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ichuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.2 Criteria of non-singularity: proof of the main result . 87

3.3. Versal deformations of matrix products . . . . . . . . 94

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . 98

3.4. Structural stability of matrix pairs under contra-

gredient equivalence . . . . . . . . . . . . . . . . . . . . . . 107

3.4.1 Matrix pairs that are structurally stable with respect

to equivalence . . . . . . . . . . . . . . . . . . . . . . . 107

3.4.2 Stable matrix pairs under contragredient equivalence 110

CONCLUSIONS 113

REFERENCES 115



INTRODUCTION

The theory of stratifications studies matrices and matrix pairs that are

near each other. It has been largely studied by many authors: B. Kagstrom,

A. Dmytryshyn, A. Edelman, E. Elmroth, S. Johansson [21, 23–25, 47], J.

Ferrer [27], M.D. Magret [38]; M.I. Garćıa-Planas, V.V. Sergeichuk [39,40],

L. Klimenko [48], V. Futorny [20], and others. Fundamental concepts like

controllability and observability are studied by methods of stratification

theory.

If a matrix A is known only approximately, then there is no sense to

reduce it to Jordan form, since it can be cardinally changed by a small

perturbations. For example,

JCF

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1

λ ε

λ 1

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1

λ

λ 1

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if ε = 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1

λ 1

λ 1

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if ε ≠ 0.

By this reason, it is important to know how the Jordan canonical form

can change under small perturbations of A. Arnold [3] (see also [4, 5])

constructed miniversal deformations of matrices under similarity; that is,

a simple normal form to which not only a given square matrix A but all
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matrices B close to it can be reduced by similarity transformations that

smoothly depend on the entries of B.

Miniversal deformation of a pair (A,B) of complex matrices of the same

size is a family of pairs (Adef,Bdef) to which all matrix pairs (A′,B′) close

to (A,B) can be reduced by transformations (S−1A′R,S−1B′R) given by

nonsingular matrices S = S(A′,B′) and R = R(A′,B′) that smoothly de-

pend on the entries of A′ and B′. This admits to study only miniversal

deformations of a given matrix instead of considering all its perturbations.

We consider miniversal deformations of matrix pairs as a basic tool in

the study of their stratification. The miniversal deformations of matrix

pairs were obtained by Kagstrom, Edelman and Elmroth in the article [48],

which was awarded by the SIAM Linear Algebra Prize 2000 for the most

outstanding linear algebra publication during the 3-year period. We use

the simpler miniversal deformations given by Garćıa-Planas and Sergeichuk

[39].

Miniversal deformations have attracted the interest of the researchers

in recent years due to the wide range of their applications. The study of

behavior of a physical system that is described by matrix pencils require the

understanding of how canonical structure may change, e.g., how eigenvalues

coalesce or split apart due to perturbations. Sometimes it becomes an

incredibly complicate task.

Canonical forms of matrices play important role both in theoretical and

practical problems. Their analysis becomes very complicated, when we

study multi-parameter families of matrices. We are faced with new phe-

nomena like singularities and bifurcations leading to qualitative changes in

the behavior of systems.

If we consider a couple of systems y = Ax and x = Bz in which A ∈
Mn×m(C) and B ∈Mm×p(C), then we can write

ẏ = ABz.
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If p = n and y = z, the composite system corresponds to the classical

homogeneous linear dynamical system ż = ABz:

z Ð→ B
xÐÐ→ A Ð→ ż implies z Ð→ AB Ð→ ż

For a given matrix A, Boer and Thijsse [13] and, independently, Markus

and Parilis [57] described the set of all Jordan canonical matrices J such

that for each J there exists a matrix that is arbitrarily close to A and is

similar to J . For example, if A = J2(λ) ⊕ J2(λ), then J is either J2(λ) ⊕
J2(λ), J3(λ)⊕ J1(λ), or J4(λ) with the same λ.

Using their description, one can construct the closure graph Gn for sim-

ilarity classes of n × n complex matrices; that is, the Hasse diagram of the

set of similarity classes of n × n matrices with the following partial order:

a ≼ b if a is contained in the closure of b. The graph Gn shows how the

similarity classes relate to each other in the affine space of n × n matrices.

The results of Boer, Thijsse, Markus and Parilis [13,57] were extended to

matrix pairs by Pokrzywa [60]; he described all possible Kronecker canon-

ical forms of matrix pencils in a neighborhood of a given pencil. In fact,

Pokrzywa describes the following partial order on the set Km×n of Kro-

necker’s canonical forms of m × n pencils: A − λB ⩽ C − λD if a pencil

that is strictly equivalent to C − λD can be obtained by an arbitrarily

small perturbation of A−λB. The partition of Km×n into classes of strictly

equivalent pencils is a stratification, which means that the closure of every

class (= stratum) consists of the class itself and a finite union of classes of

smaller dimension. Moreover, A − λB ⩽ C − λD if and only if the class of

A − λB is contained in the closure of the class of C − λD.

Using Pokrzywa’s theorem, Bo K̊agström and his students [24, 25, 47]

develop the software StratiGraph that constructs the Hasse diagram of the

poset Km×n, which is also called the closure diagram of the set of m × n
pencils. This diagram shows how the classes of strictly equivalent pencils

relate to each other in the affine space of m × n pencils.
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Note that for each matrix pencilA−λB, Pokrzywa’s theorem describes all

Kronecker canonical pencils C − λD such that there exist arbitrarily small

E and F for which the Kronecker canonical form of (A + E) − λ(B + F )
is C − λD. Pokrzywa’s proof is very abstract and unconstructive; he does

not construct (A +E) − λ(B + F ) explicitly. Even more abstract proof of

Pokrzywa’s theorem is given by Bongartz in [8]; he uses the representation

theory of finite dimensional algebras. The main goal of the thesis is to

construct (A+E)−λ(B+F ) explicitly for each C −λD. As a consequence,

we get a direct, constructive, and rather elementary proof of Pokrzywa’s

theorem.

The other goal of the thesis is to give applications of perturbation theory

of matrix pairs with respect to equivalence and contragredient equivalence.

Two matrix pairs (A,B) and (A′,B′) of the same size are contragrediently

equivalent if

(A′,B′) = (S−1AR,R−1BS),

in which S,R are nonsingular matrices. Many applications of a contragre-

dient equivalence are given in [45, 63]. If we study a matrix product AB

up to similarity transformations, then the matrix pair (A,B) can be con-

sidered up to contragredient equivalence since S−1ABS = S−1ARR−1BS;

see [50].

A canonical form of matrix pairs under contragredient equivalence is

given by Dobrovol′skaya and Ponomarev [22]. M.I. Garćıa-Planas and

V.V. Sergeichuk [39] construct a miniversal deformation of a canonical

pair (A,B) for contragredient equivalence; that is, a simple normal form

to which all matrix pairs (A+ Ã,B + B̃) close to (A,B) can be reduced by

contragredient equivalence transformations that smoothly depend on the

entries of Ã and B̃. Each perturbation (Ã, B̃) of (A,B) defines the first

order induced perturbation AB̃ + ÃB of the matrix AB, which is the first

order summand in the product (A + Ã)(B + B̃) = AB +AB̃ + ÃB + ÃB̃.
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The following canonical matrix pairs are described in the thesis:

• all canonical matrix pairs (A,B), for which the first order induced

perturbations AB̃ + ÃB are nonzero for all nonzero perturbations in

the normal form of Garćıa-Planas and Sergeichuk;

• all canonical matrix pairs (A,B), for which the deformations (A +
Ã)(B + B̃) = AB + AB̃ + ÃB + ÃB̃ of AB are versal for all nonzero

perturbations in the normal form of Garćıa-Planas and Sergeichuk;

• all canonical matrix pairs (A,B) that are structurally stable under

nonzero perturbations in the normal form of Garćıa-Planas and Serge-

ichuk. (The concept of structural stability was first introduced by

A.A. Andronov and L.S. Pontryagin [2] in 1937 in the qualitative the-

ory of dynamical systems.)

These results are published in [32–34].

P. Van Dooren [70] constructed an algorithm for computing all singular

summands of Kronecker’s canonical form of a matrix pencil. His algorithm

uses only unitary transformations, which improves its numerical stability.

In the thesis, Van Dooren’s algorithm is extended to square complex ma-

trices up to consimilarity transformations A↦ SAS̄−1 and to pairs of m×n
complex matrices up to transformations (A,B) ↦ (SAR,SBR̄), in which

S and R are nonsingular matrices. This result is publlished in [51].

The thesis is organized as follows:

• An informal introduction into the theory of perturbations of matrices

and matrix pairs is given in Chapter 1.

• A proof of Pokrzywa’s theorem is given in Chapter 2.

• Applications of miniversal deformations of matrix pairs with respect

to contragredient equivalence are given in Chapter 3.
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CHAPTER 1

A SURVEY OF KNOWN RESULTS

ABOUT PERTURBATIONS OF

MATRICES AND MATRIX PENCILS

The purpose of this chapter is to give an informal introduction to the

theory of perturbations of matrices and matrix pairs.

All matrices are considered over a field F ∈ {C,R}.

1.1. Arnold’s miniversal deformations of matrices

with respect to similarity

In this section, we formulate Arnold’s theorem about miniversal deforma-

tions of matrices up to similarity and give a sketch of its constructive proof,

because it is described algorithm how to construct the transformation (1.5).

Algorithms for constructing this transformation are also discussed in [55].

Since each square matrix is similar to a Jordan matrix, it suffices to

study perturbations of Jordan matrices.

For each A ∈ Cn×n and a small matrix X ∈ Cn×n,

(I −X)−1A(I −X) = (I +X +X2 +⋯)A(I −X)

= I + (XA −AX) +X(XA −AX) +X2(XA −AX) +⋯

= A +XA −AX´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
small

+X(I −X)−1(XA −AX)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

very small
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and so the similarity class of A in a small neighborhood of A can

be obtained by a very small deformation of the affine matrix space

{A + XA − AX ∣X ∈ Cn×n}. (By the Lipschitz property [61], the trans-

forming matrix S to a matrix S−1AS near A can be taken in the form

I +X with a small X). The vector space

T (A) ∶= {XA −AX ∣X ∈ Cn×n} (1.1)

is the tangent space to the similarity class of A at the point A. The numbers

dimC T (A), n2 − dimC T (A) (1.2)

are called the dimension and codimension of the similarity class of A.

For each Jordan canonical matrix J whose Jordan blocks are ordered as

follows:

J =
t

⊕
i=1

(Jmi1
(λi)⊕ ⋅ ⋅ ⋅ ⊕ Jmiri

(λi)), mi1 ⩾mi2 ⩾ . . . ⩾miri (1.3)

(λi ≠ λj if i ≠ j), we define the matrix of the same size

J +D ∶=
t

⊕
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jmi1
(λi) + 0↓ 0↓ . . . 0↓

0← Jmi2
(λi) + 0↓ ⋅ ⋅ ⋅ ⋮

⋮ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0↓

0← . . . 0← Jmiri
(λi) + 0↓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.4)

in which

0← ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 . . . 0

⋮ ⋮ ⋮
∗ 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and 0↓ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0

⋮ ⋮
0 ⋯ 0

∗ ⋯ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are blocks whose entries are zeros and stars.

The following theorem was given by Arnold in [3, Theorem 4.4] (or see [4,

Section 3.3] or [5, § 30]).
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Theorem 1.1 (Arnold [3]). Let J be the Jordan canonical matrix (1.3).

Then all matrices A +X that are sufficiently close to A can be simultane-

ously reduced by some transformation

A +X ↦ S(X)−1(A +X)S(X),
S(X) is analytic

at zero, S(0) = I
(1.5)

to the form J +D defined in (1.4); its stars represent entries that depend

analytically on the entries of X. The number of stars is minimal that

can be achieved by transformations of the form (1.5), it is equal to the

codimension of the similarity class of J .

The matrix (1.4) with independent parameters instead of stars is called

a miniversal deformation of J (see formal definitions in [3] or [4] or [5]).

Remark 1.1.1. The matrix (1.4) is the direct sum of t matrices that are

not block triangular. But each Jordan matrix J is permutation similar

to the Weyr matrix J# (all commuting with J# matrices are upper block

triangular). Producing with (1.4) the same transformations of permutation

similarity, we obtain an upper block triangular matrix J#+D#, which gives

a miniversal deformation of J#; see details in [48].
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1.2. Simplest miniversal deformations of matrices,

matrix pencils, and contragredient matrix pen-

cils

In this section, we provide results of Maria Isabel Garcia Planas and

Vladimir V. Sergeichuk (see [39]) about simplest miniversal deformations

of matrices, matrix pencils, and contragredient matrix pencils.

All matrices and representations are considered over a field F ∈ {C,R}.

1.2.1. Deformations of matrices In the next two sections, we recall

how to obtain a simplest miniversal R-deformation of a real matrix and

under similarity and a matrix pencil under equivalence and contragredient

equivalence using [39].

Let us denote

JC
r (λ) = Jr(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1

λ ⋱
⋱ 1

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Jr ∶= Jr(0); (1.6)

and, for λ = a + bi ∈ C (b ⩾ 0), denote JR
r (λ) ∶= Jr(λ) if b = 0 and

JR
r (λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tab I2

Tab ⋱
⋱ I2

Tab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if b > 0, where Tab ∶=
⎡⎢⎢⎢⎢⎣

a b

−b a

⎤⎥⎥⎥⎥⎦
, (1.7)

(the size of Jr(λ), JC
r (λ) and JR

r (λ) is r × r).
Clearly, every square matrix over F ∈ {C,R} is similar to a matrix of the

form

⊕iΦF(λi), λi ≠ λj if i ≠ j, (1.8)
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uniquely determined up to permutations of summands, where

ΦF(λi) ∶= diag(JF
si1(λi), JF

si2(λi), . . . ), si1 ⩾ si2 ⩾ ⋯. (1.9)

Let

H = [Hij] (1.10)

be a parametric block matrix with pi × qj blocks Hij of the form

Hij =
⎡⎢⎢⎢⎢⎢⎢⎣

∗
⋮ 0
∗

⎤⎥⎥⎥⎥⎥⎥⎦
if pi ⩽ qj, Hij =

⎡⎢⎢⎢⎢⎣

0
∗⋯∗

⎤⎥⎥⎥⎥⎦
if pi > qj, (1.11)

where the stars denote independent parameters.

Arnold [3] (see also [5, § 30]) proved that one of the simplest miniversal

C-deformations of the matrix (1.8) for F = C is ⊕i(ΦC(λi) +Hi), where Hi
is of the form (1.10). Galin [29] (see also [5, § 30E]) showed that one of the

miniversal R-deformations of the matrix (1.8) for F = R is ⊕i(ΦR(λi)+Hλi),
where Hλ (λ ∈ R) is of the form (1.10) and Hλ (λ ∉ R) is obtained from a

matrix of the form (1.10) by the replacement of its entries α+βi with 2×2

blocks Tαβ (see (1.7)). For example, a real 4 × 4 matrix with two Jordan

2× 2 blocks with eigenvalues x± iy (y ≠ 0) has a miniversal R-deformation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x y 1 0

−y x 0 1

0 0 x y

0 0 −y x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 0

−β1 α1 0 0

α2 β2 0 0

−β2 α2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.12)

with the parameters α1, β1, α2, β2. We prove that a simplest miniversal

R-deformation of this matrix may be obtained by the replacement of the

second column (β1, α1, β2, α2)T in (1.12) with (0,0,0,0)T .

Theorem 1.2 (Arnold [3] for F = C). One of the simplest miniversal F-

deformations of the canonical matrix (1.8) under similarity over F ∈ {C,R}
is ⊕i(ΦF(λi) +Hi), where Hi is of the form (1.10).
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Proof. Let A be the matrix (1.8). We must prove that for every M ∈ Fm×m

there exists S ∈ Fm×m such that

M + SA −AS = N, (1.13)

where N is obtained from ⊕iHi by replacing its stars with elements of F
and is uniquely determined by M . The matrix A is block-diagonal with

diagonal blocks of the form JF
r (λ). We apply the same partition into blocks

to M and N and rewrite the equality (1.13) for blocks:

Mij + SijAj −AiSij = Nij.

The theorem follows from the next lemma.

Lemma 1.1. For given JF
p (λ), JF

q (µ), and for every matrix M ∈ Fp×q there

exists a matrix S ∈ Fp×q such that M + SJF
q (µ) − JF

p (λ)S = 0 if λ ≠ µ, and

M + SJF
q (µ) − JF

p (λ)S = H if λ = µ, where H is of the form (1.11) with

elements from F instead of the stars; moreover, H is uniquely determined

by M .

1.2.2. Deformations of matrix pencils The canonical form problem

for pairs of matrices A,B ∈ Fm×n under transformations of simultaneous

equivalence

(A,B)↦ (SAR−1, SBR−1), S ∈ GL(m,F), R ∈ GL(n,F),

(that is, for representations of the quiver ● ● ) was solved by Kro-

necker: each pair is uniquely, up to permutation of summands, reduced to

a direct sum of pairs of the form (see (1.6)–(1.7))

(I, JF
r (λ)), (Jr, I), (Lr,Rr), (LTr ,RT

r ), (1.14)
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where λ = a + bi ∈ C (b ⩾ 0 if F = R) and

Lr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 ⋱
⋱ 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Rr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1 ⋱
⋱ 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.15)

are matrices of size r × (r − 1), r × (r − 1), r ⩾ 1.

A miniversal, but not a simplest miniversal, deformation of the canonical

pairs of matrices under simultaneous similarity was obtained in [23], partial

cases were considered in [6]– [36].

Denote by 0↑ (resp., 0↓, 0←, 0→) a matrix, in which all entries are zero

except for the entries of the first row (resp., the last row, the first column,

the last column) that are independent parameters; and denote by Z the

p × q matrix, in which the first max{q − p,0} entries of the first row are

independent parameters and the other entries are zeros:

0↑ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ⋯ ∗
0 ⋯ 0

. . . . . . . .

0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ ⋯ ∗ 0 ⋯ 0

⋱
0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (1.16)

We arrange the Jordan blocks in a Jordan matrix with a single eigenvalue

as follows:

Jk1,...,ks(λ) ∶= Jk1(λ)⊕ ⋅ ⋅ ⋅ ⊕ Jks(λ), k1 ⩽ k2 ⩽ ⋯ ⩽ ks.

Define the matrix

J̃k1,...,ks(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jk1(λ) + 0← 0← . . . 0←

0↓ Jk2(λ) + 0← ⋅⋅⋅ ⋮

⋮ ⋅⋅⋅ ⋅⋅⋅ 0←

00
↓

. . . 0↓ Jks(λ) + 0←

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.17)
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Edelman, Elmroth, and K̊agström [23] construct miniversal deformations

of matrix pairs under equivalence; however, their deformations contain

repeating parameters. We use simpler miniversal deformations that are

constructed by Garcia-Planas and Sergeichuk [39]; all parameters in their

deformations are independent.

Theorem 1.3 ( [39]). Let A be the Kronecker pair (1.14). Then all matrix

pairs A + X that are sufficiently close to A can be simultaneously reduced

by some equivalence transformation

A +X ↦ R(X )−1(A +X )S(X ),
matrices R(X ) and S(X ) are

analytic and identity at (0,0)
(1.18)

to the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LTm1
0

LTm2

⋅⋅⋅

LTms

0

0↓

0↓

⋮
0↓

0→ ... 0→

I 0 0

J̃0 0→ ... 0→

0

Ln1 0

Ln2

⋅⋅⋅

Lns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RT
m1
Z ... Z

RT
m2 ⋅⋅⋅ ⋮

⋅⋅⋅ Z

RT
ms

0↑

0↑

⋮
0↑

0

0↑

0↑

⋮
0↑

J̃ 0 0← ... 0←

I 0

0

Rn1Z
T... ZT

Rn2 ⋅⋅⋅ ⋮

⋅⋅⋅ ZT

Rns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1.19)

in which

J̃ ∶=
t−1
⊕
i=1
J̃ki1,...,kisi(λi), J̃0 ∶= J̃kt1,...,ktst(0)

(see (1.16)) and the stars are replaced by complex numbers that depend

analytically on the entries of the pair X . The number of stars is minimal

that can be achieved by equivalence transformations of the form (1.18); this

number is equal to the codimension of ⟨A⟩.
By a miniversal normal pair we mean a matrix pair that is obtained

from (1.19) by replacing its stars by complex numbers.
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1.2.3. Deformations of contragredient matrix pencils The canoni-

cal form problem for pairs of matrices A ∈ Fm×n, B ∈ Fn×m under transfor-

mations of contragredient equivalence

(A,B)↦ (SAR−1,RBS−1), S ∈ GL(m,F), R ∈ GL(n,F),

(i.e., for representations of the quiver ● ● ) was solved in [22,45]: each

pair is uniquely, up to permutation of cells JF
r (λ) in ⊕iΦF(λi), reduced to

a direct sum

⊕
j

(I,C)⊕
t1

⊕
j=1

(Ir1j , Jr1j)⊕
t2

⊕
j=1

(Jr2j , Ir2j)

⊕
t3

⊕
j=1

(Fr3j ,Gr3j)⊕
t4

⊕
j=1

(Gr4j , Fr4j) (1.20)

where C is of the form (1.8), ri1 ⩾ ri2 ⩾ . . . ⩾ riti, and

Jr(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0
λ ⋱

⋱ 1

0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(λ ∈ C),

Fr ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 ⋱

⋱ 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gr ∶=
⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0
⋱ ⋱

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(1.21)

are r × r, r × (r − 1), (r − 1)× r matrices; we denote by 0mn the zero matrix

of size m × n, where m,n ∈ {0,1,2, . . .}.

