Chapter 7

Domain Decomposed Additive
Correction Multigrid

7.1 Introduction

In previous sections we have considered three approaches for the solution of algebraic equations
arising from discretization of PDEs, but none satisfies all of our requirements:

1. ACM (section 3) is a robust, totally algebraic MG algorithm, without a long pre-processing
stage, that is efficient as a sequential algorithm. However, it is not useful for loosely coupled
systems as it is very fine-grained. According to [194], the efficiency of parallel ACM algorithms
depends on the latency. This is confirmed by the poor speedups obtained in a fixed number
of smoothing iterations on small meshes (see section 7.3).

2. DDV parallel MG, and the other parallel MG variants in section 5, are efficient and tolerant
to relatively high latency networks but require discretization of the governing equations at the
different levels (geometric multigrid). So it is not in principle compatible with an algebraic
approach, as it would be needed for DPC code.

3. Schur complement (section 6) is totally algebraic and very efficient for constant left hand
side problems such as pressure correction equations of incompressible flows, our main target
(section 1.2), even on loosely coupled systems. However, it needs large amounts of memory so
the maximum size of the problems to be solved is restricted.

Our goal now is to devise a way to combine the positive properties of the three methods, obtaining
a reasonably efficient algebraic solver for loosely coupled systems, mainly to be used for pressure
correction equations of medium and large scale problems.

The proposed algorithm, DDACM (Domain Decomposed Parallel Additive Correction Multigrid)
is a MG algorithm based on the ACM correction equations [137], with both pre and post smoothing,
without the need of halo update operations at the second leg, that uses Schur complement as a direct
solver for the coarsest level and BILU (Block Incomplete LU factorization) as a smoother for the
intermediate levels.

Here, the notation of section 3.2.2 is recovered. This is, finest level is labeled 1 and coarsest level
M. As in the rest of the work, we assume for simplicity that a two-dimensional problem is to be
solved. Like in DDV, a non-recursive formulation of the algorithm is used since it allows a better
control of the communications. It is also divided into a first and a second leg.

DDACM, like DDV, relies on a direct solver for the coarsest level. However, it has a much
more important role in DDACM. In DDV, as pre-smoothing operation is suppressed, the halos of
all the levels can be updated simultaneously. Doing so, the communication time does not increase
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substantially with the number of levels (as the size of the smaller levels is neglectable). Thus, the
number of levels can be increased until the time to solve the smallest is neglectable and then use a
sequential solver.

On the other hand, in DDACM pre-smoothing operation is not suppressed. The halos are
updated level by level in the first leg of the algorithm. In spite of the neglectable size of the smaller
levels, the communication cost increases due to latency. To avoid this problem, DDACM reduces
the number of levels by means of using an efficient direct parallel Schur solver at an intermediate
(relatively large) level.

Although they are mainly equivalent, the DDACM algorithm is easier to implement than the
DDV algorithm (if the Schur complement subroutine is not considered). In particular, in DDACM
the analysis of the data dependencies that allow to reduce the comunications is not as involved as in
DDV. This is due to the lower order of the restriction and prolongation operators used in DDACM
and to the use of CS instead of FAS.

7.2 Domain partition and halos

In section 5.2, the mesh disposition used in DDV algorithm was discussed. In DDACM, the problem
begins after the discretization so we do not have to consider a mesh but a regular arrangement of
unknowns in a two-dimensional pattern, like in sections 3.2 and 6. Each node is related to the
neighbours only through the coefficients of the discrete equations. The underlying PDE is not
needed. A two-dimensional domain decomposition is done, P = P, P,. Both the processor index p
and its position in the processors mesh (py,py,) are used in the algorithm description.
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Figure 7.1: Schema of the domain decomposition used by DDACM algorithm.

