
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Efficient Data Management Strategies

for Sequence Alignment on

Heterogeneous Clusters

Chen Shaolong

Supervisor: Miquel Angel Senar Rosell

Department of Computer Architecture and Operating System

Universidad Autònoma de Barcelona

This dissertation is submitted for the degree of

Doctor of Philosophy

April 2019

Dedicate this thesis to my loving grandmother

. . .

Declaration

This dissertation is submitted by Chen Shaolong for the degree of Doctor of Philosophy

at the Universidad Autònoma de Barcelona, under the supervision of Prof. Miquel Angel

Senar Rosell, Computer Architecture and Operating System Department, PhD. in Computer

Science. I hereby declare that except where specific reference is made to the work of others,

the contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and acknowledgements.

Chen Shaolong

April 2019

Acknowledgements

After an intensive period of four years in UAB, now is the day to write section acknowledge-

ments to everyone is the finishing touch on my dissertation. This four years in Barcelona has

been an unforgettable memory during my whole life, not only in the academic arena, but also

on the personal level. I would like to reflect on the people who have supported and helped

me so much throughout this period.

I first would like to acknowledge my advisor Miquel Angel Senar who helps me a lot for

the last four years in UAB. He taught me much about how to analysis and solve problems,

how to present your slides and do your research. His kindnesses and generosities help me not

only shape my own perspective profoundly on research activities, but also on my personal

life. He is a great person to cooperate with during the last four years.

I also would like to thank all the colleagues in CAOS of UAB. They are Josefina, Pilar,

Liu Zhengchun, Cesar, Joe, Cecilia and so on. They show kindly heart and make me feel like

living in my mother country. Special thanks to Pilar and Cecilia, their kindness helps me a

lot.

I also would like to thank all the friends in Cerdanyola Del Valles. I lived in this small

town for four years and never forget this impressive memory in life. Special thanks to my

roommates, Lu Xiaoxue, Lv Jike, Liu Bin and Li Liang, they help me a lot and make me feel

like living at home. Special thanks to my best friend in Barcelona and my cat, Pan Yu and

Jaja, without them, I would feel lonely myself.

viii

Finally, I would like to thank my parents and girlfriend Fang, their patience, love and

support are indispensable part for me. Without them, I can not complete this thesis . Special

to my grandmother, you left me forever. I always miss you.

This research would not be possibly completed without the financial support of China

Scholarship Council(CSC) under reference number 201406890007 and Spanish Project under

contract TIN2014- 53234-C2-1-R. I am especially indebted to Na Yan and Prof.Li Hong,

who work in Shanghai University and have been supportive of my grant goals during last

four years. I am also especially appreciated to Gemma and Daniel in UAB, thanks for their

great support and assistant in my academic time in UAB.

Thank you very much, everyone!

Chen, Shaolong

Barcelona, April, 2019.

Abstract

Among the high performance computing systems, the Intel Xeon Phi is an accelerator that

turns out to be a very attractive alternative to improve the performance of applications with

intense computing needs that are traditionally executed in systems based on multicore servers.

These applications can be migrated from a multicore server to an accelerator with a low

coding effort because both systems are based on nuclei with the same basic architecture.

In our study, we focused our attention on BWA, one of the most popular sequence aligners,

and we have analyzed different modes of execution of BWA in various heterogeneous

computing systems that incorporate an accelerator.

The alignment of sequences is a fundamental phase in the analysis of genomic variants

and has a high computational cost. Although its coding to run in a multicore system can be

simple, achieving good performance is not easy in this type of systems, as our results show.

We have developed and evaluated different strategies that have been applied on BWA and, of

all of them, we conclude that the MDPR variant, which combines data parallelization and

data replication, is the one that provides the best results in all systems evaluated. MDPR

has a generic design that allows it to be used in different heterogeneous systems. On the

one hand, we have applied it in a system consisting of a server with Intel Xeon multicore

processors and a Xeon Phi accelerator. And, on the other hand, we have also evaluated it

in other heterogeneous systems based on multicore servers equipped with AMD and Intel

processors.

x

In all these hardware configurations, we have tested two dynamic modes and one static

mode of data distribution in MDPR. Our experimental results show that the best results

for MDPR are obtained when the static mode of data distribution is applied. The dynamic

strategy based on round robin achieves a similar performance without the off-line overhead

incurred by the static mode. Although our proposal was applied to BWA using human

genome data samples, this strategy can be easily applied to other sequence data and other

alignment tools that have operating principles similar to those of the BWA aligner.

xi

Resumen

Entre los sistemas de computación de alto rendimiento, el Intel Xeon Phi es un acelerador

que resulta ser una alternativa muy atractiva para mejorar el rendimiento de aplicaciones con

necesidades de cómputo intensas que tradicionalmente se ejecutan en sistemas basados en

servidores multinúcleo. Esas aplicaciones se pueden migrar de un servidor multinúcleo a un

acelerador con un bajo esfuerzo de codificación porque ambos sistemas se basan en núcleos

con una misma arquitectura básica.

En nuestro estudio, centramos nuestra atención en BWA, uno de los alineadores de

secuencia más populares, y hemos analizado diferentes modos de ejecución de BWA en

varios sistemas informáticos heterogéneos que incorporan un acelerador.

La alineación de secuencias es una fase fundamental en el análisis de variantes genómicas

y tiene un alto coste computacional. Aunque su codificación para ejecutarse en un sistema

de múltiples núcleos puede ser simple, lograr un buen rendimiento no es fácil en este tipo

de sistemas, como muestran nuestros resultados. Hemos desarrollado y evaluado diferentes

estrategias que se han aplicado en BWA y, de todas ellas, llegamos a la conclusión de que la

variante MDPR, que combina la paralelización de datos y la replicación de datos, es la que

proporciona los mejores resultados en todos los sistemas evaluados. MDPR tiene un diseño

genérico que permite su uso en diferentes sistemas heterogéneos. Por un lado, lo hemos

aplicado en un sistema que consta de un servidor con procesadores multinúcleo Intel Xeon

y un acelerador Xeon Phi. Y, por otro lado, también lo hemos evaluado en otros sistemas

heterogéneos basados en servidores multinúcleo equipados con procesadores AMD e Intel.

En todas estas configuraciones de hardware, hemos probado dos modos dinámicos y

un modo estático de distribución de datos en MDPR. Nuestros resultados experimentales

muestran que los mejores resultados para MDPR se obtienen cuando se aplica el modo

estático de distribución de datos. La estrategia dinámica basada en round robin logra un

rendimiento similar sin el sobrecoste inicial que requiere el modo estático. Aunque nuestra

propuesta se aplicó a BWA utilizando muestras de datos del genoma humano, esta estrategia

xii

se puede aplicar fácilmente a otros datos de secuencia y a otras herramientas de alineación

que tienen principios operativos similares a los del alineador BWA.

xiii

Resum

Entre els sistemes de computació d’alt rendiment, l’Intel Xeon Phi és un acelerador

que resulta ser una alternativa molt atractiva per millorar el rendiment d’aplicacions amb

necessitats de còmput intensiu que s’executen tradicionalment en sistemes basats en servidors

multinucli. Aquestes aplicacions es poden migrar d’un servidor multinucli a un acceler-

ador amb un esforç de codificació baix perquè tots dos sistemes es basen en una mateixa

arquitectura bàsica.

En el nostre estudi, centrem la nostra atenció en BWA, un dels alineadors de seqüència

més populars, i hem analitzat diferents modes d’execució de BWA en diversos sistemes de

computació heterogenis que incorporen un accelerador.

L’alineació de seqüències és una fase fonamental en l’anàlisi de les variants genòmiques i

té un cost computacional alt. Encara que la seva codificació per executar-se en un sistema de

múltiples nuclis pot ser senzilla, aconseguir un bin rendiment en aquest tipus de sistemes no

és fàcil, com mostren els nostres resultats. Hem desenvolupat i avaluat diferents estratègies

que s’han aplicat a BWA i, de totes, arribem a la conclusió que la variant MDPR, que combina

la paral·lelització de dades i la replicació de dades, ésla que aconsegueix els millors resultats

en tots sistemes avaluats. MDPR té un disseny genèric que permet el seu ús en diferents

sistemes heterogenis. Per un costat, l’hem aplicat en un sistema que consta d’un servidor

amb processadors multinucli Intel Xeon i un accelerador Xeon Phi. I, per un altre costat,

també l’hem avaluada en altres sistemes heterogènics basats en servidors multinucli equipats

amb processadors AMD i Intel.

En totes aquestes configuracions de maquinari, hem provat dos modes dinàmics de

distribució de dades en MDPR i un d’estàtic. Els nostres resultats experimentals mostren que

els millors resultats per a MDPR s’obtennen quan s’aplica el mode de distribució de dades

estàtic. L’estratègia dinàmica obté resultats similars sense el sobrecost inicial del model

estàtic. Encara que la nostra proposta s’hagi aplicat a BWA utilitzant mostres de dades del

xiv

genoma humà, aquesta estratègia es pot aplicar fàcilment amb altres dades de seqüències i

altres eines d’avanç que tinguin principis operatius semblants als de l’algorisme BWA.

Table of contents

List of figures xxi

List of tables xxvii

1 Introduction 1

1.1 Background . 1

1.1.1 Genome Data Booming . 1

1.1.2 HPC Hardware Limitation . 3

1.1.3 Sequence Alignment . 6

1.2 Motivation . 7

1.3 Objective . 11

1.4 Contribution . 12

1.5 Outline . 14

2 Literature Review on Related Works 17

2.1 Performance Improvement of Sequence Aligner in the Heterogeneous System 18

2.2 Performance Improvement on BWA Aligner 19

xvi Table of contents

3 Variant Analysis 23

3.1 Overview . 23

3.2 Sequence Alignment . 27

3.2.1 Overview . 27

3.2.2 Short Read Alignment . 28

3.2.3 Existing Aligner . 29

3.3 Burrows-Wheeler Aligner: BWA . 32

3.3.1 Introduction . 32

3.3.2 Performance Analysis . 34

3.3.3 Conclusion . 40

3.4 Variant Calling . 41

3.5 Variant Annotation . 42

4 Heterogeneous Multicore-Manycore Architecture 43

4.1 Multicore System: AMD Opteron and Intel Xeon 43

4.1.1 Architecture . 43

4.1.2 NUMA effect . 45

4.2 Manycore System: Intel Xeon Phi . 48

4.2.1 Architecture . 48

4.2.2 Basic Execution Mode . 50

4.3 Thread Parallelism Library . 52

Table of contents xvii

4.3.1 Pthread . 52

4.3.2 OpenMP . 53

4.3.3 Intel Cilk . 54

5 Data Management Strategies Based on Data Parallelization and Data Replica-

tion 57

5.1 Overview . 58

5.2 Data Management on Homogeneous Architecture: DP, DR and DPR Strategies 60

5.2.1 Analysis of Sequence Alignment Procedure 60

5.2.2 DP, DR and DPR Strategies . 62

5.3 Data Management on Heterogeneous Architecture: MDPR Strategy 65

5.3.1 MDPR Strategy . 65

5.3.2 Static Distribution . 66

5.3.3 Even Distribution . 67

5.3.4 Round-robin Distribution . 68

6 Experimental Implementation and Environment 71

6.1 Sample Dataset . 71

6.2 Implementation System . 72

6.3 Related Software . 74

6.3.1 BWA-ALN-Xeon-Phi . 74

6.3.2 mBWA . 75

xviii Table of contents

6.3.3 pBWA . 77

6.3.4 Intel VTune Amplifier . 78

7 Experimental Results and Evaluation 81

7.1 Evaluation of Parallelism on Basic Execution Modes 82

7.1.1 Implementation . 82

7.1.2 Performance Analysis . 83

7.2 Thread Parallelism Evaluation: Pthread, Intel Cilk and OpenMP 85

7.2.1 Implementation . 85

7.2.2 Performance Analysis . 86

7.3 Scalability Evaluation of DP, DR and DPR 91

7.3.1 Implementation . 91

7.3.2 Performance Analysis . 91

7.4 Analysis of Thread Groups and Data Replicas in DP, DR and DPR 94

7.4.1 Implementation . 94

7.4.2 Performance Analysis . 95

7.5 Performance Evaluation of MDPR . 100

7.5.1 Implementation . 100

7.5.2 Performance Analysis . 101

8 Discussion and Conclusion 107

8.1 Conclusion . 107

Table of contents xix

8.2 Future Work . 111

8.3 List of Publications . 113

References 115

List of figures

1.1 Growth of NCBI DNA sequence data and user amount in 24 years, from

1989 to 2013 . 2

1.2 The cost of sequencing a human genome vs Moore’s law in HPC hardware . 3

1.3 Evolution of the number of cores per processor from TOP500 supercomputer

list, from June 2006 to 2015 . 4

1.4 Typical performance curves of pure MPI and hybrid MPI+OpenMP 5

1.5 A simple example of sequence alignment 6

1.6 BWA scalability on 24-thread system of Intel Xeon. Speed-up and efficiency

are measured according to the value of 1-thread BWA aligner. Speed-up is

illustrated at the left y-axis and efficiency at the right y-axis. 8

1.7 BWA scalability on 2-socket 12-core 24-thread system of Intel Xeon 8

1.8 BWA scalability on 4-socket 32-core 64-thread system of Intel Xeon 9

3.1 The molecular structure of DNA, four types of nitrogen-containing nucle-

obases: Adenine[A], Thymine[T], Guanine[G] and Cytosine[C], two base

pairings(A-T, C-G) . 24

xxii List of figures

3.2 Basic workflow of variant analysis for genome sequencing. Quality assess-

ment, read alignment, variant identification and variant annotation are the

four crucial steps of all. 25

3.3 The cost of sequencing a human genome over years 26

3.4 Three crucial workflows in the variant analysis for genome sequencing . . . 27

3.5 Example of pairwise sequence alignment 29

3.6 Two types of pairwise sequence alignment 30

3.7 Two flows of BWA-backtrack. a. Building the BWT index against the

reference genome. b. Alignment of short read against the reference genome

using BWA-backtrack module . 34

3.8 Scalability on 2-socket 2-NUMA 24-thread system, genome Data 17.6GB . 35

3.9 Scalability on 4-socket 4-NUMA 64-thread system, genome Data 17.6GB . 36

3.10 Scalability on 4-socket 4-NUMA 64-thread system, genome Data 4.3GB . . 36

3.11 The increasing batch size in Sandman with 24 threads 39

3.12 The increasing batch size in Sandman-Xeon Phi with 240 threads 39

3.13 The example of variant calling or variant identification 41

4.1 Multicore architecture: AMD Opteron and Intel Xeon 44

4.2 Memory access in NUMA nodes . 46

4.3 Parallel summation of an array on a 2-socket 2-NUMA node with different

memory policies . 47

4.4 Intel Xeon Phi coprocessor chip architecture 48

4.5 Intel Xeon processor and Intel Xeon Phi coprocessor system 50

List of figures xxiii

4.6 Three basic execution modes on the heterogeneous system of Intel Xeon and

Intel Xeon Phi . 51

4.7 The fork-join parallel flow . 53

4.8 An example of work-stealing mechanism 55

5.1 MDPR-BWA implementation procedure in the case of n and m instances are

applied in multicore and manycore parts (Intel Xeon + Xeon Phi), respectively. 59

5.2 Sequence alignment procedure . 61

5.3 Three main phases in the process of sequence alignment 62

5.4 Implementation of DP, DR and DPR . 64

5.5 MDPR strategy with the case of x and y instances are implemented in node

X and Y, respectively . 65

5.6 An example of static distribution in MDPR strategy 67

5.7 An example of even distribution in MDPR strategy 67

5.8 An example of round-robin distribution in MDPR strategy 68

6.1 The system of S1, Intel Xeon + Intel Xeon Phi 73

6.2 The system of S2, AMD Opteron + Intel Xeon 73

6.3 Effectiveness of MIC. (a) Scalability of mBWA on Intel Xeon Phi. (b)

Performance of mBWA under different number of Intel Xeon Phi 76

7.1 Scalability of BWA aligners (identical color in short column: the results from

dataset SRR, and long column: the results from dataset YH) 83

xxiv List of figures

7.2 Thread scalability in the Intel Xeon (Sandman). Identical color in short

column: the results from dataset SRR, and long column: the results from

dataset YH . 86

7.3 Thread scalability in the Intel Xeon Phi (Sandman-Xeon Phi). Identical color

in short column: the results from dataset SRR, and long column: the results

from dataset YH . 87

7.4 Thread scalability in the 4-socket Intel Xeon Phi (Penguin). Identical color

in short column: the results from dataset SRR, and long column: the results

from dataset YH . 88

7.5 Thread scalability in the AMD Opteron (Batman). Identical color in short

column: the results from dataset SRR, and long column: the results from

dataset YH . 88

7.6 Thread performance of BWA-Pthread in the Intel Xeon(Sandman) with

dataset SRR by VTune . 89

7.7 Thread performance of BWA-Cilk in the Intel Xeon(Sandman) with dataset

SRR by VTune . 89

7.8 Thread performance of BWA-OpenMP on the Intel Xeon(Sandman) with

dataset SRR by VTune . 90

7.9 DP, DR and DPR scalability comparison on Sandman 92

7.10 DP, DR and DPR scalability comparison on Sandman-Xeon Phi 93

7.11 DP, DR and DPR performance comparison on Sandman 96

7.12 DP, DR and DPR performance comparison on Sandman-Xeon Phi 97

7.13 BWA Memory Access . 98

7.14 DPR-BWA Memory Access . 99

List of figures xxv

7.15 Static, even and round-robin schedule distribution of MDPR strategy, perfor-

mance comparison on the Intel Xeon and Xeon Phi(S1) 102

7.16 Static, even and round-robin schedule distribution of MDPR strategy, perfor-

mance comparison on the Intel and AMD NUMA nodes(S2) 103

7.17 Static, even and round-robin schedule distribution of MDPR strategy, perfor-

mance comparison on multiple nodes(S3) 104

List of tables

4.1 AMD Opteron processor distance . 44

4.2 Intel Xeon processor distance . 45

6.1 Experiment dataset . 72

6.2 Experiment system . 74

6.3 pBWA executed with 350 million paired 50 bp reads. T, the number of

threads; P, the number of processors; Time-used for running aln for each

of the pair read file. Efficiency calculated based on the combined time in

minutes (m) or seconds (s) of aln and sampe commands, and is calculated

as Speedup divided by the number of threads or processors or the combined

total threads. 78

7.1 BWA aligner versions on basic execution mode 82

8.1 BWA Performance Summary on Intel Xeon 108

8.2 BWA Performance Summary on Intel Xeon Phi 108

8.3 BWA Performance Summary on S1 . 109

8.4 BWA Performance Summary on S2 and S3 109

Chapter 1

Introduction

1.1 Background

1.1.1 Genome Data Booming

Nowadays, the amount of sequence data has explosively increased from the GB level to the

TB level as the computation cost decreases from 10 million in 2007 to 1000 in 2017 [1].

Figure 1.1 shows the growth of DNA sequence data in Genbank and its user amount in last

24 years(1989-2013) [2]. GenBank is the world’s largest annotated collection of publicly

available DNA sequences. Genome sequence data and biological users are increasing rapidly

with the emerging the next generation sequence technology.

2 Introduction

Fig. 1.1 Growth of NCBI DNA sequence data and user amount in 24 years, from 1989 to
2013

The decreasing costs of sequencing drives DNA research developing rapidly. As shown

in Figure 1.2 that illustrates the costs per genome based the U.S [3]. National Institute of

Health, with the NGS technology burgeoning, sequencing a human genome has decreased

in cost from $100 million in 2001 to $1000 in 2017, which leads to an explosive increasing

of sequence data from the GB level to the TB level. While the amount of genome data

is doubling every 12 months, computing power of a single processor is only doubling

every 18 months. Which means that biology’s big data sets are being generated faster than

improvements in storage and processing of computing technology. Therefore, new advances

in software tools are needed to handle this challenge by efficiently exploiting technological

features presented in modern parallel architectures.

1.1 Background 3

Fig. 1.2 The cost of sequencing a human genome vs Moore’s law in HPC hardware

1.1.2 HPC Hardware Limitation

In recent years, heterogeneous systems consisting of different architectures have become a

significant trend in the high performance computing(HPC) arena [4]. GPUs have obtained a

significant popularity despite the difficulty associated with the usage of specific programming

languages such as OpenCL or CUDA [5]. Intel Xeon Phi, which is based on a common

architecture x86 and provides 57 to 61 cores on one board, is an attractive solution that can

easily transform programs written in the same language used on multicore CPU architectures

[6], without requiring the complexity of porting processes.

Figure 1.3 displays evolution of the number of cores for per processor in TOP 500

supercomputer list [7]. Obviously, the processing units integrated in such systems tend to

provide more parallelism in processors year by year. Moreover, manycore integrate in one

coprocessor such as Intel Xeon Phi and GPUs, has been paid growing up attention nowadays.

Manycore architectures, such as GPUs, have obtained considerable popularity, despite the fact

that the specific programming languages such as OpenCL and CUDA requiring significant

coding skills [5]. Intel Xeon Phi [6] is another manycore coprocessor, which has became an

4 Introduction

attractive solution that existing programs on multicore systems can be easily ported because

Xeon Phi is also based on the same x86 architecture.

Fig. 1.3 Evolution of the number of cores per processor from TOP500 supercomputer list,
from June 2006 to 2015

For the sake of better utilization of heterogeneous cluster, it is common now that appli-

cation programs apply hybrid MPI and OpenMP programming on the HPC systems [8], as

shown in Figure 1.4. Three significant motivations for this hybrid programming model, one

is that the reduction of memory consumption, one is that performance improvement at high

core counts, another is that we could utilize the heterogeneous architecture under the shared

and distributed memory level.

In term of reduction of memory footprint, the reason is that designing and implementing

MPI applications generally requires that some same data be replicated among MPI processes,

while OpenMP is based on the shared data access. Additional, modern HPC system always

owns a limited hardware resource, especially a small size in memory bank. Typically only 1

1.1 Background 5

Performance

Number of Core

Pure MPI Hybrid MPI+OMP

Fig. 1.4 Typical performance curves of pure MPI and hybrid MPI+OpenMP

or 2 GB memory per core. Thus, comparing to pure MPI execution, hybrid MPI and OpenMP

programming consumes less memory footprint, comparing to pure OpenMP execution, hybrid

MPI and OpenMP programming improves the efficiency of utilization of memory.

