants producing curling leaves 

and small plants. Recombinant F1L2F3 produced mosaic and yellowing in leaves, and F1L2L3 

produced spotty mosaic. L1L2L3, resembling CMV-LS, could only produce mild mosaic 

symptoms. Sap from infected N. benthamiana new leaves was used to inoculate cotyledon of 

melon lines PS, 20-91-15 and SC as well as cotyledons of squash. The squash Chapin F1 

(Semillas Fitó SA, Barcelona, Spain) could accumulate high amount of virus compared to N. 

benthamiana, making easier the mechanical inoculation. Three individuals of the melon lines and 
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two individuals of squash plants were inoculated with each viral recombinant at the same time. 

Only L1L2L3 and F1F2L3 produced the systemic infection symptoms on squash. Recombinant 

F1L2L3 produced mild mosaic in the first leaf of squash but the infection was disappearing and 

finally  lost in the upper leaves. Thereafter, the systemically infected squash were also used as 

viral sap to inoculate cotyledon of melon lines PS, 20-91-15 and SC. 

The infection of melon lines PS, 20-91-15 and SC by both N. benthamiana sap or by squash 

sap was recorded at 14 dpi and is summarized in Table R4-2. Two out of three and one out of 

three PS plants were infected by L1L2L3 and F1L2F3 using sap from infected N.benthamiana, 

respectively, while five out of five (hundred percent efficiency) PS were infected by L1L2L3 and 

F1L2F3 using sap from infected squash (Figure R4-11). The other recombinants did not produce 

visible infection symptoms. None of the recombinants infected 20-91-15 or SC.  

 

Table R4-2 Melon infection with viral recombinants produced between CMV-FNY and 

CMV-LS  

 
PS 20-91-15 SC 

F1F2L3 0/3 0/3 0/3 

F1L2F3 1/3 0/3 0/3 

F1L2L3 0/3 0/3 0/3 

L1L2L3 2/3 0/3 0/3 

F1F2L3 

(squash) 
   5/5    0/5    0/5 

L1L2L3 

(squash) 
   5/5    0/5    0/5 

Note: The numbers in the table indicated numbers of infected plants/ inoculated plants. F1F2L3 

(squash) and L1L2L3 (squash) indicate the sap origin, whilst others with sap from N.benthamiana. 
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Figure R4-11. Infection of the melon line PS with viral recombinants produced between CMV-FNY 

and CMV-LS using infected squash as viral sap. A) L1L2L3 and B) F1F2L3. 

 

This experiment did not give us enough information to identify the RNA that carries the 

determinant for cmvqw3.1 and cmvqw10.1.  Additionally, we found that squash infected by the 

viral recombinants produced in N. benthamiana plants, could produce a more efficient infection 

in melon plants and hence can be used as viral sap to inoculate melon plants to determine 

virulence in the following experiments. 
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The resistance to CMV mediated by the gene cmv1 was studied in our laboratory and was 

described as impairing the transport from the BS cells to the phloem. In this thesis, we have 

addressed the study of the resistance provided by the other QTLs present in the resistant 

accession, which is effective against CMV strains of subgroup I. 

 

1. QTL analysis for the resistance to aggressive CMV-FNY strain 

The resistance of SC to different CMV strains is complex. The recessive cmv1 allele was 

found to confer resistance to CMV subgroup II strains like CMV-LS and CMV-P9 (Essafi et al., 

2009). However, cmv1 is insufficient to confer resistance to CMV subgroup I strains like CMV-

M6 (Guiu-Aragonés et al., 2014). Two other QTLs have been described, cmvqw3.1 and 

cmvqw10.1, that together with cmv1 can confer resistance to CMV-M6. However, a more 

aggressive subgroup I strain, CMV-FNY, can overcome the resistance conferred by the three 

QTLs together (cmv1, cmvqw3.1 and cmvqw10.1). When dissecting the resistance of SC, we 

observed that some SC derived DHLs, DHL142 and DHL69 and SC itself were still resistant to 

CMV-FNY. Hence, we hypothesized that there must be other still unidentified QTLs conferring 

resistance to CMV-FNY.  

 F2 populations have been successfully used in QTL analysis for plant development, 

flowering, disease resistance or fruit ripening traits in different plants species as Arabidopsis 

thaliana (Kowalski et al., 1994; Rabanal et al., 2017), rice (Kitomi et al., 2015; McCormick, 

2017), tomato (Wang et al., 2015; Soyk et al., 2017) and melon (Yuste-Lisbona et al., 2011; 

Vegas et al., 2013).  The minimum size usually accepted for QTL mapping in a bi-parental 

population is 100 individuals. In this study, we aimed to identify the additional QTLs controlling 

CMV-FNY resistance by using multiple F2 populations made between different SC derived 

parental lines with population size between 78 to 120 individuals. Hence, the population and size 

of population in our study is surrounding the acceptable threshold, so we should expect a good 

performance.  

