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Abstract
Ambisonics is a complete theory for spatial audio whose building blocks are
the spherical harmonics. Some of the drawbacks of low order Ambisonics,
like poor source directivity and small sweet-spot, are directly related to the
properties of spherical harmonics. In this thesis we illustrate a novel spatial
audio framework similar in spirit toAmbisonics that replaces the spherical har-
monics by an alternative set of functions with compact support: the spherical
wavelets. We develop a complete audio chain from encoding to decoding, us-
ing discrete spherical wavelets built on a multiresolution mesh. We show how
the wavelet family and the decodingmatrices to loudspeakers can be generated
via numerical optimization. Inparticular, wepresent a decoding algorithmop-
timizing acoustic and psychoacoustic parameters that can generate decoding
matrices to irregular layouts for both Ambisonics and the newwavelet format.
This audio workflow is directly compared with Ambisonics.

Resum
Ambisonics és una teoria completa d’àudio espacial construïda a partir dels har-
mònics esfèrics. Alguns dels inconvenients d’Ambisonics de baix ordre, com
ara una localització pobra i una àrea petita d’escolta òptima, estan directament
relacionats amb les propietats dels harmònics esfèrics. En aquesta tesi presen-
tem un nou formalisme d’àudio espacial basat en Ambisonics substituint però
els harmònics esfèrics per les ondetes esfèriques. Desenvolupem una cadena
d’àudio completa, des de la codificació fins a la descodificació, a través de l’ús de
ondetes discretes construïdes en una malla de multirresolució. Mostrem com
espot generar la família de ondetes i lesmatrius de descodificació a altaveusmit-
jançant una optimització numèrica. Presentemun algorisme de descodificació
que pot generar matrius de descodificació a conjunts irregulars d’altaveus tant
per a Ambisonics com per al nou format basat en ondetes. Finalment, compa-
rem aquest nou formalisme d’àudio amb Ambisonics.
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Preface

It was 2012 when I started my Ph.D. in Information and Communication
Technologies at theUniversityPompeuFabra inBarcelona. At that timeDolby
and DTS were launching their solutions for object-based audio, with Dolby
Atmos and DTS X. At the same time Auro 3D took the opposite direction,
making its bet on a new channel based format. The Academia was (and still is)
more focused on sound-field reconstruction methods. Virtual Reality (VR)
was not yet a trend, with Facebook and Google leading the “democratization”
of 3D video and ultimately 3D audio, making use of Ambisonics for binau-
ral rendering. (The Google Cardboard was launched in June 2014). This was
finally the point when the (mass-scale) industry met academia.

Object-based formats are generic representations of sound scenes, and are
a powerful tool for 3D soundscape creation. Given their rendering-agnostic
construction, they can be plugged to almost any spatial audio rendering tech-
nology, fromamplitudepanners to sound-field reconstructionmethods. Given
this scenario, we felt that therewas still room for improvement in existing tech-
nologies, making themmore robust and easy to use, from an acoustic point of
view.

We started with Ambisonics and identified that the stage of decoding to
speakers was still a pain point for the public wanting to experiment with it.
We decided to make a new decoder, that built on well known psychoacous-
tic principles, but at the same time bent slightly the dogmas of Ambisonics,
like constant 𝑟𝐸 and null 𝑟𝐸 transverse component, to get a better sounding
rendition. And we released it as open-source software (2013).

Approximately at the same timeAaronHeller releasedhisAmbisonicsTool-
bok (2014), that is a collection of tools to easily generate Ambisonics decoders.
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After almost 40 years from the creationofAmbisonics byMichaelGerzon,
the researchers were (and are) still working some of its edges.

Nevertheless, this research was not addressing the core drawbacks of Am-
bisonics, andwe started looking for some alternatives to Spherical Harmonics.
It was PauGargallo that suggested to look into spherical wavelets, since he was
familiar with Schröder and Sweldens’ work. As a particle physicist I was not
familiar with wavelets at all, and I started wandering into this new (for me)
world. We started from the very early works of Haar, Gabor, Morlet, Meyer,
Mallat all the way to Daubechies, then moved to the spherical manifold with
the works ofWiaux andMcEwans, looking at different sampling theorems on
the sphere, and thenChristianLessigwith his SOHOwavelets... and finallywe
landed where everything started (at least for us) with Schröder and Sweldens.

The final concept we developed allows to encode sound sources to a cloud
of points and to reduce (or recover) the dimensionality of the cloud at will.
The spatial downsampling is implemented as a linear transformation that can
be fully reverted. This construction allows for different coexisting spatial rep-
resentations, that can scale based on different requirements, for example trans-
mission bandwidth or the complexity of the destination playback system. We
call this construction a “framework”, that is used to generate actual audio for-
mats. In this thesis we illustrate the general framework and one special format
designed to be compared with and evaluated against Ambisonics.

Interestingly, for the decoding to speakers of this new format, the same
principles used for Ambisonics decoding apply.

We then tried to push the idea further, by generating our own spatial-
audio-oriented wavelets. The idea was to numerically optimize the wavelets
for some observables, e.g. pressure preservation across the down/upsampling
process. This literally took years...

It has been a long journey with many dead-ends, but we think we found
something interesting and new in the spatial-audio field, that may inspire old
and young researchers.
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Chapter 1

INTRODUCTION

This thesis is a first point of connection between two worlds, the world of
wavelets, which is related to time-frequency analysis and signal processing, and
the world of spatial audio, which embraces sound perception, sound record-
ing, encoding and reproduction.

Section 1.1 briefly describes what is spatial audio and gives some context
about the available technologies. Section 1.3 outlines the motivations for this
thesis.

1.1 What is Spatial Audio?
Among the five senses that humans can experience, hearing or audition is the
sense of soundperception. Humans are able to identify the location of a sound
in direction, distance and size. Spatial audio refers to the set of tools, technolo-
gies and theories for creation or recreation of a subjective sound scene, that has
to produce all the spatial characteristics of a sound located in a 2D/3D space:
direction, distance, size.

It is possible to classify the techniques to (re)create an auditory scene (2D
or 3D) in three categories:

1. Discrete panning techniques (e.g. VBAP,ABAP,VBIP,ABIP): the known
apparent direction of the source is used to feed a limited number of
loudspeakers.
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2. Sound field reconstruction methods (e.g. Ambisonics, Wave Field Syn-
thesis): the intent is to control the acoustical variables of the sound field
(pressure, velocity) in the listening space.

3. Head-related stereophony (binaural, transaural): the aim is to measure
(binaural recording) or (re)produce (binaural synthesis) the acoustic pres-
sure at the ears of the listener.

Besides the underlying theory of each technology, the spatial audio tech-
niques can be also classified by analyzing how the whole encoding/decoding
pipeline is structured:

• Channel-based: thewhole encoding/decoding and recording/reproduc-
tion is based on a specific channel layout, e.g. 2.0, 5.1, 7.1, ..., Auro3D,
Hamasaki 22.2.

• Layout-independent (channel-agnostic): the recording and encoding for-
mat is independent from the reproduction layout (includes sound field
reconstruction methods and object-based formats).

Malham [Malham, 1999] gives an interesting perspective on the existing
(at that time) surround sound systems, but also gives two criteria that can be
applied to any existing or future technology: the ideas of homogeneous and
coherent sound reproduction systems. Quoting from [Malham, 1999]:

“An homogeneous sound reproduction system is defined as one in
which no direction is preferentially treated. A coherent system as
one in which the image remains stable if the listener changes po-
sitionwithin it, though the imagemay change as a natural sound-
field does.”

With this set of properties we can start categorize the existing technolo-
gies. For example: VBAP is a channel-baseddiscrete panning technique,which
is not coherent (e.g. the apparent source size depends on the position of the
source) and in general not homogeneous. Ambisonics is a theory that aims at
reconstructing the sound field, is layout-independent, is coherent and homo-
geneous.
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Why there is this variety of techniques? Why not one method that works
in all possible conditions? Each technology has its strengths and weaknesses
and a specific area of application.

1.2 Benefits and Limitations
In the following, we will give a non exhaustive list of benefits and limitations
of the mentioned techniques. We are aware that every point in these lists of
pros and cons is a simplification, that is open for discussion and could generate
many distinctions. The detailed description and dissection of each existing
technique is out of the scope of this introduction.

Discrete panning techniques Pan-potor stereo amplitudepanning is a tech-
nique that, by independently changing the amplitude of a signal in a pair of
loudspeakers, is able to generate a virtual sound source along the arc connect-
ing the two speakers. The position of the virtual sound source depends on
the difference in amplitude between the two speakers. Vector-Base Ampli-
tude Panning (VBAP) is an extension of the classical stereo pan-pot to multi-
speakers layouts (2Dand3D) andwas inventedbyVille Pulkki in 1997 [Pulkki,
1997]. Many variants of this technique are available, for example: Vector-Base
Intensity Panning (VBIP), Distance-Based Amplitude Panning (DBAP) [Los-
sius et al., 2009].

+ Simple to implement.

+ The most common.

+ Easily to handle non-uniform layouts.

+ The experience holds decently also outside the sweet spot (true for lay-
outs with many loudspeakers).

– Not a complete theory (e.g. recording in VBAP it is not possible).

– Not homogeneous and not coherent.
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– Jumpof the virtual source from speaker to speaker (apparent source size
changes as a function of the virtual source position).

Ambisonics Ambisonics was invented by Michael Gerzon of the Oxford
Mathematical Institute who developed the theoretical and practical aspects of
the system in the early 1970s. Ambisonics comprises both encoding, recording
and reproduction (decoding) techniques that can be used live or in studio to
present a 2-dimensional (planar, or horizontal-only) or 3-dimensional (peri-
phonic, or full-sphere) sound field. There are professional quality commercial
microphones which can directly record in first order Ambisonics. In recent
years higher order microphones have appeared, e.g. Eigenmike [mh acoustics
LLC, 2019] and Zylia [Zylia, 2019], that enable the encoding of an Higher
Order Ambisonics soundscape.