A disjoint partition of the domain is done at the first level. This is, unlike in DDV algorithm
(section 5.2), there are no nodes shared between two or more processors. A halo of J neighbouring
points in each direction is added to the area accessible to each processor. To ease the implementation
of the algorithm in a pre-existent code, it is advisable to do the partition outside the linear solution
algorithm. Doing so, an arbitrary partition, not necessarily balanced from the linear solver point of
view, can be imposed. This can be done according to other criteria, such as different amounts of
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work per unknown in different regions of the domain in other stages of the algorithm.

An example of such an arrangement can be seen in Fig. 7.1, where a case with N = 144, N, =
Ny =12,P =4,P, = P, = 2,J = 4 is presented. The nodes accessible to p = 0 are filled. A gobal
numbering scheme is used (according to the methodology discussed in section 4.6).

Like in DDV algorithm, if the domain is decomposed in two dimensions, halo update operation
involves data exchange between each processor and its 8 neighbours (at N, S, E, W, NW, NE, SW,
SE). To update the halos, each processor just replaces its halo values with data from the inner areas
of its neighbours. No averaging operations are used.

7.2.1 Halo update

From the point of view of computing time, halo update operation is a critical aspect of parallel MG
algorithms. The process (that was not described for the case of geometric parallel MG algorithms
in section 5), can be divided into three stages: packing, communication and unpacking.

Packing

In the packing stage, that does not involve use of the network, each processor collects the data from
its inner areas to be sent to each of its neighbours and stores them in a set of vectors, one per each
neighbouring processor.

In DDV and DDACM, there are vectors of fields of different sizes to be updated in the same
communication. They are packed correlatively in a single vector per neighbouring processor. The
packing stage begins with a vector of fields (that can be unknowns, right hand sides, etc) and ends
with a set vectors to be sent to the neighbouring processors.

For tightly coupled parallel computers, packing/unpacking time can be comparable to commu-
nication time (due to the access to non-correlative memory positions) so it is worth optimizing the
process. This is not the case for loosely coupled systems, where it is a small fraction of the total
communication cost.

Communication

In the communication stage, that involves use of the network, each of the vectors with halo data
is transfered to the corresponding neighbour. This is done by means of a sequence of calls to the
low-level point-to-point send and receive functions provided by the communications library (MPI in
our case). There are many options to do so. The main requirements are to guarantee the absence
of deadlocks ([155], section 3.4) and to have good performance.

Communication functions can be used for halo update or for any other purpose. According to the
software engineering approach used in the implementation (section 4.6), they are part of the lower
layer of the code. Thus, the general case in which each processor has to exchange data (receive,
send or send-and-receive) with any other processor is considered here.

Three different functions have been implemented and benchmarked in JFF cluster:

e Mode 0: Totally asynchronous ([155], section 3.7). Each processor initiates all the send and
receive operations and then waits until they have been completed. This is done using non-
blocking communications, as shown in Alg. 7.1. sb[p] and rb[p] are the previously allocated
send and receive buffers. The send start calls (MPI Issend) initiate the sending operations but
return before they are completed. The same holds for the receive start operations (MPI Irecv).
Each MPI_Wait call returns when the corresponding operation has been completed.

This is, in mode 0, each processor exchanges data simultaneously, in both directions, with all
its neighbours.

As it is not necessary to specify an order in the sequence, this mode can be used safely (i.e.,
without risk of deadlocks) for arbitrary communication patterns. This has been the approach
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Mode 0 halo update {
for p in my neighbours:
MPI_TIssend (sb[p],p)
for p in my neighbours:
MPI_Irecv (rb[p],p)
for (all operations started)
MPI_ Wait

Algorithm 7.1: Mode 0 halo update.

used in section 4.7, where any communication pattern (arising from different dispositions of
the subdomains) can be imposed by the user. However, this mode might not be the optimal
solution. An additional inconvenient is the necessity of allocating all the buffers simultaneously.
This mode has been used for the pre-processing stage in our implementation of the Schur
complement.

Mode 1: Blocking communications, with simultaneously Send-Receive operation between pairs
of processors. In order to avoid deadlocks, when blocking communications are used, a valid
sequence of messages has to be defined. It has to guarantee that send and receive operations
always match. For the halo update operation here under consideration, one of the possible
sequences is outlined in Alg. 7.2.