Phenotyping for disease resistance or susceptibility is complex. In the literature, depending on 

the pathogen type or the severity of isolates, different disease evaluation categories have been 

applied. Some studies used qualitative traits (infected vs non-infected plants) for QTL analysis or 

map based cloning (Essafi et al., 2009; Rawat et al., 2016), but most of researches applied 

severity index ranging from no symptom, to slightly infection symptoms until strong severe plant 
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infection (Buerstmayr et al., 2002; Buerstmayr et al., 2003; Gutiérrez et al., 2015; Cockerton et 

al., 2018). Some indexes described are DSI (Disease Severity Index) (Friedmann et al., 1998; 

Anbinder et al., 2009; Cheng et al., 2017) and AUSPC (Area Under the Symptom Progress 

Curve (AUSPC) (Shaner and Finney, 1977; Dintinger et al., 2014; Sallam et al., 2016), where the 

later takes into account the progress and severity of the disease in a time course. 

 Phenotyping for CMV inoculated plants has been complex. The severity of CMV infection is 

affected by environmental factors, such as temperature (Zhao et al., 2016). Moreover, as an RNA 

virus, CMV has a relatively high mutation rate. Both genetic and environmental factors 

mentioned could influence the severity of CMV. In our studies, we observed that CMV-FNY 

sometimes could infect the resistant parental line SC with very mild mosaic symptoms in the first 

leaf. The F2 populations became infected with mild to severe symptoms, but not at the same 

level for all the populations tested. For this reason, we have evaluated all the aspects of the 

development of the disease, from the end-point qualitative trait infected vs non-infected, to the 

AUSPC that considers the evolution of symptomatology of each individual during the whole 

process. Despite the accuracy in the phenotypic evaluation, the use of an F2 population has some 

limitations, being the most important, the lack of biological replicates that can cause the 

appearance of false negatives, when some individuals escape the infection by rub inoculation. In 

a previous work for dissecting resistance of SC to CMV subgroup II strains, qualitative trait 

(infected or non-infected) was applied to evaluate CMV infection in the SC x PS NIL collection 

with at least five replicates per NIL (Essafi et al., 2009). In the analysis of SC resistance to 

subgroup I strain CMV-M6, the resistance was evaluated in the SC x PS DHL collection as a 

quantitative trait with different infection degrees, using 6-10 replicates for each DHL (Guiu-

Aragonés et al., 2014). In both works, the evaluation of CMV infection using biological 

replicates increased the accuracy of phenotyping and the robustness of the QTL detection. In our 

QTL analysis, sets of around 100 individuals were inoculated for each F2 population without any 

replicate. This would probably cause a big effect even if only one or two individuals were false 

negatives, due to the size of the population. Therefore, the accuracy of disease evaluation for 

each individual could be the most feasible factor affecting the accuracy of our mapping results. 

In order to have robust data, F2:3 populations have been widely successfully used in QTL 

analysis for disease resistance (Huang et al., 2001; Li et al., 2001; Huynh et al., 2016; Kumar et 

al., 2017). The facilities at CRAG during this work did not allow us to perform the analysis of 
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F2:3, however we consider to continue the QTL analysis for the resistance to CMV-FNY, 

producing F2:3 populations based on the F2 population described before for QTL analysis to 

improve the results of this project. 

The marker selection in our work was performed based on the previous knowledge of the 

genotype of our DHL collection, from which we selected markers in the segregating regions for 

each population. Since we have different segregating populations, we took advantage on the 

comparison between them to avoid the selection of markers in regions where one population was 

not segregating. After map construction for each population, the average distance between two 

markers varied from 6.3 cM (F2 population made from the cross DHL142 x DHL1046) to 11.9 

cM (F2 population made from the cross DHL142 x 20-91-15). Most of the polymorphic regions 

were covered, however, we could not neglect that there were some small uncovered regions that 

could prevent the QTL detection if it was located in those regions. 

QTL analysis resulted in several putative minor QTLs in different LGs, with LOD value 

comprises between 2.07 and 2.86. One putative QTL in LG II and another in LG XII were 

detected, using the infected vs non-infected phenotypic trait with LOD value of 2.80 and 2.86 

respectively. QTLs in LG IX (LOD 2.15), LG X (LOD 1.62) and LG XII (LOD 2.07-2.26) were 

detected using the infection degree. Therefore, we were not able to see a consistent QTL using 

different phenotyping methods, or with high LOD values, which could guarantee its reliability. 

