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Resum

L'heli amb els seus dos isotops eHe i 4He) són els únics líquids quantics reals que

es troben a la natura. Presenten una serie de propietats molt peculiars que tenen a

veure amb els fonaments de la Mecánica Quantica i amb implicacions importants en

lestudi daltres sisternes quantics de fermions i bosons. És per aquest motiu que l'heli

líquid ha esdevingut, ja des de fa temps, un carnp de recerca molt actiu.

De totes les substancies conegudes, els dos isotops d 'heli són les que tenen els punts
d'ebullició més baixos, 4.21 K per 1'4He i 3.19 K per 1':3He. Quan la temperatura es

redueix mes, estant sota la pressió de saturació de vapor, ambdós esdevenen líquids.
En absencia de pressió aplicada romanen líquids fins al zero de temperatura. L'heli

es pot preparar lliure d'impureses gracies a que en el rang de ternperatures en el qual
esta en estat líquid totes les substancies són solides i que és superfiuid a temperatures
inferiors a 2.17 K per 4He i 3 mK per 3He. Així, es poden eliminar practicament totes
les impureses solides per filtració.

Les transicions de fase que tenen lloc en condicions d'equilibri, dins del regim de

coexistencia, com per exemple el punt d'ebullició d'un líquid o el punt de solidificació,
estan ben deterrninades experimentalment. Ara bé, no tetes les transicions de fase

esdevenen sota condicions d'equilibri. A mesura que la nova fase estable es va forrnant

l'energía lliure del sistema va disrninuint. A prop del punt ele transició d'equilibri on

la fase original i la que s'esta formant coexisteixen , la fase inicial es pot rnantenir en

111



IV ReSUIll

un estat metastable: líquids sobre-escalfats o vapors sobre-refredats són exemples de

sistemes metastables. Malgrat ser internament estables, existeix en cada cas una altra

configuració que té un potencial terrnodinámic menor (vapor en front dellíquid sobre­

escalfat, líquid en front del vapor sobre-refredat) i per tant el sistema tendira a aquesta
nova configuració energeticarnent més favorable. La transició, pero, no és espontania.
Aixo és c1egut él, I'existencia d 'una barrera. termodinámica que separa I'estat metastable

de l'est.able i que per tant bloqueja la formació de la nova fase. Aquesta barrera pot
ser superada gracies a fluctuaeions estadístiques en la densitat o en la concentració

que tenen eom a resultat la formació i ereíxcment de petits nuclis (cl7J,sters) de la nova

fase estable en l'estat metaestable: bombolles en el líquid (cavita.ció), gotes en el vapor

(nucleació ) .

Per tant. la. nucleació és I'iniei el'una transforrnació de fase, eom vaporització,
liqüefaeeió o fins i tot solidifieaeió, a partir d 'un nucli de la nova fase. La nudeació

sera homogenia o heterogenia, segons que el nucli sigui consituit o no per atorns de la

mateixa fase a transformar. El fenomen de la nudeaeíó juga potencialment un papel'

en totes les transicions de fase de primer ordre. Pot ser portada a terme per activaeió

terrnica superant I'alcada de la barrera, o a molt baixes temperatures creuant la barrera

per efeetes quantics i quantum tunneling). Depenent de eom sigui la barrera energética,
el ritme de nucleació sera lent o molt rapid. Quan el ritme és lent caldra allunyar-se
forca de la situaeió d'equilibri abans no aparegui el primer nucli loealitzat. Tan bon

punt el sistema és eonduit a un estat metastable, el procés de nucleació s'activa: es

cornencen a formar nuclis de la nova fase estable, si són mes petits que un ser tamany

que anomenern nucli crítie llavors són absorbits pel mateix sistema, ara bé si les fluctua­

eions generen un nucli arnb un tamany superior llavors aquest creixera deseneadenant

la separació de fases: el nudi erítie és la llavor de la transició de fase.

L'heli líquid és, dones, un bon banc de prova per estudiar els Ienornens de eavitaeió

hornogenia tant per efectes terrnics eom pels quantics ja que, eom hern eomenta.t ante­

riorment, pot ser preparat lliure el'impureses í a més, a temperatures properes al zero

absolut tornan en l'estat líquido

En la teoria classica de nucleació es treballa amb I'aproximació de eapil.laritat on
es suposa que el nucli té una superfíeie abrupta. Aquesta aproximaeió macroscópica
presenta una serie d'íneonvenients. Primer, es negligeix qualsevol efecte de eompressió
de la densitat central elel nucli degut a la seva superfíeie, corn per exemple la variació de
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l'energia deguda a les correccions de curvatura. 1 segon , la impossibilitat del model de
tenir en compte la modificació de I 'energia de superficie del nudi deguda a la presencia
de vapor quan la temperatura creix. Aquestes limitacions, que són irnportants en nuclis

petits, poden ser superades utilitzant un funcional de la densitat d 'energia per calcular

les propietats terrnodinamiques del sistema" i aquest constitueix precisarnent el nostre

punt de partida.
L'aplicació de I'aproximació del funcional de la densitat al problema de la nucleació

es pot resumir en els següents passos. Primer, partint d'un funcional que descrigui
correctament el nostre sistema, és convenient considerar el diagrama de fases del sistema

i així, daquesta manera, delimitar les zones metastables on es formaran els nuclis de

la nova fase estable. Llavors:

1. Es determina el perfil de densitat del nucli crític donades unes condicions de pressió
i temperatura en les quals el sistema homogeni és metaestable. Cal remarcar

que no s'imposen cap mena de restriccions sobre el perfil del nucli, sinó que

aquest s'obté resolent una equació cl'Euler-Lagrange arnb simetría esférica amb

les condicions de contorn donades pel sistema metaestable.

u. Un cop ja tenim el perfil del nucli crític, determinem l 'alcada de la seva barrera

de nucleació, és a dir 1 'energia necessaria per formar-lo en aquelles condicions de

metaestabilitat. Aquesta energia s'obté fent la diferencia entre el gran potencial
del nucli crític i el del sistema homogeni metaestable, tots dos expressats en

termes del funcional d'energia lliure.

in. Per estudiar la nucleació deguda a l'activació terrnica es procedeix de la següent
manera: donada una temperatura, es calcula la pressió de cavitació homogenia
que és aquella a la qual el nombre de nuclis crítics forrnats per unitat de temps i

de volum és igual a un cert nombre (normalment un nucli per segon i centímetre

cúbic) que indica el cornencament de la separació de fases.

IV. Mentre que per l'activació térmica només cal coneixer I'alcada de la barrera, per

estudiar la cavitació quantica s'ha de coneixer també la seva arnplada. Nosaltres

hem modelat el creixement del nucli en el medi metastable desplacant el perfil de

densitat de la gota crítica suposant-lo , per tant , invariant. Així, per cada configu­
ració corresponent a una etapa de creixement del nucli , es calcula, análogament a
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l'apartat ii., l'energia necessaria per formar-la. D'aquesta manera coneixent ja la

barrera energética en funció de la variable col.lectiva del desplacament , hem cal­

culat I'acció i a partir d'ella, el ritme de nucleació quantic i la pressió homogenia
de cavitació.

v. La temperatura de transició entre el regirn terrnic i el quantic és aquella on com­

peteixen els dos efectes, i per tant s 'obté igualant els dos ritmes de nucleació.

En aquesta tesi presentem un estudi detallat dels processos de nucleació i cavitació

en 4He pur, 3He pur i en mescles de 3He-4He. Hem utilitzat per cada sistema un fun­

cional de l'energia, els parámetres del qual han estat ajustats per tal de reproduir els

resultats experimentals. La fiexibilitat del funcional de l'energia és especialment indi­
cada per les mescles d'heli a baixes temperatures on la máxima solubilitat i I'existencia

dels estats d'Andreev fa difícil de simular els perfils del nucli crític amb qualsevol model
de superfície abrupta.

En el capítol 2 hem estudiat nucleació i cavitació per activació terrnica en 4He

i 3He purs. A pressions positives hem vist que la teoria de nucleació homogeriia és

capac de reproduir els resultats experimentals. A pressions negatives la situació encara

no esta ben determinada: els calculs teorics presenten una clara discrepancia arnb

els resultats experimentals de 1'4He. Experiments recents semblen apuntar, pero, que
aquesta discrepancia pot ser deguda a la molta dificultat i a la poca fiabilitat de les

determinacions de pressió i temperatura en la mostra, o a d'altres efectes que no s'hagin
tingut en compte com pot ser la nucleació en vortexs.

En el capítol 3 hem estudiat la nucleació i cavitació termiques en mescles de 3He-

4He. Hem vist que la pressió homogenia de nucleació varia considerablement fins i tot

per petites concentracions d'3He. A mesura que s'augmenta la concentració, la tensió

superficial disminueix degut a l'existencia dels estats superficials d'Andreev i per tant

la cavitació esdevé més probable. Hem vist a la secció 3.6 que una manera d'explicar
la supersaturació crítica de les mescles d'3He-4He, per sobre de la qual es trenca la

mescla, és considerar la desestabilització de línies de vortexs d,4He plenes d,3He.
En el capítol 4 hem estudiat la nucleació quantica en 3He i 4He purs. Hem vist que

el funcional de la densitat proporciona un bon marc per estudiar el quantum tunneling,
en el qual la temperatura de transició entre el regirn quantic i terrnic pot ser calculada
a partir d'una expressió senzilla.



Chapter 1

Introduction

3He and 4He are the only real quantum liquids found in nature. Many peculiar
properties of those systems have 1,0 do with the foundation of Quantum Mechanics and

have also significant irnplications in the study of other quantum systems of ferrnions

and bosons. For this reason liquid helium has become, since a long time, a quite active

field of research.

The two isotopes of helium have the lowest normal boiling points of all known

substances, 4.21 K for 4He and 3.19 K for 3He. When the temperature is reduced

further , both 3He and 4He become liquid under the saturated vapor pressure and in

the absence of applied pressure they rernain liquid down 1,0 absolute zero. The low rnass

of the atoms, which ensures a high value of zero-point energy, as well as the extremely
weak forces between them cause the system to stay liquid even at zero temperature,
Helium can be prepared free of impurities, this is because at the temperature l'ange in

which helium is in a liquid state all substances become salid. Then, taking advantage
of the superfluidity of liquid helium, at temperatures T below 2.17 K for 4He and 3 mK

for 3He, one can remove practically all salid impurities by filtration using the ability of

superfluids to penetrate the smallest pares.

Low temperature physics has becn a rapidly evolving experimental field which has

-'_"""�'''''''�r'!
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benefit from the special properties of 3He and 4He to coristruct sophisticated cryogenic
apparatus suited to lower the experimental temperatures down 1,0 the mK regime. This
has allowed experimentalists to study liquid helium at low temperatures discovering a

large number of phenomena whereas an underlying theory is stilllacking for many of

them.

The main difficulty for a theoretical study arises from the fact that liquid helium is a

highly correlated many-body system. There are different theoretical methods to study
liquid helium. Basically, they can be classified into two types, namely microscopical
and phenomenological methods.

Microscopical methods are based on ab initio theories where the system is only
characterized by its atomic rnass, statistics and interaction potential. It is worth noting
that there are relatively simple analytical expressions for the interatornic potential [1, 2]
which describe with great accuracy helium interaction. With these basic ingredients
one can construct the many-body hamiltonian of the system and then try to solve the

corresponding Schródinger equation.
There are microscopical methods that try to solve "exactly" the Schródinger equa­

tion but with a finite number of particles, for example Creen Functíon Monte Corlo and

Díffusion Monte Carla methods. Other microscopical approaches solve the Schródinger
equation approximately: there are variational methods (Hypernetted-chaín, Variational
Monte Carla), and perturbative methods which start not from the uncorrelated system
but from a basis constructed variationally that already incorporates some correlations

(Correlated Basís Functíon).

Phenomenological methods are based mainly on the Density Functional Theory,
which has received a renewed interest in their application to quantum liquids. It has
been extensively employed in a variety of problems because it provides a rather flexible

theoretical basis which is well suited 1,0 study different systerns (surfaces, thin films,
droplets, impurities, vortices, ... ).

The Density Functional Theory (DFT) is based on the Hohenberg-Kohn theorem

[3]. It establishes that the particle density p(r) is the physical variable that fixes all

the ground state properties of the many-body system. In particular, the energy of the

systern can be written as a functional of the one-body density

E = J H[p(r)]dr, (1.1 )
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where H[p( r)] is the energy densi ty functional. The parti cle densi ty p( r) of the system
is then obtained minimizing the total energy.

The theorem establishes the existence and uniqueness of this energy functional, but
it does not provide any method to deterrninate the exact expression. Due to the lack

of a rigorous procedure different approximations have to be made, The functional is

constructed for each particular system on the basis of physical arguments.
Since the proposal by Stringari of a density functional for liquid helium derived from

an effective Skyrme-like interaction [4]' it has been used with success in a variety of

problems, becoming a reliable tool in situations where a fully microscopic approach is

prohibitive, like finite systems at non-zero ternperature or nucleation in liquid helium.

More elaborated density functionals have also been proposed, for example using a finite

range interaction and incorporating hard core effects [5, 6] or taking into account back­

flow effects [7]. Whereas many-body techniques appear unfeasible to deal with finite

temperature and inhomogeneities in most of the problems, density functional methods
are becoming more and more accurate for clescribing inhomogeneous phases of quantum
liquids.

In this thesis we are concerned with the density functional description of homoge­
neous cavitation and nucleation in liquid helium at low temperatures, i.e., that occur­

ring in the bulk of the liquid phase, free of impurities. We thus will not pay attention to

the important practical subject of heterogeneous nucleation by impurities, on surfaces

or on electron bubbles.

Phase transitions under equilibrium conditions are experimentally well determined

as they take place in the coexistence regime, for example the normal boiling point of a

liquid or the equilibrium freezing point. However, phase transitions do not always occur
under equilibrium conditions. As the new phase forms, the free energy of the system
is lowered. But close to the equilibrium transition point, the original phase can be

held in a metastable state. Superheated liquids and supercooled vapors are examples
of metastable systems. Although they are internally stable, there exists in each case

another configuration having a lower therrnodynamical potential. The metastable state

is separated from the stable one by sorne thermodynamical barrier. Due to statistical

fluctuations in density or concentration, that barrier can be overcome as a result of

the formation and growth of small clusters of the new stable phase in the metastable

state (bubbles in the liquie! or e!roplets in the vapor; bubbles and e!roplets will be
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herc generically referred to as clusters). So, nucleation is the process of first localized

appearance of a new stable phase in a rnetastable state which will potentially playa
role in the dynamics of every first-order phase transition. The nucleation process can

be achieved therrnally or by quantum tunneling, and depending on the energy barrier

the nucleation rate will be slow or very fast. When the rate is slow, large deviations

from equilibrium rnay be required before the first localized stable phase appears.