+ Nice physical formulation.

+ Aims to reproduce the sound field.

+ Is homogeneous and coherent.

+ Getting a lot of traction in Augmented/Virtual Reality (AR/VR) (for
binaural reproduction over headphones), but has a minor role in the
spatial audio industry as a whole.

– Poor localization at low orders.

– Small sweet spot at low orders.

– Difficult to handle irregular layouts.

– Not so common (reproduction over speakers limited to universities, re-
search centres, ...).

– Sound source distance is not included in basic the theory, neverthe-
less there are implementations which enable distance encoding [Daniel,
2003].
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Wavefield Synthesis WavefieldSynthesis (WFS)was introduced in the1980s
by Dr. A. J. Berkhout [Berkhout, 1988], a professor of seismics and acoustics
at the Delft University of Technology. WFS focuses on the reproduction only
and it is not possible to record directly in WFS. The typical WFS layouts are
2-dimensional, horizontal, and can be linear of circular. One advantage over
Ambisonics is that the distance of the source is embedded in the theory.

+ Nice physical formulation.

+ Aims to reproduce the sound field.

+ Is homogeneous and coherent.

+ Sound source distance is embedded in the theory.

– Very limited diffusion, less common than Ambisonics (limited to few
universities, research centres, ...), currently almost zero presence in the
spatial audio industry.

– Expensive and difficult to set up (speaker layouts have to be specifically
tailored toWFS).

– Computationally intense.

Head-related stereophony The techniques inside the realm of the head-
related stereophony go from binaural (recording with in-ear microphones and
reproduction over headphones), to transaural (reproduction over speakers), to
generic ‘virtualization’ techniques. All these techniques exploit the informa-
tion about head and outer-ear (pinna) shape to create the right pressure at the
eardrums to simulate a sound in space.

+ (It can be) better than plain stereo over headphones.

+ Homogeneous (depending on the specific implementation).

+ Coherent for synthesized sound fields with head-tracking.

+ Cheap (in terms of production, transmission and exhibition).
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– Extremely complex to get an experience thatworks for everyonewith no
tuning, training, ...

– Once produced, it is very difficult to modify and manipulate without
destroying the experience.

Object-based formats In object based audio formats at each sound source
is associated an audio track and some characteristics (metadata), that can be
position, distance, size, and possibly more. Examples of commercial object-
based formats are DTS® X and Dolby Atmos®. This kind of technologies are
by construction layout-independent, since the rendering stage is (or can be)
completely disconnected from the format itself. This means that one could
choose different rendering techniques for the same (object-based) format.

+ Naturally handles any type of speaker layout (number and position of
speakers).

+ Rendering is separate from the encoding and transmission stage, so in
principle any type of rendering can be used.

– The number of channels to be transmitted/stored depends on the num-
ber of objects (audio sources).

– Since the rendering is done in real-time, the computational load scales
with the number of objects.

Differences in audio workflow The typical audio workflow can be simpli-
fied in three stages: encoding, transmission and decoding (or playback). Each
technology can attach a different meaning to each of these three stages. Here
we intend the encoding (or decoding) as ‘spatial encoding’, i.e. the tools to en-
code a spatial signal into some format, and not the encoding to (or decoding
from) a bitstream. In broad terms, and looking only to encoding and decod-
ing, wewill give some examples to clarify the differences in the audioworkflow
for different techniques.

In channel based formats the encoding involves the use of some panning
law, that translates the spatial position of a source into gains of that signal for
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each channel of the format. The panning law defines the format. The de-
coding stage is typically just the direct playback to speakers, since in a channel
based format the channels correspond to actual speaker positions.

In channel agnostic (but not object based) formats the encoding format
translates the three-dimensional position of the source to some other space,
and the gains are the weights of the functions or filters that map the 3D space
to the new one. In the decoding the process is reversed, and these ‘abstract’
channels regain their meaning in the space of positions.

In object based formats the role of encoding and decoding is essentially re-
versedwith respect to the channel based formats. There is no spatial encoding,
and the task of generating the gains for each speaker is given to the decoding
stage, where a panning law is used at playback time to convert the object meta-
data into gains. Here the panning law does not define the format, and it is
possible to use different panning laws for the same object based format, pro-
viding that the panning law ‘understands’ the object metadata.

1.3 Motivation
We have seen in Section 1.2 that there are several techniques for spatial audio
and each of them has its purpose. The choice of the best technique is appli-
cation dependent. An interesting evaluation of stereophony, Ambisonics and
WFS in the context of spatial music can be found in [Bates, 2009]. There is
no ‘absolute best’ solution that works for every condition and context. This
thesis rises from this realization and the consequent question:

Is it possible to build a theory for spatial audio that is channel
agnostic, homogeneous and coherent, but also has good localiza-
tion with few channels, easily handles irregular layouts and holds
well whenmoving out of the sweet spot? In other words, is it pos-
sible to build a theory that combines the best of channel-based and
channel-agnostic worlds?

The question already sets some requirements and a focus on the problem.
A channel-agnostic format is preferred, since there are already many channel
based formats that span a wide portion of the localization spectra, from the
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low channel count and limited localization like stereo 2.0 and 5.1, to the very
high channel count of Hamasaki 22.2. Moreover, the channel based formats
are not flexible nor future proof. In the realm of channel agnostic formats we
can find technologies likeWFS andAmbisonics. WFS is not suited to irregular
layouts and typically uses a large number of speakers. Ambisonics has a reason-
able number of channels but it is not trivial to decode to irregular layouts and
the sweet spot can be quite limited at low orders. The Ambisonics channels
can be understood as a series expansion of the distribution of sources in terms
of spherical harmonics (SH): the higher the order in the expansion, the more
spatial detail and the bigger the sweet spot. EachAmbisonics coefficient corre-
sponds to a SH function. The properties of SH are a key element in howAm-
bisonics works and sounds: all SH have significant non-vanishing support in
all points of the sphere (except for a finite set of points), and moreover the SH
are completely delocalized, meaning that it is not possible to assign an individ-
ual spatial location to any SH by itself. This implies that at low orders almost
all speakers contribute significantly to create a virtual source. These proper-
ties of SH translate directly into the subjective characteristics of Ambisonics
as a spatial audio format, which is often reported to be smooth, diffuse and
immersive, but also confuse, imprecise, and delocalized.

In this thesis we develop a new spatial audio codification, similar in spirit
to Ambisonics but replacing the SH by a different and more localized, set of
functions: the spherical wavelets. The goal is to get better localization and a
larger sweet spot with few channels, that can be easily decoded to irregular lay-
outs.

In this context, we encounter a first gap to fill: successfully decode Am-
bisonics and Higher Order Ambisonics to irregular layouts. Part I focuses on
this task.

Part II is dedicated to the world of wavelets and comprises an introduction
(Chapter 5), the description of a wavelet based spatial audio format (Chap-
ter 6), and finally our special wavelet transform (Chapter 7).

Part III is dedicated to the evaluation of the new format.
This thesis sets a new approach to spatial audio encoding, that bridges the

channel-based approaches with the channel-agnostic ones, widening the spec-
tra of existing spatial audio methods, possibly generalizing and incorporating
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Technology Encoding Transmission Decoding

Ambisonics % % "

Wavelet Framework " " "

Table 1.1: Table of contributions.

already existing theories.

1.4 Original Contributions
Novel contributions produced in the context of this thesis are: Chapter 3 de-
scription of a generic method for decoding of linear-encoding formats to ir-
regular layouts, the evaluation of this approach in Chapter 4, the new wavelet
based spherical audio framework described in Chapter 6, the optimization of
the wavelet filters for spatial audio purposes in Chapter 7, and the whole eval-
uation, Part III, is an original contribution as well.

Table 1.1 shows graphically the contributions to theAmbisonics andWave-
let format audio chains, that are the result of this work.

1.5 Outline
After a first introductory Chapter 1, the thesis est omnis divisa in partes tres:
Part I on Ambisonics, Part II on wavelets and the wavelet spatial audio frame-
workwedesigned, and in the last Part III an incarnation of this framework into
a spherical audio format is evaluated against Ambisonics.

Part I is composed of three Chapters, the first summarizes the background
information and the following ones describe the original contributions. Chap-
ter 2 briefly describes Ambisonics giving the basis for encoding and decoding
HigherOrder Ambisonics. Chapter 3 is an original contribution toAmbison-
ics’ decoding to irregular speakers’ layouts. In the first Section we describe the
physical and psychoacoustical variables to design the Ambisonics decoder. We
formulate the problem as an optimization problem, so in the subsequent Sec-
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tion we define the optimization’s cost function. Finally we show the resulting
performance of the decoder for a specific layout of speakers. In Chapter 4 we
evaluate the performance of our decoder against some publicly available ones,
both objectively and subjectively.

Part II is composedof threeChapters, the first summarizes the background
information and the following ones describe the original contributions. The
first Chapter 5 is an introduction to Wavelet Theory, starting from a compar-
ison with Fourier Transform and then fast-forwarding into multiresolution,
the Lifting Scheme and a construction of Spherical Wavelets. Chapter 6 de-
scribes a method to generate spherical audio formats using wavelets built on a
multiresolution mesh.

Chapter 7 illustrates a numericalmethod to obtain spherical wavelet filters
optimized for spatial audio purposes.

The last Part III is composed of twoChapters, both are new contributions.
Chapter 8 evaluates different versions of Spherical Audio Formats defined by
differentwavelet families. Chapter 9 inspects the properties of this new format
against Ambisonics for a reference layout of speakers.

