Chapter 4

Parallel Computational Fluid
Dynamics

4.1 Why Parallel Computational Fluid Dynamics ?

The computing power (in terms of flops, RAM memory and disk space) available on the average
desktop computer has exploded in the past few years. This is usually attributed to two reasons [148].
First, because microprocessor companies inherited the successful elements of supercomputer designs
and second and perhaps more important, because of the emergence of a personal computer and busi-
ness market with increasing power demands. With such a large (and competitive) market available,
a huge research effort has been invested into the development of inexpensive high performance pro-
cessors for the home market. A typical PC has performance exceeding that of a supercomputer of a
decade ago, and similar to a current workstation (so nowadays the classification of small computers
into PCs and workstations is probably nonsense).

For many applications, performance is no longer the issue: we can just wait for a few years,
watching sequential computers get faster enough for our application and forget about parallel com-
puting. This is not the case for scientific computing:

e It is not clear that this increase in computational power can be sustained for many years in
single processor systems, due to both technical and economic reasons.

Form a technical point of view according to different predictions the current clock rates are
close to the theoretical maximum. For instance, according to [149], the clock rates will continue
growing up to 2GHz and then level off!.

From an economic point of view, the competition in the single processor market might decrease
due to the extremely high cost of developing new processors. The number of vendors of high-
end microprocessors has continuously decreased in the last years.

e In order to accurately simulate the behavior of many relevant physical phenomena, we need
to deal with systems of a huge number of freedom degrees. As an example, steady-state CFD
problems with 2 x 10% nodes are being routinely solved in industrial contexts, for engineering
purposes.

The second reason will be illustrated with an example. One of the most relevant examples of
such physical phenomena is the simulation of turbulent flows. As discussed in section 1.3, DNS
approach needs computational resources growing with at least Re*. To deal with them, parallel
computers are needed.

If we do not consider execution time, any computational task that can be done by a parallel
computer, no matter how big, can also be done by a sequential computer. But, if we want it to be

However, it seems that a new 4.5 GHz processor has recently been announced.

94 Parallel Computational Fluid Dynamics

completed in a given time, assuming that any computational technology has a limit in the number
of operations per time unit, we need parallel computers to do so.

With the algorithms currently available, the current sequential computers are that far from the
resources needed for the application of DNS to all the problems where it would be of scientific or
technical interest, that (as a working hypothesis) we can consider that our ambition is unlimited
and that we actually want to solve problems with an infinite number of discrete unknowns.

Quoting from [92], “The solution of the very large sets of coupled algebraic equations that charac-
terize wide-band-width systems, can burden the most powerful computers. Indeed, such calculations
are always likely to be resource limited, since the required processing increases disproportionately
with the system bandwidth By-2, and there is virtually no limit to the range of By that can be
usefully exploited in the representation of natural systems”. So, we can consider that we have to
solve linear systems of infinite equations in a finite time.

To do so, any conceivable sequential processor would be too slow. However, parallel computing
systems with P processors have the capability to do an arbitrarily large number of operations per
time step, just increasing P.

Numerical algorithms that can use this power are needed. Going on with our example, such
computers and algorithms would ideally allow the solution of a linear system of N unknowns,
representing (for instance) a discrete approximation to pressure correction equation, or the problem
model 2.7.3, using P processors in a time 7Tp, with

N
Tp = K 7 (4.1)
where K is a constant (small enough for practical uses). To achieve this ideally scalable behavior,
both an ideal algorithm and an ideal parallel computer would be needed.

To solve a problem with a given N, if there was enough interest (and money to pay for it), a
system with a P large enough would be used. The constant K would decrease with the increase of
computing power of each of the P processors and the enhancement of the algorithms.

An economic argument would led us to the same conclusion. The cost of the exceptionally fast
sequential computers has always been very high as they need special hardware that has a very
reduced marked compared with the global hardware market. Parallel computers, on the other hand,
can be built using a large number of the shelf processors and network components.

Thus, the developers of algorithms for scientific computing must be able to reuse the relatively
low cost computer components, developed for business and domestic markets and not necessarily

optimized for their purposes. Many of the examples presented in this work have been computed
with the JFF cluster of PCs (appendix B).

These seem to be the current trends in high performance computing. The most powerful com-
puter in the world as the writing of this paragraph® is the ASCI Red at Sandia National Labs (USA).
It is a distributed-memory system manufactured by Intel with 9472 Pentium processors, capable of
10° floating point operations per second (flops). Updated information of this system can be found
at http://www.sandia.gov/ASCI/Red/.

However, in spite of the promises of PCFD, it is not yet a so common technology. There are
different reasons to explain that (in order of increasing importance):

e Parallel computers are a relatively new technology that is still expensive, scarce and difficult
to use. For instance, until quite recently, there have not been well established, hardware-
independent programming environments allowing the development of truly portable parallel
codes.

e Code for parallel computers is much more complex to develop, test and optimize than code
for sequential computers.

2The symbol Q is used in the original.
3An updated list of the top 500 supercomputer sites is maintained at http://www.top500.org/

4.2 Overview of parallel computing technology 95

e Algorithms designed for sequential computers usually do not run efficiently on parallel com-
puters. The development of new, parallel algorithms, is in some cases a very difficult task, if
possible at all.

4.2 Overview of parallel computing technology

In this section a brief analysis of parallel computing technology and its effects over the development
of efficient parallel algorithms will be given.

4.2.1 Hardware
Hardware taxonomy and memory distribution

With the evolution of parallel computing technology, some of the architectures that were designed
and manufactured in the early days have become extinted by the market forces. As aforementioned,
these forces do not necessarily direct evolution towards more efficient architectures for scientific
computing but perhaps to better general-purpose systems than can be used in different applications.
However, if only for historical reasons, it is worth considering a general classification. The standard?*
classification scheme of parallel computers is the Flynn tazonomy. It uses the relationship between
the instruction stream and the data stream to classify the four different possible architectures:

e SISD: Single Instruction stream operating on a Single Data stream. This is a standard (Von
Neumann) sequential computer, such as a Pentium-based PC.

e SIMD: Single Instruction stream operating on Multiple Data stream. A set of processors
execute the same instruction on different sets of data. A SIMD machine can be emulated by
a MIMD machine while the opposite is not true, so this architecture is going old of fashion.

e MIMD: Multiple Instruction streams operating on Multiple data Streams. These are the
most versatile and currently popular parallel computers. They are essentially a set of different
processors that can run the same or different programs with the same or different data sets.
A sub-classification of MIMD computers will be given in next paragraphs.

e MISD: Multiple Instruction streams operating on a Single Data stream computers are in-
cluded mainly for completeness as there are few, if any, commercial examples of this type.

As the practical totality of the parallel computers currently available for scientific applications
are MIMD machines, we will concentrate in this type®. An important sub-classification of MIMD is
performed according to their memory distribution:

e Shared Memory processors or multiprocessors share a global memory space. The key feature
is the use of a single address space across the whole system, so that all the processors have
the same view of memory. Any processor can directly access any address (for instance, any
position of any array). Examples of shared memory machines include SGI Origin 2000 or Sun
HPC servers. If the processors are not specialized in different tasks, such systems are referred
to as Symmetric Multi Processor (SMP) systems.