Mode 1 halo update
Lateral halos
if ( pz + py is even) {
exchange data
exchange data

else {
exchange data (S)
exchange data (
exchange data (W)
exchange data (E)

}

Diagonal halos

if (p, is even) {
exchange data
exchange data
exchange data
exchange data

} else {
exchange data
exchange data
exchange data
exchange data

Algorithm 7.2: Mode 1 halo update.

Where p,, p, are the coordinates of p in the map of processors. In mode 1, each of the
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exchange data operations is implemented with asynchronous communications, as in mode 0
for each Send-Receive pair.

exchange data (p) mode 1 {
MPI Irecv(p)
MPI_Send( p )
MPI_ Wait

Algorithm 7.3: Mode 2 halo update.

Thus, in mode 1, each processor exchanges data in both directions with only one of its
neighbours. Inspection of LAM (http://www.osc.edu/lam.html) source code revealed that
MPI_Sendrecv function is implemented as in the previous pseudo-code, so the LAM function
was used.

e Mode 2: Blocking communications, with consecutive send and receive operation for each pair of
processors. The same sequence as in mode 1 is used (Alg. 7.3), but for mode 2, communications
between each pair of processors are not started simultaneously. Alg. 7.4 is used to do so.

exchange _data (p) mode 2 {
if ( myrank > p) {
MPI_Ssend( p )
MPI_Recv( p)
} else {
MPI_Recv(p)
MPI_Ssend( p )

Algorithm 7.4: Mode 2 data exchange.

Thus, in mode 2, each processor exchanges data (only sending or only receiving) with only
one of its neighbours.

Unpacking

In the unpacking stage, the packing process is reversed. Each processor distributes the vectors
of numbers received from each of its neighbours in the appropriated position of the halos of the
different fields transferred. The network is not used.

7.2.2 Benchmarking halo update in JFF cluster

Time to do the halo exchange operation varies between calls. The experiment has been repeated
100 times, recording the time that processor 0 needs to do the communication (not including the
time spent in packing and unpacking operations). Depending on the order chosen, results would be
slightly different if measured in other processors. As our goal here is to measure the performance of
the network, the packing times have not been included in the measure.

For modes 0 to 2, with P = 16 processors, for different mesh sizes, the minimum, maximum and
average times can be seen in Figs. 7.2, 7.3 and 7.4.

Mode 1 was chosen as it is only slightly inferior to mode 2 for the larger meshes and has the
best repeatability. According to the results of Fig. 7.5, the use of different modes as a function of
the mesh size could be considered.
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Figure 7.2: Minimum, maximum and average time to update a 4 nodes halo with P = 16 on the
JFF cluster using mode 0.
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Figure 7.3: Minimum, maximum and average time to update a 4 nodes halo with P = 16 on the
JFF cluster using mode 1.

Next experiment was to study the influence of the number of processors. In principle, halo
update operation involves only the neighbours of each processor so it should be independent of P.
Average and maximum times, for a sample of 100 halo updates can be seen in Figs. 7.6 and 7.7. The
time depends on the number of processors. Surprisingly, maximum time is for P = 9. Variability
of the maximum times is high, even using mode 1. Its causes are beyond the scope of this work. It
has an adverse influence on the total computing time.

One of the key aspects of DDV and DDACM algorithms is their ability to update the halos of
all the levels in a single communication episode, saving the time due to latency. To estimate the
impact of this feature on the global performance of the algorithm, the time to update the halos of
a set of levels has been measured, including packing and unpacking. On the JFF cluster, packing
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Figure 7.4: Minimum, maximum and average time to update a 4 nodes halo with P = 16 on the
JFF cluster using mode 2.
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Figure 7.5: Comparison of average times to update a 4 nodes halo with P = 16 on the JFF cluster
using the different modes.

time is small compared with communication time.