The material presented in Part I is an updated version of two already
published contributions: a peer-reviewed conference proceeding [Scaini and
Arteaga, 2014] and a conference proceeding with a peer-reviewd abstract
[Scaini and Arteaga, 2015]. Some of the material presented in Part II is part
of an article already submitted to the Journal of the Audio Engineering Society,
with title “Wavelet based spherical audio format” focused on the audio work-
flow of the new wavelet framework [Scaini and Arteaga, 2019b]. Another ar-
ticle devoted to the wavelet optimizationmethod is in preparation [Scaini and
Arteaga, 2019a].
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Ambisonics

11





Chapter 2

INTRODUCTION TO
AMBISONICS

Ambisonics is a theory for spatial audio recording and reproduction, devel-
oped byMichael Gerzon during 1970s, that aims at the encoding of the sound
field and its accurate reconstruction in a point in space. From a theoretical
point of view, it is possible to define the Ambisonics channels as the coeffi-
cients of a perturbative series expansion in terms of spherical harmonics (SH)
of the sound field around the origin.

Zeroth order Ambisonics consists of one channel, the 𝑊 channel, is the
omnidirectional component of the field, and corresponds to the sound pres-
sure. First order Ambisonics (FOA) adds the 𝑋, 𝑌 and 𝑍 channels, are the
directional components in three dimensions, and correspond to the three com-
ponents of the pressure gradient, which amount at the acoustic velocity at the
origin (see Table 2.1). Together, these components approximate, at first order
of the multipole expansion, the sound field on a sphere around the listening
point. 𝐿-th order Ambisonics adds other coefficients to the multipole expan-
sionwhich amount toquantities proportional to derivatives (up to𝐿-th order)
of the pressure field.

Higher Order Ambisonics (HOA) is made of 𝐾 = (𝐿 + 1)2 channels,
where 𝐿 is the Ambisonics order or spherical harmonic degree (each 𝑙 order
has 2𝑙 + 1 channels). In the following we will refer to an arbitrary Ambisonics
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Ch. # (l,m) Name physical meaning

0 (0,0) W pressure
1 (1,-1) Y particle velocity 𝑦 dir.
2 (1,0) Z particle velocity 𝑧 dir.
3 (1,1) X particle velocity 𝑥 dir.

Table 2.1: First Order Ambisonics Channels.

order, including HOA, simply as Ambisonics.
Ambisonics has a series of remarkable properties, whichmake it a good for-

mat for spatial audio. First, it is a complete theory of spatial audio, going from
recording to reproduction. Second, it is based on solid acoustic andmathemat-
ical grounds. Third, it is has a fixed number of channels, independently from
the number of sound sources (in contrast to object-basedmethods). Fourth, it
is completely independent of the exhibition layout. Fifth, it provides a smooth
listening experience from all directions. Finally, depending on the order, it re-
quires only a moderate number of loudspeakers for exhibition (if compared
e.g. withWave Field Synthesis).

2.1 Encoding Higher Order Ambisonics

The decomposition of a distribution of sources 𝑆(𝜃, 𝜙) over a sphere is ex-
pressed, in 𝐿-th order Ambisonics,

𝑆(𝜃, 𝜙; 𝑡) =
𝐿

∑
𝑙=0

𝑙
∑

𝑚=−𝑙
𝑎𝑙,𝑚(𝑡)𝑌𝑙,𝑚(𝜃, 𝜙) (2.1)

where𝑌𝑙,𝑚(𝜃, 𝜙) are the real-valued spherical harmonics 1 (which form a basis
in 𝑆2) [Arfken et al., 2005], and 𝑎𝑙,𝑚 are the coefficients or the projection of

1Following the convention in http://ambisonics.ch/standards/channels/
glossary.
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𝑆 onto the basis 𝑌 :

𝑎𝑙,𝑚(𝑡) = ∫ 𝑆(𝜃, 𝜙; 𝑡)𝑌𝑙,𝑚(𝜃, 𝜙)dΩ

= ∫
2𝜋

0
∫

𝜋/2

−𝜋/2
𝑆(𝜃, 𝜙; 𝑡)𝑌𝑙,𝑚(𝜃, 𝜙) cos(𝜃)d𝜙d𝜃

where dΩ is the usual measure on the sphere, dΩ = cos𝜙d𝜙d𝜃 in acoustic
coordinates convention 𝜙 is azimuth and 𝜃 is elevation. The distribution of
sources can be linked to the perturbative decomposition of the pressure field
around the origin [Daniel et al., 2003]. The coefficients 𝑎𝑙,𝑚(𝑡) are the so-
called Ambisonics channels.

A plane wave 𝑆û(𝜃, 𝜙), representing a virtual point source coming from
direction 2 û(𝜃û, 𝜙û), can be approximated in terms of spherical harmonics as:

𝑆û(𝜃, 𝜙) =
𝐿

∑
𝑙=0

𝑙
∑

𝑚=−𝑙
(𝑎û)𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙), (2.2)

where theAmbisonics coefficients (𝑎û)𝑙,𝑚 are given in thenormalizationN3D
[Daniel, 2000] by:

(𝑎û)𝑙,𝑚 = 𝑔û𝑌𝑙,𝑚(𝜃û, 𝜙û), (2.3)

where 𝑔û is the amplitude of the plane wave. The importance of plane waves
lies in the fact that any distribution of sources can be represented as a superpo-
sition of plane waves.

These expressions can be rewritten inmatrix notation. Equation (2.1) can
be reexpressed as:

𝑆(𝜃, 𝜙) = a ⋅ Y(𝜃, 𝜙)
with

a = (𝑎0,0 … 𝑎1,−1 … 𝑎1,0 … 𝑎1,1 …
𝑎𝑙,−𝑙 … 𝑎𝑙,0 … 𝑎𝑙,𝑙⏟⏟⏟⏟⏟⏟⏟

2𝑙+1

… 𝑎𝐿,−𝐿 … 𝑎𝐿,0 … 𝑎𝐿,𝐿)𝑇

2Hat denotes unit vectors in 𝑆2.
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and

Y = (𝑌0,0 … 𝑌1,−1 … 𝑌1,0 … 𝑌1,1 …
𝑌𝑙,−𝑙 … 𝑌𝑙,0 … 𝑌𝑙,𝑙 … 𝑌𝐿,−𝐿 … 𝑌𝐿,0 … 𝑌𝐿,𝐿)𝑇 .

The encoding equation (2.3) for a point source can be reexpressed as:

aû = 𝑔ûY(𝜃û, 𝜙û)
Explicitly, with the choice of the N3D convention mentioned above:

⎧{{{
⎨{{{⎩

𝑊û = (𝑎û)0,0 = 𝑆
𝑌û = (𝑎û)1,−1 = 𝑆

√
3 cos(𝜃û) sin(𝜙û)

𝑍û = (𝑎û)1,0 = 𝑆
√

3 sin(𝜃û)
𝑋û = (𝑎û)1,1 = 𝑆

√
3 cos(𝜃û) cos(𝜙û)

…

2.2 Decoding Higher Order Ambisonics

2.2.1 Basic Ambisonics Decoding
The basic decoding assumes phase coherence among signals emitted by the
loudspeakers, and the requirement is to accurately reconstruct the sound field
at the origin up to order 𝐿 in the Ambisonics decoding, from superposition
of the plane waves emitted by the different loudspeakers in the layout3. In this
case the problem is linear and can be solved analytically with algebraic meth-
ods.

Withmore detail, let us define a set of directionsΘ = {û𝑖}𝑖=1,…,𝑁 , where
û𝑖(𝜃𝑖, 𝜙𝑖) ∈ 𝑆2 correspond to the position of the loudspeakers, which sample
the 𝐾 = (𝐿 + 1)2 spherical harmonics up to 𝐿th degree:

Y = (𝑌𝑙1,𝑚1
… 𝑌𝑙𝐿,𝑚𝐿

)𝑇 ,
3Note that it is assumed that the loudspeakers emit plane waves and are placed at the same

distance. Compensation of level, delay and near-field effect [Daniel, 2003] has to be addressed
in another stage of the signal processing.
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in 𝑁 directions:

y𝑙,𝑚 = (𝑌𝑙,𝑚(𝜃1, 𝜙1) … 𝑌𝑙,𝑚(𝜃𝑁 , 𝜙𝑁))𝑇 .

The decoding equation requests that the original sound field represented
by Eq. (2.1) is accurately reproduced up to order𝐿 from the plane waves emit-
ted from the different {û𝑖}𝑖=1,…,𝑁 loudspeakers’ directions, given by (2.2):

a =
𝑁

∑
𝑗=1

𝑔𝑗Y(𝜃𝑗, 𝜙𝑗), (2.4)

where 𝑔𝑖, the gain of each one of the loudspeakers, is the unknown in the above
equation. At first Ambisonics order this request amounts to reproducing cor-
rectly the first four spherical harmonics, corresponding to the sound pressure
𝑝 and normalized acoustic velocity at the origin v. Eq. (2.4) can be reexpressed
in matrix formmore concisely as:

a = Cg,
where thematrixC = {𝑐𝑘,𝑗} represents the sampled spherical harmonics basis

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑌0,0(𝜃1, 𝜙1) ⋯ 𝑌0,0(𝜃𝑁 , 𝜙𝑁)
𝑌1,−1(𝜃1, 𝜙1) ⋯ 𝑌1,−1(𝜃𝑁 , 𝜙𝑁)
𝑌1,0(𝜃1, 𝜙1) ⋯ 𝑌1,0(𝜃𝑁 , 𝜙𝑁)
𝑌1,1(𝜃1, 𝜙1) ⋯ 𝑌1,1(𝜃𝑁 , 𝜙𝑁)

⋮ 𝑐𝑘,𝑗 ⋮
𝑌𝐿,−𝐿(𝜃1, 𝜙1) ⋯ 𝑌𝐿,−𝐿(𝜃𝑁 , 𝜙𝑁)

⋮ ⋮ ⋮
𝑌𝐿,0(𝜃1, 𝜙1) ⋯ 𝑌𝐿,0(𝜃𝑁 , 𝜙𝑁)

⋮ ⋮ ⋮
𝑌𝐿,𝐿(𝜃1, 𝜙1) ⋯ 𝑌𝐿,𝐿(𝜃𝑁 , 𝜙𝑁)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠𝑘=1,…,𝐾;

𝑖=1,…,𝑁

and g = (𝑔1 … 𝑔𝑁)𝑇 is the vector of gains.
The decoding matrixD is the matrix giving:

g = Da.
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In most realistic cases the system is under-determined, given that the number
of loudspeakers 𝑁 is generally greater than the number of Ambisonics chan-
nels 𝐾. From all the possible solutions to the system, the pseudoinverse is the
one that minimizes the energy emitted [Daniel, 2000]:

D = Dpinv = C𝑇 (CC𝑇 )−1. (2.5)

Eq. (2.5) represents the general solution for the basic decoding. However,
it is to be noted that in highly irregular layouts the inverse in Eq. (2.5) is ill-
conditioned and a regularization should be applied [Zotter et al., 2012].