Theorem 1.4. One of the simplest miniversal F-deformations of the

canonical pair (1.20) under contragredient equivalence over F ∈ {C,R} is

the direct sum of (I, C̃) (C̃ is a simplest miniversal F-deformation of C
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under similarity, see Theorem 1.2) and

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jIr1j 0 0

0 ⊕jJr2j +H H

0 H
P3 H
0 Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jJr1j +H H H
H ⊕jIr2j 0

H 0
Q3 0

H P4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

where

Pl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Frl1 +H H ⋯ H

Frl2 +H ⋱ ⋮
⋱ H

0 Frltl +H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ql =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Grl1 0
H Grl2

⋮ ⋱ ⋱
H ⋯ H Grltl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(l = 3, 4), H and H are matrices of the form (1.10) and (1.11), the stars

denote independent parameters.
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1.3. Pokrzywa’s theorem for matrix pencils

Pokrzywa [60] described the following partial order on the set Km×n of

Kronecker’s canonical forms of m × n pencils:

A − λB ⩽ C − λD

if and only if a pencil that is strictly equivalent to C − λD can be obtained

by an arbitrarily small perturbation of A − λB.

The partition of Km×n into classes of strictly equivalent pencils is a strat-

ification, which means that the closure of every class (= stratum) consists

of the class itself and a finite union of classes of smaller dimension. More-

over, A−λB ⩽ C −λD if and only if the class of A−λB is contained in the

closure of the class of C − λD.

Let us recall Pokrzywa’s theorem, which describes all possible Kro-

necker’s canonical forms of matrix pencils that are arbitrarily close to a

given pencil. We use notation from [67].

The orbit O(M) of an m×n matrix pencilM(λ) = A− λB is the set of

matrix pencils strictly equivalent to M(λ):

O(M) = {PM(λ)Q ∶ P ∈ Cm×m,Q ∈ Cn×n, P,Q are nonsingular}

These orbits are manifolds in the vector space C2mn, and we refer to the

codimension of O(M) as the codimension in this space. We denote by

O(M) the closure of this orbit.

The most significant element of the orbit O(M) is the Kronecker canoni-

cal form (e.g., see [30]) ofM(λ). The Kronecker canonical form is the direct

sum of the right singular, left singular, and regular structures, consisting

of Lk blocks of dimension k × (k + 1) for the right singular structure and

LTk blocks for the left singular structure. The regular structure consists of

Jordan blocks Jk(µ) corresponding to eigenvalue µ, and Nk corresponding

to the infinite eigenvalue. The Kronecker canonical form of M(λ) deter-
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mines uniquely the orbit O(M), and, in particular, it fully determines the

codimension of O(M) [16, Theorem 2.2].

The dominance ordering in the set of sequences of nonnegative integers

specifies that (a1, a2, . . . ) ⩾ (b1, b2, . . . ) if a1+a2+⋅ ⋅ ⋅+ai ⩾ b1+b2+⋅ ⋅ ⋅+bi for i =
1,2, . . . . We say that (a1, a2, . . . ) > (b1, b2, . . . ) if (a1, a2, . . . ) ⩾ (b1, b2, . . . )
and (a1, a2, . . . ) ≠ (b1, b2, . . . ) [24, Section 2.1].

For every matrix pencil M(λ) with rank r, which is defined in [30,

Chapter VI] as the order of its largest minor that is not equal to the zero

polynomial in λ, we consider the following sequences defined in [24]:

R(M) + r = (r0 + r, r1 + r, r2 + r, . . . );

where ri is the number of right singular blocks in the Kronecker canonical

form of M(λ) with j ⩾ i;

L(M) + r = (l0 + r, l1 + r, l2 + r, . . . );

where li is the number of left singular blocks in the Kronecker canonical

form of M(λ) with j ⩾ i; and for every µ ∈ C ∪ {∞},

Jµ(M) + p = (ω1(µ) + p,ω2(µ) + p, . . . );

where ωi(µ) is the number of Jordan blocks associated with the eigenvalue

µ of dimension greater than or equal to i in the regular structure of the

Kronecker canonical form of M(λ), and p is the number of right singular

blocks in the Kronecker canonical form of M(λ). These sequences allow

us to describe the inclusion relationships between the closures of the orbits

of two matrix pencils. The corresponding theorem is obtained in [60], and

later reformulated in [24] and [67]. We state it as in [67, theorem 2.1].

Theorem 1.5 (see [24, Theorem 3.1] and [60, Theorem 3]). Let M1 and

M2 be two m × n complex matrix pencils with p(M1) and p(M2) right

singular blocks in their Kronecker canonical forms, respectively. Then

O(M) ⊇ O(M) if and only if the following relations hold:
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(i) R(M1) + rank(M1) ⩾R(M2) + rank(M2),

(ii) L(M1) + rank(M1) ⩾ L(M2) + rank(M2),

(iii) Jµ(M1) + p(M1) ⩽ Jµ(M2) + p(M2)

for all µ ∈ C ∪ {∞}.

Pokrzywa’s proof is very abstract and unconstructive. Even more ab-

stract proof of Pokrzywa’s theorem was given by Bongartz in [8]; he uses the

representation theory of finite dimensional algebras. We prove Pokrzywa’s

theorem in Boley’s form [10] (see also Dopico and Dmytryshyn [19]).
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CHAPTER 2

STRATIFICATION THEORY OF MATRIX

PAIRS UNDER EQUIVALENCE AND

CONTRAGREDIENT EQUIVALENCE

2.1. Main results

All matrices in this section are complex matrices and both matrices in each

matrix pair have the same size; we call it the size of the pair. Two matrix

pairs (A,A′) and (B,B′) are equivalent, we write (A,A′) ∼ (B,B′), if there

exist nonsingular matrices R and S such that

R(A,A′)S ∶= (RAS,RA′S) = (B,B′).

The orbit of A = (A,A′) is the set ⟨A⟩ of all pairs that are equivalent to

A. Define the partial ordering on the set of orbits of pairs of the same size

as follows: ⟨A⟩ ⩽ ⟨B⟩ if ⟨A⟩ is contained in the closure of ⟨B⟩. This means

that in each neighborhood of A there is a pair that is equivalent to B.

For each positive integer n, we define the matrices

Ln ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

⋱ ⋱
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Rn ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

⋱ ⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

((n − 1)-by-n),

Jn(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0

λ ⋱
⋱ 1

0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n-by-n, λ ∈ C).



30

We also define the matrices

0↖ ∶=
⎡⎢⎢⎢⎢⎣

1 0 . . .0

0

⎤⎥⎥⎥⎥⎦
, 0↗ ∶=

⎡⎢⎢⎢⎢⎣

0 . . .0 1

0

⎤⎥⎥⎥⎥⎦
, 0↙ ∶=

⎡⎢⎢⎢⎢⎣

0

1 0 . . .0

⎤⎥⎥⎥⎥⎦
, 0↘ ∶=

⎡⎢⎢⎢⎢⎣

0

0 . . .0 1

⎤⎥⎥⎥⎥⎦
,

whose sizes will be clear from the context.

The matrix pairs

Ln ∶= (Ln,Rn), LTn ∶= (LTn ,RT
n), (2.1)

Dn(λ) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(In, Jn(λ)) if λ ∈ C,

(Jn(0), In) if λ =∞.
(2.2)

are called indecomposable Kronecker pairs. Their direct sums are called

Kronecker pairs. By Kronecker’s theorem, each matrix pair A is equivalent

to a Kronecker pair, which is called the Kronecker canonical form of A, and

which is determined by A uniquely up to permutations of direct summands.

Theorem I. Let A and B be nonequivalent Kronecker pairs. Then ⟨A⟩ <
⟨B⟩ if and only if B can be obtained from A by permutations of direct

summands and replacements of pairs of summands of the types (i)–(vi)

listed below, in which m,n ∈ {1,2, . . .}, λ ∈ C ∪ ∞. The notation P ; Q
means that P is replaced by Q.

(i) Lm ⊕Ln ; Lm+1 ⊕Ln−1 in which m + 2 ⩽ n.;

(ii) LTm ⊕LTn ; LTm+1 ⊕LTn−1 in which m + 2 ⩽ n.

(iii) Lm ⊕Dn(λ) ; Lm+1 ⊕Dn−1(λ) (the summands D0(λ) are omitted).

(iv) LTm ⊕Dn(λ) ; LTm+1 ⊕Dn−1(λ).

(v) Dm(λ)⊕Dn(λ) ; Dm−1(λ)⊕Dn+1(λ) in which m ⩽ n.

(vi) LTm ⊕ Ln ; Dr1(µ1) ⊕ ⋅ ⋅ ⋅ ⊕ Drk(µk), in which µ1, . . . , µk ∈ C ∪ ∞ are

distinct and r1 + ⋅ ⋅ ⋅ + rk =m + n − 1.
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Up to permutation of summands, each Kronecker pair is of the form

A ∶=
s

⊕
i=1
LTmi

⊕
s

⊕
i=1
Lni ⊕

t

⊕
i=1

(Dki1(λi)⊕ ⋅ ⋅ ⋅ ⊕Dkisi(λi)),

m1 ⩽ ⋯ ⩽ms, n1 ⩽ ⋯ ⩽ ns, ki1 ⩽ ⋯ ⩽ kisi (i = 1, . . . , t),
(2.3)

in which λ1, . . . , λt ∈ C ∪ ∞ are distinct. The numbers s, s1, . . . , st, s can

be zero, which means that the corresponding direct summands in (2.6) are

absent.

An orbit ⟨B⟩ immediately succeeds ⟨A⟩ if ⟨A⟩ < ⟨B⟩ and there exists no

⟨C⟩ such that ⟨A⟩ < ⟨C⟩ < ⟨B⟩.

Theorem II. Let A be the Kronecker pair (2.6). An orbit O immediately

succeeds the orbit ⟨A⟩ if and only if O is the orbit of a pair that if obtained

from A by one of the replacements

(i′) Lni ⊕Lnj ; Lni+1⊕Lnj−1, in which either j = i+ 1 and ni + 2 ⩽ ni+1, or

j = i + 2 and ni + 1 = ni+1 = ni+2 − 1,

(ii′) LTmi
⊕LTmj

; LTmi+1⊕L
T
mj−1, in which either j = i+ 1 and mi + 2 ⩽mi+1,

or j = i + 2 and mi + 1 =mi+1 =mi+2 − 1,

(iii′) Lns ⊕Dkisi(λi) ; Lns +1 ⊕Dkisi−1(λi),

(iv′) LTms
⊕Dkisi(λi) ; L

T
ms+1 ⊕Dkisi−1(λi),

(v′) Dkij(λi)⊕Dki,j+1(λi) ; Dkij−1(λi)⊕Dki,j+1+1(λi),

(vi′) Lns ⊕LTms
; Dr1(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drq(µq), in which q ⩾ t,

µ1 = λ1, . . . , µt = λt, k1s1 ⩽ r1, . . . , ktst ⩽ rt, (2.4)

µ1, . . . , µq ∈ C ∪∞ are distinct, and r1 + ⋅ ⋅ ⋅ + rq = ns +ms − 1,

which are special cases of the replacements (i)–(vi) from the first main

theorem.
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Define the matrices

∆r(ε) ∶=
⎡⎢⎢⎢⎢⎣

0...0 ε0...0

0

⎤⎥⎥⎥⎥⎦
, ∇r(ε) ∶=

⎡⎢⎢⎢⎢⎣

0

0...0 ε0...0

⎤⎥⎥⎥⎥⎦
(2.5)

(whose sizes will be clear from the context), in which ε is an arbitrary

nonzero complex number that is located in the rth column. We often

write ∆r and ∇r omitting ε. Set ∆0 = ∇0 ∶= 0.

For each orbit ⟨A⟩, its lower cone is the set ⟨A⟩∨ of all orbits ⟨B⟩ such

that ⟨A⟩ ⩽ ⟨B⟩. In the course of the proof of Theorem I, we describe the

lower cones of all direct sums of two indecomposable Kronecker pairs.

Let us rearrange the direct summands of (2.3) as follows:

A ∶=LTm1
⊕LTm2

⊕ ⋅ ⋅ ⋅ ⊕LTms

⊕
t

⊕
i=1

(Dki1(λi)⊕Dki2(λi)⊕ ⋅ ⋅ ⋅ ⊕Dkisi(λi))

⊕Lns ⊕Lns−1 ⊕ ⋅ ⋅ ⋅ ⊕Ln1,

m1 ⩽ ⋯ ⩽ms, ki1 ⩽ ⋯ ⩽ kisi (i = 1, . . . , t), n1 ⩽ ⋯ ⩽ ns.

(2.6)

It follows from Theorem I, that each immediate successor of ⟨A⟩ is the

orbit of a pair that is obtained by a perturbation of only one pair of the

upper diagonal blocks of A.

Corollary 2.1 (of Theorem I). Let A = ([Aij], [A′
ij]) be the Kro-

necker pair (2.6) partitioned such that the pairs of diagonal blocks

(A11,A′
11), (A22,A′

22), . . . are the direct summands LTm1
,LTm2

, . . . ,LTms
,

Dk11(λ1),Dk12(λ1), . . . from (2.6). Then each immediate successor of ⟨A⟩
is the orbit of some matrix pair that is obtained from A by an arbitrarily

small perturbation of only one pair (Aij,A′
ij) with i < j of its upper diagonal

blocks.

We move backwards in the next sections: we first give an independent

proof of a weaker form of Theorem IV in Corollary 2.3, and then we prove

Theorem I in the next sections.



33

2.2. Theorem II follows from Theorem I

In this section, we derive Theorem II from Theorem I. It is sufficient to

prove the following statement:

Let a Kronecker pair B be obtained from a Kronecker pair A by

a replacement (j) ∈ {(i), (ii), . . . , (vi)} from Theorem I. Then ⟨B⟩
immediately succeeds ⟨A⟩ if and only if (j) is the replacement (j′)

from Theorem II.

(2.7)

Let us prove this statement for the pair A given in (2.6).

Case 1: (j) is the replacement (i):

Lni ⊕Lnj ; Lni+1 ⊕Lnj−1, in which ni + 2 ⩽ nj. (2.8)

Ô⇒. Let ⟨B⟩ immediately succeed ⟨A⟩. We must prove that (2.8) is the

replacement (i′). To the contrary, let i+2 ⩽ j, ni < ni+1 < nj, and ni+3 ⩽ nj.
If ni + 2 ⩽ ni+1, then (2.8) is the following composition of replacements of

type (i):

Lni ⊕Lni+1 ⊕Lnj ; Lni+1 ⊕Lni+1−1 ⊕Lnj ; Lni+1 ⊕Lni+1 ⊕Lnj−1.

By Theorem I,

⟨Lni ⊕Lni+1 ⊕Lnj⟩ < ⟨Lni+1 ⊕Lni+1−1 ⊕Lnj⟩ < ⟨Lni+1 ⊕Lni+1 ⊕Lnj−1⟩,

and so ⟨B⟩ is not an immediate successor of ⟨A⟩. If ni + 1 = ni+1, then

ni+1 + 2 ⩽ nj and (2.8) is the following composition of replacements of type

(i):

Lni ⊕Lni+1 ⊕Lnj ; Lni ⊕Lni+1+1 ⊕Lnj−1 ; Lni+1 ⊕Lni+1 ⊕Lnj−1.

Thus, ⟨B⟩ is not an immediate successor of ⟨A⟩ too.

⇐Ô. Let B be obtained from A by replacement (i′). Let B be also

obtained from A by a sequence

A = A1
ϕ1z→ A2

ϕ2z→ A3
ϕ3z→ ⋯

ϕpz→ Ap+1 = B (2.9)
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of replacements of types (i)–(vi). In order to show that ⟨B⟩ is an immediate

successor of ⟨A⟩, we must prove that p = 1.

All replacements ϕ1, . . . , ϕp are not of

• type (vi) since A and B have the same number s of summands LTi ,

but (vi) decreases the number s and this number cannot be restored

by (i)–(v);

• type (iv) since it increases the numberm1+⋅ ⋅ ⋅+ms whereas this number

is not changed by (i), (ii), (iii), and (v);

• type (iii) since it increases n1 + ⋅ ⋅ ⋅ + ns̃;

• type (v) with λ = λi since it increases ∑p<q(kiq − kip) whereas this

number is not changed by (i) and (ii);

• type (ii) since it decreases ∑i<j(mj −mi).

Therefore, all ϕ1, . . . , ϕp are replacements of type (i). Since each replace-

ment (i′) is not the composition of several replacements of type (i), p = 1,

and so ⟨B⟩ is an immediate successor of ⟨A⟩. We have proved (2.7) in Case

1.

Case 2: (j) is the replacement (ii). The statement (2.7) is proved in this

case by transposing the matrices in Case 1.

Case 3: (j) is the replacement (iii):

Ln ⊕Dk(λi) ; Ln+1 ⊕Dk−1(λi), (2.10)

in which (n, k) = (nl, kij) for some l and j.

Ô⇒. To the contrary, suppose that (2.10) is not (iii′); that is, n < ns or

k < kisi. If n < ns, then (2.10) is the composition of replacements of types

(i) and (iii):

Ln ⊕Lns ⊕Dk(λi) ; Ln ⊕Lns+1 ⊕Dk−1(λi) ; Ln+1 ⊕Lns ⊕Dk−1(λi).
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If k < kisi, then

Ln⊕Dk(λi)⊕Dkisi(λi) ; Ln+1⊕Dk(λi)⊕Dkisi−1(λi) ; Ln+1⊕Dk−1(λi)⊕Dkisi(λi)

By the first main theorem, ⟨B⟩ is not an immediate successor of ⟨A⟩.
⇐Ô. Let B be obtained from A by replacement (iii′). Let B be also

obtained from A by a sequence A = A1
ϕ1z→ A2

ϕ2z→ ⋯
ϕpz→ Ap+1 = B of

replacements of types (i)–(vi).

All replacements ϕ1, . . . , ϕp are not of

• type (vi) since it decreases the number s;

• type (i) since it increases lexicographically (n1, n2, . . . , ns);

• types (ii) and (iv) since they change the sequence (m1,m2, . . . ,ms);

• type (v) with λ = λl since it decreases lexicographically

(ki1, ki2, . . . , kisi).

Therefore, all ϕ1, . . . , ϕp are of type (iii). Since each replacement (iii′) is

not the composition of several replacements of type (iii), p = 1, and so ⟨B⟩
immediately succeeds ⟨A⟩.

Case 4: (j) is the replacement (iv). The statement (2.7) is proved in this

case by transposing the matrices in Case 3.

Case 5: (j) is the replacement (v):

Dkij(λi)⊕Dkil(λi) ; Dkij−1(λi)⊕Dkil+1(λi), in which j < l. (2.11)

Ô⇒. To the contrary, suppose that (2.11) is not (v′); that is, kij < ki,j+1 <
kil. Then

Dkij(λi)⊕Dki,j+1(λi)⊕Dkil(λi) ; Dkij−1(λi)⊕Dki,j+1+1(λi)⊕Dkil(λi)

; Dkij−1(λi)⊕Dki,j+1(λi)⊕Dkil+1(λi).
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By the first main theorem, ⟨B⟩ is not an immediate successor of ⟨A⟩.
⇐Ô. Let B be obtained from A by replacement (v′), and let B be also

obtained from A by a sequence A = A1
ϕ1z→ A2

ϕ2z→ ⋯
ϕpz→ Ap+1 = B of

replacements of types (i)–(vi). All replacements ϕ1, . . . , ϕp are not of types

(i)–(iv) and (vi) since they change n1, n2, . . . , ns.

Therefore, all ϕ1, . . . , ϕp are of type (v). Since each replacement (v′) is

not the composition of several replacements of type (v), p = 1, and so ⟨B⟩
immediately succeeds ⟨A⟩.

Case 6: (j) is the replacement (vi):

Lni ⊕LTmj
; Dr1(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drq(µq), (2.12)

in which µ1, . . . , µq ∈ C ∪∞ are distinct and r1 + ⋅ ⋅ ⋅ + rq = ni +mj − 1.

Ô⇒. To the contrary, suppose that (2.12) is not (vi′).

If ni < ns, then

Lni ⊕Lns ⊕LTmj
; Lni ⊕Dr1+ns−ni(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drq(µq)

; Lns ⊕Dr1(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drq(µq),
(2.13)

and so ⟨B⟩ is not an immediate successor of ⟨A⟩. Hence ni = ns and,

analogously, mj =ms.

If there exists λi ∉ {µ1, . . . , µq}, then

Lns ⊕LTms
⊕Dki1(λi) ; Lns+ki1 ⊕LTms

; Dr1(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drq(µq)⊕Dki1(λi),

and so ⟨B⟩ is not an immediate successor of ⟨A⟩. Hence q ⩾ t and we can

rearrange µ1, . . . , µq such that µ1 = λ1, . . . , µt = λt.
Let ri < kisi for some i; for definiteness, for i = 1. Then µ1 = λ1,

Lns ⊕LTms
⊕Dk1s1(µ1) ; Lns+k1s1−r1 ⊕L

T
ms
⊕Dr1(µ1)

; Dr2(µ2)⊕ ⋅ ⋅ ⋅ ⊕Drq(µq)⊕Dk1s1(µ1)⊕Dr1(µ1),
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and so ⟨B⟩ is not an immediate successor of ⟨A⟩. Hence, r1 ⩾ k1s1, . . . ,

rt ⩾ ktst.
⇐Ô. Let B be obtained from A by a replacement

ϕ ∶ Lns ⊕LTms
; Dr1(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drq(µq), q ⩾ t (2.14)

of type (vi′); that is, µ1 = λ1, . . . ,µt = λt, and k1s1 ⩽ r1, . . . , ktst ⩽ rt.
Let B be also obtained from A by a sequence A = A1

ϕ1z→ A2
ϕ2z→ ⋯

ϕpz→
Ap+1 = B of replacements of types (i)–(vi). Exactly one replacement ϕu ∶
Au → Au+1 is of type (vi) since ϕ decreases s by one. The preceding

replacements ϕ1, . . . , ϕu−1 of types (i)–(v) do not change s and s. Let

A′ ∶= Au =
s

⊕
i=1
LTm′

i
⊕

s

⊕
i=1
Ln′i ⊕

t′

⊕
i=1

(Dk′i1(λi)⊕ ⋅ ⋅ ⋅ ⊕Dk′is′
i

(λi)),

m′
1 ⩽ ⋯ ⩽m′

s, n′1 ⩽ ⋯ ⩽ n′s, k′i1 ⩽ ⋯ ⩽ k′is′i (i = 1, . . . , t′), t′ ⩽ t.