First, the halos were updated level by level and then in a single message. The experiment was
done with the finest meshes of 7682 and 30722 nodes. Times measured here include communication
and packing. In our implementation, packing time is roughly equal when updating the halos simul-
taneously or level by level. Results can be seen in Fig. 7.8. As an example to clarify the figure,
consider the situation with a 7682 mesh. If the first level updated is [ = 5, the levels updated are
I =5and ! = 6, with 3482 and 7682 nodes. As expected, the times are equal when only one level is
updated. Times include communication and packing. The sample size was 100. Mode 1 was used
with 16 processors.

As it can be seen, when updating the halos one by one, the problem is dominated by the latency.
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Figure 7.6: Average communication time to update a 4 nodes halo on the JFF cluster for different
numbers of processors, using mode 1.
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Figure 7.7: Maximum communication time to update a 4 nodes halo on the JFF cluster for different
numbers of processors, using mode 1.

Thus, the cost of updating an additional level is almost independent of the number of unknowns in
the level. However, if a single message is used, the number of levels has a smaller incidence on the
total time.

7.3 Block Incomplete Lower-Upper Smoothing

Block Incomplete Lower-Upper decomposition (BILU) is a Jacobi algorithm (section 4.5.1) that uses
an incomplete LU factorization (specifically, MSIP [108]) iterative solver for each block.

Using BILU (instead of RBGS as in the DDV solver), the smoothing stage is always dependent
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Figure 7.8: Average time to update a 4 nodes halo of a group of levels, simultaneously or level by
level.

on the number of processors, no matter how big are the overlapping areas. However, according to
previous experiments with GS and MSIP as smoothers for sequential ACM, the MSIP version is (in
general) more efficient. Additionally, one of the main motivations of DDACM is to keep it as similar
to the sequential ACM as possible, to guarantee an easy transition to the parallel DPC version.

Thus, DDACM, at least on this BILU-based first implementation, is dependent on the number
of processors 1. So there are no nodes strictly “correct” (in the sense of chapter 5), but many of the
conclusions obtained in chapter 5 are still valid qualitatively.

As in the general Block-Jacobi algorithm of chapter 4, each processor divides its part of matrix
A into a local A;,. plus a non-local part A,;:

A=Ape +An (71)
Then, the solution is obtained iteratively using:
Alocmk+1 = boe = b— Anbmk (72)

To solve for z in this local equation, each processor does v, ILU iterations, using the approxi-
mate LU decomposition of A;,., as in equation (2.74),

/ ! k41 ok
LlocUlocA ~ Tloc (73)
. . . ’ ! [ .
where ' is a local iteration counter and A+t = g7 1 — 2¥ 'ig the increment of the local vector.

Each processor evaluates and stores the ILU decomposition of its A;,. matrix (equation 2.67),
obtaining Lj,., U},.. Alg. 7.5 is used in DDACM to do a total of v iterations.

loc»
To evaluate the efficiency on the algorithm as a smoother on the JFF cluster, a fixed number of
iterations has been done, with v;,. = 1. As BILU is dependent on the number of processors, the
norm of the residual at the end of the iterations is a function of P.

The measured speedups, for different numbers of processors and mesh sizes have been represented
in Fig. 7.9. As expected, the speedup increases with the mesh size. However, only for the larger

IEven with smoothers independent of the number of processors, MG algorithms tend to be dependent on the
number of processors (section 7.4).
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BILU {

dok=1— ;= {

Update z halos

Recalculate by, = b — A

for ' =1 = vipe {

Do a local iteration:

Tloe = bloc — Aloc
Solve L;, .U/, = Ao

loc

r+— A+

Algorithm 7.5: BILU smoother used in DDACM.

meshes it is close to its theoretical value for P > 9. For meshes smaller than N = 1922, we actually
have S < 1: the CPU time increases due to the use of the parallel computer.