The set of sampling directions Θ is said to be regular for the basis Y if it
preserves the orthonormality of the sampled basis [Daniel, 2000]. This means
that CC𝑇 /𝑁 = 1𝐾 , where 1𝐾 is the unity matrix of range 𝐾. The set of
sampling directionsΘ is said to be semi-regular for the basisY if it preserves the
orthogonality of the sampled basis. This means that CC𝑇 is diagonal. If the
set of sampling directions Θ does not preserve any of the previous properties,
then it is said to be irregular4. As a further clarification, in Ambisonics terms
a regular set of directions does not necessarily imply a ‘regularly spaced’ set of
directions.

If the set of sampling directions is regular, then then the decoding matrix
becomes:

D = Dproj = C𝑇 /𝑁. (2.6)

Namely, the decoding equations consist on a mere projection of the spherical
harmonics on the corresponding loudspeaker direction. The decoding matrix
obtained via projection is often referred to as ‘naïve decoding’.

2.2.2 Modified Psychoacoustical Decodings
Psychoacoustically, the basic decoding method is optimal at low frequencies,
below 500 Hz approximately, and close to the sweet spot. At higher frequen-
cies or for a large listening area it is preferable to use modified psychoacoustic
decodings [Daniel, 2000].

4An alternative definition, makes use of spherical 𝑡-designs, with 𝑡 ≥ 2𝐿 + 1, which
identifies the optimal loudspeaker arrangement [Zotter and Frank, 2012].
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Let {v̂𝑗} be a set of 𝑛 directions sampling the sphere (useful later). Given
a decodingD, the signal fed to the speaker 𝑖 while reproducing a virtual plane
wave of unit amplitude coming from direction 𝑗 will be labelled 𝑠𝑖𝑗 (it is actu-
ally given by 𝑠𝑖𝑗 = (DY(𝜃𝑗, 𝜙𝑗))𝑖).

Themax-𝑟𝐸 decoding assumes incoherent sum of the speaker signals. For
regular layouts, the modified decodings can be computed by requiring that
the decoding reproduces the original energy and acoustic intensity at the ori-
gin. Within the incoherent sum hypothesis, and assuming that each one of the
incoming waves is a plane wave, a statistical estimator of the signal energy 𝐸𝑗
at the origin is:

𝐸𝑗 =
𝑛

∑
𝑖=1

|𝑠𝑖𝑗|2

and a statistical estimator of the normalised acoustic intensity I𝑗 is

I𝑗 = 1
𝐸𝑗

𝑛
∑
𝑖=1

|𝑠𝑖𝑗|2û𝑖 = 𝑟𝐸v̂𝐸.

This decoding requests:

𝐸𝑗 = 1,

I𝑗 = v̂𝑗 ⟹ {𝑟𝐸 = 1,
v̂𝐸 = v̂𝑗

It is physically impossible to fulfill the condition 𝑟𝐸 = 1 by summing incoher-
ently the signal of several loudspeakers; decodings will instead try to maximise
this value (hence the name). Psychoacoustically, this decoding reproduces the
impression of the original sound at high frequencies, above 500 Hz approxi-
mately.

The in-phase decoding imposes the additional restriction that there are no
loudspeakers emitting in opposite phase. This decoding gives a more robust
localisation for listeners who are far from the sweet spot.

While there is experimental evidence that I𝑗 gives a good indicator of the
perceived source direction, and that a frequency-weighted version of 𝑟𝐸 is a
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good indicator of the perceived source width for broadband signals [Frank,
2013], a detailed analysis of the optimal localization criteria depending on the
frequency is out of the scope of this thesis. However, let us stress the key fea-
ture of themax-𝑟𝐸 or inphase decodings is the incoherent summation hypoth-
esis rather than the specific localization criteria.

For regular or semi-regular layouts, the intensity vector under the incoher-
ent sum hypothesis is parallel to the acoustic velocity vector in the coherent
sum hypothesis and it is possible to obtain the optimal max-𝑟𝐸 or in-phase
decodings by doing slight modifications of the regular decoding, Eq. (2.6)
[Daniel, 2000]. However for non-regular layouts the velocity and intensity
vectors in the two hypothesis are not parallel, the problem is fully nonlinear
and algebraic methods are not helpful. To solve this case a nonlinear method
can be used.

The decoding equations have closed analytic expressions only for regular
loudspeaker arrays [Daniel, 2000], but speaker layouts in real-world installa-
tions are often irregular (in the Ambisonics sense).
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Chapter 3

AMBISONICS DECODING TO
IRREGULAR LAYOUTS

Higher Order Ambisonics has some drawbacks which hinder its widespread
adoption. First, the directionality properties of sound sources encoded in low
order Ambisonics is often regarded as poor. Second, the sweet spot, the area
where the reconstruction is optimal, is small. These two drawbacks can be
ameliorated by going to higher order Ambisonics. Additionally, decoding
Ambisonics to non-regular loudspeaker layouts is challenging. The decod-
ing equations for HOA have closed analytic expressions only for regular loud-
speaker arrays [Gerzon and Barton, 1992, Daniel, 2000], but most real-world
layouts, like the ubiquitous stereo, 5.1 and 7.1 surround configurations, are
non-regular from the Ambisonics point of view. The generation of optimal
and psychoacoustically correct decodings for irregular loudspeakers layouts is
a nonlinear problem which can be solved using numerical search algorithms.
In this section we address this problem by presenting an algorithm for higher
order Ambisonics decoding, together with its open source implementation,
IDHOA [Scaini, 2015].

There are several previous references in the literature calculating the decod-
ing of Ambisonics for irregular loudspeaker arrays. The papers [Wiggins et al.,
2003,Wiggins, 2004] and [Moore andWakefield, 2007,Moore andWakefield,
2011] concentrate on decoding algorithm for the 5.1 ITU layout based on a
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modified tabu search algorithm. Tsang et al. similarly have a decoding strategy
based on genetic algorithms and neural networks [Tsang and Cheung, 2009]
while [Benjamin et al., 2010, Heller et al., 2012] work with a preexisting non-
linear optimisation library.

The algorithm presented here follows the method of [Arteaga, 2013], but
extends the technique up to 5th order Ambisonics. The method differs from
some of the above references in the decoding technique employed, the fitting
functions employed and the focus on 3D layouts (see Section 3.4 for further
details). Besides the methodology, the implementation is very different.

It is to be noted that there are also alternative decoding techniques which
do not involve nonlinear search methods, like decoding to an intermediate
regular layout, and later on using VBAP for decoding [Batke and Keiler,
2010, Boehm, 2011] (see however the comments in [Schmele et al., 2013]).
Or, again, modifying the basic Ambisonics decoding to ensure preservation of
the energywith Energy PreservingAmbisonicsDecoder (EPAD) [Zotter et al.,
2012] and All-Round Ambisonic Decoding (AllRAD) [Zotter and Frank,
2012, Zotter and Frank, 2018]. In [Zotter and Frank, 2019] the authors make
a good comparison between different Ambisonics decoding techniques, with
particular focus on the projection method, mode matching decoder (MAD)
[Poletti, 2005], the EPAD and All-RAD decoders.

The results presented in this Chaper are based on the paper [Scaini and
Arteaga, 2014].

3.1 Psychoacoustically motivated numerical op-
timization of an Ambisonics decoder

The decoding matrix is computed minimising a function by means of a mul-
tidimensional search algorithm. In this section the physical variables (𝐸, 𝐼𝑅,
𝐼𝑇 ) used to calculate the function to beminimized and the objective function
itself are defined.

Assuming 𝑛 different directions sampling the sphere, the energy and
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Order max-𝑟𝐸 in-phase

1 0.577 0.500
2 0.775 0.667
3 0.861 0.750
4 0.906 0.800
5 0.932 0.833

Table 3.1: Maximum theoretical values for 𝐼𝑅
𝑗 (or 𝑟𝐸) for a regular layout for max-𝑟𝐸 and

in-phase decodings.

acoustic intensity generated at the origin are:

𝐸𝑗 =
𝑛

∑
𝑖=1

|𝑠𝑖𝑗|2

I𝑗 = 1
𝐸𝑗

𝑛
∑
𝑖=1

|𝑠𝑖𝑗|2û𝑖,

where 𝑠𝑖𝑗 is the signal emitted by the loudspeaker 𝑖, when reproducing a sound
source coming from direction 𝑗.

The vector I𝑗 can be projected in the radial and transverse part as follows:

𝐼𝑅
𝑗 = I ⋅ v̂𝑗 = 1

𝐸𝑗

𝑛
∑
𝑖=1

|𝑠𝑖𝑗|2 û𝑖 ⋅ v̂𝑗,

𝐼𝑇
𝑗 = ||I × v̂𝑗|| = 1

𝐸𝑗

𝑛
∑
𝑖=1

|𝑠𝑖𝑗|2 ||û𝑖 × v̂𝑗||.