In term of performance improvement, when low core counts are applied, overheads

between MPI and OpenMP make the performance of the pure MPI achieve better than that

of hybrid MPI and OpenMP. On the contrary, when at high core counts, hybrid MPI and

OpenMP would outperform pure MPI and pure OpenMP, due to the exploiting additional

parallelism in OpenMP or MPI. Ultimately, in term of memory architecture, hybrid MPI

and OpenMP programming mode give us a better utilization of the shared and distributed

memory level, to reduce communication overheads, load imbalance and memory access

costs, especially in our NUMA architecture, which is a local shared memory among local

cores.

6 Introduction

1.1.3 Sequence Alignment

Compared to computing evolution (doubling the number of transistors every 18 months),

the amount of sequence genome data only doubles every 12 months [9]. This spectacular

growth of genome data constitutes an important challenge that requires efficient applications

to process them.

Fig. 1.5 A simple example of sequence alignment

Sequence alignment, variant calling and variant annotation comprises three fundamental

operations in genome data studies [10]. Sequence alignment is a crucial step that can provide

primary consequences for the other two remaining procedures. Sequence alignment involves

mapping short reads to a genome sequence reference as accurately as possible [11].

Figure 1.5 displays a simple example of sequence alignment process which allows

mismatch and gap in the algorithm of alignment. Each aligner owns its algorithm to calculate

distance between short read and genome reference. In this case, we mapped two sequences

according to best score in algorithm and posit ACTCG and ATTC-. Mismatch is allowed in

the second positon and gap in the last position. This result could be useful for next workflows

in sequence variant analysis.

Although many aligners have been developed in recent years, such as MAQ, SOAP and

BLAST, they all exhibit a significant execution time and a large memory footprint. BWA

aligner is one of the most prevalent and widespread sequence alignment tool available. As

many existing mappers, BWA takes advantage of parallelization techniques in order to reduce

1.2 Motivation 7

the computational demands involved in the alignment of millions of reads. Although, its

execution time is similar to other existing aligners, BWA (Burrows-Wheeler Aligner) [12]

takes advantage of the BWT indexing technique that decreases the memory requirements of

the alignment process. This reduction in memory needs combined with its mapping accuracy

have made BWA one of the most popular aligners in the scientific community.

However, BWA exhibits significant scalability problems when it is run on systems with

large number of cores. Similar scalability problems are observed on manycore architectures,

such as the Intel Xeon Phi, or in hybrid architectures combining both multicore CPUs

and manycore accelerators. These behaviors were also observed in our experiment in the

following section.

1.2 Motivation

Genome data is booming with the development of next generation sequence technology, high

performance computer hardware can not achieve the speed of genome data, which limits

the performance improvement of sequence aligners. All factors indicts that more efficient

software is needed in variant analysis in the high performance computing arena.

As shown in Figure 1.6, we choose the widespread and popular sequence alignment appli-

cation, BWA aligner, to evaluate its performance. We set up a base point which implements

BWA aligner on Intel Xeon under one thread. Speed-up is measured on that base point.

Original BWA aligner only can be executed on Xeon platform(Sandman) without revision.

With applying 24 threads, as Figure 1.6 illustrates, it achieves the highest performance,

11.5-fold speed-up under the execution of Intel Xeon. The tendency of speed-up varies

from linear to very smooth and approaches its performance pole under 24 threads, but its

thread efficiency decreases to 48%. It’s finite to enhance the performance of BWA aligner by

increasing the number of working threads, we are demanded to further research in a more

efficient way.

8 Introduction

0%

20%

40%

60%

80%

100%

120%

0

2

4

6

8

10

12

1 6 12 18 24
Number of Threads

Speed-up Efficiency

Fig. 1.6 BWA scalability on 24-thread system of Intel Xeon. Speed-up and efficiency are
measured according to the value of 1-thread BWA aligner. Speed-up is illustrated at the left
y-axis and efficiency at the right y-axis.

In order to demonstrate our motivation clearly, we illustrate a result of our experiments

in advance. The addition of multi-threading to an aligner does not guarantee it will utilize

threads efficiently. In fact, it is quite common to observe that efficiency decreases when the

thread count grows large enough.

500

1500

2500

3500

4500

6 12 18 24Ti
m

e-
C

on
su

m
m

in
g(

Se
co

nd
)

Thread Number

Scalability of Xeon - Sandman

BWA-0.5.10

Fig. 1.7 BWA scalability on 2-socket 12-core 24-thread system of Intel Xeon

1.2 Motivation 9

500

1000

1500

2000

2500

16 32 48 64Ti
m

e-
C

on
su

m
m

in
g(

Se
co

nd
)

Thread Number

Scalability of Xeon - Penguin

BWA-0.5.10

Fig. 1.8 BWA scalability on 4-socket 32-core 64-thread system of Intel Xeon

This phenomenon is observed and shown in Figures 1.7 and 1.8. These figures illustrate

the results obtained by BWA aligner when mapping a large short-read genome example of

17.4GB against human genome reference. Each figure illustrates the results obtained when

BWA aligner was executed on two different servers. Both systems are based on NUMA

architectures but they differ in the total number of processors and cores available. The first

system (Fig.1.7) owns two-socket Intel Xeon CPU with 12 cores. Twenty-four threads can be

executed simultaneously using Hyper Thread technology. The second system (Fig.1.8) is a

4-socket Intel Xeon CPU. Each socket contains 8-core processor, so the total number of cores

is 32 and 64 threads can be executed simultaneously. In both cases, each socket is connected

with a memory bank, which constitutes a NUMA node. NUMA nodes are connected by

QuickPath Interconnect links.

Interesting results occur in the experiments. When BWA runs in these NUMA systems,

threads are spread throughout the system and memory is allocated using a first-touch data

allocation policy, which means that, when a program is started on a CPU, data requested by

that program will be stored on a memory bank corresponding to its local CPU. In particular,

this behavior affects the allocation of the reference index of genome in the implementation

of BWA.

10 Introduction

Threads that run on the same NUMA node where the reference index is allocated have

a lower latency when they access it. Therefore, when the number of threads increases,

all the speed up gained due to multi-thread is mitigated by the latency of remote accesses

and traffic saturation of interconnection links. This degradation of performance can be

observed in Figure 1.7 which shows a continuous reduction of execution times, but the gain

in performance reduces as more threads are added in the execution.

Being a system with only two NUMA nodes, performance degradation starts to be

significant when more than 12 threads are used and threads are allocated on both NUMA

nodes. Especially, when the application goes from 18 to 24 threads, potential gains due to

the extra threads. However, the extra threads have a small impact in execution time due to

the memory latency issues on both NUMA nodes, which is the crucial factor that affects

performance.

When the thread count grows large enough, problems with memory accesses are getting

worse. As Figure 1.8 illustrates, BWA runs in a large NUMA system, and when more than 32

threads are used, execution times are degraded and adding more threads has a negative impact

in overall performance. This loss in performance can be explained, on the one hand, by the

increased latency of remote memory accesses and, on the other hand, by the memory bank

in which the reference genome is allocated becoming a bottleneck that generates memory

contention.

More discussions and details we would talk about in the following sections. Multiple

threads ability can not enable the threads efficiency, specially when facing a large amount of

genome sequence dataset. In general, our HPC system always has a limited hardware, how

can we make maximal usage of computing hardware with less coding to improve performance

in sequence alignment? It is worth something to do some further research in this arena.

1.3 Objective 11

1.3 Objective

In this thesis, the ultimate goal we focus on is that exploring efficient data management

strategies of data parallelization and data replication for variant analysis workflows, specially

sequence alignment, on the heterogeneous cluster which consists of multicore and manycore

system.

The following objectives we explore in the thesis with the purpose of achieving our goals:

• Definition of a data management strategy of MDPR to efficiently utilize the heteroge-

neous cluster on BWA aligner application by evaluating its performance on various

values of thread groups and three data distribution schedule on the heterogeneous

cluster. This MDPR strategy could be summarized in the following steps:

– Data replication on the genome reference

– Data parallelization on the short read

– Data distribution of static mode on the heterogeneous cluster

– Data distribution of dynamic mode that comprises even and round-robin fashion

on the heterogeneous cluster

• Through the evolution of data management strategies to recognize efficiently evalu-

ate of data parallelization and data replication for variant analysis workflows. This

development could be concluded in the following contents:

– A strategy of DP based on data replication of genome reference on the homoge-

neous cluster

– A strategy of DR based on data parallelization of short read on the homogeneous

cluster

– A strategy of DPR which combines DP and DR strategies on the homogeneous

cluster

12 Introduction

– A strategy of MDPR generated from DPR strategy that utilizes the heterogeneous

cluster

• Evaluation of some relevant performance factors that demonstrates the impact of

system architecture and sequence aligner, which comes to perform a significant result

on the overall performance.

– NUMA effect

– Three basic execution mode on the multicore-manycore heterogeneous architec-

ture

– Three thread libraries: Pthread, OpenMP and Intel Cilk

1.4 Contribution

In this thesis, we explore different strategies that allow BWA running on the heterogeneous

systems, such as manycore and multicore systems. We analyze some proposed strategies in

the literature and propose new strategies and crucial elements to improve global performance.

This paper concentrates on which we proposed the strategies of data parallelization and

data replication and we made an evaluation of BWA-based aligners in the native mode,

offload mode and symmetric mode in manycore-based systems. From our experiment

works, best results were obtained with the strategy that combines data parallelism and data

replication. We denoted this combined strategy as MDPR(Multiple level Data Parallelization

and Replication).

The strategy (MDPR) utilizes multiple instances in order to reduce memory bottle-

necks by decreasing memory congestion and improving memory locality. Our results in

the experiments show that MDPR achieved a considerable speed up compared with other

implementations of BWA.

From these results, we present a more extensive study where we analyze the performance

of different BWA variants on multicore and manycore systems. We have also adjusted the

1.4 Contribution 13

design of MDPR so that it can be executed indistinctly in multicore or manycore systems,

and we have augmented it with different mechanisms of dynamic data distribution.

Main contributions of this thesis can be summarized as follows:

• We provide an OpenMP version of BWA aligner. Although BWA has taken advantage

of multi-threading ability with Pthread library, it illustrates a poor performance in

scalability when a large threads were applied. Moreover, we also made a comparison

among Pthread library, OpenMP library and Intel Cilk library, and found OpenMP-

based BWA we proposed outperforms others in terms of overall time and load balance.

• We compare three basic execution modes, native mode, offload mode and symmetric

mode, in which we could utilize the heterogeneous architecture of Intel Xeon and Xeon

Phi. Moreover, thread scalability performance of three execution modes was evaluated

in the experiments.

• We propose four strategies (DP, DR, DPR and MDPR) that cover different combinations

of data parallelization and data replication when we applied them to BWA, one of the

most popular genome read mapper, in order to explore efficient data parallelism in the

homogeneous and heterogeneous systems.

• We analyze three data distribution schedule in MDPR strategy, one static mode and

two dynamic modes. Static mode focuses on the data load among nodes based on the

native mode running performance. Dynamic modes distribute dataset among nodes in

a fashion of even and round-robin data management. Although static mode achieve the

best time-consuming of all, it needs a complicated configurations beforehand. In term

of complexity and convenience, dynamic mode could be a better choice in performance

improvement, specially round-robin mode could reach an approximate time-cost with

static mode.

• We carry out an experimental study comparing different versions of BWA on multi-

core and manycore systems, including the strategies proposed in this work and other

14 Introduction

alternatives proposed in the literature, such as mBWA, pBWA, BWA-ALN, etc. This

study has shown us the best alternatives to run BWA on manycore systems based on

Intel Xeon Phi and other multicore systems based on Intel and AMD processors.

1.5 Outline

The works of the thesis is structured as follows.

• Chapter 1: Introduction

In this chapter, some crucial elements in this research are proposed, like motivations,

objectives of works. We also give our contributions and outline for better reviewing.

• Chapter 2: Literature Review on Related Works

In this chapter, we make a literature reviews on related works in performance improve-

ment of sequence alignment on the heterogeneous multicore-manycore architecture and

sequence aligners, especially the most popular and widespread aligner, BWA aligner.

• Chapter 3: Variant Analysis

In this chapter, relevant subjects concerning variant analysis in DNA sequence are

discussed. We discuss more information about alignment since we concentrate on

sequence aligner.

• Chapter 4: Heterogeneous Multicore-Manycore Architectures

In this chapter, we provide a brief description of the basic architectures that we

have used in our study, namely, multicore systems with NUMA nodes and manycore

accelerators, Intel Xeon, Intel Xeon Phi, and AMD Opteron.

• Chapter 5: Data Management Strategies Based on Data Parallelization and Repli-

cation

1.5 Outline 15

In this chapter, we discuss the strategies of DP, DR, DPR and MDPR which are based

on data parallelization and replication. Detailed architecture is illustrated in this chapter

for viewers to readily understand our works. We also make a comparison with these

strategies with our previous research.

• Chapter 6: Experimental Implementation and Environment

In this chapter, sample datasets we utilize, implementation systems we apply, related

software we use and experiment environment we set, are illustrated in details here.

• Chapter 7: Experimental Results and Evaluation

In this chapter, we not only make an evaluation of the three basic execution modes

in the heterogeneous system made of Intel Xeon and Xeon Phi, but also propose a

OpenMP-based version of BWA aligner. The data management strategies, including

DP, DR, DPR and MDPR, are also evaluated in this chapter.

• Chapter 8: Discussion and Conclusion

In this chapter we discuss about the results from the experiments and conclude the

achievements we achieve in the research. We also illustrate some promising perspec-

tives on the future research directions.

Chapter 2

Literature Review on Related Works

Our work explores effective data parallelism solutions on the sequence aligner that are

suitable for the heterogeneous architectures.

Majority of works on the alignment provide significant performance improvements. How-

ever, they are only designed to run on multicore architecture or on GPUs, and underestimated

in another manycore architecture like the Intel Xeon Phi. Although some existing studies

([11] and [13]-[14]) that were designed to execute aligner on multicore and manycore ar-

chitecture and finally achieve a considerable performance improvement, they exhibits some

advantages and bottlenecks we would discuss below.

First we concentrate literature review on the performance improvement of sequence

aligners in multicore-manycore heterogeneous system. Afterwards, research about BWA

aligner is evaluated in many arenas to improve the performance of alignment application.

18 Literature Review on Related Works

2.1 Performance Improvement of Sequence Aligner in the

Heterogeneous System

For the purpose of better utilizing modern system architectures with alignment application,

we need to make a compromise between these two crucial factors. Some previous works

from our research group [15] [16] [17] that investigated memory interleaving and data

parallelization strategy we proposed on NUMA and Bi-ring architecture under four aligner

cases which came to the result that memory interleaving and data parallelization strategy

could provide a considerable performance improvement on such two architectures.

Blast [18], Bowtie [19], SOAP2 [20] and BWA [21], many sequence aligners were

put forward to solve this booming problem. They are suitable for multicore system while

complex coding job is needed for transmitting to manycore part. Many works keep a view of

alignment in the architecture of multicore.

Zhang et al. [22] illustrated that sequence alignment is memory-sensitive and tried to

optimize BWT index on multicore system. This optimization can not be readily transited

to manycore system since it is special designed for multicore system. Although it could

compile on the manycore system of Intel Xeon Phi since an identical architecture they used,

it can not reach an improvement of performance since they owns different bits wide.

Olivier et al. [23] compared different task parallel schedule of OpenMP and Qthreads on

multi-socket multicore architecture and concluded that hierarchical work stealing scheduler

is competitive in all benchmarks. One crucial factor that this paper indicates is task parallel

schedule plays a significant role in overall performance. Thus we tried different schedule,

such as static and dynamic schedule in data distribution, to explore in the experiments.

Macedo et al. [24] introduced an using multi-threading and multi-instance in master/slave

parallel strategy to facilitate multiple sequence alignment on heterogeneous multicore clusters.

Their results display allocation policy and the master node has great impact on the overall

performance of the system. Although they are something similar with our research, they

2.2 Performance Improvement on BWA Aligner 19

do not explore our ideas of data replication in DR strategy and data parallelization in DP

strategy. Our experiments also display the evolution of data parallelization step by step. Jing

Nagarajan et al. [25] presented multiple parallelization skills could be useful on multicore

system. But they have not tried on the manycore architecture and BWA-backtrack algorithm

as we did in the experiments.

Chen et al. [26] raised an offloading acceleration of the seed extension of BWA aligner in

FPGA architecture. Houtgast et al. [27][28] made an effort to adopt alignment application on

GPU-based and FPGA-based architectures. Tens of research about alignment performance

improvement on FPGA are discussed in details in paper [29]. Otherwise, same phenomena

occurs on GPU architecture. Many papers [30] about alignment improvement on GPUs are

proposed in HPC field. However, it is observed that a few reviews of alignment on Intel Xeon

Phi manycore architecture.

2.2 Performance Improvement on BWA Aligner

Many research describe different approaches to improve the performance of alignment

application, specially BWA aligner on one special architecture system, multicore or GPUs

architectures.

Zhang et al. [22] showed that BWA is a memory-sensitive aligner and improved its

performance by optimizing cache mechanisms on the multicore architectures. But two

disadvantages they have. On the one hand, the skill of cache optimization requires a

comprehensive coding ability, we can not easily transit for other platforms. On the other

hand, they do not try experiments on memory-sensitive system, manycore architecture like

Intel Xeon Phi and GPUs.

Jing Nagarajan et al. [25] found that BWA aligner owns their performance bottlenecks

in thread scalability, scattering and gathering of data and memory bandwidth limitations,

respectively. These restrictions are consistent with we observed in the experiments of the

20 Literature Review on Related Works

scalability evaluation of BWA aligner. Afterwards they introduced an approach of multiple

parallelization to accelerate BWA aligner in multicore system, which consists of thread

parallelization, data parallelization, and concurrent parallelization. The differences between

this work and ours is that we focus on OpenMP thread library instead of Pthread they

concentrate, and we also illustrate the evolution and the evaluation of data parallelization

strategy.

Houtgast et al. [31] accelerated BWA by offloading some highly parallel computing

which is applied on the GPU system. Houtgast et al. [32] utilized a simple adaptive load

balance algorithm on GPUs for BWA aligner and achieved a considerable improvement in

performance. However, this two research proposed above focus on BWA-MEM algorithm in

GPU system, instead of the most widespread algorithm, BWA-backtrack. We did experiments

for dynamic data distribution among heterogeneous systems which quite differs with the

simple adaptive load balance algorithm, and we also compared one offload version of BWA,

mBWA, which works in manycore architecture, Intel Xeon Phi.

BarraCUDA [33] is an implementation of BWA aligner based on GPU which achieves

about 3X speed-ups when comparing to the multi-threading original BWA version. Moreover,

CUSHAW [34] and SOAP3 [35], they are GPU-based implementation of BWA aligner as

well as BarraCUDA and already reach a considerable improvement of performance compared

to the original BWA aligner. However, these two versions of BWA do not permit gapped

alignments in procedure, which could lead to some mapping results undiscovered. Tens of

research about alignment performance improvement in GPU platform as well as another

HPC architecture called FPGA are discussed in details in paper [29]. But there are few works

of BWA aligner existing in FPGA.

For the distributed computing among multiple clusters, by utilizing Hadoop technology,

BigBWA [36] achieved a significant improvement of performance on multiple nodes. While

SparkBWA [37] tried to use another big data technology, Spark, to boost BWA aligner. This

is some versions that might be convenient for distributed computing implementation.

2.2 Performance Improvement on BWA Aligner 21

There are also many other proposals focusing on the utilization of BWA under the

heterogeneous architecture, especially one multicore system with MIC architecture, Intel

Xeon + Intel Xeon Phi.

pBWA [14] is an efficient parallel version of BWA based on the Open MPI library. It

not only preserves the multi-thread capability provided by BWA but also adds efficient

parallelization for core alignment functions on the heterogeneous cluster. Unfortunately,

on the one hand, it cannot be evaluated at the case of large number of instances of pBWA

on the Xeon Phi architecture as a limited memory is used. On the other hand, even data

distribution among multiple instances which leads to a crucial bottleneck in the heterogeneous

system cause of the huge difference might be on the performance of dissimilar architectures,

according to our experiments in MDPR.

Xinmin Tian et al. [13] presented several practical SIMD vectorization techniques on

MIC architecture to achieve improvements in performance of BWA. However, such SIMD

techniques require sophisticated coding skills in order to incorporate with the existing genome

aligners. Suejb Memeti et al. [38] and Lipeng Wang et al. [39] provided parallel solutions

for large scale DNA analysis which exploits thread-level and SIMD techniques in the Xeon

Phi, but their solution does not deal with data-level parallelism as we explore in the research.

New aligner MICA [40] optimized MIC limitation and explored the extra parallelism

inside each MIC core. But MICA still an initial version which needs many configurations

before implementation. Yingbo Cui et al. [11] proposed mBWA which works according

to offload mode with Intel Xeon Phi. mBWA utilizes a multi-level parallelization strategy

that includes data IO parallelization and a parallel pipeline in reads alignment because of

data-dependent. However, mBWA is not an open source project and can not be executed

readily under multiple Intel Xeon Phi nodes. Charlotte Herzeel et al. [41] evaluated an

Intel Cilk implementation of BWA on the heterogeneous systems that consists of Intel Xeon

Phi, and at some extent corrected data load imbalance that produced by differences in data

reads. It is worth something that could provide a third-part view of thread library when we

compared with Pthread and OpenMP libraries.

Chapter 3

Variant Analysis

In this chapter, relevant subjects concerning variant analysis in DNA sequence are discussed.

The properties of a DNA molecule and genome sequence are shown in Section 3.1. Then

the details of sequence alignment are discussed in Section 3.2. Following by Section 3.3

we analyze the performance of BWA, a widespread sequence alignment application, to

demonstrate some interesting behaviors in BWA aligner. Section 3.4 and 3.5 is a short

overview of variant calling and variant annotation, which consist of the two remaining main

functions in the variant analysis workflows.

3.1 Overview

Biological information is stored in deoxyribonucleic acid (DNA). DNA is a kind of nucleic

acid composed of double chains, as shown in Figure 3.1, that coil around each other to form

a double helix carrying the genetic instructions used in the growth, development, functioning

and reproduction of all known living organisms and many viruses [42]. This double-stranded

structure could store the same biological information in both chains.

