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Abstract 
 

Somatic mutations are those that arise after the zygote is formed and are therefore 

inherited by a fraction of the cells of an individual. Their relevance to a handful of 

diseases has been known for almost half a decade and they have been extensively 

studied in the context of cancer, the most common disease caused by somatic 

mutations. Yet, their prevalence in healthy individuals, their importance in 

phenotypic variation or their putative role in other human disorders such as 

neurodegenerative diseases are still open questions. Furthermore, accurate 

detection of somatic variants from bulk sequencing data poses a technical 

challenge. This work focuses on detecting and circumventing the biases that 

hinder their identification in such approach. Using this knowledge, we identified 

somatic point mutations in the exomes of five different tissues from sporadic 

Parkinson disease patients. We also assessed the detection of somatic copy 

number variants from array CGH data using two tissues from Alzheimer disease 

patients. Finally, we participated in the identification of somatic variants in an 

extensive genomic dataset from a neurotypical individual. 
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Resumen 
 

Las mutaciones somáticas son aquellas que surgen tras la formación del cigoto y 

son por ello heredadas por una fracción de las células de un individuo. Su 

importancia para algunas enfermedades se conoce desde hace casi medio siglo 

y se han estudiado extensamente en el contexto del cáncer, la enfermedad más 

común causada por mutaciones somáticas. Sin embargo, su prevalencia en 

individuos sanos, su importancia en la variación fenotípica, así como su potencial 

relevancia en otras afecciones humanas, tales como las enfermedades 

neurodegenerativas, son cuestiones por resolver. Asimismo, detectar variantes 

somáticas con precisión en datos de secuenciación de muestras 

homogeneizadas es complicado técnicamente. Este trabajo se centra en la 

detección y resolución de los sesgos que dificultan su identificación. Aplicando 

este conocimiento, identificamos mutaciones somáticas de una sola base en 

datos de secuenciación del exoma de cinco tejidos diferentes de pacientes de la 

enfermedad de Parkinson. También evaluamos la detección de variantes de 

número de copia somáticas en datos de array CGH de dos tejidos de pacientes 

de Alzheimer. Finalmente, hemos participado en la identificación de variantes 

somáticas en un amplio conjunto de datos genómicos de un individuo neurotípico. 
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1. The genome 
 

The genome is defined as the complete set of genetic information of an organism. 

Its material substrate is the deoxyribonucleic acid (DNA), a double helix formed by 

two chains of nucleotides (Franklin and Gosling 1953). The strands are formed by 

a backbone of alternating phosphate groups and deoxyriboses, with one of the 

nucleobases bound to the latter (Fig. 1). There are two types of nucleobases, 

purines: adenine (A) and guanine (G), and pyrimidines: cytosine (C) and thymine 

(T). Each purine base is complementary to one pyrimidine – A with T and C with 

G – and linked across the strands by hydrogen bonds (Watson and Crick 1953). 

This way, the double helix is formed by a sequence of nucleotides on one strand 

and its reverse complement on the other strand. Information for multiple biological 

processes is encoded in the nucleotide sequence and can be precisely copied 

according to the base pairing rules. 
 

 
Figure 1. DNA structure. The double helix is formed by two chains of nucleotides, characterized by the 
nucleobase they incorporate. Backbones are closer together on one side of the helix (minor groove) than in 
the other (major groove). Nucleobases are linked by hydrogen bonds according to the complementary base 
pairing rules. The different chemical groups of the backbone create directionality from the 5′ end, with a 
terminal phosphate group, to the 3′ end, with a terminal hydroxyl group. (From Lumen Learning 2019) 

 

Since guanine and cytosine are joined by three bonds and adenine and thymine 

are linked by just two, each pair has different properties, both in vivo and in vitro. 

Therefore, GC content is an important genomic feature vastly studied because it 

correlates with life history traits in mammals (Romiguier et al. 2010), and affects 

sequencing technologies (Benjamini and Speed 2012). Single nucleotide 

substitution changes from one purine to the other or from a pyrimidine to the other 

are termed transitions, whereas transversions imply a change in the nucleobase 

type. Even though there are more possible transversions than transitions, they are 

less frequent, with the transition/transversion ratio (ti/tv) of the human genome 

reported to be at 2.1 (Durbin et al. 2010). 
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1.1 Protein coding genes 
 

Only about 1.5% of the human genome codes for proteins, with an estimated 

number of ~19,000 protein coding genes (Ezkurdia et al. 2014). This portion of 

the genome is comprised by the complete set of exons and it is called the exome. 

 

Proteins are a fundamental type of macromolecules for living organisms. Their 

functions are varied, from catalyzation of chemical reactions to structural roles. 

They are also composed of the sequence of simpler molecules: amino acids. Only 

22 amino acids make up proteins in all known organisms (Srinivasan, James, and 

Krzycki 2002), with 20 comprising the standard eukaryotic set. Since they have 

different shapes, sizes and polarities, their combination creates different 3D 

structures. 

 

The information on the sequence of amino acids necessary to produce a specific 

protein is encoded in protein coding genes. However, in between exons – the 

sequence stretches that code for amino acids – eukaryotes have introns, 

sequences that need to be removed before being translated to proteins, a process 

known as splicing. Within an intron, three sites are required for splicing: the donor 

site at the 5′ end, the branch site near the 3′ end and the acceptor site at the 3′ 
end. The multiple components that form the spliceosome complex bind to these 

sites, which have different consensus sequences, and remove the intron, joining 

exons together. Splicing allows the combination of different exons from the same 

DNA sequence, a mechanism known as alternative splicing, which increases 

protein diversity. 

 

Since many copies of the same protein need to be produced and processed at the 

same time, the DNA sequence is first transcribed into ribonucleic acid (RNA) 

molecules in the nucleus following the complementary base pairing rules (Fig. 2). 

RNA essentially differs from DNA in that it consists of a single strand of nucleotides 

and it contains uridine (U) instead of thymine. RNA has multiple key roles: when it 

is copied from the DNA sequence and takes the information to the ribosomes it is 

called messenger RNA (mRNA). Each mRNA gets spliced inside the nucleus and 

once processed, goes to the cytoplasm and binds to a ribosome, where translation 

to proteins occurs. Each triplet of nucleotides, or codon, is translated into an amino 

acid. A different type of RNA, the transfer RNAs (tRNAs), also participate in this 

process. They carry a nucleotide triplet – the anticodon – as well as one of the 

amino acids. When a tRNA finds the complementary codon on the mRNA, the 



  5 

amino acid it carries is bonded to the existing chain, synthesizing a new protein 

which depends on the nucleotide sequence on the processed mRNA (Fig. 2). 

 

The correspondence between codons and amino acids is the genetic code. There 

are 64 possible permutations of 4 nucleotides taken in triplets (43) but only 20 

amino acids. Although there are three stop codons, which signal for translation 

stop (Fig. 3), 61 codons code for amino acids. For this reason, the genetic code 

is redundant, i.e., multiple codons translate to the same amino acid. However, this 

redundancy is not arbitrary, changes in the third nucleotide of a codon frequently 

encode for the same amino acid. This codon degeneracy is mediated by tRNA 

chemical modifications that allow certain nucleotides to wobble, that is, to pair with 

multiple nucleotides (Agris, Vendeix, and Graham 2007). 

 

 

 
Figure 2. Transcription and translation. DNA is transcribed to messenger RNA (mRNA) inside the nucleus. 
Transfer RNAs (tRNAs) are also transcribed from genomic DNA. For translation to proteins, mRNA binds to a 
ribosome, where each codon is matched to an anticodon from a tRNA and the amino acid it carries is 
incorporated to the polypeptide chain. (From Barton 2007) 
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Figure 3. The genetic code. Each triplet of nucleotides in the mRNA, or RNA codon, codifies for an amino 
acid. AUG is the starting codon, which always codes for methionine, and there are three different stop codons. 
(By Sarah Greenwood) 
 
 

This is why certain point mutations, mostly in the third codon position, are termed 

synonymous mutations: their replacement does not result in a different amino acid 

being incorporated, maintaining the resulting protein unchanged. On the other 

hand, nonsynonymous mutations occur when nucleotide substitutions change the 

produced protein. They are known as missense mutations when they change the 

amino acid sequence, nonsense mutations when they create a new stop codon or 

readthrough mutations when they remove a stop codon, producing a longer 

protein. Also, point mutations in the introns can modify the consensus sites, 

altering splicing, which can result in aberrant proteins. 

 

Besides single nucleotide variants (SNVs), small insertions or deletions (indels) in 

the exons can also change the resulting protein. Often, the number of base pairs 

added or removed is not a multiple of 3, changing the grouping of the following 

nucleotides in codons. This is why they are called frame-shift mutations. 

 

1.2 Non-coding DNA 
 
The remaining more than 3 billion base pairs of the genome are termed non-coding 

DNA. It has been known for many decades that only a small fraction of the genome 

is protein-coding, which was later confirmed by the Human Genome Project 

(International Human Genome Sequencing Consortium 2001). Besides promoters 

– the regions adjacent to protein-coding genes where the enzymes that catalyze 
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replication or transcription attach – it was difficult to assign a function to the rest 

of the genome, which is mostly formed by repetitive elements. Moreover, the huge 

variability in genome size, even between closely related species, points towards 

much of the genome not having a function (Palazzo and Gregory 2014).  

 

Still, a structural function was proposed early on. In fact exactly at the same time 

that the term “junk DNA” was coined (Ohno 1972). The original idea was that 

placing genes far away from the centromeres allows for duplications or deletions 

of centromeric regions along evolution without damaging consequences, which 

result in the chromosomal rearrangements we oftentimes observe accompanying 

speciation. Also, the existence of non-coding chromatin in between protein-coding 

genes ensures that the consequences of nonsense or frame-shift mutations are 

contained to one single locus. 

 

More recently, chromosome conformation capture methods such as Hi-C (Dekker 

et al. 2002; Lieberman-Aiden et al. 2009) have encouraged the scientific 

community to explore the genome’s 3D nuclear architecture and how it relates to 

function. It has been shown that during the interphase, chromosomes reside in 

specific spaces, called chromosome territories (reviewed in Cremer and Cremer 

2001). In a smaller scale, the genome organizes in domains with increased 

frequency of internal interactions (Fig. 4), which are termed topologically 

associating domains (TADs) (Dixon et al. 2012; Nora et al. 2012; Sexton et al. 

2012). They are delimited by CTCF binding motifs, regions that allow the 

attachment of the homonymous insulator protein, which through a process that is 

not yet fully unraveled, creates chromatin loops (Rao et al. 2014). TADs bring 

together gene promoters and enhancers (Shen et al. 2012) and share chromatin 

features such as coordinated gene expression or replication timing (Dixon et al. 

2012). This is why their disruption can cause disease (Lupiáñez, Spielmann, and 

Mundlos 2016), hinting at how little we know about the role of most genomic 

regions and making it difficult to judge the existence of non-coding DNA functions 

or lack thereof. 
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Figure 4. Structural organization of chromatin. A. In the interphase, chromosomes occupy specific nuclear 
spaces, termed chromosomal territories. B. Chromosomes are subdivided into topological associated 
domains (TAD). TADs with repressed transcriptional activity tend to be associated with the nuclear lamina 
(dashed inner line), while active TADs tend to be in the nuclear interior. C. Each TAD is flanked by CTCF 
binding motifs called TAD boundaries (purple hexagon). (From Matharu and Ahituv 2015) 

 

The most prominent component of the human genome, and more so of larger 

genomes, are transposable elements (TEs). These DNA sequences are able to 

copy and insert themselves into new genomic regions (McClintock 1950). They 

can do this because they encode transposase, the enzyme that catalyzes these 

reactions. Since TEs have control over their own transmission, they have been 

labelled, together with regions of similar characteristics, as selfish genomic 

elements (Doolittle and Sapienza 1980; Orgel and Crick 1980; Ågren and Clark 

2018). This implies that the reason they are so frequent in genomes is because 

they self-copy, so to some extent, they expand independently of their effect on 

fitness. Nonetheless, because TEs insert frequently in the genome, occasionally 

they become functional, fine-tuning the transcriptome (Cowley and Oakey 2013) 

or even influencing local adaptation by altering splicing (González et al. 2010). 

Unsurprisingly, the same alterations of splicing can derive in disease (Hancks and 

Kazazian 2016). Moreover, they can create novel transcription binding sites, such 

as CTCF sites, which can alter genome function and architecture (Bourque et al. 

2008; Merkenschlager and Odom 2013). 

However, there are specific non-coding sequences whose role we do understand. 

An important group are RNA molecules, the genomic regions that are transcribed 
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to various forms of RNA and carry out their function without being translated to 

proteins. Besides mRNA, tRNA and ribosomal RNA (rRNA), the RNAs that make 

translation possible, a myriad of non-coding RNAs (ncRNAs) have essential 

regulatory roles. Long non-coding RNAs (lncRNAs) appear to be involved in 

transcription regulation by recruiting transcription factors (Feng et al. 2006) and 

tethering RNA binding proteins (Wang et al. 2008). The most famous lncRNA is 

the X inactivate-specific transcript (XIST), which inactivates one chromosome X in 

females for dosage compensation (Rastan 1994). MicroRNAs (miRNAs) are 

involved in mRNA silencing (Fig. 5). Because double-stranded RNA molecules are 

degraded, miRNAs are complementary to the target mRNA so that their base-

pairing induces specific mRNA cleavage (Lau et al. 2001). Similarly, small 

interfering RNAs (siRNAs) are double stranded molecules that also induce 

complementary mRNA silencing (Hamilton and Baulcombe 1999). 

 

 
Figure 5. Target recognition by siRNA and miRNA. A. siRNA is usually fully complementary to the coding 
region of its target mRNA. B. miRNA is partially complementary to its target miRNA. Complementary binding 
usually occurs at the seed region of miRNA and the 3’ UTR of the target mRNA. (From Lam et al. 2015) 

 

Small nuclear RNAs (snRNAs) are instead part of the spliceosome, a complex that 

processes the pre-mRNA in the nucleus (Will and Lührmann 2011). A subset of 

snRNAs, small nucleolar RNAs (snoRNAs) are located in the nucleolus, where they 

guide chemical modifications of other RNAs (Samarsky et al. 1998). Finally, piwi-

interacting RNAs (piRNAs) are the largest group of small ncRNA. Their main 

function is to protect the integrity of the genome by restricting the mobilization of 

TEs (Siomi et al. 2011) and many have interesting names, such as the flamenco 

locus, which determines whether the transposable element gypsy “dances” 

(Prud’homme et al. 1995). 

 

Further, introns are also involved in the regulation of gene expression. They do so 

via multiple mechanisms, including altering transcription timing (Swinburne and 
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Silver 2008) or promoting the export of mRNAs to the cytoplasm (Valencia, Dias, 

and Reed 2008). They are also responsible for mRNA quality control (Lee et al. 

2009). Because some of these intronic functions depend on intron length rather 

than on sequence (Chorev et al. 2017), the detection of functional introns is 

complex, making it challenging to estimate the proportion of the genome carrying 

out these functions. 

 

A different type of repetitive sequences, short tandem repeats (STRs) consist of a 

simple DNA motif – usually from two to thirteen base pairs long – repeated a 

variable number of times. When the motif is just one nucleotide, and therefore the 

STR contains the same nucleotide repeated multiple times, it is termed a 

homopolymer. Whether homopolymers are STRs or not is a matter of debate. 

Since STRs are repetitive, during replication, the different repetitions can pair 

between them, making DNA polymerase replicate the region over again, a process 

known as replication slippage (Kornberg et al. 1964). Most of the time, these 

errors are repaired by nucleotide excision repair (see 2.3) (Strand et al. 1993), but 

still, together with other mutational mechanisms (Fan and Chu 2007), this makes 

them highly mutable genomic regions. Precisely for this reason, their sequencing 

is widespread in forensic analysis (Tautz 1989); they are so variable within 

populations that the characterization of 13 to 17 known loci is used as a molecular 

fingerprint. 

 

STRs have been shown to be involved in gene expression regulation (Gymrek et 

al. 2012), in altering recombination frequency (Wahls, Wallace, and Moore 1990) 

and in generation of nucleosome positioning signals (Wang and Griffith 1995). 

Furthermore, the expansion of certain trinucleotides within genes causes multiple 

disorders. Perhaps the most famous of them is Huntington disease, in which the 

number of CAG repeats in the HTT gene (MacDonald et al. 1993) determines its 

stability in replication. The disease is developed when the number of repeats 

surpasses 40 and more copies increase its severity (Aziz et al. 2009). Other 

trinucleotide repeat disorders include Fragile X syndrome, myotonic dystrophy or 

spinocerebellar ataxia (Orr and Zoghbi 2007).  

 

Besides functions determined by DNA sequence, the role of multiple genomic 

regions is indicated by their epigenetic marks. Certain chemical modifications to 

the DNA and histone proteins – those that package DNA around them, forming 

nucleosomes – determine how accessible chromatin is, regulating its level of 

transcription (Fig. 6). This is one of the mechanisms by which the same DNA 

sequence in different cell types can result in different transcriptomes. The 
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Encyclopedia of DNA Elements (ENCODE) project (Birney et al. 2007) and the 

Roadmap Epigenomics Mapping Consortium (Bernstein et al. 2010) have worked 

towards identifying functional elements in the human genome. Besides already 

known promoter and enhancer regions, they discovered new candidate regulatory 

elements and assigned different states to chromatin depending on the 

combination of its epigenetic marks. This knowledge allowed for the interpretation 

of non-coding variants previously linked to disease (Maurano et al. 2012; Ward 

and Kellis 2012). 

 

 
 
 

 
 
 
Figure 6. Epigenetic modifications. Epigenetic marks include DNA methylation (A) and histone modifications 
(B) such as methylation or acetylation of some histone amino acids. They determine how compacted 
chromatin is, which makes it more or less accessible to cell machinery, regulating expression. (From van der 
Harst, de Windt, and Chambers 2017) 
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2. DNA repair 
 

Cells reproduce by division, the process by which a parent cell gives rise to two 

daughter cells. Since there is one copy of the genome in each cell, DNA needs to 

be replicated so that each daughter cell has its own copy. Multiple enzymes are 

required for replication, from those that recognize replication origins to many 

directly involved in DNA synthesis. After DNA primases and helicases separate 

both DNA strands, DNA polymerases catalyze the polymerization of a new DNA 

strand using one of the existing strands as a template. This way, each daughter 

cell inherits a double strand composed by one of the original strands and a newly 

synthesized one. 

 

2.1. Replication errors 
 

Considering the genome is large and there are many cells in an organism – 3·1013 

in an adult human body (Sender, Fuchs, and Milo 2016) – any error rate when 

copying DNA, even if low, will produce many mutation. Since there is only one 

copy of the nuclear genome in each cell, changes in its sequence can be of great 

importance. Thus, cells have suffered a big selective pressure to evolve 

mechanisms that help avoid and correct errors. The polymerases most commonly 

used by eukaryotes have high fidelity, with replication error rates of ~10-5 for Polδ 

and from 10-3 to 10-4 for Polα and Polβ (D. C. Thomas et al. 1991; Osheroff et al. 

1999). Because many subsequent repair mechanisms ensure the correction of 

replication errors and spontaneous or environmental DNA damage, human 

germline mutation rate is much lower, roughly 10-9 (Michael Lynch 2010). 

 

During replication itself, DNA polymerases can correct misincorporated bases. 

This process, known as proofreading, is a type of excision repair (see 2.3) in which 

polymerases use their 3′→5′ exonuclease activity to remove a mismatched 

nucleotide. All three bacterial DNA polymerases have this ability, whereas in 

eukaryotes only those enzymes involved in elongation have it. The vast majority of 

replication errors are recognized by proofreading, so that after a mistake, DNA 

polymerases reverse their direction to excise the mismatched base. Following 

base excision, polymerases re-insert the correct nucleotide. The few cases that 

escape this repair mechanism, are then recognized by the mismatch repair system 

(see 2.3). 
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2.2. DNA damage 
 

DNA damage can be spontaneous or induced by environmental factors. The most 

common type of spontaneous damage is deamination of 5-methylcytosine 

(methylated cytosine) (Shen, Rideout, and Jones 1994), which results in thymine 

and ammonia, producing a C>T substitution. Unmethylated cytosines can suffer 

deamination too, resulting in uracil bases, which would also give rise to a C>T 

substitution. Although the deamination of purines is very infrequent in comparison 

(Tomas Lindahl 1993), guanine deamination results in xanthine, which base-pairs 

with thymine, producing a G>A substitution, and adenine deamination produces a 

hypoxanthine which base-pairs with cytosine, resulting in an A>G substitution. 

 

Another type of spontaneous damage is depurination, or the loss of the 

nucleobase at purine sites, adenine and guanine, by the cleavage of the β-N-

glycosidic bond, which is especially susceptible to hydrolysis (Lindahl and Nyberg 

1972), creating an apurinic site that decreases fidelity of DNA replication 

(Shearman and Loeb 1977). 

 

Ultraviolet (UV) radiation is one of the main sources of induced damage. UV light 

induces the appearance of covalent bonds between consecutive pyrimidine 

nucleotides, cytosine and thymine, producing dimers (Setlow and Carrier 1966), 

which are mutagenic if left unrepaired and the main cause of human melanomas 

(Nelson and Nelson 1957; Holman et al. 1986; Østerlind et al. 1988). 

 

Alkylating agents, such as mustard gas, can transfer methyl or ethyl groups to a 

DNA base (Lawley and Brookes 1967). When guanines are alkylated, they form 

complementary base pairs with thymine, creating a G>A substitution. 

 

Oxidation affects most commonly guanines, because they have a lower reduction 

potential (Steen Steenken and Jovanovic 1997). Oxidized guanines abnormally 

pair with adenine, producing a G>T substitution (Shibutani, Takeshita, and 

Grollman 1991). 

 

Further, double strand breaks (DSBs) occur frequently after exposure to ionizing 

radiation, induced by certain chemical agents, due to cross-overs during 

replication (Haber 1999; Karran 2000) or as a normal step of recombination in 

meiosis. DSBs are especially dangerous for cells because they can result in big 

duplications or deletions, as well as chromosomal rearrangements and even cell 

death (Carson et al. 1986). 
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2.3. Repair systems 
 

Besides DNA polymerases proofreading, any remaining error or damage is 

corrected by a series of mechanisms, depending on the type of alteration. 

 

Direct reversal of damage 
 

Occasionally, damage is directly reversed. For example, methylation of guanines 

is reversed by the protein methyl guanine methyl transferase (MGMT) (Yarosh et 

al. 1984), crucial for genome stability. Also, many organisms use light energy for 

photoreactivation, a process by which photolyase directly reverses pyrimidine 

dimers (Sancar 1994). This enzyme is absent in placental mammals, including 

humans (Kato et al. 1994), and other small effective population size (Ne) 

eukaryotes (Lucas-Lledó and Lynch 2009) which use nucleotide excision repair to 

resolve the dimers instead. 

 

Single strand damage 
 

Excision repair occurs when errors are removed, and the sequence is 

resynthesized according to the correct strand. We classify these mechanisms in 

three main types: 

 

Base-excision repair (BER) (Fig. 7, left) is used when just the base itself is incorrect 

and it is obvious. Hence, presence of uracil bases (from cytosine deamination) in 

the DNA, oxidized guanines, alkylated or deaminated bases are all corrected 

through this system. The incorrect base is recognized and removed from the 

deoxyribose by DNA glycosylases (Tomas Lindahl 1982) and then the remaining 

deoxyribose is removed so that DNA polymerase and ligase can fill and close the 

gap, respectively (Seeberg, Eide, and Bjørås 1995). 

 

Nucleotide-excision repair (NER) (Fig. 7, right panel) recognizes damaged regions 

because of the changes they produce to the DNA structure. This is the way T-T 

dimers resulting from UV damage are corrected in humans and other placental 

mammals. Nucleases and helicases remove an oligonucleotide including the 

damaged region and again DNA polymerase and ligase fill and close the gap (de 

Laat, Jaspers, and Hoeijmakers 1999). 
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Mismatch repair (MMR) is used when there is just a mismatch between bases. In 

this case the incorrect DNA sequence is not as apparent, but the original strand 

must be recognized in order to remove the erroneous base. These are the errors 

that escape from DNA polymerase proofreading. Because they happen during or 

right after replication, single-strand breaks that are only present in the newly 

synthesized strand are used as a mark (Kolodner and Marsischky 1999) to guide 

the process in mammalian cells. 

 

 
Figure 7. Base and nucleotide excision repair. Base excision repair (left) and nucleotide excision repair (right). 
(From Khan Academy 2019) 
 

 

Double strand breaks 
 

Double strand breaks (DSBs) are repaired by two different mechanisms: non-

homologous end joining (NHEJ) and homology directed repair.  

 

In NHEJ, DNA ligase IV, together with multiple other proteins, directly joins the 

ends of the broken DNA strands without the need for extensive homology between 

them. This process is heavily influenced by the stage of cell cycle (Moore and 

Haber 1996) and although it can be somewhat accurate, it is, in general, a 

mutagenic process, which can lead to translocations or deletions (Hiom 1999). 

 

On the other hand, homology directed repair, or homologous recombination (HR), 

occurs when a homologous sequence is used as a template for repairing the 

break, resulting in higher accuracy repairs. A protein fundamental for HR, RAD51, 

searches the genome for an intact copy of the broken DNA that is used to retrieve 
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the lost information (Houtgraaf, Versmissen, and van der Giessen 2006). Ideally, 

the template is the sister chromatid, so the sequence is repaired accurately. If the 

two sequences are not exactly homologous, it can result in gene conversion. 

Allelic gene conversion occurs when a strand carrying the other allele is used as 

a template, overwriting the original allele. However, if the repair is guided by a 

paralogous sequence, non-allelic homologous recombination (NAHR) occurs. 

Low-copy repeats or segmental duplications (SDs) – sequences 10-400 kb long 

with 95-97% identity – are the hotspots for NAHR, predisposing those regions to 

copy number variation and chromosomal rearrangements (Stankiewicz and 

Lupski 2002) (Fig. 8). NAHR accounts for most of the recurrent rearrangements: 

those that share a similar size, show clustering of breakpoints, and recur in multiple 

individuals (Gu, Zhang, and Lupski 2008). 

 

 
Figure 8. Genomic rearrangements resulting from NAHR between segmental duplications. Segmental 
duplications are depicted as arrows and the different loci are represented by letters. A. Recombination 
between direct repeats can result in deletion and duplication. B. Recombination between inverted repeats 
results in inversions. C. Types of NAHR depending on the involved sequences location and their 
consequences. (Modified from Gu, Zhang, and Lupski 2008) 

 

Besides its relevance for resolving recombination, DSB repair is crucial for 

restoring collapsed replication forks (Saleh-Gohari et al. 2005). Its importance is 

evidenced by the fact that BRCA1, a gene whose mutations result in increased 

risk of breast cancer, is involved in multiple of these mechanisms (J. Zhang and 

Powell 2005). 
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Further, neuronal activity causes the formation of DSBs within the promoters of 

early-response genes, those that are rapidly activated in response to a wide 

variety of stimuli (Madabhushi et al. 2015b). These genes already display the 

hallmarks of active transcription, such as RNA polymerase II at the transcription 

start site, before stimulation. With neuronal activity, histone methylation and 

transcription factor binding are minimally altered (T.-K. Kim et al. 2010). DSBs 

allow the interaction of promoters with early-response genes, producing their 

expression. This shows how fundamental DSB repair is in the central nervous 

system. 

 

Nonetheless, all the above-mentioned repair mechanisms are not infallible, in fact, 

error rates can be reduced only as long as they provide a fitness advantage 

greater than the power of genetic drift, which for species with small Ne is high. This 

implies that the lower bound on the mutation rate is not set by physiological or 

biochemical limitations, but by the inability of selection to push it lower (Michael 

Lynch 2010). All these errors accumulate during embryonic development and 

even during adult tissue proliferation and maintenance. They are shared by all the 

descendants of the cell where they appeared, including germ cells when they 

belong to the mutant lineage. 
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3. Early embryonic development 
 

Sexual organisms generate gametes through meiosis, a process that separates 

homologous chromosomes to produce cells with half the ploidy, such that the 

fusion of two of these sexual cells at fertilization results in a single cell, the zygote, 

which will divide and develop to produce a new individual, in a process known as 

embryogenesis. Especially relevant to this work is human embryonic development. 