These results indicate that solvers based on BILU (or on any approach as small grained as BILU)
are useless on loosely coupled computers, except for very large meshes. However, as MG is based
on a hierarchy of levels, the time gained in the dense levels can easily be lost in the coarse levels,
obtaining modest speedups (if any at all).

12
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Figure 7.9: Speedup obtained in a fixed number of BILU iterations on the JFF cluster with different
mesh sizes, with J = 4 and vj,. = 1.

7.4 Block partitions and MG equations

To do the block partition of the domain (as in section 3.2), care has to be taken to avoid joining
in the same block nodes owned by different processors. Thus, “special” blocks of 2x1, 1x2 or 1x1
equations might be needed near the processors’ boundaries.

A global numbering of the nodes has been used (section 4.6), so each processor has to know the
initial index of its correction domain in both axes. Thus, when the block partition of each axis is
done, processor ¢ should know the number of blocks of the partitions done by processors p < q.
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The algorithm to generate the block partitions has to ensure that they are consistent for all the
processors, e.g., the blocks at the halo regions should be identical for the processors at both sides
of the boundary. To solve these problems, considering that the CPU time involved in the block
partition is small, in our implementation every processor generates the partition for all the domain
in each of the axis.

Multidimensional block partitions are generated as the Cartesian product of the decomposition
in each axis. As in the case of DDV algorithm, the number of nodes for each processor in each axis
is restricted to be larger than the halo size J. Otherwise, communication schemes would be much
more complex, involving the neighbours of the neighbouring processors.

An example of one dimensional domain decomposition, with N, = 18, P, = 2, J = 4, can be
seen in Fig. 7.10. Each of the equations of a level is represented with a box. The total number of
unknowns of each level, denoted N, is shown at right hand side. The levels are stacked, with [ = 1
at the top and [ = M at the bottom. A thick vertical line is used to indicate the limits of the areas
owned by the different processors. The unknowns accessible to processor p = 0 are dashed. As
J = 4, there is a halo of 4 nodes owned by p = 1 that can be used by p = 0 to read/write temporary
information. Similar conventions are also used in Figs. 7.11 and 7.12.

In the situation presented in Fig. 7.10, it would not be possible to use a third level as the number
of nodes of p = 1 would be smaller than .J = 4. This aspect is discussed in the context of DDV
algorithm in section 5.4.4. Also, note how the block 5 of level 2 is formed joining only one node of
level 1, to avoid the division between p = 0 and p = 1 areas.

J=4

Figure 7.10: Block partitions in DDACM.

Due to the need of using special block sizes near the boundaries of the processors’ regions, the
correction equations depend on P unless the mesh sizes are carefully chosen as in DDV. This is
shown in an example in Fig. 7.11, where a problem with N, = 18, J = 2 is solved with P = 2 and
P = 3 processors. The situation with P = 3 is presented at the top. As the number of nodes owned
by each processor is even, all the blocks contain two equations. This is not the case for the situation
with P = 2, at the bottom. Thus, level 2 equations are different for different numbers of processors.
Also the maximum number of levels can be different, as in this example.

These small differences, that can not be avoided as the number of mesh nodes has to be fixed
according to other criteria, cause parallel DDACM algorithm to be (slightly) dependent on the
number of processors (section 4.3.2).

7.5 Algorithm

7.5.1 Pre-processing

Once the block partition is available, each processor can generate coefficients for the correction
equations of its subdomain, using expressions (3.33), just like in the sequential ACM. Recall that
this is done using only the matrix A of the initial level. However, like in DDV algorithm, to be
able to relax the overlapping areas of the different levels, the corresponding coefficients must be
available. The only solution is to obtain them from neighbouring processors. This can be done for
all the levels together in a single message.
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Figure 7.11: DDACM correction equations for different numbers of processors.