This double-stranded structure is also known as polynucleotides since they are composed

of simpler monomeric units called nucleotides [43]. There are four types of nitrogen-

24 Variant Analysis

Fig. 3.1 The molecular structure of DNA, four types of nitrogen-containing nucleobases:
Adenine[A], Thymine[T], Guanine[G] and Cytosine[C], two base pairings(A-T, C-G)

containing nucleobases called Adenine(A), Thymine(T), Guanine(G) and Cytosine(C). Ac-

cording to the rule of base pairing (A with T, C with G), two separate strands are bound

together into a double-stranded structure. But most parts of DNA do not serve for protein

sequences which is denoted as non-coding parts. The non-coding genome consists in the

majority part of fraction of the total sequence genome in many species. For human DNA

sequence, only 1.5% of the human genome can code protein, while 50%+ of the human

genome consisting of the non-coding part in genome sequence [44]. However, these non-

coding section in genome sequence may still encode some functional RNA molecules that is

crucial elements involved in the gene expression [45].

For next generation sequence (NGS) in human gene, variant analysis is necessary to

distinguish Mendelian disorders, complex diseases and somatic mutations in DNA sequence.

In fact, three common scenarios are considered for human gene in NGS data [10].

• Identification of causative genes in Mendelian disorders (germline mutations),

3.1 Overview 25

• Identification of candidate genes in complex diseases for further functional studies and

• Identification of constitutional mutations as well as driver and passenger genes in

cancer (somatic mutations).

As shown in Figure 3.2, it is the basic workflow for variant analysis in genome sequencing

[10]. There are four significant workflows consist of the main pipelines in variant analysis,

quality assessment, read alignment, variant identification and variant annotation. Quality

assessment is to evaluate the quality of raw reads from NGS platform, trim and correct them

when necessary in order to reach defined standards. Nowadays, many NGS dataset projects

provide standard NGS datasets. It is convenient for the tools of variant analysis of NGS to

use without any efforts. Thus, read alignment or sequence alignment, variant identification

or variant calling, and variant annotation are consist of the most important steps in variant

analysis.

Fig. 3.2 Basic workflow of variant analysis for genome sequencing. Quality assessment, read
alignment, variant identification and variant annotation are the four crucial steps of all.

26 Variant Analysis

This thesis concentrates on sequence alignment that mapping short read to a reference

genome which is the central and fundamental workflow of variant analysis. For these common

scenarios above in variant analysis, lots of applications and methods are proposed in next

generation sequence arena over recent decades years [46][47]. Many applications have been

launched to efficiently process millions of short reads in different variant analysis workflows.

mrFAST, SSAHA2, MAQ, Bowtie, BWA, YOABS, Novoalign, SOAP and Stampy. Among

these aligners, application BWA is one of the most prevalent and widespread sequence

alignment tool which permits mismatches and gaps with low memory. The most significant,

variant identification and variant annotation can be more convenient approached with the

output of BWA. Figure 3.4 gives a view of three basic workflows in variant analysis in details.

Fig. 3.3 The cost of sequencing a human genome over years

However, applications in variant analysis field still are facing an crucial challenge in

high performance computing. The decreasing costs of sequencing drives DNA research

developing rapidly. As shown in Figure 3.3 that illustrates the costs per genome based the U.S.

National Institute of Health [3], with the NGS technology burgeoning, sequencing a human

genome has decreased in cost from $100 million in 2001 to $1000 in 2017, which leads to an

explosive increasing of sequence data from the GB level to the TB level. While the amount

3.2 Sequence Alignment 27

of genome data is doubling every 12 months, computing power of a single processor is only

doubling every 18 months. Which means that biology’s big data sets are being generated

faster than improvements in storage and processing of computing technology. Therefore,

new advances in software tools are needed to handle this challenge by efficiently exploiting

technological features presented in modern parallel architectures.

3.2 Sequence Alignment

3.2.1 Overview

For the purpose of better illustration of three key workflows in variant analysis, we display

Figure 3.4 to display the differences among them [48]. We first need to known where is short

read located in reference genome, especially disease analysis in human genome.

Fig. 3.4 Three crucial workflows in the variant analysis for genome sequencing

Sequence alignment is the process of mapping short read to reference genome, which

indicates where the sequenced DNA is located. Variant Calling or variant identification, is

the workflow which identifies variants from DNA sequence data, which indicates where and

which the variants are. Variations in the DNA sequence are responsible for genetic disorder

and human diseases. Variant annotation is the process to predict the functional impact of

variants by using the annotational applications, which indicates which the semantics of

28 Variant Analysis

the variants is. It now becomes increasingly important with the enormous amount of data

produced by NGS platform are needed to handle.

3.2.2 Short Read Alignment

This thesis concentrates on sequence alignment. Sequence alignment can be divided into two

groups, one is multiple sequence alignment and the other is pairwise sequence alignment.

Multiple sequence alignment is generalized to the multiple sequences by seeking an alignment

that maximizes the sum of similarities for all pairs of sequences [49]. It is useful for protein

structure and function prediction, phylogeny inference and other common tasks in sequence

analysis. Pairwise sequence alignment concentrates on comparing only two sequences, one

sequence denoted as short read and one reference genome.

This thesis focuses on pairwise sequence alignment which involves finding the optimal

alignment between two sequences. Making a score based on the similarity or difference, then

to determine the optimal positions. One of the most important things in pairwise sequence

alignment algorithm is the scoring process, which produces a matrix to track the scores

assigned to each positions. Normally, a positive score and a penalty will be assigned for

a match and a mismatch, respectively. Three basic aspects are considered when assigning

scores [50], as shown in Figure 3.5:

• Match value - Value assigned for matching characters

• Mismatch value - Value assigned for mismatching or different characters

• Gap penalty - Value assigned for spaces

Each pairwise sequence alignment algorithm has its own standard of evaluation of these

three basic aspects. Needleman-Wunsch algorithm [51] is the first aligner in 1970 which

utilizes dynamic programming to obtain global alignment between two sequences. In 1981,

Smith-Waterman algorithm [52] tries to achieve local alignment between two sequences

3.2 Sequence Alignment 29

Fig. 3.5 Example of pairwise sequence alignment

under the effects of Needleman-Wunsch algorithm. This two algorithms are very similar but

only slight differences in the process of scoring. This two algorithms represent two types in

the pairwise sequence alignment, global alignment and local alignment [53].

• Global alignment: obtain the best optimal alignment over the whole length of two

given sequences.

• Local alignment: obtain the best optimal alignment in sub-sequences between two

given sequences.

As shown in figure 3.6, aligning genome ’ATGAGCTGAATTGCTG’ with short read

’TAGCTATGCGC’ in global and local type in alignment. The results illustrate they focus on

different length of sequence according to their definition in algorithm.

3.2.3 Existing Aligner

Over decade years in the development of NGS, many applications have been developed

on sequence alignment stage, such as BLAST, Bowtie, BWA, MAQ, SOAP and YOABS.

Read aligners need to construct an index for short reads or for genome reference or for

both. Depending on the index construction, read aligners can be classified into three groups

[30]: hash table-based, FM-index based and merge sorting based. The former two groups

30 Variant Analysis

ATGAGCTGAATTGCTG-
-T - AGCT - - A- TGC- GC

Global

Local
ATGAGCTGAATTGCTG
- - - AGCT - - - - TGC - -

Ref. Genome: ATGAGCTGAATTGCTG
Short Read:TAGCTATGCGC

Fig. 3.6 Two types of pairwise sequence alignment

contain the majority of aligners used by the scientific community. BLAST, MAQ, SOAP and

ZOOM are examples of hash table-based aligners. Their main drawback is the large memory

consumption required for the index. On the contrary, the memory requirements of aligners

based on the FM-index mechanism are significantly lower, which explains their increasing

popularity.

Sequence aligners that are based on hash table group and FM-index group are as follows:

Hash table-based aligners

• MAQ [54] is an aligner that builds index dataset against short read through using

quality scores for alignment.

• SOAP [55] is an application that permits gapped and ungapped alignment by utilizing

the new generation Illumina-Solexa sequencing technology.

• BLAST [56] support a parallel version that permits Popular approaches to parallelize

BLAST include query distribution, hash table segmentation, computation paralleliza-

tion, and database segmentation.

3.2 Sequence Alignment 31

• mrsFAST [57] is Micro-read substitution-only Fast Alignment Search Tool. mrs-

FAST is a cache-oblivious short read mapper that optimizes cache usage to get higher

performance.

• ZOOM [58] enables insertion and deletion type errors and uses confidence score

information and pair-end sequencing data to enhance the mapping accuracy. This

software exploits extended spaced seeds technology for the mapping efficiency and

accuracy.

• SHRiMP [59] is a software package for mapping reads from a donor genome against a

reference genome, which allows q-gram filtering technique and the standard dynamic

programming (Smith-Waterman) string matching algorithm.

• ABySS [60][61] supports parallelized sequence assembler to overcome inability to

mapping large amounts of datasets from large-scale next generation sequence platform.

FM-index based aligners

• BWA [62] is a widespread sequence alignment application over the world in terms of

accuracy and efficiency. BWA performs gapped alignment based on inexact matching

with FM index for mapping low-divergent sequences against a large reference genome,

such as the human genome. BWA consists of three algorithms: BWA-backtrack,

BWA-SW and BWA-MEM.

• Bowtie [63][64] are proposed towards ungapped and shorter short read(no more than

50bp) alignment in version 1(Bowtie) and gapped and longer short read alignment in

version 2(Bowtie2).

• SOAP2 [65] is developed from SOAP, but in version 2 it uses a combination of the

FM-index and hashing to increase the speed. According to the results from authors,

significantly more memory is consumed in SOAP2 than BWA and Bowtie.

32 Variant Analysis

• Segemehl [66] uses a dynamic programming method called the Meyers bit-vector

algorithm to find gaps and mismatches which leads to significantly more memory than

BWA and Bowtie.

Application BWA, implemented by Heng Li [12], is one of the most prevalent and

widespread sequence alignment tool and it has a fast processing speed with low memory

footprint because BWA utilizes FM-index instead of hash table and suffix index which

acquires for huge memory on constructing index for a genome. In order to efficiently align

short sequencing reads against a large reference sequence, it permits mismatches and gaps.

Li’s experiments indicate that BWA is approximately vary from 10 to 20 times faster than

MAQ. BWA consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. This

paper focus on the first algorithm which is designed for Illumina sequence reads up to 100bp.

Our study focuses on BWA-backtrack that has already been used by other works in the

literature, such as mBWA [11], pBWA [14] and BMIC [67]. Thus, we will try to provide

a view as complete as possible of the performance that each of the different strategies can

obtain when applied to the same basic application.

3.3 Burrows-Wheeler Aligner: BWA

3.3.1 Introduction

Many applications have been developed for solving the problem of sequence alignment

(such as BLAST, Bowtie, BWA, MAQ, SOAP and YOABS). Read aligners need to construct

an index for short reads or for genome reference or for both. Depending on the index

construction, read aligners can be classified into three groups [30]: hash table-based, FM-

index based and merge sorting based. The former two groups contain the majority of aligners

used by the scientific community. Most of them are based either on hash table or suffix index

technologies. These technologies exhibit a large consumption of computer memory while

BWT-based algorithms (FM-index technology) exhibit a small memory footprint. BWA

3.3 Burrows-Wheeler Aligner: BWA 33

aligner provides a better solution for genome sequence analysis. Although such as Bowtie,

SOAP and Blast they could also support BWT-based technique by using different algorithm

for mismatches and gaps, they are evaluated to produce faster albeit less accurate results than

BWA [19].

BWA, implemented by Heng Li [8], is one of the most prevalent and widespread sequence

alignment tool belonging to the BWT family. It has a fast processing speed with low memory

footprint, because BWA is based on BWT technique to store and perform searches on

the reference genome. The index of reference genome is created via Burrows-Wheeler

Transform (BWT) and processed in chunks of a fixed size using a round-robin pattern. In

order to efficiently align short sequencing reads against a large reference sequence, it permits

mismatches and gaps. BWA consists of three algorithms: BWA-backtrack, BWA-SW and

BWA-MEM. The first algorithm is designed for Illumina sequence reads up to 100bp, while

the rest two for longer sequences ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW

share similar features such as long-read support and split alignment, but BWA-MEM, which is

the latest, is generally recommended for high-quality queries as it is faster and more accurate.

BWA-MEM also has better performance than BWA-backtrack for 70-100bp Illumina reads

[21].

This thesis focuses on the first algorithm, BWA-backtrack, which is designed for Illumina

sequence reads up to 100bp. In this thesis, we have used a basic implementation of BWA,

BWA 0.5.10 ALN module, and supports execution in native mode and offload mode, as well

as symmetric mode on the architectures of Intel Xeon processors and Xeon Phi coprocessors.

Although backtrack algorithm in BWA 0.5.10 is not the newest version of BWA which Li

proposed, but many applications like pBWA, mBWA, BMIC in genome sequence still support

this version and this algorithm because they lack of update. Thus, this can make us to provide

a view as complete as possible of the performance that each of the different strategies can

obtain when applied to the same basic application.

Figure 3.7 shows two fundamental flows of BWA-backtrack module. At the first step

we need to building the BWT index against the reference genome by using command "bwa

34 Variant Analysis

*.fa *.fa.*INDEX

*.fq

ALN *.sai

Ref. Genome
INDEX of
Ref. Genome

Short Read

a

b

Fig. 3.7 Two flows of BWA-backtrack. a. Building the BWT index against the reference
genome. b. Alignment of short read against the reference genome using BWA-backtrack
module

index". Afterwards, mapping short read to the reference genome using command "bwa aln"

in BWA aligner. More details are shown in the following [68].

1. Building the index for the genome reference.

The user first needs to build the BWT transformation of the reference genome using

the BWA index tool. BWA index takes as input a *.fa file and produces several *.fa.*

files to store the BWT transformation.

2. Mapping short read to genome reference.

The BWA program uses the reference genome index, BWT transformation(*.fa.* file),

from step 1 for the actual alignment process against short read file *.fq. Final results

of alignment would merge to *.sai file in the end.

3.3.2 Performance Analysis

Nowadays, a large amount of sequence aligners enable multi-threading ability when pro-

cessing the biological datasets. However, the addition of multi-threading to an aligner does

3.3 Burrows-Wheeler Aligner: BWA 35

not guarantee that processing resources are used efficiently. In fact, it is quite common to

observe that efficiency decreases when the thread count grows large enough [16].

This phenomenon is shown in Figure 3.8, 3.9 and 3.10. These figures illustrate the results

obtained by three aligners (BWA, SOAP2 and BOWTIE2) when mapping two large short

read genome examples of 17.6GB and 4.3GB against human genome reference. Each figure

illustrates the results obtained when aligners are executed on two different servers. Both

servers are based on NUMA architecture but they differ in the total number of processors,

cores and short read data size available. The first system (Fig.3.8) owns 2-socket 2-NUMA

Intel Xeon CPU with 12 cores (Sandman). Twenty-four threads can be executed simultane-

ously using Hyper Thread technology. The second system (Fig.3.9 and 3.10) is a 4-socket

4-NUMA Intel Xeon CPU (Penguin). Each socket contains 8-core processor, so the total

number of cores is 32 and 64 threads can be executed simultaneously. In both cases, each

socket is connected to a memory bank, which constitutes a NUMA node. NUMA nodes are

connected by QuickPath Interconnect link.

1000

1500

2000

2500

3000

3500

4000

6 12 18 24

Ti
m

e-
C

on
su

m
m

in
g(

S)

Thread Number

Scalability of Xeon - Sandman
BWA-0.5.10 SOAP2-2.21 BOWTIE2

Fig. 3.8 Scalability on 2-socket 2-NUMA 24-thread system, genome Data 17.6GB

This behavior of performance degradation could be easily observed in Figure 3.8. A

continuous decreasing of execution time is illustrated while the gain in performance reduces

with more threads are utilized in the experiments. When 12 and more threads are implemented

36 Variant Analysis

500

1000

1500

2000

2500

16 32 48 64

Ti
m

e-
C

on
su

m
m

in
g(

S)

Thread Number

Scalability of Xeon - Penguin
BWA-0.5.10 SOAP2-2.21 BOWTIE2

Fig. 3.9 Scalability on 4-socket 4-NUMA 64-thread system, genome Data 17.6GB

100

200

300

400

500

600

16 32 48 64

Ti
m

e-
C

on
su

m
m

in
g(

S)

Thread Number

Scalability of Xeon - Penguin
BWA-0.5.10 SOAP2-2.21 BOWTIE2

Fig. 3.10 Scalability on 4-socket 4-NUMA 64-thread system, genome Data 4.3GB

3.3 Burrows-Wheeler Aligner: BWA 37

in this two NUMA nodes system, a considerable of performance commences to lose since

the threads would be allocated on both NUMA nodes. The memory bottleneck becomes the

crucial issue on the performance although a potential increasing could be achieved due to

the extra threads applied. As shown in Figure 3.9, when we tried a large NUMA system, 4-

NUMA nodes, the time-consuming of the aligners is degraded and even adding more threads

has a negative impact when 32 and more threads are utilized. This abnormal phenomena in

performance could be explained as follows,

1. the growing of remote access in memory,

2. the memory congestion where the genome reference is allocated.

When BWA aligner runs in these systems, threads are spread throughout the system and

memory is allocated using a first-touch data allocation policy, which means that, when a

program is started on a CPU, data requested by that program will be stored on a memory

bank corresponding to its local CPU. In particular, this behavior affects the allocation of the

reference index genome in the case of BWA. Threads that run on the same NUMA node

where the reference index is allocated have a lower latency when they access it.

Therefore, when the number of threads increases, all the speed up gained due to multi-

threading is mitigated by the latency of remote accesses and traffic saturation of interconnec-

tion links. This degradation of performance can be observed in Figures 3.8 and 3.10 which

shows a continuous reduction of execution times, but the gain in performance reduces as

more threads are added in the execution. Being a system with only two NUMA nodes in

Figure 3.8, performance degradation starts to be significant when more than 12 threads are

used and threads are allocated on both NUMA nodes. Especially, when the application goes

from 18 to 24 threads, potential gains due to the extra threads. However, the extra threads

have a small impact in execution time due to the memory latency issues on both NUMA

nodes, which is the crucial factor that affects performance.

When the thread count grows large enough, problems with memory accesses are getting

worse. As Figure 3.8 and 3.9 illustrate, BWA runs in a large NUMA system, and when

38 Variant Analysis

more than 32 threads are used, execution times are degraded and adding more threads has a

negative impact in overall performance. This loss in performance can be explained, on the

one hand, by the increased latency of remote memory accesses and, on the other hand, by

the memory bank in which the reference genome is allocated becoming a bottleneck that

generates memory contention.

Figure 3.8 and 3.9 illustrate the scalability of threads when a large short read dataset

(17.6GB) maps to human genome sequence while Figure 3.10 displays a smaller short read

(4.3GB segment) is executed in 4-NUMA 64-thread system. In this smaller dataset case, it

performs an identical trend that more threads applied take less time-cost. The same behavior

occurs in Intel Xeon Phi architecture. Exploring more efficient data parallelism is necessary,

special under a limited system.

Additional, BWA creates the index of genome reference beforehand. Later, short read

data is processed using fixed size batches, in a round-robin pattern among threads. Each

thread in BWA processes one batch of data, 256K by default, that is independently mapped

to the genome reference. 256K is our default setting in the experiments according to the

results we observed that 256K could reach a balanced performance.

We illustrate an experiment results about an increasing batch size as displayed in figures

3.11 and 3.12. The former was implemented in Sandman (Xeon) with 24 threads, the latter

in Sandman-Xeon Phi with 240 threads. The batch size - the number of sequence reads each

thread loads into memory to be processed - we change batch size in different value from 64K,

128K, 256K, 512K, 1M and 2M, and implement in different architectures. The default batch

size, 256K, achieves a balanced performance in terms of time-consuming as displayed in

figures. And other cases in both systems achieve very close time-cost or more.

3.3 Burrows-Wheeler Aligner: BWA 39

0

500

1000

1500

2000

2500

3000

3500

64 128 256 512 1024 2048

BWA - Sandman - 24t

Fig. 3.11 The increasing batch size in Sandman with 24 threads

0

500

1000

1500

2000

2500

3000

3500

64 128 256 512 1024 2048

BWA - Xeon Phi - 240t

Fig. 3.12 The increasing batch size in Sandman-Xeon Phi with 240 threads

40 Variant Analysis

3.3.3 Conclusion

Genome read aligners provide the relative position of short reads within a reference genome.

Despite the particular differences of each aligner, they all share a similar mode of operation

that can be summarized as follows:

1. There is a set of reads that can be mapped to the reference genome independently.

2. There is a reference genome data structure (genome index) that is read-only data and

is used to map each individual read.

3. The results consist in populating a shared data structure that would be written on an

output file at the end of the alignment.

We focus our study on BWA, written by Heng Li [12], which is one of the most popular

sequence alignment tools from the FM-index based family. BWA consists of three algorithms,

BWA-backtrack, BWA-SW and BWA-MEM. Our study focuses on BWA-backtrack that has

already been used by other works in the literature, such as mBWA [11], pBWA [14] and

BMIC [67]. Thus, we will try to provide a view as complete as possible of the performance

that each of the different strategies can obtain when applied to the same basic application.

BWA creates the index of genome reference beforehand. Later, short read data is

processed using fixed size batches, in a round-robin pattern among threads. Each thread in

BWA processes one batch of data, 256K by default, that is independently mapped to the

genome reference. 256K is our default setting in the experiments according to the results we

observed that 256K could reach a balanced performance.

Like many other aligners, BWA has multi-threading capability (using the Pthread library)

to solve read mapping operations in parallel since there is no data dependency in this action.

The addition of multi-threading to an aligner does not guarantee that processing resources

are used efficiently. In fact, it is quite common to observe that efficiency decreases when the

thread count grows large enough [16].

3.4 Variant Calling 41

The library and the organization used to handle application threads can cause certain

variations in the execution times obtained. In paper [17], it was observed that the paralleliza-

tion using Pthread, OpenMP and Cilk presented noticeable differences in performance, with

OpenMP and Cilk being the best alternatives to Pthread, which was the library originally used

in BWA. Besides the thread library, the main performance problems in genome read aligners

arise from the use of memory in NUMA systems. Memory allocation is done according to

a first-touch policy and this means that the genome reference index is allocated in a single

bank, that will become a bottleneck when multiple threads try to access it [15].

3.4 Variant Calling

Variations in the DNA sequence are responsible for genetic disorder and human diseases.

The changes in genes is the change in the order of nucleotides in the DNA sequence of a

person. Variant Calling or variant identification, is the workflow which identifies variants

from DNA sequence data [69].

As shown in Figure 3.13, a CRAM file aligned to a reference genomical region as

visualized in Ensembl [70]. Differences are highlighted in red in the reads, and will be called

as variants.