 

3.1. Embryonic development stages 
 
Cleavage 
 

After fertilization, the zygote is confined inside the zona pellucida, the glycoprotein 

layer that surrounded the oocyte, which limits its growth in size and avoids 

premature implantation (W. Liu et al. 2017). In mammals, the zygote starts to 

divide at a pace of approximately a division per day during the first two days, a 

slower rate than other metazoans (O’Farrell, Stumpff, and Tin Su 2004). At this 

stage, cells do not grow between divisions, hence the term cleavage. After the 2-

cell stage (Fig. 9, left), mammalian cleavage is asynchronous, meaning that one 

of the cells divides first, forming a 3-cell embryo (Kelly, Mulnard, and Graham 

1978). By this stage, cells are called blastomeres (from ancient Greek blastos, 

germ or sprout) and they stay aggregated into an undifferentiated sphere (Fig. 9, 

middle). At the 8-cell stage, embryos enter compaction, a phase when 

blastomeres join with gap and tight cell junctions (Ducibella and Anderson 1975). 

When the embryo has approximately 12 to 32 cells, it is called a morula because 

of its resemblance to a mulberry. 

 

Blastulation 
 

Then, a cavity in the middle of the morula starts to form, the blastocoel. It is 

produced by the pumping of sodium into the middle of the sphere, which pulls in 

water osmotically (Manejwala, Cragoe, and Schultz 1989). The accumulated liquid 

makes the zygote grow, helping it hatch the zona pellucida. At this moment the 

embryo is referred to as a blastocyst. Then, cells start to differentiate between 

those in the outer layer, the trophoblast, and those grouped on the inside 

contacting the trophoblast, the inner cell mass (Fig. 9, right). The region where the 

inner cell mass is attached to is the embryonic pole. The contribution of each 

blastomere from the 4-cell stage to the inner cell mass and the trophoblast is not 
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clear (Zernicka-Goetz 2006), but the general consensus is that some positional 

bias exists in guiding this commitment (Zernicka-Goetz, Morris, and Bruce 2009). 

The inner cell mass cells will give rise to the body of the embryo itself as well as 

some extraembryonic structures, such as the umbilical cord. On the other hand, 

trophoblast cells exclusively form extraembryonic tissues, like the outer layer of 

the placenta. 
 

 
Figure 9. Photomicrographs of human embryos. Left: Two blastomeres are visible inside the zona pellucida. 
Middle: Morula with 12 visible cells. Right: Blastocyst with the trophoblast cells on the periphery and the inner 
cell mass marked by the arrow. (From Veeck and Zaninovic 2003) 

 

Implantation  
 

Approximately 6 days after fertilization, implantation into the uterine wall starts. 

Because mammalian embryos depend on maternal sustenance, after hatching the 

zona pellucida, the expanded blastocyst attaches to the endometrial epithelium at 

the embryonic pole. After the first contact, or apposition, the trophoblast cells that 

are near the inner cell mass fuse to form the syncytiotrophoblast, maintaining a 

layer of proliferative cells underneath, which also derive from the trophoblast, 

called the cytotrophoblast (Fig. 10A) (Enders and Schlafke 1969). The 

syncytiotrophoblast fusion is assisted by syncytin, a protein whose gene was 

inserted into the genome of an ancestor of all catarrhines by a retrovirus. Along 

evolution, other mammals have also exapted similar retroviral sequences for 

placentation (Lavialle et al. 2013). 

 

Projections of the syncytiotrophoblast, called villi, insert between the uterine 

epithelial cells, and after penetrating the basal lamina, they eventually make their 

way into the endometrial stroma, the connective tissue beneath the epithelium. 

This highly invasive tissue erodes into the blood vessels of the uterus, making 

maternal blood fill small spaces previously formed in the syncytiotrophoblast called 

lacunae (Cross, Werb, and Fisher 1994). This is when some blood can leak, 

producing implantation spotting. Then, the decidual reaction occurs: maternal 
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connective tissue cells swell up due to the accumulation of glycogen and lipid 

droplets that will be transferred to the embryo (Wislocki and Dempsey 1948). This, 

together with maternal arterial changes and both maternal and embryonic 

hormonal release, inhibit an overly aggressive invasion (Kliman 2000) and create 

an immunologically privileged site for the embryo (Xu et al. 2017). Later on, the 

maternal epithelium heals, enclosing the embryo in the stroma (Fig. 10B). 

 

 
Figure 10. Embryo implantation. A. At 5-6 days post fertilization, implantation starts. Maternal tissues are 
depicted in orange. The syncytiotrophoblast is starting to appear and invade the endometrium. At the same 
time, the hypoblast and epiblast start to differentiate. B. At 11-12 days post fertilization, implantation is 
complete. Maternal capillaries have been eroded into, uterine epithelium has closed, and, in the embryo, the 
amniotic cavity has opened (blue bubble) and the hypoblast has formed the primary yolk sac. (From Carlson 
2014) 

 

Formation of the embryonic disk 
 

At the same time that the syncytiotrophoblast starts to form, some inner cell mass 

cells form a ventral layer, constituting the hypoblast, or primitive endoderm. The 

upper part of the inner cell mass is known as epiblast and also forms an epithelial-

like sheet (Fig. 12A). Whether an inner cell mass cell forms part of one or other 

layer is determined by the expression of two transcription factors, NANOG and 

GATA6. These two factors are initially expressed in an overlapping manner. The 

earliest stages of cell differentiation seem to be dominated by stochastic 

fluctuations of these transcription factors producing what is known as the salt-and-

pepper stage (Fig. 11A). Then, through cell sorting, NANOG expressing cells form 

the epiblast whereas GATA6 expressing cells commit to the hypoblast by the 

regulation of the expression levels of fibroblast growth factor 4 (FGF4) and FGF 

receptor (Schrode et al. 2014). This way, a bilaminar disk is formed. Later on, a 

layer from the epiblast, called the amnion, separates from it, leaving the amniotic 
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cavity in between. At the same time, cells from the hypoblast begin to spread and 

line the cytotrophoblast from the inside, forming the parietal endoderm, which 

once closed is called the yolk sac, the first site where hematopoiesis occurs (Fig. 

11B) (Palis and Yoder 2001). 

 
Figure 11. Development of the bilaminar disk. A. The transcription factors NANOG and GATA6 determine 
inner cell mass differentiation into epiblast cells (red, EPI) and hypoblast cells (blue, PrE) through the 
regulation of FGF. B. The amniotic cavity is formed by the cavitation of epiblast cells (blue) whereas the yolk 
sac derives from migrating hypoblast cells (yellow). The body stalk derives from the extraembryonic 
mesoderm and will give rise to the umbilical cord. (From Schrode et al. 2014 and Carlson 2014, respectively) 

 

Gastrulation 
 

This process starts with the formation of the primitive streak (Fig. 12C), a structure 

resulting from the loss of basal lamina and epithelial to mesenchymal transition of 

epiblast cells (Williams et al. 2012). At this stage, cell cycles are very rapid, as 

short as 2.2 hours (Snow 1977) and cells start to migrate. Cells ingress into the 

streak while the epiblast epithelial sheet is maintained. The first cells leaving the 

posterior part of the streak give rise to the extraembryonic mesoderm, which lies 

between the trophoblast and yolk sac and forms the body stalk (Fig. 11B), which 

later will become the umbilical cord, as well as give rise to the germ cells. A more 

anterior wave of mesoderm forms the paraxial, lateral plate, and cardiac 

mesoderm; structures that will give rise to the mesodermal tissues of the embryo 

itself. A final, anteriormost wave gives rise to the notochord (the mesodermal 

structure that together with ectoderm will form neural tissues) as well as to the 

embryonic endoderm, which will form the gut. Cells remaining in the epiblast 

constitute the embryonic ectoderm (Fig. 12D and E). 

 

However, little is known about the movements cells undergo to create these layers 

and which are the mechanisms responsible. A study on chick embryo gastrulation 

showed that cells destined to different structures follow defined pathways of 

A B
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movement, which appear to correlate more closely with the tissue to which they 

would contribute than to their position in the streak at the time of labelling 

(Psychoyos and Stern 1996).	
 

 
Figure 12. Gastrulation. A. Frontal section of the implanted embryo. The syncytiotrophoblast (in orange) and 
the cytotrophoblast (in red) surrounding the bilaminar disk. B. Orientating diagrams, showcasing the 
opposition of the hypoblast (yellow) and the epiblast (blue). C. Formation of the primitive streak in the bilaminar 
disk. D. Cells migrating along the primitive streak first form the endoderm, which mixes with the hypoblast and 
later (in E) the mesoderm. (From Marieb and Hoehn 2013) 

 

Organogenesis 
 

The three germ layers differentiate at gastrulation: ectoderm, mesoderm and 

endoderm. Afterwards, complex processes and rearrangements need to take 

place in order to produce all the body organs and organ systems (Fig. 13). Briefly, 

ectoderm will give rise to the outermost layer of skin, central and peripheral 

nervous systems, eyes, inner ear, and several connective tissues. Mesoderm will 

give rise to the circulatory system, including the heart and spleen, cartilage, bones, 

skeletal muscle, dermis, kidneys and gonads. Endoderm will give rise to the 

epithelial lining of the gastrointestinal track as well as the respiratory tract, the 

thyroid, thymus, pancreas and bladder. 

 

Interestingly, germ cell determination occurs somewhat far from the embryo 

proper. Primordial germ cells derive from the extraembryonic mesoderm and 
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commit to their lineage at the allantois, an evagination of the body stalk (Chiquoine 

1954). Once specified, they first migrate to the hindgut and finally to the gonads 

(Tilgner et al. 2008). On their way, they proliferate at a moderate pace, each 16 

hours (Tam and Snow 1981), and undergo extensive reprogramming of the 

epigenome, such as the removal of gene imprinting (Tilgner et al. 2008). 
 

Figure 13. Developmental lineages. Flow chart of cell differentiation and commitment with lineages colored 
similarly to previous images. Determinant lineage splits are labelled with white numbers in black circles. 

 

3.2 Cell genealogy vs developmental lineage 
 

Whether the cell differentiation tree matches the cell genealogy tree is of particular 

importance for the study of somatic mutations. One of the first examples of 

embryonic cell lineage tracing is that of Caenorhabditis elegans, a transparent 

nematode whose adult body has a fixed number of cells (eutely) at ~1,000. Sulston 

et al. traced the complete development of C. elegans and recorded the 

correspondence between genealogy and final tissue commitment for the different 

lineages. They noted that despite the fixed relationship between cell ancestry and 

cell fate, the correlation between the two lacked an obvious pattern (Sulston et al. 

1983). For example, they observed that most main lineages contributed both to 

the generation of muscle and to the generation of neurons, even if in different 

proportions. Therefore, the total set of neurons was constituted by diverse 
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proportions of cells coming from multiple lineages, and those same lineages were 

present in muscle, although in different proportions than neurons. 

 

Cell genealogy is much harder to ascertain in mammals, but new techniques such 

as genome editing of synthetic target arrays for lineage tracing (GESTALT) 

(McKenna et al. 2016), are leading the way towards acquiring this knowledge. In 

this case, the barcode is an array of clustered regularly interspaced short 

palindromic repeats (CRISPR)/Cas9 target sites. Random changes are introduced 

at each cell division, so that the sequencing of single cells allows the 

reconstruction of their genealogy. However, the resolution is limited to a few 

divisions. 

 

Nonetheless, studying somatic mutations in humans has shown results consistent 

with those in C. elegans. Lodato et al. showed that a few neurons from the cerebral 

cortex of normal individuals share somatic SNVs with cardiomyocytes and not with 

some of the surrounding neurons, indicating they share a more recent common 

ancestor with those cardiomyocytes (Lodato et al. 2015). They showed that 

variants produced during embryonic development, with a frequency in neurons 

(an ectodermal derivative) as low as 2% were also present in tissues derived from 

a different germ layer, the mesoderm, such as heart and liver. 

 

The relationship between the genealogy and developmental trees was discussed 

in Arendt et al. They proposed the concept of “serial sister cell types” (Fig. 14). 

This concept builds upon the observation of body regionalization in metazoans and 

hypothesizes that cell types arise in the different regions concurrently, producing 

a lack of correspondence between the trees (Arendt et al. 2016). 

 

Currently, the consensus is that the first commitment between trophoblast and 

inner cell mass (Fig. 13 (1)) is not random, and that not all cells contribute to both 

lineages (Zernicka-Goetz, Morris, and Bruce 2009). In contrast, the second 

fundamental differentiation (Fig. 13 (2)), that between hypoblast and epiblast, is 

stochastically driven by NANOG and GATA6 (Schrode et al. 2014). However, how 

subsequent lineage commitments are determined, and which cells differentiate 

into them is not clear. Gastrulation occurs approximately after the 12th cell division 

(Snow 1977). Because cell cycles are short at gastrulation, just over 2 hours, the 

repair machinery efficiency is more limited in that period (Anderson, Lewellyn, and 

Maller 1997), leading to the appearance of variants that will be present in all the 

descendant cells. Hence, over 4,000 cells exist at gastrulation, meaning that 
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variants with a frequency as low as 0.02% in the adult could potentially be inherited 

by cells migrating to all the different germ layers. 

 
 

Figure 14. Serial sister cell types. The interrelationship of developmental and evolutionary cell type lineages. 
A. Ancestral state. In a hypothetical simple metazoan, cell types arise from a stem cell-like developmental 
lineage. B. Derived state. Cells first diversify regionally, giving rise to region-specific serial sister cell types. 
Within each region, cell types arise in parallel, so that developmental and evolutionary lineages differ. (From 
Arendt et al. 2016) 

 

It has been estimated that ~40% of embryos end in spontaneous abortions, 80% 

of them before the pregnancy is detected, also known as preclinical losses (Opitz 

1987; Wilcox et al. 1988). This is most usually the result of cytogenetic alterations 

such as aneuploidies and trisomies (H. P. Robinson 1975; M. Ohno, Maeda, and 

Matsunobu 1991; Minelli et al. 1993) with better formed and latter loss embryos 

having conditions more compatible with life, such as chromosome 13, 18, 21 or 

sex chromosome abnormalities (Hardy and Hardy 2015), including somatic 

alterations (Vorsanova et al. 2005; Lebedev 2011), which indicates how 

mutagenic the first cell cycles can be. 
  

A B
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4. Germline variants  
 

In a diploid organism, there are two copies of each chromosome, the maternal and 

the paternal. Variants present in the germline of the parents, which are therefore 

inherited by all the cells of the offspring, are called germline variants. These are 

the variants usually considered when the genetic variation of an individual is 

studied. 

 

The main types of variants are single nucleotide variants (SNVs), a nucleotide 

substitution at a specific genomic position; short insertions or deletions (indels) 

and structural variation, which includes copy-number variants (larger insertions or 

deletions), inversions and translocations. When SNVs reach a certain frequency 

level in a population, usually established at 1% (Cavalli-Sforza and Bodmer 1971), 

they are considered single nucleotide polymorphisms (SNPs). Different versions 

of the same locus are called alleles. 

 

4.1 Monogenic variants 
 

Although the epigenome and transcription and translation regulation modulate and 

tune the genotype to give rise to the phenotype, genetic variants can still directly 

cause phenotypic variation. Traits can be determined by one or more loci. Those 

driven by a single gene are called monogenic or mendelian traits, after Gregor 

Mendel, who proposed the laws of inheritance in the late XIX century. 

 

Mendelian traits can be of dominant or recessive inheritance. Dominant variants 

are those that cause the phenotype when just one allele is affected. This is the 

case of the most common variants that confer lactose persistence in humans; 

individuals with just one allele inducing lactase expression after infancy produce 

enough enzyme for lactose digestion (Flatz 1984). On the other hand, when the 

phenotype appears only if both alleles carry the mutation, variants are of recessive 

inheritance, or haploinsufficient. Examples include diseases such as cystic fibrosis, 

caused by mutations in the CFTR gene (Riordan et al. 1989). In such cases, a 

single defective allele is not enough to cause the disease, so individuals with one 

copy are unaffected and are known as carriers. 

 

Both dominant and recessive mendelian mutations have been found to cause 

neurodegenerative diseases, such as mutations in the alpha synuclein gene 

(Polymeropoulos et al. 1997) causing dominant inheritance of Parkinson disease 
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(PD), variants on the Parkin gene (Kitada et al. 1998) causing recessive PD or 

amyloid precursor protein mutations causing dominant Alzheimer disease (Tanzi 

et al. 1987). 

 

However, traits can still be monogenic but non-mendelian. Incomplete dominance 

occurs when the heterozygote phenotype is in between those of the homozygotes. 

For example, achondroplasia patients present a much more severe phenotype 

when they are homozygotes, and for most diseases, homozygotes are so rare that 

whether they have complete or incomplete dominance is unknown (Rimoin, 

Pyeritz, and Korf 2019). Also, codominance happens when both alleles are 

expressed independently, such as in human ABO blood groups. 

 

4.2 Polygenic variants 
 

On the other hand, phenotypes determined by more than one locus are known as 

polygenic traits, such as skin pigmentation in humans, for which more than a 

dozen loci have been described (Deng and Xu 2018). In the simplest model, the 

effect of each variant is additive. However, because protein interplay is structured 

as networks, interactions usually exist between genes in the production of 

phenotypes, a phenomenon called epistasis. Many phenotypes are very complex, 

with multiple genes and their interactions involved in their determination (Botstein 

and Risch 2003). Especially, this is the case for complex diseases; variants 

causing monogenic or simpler inheritance diseases suffer a stronger negative 

selective pressure and their frequency lowers in the population. Their appearance 

is many times the result of genomic instability causing recurrent mutations (Gu, 

Zhang, and Lupski 2008). However, when a disease is caused by a large number 

of variants as well as their interactions, the selective pressure on each of them 

decreases substantially, making it more difficult for natural selection to purge them 

from populations, especially those with low effective population size. 

 

The heritability of a trait – the proportion of variation that is attributable to genetic 

factors – can be estimated by calculating the concordance rate between 

monozygotic twins compared to fraternal twins. Assuming both pairs of twins 

share the same environment, when identical twins have more similar phenotypes, 

the variance dependent on genes can be inferred (Sahu and Prasuna 2016). A 

typical example of a complex quantitative human trait is height. Its heritability has 

been estimated to be ~80% (Visscher, Hill, and Wray 2008). Genome-Wide 

Association Studies (GWAS) have been performed to find the variants behind it. 

In this type of analysis, the association of SNPs and traits is measured by 
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comparing carriers and non-carriers, or in this particular case, people above and 

below a selected height. The first GWASs on height found only a few associated 

SNPs, explaining at most less than 4% of the variance (Gudbjartsson et al. 2008). 

This led to the debate on the missing heritability and where it could reside (Maher 

2008). Because of the sizable number of variants involved in the phenotype, only 

very large samples provide enough power to discover a high proportion of the 

variance. Polygenic scores are used in this context; they aggregate the effects of 

many SNPs, even if their independent association on the trait is not significant. 

When analyzing ~700,000 individuals, a polygenic score could explain ~35% of 

the variance (Yengo et al. 2018). 

 

However, many times shared environment and especially assortative mating are 

not properly modelled when estimating heritability (Lynch and Walsh 1998) and 

association (Marchini et al. 2004). Non-random mating creates population 

structure, or non-homogeneous populations. If a phenotype varies between 

populations and subpopulations, this creates spurious correlations between that 

trait and the variants involved in the structure, especially when using methods that 

rely on large numbers of small effects, such as polygenic scores (Barton, 

Hermisson, and Nordborg 2019). Indeed, the latest analyses on polygenic scores 

for human height found uncorrected population structure caused an 

overestimation of polygenic scores, which were found to not be easily portable 

among populations (Sohail et al. 2019; Berg et al. 2019), highlighting methods for 

correcting for population stratification in GWAS may not always be sufficient for 

polygenic trait analyses and that any claims of differences in polygenic scores 

between populations should be treated with caution. 

 

4.3 Copy number variants 
 

The use of microarrays and the expanded application of paired-end sequencing 

enabled the analysis of small structural variation. Insertions and deletions of 

regions a few hundred to millions of base pairs, known as copy number variants 

(CNVs) have been linked to disease (reviewed in Stankiewicz and Lupski 2010) 

and are variants that also contribute to the evolution of species. 

 

The most common mechanism for a CNV to influence a phenotype is by dosage 

effect. One of the most famous cases is the gain of amylase copies in the human 

lineage as an adaptation to a starch-rich diet. The number of copies of the gene 

an individual has correlates with the concentration the enzyme has on their saliva 

as well as with dietary starch consumption across populations (Perry et al. 2007).  
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The dosage effect also produces diseases, such as Charcot-Marie-Tooth disease 

type 1 (CMT1), the most common inherited peripheral neuropathy. It results from 

the duplication of the gene PMP22, which is part of myelin, the insulation layer 

surrounding neuronal axons. Myelin formation requires the equilibrium of its 

components, so the duplication impairs the process (Nobbio et al. 2004), resulting 

in deficient myelinization, which in turn reduces nerve conduction velocities 

(Lupski et al. 1992). Because 76–90% of sporadic CMT1 cases have a de novo 

duplication (Hoogendijk et al. 1992; Nelis et al. 1996), it can be inferred that 

genomic rearrangements in this region are highly recurrent (Lupski 2007). These 

recurrent duplications are mediated by nonallelic homologous recombination 

(NAHR) between segmental duplications (Fig. 8) flanking the genomic region 

containing this gene (Inoue et al. 2001; Yuan et al. 2015). Also, deletions of this 

same region have been linked to a different disease, hereditary neuropathy with 

liability to pressure palsies (Inoue et al. 2001). 

 

Besides dosage effect, the deletion of a region can cause disease by unmasking 

recessive mutations or functional polymorphisms of the remaining allele, as 

observed for Sotos syndrome (Kurotaki et al. 2005). Also, smaller deletions, 

affecting portions of protein coding genes can result in abnormal proteins, lacking 

functional domains (Licht et al. 2006). 

  

However, not only coding region CNVs can cause disease, the deletion of 

regulatory regions can also produce pathologies. Nonsense, missense and 

frameshift mutations in FOXL2 result in blepharophimosis-ptosis-epicanthus 

inversus syndrome (BPES) (Beysen, De Paepe, and De Baere 2009). FOXL2 is a 

developmental gene with a strictly regulated spatiotemporal expression pattern. 

Microdeletions upstream and downstream of the gene were found in 4% of BPES 

cases, and chromosome conformation capture of the region revealed physical 

interactions with FOXL2 promoter (D’haene et al. 2009), explaining the 

appearance of the condition. Also, analysis of deletions common in Van Buchem 

syndrome patients helped to identify that sclerostin was involved in the disease, 

since the deleted regions affected regulatory elements of that gene (Loots et al. 

2005). 

 

As discussed in the previous section, cytogenetic alterations are very common in 

early embryos, including aneuploidies and trisomies as well as smaller 

rearrangements. The best tolerated trisomy is that of chromosome 21, Down 

syndrome (DS). It has been found that proteins in this chromosome interact much 
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less between them than those of other chromosomes, explaining the high viability 

of DS patients (Kirk et al. 2017). For the same reason, the consequences of gene 

duplications are very diverse depending on where in the interactome they are 

located. For example, alpha synuclein duplications have been described in 

Parkinson disease (Singleton et al. 2003), while the DS trisomy of 21 causes the 

overexpression of the APP gene, giving rise to the Alzheimer pathology in DS 

patients. 
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5. Somatic mutations 
 

Mutations that appear during embryonic development or adult tissue maintenance 

and are therefore present only in a proportion of the cells in an individual are 

termed somatic mutations. They are also known as postzygotic variants, owing to 

the fact that they occur after the formation of the zygote. Depending on the 

developmental stage when the mutation occurs, it will affect a varying proportion 

of cells and tissues (Fig. 15), including the individual’s germline. The resulting 

presence of cells with slightly different genomes in a single individual is known as 

mosaicism. 

 

 

 
Figure 15. De novo and somatic mutations. A. De novo mutations occur at some point in the cell lineage of 
parental germ cells. They are present in the zygote and therefore in all tissues and cells of the offspring. B. 
Early somatic mutations occur during the first cell divisions of the embryo and because the mutant cells 
contribute to multiple tissues, even from different germ layers, they are spread in the individual. C. Later 
somatic mutations are confined to a smaller cell lineage and are only present in some tissues of the individual. 
D. Appearance of the different types of mutations. (i) Blue variants are those that occurred more than a 
generation ago, germline inherited variants or polymorphisms. (ii) De novo mutations, in green, appeared at 
some point during parental development or tissue maintenance, the specific moment determines the amount 
of germ cells carrying the variant and is fundamental for estimating recurrence probabilities. (iii and iv) Early 
(orange) and late (red) somatic mutations occur during embryonic development. (From Nishioka et al. 2018) 
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5.1 First observations 
 

Mosaicism was observed early on as a result of chemical or less frequently, 

radioactive mutagenesis in lab animals producing striking mosaics (reviewed in 

Auerbach and Kilbey 1971). In 1961, Mary Lyon showed that half the human 

population is functionally mosaic for chromosome X (Lyon 1961). Soon thereafter 

Gartler and Francke proposed half chromatid or early somatic mutations as a 

mechanism for the appearance of Lesch-Nyhan syndrome (Gartler and Francke 

1975). This impairing X-linked recessive condition is caused by a deficiency of the 

enzyme hypoxanthine-guanine-phosphoribosyl transferase (HGPRT) and 

produces hyperuricemia, which results toxic to the central nervous system. Given 

that male patients are not able to produce offspring, the disease should diminish 

in frequency. However, new mutations seemed to occur with enough frequency to 

maintain the observed rate. Further, male patients with homozygous unaffected 

mothers were observed, so somatic mutations were proposed as an explanation 

for both phenomena. Mosaicism was also suggested to be the cause of other X-

linked conditions visible on the skin, such as incontinentia pigmenti (Lenz 1975).  

 

A decade later, Rudolf Happle evidenced that many of these hereditary conditions 

manifested on the skin following the lines of Blaschko, patterns previously 

associated with embryonic development, with a typical dorsal V-shape and an 

abdominal S-figure. He proposed that these lines observed in women affected with 

X-linked skin disorders could result from the clonal proliferation of two functionally 

different populations of cells during early embryogenesis of the skin, each with a 

different inactivated X chromosome (Happle 1985). Interestingly, he found the 

same skin pattern accompanied a different disease, the McCune-Albright 

syndrome, which was completely sporadic. Since the Blaschko lines suggested 

the existence of a distinct cell population carrying the mutation during skin 

development, but no hereditary cases had been reported, he suggested that the 

causal mutation had to be lethal to embryonic development and only compatible 

with life when in a mosaic state (Happle 1986a). This supposed the description of 

the first obligate somatic disease, a concept that was then extended to many 

others, such as the well-known Proteus syndrome (Happle 1986b; Clark et al. 

1987). 
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5.2 Cancer 
 

Cancer as a model for understanding somatic mutations 
 

Cancer could be considered as the most prevalent disease caused by somatic 

mutations. In the 1920s, it was proposed that tumors originate from cells affected 

by genetic mutations. This was inferred from the observation of chromosomal 

aberrations in cancer cells together with the fact that contact with mutagenic 

agents increased the risk of cancer (Nordling 1953). In the following decades, it 

became clear that the age-of-onset distribution suggested that two hits or even 

multiple hits were necessary for cancer development: at least one mutation to 

increase cell division rate and a second one to release the cells from control 

(Armitage and Doll 1957; Ashley 1969). Later, it was proposed that both sporadic 

and inherited forms of retinoblastoma could be caused by lesions to the same 

gene, the so-called “two-hit hypothesis” (Knudson and Jr. 1971), with one 

inherited germline mutation being the first hit and the second one occurring during 

somatic development. This theory was corroborated when the responsible gene 

was found (Friend et al. 1986) and it was confirmed that a mutation in each allele 

produced the total loss of function of the retinoblastoma protein gene, a cell cycle 

regulator and the first tumor suppressor gene to be discovered. This finding led to 

the search for genes whose mutation could cause different types of cancers, an 

effort that caused the discovery of multiple cancer driver genes (M. H. Bailey et al. 

2018).  

 

The advent of DNA sequencing and the fast reduction of its cost paved the way 

towards understanding the origin of somatic mutations in cancer genomes. The 

sequencing and comparison of melanoma and lymphoblastoid cell lines from the 

same patient showed that almost two thirds of the mutations were C>T transitions 

(Pleasance, Cheetham, et al. 2010), which were already known to be produced 

by UVB light mutagenesis on dipyrimidines containing 5-methylcytosine (Gerd P. 

Pfeifer, You, and Besaratinia 2005). Similarly, the comparative analysis of a lung 

tumor genome from the type of cancer most associated with smoking showed the 

high prevalence of G>T transversions (Pleasance, Stephens, et al. 2010). This 

was consistent with the pattern observed after exposure to tobacco carcinogens, 

polycyclic aromatic hydrocarbons, that covalently bond to guanines in the GpA 

context (Denissenko et al. 1996). These discoveries showing that different 

carcinogens produce different mutational patterns in a context dependent manner 

led to the development of mutational signature analysis, which focuses on the 

deconvolution of the different patterns (Alexandrov et al. 2013a). Mutational 
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signature analysis of over 7,000 cancers showed the existence of at least 21 

signatures, with signature 1 being ubiquitous (Alexandrov et al. 2013b). This 

signature is characterized by C>T transitions caused by the spontaneous 

deamination of methylated cytosine, which occurs predominantly at NpCpG 

trinucleotides (G P Pfeifer 2006). Although it was discovered in disease, this is a 

universal process, so it has been observed in both de novo (Rahbari et al. 2016) 

and somatic mutations (Bae et al. 2018) as well as in population variation studies 

(Mathieson and Reich 2017).  