Within the so-called classical theory of nucleation (see for example references [8,
9, 10] and references therein), the grand potential of the growing drop is evaluated

m the capillarity approximation. It consists in treating the drop as a piece of bulk

liquid limited by a sharp surface. Such a rnacroscopic approximation has at least two

obvious shortcomings. First, the neglecting of any cornpressional effect on the central

density of the drop due to its surface. This is what one calls a finite size effect, like
the change in energy of the cluster due to curvature corrections. These corrections

can be incorporated as variations of the surface energy with size, leading to a kind of

droplet model for homogeneous nucleation [11]. The second shortcoming is originated
by the unability of the model to take into account the modification in the surface

energy of the cluster due to the presence of vapor as T increases. These limitations,
certainly important for small size clusters, can be overcome using a density functional
to calculate the thermodynamical properties of the system [9, 12, 13, 14]' and this

indeed constitutes our starting point.

This thesis is organized as follows. In chapter 2 we study therrnal nucleation at low

temperatures in pure 3He and 4He at negative and positive pressures, by means of an

energy density functional for each isotope which takes into account therrnal effects.

Since 3He has a finite solubility in 4He at zero temperature and liquid helium is usu­

ally a mixture of both isotopes, we study in chapter 3 cavitation in 3He-4He mixtures.
At negative pressures and at different 3He concentrations below and aboye saturation,
we study the dependence on 3He concentration of the configuration that likely drive

the nucleation process (bubble or 3He-rich drop), and the homogeneous cavitation pres­

sure. Supersaturated mixtures at positive pressures are also studied. Since the process

of nucleation at positive pressures gives too large a critical concentration value as com­

pared with the experimental one, we discuss the small degree of supersaturation found

in 3He-4He mixtures at positive pressures by means of 4He vortex destabilization in the

mixture, i.e., vortices with eores rieh in 3He.
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At sufficiently low temperatures the rate at which therrnal activat.ion over the energy

barrier occurs becornes very srnall. Nucleation rnust then be dorninated by quantum

tunneling through the barrier. In chapter 4 we study cavitation in liquid heliurn due

to quanturn tunneling. We analyze in the whole range of allowed negative pressures,

the crossover ternperature for each isotope at which therrnal and quanturn cavitation

cornpete. Finally, the conclusions are drawn in chapter 5.



Chapter 2

Therrnal nucleation and cavitation

in 3He and 4He

Motivated by recent experimental work on cavitation in superfiuid 4He [15, 16],
we have undertaken the study of thermal cavitation in both helium isotopes at high
densities to investigate the forrnation 01' bubbles in the liquid , while at low densities,
the reverse situation , i.e., drop formation in helium vapor, is consiclered.

The basic tool for this study is constitutecl by two free energy density functiona1s,
one for each isotope, that have been constructee! to describe with accuracy the equation
of state, liquid-vapor equilibrium and therma1 properties of the interface [17, 18]. These
Iunctionals allow one to obtain the nucleation (cavitation) barrier within an improved
version of the homogeneous nucleation theory as indicated for example by Xiong arid

Maris [12], and by Oxtoby [8].
Theoretica1 investigations of liquid helium properties at negative pressures [12, 19,

20, 21] have been prompted by recent experiments carried out by Nissen et al. [15],
and Xiong and Maris [16] using ultrasonic waves. They have performed experiments
on the negative pressure required to produce nucleation 01' bubbles in 4He, with similar

apparatus in which ultrasonic waves generated by a hemispherical transducer were

focussed for a short time into a small volume in the interior of the liquid, not in

contad with any container wall, considerably a.voiding the possibility of heterogeneous

7
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nucleation. The magnitude of this negative nucleation pressure is also called tensile

strength.
Although the experimental results reported in [15] for 4He at temperatures T aboye

1.5 K seemed to be well reproduced by Classical Nucleation Theory (ClNT) [22], the
experiment carried out in [16] appears to discard this possibility. A serious argument

against the interpretation of the experimental findings of [15], already raised in [16]
and confirmed in [21,23], is that the spinodal pressure Psp at which liquid 4He becomes

macroscopicallu unstable is bigger than the hornogeneous cavitation pressure yielded
by CINT and by the experirnent reported in [15].

Using ultrasonic waves, Xiong and Maris have found that the tensile strength for

nucleation of bubbles in 4He for ternperatures in the 0.8 K - 2 K range, is '" 3 bar.

To analyze their experimental results, they have resorted to a model that represents
a considerable improvement over the CINT. It is based on a density functional (DF)
whose free parameters are fixed at T = O to yield the experimental velocity of sound

propagation in the liquid as a function of the density* p, and includes a gradient terrn
'\(\7p)2 adjusted so as to reproduce the surface tension of 4He at T = O K. They have

assumed that the surface energy and the equation of state are ternperature independent.
Considering thermal activation they have found a tensile strength that goes from

'" 9 bar at T '" O K, to '" 6.5 bar at T = 2 K, still lying in absolute value well

aboye their experimental data. Several rnay be the reasons for this disagreement.
The first is the validity of their functional in the density dornain corresponding to

negative pressures. However, since other equations of state obtained within the density
functional framework [21] (see also below), as well as within a quadratic diffusion

Monte Carlo rnethod using an improved Aziz potential [n] yield very similar values

for P.sp (aroun d '" - 9 bar at T = O K), we do not believe this to be the cause of the

disagreernent. Another reason may be the zero-ternperature description of the liquido
The nucleation process is strongly infiuenced by the surface tension which exhibits a

strong dependence upon temperature [17, 18]. However, since at low ternperatures the

surface tension is a very smooth functíon of T [17, 18], it can be approximated by the

value at T = O. So, we do not expect either the zero temperature DF to be the cause

of the disagreernent. In spite of that , a study including therrnal effects is called for to

*They have extrapolated measurements of the sound velocity of helium at positive pressures to
estimate the equation of state for negative pressures.
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state which part of the discrepancy comes from other effects not taken into account

in the calculation. We will see that the inclusion of therrnal effects in the calculation

of the barrier against nucleation, results in a sizeable decrease of the tensile strength
aboye 1.5 K. Thus, the disagreement with the experimental data still rerriains. As if

they clairn, the ultrasonic technique used in these experiments discards the possibility
of heterogeneous nucleation, nucleation on vortex lines could be a possible origin of the

discrepancy.

In this chapter we want to address the effect that a non-zero temperature has on the

nucleation barrier, since it has been overlooked in all previous calculations and thus, it
is of relevance to put on a firmer basis which part of the disagreement between theory
and experiment can be attributed to nucleation of bubbles on a vortex line in the case

of 4He at negative pressures or even to other undetected effects. For 3He, our results

constitute the first detailed study of the tensile strength using a realistic DF, and can

be of sorne relevance in view of the planned experiments on this helium isotope [16].

We shall show that our results on cavitation at positive pressures are in agreement
with the experimental data [24, 25], opposite to the situation for 4He at negativo pres­

sures [13]. We are not aware of existing experimental results for nucleation in either

helium isotope away from the critical point. The critical region is deliberately excluded
from our calculations because of the intrinsic limitations of the density functionals we

are using [17, 18], as well as the very low temperature region in which nucleation

through quantum tunneling may playa significant role [26P. Notwithstanding, the

present study almost spans the whole liquid-gas equilibrium region, making quite dis­

tinct predictions in physical situat ions where no experimental information is available.

This chapter is organized as follows. In section 2.1 we review the density functional

approach to the nucleation problem. Then we present the results for both isotopes. In

section 2.2 and 2.3 we consider cavitation at negative [13] and positive [27] pressures,
respectively, Finally, in section 2.4 we study forrnation of drops in the vapor [27].

tThis subject will be throughoutly studied in chapter 4.
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2.1 Thermal nucleation within a density functional

approach
Our starting point is the following free energy functional [17, 18J for either helium

isotope:
1 1 (\7 )2

fni(P, T) + 2bp2 + 2ep2+'Y + 137 + �(\7p)2

fv(p, T) + 13 (\7p )2 + �(\7p)2 ,

P
.

where p is the particle density and fni is the well-known free energy density of a

noninteracting Bose or Fermi gas [28J. The b- and e-terms are the contribution due to

the interatomic interaction , the ¡3-term is the correction to the kinetic energy density
(standard Weizsácker correction for 3He) and the �-term is the surface correction to the

interaction energy. The density gradient terms vanish when the system is homogeneous,
in which case f(p, T) reduces to fv(p, T). The pararneters b, e", 13 and � have been

adjusted so as to reproduce physical quantities such as the surface tension, equation of

f(p, T)

(2.1 )

st.ate and vapor pressure along the coexistence lineo

We want to point out that the surface tension as a function of T, the isotherms

and the vapor density in equilibrium with the liquid phase are well reproduced by our

model up to temperatures aboye the ones of interest for the present study. This is of

especial relevance for a quantitative study of homogeneous nucleation and cavitation

in the Iiquid-gas transition.

2.1.1 Metastable region
Before studying cavitation and nucleation, it is convenient to consider the phase equi­
librium diagram and to delimit the metastable region where clusters of the new stable

phase will be formed. Figure 2.1 shows a schematic picture of the phase equilibrium
diagrarn in the pressure-density plane, which may represent either helium isotope+.

For él. given T, the densities of the liquid and vapor in equilibrium (PL and pv,

respectively) are found imposing that the pressure and chemical potential of both

tStríctly speakíng, the T = O ísotherm in thís figure corresponds to the 4He case. For 3He at low
densities, one would have the pressure of the free Fermi gas, i.e., the pressure should íncrease even at

zero ternperature.
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phases be the sarne, i.e.,

P(pv, T)
f1(pv,T), (2.2)

with P and f1 calculated from fu. These equations have a non-trivial solution only
for T below a critical value Te. For T < 1� one obtains two curves PL = pL(T, P)
and ev = pv(T, P) which intersect at T = I�, and define the two-phase equilibrium
line (dashed-dotted line in Fig. 2.1). The region below this curve is the two-phase
coexistence region, which splits into two domains. One is the unstable region in which

the system cannot exist as an uniform phase because the stability condition

(OP) > O
op T

(2.3)

is not satisfied. And the other one is the metastable region, corresponding to overheated

liquid and overcooled gas, where the system can remain homogeneous until a small

perturbation drives it into a two-phase equilibrium state. These domains are separated
by the classical spinodal curve defined as

(2.4)

The spinodal line is represented in Figure 2.1 by the solid line labeled sp, and the

metastability region corresponds to the hatchecl zone limited by the spinodal ancl the

two-phase coexistence curves. Both curves are tangent at the critical point (Pe, Te).
Three generic isotherrns are also drawn in that figure.

We have obtained the liquid-gas coexistence line and the spinodal line, by solving
Eqs. (2.2) and (2.4), where P and f1 are calculated by means of the free energy functional

(2.1) for an homogeneous system. These calculations involve only algebraic equations,
since only !v(p, T) comes into play.

The liquid may be experimentally driven into a metastable state using sorne super­

heating technique in which the temperature of the liquid is raised at constant pressure

(going from point 1 to point 2, see Fig. 2.1) or decreasing the pressure at constant

temperature (going from point 1 to point 2'). This technique can also be used to probe
the tensile strength of the liquid when the pressure is reduced to negative values,
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Figure 2.1. Schematic representation of the liquid-gas equilibrium. The solid line labeled

sp is the spinodalline, and the dash-dotted line is the two-phase equilibrium lineo The regions
of stability, metastability and unstability of the one-phase system are also indicated.

2.1.2 Critical bubble and barrier height

Those processes cause the system to cross the liquid-gas equilibrium line, penetrating
into the metastable zone. At this point the nucleation process is activated. The

dynamics of the first-order phase transition corresponding to liquid-gas separation can



Thermal nucleation and cavitation in 3He end 4He 13

be regarded as the formation of clusters of a new phase in the hornogeneous metastable

rnedium: bubbles in the metastable liquid (cavitation) or drops in the rnetastable

vapor (nucleation); for sizes smaller than a critical one, these clusters shrink, but

beyond a critical radius, they grow to trigger the phase separation. This suggests the

existence of an energy barrier that prevents the metastable system from decaying into

the sí.able phase, whose height is determined by the free energy required to form the

critical nucleus. The critical cluster is then in unstable equilibriurn with the metastable

system.

The application of the density functional approach to the nucleation problem pro­

ceeds in two steps. First, one determines the critical cluster density profile in a given
metastable state and the energy involved with its formation. And second, at a given T,
the pressure at which the number of critical clusters forrned per unit time and volume

equals a conventional nurnber, say one per second and cubic centimeter, to indicate

the onset of phase separation.
Critica.! clusters are calculated at clifferent metasta.bility conclitions (P. T) which

have associated a cert.ain uniforrn density pm = Pm(T. P). In fact, we have proceeclecl
as Iollows: al, given T < Te we pick up éL density Pm Ior which the systern is in the

metastable region. For exarnple, at the intermediate T shown in Fig. 2.1, pm will lie

between PSPL and PL (superheated liquid: bubble formation) or between Pv and PSPV

(undercoolecl vapor: drop formation), where PSPL and PsPv are the spinodal densities at

that temperature T, corresponding to the liquid and vapor destabilization, respectively.
Given (Pm, T), since the metastable state is homogeneous, the pressure of the systern
is P(Pm, T) = - Iv(Pm, T) + flpm, which will be positive or negative depending on the

choice of pm (see Fig. 2.1).
The clensity profile of the critical cluster is obtained solving the Euler-Lagrange

equation
51

=
81

_ \7
81

= fl .

