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A AceCS2: acetyl-CoA synthase 2 

Acetyl-CoA: acetyl-coenzyme A  

ADP: adenosine diphosphate 

AGA: adequate for gestational age 

ALDH2: aldehyde dehydrogenase, mitochondrial  

ATP: adenosine triphosphate 

ATP5A: ATP synthase subunit ATP5A 

AU: arbitrary units 

B BNP: brain natriuretic peptide 

 BSA: bovine serum albumin 

C Cellox: endogen cell respiration  

CBMC: cord blood mononuclear cells 

CI: complex I 

CII: complex II 

CIV: complex IV 

CI+III: complex I+III 

CII+III: complex II+III 

CO2: carbon dioxide 

CO: carbon monoxide  

CoQ9 and CoQ10: coenzyme Q9 and Q10 

COX5A: cytochrome c oxidase subunit 5a  

CPR: cerebroplacental ratio 

CS: citrate synthase  

CytC: cytochrome C 

Cyto: cytoplasm 

D DCPIP: 2,6-diclorophenolindophenol 

DNA: deoxyribonucleic acid 
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DTNB: 5,5'-dithiobis-2-nitrobenzoic acid 

E EGTA: ethylene glycol tetra-acetic acid 

ER: endoplasmic reticulum 

ETC: electron transport chain  

E/A ratio: early (E) to late (A) ventricular filling velocities ratio 

F FAD: flavine adenine dinucleotide 

G GDH: glutamate dehydrogenase 

GM Oxidation: glutamate+malate oxidation 

H HAE: hydroxyalkenal 

HCl: hydrochloric acid 

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HMGCS2: 3-hydroxy-3-methylglutaryl-CoA synthase 2, mitochondrial 

HSP-27: heat shock protein 27 

I IDH2: isocitrate dehydrogenase 

IGF: insulin-like growth factor 

IMM: inner mitochondrial membrane 

IUGR: intrauterine growth restriction 

K KCN: potassium cyanide 

kDa: kilodalton 

L  LCAD (or ACADL): acyl-CoA dehydrogenase, long chain 

M MAM: mitochondrial-associated ER-membrane 

MDA: malondialdehyde 

MES: 2-(N-morpholino)ethanesulfonic acid 

MgCl2: magnesium chloride 

Mit: mitochondria 
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mPTP: mitochondrial permeability transition pore 

MRC: mitochondrial respiratory chain 

mRNA: messenger ribonucleic acid 

MRPL10: 39S ribosomal protein L10, mitochondrial  

mtDNA: mitochondrial deoxyribonucleic acid  

mt12SrRNA: mitochondrial 12S ribosomal RNA 

Myof: myofilaments 

N N: sample size 

NADH: reduced form of nicotidamide adenine dinucleotide 

NAD+: oxidized form of nicotidamide adenine dinucleotide 

NADPH: nicotinamide adenine dinucleotide phosphate 

NAPBQI: N-acetyl-p-benzoquinone imine 

NDUFA9A: NADH dehydrogenase 1 alpha subcomplex subunit 9 

NMN: Nicotinamide mononucleotide 

nRNAseP: nuclear RNAseP gene 

NS: not significant 

O OMM: outer mitochondrial membrane 

OTC: ornithine transcarbamylase 

OXPHOS: oxidative phosphorylation 

P PBMC: peripheral blood mononuclear cells  

PBS: phosphate-buffered saline 

PCR: polymerase chain reaction 

PE: preeclampsia 

PM Oxidation: pyruvate+malate oxidation 

R ROS: reactive oxygen species 

S SDHA: succinate dehydrogenase complex, subunit A 

https://en.wikipedia.org/wiki/Redox
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SDHB: succinate dehydrogenase complex, subunit B 

SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis  

SEM: standard error of the mean  

SERPINA1: alpha-1-antitrypsin 

SGA: small for gestational age 

SOD2: superoxide dismutase 2 

T TNB: 2-nitro-5-thiobenzoic acid 

Tom20: mitochondrial import receptor subunit TOM20 

tRNA: transference ribonucleic acid 

U UA Doppler: umbilical artery Doppler 

UCP2: mitochondrial uncoupling protein 2 

V VDAC: voltage-dependant anion channel 

VEGF: vascular endothelial growth factor 
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2.1 INTRAUTERINE GROWTH RESTRICTION 

 

Intrauterine growth restriction (IUGR), also known as foetal growth restriction, is a 

common obstetric complication that affects 5-10% of all pregnancies in Western 

countries, being 2-3 times more prevalent in undeveloped countries such as India or 

Africa (1–3). 

Although its definition remains ambiguous due to its challenging clinical management 

for variability in clinical presentation, IUGR is defined as the failure of the foetus to 

achieve its full growth potential, with an estimated foetal weight below the 10th 

percentile for gestational age (4). These newborns recover a standard weight and size 

after delivery and during perinatal development but long-term effects remain unknown, 

becoming the most frequent cause of perinatal mortality and long-term morbidity (3,5). 

In terms of physiopathology, a distinction should be made between those foetuses 

constitutionally small, denominated small for gestational age (SGA), and those 

foetuses which genetic potential weight is restricted, as IUGR (6). Thus, SGA only 

refers to a decreased foetal size and weight independent of the causes and symptoms, 

while IUGR is defined by pathological smallness and prompt to developmental 

problems. In general terms, IUGR is associated with hemodynamic redistribution as a 

reflection of foetal adaptation to undernutrition or hypoxia, histological and biochemical 

signs of placental disease and higher risk of preeclampsia (7). It is quite common to 

confuse these two terminologies leading to the necessity to identify SGA foetuses to 

distinguish those babies who are pathologically small and reduce false-positive cases. 

It is already demonstrated that prenatal identification of SGA and IUGR babies results 

in a reduction of adverse perinatal outcomes and stillbirth.  

 

2.1.1 Causes of IUGR 

 

Although it could be produced by a variety of causes, IUGR is frequently caused by 

placental insufficiency leading to foetal hypoxia.  

However, there are some cases of IUGR which are not produced primarily by placental 

insufficiency, but indirectly resulting in placental insufficiency as a consequence of 

other alterations (8,9). Thus, within cases of IUGR not caused by placental 

insufficiency, IUGR can be classified depending on foetal and maternal aetiologies 

(summarized in Table 1). 
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Table 1. Causes or risk factors associated with IUGR independent of placental 

insufficiency 

FOETAL 

 Genetic diseases/chromosomal defects (e.g., aneuploidy, uniparental disomy, 

etc.) 

 Infections (e.g., cytomegalovirus, toxoplasmosis, malaria, etc.) 

 Malformation 

 Multiple gestation  

 Placental or cord abnormalities (e.g., abruption, 2 vessel cord, etc.) 

MATERNAL 

 Constitutionally small mother or low pre-pregnancy weight 

 Hypertension 

 Pregestational diabetes 

 Autoimmune disease 

 Cardiac and renal disease 

 Anaemia 

 Toxic exposure (smoking, alcohol, illicit drugs) 

 Malnutrition 

 Live in high altitudes 

 Live in developing countries 

 Low socio-economic status 

 Race (e.g., Afro-American) 

 Family of prior history of pregnancy with IUGR or SGA 

 Extremes of maternal age (<16 years and >35 years) 

 Assisted reproductive technology 

 Teratogens (e.g., anticonvulsants, warfarin, etc.) 

Adapted and modified from data contained in Hendrix N et al. and Lausman A et al. (8,9). 

e.g.: stands for exempli gratia in Latin, which means “for example”; IUGR: intrauterine growth restriction; 

SGA: small for gestational age. 

 

 

On the other hand, within cases of IUGR caused by placental insufficiency, IUGR could 

be classified depending on gestational age at diagnosis and umbilical artery Doppler 

(UA Doppler) (5), as summarized in Table 2: 

- Early-onset: those IUGR diagnosed before 32-34 weeks of gestation, representing 

20-30% of all IUGR cases. Early-onset IUGR is highly related to severe placental 

insufficiency and with chronic foetal hypoxia, explaining the existence of UA Doppler 
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abnormalities in a high proportion. In these cases, IUGR is frequently caused by 

infection, chromosomal anomalies or genetic abnormalities. They are associated to PE 

in 50% of the cases and its perinatal morbidity and mortality is high, due to associated 

prematurity.   

- Late-onset: when IUGR appears after 34 weeks of gestation and especially in term 

pregnancies (37 weeks), representing 70-80% of all IUGR cases. Normally, these 

cases are caused by mild placental insufficiency, thus UA Doppler is normal. In this 

group, the diagnostic is challenging, considering that could explain at least up to 50% 

of perinatal deaths by its low tolerance to hypoxia. Only 10% are associated to PE. 

 

Table 2. Summary of the principal differences between early- and late-onset IUGR caused 

by placental insufficiency. 

Early-onset IUGR Late-onset IUGR 

CHALLENGE: MANAGEMENT CHALLENGE: DIAGNOSIS 

Prevalence: ≈ 1-2 % Prevalence: ≈ 3-5 % 

Severe placental insufficiency 

 Abnormal UA Doppler 

 High association with PE 

Mild placental insufficiency 

 Normal UA Doppler 

 Low association with PE 

Severe hypoxia: systemic cardiovascular 

adaptation 

Mild hypoxia: central cardiovascular 

adaptation 

High morbidity and mortality Low mortality 

Adapted and modified from data contained in Figueras F et al. (5). 

IUGR: intrauterine growth restriction; UA Doppler: umbilical artery Doppler. It is a measure for the 

management of IUGR; PE: preeclampsia. It is another obstetric complication associated in some cases 

with IUGR. 

 

2.1.2 Placental insufficiency 

 

A normal placental development and function are essential for a successful foetal 

development. Placenta is a key organ between mother and foetus, providing nutrients 

and oxygen to the embryo (10). Concretely, the ‘trophoblast’ (from greek trephein ‘to 

feed’ and blastos ‘germinator’), formed by cells from the outer layer of the blastocyst, is 

a substantial part responsible of supplying the nutrients (Figure 1) (11). The placenta 
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exerts a number of other pivotal functions that highlight the importance of normal and 

proper differentiation of the trophoblast for a prosperous pregnancy development. 

This vital development depends on several factors of both the pregnant women and the 

foetus and different placental factors may be involved. 

 

Figure 1. A cross-sectional microscopic representation of the basic morphology of human placenta 

with the foetal circulation in umbilical cord and chorionic villi. Maternal blood goes into the intervillous 

space in contact with the chorionic villi, which includes the syncytiotrophoblast layer and the foetal capillary 

endothelial cells. 

Image adapted and modified from Sibley CP et al. (12) and Gaccioli et al. (13). 

 

 

One side of the placenta is connected with the uterus (through spiral arteries) and the 

other side is attached to a liquid-filled sac that contains the foetus. Additionally, the 

foetoplacental circulation includes the umbilical cord and the blood vessels from the 

placenta that transport foetal blood (Figure 1). 

Human placenta presents three main layers. The first layer of maternal-foetal exchange 

is the syncytiotrophoblast, which is a multinucleated epithelium that covers the 
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chorionic villi in contact with maternal blood of the intervillous space (Figure 1). Studies 

of placental morphology show the importance of villi, which contain papillary networks 

derived from foetal circulation, demonstrating distinct abnormalities of villi related with 

particular presentations of IUGR. An important general morphologic observation in 

IUGR that effect on diffusional permeability of the placenta is that the surface area of 

the syncytiotrophoblast is reduced whereas the thickness of the exchange barrier 

formed by the trophoblast and foetal capillary endothelium is increased (14). A second 

layer of mononucleate cytotrophoblast cells is the cytotrophoblast which are 

predominantly progenitor cells for the syncytiotrophoblast. And finally, a connective 

tissue placed on the villous tree where is located the foetal capillary endothelium (15). 

Additionally, there are evidences demonstrating increased placental apoptosis in IUGR, 

reflecting altered turnover of the placental cells in association with changes in size and 

architecture of this organ. 

All these alterations are denominated ‘placental insufficiency’ that lead to placental 

hypoxia and reduced nutrient supply, thus poor oxygen transportation compromising 

the foetus in development and causing a foetal remodelling with adulthood 

consequences. Indeed, one of the main organs of foetal adaptive response to placental 

insufficiency and hypoxia is the heart. 

 

2.1.3 Management of IUGR 

 

IUGR is still a concern among clinicians in terms of its diagnosis and management. It is 

important to be aware of the severity of growth restriction. So, careful monitoring of the 

foetus with IUGR and ongoing testing may be required. Nowadays, UA Doppler is 

considered the gold standard to provide successful diagnostic and prognostic 

information for IUGR management (16). UA Doppler is a technique that allows 

measuring the amount and speed of the blood flow through the blood vessels of the 

placenta. The usage of UA Doppler has a great value for the identification of IUGR, 

alone or combined with the cerebroplacental ratio (CPR). The CPR is essentially a 

diagnostic index that improves remarkably the sensitivity of UA Doppler alone (7). 

The usage of UA Doppler in high-risk pregnancies has been correlated with a decrease 

in adverse outcomes and a 30% mortality reduction (17). 

There is the need to use different parameters to make clinical decisions. Lately, it is 
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proposed to simplify the management of IUGR using succeeding approach based on 

three steps: a) identification of the “small foetus”; b) distinction between IUGR and 

SGA; and (c) time of delivery according to a protocol based on points of foetal decline 

(5). 

By random convention, the placental insufficiency cases are usually defined as “true” 

IUGR, whereas the remaining cases are referred to as small for gestational age (SGA). 

As mentioned before, the distinction between IUGR and SGA is highly relevant and UA 

Doppler is critical to achieve this goal. 

  

2.1.4 Prevention of IUGR 

 

Although there is no treatment for IUGR, some conditions could help to minimize or 

retard its effects. These preventions will depend on both pregnant women and 

gynaecologist. 

Treatments may include nutritional interventions in pregnant women, as optimal 

maternal nutrition could increase foetal weight. This evidence highlights the importance 

to understand how changing diet could improve foetal weight.  

As previously mentioned it is important to monitor pregnancies with IUGR and perform 

an early delivery if the foetus wellbeing may be compromised. Early detection may also 

help with IUGR management and outcome. 

IUGR may occur even if the mother is healthy. However, there are some factors that 

may increase the risk of IUGR, such as smoking (18) and poor maternal nutrition (for 

instance in developing countries such as Africa or India). Avoiding harmful lifestyles 

(such as drugs or tobacco), eating a healthy diet, and getting prenatal care may help to 

decrease the risks for IUGR.  

Little is known about potential biomarkers or therapies to prevent IUGR. In fact, the 

modulation of diet could be one of the few targets to further investigate due to limitation 

of therapeutic approaches during pregnancy. 
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2.2 FOETAL CARDIAC FUNCTION  

 

The heart is formed early in prenatal development being the first functional organ in 

vertebrate embryos. In human, the foetal heart and circulation is completed at the 8-9th 

week of gestation (19,20) thus, the heart beats spontaneously by week four of 

development. Foetal heart has four chambers, 2 atria connected via foramen ovale and 

two separated ventricles. In addition, there are two atroventricular valves (mitral and 

tricuspid) and two semilunar valves (aortic and pulmonary) that guarantee one-way 

flow through the heart. The main purpose of the heart is to create the required cardiac 

output to guarantee adequate blood perfusion to organs and to allow the adaptation to 

changing demands and working conditions.  

The foetal circulatory system is different from that of a newborn baby, as pulmonary 

circulation is bypassed until birth. In the foetal heart, artery and aorta vessels are 

connected by the ductus arteriosus. The hemodynamic properties are crucial for the 

foetal heart development and circulation during the second and third trimester of 

pregnancy. 

The foetal heart presents a limited capacity to increase its output as it normally 

manages at its high cardiac function curve. A modest increase in foetal heart rate could 

increase the cardiac output and bradycardia could compromise its function. The 

cardiac output is combined from left and right ventricles, being the right ventricle more 

contributive than the left one (65% versus 35%, approximately) (21). Foetal cardiac 

function is usually evaluated by the measurement of blood flow by conventional 

Doppler, cardiac morphometry in 2D or M-mode, tissue Doppler and 2D speckle 

tracking imaging (Figure 2) (22). 

 

Figure 2. Foetal standard echocardiography of the heart (A) and Doppler imaging of vascular flux 

(B). 

Image obtained and adapted from Rodriguez-Lopez et al. (23).  
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2.2.1 Cardiac remodelling associated to IUGR 

 

As mentioned before, during placental insufficiency and hypoxia there is a foetal 

remodelling described first by Barker et al., a phenomenon in which an in utero insult 

leads to functional changes in key organs remaining in postnatal life and leading to a 

greater risk of various diseases in adulthood (24). Under chronic hypoxia, the IUGR 

foetus is aimed to preferentially redirect its cardiac output to its vital organs (brain, 

heart, adrenal glands and liver). This consequence is called “brain sparing” effect that 

primarily origins an increase in the pulsatility of ductus venosus, which increases 

preload. As a result, IUGR newborns exhibit signs of cardiac remodelling and altered 

cardiovascular function. 

Epidemiologic evidence has long confirmed a link between low birth weight and 

increased cardiovascular death in adulthood (25). 

As heart is one of the most affected organs in response of foetal adaptive mechanisms 

to placental insufficiency and hypoxia, during embryonic development, the oxygen and 

nutrient limitation could lead to a cardiovascular remodelling at organ, tissue and 

subcellular levels. Different foetal cardiac phenotypes, elongated, globular and 

hypertrophic, may be observed (26). This cardiovascular remodelling associated to 

IUGR has been evidenced in animal models and in humans.  

Multiple studies revealed that foetuses diagnosed with IUGR have cardiac systolic and 

diastolic dysfunction with increased E/A ratios (early (E) to late (A) ventricular filling 

velocities ratio) and myocardial performance index and reduced myocardial tissue 

velocities (24). Crispi et al. have demonstrated that these cardiac alterations remain 

present in pre-adolescence, adolescence and early-stage of adulthood, increasing the 

chance of suffering from some cardiomyopathy-like in adulthood (Figure 3) (27–29). 
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Figure 3. Cardiovascular remodelling associated to intrauterine growth restriction (IUGR) begins by 

an insult during prenatal stages, which can trigger functional changes in main organs persisting during 

postnatal life and leading to higher risk of different disease in adulthood.  

Image obtained and adapted from Demicheva E et al. (24). 

 

 

Cardiovascular disease is one of the major causes of mortality in developed countries 

(30,31). Thus, increased research in the field of IUGR and its cardiovascular 

remodelling is required to prevent potential cardiovascular disease. 

Previous research of our group has established that neonatal heart from IUGR 

pregnancies present this cardiovascular dysfunction in terms of morphological changes 

and clinical biomarkers of cardiac adaptation (32). Actually, there are a few studies 

demonstrating that some markers of cardiac damage as brain natriuretic peptide (BNP) 

are elevated in neonatal blood from IUGR newborns and, additionally, levels of BNP 

are increased across foetoplacental Doppler stages of foetal compromise (33,34). 

Interestingly, another study demonstrated increased levels of BNP in preterm newborns 

with IUGR during postnatal life, which reinforces the tenacity of cardiac dysfunction 

during the first days of life (35). 

However, the study of molecular mechanisms that lead to this cardiovascular 

remodelling in neonatal hearts is scare by the limitation of studying the target tissue of 

cardiovascular remodelling, the heart. 

Both foetal and cardiac function needs high energy supply. As mitochondria are 

essential in foetal and cardiac development due to the strong dependence of cell 

bioenergetics in mitochondrial metabolism, the role of the mitochondria in foetal 
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programming is gaining attention. Mitochondrial are the powerhouse that furnished 

energy for cell function; therefore, a decrease in number or function activity are lately 

damaging for cells, particularly for those with high energy demand like cardiomyocytes. 

Consequently, different evidences support the involvement of mitochondria in IUGR 

and cardiovascular disorders.  
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2.3 MITOCHONDRIA 

 

Mitochondrion is an organelle of 1-10 µm of size present in the cytoplasm of almost all 

eukaryote cells. Mitochondria are involved in a numerous and relevant cellular 

processes including metabolism and apoptosis. For that reason, mitochondria are 

being related to many diseases associated to growth abnormalities and cardiac 

damage. 

Its origin is not yet well understood but according to endosymbiotic theory, 

mitochondria are descendants of ancient bacteria that were phagocyted for ancestral 

eukaryotic cells more than millions of years ago (36,37). This fact leads to a symbiotic 

relationship between both entities, one of them providing the energy, and the other one 

the essential nutrients needed to supply energy. 

The number of mitochondria per cell varies depending on organisms and tissue. 

Although all DNA is enrolled within the nucleus, mitochondria have their independent 

genetic material, called mitochondrial DNA (mtDNA). It is a double-stranded circular 

and covalently closed molecule, found in the mitochondrial matrix in a multiple number 

of copies. The mtDNA encodes for 13 proteins becoming part of the structure and 

function of some complexes of the mitochondrial respiratory chain (MRC). The levels of 

mtDNA are frequently used as a mitochondrial content indicator (38). Thus, mtDNA is 

replicated, transcribed and translated in the mitochondrial matrix using their own 

machinery but also in coordination with proteins encoded in the nuclear DNA imported 

to the mitochondria. This reinforced the idea of an essential intergenomic 

communication between the mitochondria and the nucleus for a proper mitochondrial 

function and bioenergetic cell supply. 

 

2.3.1 Structure 

 

Mitochondria contain an outer membrane and an inner membrane that play a pivotal 

role in its activities, containing a unique collection of proteins that defined two internal 

compartments: the internal matrix space and a much narrower intermembrane space 

(Figure 4). 