The radial part 𝐼𝑅
𝑗 represents the desired component of the intensity vec-

tor, and the tangential part 𝐼𝑇
𝑗 represents the unwanted component. In an

ideal decoding, 𝐸𝑗 = 1, 𝐼𝑅
𝑗 = 1 and 𝐼𝑇

𝑗 = 0, but regular (ideal) layouts the
values for 𝐼𝑅

𝑗 are always 𝐼𝑅
𝑗 < 1 (see Table 3.1).

Note that the decomposition in Eq. (3.1) is different from the decompo-
sition used in several previous irregular decoding references [Wiggins et al.,
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2003, Wiggins, 2004, Moore and Wakefield, 2007, Moore and Wakefield,
2011]: instead of maximising the norm of the intensity vector, and minimis-
ing the angle mismatch, it proves more natural and effective to maximise the
radial vector components and minimise the tangential components.

From this quantities different cost function terms can be defined:

𝐶𝐸 = 1
𝑛

𝑛
∑
𝑗=1

(1 − 𝐸𝑗)2𝑤𝑗, (3.2)

𝐶IR = 1
𝑛

𝑛
∑
𝑗=1

(1 − 𝐼𝑅
𝑗 )2𝑤𝑗, (3.3)

𝐶IT = 1
𝑛

𝑛
∑
𝑗=1

(𝐼𝑇
𝑗 )2𝑤𝑗, (3.4)

where 𝑤𝑗 is possible weighting function (see Section 3.2.2 for more details).
These contributions can be interpreted as follows: 𝐶𝐸 is the mean quadratic
deviation from the correct level normalisation; 𝐶IR is the mean quadratic de-
viation from the optimal directionality;𝐶IR > 0means that the directionality
of the sources is not optimal, and, finally, 𝐶IT is the mean quadratic value of
the wrong component of the direction;

In the case of the in-phase decoding, there is an extra cost function to take
into account:

𝐸ph
𝑗 =

𝑛
∑
𝑖=1

|𝑠𝑖𝑗|2𝜃(−𝑠𝑖𝑗),

𝐶ph = 1
𝑛

𝑛
∑
𝑗=1

(𝐸ph
𝑗 )2𝑤𝑗,

where 𝜃(⋅) is the Heaviside step function.
While physically it is possible to obtain𝐶𝐸 = 𝐶IT = 0, it is impossible to

get the ideal decoding with 𝐶IR = 0, i.e. 𝐼𝑅 = 1.
Similarly to the energy and intensity terms, it is possible to define some cost

function terms for the pressure and velocity (radial and transverse), which are
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the relevant quantities for the low frequencies decoders. Being

𝑃𝑗 =
𝑛

∑
𝑖=1

|𝑠𝑖𝑗|2

V𝑗 =
𝑛

∑
𝑖=1

𝑠𝑖𝑗û𝑖,

the pressure𝑃 and the particle velocity v, we define the cost function terms as:

𝐶𝑃 = 1
𝑛

𝑛
∑
𝑗=1

(1 − 𝑃𝑗)2𝑤𝑗, (3.5)

𝐶VR = 1
𝑛

𝑛
∑
𝑗=1

(1 − 𝐼𝑅
𝑗 )2𝑤𝑗, (3.6)

𝐶VT = 1
𝑛

𝑛
∑
𝑗=1

(𝐼𝑇
𝑗 )2𝑤𝑗, (3.7)

Finally, the different cost function terms are combined to give the objective
function to be minimised:

𝑓 = 𝛼𝑃 𝐶𝑃 + 𝛼VR𝐶VR + 𝛼VT𝐶VT

+ 𝛼𝐸𝐶𝐸 + 𝛼IR𝐶IR + 𝛼IT𝐶IT

+ 𝛼ph𝐶ph.
(3.8)

The values of the coefficients 𝛼𝑃 , 𝛼VR, 𝛼VT (basic), 𝛼𝐸, 𝛼IR, 𝛼IT (max-𝑟𝐸)
and 𝛼ph (in-phase) can be selected at will.

3.2 IDHOA Decoder

3.2.1 The Decoder Strategy
The IDHOA decoder that calculates decoding matrices for Ambisonics up
to order 5. The decoder is based on the minimization of the objective func-
tion in (3.8). Our implementation of IDHOA [Scaini, 2015] makes use of

25



Python [van Rossum, 1995], IPOPT [Wächter and Biegler, 2006] and Py-
Torch [Paszke et al., 2017]. The flow of the algorithm can be summarized as
follows:

1. Initialization: Operations that are performed only once when the algo-
rithm is launched.

2. Given the loudspeakers’ layout, calculate D, both Eq. (2.6) and
Eq. (2.5).

3. Calculate the various physical variables that constitute the objective
function, 𝑝, 𝐸, v, I, over the 𝑛 sampling directions. Calculate the ob-
jective function, which is 𝑓 = 𝑓(D).

4. Select the D matrix that minimizes 𝑓 , 𝑓 = min{𝑓(Dproj), 𝑓(Dpinv)},
to be used as the initial point for the minimization algorithmDinit.

5. Fix constraints (optional): constrain some parameters to have a fixed
value (e.g. lock to zero).

6. Minimization stage: Call to the external minimization algorithm, pass-
ingDinit and𝑓 . When theminimization algorithmterminates, it returns
a D̃.

3.2.2 Configuration of IDHOA
In the IDHOA decoder it is possible to tune several parameters to obtain the
desired Ambisonics decoder. In the following we will detail the compulsory
and optional ones.

Layout First to be provided, are the coordinates of the target layout (𝜃, 𝜙).
It is also possible to provide cartesian (𝑥, 𝑦, 𝑧) coordinates. Cartesian coor-
dinates will be converted to (𝜃, 𝜙), stripping out the distance 𝑅 information.
The hypothesis is that the distance will be addressed in another stage of the
decoding, with proper delays and near-field filters.
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Basic settings Degree. The decoder allows to generate the Ambisonics de-
coding coefficients up to fifth order, setting the DEG variable to the desired
order. Decoding scheme. In the first implementations of IDHOA described
in published papers, the DEC variable allowed to choose between the three dif-
ferent decodings: basic, max-r𝐸, in-phase. In the recent years we decided to
simplify this approach and have only a universal decoding, where the different
requests for the optimization are balanced with the 𝛼𝐸, 𝛼𝑃 , … , coefficients
directly. This choice has two motivations: firstly, in HOA it is possible to re-
construct pressure and energy at the same time1, so separating the decoder in
two (or three) completely different decoders can be avoided, or the transition
between the different decors can be made smoother. Secondly, the rigid sepa-
ration in different cost functions depending of the decoding schemewas a lim-
itation during the experimentation with wavelet format decoding described in
Part II.

Optional parameters The weighting function 𝑤𝑗 in the definition of the
various terms (Eqs. (3.2) and following) is an optional biasing factor which
allows to improve the decoding performance in some regions of the sphere
(at the expense of other regions). A non-biased decoding is given by 𝑤𝑗 =
1. Some examples of possible weighting functions are reported in [Arteaga,
2013]. For example, it is possible to use a function that masks automatically
the areas with no loudspeakers; being û the direction of the loudspeaker, and
v̂ the direction where the function is being evaluated:

𝑤𝑗 = {1 if 𝑑(û, v̂) < ̃𝑑,
𝛽 if 𝑑(û, v̂) ≥ ̃𝑑,

1It is possible also at FOA, but the price to pay to have a linear (pressure) and a quadratic
(energy) quantity (which are function of the speakers’ gains) that sum to 1, is having negative
gains. This is typically a bad idea, because negative gains mean out-of-phase speakers that
results in a limited (depending on frequency) area where the signals sum properly, i.e. small
sweet spot.
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where 𝛽 is a parameter that can be tuned2 with 0 ≤ 𝛽 ≤ 1, 𝑑 is the angular
distance calculatedwith theHaversine formula [Bureau, 1997], and ̃𝑑 is a fixed
threshold (a reasonable value can be 1.5 times the mean great-circle distance
between the loudspeakers). This approach is quite flexible and canbemodified
to fit other preferences.

Another interesting feature is the preservation of the natural left/right
symmetry of the speakers layout in the generated decoding matrix. One part
of the algorithm searches for left-right speakers and pairs them, reducing the
effective number of degrees of freedom, and fixing this symmetry into the op-
timized decoding matrixD.

In our Python implementation, these parameters are set in the
layout_name.ini file.

3.3 Performance of the Decoder
The IDHOA decoder receives as input the speakers’ layout and builds the ob-
jective function to beminimised calculating somephysical variables of interest.
It has been chosen tomaximise (to one) the radial acoustic intensity and the en-
ergy and tominimise (to zero) the tangential acoustic intensity, see Eqs. (3.2)–
(3.7). It is possible to generate the decoding coefficients for Ambisonics up to
fifth order, with a complete freedom in the choice of the decoding scheme: it
can be basic3, max-𝑟𝐸, in-phase or a blend of all of them.

The tests reported here were carried out on the layout of the 3D audio stu-
dio in BarcelonaMedia, equipped with 23 loudspeakers, placed in an irregular
hemispherical configuration4.

The results reported in this Section make reference to the version of ID-
HOA originally published here [Scaini and Arteaga, 2014]. The Table 3.2
shows the values of the objective function 𝑓 for max-𝑟𝐸 and in-phase decod-

2With𝛽 = 0 theweighting behaves like a binarymask, with𝛽 > 0 the process ofmasking
is smoother, keeping partially into account the areas without speakers.