Fig. 3.13 The example of variant calling or variant identification

There are many callers developed to solve this problem now. GATK [71], SAMtools [72],

CRISP [73], SV identification- BreakDancer [74] and so on. Although these callers have

provided many efficient methods or algorithms when facing this problem, all they follow a

three step process:

42 Variant Analysis

• Creating FASTQ files after carrying out whole genome sequencing - this is quality

assessment

• Aligning the sequence results of FASTQ files to a reference genome - this is sequence

alignment

• Identify where the aligned reads differ from the reference genome and write to a VCF

file

These three steps above indicts a fact that sequence alignment owns a crucial role in the

variant analysis workflows.

3.5 Variant Annotation

Variant annotation is the process to predict the functional impact of variants by using the

annotation applications [75]. It now becomes increasingly important with the enormous

amount of data produced by NGS platform are needed to handle. For variant annotation

in genome sequence, based on different feature used by the annotation tool, the variant

annotation can be classified into three crucial category [76].

• Gene based annotation

• Knowledge based annotation

• Functional annotation

Many variant annotation tools are developed for solving this challenge. Some of the

available SNPs annotation tools are as follows SNPeff [77], ANNOVAR [78], FATHMM

[79], PhD-SNP [80], AnnTools [81], MutationTaster [82], SNPdat [83] and FAST-SNP [84].

Chapter 4

Heterogeneous Multicore-Manycore

Architecture

Nowadays, systems based on NUMA (Non Uniform Memory Access) architectures are the

most used in the field of high performance computing. These NUMA systems are often used

in conjunction with manycore accelerators that increase the number of threads available in

the system at a reasonable cost. In this section we provide a brief description of the basic

architectures that we have used in our study, namely, multicore systems with NUMA nodes

and manycore accelerators. Afterwards, we also tried some experiments about thread effect

that has a crucial behavior in overall performance.

4.1 Multicore System: AMD Opteron and Intel Xeon

4.1.1 Architecture

Figure 4.1 shows the main architectures of the systems of two multicore systems. Two

multicore systems comprise one AMD Opteron based server and one Intel Xeon based server.

Our AMD Opteron and Intel Xeon systems have NUMA nodes with different link level

44 Heterogeneous Multicore-Manycore Architecture

across processors (net level vs ring level). Additional, Intel Xeon and Xeon Phi comprise

another heterogeneous system in the experiments.

Processor 3

Intel Xeon

Processor 4

NUMA

Cores Processor 1 Processor 2

Memory

Processor 3

AMD Opteron

Processor 4

Processor 1 Processor 2

Fig. 4.1 Multicore architecture: AMD Opteron and Intel Xeon

Table 4.1 AMD Opteron processor distance

Processor 1 2 3 4

1 0 1 1 1
2 1 0 1 1
3 1 1 0 1
4 1 1 1 0

Tables 4.1 and 4.2 demonstrate distance matrix of 4 sockets system of AMD Opteron

and Intel Xeon as shown in Figure 4.1. AMD Opteron has 4 nodes fully connected with

each other which leads to an longest diameter of 1 hop, while Intel Xeon owns 4 nodes

square topology which implies one more hop in some nodes, like 2 hops in nodes 2 and

3, nodes 1 and 4. More hops means extra latency in network connection and less slow in

bandwidth. This phenomenon indicates that memory policy plays an important element in

overall performance when multi-thread or multi-instance implementation.

4.1 Multicore System: AMD Opteron and Intel Xeon 45

Table 4.2 Intel Xeon processor distance

Processor 1 2 3 4

1 0 1 1 2
2 1 0 2 1
3 1 2 0 1
4 2 1 1 0

4.1.2 NUMA effect

NUMA(Non-Uniform Memory Access) is more and more common because performance

improvement is achieved when memory controllers get closer to execution units on proces-

sors. Since 2000 and now, Linux OS provides NUMA support and optimizes typical HPC

applications in a decent performance without much complex modification. In multi-socket

system, NUMA nodes are commonly found in memory level. For example, a typical server

owns two sockets and two NUMA nodes is widespread nowadays, see Figure 4.2. Latency

for a memory access (random access) is about 100ns while access to memory on a remote

node adds another 50 percent to that number [85].

As shown in Figure 4.2, two processors and two NUMA nodes are interconnect directly

to the socket that they are on. A memory access from one core to local memory bank

(local access) is less latency overhead than a memory access from one core to another

memory bank(remote access). If latency for local access costs about 100ns so that it will

takes about 150ns in remote access [85]. Another issue happens when the traversal of the

memory interconnect in remote access, it causes memory contention on the interconnect and

memory controllers, specially when a large number of data operations occurs. Thus avoiding

remote accesses could decrease the memory latency and increase the overall performance of

application.

Memory policy determines the allocation of memory in NUMA. There are many kinds of

memory policies that are designed for different situations, but only two policies, local and

interleave memory policies, are the most common in operating system in general.

46 Heterogeneous Multicore-Manycore Architecture

C
ores

Processor 1 Processor 2

M
em
ory C

or
es

M
em
or
y

Remote Access
Local Access

Interconnect

Fig. 4.2 Memory access in NUMA nodes

Two crucial memory policies are list in the following:

• LOCAL

The allocation of memory only occurs in the memory bank of local node where the

program is currently initial. Local memory policy is the default allocation policy when

the system is running.

• INTERLEAVE

The allocation of memory is used to distribute memory in a round-robin pattern among

multiple processors in the system for the purpose of an even access loading in the

interconnect and the memory banks. Round-robin pattern means a page will be firstly

allocated in processor 1, then in processor 2, then in processor 1 again, etc.

Figure 4.3 displays a parallel summation of an array on a 2-socket 2-NUMA node with

different memory policies [86].

As shown in figure 4.3.a, the array is allocated on a single socket (local policy) but owns

accesses coming from the threads on both sockets. This behavior is commonly observed in

the experiments, because the first-touch policy in default is applied. The large local access

leads to the sockets’ memory bandwidth becomes a crucial bottleneck.

If the array is allocated on both sockets (interleave policy) across the machine’s sockets, as

shown in figure 4.3.b, the remote access between inter-sockets consumes the main bandwidth

4.1 Multicore System: AMD Opteron and Intel Xeon 47

Fig. 4.3 Parallel summation of an array on a 2-socket 2-NUMA node with different memory
policies

in the interconnect. In this case, both sockets’ memory bandwidth are utilized to decrease

the execution time and improve the overall performance.

If the array is replicated on both sockets, see figure 4.3.c, although more memory space

is consumed, we remove the congestion in the interconnect as a bottleneck that has a large

impact on performance, and localize memory access within local socket.

There is one characteristic of memory policy that should refer in the paper. Memory

policy only in effect when the first allocation occurs. This is so-called the first touch. First

touch indicates where a page is distributed according to one memory policy when one process

first gets a page in the system. This behavior leads to a factor that memory could be allocated

on NUMA nodes where is not allowed by the memory policy in the system because an earlier

process has allocated the data into memory.

In this thesis, AMD-Opteron and Intel Xeon systems have both a NUMA architecture

with four independent sockets, and each socket has a one or two multicore processors and

each processor is attached to a local memory bank. Each processor and its corresponding

memory bank is referred as a NUMA node. One of the most significant of characteristics

of NUMA systems is that accesses from threads running in local cores (located in the same

NUMA node) have lower latency than the accesses that go to physical memory located

in different NUMA nodes (as shown in Figure 4.2). This asymmetry in memory accesses

48 Heterogeneous Multicore-Manycore Architecture

involves additional complexity when executing parallel applications because access to remote

banks increases the execution time and, in the case of genome alignment, also introduces

congestion problems.

4.2 Manycore System: Intel Xeon Phi

4.2.1 Architecture

TD
GDDR
MC

Memory

PCI-e
Client
LogicCore

TD

Core

TD

Core

TD

Core

L1 Cache

L2 Cache

SPU VPU

T
D

C
or
e

T
D

C
or
e T

D

C
ore

T
D

C
ore

Fig. 4.4 Intel Xeon Phi coprocessor chip architecture

As shown in Figure 4.4, a simple diagram of the logical layout of some of the critical

chip components of the Intel Xeon Phi coprocessor architecture. Intel Xeon Phi accelerator

has a bi-ring architecture with 57 to 61 cores inside. Each core in the Xeon Phi has a SPU, a

VPU with 512-bit SIMD capability, and a private 512KB L2 cache that is maintained fully

coherent by a global-distributed tag directory (TD) [87], which forms a unified shared L2

cache of 30.5MB. Xeon Phi can achieve 1 TFlops in double precision or 2 TFlops in single

precision. In addition, memory bandwidth can reach 352GB per second theoretically thanks

4.2 Manycore System: Intel Xeon Phi 49

to 16 memory channels. The memory controllers (GDDR MC) and the PCIe Client Logic

provide a direct interface to the GDDR5 memory and the PCI express bus, respectively.

Main components of the Intel Xeon Phi coprocessor architecture is listed in the following:

• CORE (Coprocessor Cores)

based on the identical core architecture of x86 with Intel Xeon under some crucial

modifications. Each core can support 4 hardware threads and run at the speed of 1GHz,

so that Xeon Phi can keep 1 TFlops in double precision or 2 TFlops in single precision.

• TD (Tag Directories)

maintain all L2 caches and provide a global distributed and shared cache of 30.5MB

among the cores.

• RING (Ring Interconnect)

the interconnect among all components of the Intel Xeon Phi which could provide a

bi-direction ring access support.

• GDDR MC (GDDR Memory Controller)

Interface between the ring and GDDR memory which supports 8 memory controllers

with 2 GDDR5 channels running at 5.5 GT/s, that can compute the theoretical memory

bandwidth as 352 GB/s.

• PCIe interface (Peripheral Component Interconnect Express)

support a standard input/output (I/O) protocol such as PCIe to communicate with the

host Intel Xeon.

Within the Intel Xeon Phi’s core:

• VPU (Vector Processing Unit)

support 512-bit vector operations on the floating-point(16 single-precision or 8 double-

precision) arithmetic operations as well as integer operations.

50 Heterogeneous Multicore-Manycore Architecture

Intel Xeon
Processor

Intel Xeon Phi
Processor

PCI Express

Fig. 4.5 Intel Xeon processor and Intel Xeon Phi coprocessor system

• SPU (Scalar Processing Unit)

an in-order architecture based on the Intel Pentium processor family.

• L1 Cache

32 KB L1 instruction cache and 32 KB L1 data cache.

• L2 Cache

provide 512KB size which are maintained by TD.

Intel Xeon Phi is an convenient coprocessor designed in x86 architecture which enables

many applications could be easily transform to Intel Xeon Phi platform without much

complicated coding. However, in order to pursuit higher improvement of performance

that fits the hardware architecture, the applications still should be highly parallel offload,

efficiently vectorizable and overlapping the operations of I/O [88]. Thus, Intel Xeon Phi is

commonly used as a coprocessor with Intel Xeon or other x86-based architecture system, as

shown in figure 4.5, they are connected by PCI express in high band. More details about this

combined architecture we discuss in Chapter 6.2.

4.2.2 Basic Execution Mode

The Intel Xeon Phi has a x86 architecture that allows for three execution modes, as shown in

figure 4.6. An application is implemented on a server that has a Xeon Phi accelerator can be

executed in three different ways [89]:

4.2 Manycore System: Intel Xeon Phi 51

• Native mode

the application is executed on each component (processor or accelerator) independently.

• Symmetric mode

the accelerator is seen as a regular node in the system and the application is executed

on all components (main processor and an accelerator).

• Offload mode

the application is executed on the main processor but selected highly parallel sections

pass to the accelerator.

Native Mode
Symmetric
Mode

Offload
Mode

Xeon

Xeon Phi

Main()
{function();}

Main()
{function();}

Main()
{function();}

Main()
{function();}

function();

Main()
{ }

Fig. 4.6 Three basic execution modes on the heterogeneous system of Intel Xeon and Intel
Xeon Phi

Load balance between Xeon and Xeon Phi on the symmetric mode is rather significant

and their time-consuming should be identical in order to approach their best performance.

In this thesis, we would use different modes to distribute data load between two systems.

One common fashion is static mode which means we settle up load balance by optimizing

the workload based on the running time of their native mode execution. For example, if

the Intel Xeon Phi coprocessor’s performance on native mode is 0.7-fold that of the same

problem running on the Intel Xeon processor on native mode, then the ratio of workload on

symmetric mode is 10 for the Intel Xeon processor, and 7 for the Intel Xeon Phi coprocessor.

We also tried other two dynamic distribution - even distribution and round-robin distribution

- to illustrate a comprehensive comparison in the experiments.

52 Heterogeneous Multicore-Manycore Architecture

4.3 Thread Parallelism Library

Parallel programming techniques such as MPI and OpenMP are utilized to boost the perfor-

mance of applications in a distributed or share computing environment while threads are

limited to a single computer system. All threads in a process need to share the identical

memory address in the system. The purpose of using the thread parallelism library is to

accelerate program faster than ever.

Many works [90][91] has reported that thread parallelism plays a significant part in high

parallel computing applications. Many programs enable multi-threading ability to enhance

parallelism in solving read mapping operations since there is no data dependency in variant

analysis workflows.

Pthread and OpenMP thread libraries are these two kinds of the most popular and

widespread in HPC scientific arena. However, Pthread and OpenMP perform some disadvan-

tages and bottlenecks in some special hardware architecture. Over years pass years, there

are many other kinds of thread libraries to provide options for researchers. MassiveThreads

[92], Qthreads [93], Hood [94], Intel Cilk [95] and so on, they are designed form various

perspectives and destinations. In this thesis, we would demonstrate not only Pthread and

OpenMP thread libraries, but also the Cilk library proposed by Intel Corporation.

4.3.1 Pthread

POSIX thread (Pthread) supports multi-threading capability for many mainstream systems,

such as Linux, Windows, Mac OS, Android, FreeBSD, Solaris and etc. Pthread is a parallel

execution model that is independent from a language, which allows one program to manage

multiple concurrent jobs at the same time. Each concurrent job is regarded as a pthread, its

creation and release is achieved by making calls to pthread. Thus master pthread can spawn a

concurrent flow of works that contains multiple pthreads. This so we called fork-join parallel

flow [96], as shown in figure 4.7, this is typical flow in fork-join parallelization. A single

4.3 Thread Parallelism Library 53

process can contain multiple tasks, a single task can execute multiple threads, all of which

are executing the identical program. These threads share the same global memory, so that

Pthread is designed for multi-processor or multi-core that shared memory machines. This

underlying architecture can be shared memory architecture of UMA and NUMA.

Fig. 4.7 The fork-join parallel flow

Pthread has disadvantages we already observed in the experiments, many resource and

time-consuming were taken in the management of thread group. BWA has multi-threading

capability (using the Pthread library) to solve read mapping operations in parallel since there

is no data dependency in these actions. The addition of multi-threading to an aligner does

not guarantee that processing resources are used efficiently. In fact, it is quite common to

observe that efficiency decreases when the thread count grows large enough. In the BWA

aligner experiments, we observed each pthread would be released after processing one batch

size from short read. This creation and release of pthread occupy large time and resource.

4.3.2 OpenMP

The nonprofit technology consortium OpenMP Architecture Review Board (OpenMP ARB)

maintains OpenMP project which has attracted a large attention over the world. OpenMP

ARB is a joint group of major group of major computer hardware and software corporations,

54 Heterogeneous Multicore-Manycore Architecture

including AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat, Texas Instruments,

Oracle Corporation, and more.

OpenMP is an abbreviation of Open Multi-Processing which provides an application pro-

gramming interface that supports multi-processor multi-core shared memory programming

on most platforms and operating systems, such as Solaris, AIX, HP-UX, Linux, macOS,

and Windows. OpenMP permits a simpler and more flexible interface for programmers than

Pthread in developing parallel applications for platforms ranging from the standard desktop

computer to the supercomputer.

OpenMP supports fork-join parallel flow as shown in figure 4.7 that makes parallel

execution most effective on multi-processor or multi-core systems where the process flow can

be scheduled to run on another processor, thus gaining speed through parallel or distributed

processing.

OpenMP thread does not release itself when finishing one batch size of short read,

but continue to process next batch size data and another, according to the results of our

experiments in BWA algner. Less time-waiting and time-processing were observed in the

OpenMP thread. We would apply this OpenMP technique in our strategy of data management

in the experiments.

4.3.3 Intel Cilk

Originally developed in the 1990s at the Massachusetts Institute of Technology (MIT) in the

group of Charles E. Leiserson [95], Cilk was later commercialized as Cilk++ by a spin off

company, Cilk Arts. That company was subsequently acquired by Intel, which increased

compatibility with existing C and C++ code, calling the result Cilk Plus [97].

Intel Cilk is a simple extension based on C and C++ language that supports constructs

for parallel control and synchronization. Intel Cilk enables software in parallelism that could

explore both the thread and the vector capability commonly available in HPC hardware.

4.3 Thread Parallelism Library 55

Observing the results from the typical cost of spawning a parallel thread only takes between 2

and 6 times comparing to the cost of of a C or C++ function call on a variety of contemporary

machines. Cilk owns a low overhead among works because the work-first principle is

implemented.

Fig. 4.8 An example of work-stealing mechanism

The work-first principle is one important part of the runtime load-balancing scheduler

inspired by Dijkstra-like [98] that is designed for shared-memory system. The work-first

principle is to minimize the scheduling overhead borne by the work of a computation.

Specifically, move overheads out of the work and onto the critical path [95]. The critical-

path is the maximum number of instructions on any directed path in the DAG, and the

computation of the critical-path corresponds to the amount of time required by an infinite-

processor execution. The work-first principle concentrates on the significance of minimizing

the work overhead in scheduling and plays a rather crucial position in Cilk parallel system.

Another factor Intel Cilk uses for reaching a better load-balancing in scheduler is a

work-stealing mechanism. This mechanism or algorithm, namely that the idle processors

would steal threads’ jobs from busy processors [99], as shown in figure 4.8. In order to

56 Heterogeneous Multicore-Manycore Architecture

guarantee that the cost of stealing contributes only to critical-path overhead, and not to work

overhead in Cilk’s scheduler, Cilk exploits a Dijkstra-like protocol - THE protocol, to manage

the runtime of ready threads in the work-stealing algorithm. The THE protocol permits

no additional work overhead in scheduler when sending an exception signal to a working

processor.

Chapter 5

Data Management Strategies Based on

Data Parallelization and Data

Replication

The scalability problems of BWA are mainly due to the contention generated by the need for

multiple threads to access the same memory bank where the reference genome is located. To

mitigate this problem we propose a series of alternatives based on a basic common scheme.

In this scheme, there is a first level of parallelism based on groups of threads that handle

groups of reads. On the other hand, the reference genome will be replicated in different

instances, each of which will be accessible by different thread groups.

The number of thread groups and the number of replicas of the reference genome can

vary and can be organized in different ways. The final objective is to analyze which variant

obtains the best results in multicore or manycore architectures. In the manycore systems

we are interested in finding strategies that are efficient using all the resources of the system

(that is, executing in symmetric mode). We are also interested in solutions for manycore

systems that can be easily transferred to multicore systems composed of servers with different

58 Data Management Strategies Based on Data Parallelization and Data Replication

characteristics in terms of performance. The variants that have been implemented and tested

are the ones described below.

This chapter is divided into three sections. First with an overview about the strategies we

proposed and its evolutionary step. Followed by the strategies of DP, DR and DPR that center

on the utilization of data management strategies in the homogeneous architecture. Last, we

combine data parallelization and data replication to a strategy called MDPR (Multi-level Data

Parallelization and Replication) that exploits the usage of the heterogeneous architecture.

5.1 Overview

In our previous work [16] we presented a strategy based on data parallelization and data

replication which could provide significant improvements in efficiency when applied to

BWA. We denote this strategy as DPR (Data Parallelization and Replication) and its BWA

implementation as DPR-BWA. The main idea consists of two steps. Creating a multi-process

application where different instances of BWA have a replica of the genome index. The set of

short read to be aligned is divided among the different instances that perform the alignment

using multiple threads. The replication of the genome index improves locality of accesses

and decreases the congestion in the usage of this shared structure by different threads. This

approach proved to be effective when was applied in the native mode, both to a Xeon-based

system with NUMA architecture and to a Xeon Phi accelerator with MIC architecture.

In our another previous work [17], we explore a generalization of DPR and we propose a

multi-level strategy that can be applied in the symmetric mode on Xeon-Xeon Phi servers.

The new strategy is denoted as MDPR (Multi-level Data Parallelization and Replication). Its

basic structure is shown in Figure 5, which illustrates three basic parallelization levels.

According to our experimental results, MDPR shows significant improvements in execu-

tion time thanks to this multi-level parallelization strategy. The MDPR strategy also benefits

from the usage of OpenMP threads instead of the original Pthread library provided by BWA.

5.1 Overview 59

Short-Read
Data
S

Multicore
S'

S'1

R'1

3.OpenMP Threads
tn, tm

2.Data Distribution:
Short-Read Subsets

S'n, S"m

2.Data Replication:
Genome Index Copy

R'n, R''m

S'n

R'n

......

Instance
1

Instance
n

Manycore
S"

S"1

R"1

S"m

R"m

......

Instance
1

Instance
m

1.Symmetric Mode
Running

Megered
Result

Divide

Divide Divide

Fig. 5.1 MDPR-BWA implementation procedure in the case of n and m instances are applied
in multicore and manycore parts (Intel Xeon + Xeon Phi), respectively.

60 Data Management Strategies Based on Data Parallelization and Data Replication

Improvements in execution time of 3X and 1.5X were obtained by MDPR compared to an

offload version of BWA (mBWA) and another symmetric implementation of BWA (sBWA),

respectively. We also showed that a native version of BWA (called DPR-BWA), which

outperforms other native versions of BWA, both in Xeon and in Xeon Phi systems.

Although a promising result has been achieved in our previous works, we still need to

revise it that avoiding bottlenecks and make a forward in performance.

In latest version [100], we present a more extensive study where we analyze the perfor-

mance of different BWA variants on multicore and manycore systems. We also adjusted the

design of MDPR so that it can be executed indistinctly in multicore or manycore systems, and

we have augmented it with different mechanisms of dynamic data distribution. Additional,

we applied more experiments with two datasets and three heterogeneous architectures to

display a convincing consequence we got.

5.2 Data Management on Homogeneous Architecture: DP,

DR and DPR Strategies

5.2.1 Analysis of Sequence Alignment Procedure

We are exploring data management that involves both parallelism and replication. As shown

in Figure 5.2, two datasets are involved in the alignment process. N corresponds the set of

all short reads, and n is the number of read subsets that totally divided. M represents the

reference genome, and m is the total number of replicas made of such genome. We set that

Ni maps to M j and Ni+ k maps to M j+ k in the alignment. Hence, N1 = ...= Ni = ...=

Nn = N/n,M = M1 = ...= M j = ...= Mm,1 <= i <= n,1 <= j <= m.