- The outer mitochondrial membrane (OMM) harmonized numerous 

interactions between the mitochondrial metabolic and genetic systems and the 

rest of the cell. It comprises nuclear-encoded proteins synthesized as precursor 
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proteins in the cytosol, targeted to the mitochondria and inserted into their 

target membrane via various pathways, e.g translocases such as TOM20, in 

charge of the recognition and translocation of cytosolic synthesized 

mitochondrial pre-proteins. The ubiquitous and conserved expression of TOM20 

has been widely used to predict mitochondrial content. Additionally, the OMM 

contains large numbers of integral membrane proteins called porins forming 

channels that allow molecules up to 10.000 Daltons to freely diffuse from one 

side of the membrane to the other. OMM also contains specific proteins called 

porins or voltage-dependent anion channels (VDAC), responsible for transport 

of adenosine triphosphate (ATP) synthesized in mitochondria outside of the 

organelle to be available for cellular functions. Furthermore, VDAC has been 

implicated in prompting the apoptosis process mediated by the mitochondria. 

This OMM can be associated with the endoplasmic reticulum (ER) or late 

endosomes, forming a structure called MAM (mitochondrial-associated ER-

membrane). 

- The inner mitochondrial membrane (IMM) is highly specialized and is folded 

into numerous cristae, which greatly increase its total surface area. It is the 

membrane that separates the mitochondrial matrix from the intermembrane 

space.  

Importantly, the IMM is completely different in composition to the rest of cell 

membranes; it is highly impermeable and contains high levels of cardiolipin. 

The IMM locates the oxidative phosphorylation system (OXPHOS), the principal 

process in charge of energy production (39). 

- The intermembrane space (determined by OMM and IMM) is where take place 

the accumulation of protons derived from the proton pumping through the 

different enzymatic complexes of the MRC. 

This space contains several enzymes that use the ATP circulation of the matrix 

to phosphorylate other nucleotides. 

- The mitochondrial matrix (delimited by the IMM) contains hundreds of 

enzymes involved in a lot of metabolic pathways such as Krebs cycle and the β-

oxidation of the fatty acids. It also contains several copies of mtDNA, 

mitochondrial ribosomes, tRNAs and various enzymes required for the 

expression of the mitochondrial genes.  
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Figure 4. A scheme of the mitochondrial structure. In the right side there is a real image by 

Transmission Electron Microscopy (TEM). In the left side, there are depicted the different layers of the 

mitochondria.  

Credits of the image to Person Education ©, Inc. 

 

2.3.2 The oxidative phosphorylation system (OXPHOS) 

 

Mitochondria synthesize (anabolic metabolism) and degredate (catabolic metabolism) 

the cellular substrates depending on the cell needs of a determined moment. 

The catabolic pathways including the degradation of fatty acids, carbohydrates and 

amino acids provide energy in terms of ATP. These pathways converge at the formation 

of acetyl-coenzyme A (acetyl-CoA) that enters into the Krebs cycle to be degraded into 

carbonic dioxide (CO2) and water (H2O).These catabolic pathways and the Krebs cycle 

take place within the mitochondrial matrix.  

The Krebs cycle begins when the acetyl-CoA (formed from fatty acids, carbohydrates 

or amino acid metabolism) reacts with the oxaloacetate to produce citrate by the 

activity of citrate synthase. This enzyme takes relevance due to its use as a 

mitochondrial content indicator for many researchers in the mitochondrial field (40). 

The whole Krebs cycle process generates reducing power in form of two intermediates: 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). 

This reducing power is then used to generate a proton pumping through the MRC. 

The MRC is composed by four complexes (I, II, III and IV) and two mobile electron 

carriers named coenzyme Q (CoQ) or ubiquinone (located between complex I, II and 

III) and cytochrome c (cyt c), positioned between complex III and IV. Together with the 
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ATP-proton synthase or complex V, they form the OXPHOS system (Figure 5). 

 

 

 

 

 

 

 

Figure 5. Representation of mitochondrial respiratory chain complexes (I-V). The reduction of NADH, 

FADH2 and O2 allows the accumulation of protons (H
+
) in the intermembrane space creating a proton 

gradient used by the complex V to generate ATP. 

ATP: adenosine triphosphate; CI: complex I; CII: complex II; CI+III: complex I+III; CII+III: complex II+III; 

CIV: complex IV; CV: complex V; FAD
+
: oxidized form of flavin adenine dinucleotide; FADH2: reduced form 

of flavin adenine dinucleotide; H2O: water; NAD
+
: oxidized form of nicotidamide adenine dinucleotide; 

NADH: reduced form of nicotidamide adenine dinucleotide; O2: oxygen. 

 

In more detail: 

- Complex I or NADH dehydrogenase complex. It is the first and largest of the 

MRC complexes. It accepts electrons from NADH, helping to create an 

electrochemical potential gradient that pumps protons to the intermembrane 

space, and passes electrons through a flavin and at least five iron-sulphur 

centres, to finally lead these electrons to CoQ, that transfer them to complex III. 

Complex I is formed by approximately 46 subunits being seven of them 

encoded in the mtDNA. 

- Complex II or succinate dehydrogenase. Its substrate is succinate which 

provides it with electrons.  It is composed only by nuclear encoded subunits. 

Again, CoQ is responsible to transfer electrons, in this occasion from complex II 

to complex III. 

- Complex III or ubiquinol-cytochrome C oxidoreductase. It transfers electrons 

from the reduced form of CoQ to cytochrome c (cyt c), the other mobile electron 
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carrier that transfer electrons from complex III to complex IV. This reaction 

pumps protons to the intermembrane space. Complex III is built with 11 

subunits being only one encoded by mtDNA. 

- Complex IV or cytochrome c oxidase. It is the complex that uses the oxygen to 

produce water molecules in a process denominated mitochondrial or cellular 

respiration. Oxygen is the terminal electron acceptor of the MRC, cyt c is 

reoxidized and protons transferred to the intermembrane space. It contains 11 

subunits of nuclear origin and 3 subunits are synthesised in the mitochondria. 

- Complex V or ATP-proton synthase. It plays a key role in energy production as 

being responsible for the synthesis of ATP from ADP and inorganic phosphate 

driven by the proton gradient force of returning protons back to the 

mitochondrial matrix. 

 

2.3.3 Oxidative damage 

 

Mitochondria are one of the principle centres of formation of reactive oxygen species 

(ROS) and the consequent presence of oxidative damage in the cells. In physiologic 

conditions, ROS is generated under control during the mitochondrial respiration 

through the MRC. However, under stress conditions of the cells or mitochondrial 

function alterations, ROS production can increase upon pathological threshold. 

ROS are extremely reactive with lipids, proteins, carbohydrates or genetic material 

from mitochondria, generating a non-ending circle of mitochondrial damage that affect 

organelle structures to undergo lesion, thus causing more ROS production.  

In order to regulate and control ROS production there are a variety of antioxidant 

enzymes such as the mitochondrial superoxide dismutase 2 (SOD2). In a physiologic 

situation, all the antioxidant mechanisms focus on attenuate high production of ROS 

acting as a protective system. However, usually in case of mitochondrial dysfunction, 

ROS levels increase beyond the threshold of detoxification and, even the level or 

activity of antioxidant defences in some cases. 

 

 

 



30 
 

2.3.4 Cellular pathways and mitochondria: mitochondrial deacetylase Sirtuin 3 

 

Cellular pathways are highly regulated to quickly adapt to different environmental 

conditions. Concretely, acetylation of lysine residues of some enzymes represents a 

central process that regulates cellular metabolism and signalling. In mitochondria, the 

most common post-translational modification is the acetylation of proteins (41). 

As mentioned before, mitochondria have crucial functions in the cell, mainly ATP 

generation, iron-sulphur cluster biogenesis, nucleotide biosynthesis, and amino acid 

metabolism. These functions feel the necessity for a secure regulation of mitochondrial 

activity and turnover. It is known that mitochondrial biogenesis is regulated by the 

nucleus and as before mentioned almost all mitochondrial proteins are encoded by 

nuclear genes, thus a tight communication network between the nucleus and 

mitochondria is fully needed which includes signalling cascades, dual-localized proteins 

to the two compartments and mitochondrial products sensed by nuclear proteins, 

among others (42).  

This crosstalk between the nucleus and the mitochondria allows evaluation of the 

mitochondrial status, aligning cellular balance with the energetic needs. In case of 

increased needs of energy supply or mitochondrial dysfunction, the intergenomic 

communication is essential to adapt mitochondrial and bioenergetics activity to support 

organ function and proper organism growth. One of the main players for nuclear to 

mitochondrial communication are sirtuins. 

Sirtuins are a conserved family of mammalian proteins that act predominantly as NAD-

dependent deacetylases. They have different subcellular localization and widely 

participate in several biological functions like aging, transcription, apoptosis, 

inflammation, energy efficiency, among others (43). Sirtuins modulate cell adaptations 

directly deacetylating key protein targets. Concretely, the typical chemical reaction is 

the deacetylation of lysine coupled to the hydrolysis of NAD+, by transferring the acetyl 

group to the ADP-ribose moiety to form O-acetyl-ADP-ribose, releasing free NAD+, 

which is an inhibitor of sirtuin activity itself. The dependence of sirtuins on NAD+ 

determine their activity directly linked to the energy situation of the cells, established 

through the ratio NAD+/NADH, the absolute levels of NAD+, NADH or nicotinamide or 

even a mix of these parameters (44).  

In mammals exist seven sirtuin family members, including three of them (Sirtuin 3, 

Sirtuin 4 and Sirtuin 5) localized primarily in the mitochondria (45,46). For many years, 
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sirtuins have been linked to life-span regulation. However, more recent studies focused 

their attention in establishing alternative and diverse functions of sirtuins. One 

particular property of sirtuins that will be mentioned in this thesis is the regulation of 

mitochondrial number, turnover and activity. Emerging evidences suggest that sirtuins 

play a role as metabolic sensors by using intracellular metabolites, such as NAD+, or 

short-chain carbon fragments like acetyl-CoA, in order to regulate mitochondrial 

function to overcome restriction of nutrient supply or in adaptation to hypoxic situations 

(47). In these settings, during years, the attention has been focused on Sirtuin 1 

biology, which regulates inflammation, mitochondrial biogenesis and endothelial 

function, among other processes. Interestingly, its activity is reduced by oxidative 

damage. However, there is high interest in understanding the function of the others 

family members. 

Concretely, Sirtuin 3 is a NAD+-dependent protein deacetylase located in the 

mitochondrial matrix. It has been implicated in regulating metabolic processes by 

activating and deactivating mitochondrial target proteins by deacetylation of key lysine 

residues (Figure 6) (48,49). 
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Figure 6. The implication of the Sirtuin 3 in mitochondrial function. Sirtuin 3 is directly regulating the 

activity of SOD2 to attenuate ROS levels. Additionally, Sirtuin 3 promotes fatty acid oxidation through 

LCAD, IDH2 and NDUFA9 subunit from MRC complex I and interacts with SDHA and SDHB subunits from 

MRC complex II, enhancing its activity and promoting cellular respiration. 

Image adapted and modified from Riekelt H et al. (49). 

Acetyl-CoA: acetyl-coenzyme A; GDH: glutamate dehydrogenase; H
+
: protons; I: MRC complex I; IDH2: 

isocitrate dehydrogenase; II: MRC complex II; III: MRC complex III; IV: MRC complex IV; MRC: 

mitochondrial respiratory chain; LCAD (or ACADL): acyl-CoA dehydrogenase, long chain; NADH: reduced 

form of nicotidamide adenine dinucleotide; NAD
+
: oxidized form of nicotidamide adenine dinucleotide; 

NDUFA9A: NADH dehydrogenase 1 alpha subcomplex subunit 9; ROS: reactive oxygen species; SDH: 

Succinate dehydrogenase subunit; SOD2: superoxide dismutase 2; SIRT3: sirtuin 3; SIRT4: sirtuin 4; TCA: 

tricarboxilic cycle or Krebs cycle; UCP2 Mitochondrial uncoupling protein 2. 

 

 

There is evidence that Sirtuin 3 would enhance mitochondrial respiration and attenuate 

ROS production in cultured cells (50–52). Described targets in the MRC of Sirtuin 3 

include subunit NDUFA9A of complex I, SDHA and SDHB subunits of complex II and 

ATP synthase subunit ATP5A. Additionally, the enzymes isocitrate dehydrogenase 

(IDH2) and glutamate dehydrogenase (GDH) are deacetylated by Sirtuin 3. The 

required mitochondrial enzyme acetyl-CoA synthase 2 (AceCS2) for generating acetyl-

CoA is also a deacetylation target of Sirtuin 3. Moreover, Sirtuin 3 deacetyles and 

activates SOD2, a mitochondrial antioxidant enzyme, providing protection against 

oxidative damage, among others (summarized in Table 3) (53). 

 

https://en.wikipedia.org/wiki/Redox
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Table 3. List of described targets of sirtuin 3, their subcellular localization and the effect 

of deacetylation on protein function. 

Targets Localization Sirtuin Action Final Function 

 
AceCS2 

 
Mitochondria Activates enzyme Activate ketone metabolism 

 
HMGCS2 

 
Mitochondria Activates enzyme Activate ketone metabolism 

 
OTC 

 
Mitochondria Activates enzyme Reduces ammonia toxicity and ROS 

 
GDH 

 
Mitochondria Activates enzyme Oxidative deamination of glutamate 

 
IDH2 

 
Mitochondria Activates enzyme Reduces ROS 

 
LCAD 

 
Mitochondria Activates enzyme Promotes lipid processing 

 
NDUFA9A 

 
Mitochondria Activates enzyme Up-regulates ETC activity 

 
SDHA and SDHB 

 
Mitochondria Activates enzyme Up-regulates ETC activity 

 
ATP5A 

 
Mitochondria Activates enzyme Up-regulates ETC activity 

 
SOD2 

 
Mitochondria Activates enzyme Reduces ROS 

ALDH2 Mitochondria Deacetylation 

 
Allows NAPQI binding to ALDH2, 

reducing its activity 
 

MRPL10 Mitochondria 

 
Inhibition of 

enzyme 
 

Inhibition of mitochondrial ribosome 

Cyclophilin D Mitochondria 

 
Deactivates 

enzyme 
 

Prevents interaction with mPTP 

Adapted and modified from data contained in Sack MN et al. (53). 

AceCS2: acetyl-CoA synthase 2; ALDH2: aldehyde dehydrogenase, mitochondrial; ATP5A: ATP synthase 

subunit ATP5A; ETC: electron transport chain; GDH: glutamate dehydrogenase; HMGCS2: 3-hydroxy-3-

methylglutaryl-CoA synthase 2, mitochondrial; IDH2: isocitrate dehydrogenase; LCAD (or ACADL): acyl-

CoA dehydrogenase, long chain; mPTP: mitochondrial permeability transition pore; MRPL10: 39S 

ribosomal protein L10, mitochondrial; NDUFA9A: NADH dehydrogenase 1 alpha subcomplex subunit 9; 

NAPBQI: N-acetyl-p-benzoquinone imine; OTC: ornithine transcarbamylase; ROS: reactive oxygen 

species; SDHA: succinate dehydrogenase complex, subunit A; SDHB: succinate dehydrogenase complex, 

subunit B; SOD2: superoxide dismutase 2. 
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Despite the role of Sirtuin 3 in hypoxia is scarcely explored, the aforementioned 

emergent role of Sirtuin 3 in regulating diverse pathways in mitochondrial metabolism 

and stress response is shown in Figure 7 in a situation of nutrient restriction (43).  

 

 

 

Figure 7. A scheme representing the role of Sirtuin 3 in a situation of metabolic adaptation and 

stress defence in the context of low nutrient supply. 

Adapted and modified from data contained in Sack MN et al. (43). 

mPTP: mitochondrial permeability transition pore; OXPHOS: oxidative phosphorylation. 
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2.4 CURRENT RESEARCH IN IUGR 

 

Research in IUGR is fundamental in an attempt to understand its etiopathology and 

reduce its foetal and perinatal mortality and related-consequences after birth. One of 

the greatest challenges is based on developing potential biomarkers for the diagnosis 

of IUGR.  

To date, the literature on IUGR has highlighted several molecular pathways involved in 

energy homeostasis, autophagy, methylation or metabolism, among others. 

Interestingly, a growing field of interest in IUGR is being focused on energy production 

to explain the attempted fail to achieve expected foetal and cardiac development. 

 

2.4.1 Molecular mechanisms involved in human IUGR 

Several studies based on proteomic analysis have been performed in serum, maternal 

and neonatal blood cells and placenta from pregnant women and infants with IUGR 

(54–57). These studies displayed significant proteome differences compared with 

normal pregnancies thus, indicating the existence of a variety of mechanisms and 

proteins that might be involved in the development of IUGR. However, further research 

is needed to elucidate the concrete roles of these proteins in IUGR. In summary, all this 

studies pointed out alterations in triglycerides levels and apolipoproteins being 

increased in maternal and neonatal blood from IUGR cases (55,56). These 

observations are linked to the fact of developing cardiovascular and metabolic 

disorders later in life supporting the ‘Barker theory’ of adverse conditions in intrauterine 

environment determine long-term effects after birth (58). Additionally, a proteomic study 

in human placenta presented dysfunction of several molecules indicating abnormal 

trophoblastic invasion and vascular development, such as nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, alpha-1-antitrypsin (SERPINA1), insulin-like 

growth factor (IGF) and vascular endothelial growth factor (VEGF), and oxidative 

stress, all factors associated with apoptosis (57). Added to these proteomic studies 

there are a few data obtained from transcriptomic analysis in human placenta from 

IUGR pregnancies. Briefly, authors reported up regulation of inflammatory response as 

well as alterations in glucocorticoid metabolism with no difference in imprinted gene 

expression in human placental tissue (59). On the other hand, a transcriptomic analysis 

also in human placenta from IUGR subjects described that genes involved in 

mitochondrial function and OXPHOS were decreased affecting three out of five 
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complexes of the MRC, and thus energy production and metabolism (60).  

Additionally, other lines of investigation to better understand molecular pathways 

involved in IUGR have been explored (61). For instance, previous research has 

established an increase of autophagy and apoptosis in placental cells from IUGR 

pregnancies (62,63). Furthermore, it has been described that the heat shock proteins, 

which are the molecular chaperones involved in the protein folding in response to 

physiological and environmental factors, are involved in IUGR, in which context, 

reduced expression of phosphorylated heat shock protein 27 (HSP-27) activates the 

apoptosis of placenta via activation of caspase 3 (64).  

All the research in the field of IUGR has been mainly performed in placenta (whole 

tissue or isolated cell types) and, although in a few studies, in maternal peripheral and 

neonatal cord blood cells (PBMC and CBMC, respectively). However, the study either 

in maternal or neonatal blood cells has been already used in literature to study 

mitochondrial function (65–69). However, some research has been focused on 

evaluating molecular mechanisms underlying associated consequences of IUGR in 

other tissues, such as lung, kidney, liver, adipose tissue, among others. For this 

purpose, several animal models have been developed, being fundamental to overcome 

target tissue limitation and to further study the long-term consequences of this obstetric 

complication.  

 

2.4.2 Animal models to study IUGR 

Different animal models of IUGR have been developed consisting of carunclectomy, 

uterine artery ligation, uterine space restriction, caloric restriction or hypoxic conditions, 

among other procedures, in different species of animals (mainly sheep, pigs or rats 

models). 

For instance, several experimental approaches have been used in sheep to mimic 

human IUGR. Some researchers used non-pregnant ewes to perform a surgical 

removal of the majority of the endometrial caruncles (called carunclectomy) from the 

uterus that results in the experimental restriction of placental and foetal growth (70–72). 

Then, they implanted vascular catheters in different places to control the blood flow to 

organs such as brain or heart (70). So, this model also allows studying the 

consequences in heart, in brain or even insulin signalling in skeletal muscle.  
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Another model with non-pregnant ewe consists of a restriction of the uterine space, 

which allows examination of IUGR relative to placental adaptation and foetal growth 

during development. This surgical technique is based on completely disconnect a 

single uterine horn, including separation of all intercornual connections using an 

electroautery (73). A similar procedure but inducing bilateral uterine artery ligation (both 

the right and the left uterine arteries) is also performed in pregnant rats to induce IUGR 

(74,75). 

Furthermore, a model to study the effects of hypoxia in foetal organs consists of using 

pregnant guinea pigs and placed them in a plexiglass chamber containing 10.5% of 

oxygen for 14 days (hypoxic conditions). These authors have found that chronic 

intrauterine hypoxia reduce foetal body weight (76). The same group study the prenatal 

hypoxia effects placing the pregnant guinea pigs in the chamber with hypoxia 

conditions and allow them to deliver in the chamber (77). Additionally, other models 

with pregnant guinea pigs consist of inducing chronic placental insufficiency by uterine 

artery ligation. It is a technique commonly used to impair intrauterine growth restriction 

in rodents, since it exhausts uterine capacity leading to discordant foetal growth within 

offspring and different foetal growth restriction. Uterine artery ligation is performed at 

the base of the arterial arcade at day 28-30 of gestation (the gestation in pig ends at 

63-66 days). Some researchers have used this model to study cardiac remodelling of 

aortic development to link it to later cardiovascular disease (78). 