In the pre-processing stage, the matrices for the local problems of each level, from 1 to M — 1,
are evaluated and their incomplete LU decomposition is computed and stored. For the coarsest level
M, Schur decomposition is evaluated and stored. The preprocessing algorithm is given in Alg.7.6:

DDACM Preprocessing (4, M) {
=1 M-1{
A < Al with equation (3.33)
}

update halos of matrices A' to AM

=1+ M—-1{
Form local matrix, A;Zﬁ + AP (section 7.3)
Evaluate ILU decomposition of A;fc (section 2.7.3)

}

Evaluate Schur decomposition of L™ (section 6):
~ -1
LM« LM

Algorithm 7.6: DDACM algorithm. Preprocessing.
Here, A;fc is the Block-Jacobi local matrix of processor p for level I. (A;; in equation 4.13).

In our implementation, the number of levels M is a parameter to be introduced externally to the
algorithm.

7.5.2 Solution
After the preprocessing of matrix A, equations of the type

Az =b (7.4)

can be solved iteratively with the following DDACM algorithm:
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Solve Az = b with precision € {
update z', b' halos
i=1 = n; {
first leg :
I=1—-M-1/{
ifl>1
update b’ halo
do vy local ILU iterations to improve z! (Eq. 7.3)
at the inner nodes {
evaluate residual vector r'
evaluate right hand-side of next level, b+ « ¢!

}

begin next level with 0 as initial guess, z/T! < 0

}

lower level :
solve ezxactly
update z',---z™ halos

AM M — pM ysing the available Schur decomposition

second leg :
I=M-1—-1/{
correct ! + x!*!
do vy local ILU iterations to improve z! (Eq. 7.3)

}

update z! halo

residual control :
if ||rl]] <e
break

Algorithm 7.7: DDACM algorithm. Solution.

Remarks:

e First leg:

— Halo update of ! is not needed:

x For [ = 1, it is updated at the beginning of the algorithm and at the end of each
iteration (after second leg).

x For [ > 1, update is unnecessary as the iterations begins with the initial guess 2! = 0
for the correction.

— The v, local iterations are done without halo updates. At the end, z! depends on the
number of processors. The same holds for 7! and bt!, evaluated from z!. However, due
to the use of overlapping regions that also relaxed, if the number of iterations is low, the
differences are relatively small in the inner nodes.

— Unlike in the correction levels, the vector b' = b remains constant for each execution of
the algorithm. Thus, halo update of b is done just once at the beginning.

— Halo update of b’ (for [ = 2---M — 1) before the iterations is needed, otherwise the
numerical efficiency is reduced and the total computing time increases.

— The halo of b is not updated after the first leg, as all the operations needed to solve
level M are done inside the Schur complement solver.
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e Lower level:

— During the first leg, the halos of z! vectors have not been updated. Before starting the
second leg, they must be updated as they contain the values obtained from the BILU
relaxation. As in the DDV cycle (section 5), this is done with a single message after the
solution of =M.

— If the Schur decomposition is not to be reused and/or the frequencies of the error are high
(as in the case of transient convection-diffusion equations), it might be better just to do
a few extra local ILU sweeps on M level equation. This aspect has not been considered
in this work as our main target are pressure correction equations of incompressible flows.

e Second leg:

— During the second leg, as in DDV algorithm, the values obtained after level [ smoothing
in a halo region of J nodes can be used to correct a halo region of 2.J nodes in level [ — 1.
A schema of this process can be seen in Fig. 7.12. As the overlapping area is J for all
the levels, the J outer values of each level are not used for next level correction.

— The halo of z! is updated at the end of the second leg because it is needed to evaluate
[[r!]| and then to begin the local iterations in the next first leg.

Ay -
VARV,

Figure 7.12: Second leg in DDACM algorithm.

Unlike in DDV, in DDACM the relaxation is dependent on the number of processors, but the two
outer rings of nodes, where the difference is more important, are not used. Thus, communication in
the second leg can also be suppressed, with very little effect on the convergence ratio.