Sp 8p 8V P
,

where fl is the chemical potential of the homogeneous metastable systern at (Pm, T).
We have solved Eq. (2.5) with spherical symrnetry. The boundary conditions for the

physical solution are (1'(0) = O and p(r - (0) = pm'

The nucleation barrier 6.D, i.e., the energy required to forrn the critical cluster, is

finally obtained frorn the difference between the granel potential of the critical cluster

(2.5)
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and of the homogeneous metastable system:

6n = J dr [f(p, T) - !v(Pm, T) - f1(p - Pm)]' (2.6)

Since P = P(Pm, T), Eq. (2.6) yields 6n = 6n(p, T). Fixed T, we calculate 6n

for several pressures along the isotherm. There are two physical requirements on the

nucleation barrier 6n that can serve as a check of the validi ty of an approach to the

nucleation problem:

1. 6n must drop to zero at the corresponding spinodal pressure, since at that point
the homogeneous system becomes macroscopically unstable, and

u. 6n must diverge when P approaches the vapor pressure value (on the two-phase
equilibrium line), since the homogeneous system becomes stable.

This simply indicates that , to have an appreciable probability of forming a bubble, the

system has to be immersed deeply inside the two-phase equilibrium region, since the

probability for any of these critical clusters to be thermally nucleated at a certain T is

given by the exponential factor exp(-6n/kT), i.e., fixed T, the probability increases

when the barrier height decreases.
It is worth it to mention [8, 10] that a weak point of the classical theory is that

it yields nonvanishing barriers at the spinodal lineo As we will see in the following
sectionsi , the limiting behaviour of 6n is well reproduced in our scheme. We thus

conclude that the physical requirements of stability and unstability are satisfied by the

energy barr iers obtained within our density functional approach.

2.1.3 Thermal nucleation rate and homogeneous nucleation

pressure

The therrnal nucleation rate JT, i.e., the number of drops or bubbles formed in the

homogeneous system per unit time and volume at a given temperature T due to thermal

fiuctuations, is given in the original Hecker-Dóring [22] theory by the expression

JT = JOT exp (-6n/kT) , (2.7)

§See Figs. 2.2, 2.5 and 2.9.
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the exponential term gives the probability of forming a critical cluster by thermal acti­
vation , where .6.0 = .6.0(P, T) is the energy barrier height required to form the critical

cluster in the metastable system, and k is the Boltzmann constant. The preexponential
factor JaT gives inforrnation about the number of clusters that can be formed per unit

time and volume. It depends cm the characteristics of the system and on the dynarnics
of the nucleation process [29].

At a given temperature, the rate of bubble formation rises abruptly with decreasing'[
P due to its exponential dependence on .6.0. In a typical experiment of cavitation ,

one applies a gi ven pressure to an experimental volurne V for a time T and deter­

mines whether or not cavitation occurs. There is an appreciable probability of cluster

formation when

JT(P, T) (VT)e rv l. (2.8)

Thus at a given T, in view of (2.8), the pressure at which nucleation occurs will depend
on the experimental volume and time. However, because JT changes rapidly for small

variations of P, the pressure that satisfies Eq. (2.8) depends only weakly on the values

of V and T, and one can consider that cavitation occurs at a fairly definite threshold

pressure Ph(T), which is called homogeneous nucleation pressure.

To make a sensible comparison with the experimental results of [16, 24]' we have

solved

(2.9 )

where the choice (VT)" = 2.5.10-13 cm+sec corresponds Lo solving the equation Ior the

experimental conditions of [16] and (VT)e = 1 cm ' sec corresponds to the experimental
conditions of [24].

To solve Eq. (2.9) for Ph, an expression for the preexponential factor has to be

chosen. There are many proposals 01' different complexity in the literature, see for

example Refs. [8, 12, 24, 25] and references therein. Following Lifshitz and Kagan [26],
and Xiong and Maris [12] we have taken

V

JaT rv

Va
'

where 1/ is the attempt frequency and Va is the volume 01' the critical cluster, being
l/Va an upper bound 01' the number of virtual centers 01' formation of the new phase

(2.10)

1TSee Fig. 2.3. The rate of drop formation rises abruptly with increasing P.
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per unit volume. For simplicity, it is taken v = kT/ h and for Vo the volume of a sphere
of radius 10 A representing the critical cluster, although as a matter of fact the radius

of the critical cluster increases with ternperaturell. In spite of that, since Ph is not

very sensitive to the value of (VT)e that rnultiplies JOT, it will not be sensitive to small

variations of the prefactor either. V/e have thus taken the gcneric value of 10 A in the

prefact.or JOT Ior all ternpera.tures. Rewriting (2.10), the prefactor reads

3kT
JOT =

h47r103
. (2.11)

To have an idea of the order of magnitude of this preexponential factor, for T = 4 K

one has JOT cv 2.1031 cm-3sec-1, while for the same temperature Sinha et al. [24] have
JOT cv 2.1033 cm-3sec-1. A variation of two orders of magnitude in JOT, which is also

obtained when the preexponential factor is calculated by means of theories developed
to describe the dynamics for the formation of critical clusters [8], does not affect in any

appreciable way the solution of Eq. (2.9).

2.2 Cavitation at negative pressures

We have studied bubble formation at negative pressures. First , we have obtained the

critical bubbles by solving the EL equation (2.5), where in this case I.L is the chemical

potential corresponding Lo any density pm such that the pressure of the homogeneous
liquid P(Pm, T) is negative, corresponding to a metastable state. Then we have cal­

culated the nucleation barriers with Eq. (2.6). As we have commented aboye, our
T-dependent functional approach yields 6.D = 6.D(P, T). In Fig. 2.2 we plot the bar­

riers �D as a function of P for several temperatures in the case of 4He (a) and 3He

(b ). As expected, for a gi ven T, 6.D drops to zero at the corresponding spinodal pres­
sure, and diverges at the saturation one. At low T the saturation pressure is rv O and

the spinodal one is about -9 bar for 4He and -3 bar for 3He [13], and the T-curves

show a large kind of plateau (in a logarithmic scale). The divergences of 6.D-curves at

saturation (Psat) are not shown in Fig. 2.2 but they can be guessed.

IISee Figs. 2.8 and 2.11.
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Figure 2.2. Nucleation barriers �n for 4He (a) and 3He (b) as a function of pressure

corresponding to bubble formation at negative pressures and several temperatures T.
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The inclusion of therrnal effects in the calculation (compare 6n(T) and 6n(T = O))
lowers the nucleation barrier because the surface tensión decreases with increasing T

[17, 18]. It means that the energetical cost of forming the interface between the two

phases decreases and thus, the required energy to form the critical bubble is lowered.

The capillarity approximation** can provide a rough idea about the role played by the

surface tension in the nucleation process, where the dependence of the energy barrier

with the surface tension a goes like rv a3. Another consequence is that the density
inside the bubble increases, thus making its structure more similar to the homogeneous
metastable phase.

Fig. 2.3 shows JT for 4He and 3He. The dashed lines correspond to nucleation

rates calculated from the 6n(T = O) barrier. One can see that a better estimate of

6f2(T), since its value is lowered, increases JT more than one order of magnitude at

pressures relevant for bubble nucleation. It is worth noting how rapidly JT increases

with decreasing P.

We have obtained the negative hornogeneous nucleation pressure solving Eq. (2.9)
with the experimental volume V and time T taken from [16], i.e., (VT)e = 2.5 x

1O-13cm3 sec, to allow for a sensible cornparison with their results for 4He.

Ph is shown in Fig. 2.4 as a function of T for 4He [Fig. 2.4(a)] and 3He [Fig. 2.4(b )].
The short-dashed line has been obtained from 6n(T = O), and the small difference

between this curve and Xiong and Maris results (dashed-dotted line) for 4He is due to

the different DF used in both calculations. For comparison, we also show the critical

pressure Psp(T) (long-dashed line) at which liquid He becomes macroscopically unstable

(spinodalline). It is worth it to remark that the T-independent approach is valid at

temperatures below 1 K (0.2 K) for 4He eHe), since at this temperature range the

surface tension diminishes smoothly enough [17, 18] to take as first approximation the

value a(T = O). At moderated temperatures the use of 6n(T = O) to obtain JT
constitutes a poor approxirnation , yielding a tensile strength bigger in absolute value

than !Psp! at T rv 1.5 K for 3He and at T rv 2.5 K for 4He, where this approximation
breaks down.

"See s«. 3.3.1.
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2.3 Cavitation at positive pressures

The energy barriers for bubble forrnation at positive pressures are plotted in Fig. 2.5.

At high ternperatures, the curves are almost vertical, since the spinodal (6.0 = O) and
the saturation (6.0 ---+ 00) pressures are close. If classical nucleation is applied, none oi'

these T-curves will cross the P-axis. These barriers resemble ours for large values out

abruptly separate for small ones, going asyrnptotically to zero when P ---+ -00 instead

of converging towards the spinodal pressure.
Ph is shown in Figure 2.6 as a function of T for 4He [Fig. 2.6(a)] and 3He [Fig.

2.6(b)]. The solid curves have been obtained using (VT)e = 1 cm'' sec, and the dashed

curves with (VT)e = 2.5 . 10-13 cm" seco It is worth noting that the results of the

calculation are rather insensitive to the precise value of (VT)e (compare the solid and

dashed curves, whose (VT)e differ in 13 orders of magnitude).
In these figures we have also plotted the spinodal line Psp, and the vapor saturation

curve P.sat as a function of T. The dots are experimental points taken from [24] for 4He,
and Irom [25] for 3He. One can see that the agreement between theory and experiment
is very good for 4He indicating that the density functiona.l approach to homogeneous
nucleation theory applies to bubble formation in 4He at positive pressures. Concerning
3He, the agreement is fairly good; our calculations are less than 0.1 K aboye the

experimental results. This discrepancy could be attributed to a failure of the 3He

functional at such high ternperatures (the 4He one turns out to work much better,
see [17, 18]), or to an experimental underestimation of the homogeneous nucleation

temperature. This possibility is indicated, although ruled out, by Lezak et al. [25].
Comparing Psat with Ph in Fig. 2.6, one can see for example, that for 4He at T = 4.2

K, the pressure has to be reduced from its value at saturation around 0.5 bar to get

cavitation, while a reduction of 0.25 bar is enough at T r-.- 4.8 K. For 3He, the reduction
at T r-v 2.5 K is around 0.35 bar, and rv 0.1 bar at T rv 2.9 K. An alternative way to

read this figure is that , at P = 1 bar, one needs to increase T around 0.4 K to produce
cavitation in 4He, whereas an increase of rv 0.1 K is necessary at P = 1.5 bar.
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For the sake of completeness we plot in the same figure the results we have obtained

for cavitation at negative (Fig. 2.4) and positive pressures (Fig. 2.6), Fig. 2.7 shows

the pressures for homogeneous bubble formation from T = O to the vicinity of the

critical point, which is indicated by a cross. The results below T ::; 0.15 K should be

considered only as indicative, since we have neglected quanturn tunneling [26J. As in

Fig. 2.6, the solid line represents Ph for (VT)e = 1 cm" sec and the dashed line, for

(VT)e = 2.5 . 10-13 cm" seco Both curves merge with the spinodal line Psp at T = o.

The influence of the precise value of (VT)e on Pi, turns out to be more sizeable for

negative Ph, which happens for T < 4 K for 4He, and for T ::; 2.4 K in the case of 3He

(see Fig. 2.6). The dots in Fig. 2.7(a) are the experimental points of [16J. The possible
origin of the discrepancy between the calculated Ph and the experimental results has

been already discussed in the previous section.

The present results show the interest of performing experiments on 4He aboye the

,\ transition (T;.. = 2.17 K), but still for temperatures such that Ph < O, i.e., T ::;
4 K. lndeed, at high temperatures the density functional approach yields results in

good agreement with those obtained from the classical theory [24]. This can be easily
understood if one realizes that at these temperatures the critica] bubbles are large (see
Fig. 2.8), so that finite size effects are less important. As T decreases, the critical

bubbles get smaller and the classical theory becomes less reliable, whereas the density
functional approach still applies. If this is the case, the remaining discrepancy between

theory arid experiment below T;.. could be attributed, on Iirrner grounds, to the role

played by vortices in the process of cavitation in superfluid 4He. Alterriatively, the
planned experimente on cavitation in 3He [16J could help understanding if the existing
discrepancy for 4He is still due to shortcomings of the density functional approach.

Figure 2.8 shows the density profile of several critical bubbles we have found in 4He
and 3He. Their size grows as T increases due to the decrease of the surface tension.

It is also interesting to observe the filling of the bubble with gas as T increases, and
the appreciable increase of the surface diffuseness as it happens for the liquid surface

at saturation [17, 18J. The comparatively large value of asymptotic density for 4He
at T = 2 K reflects the experimental fact that the density of the liquid at saturation

presents a maximum for T rv 2.2 K.
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2.4 Nucleation

Figures 2.9 to 2.11 show the results for nucleation in both isotopes. In Fig. 2.9 we

have plotted the nucleation barrier as a function of pressure calculated along different

isotherms. The range of temperatures goes from zero to almost the critical temperature.
Similarly to what has been previously indicated for bubble formation, one can see that

.6.D drops to zero at the pressure corresponding to the spinodal line, and di verges
when it approaches the saturation value. Note the different behaviour of the barriers

in nucleation and cavitation processes. It can be easily seen from the phase equilibrium
diagram (Fig. 2.1), that in the metastability region of high densities, where cavitation

occurs, Psp < Psat and that they become closer at higher temperatures, whereas in

the rnetastability regíon of low densities, where nucleation occurs, Psp > Psat and

become closer at lower temperatures. Thus at a given T, for increasing pressures in the

range bounded by the corresponding saturation and spinodal pressures, in cavitation

processes 6.D is an increasing function and at high ternperatures the curve is alrnost

vertical, whereas in nucleation processes 6.,0 is a decreasing function and its curve is

alrnost vertical at low ternperatures,
The pressure Ph of homogeneous droplet nucleation is shown in Fig. 2.10 as a

Iunction of T. The meaning of the curves is the sarne as in Fig. 2.6. Note that the

difference between Ph and Psat is rather small, of the order of 0.1 bar for 4He aboye

T rv 2 K� and rv 0.03 bar for 3He above T rv 1 K. This indicates that experiments
aiming at studying homogeneous nucleation in helium will be much harder to analyze
in the gas than in the liquid phase. We would also like to draw the attention on the

negligible infiuence of the value of (VT)e on Pi;

Finally, in Fig. 2.11 the density profiles of the critical droplets we have found are

plotted, for temperatures ranging from T = 1 to 5 K in 4He [Fig. 2.11(a)] and for

T = 1, 2, and 3 K in 3He [Fig. 2.11(b )]. Again one can see that, due to the decrease of

the surface tension, the critical droplets grow as T increases. Comparing Figs. 2.8 and

2.11, one can see that for each isotope, at given T the sizes of the critical drop and

bubble are similar (see also [9]).
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Chapter 3

Thermal nucleation and cavitation

in 3He-4He mixtures

Thermal nucleatíon in binary mixtures is receiving much attention [10, 30J due to its

importance in technical applications. Similar to the case 01' one-component systems,
the frarne for the theoretical understanding of this phenomenon has been provided
for a long time by the classical nucleation theory. It makes use of the capillarity
approxirnation, in which the free energy of a sharp-surface nucleus is written as the

sum of a bulk and a surface termo Although this description can be safely used near the

saturation line, it is certainly incorrect near the spinodal line, because here it predicts
a non-vanishing nucleation barrier. The density functional approach overcomes the

shortcomings inherent in the capillarity approximation; moreover , it has been shown

[31 J that the eflects of surface enrichrnent and curvature are also naturally includecl in

this approach.