The kernel distributes dynamically the processes among the P processors, in order to balance
the load. Both sequential and parallel programs can run together. From the point of view of
the operating system, a parallel program is just a set of processes. Any process can dynamically
ask for as much RAM as needed, up to the total available in the system.

4But considered fairly rudimentary by Tanenbaum [150].
5There is a debate about the classification of Shared-Memory Multiprocessors as MIMD or MISD, see [148], chapter
12. Here they are considered MIMD.

96 Parallel Computational Fluid Dynamics

Access of memory becomes a sever bottleneck as the number of processors is increased. The
cost of these systems increases more than linearly with the number of processors if the efficiency
of the access to the memory has to be sustained. In practice, each processor of a shared memory
system tends to be slower than the equivalent processor in a sequential system, even when
running a sequential code.

e Distributed Memory: processors have their own private memory space. Access to other
processors’ data must be done through a network. If some of the P processors have more
processes running than the average number of processes of the computer, there is no way to
balance the load of the system without stopping some processes and restarting them again in
other processors. There is an additional sub-classification of distributed memory systems:

— Commercial distributed-memory parallel computers, or multicomputers like the IBM SP2
or the Cray T3E.

— Clusters of sequential workstations with a dedicated network that are administered as
a parallel computer 6. The most important example of this class are the Beowulf
(http://www.beowulf.org/) clusters of Linux-based PCs. In this line, the Computational
Plant (Cplant) project at Sandia National Laboratories is developping a large-scale, mas-
sively parallel computing resource from a cluster of commodity computing and networking
components [151].

Note that a cluster of shared-memory systems is also possible and will probably be impor-
tant in the future if small shared memory systems with 2-4 processors reach the domestic
PC market and their cost is reduced. In order to exploit them efficiently, the groups of
processes with more intercommunication are assigned to each shared-memory subsystem.

For the same number of processors, the cost of distributed-memory systems is usually smaller
than the cost of shared-memory systems. Its cost (except the network) grows linearly with
the number of processors. However, they have disadvantages: a single process can only use
the memory available in one processor; the communication performances are usually worse
than in the shared memory systems (specially for the case of clusters of workstations); their
administration is costly; they do not support easily the shared-memory programming model.

e Shared Non-Uniform Memory Access computers are a compromise between shared and
distributed systems. In a NUMA (Non-Uniform Memory Access) system, the processors have
direct access to all the memory located anywhere in the system. Processors can access directly
to local memory but references to the memories on the other nodes must be sent across a
network. Remote references take longer than local references. It seems that NUMA technology
by SGI will soon become open-source so the concept would be implementable in Linux.

Networks

Hardware allowing the processors to communicate is a critical aspect of both shared and distributed
memory parallel computers. From an abstract point of view, it does not make much difference
whether we connect processors to memory or computers to one another. The role played by the
network in a cluster of workstations is comparable to the role of the bus in a shared-memory
computer.

Two different interconnection topologies will be shortly considered: The bus architecture, like in
a network hub, is a broadcast interconnect that allows each component to watch each operation that
occurs in the bus, providing just a single path to exchange data that has to be shared by all the
processors. It is cheap but -like the bus of a shared memory system- does not scale with the number
of processors. The crossbar architecture, like in a network switch, provides multiple independent
paths to communicate the processors simultaneously. It is efficient but its cost grows (theoretically)
more than linearly with the number of processors, so it can not be scaled to large systems.

6Both the availability of a dedicated network and administration of the system as a parallel computer are essential
to achieve reasonable performances. The latter condition excludes all the iterative work with the workstations.

4.2 Overview of parallel computing technology 97

There are other technologies [150, 148] to support the interconnection of large systems, involving
several steps in the path from source to destination.

High level programmers do not need to deal with the network topology. The network software
and hardware of current parallel computers hide the low-level details, allowing the codes to directly
talk to any processor in the computer. However, it is useful to consider two aspects of the networks
that are relevant for the algorithm design:

e Data transfer rate. The standard network model involves two parameters: The network latency
L (s), the time needed to initiate the connexion between two processors and the network
bandwidth B (by—zw), the rate at which data is exchanged after the connexion has been iniciated.
So the time t4 to transfer b bytes of data is:

b
tg=L+ B (42)
This is, it is clearly better to send one long message rather than a set of short messages, even

if the total amount of data transferred is the same.

e Local and global communications. The different parallel programming models allow easy
one-to-all, all-to-one and all-to-all communications. The lower-level software and hardware
have to express these operations in terms of a number of one-to-one communications, or
broadcasts, and each of them has a cost. A typical example is the dot product of two vectors
uv= Ef\;l u;v;. If each of the P processors has a subset of the components of both vectors, a
partial local sum can be done without communications but the final result involves necessarily
global communications, that depending on P and L can be more expensive than the partial
sums done in parallel.

In the algorithms in sections 5 and 7, two types of communications are needed: Each-to-
neighbours and all-to-all. In the first type, the term “neighbours” refers to the relative position
of the processors in the virtual topology used to decompose the domain.

Loosely coupled and tightly coupled parallel computers

Let F be the sustained number of floating point operations that each of the processors of a parallel
computer can do’. If the code only involves long messages, where we can neglect the latency, the
ratio F'/B, can be used to classify the parallel system?:

e Loosely coupled systems, such as clusters of workstations, have a high computing power com-
pared to their communication performances (too high £).

e tightly coupled systems such as the Cray T3E, have good communication performance com-
pared to their computing power (apropiated %).

The terms tightly and loosely coupled are also used in a more restrictive sense (for instance [69])
to refer to shared and distributed memory systems respectively.

Better parallel efficiencies can be obtained in tightly coupled systems. However, note that this
is a relative concept that is not directly dependent on F' or B but on their ratio, so the parallel
computers that will be available in the medium term might have worse F'/B ratios than the current
systems. One of the recipes to obtain the best parallel efficiencies with your network is to choose the
slowest, processors available. Doing so, you will have a better (lower) % ratio, and better speed-ups
(but of course, this is cheating).

As an example, consider the aforementioned Sandia/Intel ASCI RED machine (the largest par-
allel computer as the writting of this paragraph). The design specification was 1 byte per peak (not

7F is usually only a fraction of the peak performance of the processor, which depends on the code being executed.
8The usual definition of loosely and tightly coupled systems (as for instance [150]) does not consider the ratio
between the communications and computation capabilities but just the communications.

98 Parallel Computational Fluid Dynamics

sustained) FLOPS rate of a single node. With the current technology this ratio can not be achieved
using standard components.

Depending on the architecture of the parallel computer considered, the most scarce resource can
be the network. In the design of CFD algorithms for loosely coupled systems, the effort has to
concentrate in the reduction of comunications (the total data transferred and the number of the
messages), as years ago it was typically concentrated in the reduction of the core memory and later
in the reduction of the CPU time.

4.2.2 Software. Parallel Programming Models.

Parallel programming methodologies (or models) can be classified according to three criteria:

1. Shared versus distributed memory

The shared memory parallel programming models are characterized by the existence of a global
memory that can be directly read from and written to by every process involved in a compu-
tation. This memory holds the contents of certain variables (typically global variables) of the
code while others are private to each processor. To transfer data between two processors, the
sender just writes it in a global variable and the receiver reads it. It has two main advantages:
(i) 1t is easier to use than the message passing programming model; (ii) The parallelization
of a sequential code can be done step-by-step, starting with the CPU intensive areas (usually
less than 20% of the code), while in the non-CPU intensive areas are executed only by one of
the processors while the others wait for it.