 

This shows the potential cancer genome analysis has to discover universal 

patterns and mechanisms of somatic mutation. In fact, it has been shown that the 

mutation rate along the genome is not as homogeneous as once thought, with 

density of mutations at the 1-Mb scale being very variable and similar among 

different cancer genomes as well as the germline. Mutation rates correlate with 

GC content, replication timing, nucleosome occupancy (Hodgkinson, Chen, and 

Eyre-Walker 2012), transcribed regions (Pleasance, et al. 2010) and euchromatin 

(Schuster-Böckler and Lehner 2012). As fundamental repair machinery is 

sometimes inactivated in cancer, it poses an exceptional context to find the 

mechanisms behind this variability. MMR deficient tumors show a considerably 

flatter mutation rate variability, demonstrating the relevance this pathway has in 

generating this variation (Supek and Lehner 2015). MMR machinery is recruited 

by the histone modification H3K36me3 (Supek and Lehner 2017), which has a 

differential presence in introns than exons, explaining the lower mutation rate of 

the latter (Frigola et al. 2017).   

 

Differences with other somatic mutation diseases 
  

When compared to other somatic mutation diseases, cancer is a different 

scenario. Developmental somatic mutation diseases such as Proteus syndrome 

(Happle 1986b) are caused by mutations that do not confer clonal advantage to 

the mutant cells. That is, as they do not divide faster than other cells, mutant cells 

do not outgrow other cell lineages, so their proportion in the tissues is a product 

of drift rather than selection. On the contrary, since cancer is caused by the 

uncontrolled division and migration of cells, the responsible mutations are 

precisely those that give the mutant cells a proliferative advantage and therefore 

their proportion increases driven by positive selection (Bignell et al. 2010). 

 

This conceptual difference implies significant technical changes in their analysis. 

In cancer, clonal expansion produces enough mutant cells to be sequenced in 
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bulk. Also, the use of paired samples can help in identifying driver mutations – 

those only present in the tumor and responsible for its malignancy – although 

passenger mutations are also present in the tumor (Haber and Settleman 2007). 

In other diseases, mutation frequencies can vary substantially. Considering that 

embryonic cells contribute to the extraembryonic tissues (Fig. 13) and can do so 

in an asymmetrical way (Ju et al. 2017), a somatic variant could putatively be 

present in more than 50% of the cells. On the other hand, a mutation occurring 

later could be very rare in the tissues (Fig. 15). Even if the former is the case, a 

mutation present in most tissues can still be responsible for a disease if the 

affected gene is only expressed or relevant for a specific organ. Further, because 

approximately 12 cell divisions occur before gastrulation (Snow 1977), even 

mutations present in only  0.02% of the cells can be found in different tissues from 

all germ layers. For this reason, sequencing the affected organ and comparing it 

to an unaffected tissue is an inadequate strategy, because for a reasonable 

sequencing resolution, variants will most probably be present in both. This 

suggests that variant calling algorithms should be quite different for cancer and 

other somatic mutation diseases. In particular, systematic sequencing errors or 

those arising from misaligned unresolved regions of the genome become relevant, 

since they produce false positives for different samples in a similar proportion. Yet, 

in the worst-case scenario in cancer calling, such artefacts would be considered 

as shared between control and tumor DNA and therefore discarded.  

 

These systematic or recurrent errors are often only distinguishable from true 

somatic variants by the fact that they are found in multiple tissues and individuals, 

which given the somatic mutation rate found to date (Lodato et al. 2015; Alexej 

Abyzov et al. 2017; Bae et al. 2018) is very unlikely to be the case. The probability 

of those calls being biased sequencing errors or other kind of artefacts is much 

higher. Nonetheless, the interaction of DNA with certain local chromatin features 

has a strong influence on how nucleotides are damaged and repaired at the local 

level, which ultimately results in different mutation probabilities along the genome 

(Gonzalez-Perez, Sabarinathan, and Lopez-Bigas 2019). Moreover, when 

analyzing patients suffering from the same disease, some recurrent events could 

be expected. This is why comparisons with a panel of controls can be helpful to 

discern between these scenarios.  

 

Cancer driver somatic mutations in healthy tissues 
 

Nonetheless, it is becoming clear that even for assessing the relevance of 

mutations in cancer, basic knowledge on healthy tissue development and 
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maintenance and the forces shaping clone dynamics is necessary. In one of the 

first examples of healthy tissue analysis, Martincorena et al. sequenced 74 cancer 

genes at an average depth of coverage of 500x in 234 biopsies of sun-exposed 

but physiologically normal skin from four individuals. They found a surprisingly high 

burden of mutations, higher than that of many tumors, some of them already under 

strong positive selection. Hundreds of evolving clones per square centimeter of 

skin and thousands of mutations per skin cell were detected. They suggested that 

there may be an underlying reservoir of competing clones in normal skin. It was 

also noted that even if a drug that killed all cells with an inactivated tumor 

suppressor gene commonly inactivated in squamous cell carcinomas – NOTCH1 

– was developed, 60% of the tumors could be treated but with considerable 

collateral damage to physiologically normal skin, whose cells frequently carry 

inactivated NOTCH1 (Martincorena et al. 2015).  

 

To test whether these observations were the result of skin exposure to mutagens 

like UV light, a similar study was carried out on 844 small samples of normal 

esophageal epithelium from nine individuals. Again, 74 cancer genes were target 

sequenced at high depth, 870x. Clones carrying mutations in 14 of them were 

found to be under strong positive selection. Interestingly, mutations in NOTCH1 

were more common in normal esophageal epithelium than in esophageal cancer, 

demonstrating that the appearance of these genes in cancer could be caused by 

their high mutation frequency in the normal cells from which tumors evolve 

(Martincorena et al. 2018). On the other hand, CNVs were infrequent, suggesting 

negative selection. A similar observation has been recently made for neurons 

(Chronister et al. 2019). 

 

Two recent preprints on colorectal and endometrial epithelium came to similar 

conclusions. Somatic mutations on cancer driver genes were present in ∼1% of 

normal colorectal crypts in middle-aged individuals, indicating that adenomas and 

carcinomas are rare outcomes of a pervasive process of neoplastic change across 

morphologically normal colorectal epithelium. However, the structure of this 

tissue, organized in crypts, constrained clonal expansion (Lee-Six, Ellis, et al. 

2018). In contrast, a vast majority and even all of the endometrial glands were 

found to be colonized by cells carrying driver mutations in most women, probably 

because periodic endometrial shedding creates more opportunities for such 

clones to expand. Further, mutational burdens increased with age as well as with 

other factors such as body mass index and parity (Moore et al. 2018). 
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All of these studies were performed on epithelium, a tissue with an elevated 

turnover in which mutations conferring proliferative advantages would be 

expected to spread with age, even if differences are observed depending on tissue 

structure and renewal. Also, many of the studies only sequenced cancer driver 

genes to a sufficient coverage, which limits their ability to study population 

dynamics in these healthy tissues.  

 

Analyzing a different tissue, whole-genome sequences of normal blood from 241 

adults at a coverage of ~30x resulted in the identification of 163 early embryonic 

mutations. A few of them were also found in breast, an ectodermal tissue, including 

some variants whose frequencies were smaller than 5% in both tissues. 

Reconstruction of cell lineages with the identified mutations suggested that the 

two daughter cells of many early embryonic divisions contribute asymmetrically to 

adult blood at an approximately 2:1 ratio (Ju et al. 2017). This could be general to 

other adult tissues, but since blood development and maintenance is clonal (Sun 

et al. 2014), it might well be an exception. Indeed, in the immune system, 

developmentally programmed somatic mutations produce cellular diversity for 

antigen recognition through V(D)J recombination, the process by which T and B 

cells randomly assemble different gene segments to construct varied lymphocytes 

receptors during early development (reviewed in Alt et al. 1992). Furthermore, in 

response to antigen, somatic hypermutation occurs, which involves the MMR 

machinery (Chaudhuri, Khuong, and Alt 2004), making blood a tissue where 

somatic mutations are expected to be at higher rates. 

 

5.3 Somatic mutations in healthy tissues 
 

Rehen et al. showed that somatic copy number variants as big as chromosome 21 

aneuploidy were frequent in the healthy human brain. Later, it was also shown that 

retrotransposons mobilize during neurogenesis creating mosaicism both in both 

rodents and humans and (Muotri and Gage 2006; Coufal et al. 2009; Muotri et al. 

2009; Singer et al. 2010), indicating this process is common in the mammalian 

development. In the past five years, several studies have tried to characterize the 

number of somatic mutations in human cells, adult and fetal, from different tissues.  

 

In a recent study, the whole genomes of 36 single neurons from the prefrontal 

cortex of neurotypical individuals were sequenced. The somatic SNVs reflected a 

pattern of transcription damage rather than replication and the cell tree 

reconstructed with the variants evidenced the existence of different lineages. 

Recurrent SNVs in neurons were rare – 1 to 11 per neuron – compared to a higher 
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number of potentially unique SNVs – 300 to 900 – which are difficult to reliably 

distinguish from errors produced by amplification methods. Interestingly, some 

SNVs exclusive to one neuron lineage were also present in cardiomyocytes, even 

though they arose from a different germ layer, the mesoderm (Lodato et al. 2015). 

This is not completely unexpected since those variants were present in more than 

2% of the cells in both tissues, pointing towards them happening at the 6th division. 

Significant proliferation and cell movements occur between then and gastrulation 

during embryonic development, providing an explanation for their presence in 

multiple tissues. Similar numbers of variants and proportion of shared mutations 

were found using mice reprogrammed adult postmitotic neurons generated by 

somatic cell nuclear transfer of neuronal nuclei into enucleated oocytes (Hazen et 

al. 2016). 

 

A different technique was used to explore somatic mutations in fibroblasts derived 

from children. Human induced pluripotent stem cell lines were derived from 32 

fibroblasts. This technique uses clonal expansion of the cells to amplify the original 

DNA up to a point where it can be sequenced without PCR amplification. Then, 

variants present in the original fibroblast must be present in all cells, or 50% of the 

reads in bulk sequencing, while variants arisen during culture will be less frequent. 

On average, each fibroblast carried ~1,000 mosaic SNVs. This number was similar 

in adults, indicating that somatic mutations happen mainly during embryonic 

development (Alexej Abyzov et al. 2017).  

 

Sequencing clonally expanded forebrain neurons from fetuses, as expected, a 

lower number of variants was found, 200-400 SNVs per cell. SNVs with a 

frequency higher than 2% in brain were also present in the spleen (Fig. 16), 

revealing a pregastrulation origin. Assigning mutations to the first five postzygotic 

cleavages based on their frequency showed an early mutation rate of ~1.3 

mutations per division per cell, with a mutational spectrum similar to that of de 

novo mutations. However, variants assigned to later divisions, during 

neurogenesis, implied a higher rate and a spectrum associated with oxidative 

damage, which the authors proposed to be a result of the development of the 

cardiovascular system (Bae et al. 2018). The inferred somatic mutation rate is 

higher than that found in adult epithelium (Lee-Six, Øbro, et al. 2018; L. Moore et 

al. 2018), once again indicating higher mutation rates during embryonic 

development.  
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Figure 16. Assignment of somatic mutations to early development divisions. A. Hierarchical clustering of SNVs 
genotyped in the different brain regions and spleen by their variant allele frequencies (VAFs). White squares 
represent zero VAF. B. Reconstructed cell genealogy tree and assignment of SNVs. Conflicts of SNV 
assignment are denoted by “?”. Expected VAF denotes the VAF mutations arising at each stage should have, 
assuming equal contribution of all lineages to tissues. (From Bae et al. 2018) 
 
 

5.4 Somatic mutations can cause disease 
 

Most of the early observations linking somatic mutations with disease were cases 

of parental mosaicism. Maternal mosaicism for chromosome 21 trisomy was 

reported in the early 1960s (Weinstein and Warkany 1963) and during the 1980s 

multiple studies showed germline mosaicism in phenotypically normal parents 

could affect recurrence risk of diseases such as achondroplasia or Duchenne 

muscular dystrophy (reviewed in Hall 1988) or retinoblastoma (Sippel et al. 1998).  

 

The first decade of this century witnessed the association of somatic mutations to 

neurological diseases. Gleeson et al. discovered over 30% of cells had to be 

mutant for the DCX gene for patients to develop doublecortex and lissencephaly. 

It was also shown that microdeletions of NF1 produce neurofibromatosis type-1 

(Messiaen et al. 2011) and AKT3 mosaicism contributes to hemimegaloencephaly 

(Poduri et al. 2012). 

 

Examples of somatic mutations causing diseases have become increasingly 

common over the past lustrum. Priest et al. were among the first to show the 

relevance low frequency somatic mutations can have. An infant with perinatal 

long-QT syndrome (LQTS), a life-threatening arrhythmia, carried an SNV in a 

sodium channel, SCN5A, in 8% of their leukocytes. The same variant could be 
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detected in 5.4% and 11.8% of cardiac transcripts in two ventricular myocardial 

samples. A computational model showed the delay of sodium current caused by 

the mutation was sufficient to explain the arrhythmia. It was also found that a small 

proportion of LQTS patients (13/7,500 or 0.17%) also carried early somatic 

mutations (Priest et al. 2016). 

 

A second case highlights the relevance of low frequency variants in a phenotypic 

rescue event. Hutchinson-Gilford progeria syndrome (HGPS) is a fatal sporadic 

dominant condition in which mutations of the LMNA gene cause premature 

ageing. Patients heterozygous for a T>A mutation at a specific position suffer with 

very severe cases of progeria. On the other hand, individuals with a T>C at the 

same position present milder symptoms. A case with 4.7% of cells carrying T>C 

and 41.3% carrying T>A was described, and a significantly milder phenotype than 

the one found with just T>A was observed. The authors’ hypothesis was that the 

T>A variant was a germline de novo mutation and the A>C substitution occurred 

during embryonic development, partially rescuing the phenotype (Bar et al. 2017). 

 

Primary immunodeficiencies are oftentimes caused by germline de novo mutations 

in a group of well-characterized genes. A target sequencing study showed that 

roughly 25% of genetically undiagnosed cases could be explained by a somatic 

mutation in one of these genes, with mutant cell frequencies ranging from 0.8% to 

40.5% (Mensa-Vilaró et al. 2019). 

 

Neurological developmental diseases have also been linked to somatic variants. A 

case of hemimegaloencephaly was found to be caused by a somatic mutation in 

AKT3 in 35% of brain cells and not detected in blood at a 2% resolution (Poduri et 

al. 2012). Also, focal cortical dysplasia type II has been found to be the result of 

somatic mutations in MTOR in 6-13% of brain cells and undetectable in 600x blood 

exome sequencing (Lim et al. 2015; Park et al. 2018). Another study identified 

nine somatic variants in early-onset Alzheimer disease patients in genes related to 

the disease: two in APP, five in SORL1, one in NCSTN, and one in MARK4 with 

allele fractions ranging from 0.2% to 10.8% (Nicolas et al. 2018). 

 

Further, somatic mutations can be used to associate genes with diseases in 

discordant monozygotic twins. This helped to detect new as well as previously 

described genes involved in amyotrophic lateral sclerosis, schizophrenia, 

Tourette’s syndrome and autism spectrum disorder (Vadgama et al. 2019).  
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Finally, the burden of somatic variants was found to be much higher in patients 

with autism compared with controls (Lim et al. 2017; Dou et al. 2017), indicating 

the putative relevance of somatic mutations in complex diseases.  

 

Somatic mutations and ageing 
 

Somatic mutations were proposed to be implicated in ageing more than two 

decades ago, in the somatic mutation theory of ageing. It suggests that ageing did 

not evolve but has always been present, occurring as the result of fundamental 

chemical processes (Morley 1995). In fact, somatic SNVs accumulate with age in 

the brain (Lodato et al. 2018). Also, the absence of negative selection in cancer 

and on point mutations during normal somatic tissue maintenance suggests that 

even point mutations deleterious to the carrying cell do not drive cellular 

senescence, exhaustion, and death (Martincorena et al. 2017). This suggests that 

mutations could accumulate in the tissues with age and be the cause behind the 

structural and functional changes that accompany the passage of age. 

 

All these studies illustrate how little we know about somatic evolution within healthy 

tissues, a fundamental process that is likely to take place to varying degrees in 

every tissue of every species (Martincorena et al. 2018), with consequences in 

disease and ageing. It can be considered that all germline variants, including 

population polymorphisms, were at some point de novo mutations, which in turn 

were somatic mutations that occurred in the germline lineage of an individual (Fig. 

15). Therefore, the study of somatic mutation emergence, and the molecular 

mechanisms behind this process is also the foundation towards understanding the 

origin of population variants and probably to resolve the issue of the molecular 

clock in population genetics. Even if the germline is a privileged cell lineage with 

strong selective pressure against deleterious mutations, there is still controversy 

on how germline mutations originate. Contradicting evidence pointing towards the 

main role of either replication errors (Jónsson et al. 2017) or DNA damage (Z. Gao 

et al. 2018) is still being leveraged. Understanding the determinants of somatic 

mutation appearance can elucidate some of these questions.  
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6. Genome analysis technologies 
 

Since the discovery of the molecular structure of the DNA, several tools have been 

developed to analyze it, so that its changes can be linked to phenotypes and 

diseases. Here we focus on the methods relevant for this thesis. 

 

6.1 Comparative genomic hybridization arrays 
 

Comparative genomic hybridization (CGH) consists of the simultaneous 

hybridization of differentially labelled test and reference DNA to genomic probes. 

Duplications or deletions are then identified as differences in the ratio of the 

fluorescent labels. Traditional CGH was developed as a method for achieving 

higher resolution than other forms of cytogenetic analysis such as Giemsa 

banding, which could only detect events affecting heterochromatin distribution 

pattern. It was first applied using whole metaphase chromosomes on a slide as 

probes for cancer samples, which allowed the identification of new amplified loci 

(Kallioniemi et al. 1992). 

 

Later on, array CGH (aCGH) was developed by applying this concept to DNA 

microarrays – a solid surface containing known nucleotide sequences at specific 

locations – to detect copy number changes on a genome wide and high-resolution 

scale (Solinas-Toldo et al. 1997). This is achieved by first attaching 100-200 kb 

cloned DNA fragments to the array. The test DNA, such as DNA from a patient 

suspected to have a CNV, is fragmented and labelled with a red fluorophore 

(cyanine 5), while a control genome is labelled with a green fluorophore (cyanine 

3). Equal amounts of both samples are co-hybridized to the array. Then, both 

fluorescent light intensities are measured at each array spot, so that an excess of 

red light indicates a duplication of the region containing the probe in the test 

genome, whereas an excess of green light results from its deletion (Fig. 17). This 

way, estimations of copy number with respect to the control sample can be 

calculated with high resolution. However, because DNA must be previously 

fragmented, balanced chromosomal rearrangements are not detectable, since the 

translocated pieces will be in the pool of fragments irrespectively of their position 

in the test genome. Nonetheless, most rearrangements, even if apparently 

balanced, are associated with deletions whose detection with aCGH can be useful 

for clinical treatment (Astbury et al. 2004; Schluth-Bolard et al. 2009). 
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Figure 17. Array comparative genomic hybridization process. (From Shaw-Smith 2004) 
 

Since genomic rearrangements occur frequently in cancer, array CGH has been 

extensively used to identify them. Due to its higher resolution, several tumor 

suppressor genes located in previously identified loci were found with this 

technology (Hodgson et al. 2001; Lassmann et al. 2007). Interestingly, the 

correlation of poor prognosis in mantle cell lymphoma with aCGH data showed 

that 8p and 13q14 deletions were relevant for survival (Kohlhammer et al. 2004). 

 

Further, small deletions have been associated with other diseases such as autism 

with the use of aCGH in large patient cohorts (Weiss et al. 2008), even in a somatic 

state (Celestino-Soper et al. 2011). Several other intellectual impairment 

syndromes are caused by microdeletions. Previous methods could not identify 

these short changes, but aCGH has been proven to detect them (Vissers et al. 

2003) albeit with a high false positive rate (Sagoo et al. 2009). Also, its use for 

prenatal diagnosis has been implemented (Rickman et al. 2005), although 

orthogonal methods such as SNP arrays can be of use to detect triploidy (Wapner 

et al. 2012). 

 

Finally, cases of APP duplication in early onset Alzheimer patients have also been 

detected with aCGH (Kasuga et al. 2009) as well as multiplications of the α-

synuclein gene in familial Parkinson disease patients (Sironi et al. 2010; Ferese et 

al. 2015). 
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6.2 DNA sequencing 
 
The first DNA sequencing technologies had a very low throughput. Sanger 

sequencing requires four separate reactions, each with one different labelled 

dinucleotide. Primers are hybridized to the input DNA strands and extended with 

a mixture of the four regular nucleotides and one of the labelled dinucleotides. 

Each time a base complementary to the dinucleotide of that reaction is present in 

the input sequence, extension is arrested in a few of the fragments while the others 

continue until the complementary base appears again. After this process, the 

resulting fragments are sorted by size in a polyacrylamide gel, each reaction in 

one lane, so that an autoradiography shows the arrested fragments and hence the 

nucleotide sequence can be inferred (Sanger, Nicklen, and Coulson 1977). 

Sequences as long as 1,000 bp can be determined with this method and a 

physical map was used to order and concatenate the obtained sequences into 

chromosomes or genomes. 

 

Later on, shotgun sequencing made sequencing possible without the need of a 

physical map. DNA sequences are randomly broken into fragments called reads, 

which after sequencing, are assembled into the original sequence by the use of 

their overlaps to align them. DNA sequences coming from the same genomic 

region are broken into different reads and the same position is sequenced multiple 

times. The number of reads a position is sequenced by is known as depth of 

coverage. As an example, the Human Genome Project, the first to use shotgun 

sequencing, sequenced most of the human genome at about 10x (International 

Human Genome Sequencing Consortium 2001). 

 

Next-generation sequencing 
 

Next-generation sequencing, or high-throughput methods, sequence DNA in a 

different manner, called sequencing-by-synthesis (Fig. 18). The input DNA is 

broken into small fragments whose ends are then ligated to adaptors, short 

sequences complementary to flow cell oligos as well as to the sequencing primers. 

In paired end sequencing, fragments will be sequenced from both ends. Hence, 

to avoid overlapping, DNA is usually shredded by sonication into fragments with 

length, or insert size, longer than double the read length.  

 

The flow cell is a glass slide divided in lanes with two type of oligos fixed to it. 

Fragments attach to the flow cell by one of the adaptor strands. Then, the 

complementary sequence is formed by polymerase chain reaction (PCR) 



  45 

extension from the adaptor. Once finished, the resulting double stranded molecule 

is denatured and the original strand is washed away, leaving only the sequence 

attached to the flow cell. Then, bridge PCR amplification is used to generate 

clusters. That is, the attached sequence bends over to pair its second adapter to 

an oligo in the flow cell and polymerase generates the complementary sequence, 

which is again denatured. This time both sequences are tethered to the flow cell. 

The process is repeated multiple times in order to get local clonal amplification of 

the original fragment, or clusters of the same input fragment. Then, the reverse 

strands are cleaved and the primers complementary to the first sequencing 

primer, or read 1 primer, are added. Fluorescently tagged nucleotides are added 

at each cycle, and those complementary to the fragment are paired to it. Upon 

light stimulation, each newly added nucleotide emits a signal depending on its 

fluorescent tag. Light wave lengths and intensities are recorded and used to 

determine the sequences, a process known as base calling. Base qualities are 

also assigned to each nucleotide (Bentley et al. 2008). 

 
 

 
 
Figure 18. Illumina sequencing process. Input DNA is fragmented, and adaptors and sequencing primers are 
ligated to each fragment. Fragments are attached to the flow cell by one of the adaptors. Then, clusters of 
each sequence are formed by bridge amplification. Finally, sequencing-by-synthesis is performed by 
recording the fluorescent light emitted at each cycle by each cluster. (From Lu et al. 2017) 
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The number of cycles performed determines read length. After all the cycles are 

completed, the fragments synthesized during sequencing are washed away. Then, 

the original fragment bends over, pairs with the second oligo, is extended by 

polymerase, and the original forward strands are cleaved, leaving only the reverse 

strands in the flow cell. Finally, the read 2 sequencing primer is added and the 

process is repeated to sequence the fragment from its other end (Bentley et al. 

2008). 

 

It is important to differentiate between strand and read pair. The strand of a 

sequence is determined only after aligning it to the reference genome. By 

convention, the reference genome sequence is considered the forward or plus (+) 

strand, while its reverse complement is considered the reverse or minus (-) strand. 

As previously described, in paired end sequencing, read 1 is the first read to be 

sequenced. In Illumina, sequencing starts with the 5’ end sequencing primer. 

Therefore, reads that are read 1 can be forward or reverse, and the same is true 

for read 2.  

 

Over run time, clusters can grow to the point where they start to overlap. This, 

together with reagents suffering suboptimal temperatures for several hours or 

even days during sequencing, implies that base calling from sequencing read 2 is 

more difficult, hence usually read 2 base qualities are lower. 

 

Calling somatic mutations from next-generation sequencing reads 
 

In order to obtain the input DNA, it has to be extracted from a bulk sample, that is, 

a piece of tissue. Often, the chosen tissue is blood, since it is accessible without 

the need of an invasive biopsy. Cell membranes are first broken to release the 

DNA, which is then precipitated and separated from other cell components. This 

way, most of the DNA in all the cells present in the sample ends up in the 

extraction. Then, the extracted DNA is shred into small fragments and a DNA 

library is prepared by ligating the sequencing adaptors to them. In the end, only a 

small proportion of those fragments is sequenced, so when the obtained reads are 

mapped to the reference genome, the different reads overlapping the same region 

come from different DNA molecules, and most probably, from different cells. Since 

the main interest of this project are somatic mutations, which will be present only 

in one of the chromosomes of a small proportion of cells, after library preparation, 

only some library fragments will contain the mutation, and this number will be 

proportional to the number of cells carrying it. This way, from the proportion of 
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reads supporting the alternative allele, we can infer the proportion of mutant cells 

in the tissue.  

 

Traditional somatic mutation callers were developed for cancer and were focused 

on detecting mutations present in the tumor and absent in the normal tissue, so 

they usually require paired samples. In fact, most reviews and evaluations of 

somatic variant callers are centered on the use of paired samples (Krøigård et al. 

2016; C. Xu 2018). However, as previously discussed, expectations in a 

developmental somatic mutation scenario are different. Nonetheless, some callers 

can be used without matched normal samples, such as Varscan 2 (Koboldt et al. 

2012), Mutect2 (Cibulskis et al. 2013) or MosaicHunter (A. Y. Huang et al. 2017). 

Callers use read features to assess the probability of alternative allele supporting 

reads being artefactual or true somatic mutations. On the one hand, MosaicHunter 

combines a Bayesian genotyper with filters that heavily refine calls based on 

multiple features, including extreme depth, repetitive regions, strand bias or a 

variant being observed in population databases. On the other hand, Varscan 2 

applies heuristic methods to detect variants and can be tuned for different 

sensitivity levels. Of course, if sensitivity is set high, a multitude of false positive 

variants is also called. Other callers such as Mutect2 use intermediate strategies.  

 

Somatic mutation calling from a single sample is a complex process with many 

features flagging different noise sources. Thus, using the consensus of multiple 

callers has been proposed for increasing accuracy (Goode et al. 2013). This is 

because certain read features indicate a higher probability of a call being a false 

positive. However, they cannot perfectly separate true and false positives, so the 

combination of different callers with a variety of confidence thresholds helps to 

determine a more reliable set at the cost of sensitivity. The lack of a benchmarking 

dataset with a known ground truth for somatic mutations hinders the task of 

developing accurate somatic callers.  

 

6.3 Exome sequencing  
 

Although genome sequencing price decreased almost exponentially in the first 

decade of this century (Check Hayden 2014), it still costs several hundreds of 

euros to sequence a genome at the coverage needed for population genetics or 

the discovery of deleterious germline variants. Somatic mutation calling requires a 

much higher coverage to have the power necessary to uncover a significant 

number of variants, usually at least 3 to 4 times more coverage. Also, mutation 

rates are not high, so it could be argued that it is more probable that de novo 
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mutations causing human diseases are located in the exome, where they have a 

more direct effect on the phenotype. Since the exome is about 1% of the total 

sequence of the genome, even if capture baits are necessary, the cost of 

sequencing only this region is reduced proportionally. Accordingly, exome 

sequencing has been extensively used for the detection of causal germline 

mutations (review in Bamshad et al. 2011) as well as for the discovery of somatic 

mutations involved in multiple diseases (Pagnamenta et al. 2012; Azizan et al. 