The QTL analysis to different CMV strains was also performed by Dogimont et al. (2000) using 

a 122 RILs collection made between SC and the susceptible Charentais type cultivar Védrantais . 

In their study, apart from the major QTL mapping in LG XII, several minor QTLs in LG II, LG 

III, LG VIII, LG IX and LG XII were detected putatively involved in the resistance to different 

CMV strains. Among these QTLs, most of them were related with CMV subgroup II resistance. 

Nevertheless, Essafi et al. (2009) demonstrated that cmv1 on its own is enough to confer 

resistance to these strains. Also, regarding the resistance to the CMV subgroup I strain CMV-M6, 

QTLs cmvqw3.1 and cmvqw10.1 were detected in a DHL population made between SC and PS 

(Guiu-Aragonés et al., 2014) and none of QTLs detected by Dogimont et al. (2000) in their RILs 

collection co-localized with cmvqw3.1or cmvqw10.1 (Guiu-Aragonés et al., 2014). Furthermore, 

few RILs were resistant to another subgroup I strain, CMV-TL (Dogimont et al., 2000), which 

suggests that using this RIL collection might hinder the QTL analysis to subgroup I CMV strains. 
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To test whether our QTL analysis system was capable for detecting minor QTLs responsible 

for CMV-FNY resistance, an F2 population made between DHL142 and DHL1046 was used. 

This population segregates for the previously known cmvqw10.1 QTL, and should present also 

some minor QTLs. The QTL analysis using this population resulted in one putative minor QTL 

in LG X, with LOD value equal to 2.40, corresponding to marker CMPSNP113. However, this 

SNP marker is outside of the described cmvqw10.1interval, which is located between the 

markers PS_15-H02 and CMPSNP183 (Guiu-Aragonés et al., 2014).The result suggests that our 

QTL detection is not sensitive enough for mining minor QTLs for resistance to CMV-FNY. 

 

2. Re-sequencing of ILs 

ILs containing combinations of two or three QTLs were re-sequenced, to confirm whether the 

QTLs have been successfully introgressed and whether there were unintended introgressions 

apart from the expected regions. 

 The ILs 5-123, 20-28-62 and 20-91-15, contain the desired SC intervals known to carry the 

resistance QTLs cmv1, cmvqw3.1 and cmvqw10.1in homozygosis. However, the introgressions 

were bigger than the QTL regions.  During the development of these ILs, flanking markers were 

used for selecting the SC alleles in the QTL regions. However, although the genotype of these 

markers confirmed the desired regions, the regions outside of the QTL were not analyzed to 

ensure that no additional SC introgressions were unintendedly dragged. Additionally, some 

heterozygous and homozygous unintended introgressions were also detected. In 5-123, a small 

heterozygous region was found in LG VIII. In 20-28-62, some homozygous SC alleles were 

detected in LG III and LG VI. Even the region in LG III is inside the QTL cmvqw3.1, but far 

away from the peak of the QTL. Some heterozygous regions in LG II, LG VI, LG VII, LG VIII 

and LG X were also detected.  In 20-91-15, homozygous SC alleles were detected in LG II, LG 

III, LG VI, LG VII, LG VIII and LG X. Some heterozygous regions in LG VI, LG VIII, LG IX, 

LG X and LG XII were also detected.  

The PS x SC NIL collection and sub NILs were genotyped using a 768 SNPs set (Esteras et 

al., 2013) (J. Argyris, personal communication). In the line SC12-1-99, apart from cmv1, other 

two SC introgressions were from 28,267,327 to 28,907,412 in LG VII and from 20,566,525 to 

21,676,078 in LG IX. In the line SC3-3, apart from cmvqw3.1, two SC regions, from 36,382,412 

to 38,106,882 in LG VI and from 6,629,064 to 7,022,329 in LG VIII. The line SC10-2 was 
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missing for SNP genotyping (Argyris et al, personal communication). Therefore, we do not know 

what contaminant introgressions were present. Hence, we could conclude that in the ILs 5-123, 

20-28-62 and 20-91-15, the contaminations in LG VI and LG VIII were originated from SC3-3, 

the contaminations in LG VII and LG IX were originated from SC12-1-99 while the other 

contaminations probably originated from SC10-2.   

The ILs were also tested for the resistance to CMV-M6 and CMV-FNY. All the ILs were 

susceptible to CMV-FNY. Only 20-91-15 was resistant to CMV-M6 infection while the other 

two were susceptible (A. M. Martín-Hernández, personal communication). Both results indicate 

that our ILs contain the desired resistance QTL combinations and, despite the presence of some 

contaminant introgressions, they could be used for the characterization of the resistance 

mechanism of these QTLs. However, for fine mapping of cmvqw3.1 and cmvqw10.1, further 

works should be done to obtain introgression lines without background contaminations. 