Liquid helium at low temperatures has been considered as an useful tool for testing
homogeneous nucleation theories [10], mainly because near the absolute zero ternper­
ature it can be prepared with a high degree of purity. However, Helium is usually a

mixture of 3He and 4He, and the aim of the present chapter is to complete these studies

considering the case of mixtures.

It is well known that at low temperature, even when small amounts of 3He are

31
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present in 4He, the surface tension 01' the liquid is considerably reducecl. This is due to

the presence of 3He atomic levels at the free surface 01' liquid 4He, which are referred to

as Andreev states [32]. As we have already seen in the previous chapter, the cavitation
barrier strongly depends on surface tension, and thus bubble formation is enhanced

even at very low 3He concentrations. Therefore, a sizeable change in the cavitation

pressure with respect to that of the pure system should be observed in mixtures below

saturation. A lower bound to the minimum pressure a solution 01' 3He in 4He can at tain

as a rnetastable system is estimated. At this pressure, the probability of forming a

critical bubble is high and the system is likely to split into two phases.
A density functional for homogeneous 3He-4He mixtures at zero temperature has

been constructed by Dalfovo and Stringari [33,34], the pararneters of which have been

adjusted so as to reproduce sorne experimental data of pure 3He and 4He systerns, and

of the mixture. We have employed the sarne functional, slightly modifying the surface

pararneters to better fit the experimental surface tension 01' pure 4He and that 01' the

mixture-pure 3He interface at saturation.

We have used the density functional approach to investigate thermal cavitation and

nucleation in 3He-4He liquid mixtures at low temperatures, at different pressures (P)
and 3He concentrations (x) in the metastable region 01' the phase diagram. Due to

the miscibility gap existing in 3He-4He mixtures, an interesting process appears. For

3He concentrations above saturation, it is also possible, even at negative pressures,

that phase separation originates by nucleation 01' 3He drops in the mixture (hereafter
referred to as drop formation). Therefore, two nucleation mechanisms are present at

negative pressures: drop and bubble forrnation, competing somewhere in the pressure-

3He concentration planeo In both cases, there is a critical nucleation cluster size above

which the system will undergo phase separation. The associated free energy defines

the barrier height that determines which of these processes is more probable.
It is worth emphasizing that both drop and bubble profiles are naturally obtained in

this approach. This is especially useful in multi-component systems, where the shape
of the nucleation cluster configuration cannot be easily guessecl. Using the density
functional, calculations of the barrier height are performed as a function of pressure
and 3He coricentration, which enable us to obtain the homogeneous cavitation pressure
via thermal activation.

Recent experiments [35] at low temperature and low positive pressures have found
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metastable supersaturated 3He-4He solutions only up to a :3He eoncentration around

7%. These results are in contradiction with the common belief that a supersaturated
mixture at low T could be in a metastable state up to ,..._, 16%.

We have investigated the phase separation at low positivo pressures in supersatu­
rated 3He-4He liquid mixtures. We have found a large discrepaney in the supersatu­
ration value between recent experiments ("'" 1%) and nucleation theory (,..._, 10%). We

suggest that the rather small degree of supersaturation found experimentally is due to

destabilization of vortices with eores rieh in 3He.

This chapter is structured as fo11ows. In section 3.1 we analyze the homogeneous
system to determine the boundaries between the metastable (where eavitation takes

place) and the stable and unstable regions [36]. In section 3.2 we eonsider the inho­

mogeneous system, fixing the functional parameters to correctly fit the experimental
surface tension of the 4He liquid free surface and of the mixture at saturation [:36]. We

also calculate, as a function of :lHe concentration, the surface tension of the free surface

of the mixture [36], which is relevant for bubble formatiou, and the surface tension of

the pure 3He-mixture interface along the saturation curve [:37], experimentally known

only at P = O. In section 3.3 we consider cavitation at negative pressures in mixtures

at 3He concentrations below saturation [36] and in section 3.4 we study cavitation and

nucleation at negative pressures in mixtures aboye saturation [37]. Finally, in seetion

3.,5 we study the critical supersaturation [38].

3.1 The metastability region

The following free energy density for a mixture of 3He and 4He has been used [34]:

with

(3.2)
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where Pi is the particle density of the iHe isotope, pis the total density p = P3+P4, and Ti

and mi are the corresponding kinetic energy densities and atomic masses, respectively.
The 3He effective mass is defined as

( )-2* P3 P4
m3 = m-; 1- - --

P3c P4c
(3.3)

aud the kinetic energy densities are

( 3.4)

and

(3.5)
where

3
(3 2)2/3 5/3

5"
7f P3

1 (\7P3)2 1
¿j.

18 P3 +:3 P3

We have considered that 3He is in the normal phase and consequently, by "zero

(3.6)

temperature" we shall always mean a temperature around 3 mK. Let us first consider

a homogeneous mixture, in which the density gradient terms vanish and f reduces to L.
The parameters b4, C4, �(4, b3, �(3, P3c and the sum c� + c� have been adjusted [34J so as to

reproduce various physical quantities at saturation for pure 4He and 3He homogeneous
systerns, such as the energy per particle, the density, the compressibility and the 3He

effective mass. The pararneters b34, C34 and c� have been fixed in order to reproduce
the maximum solubility of 3He in 4He at zero pressure (xo), the 3He ehemieal potential
when P3 -----t O and the ratio of specifie heats between 3He and 4He at the same limito

The parameter P4c has been fixed to take into aeeount the variation of m; with 3He

concentration, and /34 has been taken as an average between /3 and /4 [34].
Before studying cavitation, it is convenient to delimit the metastable region where

nucleation oecurs. At zero temperature, we determine its boundaries with the stable

and unstable regions in the plane (P, x), where P is the pressure and x is the 3He
concentration (x = P3/p). Necessary and sufficient stability conditions for a binary
system [30, 39] are given by the following inequalities on the compressibility

f{ = (�P) � O
P .7;

(3.7)
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and the chemical potentials:

(3.8)
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Figure 3.1. Phase diagram of the mixture at T = O.

A positive compressibility guarantees mechanical stability, whereas the condition

on the chemical potentials ensures diffusive stability. Taken as equalities, the above

equations determine two curves on the (P, x) plane, which are shown in figure 3.1 as

a dashed-dotted and a dashed line, respectively. One can see in this figure that , for
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the functional we are using, the diffusive stability condition is always violated first , so

inequality (3.7) is in practice useless for this problem. Therefore, the spinodal line,
which is the boundary between the metastable and the unstable regions, is fixed by
the diffusive stability condition, This line will be denoted Psp(x). At P = O, it cuts

the x-axis at xsp '" 30%.

Comparison of Xsp with the maximum value of x, for which the mixture has been

experimentally found in a metastable homogeneous state Xh ':::::' 15%* [42], can be con­

sidered as being rather dubious. This would mean that one is identifying the spinodal
pressure with the homogeneous nucleation pressure, which is the only one that is ex­

perimentally accessible. As a matter of fact, these pressures can be quite different

[13, 16, 27J. In the present case the functional has been fixecl to reproduce Xo [34],
yielding an xsp value aboye the experimental xi; at P = O. The variational calcula­

tions of Ref. [4:3] yield Xo = 1% instead of the experimental value Xo '" 6.5% [42], and

xsp = 18%, whereas those of Ref. [44] yield xsp rv 10%.

To draw the frontier between the metastable and the stable region let us first C011-

sider the maximum concentration curve which is determined by the two-phase equilib­
rium equations:

P(p, x) = P(p3p, X = 1) (3.9)

and

(3.10)

where P3p is the density of segregated 3He. These equations determine a curve on the

(P,x) plane which is denoted as Psat(.r) in figure 3.1. It is interesting to note that eqs.

(3.9) and (3.10) have solutions at negative pressures. Psat(x) is interrupted at the 3He

spinodal pressure [21], as for lower pressures the aboye equations are meaningless. In

the phase diagram (Fig. 3.1) one can distinguish two kind 01' metastabilities:

• Ata given pressure P, for concentrations larger than those defined by the equation
P = Psat(x), the single-phase system is metastable because the two-phase system
(pure 3He and a saturated mixture) has a lower free energy, where the forrnation

of critical 3He drops is important as they are responsible for phase separation.

*Recent experiments [35] and [40] as quoted in [41], have actually found metastable 3He-4He
solutions up to smaller concentrations (Xh � 7%). We defer this discussion to Seco 3.6.
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• Another rnetastability arises from the application 01' a tensile strength. In this

case, the system will develop either a free surface for low concentrations, or 3He
will segregate and also produce a mixture-pure 3He interface. In the first case,

phase separation will proceed by bubble nucleation, and in the second case by
3He drop nucleation.

Finally, the boundary between the metastable and the stable regions is determined

by the line P = O from x = O up to Xsat (which we shall call xo), and the curve Psat(x)
for x > xo. We have indicated it by the the short-dashed line in figure 3.1. The

metastable zone is the hatched region in this figure.

3.2 Inhomogeneous system: Surface tension

To analyze the properties of the inhomogeneous system, the [u11 free energy density in

Eq. (3.1) has to be considered. The parameters d3,d4 and d34 have been determined

by fitting the experimental surface tensions. Our values [36] differ slightly from those

01' Ref. [34], since we have tried to reproduce the experimental data of [45, 46] instead
of those of [47] used by Dalfovo [34].

Liquid helium mixtures at equilibrium may develop two kind of interfaces. One

corresponds to the liquid free surface, and it appears at P = O when x < xo. The other

one appears when 3He segregates for x 2': Xo and P 2': O, forming apure 3He-mixture

interface. Different surface tensions are associated with these interfaces.

To calculate the surface tension of the liquid helium mixture interface, one has first

to calculate the density profiles P3(Z) and P4(Z) of the equilibrium configuration. The

density profiles are obtained by solving the coupled Euler-Lagrange (EL) equations:

(3.11 )

and

(3.12)

where f(P3, P4) is the free energy 01' the system and f[3, fl4 are the corresponding 3He

and olHe chemical potentials.
The surface tension is calculated as

(3.13)
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where P is the equilibrium pressure P = p(z ---+ ±oo). Dalfovo [34] has calculated the

surface tension between pure 3He and the saturated mixture using a family of Wood­

Saxon densities by fixing the pararneter d34 to the value of d3 + d4. In particular, for
p = O él. value of a = 0.026 KA -2

was obtained, while extrapolation of the experimental
values yields around 0.016 KA -2 [47].

The EL equations have been sol ved for x = xo. The boundary conditions Ior

Z ---+ ±CXJ are obtained by solving the two-phase equilibrium conditions (:3.9) and (3.10).
The value of the parameter d34 has been varied so as to reproduce as well as possible
the experimental surface tension of the mixture-pure 3He interface at P = O. The

best result obtained for a is 0.018 KA -2, and the full set of parameters defining the

functional is given in Table 1 of Ref. [36J.

3.2.1 Free surface

For x < Xo at P = O, the density profiles P3(Z) and P4(Z) are obtained by solving the

coupled EL equations (3.11) and (3.12). Imposing the following boundary conditions.

When Z ---+ -(X) the densities tend to zero, and when z ---+ +00 the densities tend to

vaiues of P3 and P4 such that P(P3,P4) = O and x = P3/(P3 + P4)'
We have calculated the surface tension a(x) pertaining to the free surface of the

mixture, which is the one relevant in classical cavitation theories. In Fig. 3.2 we show

it as a function of concentration. One can see that a decreases abruptly near x = O (for
pure 4He, the surface tension is 0.256 KA -2). It is related to the presence of a finite

surface density (Ns) of 3He atoms at the interface. It is shown in Fig. 3.3(a), where
the density profile for x = 0.05% is plotted. This Iact was predicted by Andreev [32]
as a sign of the existence of 3He surface states with larger binding energy than those

of a 3He atom in the 4He liquid bulk.

In a recent work, Pavloff and Treiner [48] have studied, using the original functional
of Ref. [34], the properties of the two-dimensional system formed by 3He atoms on the

surface of liquid 4He as a function of the 3I--Ie coverage N,5' They find several types
of surface states accessible to 3I--Ie atorns and calculate the variation of the surface

tension as a function of Ns' We have repeated this calculation and found similar

results (remember we are using a different parameter set}, which are shown in the

upper right-hand comer of Fig. 3.2. The last N, of this graph (Ns=O.095A -2) roughly
corresponds to the first calculation in x (x = 0.0.5%) in the sense that both yield very
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similar 3He density profiles at the surface.
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Figure 3.2. Surface tensión a plotted as a function ofthe 3He concentration x. In the upper

right-hand corner we show a as a function of the 3He surface density Ns. The configuration

corresponding to the final value of Ns(0.095Á-2) and to the first value of x(O.05%) are

approximately equivalent, both yielding a = 0.172 KÁ-2.

For increasing values of x, the maximum of P3 at the surface smoothly increases

until it reaches its equilibrium value (see Fig. 3.3). As one would expect, when x

approaches the calculated saturation value Xo = 6.6% at P = 0, the so-called Antonov
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rule [46] holds, i.e.:

(3.14)

where 0', 0'3, and O'i, are the surface tensions of the free liquid mixture at saturation, of

pure liquid 3He and of the interface between pure liquid 3He and the saturated mixture,

respectively. The numerical values of these quantities for x = 6.6% are 0.131, 0.113

and 0.018KÁ -2, thus perfectly fulfilling the aboye relation. The corresponding density
profile is shown in Fig. 3.3(c).