2013; Yu et al. 2014; J. S. Lim et al. 2015). 

 

Exome sequencing can be achieved by two different methods. The least common 

of them is amplicon-based exome sequencing, where primers complementary to 

the boundaries of exons amplify them specifically and the resulting product is 

sequenced. This method has higher false positive as well as false negative call 

rates and produces worse coverage uniformity (Samorodnitsky et al. 2015). The 

most common method is hybridization-based exome sequencing. RNA probes 

with exome sequences hybridize with the complementary DNA fragments, 

capturing them, while the rest is washed away. Then, the retained fragments are 

amplified and sequenced (R. Chen, Im, and Snyder 2015). Although this method 

is superior to amplicon-based methods, probes are synthesized with the reference 

sequence. Hence, if an individual is heterozygous for multiple close positions, the 

DNA fragments carrying the alternative allele will hybridize less effectively with the 

probes, reducing their capture efficiency. Fewer fragments with these variants will 

be present in the final sample so after sequencing, allele balance will be smaller 

than 50%, a phenomenon known as capture bias. Nonetheless, even if this is the 

main reason why exome variants are better found with whole genome sequencing, 

they only differ in about 3% of variants (Belkadi et al. 2015). 

 

Several bases surrounding the exons are usually also captured, especially around 

short exons. Some of these bases are off-target, bases not intended to be 

captured but retrieved because fragments complementary to the probes 

contained them. Nonetheless, depending on the capture design, some intronic 

bases will be on-target, so their coverage is enough to discover variants. This 

allows to find intronic variants that can alter splicing donor or acceptor sites as 

well as positions involved in nonsense-mediated decay. 
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6.4 Other technologies useful for somatic variation 
analysis 
 

Single cell sequencing 
 

Unlike bulk sequencing, where multiple cells are homogenized into a single 

sample, techniques that allow the sequencing of individual cells have been 

recently developed (Marcy et al. 2007; Pushkarev, Neff, and Quake 2009). Since 

the amount of DNA present in an individual cell is insufficient for sequencing, whole 

genome amplification (WGA) needs to be performed first. Multiple methods exist 

to do this, such as multiple annealing and looping-based amplification cycles 

(MALBAC) (Elowitz et al. 2002) or more frequently used, multiple displacement 

amplification (MDA) (Dean et al. 2001). MDA amplifies a DNA sample by random 

priming using the bacteriophage Φ29 polymerase (Lázaro, Blanco, and Salas 

1995), which amplifies continuous strands that are then displaced and again 

amplified. This produces a large amount of DNA from a very limited input sample. 

Unfortunately, biases are common, specifically, one of the DNA strands can be 

preferentially amplified to the point where allele dropout occurs. That is, one of the 

alleles is not amplified. Moreover, amplification can be uneven, producing a few 

very poorly amplified chromosomes (Borgström et al. 2017).  Further, the type of 

lysis used in the protocol can influence the profile of errors obtained (Dong et al. 

2017).  

 

Single cell sequencing has been used to explore tumor heterogeneity (Gerlinger 

et al. 2012) and has also been proposed as a method for screening in-vitro 

fertilized embryos prior to implantation (Xu et al. 2016). Although it can be used to 

discover somatic variants, the cost of sampling enough cells to get a robust 

estimation of mutation frequencies in the tissue would be high. Nonetheless, it is 

very useful for validating somatic mutations found in bulk sequencing, especially 

systematic sequencing errors. They can be identified if a proportion of reads 

supporting a somatic mutation (1-30%) support the alternative allele in multiple 

single cells. Also, cell lineage trees can be inferred by using this technology 

(Frumkin et al. 2005). 

 

Clonal expansion of single cells 
 

A different strategy to amplify the genome of a single cell and to have enough 

material for sequencing is to culture it. Primary cultures can be derived by growing 

single cells from multiple tissues. This way, DNA is copied by replication and the 
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repair machinery of the cell can ensure a high-fidelity process. Then, DNA can be 

extracted and sequenced from a bulk sample of the culture. Variants present in 

the original single cell will be inherited by all the culture cells and therefore will be 

in ~50% of the sequencing reads. On the contrary, mutations that appear during 

clonal expansion will be present in less cells and reads, and can be discarded 

subsequently (Alexej Abyzov et al. 2017). Nonetheless, certain variants could 

provide cells with proliferative advantage and as a consequence, be 

overrepresented in the culture. To ensure the somatic state of the variants, target 

sequencing or PCR of DNA obtained from a bulk sample of the same tissue from 

where the cells were obtained can confirm their presence even if their frequency 

is very low (Bae et al. 2018). Also, systematic errors would fit better with a clonal 

expansion variant and would be discarded.  

 

Linked reads sequencing 

 

Linked reads are those known to belong to the same DNA molecule. This is 

achieved by tagging high molecular weight (HMW) DNA molecules during library 

preparation. In the Chromium by 10x platform, about 10 long DNA strands are 

mixed with a barcoded gel bead and restriction enzymes in a microfluidics chip so 

that micelles are formed. Then, the micelles are incubated, and the DNA is 

partitioned and barcoded. The probability of two HMW molecules from the same 

locus to have the same tag is very low. This way, after sequencing the resulting 

reads, reads that map close to each other and share the barcode can be linked  

(Kitzman 2016). This knowledge can be used to resolve regions with lower 

complexity as well as to build haplotypes. In somatic mutation calling, linked reads 

can be very useful to determine heterozygous mutations, since even if the 

proportion of reads supporting one allele fits more with it being a somatic mutation, 

if each allele is phased with one of the germline haplotypes, it must be a 

heterozygous mutation. Also, artefacts can be detected if they phase with both 

haplotypes, because true somatic mutations only phase with one of the germline 

alleles, that of the strand where they first appeared. This methodology can be used 

both with bulk and single-cell sequencing strategies, including exome sequencing 

(Mortensen et al. 2019). 

 

Third generation sequencing 
 

New sequencing technologies have been established in the past few years. 

Instead of generating reads a few hundred base pairs long, third generation 

sequencing platforms produce single molecule reads as long as 100,000 bp. 
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Pacific Biosciences (PacBio) Single Molecule Real Time sequencing (SMRT) 

technology uses sequencing-by-synthesis and fluorescent emissions by the four 

differently tagged nucleotides incorporation but does so for long single molecules 

and without cluster amplification (Korlach et al. 2010). A more recent technology 

is the Oxford Nanopore MinION. DNA molecules pass through a nanopore and 

the disruption to the electric current is used to determine their sequence, without 

DNA synthesis (Stoddart et al. 2009). Although the potential utility of long reads 

for calling somatic mutations is obvious – they would help identifying heterozygous 

variants and artefacts from unresolved regions – higher and recurrent errors are 

still common (Carneiro et al. 2012; Laver et al. 2015), complicating their use. 
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7. Neurodegenerative diseases 
 

Neurodegenerative diseases are those that result from the progressive loss of 

nervous system cells and functions. The greatest risk for such conditions is ageing. 

Thus, modern lifespan increase implies that the number of people suffering with 

neurodegeneration has and probably will increase. Alzheimer and Parkinson 

diseases are the two most common neurodegenerative disorders, whose causes 

are far from being elucidated. 

 

7.1 Parkinson disease 
 

Parkinson disease (PD) is the second most common neurodegenerative disorder. 

Though it is rare in the general population, prevalence increases with age, so that 

about 1% of people over 60 years of age and up to 4% in the highest age groups 

are afflicted (de Lau and Breteler 2006). PD cases have been reported all 

throughout history (García Ruiz 2004) but it was finally named after James 

Parkinson in 1817 for his dedication to the shaking palsy. 

 

The most characteristic clinical manifestations of this progressive disease are 

resting tremor, bradykinesia, rigidity and postural instability (Hoehn and Yahr 

1967). Its pathological features are the loss of dopaminergic neurons in the 

substantia nigra, a basal ganglia structure, and the appearance of Lewy bodies, 

abnormal accumulations of ubiquitinated proteins inside cells (Kuzuhara et al. 

1988), which mainly contain α-synuclein, a presynaptic protein (Spillantini et al. 

1997). 

 

The substantia nigra has two main parts, pars reticulata and pars compacta. 

Neurons at the pars reticulata are GABAergic and thus inhibit multiple brain 

regions, modulating body and eye movement. On the other hand, pars compacta 

has mainly dopaminergic neurons which are involved in learning and reward-

seeking through their connection to the striatum, the largest structure of the basal 

ganglia (Afifi 1994). 

 

In 1960, it was discovered that PD patients presented an acute loss of dopamine 

in the caudate nucleus and the putamen (Ehringer and Hornykiewicz 1960), which 

led to the well-established therapy with levodopa, a drug by then already known 

to be decarboxylated to dopamine in the body (Holtz 1939). This loss is driven by 

neuronal death, which affects especially the ventral component of the substantia 
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nigra (Bernheimer et al. 1973), a structure that by time of death has lost 50-70% 

of its neurons compared to unaffected individuals (Davie 2019). Pathological 

changes progress to other regions as the disease advances, and such progression 

is what determines the different Braak stages (Braak et al. 2003). Lewy neurites, 

fibrillar α-synuclein aggregates are more frequent in stage I, when structures of 

the lower brainstem and the olfactory nucleus are affected. Then, in stage II, they 

expand to the medulla oblongata. In stage III, Lewy bodies are more frequent, and 

they expand to the pars compacta of the substantia nigra. In stage IV, severe 

dopaminergic cell death in the pars compacta occurs. Also, the amygdala and 

thalamus are affected. In stage V, the disease expands to the neocortex and at 

stage VI motor and sensory areas in the brain are also affected (Braak et al. 2003; 

Jellinger 2009). 

 

Some environmental causes for parkinsonism have been reported. Manganese 

intoxication induces parkinsonism without the appearance of Lewy bodies 

(Aschner et al. 2009) and because different structures are affected, such as the 

cerebellum (Perl and Olanow 2007), it cannot be considered as a cause of 

Parkinson disease, but just of parkinsonism. More importantly, 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) causality of PD was accidentally discovered 

after heroin addiction sufferers consumed a synthetic opioid, desmethylprodine 

(MPPP) which was contaminated with MPTP (Lewin 1984; P. A. Ballard, Tetrud, 

and Langston 1985). MPTP is metabolized to 1-methyl-4-phenylpyridinium 

(MPP+), which has high affinity for the dopamine transporter dopaminergic 

neurons use to reuptake the neurotransmitter, thus making them more vulnerable 

to this toxin (Shen et al. 1985). MPTP has been used for inducing Parkinson in 

animals since. Interestingly, some herbicides such as Paraquat, have a similar 

chemical structure to MPTP, and it has been shown that continued exposure to 

them increases the risk of PD development (Koller et al. 1990; Van Maele-Fabry 

et al. 2012). 

 

Since it is primarily a sporadic disease, a genetic cause was considered unlikely 

for a long time. However, in the 1990s some early-onset familial cases were 

reported (Duvoisin 1996) and finally, a dominant variant in the α-synuclein gene 

(SNCA) was identified as causal (Polymeropoulos et al. 1997). It was proposed 

that the missense mutation promoted self-aggregation by changing protein 

structure. Soon thereafter, α-synuclein was also detected in Lewy bodies of 

sporadic PD cases (Spillantini et al. 1997), and a second mutation in familial cases 

was discovered (Krüger et al. 1998) demonstrating the relevance of this protein in 

the development of Parkinson disease. 
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A different progression of the disease, juvenile parkinsonism, which has a very 

early onset (before the age of 40) and a very slow progression with no Lewy bodies 

or neurites at autopsy, has also provided insight into the molecular mechanisms 

by the identification of mutations in familial cases. This is how mutations in parkin, 

PRKN, were first described (Kitada et al. 1998). Parkin is a protein that attaches 

ubiquitin to proteins, tagging them for degradation, a process known as 

ubiquitination. Even more relevant loci have been discovered with family studies, 

such as UCHL1 (Leroy et al. 1998), whose mutation creates a partial loss of its 

catalytic activity that results in aberrations in the proteolytic pathway and 

aggregation of proteins; once again highlighting the relevance of protein 

degradation pathways for the disease. 
 
Among multiple other loci, microtubule associated protein tau (MAPT), though 

more famously associated with Alzheimer, has also been linked to PD by 

association within families (Martin et al. 2001). Pathogenic mutations in the GBA 

gene produce Gaucher disease – a lysosomal disease – in homozygosis, whereas 

in heterozygosis have been related to PD (Mata et al. 2008). Mitochondrial 

dysfunction has also been proposed to be involved in the development of the 

disease, with a hereditary form of Parkinson in consanguineous families caused by 

mutations of PINK1 (Valente et al. 2004). Another monogenic form of 

parkinsonism is caused by mutations in DJ1 (Bonifati et al. 2003) whose lack of 

function sensitizes cells to oxidative stress (Yokota et al. 2003). However, whether 

mitochondrial alterations result in malfunctions in the ubiquitin–proteasome 

system or insufficiency in protein degradation leads to mitochondrial damage is 

yet to be disentangled (Abou-Sleiman, Muqit, and Wood 2006). 

 

Besides these monogenic familial cases, most PD cases are sporadic, and its 

estimated heritability is quite low, with 18% of concordance between monozygotic 

twins (Burn et al. 1992) when testing putamen dopamine uptake, and 25% of first-

degree relatives of Parkinson patients having abnormally reduced putamen 

dopamine uptake (Piccini et al. 1997). A meta-analysis of genome-wide complex 

traits analysis (GCTA) also identified up to 27% phenotypic variance (Keller et al. 

2012).  

 

The link between PD and somatic mutations is unclear. A study on 511 sporadic 

cases did not find somatic variants in SNCA with a sensitivity limit at 5% of variant 

allele frequency (Proukakis et al. 2014). On the other hand, high levels of 

heteroplasmic mitochondrial DNA deletions in substantia nigra neurons were 
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found (Bender et al. 2006) and neurons at the substantia nigra carried more SNCA 

gains than controls, positively correlating with age of onset (Mokretar et al. 2018).  
 
 
7.2 Alzheimer disease 
 

Alzheimer disease is the most common form of dementia, with millions of patients 

worldwide (Cornutiu 2015). It is characterized by impaired memory, judgment, 

decision making, orientation to physical surroundings, and language (Nussbaum 

and Ellis 2003). The pathological hallmarks are neuronal loss, extracellular senile 

plaques, and neurofibrillary tangles (Alzheimer 1907). 

 

Similar to Parkinson disease, Alzheimer is a progressive disease. Hence, Braak 

stages are also used to characterize the advancement of the disease, determined 

by the appearance of neurofibrillary tangles in different brain regions 

independently of senile plaque progression. In stages I and II, neurofibrillary 

tangles are mainly confined to the entorhinal cortex. In stages III and IV limbic 

regions such as the hippocampus are also affected, and in stages V and VI there 

is extensive neocortical involvement (Braak et al. 2006). The entorhinal cortex is 

the first brain structure to be affected and its functions are memory and planning 

and spatial navigation, which some authors propose are two sides on the same 

coin (Buzsáki and Moser 2013). 

 

Senile plaques are also referred to as amyloid plaques, a term coined by the 

German pathologist Rudolf Virchow in the XIX century because they appeared 

starch or cellulose-like. We now know they result from the polymerization of 

amyloid beta (Aβ) peptides. Aβ derives from the processing of the amyloid 

precursor protein (APP), which is concentrated at synapses. APP is cleaved by β-

secretases and γ-secretases to form Aβ peptides. These peptides then form 

soluble oligomers which could be involved in the disease (Hsia et al. 1999; 

Shankar et al. 2008). When the oligomers polymerize into bigger structures, they 

form amyloid plaques (Alzheimer 1907). 

 

Aβ was shown to be in senile plaques in both Alzheimer and Down syndrome 

patients (Masters et al. 1985). Although infrequent, duplications of APP cause 

autosomal dominant early-onset familial Alzheimer (Sleegers et al. 2006). Because 

they carry an extra copy of chromosome 21, where the APP gene resides, all 

Down syndrome patients that survive to age 40, something increasingly common, 

develop Alzheimer (Lott and Head 2005). Several mutations in APP were found in 
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familial cases (Goate et al. 1991; Tanzi et al. 1987; Chartier-Harlin et al. 1991), 

which made Aβ polymerize at a higher rate. This led to the amyloid cascade 

hypothesis in the 90s (Hardy and Higgins 1992) which suggests that is the toxic 

effect of the plaques which results in synaptic alterations. 

 

Neurofibrillary tangles are aggregates of hyperphosphorylated microtubule 

associated proteins tau (MAPT). The main function of this protein is the 

stabilization of microtubules, which is of especial relevance in axons and dendrites, 

where microtubules are fundamental to vesicle transport. When tau is 

hyperphosphorylated it dissociates from microtubules and polymerizes, forming 

the neurofibrillary tangles (Alonso, Grundke-Iqbal, and Iqbal 1996). Other 

diseases that have this same pathological element are called tautopathies (van 

Slegtenhorst, Lewis, and Hutton 2000). 

 

Familial cases also identified other loci involved in Alzheimer disease. Presenilin 1, 

PSEN1, is a component of γ-secretase, one of the complexes that processes APP 

into Aβ (St George-Hyslop et al. 1987). Later on, PSEN2, also a component of the 

same complex was found (Schellenberg et al. 1992). 

 

Altogether, heritability is estimated to be around 70% or higher than 90% for late 

and early onset Alzheimer disease, respectively (Ballard et al. 2011; Wingo et al. 

2012). It is clearly a complex disease, where multiple markers explain a portion of 

the phenotypic variability (Ridge et al. 2013), nonetheless, some of it remains 

unexplained. 

 

Finding the cause of the sporadic forms of neurodegenerative diseases supposes 

a great challenge. Since these cases are clinically undistinguishable from familial 

forms, somatic mutations have been proposed as a non-inherited genetic cause 

(Pamphlett 2004). Also, the fact that SNVs accumulate in neurons with age 

(Lodato et al. 2018) could explain late onset cases.   
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OBJECTIVES 
 
 
 
 
 
 
 
 

1. Detect features affecting somatic variant calling 

 

2. Explore the burden of exonic single nucleotide somatic variants in 

Parkinson disease 

 

3. Assess  the detection of somatic copy number variants in from aCGH data 

 

4. Examine the abundance of somatic variants in a neurotypical individual in 

the context of the Brain Somatic Mosaicism Network 
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Somatic mutations in Parkinson disease patients 
 
 
1. Data processing for somatic variant calling 
 

To explore somatic mutations in Parkinson disease (PD), we sequenced the whole 

exome of five different tissues from ten patients. Blood was obtained from stored  

vials, while central nervous system samples — neocortex, cerebellum, substantia 

nigra and striatum — were collected during autopsies (table 1). Their exome was 

captured and sequenced. 

 

Inspection of the resulting FASTQ files showed increased per base sequence (Fig. 

S1) and kmer content (Fig. S2) at the beginning and end of reads, that is, the same 

sequences appear frequently at read ends. This usually appears as a result of 

sequencing the ends of adapters ligated to each sample’s DNA fragments for 

sequencing. Trimming algorithms can be used to remove these sequences, but 

always suppose a compromise between keeping adapter sequence and removing 

true sequence. This is because the algorithms look for portions of the known 

adapter sequence at read ends. If one chose to be very stringent, all reads starting 

with the last nucleotide of the adapter should be trimmed.  

Further, the need to trim the reads disappears when using a mapper that performs 

soft-clipping, i.e., read starts or ends are masked when they do not align to the 

reference genome. Commonly used downstream tools take this masking into 

consideration, so that nucleotides coming from adapters will not be included when 

calling variants. This issue is especially relevant to consider when calling somatic 

mutations. Excessive trimming could imply losing a few reads supporting an allele, 

which can be crucial for variant calling. On the other hand, if reads are not 

trimmed, adapter sequences could be mistaken for somatic variation if not 

inspected carefully. Hence, a mapper that clips alignments — BWA — was used 

to map the untrimmed reads to the human reference genome. 

 

The chosen reference was hs37d5, the version of the human genome used by the 

1000 Genomes Project (Gibbs et al. 2015) Phase II. Coordinates match the 

standard hg19 reference, which enables the use of the more complete annotations 

and orthogonal information available for that reference. Additionally, hs37d5 

contains known human genomic sequences: An Epstein-Barr virus (EBV) 

sequence and the decoy, which includes sequences coming from HuRef, BAC and 

fosmid clones and the de novo assembly of NA12878. In contrast, alternate loci 
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are not included. The advantage the decoy provides is suggested by its name. 

Reads find an accurate alignment quicker, instead of spending time looking for 

more inexact matches. This improves mapping speed, and more importantly, 

reduces false positive variant calls. 

 

This strategy resulted in high mapping percentages; between 99.92% and 99.98% 

of reads were mapped to hs37d5. FASTQ files were merged by sample, that is to 

say, each tissue of each individual. Duplications accounted for a median of 5.5% 

of reads. After their removal, secondary alignments were also excluded. This last 

step is important for minimizing unspecific mapping, which can generate false 

positives in somatic variant calling. After processing, the mean coverage on the 

target region was 60x per sample (table 1, Fig. S3). Relative mean coverage 

between the X and Y chromosomes was used to confirm each patient’s reported 

sex (table 1). 

 
Table 1. Sample information. Age at death, age at Parkinson onset, reported and genomic (Y/X) sex for each 
individual. Mean coverage over the exome per tissue and patient is indicated. 
 

 

 

2. Germline variants 
 

HaplotypeCaller with standard parameters was used to call germline variants for 

each sample. Principal components analysis (PCA) of the obtained SNPs 

suggested that the cerebellum sample from individual DV2 (DV2C) could instead 

belong to DV8 (Fig. 19). In addition, compared to the other individuals, DV2’s 

blood sample was distant to the rest of DV2’s tissues. Manual inspection of a few 

variants confirmed this, showing DV2C shared variants with DV8 and not with the 

other DV2 samples while DV2B had a smaller allele fraction of those same 

    Mean coverage 

Patient ID Sex Age Onset Blood Cerebellum Striatum Neocortex Subst. nigra Y/X 

DV1 Female 87 NA 57 58 57 57 57 0 

DV2 Male 83 51 60 59 47 60 63 1 

DV3 Female 81 68 59 61 60 61 63 0 

DV4 Female 96 69 60 60 59 66 61 0 

DV5 Female 81 NA 65 64 60 67 65 0 

DV6 Male 76 51 61 61 61 64 61 1 

DV7 Female 82 54 60 61 61 61 59 0 

DV8 Male 79 NA 59 57 58 58 58 1 

DV9 Male 50 27 61 57 57 58 56 1 

DV10 Female 78 56 57 57 50 58 60 0 
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variants, suggesting a mixture of genomes in that sample (Figs. S4 and S5). 

Because of this, DV2 was excluded from somatic variant calling. Still, its samples 

were considered for noise profiling.  
 
 

 
Figure 19. Germline variants PCA. Plots showing the four first principal components with the amount of 
variance explained by each of them in parenthesis.  

 
 

2.1. Germline variants in known PD genes 
 

We first checked germline variants in genes previously related to PD and reported 

at OMIM (table S1). Combined Annotation Dependent Depletion (CADD) score 

integrates multiple annotations into a single metric by contrasting simulated 

variants to those that were not removed by natural selection. Specifically, a CADD 

> 15 (Rentzsch et al. 2019) was used to select putative deleterious mutations. Two 

variants, rs17651549 and rs12595158, had high values (table 2), indicating that 

they are amongst the 0.6% most deleterious mutations that can occur in the 

human genome. Variant rs17651549 is a missense mutation of the gene MAPT 

predicted as deleterious by multiple methods (table 2) and at a position highly 

conserved in vertebrates. The specific variant has been previously linked to PD by 

different means: multivariate family-based association tests (K. S. Wang, 

Mullersman, and Liu 2010), pathway analysis (Song and Lee 2013) and targeted 

resequencing (Spataro et al. 2015). However, a contradictory haplotype 

association analysis has shown it to provide a reduced risk for PD (J. Li et al. 

2018). It is not infrequent in Europe; particularly, the frequency of the 

heterozygous genotype (C|T) in the 1000G IBS population (Iberian populations in 

Spain) is 0.383. Among our reduced number of individuals, the frequency is 

higher, 6 out of the 10 are heterozygous. 
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Another missense variant, rs12595158, overlapping the gene VPS13C, was 

heterozygous in one of the individuals, DV3. VPS13C is involved in lipid dynamics 

and has been shown to tether the endoplasmic reticulum to endosomes and 

lysosomes (Lesage et al. 2016). Although rs12595158 is predicted as deleterious 

by multiple methods and variants in the VPS13C gene have been linked to the 

early onset autosomal-recessive form of PD (Lesage et al. 2016; Schormair et al. 

2018), and to PD in general via GWAS (Safaralizadeh et al. 2016), this specific 

variant has not been associated to any disease. The frequency of the C|T genotype 

in IBS is 0 (0.054 pulling all European samples) but it is more frequent in South 

Asian, East Asian and especially America, with more than half of Peruvians in Lima 

(PEL) being heterozygote. Its relevance could depend on the genomic background 

of different populations. 

 
Table 2. Germline variants related to Parkinson disease. Variants identified both by genotyping PD related 
genes at OMIM and single nucleotide polymorphisms (SNPs) previously associated to the disease by GWAS 
studies. 1000 Genomes Project populations with the highest frequency are in parenthesis (IBS: Iberian 
populations in Spain, TSI: Toscani in Italia, PEL: Peruvians from Lima, Peru, GIH: Gujarati Indian from Houston, 
Texas, MSL: Mende in Sierra Leone, CHB: Han Chinese in Beijing, China). Effect predictions are encoded as 
deleterious (D), possibly damaging (P), tolerable (T), benign (B) and neutral (N).  

 
Strategy PD genes PD genes GWAS SNPs GWAS SNPs GWAS SNPs GWAS SNPs 

dbSNP ID rs17651549 rs12595158 rs34884217 rs1801582 rs7412 rs2010795 

hg19 coordinates 17:44061278 15:62316035 4:944210 6:161807855 19:45412079 21:45172628 

Ref C C A C C G 

Alt T T C G T A 

Gene name MAPT VPS13C TMEM175 PARK2 APOE  PDXK 

Type Missense Missense Splice acceptor Missense Missense Intronic 

Change R370W R153H - V352L R202C - 

Alt frequency 
1000G EUR 

0.231 0.034 0.083 0.150 0.066 0.337 

Alt frequency 
1000G IBS 

0.266 0 0.154 0.229 0.056 0.369 

Highest population 
alt frequency 

0.36 (TSI) 0.43 (PEL) 0.154 (IBS) 0.301 (GIH) 0.141 (MSL) 0.510 (CHB) 

CADD phred 25.2 22.5 14.02 10.30 26.3 5.656 

GERP 5.51 4.98 4.9 4.71 5.09 -2.97 

SIFT D D T T D NA 

Polyphen2 HDIV D D B B D NA 

Polyphen2 HVAR P P B B D NA 

MutationTaster P P D P D NA 

PROVEAN D N D N D NA 

phastCons100way 
Vertebrates 

1 1 1 0 0.986 0 

Individuals 
DV3, DV4, 
DV5, DV6, 

DV8 
DV3 DV3, DV4 

DV1, DV3, 
DV4, DV6, 
DV8, DV9 

DV5, DV6, 
DV10 

DV1, DV3, 
DV4, DV6, 
DV8, DV9, 

DV10 
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2.2. Polymorphisms previously linked to PD 
 

Then, we interrogated other polymorphisms previously linked to PD by GWAS 

(table S2) (E.-K. Tan et al. 2010; Do et al. 2011; International Parkinson Disease 

Genomics Consortium 2011; International Parkinson Disease Genomics 

Consortium and Wellcome Trust Case Control Consortium 2 2011; Lill et al. 2012; 

Nalls et al. 2014a; C.-M. Chen et al. 2016). Even if they overlap genes linked to 

PD, our previous analysis was not able to pick them up because their CADD score 

is not high enough (table 2). However, we can make use of the power that large 

GWAS studies have to pinpoint interesting variants. Four of the linked 

polymorphisms were heterozygous in at least one of our individuals: 

 

DV3 and DV4 were heterozygous for a splice acceptor variant at TMEM175, 

rs34884217. This variant has been associated to PD (Nalls et al. 2014b; Heckman 

et al. 2017) and affects a gene in a site predicted to affect nonsense-mediated 

decay on a gene whose deficiency has been linked to the increase of α-synuclein 

aggregation (Jinn et al. 2017), indicating a possible causal link.  

 

A heterozygote variant found in six of our individuals, rs1801582, is a missense 

mutation of PARK2. It is not well conserved in vertebrates and its frequency in IBS 

is 0.421. However, a meta-analysis reported an odds ratio (OR) of 1.36 in 

Caucasians when considering a heterozygote model (Ramakrishnan et al. 2016), 

making it an interesting variant. 