But it also has some inconvenients: (i) Until very recently, there has not been a standard
protocol to guarantee portability [152]; (%) Although it is in principle the easiest method from
the programming point of view, it does not seem to encourage clean parallel designs (as allows
a progressive migration from sequential to parallel codes and does not emphasize the need to
minimize the data transference that certainly have a cost even in NUMA or shared memory
systems). Additionally, subtle bugs can be easily generated.

In a distributed memory programming model or message passing programming model each
process is assumed to have only a local memory. No other processes can directly read from
or write to it. To exchange data, processors must use messages. The codes tend to be of a
lower-level than their equivalents in shared memory, but the programmers have the full control
over the number and type of communications.

The difference was originated according to the underlying computer architecture, but current
technology allows other possibilities. The four possible combinations between hardware and
programming models are summarized in Table 4.1.

Shared memory par-
allel computers

Distributed memory
parallel computers

Shared memory pro-
gramming model

Natural

In principle possible, but
difficult

Distributed memory
programming model

Does not exploit all the
hardware features but

Natural

scales well

Table 4.1: Compatibility between parallel computing hardware and programming models.

2. Explicit versus implicit programming languages. The parallelism in the computation
can be explicitly expressed by the programmer or it can be implicit and then automatically
identified by the compiler. The last option is of course attractive but it is a challenge for
compiler technology. Sometimes the programmer has to help the compiler to exploit the
potential parallelism and this can be more difficult than to express it explicitly.

4.3 Parallelism and scalability 99

3. Data-parallelism versus control-parallelism. Parallelism can be expressed at the level
of the operators (data-parallelism) of the language or at the level of the control structures
(control-parallelism). As an example, in the former case, the language can provide an intrinsic
function for computing the addition of two vectors in parallel. With control-parallelism, the
programmer would specify (or the compiler would find by itself) that the iterations of a loop
can be executed in any order and thus it can be done in parallel. Their borderline is diffuse:
libraries providing functions that emulate data parallelism can be implemented to deal with
specific data structures of a particular problem. This is discussed in section 4.6.

Only three of the eight possible families of programming models are in wide use. From higher
level (easier to human beings) to lower level (easier to computers) they are:

1. Shared-memory implicit data-parallel models, like High Performance Fortran (HPF) or Vienna
Fortran are attractive for their abstract representation of parallel computing. However, codes
written using this model are very demanding on the hardware (i.e., tightly coupled parallel
computers) and on the compiler. They are not freely available in all the platforms.

2. Shared-memory explicit models: Compiler directives and library functions that can be used to
specify parallelism in Fortran and C programs. They are intended to combine the ease of use
of the previous group with the functionality of the next group. However, they are restricted to
shared-memory systems (and thus, they can not be universally ported) and until recently the
lack of a standard has made the portability of this model very difficult, even among different
shared-memory platforms.

3. Distributed-memory model with explicit parallelism or message passing programming model
only allow the processes to read and write to their respective memories. They exchange
data and syncronise by calling library functions, available for different languages (even Java
versions will be soon available). This is the most efficient approach, even for shared-memory
machines [153] but also the most involved. The difference between message-passing models and
shared-memory models has been compared with the difference between assembler language and
high-level languages. To implement algorithms in which it is essential to control the number
and size of the data transferred by the processors, like the DDV or DDACM cycles, message
passing is probably the best option.

There are two main message passing libraries, PVM [154] and MPI [155]. MPI is generally
accepted to be a better option, specially for homogeneous parallel computers, as it inherited all
the experience acquired with PVM. Codes using MPI are totally portable to any conceivable
platform including single-processor computers® .

4.3 Parallelism and scalability

An iterative equation solver will be used as a model to present different aspects related with parallel
algorithms. Consider the solution of a linear equation system with N unknowns, such as the one
presented in section 2.7.1:

Az =b (4.3)
using an iterative algorithm that, starting with an initial guess z¥, generates an iterative sequence
of approximations to the solution z* with 2% = f(z*¥~1) and 2 = A~'b = limy_,, 2*. The iterations
are stopped when the convergence criteria has been achieved,

[IrF]l = [l Az — bl < e (4.4)

The number of iterations needed to achieve the criteria for a given €, 2°, 4 and b is called n..

9As an example, some of the parallel codes used in this work have been compiled and executed in parallel systems
ranging from a three-processors Linux workstation cluster with a 10Mbit network (two of them 486 PCs with 8 Mbytes
RAM) to a Cray T3E using 64 processors.

100 Parallel Computational Fluid Dynamics

4.3.1 Dependencies

When in a computer program event A must occur before event B, we say that B is dependent on A.
If data resulting from the first event should be used in the second, they are data dependent. In our
model, as ¥ = f(2F~!) evaluation of z* and zF*! are data dependent. If different actions are to be
selected in the second event depending on the results of the first event, they are control dependent.
A control dependency example can also be found in our example: iterations go on or stop depending
on ||r*||. Note also that if, as it is usual, the algorithm is parallelized by means of a decomposition
of vector x, processors must communicate in order to evaluate ||r*|| and distribute this value to all
of them.

Our goal in designing a parallel algorithm is to have as less dependencies as possible so that
several different computations can be done at once by the different processors 1°.

4.3.2 Iterative algorithms dependent on the number of processors

In general, parallel algorithms should be independent of the number of processors. This is, all the
relevant intermediate results should not P. For the particular case of iterative algorithms, this
means that the number of iterations needed to achieve the convergence criteria, n., is the same for
any number of processors (e.g., conjugate gradient without preconditioning). Although not totally
essential, this is a desirable property, not only for computing efficiency but also because it helps
debugging.

In certain algorithms, for the sake of computational efficiency, we may introduce changes so that
intermediate results are a function of the number of processors, provided that the final result has to
be the same. For instance, we can accept an algorithm in which, after iteration k, the intermediate
result z* is a function of P, the number of processors. This is the case of the DDACM algorithm
discussed in section 7. We will refer to this parallel iterative algorithm as dependent on the number of
processors. Under these conditions, if we stop the iterations when a convergence criteria is satisfied,
the number of iterations needed, n. is a function of P. The same holds for the solution.

The second feature might seem alarming but it is essentially the same effect obtained when using
a sequential method and different iterative algorithms: the solutions obtained are slighlty different,
but as all them satisfy our convergence criteria, we shall consider that they are solutions of the
problem. Of course ||zp, — zp,|| , where P; and P, are two different numbers of processor, can be
made as small as wished just by decreasing e (but this is not enough for chaotic flows, where the
instantaneous maps would be a function of the number of processors).

4.3.3 Performance measures of a parallel iterative computation

Different measures of the efficiency are usually considered:

e The numerical efficiency of a parallel iterative algorithm dependent on the number of pro-
cessors is defined as the quotient of the number of iterations done with one (n;) and with P
processors (np):

ni

Erem = (4.5)

np
The parallel iterative algorithms can be degradated with the number of processors, but not
enhanced: E™™ < 1. Otherwise, using one processor we could emulate the behavior of the
P processors, call n} the new (smaller) number of iterations and redefine E™™ accordingly.