For x � xo, in accordance with experiment [49], no solution to Eqs. (3.11), (3.12)
exists: it is impossible to observe a supersaturated mixture with a liquid free surface,
since the exceeding 3He segregates to the surface.
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Figure 3.3. Liquid free surface density profiles as a function of z for different 3He con­

centrations: a) x = 0.0.5%, b) x = 4%, and e) x = 6.6%. Dashed lines correspond to 3He,
dashed-dotted lines to 4He, and solid lines to the total density ofthe mixture (z = O is defined

as the point where P = Psatf2).
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3.2.2 Pure 3He-mixture interface

The surface tension of the mixture free surface has been studied in the previous sub­

section as a function of x. We now proceed to obtain that of the mixture-pure :JHe
interface along the saturation curve, which is the relevant one for .3He drop forrnation.

The saturation curve Psat(x), i.e., the maximum solubility curve, is determined by the

two-phase equilibrium conditions given by Eqs. (3.9) and (3.10).
The calculation follows a similar line as for the free surface case. Given a point

(x, P) on the saturation curve the 3He and 4He particle density profiles P3(Z) and

P4(Z) are obtained by solving the coupled Euler-Lagrange equations (3.11) and (3.12),
imposing the following boundary condi tions. When Z ----7 00 the densi ties P3 (z) and

P4(Z) tend to values P:3 and P4 such that x = P:3/(P:3 + (4) and p2f)f/éJplx = P. When

z ----7 -00 only pure :3He at pressure P is presento

The surface tension of the pure :3He-mixture interface, calculated as Eq. (3.13), is

displayed in Fig. 3.4 as a function of x. \Ve have started at x =4 %, which corresponds
to a pressure close to the spinodal pressure of pure 3He, and have stopped the calcu­

lations at a value of x which roughly corresponds to +3 almo Above that value, the
functional does not accurately reproduce the maximum 3He solubility, see [34]. Com­

paring the present results with those shown in Fig. 3.2, one can see that the surface

tension of the mixture-pure :3He interface is a factor of ten srnaller than that of the

mixture free surface.

3.3 Nucleation and cavitation within the DF ap­

proach

In this section we are interested in nucleation and cavitation processes in 3He-4He

mixtures. Because of the miscibility gap existing in 3He-4He mixtures, and the presence

of 3He atomic levels at the free surface 01" 4He, these processes will provide a large
variety of critical configurations which can be more intricate than the critical clusters

we have obtained in pure 3He and pure 4He (chapter 2). However, since the density
functional approach makes no assumption on density profiles, the same procedure as

in the pure case is valid to calculate the homogeneous nucleation pressure. Now al! the

magnitudes depend on P3(T) and P4(T) simultaneously, which are obtained minimízing
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Figure 3.4. Surface tension of the mixture-pura 3He interface as a function of the 3He
concentration along the saturafion curve.

the free energy density functional /(P31 P4.) oí the mixture, The' density profile per)
of the critica! cluster is then p(r) = P3(r) + p4.(r). Let us briefly recall the method
we have already used in the previous chapter for isotopically pure helium and that we
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want to extent to the case of 3He-4He mixtures.

• The starting point is the free energy density functional f(P3, P4), Eq. (3.1), which
describes the 3He-4He mixture at T = O.

• Given a metastability configuration (x,P) with uniform density pm = p3m + p4m,

we calculate the particle density profiles P3(r) and P4(r') for the critical nucleus, by
solving the coupled EL equations (3.11) and (3.12) in spherical coordinates, where

f.l3(4) are the corresponding chemical potentials in the homogeneous metastable

system. The boundary conditions are that the r-derivative of P3(4) at T = O is zero

and that p3(4)(r ---> cx:J) approaches the corresponding density of the metastable

system P3m(4m)'

The density profile of the critical cluster is then p(r) = P3(r) + P4(r). It is

such that with any further increase in size, it may continue to grow without any

externa] intervention and trigger the phase separation.

• The nucleation barrier height D.n is determined by the free energy of the critical

nucleus. It is obtained from the difference between the grand potential of the
cri tical cluster and that of the homogeneous metastable state:

Remember that since the metastable system is homogeneous,

(3.16)

• The nucleation rate, i.e., the number of clusters formed III the homogeneous
system per unit of time and of volume due to therrnal fiuctuations is given by

_ -t::,.O¡kT.h - JOTexp , (3.17)

where k is Boltzmann's constant and the pre-exponential factor JOT depends on

the dynamics 01' the cavitation process (see Seco 2.1.3). We have calculated D.n

with a density functional description of the mixture at T = O. Strictly speaking,
one should calculate D.n as a Iunction of T. However, for the low temperatures
we are considering, no appreciable modifications in the density functional are
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expected to arise. It is important to recall that the solubility of 3He in 4He

drastically increases with T, and has important consequences on O"(x). Since the

coefficients of the functional (3.1) have been adjusted at T = O, from the analysis
of the available experimental data [50] at low temperatures, we estimate that the

present calculations are reliable up to T � 150 mK.

• To make a quantitative estímate of the homogeneous cavitation pressure Ph, one

may proceed as in the pure case, that is, consider that to observe cavitation one

must have

(3.18)
where (11r ), are the experimental volume and time, and then solve the equation

�� = In [JoT· (lIT)e]. (3.19)

It is worth mentioning two new aspects appearing in the case of He mixtures which are

absent in the case of pure liquid He. First, in the metastable P < O region not only
bubbles, but also 3He droplets may be formed. Second, the P-dependence of ,6.!1 for

3He drops being formed in the mixture is different from that for bubbles. At a given
X, both barriers vanish at the sarne pressure where the homogeneous system becomes

unstable, i.e., at the spinodal pressure Psp(x). But they diverge at different pressures,

since the pressures at which the system is stable against bubble- or drop-formation are

different. In the case of bubbles, at a given X the barrier .6.!1 cliverges when P goes to

zero and, in the case of drops, at a ·gíven concentration .6.!1 diverges at the negative
P obtained when one solves the equilibrium conditions (:3.9) and (3.10). These Iacts

are originated by the limited solubility of 3He in 4He liquid at T r-..J O K. In view of the

two types of metastabilities we have already distinguish in the mixture phase cliagram
(Sec. 3.1), we shall study cavitation and nucleation at low temperatures and negative
pressures first in mixtures below saturation, and next, aboye saturation. Finally, we

shall study the critical supersaturation of 3He-4He mixtures at low ternperatures.
As a first approximation, one can consicler clrop and bubble nucleation in the cap­

illarity moclel. Since we have calculated the surface tension of the pure 3He-mixture
interface along the saturation curve (Fig. 3.4), which is a key ingredient in the capil­
larity model and experimentally known only at P = O, for the sake of completeness
let us recall the capillarity approximation to bubble and drop forrnation in 3He-4He
mixtures.
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3.3.1 Capillarity model

To have a rough idea on drop and bubble nucleation processes, it is convenient to start

from the simplest capillarity model. In this approach cJusters are assumed to have a

sharp radius, thus the nucleation barrier is written as a balance between surface and

volume terms [26]
(3.20)

where R is the radius of the nucleation cluster. There are two possible processes,

bubble and drop formation. Depending on the metastability configuration, one process

will be more favorable than the other.

i. Bubble formation,

5 (3.21 )
v

where O'B refers to the surface tension of the mixture free surface (Fig. 3.2), and
6.P is the pressure difference between the bubble and the bulk. It is assumed

that the density inside the bubble is zero, so that 6.P = -P (remind that P is

a negative quantity).

11. Drop formation [51, 52],

s

V

(3.22)

where O'D refers to the surface tension of the mixture-puré 3He interface (Fig. 3.4),
6.f-L3 is the difference between the chemical potential of 3He in the mixture and

of pure 3He at the same pressure, and P3 is the 3He particle density in the pure

phase. For 3He-4He mixtures, the capillarity approach cannot describe drops at

pressures below the spinodal one of pure 3He (about -3 atrn [13,21]).

The barrier height is determined by the maximum value of l1U(R), which occurs at a

size Re = 25/3\1, and is equal to

(3.23)
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Substituting (3.22) and (3.23) in tlU(Rc), we obtain the energy barrier in the capillarity
approximation for bubble (B) and drop (D) formation:

(3.24)

167f 0'1tlU(Rc)D =

3 (fl/l3P3)2'
The maxirnum heights diverge at tlP = O for bubbles, and at fl{l3 = O for drops, which

correspond to the respective saturation curves.

Neglecting prefactors entering the nucleation rate definition (see Seco 3.3), at a

given temperature, bubble and drop configurations have the same probability of being
formed when the nucleation barrier máxima become equal. This equality defines a

(3.25)

transition pressure P,

IPtl = tl{l3 P3 (:;r/2
This equation implicitly defines a curve in the (P, x) planeo On the right of this line,
drops rather than bubbles are formed, and the contrary happens on the left. To rnake

a quantitative prediction the surface tension values are needed. We recall that we have

obtained these values from a density functional calculation (see Seco 3.2), and defer the

(3.26)

discussion to section 3.5.

3.4 Cavitation in mixtures below saturation and

at negative pressures

The case we are interested in is that of a liquid mixture below saturation (x < xo)
submitted to a tensile strength in which bubbles are formed. The mixture will develop
a free surface and, as we have seen in Seco 3.2.1, due to the presence of Andreev states

3He atoms willlocate at the 4He surface. Thus, even when small amounts of 3He are

solved in 4He the bubble-like mixture configuration wiU have a lower surface tension

than the free 4He surface (o'(x) < 0'(0)). The strong dependence of the energy barrier

height on the surface tension, which is clearly shown in the capillarity model (3.24),
suggests that nucleation is enhanced when 3He is solved in 4He due to the decrease

of a, which we have already calculated as a function of 3He concentration in Seco 3.2.
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The lowering of the energy barrier will decrease the tensile strength, moving it away
from the spinodal pressure.

To obtain an estimate of the relative departure between spinodal and nucleation

pressures at x = O and at any other z-value, we can use the barrier height approxirna­
tion near the spinodal given by Lifshitz and Kagan [26] whose dependence on P and CT

through x is:

(3.27)

Solving Eq. (3.19) with ,6..U(Rc) instead of ,6..0 for both concentrations at the sarne

temperature and taking the quotient we obtain

(3.28)

Since CT(X) changes sizeably even at very low concentration , the cavitation pressure will

differ appreciably from that of pure 4He. For example, this ratio is 4.5 for x = 10-4%
and 6 for x = 1%. This means that at the same temperature, the cavitation pressure

for x = 10-4% (1%) is 4.5 (6) times farther away from the spinodal pressure than for

pure 4He.

One estimate of the cavitation pressure near the saturation can be obtained in

the capillarity approximation (Sec. 3.3.1). However, as has been already discussed

by Xiong and Maris [12], the approximations for calculating the barrier height near
saturation (3.24) and near the spinodal (3.27) cannot be interpolated in a natural way,

and a more accurate treatrnent is needed to describe cavitation throughout the pressure

range. We have used the density functional approach which is based on a formalism

proposed earlier by Cahn and Hilliard [53, 54], and later developed by various authors

[12, 27, 31]. The basic procedure has been already pointed out in the previous section.

Given an homogeneous metastable state (x, P), we find the corresponding critical

density profiles and the energy required to nucleate the critical configuration. The nu­

cleation barrier height ,6..0 is obtained from the difference between the grand potential
of the critical cluster and that of the homogeneous rnetastable state (3.15).

In figure 3.5 we have plotted these barriers as a function of P for several 3He con­

centrations, which correspond to bubble formation. Their P-dependence is as expected

[12,13,27]: ,6..0 diverges when P goes to zero (not shown in Fig. 3.5), and drops to zero

at the corresponding spinodal pressure. Actually, solving the EL equations for x;:xo
and P;::O we have also found 3He-drop configurations. As is expected, the barriers for
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nucleating bubbles are smaller. Thus in this metastability region bubbles are likely to

be forrned, but at higher concentrations their barriers are higher, being then 3He drop
configurations more likely formed.

Figure 3.5 clearly shows the effect on 6D of increasing the 3He concentration, and

thus on the nucleation rateo Due to the loweríng of the surface tension with increasing
3He concentration (see Fig. 3.2), the surface energy required to form the interface

decreases and so does the energy barrier. Then, cavitation is more likely to occur.

Note that even concentrations as small as 10-4 % (recall commercial helium contains

about 1.4 X 10-4 % of 3He) cause a sizeable effect on the barrier height and thus, as

we will see, on the tensile strength.
To obtain Pi, via thermal fluctuations we have solved Eq. (3.19). We are not

aware of experimental results on cavitation in helium mixtures, so we have used the

same estimate for the prefactor JOT that the one in the pure case (2.11), and the

experimental volume and time (VT)e = 1 cm:' sec, since as we have aiready pointed
out in the previous chapter, the tensile strength is not very sensitive on the numerical

value neither of the prefactor nor of (VT ) e.
In figure 3.6, Pi, is displayed as a function of T for pure 4He and for several 3He

concentrations. For T = O the cavitation pressure corresponds to the spinodal one (we
have neglected quantum fluctuations). One can see that for the lower concentration

(x = 10-4 %), the differences with pure 4He are appreciable, ranging from rv 0.5 bar at

T = 0.05 K to rv 1 bar at T = 0.2 K. Moreover, the homogeneous cavitation pressure

differs from the spinodal pressure a lot more in the mixture than in the pure system.
These effects are due to the presence of 3He surface states.

Comparing the spinodal and cavitation pressures qualitative agreement with (3.28)
is seen. For example, at T = 100mK, the difference between spinodal and cavitation

pressure is 0.3 bar for pure 4He, and 1.3 bar for x = 1%.

By simple inspection of figure 3.6 we may infer that for temperatures aboye the

T � O region where cavitation is produced vía quantum tunnelíng, the process occurs

away from the spinodal pressure, so that none of the two approximations proposed by
Lifshitz and Kagan [26] (i.e., near the spinodal or near saturation) apply here.

Finally, in figure 3.7 we display a sequence of bubble profiles for x = 4% and

pressures P = -7, -5, -4 and -2 bar. Near the saturation pressure, bubbles are

large in size and empty, with a 3He shell located a.t the surfa.ce. When the pressure
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Figure 3.5. From top to bottom, cavitation barriers as a function of P for pure 4He and

for 3He concentrations ;1: = 10-4%, 0.5%, and 1 to 6%.

becomes more negative, the size of critical bubbles dimínishes, and bubbles are first

filled with 3He before 4He starts fiowing in. The complícated morphology of these

curves suggests that any schematíc assumption about the shape of the density profiles
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in the study of cavitation is extremely cornplicated, whereas the density functional

approach constitutes a reliable and affordable way of tackling this problem.
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Figure 3.6. Homogeneous cavitation pressure Ph as a function of temperature for the same

3He concentrations as in figure 3.5 (from bottom to top).
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3.5 Nucleation in supersaturated solutions at neg­

ative pressures

In the previous section we have already seen that for mixtures below saturation, in spite
of existing both kind of configurations, the seed of phase separation is the bubble-like

one, since its energy barrier is lower. Now we will complete the study at negative pres­

sures considering mixtures aboye saturation. Within the density functional approach,
we will determine the regions in the pressure-i'He-concentration plane where bubbles

or drops likely drive the nucleation process, we will delimit the transition curve and

compare it with the predictions of the capillarity model.