We can suppose that ϕu is not a product of replacements. Then ϕu is of

type (iv′) due to part “Ô⇒”:

ϕu ∶ LTm′
s
⊕Ln′s ; Dρ1(ν1)⊕ ⋅ ⋅ ⋅ ⊕Dρq′(νq′), q′ ⩾ t′, (2.15)

in which ν1 = λ1, . . . , νt′ = λt′, and k1s1 ⩽ ρ1, . . . , kt′st′ ⩽ ρt′.
If m′

s > ms, then ms has been increased by some ϕl with l < u of type

(iv). However, this ϕl decreases ∑i,j kij, which cannot be restored because

of the condition k1s1 ⩽ r1, . . . , ktst ⩽ rt. Hence m′
s ⩽ ms and, analogously,

n′s ⩽ ns.
If m′

s <ms, then ∑i,j k′ij+∑i ρi < ∑i,j kij+∑i ri and this inequality cannot

be transformed to the equality by replacements ϕu+1, . . . , ϕp of types (i)–

(v). Hence m′
s =ms and, analogously, n′s = ns.

If ρ1 < r1, then

k′11 + ⋅ ⋅ ⋅ + k′1s′1 + ρ1 < k11 + ⋅ ⋅ ⋅ + k1s1 + r1,

and this inequality cannot be transformed to the equality by replacements

ϕu+1, . . . , ϕp of types (i)–(v). Hence ρ1 ⩾ r1 and, analogously, ρi ⩾ ri for
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all i. Using m′
s = ms and n′s = ns, we find that t′ = t and ρi = ri for all i.

Therefore, ϕu is the replacement ϕ from (2.14). It is easy to check that

u = p = 1 and ϕ1 = ϕ.
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2.3. A weak form of Corollary 2.1

Due to the following theorem, which is a weak form of Corollary 2.1, it

suffices to describe immediate successors for all pairs (2.6) with two direct

summands and for all matrix pairs of the form Dk1(λ)⊕ ⋅ ⋅ ⋅ ⊕Dkl(λ).

Theorem 2.1. Let A = ([Aij], [A′
ij]) be the Kronecker pair (2.6) parti-

tioned such that the pairs of diagonal blocks (A11,A′
11), (A22,A′

22), . . . are

the direct summands LTm1
,LTm2

, . . . ,LTms
,Dk11(λ1),Dk12(λ1), . . . from (2.6).

Write

Di ∶= Dki1(λ1)⊕ ⋅ ⋅ ⋅ ⊕Dkisi(λi), i = 1, . . . , t.

Then each immediate successor of ⟨A⟩ is the orbit of some matrix pair that

is obtained from A by an arbitrarily small perturbation of only one matrix

pair (Aij,A′
ij) with i < j that is not contained in D1, . . . ,Dt, or of only one

matrix pair (Aij,A′
ij) from D1, . . . ,Dt.

Proof. We consider the partition of the matrices of A = (A,A′) into blocks

Aij and A′
ij as well as the partition of A and A′ into superblocks : we join

all strips in ([Aij], [A′
ij]) that correspond to the same eigenvalue. Thus,

the diagonal superblocks form the pairs

LTm1
, . . . , LTms

, D1, . . . ,Dt, Ln1, . . . , Lns. (2.16)

Let ⟨B⟩ be an immediate successor of ⟨A⟩. Then there exists a sequence

B1 = (B1,B
′
1), B2 = (B2,B

′
2), . . . (2.17)

of pairs from ⟨B⟩ that converges to A = (A,A′). All matrix pairs close

enough to A are reduced to its miniversal normal form (1.19) by a smooth

equivalence transformation that preserves A. Hence, all pairs (2.17) can

be taken in the miniversal normal form (1.19), which is upper superblock

triangular.

We say that a block (superblock) of Bi or B′
i in (2.17) is perturbed if it

differs from the corresponding block (superblock) of A or A′.
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Case 1: There are infinite many pairs (2.17), in which at least one upper

diagonal superblock is perturbed.

Then there is a partition

A =
⎛
⎝

⎡⎢⎢⎢⎢⎣

M O

0 N

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

M ′ O′

0 N ′

⎤⎥⎥⎥⎥⎦

⎞
⎠

(O and O′ are zero) (2.18)

that is coarser than the partition into superblocks, with the property: O

or O′ is perturbed infinitely many times in the sequence (2.17). We can

suppose that O or O′ is perturbed in each pair (2.17).

Let m ×m′ be the size of (M,M ′). Partition

Bi =
⎛
⎝

⎡⎢⎢⎢⎢⎣

Mi Oi

0 Ni

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

M ′
i O′

i

0 N ′
i

⎤⎥⎥⎥⎥⎦

⎞
⎠

conformally with A, write ξi ∶= (∥Oi∥ + ∥O′
i∥)−1, and define the equivalent

pair

B̂i ∶=
⎡⎢⎢⎢⎢⎣

Im 0

0 ξ−1i I

⎤⎥⎥⎥⎥⎦
Bi

⎡⎢⎢⎢⎢⎣

Im′ 0

0 ξiI

⎤⎥⎥⎥⎥⎦
=
⎛
⎝

⎡⎢⎢⎢⎢⎣

Mi ξiOi

0 Ni

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

M ′
i ξiO′

i

0 N ′
i

⎤⎥⎥⎥⎥⎦

⎞
⎠
,

which belongs to ⟨B⟩. Then ∥ξiOi∥+∥ξiO′
i∥ = 1, and so the set of matrix pairs

(ξiOi, ξiO′
i) is compact. Chose a fundamental subsequence (ξikOik, ξikO

′
ik
)

and denote its limit by (Q,Q′). Consider the pair

X ∶=
⎛
⎝

⎡⎢⎢⎢⎢⎣

M Q

0 N

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

M ′ Q′

0 N ′

⎤⎥⎥⎥⎥⎦

⎞
⎠
. (2.19)

We have ⟨B⟩ ⩾ ⟨X ⟩ since B̂ik → X as k →∞ and all B̂ik ∈ ⟨B⟩.
Make additional partitions of X into blocks conformally to the partition

of A = ([Aij], [A′
ij]) in the theorem. Choose in (Q,Q′) the nonzero pair

(X,X ′) of conformal blocks X and X ′ such that all columns of Q to the

left of X and all blocks of Q exactly under X are zero, and all columns of
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Q′ to the left of X ′ and all blocks of Q′ exactly under X ′ are zero:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 0 ∗ ∗
M2 0 X ∗

0 M3 0 0 ∗
N1 0

0 N2

0 N3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M ′
1 0 0 ∗ ∗
M ′

2 0 X ′ ∗
0 M ′

3 0 0 ∗
N ′

1 0

0 N ′
2

0 N ′
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Write

Y =
⎛
⎝

⎡⎢⎢⎢⎢⎣

M Y

0 N

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

M ′ Y ′

0 N ′

⎤⎥⎥⎥⎥⎦

⎞
⎠

∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 0 0 0

M2 0 X 0

0 M3 0 0 0

N1 0

0 N2

0 N3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M ′
1 0 0 0 0

M ′
2 0 X ′ 0

0 M ′
3 0 0 0

N ′
1 0

0 N ′
2

0 N ′
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(2.20)

Then

(Ia ⊕ ε−1I ⊕ ε−2Ic)X (Ib ⊕ εI ⊕ ε2Id)
as ε→0ÐÐÐÐ→ Y,

in which a× b is the size of (M1,M ′
1) and c× d is the size of (N3,N ′

3). This

implies that ⟨X ⟩ ⩾ ⟨Y⟩. Since

Yε ∶=
⎡⎢⎢⎢⎢⎣

Im 0

0 ε−1I

⎤⎥⎥⎥⎥⎦
Y

⎡⎢⎢⎢⎢⎣

Im′ 0

0 εI

⎤⎥⎥⎥⎥⎦
=
⎛
⎝

⎡⎢⎢⎢⎢⎣

M εY

0 N

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

M ′ εY ′

0 N ′

⎤⎥⎥⎥⎥⎦

⎞
⎠

as ε→0ÐÐÐÐ→ A,

we have that ⟨Y⟩ ⩾ ⟨A⟩. Therefore, ⟨B⟩ ⩾ ⟨X ⟩ ⩾ ⟨Y⟩ ⩾ ⟨A⟩.
In order to prove that ⟨Y⟩ is a desired pair, it suffices to prove that

⟨Y⟩ ≠ ⟨A⟩. Indeed, then ⟨B⟩ = ⟨Y⟩ > ⟨A⟩ because ⟨B⟩ is an immediate

successor of ⟨A⟩.
On the contrary, suppose that ⟨Y⟩ = ⟨A⟩. Then Yε ∈ ⟨A⟩ for each ε since

Yε ∼ Y. Hence there exist nonsingular matrices, which we take in the form
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I +Rε and I + Sε, such that

Yε = (I +Rε)A(I + Sε) = A +RεA +ASε +RεASε. (2.21)

By Lipschitz’s property for matrix pairs (see [61] or [1]), we can chose the

matrices Rε, Sε and a positive constant c ∈ R such that

∥Rε∥ < εc, ∥Sε∥ < εc (2.22)

for all ε, in which ∥ ⋅ ∥ is the Frobenius matrix norm.

The pair Yε is in miniversal normal form of (2.18) since all nonzero entries

of Q and Q′ are at the places of some stars in (1.19). By the construction

of the miniversal deformation in [39],

∆Yε ∶= Yε −A = ε
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0
0 0 0
0 X 0
0 0 0

0 0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
0 0 0
0 X ′ 0
0 0 0

0 0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= RεA +ASε +RεASε (2.23)

does not belong to the space

T ∶= {RA +AS ∣R and S are nonsingular matrices}.

Thus,

dε ∶= min{∥Yε −A −RA −AS∥ ∣R,S are square matrices} ≠ 0. (2.24)

(Note that T is the tangent space at A to the orbit of A, and dε is the

distance from Yε to the affine space {A +RA +AS ∣R,S}.)

Let R′ and S′ be such that

d1 = ∥Y1 −A −R′A −AS′∥ = ∥∆Y1 −R′A −AS′∥.

By (2.23), ∆Yε = ε∆Y1, and so εd1 = ∥∆Yε − (εR′)A − A(εS′)∥ = dε. By

(2.22),

εd1 ⩽ ∥∆Yε −RεA −ASε∥ = ∥RεASε∥ ⩽ ∥Rε∥∥A∥∥Sε∥ ⩽ ε2c2∥A∥.

This leads to a contradiction since εd1 ⩽ ε2c2∥A∥ does not hold for a suffi-

ciently small ε.
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Case 2: There is only a finite number of pairs (2.17) in which at least one

upper diagonal superblock is perturbed.

Write A = A(1)⊕A(2)⊕⋯, in which A(1),A(2), . . . are the pairs of diagonal

superblocks of A. We can suppose that all upper diagonal superblocks are

not perturbed. Then Bi ∶= B(1)i ⊕ B(2)i ⊕⋯, in which B(1)i ,B(2)i , . . . are the

pairs of perturbed diagonal superblocks of Bi in (2.17).

Since all Bi ∼ B, we can suppose that B(l)1 ∼ B(l)2 ∼ ⋯ for each l. Since

A ≁ B, A(l) ≁ B(l)1 ∼ B(l)2 ∼ ⋯ for some l. Then all

Ci ∶= A(1) ⊕ ⋅ ⋅ ⋅ ⊕A(l−1) ⊕ B(l)i ⊕A(l+1) ⊕⋯

are equivalent and their orbit ⟨C1⟩ > ⟨A⟩. Moreover, ⟨B⟩ ⩾ ⟨C1⟩ because

B(1)i ⊕ ⋅ ⋅ ⋅ ⊕ B(l−1)i ⊕ B(l)1 ⊕ B(l+1)i ⊕⋯ as i→∞ÐÐÐÐ→ C1.

Since there is no intermediate orbit between ⟨A⟩ and ⟨B⟩, we have that

⟨B⟩ = ⟨C1⟩.
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2.4. Perturbations of direct sums of two indecompos-

able Kronecker pairs

2.4.1. Perturbations of LTm ⊕LTn

Theorem 2.2. (a) The set of Kronecker’s canonical forms of all pairs in

a sufficiently small neighborhood of

LTm ⊕LTn , m ⩽ n (2.25)

consists of the pairs

LTm+r ⊕LTn−r, m + r ⩽ n − r, r ⩾ 0. (2.26)

(b) Each pair (2.26) with r > 0 is equivalent to a pair of the form

⎛
⎝

⎡⎢⎢⎢⎢⎣

LTm 0

0 LTn

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

RT
m ∆r(ε)

0 RT
n

⎤⎥⎥⎥⎥⎦

⎞
⎠

(2.27)

(which is obtained by an arbitrarily small perturbation of (2.25)), in which

∆r(ε) is defined in (2.5) and ε is an arbitrary nonzero complex number.

Lemma 2.1. Each pair of n × (n − 1) matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗
0 1 ⋱

0 ⋱ ∗
⋱ 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
1 ∗ ⋱

1 ⋱ ∗
⋱ ∗

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.28)

is reduced to LTn by simultaneous additions of columns from left to right

and simultaneous additions of rows from the bottom to up.

Proof. Consider the subpair P of (2.28) obtained by removing the last

row and last column in the matrices of the pair (2.28). We reduce (2.28)

by simultaneous additions of columns of its matrices from left to right
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and simultaneous additions of rows from the bottom to up. Reasoning

by induction on n, we reduce the subpair P to LTn−1 and obtain the new

(2.28) in which all stars are zero except for some stars of the last columns.

We make zero the stars of the last column in the first matrix by adding

the other columns simultaneously in both matrices; then we make zero the

stars of the last column in the second matrix by adding the last row.

Proof of Theorem 3.48. (a) By Theorem 1.3, there is a neighborhood of

(2.25), in which all pairs are equivalent to pairs of the form

(C,D) ∶=
⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

LTm 0

0 LTn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RT
m

α1 . . . αn−1
0

0 RT
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠
, all αi ∈ C, (2.29)

in which the last m entries in the sequence α1, . . . , αn−1 are zero. It is

sufficient to prove that (C,D) is equivalent to a pair of the form (2.26).

If α1 = ⋅ ⋅ ⋅ = αn−1 = 0, then (C,D) is the pair (2.25). Let αs be the first

nonzero entry, and so

1 ⩽ s < n −m if m ≠ n. (2.30)

Let us reduce (C,D) by simultaneous elementary transformations to the

form (2.26). We usually specify only transformations with one of the ma-

trices C and D which means that we make the same transformations with

the other matrix. We divide the first horizontal strips of C and D by αs,

then multiply the first vertical strips by αs, and obtain
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(C,D) = ([C11 C12

C21 C22
] , [D11 D12

D21 D22
])

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 m−1 1 s s+m−1
1
0 ⋅⋅⋅

⋅⋅⋅ 1
0

1
0 ⋅⋅⋅
⋅⋅⋅ 1
01

0 0 1
0 ⋅⋅⋅ 0 ⋅⋅⋅

⋅⋅⋅ 0 ⋅⋅⋅ 1
0 0 1

0 ⋅⋅⋅
⋅⋅⋅ 1
0

,

1 m−1 1 s s+m−1
0 0 ...01 ∗ ... ∗ ∗...∗ 1
1 ⋅⋅⋅
⋅⋅⋅ 0

1 m

0 1
1 ⋅⋅⋅

⋅⋅⋅ 0
10 s

0 1 0 s+1
0 ⋅⋅⋅ 1 ⋅⋅⋅
⋅⋅⋅ 0 ⋅⋅⋅ 0
0 1 0 s+m

1 ⋅⋅⋅
⋅⋅⋅ 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.31)

with αs = 1. We reduce (C,D) by the following simultaneous elementary

transformations in order to make zero the entry “1” under αs (the zero

entries in (2.31) that are transformed to −1 and then are restored to 0 are

denoted by 0):

• The strip [D11 D12] is subtracted from the substrip formed by rows

s + 1, s + 2, . . . , s +m in the strip [D21 D22]. Thus, the block (1,1) is

subtracted from the rectangle (see (2.31)) in the block (2,1).

• Then the substrip formed by columns s + 1, . . . , s +m − 1 in [D12
D22

] is

added to [D11
D21

]. Thus, the rectangle in the block (2,2) is added to the

rectangle in the block (2,1) restoring it.

We obtain

(C,D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 ⋅⋅⋅

⋅⋅⋅ 1
0

1
⋅⋅⋅

1
1

1
0 ⋅⋅⋅

⋅⋅⋅ 1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ...∗ 0 ... 0 1 ∗ ...∗
1 0

⋅⋅⋅
1

0
1 ⋅⋅⋅

⋅⋅⋅ 0
1 0

∗ ...∗ ∗ ...∗
1 0

⋅⋅⋅
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.32)
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in which the stars denote complex numbers. Interchange the first and

second vertical strips, then the first and second horizontal strips, and obtain

(C,D) =
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 ⋅⋅⋅
⋅⋅⋅ 1
0 1

0 1
0 1

0 ⋅⋅⋅
⋅⋅⋅ 1
0

0 ∗ ...∗ 1
0 ⋅⋅⋅ ⋅⋅⋅ 0 ⋅⋅⋅
⋅⋅⋅ ∗ ⋅⋅⋅ 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 ⋅⋅⋅

⋅⋅⋅ 0
1 0

1 ∗ ∗ ...∗ ∗ ...∗
1 0

1
⋅⋅⋅

1
∗ ∗ ...∗ ∗ ...∗
∗ ⋅⋅⋅ ⋅⋅⋅ 1 0

⋅⋅⋅ ∗ ⋅⋅⋅
∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.33)

in which we replace by stars some zero entries of blocks C32 and D32.

Using transformations from Lemma 2.1, we make zero all stars in D33;

the forms of the other blocks do not change. Make zero row 1 of D32 by

adding rows 2,3, . . . of horizontal strip 2 to row 1 of strip 3 simultaneously

in C and D. Make zero row 1 of C32 by adding column 1 of vertical strip

3 simultaneously in C and D. Then, adding rows 3,4, . . . of strip 2 to the

row 2 of strip 3, we make zero row 2 of D32. Adding column 2 of vertical

strip 3 we make zero row 2 of C32, and so on until we obtain (2.33) in which

all stars in horizontal strips 3 of C and D are.

Using Lemma 2.1, we make zero all stars in D22. Multiplying horizontal

strips 2 in C and D by an arbitrarily small number and then dividing

vertical strips 2 by the same number, we make the entries of D23 arbitrarily

small; these transformations do not change the other blocks. We obtain

the pair that is equivalent to the initial perturbed pair (2.29) and that is

obtained from LTm+s ⊕ LTn−s by an arbitrarily small perturbation, in which

s is from (2.31) and satisfies (2.30). We interchange LTm+s and LTn−s if

m+ s > n− s, and reduce the obtained pair by equivalence transformations
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to its miniversal form

⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

LTm′ 0

0 LTn′

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RT
m′

∗ ⋅ ⋅ ⋅ ∗
0

0 RT
n′

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠
, (2.34)

in which the stars are sufficiently small complex numbers. By (2.30),

m <m′ ∶= min(m + s, n − s) ⩽ n′ ∶= max(m + s, n − s).

We repeat this procedure until we obtain a pair

⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

LT
m(l) 0

0 LT
n(l)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

RT
m(l)

∗ ⋅ ⋅ ⋅ ∗
0

0 RT
n(l)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

(2.35)

in which all stars are zero, and m <m(l) ⩽ n(l). Thus, (2.35) is of the form

(2.26) with r > 0.

(b) Let LTm+r ⊕ LTn−r be the pair (2.26) with r > 0; we must prove that

it is equivalent to (2.27). We divide the first horizontal strips of (2.27) by

ε, then multiply the first vertical strips by ε, and obtain the pair (2.31)

in which all stairs are zero. The obtained pair is reduced as above to

(3.1.1) in which all stairs are zero. This pair is permutation equivalent to

LTm+r ⊕LTn−r.

2.4.2. Perturbations of Ln ⊕Lm

Theorem 2.3. (a) The set of Kronecker’s canonical forms of all pairs in

a sufficiently small neighborhood of

Lm ⊕Ln, m ⩽ n (2.36)

consists of the pairs

Lm+r ⊕Ln−r, m + r ⩽ n − r, r ⩾ 0. (2.37)
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(b) Each pair (2.37) with r > 0 is equivalent to a pair of the form

⎛
⎝

⎡⎢⎢⎢⎢⎣

Lm 0

0 Ln

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

Rm 0

∆r(ε)T Rn

⎤⎥⎥⎥⎥⎦

⎞
⎠

(which is obtained by an arbitrarily small perturbation of (2.36)), in which

∆r(ε) is defined in (2.5) and ε is an arbitrary nonzero complex number.