10When describing parallel algorithms, it is usual to abuse the language, talking about processors when actually
the term processes would probably be more correct. A process is an abstract concept that models the activation of
a single program on a processor. Modern operating systems allow each processor to execute consecutively each of
the members of a set of processes. Some of the processes of a parallel program may be executed alternatively by
different processors. All them can even be executed by the same processor in a sequential computer, as it is usual
when developing codes.

4.3 Parallelism and scalability 101

For non iterative algorithms (as for instance in section 6), can be analogously defined as the
quotient of the number of operations done with one and with P processors. Note that E™*™
does not consider execution times but only numerical aspects. Thus, it is not influenced by
computer hardware.

e The parallel efficiency is a measure of the performance of the parallel computation, not influ-
enced by numerical efficiency aspects. Let t, be the wall time needed by an iterative algorithm
to perform 7 iterations with P processors and tp the total time needed to do all the iterations
needed to solve the problem.

Wall time instead of CPU time is used in parallel computing. This is due to two reasons:
First, each processor is assumed to be used only by one process (the opposite is nonsense in
parallel computers), so both times should be roughly equal. Second, the time spent waiting
for other processors to finish their jobs (due to load imbalance) and transferring data has to
be accounted as well.

The parallel efficiency is defined as:

(4.6)

In general, EP*" < 1 due to the time spent in the communications and to the load imbalance
of the processors. It is independent of the number of iterations needed to finish the algorithm
and of their unitary cost. Thus, it measures the hardware (network performance) and the
algorithm (load balance), but not the overall efectivity of the algorithm.

e The speed-up (S) and the efficiency (E) are global measures of the performance of an algorithm
running in a given parallel computer :

S = t—l = nlt% = grumpper p (4.7)
tp nPtlp
t1/P
FE = —ltia = ppor grum (4.8)

Other authors, for instance [54, 156] express the total efficiency as the product of additional
factors. These elaborated definitions are needed to work out a priori models to predict the
behavior of the algorithms.

Frequently, numerically inefficient sequential algorithms (i.e., with a long ¢; compared with
other sequential algorithms) can be parallelized with high EP*" and E™“™. In these cases, high
S and FE values are obtained, but they do not actually reflect the behaviour of the algorithm.
As an example, consider a Red-Black Gauss-Seidel smoother.

Better measures for S and E could be obtained using t,., instead of ¢;, where t4., is the wall
time needed with the best sequential algorithm available (tseq < t1). This is unpractical as a
definition as there is generally no agreement about which is such algorithm. However, if there
is a sequential algorithm known to perform better, but not parallel, it is our duty to mention
it.

e Increasing the problem size. The previous measures allow us to quantify how good is our
algorithm (and hardware) to reduce the time ¢ to solve a problem with N unknowns to a
precision €. However, this is not usually our main goal when using parallel computers. Imagine
that we have assumed that we have to wait for ¢ seconds. What if our intention is to be able
to increase IV, without increasing t 7.

Let an 0z (P) be the number of unknowns of the largest problem that can be solved with P
processors in less than ¢ seconds.

102 Parallel Computational Fluid Dynamics

Using 1 processor, the maximum problem that we would be able to solve would have N fnw(l)
unknowns. Thus, in the same time, the parallel computer allows us to solve a problem kp

times bigger, where:

Nt
maz(P)
Rp = _thi (49)
maz (1)
Speedup and efficiency are the standard measures. However, in certain cases, the factor of
increase in the problem size (here denoted xp) can be more useful.

4.3.4 Scalability

The term scalability is used to describe the capability of an algorithm to maintain values of E close
to 1 when P is increased '!. For non-trivial problems, scalability is an elusive property. This is due
to different reasons:

e Amdahl’s Law. Suppose that the total execution time of a program could be separated into a
sequential and a parallel part with execution times t,., and ¢,,,. Then the execution time on
P processors would be given by:

t
tp = tseq + pI;T (4.10)
and the speedup by:
S — tseq + ttpar S tseq + tpar (411)
tseq + p;T tseq

So if, for instance there is only 10% of sequential tasks, the best speedup we can hope is 10
regardless of the number of processors available.

This pessimistic result is known as Amdahl’s Law. While it is not wrong, there is an element
missing. When you double the size of the problem, the serial part increases usually less than
the parallel part so by making a problem larger it becomes more parallel and larger speedups
are possible. This is observed in practice with many problems (i.e., section 7).

e Load imbalance. Even for a perfectly parallel algorithm, the total work to be done can not
be expected to be divisible by P. For a problem with n operations to be done in parallel,
the difference between the number of operations in charge of the different processors increases
with P. For instance, if n = 100 and P = 3, we have 100 = 33 - 2 + 34 and 34/33 ~ 1, while
for P =99 we have 100 = 1-98 + 21, so there is one processor that has double work than the
others. The time to do the operations would be the same as if P = 50. Again, for problems
of increasing size, the load balancing is easier.

e Communications overhead. Independently of the degree of parallelism, the processors have
necessarily to exchange data. Depending on the number of operations to do between two
messages and on the amount of data exchanged in each message, even a perfectly parallel
algorithm can be inefficient on a loosely coupled system. Algorithms with a high number of
messages need hardware with low latency and algorithms with long messages need hardware
with high bandwidth. The first problem is specially critical.

A useful concept related to the tolerance of the algorithms to low network performances is the
grain of the algorithm. Coarse grain algorithms have large portions of computations that can be done

I The term is also used to refer to the capability of a hardware architecture to be extended to a large number of
processors.

4.4 Control-volume based PCFD 103

locally, followed by communications, while fine grain algorithms only have small portions of com-
putations between messages. Coarse grain algorithms can run efficiently even on relatively loosely
coupled parallel computers, while fine grain algorithms need tightly coupled parallel computers. An
example of a coarse grain algorithm can be found in section 4.7.

4.4 Control-volume based PCFD

4.4.1 Overview

Designing algorithms with a high parallel fraction and good load balance and exchanging a reduced
number of short messages and doing as little operations as possible!?, is a challenge. Standard
numerical analysis algorithms are not, in general, parallel. Usually, the better algorithms from the
parallel point of view are inefficient from the numerical point of view. This is probably the main
difficulty associated with scientific parallel computing.

From a parallel computing point of view, a possible classification of the numerical algorithms for
the simulation of fluid flow phenomena is:

e Particle methods such as Lattice Boltzman or Direct Montecarlo Simulation Method, that use
a limited number of “computational particles” - that can not be identified with real particles -
to predict fluid behavior. An overview of different techniques, in the context of PCFD, is given
in [69]. Particle evolution is concurrent and does not couple distant zones of the domain in each
time step, so they seem to be better suited for parallel computers. Traditional applications
included rarefied flows [157] and reactive flows. As an example of application to other flow
types, the reader is referred for instance to [158, 159], where Direct Simulation Montecarlo
Method is respectively used to solve Rayleigh-Benard convection and a driven cavity problem.

e Methods based on the numerical integration of the PDE governing equations :

— Totally explicit methods. The domain decomposition approach provides a natural way to
parallelize explicit algorithms: the spatial domain to be solved is divided into a number
of blocks or subdomains which can be assigned to different processors. The only data
to be exchanged are the “inner boundary conditions” that each processor needs from its
neighbours to proceed to next iteration.