 

3. The resistance to subgroup I CMV strains 

In this study, we aimed to characterize the resistance conferred by cmvqw3.1, cmvqw10.1 and 

unidentified QTLs to subgroup I CMV strains. The resistance of lines 5-123 (cmv1/cmvqw3.1), 

20-28-62 (cmv1/cmvqw10.1) and 20-91-15 (cmv1/cmvqw3.1/cmvqw10.1) to CMV-FNY, which 

can overcome the resistance conferred by cmv1/cmvqw3.1/cmvqw10.1 was tested. By using 

CMV-FNY challenging different melon lines, we could advance in the understanding of the 

resistance mechanism of cmv1/cmvqw3.1/cmvqw10.1/unidentified QTLs, and whether and how 

the QTL combinations, cmv1/cmvqw3.1, cmv1/cmvqw10.1 and cmv1/cmvqw3.1/cmvqw10.1 

could collaborate in the resistance. 

Plant viruses are obligate intracellular parasites, dependent on their hosts (Moon and Park, 

2016). Plant resistance or susceptibility to virus is an outcome of the interaction between plant 

host and viral factors. This interaction between viral particles and host factors will affect the 

virus replication, cell-to-cell movement and long-distance movement. Thereby, plant resistance 

or susceptibility is finally influenced. Different plant host factors have been described affecting 

either virus replication or virus movement (for a review see (Wang, 2015)). As it has been 

described that the replication and cell-to-cell movement of CMV-FNY is not affected in the 

resistant line SC (Guiu‐Aragonés et al., 2016), we concentrate on how these resistance QTLs 

affect the movement of CMV-FNY.  
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The delay in CMV-FNY infection observed in our experiments could not be due to different 

virus input in the inoculation, since we kept the inoculation conditions constant and the 

experiments were reproducible several times. We did not inoculate the melon lines using titrated 

virus, since we always inoculated first squash plants to produce fresh virus to inoculate melon. 

Instead, we always used the same area of squash-infected leaf, grinded in the same volume of 

DIECA buffer and inoculated the melon leaf by rub-inoculation making the same number of rubs 

on the leaf. This, together with the fact that in repeated experiments, the relative virus 

accumulation was reproducible, indicated that the differences in virus accumulation in the 

phloem of the different lines was not due to different virus input during the inoculation. 

 The delay of infection in melon lines harboring resistance QTL combinations 

(cmv1/cmvqw3.1, cmv1/cmvqw10.1 and cmv1/cmvqw3.1/cmvqw10.1) compared with PS 

indicated that the resistance plant factors cmvqw3.1 and cmvqw10.1 were affecting the 

efficiency of movement of CMV-FNY, but were not sufficient to stop CMV-FNY systemic 

infection. For this, additional resistance QTLs should be involved as is the case of the resistant 

parental line SC, which carries all of them.  

In both CMV-FNY resistant and susceptible melon lines, equivalent virus accumulation in the 

proximal and distal petioles of the inoculated leaves was detected. This indicated that the 

resistance was not working in the phloem movement but in phloem entry, similarly to cmv1-

mediated resistance to CMV-LS. In this case, by immunogold experiments, Guiu-Aragonés et al. 

(2016) demonstrated that the virus remained restricted to the BS cells, and was not able to 

proceed to the phloem cells. Given that the characterization of the resistance conferred by 

cmv1/cmvqw3.1/cmvqw10.1/additional QTLs, indicates that the same phloem entry step is 

impaired, we foresee that the virus will be delayed in the BS cells again. To demonstrate this, 

further work should be done using immunogold labeling at TEM experiments, to quantify and 

compare CMV-FNY accumulation in the BS cells and in vascular parenchyma and companion 

cells. Our hypothesis is that CMV-FNY will be present in the phloem cells, but in much lower 

amount than in BS cells.  

Though SC is resistant to CMV-FNY, some viruses could still be detected in the petioles of 

SC compared with non-inoculated melon plants. This results indicated that small amounts of 

viruses could still enter the phloem of the resistant line even though they could not produce a 

systemic infection. The effective population size is defined as the number of individuals that 
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could pass their genes to the next generation (Elena and Sanjuán, 2007). Effective population 

size is a key parameter and could be affected during all the virus infection steps (Tamisier et al., 

2017). For a successful virus infection, virus has to enter into plant cells, invade from cell-to-cell 

and long distance movement. During these steps, the effective population size will decrease 

caused by the plant natural defense system or other plant genetic factors (Tamisier et al., 2017). 