Particle density profiles P3(r) and P4(r) for the critical nucleus of total density

p(r) = P3(r) + P4(r), have been obtained by solving again the corresponding coupled
EL equations. The boundary conditions are the same as in the previous section but now

P3m and p4m are such that the homogeneous metastable mixture satisfies P < O and

x > Xsat. It is worth emphasizing that the same boundary conditions lead in general to
two different configurations: one corresponding to a bubble with a 3He enrichment at

the surface, and another corresponding to a 3He drop, both embedded in the mixture.

Different energy barriers are associated with both of these configurations.
Typical profiles of these two types of configurations are shown in Figs. 3.8 and

3.9, for a pressure of -2.3 bar and concentrations x =5.5 % and 7.5 %, respectively.
For that pressure, the 5.5 % concentration point lies closer to the saturation curve

than the 7.5 % point. As the drop nucleation barrier becomes infinite at this curve,

the size of the critical cluster is larger (71 Á) in the former than in the latter (29 Á)
case. Obviously, the variation in size for bubbles is not affected by crossing over the

saturation lineo In this example, the bubble radii are 17 and 15 Á for x = 5.5 % and

7.5 %, respectively. As a general trend, for given P and x, the size of the corresponding
drop and bubble configuration differs most near saturation while they are similar when

nearer the spinodal curve. It is worth noting that the pure 3He-mixture interfacial

region is rather independent of whether bubble or drop configurations are being formed
(compare top and bottom panels in Figs. 3.8 and 3.9, for example).

We have calculated the nucleation barrier heights 6n of both configurations cor­

responding to a given metastable state (x, P). For those shown in Fig. 3.8, bubble
nucleation is more favorable than drop nucleation: their barrier heights are 164 and
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449 K, respectively. For the configurations shown in Fig. 3.9, the reverse situation is

obtained: the barrier height for the drop is 71 K, whereas it is 123 K for the bubble.

At the interrnediate value x = 6.54 % the barrier heights become equal.
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Figure 3.8. Density profiles for x = 5.5 % and P = -2.3 bar. Top panel, bubble configu­
ration. Bottom panel, drop configuration. Dashed lines, 3He densities; dashed-dotted lines,
4He densities; solid lines, total densities.
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Figure 3.9. Same as Fig. 3.8 for x = 7.5 %.

In Fig. 3.10 we show the 3He-drop nucleation barrier heights for different concen­
trations as a function of P. As expected, they diverge at saturation and vanish at

spinodal values. The bubble barrier heights are displayed in Fig. 3.5. As functions of
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Figure 3.10. Drop barrier heights (K) as functions of pressure (bar). From top to bottom,
the curves correspond to x = 6.6 (saturation), 7, 9, 11, 13, 1.5, 17 and 19 %.

P and x, the barriers 6.n(p, x) define two surfaces: one corresponding to the bubble­

like configuration with 3He enrichment at the surface, and the other corresponding to
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the 3He drop configuration , both embedded in the mixture. They grow from zero at

the spinodal line, cross each other at the transition pressure P; line and finally diverge
at the corresponding saturation pressure, P = O for the the bubble-like configuration,
and P = Psat(x) for the 3He drop-like configuration. It is interesting to notice that,
since experimentally at very low temperatures the saturation curve Xsat = x(P) has

a maximum at around Xm = 9.5 % [42], for x > Xm the drop barrier always rernains

finite. This can be seen in Fig. 3.10, and indicates that the functional (3.1) is able to

reproduce, at least qualitatively, this experimental fact.
The phase diagram of the mixture at T = O in the (P, x) plane is represented in Fig.

3.11 for negative pressures. The saturation curve is labeled as Psat(x), and the spinodal
line as Psp(x) (see also Fig. 3.1). Also shown is the transition pressure line Pt(x) where
energy barriers for both configurations become equal. Phase transition will be driven

by bubble nucleation on the left of that line, and by drop nucleation on the right. The

configurations displayed in Figs. 3.8 and 3.9 are represented by a circle and a square,

respectively. For pressures below rv -3.8 bar, no genuine bubble configurations can be

found in the mixture, and only 3He-rich drops are present as nucleation clusters.

In the lower right-hand corner of Fig. 3.11 we display on a magnified scale the Pt(x)
curve and compare the capillarity (dashed line) with the density functional resulto As

expected, the capillarity approach is a good approximation only near saturation, i.e.,
zero pressure and concentrations close to 6.6 %. It is interesting to note that P, exists
for concentrations slightly higher than the saturation value at P = O, and that it is a

bivaluate function of x.

To make a quantitative estímate of the homogeneous nucleation pressure Pi., one
may proceed as in the pure case, that is, consider arate Jr = 1 cm-3sec-1, or equiva­
lently (Vr ), = 1 cm:' sec, and solve Eq. (3.19) taking for JOT rv 2.1033 cm-3 seC1 as

in Ref. [27], and using the lower barrier height 6.n that corresponds to either bubble
or drop configuration. Pi; is displayed in Fig. 3.11 as a function of x for 50 and 100 mK

temperature. Notice that at a temperature as low as 50 mK, Ph differs appreciably
from Psp even at low 3He concentrations. This is again a mauifestation of the presence
of 3He surface states (Andreev states), see also Fig. 3.6.



Thermal nucleation and cavitation in 3He-4He mixtures 57

O�------�----------�--�--------------�--�

-2

-4
"-

d
.o

o,

-6

c...

(j
-2..Cl '"

'"

o,
".

..
".

-8
....

_--

-4
5 6 7

-10
X(%)

O 10 20 30

X (%)
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3.6 Critical supersaturation at low temperatures
and positive pressures

During the past fifteen years, there has been a common belief [43, 44] that supersatu­
rated 3He-4He liquid mixtures at very 10w temperature could be found in a metastable

state for 3He concentrations well aboye the saturation value Xo rv 6.6% at pressure

p rv O [49]. That be1ief was motivated by an extrapolation to T = O, of the measured

3He chernical potential excess 6.¡'¡"3 along the coexistence line carried out by Seligmann
et al [55]. This extrapolation yields 86.¡.¡..d8x ::::: O up to x > 16%, opening the possibil­
ity that the system can be in a metastable state up to or even aboye that concentration

[36J. Lifshitz and coworkers [51 J have studied nucleation in a capillarity model and have

calculated the degree of supersaturation 6.xcr _ x - Xo obtaining a value around 15 %
and a crossing temperature T* from thermal to quantum nucleation regimes of about
14 mK.

The first systematic study of phase separation from supersaturated 3He-4He liquid
mixtures has been recently made [35], with the result that at P rv 3 - 5 bar, 6.xcr rv

0.2 - 0 ..5%, and T* rv 20 mK. Other experiments at lower pressures (Ref. [40] as quoted
in [41]) yield 6.xcr rv 1%. It is worth to recall that the Ohio State group had actually
found metastable 3He-4He solutions up to 6.xcr rv 0.3% [49J. The aboye nucleation

calculations are in sharp disagreement with these experimental results.

3.6.1 Nucleation of 3He drops
Let us first review nucleation (either thermal or quantal) of 3He-rich droplets in the mix­

ture within the capillarity model and within our improved density functional approach,
and show that it is hardly compatible with these experimental findings. Making use

of the capillarity approximation, as we have already pointed out, the potential energy
of a 3He-nucleus of radius R in a metastable supersaturated mixture near saturation

(x rv Xsat, remember Xsat(P = O) = xo) has the form [41, 51J:

(3.29)
where (J is the surface tension of the 3He-4He interface, p.) is the particle density of

pure 3He inside the droplet at a given pressure, and 6.¡'¡"3 is the difference between the
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chemical potential of 3He in the rnetastable, dilute phase, and in pure 3He at saturation.

Minímizing the right hand side of (3.29) with respect to R, the radius of the critical

drop Re = 2a"/(P36.f13) and the critical barrier 6.U(Re) = 47rRe2(J /3 are obtained.

To study thermal nucleation within this approximation, the same equations as in

Seco 3.3 can be used but with 6.U(Re) instead of 6.n. This leads to the following
expression that must be satisfied in order to observe nucleation

(3.30)

Typical values of the logarithm are about 80 [16,36, 41J. Taking T rv 100 mK it yields
6.U(Re) rv 8 K.

Using the experimental values (J = 0.017 ± 0.002 K Á -2 [46J and P3 rv 0.016Á -3,
and approximating 6.f13 rv 6.X· O(6.f13)/OX Ixsa'rv 2.3 6.x (K)t, one has

(3.31 )

For 6.x rv 0.004, which is within the range of experimental values of [35], one gets Re rv

230Á and 6.U(Rc) rv 3800 K, being over two orders of magnitude larger than the value

at which phase separation via nucleation of 3He drops mediated by thermal fluctuations
would become possible. It is quite obvious that a poor evaluation of 6.U(Rc) also leads

to a wrong value of T*, since it is obtained from 6.U(Rc) and the underbarrier action

S (usually determined in the WKB approximation) since T* = 6.U(Rc)/(2S) [12J.
One might argue about the validity of the capillarity approximation, as well as the

value of o(6.f13) /B» Ix.a" which is crucial to obtain the barrier height. Let us first

mention that the capillarity approximation is appropriate if the nucleation process

takes place near the saturation curve [8], as the present case seems to be in view of

the smallness of 6xCT encountered [35, 40J. The reason is the large size of the critical

drop, that makes curvature and compressional effects negligible.
To put our estimates of 6U(Rc) and O(6f13)/OX IXsa' on firmer grounds, we have

resorted to the density functional (3.1) to obtain these quantities following the method

already pointed out in Seco 3.3. Figure 3.12 shows 6.f13 as a function of x for P == O and

3 atm. The results obtained in [55J, as extrapolation of experimental measurements, are

tWe have computed O(!1J-l3)/OX Ix.a• from Fig. 4 of [55], obtaining 2.3 K instead of the value

quoted in [51] (� 0.3 K) got also from the same reference. In our opinion, this gross error invalidates

the numerical calculations of Lifshitz et al. [51].
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also displayed. The functional has been adjusted to reproduce the maximum solubility
of 3He in 4He at zero pressure (xo), i.e., Xsat(P = O) rv 6.6%, and it yields Xsat(P =

3atm) rv 7.9%. The slopes at these values of Xsat are 2.34 K and 2.13 K, respectively.
We can appreciate a good agreement between our calculations and those of [55].

o

p=O0.1 O

O 5

P= 3 atm
�

::1. - 0.1 O
<l

- 0.20

-0.30

15 20

Figure 3.12. 3He chemical potential excess as a function of the 3He concentration for P = O

and 3 atm (solid lines). The dots have been extracted from Fig. 4 in R�f. [55].
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Figure 3.13 shows 6U as a function of x for P = O and 3 atrn. It is worth it

to notice that b.U '"" 8 K for x '"" 0.15 at P = O. This result is consistent with the

positiveness of [J(6J.13)/ [Jx up to x '" 0.16 found in [55], and up to '" 0.3 found in [36],

100

p=O
10

1 �--------------�----------------------------

5 10 15 20

Figure 3.13. Nucleation barrier of 3He-rich drops as a function of the 3He concentration

for P = O and 3 atm.
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indicating that, if phase separation by 3He drop nucleation takes place, the degree
oí supersaturation would be Cl.xer rv 9%. The corresponding radius oí the critical

nucleus is Re f"V 15Á (see Fig. 3.14). However, if Cl.xer f"V 0.4%, X = Xsat + Cl.xer rv 7%,
Re rv 250Á and Cl.U rv 4500 K, out of scale in Fig. 3.13. That would have be the result

obtained in the capillarity approximation if we had used there the same value of a- (see
[46]+).
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Figure 3.14. Critical-drop density profile corresponding to the situation P = O, x = 15%.
Solid line, total density. Dashed-dottéd line, 4He density. Dashed line, 3He density.

tThe value obtained using our density
-

functional (3.1) is a � 0.018 K Á -2 (see Seco 3.2), well
within the experimental error bars.
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3.6.2 Vortex destabilization

A possible way to get rid of these difficulties is to consider the existence of vortices

in the mixture [56], since 4He is superfiuid under the given conditions. Let us assume

the hollow core model for the 4He vortex, i.e., the 4He density is zero within the core

and equal to the bulk value P4 elsewhere. As x increases, the 3He atoms located at the

surface of the vortex [57] migrate to the interior of the hollow coreo If P3 is the 3He

particle density inside the vortex core, then for x � Xsat the energy per unit length of a

vortex of radius a and circulation n can be written as:

(3.32)

where m4 is the atomic mass of 4He and a.¿ is a large enough radius. Minimizing E;
with respect to a we get the radius of the stable vortex. If ao = n2ñ?P4/(2CTm4) and

jJe == CT2m4/(2n2ñ,2p3p4)' one has

p¿ [ �/-l3la = 2ao-- 1 ± 1 - --

!::../-l3 jJc
(3.33)

The plus sign corresponds to a maximum of E; with a = a>, and the minus sign to

the stable minimum with a = a<. ao is the equilibrium radius for !::..jJ3 = O, i. e., for

x = Xsat. This simple expression shows that for !::..jJ3 > /-le, the vortex is no longer
stable. Taking n = 1, P4 = 0.020Á-3 and ñ,2/m4 rv 12 ICAl.2 one gets ao = 7.1Á and

/-le = 0.038 K. Thus, for !::..jJ3 = 0.038 K the mixture will necessarily undergo phase
separation, Using our linear approximation this corresponds to !::..xer rv 1.6% at P = O,
which is considerably srnaller than the quantity obtained from 3He drop nucleation.

That value constitutes an upper limit of the actual !::..Xer' as we have not taken into

account that the stable vortex may destabilize by quantum or thermal fluctuations.