Although genome reference also can be partitioned as we did for short read dataset that

could dramatically conserve memory usage, three bottlenecks in this schema of genome

splitting can be a significant effect that degrades performance. The index of each genome

5.2 Data Management on Homogeneous Architecture: DP, DR and DPR Strategies 61

reference should be rebuilt and it costs a considerable time in this procedure. Besides, final

merged results from each subsets(or blocks) need to adjusted according to the new position of

every nucleobase in blocks. Last, in terms of quality of results, it would lose some accuracy in

results cause of cut offs between successive blocks of reference genome. Thus as discussion

above we ignore partition in genome reference dataset.

Genome Reference (M)

Short Read (N)

Rij

NiN1

...

MmMjM1

............

Nn......

R=∑Rij

Collect

Index

Fig. 5.2 Sequence alignment procedure

In our approach, BWA is organized as a set of thread groups (Ng) that are responsible

form mapping some reads. In practice, a thread group represents a group of threads in

OpenMP or a process in MPI, as shown in Figure 5.4. Each thread group is executed using a

different number of threads depending on the hardware resource behind. One thread group in

alignment is logically organized as a collection of threads that work on independent datasets

of short read and share the genome index among the threads. For a total number of potential

threads Nt and thread groups Ng, each thread group consists of Nt/Ng threads. For example,

Nt is 24 and 240 in the cases of Intel Xeon and Xeon Phi, respectively. When applying two

thread groups (Ng = 2), 12(24/2) and 120(240/2) threads are included in each thread group

in the cases of Intel Xeon and Xeon Phi, respectively. When applying three groups (Ng = 3),

8(24/3) and 80(240/3) threads are included in one thread group in the cases of Intel Xeon

and Xeon Phi, respectively.

The process of alignment has three main phases, as displayed in figure 5.3:

62 Data Management Strategies Based on Data Parallelization and Data Replication

*.fa *.fa.*INDEX

*.fq

ALN
*.sai.1

Ref. Genome
INDEX of
Ref. Genome

Short Read

1

2

*.sai.2

*.sai.k
3

*.sai

Fig. 5.3 Three main phases in the process of sequence alignment

1. Building the index for the genome reference M j; the time of this phase is T (M j) =

T (M);

2. Mapping short read subset Ni to genome reference M j, which achieves mapping

sub-result Ri j = Map(Ni,M j); the time of this step is T (Ri j);

3. Collecting all alignment sub-results and merging them into final output R = ∑Ri j; the

time of this step time is T (R);

Total execution time is basically T = T (M)+T (R)+∑
i=n, j=m
i=1, j=1 T (Ri j), being the first

two steps the ones that can benefit from parallelization. Actually, the mapping consumes

most of the execution time. Hence, we can simplify the expression to T = ∑
i=n, j=m
i=1, j=1 T (Ri j).

5.2.2 DP, DR and DPR Strategies

There are different variations that can be applied to the values for n and m.

1. Original execution: n = 1,m = 1.

5.2 Data Management on Homogeneous Architecture: DP, DR and DPR Strategies 63

This case corresponds to the original structure of BWA. As shown in Figure 5.4.a,

multiple OpenMP threads are processing all short reads using single reference genome.

2. DP strategy: n > 1,m = 1.

In this case (see Figure 5.4.b), short reads are evenly divided into to n parts based on

the number of thread groups that are used (Ng), and a single copy of the reference

genome is used by all thread groups. We refer this strategy as data parallelization (DP).

Alignment process runs in every thread group with the shared genome index and its

relative subset of short read. Subset results are finally gathered and merged from all

thread groups.

3. DR strategy: n = 1,m > 1.

In this case, the reference genome is replicated m times, while short reads are shared

among all thread groups. We refer to this strategy as data replication(DR). As shown

in Figure 5.4.c, the reference genome is replicated for every thread group in memory.

The alignment process in each thread group accesses to the shared set of short reads.

Finally, the results are merged as in the previous case.

4. DPR strategy: n > 1,m > 1.

In this case, both short reads and reference genome have several parts or copies (set of

reads is divided in n parts and reference genome is replicated m times, being n and m

the same value). As shown in Figure 5.4.d, each group of threads has one reference

genome replica and short read dataset is evenly into as many parts as thread groups.

This strategy is referred as DPR as it combines the previous two strategies.

64 Data Management Strategies Based on Data Parallelization and Data Replication

Genome Short Read

Result

Short Read

Result

Genome

Genome
Short Read

Result

Genome

Result

Short Read

a. Original Application

c. DR Program

b. DP Program

d. DPR Program

OpenMP

threads

Thread group

MPI
instance

OpenMP

group

Fig. 5.4 Implementation of DP, DR and DPR

5.3 Data Management on Heterogeneous Architecture: MDPR Strategy 65

5.3 Data Management on Heterogeneous Architecture: MDPR

Strategy

5.3.1 MDPR Strategy

The strategies described above can be applied in homogeneous multicore systems with shared

memory. In the case of systems based on accelerators (executing in symmetric mode) or in

the case of independent multicore systems, we propose a new strategy that generalizes DPR.

It is referred as MDPR (Multi-level Data Parallelization and Replication) and is illustrated in

Figure 5.5.

......

R'1

Genome

Result X

R'x
S'x

......

S'1

DPR (x instances)

S

S'

Node X
Read

......

R''1

Genome

Result Y

R''y
S''y

......

S''1

DPR (y instances)

S''

Node Y
Read

......

Short
Read

R

Megered
Results

Fig. 5.5 MDPR strategy with the case of x and y instances are implemented in node X and Y,
respectively

The short read dataset (S) is partitioned into several subsets: one subset for each node in

the system (Figure 5.5 shows the case of two nodes: node X(S′) and node Y(S′′)). We have

several thread groups or instances in node X (denoted as S′1, ...,S′i, ...,S′x, 1 <= i <= x)

and several thread groups in node Y (denoted as S′′1, ...,S′′ j, ...,S′′y,1 <= j <= y). Thread

groups are generated by taking into account the memory requirements of the aligner (in

particular, the size of the reference genome) and the amount of available space on the memory

66 Data Management Strategies Based on Data Parallelization and Data Replication

banks in systems. Reference genome replicas are denoted as R′1, ...,R′x, and R′′1, ...,R′′y.

Each BWA instance executes several threads to align short reads assigned to it. It is worth

mentioning that that the number of instances on a heterogeneous architecture does not require

to be identical. In fact, in the experimental part we’ll show results obtained with various

combinations that we tested.

According to this schema, the best performance should obtained if all thread groups

consume a similar time. However, the heterogeneity of the whole system may leads to

different execution times if short reads are distributed evenly. This load imbalance situation

can be ameliorated by partitioning the short read dataset in an uneven way. This partitioning

can be done in different ways and we have evaluated three possibilities: a static distribution

that divides the dataset off-line and two dynamic distribution mechanisms that divide the

dataset at run-time.

To cover data latency in the data distribution of MDPR, only data start position and data

ending position are communicated with each thread groups instead of transferring dataset.

Although we show a two-node case in the illustration of MDPR, it is also suitable for multiple

nodes.

5.3.2 Static Distribution

In this mode, size of datasets S′ and S′′ are computed beforehand and the initial dataset

of short read is divided statically beforehand. The ratio between S′ and S′′ is computed

according to the relative performance achieved by the best result achieved by DPR in each

architecture, as shown in figure 5.6.

For instance, in the case of two nodes (X and Y), for a certain number of instances on

the node X and on the node Y (x and y instances, respectively), the time-cost T x and Ty are

measured. Then the Ty/T x ratio between node X and node Y is used to divide the input data

S. Namely, the ratio between S′ and S′′ is computed according to the relative performance

5.3 Data Management on Heterogeneous Architecture: MDPR Strategy 67

0 1 2

Static
distribution

Fig. 5.6 An example of static distribution in MDPR strategy

achieved in each node. Hence, for the node X we have size(S′) = size(S)∗Ty/(T x+Ty) and

for the node Y we have size(S′′) = size(S)∗T x/(T x+Ty).

Obviously, this static distributions does not introduce any overhead at run-time but

it requires the execution of several configurations that might be time-consuming in large

systems.

5.3.3 Even Distribution

Each instance in MDPR is dynamically distributed with an identical size (size(S)/(x+ y)) of

short read dataset(S) based on the total number of instances (x+ y) we utilize, as shown in

figure 5.7.

0

0 1 2

Master

Slavers

Even
distribution

Fig. 5.7 An example of even distribution in MDPR strategy

68 Data Management Strategies Based on Data Parallelization and Data Replication

In fact, the ratio between node X and node Y could set up as x/y. In node X we have

size(S′) = size(S) ∗ x/(x+ y), and in node Y we have size(S′′) = size(S) ∗ y/(x+ y). As

discussed in the static distribution section, the original dataset is divided at the beginning

of the execution. But in even distribution, data distribution and execution are handled

automatically.

This even mechanism does not introduce any significant overhead although it does not

guarantee in general a good load balance if relative performance of nodes is significantly

different.

5.3.4 Round-robin Distribution

This distribution implies that a master instance distributes chunks of reads to slave instances

when they have finished previous chunks, as shown in figure 5.8.

0

0 1 2

Master

Slavers

......
Round-robin
distribution

Fig. 5.8 An example of round-robin distribution in MDPR strategy

This mechanism should guarantee a better load balance than the previous one at the

expense of a larger overhead at run time. As we known that each thread in BWA aligner

once time processes a fixed size(256K in default) and each instance only reads a chunk from

short read dataset for alignment. Thus chunk size should be at least 256K*(available thread

number in one instance).

5.3 Data Management on Heterogeneous Architecture: MDPR Strategy 69

For example, if we execute BWA aligner in a system with supporting 64 available

threads, the chunk size should be at least 16M(256K*64) when one instance is applied, or

8M(256K*32) when two instances are applied. Namely, more instances in one system would

lead a more minimal chunk size.

As shown in Figure 5.8, chunks of short read are delivered under a round-robin fashion.

It would receive one another chunk job when completing previous one. In order to cover the

possible time-waiting for delivery chunks by the master in slaver instances, the round-robin

experiments is conducted on the minimal size of chunk with one instance running with BWA

aligner, and only data start position and data ending position is shared among neighbour

instances.

Chapter 6

Experimental Implementation and

Environment

6.1 Sample Dataset

Table 6.1 shows the sample datasets (SRR766060 and YH110112) we used in our experi-

ments. The first one is obtained from the 1000 Genomes Project [101] and the second one

corresponds to a genome sequence of Han Chinese individual project [102].

1KGP is an abbreviation of The 1000 Genomes Project that launched in January 2008

to set up the detailed catalogue of human genome under an internatinal research effort,

including China, the United States, the United Kingdom, Japan, Kenya, Italy, Nigeria, Peru

and etc [103]. Han Chinese individual project is the first Asia human genome sequenced

that providing the first large-scale whole genome sequencing resource representative of the

largest ethnic group in the world [104]. These two projects provide us a convincing genome

dataset in the experiments.

As shown in Table 6.1, HS37D5 corresponds to the human reference genome, about

3GB size, and its BWA index, up to 4.4GB. Our dataset of short read, one is SRR766060

72 Experimental Implementation and Environment

(SRR), paired-end, with total size equal to 17.4GB(8.7GB*2). The other is YH110112 (YH),

single-end, we required 4.4GB segment from original source data.

These datasets are originated from widely confident projects that are the community

resource research to establish by far the most detailed catalog of human genetic variation

which aims to release data rapidly for the benefit of the scientific community. Although the

experiments were conducted on the datasets of human genome, the methodology could be

available for all species as well. A minimum of 6 executions of each independent cases with

the same environment and configurations are carried out for the purpose of reaching mean

values with high confidence intervals.

Table 6.1 Experiment dataset

Name Data Set Data Size Read Length Read Number -

Short Read SRR766060(SRR) 17.4GB 100 34.2M Paired-end
- YH110112(YH) 4.4GB 100 14.8M Segment
Genome Reference HS37D5 3GB - - Human Genome

6.2 Implementation System

Two different heterogeneous systems which comprises distinct architectures inside are

conducted in the experiments. One is the heterogeneous system of multicore and manycore

architectures, which is denoted as S1, see Figure 6.1. The other is the heterogeneous system

of Intel NUMA node and AMD NUMA node, we called this S2, see Figure 6.2. The details

of two architectures we had discussed in the previous chapter.

Table 6.2 summarizes the main characteristics of the systems used in our experiments.

Sandman and Sandman-Xeon Phi constitutes the heterogeneous system(S1) made of 2

Intel Xeon E5-2620 processors and one Intel Xeon Phi 7120 accelerator. Sandman has 2

processors, 2-NUMA nodes (with 32 GB of memory in each node), 12 cores and 24 available

threads with hyper threading enabled. Sandman-Xeon Phi consists of 60 cores, 240 available

6.2 Implementation System 73

Numa 1

Memory

Numa 1

Processor 1

Cores

Xeon Architecture

Memory

Numa 2

Processor 2

Cores

PCI-e

Xeon Phi Architecture

Core

TD

Core

TD

Core

TD

Core

TD

GDDR
MC

Memory

PCI-e
Client
Logic

Fig. 6.1 The system of S1, Intel Xeon + Intel Xeon Phi

Processor 3

Intel Xeon

Processor 4

NUMA

Cores Processor 1 Processor 2

Memory

Processor 3

AMD Opteron

Processor 4

Processor 1 Processor 2

Fig. 6.2 The system of S2, AMD Opteron + Intel Xeon

74 Experimental Implementation and Environment

threads and 16GB memory on card. Each core runs at 1333Mhz and possesses 4 hardware

threads.

Table 6.2 Experiment system

System Hostname Socket Processor NUMA Core Thread Memory Data Width

S1 Sandman Intel Xeon 2 2 12 24 64GB 64bits
E5-2620

Sandman Intel Xeon Phi 1 1 60 240 16GB 512bits
-Xeon Phi 7120

S2 Penguin Intel Xeon 4 4 32 64 128GB 64bits
E5-4620

Batman AMD Opteron 4 8 32 64 128GB 64bits
Processor 6376

S3 AMD+Intel AMD Opteron+Intel Xeon 17 25 126 252 576GB 64bits

The second system(S2) that we used in our experiments is made of two multicore servers:

Penguin (equipped with Intel processors) and Batman (equipped with AMD processors).

Penguin has 4 Xeon processors, 4-NUMA nodes, 32 cores, 64 threads and 32GB memory

size per processor, and Batman has 4 sockets (with 2 processors per socket which implies a

total of 8-NUMA nodes), 64 threads and 128GB memory bank. The architectures of both

systems are illustrated in Figures 6.1 and 6.2.

Furthermore, a large-scale system that supports 252 threads 126 cores with AMD Opteron

and Intel Xeon were implemented in the experiments of MDPR strategy.

6.3 Related Software

6.3.1 BWA-ALN-Xeon-Phi

BWA aligner is an efficient software program for sequence alignment against a very large

reference genome which consumes less memory print than others. BWA consists of three

algorithms: BWA-backtrack, BWA-SW and BWA-MEM. This BWA-ALN-Xeon-Phi [105]

program focuses on the first algorithm which is designed for Illumina sequence reads up to

100bp.

6.3 Related Software 75

In order to utilize the heterogeneous cluster in cooperation for genome mapping, we

take advantages of one project named BWA-ALN-Xeon-Phi-0.5.10 which is based on orig-

inal application BWA-0.5.10, and it supports two execution modes, native mode and sym-

metric mode. The source code of BWA-ALN-Xeon-Phi-0.5.10 can be downloaded from

https://github.com/intel-mic/bwa-aln-xeon-phi-0.5.10. All implementation is executed under

applying Intel Parallel Studio XE 2013 environment. All MPI execution runs on the MPI

4.1.3 version.

Some significant optimizations have been applied in this project based on the performance

of BWA-backtrack algorithm of BWA-0.5.10 version. It enables a symmetric execution mode

in cooperation for genome mapping that could use both Intel Xeon processors and Intel Xeon

Phi coprocessors at the same time under some configurations beforehand.

Crucial advantages and disadvantages in BWA-ALN-Xeon-Phi project we list below

which we utilize in the experiments of this thesis:

1. This BWA-ALN-Xeon-Phi replaces Pthread with OpenMP in core loops, we extend

this function to index-building step and other significant loops.

2. This BWA-ALN-Xeon-Phi applies task parallelism in addition to OpenMP that is

utilized in the DP and DR strategies but we call this thread group in order to distinguish

the new function of task parallelism of OpenMP.

3. Symmetric execution mode is implemented with BWA-ALN-Xeon-Phi in our previous

work. However, a large number of configurations before implementation is necessary

and complex. We move symmetric execution mode from BWA-ALN-Xeon-Phi to

original BWA-0.5.10 with less configurations and achieve a faster execution.

6.3.2 mBWA

There are three basic execution modes that could be used in the heterogeneous multicore

and manycore architecture of Xeon-Xeon Phi-based system. Offload mode, the application

76 Experimental Implementation and Environment

executes on the Intel Xeon, and in order to reach a better performance it offloads selected

highly parallel and computationally intensive work to the Intel Xeon Phi. This is the most

widely used with Xeon Phi as an accelerator. On the contrary, there is another opposite

execution mode. The application runs on the Xeon Phi and offloads selective work into Xeon.

But this is a very rare working way.

In this thesis, we demonstrate an offload version of BWA, mBWA, to evaluate the three

basic execution modes. mBWA is an application developed by Cui [11] which starts BWA on

the Xeon processor and offloads core loops to the Xeon Phi. According to the experiments of

authors, mBWA outperforms BWA in a significant performance with a combination of offload

mode and three-stage parallel pipeline strategy. As shown in Figure 6.3, the performance of

mBWA increases linearly with the number of threads and coprocessors increasing.

Fig. 6.3 Effectiveness of MIC. (a) Scalability of mBWA on Intel Xeon Phi. (b) Performance
of mBWA under different number of Intel Xeon Phi

We list key characteristics that made optimizations in mBWA as follows:

1. A three-stage pipeline is designed for the sequence alignment process. The three stages

include data input, reads aligning and data output. The pipeline increases efficiency by

overlapping data IO with the actual alignment process.

6.3 Related Software 77

2. The alignment kernel of BWA is ported into the Intel MIC coprocessor by re-organizing

data transformation in the kernel. In addition, CPU and MIC perform the alignment

corporately in the offload mode.

6.3.3 pBWA

pBWA [14] is a parallel mapping version of BWA which is based on the OpenMPI library

[106]. It enables multi-threading capability (Pthread) for achieving an efficient parallelization

for core alignment mapping. According to our experiments we reach, we modify Pthread

library to OpenMP library in pBWA, in order to enable efficient multi-threading ability. This

ability enables maximal usage of a hybrid MPI and OpenMP programming so that pBWA

could be executed in both parallel and multi-threading simultaneously.

According to the results of the experiments done in the research, pBWA could utilize

the advantage of HPC cluster and approach a considerable performance improvement by

cutting down the overall time from weeks to hours for rather large DNA sequence datasets,

as displayed in Table 6.3. The 350 million reads dataset was run with 240 processors in

pure parallelization (i.e. 1 threading per processor) and using 48processors, each running 5

threads, therefore both for a total of 240 threads (the 240P and 48P/5T columns in Table 6.3)

[14].

Moreover, parallelization supports slightly better speedup and efficiency at rather large

amounts of sequence data for aln model than multiple threads in the identical number of

threads in sampe model, which is due to lack of multi-threading in sampe (240P vs. 48P@5T

in Table 6.3). This is also one reason that we choose to focus in BWA-ALN model.

In this thesis, pBWA-based versions are proposed in the experiment according to the

revision we need. Although pBWA that based on the version of BWA-0.5.9 has made some

favorable optimizations in aln and samse/sampe process of alignment, as shown in Table 6.3,

we only focus on the aln process, BWA-backtrack algorithm. We list the revision necessary

when implement our strategies in the experiments as follows:

78 Experimental Implementation and Environment

Table 6.3 pBWA executed with 350 million paired 50 bp reads. T, the number of threads; P,
the number of processors; Time-used for running aln for each of the pair read file. Efficiency
calculated based on the combined time in minutes (m) or seconds (s) of aln and sampe
commands, and is calculated as Speedup divided by the number of threads or processors or
the combined total threads.

1 T 24 P/speedup 48 P/speedup 96 P/speedup 240 P/speedup 48 P @ 5 T 240 P @ 12 T
(240 T)/speedup (2880 T)/speedup

aln 1 7611 m 606 m, 12.6 294 m, 25.9 140 m, 54.4 62 m, 122.8 66 m; 115.3 13 m, 585.4
aln 2 6950 m 495 m, 14.0 253 m, 27.5 124 m, 56.0 55 m, 126.4 59 m, 117.8 12 m, 579.2
sampe 520 m 67 m, 7.7 34 m, 15.3 24 m, 21.7 16 m, 32.5 34 m, 15.3 16 m, 32.5
Totals 15081 m 1168 m/12.9 581m/26.0 288 m/52.4 132 m/114.3 159m/94.8 41 m/367.8
Efficiency 1 0.53 0.54 0.55 0.47 0.40 0.13

• Original pBWA version utilize Pthread library to enhance multi-threading ability, but

in our experiments Pthread library is removed and OpenMP is applied in the core loops

instead.

• In the performance evaluation of MDPR, we utilize pBWA version to revise the

necessary code in program in order to implement our strategies of dynamic schedule

of data distribution, such as even distribution and round-robin distribution.

6.3.4 Intel VTune Amplifier

Performance analysis is one of our crucial works in the thesis. Intel VTune amplifier is

the basic software of performance analysis we utilize in the evaluation of the experiments.

Intel VTune amplifier interacts with users by gathering crucial profiling data which provides

a simplified analysis and interpretation for necessary optimizations. This software is a

commercial application provided by Intel corporation that could support both a GUI and

command interaction for Linux and Microsoft Windows OS. Many features can be work on

both operation systems as illustrated in the following part [107]:

• Software sampling

• JIT profiling support

• Locks and waits analysis

6.3 Related Software 79

• Threading timeline

• Source view

• Hardware event sampling

• Memory Access Analysis

• Storage Analysis

We used VTune software to provide performance counter numbers to support our ex-

planations of performance results from the experiments. In the performance comparison of

different thread libraries, VTune provides us information details about thread time-cost in

each threads.

Chapter 7

Experimental Results and Evaluation

In this section we show several experiments comparing different versions of BWA in various

proposed strategies in order to find the one that provides better performance.