Hence, although some virus could enter into the phloem of the resistant accession SC, they might 

not be able to accumulate and move  to the following infection site to produce a systemic 

infection. This could also explain why the infection do not move to the SC upper leaves despite 

sometimes mild infection was observed in the first leaf.  

During the infection assay, few SC or DHL142 plants were infected by CMV-FNY. Under 

normal inoculation conditions, CMV strain CMV-Ns is not able to infect N. tabacum cv. Xanthi 

plants. However, the N. tabacum cv. Xanthi plants were systemically infected by CMV-Ns when 

inoculated using a highly concentrated purified virion as inoculum (Salánki et al., 2007). Hence, 

we hypothesize there might be also a threshold that could affect the resistance capacity of SC. 

Our hypothesis was confirmed by increasing the CMV-FNY amount via co-inoculation of CMV-

FNY and ZYMV, which produces a the synergism between these two viruses (Wang et al., 2004). 

After increasing CMV-FNY amount, all the SC plants were infected with detectable CMV-FNY 

accumulation in systemic leaves. Therefore, we can conclude that the resistant line SC could also 

be infected by non-infectious CMV after increasing virus input. In nature, though such virus 

concentration is not possible, we should keep in mind that mixed infections between CMV and 

other viruses could probably lead to an increase of infection severity (Mascia et al., 2010; 

Takeshita et al., 2012) or even break the resistance (Butterbach et al., 2014) as the case of CMV-

FNY in SC.  

 

4. CMV virulence determinants 

The systemic infection of plant viruses is determined by the interaction between plant host 

factors and viral particles. Nearly all the CMV proteins 1a, 2a, 2b, 3a (MP), CP and satellite 

RNAs have been reported as the virulence factors (for a review see (Mochizuki and Ohki, 

2012) ). Some of the amino acids and nucleotide changes reported were involved in changing the 

severity of the infection symptoms, whereas other changes were able to break resistance (Table 

D-1). Chimeric viruses have been successfully used as a tool to genetically determine the 



Discussion 

122 
  

virulence of CMV against resistance genes (Kang et al., 2012; Guiu‐Aragonés et al., 2015). 

The use of pseudo recombinants between CMV-FNY and CMV-LS, allowed to map  cmv1 

dependent determinants of virulence in RNA3. The chimaeras exchanging independently 5’UTR, 

3’UTR, Intergenic region, MP or CP of RNA3 demonstrated that the MP was the factor 

responsible for overcoming cmv1 resistance (Guiu‐Aragonés et al., 2015).  

 

Table D-1. Amino acids and nucleic acids in CMV genes involved in virulence (Updated from 

(Mochizuki and Ohki, 2012)) 

 

 

In our study, we aim to determine the viral factor(s) responsible(s) for breaking 

cmv1/cmvqw3.1/cmvqw10.1 resistance. CMV-FNY could break cmv1/cmvqw3.1/cmvqw10.1 

resistance while CMV-M6 could not. The nucleotide sequence similarity of CMV-FNY and 

Gene Strain 
Original 

symptom 
Substitution or deletion 

Resulting 
symptom 

Plant species Reference 

1a 
Rs 

(I) 
Mosaic R461C Necrosis 

Nicotiana 
glutinosa 

(Divéki et al., 2004) 

2a 
Fny 
(IA) 

Chlorotic 
spot 

I267T Mosaic Squash (Choi et al., 2005) 

 
Fny 
(IA) 

Mosaic aa 777–858 deletion Attenuated N. glutinosa (Du et al., 2008) 

2b 
Fny 
(IA) 

Mosaic aa 95–100 deletion Chlorosis N. tabacum (Lewsey et al., 2009) 

 
HL 
(IB) 

Necrosis aa 71–111 deletion Attenuated A. thaliana (Inaba et al., 2011) 

3a 
Fny 
(IA) 

Mosaic N51K and I240F No cycling N. tabacum (Gal-On et al., 1996) 

 
Fny 
(IA) 

Mosaic I168T Chlorosis Squash (Choi et al., 2005) 

 LS (II) No infection 

SNNLL64-68HGRIA, 
R81C, 

G171T and A195I 

Systemic 
mosaic 

Cucumis.melo (Guiu‐Aragonés et al., 2015) 

CP 
Fny 
(IA) 

Mosaic D192K 
Systemic 

necrosis 

N. tabacum (Liu et al., 2002) 

   L194K 

Yellow 
mosaic, 
necrotic 
flecks 

sat 
RNA 

Y-sat Chlorosis Mutations in nt 177–199 Attenuated 
Nicotiana 
species 

(Shimura et al., 2011) 
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CMV-M6 was reported to 98.5%. The melon line 20-91-15  (cmv1/cmvqw3.1/cmvqw10.1) was 

interrogated using  pseudo recombinants between CMV-M6 and CMV-FNY to map the 

determinant factors. Among the obtained pseudo recombinants, F1F2M3 was unable to infect the 

melon line harboring cmv1/cmvqw3.1/cmvqw10.1, which  indicated that the virulence factor 

responsible for overcoming cmv1/cmvqw3.1/cmvqw10.1-mediated resistance is not in RNA3. 