The barrier to be overcome, per vortex unit length, is the difference Ev(a» - Ev(a<),
and may be written as function of y == !::"/-l3/ /-le,

47raOCT ¡,---: (1
-

vT=Y)!::..U(y) = Vi - y + 27raOCT ln
",--;;-;

y 1+v1-y
(3.34)

Then, !::..U(y) = O for y = 1 and diverges at the saturation va.lue Xsat, for which y = O.

Let now L¿ be the vortex length per unit volume in the experimental sample. The

probability per unit time and unit vortex length of therrnally forming a critical vortex
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of length Le is JT = JOTv exp( - Le tJ.UjT). Consequently, to observe such a fluctuation

one must have LetJ.U = T ln(LvVTJoT)' Taking Le rv 10 ao and T = 0.1 K, we get
tJ.Xcr rv 1.3 - 1.4% for values of the logarithm between 80 - 40. We are thus led to

conclude that barrier crossing is not a very favorable process.

We have also considered the possible growth of a 3He-rich drop on a stable vortex

of radius a. The previous calculations indicate that a < < R, in which case it is easy

to check that the associated barrier tJ.U for this process is the one given by (3.29) plus
a corrective term tJ.Ueor:

r { 2 P4n
2

2 [ 1

( a )
2

(
a ) 1 }tJ.Úcor = -47rao- + 27ra P3b..f.1-3 + 271'

m4
n 1 -

2" R
+ In

2R
R (3.35)

this correction is negative, and for tJ.xcr rv 0.4% and P = O we get Re rv 210 Á and

b..U(Rc) = 2200 K, which is still too large a value.



Chapter 4

Quantum cavitation in liquid
helium

In the previous chapters, we have investigated therrnal cavitation in liquid 3He

and 4He for temperatures aboye a few hundred mK. For temperatures below a certain

value T* which we sha11 call crossover temperature, one expects that quantum tunneling
cavitation becomes more favorable than thermal cavitation. It means that below T*

the tensile strength will be determined by quantum tunneling.
An elaborated description of the cavitation process was furnished by Lifshitz and

Kagan [26], who used the classical capillarity model near the saturation line, and a

density functional-like description near the spinodal lineo lVIore recently, the method

was further elaborated by Xiong and Maris [12]. These authors conclude that there is

not clear way to interpolate between these two regimos, which makes quite uncertain

the range of pressures in which each of them is valido

We have devised a simple yet reliable method to calculare T* based on a density
functional approach which overcomes the limitations inherent to previous methods.

The density functional approach allows to calculate in a natural way the minimum

work required to form a critical bubble without making any assumption on the shape
of the density profile as the capillarity model does, thus providing well behaved barriers
in a11 the pressure range. Moreover, as a great deal of experimental information is

65
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used to fix the parameters defining the functional, one expects that these barriers are

quantitatively accurated.

This chapter is organized as fo11ows. In Seco 4.1 we present the method to calculate

cavitation barriers within a density functional formalismo While for therrnal cavitation

only the barrier height is needed, for quantum cavitation one has to know the barrier

shape as a function of same co11ective variables. In Seco 4.2 quantum cavitation through
the barrier is described. We will show that to obtain T*, only a detailed knowledge of

the barrier near the top is needed. The homogeneous cavitation pressure is obtained

in Seco 4.3.

During the completion oí this work, we became aware of a paper by Maris [58J
addressing the same problem with a method similar to ours in some aspects. Our

results for T* are a factor oí 2-3 smaller than his for both helium isotopes. Given

the uncertainties inherent to both calculations and the differences between the density
functionals we are using, rather than a discrepancy we consider it as a fair agreement.

4.1 Cavitation barriers

The starting point is the zero-ternperature density functionals for 4He and 3He de­

scribed in Refs. [18J and [59], which as well as those of Refs. [12J and [60J for example,
reproduce the zero temperature equation oí state (EOS) of both helium isotopes, and
the surface tension of liquid helium. Since we are interested in temperatures below '"

200 mK, it is legitimate to neglect any thermal dependence in the functionals. As 3He
is considered in the normal phase, for this isotope 'zero temperature' means T rv 3
mK.

At given pressure (negative in the cavitation case but aboye the spinodal line) ,
we proceed as íollows. First, we determine the corresponding particle density of the

metastable homogeneous liquid Pm inverting the EOS, and the corresponding chemical

potential u; The particle density profile oí the critical bubble pc(r) is then obtained,
as in chapter 2, solving the Euler-Lagrange equation

se BE BE

óp
=

Bp
- \7

B(\7p)
= J-t, (4.1 )

where E(p) is the energy density funcional, instead of the free energy density. We shall
restrict our calculation to spherically symmetric bubbles. The boundary conditions 1'01'
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finding a physical solution to Eq. (4.1) are p'(O) = O and p(r --) oc) = pm, where the

prime denotes the r-derivative. The barrier height is the difference between the grand
potential of the critical bubble and that of the homogeneous liquid:

(4.2)

As we have previously indicated, to compute the quantum tunneling through the barrier

we need the barrier shape as function of a set of collective variables chosen to model the

growing of the critical bubble. To better understand our method, let us first consider
the capillarity model, in which the critical bubble density profile is

Pe(r) = pm [1 - 8(Re - r)] , (4.3)

where 8 is the step function and Re is the critical radius that can be written in terms

of the surface tension (J' and the pressure P as Re = 2(J' IIPI. The cavitation barrier is

) 2 4 3 IV(r = 47fr (J' -

37fr IP (4.4)

which intersects the r-axis at RM = 3Re/2. From r = O to RM one can represent the

dynamical evolution of the bubble by a series of density profiles such as

P5(r) Pm[l - 8(Re + ó - r)]

Pe(r - ó) . (4.5)

The 'collective' variable Ó represents the displacernent of the bubble surface from Re.
It can be made time-dependent , and varying it from =R; to Rc/2 a11 physical configu­
rations from the homogeneous metastable liquid to the barrierless bubble configuration
are generated.

Within the density functional approach we have proceeded in the same way. After

obtaining pc(r) at given pressure, we define a continuous set of densities by a rigid
transportation of Pe (r):

{pe (r = O) iE r :s: s
P5(r) ==

Pe (r - ó) if r 2: [; .

(4.6)

This amounts to keep frozen the surface diffuseness of the bubble. It is worth to realize

that Ó can be positive or negative, whereas r is always positive.
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The barrier is then obtained as a function of 6:

�n(5) = J [E(pó) - E(Pm) - ¡.t(pó - Pm)] dr. (4.7)

Figs. 4.1 (a) and (b) show �n(5) and the particle density profile, respectively, for 4He
at P = -5.39 bar. We define a negative 5-value 60 imposing that �n(50) = 10-6 K, and

analogously a positive one 6M, i.e., �n(5M) = 10-6 K. The interval [50, 5M] constitutes
the range of physical 6-values. 50 and 5M depend on Pm or equivalently, on P.

120
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Figure 4.1. Referring to 4He at P = -.5.39 bar, we show: (a) the quantum nucleation

barrier .6.D (K) as a function of the displacement 8 (Á); (b) the particle density profiles

corresponding to the critical bubble configuration (Pe) and two configurations associated

with displacements 80 and ÓM; (e) the mass parameter B(8) (K-1 Á-Z) as a function of 8

(Á).
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The dynamics of the cavitation procese comes in if we make Ó time-dependent.
Within OUT model, this is the only eolleetive variable deseribing the bubble expan­

sion: a11 the time-dependence will be in ó(t). The kinetie energy associated with the

expansion is

Ekin = ; J dr p(i, t)iP(i, t) , (4.8)

where u(i, t) is the veloeity field which can be formally obtained from the eontinuity

equation
f}p �

�

at
+ V'(pu) = o. (4.9)

It yields:

u(r, t) = - t )
r s2 pes, t) ds .

r2p r , t Jo (4.10)

By eonstruction,

p(r, t) = pc(r - ó(t)) . (4.11 )

Thus,

p(r, t) = -p�(r)8. (4.12)

The spherically symmetric veloeity field then reads:

(4.13)

Defining the mass parameter B(ó) as

.

(4.14)

we get
47fm (XJ dr [ r ]

2

B(ó) =7 Jo r2pó(r) r2pó(r) - 2
Jo dsspó(s) (4.15)

We show B(8) in Fig. 4.1 (e) for the same eonditions as in Fig. 4.1 (a) and (b). The
mass pararneter B(8) is small for 'large' negative ó-values, those for whieh the parallel
transportation of the eritical density is a priori less justified. The importance of this

point in the calculation of the tunneling probability will be made clear in the next

section.
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4.2 Quantum Cavitation

Below T*, cavitation proceeds by quantum tunneling through the barrier. The cavi­

tation rate, defined as the number of bubbles formed per unit time and unit volume

adopts the form:

JQ = JOQ exp( -S), (4.16)

where the prefactor JOQ is of the order of the number of cavitation sites per unit volume

times an attempting frequency, and exp( -S) is the tunneling probalility, For a given
energy below the maximum of the barrier, the simplest way to obtain S is to make use

of the -VVKB approximation [61 J:

(4.17)

where 01'ight (Oleft) is the larger (smaller) of the two solutions of the equation .6.!1(o) = E.

The WKB approxirnation is known to fail for energies close to the maximum of the

barrier. This is a crucial point for what it follows. Lacking of a better choice, from
now on we shall put E = O in SWKB, defining:

(4.18)

It is obvious from the aboye expressions that contributions from negative o-values to

SWKB are quenched as it is the product B(0).6.!1(o) what really matters.

To improve on the WKB approximation, let us define the effective action [62,63,64]

SQ = j(3/2 dr [�B(0)82 + .6.!1(Ó)]-fJ/2 2
(4.19)

evaluated along the extremum trajectory, The path o(T) defined in imaginary time

T has to fulfill the periodic boundary condition o( -(3 /2) = 8({3/2). Imposing the

extremum condition on the action one gets the following equation of motion for 8(T):

(4.20)

Notice that the effect of continuing the action to imaginary times is to invert the

'potential', i.e., 6.!1 -+ -6.!1 in the equation of motion and the identification T = 1/{3.
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Multiplying Eq. (4.20) by 5 we have

i_ [�B(5)82 - 60(5)] = O.
dT 2

(4.21)

Thus
1 .

2"B(5)52
- 60(5) = constant = - E ,

with E > O. The turning points 51 and 52 are such that 60(51)
Integrating Eq. (4.22) we get the period ¡3:

(4.22)

60(52) = E.

ló?¡3(E) = 2
-

d5
61

B(5) (4.23)2 [60(5) - El'

Using that

B(5)
2 [6n(5) - El

as , (4.24)

the action (4.19) becomes

B(5) (4.25)2 [60(5) - El'

For E = O, SQ reduces to SWKB, Eq. (4.18). We can now obtain the crossover tern­

perature. Above T", cavitation proceeds therrnally, and the cavitation rate reads:

[ 60max]JT = JOT exp -

T
' (4.26 )

where the pre-exponential factor JOT depends on the dynamics of the cavitation process.

If at T* JOT � JoQ, equating Eqs. (4.16) and (4.26) we get:

SQ(E - 6n ) _

60max
-

max
-

T*
. (4.27)

Going back to Eq. (4.25) we can write for E � 60max,

B(5) (4.28)2 [60(5) - El

Comparing with Eq, (4.23) we have that Tr:' = ¡3(E � 60max). Developing Eq.
(4.23) around the maximum of 6n located at 5 = O, we finally get

T* _

1 [J26n/ I-

27f
-

7iP B(5)
ó=o

. (4.29)
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Eq. (4.29) shows that to obtain T* only small variations around 8 = O are needed, and
constitutes one of the main results of the present work. It implies that the basic un­

certainty in the determination of T* arises from how accurate is the density functional

E(p) to describe the critical bubble. Any further irnprovement on E(p) will au tornat.i­
cally result in an improvement on the determination of T* from Eq. (4.29). Since the

whole procedure has been carried out for a given pressure P, Eq, (4.29) gives T*(P).
Crossover temperatures for 4He and 3He as a function of pressure are displayed as solid

lines in Figs. 4.2 (a) and (b), respectively. Cavitation has to proceed thermally for

temperatures aboye 121 mK for 4He, and aboye 73 mK for 3He, irrespectioe of the
value of the (negative) pressure.

T* goes to zero at the spinodal and saturation points. Near the saturation point,
the critical bubbles are quite large, and so is B which actually diverges at saturation.

Near the spinodal point, B goes to zero but ¿FL�.Jlja82Io goes to zero faster. The result

is that T* becomes zero at the spinodal and saturation points. Also shown in Fig. 4.2

(dashed lines) is the \NKB result TWKB obtained from

(4.30)

It can be seen that the E = O WKB approximation is very good at all pressures. It

means that T* as obtained from SQ is almost independent of the energy E E [O, L�JlmaxJ
used to compute the barrier penetrability. This is quite surprising in view of the barrier

shapes, whichlook very similar to that shown in Fig. 4.1 (a).
A way to understand this is to write Eq. (4.20) in a manner that makes clear the

quasi-harrnonic dependence of 6.0 on a collective variable related to 8. Defining [65]

z == 1ó dy JB:) , (4.31)

where E is a dimensional constant to render B(y)jE dimensionless, Eq. (4.20) becomes

Ei -

d6.0
= O. (4.32)

dz

Fig. 4.3 displayes 6.0 (K) for 4He at P = -5.39 bar. As a function of z, 6.0 looks

rather parabolical. This explains the weak energy dependence of SQ, since it is a trivial

matter to show that for a parabolic barrier such as"

(4.33)

'We have set B( ó) == 1 for convenience.
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Figure 4.2. (a) T* (mK) as a function of P (bar) for 4He. (b) Same as (a) for 3He. The

solid lines are the results from Eq. (4.29), and the dashed lines are. the WKB results (Eq.
(4.30»). The dash-dotted lines correspond to the capillarity model, Eq. (4.37).



Quantum cavitation in liquid helium 75

P=-5.39bar

120

4He

� 80
�
<l

40

o �__�__�__-L__� L-__L___�___L__-U

O 20 40 60 80
o

z (A)

Figure 4.3. .6.n (K) for 4He at P = -5.39 bar as a function of the collective variable z (Á)
defined in Eq. (4.31).

for O S; E S; LJ.J2max = b2 j4a, the turning points are

b rr;;12E612 = -::¡::: -+-, 2a 4a2 a
(4.34)

and from Eq. (4.25), S'Q(E) = 7rb2j(2a?/2, which is E-independent, and so is then T*.