Proof. This theorem is obtained from Theorem 3.48 by matrix transposi-

tion.

2.4.3. Perturbations of LTm ⊕Dn(λ)

Theorem 2.4. The set of Kronecker’s canonical forms of all pairs obtained

by perturbations of the blocks (1,2) in

LTm ⊕Dn(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

LTm 0

0 In

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

RT
m 0

0 Jn(λ)

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

if λ ∈ C

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

LTm 0

0 Jn(0)

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

RT
m 0

0 In

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

if λ =∞

(2.38)

consists of the pairs

LTm+r ⊕Dn−r(λ), in which 0 ⩽ r ⩽ n. (2.39)

(b) Each pair (2.39) with r > 0 is equivalent to a pair of the form

⎛
⎝

⎡⎢⎢⎢⎢⎣

LTm 0

0 In

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

RT
m ∆n−r+1(ε)

0 Jn(λ)

⎤⎥⎥⎥⎥⎦

⎞
⎠

if λ ∈ C

⎛
⎝

⎡⎢⎢⎢⎢⎣

LTm ∇n−r+1(ε)
0 Jn(0)

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

RT
m 0

0 In

⎤⎥⎥⎥⎥⎦

⎞
⎠

if λ =∞
(2.40)

(which is obtained by an arbitrarily small perturbation of (2.38)), in which

∆r(ε) and ∇r(ε) are defined in (2.5) and ε is an arbitrary nonzero complex

number.
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Proof. Let (A,B) be the pair (2.38) with λ =∞. Since

(RT
m, L

T
m) = Zm(LTm,RT

m)Zm−1, Zp ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1

⋰
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(p-by-p),

(B,A) is equivalent to the pair (2.38) with λ = 0. Therefore, it suffices to

prove the theorem for λ ∈ C.

Let (A,B(λ)) be the pair (2.38) with λ ∈ C. Since (LTm,RT
m − λLTm) is

equivalent to (LTm,RT
m), the pair (A,B(λ)−λA) is equivalent to (A,B(0)).

Therefore, it suffices to prove the theorem for λ = 0. In the rest of the

proof, we set λ = 0.

(a) Let (C,D) be a pair that is obtained from (2.38) with λ = 0 by

replacing its blocks (1,2) by arbitrary matrices; we must prove that the

Kronecker canonical form of (C,D) is (2.39) for some r.

Multiplying the first horizontal strips of C and D by an arbitrarily small

number and then dividing the first vertical strips by the same number, we

make the entries of the blocks (1,2) arbitrarily small. By Theorem 1.3,

(C,D) is reduced by equivalence transformations to the form

(C,D) =
⎛
⎝

⎡⎢⎢⎢⎢⎣

C11 C12

C21 C22

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

D11 D12

D21 D22

⎤⎥⎥⎥⎥⎦

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0 ⋱
⋱ 1

0

0

1

1
0 ⋱

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 α2 ... αn

1 ⋱
⋱ 0 0

1

0 1

0 ⋱
0 ⋱ 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.41)

in which α1, . . . , αn are arbitrarily small.
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Each matrix that commutes with Jn(0) has the form

K ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κ1 κ2 ⋱ κn

κ1 ⋱ ⋱
⋱ κ2

0 κ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, κ1, . . . , κn ∈ C.

The equivalence transformation

(Im ⊕K−1)(C,D)(Im−1 ⊕K), c1 ≠ 0

replaces (α1, . . . , αn) by

(α1, . . . , αn)K = (α1κ1, α1κ2 + α2κ1, . . . , α1κn + ⋅ ⋅ ⋅ + αnκ1) (2.42)

and does not change the other entries of C and D. Let αs be the first

nonzero entry in (α1, . . . , αn). Using transformations (2.42), we make

(α1, . . . , αn) = (0, . . . ,0,1,0, . . . ,0) with “1” at the position s.

Case 1: s = 1. The pair (C,D) is permutation equivalent to

(LTm+n,RT
m+n), which is a pair of the form (2.39).

Case 2: s ⩾ 2. The “1” under αs = 1 is the (s − 1, s)th entry of the

block D22 (see (2.41)). We make zero this entry of D22 by the following

elementary transformations:

• Let first m < s. We subtract the rows 1,2, . . . ,m of the first horizontal

strip from the rows s−1, s−2, . . . , s−m of the second horizontal strip,

respectively, in C and D. Then we add the columns s−1, s−2, . . . , s−
m + 1 of the second vertical strip to the columns 1,2, . . . ,m − 1 of the

first vertical strip in C and D. For example, if m = 3, n = 6, and s = 5,

then

(C,D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1
0 0

1
0 0 1 0 0
0 0 1 0
0 0 0 1

1
1

,

0 0 1
1 0
0 1

0 1
0 0 0 1 0
0 0 0 1
0 0 0 0 1

0 1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;
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the zero entries that are transformed to −1 and then are restored to 0

are denoted by 0.

• Let now m ⩾ s. We subtract the rows 1,2, . . . , s−1 of the first horizon-

tal strip from the rows s− 1, s− 2, . . . ,1 of the second horizontal strip,

respectively, in C and D. Then we add the columns s − 1, s − 2, . . . ,1

of the second vertical strip to the columns 1,2, . . . , s − 1 of the first

vertical strip in C and D. For example, if m = 5, n = 4, and s = 3,

then

(C,D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1

0 1
0 1

0
0 0 1 0
0 0 0 1

1
1

,

0 0 1
1 0

1 0
1 0

1
0 0 0 1
0 0 0 0 1

0 1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In both the cases, we have reduced (C,D) to the pair that is ob-

tained from (2.41) by replacing (α1, . . . , αn) by (0, . . . ,0,1,0, . . . ,0) and

the entry “1” under αs by 0. This pair is permutation equivalent to

(LTm+n−s+1,RT
m+n−s+1) ⊕ (Is−1, Js−1(0)), which is a pair of the form (2.39).

(b) Let (E,F ) ∶= LTm+r ⊕Dn−r(0) with 0 < r ⩽ n be the pair (2.39) with

λ = 0; we must prove that it is equivalent to (2.40). The pair (2.40) with

λ = 0 is the pair (2.41) in which (α1, . . . , αn) = (0, . . . ,0, ε,0, . . . ,0) and

ε ≠ 0 at the place s ∶= n − r + 1. Reasoning as in Cases 1 and 2 of the part

(a), we reduce it to a pair that is permutation equivalent to (E,F ).

2.4.4. Perturbations of Lm ⊕Dn(λ)

Theorem 2.5. (a) The set of Kronecker’s canonical forms of all pairs

obtained by perturbations of the blocks (2,1) in

Lm ⊕Dn(λ) (2.43)
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consists of the pairs

Lm+r ⊕Dn−r(λ), in which 0 ⩽ r ⩽ n. (2.44)

(b) Each pair (2.44) with r > 0 is equivalent to a pair of the form

⎛
⎝

⎡⎢⎢⎢⎢⎣

Lm 0

0 In

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

Rm 0

∆r(ε)T Jn(λ)

⎤⎥⎥⎥⎥⎦

⎞
⎠

if λ ∈ C

⎛
⎝

⎡⎢⎢⎢⎢⎣

Lm 0

0 Jn(0)

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

Rm 0

∇r(ε)T In

⎤⎥⎥⎥⎥⎦

⎞
⎠

if λ =∞

(which is obtained by an arbitrarily small perturbation of (2.43)), in which

ε is an arbitrary nonzero complex number.

Proof. The mapping

A↦
⎡⎢⎢⎢⎢⎣

Im−1 0

0 Zn

⎤⎥⎥⎥⎥⎦
AT

⎡⎢⎢⎢⎢⎣

Im 0

0 Zn

⎤⎥⎥⎥⎥⎦
, Zn ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1

⋰
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(n-by-n)

transforms the matrices from Theorem 2.4 to the matrices from Theorem

2.5.

2.4.5. Perturbations of LTm ⊕Ln

Theorem 2.6. (a) The set of Kronecker’s canonical forms of all pairs in

a sufficiently small neighborhood of

LTm ⊕Ln (2.45)

consists of the pairs (2.45) and

Dr1(λ1)⊕ ⋅ ⋅ ⋅ ⊕Drt(λt), r1 + ⋅ ⋅ ⋅ + rt =m + n − 1, (2.46)

with distinct eigenvalues λ1, . . . , λt ∈ C ∪∞.
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(b) Each pair (2.46) with distinct eigenvalues λ1, . . . , λt ∈ C∪∞ is equiv-

alent to a pair of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α1

0 ⋱ α2

⋱ 1 0 ⋮
0 αm

1 0

0 ⋱ ⋱
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 β1 β2 . . . βn

1 ⋱
⋱ 0 0

1

0 1

0 ⋱ ⋱
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.47)

(which is obtained by an arbitrarily small perturbation of (2.45)), in which

(−β1, . . . ,−βn, α1, . . . , αm) ∶= ε(c0, . . . , cr−1,1,0, . . . ,0), (2.48)

ε is an arbitrary nonzero complex number, and c0, . . . , cr−1 are defined by

c0 + c1x + ⋅ ⋅ ⋅ + cr−1xr−1 + xr ∶= ∏
λi≠∞

(x − λi)ri.

Proof. Let (C,D) = Pα1...αm

β1 ... βn denote the pair (2.47). Then

(DT ,CT ) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c∣cRm 0

β1

⋮
βn

0 RT
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c∣cLm 0

0

α1 . . . αm

LTn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c∣cRT
n

β1

⋮
βn

0

0 Rm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c∣cLTn 0

α1 . . . αm

0 Lm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c∣cLTn 0

βn

⋮
β1

0 Lm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c∣cRT
n

αm . . . α1

0

0 Rm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= Pβn ... β1αm...α1
;

(2.49)
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the third pair is obtained from the second by reversing the order of rows

in each horizontal strip and reversing the order of columns in each vertical

strip.

By Theorem 1.3, there is a neighborhood of (2.45), in which each pair

is equivalent to the pair

Pα1...αm

β1 ... βn (2.50)

for some α1, . . . , αm, β1, . . . , βn. The following three cases are possible.

Case 1: αm ≠ 0 in (2.50). In this case, Pα1...αm

β1 ... βn ∼ (Im+n−1,Φ) with

Φ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cm+n−2 . . . −c1 −c0
1 0 0

⋱ ⋮
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.51)

(c0 . . . , cm+n−2) ∶= α−1m (−β1, . . . ,−βn, α1, . . . , αm−1) (2.52)

because

Pα1...αm

β1 ... βn(Qm−1 ⊕Zn) = (Qm ⊕Zn−1)(Im+n−1,Φ), (2.53)

in which

Qp ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αm αm−1 αm−2 ⋱
αm αm−1 ⋱

αm ⋱
⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(p-by-p), Zp ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1

⋰
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(p-by-p).

For example, if m = n = 4, then (2.53) takes the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 α1
0 1 0 α2
0 0 1 α3
0 0 0 α4

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1β2β3β4
1 0 0
0 1 0
0 0 1

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α4α3α2
α4α3
α4

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α4α3α2α1

α4α3α2

α4α3

α4

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I7,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c6 −c5 −c4 −c3 −c2 −c1 −c0
1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

in which

α4(c0, c1, c2, c3, c4, c5, c6) = (−β1,−β2,−β3,−β4, α1, α2, α3).

The matrix (2.51) has the Jordan canonical form Jr1(λ1) ⊕ ⋅ ⋅ ⋅ ⊕ Jrt(λt)
with distinct λ1, . . . , λt ∈ C; its characteristic polynomial is

(x − λ1)r1⋯(x − λt)rt = c0 + c1x + ⋅ ⋅ ⋅ + cm+n−2xm+n−2 + xm+n−1

= α−1m (−β1 − β2x − ⋅ ⋅ ⋅ − βnxn−1 + α1x
n + α2x

n+1 + ⋅ ⋅ ⋅ + αmxm+n−1).
(2.54)

Thus,

Pα1...αm

β1 ... βn ∼ (I,Φ) ∼ Dr1(λ1)⊕ ⋅ ⋅ ⋅ ⊕Drt(λt) if αm ≠ 0, (2.55)

which is a pair of the form (2.46). We have proved the statement (a) in

Case 1.

By (2.55), each pair (2.46) with distinct nonzero eigenvalues λ1, . . . , λt ∈
C∪∞ is equivalent to Pα1...αm

β1 ... βn defined by (2.54). Then (2.52) holds, and so

Pα1...αm

β1 ... βn is the pair (2.47) defined by (2.48) with ε = αm. The pair Pα1...αm

β1 ... βn

is also equivalent to the pair (2.47) defined by (2.48) with an arbitrary

nonzero ε since

⎛
⎝

⎡⎢⎢⎢⎢⎣

LTm P

0 Ln

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

RT
m Q

0 Rn

⎤⎥⎥⎥⎥⎦

⎞
⎠

⎡⎢⎢⎢⎢⎣

Im−1 0

0 δIn

⎤⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎣

Im 0

0 δIn−1

⎤⎥⎥⎥⎥⎦

⎛
⎝

⎡⎢⎢⎢⎢⎣

LTm δP

0 Ln

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

RT
m δQ

0 Rn

⎤⎥⎥⎥⎥⎦

⎞
⎠

(2.56)

for an arbitrary nonzero δ. This proves the statement (b) if all λi ≠∞.
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Case 2: αk ≠ 0 = αk+1 = ⋅ ⋅ ⋅ = αm for some k < m in (2.50). Let us show

that

Pα1...αm

β1 ... βn = P
α1...αk 0...0
β1 ... βn

∼ Pα1 ... αk

β1 ... βn ⊕ (Jm−k(0), Im−k) if αk ≠ 0. (2.57)

For clarity, we first prove (2.57) in the following special case:

P α1 α2 0 0
β1β2β3β4

∼ P α1 α2

β1β2β3β4 ⊕ (J2(0), I2) if α2 ≠ 0. (2.58)

The first pair in (2.58) is

(C,D) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 α1

0 1 0 α2

0 0 1 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1 β2 β3 β4

1 0 0

0 1 0

0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α2 ≠ 0.

It is sufficient to make zero the entry (2,2) of C; i.e., to prove that

(C,D) ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 α1
0 0 0 α2

0 0 1 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1 β2 β3 β4
1 0 0
0 1 0
0 0 1

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.59)

(then the pair ([ 0 1
0 0 ] , [ 1 0

0 1 ]) in the squares is a direct summand). We

make this zero preserving the other entries by the following sequence of

elementary transformations with (C,D):

• Substituting column 7 multiplied by α−12 from column 2, we make zero
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the entry (2,2) of C:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ 0 α1

0 0 0 α2

0 0 1 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ 0 β1 β2 β3 β4

1 0 0

0 1 0

0 0 1

0 1 0 0

0 0 1 0

∗ 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This transformation may spoil the entries denoted by ∗ in columns 2

of C and D; we restore them as follow.

• We restore column 2 of C by adding column 1 (multiplied by a scalar)

to column 2. This transformation spoils entry (2,2) of D; we restore

it and the entries denoted by stars in column 2 of D by adding row 3

to rows 1, 2, and 7. We obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ∗ α1

0 0 ∗ α2

0 0 1 0

0 0 0 0

1 0 0 0

0 1 0 0

∗ 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 β1 β2 β3 β4

1 0 0

0 1 0

0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

• We restore column 3 of C by adding columns 1, 6, and 7, which spoils

column 3 of D. We restore it by adding row 4 and obtain (2.59), which

proves (2.58).

The equivalence (2.57) for an arbitrary pair (C,D) = Pα1...αm

β1 ... βn with αk ≠
0 = αk+1 = ⋅ ⋅ ⋅ = αm is proved in the same way: we make zero the entry (k, k)
of C by adding the last column, which may spoil the entries (1, k), . . . , (k−



59

1, k) of C; they are made zero by adding columns 1, . . . , k − 1. This spoils

column k of D; we restore it by row transformations. This spoils column

k + 1 of C; we restore it by column transformations, and so on, until we

obtain the equivalence (2.57).

By (2.55) and (2.57),

Pα1...αm

β1 ... βn = P
α1...αk 0...0
β1 ... βn

∼ Dr1(λ1)⊕ ⋅ ⋅ ⋅ ⊕Drt−1(λt−1)⊕Dm−k(∞), (2.60)

which proves the statement (a) in Case 2. Since

α−1k (−β1 − ⋅ ⋅ ⋅ − βnxn−1 + α1x
n + ⋅ ⋅ ⋅ + αkxn+k−1) =

t−1
∏
i=1

(x − λi)ri, (2.61)

the statement (b) holds for ε = αk. It holds for an arbitrary nonzero ε due

to (2.56).

Case 3: α1 = ⋅ ⋅ ⋅ = αm = 0 in (2.50); that is, (C,D) = P0 ... 0
β1 ... βn. If β1 = ⋅ ⋅ ⋅ =

βn = 0, then (C,D) is the pair (2.45). Let βk ≠ 0 = βk−1 = ⋅ ⋅ ⋅ = β1 for some

k ⩾ 1. By (2.49), (2.60), and (2.61), we have

(DT ,CT ) ∼ Pβn ... β10 ... 0 = Pβn ... βk 0...00 ... 0 ∼ Dr1(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drt(µt)⊕Dk−1(∞),

in which µ1, . . . , µt are distinct and

(x − µ1)r1⋯(x − µt)rt = β−1k (βnxm + βn−1xm+1 + ⋅ ⋅ ⋅ + βkxm+n−k).

Let βn = βn−1 = ⋅ ⋅ ⋅ = βl+1 = 0 ≠ βl for some l ⩾ k. Then

(x − µ1)r1⋯(x − µt)rt = β−1k (βlxm+n−l + βl−1xm+n−l+1 + ⋅ ⋅ ⋅ + βkxm+n−k).

Set µt = 0 and rewrite this equality as follows:

(x − µ1)r1⋯(x − µt−1)rt−1xm+n−l = β−1k (βl + βl−1x + ⋅ ⋅ ⋅ + βkxl−k)xm+n−l. (2.62)

Therefore,

(DT ,CT ) ∼ Dr1(µ1)⊕ ⋅ ⋅ ⋅ ⊕Drt−1(µt−1)⊕Dm+n−l(0)⊕Dk−1(∞),

If k = l, then t = 1 and (C,D) ∼ Dm+n−l(∞)⊕Dk−1(0).
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Let l > k, then t ⩾ 2. Setting

λ1 ∶= µ−11 , . . . , λt−1 ∶= µ−1t−1,

we find that

(C,D) ∼ Dr1(λ1)⊕ ⋅ ⋅ ⋅ ⊕Drt−1(λt−1)⊕Dm+n−l(∞)⊕Dk−1(0).

This proves the statement (a) in Case 3.

Replacing x by x−1 in the polynomials (2.62) and equating the leading

coefficients, we obtain

(x−1 − λ−11 )r1⋯(x−1 − λ−1t−1)rt−1 = β−1k (βl + βl−1x−1 + ⋅ ⋅ ⋅ + βkxk−l),

and so

(x − λ1)r1⋯(x − λt−1)rt−1 = β−1l (βk + βk+1x + ⋅ ⋅ ⋅ + βlxk−l).

This proves the statement (b) for ε = −βl. It holds for an arbitrary nonzero

ε due to (2.56).

2.4.6. Perturbations of Dm(λ)⊕Dn(λ)

Theorem 2.7. (a) If a Kronecker pair K is equivalent to a pair in an

arbitrarily small neighborhood of

Dm(λ)⊕Dn(λ), m ⩽ n, (2.63)

then K has the form

Dm−r(λ)⊕Dn+r(λ), 0 ⩽ r ⩽m. (2.64)

(b) Each pair (2.64) with r > 0 is equivalent to a pair of the form
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⎛
⎝
Im+n,

⎡⎢⎢⎢⎢⎣

Jm(λ) ∆r(ε)T

0 Jn(λ)

⎤⎥⎥⎥⎥⎦

⎞
⎠

if λ ∈ C

⎛
⎝

⎡⎢⎢⎢⎢⎣

Jm(0) ∆r(ε)T

0 Jn(0)

⎤⎥⎥⎥⎥⎦
, Im+n

⎞
⎠

if λ =∞

(which is obtained by an arbitrarily small perturbation of (2.63)), in

which ε is an arbitrary nonzero complex number.

Proof. This theorem follows from Theorem 2.9 by the reasons that are

given at the beginning of the next section.
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2.5. Perturbations of Jordan matrices

Each matrix that is obtained by an arbitrarily small perturbation of In is

reduced to In by equivalence transformations that are close to the iden-

tity transformation. Hence, each pair that is obtained by an arbitrarily

small perturbation of (In,B) is reduced to a pair of the form (In,C) by

equivalence transformations that are close to the identity transformation.

Hence, the theory of perturbations of matrix pairs (A,B) with a non-

singular A under equivalence is reduced to the theory of perturbations of

square matrices under similarity. By Theorem 2.1, it reduces to the theory

of perturbations of Jordan matrices with a single eigenvalue.

Theorem 2.8. Let J be a Jordan matrix with a single eigenvalue λ.

(a) If J is a Jordan block, then ⟨J⟩ has no successors.

(b) Let J have at least 2 Jordan blocks. Write it as follows:

J = P ⊕ Jp(λ)⊕ Jq(λ)⊕Q, p ⩽ q, (2.65)

in which P is a direct sum of Jordan blocks of sizes ⩽ p and Q is a

direct sum of Jordan blocks of sizes ⩾ q (P and/or Q can be zero).