 

Three individuals (DV5, DV6 and DV10) carried the alternative allele at rs7412. It 

was picked up because it is a missense variant at the APOE gene predicted as 

deleterious by most methods (table 2). Together with another nonsynonymous 

mutation, rs429358, it determines APOE allele. The reference version, TC (at 

rs429358 and rs7412, respectively) is known as ApoE-ε3. Most of the individuals 

are homozygous for this version. Three individuals carry ApoE-ε2 (TT) in one of 

their alleles. While ApoE-ε4 has been linked to increased risk of Alzheimer disease 

(Saunders et al. 1993; Michaelson 2014), ApoE-ε2 has been modestly linked to 

increased risk of PD (X. Huang, Chen, and Poole 2004; Williams-Gray et al. 2009) 

although a bigger study showed no association (Federoff et al. 2012). 

 

Finally, rs2010795, an intronic position on the pyridoxal kinase gene (PDXK) was 

variable among our individuals, with 4 being heterozygotes (DV1, DV6, DV8, DV9) 

and 3 homozygotes (DV10, DV3, DV4). Frequencies of those genotypes in IBS 

are 0.495 and 0.121, respectively. Interestingly, PDXK was identified as 
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differentially expressed in dopaminergic neurons of PD patients and controls. The 

rs2010795 polymorphism was subsequently found to be associated to PD in 

German, British and Italian cohorts (Elstner et al. 2009) although a bigger sample 

of Italians revealed no association (Guella et al. 2010). 

 

2.3 Deleterious variants in the exome 
 

In addition, all germline SNVs obtained were annotated to look for any damaging 

mutations even if not previously linked to PD. Limiting variants to those with CADD 

> 15, predicted by SIFT as deleterious and with a frequency in the 1000G 

European population < 0.1 resulted in a total of 241 variant positions. 

Overrepresentation enrichment analysis (ORA) (B. Zhang, Kirov, and Snoddy 

2005) for molecular function with all protein coding genes as background showed 

significant enrichment for “kinesin binding” (Fig. 20), driven by proteins involved in 

axonal transport that have been previously associated to PD: CLSTN1 (Chuang et 

al. 2017; Kong et al. 2018), KIF1B (J.-M. Kim et al. 2006; Kedmi et al. 2011) and 

KTN1 (van Dijk et al. 2012); to Alzheimer: KCNC1 (Boda et al. 2012) or to 

amyotrophic lateral sclerosis (ALS): TTBK2 (Liachko et al. 2014). Other 

significantly enriched molecular functions included some genes that could be 

related to PD phenotype, such as ATP13A5 (Sørensen et al. 2018).  

Contrarily, disease ORA did not result in any significant result.  

 

 

 
Figure 20. Germline variants enrichment analysis. Overrepresentation enrichment analysis for molecular 
function of germline variants predicted as deleterious and with low frequency in the Spanish population.  
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3. Somatic variants 
 
Standard variant callers, such as HaplotypeCaller, are designed to find germline 

variants. They assume the potential genotypes in a diploid sample are 

homozygous for the reference allele (0/0), heterozygous (0/1) or homozygous for 

the alternative allele (1/1). Since they try to fit allele frequencies to this expectation, 

they are unsuited for somatic variant calling. While higher frequency somatic 

variants may be called as heterozygous positions, low frequency somatic variants 

will be classified as homozygous reference positions, i.e., invariant, interpreting 

alternative allele support as noise. Thus, calling somatic variants requires a more 

sensitive approach. 

 

Somatic variant callers’ development has been focused on cancer. Theoretically, 

cancer causing mutations should be present in the tumor but absent in the 

surrounding healthy tissue. As a consequence, many callers require matched 

“tumor” and “control” samples, so that they can identify the variants exclusive to 

the tumor. However, recent research has shown that somatic mutations are 

present in multiple tissues, even if they come from different germ layers (Lodato et 

al. 2015). Although lower frequency mutations or those whose high frequencies 

result from clonal expansion can be tissue exclusive, these are out of the scope of 

this study, due to the limited power provided by our sequencing coverage. With a 

mean of 60x per tissue and requiring a minimum of 3 reads supporting the 

alternative allele, we would call variants with a frequency of 5% or higher, which 

we expect to be in other tissues (Lodato et al. 2015). However, blood may have 

some exclusive somatic variants because of clonal expansion.  

 

Nevertheless, our statistical power is increased by having five different tissues 

from each individual. Even if variants have a frequency below noise levels, in 

general, noise is quite random, so the presence of a variant in multiple tissue 

samples would strongly suggest the existence of a true somatic variant. 

 

3.1. Exploring the biases affecting somatic variant calling 
 

We tested two different approaches to call somatic single nucleotide variants 

(SNVs) that do not require matched samples. The first of them was a lax VarScan 

2 calling (Koboldt et al. 2012). The goal was to get every variant position that 

passed a minimum base quality threshold and then explore the importance of 

different features of the data in predicting the quality of the call. 
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Because callers return variable positions, an absence of call could be due to either 

absence of alternative allele support or absence of coverage at that position. In 

order to be able to differentiate between these two scenarios, the five tissue 

samples of each individual were genotyped together. 

 

Number of reads supporting the alternative allele 

 

Standard VarScan 2 mpileup2snp parameters fix a harsh frequency threshold at 

20%. This, together with other parameters, limits the discovery of somatic variants. 

In order to get every variant position, we used --min-coverage 1 --min-reads2 1 --

p-value 1 --min-var-freq 0.000001 --output-vcf. This configuration only limits 

calling to the variants reported by samtools mpileup. For this reason, the raw 

output from VarScan 2 contains mostly sequencing errors, resulting in almost 7 M 

positions reported per individual. Requiring at least two reads supporting the 

alternative allele along the tissues of an individual drastically reduced the number 

to around 0.6 M. This is expected because virtually all positions with just one read 

supporting the alternative allele along an individual’s tissues are due to random 

sequencing noise, so the probability of this happening is equal to the random 

Illumina sequencing error. However, the probability of getting two errors at the 

same position is much lower, it is two times the random error multiplied by the 

error specific to that type of substitution. This makes random errors decrease 

quickly when requiring higher numbers of reads supporting an allele. Nonetheless, 

random sequencing errors are still considerably more frequent than true events, 

as evidenced by the number of variant positions retained after this filter, so other 

features have to be considered to discriminate them. 

  

Up to this point, filtered calls were too numerous to be true somatic variants, so a 

random set was inspected manually in IGV (J. T. Robinson et al. 2011) in order to 

pinpoint the most frequent confounding factor. Once the biggest source of false 

positives was addressed, the resulting calls were inspected again in search of 

additional biases. This recurrent procedure determined multiple features that help 

to identify true somatic variants, which we describe next, in a logical rather than a 

chronological order. 

 

Multiple alleles called at the same position 

 

Multiallelic calls tend to be noisier, because the probability of getting different 

substitution type errors at the same position is much higher than that of getting 
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the same type of substitution. This has been recently reported (J. Kim et al. 2019). 

Excluding them from further analyses reduced calls in half. 

 

Biased sequencing errors 

 

Non-random errors are caused by library preparation damage, such as G>T 

substitutions caused by oxidation (Costello et al. 2013), and amplification error, 

which gets higher the more PCR cycles are performed (Brodin et al. 2013). Some 

positions in the genome are more prone to damage or harder to copy for 

polymerases, so recurrent noise occurs. Besides, not every Illumina sequencing 

error is random; the sequencing of certain positions always results in a small 

proportion of reads supporting an incorrect allele (Meacham et al. 2011). These 

systematic or biased errors are very difficult to distinguish from true somatic 

variants individually and represent a big obstacle for correct somatic variant 

identification. Since they are recurrent, having a panel of control samples greatly 

facilitates their identification, because variants found in several individuals in a 

somatic frequency are very unlikely to be true somatic variants. The influence of 

biased errors is illustrated by Fig 3. Positions whose total alternative depth (AD) is 

2 along the five tissues are mostly private to the individual in which they were 

called. This shows these are random sequencing errors, not probable to be shared 

by multiple individuals. Increasing total AD decreases the proportion of unique 

calls such that, by total AD of 5, most positions are called in other individuals, 

indicating this part of the distribution is dominated by recurrent sequencing errors. 

At total AD ~50, which with a mean coverage of 60x per tissue corresponds to a 

frequency of 15%, variants are more individual-specific. Germline heterozygous 

positions (AD ~ 150) are, as expected, shared by higher numbers of individuals. 

A similar pattern is observed for particularity of calls by variant allele frequency 

(VAF) (Fig. S6). To consider this when filtering calls, we annotated the number of 

samples with support for the same alternative allele and then required a minimum 

of 2 AD, to get a better picture of biased errors.  
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Figure 21. Singleness of calls by total alternative depth. Each bar shows the proportion of calls with a given 
alternative depth along the five tissues of an individual that have been called in none (0), or 1-9 other 
individuals. Calls were filtered so that their total depth was between 250 and 350. 

 

R1 vs R2 bias 

 

In Illumina paired-end sequencing, adaptors are directional. This allows us to 

distinguish reads sequenced in the original strand orientation, which are known as 

read 1 (R1) from those sequenced in the reverse complement orientation, read 2 

(R2). When library preparation produces the oxidation of Gs in the original strands, 

they are incorrectly paired to As in the first PCR cycle and thus changed to Ts in 

the second PCR cycle. This creates an imbalance where R1 carries G>T changes 

while R2 carries the reverse complement, C>A changes. On the contrary, true 

variants would produce the two types of changes in both R1 and R2 (L. Chen et 

al. 2017). The R1/R2 ratio is more dispersed than a binomial distribution (Fig. S7), 

indicating more than sampling error is causing them. Although read pair 

differences are not as symmetrical in reality as the model suggested, variants with 

highly imbalanced R1 to R2 ratios are likely to be spurious. Further, because our 

coverage implies just a few reads would support a somatic variant, the power of 

any statistical test to identify this bias in a single tissue would be very limited. Still, 

callers do not annotate information on R1 and R2 read counts, much less stratified 

by allele. In order to be able to consider this information for our final calls, we 

developed a custom python script to annotate read pair allele counts (RAC) to 

VCFs. 
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Somatic “non-callable” 

 

In addition to experiment-specific noise, there are regions of the genome less 

accessible to next generation sequencing technologies, especially when using 

short reads. Calling variants in these regions is especially challenging, and more 

so for somatic variants. 

 

The 1000 Genomes Project generated a mask accumulating information from the 

numerous samples they sequenced. It reports positions where depth of coverage 

is much higher (H) or lower (L) than average, where many reads have a mapping 

quality of zero (Z), where the average mapping quality is low (Q) or positions where 

no reads align (0). Specifically, the strict version of the 1000G mask requires that 

total coverage is within 50% of the average, that no more than 0.1% of reads have 

mapping quality of zero, and that the average mapping quality for the position is 

56 or greater. It overlaps with 23.1% of the non-N bases of the genome, but since 

it singles out its most unique regions, and the exome is enriched in such 

sequences, it only overlaps 7% of our target region. However, a bigger proportion 

of raw on-target calls fall within those regions (Fig. 22), proving the 1000G mask 

is able to identify noisier regions.  
 
 
 
 
 
 

Figure 22. The 1000G strict mask overlaps with on-target VarScan 2 calls. Bars show the proportion of the 
target region (black) and raw on-target calls per individual (grey) overlapping the 1000G strict mask.  
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Adding to short read accessibility, mappability is the score that indicates the 

uniqueness of a genomic region given a read length. It is calculated by breaking 

the reference genome into read-length kmers and mapping them against the same 

reference genome. Regions where a single kmer aligns can be uniquely mapped 

with the given read length and their mappability is defined as 1. Regions where 

multiple kmers align are not uniquely mappable and have lower mappabilities. 

Since inaccurate mapping can produce false positives, we masked regions with 

mappability lower than 1 for our read length, 100bp. This only represents 0.35% 

of the exome and ~80% of it overlaps the 1000G strict mask (Fig. 23). 

 

Finally, segmental duplications are an important source of false positive somatic 

variant calls. This is because different copies frequently carry different variants, so 

aligning the reads belonging to one of the copies to the other generates artefacts 

that are otherwise difficult to distinguish from true positives. Just over 45% of this 

track overlaps with the 1000G strict mask (Fig. 23), evidencing multiple segmental 

duplication regions are H or Q bases. 

 

 

 

 
Figure 23. Overlaps between masking tracks over the target region. Horizontal bars show the number of 
target region base pairs overlapped by each of the three masks: 1000G strict mask (SM1000G), mappability 
for 100-mers (Mappability) and WGAC segmental duplications track (Segdups). Vertical bars indicate the 
number of positions in each intersection. Masks involved in each intersection are indicated by dots.  
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In summary, regions overlapping the 1000G strict mask, with mappability smaller 

than 1 or overlapping WGAC segmental duplications track constitute the portion 

of the genome we consider non-callable for somatic mutations. It supposes 9.8% 

of the target region or a little over 5Mbp in total. We annotated them in the VCFs 

so that we could remove them.  

 

Copy number variants (CNVs) 

 

Once the somatic callable positions in the genome have been singled out, there 

are still multiple confounding factors one has to take into account. One of the most 

obvious sources of false positives are copy number variants (CNVs). With a similar 

logic to segmental duplications, when an individual has a germline CNV, it is likely 

that the non-reference copy carries single nucleotide variants within it. If the 

reference genome has only one copy included, reads coming from all copies will 

be mapped to it, collapsing them into one locus. If there are only two copies, 

because the non-reference copy has different boundaries, its mapping rate will be 

lower, reducing the frequency of its variants to a frequency rather smaller than 

50%, making them look like somatic variants. When a CNV consists of more than 

two copies, copy-specific SNVs will invariably look like somatic variants. This can 

be tackled more clearly by, depth of coverage. Collapsed reads coming from both 

copies significantly increase depth at the region. An example can be seen in Fig. 

24: All DV1 tissues have a T>C at 1:145115820 with a VAF between 17 and 23%, 

which would make it a reasonable candidate somatic SNV. However, the same 

variant is found in other individuals such as DV10, whose tissues have similar 

frequencies (19-27%) at that position. Depth at the region is over 170x for both 

individuals, almost 3 times the mean coverage, pointing towards a common CNV 

with at least 3 copies being collapsed in that region.  

 

Depth of coverage is typically variable along the genome and more so along the 

exome after its capture. For this reason, calling CNVs can be challenging in exome 

sequencing data. Also, CNV callers, as any calling algorithm, try to limit false 

positive calls, so they only return the most reliable instances. However, we should 

consider any possible copy number variable region because germline CNVs are 

more frequent than detectable somatic SNVs (Campbell and Eichler 2013; Bae et 

al. 2018). To address this, we first called CNVs with XHMM (Fromer et al. 2012a) 

and annotated calls in the VCFs and secondly, we required candidate positions to 

have a total depth (DP) between 20 and 100, which removes the more extreme 

25% of the depth distribution.  
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Figure 24. Example of population CNV variant creating a FP somatic mutation. A T>C change is seen in ~20% 
of DV1’s blood and substantia nigra reads. Coverage in the region is almost 3 times the mean, >170x. DV10’s 
tissues show a very similar coverage and C frequency. 
 
 

 
Figure 25. Example of clustered variants as a proxy of CNV presence. Region with coverage >300x and 
multiple variants in 10-20% frequencies in multiple tissues of DV10. Many of them are also observed in DV1. 
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Additionally, at times, copies present multiple contiguous variants, which look like 

clustered somatic variants when collapsed (Fig. 25). Because localized somatic 

hypermutation — kataegis — is not expected in non-cancer tissues, we only 

considered a candidate if at most three other variants were within read-length 

distance. This is demonstrated when looking at the other filters targeting variants 

removed by this filter (Fig. S8).  

 

Biased position in reads 

 

VarScan 2 called some variants with an expected somatic VAF in multiple 

individuals, suggesting those variants were actually artefacts. Taking a closer look, 

we observed that reads supporting the alternative allele carried it in the same 

portion of the read and they only aligned to a certain fraction of the region (Fig. 

26). Further, reads supporting the alternative alleles were clipped at both ends, 

indicating that sequence at the ends of the reads does not align to the genomic 

region. In contrast, reference allele position in the reads was unbiased, i.e., there 

were reads carrying it in different portions of the reads and reads aligned to the 

surrounding regions. These regions are not included in the 1000G strict mask nor 

in the segmental duplications track and they were not excluded by our 100-mers 

mappability track or when removing secondary alignments and at the same time 

are present in many individuals. Because of these reasons, they most probably 

come from unresolved regions in the genome. These must be parts of the genome 

that share a portion of their sequence with a known region but are not included in 

the genome. This makes reads coming from the unresolved region map to the 

known region by clipping the parts of reads that overlap the sequences private to 

the unresolved region, while differences in the shared sequence will look like 

variants. Because the mapping efficiency is extremely limited by the non-

homologous portions surrounding the common sequence, variant allele frequency 

is reduced, making them look like somatic mutations without increasing coverage 

significantly. To address this, we developed a score, PIR (position in reads) which 

indicates a bias of an allele towards the first, middle or last third of the aligned 

reads (PIR=1 2 or 3 respectively) when more than 90% of the reads carry the allele 

in that portion; or towards none (PIR=4) if that is not the case (Fig. 27) and 

annotated it for each allele at each call with our custom python script.  
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Figure 26. Biased position in reads example. Reads are ordered by their allele at 19:6833180.  

 

Figure 27. Position in reads or PIR score. Grey lines represent reads and the orange square a mismatch to 
the reference. When variants are concentrated in one of the thirds of the reads, PIR score is 1, 2 or 3. If they 
are carried by reads without a position bias, PIR score value is 4. 

 

Strand bias 

 

When calling germline SNVs, calls whose strand bias falls in the most extreme 

10% are commonly excluded (Guo et al. 2012). However, subtler strand 

imbalances can affect one allele more than the other, lowering its frequency and 

making it difficult to distinguish from a somatic SNV. The example in Fig. 28 shows 

a T>C variant exclusive to DV4 where most of the alternative allele supporting 

reads are R1 (pink) reads. This phenomenon can be caused by sampling errors 

when sequencing, especially with lower coverages, but it can also arise when 

processing data by applying local realignment and base quality score recalibration 

(Guo et al. 2012). We used a Poisson test for evaluating the overall strand 
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imbalance and a Fisher exact test (FET) with strand counts stratified by allele to 

find cases where strand bias affects only one allele and we annotated on the VCFs 

with our custom python script. However, true low frequency somatic SNVs are 

supported by very few reads at each tissue, so filtering by FET p-value can be too 

stringent. 

 

 
Figure 28. Example of strand bias. Region with adequate coverage per sample (~50x). Reads are colored by 
strand: plus or forward (pink) and minus or reverse (blue). Most reads supporting the alternative allele are 
forward reads. 

 

Indels and homopolymers 

 

Aligning reads to regions of the genome with small insertions or deletions (indels) 

or with homopolymers is especially challenging. This is why best practices 

pipelines include local realignment steps. Still, these regions are a source of false 

positive somatic calls, because a small proportion of reads mapped incorrectly 

can place allele support where it does not belong. To address this, we excluded 

variants found within 5 bp of an indel. An example of a false positive variant within 

an indel can be seen in Fig. 29. Tissues from multiple individuals carry the indel, 

probably in a heterozygous state. A small proportion of reads carry an A>C variant, 

but because it is in multiple individuals, it is an artefactual call.  

 

Also, we observed several cases of calls found adjacent to homopolymers, and 

whose alternative allele was the homopolymers’ nucleotide. Some calls, such as 
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the G>A in Fig. 30 are within stretches of a nucleotide, which makes polymerase 

replication errors very probable. Allele support for A can be seen in all the Gs in 

the region in different individuals. For this reason, we did not consider variants 

within this scenario. 

 

 
Figure 29. Example of artefactual call around an indel. Black horizontal lines represent deletions in the reads. 
Multiple individuals carrying the indel in a heterozygous state have a few reads supporting an A>G change. 
 
 

 
Figure 30. Example of errors at a nucleotide immersed in a homopolymer. In a region with A homopolymer 
stretches, 10-15% of bases aligned to a G carry an A allele in multiple samples. The same can be observed 
at positions 102055815, 102055820 and 102055825, other Gs surrounded by As.  
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Heterozygosity 

 

One could expect variant allele frequency (VAF) to be crucial for differentiating 

somatic from heterozygous variants. The latter should have VAFs close to 50% 

while somatic variants should have a smaller frequency. Yet, we found allele 

balance dispersion in high-confidence heterozygous positions to be higher than 

that of a binomial distribution (Fig. 31). High-confidence heterozygous positions 

are those that are included in the common variant dbSNP database, are called in 

all tissues of one of the individuals (excluding DV2) and have a VAF between 0.45 

and 0.55 and a depth from 20 to 100 in at least one of the tissues. Although allele 

balance is shifted in favor of the reference allele (reference bias), higher VAFs are 

also more frequent than expected (right part of the distribution). As the distribution 

gets narrower with higher sequencing depth (Fig. 32), we can infer a significant 

portion of the error comes from allele sampling.  

 

Figure 31. Variant allele frequencies at heterozygous positions. Histogram of VAFs at high-confidence 
heterozygous positions (blue) vs a random binomial distribution with p=0.5 (grey). High-confidence 
heterozygous positions are those present in the common dbSNP database, where all tissues of an individual 
are called as variant and at least one tissue has a VAF between 0.45 and 0.55 and a depth of 20 to 100. 
 

 
This dispersion makes the heterozygous VAF distribution overlap with the 
theoretical somatic range, such that a single position’s VAF does not give much 
information. Having five tissues from the same individual greatly improves our 
power to determine heterozygous positions (Fig. 33). While 18.4% of high 
confidence heterozygous positions have a significant binomial test (p-value 
<0.05), meaning that they would not be considered as heterozygous variants, 
including the information of one other tissue reduces the proportion to 3.9% if we 
consider one non-significant test as proof of the position being heterozygous. If we 
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include 4 tissues, we can get as few as 0.16% (SD=0.019) misclassified, so the 
binomial test p-value for VAF was annotated for each sample and call with our 
custom python script. Also, in order to add more information to help us differentiate 
heterozygous variants, we annotate variants present in the common variant 
dbSNP database, those present in >1% of the population. 
 
 
 

 
Figure 32. Variant allele frequency dispersion gets smaller at higher depths. VAF was stratified by coverage 
window (Y axis facets). Random samples were obtained from each bin with size equal to that of the smaller 
bin (in blue). A binomial distribution with p=0.5 is shown in grey for reference. 
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Figure 33. Power to detect heterozygous variants by number of tissues. Median percentages of high-
confidence heterozygous positions that would be classified as not heterozygous because their binomial test 
in all the 1, 2, 3 or 4 tissues tested is significant (p-value<0.05). Black bars show they standard deviation. For 
each number of tissues, all possible comparisons were performed.  

 

Number of haplotypes 

 

True somatic variants create a third haplotype in the region, i.e., the maternal or 

the paternal haplotype suffer a mutation, creating a new haplotype with their 

previous haplotype along with that mutation. For this reason, somatic variants 

should exclusively be in phase with one of the paternal haplotypes. However, 

artefacts affect both the maternal and paternal haplotypes, creating at least four 

haplotypes with a nearby heterozygous variant (Fig. 34). Because we use short 

reads, only a few variants can be phased, but we can use that information to detect 

false positives. We annotated it with our custom python script, which allowed us 

to remove variants with four haplotypes or more. 
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Figure 34. Example of a region with four haplotypes. Considering the A>G (green and brown) variant as a 
heterozygous one, the candidate somatic variant, a C>T substitution (red and blue), should be in a proportion 
of the reads carrying either A or G at the heterozygous position. However, there are reads whose haplotype 
is AT, AC, GT and GC.  
 

Exome sequencing considerations 

 

Exome sequencing by capture consists of the retention of DNA fragments that 

hybridize to the exome probes. Variants in a region overlapping a probe will reduce 

the efficiency of the hybridization, reducing the number of fragments carrying the 

variant that are retained. This implies that at heterozygous positions, the 

alternative allele will have a smaller frequency than the reference allele, which is 

known as reference bias. As with the determination of heterozygous positions, 

having five tissues gives us more power to find the true frequency of a variant. 

Also, reference bias is more relevant when there are multiple variants close to 

each other. Because these would be clustered mutations, which we do not 

consider in the first place, this should not be an issue for us.  

 

More, exome capture results in target regions covered at the expected depth and 

adjacent regions being covered by reads generated from the fragments that 

partially overlapped the probes, and coverage decreasing with distance from 

target regions. Intersecting BAMs with the target-region bed creates the same 

effect in silico: reads partially overlapping the specified regions are retrieved, 

getting positions outside the target region covered. When inputting this data into 

a caller, variants are also called outside the target region. Because the coverage 

is much lower in these regions, calls were only considered if they were on the 

target region. To remove them, they were first annotated in the VCFs. 
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3.2. Candidate somatic variants with VarScan 2 
 

Some of the abovementioned features completely prevent us from calling somatic 

variants in a set of genomic positions: those overlapping our somatic “non-

callable” track, overlapping a CNV, close to indels, by homopolymers and off-

target positions. However, many other features do not imply a binary decision, but 

give us important information. The probability of a candidate variant passing a test 

is higher if it is truly a somatic variant, but the tests cannot perfectly separate false 

positives from true positives (see Fig. 31 for an example). Since we are testing 

multiple features — number of reads supporting the alternative allele, multiple 

alleles, the number of samples with alternative reads, R1/R2 bias, clustered 

variants, PIR, strand bias, heterozygosity and number of haplotypes when possible 

— it is extremely unlikely that all tests will be passed for all tissues, even for a true 

somatic variant.  

 

Also, requiring at least 2 reads supporting the alternative allele in a sample with a 

coverage of 60x puts our sensitivity limit at a variant allele frequency of 3%, or at 

2% if coverage is at our upper threshold, 100x. Assuming equal contribution of 

cells to the gastrula, the cell division at which those mutations occurred can be 

calculated with formula 1. 
 

#$%%	&'(')'*+ = %*-2/ 1
(23/35)7 

(Formula 1) 

Where AD is the number of reads supporting the alternative allele and DP is the 

total depth at a position. Their ratio is the variant allele frequency, and its inverse 

is the number of existing cells at the moment the mutation happened. If we 

consider a mutation happens in replication, so that only one of the daughter cells 

inherits the mutation, its log2 gives us the division number at which the error 

occurred. For our DP range (20-100), with an AD of 2, it would be between the 3rd 

and 6th division. Because those are very early cell divisions, happening even before 

the appearance of the blastocoel, those variants will be present in every adult 

organ, probably at different proportions because of stochasticity and clonal 

expansion in certain tissues. Besides epithelia, one of the tissues where clonal 

expansion is highly recognized at is blood.  
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It follows that two different strategies are needed to get candidate variants. To pick 

up variants common to all tissues, we required a position to pass each of the filters 

in at least 4 tissues, not demanding that they are the same 4 tissues for each filter. 

To identify variants exclusive to a tissue, be it due to clonal expansion in blood or 

to sampling or other type of stochasticity, a variant had to pass each filter in a 

single tissue.  

 

Somatic variants common to multiple tissues 

 

To filter variants, we used the information VarScan 2 provided as well as that we 

added to the VCFs. Specifically, we required at least 4 tissues to pass these filters: 

 

1. Not multiallelic 

2. Not overlapping somatic non-callable tracks 

3. On target 

4. Not overlapping a CNV call and DP 20x to 100x 

5. No more than 3 variants close by in any of the individuals’ tissues 

6. Not within 5 bp of indels 

7. Not by homopolymers 

8. AD >=2 

9. At most called in 1 sample from another individual 

10. R1 and R2 proportion between 0.25 and 0.75 for each allele 

11. Non-significant FET for strand and allele 

12. Strand ratio between 0.5 and 2 

13. All tissues with significant binomial VAF test 

14. At most 3 haplotypes  

15. Unbiased position in reads for both alleles 

 

Applying these filters, we got 3 candidates (table 3). All of them were present in 

the four central nervous samples, and two of them were also present in blood, 

even if at lower frequencies. Each tissue has a quite low AD, showing the power 

of combining the information from multiple tissues.  

 

Although all of them have a dbSNP ID, they are present in 1 to 3 samples in 

gnomAD and/or TOPmed, which makes their population frequency extremely low. 

Two of them are missense variants in the genes PCDH10 and DENND4A and the 

third one overlaps the UTR regions of two genes. All of the changes have high 

CADD scores, indicating their functional relevance.  
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PCDH10 is expressed in brain and arteries (The GTEx Consortium 2013) and is 

essential for normal forebrain axon outgrowth (Williamson et al. 2007). It was found 

in homozygous deletion in a study of consanguineous autism spectrum disorder 

(ASD) families (Morrow et al. 2008) where they demonstrated that PCDH10 was 

strongly up-regulated in hippocampal neurons in response to membrane 

depolarization and that it is a transcriptional target of MEF2, a transcription factor 

induced by neuronal activity. 