Additionally, there is an animal model of IUGR developed by administering a low-

sodium diet to pregnant rats during the last 7 days of gestation. This model creates a 

full expansion of maternal circulating volume and the increase in uterine artery 

diameter, leading to reduced placental weight (79). On the other hand, rat models of 

IUGR based on caloric restriction have been extensively used to study IUGR and 

impaired cardiac function. Concretely, Keenaghan et al. have exposed pregnant rats to 

caloric restriction and acute hypoxic stress to evaluate cardiac response to hypoxia in a 

context of IUGR, describing to be more sensitive to hypoxia, leading to dysfunctional 

cardiac response (80). Additionally, research with IUGR muscle of rats based on 

uteroplacental ligation exhibited decreased rates of oxygen consumption and ATP 

production accompanied by decreased activity of pyruvate dehydrogenase (81).  

Moreover, models of pregnant sows and gilt pigs feed with a commercial diet 

(simulating caloric restriction) during their pregnancies have been also used to study 

IUGR (82). Interestingly, this approach with IUGR piglets demonstrated an impaired 

hepatic mitochondrial biogenesis and energy homeostasis together with less mtDNA 
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levels (82,83). On the other hand, alternative animal models have been used to study 

mitochondrial function in IUGR and subsequent consequences. For example, it has 

been described less mtDNA in the jejunum of IUGR piglets as well as less mRNA levels 

of some of the MRC complexes (84). 

Finally, a rabbit model of IUGR and cardiovascular remodelling was developed by our 

collaborator group, which consists of a selective ligation of the uteroplacental vessels 

that reduce 40% to 50% of oxygen and nutrients supply to the foetus in development 

(85). Concretely, this model has been used in this thesis to study the consequences of 

IUGR in the heart.  

 

2.4.3 Importance of mitochondria in IUGR and cardiovascular remodelling 

Some research on cardiovascular remodelling associated to IUGR has been carried 

out in the rabbit model of IUGR developed by our group (85,86). Using this approach, 

researchers have been able to overcome the target tissue limitation (heart).  

Additionally, this model represents an approach to study placental insufficiency 

evidenced in pregnant women with IUGR. 

Several lines of evidence suggest that IUGR offspring from the rabbit model present 

biometric changes, high rates of mortality and morbidity and the reported 

cardiovascular alteration characteristic of human IUGR (1,87,88). These common 

alterations in animal model and humans validate the rabbit model of IUGR and 

associated cardiovascular remodelling. 

Cardiac gene expression data in this rabbit model of cardiovascular remodelling 

suggests that there are alterations in different cellular pathways, all of them converging 

to mitochondria, specially: OXPHOS, oxygen homeostasis, complex I of the MRC and 

NADH dehydrogenase. Additionally, hearts of IUGR offspring show a looser packing of 

mitochondria and a higher cytosolic space between mitochondria and myofilaments 

(Figure 8). The relative volume occupied by mitochondria among the IUGR 

myocardium is reduced while the relative cytoplasm volume is increased (89). These 

findings are accompanied with no changes in size and number of mitochondria 

indicating that changes in the relative volume occupied by mitochondria are not due to 

changes in mitochondrial size or number. All these transcriptomic and ulstrastructural 

evidences lead to hypothesise a potential altered mitochondrial function in this obstetric 

complication. 
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Figure 8. Cytoarchitectural organization of cardiomyocytes. Micrographs representing the typical 

organization of the intracellular space in foetal cardiomyocytes from control (A) and IUGR (B). While 

mitochondria are highly compacted and packed close to myofilaments in controls, they lose packaging and 

show an increased cytosolic space both within the mitochondrial network (indicated as ** in the image) and 

between mitochondria and myofilaments (indicated as      in the image) in IUGR. Magnification: 20.000X. 

Scale bar: 2 µm. 

Image obtained from Gonzalez-Tendero et al (89). 

Cyto: cytoplasm; Mit: mitochondria; Myof: myofilaments; IUGR: intrauterine growth restriction. 

 

 

Evidences of mitochondrial involvement in IUGR have also been obtained from studies 

in human pregnancies. For instance, it is already known that reduced birth weight is 

associated to in utero exposure of foetuses to tobacco, which has previously described 

to damage mitochondria in non-pregnant adult smokers (18). Carbon monoxide (CO) is 

one of the most potent harmful compounds of tobacco because its capacity to replace 

oxygen bound to organic molecules such as complex IV of the MRC. The specific 

inhibition of complex IV by CO has negative consequences on mitochondrial respiration 

and OXPHOS leading to an energetic deficit and increased ROS production lately 

promoting apoptosis. Furthermore, CO crosses the placental barrier and reaches the 

foetus in development. In this line, one study of our group reported mitochondrial 

dysfunction in smoking pregnant women complicated with IUGR, where the placental 

mitochondrial toxicity positively correlated with diary tobacco consumption and prompt 

mitochondrial toxicology of CO as the cause of this “toxic” IUGR. Additionally, 

mitochondrial dysfunction is present and correlated at maternal-foetal level between 

maternal PBMC and neonatal CBMC, highlighting that mitochondrial damage 

characteristic of chronic smokers is transferred to foetal mitochondria, becoming the 

likely etiopathogenesis of associated ‘toxic’ IUGR. 

Additionally to all this evidence, other authors have focused efforts in studying the 
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mitochondrial function in human IUGR. For example, Novielli C et al. demonstrated 

increased levels and higher methylation of mtDNA in cord blood from IUGR newborns 

(68). Also, another study evaluated cord blood biomarkers of cardiac dysfunction and 

damage in IUGR newborns, highlighting the increased levels of cord blood BNP levels 

in IUGR newborns (69). Furthermore, there are data available describing decreased 

MRC CI, CI+III and CIV in IUGR cases and also other obstetric complications such as 

PE (90). Following the same line of investigation, Mando et al. found lower mRNA 

levels of MRC CII, CIII, and CIV in IUGR cytotrophoblast cells but no differences at the 

protein level, suggesting a posttranscriptional compensatory regulation. They 

suggested different mitochondrial content and activity depending on the placental cell 

lineage (91). Also interestingly, other authors have been studied the placenta from SGA 

cases, demonstrating a lower mtDNA content and a higher SOD activity, which 

parameters maintained negative association (92). Nevertheless, other author’s results 

do not argue in favour of a mitochondrial involvement in placental insufficiency, 

suggesting that the glycolytic pathway may represent a key energetic source in 

placental insufficiency diseases (93). Increasing but controversial data supports the 

need for exhaustive mitochondrial functional phenotyping of IUGR, assessing at the 

same time the implication of different tissues and, ideally, evaluating placental, 

maternal and foetal effects. 

On the other hand and independently of IUGR, certain human cardiomyopathies are 

associated to mitochondrial alterations (94). Mitochondria seem to rely at the basis of 

inflammatory processes and cellular senescence characteristic of arteriosclerosis and 

several cardiomyopathies (95,96). For instance, in human dilated cardiomyopathy there 

is evidence of alterations in the enzymatic activity of complex III of the MRC (97). 

Furthermore, a number of mitochondrial diseases occur with some cardiomyopathy in 

both adults and children (94,98,99). Actually, cardiomyopathy is a common feature of 

paediatric patients with OXPHOS disorders (100).   

As mentioned previously, mitochondrial dysfunction could lead to oxidative stress and, 

oxidative stress contributes to mitochondrial dysfunction. In the context of pregnancy, it 

is already known that ROS production seems to play a pivotal role during foetal 

programming and also in cardiovascular remodelling, both in response of the 

suboptimal intrauterine environment (101–103).  

Currently, there is few data supporting mitochondrial dysfunction or oxidative stress in 

the idiopathic form of this obstetric complication and associated cardiovascular 

remodelling (60,90,91). However, all this background points out the relevant need to 
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widely characterise mitochondrial implication in IUGR in an attempt to search 

etiopathologic targets, novel biomarkers and potential therapeutic approaches for this 

obstetric complication. 

In the following pages, the present thesis provides evidence of the mitochondrial 

implication in IUGR and cardiovascular remodelling through an exhaustive 

characterization of the mitochondrial function. We first attempt to evaluate 

mitochondrial function in the target tissue of cardiovascular remodelling (the heart) and 

in the tissue responsible for oxygen and nutrient supply into the foetus in development 

(the placenta) in a rabbit model of IUGR, to secondly validate results in human 

pregnancies at placental, maternal and neonatal level. The deeper understanding of 

mitochondrial implication in IUGR and foetal cardiovascular remodelling might help to 

develop new tools for the management of this obstetric complication and associated 

long-term effects.  
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OBJECTIVES 

  



44 
 

 
  



45 
 

We hypothesise a mitochondrial involvement in IUGR and associated cardiovascular 

remodelling in accordance to deregulation of metabolic sensors as Sirtuin 3. The 

association of molecular alterations with clinical manifestations may improve the 

knowledge for further research on potential novel biomarkers or therapeutic strategies 

for this obstetric complication.  

 

The main objectives of this thesis are to: 

 

1. Establish whether mitochondrial transcriptional and ultrastructural changes, 

previously evidenced in hearts of IUGR offspring from the rabbit model, are 

translated to mitochondrial alterations at functional level in the ‘target tissue’ of 

cardiovascular remodelling, the heart (study 1). 

 

2. Evaluate this potential mitochondrial dysfunction in the tissue responsible for 

oxygen and nutrient supply to the foetus (the placenta) in the same rabbit model 

(study 1). 

 

3. Determine whether mitochondrial imbalance is also present in the placenta from 

human pregnancies with IUGR (study 2).  

 

4. Assess if similar mitochondrial disarrangements are evident in peripheral and 

cord blood cells from pregnant women and their newborns with IUGR (study 2). 

 

5. Establish the involvement of potential regulator of mitochondrial dysfunction as 

Sirtuin 3 both in the rabbit model and human pregnancies with IUGR in 

association to mitochondrial dysfunction (studies 1 and 2). 

 

6. Correlate the severity of IUGR and cardiovascular remodelling (biometric and 

clinical data) with experimental results in both the animal model (study 1) and 

human pregnancies (study 2) to contribute to deepen in the knowledge of 

potential biomarkers or therapeutic targets of this obstetric complication.  
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4.1 STUDY DESIGN  

This thesis contains two studies: the first performed in animals and the second 

performed in patients. Both are transversal and controlled studies that share common 

milestones and experimental methodological approaches. 

 

4.1.1 Animal model 

Six New Zealand white pregnant rabbits were used to obtain 16 IUGR and 14 control 

offspring by reproducing a model of IUGR previously reported (85,86). This model was 

based on the selective ligature of uteroplacental vessels to reduce 40 to 50% of oxygen 

and nutrient supply into the foetuses in development. The ligation was performed only 

in one of the two uterine horns in order to obtain, in the same pregnancy, the IUGR 

(from the manipulated horn) and control (from the non-manipulated horn) offspring 

(Figure 9). 

 

Figure 9. A) The New Zealand breed used to reproduce the rabbit model of intrauterine growth restriction 

(IUGR) and cardiovascular remodelling. B) The two uterine horns characteristic of rabbit that allow 

obtaining IUGR and control offspring in the same pregnancy by manipulating one of the two uterine horns. 

C) A representation in size of one IUGR rabbit versus a control rabbit after delivery. 

 

Concretely, pregnant animals were fed with standard diet and water ad libitum, with 

12h/12h of light cycle. At day 25 of gestation, in each pregnant rabbit, the selective 

ligature of uteroplacental vessels in only one of the two uterine horns was performed. 

Briefly, tocolysis (progesterone 0.9mg/kg intramuscular) and antibiotic prophylaxis 

(Penicillin G 300.000 UI intravenous) were administered before uteroplacental vessel 

surgery. Ketamine (35 mg/kg) and xylazine (5 mg/kg) were given intramuscularly for 

anaesthesia induction. Inhaled anaesthesia was maintained with a mixture of 1-5% 

isoflurane and 1-1.5 l/min oxygen. After a midline laparotomy, both uterine horns were 
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exteriorized but only one was ligated to reproduce IUGR. At day 30 (full-term 

pregnancy), a caesarean section was proceeded to obtain both IUGR and control 

offspring from the same pregnancy (all six pregnant rabbits with the same gestational 

age) (85,86). After the procedure, the abdomen was closed and animals received 

intramuscular meloxicam 0.4 mg·kg_1·24 h_1·48 h, as postoperative analgesia. 

Offspring weighting under the 10th percentile of birth weight were considered IUGR if 

they accomplished two criteria:  weighting less than 60 grams (maximum cut-off) and 

never weighting higher than any control offspring from the same nest (Table 4).  

 

Table 4. Sample size included for each pregnant rabbit according to 10
th

 percentile of 

birth weight. 

Pregnant rabbit 
N Offspring 

N Control N IUGR 

1 1 1 

2 4 4 

3 4 4 

4 2 2 

5 1 1 

6 2 4 

N total 14 16 

N: number of sample; IUGR: intrauterine growth restriction 

 

All newborn rabbits were sacrificed by decapitation after caesarean and the hearts of 

newborn rabbits were immediately removed from the chest cavity and were then 

weighed and preserved with Biops medium (2.77mM CaK2EGTA, 7.23mM K2EGTA, 

5.77 mM Na2ATP, 6.56 mM MgCl2·6H20, 20mM Taurine, 15mM Na2Phosphocreatine, 

20mM Imidazole, 0.5mM Dithiothreitol and 50mM MES, pH 7.1) on ice. Likewise, the 

placentas of these newborn rabbits were identified, weighed and preserved with Biops 

medium (prepared as mentioned previously), on ice. 

All biometric parameters were measured once, following standardized protocols 

(85,86). 

Animal handling and all the procedures were performed in accordance to the prevailing 

regulations and guidelines (104–106) and with the approval of the Animal Experimental 

Ethics Committee of the University of Barcelona (Barcelona, Spain). 
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4.1.2 Pregnant women and their newborns 

A single-site, cross-sectional and observational study at the Maternal-Foetal Medicine 

Department of the Hospital Clinic of Barcelona (Spain) was conducted for two years. 

This study included 14 pregnancies complicated by IUGR which was defined as 

estimated birth weight below the 3th percentile or, alternatively, below the 10th 

percentile in case of abnormal UA Doppler or abnormal CPR (7,107). Birth weight 

percentile was calculated considering birth weight, weeks of gestation and neonatal 

gender. Despite final IUGR diagnostic is only confirmed at delivery, all potential 

pregnancies complicated by IUGR in views of trimestral echography follow up were 

monitored during the gestational period. In parallel, 22 uncomplicated pregnancies with 

appropriate for gestational age (AGA) newborns were considered as the control group 

(Table 5).  

Additional information: maternal age at delivery, mode of delivery, placental weight, 

newborn sex, pH umbilical artery cord blood and preeclampsia incidence were 

collected and registered in a database.  Also, the Apgar 5’ score which reports the 

clinical status of the newborn immediately after birth (108). It is determined by 

evaluating five components of the newborn on a 0-2 scale (to a maxim score of 10 

indicating the healthiest status): activity (muscle tone), pulse, grimace (reflex irritability), 

appearance (skin colour) and respiration. The score is reported at 1 minute and 5 

minutes after birth for all infants, and at 5-minute intervals thereafter until 20 minutes 

for infants with a score less than 7. Following these criteria, in this study, we classified 

the newborns between normal (8-9/10) and abnormal Apgar (3-6/8-10). 

As a reliable marker of foetal cardiac remodelling, Brain Natriuretic Peptide (BNP) 

levels were measured in neonatal plasma by the CORE laboratory of our Hospital 

using an Advia Centaur XP. (69,109). 
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Table 5. Sample size used to analyse each experimental parameter in human 

pregnancies. 

Parameters 
Placenta Maternal PBMC Neonatal CBMC 

N Control N IUGR N Control N IUGR N Control N IUGR 

Clinical data 22 14 22 14 22 14 

Enzymatic 

activities of the 

MRC 

21 13 22 14 21 9 

Oxygen 

consumption 
15 11 18 11 18 7 

Lipid 

peroxidation 
21 13 20 14 21 9 

Cellular ATP 

levels 
21 13 22 13 22 10 

mtDNA copy 

number 
- - - - 20 10 

Sirtuin 3 levels 13 9 - - - - 

ATP: adenosine triphosphate; CBMC: cord blood mononuclear cells; IUGR: intrauterine growth restriction; 

MRC: mitochondrial respiratory chain; mtDNA: mitochondrial DNA; N: number of sample; PBMC: 

peripheral blood mononuclear cells; 

 

The inclusion criteria were: >18 years of age, singleton pregnancies, delivery >22 

weeks of gestation and no tobacco consumption in both IUGR and control pregnancies. 

Pregnant women taking potentially toxic drugs for mitochondria and with familial history 

of mitochondrial disease were excluded. 

The study was approved by the Ethical Committee of our hospital and it was performed 

following the Declaration of Helsinki. All participants provided a written informed 

consent. 
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4.2 SAMPLE PROCESSING 

4.2.1 Animal model 

Left ventricle was used for mitochondrial studies because is the target tissue in which 

previous transcriptomic and ultrastructural alterations were observed. Additionally, is 

the tissue were cardiomyopathies are preferentially manifested.  

Each left ventricle and placental tissue were processed as follows (Figure 10): a 

piece of each tissue was maintained in fresh conditions with Biops medium to assess 

mitochondrial oxygen consumption, and the remaining tissue was cryopreserved at -

80ºC and further homogenized (Caframo technologies, Ontario, Canada) at 5% (w/v) in 

mannitol buffer for mitochondrial analysis. 

 

 

 

Figure 10. Two different types of sample processing depending on posterior analysis of heart and 

placental tissue from the offspring of the rabbit model.  

 

The protein content was quantified in left ventricle heart and placental homogenates 

using the bicinchoninic acid colorimetric assay (Thermo Scientific assay kit Prod 

#23225, Waltham, MA, USA) to normalize experimental measures. 
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4.2.2 Pregnant women and their newborns 

At delivery, placental samples were weighted and, after discarding blood residuals, a 

full thickness section (from both maternal and foetal side) was obtained and processed 

as follows (Figure 11): a piece of 500 mg of placenta was homogenized (Caframo 

technologies, Ontario, Canada) with 10% BSA-Solution A to further isolate fresh 

mitochondria and immediately perform in vivo oxygen consumption assay. The 

remaining placental tissue was immediately cryopreserved at -80ºC and further 

homogenized at 5% (w/v) in Mannitol buffer to perform the rest of mitochondrial 

analysis. 

 

 

Figure 11. Two different types of sample processing depending on posterior analysis of human 

placental tissue from pregnant women. 

 

Immediately after delivery, 10-20 ml of maternal peripheral blood and neonatal cord 

blood were collected to isolate mononuclear cells as it has been previously validated 

its usefulness for the study of mitochondrial dysfunction (65–67). 

In detail, maternal and neonatal blood was collected in EDTA tubes to isolate plasma 

(1500 g, 15 minutes) and immediately frozen at -80ºC for posterior analysis. 

Afterwards, peripheral blood mononuclear cells (PBMC) and cord blood mononuclear 

cells (CBMC) were also isolated from blood by density gradient centrifugation using 

Ficoll-Lymphoprep (Histopaque®1077, Sigma Diagnostics, St. Louis, MO) in sterile 

conditions (Figure 12) (110). Briefly, fresh blood was diluted 1:1 with phosphate buffer 

saline (PBS) 1x and 20-30mL of diluted blood was deposited over 15mL of Ficoll® with 

caution, avoiding mixing, in a 50mL conical centrifuge tube. Tubes were centrifuged for 
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30 min at 660g at room temperature, without break. PBMC or CBMC stay in the 

interface within the Ficoll solution and blood plasma due to the density of these cells. 

Finally, PBMC or CBMC were recovered and washed with PBS 1x. One aliquot of each 

sample was maintained in fresh conditions with PBS buffer to assess in vivo 

mitochondrial oxygen consumption, and the remaining aliquots were stored at -80°C 

until further mitochondrial analysis. The protein content was quantified as mentioned 

before to normalize experimental measures. 

 

 

 

 

Figure 12. Scheme representing the isolation of human mononuclear cells from maternal peripheral 

blood and neonatal cord blood using a density gradient with Ficoll
® 

CBMC: cord blood mononuclear cells; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffer 

saline 
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4.3 TISSUE HOMOGENIZATION 

A 5 % (w/v) homogenate was performed from the cryopreserved tissue (heart and 

placental rabbit tissue or human placental tissue), following a procedure set up at 0-

6ºC (Figure 13). 

First of all, a mechanical disintegration with scissors was made in mannitol buffer from 

an amount of 30-50 mg of tissue. This disintegrated tissue was transferred into a potter 

and it was homogenized (from 3 to 10 strokes) at 850 rpm with a homogenizer. Once a 

homogenized solution was obtained, it was transferred to a microtube in order to 

centrifuge (650g for 20 minutes) and eliminate the cellular rests. After centrifugation, 

the supernatant was collected as the 5% (w/v) homogenate and, consequently, protein 

content was determined to set a 2 mg/ml homogenate. 

 

 

 

Figure 13. Preparation of a 5% (w/v) homogenate from tissue. A first step based on mechanical 

disintegration is required before the homogenization procedure. One centrifugation is needed to clean out 

and resuspend the remaining pellet to obtain the final 5% (w/v) homogenate. 
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4.4 MITOCHONDRIA ISOLATION 

Placental mitochondria were isolated from human placenta through a density gradient 

centrifugation using Percoll® from 5 mg of fresh tissue, always set at 0-6ºC (Figure 14).  