The first set of experiment focuses on Xeon Phi-based system that shows a comparison

among the basic mode of BWA (native mode) and strategies from the literature that run in

offload mode and in symmetric mode on Xeon Phi systems.

Next, a set of experiments evaluates the impact of three thread libraries to enable multi-

threading ability for BWA aligner, including Pthread, Intel Cilk and OpenMP we proposed.

This experiments illustrate a brief of overheads and work distribution among the threads.

Finally, The next experiments analyze the behavior of the strategies based on data

parallelization or data replication described in the section of data management strategies.

Experiments carried out with the MDPR strategy are shown to evaluate the performance of

the three mechanisms of data distribution both on our manycore system and on our multicore

system.

82 Experimental Results and Evaluation

7.1 Evaluation of Parallelism on Basic Execution Modes

7.1.1 Implementation

These experiments evaluate the scalability of three basic execution modes of BWA aligner

according to the description provided in Section 4(i.e., native, offload and symmetric modes).

We ran the applications on our multicore-manycore system (S1: Sandman and Sandman-

Xeon Phi) and we used two datasets, SRR and YH. We tested the BWA versions shown in

Table 7.1.

Table 7.1 BWA aligner versions on basic execution mode

Architecture Native Mode Symmetric Mode Offload Mode

Xeon BWA-Xeon
sBWA

Xeon Phi BWA-Xeon Phi mBWA

BWA-Xeon and BWA-Xeon Phi correspond to the original version of BWA running in

native mode either in the Xeon part of the system or in the Xeon Phi part of the system.

sBWA is a straightforward implementation of BWA running in symmetric mode with two

instances of BWA aligner (one in Xeon and one in Xeon Phi) connected by MPI services.

Finally, mBWA [11], runs BWA in an offload mode. It launches in the Xeon part and the

main time consuming parts are derived to the Xeon Phi part. These four BWA-based versions

corresponds to three basic execution modes, as shown in Table 7.1.

Load balance between Xeon and Xeon Phi on the symmetric mode is rather significant

and their time-consuming should be close in order to approach their best performance. In this

experiments, we would use one common fashion - static mode - which means we settle up

load balance by optimizing the workload based on the runtime of their native mode execution.

For example, if the Intel Xeon Phi coprocessor’s performance on native mode is 0.7-fold that

of the same problem running on the Intel Xeon processor on native mode, then the ratio of

workload on symmetric mode is 10 for the Intel Xeon processor, and 7 for the Intel Xeon Phi

coprocessor.

7.1 Evaluation of Parallelism on Basic Execution Modes 83

7.1.2 Performance Analysis

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

T
im

e-
co

st
 (S

)

Thread Number

Performance Comparison

sBWA mBWA BWA-Xeon BWA-Xeon Phi
6+

60 6 60

12
+1

20

24
+2

40

18
+1

8060 12 18 24120 120 180 180 240 240

Fig. 7.1 Scalability of BWA aligners (identical color in short column: the results from dataset
SRR, and long column: the results from dataset YH)

Figure 7.1 shows average execution times obtained by each BWA-based aligner for each

dataset. The longer column in one color represents the results from dataset YH, while the

shorter column in same color stands for the results from dataset SRR.

Maximal parallelism in our system is 24 threads in Xeon (Sandman) and 240 threads in

Xeon Phi (Sandman-Xeon Phi). Hence, BWA-Xeon case illustrates scalability of 6, 12, 18

and 24 threads. BWA-Xeon Phi and mBWA cases utilize scalability of 60, 120, 180 and 240

threads. sBWA results for the following number of threads: 6 (on the Xeon) and 60 (on the

Xeon Phi), 12 and 120, 18 and 180, and 24 and 240, respectively.

All strategies show a similar tendency in each dataset. Despite the high number of

threads used, BWA-Xeon Phi exhibits the worst execution times, with sBWA being the best

performing version. sBWA always outperforms native and offload cases. Although sBWA

simultaneously takes advantage of available cores both on the Xeon and on the Xeon Phi, the

performance improvement is not linear with the number of growing threads. You can observe

84 Experimental Results and Evaluation

that time-consuming decreases quite slowly when 12+120 threads and more are applied in

the experiments.

This phenomena can be explained because sequence alignment process has large data I/O

operations and is sensitive with the cost of data I/O operations. It consumes more time in the

Xeon Phi part rather than in the Xeon part when the necessary reading datasets of genome

reference and short read, and writing alignment results.

In the case of offload mode, mBWA performs main data I/O operation in the Xeon part

instead of in the Xeon Phi part, and selects highly parallel loops offload into the Xeon Phi

part. Thus when comparing the performance of the same amount of threads in mBWA with

that of BWA-Xeon Phi, mBWA are approximately two third of execution time spend by the

case of BWA-Xeon Phi and approaches a close performance with BWA-Xeon aligner.

The identical situation occurs in BWA-Xeon and BWA-Xeon Phi, the former case reaches

better performance than the latter one, despite a lower amount of threads (1/10 X) applied in

BWA-Xeon. In the case of sBWA, on the one hand, the asymmetric distribution of initial

data compensates the loss in performance incurred by data I/O operations on the Xeon Phi.

On the other hand, sBWA makes memory access only within its local memory bank of nodes,

without any remote access within nodes.

Figure 7.1 also shows another problem that affects all four aligners: scalability does not

improve significantly as a growing number of threads is used. As mentioned in Chapter 3,

BWA uses a shared data structure containing the genome reference. This data structure is

loaded at one particular memory bank of the NUMA system by the master thread according to

first-touch policy. Thus this memory bank turns into a congestion bottleneck of performance

as the number of threads grows. This memory bank needs to support more concurrent accesses

coming from various threads to populate the corresponding caches. Multiple replicas of

genome reference in NUMA node could be a convenient road to resolve this bottleneck.

7.2 Thread Parallelism Evaluation: Pthread, Intel Cilk and OpenMP 85

7.2 Thread Parallelism Evaluation: Pthread, Intel Cilk and

OpenMP

7.2.1 Implementation

As mentioned in Chapter 3, BWA aligner is an embarrassing tool in which the threads in

parallel process chunks by repeating the following three principal actions:

1. Acquiring a fixed size of batch from short read, 256KB in default,

2. Aligning the batch in a round-robin pattern among threads against the genome refer-

ence,

3. Writing the alignment results to the output file.

BWA has multi-threading capability (using the Pthread library) to solve read mapping

operations in parallel since there is no data dependency in these actions. The addition of

multi-threading to an aligner does not guarantee that processing resources are used efficiently.

In fact, it is quite common to observe in the experiment that efficiency decreases when the

thread count grows large enough.

We denote the original version of BWA aligner as BWA-Pthread, which is implemented

under the Pthread library and spawn t threads via the -t parameter in the master thread. A job

distribution mechanism in threads, called round-robin pattern, activates dynamic load balance

at some extent. However, we observed in VTune that BWA-Pthread does not preserve t

threads when running. In fact, 3097 threads were observed(see Figure 7.6) in total during

the alignment in the experiments of setting up 24 threads by parameter -t. This behavior

indicates a considerable overhead expense on the management of thousands of threads.

For the purpose of avoid this overhead, we also evaluated two alternative version of

BWA aligner utilizing different thread library: OpenMP (BWA-OpenMP) and Intel Cilk

(BWA-Cilk). These two versions maintain a fixed number of threads (t threads) until BWA

86 Experimental Results and Evaluation

aligner completes the whole alignment. Short read is distributed in a fixed road among the

threads in BWA-OpenMP with no stealing mechanism. Thus synchronization and overhead

is lower at some cases.

Additional, BWA-Cilk is task-based parallelization under the usage of Intel Cilk Plus

extension for C and C++ programming. BWA-Cilk threads work in the dynamic job-stealing

schedule to achieve load balance, namely faster threads could steal jobs from other slower

threads. But several machine instructions BWA-Cilk uses are not supported in the Xeon Phi

part, we disable the unsupported instructions in MEM algorithm, thus ALN algorithm we

work can be implemented in the Xeon Phi.

7.2.2 Performance Analysis

0
1000
2000
3000
4000
5000
6000
7000
8000

6 12 18 24

Ti
m

e-
C

os
t(S

)

Thread Number

Threads Performance on Xeon-Sandman
BWA-Pthread BWA-OpenMP BWA-Cilk

Fig. 7.2 Thread scalability in the Intel Xeon (Sandman). Identical color in short column: the
results from dataset SRR, and long column: the results from dataset YH

Figures 7.2 and 7.3 display mean time of three thread versions of BWA aligners executed

in the Intel Xeon processor and Xeon Phi coprocessor (S1) with two datasets respectively.

Figures 7.4 and 7.5 illustrate another heterogeneous architecture of Intel Xeon and AMD

Opteron (S2), four sockets multiple NUMA nodes with two datasets.

7.2 Thread Parallelism Evaluation: Pthread, Intel Cilk and OpenMP 87

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

60 120 180 240

Ti
m

e-
C

os
t(S

)

Thread Number

Threads Performance on Xeon Phi

BWA-Pthread BWA-OpenMP BWA-Cilk

Fig. 7.3 Thread scalability in the Intel Xeon Phi (Sandman-Xeon Phi). Identical color in
short column: the results from dataset SRR, and long column: the results from dataset YH

As indicated in the previous chapter, the longer column in one color represents the results

from dataset YH, while the shorter column in same color stands for the results from dataset

SRR. These BWA aligners are conducted in the system of S1(Sandman and Sandman-Xeon

Phi), the number of threads varies from 6 to 24, 60 to 240, respectively.

Similar phenomena was observed in both systems. BWA-Pthread always performs worst

performance which exhibits the highest execution time of all. We discovered that irregular

waiting time and fluctuated CPU time by utilizing the performance software VTune. As

shown in Figure 7.6, each CPU time of Pthread ranges from 4s to 11s when we applied 24

threads in Sandman with dataset SRR. This imbalance behavior in CPU time could occur

due to the overhead in thousands threads synchronization and management.

BWA-OpenMP reaches the least time-cost of three BWA aligners in the cases of 6 and

12 threads in Sandman, and similar value in the case of 18 and 24 threads with BWA-Cilk

version. According to these results illustrated in the figures, BWA-OpenMP we proposed

always achieve less time-cost than the original Pthread version and not worse than Intel

Cilk version. Another advantage BWA-OpenMP displays is that this version can be easily

implemented in Xeon Phi part while BWA-Cilk does not.

88 Experimental Results and Evaluation

0

1000

2000

3000

4000
5000

6000

7000

64483216

Ti
m

e-
C

os
t(S

)

Thread Number

Threads Performance on Xeon-Penguin
BWA-Cilk BWA-OpenMP BWA-Pthread

Fig. 7.4 Thread scalability in the 4-socket Intel Xeon Phi (Penguin). Identical color in short
column: the results from dataset SRR, and long column: the results from dataset YH

0

1000

2000

3000

4000

5000

64483216

Ti
m

e-
C

os
t(S

)

Thread Number

Threads Performance on Xeon-Batman
BWA-Cilk BWA-OpenMP BWA-Pthread

Fig. 7.5 Thread scalability in the AMD Opteron (Batman). Identical color in short column:
the results from dataset SRR, and long column: the results from dataset YH

7.2 Thread Parallelism Evaluation: Pthread, Intel Cilk and OpenMP 89

0

2

4

6

8

10

12

14

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035
36 29

1

54
6

80
1

1.
05

6

1.
31

1

1.
56

6

1.
82

1

2.
07

6

2.
33

1

2.
58

6

2.
84

1

3.
09

6

C
PU

 T
im

e
(S

)

W
ai

t T
im

e
(S

)

Thread ID

BWA-Pthread thread

Wait Time CPU Time

Fig. 7.6 Thread performance of BWA-Pthread in the Intel Xeon(Sandman) with dataset SRR
by VTune

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti
m

e-
C

on
su

m
in

g(
S)

Thread ID

BWA-Cilk thread
Wait Time CPU Time

Fig. 7.7 Thread performance of BWA-Cilk in the Intel Xeon(Sandman) with dataset SRR by
VTune

90 Experimental Results and Evaluation

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Ti
m

w
-C

on
su

m
in

g(
S)

Thread ID

BWA-OpenMP thread
Wait Time CPU Time

Fig. 7.8 Thread performance of BWA-OpenMP on the Intel Xeon(Sandman) with dataset
SRR by VTune

We also evaluated thread time of 24 threads running in the Intel Xeon(Sandman) with

dataset SRR, see Figures 7.6, 7.7 and 7.8. CPU Time is time during which the CPU is actively

executing your application. Wait time is per-thread that occurs when threads are waiting due

to APIs that block or cause synchronization.

The CPU usage of baseline, in Figures 7.6, is rather rough and fluctuated which means

the threads occasionally work and much times for idle. Each CPU time of Pthread ranges

from 4s to 11s, even we observed totally 3096 threads created in the whole alignment process

when we set up parameter t as 24. While in the execution of BWA-OpenMP and BWA-Cilk,

as depicted in the Figures 7.7 and 7.8, the threads work simultaneously on the vast majority

of execution time and rarely rest. Hence, the CPU usage is very flat and tight which indicts

load is much balanced among threads.

We observed similar behavior that happens in S2, whether Penguin or Batman. BWA-

OpenMP version gains a more considerable improvement than BWA-Pthread, and could

provide a balance performance among these three thread libraries. Thereby in the following

7.3 Scalability Evaluation of DP, DR and DPR 91

experiments, if we do not refer the version of BWA aligner we used for implementation,

BWA-OpenMP always the default one we applied in the experiments.

7.3 Scalability Evaluation of DP, DR and DPR

7.3.1 Implementation

In this experiments, we set up two thread groups for execution in the strategy of DP, DR and

DPR, namely n = 2 in DP, m = 2 in DR and n = m = 2 in DPR. Figure 7.9 and 7.10 show

relative speedups in Intel Xeon and Xeon Phi, respectively.

In terms of available threads in Sandman and Sandman-Xeon Phi, thread number of 6,

12, 18 and 24 are tested in the evaluation of scalability in former system and thread number

of 60, 120, 180 and 240 are tested in latter one. The speed-up is calculated using a baseline

case that the execution time of original BWA with one thread running on Sandman under

dataset SRR.

7.3.2 Performance Analysis

In general, the three strategies have a consistent behavior in all cases and it can be concluded

that DPR obtains the best performance, followed by DP and DR. DPR achieves best speed-up

in all cases no matter in the Xeon or Xeon Phi platform because hybrid MPI and OpenMP is

applied in this strategy for solving the congestion of accessing genome index and improving

the parallelization of short read. However, in the case of strategies of DP and DR, although

some parallelism methods are utilized in the implementation, it is not better for improvement

of overall performance.

There still crucial bottlenecks of performance existed in the implementation of BWA

aligner. DP strategy solves short read in parallel subset simultaneously, but it does not

92 Experimental Results and Evaluation

0
2
4
6
8

10
12
14

6 12 18 24

Sp
ee

d-
up

Number of threads (n or m=2)

Thread scalability, SRR - Xeon
DPR DP DR

0

2

4

6

8

10

12

6 12 18 24

Sp
ee

d-
up

Number of threads (n or m=2)

Thread scalability,YH - Xeon
DPR DP DR

Fig. 7.9 DP, DR and DPR scalability comparison on Sandman

7.3 Scalability Evaluation of DP, DR and DPR 93

0

2

4

6

8

60 120 180 240

Sp
ee

d-
up

Number of threads (n or m=2)

Thread scalability, SRR - Xeon Phi
DPR DP DR

0

2

4

6

60 120 180 240

Sp
ee

d-
up

Number of threads (n or m=2)

Thread scalability,YH - Xeon Phi
DPR DP DR

Fig. 7.10 DP, DR and DPR scalability comparison on Sandman-Xeon Phi

94 Experimental Results and Evaluation

reach much performance cause only the batch (256KB) is read each time. DR strategy at

some extent resolves the bottleneck of congestion of genome index dataset, but it does not

compensate the remote access of it. DP and DR show a quite close speed-up line in the

experiments.

Results in the Xeon exceed by a factor of 10 at the number of threads that those obtained

in the Xeon Phi. The overhead of I/O explains part of these lack of performance in the Xeon

Phi. On the one side, BWA does not take advantage of the 512-bit SIMD units available in

the Xeon Phi. On the other side, the effect of memory containment is attenuated thanks to

the usage of replicas of the reference genome. This effect is greater in the case of the Xeon

system because it has two clearly separated NUMA nodes.

In the case of Xeon Phi, the use of replicas allows increasing the number of concurrent

accesses. But in this case, the improvement is not so significant because there are no clearly-

separated NUMA nodes and the performance is improved until a point is reached where the

ring connecting all the memory banks is saturated.

7.4 Analysis of Thread Groups and Data Replicas in DP,

DR and DPR

7.4.1 Implementation

One of the factors associated with the design of the strategies of DP, DR and DPR is the

number of thread groups in them. With these experiments we want to answer questions like

what is the ideal number of groups that should be used in a particular architecture? or can we

use any practical rule that can be applied to deduce such number?

We executed DP, DR and DPR varying the number of thread groups that were used (x

groups in Xeon and y groups in Xeon Phi). In all cases, we used the maximal number of

available cores. This means that 24 and 240 threads were used in all the cases in the Xeon

7.4 Analysis of Thread Groups and Data Replicas in DP, DR and DPR 95

part (Sandman) and in the Xeon Phi part (Sandman-Xeon Phi), respectively. The number of

OpenMP threads used at each instance (tx and ty) in the Xeon and Xeon Phi are tx = 24/x

and ty = 240/y. For instance, if 2 thread groups are applied in the whole system, each thread

group in Xeon utilizes 12 OpenMP threads and each thread group in Xeon Phi utilizes 120

OpenMP threads. If 3 thread groups are tested in the system, each thread group in Xeon uses

8 threads and each thread group in Xeon Phi uses 80 threads.

According to these discussion above, thus, the number of thread groups, 2, 3, 4, 6 and

12, could stand for the number of OpenMP threads 12, 8, 6, 4 and 2 in each thread group in

Figure 7.11 and 120, 80, 60, 40 and 20 in each thread group in Figure 7.12.

For DR and DPR, the number of thread groups is limited by memory consumption in

each alignment process because we replicated the genome index in memory. Basically, we

measured that one completed instance of BWA aligner consumes about 5 GB memory, which

is mainly required to store the human genome sequence reference (4.4GB). According to the

memory size available on the Xeon part(64 GB) and on the Xeon Phi part(16 GB), 12 and

3 should be the maximum number of thread groups that can be launched at each parts. We

tested DP, DR and DPR using thread groups of 2, 3, 4, 6 and 12 on both systems, but in the

cases of DPR and DR only 3 thread groups were applied in the experiment of Xeon Phi due

to the memory limitations in the system of S1.

7.4.2 Performance Analysis

Results are shown in Figures 7.11 and 7.12. It can be observed that the best performance

is achieved when a small number of groups are used (2 or 3). Beyond these values, adding

more groups worsens performance. These results seem coherent if we take into account

the number of NUMA nodes in the system (2 in the case of Sandman and 1 in the case of

Sandman Phi). Having more replicas helps distribute traffic between different memory banks

and prevents a single bank from becoming congested.

96 Experimental Results and Evaluation

0
2
4
6
8

10
12
14
16

2 3 4 6 12

sp
ee

d-
up

Number of thread group

Thread group, SRR - Xeon
DPR-BWA DP-BWA DR-BWA

0

2

4

6

8

10

12

2 3 4 6 12

sp
ee

d-
up

Number of thread group

Thread group, YH - Xeon

DPR-BWA DP-BWA DR-BWA

Fig. 7.11 DP, DR and DPR performance comparison on Sandman

7.4 Analysis of Thread Groups and Data Replicas in DP, DR and DPR 97

0

2

4

6

8

2 3 4 6 12

Sp
ee

d-
up

Number of thread group

Thread group, SRR - Xeon Phi
DPR-BWA DP-BWA DR-BWA

0

2

4

6

8

2 3 4 6 12

Sp
ee

d-
up

Number of thread group

Thread group, YH - Xeon Phi
DPR-BWA DP-BWA DR-BWA

Fig. 7.12 DP, DR and DPR performance comparison on Sandman-Xeon Phi

98 Experimental Results and Evaluation

However, adding more replicas increases the overhead and reduces the performance of

the cache because there is more competition between different groups of threads without

increasing the transference capacity of each memory bank. Threads that belong to each group

also take advantage of those cache entries that contain the index positions which are read in

the first stages of the alignment. By increasing the number of thread groups, the usage of

index entries in the cache memory gets worsen and there is an increasing number of cache

misses that does not compensate for the reduction of memory congestion.

0

2

4

6

8

10

0%

20%

40%

60%

80%

100%

1 6 12 18 24

Sp
ee

d-
up

The number of threads

Local/Remote Memory Access, SRR - Xeon
BWA LMA% RMA%

Fig. 7.13 BWA Memory Access

The performance improvements observed in these experiments are based on the idea

that each group of threads will make accesses to the memory node of its NUMA domain,

thus taking advantage of the greatest available bandwidth. Using the NUMATOP tool, we

obtained measurements on the distribution of memory accesses between the different memory

nodes. Figures 7.13 and 7.14 show the behavior of the original version of BWA and our DPR

strategy when they were executed in Sandman, a system that has 2 NUMA nodes formed by

a processor and a memory bank. The two figures show, on the one hand, the proportion of

local memory accesses (LMA) and the speedup of the application compared to the sequential

7.4 Analysis of Thread Groups and Data Replicas in DP, DR and DPR 99

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

12

14

2 4 6

Sp
ee

d-
up

The number of thread group

Local/Remote Memory Access, SRR - Xeon
LMA% DPR-BWA

Fig. 7.14 DPR-BWA Memory Access

execution. As can be seen in figure 7.13, BWA exhibits a proportion of local memory access

greater than 80% if it is executed in a single processor (12 threads).

When increasing the parallelism, the additional threads are executed in the second

processor and all of them will generate remote accesses of memory because they have to

access the node where the reference index is located. The LMA index decreases to just

over 40%. As a result, remote accesses have a negative effect on the execution time of the

application because latency is higher for remote accesses and they increase congestion in the

node where the index is located. This negative impact on the execution time explains that

when doubling from 12 to 24 threads the speed-up only improves by a factor of just over 2.

On the contrary, the use of instances (as shown in figure 7.14) in DPR always maintains a

proportion of local accesses above 80% although the number of instances used is increased.