The main guideline of DDV is to preserve the independence of the number of processors. This
is not the case of DDACM, which depends on the number of processors. There are many differ-
ent possibilities concerning where to update the halos of b and = vectors. In general terms, halo
updates reduce the dependency on the number of processors but increase the cost per iteration.
The algorithm presented needs M + 1 each-to-neighbours communications per iteration, plus one
global communication during the Schur solution. It was the best solution for the model problem
(section 2.7.1) on the JFF cluster. DDACM can be easily tailored to other architectures.

7.6 Benchmarking DDACM

The problem model (section 2.7.1) has been solved with different number of processors and for
different problem sizes. The main parameter of the DDACM solver is the number of levels, M. If
M is reduced, the number of iterations decrease but the amount of RAM memory per node and
the pre-processing time increase. In the limit, if M = 1, DDACM is a direct Schur complement
algorithm.
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To show its effect, all the possible M values have been used for each problem size. The lower
limit of the possible M values is due to the RAM memory needed for the Schur decomposition, while
the upper limit is due to the size of the smallest level, that has to be partitioned. In all the cases,
the number of local iterations used was vy, = 1,5 = 1, the MSIP coefficient a = 0.4 (section 2.7.3),
and as a criteria to stop the iterations, a reduction of the residual of the initial guess by a factor of
10~%. The execution times on the JFF cluster are presented in Tables 7.1- 7.4. For each number of
levels M, the computing time T in seconds and the number of iterations n are given. The minimum
computing time is given at column Min.

M =2 M=3 M =4 Min.
N t (s) n | t(s) n | t(s) n | t(s)
1296 257 x 1072 | 11 2.57 x 1072
5184 214 x 107" | 14 | 2.67x 1071 | 21 2.14 x 1071

20763 1.23 x 10° 15 | 1.50 x 10° | 27 | 2.16 x 10° | 39 | 1.23 x 10°
82944 8.41 x 109 16 | 9.05 x 10° 31 | 1.32 x 10" | 50 | 8.41 x 10°
331776 3.58 x 10! 32 | 5.12 x 10" | 58 | 3.58 x 10!
1327104 2.19 x 102 | 60 | 2.19 x 102

Table 7.1: Execution times and number of iterations of DDACM for different mesh sizes and number
of levels, with one processor.

M =2 M=3 M =4 Min.
N t (s) n | t(s) n | t(s) n | t(s)
1296 1.59 x 107! | 13 1.59 x 10!
5184 246 x 1071 | 16 | 449x 107! | 26 246 x 101

20763 5.72 x 10! 16 | 9.83x 107 | 32 | 1.620 x 10° | 49 | 5.72 x 10~!
82944 2.38 x 109 16 | 2.74 x 10° 33 | 4.750 x 10° | 58 | 2.38 x 10°
331776 | 1.40 x 10* 16 | 1.40 x 10* 33 | 1.974 x 10' | 62 | 1.39 x 10!
1327104 6.450 x 10 | 62 | 6.44 x 10!

Table 7.2: Execution times and number of iterations of DDACM for different mesh sizes and number
of levels, with four processors.

M =2 M =3 M =4 Min.
N t (s) n | t(s) n | t(s) n | t(s)
1296 2.63x 107t | 13 2.63x 10!
5184 360x1071 | 15| 736 x 10~ | 26 3.60 x 10T

20763 575 x 1078 | 17 | 1.19 x 10° | 32 | 2.11 x 10° | 51 | 5.75 x 101
82944 1.27 x 10° 16 | 2.25 x 10° 33 | 412 x10° | 60 | 1.27 x 10°
331776 | 6.30 x 10° 16 | 5.97 x10° | 33 | 1.02x 10 | 65 | 5.97 x 10°
1327104 | 3.12 x 10! 15 | 2.14 x 10°* 3.08 x 10" | 63 | 2.14 x 10'

Table 7.3: Execution times and number of iterations of DDACM for different mesh sizes and number
of levels, with nine processors.

In order to clarify the numerical efficiency of the algorithm, the number of iterations needed to
achieve convergence has been represented against the number of processors in Figs. 7.13 and 7.14,
for meshes with N = 82944 and N = 1327104, respectively. As it can be seen, it almost does not
depend on the number of processors or on the problem size but only on the number of levels. If M
is increased, the cost of the direct solution with the Schur algorithm decreases, but the number of
iterations increases.