3This option is given by completeness, since the pseudoinverse method renders exact re-
sults in this case

4The layout is explicitly given as an example in IDHOA code [Scaini, 2013].
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Decoding 𝑓 Naive 𝑓 Opt. time 𝑛𝑎𝑐𝑡𝑖𝑣𝑒

1𝑠𝑡 max-𝑟𝐸 74.9 24.36 235 𝑠 12 (/23)
1𝑠𝑡 in-phase 66.4 24.36 286 𝑠 13 (/23)
3𝑟𝑑 max-𝑟𝐸 193.2 13.94 736 𝑠 21 (/23)
3𝑟𝑑 in-phase 115.5 13.36 814 𝑠 20 (/23)

Table 3.2: Objective function𝑓 value for different decodings at first and third order. Moreover
it is reported the lasted time for the algorithm to reach theminimum, and the number of active
speakers at the end of the evaluation (out of 23).

ings at first and third order, for the naive and optimized decodings. The naïve
refers to the decoding equation (2.6), corrected for the desired modified de-
coding (max-𝑟𝐸 or in-phase). From this table it is possible to extract a qualita-
tive fact: the value of the objective function decreases during the optimiza-
tion process. The quantity 𝑛𝑎𝑐𝑡𝑖𝑣𝑒 is the number of speakers left active in
the decoding. Originally the “muting” of speakers and/or Ambisonics chan-
nels was obtained by running the minimization several times, and each time
locking to zero the coefficients under a certain threshold. This procedure was
necessary since the used minimization algorithm, Sbplx (reimplementation
of Subplex [Rowan, 1990]) from NLopt library [Johnson, 2007], is a local
derivative-free algorithm. In the new implementation, the minimization algo-
rithm uses jacobian and hessian and gets to the similar results in one run. The
change in the algorithm impacted also the execution times reported in the Ta-
ble, reducing them by a factor 10 approximately.

Comparing Figures 3.1(a) and 3.1(b) it is possible to note that the energy
is properly reconstructed by IDHOA at all three Ambisonics orders consid-
ered here. Looking at Figures 3.1(c), 3.1(d), 3.2(c) and 3.2(d) it is possible
to highlight the effect of increasing the Ambisonics order: the radial inten-
sity improves at higher orders, getting close to 0.8 in all directions covered by
loudspeakers already for second order Ambisonics. Figures 3.1 and 3.2 are all
obtained with the last version of IDHOA code, with a combination of coeffi-
cients for the cost function that mixes all the three decoding schemes.

The decoder was tested carrying out some informal listening tests, where
the subjects involved noted an improved localization with HOA with respect
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to FOA. Furthermore, the subjects reported Ambisonics to display smoother
pannings than VBAP does. A quantitave subjective test is reported in Chap-
ter 4 for 2D 5.0 arrays.

3.4 Summary
The described IDHOA decoder has been released as open-source code under
the GPLv3 license, and can be downloaded at [Scaini, 2015]. The code gen-
erates a set of decoding coefficients for each loudspeaker allowing to decode
Ambisonics signals up to fifth order. The strategy adopted for the search of
the decoder aims to maximise the directionality of the decoded sounds on a
number of sampled directions over the sphere, minimise the directional mis-
match and ensure the correct sound level.

Some remarkable properties of the decoder are:

• IDHOA can generate basic, max-𝑟𝐸, in-phase (and any almost contin-
uous combinations of them) periphonic decoders up to fifth order of
Ambisonics.

• Automatic disconnection of loudspeakers5, and/or Ambisonics order
muting6.

• Automatic recognition of exact or approximate left/right symmetry in
the layout.

• Optional weighting of some sectors of the space, to avoid trying to op-
timize large sectors with no speakers.

• Optional horizontal plane and frontal area weighting, to provide a bet-
ter imaging in the frontal area and/or the horizontal plane.

5When there are more loudspeakers that the minimal number for a given order in Am-
bisonics, often the best decoding strategy is to use a subset of all loudspeakers.

6It is possible for IDHOAto attempt todecode a givenAmbisonics orderwith less speakers
than channels. The orders that can’t be properly decoded are automatically muted.
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(a) reconstructed energy for naïve decoding, horizon-
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(c) reconstructed intensity for naïve decoding, hori-
zontal plane.
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Figure 3.1: First, second and third order Ambisonics. Comparison between naïve and opti-
mized decodings for a panning around the horizontal plane, (front 0∘ – left 90∘). The figures
on the left side show the naïve decoding, while those on the right side show the optimized
decodings.
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(c) reconstructed intensity for naïve decoding, vertical
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(d) reconstructed intensity for optimized decoding,
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Figure 3.2: First, second and third order Ambisonics. Comparison between naïve and opti-
mized decodings for a panning around the vertical plane, (front 0∘ – up 90∘). The figures
on the left side show the naïve decoding, while those on the right side show the optimized
decodings.
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The developed decoder successfully minimises the objective function, op-
timizing the intensity vector and ensuring the correct energy reproduction.
Informal listening tests confirm the improvement from the naïve to the opti-
mized decoding, and detect a clear improvement in the localisationwithHOA
compared to FOA.
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Chapter 4

IDHOA EVALUATION

InChapter 3wepresented an algorithm for decoding higher orderAmbisonics
for irregular real-world 3D loudspeaker arrays, implemented in the form of
IDHOA, an open source project. IDHOA has many features tailored for the
reproduction of Ambisonics in real audio venues. In order to benchmark the
performance of the decoder against other decoding solutions, we restrict the
decoder to 2D layouts, and in particular to the well studied stereo, 5.1 and 7.1
surrounds.

We report on the results of the objective evaluationof the IDHOAdecoder
in these layouts, and of the subjective evaluation in 5.1 by benchmarking ID-
HOA against different decoding solutions.

This Chapter is based on the paper [Scaini and Arteaga, 2015].

4.1 Objective Evaluation
We generated dual-band decodings (basic decoding strategy for low frequen-
cies, andmax-𝑟E for high frequencies) for the stereo, 5.1 and 7.1 surround lay-
outs, at different Ambisonics orders.

For each decoding tested, a point source has been encoded in different di-
rections around the circle, and the following has been considered:

1. The sound level generated from each direction (values of 𝐸 and 𝑝).
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Mean LF Mean HF

Decoding 𝑣R 𝑣T 𝐼R 𝐼T
5.0 BHL1 1.00 0.00 0.69 0.10
5.0 idhoa1 1.00 0.00 0.69 0.15
5.0 FAA2 1.00 0.00 0.65 0.01
5.0 idhoa2 1.00 0.02 0.78 0.13
5.0 idhoa3 1.00 0.02 0.80 0.14
7.0 idhoa3 1.01 0.01 0.87 0.06

Table 4.1: Mean values around the circle for the radial and transversal components of the ve-
locity (basic component, low frequencies) and radial and transversal components of the inten-
sity (max-rE component, high frequencies) for the different decodings. The best mean value
for the radial intensity for the 5.0 layout is reached by the IDHOA decoding at third order,
idhoa3.

2. The amount of directionality of the sound generated (values of 𝑣R and
𝐼R).

3. The correctness of position of the sound source (values of 𝑣T and 𝐼T).

4. The amount of crosstalk for sources panned exactly at the loudspeaker
positions.

For the 5.1 layout we have additionally compared the decoders generated with
select reference state-of-the-art decoders. The criteria for decoder selectionwas
first: public availability, and second: the decoders had to target the standard
ITU angular position1.

Layout 5.0: first order decoding Regarding the first order decoder gener-
ated by IDHOA (from here on referred as idhoa1), the low frequency portion
of the decoder reproduces correctly the pressure and velocity and is identical
to the analytic decoder generate by the analytic method (pseudoinverse). The

1For example, theVienna decoders [Gerzon and Barton, 1992] do not address the standard
ITU layout.
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Crosstalk HF (dB)

Decoding C L/R Ls/Rs Lb/Rb

2.0 idhoa1 – −7.2 – –
5.0 BHL1 1.7 −0.8 −6.7 –
5.0 idhoa1 1.9 2.5 −7.3 –
5.0 FAA2 1.9 −1.8 −4.7 –
5.0 idhoa2 1.7 −4.5 −11.3 –
5.0 idhoa3 2.6 –5.8 –13.0 –
7.0 idhoa3 2.5 −8.1 −3.8 −6.8

Table 4.2: Total crosstalk for the different loudspeakers (crosstalk defined here as the portion
of energy emitted by other loudspeakers for signals panned exactly at the loudspeaker posi-
tions, as compared to the energy emitted by that loudspeaker). The best values for the total
crosstalk for the 5.0 layout are highlighted in bold.

high frequency portion of the decoder reconstructs correctly the energy and
attempts to maximize the radial component of the intensity, at the expense of
some localization mismatch. We activated an option in IDHOA to privilege
the frontal region over the lateral and rear regions during the optimization of
the decoding.

As reference decoderwe have chosen the one published in [Benjamin et al.,
2010], later on referred as BHL1 decoding. This decoder addresses the stan-
dard ITU 5.0 layout described before and it was obtained with a similar mini-
mizationprocess as in IDHOA. It is tobe remarked that surprisingly theBHL1
decoder is normalized to pressure (assuming coherent addition of the low fre-
quency signals) in the high frequency band.

As shown in Tables 4.1 and 4.2 the performance of both decoders is sim-
ilar with respect to directionality properties. The main difference is the pres-
sure normalization at high frequencies of the BHL1 decoding, which leads to
a lower output level at high frequencies.

Layout 5.0: second order decoding The 5.0 layout has asmany loudspeak-
ers as channels in second order Ambisonics, meaning that in principle the an-
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alytic inversion method could be used to reconstruct the second order Am-
bisonics components from the five loudspeaker signals. However, the analytic
solution, while nominally correct, relies on extremely large phase cancellations
which are not desired in practice. As an alternative we designed the low fre-
quency portion of the idhoa2 decoding by requesting the correct pressure and
velocity (which can already be obtained at first order), and secondarily by op-
timizing the intensity vector. The high frequency portion of the decoding was
created using similar criteria as the first order counterpart.