Define the Jordan matrix

Jp,q ∶= P ⊕ Jp−1(λ)⊕ Jq+1(λ)⊕Q, (2.66)

in which Jp−1(λ) is absent if p = 1. Then ⟨Jp,q⟩ immediately succeeds

⟨J⟩, and each immediate successor of ⟨J⟩ is ⟨Jp,q⟩ for some p and q.

The Weyr characteristic of a square matrix A for an eigenvalue λ is the

non-increasing sequence (m1,m2, . . . ) in which mi is the number of Jordan

blocks Jl(λ) of size l ⩾ i in the Jordan form of A.
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Each nilpotent matrix A is similar to a matrix of the form

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m1
F1 0

0m2
⋱
⋱ Fk−1

0 0mk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fi ∶=
⎡⎢⎢⎢⎢⎣

Imi+1

0

⎤⎥⎥⎥⎥⎦
, (2.67)

which was called in [65] the Weyr canonical form of A (see historical re-

marks in [?, pp. 80–82]). The Weyr characteristic of A for its single

eigenvalue 0 is (m1,m2, . . . ) since

W 2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m1
0 F1F2 0

0m2
0 ⋱

0m3
⋱ Fk−2Fk−1
⋱ 0

0 0m′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . .

implies

m1 = nullityW = nullityA,

m1 +m2 = nullityW 2 = nullityA2,

m1 +m2 +m3 = nullityW 3 = nullityA3,

. . . . . . . . .

Hence W is uniquely determined by A. The Weir canonical form (2.67) of

A is permutation similar to the Jordan canonical form of A.

Lemma 2.2. Let J and J ′ be Jordan matrices with a single eigenvalue λ.

Let (m1,m2, . . . ) and (m′
1,m

′
2, . . . ) be their Weyr characteristics. Write

si ∶=m1 + ⋅ ⋅ ⋅ +mi, s′i ∶=m′
1 + ⋅ ⋅ ⋅ +m′

i (2.68)

for i = 1,2, . . . . Then

⟨J⟩ ⩽ ⟨J ′⟩ ⇐⇒ si ⩾ s′i for all i. (2.69)



64

Example 2.1. Let

J = J3(λ)⊕ J4(λ)⊕ J4(λ), J ′ = J3(λ)⊕ J3(λ)⊕ J5(λ).

Then

m1 =m2 =m3 = 3, m4 = 2, m5 = 0, m6 =m7 = ⋅ ⋅ ⋅ = 0,

m′
1 =m′

2 =m′
3 = 3, m′

4 = 1, m′
5 = 1, m′

6 =m′
7 = ⋅ ⋅ ⋅ = 0,

and so

s1 = 3, s2 = 6, s3 = 9, s4 = 11, s5 = s6 = ⋅ ⋅ ⋅ = 11,

s′1 = 3, s′2 = 6, s′3 = 9, s′4 = 10, s′5 = s′6 = ⋅ ⋅ ⋅ = 11.

Hence, ⟨J⟩ < ⟨J ′⟩.

Proof of Lemma 2.2. Let J be a Jordan matrix with a single eigenvalue λ.

Then ⟨J − λI⟩ = ⟨J⟩ − λI and ⟨J − λI⟩ = ⟨J⟩ − λI for their closures. Hence,

we must prove (2.69) only for J and J ′ with the single eigenvalue λ = 0.

Ô⇒. Let J ′ be a Jordan matrix such that each neighborhood of J

contains a matrix whose Jordan canonical form is J ′. This means that

there is a convergent sequence

A1, A2, . . . → J (2.70)

in which all Ai are similar to J ′. All Ai have the same characteristic

polynomial f(x). Since the coefficients of the characteristic polynomial

continuously depend on the matrix entries, f(x) is also the characteristic

polynomial of J . Hence, f(x) = xn, and so J ′ is nilpotent.

Since all Ai are similar to J ′, they have the same Weyr canonical form

S−1i AiSi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m′
1
F ′
1 0

0m′
2
⋱
⋱ F ′

k−1
0 0m′

k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F ′
i ∶=

⎡⎢⎢⎢⎢⎣

Im′
i+1

0

⎤⎥⎥⎥⎥⎦
,
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in which (m′
1,m

′
2, . . . ) is the Weyr characteristic of J ′. Applying the Gram–

Schmidt orthogonalisation process to the columns of Si, we get a unitary

matrix Ui = SiRi, where Ri is a nonsingular upper-triangular matrix. Then

U−1
i AiUi = R−1

i ⋅ S−1i AiSi ⋅Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m′
1
V
(i)
1 ∗ . . . ∗

0m′
2
V
(i)
2 ⋱ ⋮

0m′
3

⋱ ∗
⋱ V

(i)
k−1

0 0m′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which every V
(i)
j is an m′

i × m′
i+1 matrix with linearly independent

columns.

The set of matrices U1, U2, . . . is bounded since each entry of a unitary

matrix has modulus ⩽ 1. Hence this set has a limit point, which we denote

by U . Deleting some Ai in (2.70) if necessarily, we make Ui → U . Since

each Ui is unitary, we have UiU∗
i = I, and so UU∗ = I. Hence U is unitary

and

U−1
i AiUi → U−1JU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m′
1

V1 ∗ . . . ∗
0m′

2
V2 ⋱ ⋮
0m′

3
⋱ ∗
⋱ Vk−1

0 0m′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which V
(i)
1 → V1, . . . , V

(i)
k−1 → Vk−1. Note that the columns of some Vi can

be linearly dependent.

Therefore,

m1 = nullityJ = nullityU−1JU ⩾m′
1.
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Since

U−1J2U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m′
1

0 V1V2 0

0m′
2

0 ⋱
0m′

3
⋱ Vk−2Vk−1
⋱ 0

0 0m′
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we have

m1 +m2 = nullityJ2 = nullityU−1J2U ⩾m′
1 +m′

2,

and so on, which proves “Ô⇒” in (2.69).

⇐Ô. Let W and W ′ be Weyr canonical matrices of the same size with

Weyr characteristics (m1,m2, . . . ,mk) and (m′
1,m

′
2, . . . , m

′
k) satisfying s1 ⩾

s′1, s2 ⩾ s′2, . . . . These inequalities guarantee that for each sufficiently small

ε the Weyr canonical form of εW ′+W is W ′. If εi → 0, then εiW ′+W →W .

Hence ⟨W ⟩ ⩽ ⟨W ′⟩.

Proof of Theorem 2.8. (a) Let J = Jp(λ), and let ⟨J⟩ ⩽ ⟨J ′⟩. By (2.69),

m′
1 ⩽m1 = 1. However, m′

1 is the number of Jordan blocks in J ′. Hence, J ′

is a Jordan block. Since J and J ′ have the same size, J ′ = Jp(λ) = J .

(b) Denote by (m1(X),m2(X), . . . ) the Weyr characteristic of a matrix

X and write si(X) ∶= m1(X) + ⋅ ⋅ ⋅ +mi(X). Let A, B, and C be square

matrices with a single eigenvalue. Since mi(A ⊕B) = mi(A) +mi(B), we

have si(A⊕B) = si(A)+ si(B). Thus, si(A⊕B) ⩽ si(A⊕C) if and only if

si(B) ⩽ si(C). By (2.69),

⟨A⊕B⟩ ⩽ ⟨A⊕C⟩ ⇐⇒ ⟨B⟩ ⩽ ⟨C⟩. (2.71)

Let (m1,m2, . . . ) and (m̃1, m̃2, . . . ) be the Weyr characteristics of the

matrices (2.65) and (2.66). Then m̃p = mp − 1, m̃q+1 = mq+1 + 1, the other

m̃i =mi, and so

s̃p = sp − 1, s̃p+1 = sp+1 − 1, . . . , s̃q = sq − 1, the other s̃i = si (2.72)
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in the notation (2.68). Let us prove the following three facts.

Fact 1: ⟨J⟩ < ⟨Jp,q⟩. Due to (2.71), this inequality follows from ⟨Jp(λ)⊕
Jq(λ)⟩ < ⟨Jp−1(λ)⊕ Jq+1(λ)⟩, which holds by (2.69) and (2.72).

Fact 2: if J ′ is a Jordan matrix with the single eigenvalue λ, then

⟨J⟩ < ⟨J ′⟩ Ô⇒ ⟨J⟩ < ⟨Jp,q⟩ ⩽ ⟨J ′⟩ for some p, q. (2.73)

Due to (2.71), it is sufficient to prove (2.73) for J and J ′ that have no

common Jordan blocks. By the assumptions of Theorem 2.8(b), J has at

least two Jordan blocks. Let p and q be such that

J = Jp(λ)⊕ Jq(λ)⊕Q, p ⩽ q,

in which all Jordan blocks of Q are of size ⩾ q. Let us prove that

Jp,q = Jp−1(λ)⊕ Jq+1(λ)⊕Q

satisfies (2.73).

By Lemma 2.2 and ⟨J ′⟩ ⩾ ⟨J⟩, s′i ⩽ si for all i. By Step 1, ⟨Jp,q⟩ > ⟨J⟩.
We must prove that ⟨J ′⟩ ⩾ ⟨Jp,q⟩; that is, s′i ⩽ s̃i for all i. Due to (2.72), it

suffices to prove that

s′p < sp, s′p+1 < sp+1, . . . , s′q < sq. (2.74)

Since J and J ′ do not have common Jordan blocks, J ′ does not have

Jp(λ), and so

s1 =m1 = ⋅ ⋅ ⋅ =mp >mp+1

⩾

s′1 =m′
1 ⩾ ⋯ ⩾m′

p =m′
p+1

Thus, mp ⩾m′
p.

If mp =m′
p, then

s1 =m1 = ⋅ ⋅ ⋅ =mp >mp+1

=

s′1 =m′
1 = ⋯ =m′

p =m′
p+1
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Hence, s1 = s′1, s2 = s′2, . . . , sp = s′p, sp+1 = sp+mp+1 < s′p+m′
p+1 = s′p+1, which

contradicts sp+1 ⩾ s′p+1.
Therefore, mp >m′

p, sp = sp−1 +mp > s′p−1 +m′
p = s′p, and so sp > s′p, which

proves (2.74) if p = q.
Let p < q. Then J has only one Jp(λ), which means that mp =mp+1 + 1.

Since mp >m′
p, we have mp − 1 ⩾m′

p, and so

mp − 1 =mp+1 =mp+2 = ⋅ ⋅ ⋅ =mq

⩾

m′
p =m′

p+1 ⩾m′
p+2 ⩾ ⋯ ⩾m′

q

We obtain consistently sp > s′p, sp+1 = sp + mp+1 > s′p + m′
p+1 = s′p+1, . . . ,

sq = sq−1 +mq > s′q−1 +m′
q = s′q, which proves (2.74) if p < q.

Fact 3: if J ′ is a Jordan matrix with the single eigenvalue λ, then

⟨J⟩ < ⟨J ′⟩ ⩽ ⟨Jp,q⟩ Ô⇒ J ′ = Jp,q

up to permutations of Jordan blocks in J ′.

On the contrary, let ⟨J⟩ < ⟨J ′⟩ < ⟨Jp,q⟩ for some J ′. By Fact 2, we can

take J ′ = Jp′,q′ for some p′ ⩽ q′.
Write t(J) ∶= (t1, t2, . . . ), in which ti is the number of i× i Jordan blocks

in J . Then s(J) ∶= t1 + t2 + . . . is the number of Jordan blocks in J .

Let u = (u1, . . . , us) and u = (v1, . . . , vs) be two sequences of nonnegative

integers. Define two lexicographical orders:

u
l⪯ v if u = v or u1 = v1, . . . , uk−1 = vk−1, uk < vk for some k ⩾ 1;

u
r⪯ v if u = v or uk < vk, uk+1 = vk+1, uk+2 = vk+2, . . . for some k ⩾ 1.

By Fact 2, the inequality ⟨Jp′,q′⟩ < ⟨Jp,q⟩ implies that Jp,q is obtained from

Jp′,q′ by a sequence of replacements of type J ;Js,r:

Jp′,q′ ; (Jp′,q′)r1,s1 ; ((Jp′,q′)r1,s1)r2,s2 ; ⋯ ; Jp,q. (2.75)

Therefore,
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(i) s(Jp′,q′) ⩾ s(Jp,q),

(ii) if s(Jp′,q′) = s(Jp,q), then t(Jp′,q′)
l⪯ t(Jp,q), and

(iii) t(Jp′,q′)
r⪰ t(Jp,q)

since the analogous statements hold for each of the replacements (2.75).

Let s(Jp′,q′) > s(Jp,q). Then J = J1(λ)⊕⋯ and p = 1. Hence q ⩽ p′, and

so t(Jp′,q′)
r≺ t(Jp,q), which contradicts (iii).

Thus, s(Jp′,q′) = s(Jp,q). If p′ < p, then (ii) does not hold. If q′ > q,

then (iii) does not hold. Hence, p ⩽ p′ ⩽ q′ ⩽ q, which contradicts with

(p′, q′) ≠ (p, q).

Theorem 2.9. (a) All matrices in a sufficiently small neighborhood of

Jm(λ)⊕ Jn(λ), m ⩽ n

are similar to matrices of the form

Jm−r(λ)⊕ Jn+r(λ), 0 ⩽ r ⩽m. (2.76)

(b) Each matrix (2.76) with r > 0 is similar to

⎡⎢⎢⎢⎢⎣

Jm(λ) ∆r(ε)T

0 Jn(λ)

⎤⎥⎥⎥⎥⎦
, (2.77)

in which ∆r(ε) with an arbitrary nonzero ε ∈ C is defined in (2.5).

Proof. (a) This statement follows from Theorem 2.8(b).

(b) We make ε = 1 in (2.77) preserving the other entries by the following

similarity transformation: we divide by ε the m rows of the first horizontal

strip, then multiply by ε the m columns of the first vertical strip. In the
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obtained matrix
r+1 m 1 m−r

λ 1 ⋮ 1

⋅⋅⋅ ⋅⋅⋅ 0
λ 1 1 r

λ 1 0 r+1
λ ⋅⋅⋅ 0

⋅⋅⋅ 1 ⋮
λ 0 m

0 0 λ 1 1

0 ⋅⋅⋅ λ ⋅⋅⋅
⋅⋅⋅ 0 ⋅⋅⋅ 1
0 λ 1 m−r

λ ⋅⋅⋅
⋅⋅⋅ 1
λ n

(2.78)

we make zero the entry “1” to the left of ε = 1 by the following similarity

transformations (every 0 denotes the zero entry that is transformed to −1

and then is restored to 0; compare with (2.31)):

• Make zero the entry “1” to the left of ε = 1 by subtracting the columns

1,2, . . . ,m − r of the second vertical strip from the columns r + 1, r +
2, . . . ,m of the first vertical strip, respectively. Thus, the marked

(m− r)× (m− r) subblock in the (2,2)th block of the matrix (2.78) is

subtracted from the marked (m− r)× (m− r) subblock in the (2,1)th
block.

• Make the inverse transformations of rows, adding the rows r+1, . . . ,m

of the first horizontal strip to the rows 1, . . . ,m − r of the second

horizontal strip. Thus, the (m − r) × (m − r) subblock in the (1,1)th
block is added to the (m− r)× (m− r) subblock in the (2,1)th block,

restoring it.

The (m−r)×(m−r) marked subblock in the (1,1)th block of the obtained

matrix is a direct summand, and so the obtained matrix is permutation

similar to (2.76).
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CHAPTER 3

APPLICATIONS OF PERTURBATION

THEORY

3.1. Regularizing algorithm for mixed matrix pencils

The text of this section coincides with the text of my paper [51] (up to

the numeration of statements, formulas and references).

Van Dooren [70] gave an algorithm that for each pair (A,B) of complex

matrices of the same size constructs its regularizing decomposition; that is,

it constructs a matrix pair that is simultaneously equivalent to (A,B) and

has the form

(A1,B1)⊕ ⋅ ⋅ ⋅ ⊕ (At,Bt)⊕ (A,B)

in which (A,B) is a pair of nonsingular matrices and each other summand

has one of the forms:

(Fn,Gn), (F T
n ,G

T
n), (In, Jn(0)), (Jn(0), In),

where Jn(0) is the singular Jordan block and

Fn ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 ⋱

⋱ 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gn ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 ⋱

⋱ 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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are n × (n − 1) matrices; n ⩾ 1. Note that (F1,G1) = (010,010); we denote

by 0mn the zero matrix of size m × n, where m,n ∈ {0,1,2, . . .}. The algo-

rithm uses only unitary transformations, which improves its computational

stability.

We extend Van Dooren’s algorithm to square complex matrices up to

consimilarity transformations A ↦ SAS̄−1 and to pairs of m × n matri-

ces up to transformations (A,B) ↦ (SAR,SBR̄), in which S and R are

nonsingular matrices.

A regularizing algorithm for matrices of undirected cycles of linear map-

pings was constructed by Sergeichuk [65] and, independently, by Varga [71].

A regularizing algorithm for matrices under congruence was constructed by

Horn and Sergeichuk [46].

All matrices that we consider are complex matrices.

3.1.1. Regularizing unitary algorithm for matrices under consim-

ilarity

Two matrices A and B are consimilar if there exists a nonsingular matrix

S such that SAS̄−1 = B. Two matrices are consimilar if and only if they

give the same semilinear operator, but in different bases. Recall that a

mapping A ∶ U → V between complex vector spaces is semilinear if

A(au1 + bu2) = āAu1 + b̄Au2

for all a, b ∈ C and u1, u2 ∈ U .

The canonical form of a matrix under consimilarity is the following

(see [43] or [44]):

Each square complex matrix is consimilar to a direct sum, uniquely deter-

mined up to permutation of direct summands, of matrices of the following

types:

• a Jordan block Jk(λ) with λ ⩾ 0, and
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•
⎡⎢⎢⎢⎢⎣

0 1

µ 0

⎤⎥⎥⎥⎥⎦
with µ ∉ R or µ < 0.

Thus, each square matrix A is consimilar to a direct sum

Jn1(0)⊕ ⋅ ⋅ ⋅ ⊕ Jnk(0)⊕A,

in which A is nonsingular and is determined up to consimilarity; the other

summands are uniquely determined up to permutation. This sum is called

a regularizing decomposition of A. The following algorithm admits to con-

struct a regularizing decomposition using only unitary transformations.

Algorithm 3.1. Let A be a singular n×n matrix. By unitary transforma-

tions of rows, we reduce it to the form

S1A =
⎡⎢⎢⎢⎢⎣

0r1n

A′

⎤⎥⎥⎥⎥⎦
, S1 is unitary,

in which the rows of A′ are linearly independent. Then we make the con-

inverse transformations of columns and obtain

S1AS̄1
−1 =

⎡⎢⎢⎢⎢⎣

0r1 0

⋆ A1

⎤⎥⎥⎥⎥⎦
We apply the same procedure to A1 and obtain

S2A1S̄2
−1 =

⎡⎢⎢⎢⎢⎣

0r2 0

⋆ A2

⎤⎥⎥⎥⎥⎦
, S2 is unitary,

in which the rows of [⋆ A2] are linearly independent.

We repeat this procedure until we obtain

StAt−1S̄t
−1 =

⎡⎢⎢⎢⎢⎣

0rt 0

⋆ At

⎤⎥⎥⎥⎥⎦
, St is unitary,

in which At is nonsingular. The result of the algorithm is the sequence

r1, r2, . . . , rt,At.
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For a matrix A and a nonnegative integer n, we write

A(n) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

000, if n = 0;

A⊕ ⋅ ⋅ ⋅ ⊕A (n summands), if n ⩾ 1.

Theorem 3.2. Let r1, r2, . . . , rt,At be obtained by applying Algorithm 1 to

a square complex matrix A. Then

r1 ⩾ r2 ⩾ . . . ⩾ rt (3.1)

and A is consimilar to

J1
(r1−r2) ⊕ J2(r2−r3) ⊕⋯⊕ J(rt−1−rt)t−1 ⊕ J (rt)t ⊕At (3.2)

in which Jk ∶= Jk(0) and At is determined by A up to consimilarity and the

other summands are uniquely determined.

Proof. Let A ∶ V → V be a semilinear operator whose matrix in some basis

is A. Let W ∶= AV be the image of A. Then the matrix of the restriction

A1 ∶ W → W of A on W is A1. Applying Algorithm 1 to A1, we get

the sequence r2, . . . , rt,At. Reasoning by induction on the length t of the

algorithm, we suppose that r2 ⩾ r3 ⩾ . . . ⩾ rt and that A1 is consimilar to

J1
(r2−r3) ⊕⋯⊕ J(rt−1−rt)t−2 ⊕ J (rt)t−1 ⊕At. (3.3)

Thus, A1 ∶W →W is given by the matrix (3.3) in some basis of W .

The direct sum (3.3) defines the decomposition of W into the direct sum

of invariant subspaces

W = (W21 ⊕ ⋅ ⋅ ⋅ ⊕W2,r2−r3)⊕⋯⊕ (Wt1 ⊕ ⋅ ⋅ ⋅ ⊕Wtrt)⊕W ′.

Each Wpq is generated by some basis vectors epq2, epq3, . . . , epqp such that

A ∶ epq2 ↦ epq3 ↦ ⋯↦ epqp ↦ 0.

For each Wpq, we choose epq1 ∈ V such that Aepq1 = epq2. The set

{epqp ∣2 ⩽ p ⩽ t, 1 ⩽ q ⩽ rp − rp+1} (rt+1 ∶= 0)
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consists of r2 basis vectors belonging to the kernel of A; we supplement

this set to a basis of the kernel of A by some vectors e111, . . . , e1,r1−r2,1.