— Totally implicit or implicit/explicit methods, such as SIMPLEC or projection methods.
It is more difficult to achieve an efficient parallel implementation of the implicit solution
methods. This is due to the bottle neck caused by the solution of the linear equations.
Unfortunately, as discussed in section 1.2, for incompressible flows, even for time-accurate
solutions, there is at least one equation that has to be solved implicitly. There are different
methods for the parallel solution of sets of PDEs using implicit techniques.

x Functional decomposition is based on assigning different tasks to different processors.
Here, the tasks are the different PDEs [160]. In the cases where additional unknowns
have to be solved, like in reactive flows, this method is more attractive due to the
higher number of scalar equations to be solved. However, as the different unknowns
are coupled, after each time step all the fields have to be transferred to be used by all
the processors. From the communications overhead point of view this is inefficient.
Additionally, the continuity constraint (perhaps expressed in terms of a pressure
correction) couples all the velocity components and has to be solved using another
parallel approach.

x Domain decomposition in time [161, 162] is based on the simultaneous solution of
the discrete non-linear equations for different time steps in different processors. It
also implies massive data transference after each iteration. An interesting possibility

12and doing something useful such as solve Navier-Stokes equations.
130nly local discretization techniques (section 2.3) have been considered here.

104 Parallel Computational Fluid Dynamics

is to use it in combination of spatial domain decomposition in clusters of shared
memory machines. Each shared memory system would use its processors for a domain
decomposition in time solution of its spatial subdomains. In this way, the massive
data transfers would only be done within each shared memory system.

* Spatial domain decomposition [163, 156] is perhaps the best strategy also for implicit
solvers (or at least it is the standard approach), so it is considered with more detail
in next section.

For the case of implicit CFD, the target of this work, in order to work efficiently on a parallel
computer, the crucial point is the choice of the numerical method for the solution of the sparse linear
systems. The parallelization of the other components of the method (i.e., coefficient evaluation), is
straightforward. This is why, except section 4.7, the rest of the work is devoted to this problem.

4.4.2 Spatial domain decomposition for the solution of elliptic PDEs

Domain decomposition method is a generic name that is used to describe a variety of algorithms.
The common aspect of all of them is that the spatial domain to be solved is divided into a number
of blocks or subdomains which can be assigned to different processors. As the PDEs express local
couplings, domain decomposition is perhaps the most natural strategy for this situation.

Different classifications of the domain decomposition method can be found in the literature.
Subdomains can be overlapping or non-overlapping, parallel or rotated, etc. [164]. An important
classification criteria is according to the stage where the domain decomposition is carried out:

e Approach A. Perform the decomposition before the discretization. Use overlapping subdo-
mains and treat them as independent continuous problems with their own boundaries. Each
of the subdomains uses as bo undary conditions information generated by the other subdo-
mains where necessary. These internal boundary conditions are updated after each iteration.
In this way, a sequence of solutions of the individual subdomains is constructed, that converges
to the global solution of the problem. This approach is essentially a numerical version of the
Schwartz Alternating Method (SAM). A history of the method can be found in [165].

e Approach B. Perform the decomposition after the discretization. In this approach, a single
continuous domain is considered. Each processor is used to generate the discrete equations
related with its part of the domain. Then, to solve the discrete equations, a parallel algorithm
is used. Thus, the core of the PCFD problem becomes the efficient parallel solution of the
linear equation systems. This is considered in section 4.5.

Numerical efficiency considerations apart, the first approach has two important advantages:
(i) It is a coarse grain approach; as linear equations are not solved in parallel, it requires less
communication between the processors, and only after each outer iteration and (i7) It allows to
reuse almost all the sequential code without changes.

The first advantage is specially important if the code is to be used on loosely coupled systems.
However, it has to be kept in mind that the PDEs to be solved in CFD are, in general, elliptic: local
couplings are propagated to the entire domain. Quoting from Gropp and Keyes [166], “The domains
of dependence of resolvents of elliptic operators, such as the spatial terms of the momentum and
energy equations of (subsonic) fluid mechanics, are global, though there is a decay with the distance
between source and field points. The global dependence implies that data must travel across the grid
from each point to all others during the solution process (for the satisfaction of sensible accuracy
requierements).”. Thus, the SAM method does not scale well with the number of processors, unless
the special circumstances of the flow help the convergence process.

Domain decomposition and multigrid. An important variant of the Schwartz method uses
geometrical MG algorithms, doing a multi-level domain decomposition to enforce global convergence
(as for instance in [167]). A clear discussion of the two possible methods to combine MG and domain

4.5 Parallel algorithms for the solution of linear equations 105

decomposition is given in [168]. As these considerations are important for this work, an extract of
it is reproduced here: In the first approach (method I in [168]), “...the domain decomposition acts
as the outermost shell. For any block in the composite grid, the appropiate boundary conditions
are obtained at the finest grid level and a multigrid cycle is then used to solve the governing
equations within the block. This procedure is carried out for each block in the composite grid. In
the second approach (method IT), the multigrid component acts as the outermost shell. With this
approach, for each level in the multigrid cycle, the appropiate composite grid is solved, with internal
boundary conditions for each block being determined from neighbouring blocks within the same
level. Therefore, within each multigrid cycle for the composite grid, internal boundary information
is exchanged multiple times...”.

The approach I is similar to the approach A previously discussed. In both cases, no technique
is used to reinforce global convergence. Thus, due to the non-local nature of the equations solved
(only the pressure correction equation for time-accurate flows or all the NS set for steady-state
flows), approaches IT and B are (in general) expected to be more efficient from a numerical point
of view, but more difficult to parallelize efficiently on loosely coupled machines. The main aim of
sections 5,6, and 7 is to find a way to do so.

As a counterexample, Schwartz Alternating Method (approach I or A) is known to behave well
with parabolic flows: for each subdomain, as the guessed values at the downstream region have no
effect over the domain, the information generated at the upstream region is quickly propagated from
the first to the last subdomains [164]. This important feature of parabolic flows is exploited in the
algorithm presented in section 4.7.

4.5 Parallel algorithms for the solution of linear equations

As it has been argumented in previous sections, the numerical simulation of complex fluid dynamics
and heat transfer phenomena relies on the efficiency of parallel CFD codes. In turn, PCFD (or at
least PCFD based on discretization of Navier-Stokes equations) relies on the efficient solution of the
huge banded linear equations systems arising from the continuous governing equations.

Among the different families of algorithms used to do so, Block-Jacobi and Krylov subspace
algorithms will be shortly considered. Schur Complement algorithm and Parallel multigrid will
treated in detail in the next chapters.

4.5.1 Block-Jacobi algorithm

Overview

Block-Jacobi algorithms [104] are essentially the same idea as Schwartz iterative method [165, 169],
but for the solution of the discrete equations rather than the original PDE.

The matrix A in Az = b is partitioned into submatrices as:

Apn - Arp
A= : : (4.12)
Apr -+ App
Each row of the block matrix is assigned to one of the P processors. Then, as it would be done

with a scalar equation in a Jacobi algorithm, the unknowns outside the main diagonal are treated
explicitly, using the values from the previous iteration:

Aiil’erl = — Z A”l’§ + b; (4.13)
i#£j

Where £ is the iteration. To evaluate the right hand side, processors must exchange data. Then,
each processor solves its own subproblem, usually using a local iterative algorithm. Global iterations

106 Parallel Computational Fluid Dynamics

are stopped according to a convergence criteria.