Tissue was placed into a beaker containing 1 mL of Solution A with BSA and a 

mechanical disintegration with scissors was performed. Immediately, the dispersed 

tissue was transferred into a potter and it was homogenized to break cell plasmatic 

membrane. Importantly, all this homogenized solution needs to be filtered and collected 

to a microtube. Then, the filtered homogenate was centrifuged at 2.000 rpm during 8 

minutes to remove nucleus and cell debris. After centrifugation, the supernatant was 

collected in a tube as the homogenized tissue. To increase organelle extraction 

efficiency, the remaining pellet was resuspended with a calculated volume of Solution 

A + BSA. The process of homogenization with potter was repeated and also the 

centrifugation. After that, the supernatants were collected together and the whole 

homogenate was centrifuged at 10.000 rpm for 15 minutes to spin down organelles. 

Now, the supernatant (containing the remaining cytoplasm) was discarded and the 

resulted pellet (containing the mitochondrial-enriched fraction) was resuspended with 

1mL of Percoll® + Solution A and centrifuged at 10.000 rpm for 8 minutes to wash 

isolated organelles. Again, the supernatant was discarded. Finally, the pellet containing 

a clean enriched-mitochondrial fraction was resuspended with 100 µL of Solution A + 

BSA.  

 

Figure 14. A schematic representation of isolation of mitochondria from tissue. A first step based on 

mechanical disintegration is required before the homogenization procedure. One centrifugation is 

necessary to eliminate cell debris and nucleus. The remained pellet should be resuspended with Percoll
® 

containing solution A + BSA that together with the centrifugation prompt obtaining the enriched-

mitochondrial fraction at the bottom of the microtube. 

BSA: bovine serum albumin. 
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4.5 MITOCHONDRIAL STUDY 

An exhaustive mitochondrial function study was performed through the assessment of 

enzymatic activities and protein subunit expression of some of the complexes of the 

MRC, oxygen consumption through endogen cell respiration (Cellox) and by adding 

exogenous substrates (glutamate and pyruvate) to stimulate Complex I (abbreviated as 

GMox and PMox, respectively, through the whole thesis). Also, the mitochondrial 

content, total ATP levels, oxidative damage and Sirtuin 3 protein expression was 

evaluated (Table 6). 

 

Table 6. Summary of all mitochondrial function parameters analysed in each sample 

of both animal and human studies. 

Mitochondrial parameter 
Animal model Human pregnancies 

Heart Placenta Placenta 
Maternal 

PBMC 
Neonatal 

CBMC 

Enzymatic 
activities of 

MRC 

Complex I x x x   

Complex II x x x x x 

Complex IV x x x x x 

Complex 
I+II 

x x x   

Complex 
I+III 

x x x   

Protein 
expression of 

MRC 

SDHA x x    

SDHB x x    

COX5A x x    

CoQ levels x x    

Oxygen 
consumption 

Cellox    x x 

GMox x x x x x 

PMox x x x x x 

Mitochondrial 
content 

Citrate 
synthase 

x x x x x 

Tom20 x x    

mtDNA 
content 

    x 

 
Total ATP levels 

x x x x x 

Oxidative 
damage 

Lipid 
peroxidation 

 x x x x x 

SOD2 
activity 

x x    

 
Sirtuin 3 expression 

x x x   

ATP: adenosine triphosphate; CBMC: cord blood mononuclear cells; Cellox: cellular endogen oxidation 

(without substrates); CoQ: coenzyme Q; COX5A: cytochrome c oxidase subunit 5a; GMox: 

glutamate+malate oxidation; MRC: mitochondrial respiratory chain; mtDNA: mitochondrial DNA; PBMC: 

peripheral blood mononuclear cells; PMox: pyruvate+malate oxidation; SDHA: succinate dehydrogenase 

complex, subunit A; SDHB: succinate dehydrogenase complex, subunit B; SOD2: superoxid dismutase 2; 

Tom20: mitochondrial import receptor subunit TOM20. 
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4.5.1 Mitochondrial respiratory chain and citrate synthase activities 

In order to study MRC function, the enzymatic activities of mitochondrial complex I, II, 

IV, I+III and II+III (CI, CII, CIV, CI+III and CII+III) were spectrophotometrically 

measured at 37ºC, as reported elsewhere (111). 

The measurement of enzymatic activities of MRC in maternal PBMC and neonatal 

CBMC was restricted to CII and CIV based on previous results obtained from the 

animal model. 

All enzymatic assays consisted of national standardized methods run in parallel with 

internal quality controls (111) and all the enzymatic assays, measured once per 

sample, simultaneously included both cases and controls. 

Absorbance changes of the enzymatic activities along time were monitored in a 

HITACHI U2900 spectrophotometer using the UV-Solution software version 2.2 and 

were expressed as nanomoles of consumed substrate or generated product per minute 

and milligram of protein (nmol/minute·mg protein) (Table 7). 

 

Table 7.  Reagents, inhibitors and wavelength used to measure the enzymatic activities 

of each complex of the mitochondrial respiratory chain (MRC). The absorbance of the mix 

(Abs. variation) at the given wavelength (λ) is registered through changes of monitored reagent, 

due to electron passage from donor to acceptor. In some cases, a specific inhibitor for the same 

MRC complex allows the subtraction of unspecific activity or the blockade of the next electron 

transfer along the MRC. 

 
Monitored 

reagent 

λ 

(nm) 

Abs. 

variation 

Electron 

donor 

Electron 

acceptor 

Inhibitors 

used 

Complex I NADH 340 Decrease NADH Decylubiquinone Rotenone 

Complex II DCPIP 600 Decrease Succinate Decylubiquinone KCN 

Complex 

IV 
Reduced cyt c 550 Decrease Reduced cyt c Oxygen None 

Complex 

I+III 
Oxidized  cyt c 550 Increase NADH Oxidized cyt c 

Rotenone/ 

KCN 

Complex 

II+III Oxidized  cyt c 550 Increase Succinate Oxidized cyt c KCN 

cyt c: cytochrome c; DCPIP: 2,6-diclorophenolindophenol; NADH: nicotinamide adenine dinucleotide, 

reduced form; KCN: potassium cyanide; λ: wavelength. 
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In more detail: 

Complex I 

Since this complex transfers electrons from NADH to ubiquinone, its activity can be 

determined monitoring the decrease of the absorbance from NADH at 340 nm. The 

CoQ (a hydrophobic natural acceptor) is replaced for decylubiquinone (a more 

hydrophilic compound). 

It is important to take into account that NADH cytochrome b5 oxidoreductase also 

oxidises NADH. As this activity is no sensitive to rotenone, its activity can be 

determined in a parallel assay containing rotenone, a specific inhibitor of complex I. 

Thus, the specific complex I activity (sensitive to rotenone) is calculated subtracting the 

unspecific activity by adding rotenone from the total activity without rotenone. 

Composition of the reaction mix 

NADH 100 µM 

Decylubiquinone 100 µM 

Potassic phosphate 50 µM 

BSA 3.75 mg/ml 

 

Complex II 

Since this complex transfers electrons from succinate to ubiquinone, its activity can be 

assessed monitoring the 2,6-diclorofenolindofenol (DCPIP) reduction evaluating the 

absorbance decrease at 600 nm of oxidized DCPIP. Here again, the CoQ (a 

hydrophobic natural acceptor) is replaced for decylubiquinone (a more hydrophilic 

compound). The basal line is subtracted from the activity that begins for the addition of 

decylubiquinone to posterior deducts the unspecific transfer of electrons to DCPIP. 

Composition of the reaction mix 

Potassic phosphate 25 mM 

Succinate 20 mM 

DCPIP 50 µM 

KCN 1 mM 

BSA 2 mg/ml 

Decylubiquinone 100 µM 
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Complex IV 

Since this complex transfers electrons from reduced cyt c to oxygen, its activity can be 

determined monitoring the decrease of the absorbance from reduced cyt c at 550 nm. 

Composition of the reaction mix 

Potassic phosphate 50 mM 

Reduced cyt c 100 µM 

 

Complex I+III 

Since the combination of the activity of complex I and III transfers electrons from NADH 

(that it is oxidized to NAD+) to cyt c, its activity can be evaluated following the increase 

of the absorbance from reduced cyt c at 550 nm. The cyt c oxidation by complex IV is 

inhibited by cyanide (KCN) added in the reaction mix. 

It is important to know that NADH can also be consumed by unspecific enzymes. Thus, 

the specific combined activity of complex I and III is the sensitive activity to rotenone 

calculated subtracting the non-sensitive activity to rotenone from the total NADH 

cytochrome C oxidoreductase.  

Composition of the reaction mix 

NADH 200 µM 

Cyt c 100 µM 

Potassic phosphate 50 mM 

BSA 1 mg/ml 

KCN 1 mM 

 

Complex II+III 

Since the combination of the activity of complex II and III transfer electrons from 

succinate to cyt c, its activity can be assessed monitoring the increase of absorbance 

from reduced cyt c at 550 nm. The posterior oxidation of cyt c by complex IV is 

inhibited by KCN added to the reaction mix. 

Composition of the reaction mix 

Succinate 20 mM 

Cyt c 100 µM 

Potassic phosphate 20 mM 

BSA 2 mg/ml 

KCN 1 mM 
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Citrate synthase activity 

Mitochondrial content was determined through the enzymatic activity of citrate 

synthase. It is an enzyme participating in the Krebs cycle and validated as a good 

marker of mitochondrial mass. Citrate synthase catalyses the formation of citrate from 

oxaloacetate and acetyl-CoA. The reduced form of CoA, the CoA-SH, that is produced 

in last reaction transforms the 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) into 2-nitro-5-

thiobenzoic acid (TNB), at 412 nm. Thus, the citrate synthase activity could be 

evaluated by the increase of TNB absorbance at 412 nm. 

Composition of the reaction mix 

DTNB 100 µM 

Tris HCl pH 8.1 100 mM 

Acetyl-CoA 300 µM 

Oxaloacetate 500 µM 

Triton 100x 0.1 % 

 

 

4.5.2 Mitochondrial oxygen consumption 

Different procedures for the measurement of oxygen consumption were performed 

depending on animal or patient source of sample. 

 

4.5.2.1Animal model 

To determine oxygen consumption of heart and placental tissue from IUGR and control 

offspring, 3-5 milligrams of each tissue were permeabilized on ice with 5% (w/v) 

saponin for 30 minutes in Biops medium. This permeabilized tissue was washed with 

cold respiration medium (Mir05: 0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 

mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose and 0.1% (w/v) bovine 

serum albumin, pH 7.1) (Figure 15). High-resolution respirometry was performed at 

37°C by polarographic oxygen sensors in a two-chamber Oxygraph-2k system 

according to the manufacturer’s instructions (OROBOROS Instruments, Innsbruck, 

Austria). Manual titration of substrates and inhibitors was performed using Hamilton 

syringes (Hamilton Company, Reno, NV, USA). Data was recorded using the DatLab 

software v5.1.1.9 (Oroboros Instruments, Innsbruck, Austria).  
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Figure 15. Permeabilization of fresh tissue with 5% saponin is required to perform mitochondrial 

oxygen consumption by Oroboros® high resolution respirometry. 

 

Glutamate+malate oxidation (GM Oxidation), corresponding to electron donation of 

both substrates of MRC complex I, was quantified once in all samples. Specific oxygen 

uptake rates sensitive to antimycin a (which specifically inhibits mitochondrial oxygen 

consumption) were obtained following the manufacture’s recommendations (112). 

Oxygen consumption was normalized for the milligrams of dry tissue, thus, results were 

expressed as picomoles of oxygen consumed per second and milligram of tissue (pmol 

O2/s·mg). 

 

4.5.2.2 Pregnant women and their newborns 

Isolated placental mitochondria, maternal PBMC and neonatal CBMC were used in 

fresh conditions to determine oxygen consumption at 37°C by polarography (oxygen 

electrode chambers from Hansatech Instruments) (Figure 16) (113).  

Oroboros® 

high resolution 

respirometry 
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Figure 16. Mitochondrial oxygen consumption by Hansatech® polarography using fresh tissue. 

 

Cellular oxygen consumption for endogen substrates (abbreviated as Cellox) was 

measured in intact maternal PBMC and neonatal CBMC. Digitonin was afterwards 

used to permeate blood cells. Manual titration of substrates for complex I stimulation 

(glutamate+malate or pyruvate+malate; throughout this paper, the terms GMox and 

PMox will refer to glutamate and pyruvate oxidation, respectively) was performed using 

Hamilton syringes (Hamilton Company, Reno, NV, USA). Data was recorded using 

O2view Software.  

Oxygen consumption was normalized by protein content, thus, results were expressed 

as picomols of consumed oxygen per second and milligram of protein (pmol O2/s·mg 

prot.). 

 

4.5.3 Mitochondrial coenzyme Q (CoQ) content 

Tissue levels of CoQ9 or CoQ10 (mobile electron transfer located within CI, CII and CIII 

in the MRC) were assessed in duplicates in the heart and placental homogenates from 

both cases and controls of the rabbit model by high pressure liquid chromatography 

(HPLC in reverse form) with electrochemical detection of the reduced and oxidized 

molecule, as described previously (114). Values were expressed as micromoles per 

liter (μmol/L).  

 

 

Hansatech® 

polarography 
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4.5.4 Total cellular ATP levels 

Cellular ATP levels were quantified in all samples in duplicates from both cases and 

controls using the Luminescent ATP Detection Assay Kit (Abcam, Cambridge, UK), 

according to the manufacturer’s instructions. The results were normalized for protein 

content and expressed as picomolar of ATP per milligram of protein (pmol ATP/mg 

protein). 

 

4.5.5 Lipid peroxidation (oxidative damage) 

Lipid peroxidation was measured in duplicates as an indicator of oxidative damage into 

lipid membranes using the BIOXYTECH® LPO-586™ assay by spectrophotometric 

measurement of malondialdehyde (MDA) and 4-hydroxyalkenal (HAE) levels (both 

peroxides derived from fatty acid oxidation), according to the manufacturer’s 

instructions (Oxis International Inc., CA, USA). The results were normalized for protein 

content and expressed as micromolar of MDA and HAE per milligram of protein (μM 

MDA+HAE/mg protein).  

 

4.5.6 Mitochondrial DNA levels 

Alternative measurement to determine mitochondrial content was performed by 

analyzing mitochondrial DNA (mtDNA) copy number. Thus, total DNA was phenol-

chlorophorm-extracted, spectrophotometrically quantified and diluted at 5 ng/µl. 

Multiplex real-time PCR (PCR Applied Biosystems, Foster City, CA, USA, 7500 Real 

Time PCR System) was performed as previously reported by Moren el al. (115).  

Briefly, determination of the mitochondrial 12S ribosomal RNA (mt12SrRNA) gene and 

the constitutive nuclear RNAseP gene (nRNAseP) was used. The former used mtF805 

(5’-CCACGGGAAACAGCAGTGAT-3’) and mtR927 (5’-

CTATTGACTTGGGTTAATCGTGTGA-3’) with the TaqMan Probe 6FAM-5’-

TGCCAGCCACCGCG-3’-MGB  (Sigma-Aldrich, St. Louis, MO, USA). The latter used a 

commercial kit (4304437; Applied Biosystems). Each well included 25 ng of total 

genomic DNA diluted in 20 µl total reaction mixture containing: 1x TaqMan Universal 

PCR Master Mix (ABI P/N 4304437), 1 µl RNAseP commercial kit and 125 nM of each 

mtDNA primer and 125 nM of mtDNA probe. The PCR was set for 2 minutes at 50°C, 

10 minutes at 95°C, followed by 40 cycles each of 15 seconds of denaturalization at 
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95°C and 60 seconds of annealing/extension at 60°C. The mt12SrRNA gene was 

normalized by determining the nRNAseP nuclear gene and expressed as 

mt12SrRNA/nRNAseP ratio. 

 

4.5.7 Western blot analysis 

Twenty to forty µg of total protein were separated using 7/13% SDS-PAGE and 

transferred to nitrocellulose membranes (iBlot Gel Transfer Stacks, Life Technologies, 

Waltham, MA, USA). The membranes were hybridized with specific antibodies 

overnight at 4ºC. The expression of all studied proteins was measured once and 

normalized to β-actin protein (47kDa; 1:30.000; Sigma-Aldrich, St.Louis, MO, USA) 

which was used as a loading control. Inter-blot control samples were used to evaluate 

membrane variability. The ImageQuantLD program was used to quantify 

chemiluminiscence and expressed in arbitrary units reflecting intensity of band signal 

(in pixels) per surface. 

Subunits of the MRC complexes 

To determine the levels of protein expression of the subunits of the MRC complexes, 

the cleared lysates were subjected to SDS-PAGE and electroblotted. Proteins were 

visualized by immunostaining with anti-SDHA and anti-SDHB (both for CII; 70kDa and 

30kDa respectively; 1:1000; Invitrogen, Paisley, UK) and also with anti-COX5A (for 

CIV; 16kDa; 1:1000; MitoSciences, Oregon, USA). Results were expressed as 

SDHA/β-actin, SDHB/β-actin and COX5A /β-actin ratios. 

Mitochondrial import receptor subunit TOM20 (Tom20) 

As a mitochondrial content marker, anti-Tom20 (20kDa; 1:1000; Santa Cruz 

Biotechnology, Dallas, USA) was hybridized with membranes. Results were expressed 

as the Tom20/β-actin ratio. 

Superoxid dismutase 2 (SOD2) 

SOD2 is a mitochondrial anti-oxidant enzyme pivotal in ROS release during oxidative 

stress. Membranes were hybridized with anti-SOD2 (24kDa; 1:1000; ThermoFisher 

Scientific, Waltham, MA, USA). Results were expressed as the SOD2/β-actin ratio. 
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Acetylated form of SOD2 

To determine the activity of SOD2 enzyme, we evaluate its acetylated form (indicating 

less activity) by hybridizing the membranes with anti-SOD2/MnSOD (24kDa; 1:1000; 

Abcam, Cambridge, UK). Results were expressed as the acetylated SOD2/β-actin or 

acetylated/total SOD2 ratio. 

Sirtuin 3 

The protein content of Sirtuin 3, which is a sensor of mitochondrial and metabolic 

balance, was determined by hybridizing the membrane with anti-Sirtuin 3 (29 KDa; 

1:500; Abcam, Cambridge, UK) in heart tissue from the rabbit model. Due to 

specificities of antigen detection, when evaluating Sirtuin 3 in placenta from human 

samples, another antibody was used, so the membranes were hybridized with anti-

Sirtuin 3 (44 KDa; 1:250; Merck Millipore). In both cases, results were expressed as the 

Sirtuin 3/β-actin ratio. 

 

Table 8. Summary with all tested proteins and their optimal conditions by Western blot. 

Protein 
Primary antibody 

reference 

Band 

size 

(kDa) 

Dilution 

used 
SDS-PAGE 

Secondary 

antibody used 

 

SDHA 
Invitrogen, Paisley, UK 70 1:1000 7 / 13 % Anti-mouse 

 

SDHB 
Invitrogen, Paisley, UK 30 1:1000 7 / 13 % Anti-mouse 

COX5A 
MitoSciences, Oregon, 

USA 
16 1:1000 7 / 13 % Anti-mouse 

Tom20 
Santa Cruz Biotechnology, 

Dallas, USA 
20 1:1000 7 / 13 % Anti-rabbit 

SOD2 
ThermoFisher Scientific, 

Waltham, MA, USA 
24 1:1000 7 / 13 % Anti-mouse 

SOD2/MnSOD 

(acetylated 

SOD2) 

Abcam, Cambridge, UK 24 1:1000 7 / 13 % Anti-rabbit 

 

Sirtuin 3 
Abcam, Cambridge, UK 29 1:500 7 / 13 % Anti-goat 

β-actin 
Sigma-Aldrich, St.Louis, 

MO, USA 
46 1:30.000 7 / 13 % Anti-mouse 

SDHA: Succinate dehydrogenase complex, subunit A; SDHB: Succinate dehydrogenase complex, subunit 

B; COX5A: Cytochrome c oxidase subunit 5a; Tom20: Mitochondrial import receptor subunit TOM20; 

SOD2: Superoxid dismutase 2; SOD2/MnSOD; acetylated form of SOD2. 
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4.6 STATISTICAL ANALYSIS 

All statistical analysis was performed with the ‘IBM SPSS Statistics 20’ software. 

Additionally, STATA software was used only to determine maternal influence in the 

animal model. 

For the animal model, biometric data from the offspring (suggestive of IUGR and 

cardiovascular remodelling severity) as well as mitochondrial experimental results were 

expressed as means and standard error of the mean (SEM) or as a percentage of 

increase/decrease of IUGR-offspring compared to control offspring after filtering for 

outliers. Case-control differences were sought by non-parametric statistical analysis 

(Mann–Whitney independent sample test). Additionally, significance was adjusted by 

maternal influence (Random Effect regression model) in case of difference in some 

analysed parameter. 

For human pregnancies, sociodemographic characteristics and perinatal outcomes 

were expressed as percentage of positive cases within the study cohort or means and 

SEM. Mitochondrial experimental results were expressed as means and SEM or as a 

percentage of increase/decrease of IUGR cases compared to control pregnancies after 

filtering for outliers. All results of IUGR pregnancies were compared to controls to 

assess the impact of IUGR and cardiovascular remodelling in our study cohort. So, 

mitochondrial experimental case-control differences were sought by non-parametric 

statistical analysis (Mann–Whitney independent sample test or odds ratio by Fisher’s 

exact). 

Finally, different correlations were obtained between biometric/clinical data and 

experimental results using the Spearman test to assess the dependence of this 

obstetric complication on mitochondrial function.  

Differences were considered significant with a p value <0.05.  
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5.1.1 Biometric offspring data 

The biometric results of both the IUGR and control offspring of the rabbit model are 

shown in Table 9 and Figure 17, in which, IUGR-offspring were presented as column 

bars demonstrating percentage of increase or decrease compared to controls 

(represented as the 0 baseline). 