Finally, it is quite instructive to see how T* can be obtained within the capillarity
model, Eqs. (4.3) and (4.4). We have

(4.35)
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and
47rm

)3B(5) = ----¡;;:r(Rc + 5 pm' (4.36)

Thus,

T*cap = _1_
47rCJ

(4.37)
m pm

The WKB result is also analytical:

T*capWKB
fi 512 1

V"3 405 47rCJ

1.03 r=,

m pm
(4.38)

We have represented T"?" in Figs. 4.2 (a) and (b) as a dash-dotted lineo It can be

seen that this model only works near the saturation point where bubbles are large
and finite size effects such as curvature, surface diffuseness and partial filling-in of the

bubbles, which are automatically incorporated in a density functional approach [8], are
less relevant.

It is interesting to realize that SQ weakly depends on T. This can be understood

as follows. For a given T < T*, reminding that f3(E) = 1jT(E), Eq. (4.23) determines
the corresponding E at that T, and the associated SQ(E) from Eq. (4.25). In actual

calculations, we have not proceeded this way. Simply, we have considered Eqs. (4.23)
and (4.2,5) as pararnetric functions of E with O :S E :S .6..Dmax.

4.3 Homogeneous cavitation pressure

Figs. 4.2 (a) and (b) are just telling us that, if the system can be brought down to a

negative pressure P, cavitation will proceed by quantum tunneling below T*(P). The

following question now arises: How 'deep' in pressure can the system be dived before

bubbles nucleate in an appreciable rate? The corresponding T*(P) will be in a sense,

the 'true' crossover temperature. We now show that at low temperatures, homogeneous
cavitation takes place near the spinodalline, where the capillarity model misses T* by
a factor of four.

The homogeneous cavitation pressure Ph, whose magnitude 1 Ph 1 is called tensile

strength, can be obtained as a functíon of T equatíng to unit the product of the
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transition rate J times the experimental volume V and time t (2.8):

1 = (Vt)e . l . (4.39)

• For T ?:': T* cavitation proceeds by thermal activation; J is JT, Eq. (4.26), with the

prefactor (2.11)
kT

IOT =
hVa (4.40)

and Va = 471'Re3 /3 represents the volume of the critical bubbIe. As in the previous
chapters, we have taken Re = 10 Á. Two different values of (Vt)e have been used,
1024 Á3

sec and 2.5 X 1011 Á3
seco They are intended to represent two rather

different experimental conditions .

• Por T < T* cavitation proceeds by quantum tunneling; J is IQ, Eq. (4.16). Lacking
of a better choice, we have always considered IOQ = IOT(T = T*).

Figs. 4.4 and 4.5 represent the graphical solution oí the following equation which

can be obtained from Eq. (4.39):

sQ = In [loQ . (Vt)el (4.41)

corresponding to 4He and 3He, respectively, for the two different (Vt)e values and

T = T*. Clearly, the solutions are in the spinodal region where the P-dependence
of T* is steeper. This makes the precise determination of T* more dependent on the

precise value of the product IOQ times (Vt)e that we would desire, given the present

unability to better determine either of them. We thus satisfy ourselves with the upper

limit fixed by the maxima of Figs. 4.2 (a) and (b), although values of T* half these

rnaxima are likely more realistic.

Figs. 4.6 and 4.7 represent Pi; (bar) as a function of T (K) for 4He and 3He. The

dashed lines correspond to the thermal cavitation regime, and the solid lines, to the

quantum one. The horizontal thin lines in the quantum regime are the WKB resulto

For both isotopes, the upper curves correspond to (Vt)e = 1024 Á3
sec and the bottom

ones to 2.5 x 1011 Á 3
seco The dots on the pressure axis represent the spinodal pressure.

These figures are a 'magnifying glass' look at the spinodal region of the Ph(T) curves
shown in Fig. 2.7 of chapter 2. We have thus achieved a complete description of

homogeous cavitation in liquid 3He and 4He in the whole temperature range.



78 Quantum cavitation in liquid helium

,
_
....._._._.¡_._._._/..�'� T�ap (P)

/ I .-".-.,
, .--.--.-
I
I
I
I
I
I
I
I
I

120 .-..._. __
._.-._.

�

E 80
•

1-

o�----�----�----�------�----�----�
-9 - 8.6' _°8.2

P(bar)

Figure 4.4. Graphical solution of Eq. (4.39) (cross on the y-axis) for 4He. The long-dashed
line corresponds to the value (Vt)e = 1024 A3 sec, and the short-dashed Une, to 2.5 X 101lA3
seco



Quantum cavítation in liquid helium 79

100r---------:-----�------------�/ "

_._._. / // T to.p (P)
=t--: I

-o-o_,¡
I ' '_.-._._._.

, -'-.-

/ " '-'-'.=-::'-::;;'-�:::l� "-._.

I I

/ /
I "
/ /
I "

• I /
1- 4 O�-----+_...c..

80

� 60
E

20

I
I

I "
/ "
I
I
I
I
I

/,'
�I

-2.9 - 2.8-3

P (bar)

Figure 4.5. Same as Fig. 4.3 for 3He.



80 Quantum cavitation in liquid helium

- 8.8
/
I /

I /

1024/
/
/

/
-8:9 I /

I /
/
/
/

� /
o /
..c -9 /
-

(Vt le =2.5xl011o... /
/
/
/
/
/

- 9.1 /
/

4He

- 9.2 L....-..__-'-___....___---'---,-_----'

O 50 100

T (mK)

150 200

Figure 4.6. Homogeneous cavitation pressure Ph (bar) as a function of T (mK) for 4He.
Dashed line, thermal regime. Solid line, quantum regime. The horizontalline corresponds to
the T-independent WKB resulto The upper curve has been obtained using (Vt)e = 1024 Á3

sec, and the lower one, 2 ..5 X 1011Á3 seco



Quantum cavitation in liquid helium 81

-3

-3.05 '-

,

/

/

/

/

/

/

/
/
//

,

/
/
/.-­

L-

es
.o
-

o,

- 3.1 -

U

-3.15
O

/

/
/

,/

".'" (Vt}e = 2.5x 1011
".

I I I

/

I

/
/

10020 60 8040

T (mK)

Figure 4.7. Same as Fig. 4.6 for 3He.



Chapter 5

Summaryand Conclusions

We have carried out a detailed study of homogeneous nucleation processes taking
place in pure 3He and 4He fluids and in 3He-4He liquid mixtures. \"le have used a density
functional approach that overcomes the shortcomings inherent to the capillarity model

usually employed in classical nucleation theory. The flexibility of the density functional

approach is especial1y indicated for Helium mixtures, where the limited miscibility of

both isotopes at low temperatures and the existence oí surface Andreev states make

the shape of the nucleation clusters hard to guess and mimic by means of simple sharp­
surface models.

We have started studying first thermal activation in pure 3He and 4He (chapter 2)
and next in liquid mixtures (chapter 3). In chapter 4, we have completed the study
of cavitation in pure isotopes considering quantum tunneling, Thus, our cavitation
results for 3He and 4He cover the whole temperature range from the critical down to

zero temperature. The results for the mixture only cover the thermal regime .

• Concerning nucleation in pure 3He and 4He, we have shown that at positive pres­

sures) the homogeneous nucleation theory is able to well reproduce the experimental
findings. At negative pressures the situation is unsettled, and the experimental tensile

strength for 4He [16] seems to be much smaller than that obtained from the theory. At

negative pressures, the Classical Nucleation Theory (capillaritymodel) fails at low tem­

peratures where it predicts homogeneous cavitation pressures (Ph) below the spinodal
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one. Since the liquid is absolutely unstable below this pressure, it is unphysical.

Using a density functional induding thermal effects, we have improved the tensile

strengths obtained in previous calculations [16] where the energy barrier was calculated

using a temperature independent density functionalscherne, and so the result for the

barrier was independent of T. We have obtained a tensile strength which is about 20%
lower than previous predictions [16] at TAl but only 5% reduced at l.5 K, still aboye
the experimental results.

As a possible way to get rid of these difficulties, cavitation on quantized vortices has

been invoked. Even if the liquid is free of ions and solid impurities it may still contain

quantized vortices. The influence of vortices on cavitation in pure 4He at negative
pressures has been studied in detail by Maris [66J. Althought the introduction of

vortices lowers the tensile strength, the effect is much too small to explain the low tensile

strengths obtained experimentally in superfluid helium. The disagreement still persists
and therefore, other possibilities have to be consídered, for exarnple, heterogeneous
nucleation associated with electron bubbles [67], both in the bulk and trapped on

vortices.

Pettersen et al. [68J have recently performed new experiments on cavitation in liquid
4He at negative pressures, using an apparatus similar to those used by Nissen et al.

[15] and Xiong et al. [16]. They provide information about the cavitation process and

stress the difficulty to make an accurate deterrnination of the pressure at the focus in

this kind of experiments with ultrasonic waves. Consequently, they do not present the
results in terms of the focus pressure but voltage applied, making it impossible the

comparison with theoretical calculations (which are in terms of P and T at the focus).
In view of their experimental measurements they suggest that rather than homogeneous
nucleation , heterogeneous nucleation may be occurring on quantized vortices.

• Our calculations on nucleation by quantum tunneling (QT) (chapter 4) and those
of [58] rule out any possible expectation that quantum cavitation could help reconcile

theory with experiment: we have found crossover temperatures T* around "-' 120 mK
for 4He and r-v 75 mK for 3He. Since thermal fluctuations domínate over quantum
tunneling for temperatures larger than T* we are led to condude that the available

experiments have been carried out in the thermal regime.
It is worth it to mention that the density functional approach has naturally lend

itself to the study of quantum cavitation, as chapter 4 and Ref. [58J show. These
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works yield crossover temperatures that in spite of the differences arising from the

use of different functionals and practical details inherent to the methods, are fairly
compatible. One of the merits of our method as compared to that of [58], is that

T* is obtained by means of a simple expression that may have as basic limitations,
the reliability of the density functional used to describe the system, and the ansatz

of rigid transportation of the critical bubble density profile, employed to represent
the dynamical evolution of the bubble. We are rather confident on both issues. On

one hand, the density functionals we have used have been devised to reproduce many

experimental data, in particular the equation of state and surface tension of liquid
helium. Moreover, in the available 4He case [23], the spinodal point compare well with

that obtained from fully microscopic calculations", On the other hand, the assumption
of rigid transportation, which actually only comes in the calculations for small values

of the o pararneter, is justified by the very high incompressibility of these quantum
liquids.

The method also gives a quantum barrier penetrability which depends on T, allow­

ing for a smooth connexion between thermal and quantum regimes. It is worth noting
that it could be used for other systems accepting a density functional description .

• The extension of thermal cavitation in liquid 3He ancl 4He to the case of mixtures

has led to a rather detailed study of their surface properties. Due to the lowering of the
surface tension with increasing 3He concentration, cavitation is more likely to occur,

and even for a concentration as small as 10-4%, which is close to that of commercial

helium, the pressure of thermal homogeneous cavitation is increased by about 1 bar

with respect to that of pure 4He. We have also found that the homogeneous cavitation

pressure differs from the spinodal pressure far more in the mixture than in the pure

system. These effects are due to the presence of 3He surface states, which also favour

the forrnation of vortices in the mixture, as may be seen by analyzing the influence of

surface tension on the energetics of a vortex using the simple hollow core model [69J.
We have quantitatively shown the influence of even low 3He concentrations on the

cavitation tensile strength, and studied the bubble-to-drop nucleation transition at

concentrations aboye saturation. The experimental knowledge of cavitation in liquid
helium is rather scarce, even in the best studied case of pure 4He, and as we have

*The density functional result for the spinodal pressure is P = -9.08 atm at p = 0.0159 Á -3 as

compared with that of Ref. [23], P = -9.30± 0.15 atm at p = 0.0158 ± 0.0001 Á-a
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commented aboye, it is still a subject of debate.

We have shown that a plausible way to explain the small degree of supersaturation
found in 3He-4He liquid mixtures, is to consider the destabilization of vortex lines filled

with 3He. A precise evaluation of 6xcr is a very demanding task, involving a detailed

calculation of the structure of these vortices for x 2: 6.6% and different pressures.

Moreover, it is worth to mention that in order to describe vortex structure, any density
functional has to be galilean invariant , and none of the current density functionals for

3He-4He mixtures fulfills this requirement.
As in pure 3He and 4He cavitation processes, below a cert.ain temperature T* nucle­

ation in 3He-4He mixtures proceeds via quantum tunneling. The crossover temperature
T* where thermal and quantum tunneling nucleation compete has not been reliably
estimated so far. In their classic paper, Lifshitz and Kagan [26] derived two limiting
formulas to study QT based on the same approximations that have led to an estirnate

of the barrier heights near the saturation and near the spinodal in Sect 3.4. Thus,
neither of them unfortunately apply here.

Experimentally, the situation seems to be clearer for the case of 3He drop forma­

tion in supersaturated mixtures, for which Satoh et al. [35] have determined that

T* c:::: 10mK. An experimental determination of T* for cavitation would render our

calculations complete in the whole range of temperatures from 200mK down to 3mK,
since below T* the pressure of homogeneous cavitation is nearly constant for a given
x-value. More precise measurements of the surface tension associated with the satu­

rated liquid 3He-mixture interface at T rv OK would allow one to better estimate the

value of the functional parameters.

Very recently, Burmistrov et al. [41] have developed a formalism for QT which takes

into account dissipation and superfluidity, and have applied it to describe nucleation

of 3He drops in a supersaturated mixture to obtain the demixing curve. However, they
make use of the capillarity approximation.

In this thesis we have shown that the density functional approach provides a reliable
framework to study both thermal and quantum nucleation in liquid helium. It provides
results which are in agreement with the experimental results, except in the case of
cavitation in 4He where the experimental situation is still unsettled. In the near future,
we plan to address the following questions:

• 1'0 consider heterogeneous nucleation in 4He at negative pressures associated with
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electron bubbles, both in the bulk and trapped on vortices. These processes may lower

the tensile strength, hence improving the agreement with experimental data .

• To construct a galilean invariant functional for the mixture with a kinetic term

accounting for the superfluid-velocity field around the vortex lineo It would provide a

more reliable description of vortices in the mixture, and thus one would better deter­

mine the critical 3He concentration at which a 3He filled vortex destabilizes .

• To study quantum tunneling cavitation in 3He-4He mixtures by a generalization of
the method developed in chapter 4, and determine the quantum-to-thermal crossover

temperature.
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