When dealing with equations arising from structured meshes, the natural way to partition the
matrix is to partition the mesh. In terms of the mesh, expression (4.13) means that each pro-
cessor obtains its vector z**! as the solution of its subdomain, using the values provided by the
neighbouring processors as if they where already correct.

Benchmark

Block-Jacobi algorithm is dependent on the number of processors. A numerical experiment has
been done to illustrate its numerical efficiency. A steady-state, one-dimensional convection-diffusion
equation, with different Pe = % numbers has been solved with P processors, using a uniform
mesh with N nodes in the domain [0, 1], with boundary conditions ¢ (0) =0, ¢ (1) = 1. The initial
guess used has been ¢ = 0. A uniform velocity field u, parallel to x axis is imposed. This problem
is discussed in [57], section 5.2-3. Iterations are stopped when ||b — Az|| < 107C.

The first test has been performed using a direct solver (TDMA) for each of the subdomains. The
number of block Jacobi iterations done for different numbers of processors is presented in Table 4.2.

N =60 N = 600
P | Pe=0 | Pe=40 | Pe= —40 | Pe=0 | Pe =40 | Pe= —40
1 1 1 1 1 1 1
2 429 9 68 4346 1 542
5 881 45 99 9045 205 789
10 | 1679 69 148 17279 | 335 1140
15 | 2471 93 203 25445 | 429 1523
30 | 4805 169 380 49507 | 739 2774

Table 4.2: Number of block Jacobi iterations using a direct solver for each subdomain.

The number of iterations increases dramatically with P, while the CPU time would only decrease
linearly, as TDMA is a O (N) algorithm. In a multidimensional domain, using MG instead of TDMA,
the result would be similar, as MG is also roughly O (N). Convection dominated problems have a
better behavior but not still good enough to be of practical interest.

The difference between the number of iterations for positive and negative Pe numbers is due
to the difference between the solution, and the initial guess. For positive Pe numbers, the left
boundary condition ¢ = 0 is transported through a large part of the domain. Thus, the solution is
close to the initial map. The opposite situation occurs for negative Pe numbers, where the solution
is close to 1 in a large portion of the domain.

Next test has been done using an iterative (Gauss-Seidel) algorithm as a local solver, with a fixed
number of nodes N = 60. Different numbers of local iterations n;,. have been considered. E™"™
(here the ratio between the number of points relaxed with a single processor and with P processors)
is presented in Table 4.3,

Nige = 1 Njoe = 10 Nyoe = 100

P Pe=0| Pe=40 | Pe=—-40 | Pe=0 | Pe=40 | Pe=—-40 | Pe=0 | Pe=40 | Pe= —40
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 0.966 | 1.0 0.980 0.608 | 0.941 0.500 0.108 | 0.222 0.058

5 0.921 | 0.924 0.934 0.410 | 0.326 0.360 0.054 | 0.044 0.040
10 | 0.854 | 0.846 0.872 0.265 | 0.231 0.259 0.027 | 0.028 0.027
15 | 0.797 | 0.788 0.822 0.192 | 0.175 0.197 0.019 | 0.021 0.019
30 | 0.665 | 0.661 0.700 0.097 | 0.094 0.105 0.009 | 0.011 0.010

Table 4.3: Numerical efficiency of block Jacobi iterations using Gauss-Seidel for each subdomain.

Emv™ ig reasonably high only with a very low number of local iterations, where the algorithm

4.6 Software engineering aspects of PCFD 107

behaves like a point Gauss-Seidel. This implies a fine-grain algorithm with a huge number of each-
to-neighbours communications (as an example, 4805 with N = 60, P = 30 and Pe = 0). This is too
costly for a loosely coupled computer, as will be seen in section 7.

Block-Jacobi algorithm can be enhanced with the use of overlapping domains. Each processor
solves its subdomain plus a part of the adjacent subdomains. In the variant considered here, only
the boundaries of the extended subdomains are transfered, so the communications cost is like in the
non-overlapping version of the algorithm. The overcost is only due to the extra nodes to be relaxed.
The previous experiment has been repeated with an overlapping area of 4 nodes. The results are
presented in Table 4.4. As it can be seen, the results are only slightly better. An enhanced version
of this technique is used as smoother in sections 5 and 7.

Nioe = 1 Nioe = 10 noe = 100
P Pe=0| Pe=40 | Pe=—40 | Pe=0 | Pe=40 | Pe=—40 | Pe=0 | Pe=40 | Pe= —40
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 0.977 | 0.882 0.929 0.849 | 0.882 0.860 0.499 | 0.588 0.352
5 0.870 | 0.815 0.831 0.626 | 0.579 0.606 0.255 | 0.186 0.186
10 | 0.841 | 0.826 0.837 0.444 | 0.382 0.432 0.092 | 0.075 0.069

Table 4.4: Number of block Jacobi iterations using an iterative solver for each subdomain with an
overlapping area.

As a consequence of the low numerical efficiency of the plain Block-Jacobi (as well as Schwartz)
iterations, they are not suitable, in general, as a parallel strategy for the numerical solution of
Navier-Stokes equations. An important exception to this assert is exploited in section 4.7.

4.5.2 Krylov subspace algorithms

Krylov subspace algorithms [170] or Non-stationary [76] iterative algorithms, such as CG (Conju-
gate Gradient) or GMRES (Generalized Minimal Residual) are an important family of iterative
algorithms for PCFD applications.

CG, restricted to symmetric positive definite matrices, is an illustrative example. A readable
description of CG can be found in [104]. From a software engineering point of view, CG (like the
other algorithms of the family) has the important advantage that it can be implemented without
accessing to individual elements of the matrix A. Only matrix-vector product operation is needed.
This means that a general CG algorithm can easily be implemented for different types of matrices.
Additionally, their parallelization is straightforward. Each CG iteration only needs an each-to-
neighbours communication (arising from a matrix-vector product) and an all-to-all communication
(arising from a vector-vector product).

Their main inconvenient is the need of a preconditioner. The convergence properties of Krylov
subspace algorithms strongly depends on spectral properties of matrix A. For realistic applications,
preconditioners are always needed. There is little theoretical guidance for the selection of the best
preconditioner for each application. However, the main problem is that the best preconditioners
cancel both advantages: they need access to the matrices and they are not parallel.

Nevertheless, Krylov subspace algorithms are probably the most popular approach for parallel
CFD [170, 163, 171, 172, 173, 174, 175].

4.6 Software engineering aspects of PCFD

As discussed in the introduction of this Section, one of the problems associated with parallel com-
puting is the difficulty of developing and debugging the parallel codes. To reduce the programming
effort, there are different options such as use shared-memory environments and parallelize only the
most CPU intensive areas of the code (or use automatic compilers for the non-critical areas). These

108 Parallel Computational Fluid Dynamics

strategies are very useful for programmers facing the parallelization of scientific computing appli-
cations, possibly developed by other teams of people. But they may fail to provide the necessary
portability among different platforms, and their performance in clusters of workstations may be
limited.

If the applications to develop or port are restricted to a specific area, such as PCFD with
structured meshes, another approach is to develop a layer of software, providing the necessary
interface for higher level algorithms. Then, the programming and maintenance of the higher level
applications can be done with a similar effort as in the case of the sequential codes. This has been
the approach of this work, aimed to provide a first version of this lower level layer.