Birth weight, heart weight, left and right ventricle weight and placental weight were 

significantly decreased in IUGR-offspring compared to controls (−30.35 ± 2.99%, 

p<0.001; −29.73 ± 2.70%, p<0.001; −30.00 ± 0.00%, p<0.005; −36.36 ± 9.09%, 

p<0.001; −21.49 ± 4.85%, p<0.001, respectively), confirming the presence of IUGR 

and cardiac remodelling. When cardiac or placental weights were normalized to body 

weight, no significant differences were evidenced between IUGR and control offspring, 

suggesting global and proportioned organ and body mass reduction. 

 

Table 9. Biometric data of experimental groups. Whole body, cardiac and placental weight 

are reduced in IUGR-offspring compared to control offspring. 

Parameters Control IUGR 
% of increased (+) 

or decreased (-) 
P value 

Birth weight (g)
 

52.26±1.32 36.40±1.56 -30.35±2.99 <0.001
 a
 

Heart weight (g) 0.37±0.01 0.26±0.01 -29.73±2.70 <0.001
 a
 

Left ventricle heart 

weight (g) 
0.10±0.01 0.07±0.00 -30.00±0.00 <0.005 

a, 
† 

Heart/body weight 

x 100 
0.71±0.02 0.73±0.05 +2.82±7.04 NS 

Right Ventricle + 

Septum heart 

weight (g) 

0.11±0.01 0.07±0.01 -36.36±9.09 <0.001
 a
 

Placental weight (g) 7.63±0.48 5.99±0.37 -21.49±4.85 <0.001 
a, 

†
 

Placenta/body 

weight x 100 
0.15±0.01 0.17±0.01 +13.33±6.67 NS 

Values were expressed as mean ± standard error of the mean. Case-control differences were sought by 

non-parametric statistical analysis and, in case of difference (
a
), significance was adjusted by maternal 

influence (†).  

IUGR: Intrauterine Growth Restriction; NS: not significant. 
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Figure 17. Biometric results of heart and placenta from rabbit offspring with intrauterine growth 

restriction (IUGR). IUGR-offspring were presented as column bars demonstrating percentage of increase 

or decrease compared to controls (represented as the 0 baseline). There was a significant decrease in 

birth weight in IUGR-offspring (control N=14 and IUGR N=16), accompanied by a reduction in heart 

(control N=13 and IUGR N=15), left (control N=11 and IUGR N=14) and right ventricle (control N=10 and 

IUGR N=13) and placental weight (control N=14 and IUGR N=16). Heart body weight relative to body 

weight (control N=13 and IUGR N=15) and also placental weight corrected by body weight (control N=14 

and IUGR N=16) did not show significant differences between cases and controls.  

Case-control differences were sought by non-parametric statistical analysis and, in case of difference; 

significance was adjusted by maternal influence (LV heart weight and placental weight).  

LV: left ventricle; RV+S: right ventricle and septum; **: p<0.001; ##: p<0.005. 

 

 

5.1.2 MRC activity, MRC expression and mitochondrial content 

In order to explore mitochondrial function, the enzymatic activities of the complexes of 

the MRC were analysed in the homogenate of heart and placental tissue. In addition, 

the expression of some subunits of the complexes of the MRC was also measured in 

the same samples. And finally, mitochondrial content was evaluated through the 

activity of citrate synthase and the expression of protein Tom20. All of the raw data are 

presented in Supplementary Table 1 (S1). 

A significant decrease of CII, CIV and CII+III enzymatic activities (−11.96 ± 3.16%, 

−15.58 ± 5.32% and −14.73 ± 4.37%, respectively; p<0.05 in all cases) was found in 

heart of IUGR-offspring compared to controls, while other complexes (CI and CI+III) 

also showed a decrease, although not significant (Figure 18). The same pattern was 

observed in placenta, although the decrease in CIV did not reach statistical significance 

in IUGR-offspring (CII: −17.22 ± 3.46%, p<0.005; CIV: -24.03 ± 8.26%, p=NS; CII+III: 

−29.64 ± 4.43%, p<0.001; Figure 18).  
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Figure 18. Enzymatic activities of the complexes of the mitochondrial respiratory chain (MRC) of 

heart (left) and placenta (right) from IUGR-offspring compared to controls. IUGR-offspring were 

presented as column bars demonstrating percentage of increase or decrease compared to controls 

(represented as the 0 baseline. A significant decrease of CII, CIV and CII+III enzymatic activities was 

observed in heart of IUGR-offspring, while CI and CI+III showed a not significant decrease (control N=10 

and IUGR N=14 for all). The same pattern was observed in placenta, although the CIV decrease did not 

reach statistical significance in IUGR-offspring (CI: control N=14 and IUGR N=14; CII and CIV: control 

N=14 and IUGR N=16; CI+III: control N=13 and IUGR N=15; CII+III: control N=13 and IUGR N=16). 

Citrate synthase (CS) activity (mitochondrial content) was conserved in both heart (control N=10 and IUGR 

N=14) and placental (control N=14 and IUGR N=16) tissues from IUGR-offspring.  

Case-control differences were sought by non-parametric statistical analysis and, in case of difference; 

significance was adjusted by maternal influence. 

 #: p<0.05; ##: p<0.005; **: p<0.001; CI, CII, CIV, CI+III, CII+III: MRC complex I, II, IV, I+III, II+III; CS: 

citrate synthase. 

 

 

CII subunits SDHA and SDHB and CIV subunit COX5A were analysed by Western blot 

as were the complexes showing statistical significant differences in terms of enzymatic 

activities.  Thus, studied subunits were conserved in cardiac tissue of IUGR-offspring 

compared to controls. Interestingly, regardless maintained expression of CII SDHA and 

CIV COX5A subunits in placental tissue, MRC CII SDHB subunit was significantly 

decreased (−44.12 ± 5.88%; p<0.001) in IUGR-offspring compared to controls (Figure 

19 and Table S1).  
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Figure 19. Expression of the mitochondrial respiratory chain (MRC) subunits SDHA and SDHB 

(from complex II) and COX5A (from complex IV) in IUGR-offspring and controls. A) This column bar 

graph represents protein expression of SHDB subunit in placenta from IUGR-offspring (striped bars; 

N=16) compared to placenta from controls (empty bars; N=14). SHDB/β-actin expression is significantly 

decreased in placenta from IUGR-offspring. The results were expressed as mean and standard error of 

the mean (SEM) compared to controls. Case-control differences were sought by non-parametric statistical 

analysis and, in this case; significance was adjusted by maternal influence (SDHB protein expression in 

placenta). B) A representative Western Blot of SDHA, SDHB and COX5A protein expression in 

placenta is shown in which β-actin was used as the loading control. C) A representative Western Blot of 

SDHA, SDHB and COX5A protein expression in heart is shown in which β-actin was used as the 

loading control.  

IUGR: intrauterine growth restriction; SDHA: succinate dehydrogenase complex, subunit A; SDHB: 

succinate dehydrogenase complex, subunit B; COX5A: cytochrome c oxidase subunit 5a; **: p<0.001. 

 

 

Finally, mitochondrial content was evaluated using two mitochondrial parameters. First, 

citrate synthase activity in both heart and placental tissues showed preserved 

mitochondrial content in IUGR-offspring compared to controls (Figure 18 and Table 

S1). Second, these results were confirmed by conserved Tom20 expression in the 

same samples (Figure 20 and Table S1). 
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Figure 20. Representative Blot for the expression of mitochondrial import receptor subunit TOM20 

(Tom20) in heart and placental tissue from IUGR-offspring and controls. No remarkable differences 

were observed in heart (control N=4 and IUGR N=8) and placenta (control N=15 and IUGR N=15) 

between cases and controls. β-actin was used as loading control.  

IUGR: Intrauterine growth restriction 

 

 

Relative MRC enzymatic activities to citrate synthase activity were in line with absolute 

MRC enzymatic activities, suggesting that MRC deficiencies were focused on a defect 

of mitochondrial enzymatic activity and protein expression rather than a decrease of 

the mitochondrial content. 

 

5.1.3 Mitochondrial oxygen consumption 

Heart and placental fresh tissue was permeabilized to further explore MRC function by 

terms of mitochondrial oxygen consumption. It is a measure to evaluate a global 

operation of the MRC. Thus, oxygen consumption through CI stimulation by 

glutamate+malate was quantified (GM oxidation). 

We found a not significant decrease of CI-stimulated oxygen consumption in heart and 

placenta from IUGR-offspring compared to controls (−5.56 ± 6.46% and −25.64 ± 

18.97%, respectively, both p=NS, Figure 21 and Table S1). 
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Figure 21. Mitochondrial oxygen consumption of heart and placenta from rabbit offspring with 

intrauterine growth restriction (IUGR). Mitochondrial oxygen consumption stimulated with substrate for 

complex I (glutamate+malate) in heart (left; control N=11 and IUGR N=14) and placenta (right; control 

N=13 and IUGR N=13) from IUGR-offspring (striped bars) compared to controls (empty bars). Oxygen 

consumption showed a not significant decrease on CI stimulation in heart and placenta from IUGR-

offspring.  

The results were expressed as means and standard error of the mean (SEM) compared to controls. Case-

control differences were sought by non-parametric statistical analysis. 

 

 

5.1.4 Mitochondrial CoQ content 

Mobile electron transfer CoQ, responsible to transfer the electrons from CI and II to 

CIII, was analysed to better explore deficiencies in the enzymatic activities of the 

complexes of the MRC. 

However, no differences were observed in CoQ9 or CoQ10 content either in cardiac or 

placental tissue of IUGR-offspring with respect to control individuals (Table S1). 

 

5.1.5 Total cellular ATP levels 

Total ATP levels were measured to explore potential consequences of deficiencies in 

MRC enzymatic activities.  

However, no remarkable differences were observed in total content of cellular ATP 

either in heart or placental tissues in IUGR and control offspring (Figure 22 and Table 

S1), suggesting no effects of MRC dysfunction in total ATP supply or the increase of 

alternative pathways of ATP production. 
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Figure 22. Total cellular ATP levels in heart and placenta from rabbit offspring with intrauterine 

growth restriction (IUGR).  Total cellular ATP levels in heart (left; control N=10 and IUGR N=14) and 

placenta (right; control N=14 and IUGR N=16) from IUGR-offspring (striped bars) compared to controls 

(empty bars). No remarkable differences were observed in the total cellular ATP content either in heart or 

placental tissue.  

The results were expressed as means and standard error of the mean (SEM) compared to controls. Case-

control differences were sought by non-parametric statistical analysis. 

ATP: adenosine triphosphate. 

 

 

 

5.1.6 Lipid peroxidation (oxidative damage) 

Oxidative damage, estimated by the rate of lipid peroxidation, was assessed in order to 

evaluate consequences of MRC impairment. 

Lipid peroxidation showed a significant decrease of 39.02 ± 4.35% in hearts of IUGR-

offspring compared to controls (p<0.001; Figure 23 and Table S1), probably reflecting 

the previous observed decrease in MRC enzymatic activities or the potential activation 

of antioxidant mechanisms. Contrarily, lipid peroxidation was considered to be 

preserved by showing a non-significant increase of 10.65 ± 7.33% in placenta from 

IUGR-offspring compared to the control group (p=NS; Figure 23 and Table S1), 

probably due to poor antioxidant defences characteristic of this tissue. 
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Figure 23. Lipid peroxidation in heart and placenta from rabbit offspring with intrauterine growth 

restriction (IUGR). Lipid peroxidation in heart (left; control N=10 and IUGR N=14) and placenta (right; 

control N=13 and IUGR N=16) from IUGR-offspring (stripped bars) compared to controls (empty bars). 

Lipid peroxidation showed a significant decrease in hearts while showing a not significant increase in 

placenta from IUGR-offspring.  

The results were expressed as means and standard error of the mean (SEM) compared to controls. Case-

control differences were sought by non-parametric statistical analysis and, in case of difference; 

significance was adjusted by maternal influence.  

HAE: 4-hydroxyalkenal; MDA: malondialdehyde; **; p<0.001. 

 

 

5.1.7 Expression and activity of SOD2 

To better understand the altered and controversial patterns of oxidative damage, total 

SOD2 enzyme expression and activity was analysed as it is the main antioxidant 

enzyme within mitochondria. 

However, no significant differences were observed in the protein content and activity of 

the antioxidant SOD2 enzyme between cases and controls in none of the studied 

tissues (Figures 24 and 25 and Table S1; either total SOD2/β-actin content or 

acetylated SOD2/β-actin).  
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Figure 24. Representative Blot for the expression of superoxid dismutase 2 (SOD2) anti-oxidant 

enzyme in heart and placental tissue from IUGR-offspring and controls. No remarkable differences 

were observed in heart (control N=10 and IUGR N=14) and placenta (control N=15 and IUGR N=15) 

between cases and controls. β-actin was used as loading control.  

IUGR: Intrauterine growth restriction. 

 

 

Figure 25. Representative Blot for the expression of the acetylated form of superoxid dismutase 2 

(SOD2) anti-oxidant enzyme in heart and placental tissue from IUGR-offspring and controls. No 

remarkable differences were observed in heart (control N=8 and IUGR N=13) and placenta (control N=11 

and IUGR N=14) between cases and controls. β-actin was used as loading control.  

IUGR: Intrauterine growth restriction. 

 

 

5.1.8 Sirtuin 3 protein expression 

After the wide mitochondrial characterization, a potential factor responsible to regulate 

all these mitochondrial rearrangements such as Sirtuin 3 was evaluated.  

Interestingly, Sirtuin 3/β-actin protein levels showed a significant increase of 84.21 ± 

31.58% (p<0.05) in heart tissue of IUGR-offspring compared to controls (Figure 26 and 

Table S1), suggesting potential upregulation to compensate mitochondrial dysfunction. 
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Figure 26. Mitochondrial levels of protein Sirtuin 3 (Sirt3/β-actin ratio) in heart of rabbit offspring 

with intrauterine growth restriction (IUGR). A) This column bar graph represents protein Sirtuin 3 levels 

in hearts from IUGR-offspring (striped bars; N=13) compared to hearts from controls (empty bars; N=10). 

Sirtuin 3/β-actin levels in heart tissue of IUGR-offspring showed a significant increase. The results were 

expressed as mean and standard error of the mean (SEM) compared to controls. Case-control differences 

were sought by non-parametric statistical analysis and, in this case; significance was adjusted by maternal 

influence. #: p<0.05. B) A representative Western Blot of Sirtuin 3 protein expression in hearts is shown in 

which β-actin is used as the loading control.  

 

 

5.1.9 Associations between biometric features and experimental results 

Supplementary Table S2 describes all the significant associations between the 

biometric data and experimental results of the IUGR and control offspring from the 

rabbit model. The most remarkable associations are described below and showed in 

Figure 27.  

Firstly, birth weight was positively and significantly correlated with heart and left 

ventricle weight and also with placental weight (R2=0.610, R2=0.446 and R2=0.557, 

respectively, p<0.001 in all cases; Figure 27A and B). Similarly, heart weight was 

correlated with left ventricle weight and placental weight (R2=0.322, p<0.005; R2=0.346, 

p<0.001), confirming the association of low birth weight characteristic of IUGR with 

cardiovascular remodelling. 

Secondly, birth weight was positively and significantly correlated with enzymatic 

activities of CI, CII and CII+III in the heart of the both offspring (R2=0.157, p<0.05; 

R2=0.117, p<0.05; R2=0.289, p≤0.005; respectively; Figure 27C). The weight of the 
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other tissues was also positively and significantly correlated with the enzymatic activity 

of some MRC complexes (Table S2). Similarly, body, heart, left ventricle and placental 

weights were significantly and positively correlated with CII SDHB protein expression in 

placenta (R2=0.304, p≤0.001; R2=0.349, p<0.001; R2=0.215, p<0.005; R2=0.364, 

p<0.05, respectively; Figure 27D). These associations reinforced the dependence of 

proper organ and body weight on mitochondrial function. Interestingly, we found CII, 

CII+III and CIV enzymatic activity positively and significantly correlated with CII SDHB 

subunit expression in placenta (R2=0.145, p<0.005; R2=0.192, p<0.005; R2=0.241, 

p<0.001, respectively), indicating the dependence of enzymatic activity on protein 

expression. On the other hand, birth weight and heart weight showed a significant 

positive correlation with lipid peroxidation in heart (R2=0.325, p<0.005; R2=0.498, 

p<0.001; respectively; Figure 27E). Moreover, oxidative damage in heart was positively 

and significantly correlated with the enzymatic activities of MRC CII and CII+III 

(R2=0.136 and R2=0.173, p< 0.05 in both cases), suggesting that low MRC function 

curses with low oxidative damage (through lipid peroxidation) at least in heart.  

Finally, significant negative correlations were found between both birth and heart 

weight and Sirtuin 3/β-actin levels (R2=0.153, p<0.05 and R2=0.266, p<0.05, 

respectively; Figure 27F), pointing out the potential mechanism of modulation by Sirtuin 

3 in front of mitochondrial imbalance. 
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Figure 27. Associations between birth weight of intrauterine growth restriction (IUGR) and control 

offspring and some biometric data or experimental results. Herein, there are correlations 

demonstrating the positive association between birth weight and mitochondrial parameters and also the 

negative association with Sirtuin 3 expression, probably up-regulated as a homeostatic intent to revert 

mitochondrial lesion. 

Spearman Rho tests were used to seek for statistical analysis.  

AU: Arbitrary units; CII: MRC complex II; g: grams; HAE: hydroxyalkenal; MDA: malondialdehyde; MRC: 

Mitochondrial respiratory chain; R
2
: coefficient of determination; SDHB: succinate dehydrogenase 

complex, subunit B.  
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5.2.1 Clinical parameters 

Table 10 shows sociodemographic characteristics and perinatal outcomes of study 

groups. No differences were found between IUGR cases and controls regarding 

maternal age, route of delivery, newborn sex or pH umbilical artery values. 

 

Table 10. Sociodemographic characteristics and perinatal outcomes of the study groups. 

Parameters 
Control 

N = 22 

IUGR 

N = 14 
P value 

Maternal age at delivery (years) 33.82±1.12 34.43±1.34 NS 

Weeks of gestation 39.47±0.20 35.42±1.03 <0.001 

Mode of delivery 
20 caesarean (91%) 

2 naturals (9%) 

14 caesarean (100%) 

0 naturals (0%) 

NS  

OR [95% CI] = 0.28 [0.01-6.34] 

Birth weight (g) 3440.27±87.59 1742.29±171.31 <0.001 

Birth weight Percentile  58.32±5.94 0.64±0.23 <0.001 

Placental weight (g) 566.67±118.93 329.64±24.26 <0.05 

Newborn sex 
45% female 

55% male 

54% female 

46% male 

NS 

OR [95% CI] = 0.70 [0.17-2.85] 

pH Umbilical Artery cord blood  7.26±0.01 7.24±0.03 NS 

Apgar 5’ 
21 normal (95%) 

1 abnormal (5%) 

9 normal (64%) 

5 abnormal (36%) 

<0.05  

OR [95% CI] = 11.67 [1.19-114.65] 

Preeclampsia 0 (0%) 4 (28.6%) 
<0.05 

OR [95% CI] = 0.05 [0.00-1.06] 

Neonatal BNP levels (pg/ml) 26.84±3.03 85.68±26.28 <0.05 

Values are presented as mean ± standard error of the mean. Case-control differences were sought by 

non-parametric statistical analysis. 

BNP: brain natriuretic peptide; CI: confidence interval; g: grams; IUGR: intrauterine growth restriction; N: 

sample size; NS: not significant; OR: odds ratio. 

 

 

As expected, pregnancies complicated by IUGR presented an earlier gestational age at 

delivery with respect to controls (p<0.001; Table 10) as our clinical protocol for IUGR 

indicates induction of labour about 37 weeks of gestation. Additionally, birth weight, 

birth weight percentile and placental weight were significantly decreased in IUGR 
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cases with respect to controls (all p<0.001; Figure 28 and Table 10). Moreover, IUGR 

group showed higher prevalence of preeclampsia (p<0.05; Table 10). 

 

 

Figure 28. Anthropometric measures of the study groups. Birth weight was significantly reduced in 

newborns from IUGR pregnancies (grey bar; N=22) compared to controls (empty bar; N=14), as well as 

placental weight (grey bar; N=3; empty bar, N=14).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

IUGR: intrauterine growth restriction; **: p<0.001; *: p<0.05. 

 

 

IUGR newborns with abnormal Apgar presented significantly lower birth weight as 

compared to IUGR newborns with normal Apgar (p<0.05) and also to controls with 

normal Apgar (p<0.05), showing the association of birth weight and the health of the 

newborn.  

BNP levels were significantly increased by 219.23 ± 97.91% in plasma from IUGR 

newborns compared to controls (p<0.05; Figure 29 and Table 10) indicating the 

presence of a cardiac remodelling.  
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Figure 29. Cardiac remodelling in newborns from IUGR pregnancies. BNP levels were significantly 

increased in neonatal plasma from newborns of IUGR pregnancies (grey bars, N=21) with respect to 

controls (empty bars, N=9).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

BNP: brain natriuretic peptide; IUGR: intrauterine growth restriction; *: p<0.05. 

 

 

 

5.2.2 Mitochondrial study in placenta 

5.2.2.1 MRC activity and mitochondrial content 

To explore mitochondrial function, the enzymatic activities of the complexes of the 

MRC were analysed in placental tissue as well as the mitochondrial content (through 

the activity of citrate synthase). 