The set of vectors epqs supplemented by the vectors of some basis of W ′

is a basis of V . The matrix of A in this basis has the form (3.2) because

A ∶ epq1 ↦ epq2 ↦ epq3 ↦ ⋯↦ epqp ↦ 0

for all p = 1, . . . , t and q = 1, . . . , rp − rp+1. This completes the proof of

Theorem 3.2.

Example 3.1. Let a square matrix A define a semilinear operator A ∶ V →
V and let the singular part of its regularizing decomposition be J2⊕J3⊕J4.
This means that V possesses a set of linear independent vectors forming

the Jordan chains

A ∶ e1 ↦ e2 ↦ e3 ↦ e4 ↦ 0

f1 ↦ f2 ↦ f3 ↦ 0 (3.4)

g1 ↦ g2 ↦ 0

Applying the first step of Algorithm 1, we get A1 whose singular part

corresponds to the chains

A ∶ e2 ↦ e3 ↦ e4 ↦ 0

f2 ↦ f3 ↦ 0

g2 ↦ 0

On the second step, we delete e2, f2, g2 and so on. Thus, ri is the number

of vectors in the ith column of (3.32): r1 = 3, r2 = 3, r3 = 2, r4 = 1. We get

the singular part of regularizing decomposition of A:

J1
(r1−r2)⊕⋯⊕J(rt−1−rt)t−1 ⊕J (rt)t = J1(3−3)⊕J2(3−2)⊕J(2−1)3 ⊕J (1)4 = J2⊕J3⊕J4.
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In particular, if

A =

0 0 0 0 e1

1 0 0 0 e2

0 1 0 0 e3

0 0 1 0 e4

0 0 0 f1

1 0 0 f2

0 1 0 f3

0 0 g1

1 0 g2

e1 e2 e3 e4 f1 f2 f3 g1 g2

, (3.5)

then we can apply Algorithm 1 using only transformations of permutational

similarity and obtain

0 0 0 e1

0 0 0 f1

0 0 0 g1

1 0 0 0 0 0 e2

0 1 0 0 0 0 f2

0 0 1 0 0 0 g2

1 0 0 0 0 e3

0 1 0 0 0 f3

1 0 0 e4

e1 f1 g1 e2 f2 g2 e3 f3 e4

(all unspecified blocks are zero), which is the Weyr canonical form of (3.5),

see [44].

3.1.2. Regularizing unitary algorithm for matrix pairs under

mixed equivalence

We say that pairs of m×n matrices (A,B) and (A′,B′) are mixed equiv-

alent if there exist nonsingular S and R such that

(SAR,SBR̄) = (A′,B′).

The direct sum of matrix pairs (A,B) and (C,D) is defined as follows:

(A,B)⊕ (C,D) =
⎛
⎝

⎡⎢⎢⎢⎢⎣

A 0

0 C

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

B 0

0 D

⎤⎥⎥⎥⎥⎦

⎞
⎠
.
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The canonical form of a matrix pair under mixed equivalence was obtained

by Djoković [17] (his result was extended to undirected cycles of linear and

semilinear mappings in [15]):

Each pair (A,B) of matrices of the same size is mixed equivalent to a direct

sum, determined uniquely up to permutation of summands, of pairs of the

following types:

(In, Jn(λ)), (I2k,H2k(µ)), (Jn(0), In), (Fn,Gn), (F T
n ,G

T
n),

in which λ is real nonnegative number,

H2k(µ) ∶=
⎡⎢⎢⎢⎢⎣

0 Ik

Jk(µ) 0

⎤⎥⎥⎥⎥⎦
,

and µ ∉ R or µ < 0.

Thus, (A,B) is mixed equivalent to a direct sum of a pair (A,B) of

nonsingular matrices and summands of the types:

(In, Jn(0)), (Jn(0), In), (Fn,Gn), (F T
n ,G

T
n),

in which (A,B) is determined up to mixed equivalence and the other sum-

mands are uniquely determined up to permutation. This sum is called a

regularizing decomposition of (A,B). The following algorithm admits to

construct a regularizing decomposition using only unitary transformations.

Algorithm 3.3. Let (A,B) be a pair of matrices of the same size in which

the rows of A are linearly dependent. By unitary transformations of rows,

we reduce A to the form

S1A =
⎡⎢⎢⎢⎢⎣

0

A′

⎤⎥⎥⎥⎥⎦
, S1 is unitary,

in which the rows of A′ are linearly independent. These transformations

change B:

S1B =
⎡⎢⎢⎢⎢⎣

B′

B′′

⎤⎥⎥⎥⎥⎦
.
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By unitary transformations of columns, we reduce B′ to the form [B′
1 0]

in which the columns of B′
1 are linearly independent, and obtain

BR1 =
⎡⎢⎢⎢⎢⎣

B′
1 0

⋆ B1

⎤⎥⎥⎥⎥⎦
, R1 is unitary.

These transformations change A:

S1AR̄1 =
⎡⎢⎢⎢⎢⎣

0k1l1 0

⋆ A1

⎤⎥⎥⎥⎥⎦
.

We apply the same procedure to (A1,B1) and obtain

(S2A1R̄2, S2B1R2) =
⎛
⎝

⎡⎢⎢⎢⎢⎣

0k2l2 0

⋆ A2

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

B′
2 0

⋆ B2

⎤⎥⎥⎥⎥⎦

⎞
⎠
,

in which the rows of [⋆ A2] are linearly independent, S2 and R2 are unitary,

and the columns of B′
2 are linearly independent.

We repeat this procedure until we obtain

(StAt−1R̄t, StBt−1Rt) =
⎛
⎝

⎡⎢⎢⎢⎢⎣

0ktlt 0

⋆ At

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

B′
t 0

⋆ Bt

⎤⎥⎥⎥⎥⎦

⎞
⎠
,

in which the rows of At are are linearly independent. The result of the

algorithm is the sequence

(k1, l1), (k2, l2), . . . , (kt, lt), (At,Bt).

For a matrix pair (A,B) and a nonnegative integer n, we write

(A,B)(n) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(000,000), if n = 0;

(A,B)⊕ ⋅ ⋅ ⋅ ⊕ (A,B)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n summands

, if n ⩾ 1.

Theorem 3.4. Let (A,B) be a pair of complex matrices of the same size.

Let us apply Algorithm 2 to (A,B) and obtain

(k1, l1), (k2, l2), . . . , (kt, lt), (At,Bt).
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Let us apply Algorithm 2 to (A,B) ∶= (BT
t ,A

T
t ) and obtain

(k1, l1), (k2, l2), . . . , (kt, lt), (At,Bt).

Then (A,B) is mixed equivalent to

(F1,G1)(k1−l1) ⊕ ⋅ ⋅ ⋅ ⊕ (Ft−1,Gt−1)(kt−1−lt−1) ⊕ (Ft,Gt)(kt−lt)

⊕(J1, I1)(l1−k2) ⊕ ⋅ ⋅ ⋅ ⊕ (Jt−1, It−1)(lt−1−kt) ⊕ (Jt, It)(lt)

⊕(F T
1 ,G

T
1 )(k1−l1) ⊕ ⋅ ⋅ ⋅ ⊕ (F T

t−1,G
T
t−1)(kt−1−lt−1) ⊕ (F T

t ,G
T
t )(kt−lt)

⊕(I1, J1)(l1−k2) ⊕ ⋅ ⋅ ⋅ ⊕ (It−1, Jt−1)(lt−1−kt) ⊕ (It, Jt)(lt)

⊕(BT
t ,A

T
t )

(all exponents in parentheses are nonnegative). The pair (BT
t ,A

T
t ) consists

of nonsingular matrices; it is determined up to mixed equivalence. The

other summands are uniquely determined by (A,B).

The rows of At in Theorem 3.4 are linearly independent, and so the

columns of B ∶= AT
t are linearly independent. As follows from Algorithm

2, the columns of Bt are linearly independent too. Since the rows of At are

linearly independent, the columns of Bt are linearly independent, and the

matrices in (At,Bt) have the same size, these matrices are square, and so

they are nonsingular. The pairs (In, JTn ) and (GT
n , F

T
n ) are permutationally

equivalent to (In, Jn) and (F T
n ,G

T
n). Therefore, Theorem 3.4 follows from

the following lemma.

Lemma 3.1. Let (A,B) be a pair of complex matrices of the same size.

Let us apply Algorithm 2 to (A,B) and obtain

(k1, l1), (k2, l2), . . . , (kt, lt), (At,Bt).

Then (A,B) is mixed equivalent to

(F1,G1)(k1−l1) ⊕ ⋅ ⋅ ⋅ ⊕ (Ft−1,Gt−1)(kt−1−lt−1) ⊕ (Ft,Gt)(kt−lt)

⊕(J1, I1)(l1−k2) ⊕ ⋅ ⋅ ⋅ ⊕ (Jt−1, It−1)(lt−1−kt) (3.6)



80

⊕(Jt, It)(lt) ⊕ (At,Bt)

(all exponents in parentheses are nonnegative). The rows of At are linearly

independent. The pair (At,Bt) is determined up to mixed equivalence. The

other summands are uniquely determined by (A,B).

Proof. We write

(A,B)Ô⇒ (k1, l1, (A1,B1))

if k1, l1, (A1,B1) are obtained from (A,B) in the first step of Algorithm 2.

First we prove two statements.

Statement 1: If

(A,B)Ô⇒ (k1, l1, (A1,B1)),

(Ã, B̃)Ô⇒ (k̃1, l̃1, (Ã1, B̃1)),
(3.7)

and (A,B) is mixed equivalent to (Ã, B̃), then k1 = k̃1, l1 = l̃1, and (A1,B1)
is mixed equivalent to (Ã1, B̃1).

Let m be the number of rows in A. Then

k1 =m − rankA =m − rank Ã = k̃1.

Since (A,B) and (Ã, B̃) are mixed equivalent and they are reduced by

mixed equivalence transformations to

⎛
⎝

⎡⎢⎢⎢⎢⎣

0k1l1 0

X A1

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

B′
1 0

Y B1

⎤⎥⎥⎥⎥⎦

⎞
⎠
,
⎛
⎝

⎡⎢⎢⎢⎢⎣

0k1 l̃1 0

X̃ Ã1

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

B̃′
1 0

Ỹ B̃1

⎤⎥⎥⎥⎥⎦

⎞
⎠
, (3.8)

there exist nonsingular S and R such that

⎛
⎜⎜
⎝
S

⎡⎢⎢⎢⎢⎢⎣

0k1l1 0

X A1

⎤⎥⎥⎥⎥⎥⎦
, S

⎡⎢⎢⎢⎢⎢⎣

B′
1 0

Y B1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0k1 l̃1 0

X̃ Ã1

⎤⎥⎥⎥⎥⎥⎦
R,

⎡⎢⎢⎢⎢⎢⎣

B̃′
1 0

Ỹ B̃1

⎤⎥⎥⎥⎥⎥⎦
R̄

⎞
⎟⎟
⎠
. (3.9)

Equating the first matrices of these pairs, we find that S has the form

S =
⎡⎢⎢⎢⎢⎣

S11 0

S21 S22

⎤⎥⎥⎥⎥⎦
, S11 is k1 × k1.
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Equating the second matrices of the pairs (3.9), we find that

S11[B′
1 0] = [B̃′

1 0]R̄, (3.10)

and so

l1 = rank[B′
1 0] = rank[B̃′

1 0] = l̃1.

Since B′
1 and B̃′

1 are k1 × l1 and have linearly independent columns, (3.10)

implies that R is of the form

R =
⎡⎢⎢⎢⎢⎣

R11 0

R21 R22

⎤⎥⎥⎥⎥⎦
, R11 is l1 × l1.

Equating the (2,2) entries in the matrices (3.9), we get

S22A1 = Ã1R22, S22B1 = B̃1R̄22,

hence (A1,B1) and (Ã1, B̃1) are mixed equivalent, which completes the

proof of Statement 1.

Statement 2: If (3.7), then

(A,B)⊕ (Ã, B̃)Ô⇒ (k1 + k̃1, l1 + l̃1, (A1 ⊕ Ã1,B1 ⊕ B̃1)).

Indeed, if (A,B) and (Ã, B̃) are reduced to (3.8), then (A,B)⊕ (Ã, B̃) is

reduced to

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0k1l1 ⊕ 0k̃1 l̃1 0⊕ 0

X ⊕ X̃ A1 ⊕ Ã1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

B′
1 ⊕ B̃′

1 0⊕ 0

Y ⊕ Ỹ B1 ⊕ B̃1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
,

which is permutationally equivalent to

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0k1l1 0

X A1

⎤⎥⎥⎥⎥⎥⎦
⊕

⎡⎢⎢⎢⎢⎢⎣

B′
1 0

Y B1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0k̃1 l̃1 0

X̃ Ã1

⎤⎥⎥⎥⎥⎥⎦
⊕

⎡⎢⎢⎢⎢⎢⎣

B̃′
1 0

Ỹ B̃1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
.

We are ready to prove Lemma 3.1 for any pair (A,B). Due to Statement

1, we can replace (A,B) by any mixed equivalent pair. In particular, we

can take

(A,B) =(F1,G1)(r1) ⊕ ⋅ ⋅ ⋅ ⊕ (Ft,Gt)(rt)⊕ (3.11)
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(J1, I1)(s1) ⊕ ⋅ ⋅ ⋅ ⊕ (Jt, It)(st) ⊕ (C,D)

for some nonnegative t, r1, . . . , rt, s1, . . . , rt and some pair (C,D) in which

C has linearly independent rows.

Clearly,

(Ji, Ii)Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1,1, (Ji−1, Ii−1)), if i ≠ 1;

(1,1, (000,000)), if i = 1,

and

(Fi,Gi)Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1,1, (Fi−1,Gi−1)), if i ≠ 1;

(1,0, (000,000)), if i = 1.

Due to Statement 2,

• k1 = m − rankA is the number of all summands of the types (Ji, Ii)
and (Fi,Gi),

• l1 is the number of all summands of the types (Ji, Ii) and (Fi,Gi),
except for (F1,G1),

• and

(A1,B1) =(F1,G1)(r2) ⊕ ⋅ ⋅ ⋅ ⊕ (Ft−1,Gt−1)(rt)⊕ (3.12)

(J1, I1)(s2) ⊕ ⋅ ⋅ ⋅ ⊕ (Jt−1, It−1)(st) ⊕ (C,D).

We find that k1 − l1 is the number of summands of the type (F1,G1).
Applying the same reasoning to (3.12) instead of (3.11) we get that

• k2 is the number of all summands of the types (Ji, Ii) and (Fi,Gi)
with i ⩾ 2,

• l1 is the number of all summands of the types (Ji, Ii) with i ⩾ 2 and

(Fi,Gi) with i ⩾ 3,
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• and

(A2,B2) =(F1,G1)(r3) ⊕ ⋅ ⋅ ⋅ ⊕ (Ft−2,Gt−2)(rt)⊕

(J1, I1)(s3) ⊕ ⋅ ⋅ ⋅ ⊕ (Jt−2, It−2)(st) ⊕ (C,D).

We find that k2 − l2 is the number of summands of the type (F1,G1), and

that l1−k2 is the number of summands of the type (J1, I1), and so on, until

we obtain (3.6).

The fact that the pair (At,Bt) in (3.6) is determined up to mixed equiv-

alence and the other summands are uniquely determined by (A,B) follows

from Statement 1 (or from the canonical form of a matrix pair up to mixed

equivalence). This concludes the proof of Lemma 3.1 and Theorem 2.
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3.2. Perturbation analysis of the matrix differential

equation ẋ = ABx

The text of this section coincides with the text of the paper [32] of M. I.

Garćıa-Planas and me (up to the numeration of statements, formulas and

references).

We study a matrix differential equation ẋ = ABx, whose matrix is a

product of an m × n complex matrix A and an n ×m complex matrix B.

It is equivalent to ẏ = S−1ARR−1BSy, in which S and R are nonsingular

matrices and x = Sy. Thus, we can reduce (A,B) by transformations of

contragredient equivalence

(A,B)↦ (S−1AR,R−1BS), S and R are nonsingular. (3.13)

The canonical form of (A,B) with respect to these transformations was

obtained by Dobrovol′skaya and Ponomarev [22] and, independently, by

Horn and Merino [45]:

each pair (A,B) is contragrediently equivalent to a direct sum,

uniquely determined up to permutation of summands, of pairs

of the types (Ir, Jr(λ)), (Jr(0), Ir), (Fr,Gr), (Gr, Fr),
(3.14)

in which r = 1,2, . . . ,

Jr(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0
λ ⋱

⋱ 1

0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(λ ∈ C),

Fr ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 ⋱

⋱ 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gr ∶=
⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0
⋱ ⋱

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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are r × r, r × (r − 1), (r − 1) × r matrices, and

(A1,B1)⊕ (A2,B2) ∶= (A1 ⊕A2,B1 ⊕B2).

Note that (F1,G1) = (010,010); we denote by 0mn the zero matrix of size

m×n, where m,n ∈ {0,1,2, . . .}. All matrices that we consider are complex

matrices. All matrix pairs that we consider are counter pairs: a matrix pair

(A,B) is a counter pair if A and BT have the same size.

A notion of miniversal deformation was introduced by Arnold [3, 5]. He

constructed a miniversal deformation of a Jordan matrix J ; i.e., a sim-

ple normal form to which all matrices J + E close to J can be reduced

by similarity transformations that smoothly depend on the entries of E.

Garćıa-Planas and Sergeichuk [39] constructed a miniversal deformation of

a canonical pair (3.3.1) for contragredient equivalence (3.54).

For a counter matrix pair (A,B), we consider all matrix pairs (A +
Ã,B + B̃) that are sufficiently close to (A,B). The pair (Ã, B̃) is called

a perturbation of (A,B). Each perturbation (Ã, B̃) of (A,B) defines the

induced perturbation AB̃ + ÃB + ÃB̃ of the matrix AB that is obtained as

follows:

(A + Ã)(B + B̃) = AB +AB̃ + ÃB + ÃB̃.

Since Ã and B̃ are small, their product ÃB̃ is “very small”; we ignore it

and consider only first order induced perturbations AB̃ + ÃB of AB.

In this paper, we describe all canonical matrix pairs (A,B) of the form

(3.3.1), for which the first order induced perturbations AB̃+ÃB are nonzero

for all miniversal perturbations (Ã, B̃) ≠ 0 in the normal form defined

in [39].

Note that z = ABx can be considered as the superposition of the systems

y = Bx and z = Ay:

xÐ→ B
yÐÐ→ A Ð→ z implies xÐ→ AB Ð→ z
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3.2.1. Normal form of M. I. Garćıa-Planas and V. V. Sergeichuk

In this section, we recall the miniversal deformations of canonical pairs

(3.3.1) for contragredient equivalence constructed by Garćıa-Planas and

Sergeichuk [39].

Let

(A,B) =(I,C)⊕
t1

⊕
j=1

(Ir1j , Jr1j)⊕
t2

⊕
j=1

(Jr2j , Ir2j)⊕ (3.15)

t3

⊕
j=1

(Fr3j ,Gr3j)⊕
t4

⊕
j=1

(Gr4j , Fr4j)

be a canonical pair for contragredient equivalence, in which

C ∶=
t

⊕
i=1

Φ(λi), Φ(λi) ∶= Jmi1
(λi)⊕⋅ ⋅ ⋅⊕Jmiki

(λi) with λi ≠ λj if i ≠ j,

mi1 ⩽mi2 ⩽ . . . ⩽miki, and ri1 ⩽ ri2 ⩽ . . . ⩽ riti.
For each matrix pair (A,B) of the form (3.29), we define the matrix pair

(I,⊕
i

(Φ(λi) +N))⊕ (3.16)

⊕

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jIr1j 0 0

0 ⊕jJr2j(0) +N N

0 N
P3 N

0 Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jJr1j(0) +N N N

N ⊕jIr2j 0

N 0
Q3 0

N P4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

of the same size and of the same partition of the blocks, in which

N ∶= [Hij] (3.17)

is a parameter block matrix with pi × qj blocks Hij of the form

Hij ∶=
⎡⎢⎢⎢⎢⎢⎢⎣

∗
⋮ 0
∗

⎤⎥⎥⎥⎥⎥⎥⎦
if pi ⩽ qj, Hij∶ =

⎡⎢⎢⎢⎢⎣

0
∗⋯∗

⎤⎥⎥⎥⎥⎦
if pi > qj (3.18)
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(we usually write Hij without indexes),

Pl ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Frl1 +H H ⋯ H

Frl2 +H ⋱ ⋮
⋱ H

0 Frltl +H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.19)

Ql ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Grl1 0

H Grl2

⋮ ⋱ ⋱
H ⋯ H Grltl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(l = 3, 4),

N and H are matrices of the form (3.31) and (3.32), and the stars denote

independent parameters.

Theorem 3.5 (see [39]). Let (A,B) be the canonical pair (3.29). Then

all matrix pairs (A + Ã,B + B̃) that are sufficiently close to (A,B) are

simultaneously reduced by some transformation

(A + Ã,B + B̃)↦ (S−1(A + Ã)R,R−1(B + B̃)S),

in which S and R are matrix functions that depend holomorphically on the

entries of Ã and B̃, S(0) = I, and R(0) = I, to the form (3.30), whose

stars are replaced by complex numbers that depend holomorphically on the

entries of Ã and B̃. The number of stars is minimal that can be achieved

by such transformations.

3.2.2. Criteria of non-singularity: proof of the main result

Each matrix pair (A+Ã,B+B̃) of the form (3.30), in which the stars are

complex numbers, we call a miniversal normal pair and (Ã, B̃) a miniversal

perturbation of (A,B).
The following theorem is the main result of the paper.
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Theorem 3.6. Let (A,B) be a canonical pair (3.3.1). Then AB̃ + ÃB ≠ 0

for all nonzero miniversal perturbations (Ã, B̃) if and only if the following

inequalities hold:

r1t1 < r21 if t1t2 ≠ 0,

r2t2 < r41 if t2t4 ≠ 0, (3.20)

r1t1 < r41 if t1t4 ≠ 0, and

r3t3 < r41 if t3t4 ≠ 0.