The second order decoder chosen as reference is the decoder derived by
Fons Adriaensen that comes with the Ambdec decoding software [Adriansen,
2015], later called simply FAA2 decoding. This decoder is one of the few pub-
lic second order decoders and probably themost widespread since it is shipped
with the Ambdec software.

Figure 4.1 shows the comparisonbetween the secondorder decoders FAA2
and idhoa2. The FAA2decoder (Figures 4.1(a), 4.1(c) and 4.2(a)) shows a 3 dB
front dominanceboth at lowandhigh frequencies. AtHF the radial part of the
intensity vector is maximum, 0.9, at 0∘ and then decreases below 0.8 at ±45∘

while the localization error, represented by the tangential part of intensity, is
always very small.

While we could possibly have generated a very similar decoder by tun-
ing IDHOA parameters, we decided to generate a different decoder, assuring
the energy to be preserved in all directions, and asking for better localization
(greater radial intensity) at the expense of some directionality mismatch, see
Figures 4.1(b), 4.1(d) and 4.2(b). The HF plot highlights clearly the differ-
ences between the two decoders: in idhoa2 the choice is to have good source
size at the expense of some source localization mismatch where no loudspeak-
ers are present. The reasoning behind allowing for some error in sound posi-
tion is that: if the apparent source size is already “big” then a localization error
is not going to be relevant. So we preferred to reduce the apparent size first
and then, if the apparent source size gets sufficiently “small”, optimize for its
position2. FAA2 decoder prefers to keep small the angular error along all the
circle but with an increased source size. This difference is also evident from

2Optimize an Ambisonics decoding implies always a trade off and it is the result of a delib-
erate (arbitrary but informed) choice.
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(c) FAA2 decoding for HF.
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(d) idhoa2 decoding for HF.

Figure 4.1: Second order Ambisonics decoders. In the left column the FAA2 decoding
shipped with ambdec decoder software by Fons Adriaensen, and in the right column the one
generated with IDHOA. Plots (a) and (b) show the magnitude of pressure (dotted black) and
radial (dashed red) and transverse (continuous green) components of velocity as a function of
the polar angle in the horizontal plane. Plot (c) and (d) show the magnitude of energy (dot-
ted black) and radial (dashed red) and transverse (continuous green) components of intensity
vector as a function of the polar angle in the horizontal plane.
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Figure 4.2: SecondorderAmbisonics decoders. In the left column theFAA2decoding shipped
with ambdec decoder software by FonsAdriaensen, and in the right column the one generated
with IDHOA. Plots (a) and (b) show the gains of the five different loudspeakers as a function
of the source position.
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Figure 4.3: Second order Ambisonics decoders. In the left column the FAA2 decoding
shipped with ambdec decoder software by Fons Adriaensen, and in the right column the one
generated with IDHOA. Plots (a) and (b) show the gains (in logarithmic scale) of the five dif-
ferent loudspeakers as a function of the source position. On the same plot is reported the
reconstructed energy and intensity.
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the mean values reported in Table 4.1.
Finally, let us note that the idhoa2 decoder has smaller values for the

crosstalk of the lateral loudspeakers than the FAA2 decoder (see table 4.2).

Layout 5.0: third order decoding In principle the third order decoding
goes beyondwhat it can be reproducedwith a 5.1 layout (there aremore chan-
nels than loudspeakers). Trying to decode third order Ambisonics in a 5.1 lay-
out can lead to some spatial aliasing, which can manifest in the form of “holes
in the middle” of the loudspeaker layout.

However, IDHOA can generate a meaningful third order decoder to a 5.0
layout leading to a decoding that has better directionality properties near the
loudspeaker positions, at the expense of showing the individual character of
each loudspeaker. This is in contrast to traditional Ambisonics decodings,
which tend to provide an approximately constant radial intensity in all direc-
tions. This way, the resulting behaviour comes closer to traditional pairwise
panning.

Table 4.1 and 4.2 show that the third order decoding provides amarginally
better mean directionality, with somewhat reduced crosstalk between the
loudspeakers.

Layout 7.0: third order decoding The 7.0 layout has enough loudspeak-
ers to decode, in principle, Ambisonics up to third order. The distribution of
loudspeakers is not regular, from an Ambisonics point of view, but is indeed
more homogeneous than 5.0 layout, leading to a better Ambisonics decoding.
For a comparison between 5.0 and 7.0 look for example Table 4.1, the inten-
sity components indicate better focused and localized sources in 7.0 than 5.0.
Figures4.1(d) and 4.4(b) show that in 7.0 the localization properties are more
uniform than in 5.0 and the minimum value for the radial intensity is larger
than 0.7, which is already considered to be good.

Layout 2.0: first order decoding We also produced a decoder for stereo
using IDHOA software, requesting an average of −3 dB trim in the rear part.
This choice is common but arbitrary, other choices are possible andmotivated
by the amount of information to be mapped from the back to the front. In

41



0°

45°

90°

135°

180°

225°

270°

315°

0.2
0.4

0.6
0.8

1.0

pressure Ambisonics order 3 LF
radial velocity Ambisonics order 3 LF
transverse velocity Ambisonics order 3 LF
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(b) 7.0 idhoa3 decoding for HF.
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Figure 4.4: Third order decoding to 7.0 layout, obtained with IDHOA software.
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Figure 4.5 it is possible to see how the trim in the rear region is realized, while
a good localization is achieved between ±30∘.

Anyway, in our opinion, this has to be considered as an exercise in style,
since for such low number of degrees of freedom manual methods are to be
preferred, given that manual fine tuningmight bemore predictable and adjust
better to the individual preferences.

4.2 Subjective Evaluation

4.2.1 Methodology
By using a cohort of 14 subjects with age comprised between 20 and 40 years
(13 males, 1 female, all of them with at least some degree of listening experi-
ence), we compared, by means of a “MUlti Stimulus test with Hidden Ref-
erence and Anchor” (MUSHRA) test [ITU-R, Recommendation BS, 2003],
five different Ambisonics decoders, two state-of-the-art (first and second or-
der), and three generated with IDHOA (first, second and third order).

The tests were performed in a treated listening room equipped with Gen-
elec 8040B loudspeakers. The speakers’ feed signals are compensated for dis-
tance, near-field effect and equalized for room coloration.

The different 5.0 decodings are assessed with respect to the following cri-
teria:

1. The amount of directionality of the sound generated and the correct-
ness of position of the sound source.

2. Smoothness of panning

3. Global spatial perception

We run three different tests:

1. Localization test. Source positioned at 0∘, ±30∘, ±110∘. Reference is
the loudspeaker itself3.

3We run some preliminary tests with a source at 90∘ but all the decoders performed quite
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Figure 4.5: First order decoding to 2.0 layout, obtained with IDHOA software.
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2. Panning test. Circular panning, one round and two rounds in ten sec-
onds. Reference is a standard amplitude panning with size (maximum
cross-talk with adjacent channels is approximately -12 dB). The speak-
ers layout of the reference, in the absence of a rotating loudspeaker, has
been designed to be a custom 8.0 setup (5.0 with three more channels
at ±90∘ and 180∘).

3. Global perception test. Custom object-basedmix of a pop song rendered
through 5.0 Ambisonics and 8.0 reference layout with amplitude pan-
ning.

For the first two tests the types of sources used are broadband noise (pink
noise), voice (male English voice speaking, recorded in anechoic room) and
music (fragment of flamenco with voice and instruments).

Each subject had to evaluate 7 different dual-band decoders, with cut-off
frequency set to 400Hz, (5 Ambisonics, 1 reference, 1 anchor) with respect to
the reference. The anchor has been chosen to be a basic single-band “naïve” or
“projection” decoding.

For test 1 (localization test), each subject evaluated the 7 decoders in 9 trials
(3 positions times 3 signals). For test 2 (panning test), each subject evaluated
the 7 decoders in 4 trials (2 pannings times 2 signals). Test 3 (assessing the
global spatial perception), had only one trial per subject.

The tests where in one trial the reference is evaluated less than 90 over 100
are discarded from the analysis, leaving 11 subjects in the worst case.

The three tests were done in succession and lasted between 30minutes and
2 hours, depending on the listener.

For each one of the three tests we do the following comparisons:

1. BHL1 vs. idhoa1

2. FAA2 vs. idhoa2

3. idhoa2 vs. idhoa1

badly. For this reason we concentrated on positions where a loudspeaker is present in the
Ambisonics setup.
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4. idhoa3 vs. idhoa2

After checking the normality of the data with the Kolmogorov-Smirnov test,
each pairwise comparison is done using the two-tailed paired t-test method on
the averages of the trials of each subject. The statistical influence of multiple
comparisons is considered and corrected with the Holm-Bonferroni method
[Abdi, 2010].

4.2.2 Tests Results
Figures 4.6 and 4.7 show the results of the three different tests. Figures 4.6(a)
and 4.6(b) show the results of the localization test, grouped for source direc-
tion and source type, respectively.

In general the BLH1 decoder exhibits good properties at localizing the
sources in correct place [e.g. see the 110∘ set of trials in Figure 4.6(a)] but the
lower loudness, due to thepressure normalization at high frequencies, was neg-
atively evaluated by all listeners. Globally, the BLH1 decoder was not better
evaluated than the anchor, probably due to the loudness issue.

The FAA2 decoder suffers especially when the source is at 110∘. This sug-
gests that the request for zero angular error in every direction at the expense
of spatial sharpness and crosstalk, as FAA2 does, is detrimental to localization
performances.

Some decoders, particularly BHL1 and idhoa1, perform especially bad at
30∘. Particularly problematic for Ambisonics is the frontal region at 0∘, where
all the three speakers are active at the same time.

In the global analysis, averaging all themeasurements, it is possible to high-
light a trend for the decoders where idhoa1 and FAA2 are almost equivalent,
and idhoa2 and 3 are better evaluated than the former.