MRC CI activity was significantly decreased in placental homogenate from IUGR 

pregnancies compared to controls (-32.95±10.36%; p<0.05; Figure 30 and Table S3), 

despite other MRC complexes (CII, CIV, CI+III and CII+III) were preserved (Figure 30 

and Table S3). 

Citrate synthase activity was preserved in placental homogenate from IUGR 

pregnancies with respect to controls (Figure 30 and Table S3), indicating no 

differences in mitochondrial content. 
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Figure 30. Enzymatic activities of the complexes of the mitochondrial respiratory chain (MRC) and 

citrate synthase (CS) in placental tissue. IUGR cohort was presented as column bars demonstrating 

percentage of increase or decrease compared to controls (represented as the 0 baseline). A significant 

decreased was observed in complex I activity (CI) while other complexes and also CS activity remained 

conserved (CI: control N=18 and IUGR N=11; CII and CIV: control N=20 and IUGR N=13; CI+III, CII+III 

and CS: control N=21 and IUGR N=13).  

Results were expressed as a percentage of increase or decrease ± standard error of the mean. Mann-

Whitney tests were used to seek for statistical analysis between groups.  

CBMC: Cord blood mononuclear cells; CI: complex I activity; CII: complex II activity; CIV: complex IV 

activity; CI+III: complex I+III activity; CII+III: complex II+III activity; CS: Citrate synthase activity; IUGR: 

Intrauterine growth restriction; PBMC: Peripheral blood mononuclear cells; *: p<0.05. 

 

 

MRC enzymatic activities relative to citrate synthase activity showed a similar pattern to 

absolute MRC enzymatic activities. All of the raw data are available in Supplementary 

Table 3 (S3). These results were in line with MRC enzymatic deficiencies in the animal 

model, suggesting that these reductions were focused on the decreased mitochondrial 

enzymatic activity rather than the decrease in mitochondrial content. 

 

5.2.2.2 Mitochondrial oxygen consumption 

Fresh placental mitochondria were used to evaluate mitochondrial oxygen consumption 

to further explore a global MRC function Thus, oxygen consumption through CI 

stimulation by pyruvate+malate and glutamate+malate was quantified (abbreviated as 

PM and GM oxidation). 

Significant decreases of 46.12±5.79% and 49.71±19.54% in oxygen consumption 

stimulated for CI (PM and GM oxidation, respectively) were observed in placental 
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mitochondria from IUGR pregnancies compared to controls (p<0.05 in both cases; 

Figure 31 and Table S3), confirming previous results of decreased MRC CI enzymatic 

activity. 

 

Figure 31. Oxygen consumption of the mitochondrial respiratory chain (MRC) in placental 

mitochondria. A significant decrease in MRC Complex I-stimulated oxygen consumption (both PM and 

GM Oxidation) was observed in the IUGR cohort (grey bars, PMox N=10 and GMox N=11) compared to 

controls (empty bars, PMox N=14 and GMox N=15).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

GM Oxidation: glutamate+malate oxidation; IUGR: intrauterine growth restriction; PBMC: peripheral blood 

mononuclear cells; PM Oxidation: pyruvate+malate oxidation; *: p<0.05. 

 

 

5.2.2.3 Total cellular ATP levels 

To further explore potential consequences of MRC dysfunction, total ATP levels were 

measured. 

No remarkable differences were observed in total content of cellular ATP in IUGR 

placental homogenates compared to controls (Figure 32 and Table S3), also indicating 

no consequences of MRC dysfunction in total ATP supply or the production of ATP by 

alternative metabolic pathways. 
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Figure 32. Total ATP levels in placental tissue. No significant differences were observed between IUGR 

pregnancies (grey bars, N=13) and controls (empty bars, N=21).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

ATP: adenosine triphosphate; IUGR: intrauterine growth restriction. 

 

5.2.2.4 Lipid peroxidation (oxidative damage) 

Lipid peroxidation was analysed as an indicator of oxidative damage to found 

consequences of MRC impairment. 

No relevant changes were observed in lipid peroxidation in IUGR placental 

homogenate compared to controls (Figure 33 and Table S3), probably as a result of 

decreased MRC function. 

 

Figure 33. Lipid peroxidation as an indicator of oxidative damage in placental tissue. No significant 

differences were evidenced between IUGR pregnancies (grey bars, N=13) and controls (empty bars, 

N=21).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

HAE: 4-hydroxyalkenal; IUGR: intrauterine growth restriction; MDA: malondialdehyde. 
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5.2.2.5 Sirtuin 3 protein expression 

Sirtuin 3 may be a candidate to be involved in the regulation of mitochondrial 

rearrangements so it was evaluated in placenta.  

A significant 117.78±51.11% increase of Sirtuin 3/β-actin protein expression was 

observed in placental homogenate from IUGR pregnancies with respect to controls 

(p<0.05; Figure 34A-B and Table S3), suggesting, as aforementioned in the rabbit 

model, a compensatory mechanism in an attempt to modulate mitochondrial 

dysfunction. 

 

 

Figure 34. Sirtuin 3 protein levels in the placenta of the study groups. A) A representative Western 

Blot of Sirtuin 3 protein expression in human placenta is shown in both controls (1-3) and IUGR 

pregnancies (4-6). β-actin was used as the loading control. B) Graph showing the significant increase of 

Sirtuin 3 levels (Sirt3/β-actin ratio) in IUGR pregnancies (grey bars, N=12) compared with controls (empty 

bars, N=19).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

AU: arbitrary units; IUGR: intrauterine growth restriction; Sirt3: Sirtuin 3. 

 

 

5.2.3 Mitochondrial study in maternal and neonatal mononuclear cells 

5.2.3.1 MRC activity and mitochondrial content 

No differences in CII and CIV MRC enzymatic activities were observed in maternal 

PBMC or in neonatal CBMC (Figure 35 and Tables S4 and S5) from IUGR pregnancies 

compared to controls.  
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However, despite conserved citrate synthase activity in PBMC from IUGR pregnant 

women (Figure 35 and Table S4), there was a significant 39.19±12.61% decrease in 

neonatal CBMC from IUGR pregnancies compared to controls (p<0.05; Figure 35 and 

Table S5). Enzymatic activities of MRC complexes relative to citrate synthase activity 

showed no significant differences in maternal PBMC and neonatal CBMC. All of the 

raw data are presented in Supplementary Table 4 and 5 (S4 and S5).  

In order to elucidate if the decrease of citrate synthase in CBMC from IUGR newborns 

was due to abnormalities in mitochondrial content or Krebs cycle, we measured 

alternative markers of mitochondrial mass such as levels of mtDNA that resulted 

unaltered (Table S5). This result suggests that Krebs cycle alteration may be 

concomitantly accompanying MRC dysfunction rather than the reduction in the 

mitochondrial number. 

 

 

Figure 35. Enzymatic activities of the complexes of the mitochondrial respiratory chain (MRC) and 

citrate synthase (CS) activity in maternal and cord blood cells. IUGR cohort was presented as column 

bars demonstrating percentage of increase or decrease compared to controls (represented as the 0 

baseline). No remarkable differences of MRC complexes were evidenced in both maternal PBMC (left; CII 

and CIV: control N= 22 and IUGR N=14) and neonatal CBMC (right; CII: control N=21 and IUGR N=9; CIV: 

control N=22 and IUGR N=9). Also, CS activity was maintained in maternal PBMC (control N=21 and 

IUGR N=13). However, a significant decrease of CS activity was found in neonatal CBMC (control N= 21 

and IUGR N=8).  

Results were expressed as a percentage of increase or decrease ± standard error of the mean. Mann-

Whitney tests were used to seek for statistical analysis between groups.  

CBMC: cord blood mononuclear cells; CII: complex II activity; CIV: complex IV activity; CS: citrate 

synthase activity; IUGR: intrauterine growth restriction; PBMC: peripheral blood mononuclear cells; *: 

p<0.05. 
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5.2.3.2 Mitochondrial oxygen consumption 

Maternal PBMC from IUGR pregnant women presented conserved cellular oxygen 

consumption (p=NS; Figure 36 and Table S4) and trends to decrease of CI-stimulated 

oxygen consumption compared to controls (PMox: -31.55±11.36% and GMox: -

25.00±10.45%; both p=NS; Figure 36 and Table S4).  

Despite not reaching statistical significance, CBMC from IUGR newborns presented a 

tendency to decrease of both cellular and CI-stimulated oxygen consumption compared 

to controls (Cellox: -30.19±12.61%; PMox: -45.63±14.19%; GMox: -49.90±11.39; all 

p=NS; Figure 36 and Table S5). Noticeably, IUGR newborns presented higher 

mitochondrial deficits compared to mothers. 

 

 

Figure 36. Oxygen consumption of the mitochondrial respiratory chain (MRC) in maternal and 

neonatal blood cells. IUGR cohort was presented as column bars demonstrating percentage of increase 

or decrease compared to controls (represented as the 0 baseline). Maternal PBMC from IUGR 

pregnancies presented conserved cellular oxygen consumption and trends to decrease of oxygen 

consumption stimulated for CI compared to controls (Cellox: control N=18 and IUGR N=11; PMox: control 

N=18 and IUGR N=9; GMox: control N=17 and IUGR N=9). Despite not reaching statistical significance, 

CBMC from IUGR newborns presented a tendency to decrease of both cellular and CI-stimulated oxygen 

consumption compared to controls (Cellox, PMox and GMox: control N=18 and IUGR N=7). Additionally, 

IUGR newborns presented higher oxygen consumption deficiencies compared to mothers.  

Results were expressed as a percentage of increase or decrease ± standard error of the mean. Mann-

Whitney tests were used to seek for statistical analysis between groups.  

CBMC: cord blood mononuclear cells; Cellox or Cell oxidation: cellular endogen oxidation (without 

substrates); GM oxidation or GMox: glutamate+malate oxidation; IUGR: intrauterine growth restriction; 

PBMC: peripheral blood mononuclear cells; PMox or PM oxidation: pyruvate+malate oxidation. 
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5.2.3.3 Total cellular ATP levels 

No changes of total ATP levels were observed in maternal PBMC or neonatal CBMC 

from pregnancies complicated by IUGR with respect to controls (-16.72±14.51% and 

60.87±46.09%, respectively; p=NS; Figure 37 and Table S4-S5), suggesting no effects 

of MRC dysfunction in total ATP supply or the activation of alternative sources for ATP 

production. 

 

Figure 37. Total ATP levels in maternal and neonatal blood cells. No significant differences were 

observed in maternal PBMC and neonatal CBMC between IUGR pregnancies (grey bars; PBMC N=13 and 

CBMC N=10) and controls (empty bars; PBMC and CBMC N=22).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

ATP: adenosine triphosphate; CBMC: cord blood mononuclear cells; IUGR: intrauterine growth restriction; 

PBMC: peripheral blood mononuclear cells. 

 

 

5.2.3.4 Lipid peroxidation (oxidative damage) 

No relevant changes were observed in lipid peroxidation in both maternal PBMC and 

neonatal CBMC from IUGR pregnancies with respect to controls (Figure 38 and Table 

S4-S5), once again reflecting decreased MRC activity. 
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Figure 38. Lipid peroxidation as an indicator of oxidative damage in maternal and neonatal blood 

cells. No significant differences were evidenced in maternal PBMC and neonatal CBMC between IUGR 

pregnancies (grey bars; PBMC N=14 and CBMC N=9) and controls (empty bars; PBMC N=20 and CBMC 

N=21).  

Results were expressed as mean ± standard error of the mean. Mann-Whitney tests were used to seek for 

statistical analysis between groups.  

CBMC: cord blood mononuclear cells; IUGR: intrauterine growth restriction; MDA: malondialdehyde; HAE: 

4-hydroxyalkenal; PBMC: peripheral blood mononuclear cells. 

 

 

5.2.4 Associations between clinical data and experimental results 

Supplementary Table S6 describes all the significant associations between the clinical 

data and experimental results in the cohorts of IUGR and control pregnancies. The 

most relevant associations are described below and showed in Figure 39.  

Birth weight, as well as placental weight, were significantly and negatively correlated 

with cord blood BNP levels, confirming the association of IUGR with cardiovascular 

remodelling (R2=0.526, p<0.001; Figure 39A; Table S6). Secondly, birth weight was 

also significantly and positively correlated with CI-stimulated oxygen consumption 

(PMox: R2=0.197, p<0.05; GMox: R2=0.279, p<0.01; Table S6) and MRC CI enzymatic 

activity (R2=0.195, p<0.05; Figure 39B; Table S6) in placental tissue. These 

associations suggested that a proper weight of the newborn promotes a proper MRC 

CI function, or more likely, that efficient MRC CI function is required to reach a proper 

birth weight. Additionally, birth weight was significantly and negatively correlated with 

placental Sirtuin 3 levels (R2=0.224, p<0.05; Figure 39C; Table S6), suggesting the 

adaptation mechanism that Sirtuin 3 is leading in response to IUGR. 
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Cord blood BNP levels also were significantly and negatively correlated with CI 

enzymatic activity in placenta (R2=0.159, p<0.05; Figure 39D; Table S6) which 

additionally was significantly and negatively correlated with placental Sirtuin 3 levels 

(R2=0.095, p<0.05; Figure 39E; Table S6). Those associations could demonstrate that 

cardiac adaptation defined by BNP levels is characterized by CI dysfunction and 

adaptive increase of Sirtuin 3 levels in the placenta. 

Finally, maternal and neonatal CI-stimulated oxygen consumption were significantly 

and positively correlated (GMox; R2=0.115, p<0.05; Table S6), demonstrating the 

strong dependence of foetal metabolism on maternal status. In addition, neonatal 

mitochondrial content significantly and positively correlated with neonatal and placental 

oxygen consumption (R2=0.189, p<0.05; R2=0.159, p<0.05; R2=0.213, p≤0.001; Table 

S6), suggesting the dependence of foetal health on accurate placental function. 
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Figure 39. Association between clinical data and experimental results from pregnancies 

complicated by intrauterine growth restriction (IUGR) and controls. Decreased birth weight 

characteristic of IUGR is associated to increased BNP levels (as sign of cardiovascular remodelling) (A), 

decreased MRC CI in placenta (B) and enhanced Sirtuin 3 protein expression (C) (probably to 

compensate mitochondrial dysfunction). Additionally, dysfunctional MRC CI in placenta was directly 

associated to increased foetal BNP levels (D) and placental Sirtuin 3 protein expression (E), demonstrating 

the strong association among all these parameters.  

Spearman Rho tests were used to seek for statistical analysis.  

AU: arbitrary units; BNP: brain natriuretic peptide; CBMC: cord blood mononuclear cells; CI: MRC complex 

I; MRC: mitochondrial respiratory chain; R
2
: coefficient of determination; Sirt3: Sirtuin 3.  
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6. DISCUSSION 
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There is the crucial need to elucidate the molecular basis of IUGR and cardiovascular 

remodelling despite relevant novel advances in the field (60,90,91). The main concern 

relies on the high prevalence of this obstetric complication (affecting 5-10% of all 

pregnancies) and its potential consequences in adulthood. A wide range of clinical 

manifestations have been associated with IUGR, including metabolic, neurological and 

cardiovascular disorders (24,116,117). These disorders are established during foetal 

development when the foetus has to strive against hypoxia, consequently leading to a 

foetal remodelling with eventual adverse outcomes later in adulthood (58,118). Among 

these long term consequences, this thesis is focused on the foetal cardiovascular 

remodelling that has been demonstrated in IUGR (1,69,87). 

The need to overcome target tissue limitation to study the heart has been a major 

concern to advance in this field of research. To meet that aim, some animal models 

have been proposed (70,78,80,85). Those models based on the restriction of blood 

flow into the foetus in development have been proposed to recapitulate the placental 

insufficiency more accurately than others based on caloric restriction (78,85). Our 

group has developed a rabbit model of IUGR that consists of a selective ligature of the 

uteroplacental vessels in one of the two uterine horns to reduce 40-50% oxygen and 

nutrient supply to the foetus in development (85). This model allows to obtain, in the 

same pregnancy, IUGR offspring (from the manipulated horn) and controls (from the 

non-manipulated horn). The major advantage of this model is that reproduces the 

functional alterations in heart, reported in humans, and allows to investigate the 

consequent cardiovascular remodelling of IUGR by directly studying the heart. 

Additionally, as the model induces a combined restriction of oxygen and nutrients, also 

reproduces the role of the placenta in this obstetric complication, thus mimicking IUGR 

in human pregnancy.  

Placenta is also the preferred tissue for the study of IUGR and other obstetric 

complications, especially those associated to placental insufficiency (68,90,91). Some 

research has also been performed using maternal and neonatal blood cells 

(18,55,56,68). Additionally, blood cells have been extensively used to evaluate 

mitochondrial function in other diseases (67,119). Those tissues offer a more 

accessible and non-invasive approach that, in case of maternal blood, might offer the 

major advantage of finding and monitoring potential novel prognostic and diagnostic 

biomarkers of this obstetric complication before birth. 

Previous experimental studies pointed out mitochondrial deficits to play a relevant role 

in IUGR and associated cardiovascular remodelling (90,91,120). However, most of 
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them were limited on molecular findings in the case of the rabbit model of IUGR and 

cardiovascular remodelling (34,89,121), so functional studies were lacking in this field. 

Additionally, very little and controversial studies found in the literature investigate 

mitochondrial alterations in human pregnancies at molecular and functional level, 

highlighting the need for a more exhaustive study of mitochondrial involvement in this 

obstetric complication. 

The present thesis aimed to evaluate the mitochondrial implication in IUGR and its 

associated cardiovascular remodelling by first assessing an exhaustive mitochondrial 

characterization in the animal model to finally validate obtained results in affected 

human pregnancies. Consequently, data provided in this thesis are presented in two 

separate studies. The first one evaluates the mitochondrial function in the target tissue 

of cardiovascular remodelling (the heart) and in the organ responsible for oxygen and 

nutrient supply into the foetus (the placenta) from a rabbit model of IUGR. The second 

study validates the findings from the rabbit model into human pregnancies complicated 

with IUGR.  

The starting point of this thesis sought to confirm the expected phenotype of IUGR and 

associated cardiovascular remodelling both in the animal model and in the cohort of 

selected pregnant women.  

Offspring with experimental induced IUGR showed altered biometric measures by a 

significant decrease in birth weight, accompanied by a reduction in heart and placenta, 

as previously reported by Gonzalez-Tendero et al. in the same animal model with 

equivalent percentage of reduction in birth, heart and placental weight (89), validating 

our animal model and the source of the samples. Thus, organ to body weight measures 

were preserved due to global and proportioned organ and body mass reduction. 

Cardiac hypertrophy and consequent increase in heart to body weight was not present 

in IUGR rabbits, resembling human conditions, in which globular and elongated hearts 

are usual, and hypertrophy occurs only in 17% of cases of IUGR (23,86,87,121–126).  

The analysed cohort of pregnancies with IUGR reproduced the incidence of perinatal 

outcomes characteristic of IUGR (birth weight, placental weight, BNP levels, etc.) 

previously described in the bibliography (26), validating our IUGR cohort and also the 

source of the samples. We stratified the cohort in two groups: IUGR pregnancies 

(defined as bellow the 3th percentile or, alternatively, below the 10th percentile in case 

of abnormal UA Doppler or abnormal CPR) and controls (with a percentile over the 

10th). As expected, IUGR pregnancies showed a reduced birth weight, birth weight 

percentile and placental weight as well as more incidence of abnormal Apgar in IUGR 
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newborns. Additionally, this cohort confirms the presence of a cardiovascular 

remodelling in newborns from IUGR pregnancies by an increase of BNP levels in cord 

blood, previously reported by our group and others (32,33,69). Interestingly, in our 

study, BNP levels were significantly and inversely associated with birth and placental 

weight confirming the strong association between IUGR and cardiovascular 

remodelling. 

With respect to the mitochondrial characterization, both animal and human IUGR 

pregnancies presented clear signs of MRC dysfunction, showing findings consistent 

with that of Gonzalez-Tendero et al. who first reported MRC deficiency at 

transcriptomic level as well as ultrastructural mitochondrial alterations of 

cardiomyocytes from the offspring of the IUGR rabbit model (89). The first study in the 

animal model provided evidence of mitochondrial deficiency in the cardiac tissue of 

IUGR offspring, with a significant decrease of enzymatic activities of MRC CII, CIV and 

CII+III. The same pattern was observed in placenta from IUGR offspring, regarding CII 

and CII+III. Interestingly, birth weight, placental and left ventricle weight were 

significantly and positively correlated with the MRC enzymatic activities in heart 

(including CI, CII, CII+III and CIV), thereby strengthening the relevance of the need for 

adequate bioenergetic mitochondrial status to reach potential body, heart and placental 

weight. In line with the first study, the second study in human pregnancies also showed 

evidence of mitochondrial dysfunction in placenta from IUGR pregnant women focused 

on the enzymatic activity of MRC CI. Interestingly, birth weight was significantly 

correlated to placental MRC CI enzymatic activity, which is also significantly and 

inversely associated to BNP levels in newborns, thus reinforcing mitochondrial 

implication in this obstetric complication and cardiovascular remodelling. These 

findings of MRC CI enzymatic deficiency in human placenta were consistent with CI-

stimulated oxygen consumption, also significantly decreased in this tissue. In 

agreement with this, the findings of oxygen consumption in cardiac and placental 

tissues from the rabbit model support mitochondrial dysfunction in IUGR, despite 

statistical difference was not reached. In neonatal and maternal blood cells, the CI-

stimulated oxygen consumption decrease was also present, although not significantly, 

together with the decrease in endogenous oxygen consumption. Additionally, in the 

human cohort, materno-fetal correlations were observed regarding mitochondrial 

oxygen consumption parameters, confirming the dependence of neonatal bioenergetics 

in mitochondrial health status of the mother.  Noticeably, IUGR newborns presented 

higher mitochondrial deficits in terms of oxygen consumption compared to mothers. 