There is no negative impact on memory access times nor does congestion occur. Anyway, as

we saw earlier, the best speedup (factor 12, approximately) is obtained when the number of

instances is low (2 or 4, which means one or two instances executed in each NUMA node). If

the number of instances is too high (6 or more) the groups of threads compete and interfere

with the use of the cache memory without improving the access times to the main memory.

100 Experimental Results and Evaluation

7.5 Performance Evaluation of MDPR

7.5.1 Implementation

This last set of experiments analyze the performance of MDPR strategy, evaluating the three

data distribution policies described in Chapter 5.

MDPR allows not only the execution of BWA aligner in the symmetric mode, but also

in the distributed memory systems. The best execution time should be achieved if reads are

distributed so that all the threads finish its jobs at the same time. The distribution of reads can

be done in different ways taking into account that there is a trade-off between the overhead

in which it is incurred and the load balance that can be achieved.

In our case, we evaluated a static mechanism that requires some executions in the native

mode beforehand but does not incur much overheads at run time. We also tested two dynamic

methods (even distribution and round-robin fashion), which incur in some overheads in

execution time but do not require previous executions in advance.

In this experiments, we utilized the same datasets used in previous experiments (SRR+YH)

and two different heterogeneous systems(S1+S2). The first one system (referred as S1) is

the one equipped with an Intel Xeon and Xeon Phi(Sandman and Sandman-Xeon Phi). The

second one system (referred as S2) is made of an Intel-based server and an AMD-based

server(Penguin and Batman). Furthermore, we also tested in a large-scale system (S3) that

comprises 6 nodes 17 sockets 25 NUMA and 252 threads made of Intel Xeon and AMD

Opteron.

According to the results obtained in the evaluation of DPR with different number of thread

groups, and system S1 has 2+1 sockets and 2+1 NUMA nodes, the following configurations

of instance number were investigated in the system S1: 1+1(2), 2+1(3), 2+2(4), 2+3(5) and

4+2(6). The first value corresponds to the number of thread groups in the Xeon part and the

second value corresponds to the number of thread groups in the Xeon Phi.

7.5 Performance Evaluation of MDPR 101

Similarly, system S2 and S3 possesses 4+4 sockets and 4+8 NUMA nodes, 6 nodes 17

sockets and 25 NUMA, respectively. Thus, the configurations evaluated in S2 are 1+1(2),

2+2(4), 4+4(8) and 4+8(12), in S3 are 6, 9, 17, 25. All available hardware threads were used

in all cases of MDPR experiments (i.e., Intel Xeon and Xeon Phi could use 24 threads plus

240 threads, Intel server and AMD server could support 64 threads each, S3 could provide

252 threads).

7.5.2 Performance Analysis

In these figures, the cases of 4(2+2) and 6(4+2) instances in Figure 7.15, and the cases

of 8(4+4) and 12(4+8) instances in Figure 7.16, we tried overload more than one instance

in each socket in Sandman(2 sockets) and Batman(4 sockets). These columns in figures

illustrate a small fluctuation in overall time-cost among these cases. Thus the bandwidth

between sockets and local memory bank is high enough for one more instance of BWA

aligner. Identical behavior with Intel Xeon Phi architecture. All available cores in the Intel

Xeon Phi are expert in computation, and already utilized in all the cases. With more instances

applied in one NUMA node in Xeon Phi, it does not increase memory locality and decrease

memory congestion at all.

Memory congestion becomes a crucial influence under multiple instances in the system.

In the cases of 2(1+1) and 3(2+1) instances in Figure 7.15, and 2(1+1), 4(2+2) and 8(4+4)

instances in Figure 7.16, they show the process of each socket saturates with one instance

in Sandman(2 sockets) and Batman(4 sockets). Cause of first-touch policy in the systems,

the instance would consume its relative memory band in local socket when first thread is

initial in system. More remote memory access exists in the cases of 2 instances in Figure

7.15, and 2, 4 instances in Figure 7.16. This explains why a decreasing time-cost in the cases

of 3 instances in S1 and 8 instances in S2, when comparing them to previous cases in figures.

The case of 2(1+1) instance in static mode in Figure 7.15 represents sBWA 24+240

threads case in figure 7.1. Comparing to other static cases of MDPR (MDPR-static) with

102 Experimental Results and Evaluation

0

500

1000

1500

2000

2500

2 3 4 5 6

Ti
m

e-
co

st
(S

)

Instance Number

MDPR, SRR - S1
Static Even Round Robin

0
500

1000
1500
2000
2500

3000
3500

2 3 4 5 6

Ti
m

e-
co

st
(S

)

Instance Number

MDPR, YH - S1
Static Even Round Robin

Fig. 7.15 Static, even and round-robin schedule distribution of MDPR strategy, performance
comparison on the Intel Xeon and Xeon Phi(S1)

7.5 Performance Evaluation of MDPR 103

0

200

400

600

800

1000

2 4 8 12

Ti
m

e-
co

st
(S

)

Instance Number

MDPR, SRR - S2
Static Even Round Robin

0
200

400
600
800

1000
1200

1400

2 4 8 12

Ti
m

e-
co

st
(S

)

Instance Number

MDPR, YH - S2
Static Even Round Robin

Fig. 7.16 Static, even and round-robin schedule distribution of MDPR strategy, performance
comparison on the Intel and AMD NUMA nodes(S2)

104 Experimental Results and Evaluation

0

100

200

300

400

500

600

6 9 17 25

Ti
m

e-
co

st
(S

)

Instance Number

MDPR, SRR - S3
Static Even Round Robin

0
100
200
300
400
500
600
700

6 9 17 25

Ti
m

e-
co

st
(S

)

Instance Number

MDPR, YH - S3
Static Even Round Robin

Fig. 7.17 Static, even and round-robin schedule distribution of MDPR strategy, performance
comparison on multiple nodes(S3)

7.5 Performance Evaluation of MDPR 105

SRR dataset in S1 system, sBWA always costs the most wall time and MDPR-static reaches

approximately 15-30% improvement in speed up with instance number gradually increases.

This behavior could be seen as well as the case of MDPR-even and MDPR-round robin in S1

system.

As we know that even distribution disperses dataset in an even size among all instances

no matter which system we utilize. The overall time-cost is determined by the slowest system.

As previous experiments illustrated, Intel Xeon cores almost approaches 10X+ speed up

than Xeon Phi cores in alignment. S1 has an absolutely different hardware architecture for

alignment while S2 remains much similar in NUMA nodes. This is the reason which explains

the large difference existed in time-cost between static distribution and even distribution in

S1.

For the cases of round robin fashion, which performs between static distribution and

even distribution, and approaches closely with static distribution in the overall time-cost.

Round robin fashion is an automatic distributed mode among the instances in the MDPR,

which takes advantages of the previous two distribution modes. A fixed size of chunk is

assigned to each instance, and one more chunks will be automatically dispersed to the free-

job instances when it completes the previous chunk. Round robin fashion could keep each

instance occupying and least time-waiting. But it has one disadvantage that some resource is

consumed for management of this fashion.

Finally, as shown in Figures 7.15, 7.16 and 7.17, the static distribution of MDPR achieves

the best execution times in all cases. The even distribution is the worst strategy since it only

makes an initial distribution of the data without subsequent corrections according the relative

performance of the nodes. As an intermediate strategy, the round-robin method obtains

results close to the static one without the need for preliminary setup computations. On the

other hand, if we analyze the number of thread groups used, it is observed that the best results

are obtained when the number of thread groups is adjusted to the number of NUMA nodes

available in the system. This behavior has already been observed in the DPR experiments in

the manycore system and is confirmed in the S2 system formed by two multicore servers.

106 Experimental Results and Evaluation

In large-scale implementation of S3, it displays a identical phenomenon as argued above.

Because we only communicate data start and data ending position with each instances, load

balancing is obvious.

Chapter 8

Discussion and Conclusion

8.1 Conclusion

In this dissertation, we have evaluated different data parallelism strategies to execute BWA

aligner in heterogeneous architectures made of multicore and/or manycore nodes. BWA has

scalability limitations when large number of threads are used. The use of a shared reference

genome generates problems of memory contention that explain such scalability problems.

Firstly, we evaluated different versions of BWA that run on manycore systems in native mode,

offload mode and symmetric mode. Secondly, we compared three different thread libraries

and thread allocation affinity mechanisms that could play a significant impact in system

architecture. Then, we analyzed different versions of BWA that use different strategies to

parallelize the distribution of short reads or to replicate the reference genome. Finallly,

we proposed and evaluated a generalized strategy (named MDPR) that uses two levels of

parallelism which combine data replication and data parallelization. MDPR can be used both

in manycore-based and multicore-based systems.

In our study we found that the symmetric mode execution strategy, sBWA, outperforms

native and offload cases in all experiments, but sBWA still has a degraded scalability. Ad-

ditionally, with the combined utilization of thread parallelism with OpenMP groups and

108 Discussion and Conclusion

multiple instances with MPI, we explored several data parallelization strategies on homo-

geneous architectures; namely, DP, DR and DPR, and we found out that DPR exhibits an

excellent scalability and performance. Furthermore, we extended DPR to MDPR, a multiple

process of BWA that uses DPR with OpenMP thread library in the symmetric mode. Static

and dynamic schedule data distributions were evaluated in the MDPR strategy.

Table 8.1 BWA Performance Summary on Intel Xeon

Aligner System Dataset Time-cost(s) Speed-up Group Num Thread Num

BWA-Pthread S1-Xeon SRR 18658 1X 1 1
BWA-ALN-Xeon-Phi S1-Xeon SRR 1873 10X 1 24

YH 2985 6.3X 1 24
DP S1-Xeon SRR 1580 11.8X 2 24

YH 2591 7.2X 2 24
DR S1-Xeon SRR 1740 10.7X 2 24

YH 2784 6.7X 2 24
DPR S1-Xeon SRR 1392 13.4X 3 24

YH 1777 10.5X 3 24

Table 8.2 BWA Performance Summary on Intel Xeon Phi

Aligner System Dataset Time-cost(s) Speed-up Group Num Thread Num

BWA-ALN-Xeon-Phi S1-Xeon Phi SRR 2895 6.4X 1 240
YH 4623 4X 1 240

mBWA S1-Xeon Phi SRR 2427 7.7X 1 240
YH 3817 4.9X 1 240

DP S1-Xeon Phi SRR 2630 7.1X 3 240
YH 3395 5.5X 3 240

DR S1-Xeon Phi SRR 3347 5.6X 2 240
YH 4118 4.5X 2 240

DPR S1-Xeon Phi SRR 2555 7.3X 2 240
YH 2955 6.3X 3 240

Tables 8.1, 8.2, 8.3 and 8.4 summarize the best results achieved in all our experiments by

each BWA-based aligner presented in this work when they were executed with the maximum

number of resources. Each entry in the tables shows the aligner that was used, the system

on which it was executed, the dataset, the average execution time that was obtained, the

corresponding speed-up, the number of groups or instances used and the total number of

threads. The speed up is obtained by comparison with the original implementation of BWA

(BWA-Pthread) using one thread with SRR dataset (first entry in table 8.1).

8.1 Conclusion 109

Table 8.3 BWA Performance Summary on S1

Aligner System Dataset Time-cost(s) Speed-up Group Num Thread Num

BWA-ALN-Xeon-Phi S1 SRR 1156 16.1X 2(1+1) 24+240
YH 1733 10.8X 2(1+1) 24+240

sBWA S1 SRR 1301 14.3X 2(1+1) 24+240
YH 2047 9.1X 2(1+1) 24+240

MDPR-static S1 SRR 966 19.3X 5(2+3) 24+240
YH 1477 12.6X 5(2+3) 24+240

MDPR-even S1 SRR 1501 12.4X 5(2+3) 24+240
YH 2443 7.6X 5(2+3) 24+240

MDPR-roundrobin S1 SRR 1086 17.2X 5(2+3) 24+240
YH 1584 11.8X 5(2+3) 24+240

Table 8.4 BWA Performance Summary on S2 and S3

Aligner System Dataset Time-cost(s) Speed-up Group Num Thread Num

MDPR-static S2 SRR 204 91.5X 12(4+8) 64+64
YH 385 48.5X 12(4+8) 64+64

S3 SRR 109 171.2X 25 252
YH 175 106.6X 25 252

MDPR-even S2 SRR 260 71.8X 8(4+4) 64+64
YH 535 34.9X 8(4+4) 64+64

S3 SRR 167 111.7X 25 252
YH 212 88X 17 252

MDPR-roundrobin S2 SRR 245 76.2X 12(4+8) 64+64
YH 411 45.4X 12(4+8) 64+64

S3 SRR 145 128.7X 17 252
YH 195 95.7X 17 252

Tables 8.1 and 8.2 show the results obtained by different BWA versions executed using a

native or an offload method in the Xeon part or in the Xeon-Phi part, respectively, of our S1

system. In both cases we have also compared an official BWA implementation (referred as

BWA-ALN-Xeon-Phi) from Intel Corporation [105]. BWA-ALN-Xeon-Phi was tested in

native mode (Tables 8.1 and 8.2) and it was also tested in symmetric mode in S1 cluster, as

shown in Table 8.3.

As seen in Table 8.1 and 8.2, our strategy DPR that uses data replication and data

parallelization obtained better execution times in general. DPR achieved a speed-up of 13.4

and 10.5 for SRR and YH, respectively, in the Xeon case, and a speed-up of 7.3 and 6.3 in

110 Discussion and Conclusion

the Xeon-Phi case. Only mBWA achieved a slightly better result in the case of SRR dataset

with a seep-up of 7.7.

Table 8.3 shows the best results obtained by the strategies running in symmetric mode on

the entire S1 system. In this case, two versions of MDPR (with static distribution and with

round-robin) obtain better results than the other two strategies that do not use data replication

(BWA-ALN-Xeon-Phi) and sBWA. The best strategy is MDPR-static with speed-ups of 19.3

and 12.6, respectively, while MDPR-roundrobin achieves values of 17.2 and 11.8. It is worth

noting that although our MDPR approach allows a significant improvement of performance

in manycore systems based on Intel Xeon Phi, the characteristics of this accelerator (limited

I/O capacity and main memory interconnected by a ring bus) limit its potential performance

in comparison with multicore systems with NUMA architecture, if we take into account the

total number of cores used. Speed-up values obtained at the S1 system are significantly lower

that those obtained at S2 and S3 systems (see Table 8.4), but the total number of cores in S1

was greater than that used in S2 and S3.

Finally, Table 8.4 shows the results of the different MDPR variants when running on larger

systems formed by several heterogeneous multicore nodes. MDPR with static distribution

achieves the best results, followed by the round-robin version.

In summary, strategies that use data replication and data parallelization obtain better

execution times in general. Given a certain architecture with a number of available threads,

DPR strategies get better results than other strategies that do not use data replication. Data

replication reduces memory contention and data parallelization increases memory locality

that improves performance. In particular, MDPR (using either a static distribution or a

dynamic round-robin distribution) constitutes a promising strategy for both multicore and

manycore systems, and it outperforms Intel official version BWA-ALN-Xeon-Phi. On the

other hand, although our approach allows the improvement of performance in manycore

systems based on Intel Xeon Phi, the characteristics of this accelerator (limited I/O capacity,

main memory interconnected by ring bus) limit its potential performance in comparison with

multicore systems with NUMA architecture.

8.2 Future Work 111

Comparing to other existing works, our research could be convenient for transiting to

other programs without complicated coding skill. Although coding can be simple, achieving

good performance is not easy in this type of systems. We have generated and evaluated a

series of general strategies that could be applied to other sequence alignment tools that have

similar working principles to the ones exhibited by BWA.

8.2 Future Work

As future lines we see several possible open paths:

1. A basic future work line could be to carry out a more detailed study of some parameter

configurations that might play a significant role in the performance of MDPR. An

example of this type of study would be the size of data chuncks, which could have

different sizes depending on the characteristics of the system nodes.

2. The basic principles on which the MDPR strategy is based (distribution and data

replication) could be adapted to other popular sequence alignment tools (such as

BOWTIE or GEM), which also use a reference genome index as a basic element on

which perform allocation operations..

3. The MDPR strategy is based on a hierarchical architecture that has shown its efficiency

in medium-sized heterogeneous systems and has focused on reducing the cost of

accesses to main memory. In a larger system, it is foreseeable that another source

of delays will appear: file operations performed through a centralized/distributed file

system. An interesting line of study would be to extend MDPR to efficiently access

all files that contain sequence data and reference indexes, either by applying data

replication techniques at the file level or by distributing data files between different file

server nodes according to their proximity to computing nodes.

4. In general, genomic workflows are usually composed of different phases. In this work

we have focused our study on BWA, a tool that is used in the initial phase of those

112 Discussion and Conclusion

workflows. The following phases are usually carried out using other tools that have

different degrees of parallelization. It would be interesting, however, to carry out a

global study through all the workflow to establish a degree of parallelism for all the

phases so that the entire workflow was executed with maximum efficiency on a set of

nodes assigned from beginning to end of the workflow.

8.3 List of Publications 113

8.3 List of Publications

The work for this thesis has been published in the following papers:

1. Chen, Shaolong, and Miquel A. Senar. “Accelerating BWA Aligner Using Mul-

tistage Data Parallelization on Multicore and Manycore Architectures.” ICCS

2016, Proceeding Computer Science 80 (2016): 2438-2442.

Our critical contributions in this paper concentrate on putting forward the strategies of

multistage data parallelization for accelerating sequence alignment on heterogeneous

cluster. We aim at the most prevalent sequence alignment application BWA. Firstly,

parallelization is powered by hardware. We apply an heterogeneous cluster, the Intel

multicore Xeon host server equipped with manycore coprocessor, Xeon Phi. Secondly,

we have introduced the strategies of two-dimensional parallelization on the data,

including genome short-read data splitting and index parallelization of reference. The

experiments’ results on the heterogeneous cluster shows a highest speed-up of 4-fold

by contrast with BWA aligner which is implemented on the Intel Xeon processor E5

with 24 threads.

2. Chen, Shaolong, and Miquel A. Senar. "Improving Performance of Genomic

Aligners on Intel Xeon Phi-Based Architectures." 2018 IEEE International Par-

allel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2018.

In this paper, We studied different solutions to efficiently execute BWA aligner on a

heterogeneous system that consists of multicore processors and manycore accelerators.

We proposed a multi-level strategy (MDPR) based on data parallelization and data

replication. The MDPR strategy was executed using several hierarchical levels of

parallelism in systems that contain multicore processors (Xeon) and manycore acceler-

ators (Xeon Phi). Through a multi-process and multi-thread scheme which comprises

replication and parallelization of certain data structures, we had obtained substantial

improvements in BWA execution time. The strategy runs in symmetric mode using a

hierarchical scheme that improves memory locality and reduces memory congestion

114 Discussion and Conclusion

on NUMA architectures as well as on Xeon Phi processors. Significant improvements

were obtained in our experiments, comparing our proposal to other strategies that are

executed in native, offload and symmetric mode.

3. Chen, Shaolong, and Miquel A. Senar. "Exploring Efficient Data Parallelism

for Genome Read Mapping on Multicore and Manycore Architectures." Parallel

Computing (2018): Submitted, under the 2nd review.

In this study we have analyzed different modes of execution of BWA on a system

that incorporates an accelerator. Although coding can be simple, achieving good

performance is not easy in this type of systems, as our results show. From all these

strategies, we have found one that combines data parallelization and data replication

(named MDPR) that provides the best performance. We have applied this strategy on

a heterogeneous system consisting on a server with Intel Xeon multicore processors

and Xeon Phi manycore accelerator. MDPR is not limited to systems with accelerators

only. Its generic design has allowed us to use it on another heterogeneous system

based on two multicore servers (one equipped with AMD nodes and one equipped

with Intel nodes). In all these hardware configurations, we have tested two dynamic

and one static modes of data distribution in MDPR. Our experimental results show that

best results are obtained for MDPR when static mode of data distribution is applied.

Additional, round-robin fashion in MDPR achieves approximate performance with

static distribution with less configurations in advance.

References

[1] Aisling O’Driscoll, Jurate Daugelaite, and Roy D Sleator. ‘big data’, hadoop and

cloud computing in genomics. Journal of biomedical informatics, 46(5):774–781,

2013.

[2] Crystal Boddie, Tara Kirk Sell, and Matthew Watson. Federal funding for health

security in fy2015. Biosecurity and bioterrorism: biodefense strategy, practice, and

science, 12(4):163–177, 2014.

[3] Kris A Wetterstrand. Dna sequencing costs: data from the nhgri genome sequencing

program (gsp). 2013. URL http://www. genome. gov/sequencingcosts, 2016.

[4] Christine F Baes, Marlies A Dolezal, James E Koltes, Beat Bapst, Eric Fritz-Waters,

Sandra Jansen, Christine Flury, Heidi Signer-Hasler, Christian Stricker, Rohan Fer-

nando, et al. Evaluation of variant identification methods for whole genome sequencing

data in dairy cattle. BMC genomics, 15(1):948, 2014.

[5] Ian Buck. Gpubench: Evaluating gpu performance for numerical and scientific

application. In Proc. 1st ACM Workshop General-Purpose Computing on Graphics

Processors (GPˆ 2’04), 2004.

[6] Lincoln Stein. Genome annotation: from sequence to biology. Nature reviews genetics,

2(7):493, 2001.

[7] César Allande Álvarez. Modeling performance degradation in openmp memory bound

applications on multicore multisocket systems. 2015.

116 References

[8] Rolf Rabenseifner, Georg Hager, Gabriele Jost, and Rainer Keller. Hybrid mpi and

openmp parallel programming. In PVM/MPI, page 11, 2006.

[9] Jeffrey G Reid, Andrew Carroll, Narayanan Veeraraghavan, Mahmoud Dahdouli,

Andreas Sundquist, Adam English, Matthew Bainbridge, Simon White, William

Salerno, Christian Buhay, et al. Launching genomics into the cloud: deployment of

mercury, a next generation sequence analysis pipeline. BMC bioinformatics, 15(1):30,

2014.

[10] Stephan Pabinger, Andreas Dander, Maria Fischer, Rene Snajder, Michael Sperk,

Mirjana Efremova, Birgit Krabichler, Michael R Speicher, Johannes Zschocke, and

Zlatko Trajanoski. A survey of tools for variant analysis of next-generation genome

sequencing data. Briefings in bioinformatics, 15(2):256–278, 2014.

[11] Yingbo Cui, Xiangke Liao, Xiaoqian Zhu, Bingqiang Wang, and Shaoliang Peng.

mbwa: A massively parallel sequence reads aligner. In 8th International Conference

on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014),

pages 113–120. Springer, 2014.

[12] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–

wheeler transform. bioinformatics, 25(14):1754–1760, 2009.