Proof. We write Jr ∶= Jr(0). Since the deformation (3.30) is the direct sum

of

(I,⊕
i

(Φ(λi) +N))

and

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jIr1j 0 0

0 ⊕jJr2j +N N

0 N
P3 N

0 Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jJr1j +N N N

N ⊕jIr2j 0

N 0
Q3 0

N P4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

it is sufficient to consider (A,B) equals

(I,⊕
i

Φ(λi))

or

t1

⊕
j=1

(Ir1j , Jr1j)⊕
t2

⊕
j=1

(Jr2j , Ir2j)⊕
t3

⊕
j=1

(Fr3j ,Gr3j)⊕
t4

⊕
j=1

(Gr4j , Fr4j). (3.21)

Let first (A,B) = (I,⊕iΦ(λi)). Then (A + Ã,B + B̃) =

⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⊕jIr1j 0 0

0 ⋱ 0

0 0 ⊕jIrlj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⊕jJr1j(λ1) +N 0 0

0 ⋱ 0

0 0 ⊕jJrlj(λl) +N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠
.
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Since

ÃB +AB̃ = AB̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

N 0 0

0 ⋱ 0

0 0 N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

in which all N have independent parameters, we have that ÃB +AB̃ = 0 if

and only if all N are zero, that is (Ã, B̃) = (0,0).

It remains to consider (A,B) equaling the second pair in (3.21). Write

the matrices (3.33) as follows:

Pl = P l + P l, Ql = Ql +Ql
, in which l = 3, 4,

P l =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Frl1 0 ⋯ 0

Frl2 ⋱ ⋮
⋱ 0

0 Frltl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P l =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hrl1 H ⋯ H

Hrl2 ⋱ ⋮
⋱ H

0 Hrltl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ql =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Grl1 0

0 Grl2

⋮ ⋱ ⋱
0 ⋯ 0 Grltl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q
l
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0rl1 0

H 0rl2

⋮ ⋱ ⋱
H ⋯ H 0rltl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N and H are matrices of the form (3.31) and (3.32), and the stars denote

independent parameters.

Write

Ψ1 ∶= ⊕jJr1j(0), Ψ2 ∶= ⊕jJr2j(0). (3.22)

Then

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0

0 Ψ2 0 0

0 0 P 3 0

0 0 0 Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 N22 N23 N24

0 N32 P 3 N34

0 N42 0 Q
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1 0 0 0

0 I 0 0

0 0 Q3 0

0 0 0 P 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N ′
11 N ′

12 N ′
13 N ′

14

N ′
21 0 0 0

N ′
31 0 Q

3
0

N ′
41 0 N ′

43 P 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

AB̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N ′
11 N ′

12 N ′
13 N ′

14

Ψ2N ′
21 0 0 0

P 3N ′
31 0 P 3Q3

0

Q4N
′
41 0 Q4N

′
43 Q4P 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ÃB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 N22 N23Q3 N24P 4

0 N32 P 3Q3 N34P 4

0 N42 0 Q
4
P 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which Nij and N ′
ij are blocks of the form (3.31). All these blocks have

distinct sets of independent parameters and may have distinct sizes.

Since ÃB and AB̃ have independent parameters for each (A,B), we

should prove that ÃB ≠ 0 for all Ã ≠ 0 and B̃A ≠ 0 for all B̃ ≠ 0. Thus, we

should prove that

Ψ2N
′
21, N23Q3, N24P 4, P 3N

′
31, N34P 4, Q4N

′
41, Q4N

′
43 (3.23)

are nonzero if the corresponding parameter blocks Nij and N ′
ij are nonzero.

Case 1: consider the matrix

Ψ2N
′
21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Jr21(0) 0

⋱
0 Jr2t2(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hr21r11 . . . Hr21r1t1

. . . . . . . . .

Hr2t2r11
. . . Hr2t2r1t1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Jr21(0)Hr21r11 . . . Jr21(0)Hr21r1t1

. . . . . . . . .

Jr2t2(0)Hr2t2r11
. . . Jr2t2(0)Hr2t2r1t1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
in which r11 ⩽ r12 ⩽ ⋅ ⋅ ⋅ ⩽ r1t1 and r21 ⩽ r22 ⩽ ⋅ ⋅ ⋅ ⩽ r2t2.
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The matrix N ′
21 is contained in the following submatrix of AB̃:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr11(0) 0

⋱ 0

0 Jr1t1(0)
Hr21r11 . . . Hr21r1t1

Ir21 0

⋮ ⋮ ⋱
Hr2t2r11

. . . Hr2t2r1t1
0 Ir2t2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each Hr2ir1j has the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αr21

⋮ 0

αr2i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

if r2i ⩽ r1j,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

αr11 ⋯ αr1j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if r2i > r1j.

Correspondingly, Jr1jHr2ir1j is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αr22

⋮ 0

αr2i−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if r2i ⩽ r1j,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

αr11 ⋯ αr1j

0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if r2i > r1j.

We see that αr21 disappears if r2i ⩽ r1j and all parameters remain if r2i > r1j,
thus we get the inequalities r11 ⩽ ⋅ ⋅ ⋅ ⩽ r1t1 < r21 ⩽ ⋅ ⋅ ⋅ ⩽ r2t2, which gives the

first inequality in (3.20).

Case 2: consider the matrix

N24P 4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hr21r41 . . . Hr21r4t4

. . . . . . . . .

Hr2t2r41
. . . Hr2t2r4t4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Fr41 0

⋱
0 Fr4t4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hr21r41Fr41 . . . Hr21r4t4
Fr4t4

. . . . . . . . .

Hr2t2r41
Fr41 . . . Hr2t2r4t4

Fr4t4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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in which r21 ⩽ ⋅ ⋅ ⋅ ⩽ r2t2 and r41 ⩽ ⋅ ⋅ ⋅ ⩽ r4t4.
The matrix N24 is contained in the following submatrix of ÃB:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr21(0) 0 Hr21r41 . . . Hr21r4t4

⋱ ⋮ ⋮
0 Jr2t2(0) Hr2t2r41

. . . Hr2t2r4t4

Gr41 0

0 ⋱
0 Gr4t4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each Hr2ir4jFr4j has the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

αr41 ⋯ αr4j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

if r4j ⩽ r2i,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αr21

⋮ 0

αr2i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

if r4j > r2i.

We see that αr4j disappears if r4j ⩽ r2i and all parameters remain if r4j > r2i,
thus we have the inequalities r21 ⩽ ⋅ ⋅ ⋅ ⩽ r2t2 < r41 ⩽ ⋅ ⋅ ⋅ ⩽ r4t4, which gives the

second inequality in (3.20).

Case 3: consider Q4N
′
41. By analogy with Case 2, we get the inequalities

r11 ⩽ ⋅ ⋅ ⋅ ⩽ r1t1 < r41 ⩽ ⋅ ⋅ ⋅ ⩽ r4t4, which gives the third inequality in (3.20).

Case 4: consider N34P 4. The matrix N34 is contained in the following

submatrix of ÃB:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fr31 0 Hr31r41 . . . Hr31r4t4

⋱ ⋮ ⋮
0 Fr3t3 Hr3t3r41

. . . Hr3t3r4t4

Gr41 0

0 ⋱
0 Gr4t4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We get the inequalities r31 ⩽ ⋅ ⋅ ⋅ ⩽ r3t3 < r41 ⩽ ⋅ ⋅ ⋅ ⩽ r4t4, which gives the forth

inequality in (3.20).
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Case 5: consider the matrix

N23Q3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hr21r31 . . . Hr21r3t3

. . . . . . . . .

Hr2t2r31
. . . Hr2t2r3t3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Gr31 0

⋱
0 Gr3t3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hr21r31Gr31 . . . Hr21r3t3
Gr3t3

. . . . . . . . .

Hr2t2r31
Gr31 Hr2t2r3t3

Gr3t3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
in which r21 ⩽ ⋅ ⋅ ⋅ ⩽ r2t2 and r31 ⩽ ⋅ ⋅ ⋅ ⩽ r3t3. The matrix N23 is contained in

the following submatrix of ÃB:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr21(0) 0 Hr21r31 . . . Hr21r3t3

⋱ ⋮ ⋮
0 Jr2t2(0) Hr2t2r31

. . . Hr2t2r3t3

Fr31 0

0 ⋱
0 Fr3t3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each Hr2ir3jGr3j has the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮ 0

0 αr21 ⋯ αr2i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

if r3j ⩽ r2i,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 αr31

⋮ ⋮ 0

0 αr3j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

if r3j > r2i.

We find that all parameters are preserved.

Cases 6 and 7: consider the matrices Q4N
′
41 and P 3N ′

31. We find that

all parameters are preserved too.

Finally, we get that ÃB ≠ 0 for all Ã ≠ 0 and B̃A ≠ 0 for all B̃ ≠ 0 if

(A,B) has the form

(I,⊕
i

Φ(λi))⊕
t1

⊕
j=1

(Ir1j , Jr1j)⊕
t2

⊕
j=1

(Jr2j , Ir2j)⊕
t3

⊕
j=1

(Fr3j ,Gr3j)⊕
t4

⊕
j=1

(Gr4j , Fr4j)

in which r1t1 < r21 if t1t2 ≠ 0, r2t2 < r41 if t2t4 ≠ 0, and r3t3 < r41 if t3t4 ≠ 0.
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3.3. Versal deformations of matrix products

The text of this section coincides with the text of the paper [33] of M. I.

Garćıa-Planas and me (up to the numeration of statements, formulas and

references).

Let us consider the differential matrix equation y′ = ABy, in which A

and B are complex matrices. Using the substitution y = Sz, we can reduce

(A,B) by contragredient equivalence transformations

(S−1AR,R−1BS), R and S are nonsingular (3.24)

since y′ = ABy is equivalent to z′ = S−1AR ⋅R−1BSz. We study perturba-

tions of AB that are products of perturbations of A and B.

By Arnold [3], a deformation of a square complex matrix M is a matrix

M(δ), δ = (δ1, . . . , δr) of the same size with entries that are power series

of an arbitrary number of complex variables δ1, . . . , δr, convergent in a

neighborhood of 0, with M(0) = M . A simplest deformation of M is a

deformation M+X, in which every entry of X is either 0, or an independent

parameter xij.

A deformation M(δ) is versal under similarity if all complex matrices

M +E that are sufficiently close to M can be simultaneously reduced by

some transformation

S(E)−1(M +E)S(E), S(E) is holomorphic at zero, S(0) = I

to the form M(δ1(E), . . . , δr(E)), in which all δi(E) are holomorphic func-

tions on the entries of E such that δi(0) = 0. A versal deformation with the

minimal number of parameters is called miniversal. For example, the sim-

plest deformation M(X) =M +X in which all entries of X are independent

parameters is versal. Arnold [3, 5] constructed miniversal deformations of
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all Jordan matrices; in particular, the parameter matrix

Jm(λ) +X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0
λ ⋱

⋱ 1

0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

⋮ ⋮ ⋮
0 0 . . . 0

xm1 xm2 . . . xmm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(λ ∈ C)

is a miniversal simplest deformation of the Jordan block Jm(λ).
Versal deformations provide a special parametrization of matrix spaces,

which can be effectively applied to perturbation analysis and investigation

of complicated objects like singularities and bifurcations in multiparame-

ter dynamical systems; see [35, 56] and the references given there. Versal

deformations are widely used both in abstract mathematics and in its appli-

cations. For example, Bleher and Chinburg [7] apply versal deformations to

Galois theory; Conrad [14] applies them to algebraic geometry; Koçak [49]

constructs versal deformations of linear Hamiltonian systems.

A deformation (A(δ),B(δ)) of a pair (A,B) of complex matrices of

sizes m × n and n ×m and its versality under contragredient equivalence

(3.54) are determined analogously. Garćıa-Planas and Sergeichuk [39] con-

structed miniversal simplest deformations of matrix pairs under contragre-

dient equivalence.

Let (A(δ),B(δ)) be a versal deformation of (A,B). It is important

to know, when the deformation A(δ)B(δ) of AB is versal, which means

that the behavior of AB under perturbations is fully determined by the

deformation (A(δ),B(δ)). In particular, if (A +X,B + Y ) is the simplest

deformation of (A,B), in which all entries of X and Y are independent

parameters, then

(A +X)(B + Y ) = AB +AY +XB +XY (3.25)

is a deformation of AB and

• if m ⩽ n, then (3.25) is a versal deformation since the matrix equation

AY +XB +XY = E is solvable for each E (we can take a small X
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such that the rows of A+X are linearly independent and find Y from

(A +X)Y = E −XB);

• if m is much more than n, then (3.25) is not a versal deformation (we

do not know if the condition m > n is sufficient).

The main result of this paper is Theorem 3.9, in which we prove the

equivalence of two statements for a pair (A,B) of complex matrices of

sizes m × n and n ×m:

• if (A + X,B + Y ) is the simplest miniversal deformation of (A,B)
constructed by Garćıa-Planas and Sergeichuk [39], then (A+X)(B+Y )
is a versal deformation of AB;

• A has linearly independent rows and/or B has linearly independent

columns.

3.3.1. Preliminaries For each Jordan canonical matrix J whose Jordan

blocks are ordered as follows:

J =
t

⊕
i=1

(Jmi1
(λi)⊕ ⋅ ⋅ ⋅ ⊕ Jmiri

(λi)), mi1 ⩾mi2 ⩾ . . . ⩾miri (3.26)

(λi ≠ λj if i ≠ j), we define the matrix of the same size

J +D ∶=
t

⊕
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jmi1
(λi) + 0↓ 0↓ . . . 0↓

0← Jmi2
(λi) + 0↓ ⋅ ⋅ ⋅ ⋮

⋮ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0↓

0← . . . 0← Jmiri
(λi) + 0↓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.27)

in which

0← ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 . . . 0

⋮ ⋮ ⋮
∗ 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and 0↓ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0

⋮ ⋮
0 ⋯ 0

∗ ⋯ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the stars denote independent parameters.
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Theorem 3.7 (Arnold [3]). The deformation (3.27) of the Jordan canon-

ical matrix (3.26) is miniversal.

The canonical form of a pair (A,B) of m×n and n×m complex matrices

under contragredient equivalence is given by Dobrovol′skaya and Pono-

marev [22] and, independently, by Horn and Merino [45]:

(A,B) is contragrediently equivalent to a direct sum, uniquely

determined up to permutation of summands, of pairs of the

types (Ir, Jr(λ)), (Jr(0), Ir), (Fr,Gr), (Gr, Fr),

in which r = 1,2, . . . ,

Fr ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 ⋱

⋱ 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gr ∶=
⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0
⋱ ⋱

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(3.28)

are r × (r − 1) and (r − 1) × r matrices, and

(A1,B1)⊕ (A2,B2) ∶= (A1 ⊕A2,B1 ⊕B2).

Note that

(F1,G1) = (010,001).

We denote by 0mn the m × n zero matrix, where m,n ∈ {0,1,2, . . .}.

Let us write a canonical pair for contragredient equivalence in the form

(A,B) = (I,C)⊕
t1

⊕
j=1

(Ir1j , Jr1j)⊕
t2

⊕
j=1

(Jr2j , Ir2j)

⊕
t3

⊕
j=1

(Fr3j ,Gr3j)⊕
t4

⊕
j=1

(Gr4j , Fr4j), (3.29)

in which

C ∶=
t

⊕
i=1

Φ(λi), Φ(λi) ∶= Jmi1
(λi)⊕ ⋅ ⋅ ⋅ ⊕ Jmiki

(λi)

with λi ≠ λj if i ≠ j, mi1 ⩾mi2 ⩾ ⋅ ⋅ ⋅ ⩾miki, and ri1 ⩾ ri2 ⩾ ⋅ ⋅ ⋅ ⩾ riti.
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For each matrix pair (A,B) of the form (3.29), we define the matrix pair

(I,⊕
i

(Φ(λi) +N))⊕

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jIr1j 0 0

0 ⊕jJr2j(0) +N N

0 N
P3 N

0 Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊕jJr1j(0) +N N N

N ⊕jIr2j 0

N 0
Q3 0

N P4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.30)

of the same size and of the same partition of the blocks, in which

N ∶= [Hij] (3.31)

is a parameter block matrix with pi × qj blocks Hij of the form

Hij ∶=
⎡⎢⎢⎢⎢⎢⎢⎣

∗
⋮ 0
∗

⎤⎥⎥⎥⎥⎥⎥⎦
if pi ⩽ qj, Hij∶ =

⎡⎢⎢⎢⎢⎣

0
∗⋯∗

⎤⎥⎥⎥⎥⎦
if pi > qj (3.32)

(we usually write Hij without indexes),

Pl ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Frl1 +H H ⋯ H

Frl2 +H ⋱ ⋮
⋱ H

0 Frltl +H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ql ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Grl1 0

H Grl2

⋮ ⋱ ⋱
H ⋯ H Grltl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.33)

(l = 3, 4), N and H are matrices of the form (3.31) and (3.32), and the

stars denote independent parameters.

Theorem 3.8 (Garcia–Planas, Sergeichuk [39]). The deformation (3.30)

of the canonical pair (3.29) is miniversal.

3.3.2. Main theorem Let us define the matrix pairs

Jn(λ) ∶= (In, Jn(λ)), Kn ∶= (Jn(0), In),
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Fn ∶= (Fn,Gn), Gn ∶= (Gn, Fn),

in which the matrices Fn and Gn are of the form (3.28).

The following theorem is the main result of the paper.

Theorem 3.9. Let (A,B) be the canonical pair (3.29). Then the following

three conditions are equivalent:

(a) if (A + X,B + Y ) is the simplest miniversal deformation (3.30) of

(A,B), then (A +X)(B + Y ) is a versal deformation of AB;

(b) (A,B) does not contain summands of types Fr and Jm(0)⊕Kn.

(c) A has linearly independent rows and/or B has linearly independent

columns.

Lemma 3.2. Let

M = Jm1
(λ1)⊕ ⋅ ⋅ ⋅ ⊕ Jmk

(λk). (3.34)

The tangent space to the orbit of M at the point M is equal to

T (M) ∶= {SM −MS ∣S ∈ Cn×n}. (3.35)

T (M) consists of all the block matrices

P ∶= [Pij]ki,j=1

divided into blocks conformally with M , in which

• if λi ≠ λj then Pij is an arbitrary matrix;

• if λi = λj then

Pij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
b1 ⋱ ⋮
⋱ b2 ∗ ∗
a1 ⋱ ⋱ ∗
0 a2 ⋱ bmj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if mi ⩾mj (3.36)
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and

Pij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 ∗ . . . . . . . . . . . . ∗
⋱ b2 ⋱ ⋮
a1 ⋱ ⋱ ⋱ ⋮
0 a2 ⋱ bmi

∗ . . . ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

if mi <mj, (3.37)

in which the sum of elements of each first min(mi,mj) diagonals starting

from the left bottom corner equals zero:

a1 + a2 = 0, . . . , b1 + b2 + ⋅ ⋅ ⋅ + bmin(mi,mj) = 0,

and the elements of the other diagonals (denoted by ∗) are arbitrary.

Proof. The tangent space to the orbit of M at the point M has the form

(3.35) since by the Lipschitz property [61] each matrix that is similar to

M and close to M has the following form with a small S:

(I − S)−1M(I − S) = (I + S + S2 +⋯)M(I − S)

=M + (SM −MS) + S(SM −MS) + S2(SM −MS) +⋯

=M + SM −MS´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
small

+S(I − S)−1(SM −MS)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

very small

.

A matrix P belongs to T (M) if and only if there exists S such that

SM −MS = P. (3.38)

Equating the corresponding blocks in (3.38), we obtain the system of k2

equalities:

SijJmi
(λi) − Jmj

(λj)Sij = Pij, (3.39)

in which i, j = 1,2, . . . , k.

If λi ≠ λj in (3.34) then for each Pij there exists Sij such that (3.39)

holds (see [30, Chapter VIII, § 3]).

If λi = λj then

Sij(λiI + Jmi
(0)) − (λiI + Jmj

(0))Sij = Pij,
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which gives

SijJmi
(0) − Jmj

(0)Sij = Pij. (3.40)

Write

Sij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s11 . . . s1mj

⋮ ⋱ ⋮
smi1 . . . smimj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then (3.40) takes the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 s11 . . . s1,mj−1
0 s21 . . . s2,mj−1
⋮ ⋮ ⋮
0 smi1 . . . smi,mj−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s21 s22 . . . s2mj

⋮ ⋮ ⋮
smi1 smi2 . . . smimj

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p11 . . . p1mj

⋮ ⋮
pmi1 . . . pmimj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

which proves that Pij has the form (3.36) or (3.37).

Recall that a deformation of a square matrix M is a power series

M(δ1, . . . , δr) =M +∑
i

Miδi +∑
ij

Mijδiδj + . . . .

that is convergent in a neighborhood of 0. Its linearization is the deforma-

tion

M(δ1, . . . , δr) =M +∑
i

Miδi.

Note that Arnold’s deformation (3.27) coinsides with its linearization.

Define the vector space

V (M(δ1, . . . , δr)) ∶= {∑
i

Miai ∣a1, . . . ar ∈ C}. (3.41)

Lemma 3.3 (Arnold [3,5]). A deformation M(δ1, . . . , δr) of an n×n matrix

M is versal if and only if

T (M) + V (M(δ1, . . . , δr)) = Cn×n.