This observation may support the hypothesis that the newborn is the most affected by 
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mitochondrial dysfunction together with the placenta. Actually, there was a significant 

positive correlation between CI-stimulated oxygen consumption in placenta and citrate 

synthase activity in neonatal blood cells, which activity was significantly decreased in 

IUGR newborns compared to controls. Furthermore, PBMC of pregnant women 

appeared not to be affected for such mitochondrial alterations reinforcing both the 

placenta and the foetus as the main pathological targets of this obstetric complication. 

In some cases, specific discrepancies between oxidative and enzymatic MRC activities 

could be attributed to relevant alterations of independent enzymatic activities of MRC 

complexes, not detectable when analysing the whole MRC function in terms of 

impaired oxygen consumption. In any case, in our studies both data from animal and 

humans confirm decreased mitochondrial activity in the context of IUGR, in accordance 

to most of bibliography. The significant CI deficiency at enzymatic and oxidative level in 

human placenta was previously described by our group at transcriptional level in heart 

tissue of the IUGR animal model (89) and also by Beyramzadeh M et al. in placenta 

from high risk pregnancies (90). Previous research also demonstrated a decrease in 

OXPHOS in skeletal muscle from IUGR rats (81). Conversely to these findings, Mandó 

et al. observed higher oxygen consumption, both for CI+CII and CIV, in placenta from 

IUGR cases (91). Such contrarieties may be due to differential stimulation of specific 

MRC when measuring oxygen consumption, or more likely to the presence of different 

cell linages, for instance cytotrophoblasts and syncytiotrophoblasts from placenta that 

have multiple functions, different mitochondrial populations and also respond differently 

to exogenous stimulus (127).  

Observed deficiencies of enzymatic activities of MRC complexes and oxygen 

consumption in IUGR cases from both animal and human studies may suggest 

malfunction of MRC or lack of oxygen delivery in IUGR hearts and newborns. The 

question if the mitochondrial alteration would be a primary cause or a secondary 

consequence remains elusive at present. 

Mitochondrial decreased activity, as a consequence of hypoxia, may be supported by 

the maintenance and even decrease of oxidative stress in these pregnancies. Lipid 

peroxidation, as an indication of oxidative damage, did not show relevant differences 

between groups either in rabbit and human placental tissue, maternal PBMC or 

neonatal CBMC. Indeed, it was found to be significantly decreased in rabbit 

cardiomyocytes. Thus, diminished ROS production may be the consequence of 

decreased MRC function. In addition, lipid peroxidation levels in heart showed a 

significant positive correlation with MRC CII and CII+III enzymatic activities as well as 
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with birth and heart weight. These associations gave strengthen to the observed 

results, suggesting that the experimental hypoxia could limit not only the presence of 

oxygen but also the production of ROS as the whole MRC is less functional. We 

hypothesised that the decrease of mitochondrial function in IUGR without increase in 

oxidative stress would point out to placental insufficiency and hypoxia as the main 

causes for deficient mitochondrial function rather than a mitochondrial defect itself. 

Moreover, it seems that the antioxidant defence system was properly operating in 

IUGR cases as the antioxidant enzyme SOD2 in heart and placenta from offspring of 

the rabbit model was not altered. Previous studies in IUGR reported controversial 

results in oxidative damage (92,127,128) but in other pregnancy complications caused 

by placental insufficiency, such as preeclampsia, it is described an induction of 

oxidative stress in the placenta and maternal blood (93), as well as in certain risk 

pregnancies depending on the type of delivery (specially vaginal delivery because of 

intermittent perfusion of intervillous space of the placenta during uterine contractions) 

(101). In our cohort of IUGR pregnancies, we reduced preeclampsia comorbidity and 

vaginal delivery to avoid potential confounders. Whether these factors may explain 

controversies with literature should be deeper explored.    

Previous research in foetal growth provided data about adaptive response to altered 

mitochondrial respiration deriving ATP production from aerobic metabolism to faster 

anaerobic metabolism (129). In a situation of placental hypoxia there is a metabolic 

reprogramming that leads to decreased oxygen consumption and increased anaerobic 

glucose consumption, which would, in turn, allow high availability of oxygen to the 

foetus in development at the expense of less accessible glucose (129). Our results 

showed no differences in total ATP levels in heart and placenta form the rabbit model 

and either in placental tissue or neonatal CBMC and maternal PBMC, suggesting this 

potential switch from aerobic to faster anaerobic metabolism to preserve ATP supply. 

Further studies in IUGR should be conducted to confirm our findings. 

Consequently, mitochondrial decreased function may be not only restricted to MRC but 

also to an extensive metabolic adaptation to hypoxia. 

As previously commented and with more detail, IUGR offspring from the rabbit model 

showed a common enzymatic alteration in MRC CII dysfunction in both heart and 

placenta. CII, also known as succinate dehydrogenase, is the molecular link between 

the Krebs cycle and the MRC. The Krebs cycle is a central pathway of the 

mitochondrial energetic metabolism, which is responsible for the oxidative degradation 

of the different dietetic supplies, feeding the MRC and, subsequently, activating ATP 
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synthesis. In order to further investigate the molecular basis of CII dysfunction in heart 

and placenta of IUGR offspring, the expression of CII SDHA and SDHB proteins was 

assessed, together with CoQ levels, the electron donor for CII. Interestingly, in front of 

preserved CoQ levels, SDHB subunit was found significantly decreased in placenta 

and positively and significantly correlated with CII, CII+III and CIV enzymatic activities. 

These findings suggested that MRC enzymatic dysfunction may be due, at least in 

placenta, to down-regulation of MRC subunit expression. Additionally, the significant 

and positive correlation between CII SDHB levels and all biometric parameters from 

IUGR and control offspring (body, placental and heart weights) highlighted the 

relevance of SDHB and CII in this obstetric complication. As CII is the only complex of 

the MRC exclusively encoded by the nuclear DNA (130), we hypothesised that its 

deficiency may be more likely associated with alterations in the oxidative metabolism 

events controlled by the nucleus, rather than a regulation associated with mitochondrial 

genome. The fact that protein expression of COX5A subunit from MRC CIV was 

preserved despite decreased activity from IUGR offspring, reinforced MRC CII 

implication and nuclear regulation of mitochondrial adaptations in the animal model of 

IUGR. 

On the other hand, neonatal mitochondrial impairment was mainly characterized by the 

significant decrease of citrate synthase in CBMC, not described so far. Citrate synthase 

is a reliable marker of mitochondrial content (40), but it is also an enzyme participating 

in the Krebs cycle. As parallel measurement of citrate synthase activity in placental 

tissue and maternal PBMC as well as alternative markers of mitochondrial content 

(mtDNA) in neonatal CBMC yielded to preserved mitochondrial mass, we concluded 

that alterations in citrate synthase would be related to newborn metabolic imbalances 

rather than to mitochondrial content. Previous studies only performed at placental level 

showed controversial results for mitochondrial content in pregnancy complications 

associated with placental insufficiency such as IUGR or preeclampsia (91,131–133) as 

well as in alternative animal models of IUGR (81,82). In our study, results of citrate 

synthase activity in heart and placenta from the rabbit model demonstrated no changes 

in mitochondrial content. This was confirmed by Tom20 expression and also by 

previous results obtained by electron microscopy (89). The unique alteration in citrate 

synthase was restricted to neonatal CBMC from the human cohort that may therefore 

be more likely related to Krebs cycle function or nuclear regulation of mitochondrial 

disturbances. In accordance with these findings obtained in IUGR cases with placental 

hypoxia, environmental hypoxia has also been associated with alterations in the Krebs 
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cycle (134), which may also lead to neurological or cardiac clinical consequences 

(135).  

One of the major nuclear pathways to modulate mitochondrial function (both MRC and 

Krebs cycle) in accordance to oxygen and nutrient supply are sirtuins. Following a 

potential line of investigation aiming to understand upstream molecular pathways 

regulating mitochondrial dysfunction and to attempt to find potential therapeutic targets 

easily influenced by diet (136), we explored Sirtuin 3 involvement in IUGR. 

Concretely, Sirtuin 3 is the most important mitochondrial deacetylase encoded in the 

nucleus and plays a role in the regulation of mitochondrial function and OXPHOS 

(50,137,138). It has been associated to increased bioenergetic demands (139,140), 

often in the context of cardiovascular disease, acting as a protective mechanism in 

front of different stimulus (53,141,142). Interestingly, since mitochondrial CII is one of 

the targets of Sirtuin 3 (48,137), this protein is able to simultaneously interfere with 

MRC (Sirtuin 3 directly activates CII function by deacetylation of subunits SDHA and 

SDHB) and the Krebs cycle (where citrate synthase is also participating). In both 

studies, the significant increase of Sirtuin 3 observed in IUGR cases was associated 

with a significant decrease of CII enzymatic activity in both heart and placental tissues 

from rabbit and also with a significant decrease of citrate synthase activity in neonatal 

CBMC. We hypothesised that this up-regulation in Sirtuin 3 expression may be the 

compensatory response to imbalanced bioenergetics status.  

Additionally, Sirtuin 3 has a role in anti-oxidation, promoting the maintenance of ATP 

levels, especially in hypoxia conditions (51,52). Interestingly, in heart from IUGR 

offspring, oxidative stress was found to be significantly decreased in the setting of 

conserved cellular ATP levels, suggesting that increased cardiac Sirtuin 3 levels may 

protect cardiomyocytes from oxidative stress insults and ATP deficiency in placental 

hypoxia. We hypothesised that Sirtuin 3 would exert a compensatory role in this 

phenotype by modulating mitochondrial lesion in cardiomyocytes. Moreover, the 

positively association between increased cardiac oxidative damage and body weight, 

heart weight and proper MRC activity suggested that the antioxidant protection of 

Sirtuin 3 may be more necessary in MRC dysfunction and abnormal foetal 

development. This hypothesis was also in line with significant negative correlation of 

body and heart weight with cardiac Sirtuin 3 levels.  

In parallel, and as mentioned before, cellular ATP levels were also maintained in 

placental tissue, albeit with a not significant increased lipid peroxidation. This 
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juxtaposed phenotype in terms of ATP and oxidative damage between heart and 

placenta from the rabbit model may also be explained by the poor antioxidant defences 

characteristic of the placenta (101,143). Interestingly, as SOD2 expression and activity 

was preserved either in cardiac or placental tissue, we hypothesised that Sirtuin 3 

would not be exerting its antioxidant action via SOD2 activity, despite being one of its 

targets. 

In accordance to observed results in rabbit model, human placental Sirtuin 3 protein 

expression significantly increased, also probably as an adaptation mechanism to 

modulate the adverse mitochondrial phenotype. Interestingly, birth weight was 

inversely correlated with placental Sirtuin 3 expression, which also is inversely 

associated with MRC CI enzymatic activity in placenta, thus reinforcing involvement of 

Sirtuin 3 in this obstetric complication as a compensatory mechanism trying to enhance 

decreased mitochondrial activity. The human placental increase of Sirtuin 3 is also in 

front of conserved placental ATP levels and oxidative damage. Further work is required 

following this line of research to assess Sirtuin 3 involvement in IUGR and its potential 

role as a therapeutic target. 

Both studies included in this thesis are encouraging because follow the same line of 

evidence and are consistent with literature, demonstrating a reduced mitochondrial 

activity especially in the newborn affected by IUGR and in placenta, which is widely 

affected in IUGR due to placental insufficiency. Cardiovascular remodelling is also a 

consequence of placental insufficiency leading to less oxygen availability to the heart. 

Consequently, there is a low MRC function, which consequently turns into less ROS 

production, and the activation of compensatory mechanisms to overcome mitochondrial 

imbalance, through Sirtuin 3 upregulation. 

These features were evident in the animal model. Mitochondrial function alterations in 

IUGR offspring from rabbit model were not only confined to the target tissue of 

cardiovascular remodelling (heart), but rather were also present in placenta. 

Mitochondrial dysfunction in placenta (and probably also in heart and other tissues) 

might be caused by the de novo rearrangement adaptations imposed by the 

experimental hypoxia induced by the ligature of uteroplacental vessels in this animal 

model (128). Similar hypoxic conditions are also present in patients with IUGR due to 

placental insufficiency (16,144). These are undoubtedly examples of the foetal 

programing, first described by Barker (118), which establishes that physiologic 

adaptations to the foetal environment may condition organ development and 

consequent disease in adulthood. This fact was also evident in humans, where both 
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neonatal CBMC and placenta seemed to be more affected in terms of mitochondrial 

function. 

The combination of findings from the two studies provides support for the conceptual 

premise that the placenta and the newborn are the most affected. Thus, further 

research should be undertaken to investigate placenta as a target to modulate 

mitochondrial function willing to prevent newborn injury and consequent cardiovascular 

remodelling. Additional research should be striven for investigating the cause of this 

placental insufficiency and the consequent hypoxia. It would be interesting to perform 

in vitro experiments in hypoxic-reperfusion conditions with cardiomyocyte or placental 

cells from IUGR cases and further evaluate mechanisms responsible for decreased 

mitochondrial function. Additionally, these approaches may provide a potential platform 

to test therapeutic strategies aimed to improve or even recover the mitochondrial 

function that it is known to work in suboptimal conditions. Given the evidences of 

hypoxia and the involvement of nuclear regulation in IUGR development through Sirtuin 

3 implication, we support the design of future research, where it might be possible to 

use a diet intervention to modulate mitochondrial function, as reported in the case of 

resveratrol (a polyphenol that has antioxidant properties) in a IUGR animal model with 

piglets, that has been demonstrated to improve global MRC function along with 

mediating an increase of Sirtuin 1 (83). In line with this, one potential line of 

investigation could be the measurement of NADH/NAD+ levels, which could give us 

information about Sirtuin 3, which activity depend on these metabolites. It would be 

possible that Sirtuin 3 was highly expressed as an adaptation mechanism in front of 

limited NAD+ substrate due to low MRC function and altered metabolism. In that case, 

Sirtuin 3 would not be as active as required to overcome mitochondrial imbalance due 

to substrate limitation. In that case, NAD+ treatments providing intermediates (for 

example, NMN) would be of interest in IUGR (145,146). In a situation of inactive Sirtuin 

3, a context of hyperacetylation of proteins could be possible which could, in turn, be 

the cause of some metabolic enzymatic inactivation, such as SDH from CII or citrate 

synthase. Since sirtuins can be modulated through dietary interventions (147), the 

potential use of such non-invasive approaches in human pregnancies is a strategy that 

should be further investigated to reduce the risk of obstetric complications and 

associated diseases in adulthood. 

Finally, further research should be undertaken to investigate the long-term 

consequences of mitochondrial imbalance. Thus, follow-up studies of these newborns 

with IUGR are needed during the adolescence and investigate whether mitochondrial 
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alterations persist to clarify the impact of these findings in the population of adult 

subjects with IUGR, as it was previously demonstrated by Crispi et al. regarding the 

cardiovascular remodelling (1,148). 

Some limitations and technical considerations should be acknowledged in this thesis.  

First, IUGR is known to be a multifactorial obstetric condition where many pathways 

and aetiologies could finally lead to a unique phenotype. Second, more efforts are 

warranted to better clarify the functional consequences of the decrease of MRC CII, 

CIV and CII+III enzymatic activities in heart and placenta from the rabbit model as well 

as placental MRC CI function and neonatal citrate synthase activity in humans. It is 

important to keep in mind that the bioenergetic findings of the present approach may 

become more evident by the analysis under hypoxic conditions, other than the 

normoxic environment of experimental mitochondrial measures that could interfere in 

the results. Additionally, it is important to take into account the potential contribution of 

the different cell types of the affected tissues. However, avoiding the separation among 

different cell types of the studied tissues by including all placental and blood cell types 

offers a closer approach to the physiology. 

Specifically, the animal model has some disadvantages or limitations. For instance, it is 

an acute model of hypoxia as the ligation is done by day 25 of gestation, which 

corresponds to third semester of pregnancy in humans, and the caesarean procedure 

is done by day 30. Thus, the selective ligation is performed when the rabbit heart is 

already formed (the complete organogenesis in rabbit is achieved by day 19.5 of 

gestation). In humans, the placental insufficiency leading to cardiovascular remodelling 

could be present since the first day of gestation heading different impacts on disease 

severity. Additionally, further studies with the rabbit model may ideally include 

additional measures to be collected (brain sparing, sex distribution, timing of 

development and maturation of the heart, cardiac severity markers, etc) to explore 

underlying mechanistic pathways. 

On the other hand, we cannot exclude that the difference in gestational age at delivery 

between cases and controls in human pregnancies could have influenced the results. 

This limitation is difficult to overcome as most clinical protocols indicate finalization of 

gestation in IUGR with signs of placental insufficiency at 37-38 weeks. Additionally, 

several potential confounders such as maternal diet (influencing mitochondrial and 

metabolism regulation), socio-cultural environment or lifestyle, that were not controlled 

in this study may play a role in the observed results.  
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Interestingly, all rising evidences that support mitochondrial dysfunctional phenotype in 

other obstetric complications associated to placental insufficiency (for instance small 

for gestational age, preeclampsia, miscarriage or stillbirth) strengthen the relevance of 

mitochondrial role in proper foetal development. Actually, it is important to take into 

account the 28.6% of incidence of preeclampsia in our cohort of IUGR. Previous 

evidences demonstrate that, in cases of IUGR complicated by preeclampsia, there is 

mitochondrial implication (68,90). Therefore, comorbidity of IUGR with preeclampsia 

could be hampering our results and explaining controversy in the bibliography. 

However, we did not evidence high oxidative stress characteristic of preeclampsia (93), 

thus suggesting a minimal confounder in our study. 

Despite these considerations, the consistency of our results, as well as the different 

associations found between clinical parameters and experimental findings in human 

pregnancies, or the similitude between human findings and experimental model results, 

strengthen the validity of the present findings.  

The relevance of this thesis relies on the description of mitochondrial impairment in the 

offspring of a rabbit model of IUGR but also in newborns from pregnancies complicated 

by IUGR. This mitochondrial imbalance is widely present in the different studied 

tissues, including the heart and the placenta from the rabbit model and the placenta 

and neonatal blood cells from human pregnancies. The mitochondrial characterization 

of this obstetric complication could help to greater understand the pathophysiologic 

mechanisms underlying cardiac remodelling and IUGR. This thesis provides novel 

findings aimed to better comprehend the molecular mechanisms involved in this 

obstetric complication. An improved understanding of these molecular mechanisms 

could be crucial for exploring biomarkers and promoting potential therapeutic strategies 

for enhancing cardiovascular health in children suffering of IUGR. Given the high 

prevalence of IUGR and cardiomyopathy, the clinical significance and effects of 

improving strategies could have a solid impact in public health. 
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1) Mitochondrial dysfunction is present in the target tissue of cardiac remodelling 

(heart) in IUGR offspring of the rabbit model focused on MRC complex II, IV 

and II+III deficiency, confirming previous mitochondrial alterations described at 

transcriptional and ultrastructural level.  

 

2) Such mitochondrial alteration is also present in the target tissue of placental 

insufficiency (placenta) from the same animal model in terms of MRC complex 

II and II+III deficiencies. 

 

3) Human pregnancies with IUGR also manifest mitochondrial imbalance in the 

placenta, especially through the MRC CI dysfunction. 

 

4) Mitochondrial disarrangements in IUGR patients are not confined to placenta; 

they are also present in cord blood cells from IUGR newborns in reference to 

Krebs cycle, and not further evidenced in maternal blood.  

  

5) Sirtuin 3 expression is upregulated in both the animal model and human 

pregnancies with IUGR in accordance to dysfunctional mitochondrial 

phenotype. 

 

6) The association of molecular alterations with clinical manifestations reinforce 

mitochondrial implication in IUGR and cardiovascular remodelling. 

 

7) Taken together, these results confirm mitochondrial involvement in IUGR and 

associated cardiovascular remodelling in accordance to deregulation of the 

metabolic sensor Sirtuin 3, providing new insights for further research on 

potential novel biomarkers or therapeutic strategies for this obstetric 

complication.  
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Table S1. Raw data of absolute and relative enzymatic activities of complex I, II, IV, I+III 

and II+III of the mitochondrial respiratory chain, MRC subunits expression (SDHA, SDHB 

and COX5A), citrate synthase (CS) activity, Tom20 expression, Complex I-stimulated 

oxygen consumption (GM Oxidation), CoQ9 and CoQ10 levels, cellular ATP levels, lipid 

peroxidation, SOD2 expression and Sirtuin 3/β-actin levels in the experimental groups. 