[13] Xinmin Tian, Hideki Saito, Serguei V Preis, Eric N Garcia, Sergey S Kozhukhov, Matt

Masten, Aleksei G Cherkasov, and Nikolay Panchenko. Practical simd vectorization

techniques for intel® xeon phi coprocessors. In Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,

pages 1149–1158. IEEE, 2013.

[14] Liang Ping. Speeding up large-scale next generation sequencing data analysis with

pbwa. Journal of Applied Bioinformatics & Computational Biology, 2012.

[15] Josefina Lenis and Miquel Angel Senar. A performance comparison of data and

memory allocation strategies for sequence aligners on numa architectures. Cluster

Computing, 20(3):1909–1924, 2017.

References 117

[16] Shaolong Chen and Miquel A Senar. Accelerating bwa aligner using multistage data

parallelization on multicore and manycore architectures. Procedia Computer Science,

80:2438–2442, 2016.

[17] Shaolong Chen and Miquel A Senar. Improving performance of genomic aligners on

intel xeon phi-based architectures. In 2018 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), pages 570–578. IEEE, 2018.

[18] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng

Zhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new genera-

tion of protein database search programs. Nucleic acids research, 25(17):3389–3402,

1997.

[19] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and

memory-efficient alignment of short dna sequences to the human genome. Genome

biology, 10(3):R25, 2009.

[20] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kris-

tiansen, and Jun Wang. Soap2: an improved ultrafast tool for short read alignment.

Bioinformatics, 25(15):1966–1967, 2009.

[21] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–

wheeler transform. bioinformatics, 25(14):1754–1760, 2009.

[22] Jing Zhang, Heshan Lin, Pavan Balaji, and Wu-chun Feng. Optimizing burrows-

wheeler transform-based sequence alignment on multicore architectures. In Cluster,

Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium

on, pages 377–384. IEEE, 2013.

[23] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, and Jan F Prins. Scheduling

task parallelism on multi-socket multicore systems. In Proceedings of the 1st Interna-

tional Workshop on Runtime and Operating Systems for Supercomputers, pages 49–56.

ACM, 2011.

118 References

[24] Emerson de Araujo Macedo and Azzedine Boukerche. Hybrid mpi/openmp strategy

for biological multiple sequence alignment with dialign-tx in heterogeneous multicore

clusters. In Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),

2011 IEEE International Symposium on, pages 418–425. IEEE, 2011.

[25] Nagarajan Kathiresan, Mohamed Ramzi Temanni, and Rashid Al-Ali. Performance

improvement of bwa mem algorithm using data-parallel with concurrent parallelization.

In Parallel, Distributed and Grid Computing (PDGC), 2014 International Conference

on, pages 406–411. IEEE, 2014.

[26] Yu-Ting Chen, Jason Cong, Jie Lei, and Peng Wei. A novel high-throughput accelera-

tion engine for read alignment. In Field-Programmable Custom Computing Machines

(FCCM), 2015 IEEE 23rd Annual International Symposium on, pages 199–202. IEEE,

2015.

[27] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. Gpu-

accelerated bwa-mem genomic mapping algorithm using adaptive load balancing.

In International Conference on Architecture of Computing Systems, pages 130–142.

Springer, 2016.

[28] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. An

fpga-based systolic array to accelerate the bwa-mem genomic mapping algorithm. In

Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS),

2015 International Conference on, pages 221–227. IEEE, 2015.

[29] Ho-Cheung Ng, Shuanglong Liu, and Wayne Luk. Reconfigurable acceleration of ge-

netic sequence alignment: A survey of two decades of efforts. In Field Programmable

Logic and Applications (FPL), 2017 27th International Conference on, pages 1–8.

IEEE, 2017.

[30] Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-

generation sequencing. Briefings in bioinformatics, 11(5):473–483, 2010.

References 119

[31] Ernst Joachim Houtgast, Vlad-Mihai Sima, Giacomo Marchiori, Koen Bertels, and

Zaid Al-Ars. Power-efficiency analysis of accelerated bwa-mem implementations

on heterogeneous computing platforms. In ReConFigurable Computing and FPGAs

(ReConFig), 2016 International Conference on, pages 1–8. IEEE, 2016.

[32] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. Gpu-

accelerated bwa-mem genomic mapping algorithm using adaptive load balancing.

In International Conference on Architecture of Computing Systems, pages 130–142.

Springer, 2016.

[33] Petr Klus, Simon Lam, Dag Lyberg, Ming Sin Cheung, Graham Pullan, Ian McFarlane,

Giles SH Yeo, and Brian YH Lam. Barracuda-a fast short read sequence aligner using

graphics processing units. BMC research notes, 5(1):27, 2012.

[34] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. Cushaw: a cuda compat-

ible short read aligner to large genomes based on the burrows–wheeler transform.

Bioinformatics, 28(14):1830–1837, 2012.

[35] Chi-Man Liu, Thomas Wong, Edward Wu, Ruibang Luo, Siu-Ming Yiu, Yingrui Li,

Bingqiang Wang, Chang Yu, Xiaowen Chu, Kaiyong Zhao, et al. Soap3: ultra-fast

gpu-based parallel alignment tool for short reads. Bioinformatics, 28(6):878–879,

2012.

[36] José M Abuín, Juan C Pichel, Tomás F Pena, and Jorge Amigo. Bigbwa: approaching

the burrows–wheeler aligner to big data technologies. Bioinformatics, 31(24):4003–

4005, 2015.

[37] José M Abuín, Juan C Pichel, Tomás F Pena, and Jorge Amigo. Sparkbwa: speeding

up the alignment of high-throughput dna sequencing data. PloS one, 11(5):e0155461,

2016.

[38] Suejb Memeti and Sabri Pllana. Accelerating dna sequence analysis using intel (r)

xeon phi (tm). In Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 3, pages 222–227.

IEEE, 2015.

120 References

[39] Lipeng Wang, Yuandong Chan, Xiaohui Duan, Haidong Lan, Xiangxu Meng, and

Weiguo Liu. Xsw: Accelerating biological database search on xeon phi. In Parallel &

Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International,

pages 950–957. IEEE, 2014.

[40] Sze-Hang Chan, Jeanno Cheung, Edward Wu, Heng Wang, Chi-Man Liu, Xiaoqian

Zhu, Shaoliang Peng, Ruibang Luo, and Tak-Wah Lam. Mica: A fast short-read

aligner that takes full advantage of intel many integrated core architecture (mic). arXiv

preprint arXiv:1402.4876, 2014.

[41] Charlotte Herzeel, Thomas J Ashby, Pascal Costanza, and Wolfgang De Meuter.

Resolving load balancing issues in bwa on numa multicore architectures. In Interna-

tional Conference on Parallel Processing and Applied Mathematics, pages 227–236.

Springer, 2013.

[42] Alireza Mashaghi and Allard Katan. A physicist’s view of dna. arXiv preprint

arXiv:1311.2545, 2013.

[43] Wolfram Saenger. Principles of nucleic acid structure. Springer Science & Business

Media, 2013.

[44] Tyra G Wolfsberg, Johanna McEntyre, and Gregory D Schuler. Guide to the draft

human genome. Nature, 409(6822):824, 2001.

[45] ENCODE Project Consortium et al. Identification and analysis of functional elements

in 1% of the human genome by the encode pilot project. Nature, 447(7146):799, 2007.

[46] Michael A Quail, Miriam Smith, Paul Coupland, Thomas D Otto, Simon R Harris,

Thomas R Connor, Anna Bertoni, Harold P Swerdlow, and Yong Gu. A tale of three

next generation sequencing platforms: comparison of ion torrent, pacific biosciences

and illumina miseq sequencers. BMC genomics, 13(1):341, 2012.

References 121

[47] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu, and

Maggie Law. Comparison of next-generation sequencing systems. BioMed Research

International, 2012, 2012.

[48] The project WITDOM. Witdom use cases. URL http://www.witdom.eu/content/witdom-

use-cases, 2018.

[49] Robert C Edgar and Serafim Batzoglou. Multiple sequence alignment. Current opinion

in structural biology, 16(3):368–373, 2006.

[50] Vijini Mallawaarachchi. Pairwise sequence alignment using biopython.

URL https://towardsdatascience.com/pairwise-sequence-alignment-using-biopython-

d1a9d0ba861f, 2017.

[51] SB Needleman. Needleman-wunsch algorithm for sequence similarity searches. J

Mol Biol, 48:443–453, 1970.

[52] Richard Mott. Smith–waterman algorithm. e LS, 2001.

[53] Vijini Mallawaarachchi. Pairwise sequence alignment using biopython.

URL https://towardsdatascience.com/pairwise-sequence-alignment-using-biopython-

d1a9d0ba861f, 2017.

[54] Heng Li, Jue Ruan, and Richard Durbin. Mapping short dna sequencing reads and

calling variants using mapping quality scores. Genome research, pages gr–078212,

2008.

[55] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. Soap: short oligonu-

cleotide alignment program. Bioinformatics, 24(5):713–714, 2008.

[56] Heshan Lin, Xiaosong Ma, Praveen Chandramohan, Al Geist, and Nagiza Samatova.

Efficient data access for parallel blast. In null, page 72b. IEEE, 2005.

122 References

[57] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc Birol,

Evan E Eichler, and S Cenk Sahinalp. mrsfast: a cache-oblivious algorithm for

short-read mapping. Nature methods, 7(8):576, 2010.

[58] Hao Lin, Zefeng Zhang, Michael Q Zhang, Bin Ma, and Ming Li. Zoom! zillions of

oligos mapped. Bioinformatics, 24(21):2431–2437, 2008.

[59] Stephen M Rumble, Phil Lacroute, Adrian V Dalca, Marc Fiume, Arend Sidow,

and Michael Brudno. Shrimp: accurate mapping of short color-space reads. PLoS

computational biology, 5(5):e1000386, 2009.

[60] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM

Jones, and Inanç Birol. Abyss: a parallel assembler for short read sequence data.

Genome research, pages gr–089532, 2009.

[61] Shaun D Jackman, Benjamin P Vandervalk, Hamid Mohamadi, Justin Chu, Sarah Yeo,

S Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe, Rene L Warren,

et al. Abyss 2.0: resource-efficient assembly of large genomes using a bloom filter.

Genome research, pages gr–214346, 2017.

[62] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–

wheeler transform. bioinformatics, 25(14):1754–1760, 2009.

[63] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and

memory-efficient alignment of short dna sequences to the human genome. Genome

biology, 10(3):R25, 2009.

[64] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2.

Nature methods, 9(4):357, 2012.

[65] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kris-

tiansen, and Jun Wang. Soap2: an improved ultrafast tool for short read alignment.

Bioinformatics, 25(15):1966–1967, 2009.

References 123

[66] Christian Otto, Peter F Stadler, and Steve Hoffmann. Fast and sensitive mapping of

bisulfite-treated sequencing data. Bioinformatics, 28(13):1698–1704, 2012.

[67] Yingbo Cui, Xiangke Liao, Xiaoqian Zhu, Bingqiang Wang, and Shaoliang Peng.

B-mic: an ultrafast three-level parallel sequence aligner using mic. Interdisciplinary

Sciences: Computational Life Sciences, 8(1):28–34, 2016.

[68] Charlotte Herzeel, Pascal Costanza, T Ashby, and Roel Wuyts. Performance analysis

of bwa alignment. Technical report, Technical Report Exascience Life Lab, 2013.

[69] Jason O’Rawe, Tao Jiang, Guangqing Sun, Yiyang Wu, Wei Wang, Jingchu Hu, Paul

Bodily, Lifeng Tian, Hakon Hakonarson, W Evan Johnson, et al. Low concordance

of multiple variant-calling pipelines: practical implications for exome and genome

sequencing. Genome medicine, 5(3):28, 2013.

[70] Diksha Garg, Ankita Jiwan, and Shailendra Singh. Computational approaches for

variant identification. International Journal of Computer Applications, 165(8), 2017.

[71] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis,

Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark Daly, et al.

The genome analysis toolkit: a mapreduce framework for analyzing next-generation

dna sequencing data. Genome research, 2010.

[72] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor

Marth, Goncalo Abecasis, and Richard Durbin. The sequence alignment/map format

and samtools. Bioinformatics, 25(16):2078–2079, 2009.

[73] Julio Frenk, Lincoln Chen, Zulfiqar A Bhutta, Jordan Cohen, Nigel Crisp, Timothy

Evans, Harvey Fineberg, Patricia Garcia, Yang Ke, Patrick Kelley, et al. Health

professionals for a new century: transforming education to strengthen health systems

in an interdependent world. The lancet, 376(9756):1923–1958, 2010.

[74] Ken Chen, John W Wallis, Michael D McLellan, David E Larson, Joelle M Kalicki,

Craig S Pohl, Sean D McGrath, Michael C Wendl, Qunyuan Zhang, Devin P Locke,

124 References

et al. Breakdancer: an algorithm for high-resolution mapping of genomic structural

variation. Nature methods, 6(9):677, 2009.

[75] Hui Yang and Kai Wang. Genomic variant annotation and prioritization with annovar

and wannovar. Nature protocols, 10(10):1556, 2015.

[76] Wikipedia. Next generation tools for the annotation of human snps. URL

https://en.wikipedia.org/wiki/SNPannotation,2018.

[77] Pablo Cingolani, Adrian Platts, Le Lily Wang, Melissa Coon, Tung Nguyen, Luan

Wang, Susan J Land, Xiangyi Lu, and Douglas M Ruden. A program for annotating

and predicting the effects of single nucleotide polymorphisms, snpeff: Snps in the

genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2):80–92, 2012.

[78] Kai Wang, Mingyao Li, and Hakon Hakonarson. Annovar: functional annotation

of genetic variants from high-throughput sequencing data. Nucleic acids research,

38(16):e164–e164, 2010.

[79] Hashem A Shihab, Julian Gough, David N Cooper, Ian NM Day, and Tom R Gaunt.

Predicting the functional consequences of cancer-associated amino acid substitutions.

Bioinformatics, 29(12):1504–1510, 2013.

[80] Emidio Capriotti, Remo Calabrese, and Rita Casadio. Predicting the insurgence of

human genetic diseases associated to single point protein mutations with support

vector machines and evolutionary information. Bioinformatics, 22(22):2729–2734,

2006.

[81] Vladimir Makarov, Tina O’grady, Guiqing Cai, Jayon Lihm, Joseph D Buxbaum,

and Seungtai Yoon. Anntools: a comprehensive and versatile annotation toolkit for

genomic variants. Bioinformatics, 28(5):724–725, 2012.

[82] Jana Marie Schwarz, Christian Rödelsperger, Markus Schuelke, and Dominik Seelow.

Mutationtaster evaluates disease-causing potential of sequence alterations. Nature

methods, 7(8):575, 2010.

References 125

[83] Anthony G Doran and Christopher J Creevey. Snpdat: easy and rapid annotation

of results from de novo snp discovery projects for model and non-model organisms.

BMC bioinformatics, 14(1):45, 2013.

[84] Hsiang-Yu Yuan, Jen-Jie Chiou, Wen-Hsien Tseng, Chia-Hung Liu, Chuan-Kun Liu,

Yi-Jung Lin, Hui-Hung Wang, Adam Yao, Yuan-Tsong Chen, and Chun-Nan Hsu.

Fastsnp: an always up-to-date and extendable service for snp function analysis and

prioritization. Nucleic acids research, 34(suppl_2):W635–W641, 2006.

[85] Christoph Lameter. Numa (non-uniform memory access): An overview. Queue,

11(7):40, 2013.

[86] Iraklis Psaroudakis, Stefan Kaestle, Matthias Grimmer, Daniel Goodman, Jean-Pierre

Lozi, and Tim Harris. Analytics with smart arrays: adaptive and efficient language-

independent data. In Proceedings of the Thirteenth EuroSys Conference, page 17.

ACM, 2018.

[87] Tim Cramer, Dirk Schmidl, Michael Klemm, and Dieter an Mey. Openmp program-

ming on intel r xeon phi tm coprocessors: An early performance comparison. In Proc.

Many Core Appl. Res. Community (MARC) Symp, pages 38–44, 2012.

[88] Rezaur Rahman. Intel® Xeon Phi™ Coprocessor Architecture and Tools: The Guide

for Application Developers. Apress, 2013.

[89] James Reinders. An overview of programming for intel xeon processors and intel

xeon phi coprocessors. Intel Corporation, Santa Clara, 2012.

[90] Jianmin Chen, Xi Tao, Zhen Yang, Jih-Kwon Peir, Xiaoyuan Li, and Shih-Lien

Lu. Guided region-based gpu scheduling: utilizing multi-thread parallelism to hide

memory latency. In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pages 441–451. IEEE, 2013.

126 References

[91] Michela Becchi and Patrick Crowley. Dynamic thread assignment on heterogeneous

multiprocessor architectures. In Proceedings of the 3rd conference on Computing

frontiers, pages 29–40. ACM, 2006.

[92] Jun Nakashima and Kenjiro Taura. Massivethreads: A thread library for high pro-

ductivity languages. In Concurrent Objects and Beyond, pages 222–238. Springer,

2014.

[93] Kyle B Wheeler, Richard C Murphy, and Douglas Thain. Qthreads: An api for

programming with millions of lightweight threads. 2008.

[94] Robert D Blumofe and Dionisios Papadopoulos. Hood: A user-level threads library

for multiprogrammed multiprocessors. Technical report, Tech. rep., Department of

Computer Science, University of Texas at Austin.[], 1999.

[95] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,

Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.

Journal of parallel and distributed computing, 37(1):55–69, 1996.

[96] Wikipedia. Fork–join model. URL https://en.wikipedia.org/wiki/Fork2018.

[97] Intel Cilk Plus. A brief history of cilk. 2018. URL https://www.cilkplus.org/cilk-history,

2016.

[98] Edsger W Dijkstra. Solution of a problem in concurrent programming control. In

Pioneers and Their Contributions to Software Engineering, pages 289–294. Springer,

2001.

[99] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations

by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[100] Shaolong Chen and Miquel A Senar. Exploring efficient data parallelism for genome

read mapping on multicore and manycore architectures. Parallel Computing.

References 127

[101] 1000 Genomes Project Consortium et al. A global reference for human genetic

variation. Nature, 526(7571):68, 2015.

[102] J Wang, Y Li, R Luo, B Liu, Y Xie, Z Li, X Fang, H Zheng, J Qin, B Yang, et al.

Updated genome assembly of yh: the first diploid genome sequence of a han chinese

individual (version 2, 07/2012). GigaScience Database, 2012.

[103] 1000 Genomes Project. 1000 genomes project. URL

https://en.wikipedia.org/wiki/1000GenomesPro ject,2018.

[104] Na Cai, Tim B Bigdeli, Warren W Kretzschmar, Yihan Li, Jieqin Liang, Jingchu

Hu, Roseann E Peterson, Silviu Bacanu, Bradley Todd Webb, Brien Riley, et al.

11,670 whole-genome sequences representative of the han chinese population from

the converge project. Scientific data, 4:170011, 2017.

[105] Charles (Intel) You, Liang (Intel); Congdon. Building and optimizing bwa* aln 0.5.10

for intel® xeon phi™ coprocessors. URL https://github.com/intel-mic/bwa-aln-xeon-

phi-0.5.10, 2014.

[106] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,

Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

Lumsdaine, et al. Open mpi: Goals, concept, and design of a next generation mpi

implementation. In European Parallel Virtual Machine/Message Passing Interface

Users’ Group Meeting, pages 97–104. Springer, 2004.

[107] Intel Corporation. Intel vtune amplifier. URL https://en.wikipedia.org/wiki/VTune,

2017.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.1.1 Genome Data Booming
	1.1.2 HPC Hardware Limitation
	1.1.3 Sequence Alignment

	1.2 Motivation
	1.3 Objective
	1.4 Contribution
	1.5 Outline

	2 Literature Review on Related Works
	2.1 Performance Improvement of Sequence Aligner in the Heterogeneous System
	2.2 Performance Improvement on BWA Aligner

	3 Variant Analysis
	3.1 Overview
	3.2 Sequence Alignment
	3.2.1 Overview
	3.2.2 Short Read Alignment
	3.2.3 Existing Aligner

	3.3 Burrows-Wheeler Aligner: BWA
	3.3.1 Introduction
	3.3.2 Performance Analysis
	3.3.3 Conclusion

	3.4 Variant Calling
	3.5 Variant Annotation

	4 Heterogeneous Multicore-Manycore Architecture
	4.1 Multicore System: AMD Opteron and Intel Xeon
	4.1.1 Architecture
	4.1.2 NUMA effect

	4.2 Manycore System: Intel Xeon Phi
	4.2.1 Architecture
	4.2.2 Basic Execution Mode

	4.3 Thread Parallelism Library
	4.3.1 Pthread
	4.3.2 OpenMP
	4.3.3 Intel Cilk

	5 Data Management Strategies Based on Data Parallelization and Data Replication
	5.1 Overview
	5.2 Data Management on Homogeneous Architecture: DP, DR and DPR Strategies
	5.2.1 Analysis of Sequence Alignment Procedure
	5.2.2 DP, DR and DPR Strategies

	5.3 Data Management on Heterogeneous Architecture: MDPR Strategy
	5.3.1 MDPR Strategy
	5.3.2 Static Distribution
	5.3.3 Even Distribution
	5.3.4 Round-robin Distribution

	6 Experimental Implementation and Environment
	6.1 Sample Dataset
	6.2 Implementation System
	6.3 Related Software
	6.3.1 BWA-ALN-Xeon-Phi
	6.3.2 mBWA
	6.3.3 pBWA
	6.3.4 Intel VTune Amplifier

	7 Experimental Results and Evaluation
	7.1 Evaluation of Parallelism on Basic Execution Modes
	7.1.1 Implementation
	7.1.2 Performance Analysis

	7.2 Thread Parallelism Evaluation: Pthread, Intel Cilk and OpenMP
	7.2.1 Implementation
	7.2.2 Performance Analysis

	7.3 Scalability Evaluation of DP, DR and DPR
	7.3.1 Implementation
	7.3.2 Performance Analysis

	7.4 Analysis of Thread Groups and Data Replicas in DP, DR and DPR
	7.4.1 Implementation
	7.4.2 Performance Analysis

	7.5 Performance Evaluation of MDPR
	7.5.1 Implementation
	7.5.2 Performance Analysis

	8 Discussion and Conclusion
	8.1 Conclusion
	8.2 Future Work
	8.3 List of Publications

	References

	Títol de la tesi: Efficient Data Management Strategies
for Sequence Alignment on
Heterogeneous Clusters
	Nom autor/a: Chen Shaolong