RNA 3 encodes MP and CP, which are identical in M6 and FNY and therefore, could not be the 

determinant in this case. However, the results also exclude the untranslated sequences of this 

RNA as determinants of virulence for cmvqw3.1/cmvqw10.l.  

The protein 1a contains putative methyltransferase and helicase motifs and has been described 

as virulence factor in some studies. The amino acid changes at position 461 of 1a protein play 

roles in inducing necrosis (R461C) (Divéki et al., 2004), replication inhibition (C461E, C461P 

and C461N) and systemic symptom development (C461K, C461R) in some Nicotiana species 

(Salánki et al., 2007). In pepper, Cmr1 gene could inhibit the systemic infection of CMV-FNY 

but not CMV-P1.  Six amino acids substitution in the helicase domain of 1a protein determines 

the virulence of  CMV-P1 against theresistance Cmr1 gene (Kang et al., 2012).  In our case, the 

helicase domain might also be the virulence determinant in overcoming 

cmv1/cmvqw3.1/cmvqw10.1 resistance. During the process of producing pseudo recombinants 

between CMV-M6 and CMV-FNY, a binary vector pCR1(+) (Seo et al., 2009) was used to 

produce CMV-FNY RNA1. However, all the pseudo recombinants, even in the combination 

F1F2F3, which is FNY, failed to produce infection in the melon line 20-91-15. After sequencing 

the binary vector pCR1(+), a T to C point mutation was found at position 2568 compared with 

the sequence of CMV-FNY RNA1. This point mutation alters the amino acid from Met (ATG) to 

Thr (ACG) at position 825 in 1a protein, which is predicted as a deleterious change by online 

software PROVEAN (Protein Variation Effect Analyzer) 

(http://provean.jcvi.org/seq_submit.php). This deleterious change might change the secondary or 

tertiary structure of CMV 1a. If the structure of CMV 1a is changed, the interaction between 

CMV 1a and 2a protein as well as with other plant host factors might also be affected. CMV 

replicase consists of CMV 1a, 2a and a plant host factor, which in together are involved in CMV 

replication (Hayes and Buck, 1990). .  

Other amino acid residues in CMV 1a were also reported as virulence factors involved in cell-

to-cell movement or systemic symptom development. Cmr1 confers resistance to CMV-P0 and 

http://provean.jcvi.org/seq_submit.php
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CMV-FNY in pepper (Kang et al., 2010), but not to CMV-P1. Amino acid residues at positions 

865, 896, 957, and 980 in the helicase domain of CMV-P1 1a protein were identified as 

responsible for overcoming Cmr1-mediated resistance (Kang et al., 2012). This difference 

between CMV-FNY and CMV-P1 in helicase domain affected the virus cell-to-cell movement 

and also was involved in virus replication (Kang et al., 2012). Therefore, the point mutation at 

amino acid position 825 of 1a protein could act in our system as the virulence factor overcoming 

cmv1/cmvqw3.1/cmvqw10.1 resistance. Experiments are being carried out to generate a pCR1+ 

construct with a restored T at position 2568 to check this possibility. If the restored construct is 

able to overcome the resistance given by the QTLs, it is likely that the helicase domain of 1a 

could be the determinant of virulence. However, as we still lack the information about whether 

the recombinant F1M2M3 could infect melon lines harboring cmv1/cmvqw3.1/cmvqw10.1, we 

could not exclude the possibility of CMV-FNY 2a,2b or UTRs being the determinants.  CMV 2a 

was previously reported as virulence factor involved in the CMV replication and cell-to-cell 

movement (Choi et al., 2005) or induction of CMV infection (Du et al., 2008). The CMV 2b 

protein is an RNA silencing suppressor that plays roles in CMV accumulation and virulence (Du 

et al., 2008; Xu et al., 2013; Du et al., 2014; Dong et al., 2016).       