HEART Control IUGR 
% of increased (+) 

or decreased (-)  
P value 

Complex I 

(nmol/minute·mg 

protein) 

147.21±18.57 114.02±12.31 -22.55±8.36 NS 

Complex I relative 

to CS activity 

(nmol/minute·mg 

protein) 

0.33±0.04 0.28±0.03 -15.15±9.09 NS 

Complex II 

(nmol/minute·mg 

protein) 

272.68±11.45 240.08±8.63 -11.96±3.16 <0.05 
a
 

Complex II relative 

to CS activity 

(nmol/minute·mg 

protein) 

0.63±0.03 0.59±0.03 -6.35±4.76 NS 

Complex IV 

(nmol/minute·mg 

protein) 

576.95±23.93 487.06±30.71 -15.58±5.32 <0.05 
a
 

Complex IV relative 

to CS activity 

(nmol/minute·mg 

protein) 

1.34±0.08 1.17±0.07 -12.69±5.22 NS 

Complex I+III 

(nmol/minute·mg 

protein) 

111.62±4.99 100.71±4.99 -9.77±4.47 NS 

Complex I+III 

relative to CS 

activity 

(nmol/minute·mg 

protein) 

0.23±0.03 0.24±0.01 +4.35±4.35 NS 

Complex II+III 

(nmol/minute·mg 

protein) 

182.55±5.76 155.66±7.98 -14.73±4.37 <0.05 
a
 

Complex II+III 

relative to CS 

activity 

(nmol/minute·mg 

protein) 

0.43±0.02 0.37±0.01 -13.95±2.33 NS 
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SDHA/β-actin 

(AU) 
2.60±0.19 2.85±0.27 +9.62±10.38 NS 

SDHB/β-actin 

(AU) 
1.02±0.11 1.37±0.13 +34.31±12.75 NS 

COX5A/β-actin 

(AU) 
2.50±0.61 2.29±0.64 -8.40±25.60 NS 

Citrate Synthase 

(nmol/minute·mg 

protein)  

436.96±21.72 419.33±20.56 -4.03±4.71 NS 

Tom20/β-actin 

(AU) 
4.09±0.18 6.60±1.30 +61.37±31.78 NS 

GM Oxidation 

(pmol O2/s·mg) 
19.80±2.46 18.70±1.28 -5.56±6.46 NS 

CoQ9 levels 

(μmol/L) 
68.99±6.31 61.03±4.47 -11.54±6.48 NS 

CoQ10 levels 

(μmol/L) 
479.29±15.74 435.66±32.27 -9.10±6.73 NS 

ATP levels 

(pmol ATP/mg 

protein) 

0.57±0.03 0.54±0.01 -5.56±1.75 NS 

Lipid peroxidation 

(μM MDA+HAE/mg 

protein) 

14.02±0.89 8.55±0.61 -39.02±4.35 <0.001
 a
 

SOD2/β-actin 

(AU) 
6.05±1.02 4.41±0.76 -27.11±12.56 NS 

SOD2 acetylation/β-

actin 

(AU) 

7.84±0.77 10.84±1.37 +38.27±17.47 NS 

Ratio SOD2 

acetylation/SOD2 

expression  

(AU) 

1.71±0.07 2.29±0.30 +33.92±17.54 NS 

Sirtuin 3/β-actin 

(AU) 
0.19±0.01 0.35±0.06 +84.21±31.58 <0.05 

a
 

PLACENTA Control IUGR 
% of increased or 

decreased 
P value 

Complex I 

(nmol/minute·mg 

protein) 

10.28±1.37 8.33±0.52 -18.97±5.06 NS 

Complex I relative 

to CS activity 

(nmol/minute·mg 

protein) 

0.25±0.04 0.24±0.01 -4.00±4.00 NS 

Complex II 17.94±0.99 14.85±0.62 -17.22±3.46 <0.005 
a
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(nmol/minute·mg 

protein) 

Complex II relative 

to CS activity 

(nmol/minute·mg 

protein) 

0.41±0.02 0.42±0.02 +2.44±4.88 NS 

Complex IV 

(nmol/minute·mg 

protein) 

57.27±6.53 43.51±4.73 -24.03±8.26 NS 

Complex IV relative 

to CS activity 

(nmol/minute·mg 

protein) 

1.27±0.12 1.18±0.09 -7.09±7.09 NS 

Complex I+III 

(nmol/minute·mg 

protein) 

9.52±1.51 6.36±0.59 -33.19±6.20 NS 

Complex I+III 

relative to CS 

activity 

(nmol/minute·mg 

protein) 

0.21±0.02 0.18±0.02 -14.29±9.52 NS 

Complex II+III 

(nmol/minute·mg 

protein) 

28.44±2.24 20.01±1.26 -29.64±4.43 <0.001 
a
 

Complex II+III 

relative to CS 

activity 

(nmol/minute·mg 

protein) 

0.61±0.03 0.55±0.02 -9.84±3.28 NS 

SDHA/β-actin 

(AU) 
0.68±0.15 0.54±0.07 -20.59±10.29 NS 

SDHB/β-actin 

(AU) 
0.68±0.07 0.38±0.04 +44.12±5.88 <0.001

 a, 
†

 

COX5A/β-actin 

(AU) 
0.47±0.07 0.33±0.04 -29.79±8.51 NS 

Citrate Synthase 

(nmol/minute·mg 

protein) 

45.64±3.26 36.39±1.91 -20.27±4.18 NS 

Tom20/β-actin 

(AU) 
2.78±0.40 2.91±0.34 +4.68±12.23 NS 

GM Oxidation 

(pmol O2/s·mg) 
1.95±0.47 1.45±0.37 -25.64±18.97 NS 

CoQ9 levels 

(μmol/L) 
33.19±0.00 34.63±1.44 +4.16±4.16 NS 
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CoQ10 levels 

(μmol/L) 
55.99±6.14 54.89±8.61 -1.96±15.38 NS 

ATP levels 

(pmol ATP/mg 

protein) 

0.04±0.00 0.04±0.00 +5.71±8.57 NS 

Lipid peroxidation 

(μM MDA+HAE/mg 

protein) 

12.96±1.31 14.34±0.95 +10.65±7.33 NS 

SOD2/β-actin 

(AU) 
2.29±0.35 1.92±0.22 -16.16±9.61 NS 

SOD2 acetylation/β-

actin 

(AU) 

5.21±0.60 5.64±0.48 +8.25±9.21 NS 

Ratio SOD2 

acetylation/SOD2 

expression  

(AU) 

3.03±0.46 3.94±0.53 +30.03±17.49 NS 

Values are mean ± standard error of the mean. Case-control differences were sought by non-parametric 

statistical analysis and, in case of difference, significance was adjusted (
a
) by maternal influence (†).  

ATP: adenosine triphosphate; AU: arbitrary units; CoQ9 and 10: coenzyme Q9 and Q10; COX5A: 

cytochrome c oxidase subunit 5a; GM Oxidation: glutamate+malate oxidation; HAE: 4-hydroxyalkenal; 

IUGR: intrauterine growth restriction; MDA: malondialdehyde; NS: not significant; O2: oxygen; SDHA: 

succinate dehydrogenase complex, subunit A; SDHB: succinate dehydrogenase complex, subunit B; 

SOD2: superoxid dismutase 2; Tom20: mitochondrial import receptor subunit TOM20. 
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Table S2. Associations between biometric data and experimental results in the IUGR and 

control offspring.  

Parameter With respect to 
Correlation 

coefficient 

P 

value 
R

2 

Birth weight (g) 

 

Heart weight (g) 0.783 <0.001 0.610 

Left ventricle (g) 0.676 <0.001 0.446 

Right ventricle + septum (g) 0.735 <0.001 0.459 

Placental weight (g) 0.758 <0.001 0.557 

CI enzymatic activity
a
 in heart

 
0.429 <0.05 0.157 

CII enzymatic activity
a
 in heart

 
0.448 <0.05 0.117 

CII+III enzymatic activity
a
 in heart

 
0.543 ≤0.005 0.289 

Citrate synthase activity
a
 in heart

 
0.517 <0.01 0.125 

Lipid peroxidation
b
 in heart 0.591 <0.005 0.325 

Sirtuin 3/β-actin ratio (AU) in heart -0.498 <0.05 0.153 

CI+III enzymatic activity
a
 in placenta 0.380 <0.05 0.172 

CII+III enzymatic activity
a
 in placenta 0.574 ≤0.001 0.347 

Citrate synthase activity
a
 in placenta 0.371 <0.05 0.217 

SDHB/β-actin ratio (AU) in placenta 0.570 ≤0.001 0.304 

Heart weight (g) 

 

Left ventricle (g) 0.511 <0.005 0.322 

Right ventricle + Septum (g) 0.843 <0.001 0.658 

Heart/body weight x 100 (g) 0.469 ≤0.005 0.106 

Placental weight (g) 0.575 <0.001 0.346 

Lipid peroxidation
b
 in heart 0.710 <0.001 0.498 

Sirtuin 3/β-actin ratio (AU) in heart -0.505 <0.05 0.266 

CII enzymatic activity
a
 in placenta 0.450 <0.05 0.146 

CI+III enzymatic activity
a
 in placenta 0.594 ≤0.001 0.277 

CII+III enzymatic activity
a
 in placenta 0.515 <0.005 0.234 

Citrate synthase activity
a
 in placenta 0.402 <0.05 0.183 

SDHB/β-actin ratio (AU) in placenta 0.500 <0.01 0.349 

Left ventricle (g) 

 

Placental weight (g) 0.563 ≤0.001 0.336 

CII enzymatic activity
a
 in heart 0.480 <0.05 0.130 

CII+III enzymatic activity
a
 in heart 0.512 <0.01 0.209 

Citrate synthase activity
a
 in heart 0.594 <0.005 0.338 

CII enzymatic activity
a
 in placenta 0.461 <0.05 0.230 

CIV enzymatic activity
a
 in placenta 0.476 <0.05 0.412 

CII+III enzymatic activity
a
 in placenta 0.507 <0.01 0.270 

Citrate synthase activity
a
 in placenta 0.606 ≤0.001 0.332 

SDHB/β-actin ratio (AU) in placenta 0.544 <0.005 0.251 

Right ventricle + 

Septum (g) 

Heart/body weight x 100 (g) 0.467 <0.05 0.048 

Sirtuin 3/β-actin ratio (AU) in heart -0.593 <0.005 0.293 

CI+III enzymatic activity
a
 in placenta 0.459 <0.05 0.228 

CII+III enzymatic activity
a
 in placenta 0.442 <0.05 0.181 

Heart/body weight x CI+III enzymatic activity
a
 in placenta 0.424 <0.05 0.018 
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100 

Placental weight (g) 

Placenta/body weight x 100 (g) 0.436 <0.005 0.301 

CIV enzymatic activity
a
 in placenta 0.436 <0.05 0.245 

CII+III enzymatic activity
a
 in placenta 0.548 ≤0.001 0.267 

SDHB/β-actin ratio (AU) in placenta 0.514 <0.005 0.364 

Placenta/body weight x 

100 
Sirtuin 3/β-actin ratio (AU) in heart 0.732 <0.001 0.599 

Lipid peroxidation in 

heart 

CII enzymatic activity
a 

 in heart 0.436 <0.05 0.136 

CII+III enzymatic activity
a
 in heart 0.432 <0.05 0.173 

SDHB/β-actin ratio (AU) 

in heart 
Total ATP levels

c
 in heart 0.537 <0.01 0.226 

SOD2/β-actin ratio (AU) 

in heart 
Citrate synthase activity

a
 in heart -0.418 <0.05 0.112 

SDHB/β-actin ratio (AU) 

in placenta 

CII enzymatic activity
a
 in placenta 0.497 <0.005 0.145 

CIV enzymatic activity
a
 in placenta 0.617 <0.001 0.241 

CII+III enzymatic activity
a
 in placenta 0.521 <0.005 0.192 

Citrate synthase activity
a
 in placenta 0.613 <0.001 0.261 

SOD2/β-actin ratio (AU) in placenta 0.402 <0.05 0.314 

COX5A/β-actin ratio 

(AU) in placenta 

CIV enzymatic activity
a
 in placenta 0.409 <0.05 0.149 

Citrate synthase activity
a
 in placenta 0.406 <0.05 0.179 

Tom20/β-actin ratio 

(AU) in placenta 
CIV enzymatic activity

a
 in placenta 0.429 <0.05 0.164 

SOD2/β-actin ratio (AU) 

in placenta 

CIV enzymatic activity
a
 in placenta 0.513 <0.005 0.249 

CII+III enzymatic activity
a
 in placenta 0.482 <0.01 0.216 

Spearman correlations were used to seek for statistical associations. 
a
: nmol/minute·mg protein; 

b
: μM 

MDA+HAE/mg protein; 
c
: pmol ATP/mg protein. 

ATP: adenosine triphosphate; AU: arbitrary units; CI: complex I; CII: complex II; CI+III: complex I+III; 

CII+III: complex II+III; CIV: complex IV; COX5A: cytochrome c oxidase subunit 5a; g: grams; HAE: 4-

hydroxyalkenal; IUGR: intrauterine growth restriction; MDA: malondialdehyde; R
2
: coefficient of 

determination; SDHA: succinate dehydrogenase complex, subunit A; SDHB: succinate dehydrogenase 

complex, subunit B; SOD2: superoxid dismutase 2; Tom20: mitochondrial import receptor subunit TOM20. 
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Table S3. Experimental data in human placental tissue of study groups. 

Mitochondrial parameters in PLACENTA Control IUGR 
% of increased (+) or 

decreased (-) 
P value 

Complex I (nmol/minute·mg protein) 9.65±0.83 6.47±1.00 -32.95±10.36 <0.05 

Complex I relative to CS activity 

(nmol/minute·mg protein) 
0.21±0.03 0.20±0.04 -4.75±19.05 NS 

Complex II (nmol/minute·mg protein) 30.06±1.06 31.22±1.56 +3.86±3.16 NS 

Complex II relative to CS activity 

(nmol/minute·mg protein) 
0.75±0.03 0.96±0.13 +28.00±17.33 NS 

Complex IV (nmol/minute·mg protein) 19.52±1.04 23.93±3.07 +22.59±15.73 NS 

Complex IV relative to CS activity 

(nmol/minute·mg protein) 
0.50±0.03 0.69±0.09 +38.00±18.00 <0.05 

Complex I+III (nmol/minute·mg protein) 7.25±0.88 7.99±1.62 +10.21±22.34 NS 

Complex I+III relative to CS activity 

(nmol/minute·mg protein) 
0.18±0.02 0.20±0.03 +11.11±16.67 NS 

Complex II+III (nmol/minute·mg protein) 14.50±0.77 13.79±2.14 -4.90±14.76 NS 

Complex II+III relative to CS activity 

(nmol/minute·mg protein) 
0.35±0.01 0.41±0.04 +17.14±11.43 NS 

Citrate Synthase (nmol/minute·mg protein)  41.58±1.74 37.75±5.88 -9.21±14.14 NS 

PM oxidation (pmol O2/s·mg) 9.15±1.59 4.93±0.53 -46.12±5.79 <0.05 

GM oxidation (pmol O2/s·mg) 8.75±1.71 4.40±1.71 -49.71±19.54 <0.05 

ATP levels (pmol ATP/mg protein) 0.04±0.00 0.04±0.01 0.00±15.00 NS 

Lipid peroxidation (μM MDA+HAE/mg protein) 15.67±1.32 13.82±1.34 -11.81±8.55 NS 

Sirtuin 3/β-actin (AU) 0.45±0.10 0.98±0.23 +117.78±51.11 <0.05 

Values are presented as mean ± standard error of the mean and as a percentage of increase or decrease 

± standard error of the mean. Case-control differences were sought by non-parametric statistical analysis.  

ATP: adenosine triphosphate; AU: arbitrary units; CS: citrate synthase; GM oxidation: glutamate+malate 

oxidation; HAE: 4-hydroxyalkenal; IUGR: intrauterine growth restriction; MDA: malondialdehyde; NS: not 

significant; O2: oxygen; PM oxidation: pyruvate+malate oxidation;  
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Table S4. Experimental data in maternal peripheral blood mononuclear cells of study 

groups. 

Mitochondrial parameters in Maternal PBMC Control IUGR 

% of increased 

(+) or 

decreased (-) 

P value 

Complex II (nmol/minute·mg protein) 56.18±7.63 63.60±13.13 +13.21±23.37 NS 

Complex II relative to CS activity  

(nmol/minute·mg protein) 
0.38±0.03 0.39±0.02 +2.63±5.26 NS 

Complex IV (nmol/minute·mg protein) 35.73±3.55 37.82±4.56 +5.85±12.76 NS 

Complex IV relative to CS activity 

(nmol/minute·mg protein) 
0.27±0.03 0.28±0.04 +3.70±14.81 NS 

Citrate Synthase (nmol/minute·mg protein)  132.38±11.53 137.00±17.58 +3.49±13.28 NS 

Cell oxidation (pmol O2/s·mg) 5.50±0.63 5.90±1.53 +7.27±27.82 NS 

PM oxidation (pmol O2/s·mg) 6.34±1.11 4.34±0.72 -31.55±11.36 NS 

GM oxidation (pmol O2/s·mg) 4.88±0.68 3.66±0.51 -25.00±10.45 NS 

ATP levels (pmol ATP/mg protein) 3.17±0.37 2.64±0.46 -16.72±14.51 NS 

Lipid peroxidation (μM MDA+HAE/mg protein) 1.12±0.12 1.22±0.12 +8.93±16.96 NS 

Values are presented as mean ± standard error of the mean and as a percentage of increase or decrease 

± standard error of the mean. Case-control differences were sought by non-parametric statistical analysis.  

ATP: adenosine triphosphate; Cell oxidation: cellular endogen oxidation (without substrates); CS: citrate 

synthase; GM oxidation: glutamate+malate oxidation; HAE: 4-hydroxyalkenal; IUGR: intrauterine growth 

restriction; MDA: malondialdehyde; NS: not significant; O2: oxygen; PBMC: peripheral blood mononuclear 

cells; PM oxidation: pyruvate+malate oxidation. 
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Table S5. Experimental data in neonatal cord blood mononuclear cells of study groups. 

Mitochondrial parameters in Neonatal CBMC Control IUGR 

% of increased 

(*) or 

decreased (-) 

P value 

Complex II (nmol/minute·mg protein) 37.26±5.00 40.01±10.45 +7.38±28.05 NS 

Complex II relative to CS activity 

(nmol/minute·mg protein) 
0.43±0.04 0.73±0.17 +69.77±39.53 NS 

Complex IV (nmol/minute·mg protein) 21.09±1.89 17.14±3.17 -18.73±15.03 NS 

Complex IV relative to CS activity 

(nmol/minute·mg protein) 
0.26±0.03 0.36±0.01 +38.46±37.31 NS 

Citrate Synthase (nmol/minute·mg protein)  86.06±6.79 52.33±10.85 -39.19±12.61 <0.05 

Cell oxidation (pmol O2/s·mg) 4.58±0.74 2.49±0.65 -45.63±14.19 NS 

PM oxidation (pmol O2/s·mg) 4.83±1.22 2.42±0.55 -49.90±11.39 NS 

GM oxidation (pmol O2/s·mg) 3.93±1.02 1.74±0.45 -55.73±11.45 NS 

ATP levels (pmol ATP/mg protein) 1.15±0.17 1.85±0.53 +60.87±46.09 NS 

Lipid peroxidation (μM MDA+HAE/mg protein) 1.39±0.12 1.53±0.15 +10.07±10.79 NS 

Mitochondrial DNA depletion 

(mt12SrRNA/nRNAseP ratio) 
101.09±10.25 95.41±8.15 -5.62±8.06 NS 

Values are presented as mean ± standard error of the mean and as a percentage of increase or decrease 

± standard error of the mean. Case-control differences were sought by non-parametric statistical analysis.  

ATP: adenosine triphosphate; CBMC: cord blood mononuclear cells; Cell oxidation: cellular endogen 

oxidation (without substrates); CS: citrate synthase; GM oxidation: glutamate+malate oxidation; HAE: 4-

hydroxyalkenal; IUGR: intrauterine growth restriction; MDA: malondialdehyde; NS: not significant; O2: 

oxygen; PM oxidation: pyruvate+malate oxidation. 
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Table S6 Significant associations between clinical data and experimental results in the 

cohort of IUGR and control pregnancies.  

Parameter With respect to Correlation 

coefficient 
P value R

2 

Birth weight (g) 

 

Placental weight (g) 0.655 0.004 0.603 

BNP levels (pg/ml) -0.600 0.000 0.526 

Oxygen consumption (PM oxidation)
a
 

in placenta 
0.480 0.018 0.197 

Oxygen consumption (GM oxidation)
a
 

in placenta 
0.505 0.008 0.279 

CI enzymatic activity
b
 in placenta 0.412 0.026 0.195 

Sirtuin 3/β-actin ratio (AU) in placenta -0.470 0.008 0.224 

Placental weight (g) Cord blood BNP levels (pg/ml) -0.736 0.006 0.292 

Cord blood BNP levels (pg/ml) CI enzymatic activity
b
 in placenta -0.464 0.026 0.159 

Oxygen consumption (GM 

oxidation)
a
 in maternal PBMC 

Oxygen consumption (GM oxidation)
a
 

in neonatal CBMC 
0.544 0.007 0.115 

CS activity in neonatal CBMC
b
 

Oxygen consumption (Cell oxidation)
a
 

in neonatal CBMC 
0.439 0.036 0.189 

Oxygen consumption (PM oxidation)
a
 

in placenta 
0.507 0.014 0.159 

Oxygen consumption (GM oxidation)
a
 

in placenta 
0.659 0.001 0.213 

Sirtuin 3/β-actin ratio (AU) in 

placenta 
CI enzymatic activity

b
 in placenta -0.416 0.034 0.095 

Spearman correlations were used to seek for statistical associations. 
a
: pmol O2/s·mg protein; 

b
: 

nmol/minute·mg protein. 

AU: arbitrary units; BNP: brain natriuretic peptide; CBMC: cord blood mononuclear cells; CI: MRC complex 

I; g: grams; GM oxidation: glutamate+malate oxidation; MRC: mitochondrial respiratory chain; PBMC: 

peripheral blood mononuclear cells; PM oxidation: pyruvate+malate oxidation; R
2
: coefficient of 

determination. 
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