The speedup achieved for the three larger meshes considered has been represented in Fig. 7.15.
It has been evaluated using the number of levels that yields the minimum time for each situation.
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M=2 M=3 M=4 Min.
N t (s) n | t(s) n | t(s) n | t(s)
1296 279 x 1071 | 12 2.79 x 101
5184 4.07x 107" | 16 4.07 x 107 T

20763 576 x 1071 | 17 [ 1.20x 10° | 33 | 2.12x 10" | 51 | 5.76 x 10 *
82044 1.06 x 10° | 17 [ 1.92x10° | 35 | 3.88 x 10° | 63 | 1.06 x 109
331776 | 3.51 x 10T 16 | 422 x10° | 34 | 8.05 x 10" | 67 | 3.51 x 10°
1327104 | 1.65 x 10° 15 [ 1.59x 10" | 33 | 2.79 x 10" | 65 | 1.59 x 10"

Table 7.4: Execution times of DDACM for different mesh sizes and number of levels, with sixteen
Processors.
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Figure 7.13: Number of iterations needed by DDACM to converge the problem model versus the
number of processors, for a mesh with N = 82944.

An analysis of the cost of each operation has been carried out for the case of the 1152 x 1152
mesh, solved with different number of levels. A summary of the results can be seen in Fig. 7.16,
where the fraction of the total computing time spent in the different parts of the algorithm is plotted
versus the number of levels.

The cost of the Schur solver decreases with the number of levels and becomes almost neglectable
for M = 4,5. Except for the case with M = 2, the cost of the second leg is significantly lower than
the cost of the first leg. Note also the relative importance of the residual control.

7.7 Final remarks

For the case of problems where a constant matrix has to be solved with different right hand sides,
such as the pressure correction equation in the case of incompressible flows, DDACM algorithm
appears to be a promising solver. As it uses an algebraic approach to construct the correction
equations, it can be used as a black-box linear solver (like for instance Krylov subspace algorithms),
allowing a clear separation of discretization and solution stages. It is not strictly independent of
the number of processors but it has a high numerical efficiency. It is a combination of an iterative
algorithm (ACM+BILU) and a direct algorithm (Schur complement) for the coarsest level, that uses
techniques from the DDV multigrid cycle to reduce the number of communications. It allows to
stop the iterations when the required level of precision has been reached. As shown in section 3.3.3,
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Figure 7.14: Number of iterations needed by DDACM to converge the problem model versus the
number of processors, for a mesh with N = 1327104.
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Figure 7.15: DDACM Speedup for different meshes.

this is an advantage for the case of pressure correction solvers.

As for any iterative solver, its efficiency depends not only on the matrix A but also on the
properties of the right hand side b and the initial guess. Thus, in order to tune its parameters and
provide realistic measures of its efficiency, it has to be implemented in a CFD code.

The extension of the DDACM algorithm, based on the Schur complement variant proposed
here, to three-dimensional problems might require too much RAM memory. This means that a
high number of levels would be required by DDACM, potentially leading again to network latency
problems. A possible solution could be to use the current direct algorithm for the interface equation
(based on the distributed evaluation and storage of the inverse of the interface matrix) but iterative
solvers for the inner equations of each processor.
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Figure 7.16: Breakout of computing time for different number of levels.
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7.8

loc

pbx,py

Nomenclature

matrix

right hand side

level

processors

number of processors
size of the halo region
lower triangular factor
of matrix A;,.

number of levels
receive buffer

send buffer

upper triangular factor
of matrix A;,.
position in the
processors array
computing time
unknown vector

Greek symbols

v number of iterations
Subindices

loc local

nb neighbouring

T horizontal axis

y vertical axis

nb neighbours
Superindices

[ level

P processor



172 Domain Decomposed Additive Correction Multigrid