 

The other missense variant affects DENND4A a gene involved in vesicle-mediated 

transport (Belinky et al. 2015) which was related to Parkinson’s in a translatome-

regulatory network analysis. DENND4A was found to be one of 19 genes driving 

the expression signature change of dopaminergic (DA) neurons after Parkinson 

induction with MPTP (Brichta et al. 2015). This specific variant is predicted as 

deleterious and probably damaging by SIFT and PolyPhen respectively. 

 

The last variant overlaps with two genes in the two strands. On the forward strand, 

the variant is in the 5’ UTR of PACRGL, the Parkin Coregulated Like gene, and it 

is predicted by Ensembl (Hunt et al. 2018) to activate non-sense mediated decay, 

a route involved in the reduction of expression of aberrant proteins. This gene was 

found to be regulated by the same promoter as that of PARK2 (West et al. 2003). 

On the reverse strand it is the first base pair of the 3’ UTR of the KCNIP4, a gene 

that encodes a K channel-interacting protein, which modulates the activity of Kv4 

A-type potassium channels thus playing a significant role in the firing of action 

potentials within the neurons (Holmqvist et al. 2002). A study on the regulatory 

networks in Parkinson disease (Su et al. 2018) identified a lncRNA whose target 

is KCNIP4, making both genes interesting candidates. 
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Table 3. Somatic variants common to multiple tissues. Chromosome and position are in reference to hg19. 
VAF: Variant allele frequency. AD: Alternative allele depth. 

 
 Individual DV1 DV6 DV6 

 Chr 4 4 15 

 Position 134073018 20731704  66044838  

 dbSNP rs754282504 rs1224107540 rs1268304474 

 Frequency <1e-4 <1e-4 <1e-4 

 Consequence Missense 
3 prime UTR/ 
Intron NMD 

Missense 

 Gene PCDH10 
KCNIP4/ 
PACRGL 

DENND4A 

 CADD 22.6 18.08 33 

 Reference G G G 

 Alternative C A A 

VAF 

Blood 1.61% 0% 5.26% 

Cerebellum 13.64% 4.17% 10.61% 

Striatum 6.9% 5.88% 9.84% 

Neocortex 9.57% 5.26% 16.98% 

Substantia nigra 13.93% 6.67% 12.5% 

AD 

Blood 1 0 4 

Cerebellum 9 2 7 

Striatum 4 3 6 

Neocortex 9 3 9 

Substantia nigra 17 3 8 

 

 

Tissue-exclusive somatic variants 

 

Looking exclusively at read features from one tissue constitutes a rougher 

approach. We have to be stricter because we do not have the information added 

by the presence of the same variant in the other tissues with features indicating 

good quality. For this reason, we increment the minimum AD from 2 to 5, the AD 

at which we see a reduction of random noise (Fig. 21). As for an upper AD 

threshold, we know no specific threshold can be successful in removing 

heterozygous variants (Fig. 31). However, we can use the information provided by 

the other tissues to remove those cases; if a tissue shows a VAF compatible with 

heterozygosity, most probably the variant will be heterozygous. Also, requiring it 

not to be in the dbSNP common variant database is an obvious step to remove 

heterozygous variants.  
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To filter each tissue independently we required multiple conditions. Most of them 

are the same as for shared variants, and the differences are highlighted in bold: 

 

1. Not multiallelic 

2. Not overlapping somatic non-callable tracks 

3. On target 

4. Not overlapping a CNV call and DP 20x to 100x 

5. No more than 3 variants close by in any of the individuals’ tissues 

6. Not within 5 bp of indels 

7. Not by homopolymers 

8. AD >=5 

9. At most called in 1 sample from another individual 

10. R1 and R2 proportion between 0.25 and 0.75 for each allele 

11. Non-significant FET for strand and allele 

12. Strand ratio between 0.5 and 2 

13. All tissues with significant binomial VAF test 

14. At most 3 haplotypes  

15. Unbiased position in reads for both alleles 

16. Not in dbSNP common variants 

 

From this we obtained 10 variants (table 4). Two of those variants (in grey) are 

present in the 5 tissues and as expected are also in table 3. The one on PCDH10 

was recovered from two different tissues while the one on DENND4A only passed 

filters for the neocortex sample. From the remaining 8 variants, 5 are blood 

exclusive, 3 are mainly present in blood with 1 read supporting the alternative allele 

in substantia nigra or striatum, and the other one is neocortex exclusive.  

 

Inspecting these variants in IGV (J. T. Robinson et al. 2011) some reads whose 

mate maps too far away can be identified. The reads carrying the alternative allele 

look fine, but orthogonal validation is necessary to confirm they are true variants. 

However, blood suffers from clonal expansion (Champion et al. 1997; Zink et al. 

2017), therefore it is reasonable that variants are exclusive to this tissue or have 

higher or lower frequencies than the other tissues depending on whether the 

expanded lineages carry that variant or not. This is what we observe, giving 

credibility to our results.  
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Table 4. Somatic variants identified in a single tissue. Chromosome and position are in reference to hg19. VAF: Variant allele frequency. AD: Alternative allele depth. Variants with information  
in grey were also recovered with the previous strategy. 

 
 Sample DV1B DV1C, DV1N DV3B DV3B DV3B DV4N DV6B DV6N DV7B DV8B 

 Chr 12 4 5 12 13 2 2 15 12 11 

 Position 93873233 134073018 94990053 66849194 21987914 158115786 145157076 66044838 57976385 58170304 

 dbSNP rs1201602329 rs754282504 rs767559079 rs1296372237 NA NA rs730881194 rs1268304474 NA rs763347958 

 Frequency <1e-4 <1e-4 0 0 0 0 <1e-3 <1e-4 0 <1e-4 

 Consequence Synonym./NMD Missense Synonymous Missense 
Intronic acceptor 
site "synonymous" 

Missense Missense Missense Missense Synonymous 

 Gene MRPL42 PCDH10 RFESD GRIP1 ZDHHC20 GALNT5 ZEB2 DENND4A KIF5A OR5B3 

 CADD 12.09 22.6 16.80 29.1 12.41 14.28 23.8 33 34 0.541 

 Reference A G A C A G G G G G 

 Alternative G C G A G A A A A A 

VAF 

Blood 20% 1.61% 14.93% 13.56% 18.75% 0% 12.77% 5.26% 8.96% 5.75% 

Cerebellum 0% 13.64% 0% 0% 0% 0% 0% 10.61% 0% 0 

Striatum 0% 6.9% 0% 0% 0% 0% 0% 9.84% 1.75% 0 

Neocortex 0% 9.57% 0% 0% 0% 6.25% 0% 16.98% 0% 0 

Subst. nigra 0% 13.93% 0% 1.64% 0% 0% 0% 12.5% 0% 0 

AD 

Blood 6 1 10 8 6 0 6 4 6 5 

Cerebellum 0 9 0 0 0 0 0 7 0 0 

Striatum 0 4 0 0 0 0 0 6 1 0 

Neocortex 0 9 0 0 0 5 0 9 0 0 

Subst. nigra 0 17 0 1 0 0 0 8 0 0 
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The first blood exclusive somatic variant overlaps the gene MRPL42. It is a 

previously observed variant with very low population frequency. MRPL42 is a 

mitochondrial ribosomal protein, involved in mitochondrial translation. Ensembl 

predicts it to induce non-sense mediated decay in some transcripts, but it is a 

synonymous variant for the main transcripts. 

 

A second blood exclusive synonymous variant, was found on the RFESD gene, 

involved in oxidation-reduction processes. Although variants at that position have 

been reported, none of them were A>G. Another synonymous variant was found 

at gene OR5B3, an olfactory receptor gene. 

 

An intriguing variant is that on ZDHHC20. In this case it is an A>G change but 

because the gene is in the reverse strand, its relevance would be caused by the 

T>C change in that strand. It is the third base upstream of an exon, so part of the 

splicing acceptor site, which changes from TAG to CAG, which still fits the 

consensus sequence of pyrimidine-A-C. The position is not reported as variant in 

any population sequencing project. A study on the effect of glial cell line-derived 

neurotrophic factor (GDNF), a transforming growth factor involved in the 

development and maintenance of mesencephalic DA neurons (Lin et al. 1993), 

over microRNAs in MN9D mouse cells, found it to result in the differential 

expression of 143 miRNAs, 3 of them targeting ZDHHC20 (L. Li et al. 2013).  

 

The remaining 4 variants are missense variants. The one on GRIP1, a glutamate 

receptor interacting protein, is found in blood and also has a supporting read in 

the substantia nigra. This gene supplies synapses with two key synaptic proteins, 

GluA2 and N-cadherin, by acting as a scaffold at trafficking vesicles (Heisler et al. 

2014). The one on GALNT5, exclusively found in the neocortex sample, is a 

missense variant not reported in population studies either. The predicted CADD is 

moderately high and the protein is involved in glycan biosynthesis and protein 

metabolism, and is causative of hereditary multiple exostoses (Simmons et al. 

1999).  

 

The missense variant on gene ZEB2 was only found in blood. It has been reported 

previously at very low frequency and has a moderately high CADD score, SIFT 

prediction of deleterious and PolyPhen as possibly damaging. This zinc finger 

homeodomain protein is responsible for Mowat-Wilson syndrome. Also, it is a 

negative regulator of midbrain dopaminergic axon growth and target innervation 

(Hegarty et al. 2017), acts in myelination (Weng et al. 2012) and regulates the fate 

switch between cortical and striatal interneurons (McKinsey et al. 2013). 
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Finally, a missense variant in KIF5A was found in blood and striatum samples. It is 

a member of the kinesin family mainly expressed in neurons (Niclas et al. 1994), 

where it acts as a microtubule-dependent motor required for slow axonal transport 

of neurofilament proteins (Hirokawa et al. 2009) whose mutation causes 

monogenic spastic paraplegia (Reid et al. 2002), Charcot-Marie-Tooth disease 

type 2 (Y.-T. Liu et al. 2014) and familial amyotrophic lateral sclerosis (Brenner et 

al. 2018). A missense mutation in this same gene has been previously described 

in a Parkinson patient (Martikainen et al. 2015) and its expression was increased 

during progression of dementia associated with PD (Stamper et al. 2008). This 

specific missense variant has a high CADD, indicating possibly damaging 

consequences.  

 

Tissue-exclusive somatic variants without other tissues information 

 

If we use the same exact filters as for the previous analysis but exchange the 

binomial test result in all tissues by a harsh threshold at VAF of 20%, which we 

derive from Fig. 31, we get the same 8 variants we got before (table 4) plus two 

more (table 5).  

 

The first one, on the EDAR gene, looks actually like a heterozygous variant when 

we look at the other tissues. Nonetheless, the variant is predicted by most 

methods as damaging and this gene is responsible for ectodermal dysplasia as 

well as hair thickness in Asian populations.  

 

The other one overlaps with one of the transcripts of the gene SYT15, where it 

supposes a missense variant. Maybe more importantly, it overlaps with its 

promoter. This protein, involved in the synaptic vesicular cargo trafficking was 

affected by a CNV in a study on Parkinson disease patients (La Cognata et al. 

2017). It is interesting that all tissues have frequencies between 16 to 36%. 

Because of this, not all of them pass the binomial filter, but because also Haplotype 

Caller with ploidy 10 (see below) reports similar frequencies, it seems plausible 

that it is a somatic variant.  
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Table 5. Somatic variants identified in a single tissue without other tissue information. Chromosome and 
position are in reference to hg19. VAF: Variant allele frequency. AD: Alternative allele depth.  
 

 Sample DV5B DV9S 

 Chr 2 10 

 Position 109524434 46970793 

 dbSNP rs757685532 rs752701929 

 Frequency <1e-4 8,00E-03 

 Consequence Missense 
Missense/ 

TF binding site 

 Gene EDAR 
SYT15/ 

TBX15, TBX20, TBX1 

 CADD 26.8 3.674 

 Reference C G 

 Alternative T A 

VAF 

Blood 19.23% 36.36% 

Cerebellum 34.29% 25.4% 

Striatum 40.91% 16.67% 

Neocortex 41.18% 26.19% 

Substantia nigra 56% 18.6% 

AD 

Blood 5 12 

Cerebellum 12 16 

Striatum 9 5 

Neocortex 14 11 

Substantia nigra 14 8 

 

 

3.3 Candidate somatic variants with HaplotypeCaller 
ploidy 10 
 

Samples were also called with HaplotypeCaller. Although it is a germline caller, it 

is designed to be applicable to higher ploidy organisms by changing its allele 

frequency expectations. To increase sensitivity, we set the ploidy parameter to 10 

(default is 2). This way, the priors change, increasing its sensitivity. We annotated 

the VCFs with the same information we did on VarScan 2 VCFs. 
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Somatic variants common to multiple tissues 

 

Using exactly the same filters we did with VarScan 2 VCFs to get variants common 

to multiple tissues, we got the exact same 3 variants (table 6). Frequencies also 

seem very comparable between the two. 

 
Table 6. Somatic variants common to multiple tissues from Haploype Caller. Chromosome and position are 
in reference to hg19. VAF: Variant allele frequency. AD: Alternative allele depth. HCP10: Haplotype Caller 
with ploidy parameter set to 10.  
 

 Individual DV1 DV6 DV6 

 Chr 4 4 15 

 Position 134073018 20731704 66044838 

 dbSNP rs754282504 rs1224107540 rs1268304474 

 Method VarScan 2 HCP10 VarScan 2 HCP10 VarScan 2 HCP10 

VAF 

Blood 1.61% 0% 0% 0% 5.26% 4.40% 

Cerebellum 13.64% 13.89% 4.17% 5.46% 10.61% 10.26% 

Striatum 6.9% 8.96% 5.88% 5% 9.84% 9.86% 

Neocortex 9.57% 10.20% 5.26% 4.48% 16.98% 20% 

Subst. nigra 13.93% 14.93% 6.67% 5.26% 12.5% 14.81% 

AD 

Blood 1 0 0 0 4 4 

Cerebellum 9 10 2 3 7 8 

Striatum 4 6 3 3 6 7 

Neocortex 9 10 3 3 9 12 

Subst. nigra 17 20 3 3 8 12 

 

Tissue-exclusive somatic variants 

 

Because is not possible to make HaplotypeCaller as lax as VarScan 2, when a 

candidate SNV is present in an individual’s tissue with AD>=5 and the same variant 

is present in a handful of other samples with 1 or 2 reads per sample, which would 

indicate some kind of bias, HaplotypeCaller would not call those other lower AD 

samples, making it difficult for us to detect the false positive. To try to circumvent 

that, we called all 50 samples together. However, after using the same filters we 

used with VarScan 2, we found many passing variants were supported by reads 

in multiple tissues of different individuals but were only called in the most confident 

sample by HaplotypeCaller. This makes sense for the caller, it is applying a 

confidence score to remove those cases that are very clearly false positives, but 

unfortunately leaves us powerless to remove the higher confidence false positives.  
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We explored whether any HaplotypeCaller quality fields could remove those 

cases, but we did not find any. Of note, certain quality scores have to be treated 

differently depending on ploidy and coverage. Genotype quality (GQ) in 

HaplotypeCaller is calculated as the difference between the two lowest phred-

scale likelihoods for each genotype. When ploidy is 2 there are three possible 

genotypes, so for coverages well above 20x, the difference between their 

probabilities should always be high. A threshold at GQ>=90 is therefore 

sometimes used in this scenario (Horai et al. 2018). However, when setting 

ploidies as high as 10, the probabilities of similar genotypes (e.g. 

0/0/0/0/0/0/1/1/1/1 vs 0/0/0/0/0/1/1/1/1/1) are quite similar, producing GQ values 

invariantly low.  

 

If we use VarScan 2 to filter those cases out, we get 16 variants passing filters. 

Once again, we are able to retrieve 2 out of the 3 variants common to multiple 

tissues (grey in table 4) as well as all the other 8 variants we got with VarScan 2 

filtering per tissue (black in table 4). We also get 6 more variants. After IGV 

inspection, one of them looked too strand biased, so it was discarded. The 

remaining 5 variants are shown in table 7. 

 

One of the variants was not detected in VarScan 2 because it was triallelic, which 

belongs to the set of noisier calls. Two others had less than 5 AD after VarScan 2 

internal read filtering and the remaining two had more than 4 variants called within 

read distance, but IGV inspection shows the other variants are actually noise we 

are taking into account with VarScan 2. This shows that HaplotypeCaller improves 

sensitivity and its specificity can be improved by using VarScan 2 calls and very 

probably also just by looking for alternative reads in other samples directly on the 

BAM files with tools such as pysam.  

 

As for the newly discovered variants, they were all detected in blood but two of 

them have also support in the striatum and one has it in the substantia nigra too. 

The first variant is a missense mutation in the gene ZSCAN16. It is a zinc protein 

whose function is not well characterized. A deep intronic variant was also detected 

in NAV3, the neuron navigator 3 gene, named after its role in axon guidance was 

determined in Caenorhabditis elegans (Maes, Barceló, and Buesa 2002). In a 

study of circulating cell-free microRNAs in Parkinson’s patients, miR-29a was 

found to be downregulated in PD cases (Botta-Orfila et al. 2014) and has also 

been seen aberrantly expressed in Alzheimer’s (Batistela et al. 2017). NAV3 is a 

target of this miRNA (Batistela et al. 2017), so it would be upregulated in PD. Also, 



 94 

a copy number variant affecting the gene has been found in PD cases (Botta-Orfila 

et al. 2014). 

 
Table 7. Somatic variants identified in a single tissue by HaplotypeCaller exclusively. Chromosome and 
position are in reference to hg19. VAF: Variant allele frequency. AD: Alternative allele depth.  

 
 Sample DV3B DV3B DV7B DV7B DV10B 

 Chr 6 12 6 9 5 

 Position 28097592 78521098 31905132 87367003 55264231 

 dbSNP rs766950970 rs968223137 rs765550448 NA NA 

 Frequency <1e-4 <1e-4 <1e-4 0 0 

 Consequence Missense Intronic Missense Splicing donor site Intronic 

 Gene ZSCAN16 NAV3 C2 NTRK2 IL6ST 

 CADD 19.73 2.262 22 21.6 9.827 

 Reference G C C A G 

 Alternative A T T G T 

V 
A 
F 

Blood 9.37% 8.93% 29.55% 28.28% 8.05% 

Cerebellum 0% 0% 0% 0% 0% 

Striatum 0% 0% 3.51% 4.32% 0% 

Neocortex 0% 0% 0% 0% 0% 

Subst.nigra 0% 0% 0% 3.79% 0% 

A 
D 

Blood 6 5 26 28 7 

Cerebellum 0 0 0 0 0 

Striatum 0 0 2 6 0 

Neocortex 0 0 0 0 0 

Subst. nigra 0 0 0 5 0 

 

A missense variant quite frequent in blood affects C2, a gene involved in the 

immune system. Studies have looked at the association of variants in this and 

other HLA-linked complement markers, finding no association (Nerl, Mayeux, and 

O’Neill 1984). 

An unreported variant in NTRK2 is at the splicing donor site of the 14th exon. It is 

the 3rd base so it does not affect the consensus sequence GU. Nonetheless, this 

gene is a receptor of neurotrophic factors, which have been proposed to have a 

role in neurodegeneration (Dawbarn and Allen 2003). Specifically, in a primate 

MPTP model of PD, infusion with a neurotrophic factor reversed motor dysfunction 

(Grondin et al. 2002). It was also found to be down-regulated in Alzheimer disease 
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brains (Ferrer et al. 1999). Finally, an intronic variant was found at gene IL6ST, an 

interleukin signal transducer found to be differentially expressed in a mouse MPTP 

model (L. Gao et al. 2015). 

 

Summarizing all the results, at least one somatic variant was found at each 

individual (tables 3-7) and the involved genes had been previously related to the 

nervous system or even PD for 6 of the patients. Also, all but DV7 were 

heterozygous for a variant in genes previously related to PD (table 2).  

 

 

3.4 Tissue clustering by somatic variant allele frequencies 
 

The allele frequency of somatic mutations generated during embryonic 

development will differ among adult tissues depending on the proportion of mutant 

cells present in the founder cell population of each tissue. Development and 

growth dynamics of each organ as well as clonal expansion during adult tissue 

maintenance will also alter the final frequencies. Hence, distance among the 

tissues can inform us about these processes.  

 

The frequencies at each tissue from every somatic mutation detected were 

accumulated. Tissues were clustered by Pearson correlation based on the variant 

allele frequencies (Fig. 35). Blood was the most distant tissue. This was expected 

since out of the 18 somatic variants, 12 are exclusive to blood. The distance 

among the four central nervous system tissues is thus very small. Still, the distance 

between the two basal ganglia structures is smaller, but this is mainly driven by 

the two last mutations, those on EDAR and SYT15, whose status as somatic 

variants is less clear. Higher sensitivity or more individuals could help us to define 

these relationships with better accuracy. 
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Figure 35. Tissue clustering by somatic mutation frequencies. Heatmap values indicate the variant allele 
frequency of the variants from tables 3-7 at each tissue. The top dendrogram resulted of Pearson correlation 
clustering based on the frequencies. 
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Exploring somatic copy number variants in 
Alzheimer disease with array CGH data 
 
 
1. Array CGH data processing 
 

Array comparative genomic hybridization (aCGH) technology was used to explore 

somatic copy number variation in Alzheimer disease (AD). Matched blood and 

hippocampus DNA samples were obtained from 21 AD patients, 2 vascular 

dementia (VaD) patients and 3 controls (table S3). Samples were processed in 

two different batches. Each tissue’s DNA was hybridized to the Roche Exon-

Focused aCGH together with a commercially available control genome, the male 

human genomic DNA from Promega. 

 

Quality control 

 

The control genome was labelled with the red fluorescent dye cyanine 5 whereas 

each test genome was labelled with a green fluorescent dye, cyanine 3. However, 

a PCA of the raw data (Fig. 36) showed more variance among the red than among 

the green channel at both batches.  

 

 
Figure 36. PCA of each channel raw intensities. The two first principal components for batch 1 (left) and batch 
2 (right) are shown, with the amount of variance explained by each of them in parenthesis. 

 

Because the variability in the raw light emissions strongly depends on the 

consistency of the excitation light, regions with apparent germline copy number 

variants were used to confirm the labelling. Log2 ratios between the two channels 
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by genomic position were inspected for both the blood and hippocampus of two 

samples (Fig. S9). This allowed the detection of regions with extremely low log2 

ratios in just one individual and present in both its tissues. Median intensities for 

each channel showed that the most variable was the green channel (table 8), 

confirming this was the test sample channel. 

 
Table 8. Raw intensities at deletions. Raw green and red channel intensities for regions where log2 ratios were 
extremely low. Grey numbers highlight the smallest values at each genomic region, showing that the green 
channel is variable among individuals and less between tissues.  

 
   Raw intensity 

   1:118940915-
119024481 

1:204588543-
204828734 

20:5938122-
6021265 

1G 

Hippocampus 
Red 2062.47 2206.17 1754.12 

Green 3241.37 3762.1 412.43 

Blood 
Red 1375.45 1492.27 1128.31 

Green 3078.73 3715.92 363.65 

2M 

Hippocampus 
Red 1519.49 1675.49 1012.02 

Green 352.82 354.25 2098.71 

Blood 
Red 3828.96 3701.14 2525.84 

Green 313.76 369.13 2767.94 

 

 

Moreover, densities of log2 ratios at the sex chromosomes (Fig. S10) showed that 

the distribution of chromosome X  was either centered around 0, corresponding 

to the same copy number as the control, or around a mean of 0.65, indicating a 

duplication with respect to the control. Correspondingly, chromosome Y was 

either centered around 0 or dispersed towards negative log2 ratios, with a mean 

of -1.64, indicating a deletion with respect to the control. Since the control sample 

is a male, this further confirmed the channel labelling. Also, both tissues of all 

samples showed consistent genomic sex. 

 

Normalization 

 

As expected, extensive differences are found between the median and dispersion 

of raw light intensities of the different channels and arrays (Fig. 37). MA plots were 

used to examine the common bias in the log2 ratios (M) with respect to the mean 

intensity (A). Indeed, higher light intensities showed higher log2 ratios (example in 

Fig. 38), a tendency that affected different arrays with variable strength (Fig. S11). 
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Figure 37. Raw light intensity distributions. Boxplot showing the raw light intensity per each channel and 
sample from batch 1. Individual names are followed by a “B” for blood samples and “H” for hippocampus 
samples.  
 

 

 
Figure 38. MA plot of raw data. Mean intensity of both channels (A) against log2 ratio (M) at each probe in 
the blood sample from individual 1G. Grey line is at the mode of the M distribution. 

 

Accordingly, we applied quantile normalization to the raw data. Since the variance 

of the two channels is quite different, we normalized the intensities from both 

channels from all arrays together. Log2 ratios after normalization were centered 

at 0 with outliers were still identifiable, even those with less extreme log2 ratios 

(Fig. 39), which could be the regions were only a portion of the cells have a copy 

number variant and those we are most interested in. 

 

On the other hand, batch effect correction produced strong deviations for a subset 

of probes at some arrays (Fig. S12). Since the number of arrays in each batch is 
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sufficient for independent analysis, we restrained from performing batch correction 

and kept the two datasets separated in the subsequent processes.  

 

 
Figure 39. Log2 ratios before and after quantile normalization. Log2 ratios per position in the chromosome 20 
are shown for 1G’s blood before and after quantile normalization.  

 

Alternative normalization approaches exist and are mainly used in cancer studies 

(Staaf et al. 2007). Their objective is to normalize the data while considering the 

existence of aneuploidies, trisomies or considerably sized rearrangements. 

Because these extreme regions can affect quantile normalization, they are 

excluded for the centralization of the data. However, initial inspection of our data, 

with log2 ratios vs position, did not show any of such rearrangements, and since 

quantile normalization was successful at keeping shorter variants (Fig. 39), we 

decided to use the latter approach. 

 

2. Array CGH data copy number calling 
 

Segmentation and calling 

 

Normalized log2 ratios were segmented with the package DNAcopy (van de Wiel 

et al. 2007). We tested different SD thresholds for merging adjacent regions: 1, 2 

and 3. That is, the distribution of log2 ratios is inspected in windows by the 

software. Then, adjacent windows whose log2 ratio mean is within the selected 

SD limit of the original window are merged to it. Inspection of the results obtained 

with the different values showed that segmentation with SD=1 and SD=2 resulted 

in too many short fragments, which would be difficult to compare between the 

tissues in subsequent analysis. On the contrary, segmentation with SD=3 reflected 

the raw log2 ratios variance while limiting the amount of noise incorporated (Fig. 

40), so this was the selected parameter.  
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Figure 40. Segmented log2 ratios with different SD parameters. Normalized log2 ratios at each probe, in grey, 
were segmented with SD=1, resulting in the purple values. When segmented with SD=3, the green values 
were obtained.  
 

Copy number variant probabilities were called with CGHcall (van de Wiel et al. 

2007), which calls aberrations for aCGH data using a six-state mixture model. In 

short, the fragmented signal from the previous step is used to find breakpoints. 

Most algorithms assume three possible copy number states: duplication, normal 

or deletion. However, CGHcall incorporates two more classes, differentiating 

between one and two copies lost or gained, which improves the detection of single 

copy gains and amplifications. The output consists on the probabilities each probe 

has to belong to each of the six states as well as calls indicating the most probable 

copy number.  

 

Germline copy number variants 

 

Segmentation and calling quality were evaluated by comparing the correlations of 

autosomal probes’ log2 ratios between arrays belonging to the same individual 

and to different individuals after each step (Fig. 41). The median of the correlations 

between normalized log2 ratios of tissues from the same individual was higher than 

when comparing tissues from different individuals but their ranges overlapped 

considerably. After segmentation with DNAcopy, the ranges separated better but 

still overlapped, probably indicating noise was still driving most of the correlations. 

Hence, probes were filtered by incorporating calling information. We required 

segments to have at least five consecutive probes with a CN call different than 0 

and at least three probes with “extreme” normalized log2 ratios, that is, smaller 
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than -1 for deletion calls and bigger than 0.585 for duplication calls, corresponding 

to CN 1 and 3, respectively. This produced much higher tissue correlations while 

keeping the individual comparison median at a similar level.  

 

 
Figure 41. Distribution of Pearson correlations at each processing step. Autosomal probes correlation was 
calculated between the tissues of the same individual (dark purple) and for all possible comparisons within 
batch between different individuals (light purple). 