There are two possible working modes:

e Subdomains mode (as in section 4.7). There are a number of subdomains, that computa-
tionally are treated as separated entities, that exchange information through their boundary
conditions, and cooperate to evaluate global information (such as the maximum residual).
They are divided among the processors. Each processor can own one or several subdomains.

e Single domain mode (as in sections 5, 6 and 7). There is just one domain, shared by all the
processors. Each processor can access legally to its part of the domain and to the adjacent
areas (halos). Processors exchange local and global information as in the previous example.
The main difference is that here, the processors can cooperate to solve a single equation system.

In future implementations, both modes could be combined: there would be a set of subdomains,
each of them in charge of a set of processors.

The main principle followed is: In the sections where each processor can work locally
with its subpart of the problem, the parallel code should be as similar as possible to a
sequential code. This applies for instance to the evaluation of coefficient matrices (an important
fraction of all the lines, and also the section where most of the maintenance effort is concentrated).

The calls to MPI functions and the points where the behavior of the code depends on the index
of the processor or on the number of the processors have been concentrated in the lower layer of
the software. In subdomains mode this is achieved quite naturally. The subdomains are distributed
at the beginning of the execution according to the indications given by the user: automatic load
balancing is not possible as the amount of computational work is not a function of the number of
nodes. In single domain mode, global indices that sweep always all the fields independently of the
number of processors have been used to access the scalar fields (velocity components, pressure, etc).

Each processor maps its area of the global field, plus the halos, to its memory according to a
macro or an inline function, allocating only the memory space needed to do so. To simplify the code,
processors adjacent to the external boundaries of the domain can access an “artificial” halo of values
lying outside the domain. All the data to evaluate this mapping is stored using a data structure.
High level functions are not allowed to access a field without using this protocol. A range-check
control can be enabled during debugging.

The lower layer of software also provides other functionalities:

A set of parallel I/O functions, that redirect standard output to a different file for each
processor and implement a debbuging mode in which all the output is flushed immediately
after each print.

A module to catch exception signals and flushes the buffers before stopping the code.

A function to do basic tests to verify that all the processors have the same CPU performance
and verify that the network performance is as expected.

Interfaces to implement the communication modes needed by the higher level functions.

A module to measure execution (CPU and/or network) time of the different functions.

4.7 Implementation of a Schwartz Alternating Method to solve reactive flows 109

4.7 Implementation of a Schwartz Alternating Method to solve
reactive flows

In this section, a first parallel implementation of the code DPC will be presented as an example
of a large grain parallel algorithm that can run efficiently on both loosely coupled and tightly
coupled parallel computers [169]. Currently, this code is routinely used to simulate flames. It
is an algorithm designed for the solution of parabolic or quasi-parabolic flows that uses Schwartz
Alternating Method. The main limitation of this approach is that its numerical efficiency is restricted
to the simulation of determinate flow types, such as parabolic flows. Two examples are presented. In
one of them, the flow is parabolic and the number of iterations does not increase with the number of
subdomains, while in the other there are recirculations (elliptic flow areas) that cause the numerical
efficiency to decrease.

4.7.1 Physical model

The aim of this model is to advance in the simulation of laminar flames using finite rate kinetics.
Although industrial combustors work under turbulent conditions, studies focused on laminar flow
conditions are a common issue in their design. Furthermore, a good understanding of laminar flames
and their properties constitute a basic ingredient for the modeling of more complex flows [176].
The numerical integration of PDE systems describing combustion involves exceedingly long CPU
times, especially if complex finite rate kinetics are used to describe the chemical processes. A
typical example is the full mechanism proposed by Warnatz [177], with 35 species and 158 reactions.
In addition of the momentum, continuity and energy equations, a transport convection-diffusion
equation has to be solved for each of the species, as well as the kinetics. These detailed simulations
are a key element to model combustion kinetics using less expensive models.

The governing equations for a reactive gas (continuity, momentum, energy, species and state

equation) can be written as follows!*:

ap B
o +V-(pv)=0 (4.14)
ov
pE + (pv.V)v=V-7—-Vp+pg (4.15)

N
—a - =V (VT) - V- (p; hiYi (vi — v)> (4.16)

Q) 4 v (pviv) = w (4.17)
_pM
P=pr (4.18)

where ¢ is time; p density; v average velocity of the mixture; 7 stress tensor; p pressure; g gravity; N
total number of chemical species; h specific enthalpy of the mixture; h; specific enthalpy of specie ¢;
T absolute temperature; k thermal conductivity of the mixture; M molecular weight of the mixture;
R gas universal constant. The diffusion velocities are evaluated considering both mass diffusion and
thermal diffusion effects:

DT
vi=v— D, VY; — ;m V(nT) (4.19)

14This model is not a part of this work, it has been done by other collegues of the Laboratory. Detailed information
can be found in [178].

110 Parallel Computational Fluid Dynamics

where D;,, and D} are respectively the mass diffusivity and the thermal diffusivity of the i specie
into the mixture. The evaluation of the net rate of production of each species, due to the J reactions,
is obtained by summing up the individual contribution of each reaction:

J N , N "
wi =My (viy i) [’“f,j T1 tmid*s — ko T Imal" (4.20)
j=1 i=1 i=1

Here, [m;] are the molar concentrations and M; the molecular weight of the i specie, v;;, 1/;; the
stoichiometric coefficients appearing as a reactant and as a product respectively for the ¢ species
in the reaction j, and ky;, ks ; the forward and backward rate constants. The transport and
thermodynamic properties have been evaluated using CHEMKIN’s database. More information of
the model can be found in [178, 7].

4.7.2 Numerical aspects

In this implementation of the domain decomposition method, the meshes of the individual subdo-
maings are overlapped and not necessarily coincident. The second feature allows more geometrical
flexibility that, for instance is useful to refine the mesh in the sharp gradient areas at the edges of the
flames. However, the information to be transferred between the subdomains has to be interpolated.
This has to be done in a way that the interpolation scheme and the disposition of the subdomains
adopted should not affect the result of the differential equations. For instance, methods that would
be correct for one second order PDE [179] are not valid for the full Navier-Stokes set. If this condi-
tion is not satisfied, more outer iterations are needed and slightly wrong solutions can be obtained.
Here, conservative interpolation schemes that preserve local fluxes of the physical quantities between
the subdomains are used [180, 181, 182]'%.

The governing equations are spatially discretized using the finite control volume method. An
implicit scheme is used for time marching. A two-dimensional structured and staggered Cartesian
or cylindrical (axial-symmetric) mesh can be used for each domain. High order SMART scheme [98§]
and central difference are used to approximate the convective and diffusive terms at the control
volume faces. It is implemented in terms of a deferred correction approach [72], so the computational
molecule for each point involves only five neighbours. Solution of the kinetics and the transport
terms is segregated. Using this approach, kinetic terms are an ODE for each control volume, which is
solved using a modified Newton’s method with different techniques to improve the robustness [183].
To solve the continuity-momentum coupling, both segregated and coupled ACM can be used.