Proof. of Theorem 3.9 (a)Ô⇒(b) Let (A,B) be the matrix pair (3.29) and

let (A +X,B + Y ) be its simplest miniversal deformation (3.30). Let us
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prove that if (A,B) contains the summand Fr or Jm(0) ⊕ Kn, then the

deformation (A +X)(B + Y ) of AB is not versal.

Multiplying the horizontal strip of A +X that contains the block P3 by

the vertical strip of B + Y that contains the block Q3, we get

P3Q3 +N1N2, (3.42)

in which P3 and Q3 are defined in (3.33); N3 and N4 are parameter block

matrices of the form (3.31).

The pair (P3,Q3) is a versal deformation of ⊕t3
i=1Fr3i. Suppose that the

deformation (A + X)(B + Y ) is versal. By Lemma 3.3, the sum of the

tangent space to the orbit AB and of the vector space defined by the

linearization of this deformation is equal to the vector space of all matrices

of this size. Then the sum of the tangent space to the orbit of ⊕t3
i=1Fr3iGr3i

and of the vector space defined by the linearization of (3.42) is equal to

the vector space of all matrices of this size. The linearization of (3.42)

coinsides with the linearization of P3Q3. Therefore, the deformation P3Q3

is versal.

Multiplying the horizontal strip of P3 that contains the block Fr1 +H by

the vertical strip of Q3 that contains the block Gr1, we get

(Fr1 +H)Gr1 +H1r2Hr21 + ⋅ ⋅ ⋅ +H1rt3
Hrt31

. (3.43)

Since the deformation P3Q3 is versal, by Lemma 3.3 the sum of the tangent

space to the orbit of ⊕t3
i=1Fr3iGr3i and of the vector space defined by the

linearization of P3Q3 is equal to the vector space of all matrices of this size.

Then the sum of the tangent space to the orbit of Fr1Gr1 and of the vector

space defined by the linearization of (3.43) is equal to the vector space of

all matrices of this size. Therefore, the deformation (3.43) is versal. Since

the linearization of (3.43) coincides with (Fr1 + H)Gr1, the deformation
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(Fr1 +H)Gr1 is versal too. It has the form

(Fr1 +H)Gr1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0

0 0 1

⋮ ⋱ ⋱
0 0 1

0 α1 α2 ⋯ αr1−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.44)

in which α1, . . . , αr1−1 are independent parameters.

By Lemma 3.2, the left bottom entry of all matrices in the tangent space

to the orbit of Fr1Gr1 = Jr1(0) is zero. The left bottom entry of (3.44) is

zero too. Therefore the sum of the tangent space to the orbit of Fr1Gr1

and of the vector space defined by (3.44) is not equal to the vector space

of all matrices of this size. Therefore, the deformation (3.44) is not versal,

and so the deformation (A+X)(B +Y ) is not versal too, which proves the

implication (a)Ô⇒(b) for pairs Fn.
Multiplying the horizontal strip of A+X that contains the block (⊕jIr1j ,

(⊕jJr2j(0) + Nr2)) by the vertical strip of B + Y that contains the block

((⊕jJr1j(0) +Nr1),⊕jIr2j), we get

⎡⎢⎢⎢⎢⎢⎣

⊕jJr1j(0) +Nr1 N1

(⊕jJr2j(0) +Nr2)N2 +N3N4 ⊕jJr2j(0) +Nr2

⎤⎥⎥⎥⎥⎥⎦
(3.45)

in which all Ni are parameter block matrices (3.30).

The pair

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

⊕jIr1j 0

0 ⊕jJr2j(0) +Nr2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

⊕jJr1j(0) +Nr1 N1

N2 ⊕jIr2j +Nr2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

is a versal deformation of (⊕jIr1j ,⊕jJr1j(0))⊕(⊕jJr2j(0),⊕jIr2j). Suppose

that the deformation (A +X)(B + Y ) is versal. By Lemma 3.3, the sum

of the tangent space to the orbit AB and of the vector space defined by

the linearization of this deformation is equal to the vector space of all
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matrices of this size. Then the sum of the tangent space to the orbit

of (⊕jIr1j⊕⊕jJr2j(0))(⊕jJr1j(0)⊕⊕jIr2j) and of the vector space defined

by the linearization of (3.45) is equal to the vector space of all matrices

of this size. The linearization of (3.45) coinsides with the linearization

of (⊕jIr1j⊕(⊕jJr2j + Nr2(0)))((⊕jJr1j + Nr1(0))⊕⊕jIr2j). Therefore, the

deformation (⊕jIr1j⊕(⊕jJr2j+Nr2(0)))((⊕jJr1j+Nr1(0))⊕⊕jIr2j) is versal.

Multiplying the horizontal strip of ⊕jIr1j⊕(⊕jJr2j(0)+Nr2) that contains

the block Ir1⊕(Jr2(0)+Hr2) by the vertical strip of (⊕jJr1j(0)+Nr1)⊕⊕jIr2j
that contains the block (Jr1(0) +Hr1)⊕ Ir2, we get

⎡⎢⎢⎢⎢⎢⎣

Jr1(0) +Hr1 H1

(Jr2(0) +Hr2)H2 +H3H4 + ⋅ ⋅ ⋅ +Hr3Hr4 Jr2(0) +Hr2

⎤⎥⎥⎥⎥⎥⎦
(3.46)

Since the deformation (⊕jIr1j⊕(⊕jJr2j + Nr2(0))) ((⊕jJr1j + Nr1(0))
⊕⊕jIr2j) is versal, by Lemma 3.3 the sum of the tangent space to the orbit

of (⊕jIr1j⊕ ⊕jJr2j(0)) (⊕jJr1j(0) ⊕⊕jIr2j) and of the vector space defined

by the linearization of (⊕jIr1j⊕(⊕jJr2j+Nr2(0)))((⊕jJr1j+Nr1(0))⊕⊕jIr2j)
is equal to the vector space of all matrices of this size. Then the sum of the

tangent space to the orbit of (Ir1 ⊕ Jr2(0))(Jr1(0)⊕ Ir2) and of the vector

space defined by the linearization of (3.46) is equal to the vector space of

all matrices of this size. Therefore, the deformation (3.46) is versal. Since

the linearization of (3.46) coincides with

⎡⎢⎢⎢⎢⎢⎣

Jr1(0) +Hr1 H1

Jr2(0) Jr2(0) +Hr2

⎤⎥⎥⎥⎥⎥⎦
, (3.47)

the deformation (3.47) is versal too.

By Lemma 3.2, the left bottom entry of all matrices in the tangent space

to the orbit of (⊕jIr1j⊕⊕jJr2j(0)) (⊕jJr1j(0) ⊕⊕jIr2j) is zero. The left

bottom entry of (3.47) is zero too. Therefore the sum of the tangent space

to the orbit of (⊕jIr1j⊕⊕jJr2j(0)) (⊕jJr1j(0) ⊕⊕jIr2j) and of the vector
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space defined by (3.47) is not equal to the vector space of all matrices

of this size. Therefore, the deformation (3.47) is not versal, and so the

deformation (A+X)(B+Y ) is not versal too, which proves the implication

(a)Ô⇒(b) for pairs Kn.
(b)Ô⇒(a) Let us prove that if (A,B) of the form (3.29) does not contain

summands of types Fr and Jm(0)⊕Kn, then it is versal.

Case 1 : (A,B) contains summands of type Jn(0). Then it does not

contain summands of type Kn, and so its miniversal deformation is the

direct sum of

(A1 +X1,B1 + Y1)

=
⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⊕jIr1j 0 0

0 ⋱ 0

0 0 ⊕jIrlj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⊕jJr1j(λ1) +N 0 0

0 ⋱ 0

0 0 ⊕jJrlj(λl) +N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

and

(A2 +X2,B2 + Y2) =
⎛
⎝

⎡⎢⎢⎢⎢⎣

c∣c⊕j Ir1j 0

0 Q4

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

c∣c⊕j Jr1j +Nr1 N1

N2 P4

⎤⎥⎥⎥⎥⎦

⎞
⎠
.

It is sufficient to prove that (A1+X1)(B1+Y1) and (A2+X2)(B2+Y2) are

versal. The deformation (A1 +X1)(B1 + Y1) is the miniversal deformation

of the Jordan matrix AB = ⊕jJrj(λ).
The deformation (A2 +X2)(B2 + Y2) has the form

⎡⎢⎢⎢⎢⎣

c∣c⊕j Jr1j +Nr1 N1

Q4N2 Q4P4

⎤⎥⎥⎥⎥⎦
, (3.48)

in which Ni, H, P4, and Q4 are defined in (3.31)–(3.33).

The space (3.41) defined by the linearization of deformation (3.48) con-

tains the space defined by the linear deformation of A2B2 given in (3.27).

Since the deformation (3.27) is versal, then by Lemma 3.3 the deformation

(3.48) is versal too.
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Case 2 : (A,B) contains summands of type Kn. Then it does not contain

summands of type Jn(0), and so its miniversal deformation is the direct

sum of

(A1 +X1,B1 + Y1)

=
⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⊕jIr1j 0 0

0 ⋱ 0

0 0 ⊕jIrlj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⊕jJr1j(λ1) +N 0 0

0 ⋱ 0

0 0 ⊕jJrlj(λl) +N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

and

(A2 +X2,B2 + Y2) =
⎛
⎝

⎡⎢⎢⎢⎢⎣

c∣c⊕j Jr2j +Nr2 N1

N2 Q4

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

c∣c⊕j Ir2j 0

0 P4

⎤⎥⎥⎥⎥⎦

⎞
⎠
.

It is sufficient to prove that (A1 +X1)(B1 +Y1) and (A2 +X2)(B2 +Y2) are

versal. The deformation (A1 +X1)(B1 + Y1) is the miniversal deformation

of the Jordan matrix AB = ⊕jJrj(λ).
The deformation (A2 +X2)(B2 + Y2) has the form

⎡⎢⎢⎢⎢⎣

c∣c⊕j Jr2j +Nr2 N1P4

N2 Q4P4

⎤⎥⎥⎥⎥⎦
(3.49)

in which Ni, H, P4, and Q4 are defined in (3.31)–(3.33).

The space (3.41) defined by the linearization of deformation (3.49) con-

tains the space defined by the linear deformation of A2B2 given in (3.27).

Since the deformation (3.27) is versal, then by Lemma 3.3 the deformation

(3.49) is versal too.

(b)⇐⇒(c) This equivalence is obvious.
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3.4. Structural stability of matrix pairs under con-

tragredient equivalence

The text of this section coincides with the text of the paper [34] of M. I.

Garćıa-Planas and me (up to the numeration of statements, formulas and

references).

Each matrix problemM over C is given by a setM0 of tuples of complex

matrices and a setM1 of admissible transformations with them. A matrix

tuple A = (A1, . . . ,At) ∈ M0 is structurally stable if each matrix tuple

B ∈M0 that is sufficiently close to A can be reduced to A by admissible

transformations. This notion is used in [37, 41, 74]. It is inspired by the

notion of structurally stable dynamical systems given by Andronov and

Pontryagin [2] (see also [54,62]).

For example, an m × n matrix is structurally stable under elementary

transformations if and only if its rank is min(m,n). Each square matrix

A is structurally unstable under similarity since its eigenvalues can be

changed by an arbitrarily small perturbation.

In Section 3.4.1, we describe all pairs (A,B) of m × n complex matri-

ces that are structurally stable with respect to equivalence transformations

(S−1AR,S−1BR) with nonsingular R and S (that is, we describe all pencils

A − λB that are structurally stable). In Section 3.4.2, we show that there

are no pairs (M,N) of m × n and n ×m complex matrices that are struc-

turally stable under contragredient equivalence (S−1MR,R−1NS). Pertur-

bations of matrix pairs under equivalence and contragredient equivalence

are studied in [39,40,48].

3.4.1. Matrix pairs that are structurally stable with respect to

equivalence Each matrix pair in this section consists of two complex

matrices whose sizes are equal.



108

The problem of classifying complex matrix pencils A−λB is the problem

of classifying pairs of complex matrices of the same size up to equivalence

transformations

(A,B)↦ (S−1AR,S−1BR), S and R are nonsingular. (3.50)

By Kronecker’s theorem for matrix pencils (see [28, Section 1.8]), (A,B)
is equivalent to a direct sum, uniquely determined up to permutation of

summands, of pairs of the types

(Ir, Jr(λ)), (Jr(0), Ir), (Lr,Rr), (LTr ,RT
r ), r = 1,2, . . . , (3.51)

in which

Jr(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0

1 λ

⋱ ⋱
0 1 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(r-by-r, λ ∈ C),

Lr ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

⋱ ⋱
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Rr ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

⋱ ⋱
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

((r − 1)-by-r). (3.52)

Note that (L1,R1) = (010,001); we denote by 0mn the zero matrix of size

m×n, in which m,n = 0,1,2, . . . . The direct sum of matrix pairs is defined

by

(A,B)⊕ (A′,B′) ∶= (A⊕A′,B ⊕B′).

Theorem 3.10. A pair (A,B) of complex matrices of the same size is

structurally stable under equivalence if and only if (A,B) or (AT ,BT ) is

equivalent to a pair of the form

(Lr,Rr)⊕ ⋅ ⋅ ⋅ ⊕ (Lr,Rr)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p times

⊕ (Lr+1,Rr+1)⊕ ⋅ ⋅ ⋅ ⊕ (Lr+1,Rr+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q times

, (3.53)

in which p ⩾ 1 and q ⩾ 0.
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Proof. Ô⇒. Let (A,B) be a direct sum of pairs of the form (3.51), and let

(A,B) be structurally stable. Clearly, it does not contain direct summands

of the form (Ir, Jr(λ)) and (Jr(0), Ir). It does not contain (Lr,Rr) ⊕
(LTs ,RT

s ) since Lr ⊕ Ls is a square singular matrix, which can be made

nonsingular by an arbitrarily small perturbation. Therefore, (A,B) is a

direct sum of summands of the form (Lr,Rr), or a direct sum of summands

of the form (LTr ,RT
r ).

Let (A,B) be a direct sum of summands of the form (Lr,Rr), and let

(A,B) be not of the form (3.53). Then (A,B) has a direct summand

(Lr,Rr) ⊕ (Ls,Rs) with s − r ⩾ 2. Pokrzywa [60, Theorem 3] describes

inclusion relationships between the closures of the equivalence classes of two

matrix pencils. Using his theorem in the form presented in [19, Theorem

2.2], we find that (Lr,Rr)⊕(Ls,Rs) is reduced to a pair that is equivalent to

(Lr+1,Rr+1)⊕(Ls−1,Rs−1) by an arbitrarily small perturbation of (Lr,Rr)⊕
(Ls,Rs), which contradicts to the structural stability of (A,B). Hence,

(A,B) is of the form (3.53).

⇐Ô. Let (A,B) be the pair (3.53). Let us prove that it is structurally

stable.

For each matrix pair (C,D), we denote by B(C,D) its bundle, which is

defined as follows (see [24]). Let

Jr1(λ1)⊕ ⋅ ⋅ ⋅ ⊕Jrk(λk)⊕L, λ1, . . . , λk ∈ C ∪∞,

be the Kronecker canonical form of (C,D), in which Jr(λ) ∶= (Ir, Jr(λ))
if λ ∈ C, Jr(∞) ∶= (Jr(0), Ir), and L is a direct sum of pairs of the form

(Lr,Rr) and (LTr ,RT
r ). Then B(C,D) is the set of all matrix pairs with

Kronecker canonical forms

Jr1(f(λ1))⊕ ⋅ ⋅ ⋅ ⊕Jrk(f(λk))⊕L, f ∶ C ∪∞→ C ∪∞ bijective.

In particular, B ∶= B(A,B) consists of all matrix pairs that are equivalent

to (A,B).
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Aiming for a contradiction, we suppose that each neighborhood of (A,B)
has a pair that is not contained in B. Since the set of matrix pairs of the

same size is divided into a finite set of bundles, there is a bundle C ≠ B
such that each neighborhood of (A,B) contains a pair from C. This is

impossible for the bundle B by [24, Theorem 3.3], in which the inclusion

relationships between the closures of two bundles are described.

Therefore, there is a neighborhood of (A,B) that is contained in B,

which consists of the pairs that are equivalent to (A,B).

3.4.2. Stable matrix pairs under contragredient equivalence Each

matrix pair in this section is a pair of complex matrices of sizes m×n and

n ×m, in which m,n = 1,2, . . . . We consider them up to transformations

of contragredient equivalence

(A,B)↦ (S−1AR,R−1BS), S and R are nonsingular. (3.54)

The matrices of a pair of counter linear mappings U ⇄ V are reduced by

these transformations.

Dobrovol′skaya and Ponomarev [22] give a canonical form of a matrix

pair under contragredient equivalence: each pair (A,B) is contragrediently

equivalent to a direct sum, uniquely determined up to permutation of sum-

mands, of pairs of the types

(Ir, Jr(λ)), (Jr(0), Ir), (Lr,RT
r ), (LTr ,Rr), r = 1,2, . . . , (3.55)

in which Lr and Rr are defined in (3.52). Another proof of this canonical

form and many applications are given by Horn and Merino [45].

Theorem 3.11. Each pair (A,B) of complex matrices of sizes m × n and

n ×m with m ⩾ 1 and n ⩾ 1 is structurally unstable with respect to contra-

gredient equivalence.

Proof. It suffices to show that the pairs (3.55) are structurally unstable.

If (A,B) and (A′,B′) are contragrediently equivalent, then AB and A′B′



111

are similar. Denote by Epq the p × q matrix in which the (1,1) entry is an

arbitrarily small complex number ε ≠ 0 and the other entries are zero.

The pairs (Ir, Jr(λ)) and (Ir, Jr(λ)+Err) are not contragrediently equiv-

alent since the matrices Ir ⋅Jr(λ) = Jr(λ) and Ir(Jr(λ)+Err) = Jr(λ)+Err

are not similar.

The pairs (Lr,RT
r ) and (Lr,RT

r +Er,r−1) are not contragrediently equiv-

alent since the matrices LrRT
r = Jr−1(0) and Lr(RT

r + Er,r−1) = Jr−1(0) +
Er−1,r−1 are not similar.

Therefore, all pairs (3.55) are structurally unstable.
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CONCLUSIONS AND FUTURE

RESEARCH

The main goal of this thesis is to give a direct and constructive proof

of Pokrzywa’s theorem [60] that describes all possible Kronecker’s canoni-

cal forms of matrix pencils in an arbitrary small neighborhood of a given

matrix pencil.

More exactly, for each matrix pencil A − xB, Pokrzywa describes all

Kronecker canonical forms C − xD such that there exist arbitrarily small

E and E′ for which the Kronecker canonical form of (A +E) − x(B +E′)
is C − xD. Pokrzywa’s proof is very abstract and unconstructive; he does

not construct (A +E) − x(B +E′) explicitly.

I construct (A + E) − x(B + E′) explicitly for each C − xD. As a con-

sequence, I give a direct, constructive, and rather elementary proof of

Pokrzywa’s theorem.

For this purpose I calculate the Kronecker canonical forms of miniversal

deformations of the following matrix pairs:

(Lm, Lm)⊕ (Ln,Rn), (Lm,Rm)⊕ (In, Jn(0)),

(Lm,Rm)⊕ (RT
n , L

T
n), (Im, Jm(0))⊕ (Ln,Rn),

(Im, Jm(0))⊕ (In, Jn(0)), (Im, Jm(0))⊕ (LTn , LTn),

(RT
m, L

T
m)⊕ (Ln,Rn), (LTm,RT

m)⊕ (In, Jn(0)),

(LTm,RT
m)⊕ (LTn ,RT

n), (I, J(λ)), (J(0), I).

in which J(λ) is a Jordan matrix with a single eigenvalue, and J(0) is a

nilpotent Jordan matrix.

In my thesis I also provide applications of perturbation theory which

have been presented in 4 articles:
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• T. Klymchuk, Regularizing algorithm for mixed matrix pencils, Applied

Mathematics and Nonlinear Sciences 2 (2017) 123–130;

• M. Isabel Garćıa-Planas, T. Klymchuk, Perturbation analysis of the

matrix differential equation ẋ = ABx, Applied Mathematics and Non-

linear Sciences 3(1) (2018) 97–103;

• M. Isabel Garćıa-Planas, T. Klymchuk, Versal deformations of prod-

uct of matrices under contragredient equivalence submitted to Revista

de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie

A. Matemáticas, 2019; DOI: 10.1007/s13398-019-00678-5

• M. Isabel Garćıa-Planas, T. Klymchuk, Structural stability of ma-

trix pencils and of matrix pairs under contragredient equivalence, Ukr.

Mat. Zh. 71 (15) (2019) 706–709.

Stratification is one of the fundamental concepts in algebraic geometry

and the theory of singularities, thus in my future research I am going to

continue the investigation of a stratification theory of matrix pencils under

equivalence or contragredient equivalence using their miniversal deforma-

tions. More precisely I am going to apply obtained results to investigate a

structural stability of matrix pencils under equivalence or contragredient

equivalence and I am going to try to apply obtained result for Whitney

stratification.

The study of stratifications originated with the work of Whitney and

Thom [68,72]. This theory was developed by C.G. Gibson, K. Wirthmuller,

A.A. Du Plessis, E.J.N. Looijenga in [42, 53], Alexandru Dimca in [18], J.

Mather in [58, 59] and many others (see, for example, [66, 69, 73]). The

translation of results obtained in this thesis to Whitney stratification is a

very interesting and open problem which may have various applications in

Algebraic Geometry and Catastrophe Theory.
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