In our production of pseudo recombinants between CMV-M6 and CMV-FNY, only three out 

of six recombinants were obtained. None of the recombinants containing CMV-M6 RNA1 could 

be obtained in our process, which might be caused by lack of function of the in vitro transcribed 

CMV-M6 RNA1. To our knowledge, the RNA1 of many CMV strains was unstable as clone and 

prone to recombine. Hence, some recombination might have also occurred in the M6 RNA1 

construct during its propagation. This will be confirmed by sequencing the construct. In this 

study, we also tried to obtain the pseudo recombinants between CMV-FNY and CMV-LS, 

however, we could only get three of them. Guiu-Aragonés et al., (2015) failed to obtain all 

possible recombinants between CMV-FNY and CMV-LS, generating only four out of six 

possible recombinants, since F1L2F3 and L1F2F3 were not obtained (Guiu‐Aragonés et al., 

2015). In our case, F1L2F3 was obtained but finally it was found less infective in the infection 

assay, which resulted in only one out of three PS plants infected. We also found that the infection 

of melon plants with recombinants, even F1F2F3, showed most of the time only mild infection 

using infected N. benthamiana as source of sap. We tried to inoculate squash plants first with the 

sap of recombinants from N. benthamiana and then inoculate melon plants with sap from squash. 
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We found that the infected squash had high infection efficiency (100%) and more severe 

symptoms compared with the infection using sap from infected N. benthamiana. Thereafter, 

although in most cases, more virus passages are not recommended, in this case, using infected 

squash to infect melon plants for the determination of virulence might be an option.  

 

5. Arms race co-evolution between plants and CMV 

Natural biodiversity is a driver for host-pathogen co-evolution (Karasov et al., 2014). 

Elucidating and understanding this correlation between crops and pathogens would help for 

using genetic tools to modify crops to gain resistance against diseases (Rausher, 2001). In crops 

the plant-pathogen co-evolution has been described for many systems. For example,  between 

cereals and Blumeria graminis (Wyand and Brown, 2003), flax and flax rust (Ravensdale et al., 

2011), different crop plants and  Potato virus Y (PVY) (for a review see (Quenouille et al., 

2013)). PVY is an economically important plant pathogen that could cause severe infection in 

plenty of crop species. PVY is divided into PVY-0, PVY-1 and PVY1.2 subgroups according to 

their infectivity in pepper plants (Kyle and Palloix, 1997). A few resistant genes pvr2 (Ruffel et 

al., 2002), Pvr4 (Caranta et al., 1996) and some other QTLs (Quenouille et al., 2014; Tamisier et 

al., 2017) have been described in pepper conferring resistance to different PVY pathotypes. The 

recessive gene pvr2, encoding the eukaryotic translation initiation factor 4E (eIF4E) gene, 

confers resistance to PVY-0 and PVY-1 pathotypes (Ruffel et al., 2002). However, different 

amino acid changes in the genome-linked viral protein (VPg) allow PVY to overcome pvr2-

mediated resistance (Moury et al., 2004; Ayme et al., 2006; Ayme et al., 2007). Dominant Pvr4 

gene was reported as a broad spectrum resistance gene to nearly all PVY pathotypes and has 

being used for long time in pepper breeding. Some molecular markers linked to Pvr4 were also 

developed for the breeding programs (Arnedo-Andrés et al., 2002; Devran et al., 2015). On the 

viral part, a nucleotide change (A8424G) in the NIb protein (RNA-dependent RNA polymerase) 

of PVY was sufficient for PVY  to overcome Pvr4-provided resistance (Janzac et al., 2010). 

However, the combination of major resistance genes with some minor QTLs was proposed to 

provide rationale resistance, which could be a valuable tool being used in breeding (Quenouille 

et al., 2014). 

The arms race co-evolution between CMV and crops also exists. CMV could be classified 

into subgroup I and subgroup II (Palukaitis et al., 1992). . Generally, subgroup I strains are more 
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aggressive than subgroup II strains. Subgroup I strains produce severe mosaic or stunt infection 

and subgroup II strains showed only mild mosaic or even  symptomless infection (Mochizuki 

and Ohki, 2012). Co-evolution of CMV virulence factors and resistance genes has been 

described in different crop species. In pepper, a single dominant gene Cmr1 was confers 

resistance to CMV-P0, CMV-Korean and CMV-FNY. Cmr1 prevents virus systemic infection by 

inhibiting virus cell-to-cell movement from the epidermal cell layer to mesophyll cells (Kang et 

al., 2010). After Cmr1 had been used in a breeding program for more than 20 years, another 

CMV strain, CMV-P1, able to break Cmr1 conferred resistance, emerged (Lee et al., 2006). Four 

amino acid changes in the helicase domain of CMV-P1 1a protein were sufficient for 

overcoming Cmr1 resistance (Kang et al., 2012). However, an Indian C. annuum landrace 

“Lam32” was found to resist CMV-P1 infection and this resistance was controlled by a single 

recessive resistance gene cmr2, which had a broad spectrum resistance, including resistance to 

CMV-P0, CMV-Korean and CMV-FNY (Choi et al., 2018). In melon, the accession SC is 

resistant to CMV (Karchi et al., 1975) but with strain-specific resistance (Díaz et al., 2003). The 

single recessive resistance gene cmv1 confers resistance to CMV subgroup II strains (Essafi et al., 

2009). Cmv1 works as a gatekeeper in the BS cells, the susceptible allele CMV1 being used by 

CMV-LS to be transported to the phloem, and the resistant allele, cmv1, not allowing such 

transport and affecting the virus long-distance movement (Guiu‐Aragoné s et al., 2016). 