4.7.3 Illustrative results

Nlustrative results obtained with the code are presented in Fig. 4.1. Two examples are presented:
A flat flame (top) and a micro slit burner (bottom). The contour lines of the streamfunction'¢
and the temperature (K) are at the left and the CO concentration at the right. In both cases,
the laminar combustion of a stoichiometrical mixture of methane and air is studied. Their main
characteristics are in Table 4.5. Symmetry boundary conditions are used and only one half of the
domain is simulated. The dimensions and mesh size of the computational domain are indicated.

From the point of view of the fluid flow, their main difference is the presence of a recirculation
area in the case of the micro slit burner.

15 This critical aspect has not been considered in this work. This implementation in DPC is due to other collegues
of the Laboratory.

16The iso-value lines of the streamfunction are tangent to the velocity field. Arbitrary iso-values have been plotted
in order to show the main features of the flow.

4.7 Implementation of a Schwartz Alternating Method to solve reactive flows 111

Flat flame | Slit burner
General description Premixed CH4/Air (N2402) laminar flame
Flat flame on a multiple | Single confined flame on a micro-slit
Burner type .
slit burner burner
Domain dimensions 0.075 x 0.4 cm 0.6 x 0.8 cm
Mass flow rate 2.6250 x 10 * Kg/s 1.6564 x 1073 Kg/s
Inlet temperature 208K
Inlet composition Stoichiometrical CH4/Air mixture
Inlet velocity profile Parabolic
Outlet boundary con- Bpv Y1) _ 0 0
ditions on
Lateral boundary con- | 5,uv,7) w=0 Center: %ﬁ“ﬂ =u=0
ditions no T Solid wall: u=0, 7 = 298K, 2¥ =0
Mesh size 60 x 80
Reducec.i kinetics Jones & Lindstedt: 4 reactions and 7 species [184]
mechanism

Table 4.5: Main characteristics of the illustrative examples of reactive flows.

4.7.4 Parallel performance

Before starting the parallel implementation, the sequential version of the code was used to evaluate
its numerical efficiency for this problem, from one to ten subdomains (than can be assigned to
different processors). For the case of the examples considered, the results are in Fig. 4.2. For the
case of the flat flame, the number of iterations is almost independent of the number of subdomains
(Enum = 1), while significative variations are found for the case of the slit burner. This is due to the
presence of the recirculation area. In general, the number of iterations increases if the recirculation
areas are divided into one or more subdomains.

Another important consideration is the cost per iteration of each of the subdomains. For the
case of a flat flame!”, it was measured using a case with 10 subdomains, with the same number of
control volumes per subdomain. A sequential computer was used. As it can be seen in Fig. 4.3, the
cost is slightly different for each domain. This is due to the presence of solid areas in the subdomains
at the bottom and to the different number of overlapping areas (two for the inner subdomains and
one for the subdomains adjacent to the boundaries). Similar results would be obtained for the slit
burner simulation.

Different parallel computers have been used to benchmark the code. For the case of a flat flame,
where the number of iterations are almost independent of the number of subdomains, the results are
presented in Fig. 4.4 (i) 02000: SGI Origin 2000, a shared memory system with R10000 processors;
(11) IBM SP2, a distributed memory system with thin 160 nodes; (74) A Beowulf Cluster of Pentium
I (266 MHz)!8.

For the benchmark, each subdomain has one processor (the code also allows each processor to
solve a set of subdomains). The speed-ups obtained in the different systems (evaluated in relation
to the respective times for one processor) are in Fig. 4.4. It is remarkable that, for the cases where
the numerical efficiency is close to one, they are very similar in the different platforms.

This is because the algorithm requires little communication. For instance, for the most unfavor-
able situation (02000 with 10 processors) only a single message of about 11.25 Kbytes is exchanged
between neighbouring processors approximately every 0.15 seconds. So, the decrease on the ef-
ficiency is mainly due to the load imbalance and to the extra work done (overlapping areas and
interpolations).

I7The examples of this and the next paragraph are from [169], where the simulation of a flat flame, similar to the
case described in Table 4.5 is used.

18The system at Daresbury Laboratory (UK) was used. All the information can be found at
http://www.dl.ac.uk/TCSC/disco/Beowulf/config.html.

112 Parallel Computational Fluid Dynamics

0.004 0.004
T Y6
2122.4 4.7E-02
2000.8 4.4E-02
0.003 1879.2 | 1.003 4.1E-02
1757.6 — 3.8E-02
1635.9 | 3.5E-02
1514.3 — 3.1E-02
1392.7 — 2.8E-02
1271.1 2.5E-02
1149.5 2.2E-02
0.002 10079 | 9:002 - 1.9E-02
906.3 — 1.6E-02
784.7 1.3E-02
663.0 9.4E-03
FEELTTRT i 'i 541.4 6.3E-03
!‘%\X\X\\ Il’j}lj} 419.8 3.1E-03
0.001 X\ /) | 0.001

-0.80075 0.00000 0.00075 -0.80075 0.00000 0.00075

0 o0 -0.002 0 0.002 ~ 0.006

Figure 4.1: Tllustrative results obtained with the parallel code for reactive flows. Top: flat flame.
Bottom: Micro slit burner.

4.7 Implementation of a Schwartz Alternating Method to solve reactive flows 113

Num. Iterations

10000 -

9000

8000

7000 gy // ——~

6000

\J —e— Flat flame

5000

—— Slit burner

4000

3000

1000

3 5 7 9

Num. Subdomains

Figure 4.2: Iterations needed by the parallel code for reactive flows as a function of the number of

subdomains.

350
300 -
8 250 -
S
o 200 T
@
S 150 ~
o
(6]

100 ~
50

Subdomain

Figure 4.3: Time to solve each of the subdomains for a flat flame problem.

114 Parallel Computational Fluid Dynamics

Speed-up
N /
75 / 5
5
[| ¢ 02000
A m SP2
25
A Beowulf
5!/(m— | deal
0

T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10

Number of processors

Figure 4.4: Speed-ups of the code for reactive flows (flat flame) in the different systems.

4.9 Nomenclature (4.7)

4.8 Nomenclature (4.1-4.6)

RS v B,

Enum
EptlT’

t
Nmaz(P)

coefficient matrix

number of bytes

network bandwidth
efficiency

numerical efficiency

parallel efficiency

sustained number of floating
point operations per second
constant

network latency

number of unknowns
maximum number of unknowns
that can be solved with P
processors in a time £
number of iterations
number of iterations

to achieve the convergence
criteria

Peclet number

Reynolds number
bandwidth of an Eq. system
number of processors
residual vector

time to transfer data
speedup

wall time do to ¢ iterations
with p processors

generic vectors

unknown vector

Greek symbols

€ precision

K increase of problem size
Subindices

1,2,3 Cartesian components

i vector component,

p processor

par parallel

P obtained with P processors
seq sequential
Superindices

k iteration

4.9 Nomenclature (4.7)

S T N

=

kyj
ks,
Vv

time

average velocity of the mixture
mass density

stress tensor

specific enthalpy of the mixture
pressure

gravity

number of chemical species
temperature

thermal conductivity

of the mixture

molecular weight

of the mixture

gas universal constant
diffusivity

thermal diffusivity

number of reactions

molar concentrations
stoichiometric coefficients
for specie 7 in reaction j
(reactant)

stoichiometric coefficients
for specie ¢ in reaction j
(product)

forward rate constants
backward rate constants
velocity vector

Subindices

i

referent to specie i

116 Parallel Computational Fluid Dynamics