 

This filter is quite restrictive, so we expected to only retrieve germline copy number 

variants together with those somatic variants that clonally expanded during tissue 

maintenance. Since blood experiences clonal expansion, if expanded somatic 

variants were called, we would expect a higher number of filtered segments in this 

tissue than in the hippocampus. Indeed, the median number of segments for blood 

samples was higher (Fig. 42), indicating some copy number variants present in a 

considerable number of cells are restricted to blood, at least at such high 

frequency.  

 

Filtered segments were intersected with the RefSeq gene set. Those linked to 

Alzheimer disease in OMIM (table S4) were inspected with special attention. Of 

the six evaluated genes, only APP and HFE overlapped with filtered called 
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segments. However, when comparing the log2 ratios and calls overlapping the 

filtered segments, many other samples presented similar patterns, as is the case 

for the samples of the first batch on the APP gene, where 12 out of 30 samples 

had a call made by CGHcall (Fig. 43). This could indicate that this gene is 

frequently altered in Alzheimer patients but nevertheless, out of the two control 

individuals, one of their tissues was also called in the same region. Furthermore, 

the number of samples called for a set of genes not linked to the disease but with 

the same number of filtered called probes was comparable (Fig. S13). 
 

 
Figure 42. Number of filtered segments per tissue. The distribution of the number of segments filtered per 
sample by tissue. Horizontal lines show the median value for each set.   
 

Figure 43. CGHcall calls at the APP gene. Each line shows the calls per sample at each position. The blue 
line corresponds to the sample with the filtered segment, 2IH, whereas the red line shows the calls for the 
blood of the same individual, 2IB. The grey rectangle highlights the gene position and the blue segment shows 
the region the filtered call overlapped.  
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Since no relevant calls clearly distinguishable from noise were found, we 

performed overrepresentation enrichment analyses (ORA) with the genes 

overlapping filtered calls from all the Alzheimer patients. When molecular function 

was evaluated with all protein coding genes as background, several processes 

were shown to be significantly enriched, mainly related to transcription regulator 

activity and nucleoside and ribonucleotide binding (Fig. 44). Proteins classified as 

nucleotide binding and purine ribonucleotide binding proteins were found to be 

downregulated in the hippocampus of Alzheimer patients (Ho Kim et al. 2015). 

Enrichment of OMIM’s disease genes produced multiple significant results though 

Alzheimer disease was not one of them (Fig. S14).  

 

 
Figure 44. Filtered calls molecular function enrichment. Overrepresentation enrichment analysis for molecular 
function of genes overlapping filtered calls in the Alzheimer patients. 

 

Somatic copy number variants 

 

To explore somatic copy number variants in our data, we filtered the probes 

without considering CGHcall calls, as the thresholds this approach uses are 

designed for germline or clonally expanded variant identification. Hence, we 

selected segments with more than ten adjacent probes with segmented log2 ratios 

between -0.23 and -0.62, corresponding to 30% to 70% of cells with a deletion or 

between 0.2 and 0.43, roughly corresponding to the same proportion of cells 

carrying a duplication. As it was already difficult to differentiate between copy 

number 0 and 1 as well as between copy number 3 and 4, we focused on somatic 

copy alterations of a single copy, which are also more probable to occur.  
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We observed extremely low correlation between the tissues for this segments (Fig. 

45), but tissue comparisons, that is, when we compare the segmented log2 ratios 

of both tissues from the same individual, still showed higher correlations than inter-

individual comparisons, indicating more resemblance. Nonetheless, this small 

difference in log2 ratio to the control could be due to SNPs on the probes slightly 

affecting hybridization. Biologically, the lack of correlation could be explained by 

blood’s clonal expansion. This extremely limited sensitivity for the somatic copy 

number range has been observed before (King et al. 2017).  

 

Figure 45. Distribution of Pearson correlations for candidate somatic copy number variants. Autosomal 
probes correlation was calculated between the tissues of the same individual (dark purple) and for all possible 
comparisons within batch between different individuals (light purple). 
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3. Comparison with whole genome sequencing  
 

Because the increase in copy number we would expect from a somatic event is 

within the noise levels of the arrays, we used an orthogonal methodology to 

evaluate the replicability of the results. We sequenced the whole genome of blood 

and hippocampus from five of the individuals, two from the first batch and three 

from the second batch.  

 

 

Comparison of copy number with mrCanavar 

 

Copy number in 1kb windows was called with mrCanavar (see Methods), which 

uses coverage as a proxy of copy number. The caller identifies some windows as 

being of reference copy number, or the control regions. The copy number 

distribution of this control regions for each sample was comparable to the 

theoretical normal distribution calculated with the same mean and standard 

deviation, indicating the good quality in the results (Fig. S15).  Although the copy 

number distribution in and out of control regions shows some overlap, they still are 

for the most part distinguishable (Fig. S16). 

 

In order to compare WGS copy number to the arrays, log2 ratios were taken. Then, 

genomic windows corresponding to the previously identified putative somatic copy 

number mutations where selected. The medians of the log2 ratios of probes 

overlapping each of the WGS windows were calculated to allow a pairwise 

comparison. Of note, the Promega male genome used as a control in the arrays 

was not sequenced. This is because it is a variable sample derived from multiple 

anonymous donors, designed to be used as a control is experiments such as 

Southern blot hybridizations or PCRs. It has nonetheless been successfully used 

as an array CGH control but sequencing a new batch of this sample would have a 

very limited comparability. Unfortunately, the correlation of this in silico log2 ratios 

with the CGH log2 ratios was extremely poor (Fig. 46), independently of windows 

being control regions in one tissue, both or none. We repeated the analysis by 

using ranks, to avoid incorporating noise, but still no correlation was found.  
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Figure 46. aCGH log2 ratios vs in silico WGS log2 ratios. Colors correspond to windows where both tissues 
are control regions (blue), only one is (pink) or none (green).  
 

 

 

Comparison of copy number calling with CNVnator 

 

Since the results were so poor, CNVs were also called with CNVnator. A window 

length of 100 bp was used, as recommended for the mean coverage. Then, calls 

were filtered so that the t-test p-value or the gaussian p-value were < 0.05 and the 

proportion of reads with q0 was smaller than 0.5. The mean coverage in each of 

the regions passing this filter was calculated. The mean Pearson correlation with 

the normalized RD was 0.82. A contingency table showed that the calls were 

CNVnator and the mean coverage were pointing towards opposite events had one 

of the p-values > 0.05. Hence, calls were filtered so that both p-values were 

smaller than 0.05, resulting in a mean correlation of 0.95  and 98.3% of calls 

agreeing with mean CN. The mismatches were deletion calls in CNVnator with CN 

2 according to the mean coverage, showing overall good quality filtered calls. 
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Events present in multiple individuals in the WGS data are more probable to be 

also present in the Promega control genome, as they are expected to have higher 

population frequency, so we removed this variants. Since somatic copy number 

variants are difficult to call with a caller such as CNVnator, we started by taking 

calls overlapping in both tissues of each individual. Surprisingly, mean coverage 

per region had a mean Pearson correlation of 0.14. To check if one class of copy 

number variant was driving the poor correlation, they were stratified by type. Also, 

if the reason of the poor correlation was that we were considering events that were 

also present in the control sample, we reasoned its comparison with the other 

samples whose whole genome we sequenced would show the opposite pattern, 

so we checked the aCGH log2 ratio distribution in the same sample were calls 

were made as well as in the other WGS samples (Fig.47). Still, the distributions 

were all centered on 1, demonstrating contradictory results. More, the segmented 

log2 ratios presented a comparable patter (Fig. S17)  

  
Figure 47. aCGH normalized log2 ratio distribution at WGS calls. Dark colors indicate log2 ratios are from the 
sample were the WGS call was made, whereas lighter colors show the log2 ratios of the other sequenced 
samples at those same calls.  
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Somatic mutations in a neurotypical individual 
 
 
1. The Brain Somatic Mosaicism Consortium  
 

Rationale 

 

The Brain Somatic Mosaicism Network is an American consortium whose 

objective is to study somatic mosaicism in human brains. The project is focused 

on understanding the role of somatic mosaicism in neuronal diversity within 

neurotypical individuals and their relevance in complex neuropsychiatric 

disorders.  

 

The different 18 research groups participating are focused on particular diseases: 

autism spectrum disorder, schizophrenia, Tourette syndrome, bipolar disorder, or 

epilepsy. Results from the study of somatic mutations in these disorders may lead 

to the discovery of biomarkers and genetic targets to improve the treatment of 

neuropsychiatric disease and may offer hope for improving the lives of patients 

and their families (McConnell et al. 2017). To this end, a resource of deep whole 

genome, whole exome and single-cell sequencing is being generated from 

patients of the different diseases.  

 

Phase I 

 

Due to the lack of well-established pipelines to call somatic mutations, specially 

from WGS data, the first phase of the consortium has consisted on identifying 

variants in a neurotypical individual, also termed the common experiment. Each 

group called somatic variants from the same tissues so that the comparison and 

validation of the results could help in stablishing somatic calling best practices 

(unpublished). 

 

Brain and fibroblast samples were obtained from the autopsy of a 55-year-old 

male. DNA was extracted from a prefrontal cortex (PFC) sample and aliquots were 

sequenced by several groups, producing technical replicates with a mean 

coverage of 200x and 90x (table 9) as well as other lower coverage whole genome 

sequencing data or exome sequencing data. A distinct PFC sample from the same 

individual was obtained by our group. DNA was extracted in the ancient DNA 

laboratory and it was sequenced at 90x, generating a biological replicate. Skin 
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fibroblasts were expanded in culture and two deep WGS replicates were also 

generated. 

 
Table 9. Sample ID and coverage. Replicates of deep whole genome sequencing from the same individual. 
Depth of coverage after removing duplicates is shown.  

 

Sample ID Tissue Coverage 

B04 PFC 76x 

B03 PFC 86x 

F03 Fibroblasts 70x 

B06 PFC 204x 

F06 Fibroblasts 234x 

 

 

2. Calling somatic variants from deep WGS 
 

We called somatic variants in the higher sequencing depth samples (table 9). To 

do this, a similar strategy to that used in the first section of the results was applied. 

Variants were called for each sample with HaplotypeCaller -ploidy 10. They were 

then annotated with our custom python script in order to incorporate the 

information needed for detecting biases. In-depth explanations on each of the 

noise sources can be found at 3.1 in the Somatic mutations in Parkinson section. 

Briefly, we required variants at each sample to comply with the following filters: 

 

1. Not multiallelic 

2. Not overlapping somatic non-callable tracks (1000G strict mask, 

segmental duplications and mappability for the 150mers) 

3. Not overlapping CNV calls (CNVnator) 

4. No more than 3 variants close by 

5. Not within 5 bp of indels 

6. Not by homopolymers 

7. AD >=5 

8. R1 and R2 ratio between 0.5 and 2 for each allele 

9. Non-significant FET for strand and allele 

10. Non-significant Poisson for strand 

11. Significant binomial VAF test (<0.01) 

12. At most 3 haplotypes  

13. Unbiased position in reads for both alleles 

14. Not present in gnomAD 
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Of note, since all replicates come from the same sample, a set of different 

individuals would be required to help us to identify systematic sequencing errors. 

Depending on the coverage and allele balance cut-offs used to call variants in 

human population studies, a portion of this variants can appear as low population 

frequency polymorphisms. For this reason, we compared the number of variants 

passing filters 1 to 13 to the number of variants also not present in the gnomAD 

database (table 10).  

 

As previously discussed, differentiating heterozygous and somatic mutations can 

be difficult. With the exomes we used the multiple tissues per patient to help us to 

identify heterozygous variants. Here we can also use the replicates to increase our 

power. Nonetheless, these deep WGS samples are very expensive, making it 

interesting to compare the results we would get without the use of replicates, a 

more realistic scenario. Variants present in population databases can also be 

useful to identify heterozygous mutations.  

 

The number of variants obtained after applying any filter tackling heterozygous 

mutations is one order of magnitude higher in both fibroblast samples. This 

indicates that many mutations that appeared during clonal expansion in their 

culture are confounded with somatic mutations. This is especially patent from the 

huge difference in the proportion of calls retained after filters 1-13 that are 

heterozygous in the brain depending on the tissue they were called at (table 10). 

We decided to assess the probability of a variant coming from the germline only 

from brain replicates. This is because we detected a few variants passing all filters 

in the three brain replicates with a non-significant binomial test in at least one of 

the fibroblast samples.  

 

After each group made their callings, a set of the candidate variants was selected 

for validation. Amplicon sequencing was performed by our collaborators in DNA 

from the same brain as well as NA12878 to serve as a control for systematic 

sequencing errors. 10X linked reads sequencing was obtained by some groups, 

and the phasing of candidate positions with both germline haplotypes or with more 

than 90% of the reads from one of them was considered as an indication of noise 

and heterozygous variants, respectively. Single cell sequencing of neurons and 

glia coming from the same PFC were also genotyped. They were especially useful 

for identifying biased sequencing errors, since they appear at very low frequencies 

in most if not all the cells (unpublished data). We used these results to evaluate 

the specificity of our approach (table 10). As we do not know the true set of 

variants, sensitivity cannot be determined. However, because variants were 
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prioritized for validation with this orthogonal data, our validation rates are inflated 

by ascertainment bias, very obvious in our calls from F06. 

 
Table 10. Number of variants passing filters and validation rate. The total number of variants passing filters 
from 1 to 13 or adding the gnomAD filter are shown. Variants were further filtered  

 
  B04 B03 F03 B06 F06 

Filters 1-13 

Total number 5466 5142 5531 6239 8062 

Not heterozygous in brain 123 105 894 183 2006 

Validation 11/15 13/15 4/5 21/21 3/3 

Filters 1-13 + 
not in gnomAD 

Total number 66 56 733 71 1720 

Not heterozygous in brain 44 30 707 44 1688 

Validation 9/12 11/12 4/4 19/20 3/3 

 

Interestingly, even if the validation rate is higher than 75% for each sample, the 

overlap between the variants discovered in brain replicates, that passed the 14 

filters and were not heterozygous in other replicates was low (Fig. 48). The nine 

variants shared by more than one replicate were all validated successfully. 

Variants validated but not recovered from every sample were mostly due to 

absence of call by HaplotypeCaller due to low alternative allele supporting reads 

or because they did not reach the minimum of 5 we required.   

 

 

  
Figure 48. Intersection diagram of brain replicates filtered calls. Overlap between variants called in the brain 
replicates, passing all the filters, including absence from gnomAD and with significant binomial test in the 
other two brain replicates.   
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3. Using deep WGS replicates to identify germline variants 
 

Variant allele frequency at high-confidence heterozygous positions, defined as 

those present in the common dbSNP database and with a variant allele frequency 

between 0.4 and 0.6 in at least one sample, showed high dependence on the 

coverage (Fig. 49). The replicates with coverage higher than 200x have a 

narrower VAF dispersion than a theoretical binomial distribution, showing the 

remarkable dependency on coverage for establishing frequency thresholds for 

separating germline from somatic variants. Nonetheless, outliers exist far from the 

expected range, even below VAFs of 0.2. Inspection of these variants showed that 

their frequency was affected by the clonal expansion of fibroblasts. They were 

either somatic mutations whose frequency increased on culture or heterozygous 

mutations that decreased in frequency.  

 

Figure 49. Variant allele frequency dispersion is smaller at higher depths. Histogram of VAFs at high-
confidence heterozygous positions (blue) vs a random binomial distribution with p=0.5 (grey). Each panel 
shows the VAF distribution for one of the replicates, ordered by depth. High-confidence heterozygous 
positions are those present in the common dbSNP database and with at least one tissue having a VAF 
between 0.4 and 0.6. 
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The high depth of coverage of these samples gave us much more power to 

determine heterozygous positions. Nonetheless, by using only one sample to 

perform a binomial test on the read counts ~3% of the high-confidence 

heterozygous variants would be rejected and considered as somatic (Fig. 50). 

Using two replicates we would be able to correctly classify more than 99.5% of 

the variants, even when using the expanded fibroblasts or the two lower brain 

samples.  

 

 
Figure 50. Proportion of high-confidence heterozygous variants misidentified as somatic. Median percentages 
of high-confidence heterozygous positions that would be classified as not heterozygous because their 
binomial test in the indicated samples is significant (p-value<0.05). Black bars show they standard deviation. 
For each number of replicates, all possible comparisons were performed.  
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The interest of somatic mutations in neurodegenerative diseases 

 

The number of studies demonstrating that somatic mutations can cause diseases 

has been increasing for the past few years (Gleeson et al. 2000; Messiaen et al. 

2011; Poduri et al. 2012; Priest et al. 2016; Bar et al. 2017; Dou et al. 2017; Park 

et al. 2018; Nicolas et al. 2018; Mensa-Vilaró et al. 2019), spanning from cardiac 

arrhythmia to autism spectrum disorder. Even if the importance of a small 

proportion of cells carrying a deleterious mutation can seem questionable, these 

studies show that low frequency variants, even in as little as 0.8% of the DNA, can 

produce harmful phenotypes. In the brain, the organ of interest for this thesis, a 

small number of mutated neurons are sufficient to impair neural function, as shown 

by studies on focal dysplasia patients (Lim et al. 2015, Lim et al 2017). Whether 

the same holds true for neurodegenerative diseases is an open question worth 

exploring. 

 

Associating genetic causes to disease when the variants are not inherited can be 

counterintuitive. However, multiple diseases are caused by recurrent mutations in 

the same genomic locations. Point mutations reoccur in genes with CpG rich 

regions (Agarwal et al. 1998) where spontaneous deamination is frequent; in short 

tandem repeats slippage occurs (MacDonald et al. 1993) and regions flanked by 

segmental duplications are repeatedly duplicated (Inoue et al. 2001), all causing 

disease. In a similar way, it is reasonable to assume that the processes involved 

in the appearance of somatic mutations will make specific genomic regions more 

susceptible to their appearance. In fact, recent evolutionary divergence has been 

shown to be variable along the human genome and to correlate with replication 

timing (Stamatoyannopoulos et al. 2009). In cancer samples, where mutation is 

so frequent that these patterns become more apparent and faulty repair 

mechanisms can be used to infer their role, it has been demonstrated that multiple 

genomic features such as GC content, transcription (Hodgkinson, Chen, and 

Eyre-Walker 2012) and euchromatin (Schuster-Böckler and Lehner 2012) 

correlate with the mutation rate and that differential mismatch repair underlies this 

variation (Supek and Lehner 2015). Furthermore, the histone modification that 

recruits this machinery is more abundant in exons than introns (Frigola et al. 

2017), explaining, at least partially, their lower mutation rate. The different 

accessibility of both damage agents and the repair machinery to the nucleotides 

closer of further away from the nucleosomes at each helix turn further influences 

these patterns, both in cancer and in the germline (Pich et al. 2018). 
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The mutation distribution observed in cancer compiles all the possible changes to 

the genome in a context where mutation control is lost and the only major acting 

force is positive selection (Martincorena et al. 2017). In contrast, although 

mutation to the germline seems to follow many of these rules, purifying selection 

has been observed to influence the events that enter into the population variation 

pool (Xu et al. 2011; Wang et al. 2016). Non-cancerous somatic tissues can be 

considered as an intermediate state, because mutations lethal to the embryo 

appear later in development, and depending on the tissue maintenance 

mechanism, clones with replication advantage will expand, constituting tumors 

(Lee-Six, et al. 2018; Moore et al. 2018). Hence, the equilibrium of forces 

governing somatic mutations in these tissues could vary depending on the 

developmental stage when they occurred.  

 

Besides these general mechanisms, it has been demonstrated that neuronal 

activity is mediated by double strand breaks (DSBs) in the promoters of a subset 

of genes (Madabhushi et al. 2015). Furthermore, DSBs occur during the 

development of the nervous system, making its repair machinery crucial (Onishi 

et al. 2017) and suggesting that tissue-specific processes could also induce 

different types of mutation. It is plausible then that somatic mutations appear in a 

few brain cells and their interaction, together with predisposing germline variants, 

cause complex developmental diseases such as autism spectrum disorder (Dou 

et al. 2017), and through their accumulation over aging produce 

neurodegenerative diseases. In fact, a decrease in the efficiency of 

nonhomologous end joining repair with age has been proven both in mouse 

(Vaidya et al. 2014) and human cell lines (Z. Li et al. 2016), whose restoration 

suppresses the onset of stress-induced premature cellular senescence, making 

unrepaired DSBs a potential cause of neurodegenerative diseases.  

 

Identification of somatic mutations in sequencing data: present and future 

 

Identifying single nucleotide somatic variants from sequencing data is still 

challenging for multiple reasons. Differentiating them from heterozygous germline 

variants is not trivial. Their frequencies overlap, specially at lower coverages, as 

we have shown in the exomes dataset by means of comparing the tissues of the 

same individual. Even at high depth of coverage, such as that of the BSMN 

samples, their range still overlaps. In both projects we have seen that using 

replicates or different tissues from the same individual greatly increases the power 

to discern one from the other. We also observed that the general frequency 

distribution is shifted towards the reference allele in the exomes, that is, 



 119 

frequencies are generally lower, an effect produced by the capture method. This 

is not the case in the BSMN samples, whose heterozygous calls are symmetrical 

around a variant allele frequency of 0.5. Hence, considering whether whole 

genome sequencing or exome capture were performed, as well as the coverage 

of the experiment is fundamental for stablishing cut-offs to separate heterozygous 

and somatic variants when only one sample per individual is available.  

 

We found that many false positive somatic mutations were called in multiple exome 

samples from different individuals. This is because a considerable proportion of 

them are a product of systematic sequencing errors, that is, after a certain 

nucleotide sequence one base is erroneously identified with a given error rate. 

Because this rate is low, its relevance is minor when identifying germline variants 

or somatic variants clonally expanded in cancer, especially when a threshold is 

used to remove this kind of noise. On the contrary, they are highly detrimental for 

the identification of somatic mutations present in a small proportion of the cells of 

a single sample.  

 

While the reasons behind these biases are poorly understood (Taub, Corrada 

Bravo, and Irizarry 2010; Ross et al. 2013), the best way to circumvent them is 

through the use of control panels. In the Parkinson exomes analyses we used the 

other individuals as a control panel for the identification of biased sequencing 

errors. When several individuals seem to carry the same somatic variant, we can 

infer it is a systematic error. Some of these errors are present in a very high 

number of samples, clearly indicating they are a product of noise. When a variant 

is only found in a few other samples it is less clear whether recurrent events could 

be the cause, since as previously discussed, the rate of somatic mutation is 

heterogeneous along the genome and especially because we are studying 

patients of the same disease. However, even if we expect the same molecular 

routes or the same genes to be affected, the probability of recurrent variants at 

the same exact position seems to be low (Dou et al. 2017; Mensa-Vilaró et al. 

2019) and systematic errors and artefacts are so frequent that until more is known 

about these events, the simplest approach is to discard all these recurrent calls. 

 

A different method for identifying these errors is through single-cell sequencing. 

Although whole genome amplification methods can result in quite biased data, with 

frequent allelic dropout or marked changes in depth along the genome (Borgström 

et al. 2017), the same technology is used for sequencing the amplified material. 

Hence, the same biased sequencing errors appear in a small proportion of the 

single cell reads. Because single cells can only have three defined genotypes in 
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diploid organisms such as humans, this is an unequivocal sign of a systematic 

error. However, it is still an expensive technique, especially for discovering multiple 

variants and accurately estimating their frequency in the cell population, so its 

combination with bulk whole genome sequencing seems to be a better approach 

at this point.  

 

Unresolved regions of the genome, those not present in the reference, can have 

a high identity to resolved regions. This is because many of them originate from 

segmental duplications that arose at some point in the population history (Bovee 

et al. 2008), but they usually accumulate variants with the passage of time. Reads 

coming from these reference gaps will map against their paralogous sequence, 

with a lower efficiency because of differences in their boundaries. This results in 

regions where a few reads carry a variant, or multiple close variants, and 

oftentimes reads are clipped where the homology region ends. If the new copy is 

old enough it can appear in other individuals from the same population and can 

therefore be identified as an artefact with the use of a control panel, as we saw 

with the exomes, highlighting the value in using samples from the same population. 

If duplications are more recent, or even de novo, they can be pinpointed by 

increased coverage, clipped reads and clustered variants. Nonetheless, somatic 

copy number variants carrying a point mutation are undistinguishable from 

somatic point mutations when using short reads.  

 

Some of these noisier regions are implicitly collected by the 1000 Genomes 

Project strict mask, which was developed from the realization that systematic 

biases occurred in next-generation sequencing (Gibbs et al. 2015). It is very useful 

for removing false positive somatic variants (Bae et al. 2018). Masking the 

reference genome would create coverage depressions around the masked 

segments, which can lower variant discovering power. Therefore, we used the 

mask to filter variants after calling. False positive calls accumulate at these 

regions, but at the cost of it removing a big proportion of the genome – about a 

fifth of the genome or a tenth of the exome – where no variants can be discovered. 

The mask was derived from low depth samples, and probably less regions would 

be affected at higher depths. Since somatic variant discovery requires deeper 

coverages, the sequencing of panels of samples at high depths can be used to 

produce a new more exact mask, allowing for the discovery of somatic variants in, 

hopefully, many of these regions. Alternatively, third generation sequencing 

technologies, with different error patterns (Laver et al. 2015), could be used as 

orthogonal methods to interrogate these regions, which as of now, are 

inaccessible to somatic variant calling from next-generation sequencing data. 
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In a similar way, the WGAC segmental duplications track (Bailey et al. 2001) 

defines regions where copy-unspecific mapping errors may arise. However, 

because non-allelic homologous recombination is much more probable in these 

regions, a portion of the cells could carry a genuine somatic variant there. Long 

reads or linked reads could be the solution to differentiate between these 

scenarios, since they can be used to distinguish between the copies accurately. If 

a somatic variant is present, a proportion of the long or phased reads will properly 

span the flanking regions and carry the variant. 

 

Besides technological limitations, study design is also crucial for exploring somatic 

mutations. Analyses of trios, where both parents and one or several children are 

sequenced (Rahbari et al. 2016; Jónsson et al. 2017), can be very informative to 

gain insight on how to distinguish germline from somatic variants and can be used 

to train calling algorithms. Twin studies where only somatic mutations are different 

between the individuals can be helpful not only as a ground truth set but also to 

associate genes or genomic regions to discordant diseases (Vadgama et al. 2019) 

Finally, mixing experiments are an alternative strategy to formally address the 

issues we encountered and develop more accurate approaches for somatic 

variant calling (J. Kim et al. 2019). 

 

Once many variants from different individuals have been identified, we will have 

more power to expand on the studies analyzing mutational signatures (Rahbari et 

al. 2016; Bae et al. 2018) which can help us understand how mutations occur 

during the development of different tissues. Once enough clinical data is obtained, 

we will be able to explore their relationship with diagnosis, treatment effectiveness 

or prognosis of different diseases. Since the first cell divisions seem to be 

especially mutagenic (Yizhak et al. 2019), we could also test whether any 

controllable factors at fertilization or during pregnancy can affect their burden. 

 
The challenges of studying somatic mutations in neurodegenerative diseases 

 

Neuronal death is the main pathological feature of neurodegenerative diseases. If 

a somatic mutation is the cause of their death, neurons carrying the variant would 

be depleted in the tissue remaining at the time of the autopsy. Therefore, the 

analysis of the extant tissue can be a limited approach to discover the responsible 

variants. However, this death is selective, that is, it affects only certain cell types. 

It is then reasonable to believe that this susceptibility depends on features of the 

affected cells. As an example, the death of dopaminergic neurons in drug induced 

Parkinson is caused by the high affinity of MPP+ to the dopamine transporter 
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(Shen et al. 1985). Changes affecting this protein could result in the preferential 

death of this type of neurons. On the other hand, we know that low frequency 

somatic variants are present in other tissues even if they come from different germ 

layers (Lodato et al. 2015). Hence, we can make use of samples from different 

tissues of the same individual to retrieve the causing variant, as most probably 

cells in different organs will not be affected by those mutations and remain at the 

time of the autopsy.  

 

Indeed, most of the somatic mutations we found in the Parkinson patients, 12 out 

of 16, are exclusive to blood. Thus, the relevance of these variants being related 

to nervous system functions or even to Parkinson disease genes, as we found, 

can be questioned. It has to be taken into account that the nervous system and 

neurodegenerative diseases are studied more than others. Hence, comparing 

these results to those obtained from a panel of healthy people could help us 

determine not only if the apparent enrichment on neurological genes is meaningful 

but also if there is a higher burden of somatic mutations in our patients as it has 

been found for other complex neurological diseases (E. T. Lim et al. 2017; Dou et 

al. 2017). 

 

Moreover, it could be argued that it is likely that variants appearing to be blood-

exclusive are present in many other tissues in frequencies below our detection 

limit, which at 60x is higher than 1%, something that could be resolved with 

amplicon sequencing of the central nervous system samples. Cells carrying these 

mutations could have been present in a higher proportion of the founder cell 

population of blood or, more probably, drift could have resulted in higher clonal 

expansion on this lineage in blood. Determining the dynamics of progenitor cells 

in development as well as understanding adult tissue maintenance is key to set 

expectations and to find the anomalies linked to disease, which can in turn point 

towards therapeutic targets. 