However, cmv1 mediated resistance could be broken by CMV-M6 and CMV-FNY, being the 

MP the virulence factor involved. Therefore, cmv1 resistant allele is only able to restrict the virus 

in the  BS cells if MP LS is present, but MP M6 is able to use it for its transport to the phloem 

(Guiu‐Aragonés et al., 2015). Other two plant factors, cmvqw3.1 and cmvqw10.1 were needed 

working together with cmv1 to confer  resistance to CMV-M6 (Guiu-Aragonés et al., 2014). 

However, the subgroup I strain CMV-FNY must carry a new determinant of virulence that 

enables it to overcome the resistance determined by cmv1/cmvqw3.1/cmvqw10.1, although these 

QTLs are able to delay the virus and decrease CMV-FNY accumulation (Results, part III).  
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Figure D1-1. Arms race between melon SC and CMV. 

MP, Movement Protein; BS, Bundle Sheath cells. 

 

According to our results, cmvqw3.1 and cmvqw10 act in the same step than cmv1, either 

impairing or stopping viral phloem entry, suggesting a new layer of resistance added to the same 

mechanism. However, at least another QTL is present in SC to provide full resistance to FNY. 

Whether or not this new QTL would be a new layer of resistance to prevent FNY phloem entry, 

remains to be seen. However, still, the CMV "Song" strains can overcome SC resistance. 

Therefore, they must have other determinants of virulence that enable them to overcome all the 

resistance layers built by SC. 
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1. A screening for resistance to the strain CMV-FNY was performed in a DHL population 

made between PS and SC. Two lines, DHL142 and DHL69 showed resistance to this CMV 

strain, which demonstrates the existence of a fourth QTL in the resistant parental accession SC.  

 

2. The use of several F2 populations made from the crosses DHL142 x DHL2012, DHL142 

x 20-90-15 and DHL69 x DHL2012 failed to detect QTLs of small effect. Only several putative 

minor QTLs for resistance to CMV-FNY in LG II, LG IX, LG X and LG XII were found. 

However, they were not consistently detected using different phenotyping data or  in different F2 

populations.  

 

3. The complexity of the phenotyping coupled to the use of F2 populations, preventing 

biological replicates, could be the cause of the failure of the QTL detection method.  

 

4. The ILs 5-123 (cmv1/cmvqw3.1), 20-28-62 (cmv1/cmvqw10.1) and 20-91-15 

(cmv1/cmvqw3.1/cmvqw10.1) were produced via marker assisted selection. The re-sequencing of 

these three ILs revealed that the SC introgressions were larger than expected, and some 

unintended heterozygous and homozygous SC contaminations were observed.  

 

5. Only IL 20-91-15 was resistant to CMV-M6 and all the ILs were susceptible to CMV-

FNY, therefore ILs were suitable for the characterization of the resistance conferred by all QTL 

combinations. 

 

 

6. A delay of the systemic infection of CMV-FNY, compared with the susceptible melon 

line PS, was observed in the ILs 5-123, 20-28-62 and 20-91-15, indicating that the resistance 

QTL combinations are able to delay the movement of CMV-FNY.  

 

7. The delay of infection correlates with a decrease in the amount of virus in the petiole of 

the inoculated leaf. 
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8. The combinations of QTLs for resistance to CMV-FNY in lines 5-123, 20-28-62, 20-91-

15 participate in restricting the phloem entry, rather than in restricting the viral movement within 

the phloem.  

 

9. An increase in CMV-FNY accumulation, mediated by a co-infection with ZYMV, allows 

CMV-FNY to break the resistance mediated by all QTLs in SC, suggesting the existence of a 

threshold of virus amount beyond which the resistance can be overcome.  

 

10. Among the pseudo recombinants generated between CMV-FNY and CMV-M6, the 

recombinant F1F2M3 could infect the IL 20-91-15, indicating that the virulence determinants 

against the resistance conferred by cmv1/cmvqw3.1/cmvqw10.1 did not map in RNA3. 
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