 

The relevance of cell lineage research 

 

The expected scenario in normal tissues is derived from what we know about 

embryonic development and mutation in the first embryonic divisions. We still have 

to simplify our calculations, assuming equal contribution from cells to the tissues. 

However, in the first embryo divisions not all cells contribute to the inner cell mass 

and the trophoblast, (Kelly, Mulnard, and Graham 1978; Balakier and Pedersen 

1982) but the differentiation into epiblast and hypoblast is stochastic (Schrode et 

al. 2014). Details on the successive cleavages and divisions are not clear, but we 
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have some hints from classic C. elegans (Sulston et al. 1983) and modern lineage 

tracing studies (McKenna et al. 2016) as well as evidence from humans (Lodato 

et al. 2015) that lineages present before gastrulation contribute to multiple tissues 

from different germ layers. 

 

Until this gap in our knowledge is closed, we cannot accurately infer the division a 

variant occurred at just from its frequency, but we still can make an approximation. 

Since already very early differentiations are known to be stochastic, if later lineage 

divisions are too, it would only be the first few divisions that do not contribute to 

the embryo symmetrically. In fact, at the earliest stages cells also contribute to the 

extra-embryonic tissues, so this could be the sole reason for their unequal 

contribution to adult tissues (Ju et al. 2017). Nonetheless, with our analyses we 

are not trying to infer the exact division when a variant occurred, but just to 

question the logic of it appearing in multiple tissues given its frequency, that is, if 

it makes sense that a mutation is present where it is given its frequency.   

 

Theories explaining the observed patterns are just beginning to be formulated 

(Arendt et al. 2016). I would argue that if the first cell divisions are particularly 

mutagenic, once there are enough cells to enter gastrulation, it would make sense 

that they are somehow shuffled or mixed, since this would produce an individual 

whose organs have only a proportion of mutant cells instead of having all the cells 

in all organs deriving from one germ layer being affected. If the somatic mutation 

is deleterious, the individual would have a higher fitness in the first scenario, not 

only because we expect a partially affected organ to function sufficiently but, 

perhaps more importantly, because their germline would be mosaic, making them 

able to produce offspring without the mutation. Following this line of thought, since 

somatic mutations constitute part of the variants being incorporated into the 

population through the germline, in a similar way that selection has favored 

recombination in sexual organisms to shuffle variants in the offspring, it is 

reasonable to think that it would also favor this cell shuffling in the germ cell 

lineage. Once more is known about cell migration during embryonic development 

and the responsible mechanisms are discovered, we will be able to test this 

hypothesis. 

 

The role of non-coding variants in disease 

 

The variants we found in a dataset of Parkinson disease (PD) patients are in many 

cases missense mutations in genes found to be affected in PD or PD models. The 

relevance of missense mutations for disease is clear, including Parkinson disease 
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(Polymeropoulos et al. 1997; Valente et al. 2004). A few others overlap 5′ and 3′ 
UTR regions instead. The implication of mutations in these regions in disease has 

also been known for a long time (Chen et al. 2006; Miyamoto et al. 2007). This is 

because proteins regulating translation bind to them (Wilkie, Dickson, and Gray 

2003) and because they are targets of miRNAs (Ørom, Nielsen, and Lund 2008). 

 

The relevance of all types of non-coding sequences is becoming clearer the more 

we learn about genomic regulation. For many years, loci associated to diseases 

through GWAs that were not in the exome were inexplicable. After the expansion 

of epigenomic studies many of them were linked to genes or cell types and this led 

to more information on the variables and processes involved in certain conditions 

(Ernst et al. 2011; M. C. King et al. 2012). Nevertheless, many studies are still 

focused on the exome or even perform target sequencing of a just a few genes. 

Although this can be useful in monogenic highly penetrant sporadic diseases, this 

is a limiting approach for complex diseases. It is reasonable to assume that 

deleterious mutations can be better tolerated in a somatic state, pointing at their 

putative relevance for understanding complex diseases. Furthermore, depending 

on the approach used, only a handful of somatic mutations, those that appeared 

in the first cell divisions, can be discovered. Restricting the analysis to a small 

region of the genome, specially one less tolerant to change makes their discovery 

even more challenging. GC content and repair mechanisms are different in the 

exome than the rest of the genome, so the extrapolation of the observed patterns 

and conclusions made from this data is restricted. Economic limitations are of 

course practical limits to whole genome sequencing, more so with high coverage, 

but it seems probable that the field will move towards it as it becomes cheaper.   

 

Other implications of understanding somatic mutation 

 

Cancer is by far the most studied somatic mutation disease. Once cancer driving 

mutations occur clonal expansion increases the number of cells, so these 

mutations are expected to be in the whole population of tumor cells. Variants that 

appear after this stage can also be recovered by the comparison to the normal 

tissue, so the impact of improving somatic calling would be small in this context. 

Nevertheless, the field is moving towards understanding clonal expansion and 

mutation in healthy tissues , so that the differences between normal cells and those 

that originate tumors can be found (Martincorena et al. 2015; Martincorena and 

Campbell 2015; Martincorena et al. 2017). Potentially this will help us to 

understand the disease and which mechanisms are behind cancer appearance. 
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On a totally different context, all germline mutations were somatic mutations when 

they first appeared, so how somatic variants originate, and which factors are 

involved are fundamental questions for understanding and inferring mutation rates 

along evolution. The molecular clock assumes that the mutation rate is constant 

in a lineage. However, it correlates with life history traits such as lower body size 

and lower generation time (Nikolaev et al. 2007; G. W. C. Thomas et al. 2018). It 

can be hypothesized that the embryonic developmental stages where fast cell 

division occurs are mutagenic because the repair machinery has very limited time 

to act. Since shorter generation time species experience more generations and 

hence more of such mutagenic divisions in the same period of time, this could 

explain their higher rates. It has been suggested that the development of the 

circulatory system can shift the mutational signatures at different developmental 

stages (Bae et al. 2018). Moreover, it has been proposed that mammalian 

embryonic development is not properly aligned to other animal groups 

development, and the fast division periods could happen at different stages 

(O’Farrell, Stumpff, and Tin Su 2004), explaining more of these differences. A 

complete understanding of these processes can be used to infer the past events 

from the sequences of present individuals in population genetics.  
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CONCLUSIONS 
 
 
 
 
 
 
 
 

1. Accurate detection of somatic mutations from sequencing data requires 

careful consideration of the noise sources that can particularly hinder their 

identification 

 

2. A considerable proportion of sporadic Parkinson disease patients carry 

somatic single nucleotide variants whose germline mutation has been 

linked to the disease 

 

3. Array CGH lacks the sensitivity needed to identify somatic copy number 

variants 
 

4. Similar approaches are efficient to identify somatic mutations in 

sequencing data with different depths.  
 

5. Sequencing multiple tissues or replicates increases the power to 

discriminate germline and somatic mutations   



 128 

  



 129 

 
 
 
 

METHODS 



 130 

  



 131 

Somatic mutations in Parkinson disease patients 
 
 
1. Experimental methods 
 

DNA collection and extraction 

 

Tissue samples from cerebellum, neocortex, striatum and substantia nigra were 

obtained from the biobank HCB-IDIBAPS. They were  collected at autopsies of ten 

Parkinson’s disease patients with a short time between death and time of 

collection (6 to 18 hours). Blood samples from the same individuals were also 

obtained. DNA extractions were carried out with the Qiagen DNeasy Blood & 

Tissue Kit. 

 

Exome sequencing 

 

Library preparation and sequencing were performed by BGI. Genomic DNA 

samples were randomly fragmented into 150-200 bp fragments. Adapters were 

ligated and the resulting templates purified by the AgencourtAMPure SPRI beads. 

Libraries were amplified by ligation-mediated polymerase chain reaction (LM-

PCR). The exome was captured with the Exon Focus SureSelect kit from Agilent. 

Paired-end 100 bp sequencing was performed on an Illumina Hiseq2000 platform.  

 

2. Computational methods 
 

Mapping and processing 

 

The resulting FASTQ files were inspected with FASTQC v0.11.4 (Andrews 2010) 

and mapped with BWA v0.7.8 mem (Heng Li 2013) to the human hs37d5 

assembly. Lane-specific read groups were added with Picard Tools v1.95 (Broad 

Institute 2013). AddOrReplaceReadGroups and bams were merged by sample 

with samtools v1.9 (H. Li et al. 2009). Read duplicates were removed with Picard 

Tools v1.95 MarkDuplicates REMOVE_DUPLICATES=true. Base quality score 

recalibration and indel realignment were applied following GATK’s best practices 

(DePristo et al. 2011) with GATK v3.6 (McKenna et al. 2010). Secondary 

alignments were also excluded with samtools view -F 256 and exome coverage 

was calculated with BEDTools v2.26 (Quinlan and Hall 2010).  
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Germline genotyping 

 

Germline variants were called with GATK v3.6. First, GVCFs were obtained for 

each sample independently with -T HaplotypeCaller –emitRefConfidence GVCF. 

Then, all samples were genotyped together with -T GenotypeGVCFs and a 

standard hard filter was applied with -T VariantFiltration --filterExpression "QD < 

2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0".  

 

Principal component analysis (PCA) 

 

A PCA of the hard-filtered genotypes was performed with EIGENSOFT v7.2.1 

(Price et al. 2006) and samples were plotted according to the resulting 

eigenvectors with ggplot2 (Wickham 2009).  

 

Germline annotation 

 

Information on type of variants and gene affected was annotated with snpEff 4.3t 

(Cingolani, Platts, et al. 2012) eff. SnpSift 4.3t (Cingolani, Patel, et al. 2012) dbnsfp 

was used to add population frequencies, effect prediction and conservation 

information.  

 

Enrichment analysis 

 

Overrepresentation enrichment analysis was performed with WebGestalt (B. 

Zhang, Kirov, and Snoddy 2005) using the geneontology database (Carbon et al. 

2009) for molecular functions and genome protein coding genes as background.  

 

Somatic genotyping 

 

For Varscan 2 (Koboldt et al. 2012) somatic variant calling, mpileup files were 

obtained with samtools mpileup per each individual’s group of bams. Then, single 

nucleotide variants were called with Varscan v2.3.2 mpileup2snp with lax 

parameters: --min-coverage 1 --min-reads2 1 --p-value 1 --min-var-freq 0.000001 

--output-vcf. Indels were called with mpileup2indel with the same parameters. 

 

For HaplotypeCaller somatic variant calling, GVCFs per sample were obtained 

with GATK -T HaplotypeCaller -ploidy 10 -A StrandAlleleCountsBySample --
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emitRefConfidence GVCF. Then, all GVCFs were genotyped together per 

chromosome with -T GenotypeGVCFs -L chr -ploidy 10 -A 

StrandAlleleCountsBySample to obtain somatic SNV and indel calls.  

 

Copy number variant calling 

 

Depth of coverage files were obtained with GATK v3.6 DepthOfCoverage and GC 

content per target was calculated with GCContentByInterval. Then, CNVs were 

called jointly for all samples with XHMM v1.0 (Fromer et al. 2012b) with standard 

parameters following its recommended best practices.  

 

Short tandem repeats  

 

Short tandem repeats in hs37d5 were determined with Tandem Repeats Finder 

v.4.09 (Benson 1999) and parameters 2 7 7 80 10 12 500 -h. Homopolymers 

were extracted with a custom bash script based on their homogeneous repeat 

motif. 

 

Reference genome annotation BED files 

 

The 1000G strict mask FASTA files were obtained from the 1000G project FTP 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessib

le_genome_masks/) and were transformed into a BED file using a custom python3 

script. BED files for WGAC segmental duplications, common dbSNP SNPs and 

mappability for 100mers for hg19 were obtained from the UCSC table browser 

(Karolchik et al. 2004).  

 

VCF custom annotation and filtering 

 

Both types of VCF files were annotated from BED files with BCFtools (H. Li et al. 

2009) and from BAM files with a custom Python script using pysam (Pysam-

developers 2009). Variants were explored with IGV (J. T. Robinson et al. 2011) 

and filtered with custom awk scripts. 

 

Clustering heatmap 

 

The R package pheatmap was used to obtain heatmap of the variant allele 

frequency of somatic mutations at each tissue of the individual carrying the 

mutation. Tissues were clustered by Pearson correlation. 



 134 

  



 135 

Exploring somatic copy number variants in 
Alzheimer disease with array CGH data 
 
1. Experimental methods  
 
DNA collection and extraction 

 

Matched brain and blood samples were obtained from the brain banks Banco de 

Tejidos CIEN and Banco de Cerebros de la Región de Murcia whose ethical 

committees approved all protocols. In short, whole brains were obtained by 

neuropathological autopsy shortly after death. They were then divided into two 

symmetrical halves through a midsagittal section and cut into coronal, sagittal and 

transversal slices. Tissue slices were frozen by immersion in isopentane at -50°C 

and transferred to -80°C for long term storage. Selected sections were 

immunostained to confirm the diagnosis. Classification and staging of Alzheimer 

were performed according to the CERAD criteria as well as Braak staging of 

neurofibrillary pathology. The hippocampus regions CA1-CA3 were later 

dissected from the frozen slices by means of a stereomicroscope. 

 

Samples for total of 26 individuals, including 21 Alzheimer’s disease (AD) patients, 

2 vascular dementia (VaD) patients and 3 controls were obtained. Additionally, 3 

cerebellum samples were obtained from the dissections for 3 of the AD patients. 

DNA extractions were performed with the Qiagen DNeasy Blood & Tissue Kit. 

 

Comparative genomic hybridisation (CGH) array 

 

The resulting 55 DNA samples were hybridized in two different batches to the 

NimbleGen Human CGH 3x720K Whole Genome Exon-Focused Array CGH from 

Roche Diagnostics together with the commercially available control genome Male 

Human Genomic DNA from Promega. The test samples were labelled with cyanine 

3, a dye that upon excitation with ~500 nm light emits at 532 nm which 

corresponds to green, whereas the control genome was labelled with cyanine 5, 

whose excitation wavelength is ~600 nm and emits at 635 nm, which is associated 

with red.  

 

Whole genome sequencing 
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Libraries were prepared from the hippocampus and blood DNA samples from five 

of the AD patients with the TruSeq Nano DNA kit with a fragment size. Then they 

were sequenced in a HiSeqX machine at a mean coverage of 20x.  

 
 
2. Computational methods  
 
Normalization 

 

Raw light intensities for both test and control emission colors at each probe from 

each batch were normalized  by quantile normalization with normalize.quantiles 

from the preprocessCore R package (Bolstad 2016). Then, log2 ratios between 

test and control intensities were taken.  

 

Copy number segmentation and calling  

 

Normalized log2 ratios were segmented with segmentData from the R package 

CGHcall (van de Wiel et al. 2007) with parameters method="DNAcopy", 

undo.splits="sdundo", undo.SD=3. Copy numbers were then called with CGHcall 

nclass=5 and ExpandCGHcall was used to get the final object.  

 

Whole genome sequencing processing 

 

FASTQ files were inspected with FASTQC v0.11.4 (Andrews 2010). Reads were 

trimmed with Trimmomatic 0.36 (Bolger, Lohse, and Usadel 2014) TruSeq3-PE-

2.fa:2:30:10:8:false LEADING:20 TRAILING:20 MAXINFO:131:0.9 MINLEN:36 

and mapped with BWA v0.7.8 mem (Heng Li 2013) to the human hg19 assembly. 

Lane-specific read groups were added with Picard Tools v1.95 (Broad Institute 

2013). Read duplicates were removed with Picard Tools v1.95 MarkDuplicates 

REMOVE_DUPLICATES=true. Base quality score recalibration and indel 

realignment were applied following GATK’s best practices (DePristo et al. 2011) 

with GATK v3.6 (McKenna et al. 2010).  

 

Copy number variant calling from whole genome sequencing data 

 

Copy number variants were called with CNVnator 8.17 (Abyzov et al. 2011) with 

a bin size of 100 bp, as recommended for 20-30x coverage data. Also, mrCanavar 

0.51 (Alkan et al. 2009) was used to call copy number variants. First, the human 

reference hg19 was kmer-masked to avoid getting calls at repetitive regions in the 
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reference. To do this, the assembly was split into 36 bp-long kmers with a sliding 

window of 5 bp. The resulting sequences were mapped to the same assembly with 

GEM v2 (Marco-Sola et al. 2012) and kmers mapping more than 20 times were 

masked from the reference. Then, processed sample reads were split into 75-mers 

and mapped to the masked reference with GEM. Finally, mrCanavar was used to 

call copy number variants for each patient’s tissue. The same process was 

followed with 10 Spanish samples from 1000 Genomes Project to serve as control.  
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Somatic mutations in a neurotypical individual 
 
1. Experimental methods  
 

DNA extraction and sequencing 

 

A prefrontal cortex piece of the common experiment brain was obtained. DNA 

extraction was performed at the ancient DNA laboratory to avoid contamination. 

All the tools used in the procedure were sterilized under a UV light for at least 30 

minutes. The surface of the tissue sample was scrapped off by means of a surgical 

scalpel while on a container resting on dry ice. Smaller samples were cut from the 

tissue piece and placed into a 1.5 ml tube. DNeasy Blood & Tissue Kit for DNA 

extraction was used. A DNA library was prepared with the NebNext Ultra II kit and 

sequenced on an Illumina HiSeq4000 machine for 2x150 cycles resulting in a 90x 

mean coverage. Other samples from the sample prefrontal cortex as well as from 

expanded fibroblasts from the same individual were sequenced by our 

collaborators (unpublished data). 

 

2. Computational methods  
 

Mapping and processing 

 

FASTQ files from all samples were uniformly mapped with BWA v0.7.16 mem 

(Heng Li 2013) to the human hs37d5 assembly. Read duplicates were removed 

with Picard Tools v2.12.2 MarkDuplicates REMOVE_DUPLICATES=true. Base 

quality score recalibration and indel realignment were applied following GATK’s 

best practices (DePristo et al. 2011) with GATK v3.7 (McKenna et al. 2010).  

 

Somatic genotyping 

 

The bam from each sample was separated in chromosomes. Samples were then 

genotyped with HaplotypeCaller -ploidy 10 -A StrandBiasBySample from GATK 

4.1.2 (McKenna et al. 2010) in 5 Mb windows overlapping 600 bp with the 

surrounding windows when they belonged to the same chromosome.  
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Copy number variant calling 

 

Copy number variants were called with CNVnator 8.17 (Abyzov et al. 2011) per 

chromosome with a bin size of 50 bp. 

 

Reference genome annotation BED files 

 

The 1000G strict mask FASTA files were obtained from the 1000G project FTP 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessib

le_genome_masks/) and were transformed into a BED file using a custom python3 

script. BED files for WGAC segmental duplications and common dbSNP SNPs 

were obtained from the UCSC table browser (Karolchik et al. 2004). Mappability 

for 150-mers was calculated with GEM v2 gem-mappability.  

 

Short tandem repeats in hs37d5 were determined with Tandem Repeats Finder 

v.4.09 (Benson 1999) and parameters 2 7 7 80 10 12 500 -h. Homopolymers 

were extracted with a custom bash script based on their homogeneous repeat 

motif. 

 

VCF custom annotation and filtering 

 

VCF files were annotated from BED files with BCFtools (H. Li et al. 2009) and from 

BAM files as well as CNVnator output with a custom Python script using pysam 

(Pysam-developers 2009). Variants were filtered with custom awk scripts. 
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“The owl of Minerva spreads its wings  
only with the falling of the dusk” 

 
G.W.F. Hegel, Philosophy of Right (1820) 
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Figure S1. Per base sequence content at DV1C L3 FASTQ. FASTQC output plot for percentage of base pairs 
carrying each nucleotide (Y axis and the different colours) at each read position (X axis). DV1C L3 is shown 
as a representative example of every library.  

Figure S2. Kmer profiles at DV1C L3 FASTQ. FASTQC output plot for kmer enrichment per read position. 
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Figure S3. Exome coverage distributions. Histograms showing the number of base pairs of the target region 
covered by each depth per sample. Tissues are on the X axis facets, blood (B), cerebellum (C), striatum (E), 
neocortex (N) and substantia nigra (S). 

 

 
Figure S4. DV2C shares variants with DV8C. IGV screenshot showing a region where at one variant, DV8 is 
homozygous for the alternative allele while DV2 is heterozygous. For the other variant, DV2 is homozygous 
for the reference allele while DV8 is heterozygous. Vertical bars indicate the coverage per base pair and 
horizontal grey lines denote reads aligned to the region. Coloured bars indicate variants, with colour 
depending on the alleles: A (green), C (blue), G (brown) and T (red).  
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Figure S5. DV2B has an intermediate allele frequency. IGV screenshot showing a region with one variant, 
where DV8 is heterozygous and DV2 is homozygous for the alternative allele. 
 
 
 
 

 
Figure S6. Exclusivity of calls by total variant allele frequency. Each bar shows the proportion of calls with a 
given variant allele frequency along the 5 tissues of an individual that have been called in none (0), or 1-9 
other individuals. Calls were filtered so that their total depth was between 250 and 350. 
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Figure S7. Read pair ratio distribution. R1 depth to R1 + R2 depth ratio at positions with depth from 20 to 100 
and alternative depth >4 (green). A binomial distribution with p=0.5 is shown in grey for comparison.  
 
 
 

 
Figure S8. Intersection of calls filtered by number of variants within read length with other filters. Horizontal 
bars represent the number of variants that do not pass each filter at sample DV1S. Vertical bars correspond 
to the number of variants in the intersection indicated by the dots. ONT: not on target, BIN: failed binominal 
test, allBIN: failed binomial test at some tissues, NCALL: non-callable tracks, STB: strand bias, DP: depth <20 
or >100, R1R2: read pair bias, OTHER: called in more than 1 other individuals’ tissue, PIR: biased position in 
read, AD: alternative allele depth <5, nRL: more than 3 variants within read length.  
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Figure S9. Log2 ratios by position for several samples. Log2 of red/green light intensities per probe (M, in the 
Y axis) by genomic position (X axis). Blood samples are tagged with “B” and hippocampus samples with “H”. 
Grey lines show limits between chromosomes. Colored bars mark deletions specific of an individual and 
shared between the tissues, two in individual 2M in blue and one in 1G in green.  
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Figure S10. Log2 ratio density at sex chromosomes. Log2 ratios of red to green light intensities at the X 
chromosome (blue) and the Y chromosome (red) for each individual and tissue.  
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Figure S11. MA plots for all arrays. Mean intensity of both channels (A) against log2 ratio (M) at each probe 
for each array. Blue lines are at M 0 of no copy number change and red lines are the  regression lines.  
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Figure S12. MA plot after batch correction. MA plot of 1GB as an example of the dolphin distribution found 
after batch correction in some of the arrays.  
 
 

 
Figure S13. Number of samples called for genes with 360 to 370 filtered probes. The number of samples were 
HFE, with 365 filtered probes, was called at is represented by the red line.  
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Figure S14. Filtered calls disease enrichment analysis. Overrepresentation enrichment analysis for OMIM 
genes of all filtered calls in the Alzheimer patients. 
 

 
Figure S15. Copy number at control regions. mrCanavar copy number at control regions for each sample 
(solid lines) compared to a normal distribution with the same mean and standard deviation (dotted lines). 
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Figure S16. Copy number in and out of control regions. mrCanavar copy number distribution at control regions 
for each sample (colored violins) and outside control regions (grey violins). 
 

 
Figure S17. aCGH segmented ratio distribution at WGS calls. Dark colors indicate log2 ratios are from the 
sample were the WGS call was made, whereas lighter colors show the log2 ratios of the other sequenced 
samples at those same calls.  
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Supplementary table 1. Genes reported at OMIM as involved in Parkinson disease. For each of the loci 
coordinates in hg19 (same as in hs37d5), the locus and gene names, if appropriate, are reported. Also, the 
inheritance reported at OMIM: Autosomal dominant (AD), autosomal recessive (AR) or association (AS).  
 

Coordinates in hg19 Locus Gene name Inheritance 

4:90645250-90759447 PARK1 SNCA AD 

6:161768590-163148834 PARK2 PRKN AR 

2:73114512-73119289 PARK3 SPR AR 

4:90645250-90759447 PARK4 SNCA AD 

4:41258898-41270446 PARK5 UCHL1 AD 

1:20959948-20978004 PARK6 PINK1 AR 

1:8021714-8045342 PARK7 DJ-1 AR 

12:40618813-40763086 PARK8 LRRK2 AD 

1:17312453-17338423 PARK9 ATP13A2 AR 

- PARK10 - - 

2:233562015-233725289 PARK11 GIGYF2 AD 

- PARK12 - - 

2:74756532-74760683 PARK13 HTRA2 AD 

22:38507502-38577761 PARK14 PLA2G6 AR 

22:32870707-32894818 PARK15 FBXO7 AR 

- PARK16 - - 

16:46693589-46723144 PARK17 VPS35 AD 

3:184032283-184053146 PARK18 EIF4G1 AD 

1:65775218-65881552 PARK19 DNAJC6 AR 

21:34001069-34100351 PARK20 SYNJ1 AR 

3:132136553-132257876 PARK21 DNAJC13 AD 

7:56169266-56174187 PARK22 CHCHD2 AD 

15:62144590-62352664 PARK23 VPS13C AR 

1:155204239-155214653 - GBA AS 

4:100257649-100273917 - ADH1C AS 

6:170863421-170881958 - TBP AS 

12:111890018-112037480 - ATXN2 AS 

13:70681345-70713885 - ATXN8OS AS 

17:43971748-44105699 - MAPT AS 

X:120181462-120183796 - GLUD2 AS 

16:89984287-89987385 - MC1R AS 

6:28477797-33448354 - HLA AS 

14:92524896-92572965 - ATXN3 AS 
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Supplementary table 2. SNPs associated to PD. List of SNPs previously associated to PD in GWAS.   
 

dnSNP ID hg19 coordinates 

rs797906 1:54190695 

rs114138760 1:154898185 

rs10737170 1:156063880 

rs6710823 2:135592381 

rs4954218 2:135803425 

rs2390669 2:169091942 

rs2102808 2:169117025 

rs9917256 2:169143035 

rs7617877 3:28705764 

rs34016896 3:160992864 

rs11248051 4:858332 

rs6599389 4:939113 

rs34884217 4:944210 

rs11248060 4:964359 

rs1596117 4:77151490 

rs356219 4:90637601 

rs356220 4:90641340 

rs356165 4:90646886 

rs2736990 4:90678541 

rs13201101 6:32343604 

rs3129882 6:32409530 

rs1801582 6:161807855 

rs12718379 8:16860077 

rs1805874 8:91082062 

rs2205108 8:91136078 

rs7077361 10:15561543 

rs10886515 10:121343589 

rs1079597 11:113296286 

rs1994090 12:40428561 

rs1491923 12:40591117 

rs1491942 12:40620808 

rs11175655 12:40623727 

rs34637584 12:40734202 

rs10847864 12:123326598 

rs4889603 16:30982225 

rs12456492 18:40673380 

rs4130047 18:40678235 

rs117022814 19:2209647 

rs7412 19:45412079 

rs2823357 21:16914905 

rs2010795 21:45172628 
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Supplementary table 3. Samples hybridized in array CGH.   

 
Codes Diagnosis Braak Stage 

1G Alzheimer II 

1A Alzheimer III 

2G Alzheimer III 

2A Alzheimer IV 

2J Alzheimer IV 

2I Alzheimer V 

2L Alzheimer V 

1D Alzheimer V 

2C Alzheimer VI 

2N Alzheimer VI 

2M Alzheimer VI 

2B Vascular Dementia I 

1EH Vascular Dementia II 

CT1A Control - 

CT1C Control - 

1B Alzheimer III 

1F Alzheimer V 

1H Alzheimer IV 

2D Alzheimer VI 

2F Alzheimer V 

2E Alzheimer III 

2H Alzheimer VI 

2K Alzheimer IV 

2O Alzheimer VI 

2P Alzheimer NA 

CT1B Control - 
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Supplementary table 4. Genes reported at OMIM as involved in Alzheimer disease. For each of the loci 
coordinates in hg19 (same as in hs37d5), the locus and gene names, if appropriate, are reported. Also, the 
inheritance reported at OMIM: Autosomal dominant (AD), autosomal recessive (AR) or association (AS).  
 

Coordinates in hg19 Locus Gene name Inheritance 

6:26087509-26095469 6p22.2 HFE AD 

7:150688144-150711687 7q36.1 NOS3 AD 

10:75670862-75677258 10q22.2 PLAU AD 

12:9220304-9268558 12p13.31 A2M AD 

17:56347217-56358296 17q22 MPO AD 

21:27252861-27543138 21q21.3 APP AD 
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