All the listeners reported that the differences between the decoders where
evident when listening to the broadband noise, while muchmore subtle when
using “natural” signals, especially music. Figures 4.6(b) and 4.7(a) show that
the MUSHRA scores are higher for voice and music than for noise, both in
localization and panning.

Since theKolmogorov-Smirnov test showedno significant deviations from
normality, data are analyzed performing a pairwise comparison between four
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Test 1 (localization)

Comparison
Orig.

𝑝-value
Corr.

𝑝-value S Diff.

idhoa1 vs. BHL1 0.004 0.008 ** 14
idhoa2 vs FAA2 0.000014 0.00006 *** 14
idhoa2 vs idhoa1 0.002 0.007 ** 8
idhoa3 vs idhoa2 0.09 0.09 – 2

Test 2 (panning)

Comparison
Orig.

𝑝-value
Corr.

𝑝-value S Diff.

idhoa1 vs. BHL1 0.04 – – 16
idhoa2 vs FAA2 0.1 – – 9
idhoa2 vs idhoa1 0.04 0.08 – 6
idhoa3 vs idhoa2 0.11 – – 3

Test 3 (global perception)

Comparison
Orig.

𝑝-value
Corr.

𝑝-value S Diff.

idhoa1 vs. BHL1 0.0008 0.003 ** 23
idhoa2 vs FAA2 0.4 – – −2
idhoa2 vs idhoa1 0.3 0.96 – 4
idhoa3 vs idhoa2 0.98 – – 0

Table 4.3: Significance analysis of the four comparisons in the three tests. The original𝑝-value
lists the result of the two-tail paired t-test. The corrected value corresponds to the result of the
Holm-Bonferroni correction. The column “S” indicates the significance. The “Diff.” column
indicates the average difference in MUSHRA points.
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combinations of decoders using the two-tailed paired t-test method, as ex-
plained in Section 4.2.1, and results are summarized in Table 4.3.

In the localization test, the pairwise comparison reveals that there is sig-
nificant difference between idhoa1 and BHL1, idhoa2 and FAA2, where the
IDHOA decoders are significantly better rated than the alternatives. When
comparing idhoa2 and idhoa1, the former gets significantly better evaluation
than the latter. While checking for idhoa3 against idhoa2, no significant dif-
ference is found. Not surprisingly, this trend follows closely the values for 𝐼R
reported in Table 4.1.

In the panning test none of the four comparisons gives significant differ-
ence among the decoders. Nevertheless, the tendency is completely analogous
to the localization test, hinting that similar significant results could perhaps be
obtained with increased statistics.

For the global evaluation test only the comparison idhoa1 versus BHL1
results significant, and the former is significantly better rated than the latter.
Again, this could be due to the level difference.

4.3 Summary

IDHOA can produce a wide variety of decoders both in 2D and 3D, allowing
for afine control over the loudness and localizationproperties by tuning a small
set of parameters.

The energy and intensity plots show that the decodings generated with
IDHOAhave –to some extent– better directionality properties than the state-
of-the-art decoders at the expense of some error in localization.

Subjective testing has shown that localization properties of the decodings
generated by IDHOA are better evaluated than the state-of-the-art decoders,
with a similar trend for the panning properties (although results are not sig-
nificant in this case). On the other hand, no significant differences have been
found in the global evaluation test (except for the state-of-the-art first order
decoder, which can probably be attributed to a level mismatch). This might
indicate that the chosen fragment is not representative enough to show differ-
ences between the decoders.

48



M
U

S
H

R
A

 s
c
o
re

-10

0

10

20

30

40

50

60

70

80

90

100

110

0 deg
30 deg

110 deg

total

Localization: position (11 subjects, 95% CI, N-dist)
ref

BHL 1

idhoa 1

FAA2

idhoa 2

idhoa 3

anchor

(a) Test 1 (localization). Trials grouped for source direction.
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(b) Test 1 (localization). Trials grouped for source type.

Figure 4.6: Listening tests results. Figure (a) shows the listening test scores for source position
and size evaluation grouped for source position, while in (b) the scores are grouped for source
type. Error bars correspond to two times the standard deviation of the mean.
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Figure 4.7: Listening tests results. Figure (a) shows the results for panning quality grouped for
source type. Figure (b) reports the scores obtained by the different decoders evalueted with a
“pop song” spatial composition. Error bars correspond to two times the standard deviation
of the mean.
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The code used to generate the Ambisonics decodings and the decodings
themselves are publicly available in [Scaini, 2015].
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Part II

Wavelets
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Chapter 5

INTRODUCTION TO
WAVELET THEORY

In this Chapter we want to give sufficient background information to be able
to understand the idea behind our wavelet optimization, even if our approach
aims at capturing the main concepts of wavelets, e.g. locality, more than a for-
mal wavelet construction.

The contributions to Wavelet Theory come from very different areas of
Science and Engineering. Because the wavelets come from very different areas
of expertise, there are many ways to motivate their construction and under-
stand their properties. This fragmented and diverse development also lead to
many wavelet transforms and wavelet-generation schemes. Moreover, one of
the main concepts behind the wavelet transforms, especially for compression,
is to adapt the basis of the analysis functions to the signal to be analyzed. For
this reason there are almost as many wavelet families as applications or prob-
lems, increasing the wild diversity of wavelet approaches.

5.1 Introduction to Wavelet Transforms
In this section we will gradually introduce the concept of Wavelet transform
by similarity and difference with the Fourier transforms.
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Fourier Transform The Fourier transform (FT) of a one dimensional
square integrable signal 𝑠(𝑡) is given by

𝑆 (𝑓) = ∫
+∞

−∞
𝑠(𝑡)𝑒−2𝑖𝜋𝑓𝑡𝑑𝑡 (5.1)

the inverse transform is given by

𝑠 (𝑡) = ∫
+∞

−∞
𝑆 (𝑓) 𝑒2𝑖𝜋𝑓𝑡𝑑𝑓. (5.2)

Equation (5.1) gives a representation of the frequency content of the signal
𝑠(𝑡) but gives no information about its localization in time, vice versa for
Eq. (5.2). The bases of the Fourier transform are the sine and cosine. The
FT, then, maps time (or space) to frequency (and vice versa) but, because of
the infinite support of the FT basis functions, it is impossible to have infor-
mation on time and frequency at the same time. Note that the same happens
with the SphericalHarmonics (and sowithAmbisonics), just the twodomains
connected by the SH are space, (𝜃, 𝜙), and ‘frequency’ in spherical harmonics
terms, (𝑙, 𝑚).

Windowed Fourier Transforms Oneway to have information on both do-
mains at the same timewhile preserving the linearity of the operator is to intro-
duce a window, giving birth to the windowed Fourier transform (WFT), also
known as short-time Fourier transform (STFT). Being 𝑤(𝑡) a window func-
tion (real, for simplicity) with a finite integral and compact support (i.e. non-
zero over a finite interval1), the WFT of the signal 𝑠(𝑡) is defined as:

𝑆𝑊 (𝜏, 𝑓) = ∫
+∞

−∞
𝑠(𝑡)𝑤(𝑡 − 𝜏)𝑒−2𝑖𝜋𝑓𝑡𝑑𝑡

The application of a window has several consequences. The transform
is function of two variables, the frequency 𝑓 and the position at which the

1This condition is often relaxed by asking some fast decay, for example exponential.
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window is applied 𝜏 . The filter function 𝑤(𝑡) is a window in time but also
a window in the frequency spectrum 𝑓 around 𝜏 . The shape of the filter in
frequency domain is 𝑊(𝑓), which is the FT of 𝑤(𝑡). One thing that is often
forgotten (and it is good to keep inmind alsowhenwewill talk aboutwavelets)
is that the shape of 𝑊(𝑓) in general is very different from 𝑤(𝑡), and only for
a limited set of functions it is possible to get 𝑤(𝑡) ∝ 𝑊(𝑓). The choice of
the window in the time domain affects the shape of the window in frequency
domain: typically there will be a main lobe and some “spill” at low and high
frequencies. If we define the spread in frequency, bandwidth, of the window
𝑤(𝑡) as:

Δ𝑓2 = ∫ 𝑓2|𝑊(𝑓)|2𝑑𝑓
∫ |𝑊(𝑓)|2𝑑𝑓 ,

while the spread in time can be defined as:

Δ𝑡2 = ∫ 𝑡2|𝑤(𝑡)|2𝑑𝑡
∫ |𝑤(𝑡)|2𝑑𝑡

(by Parseval’s theorem both denominators are equal, and are the energy of
𝑤(𝑡)) then the Heisenberg inequality bounds their product2

Δ𝑓 Δ𝑡 ≥ 1
4𝜋.

The Heisenberg inequality has two consequences. First, it is not possible to
have infinite precision in both time and frequency. This means that it is not
possible to separate two impulses that are closer thanΔ𝑡 or separate two tones
that are closer thanΔ𝑓 . The second effect is that, once the window is chosen,
the resolution limit is the same over all times and frequencies. For example,
let’s imagine we choose a window in time to have good resolution at mid fre-
quencies, then we will get poor resolution in frequency for the low frequen-
cies, but for high frequencies wewill get very good resolution in frequency and

2The lower bound∆𝑓 ∆𝑡 = 1
4𝜋 is reached by the Gabor transform that uses a Gaussian

as 𝑤(𝑡) window function. Note that the FT of a Gaussian is a Gaussian, so the 𝑊(𝑓) is a
Gaussian too. The Gabor transform has a set of nice properties that come from the choice of
the Gaussian as 𝑤(𝑡).
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a very bad one in time. (In typical audio applications more than one STFT is
run in parallel with different window sizes).

WaveletTransform As already said, thepaths that lead to theWaveletTrans-
form come from very different directions, but the ideas and motivations be-
hind it are the same and can be reduced to two:

1. constant resolution along frequency: ∆𝑓
𝑓 = 𝑐, with 𝑐 a constant (in

signal processing is known as constant-Q analysis);

2. to model a signal use a basis that is similar to the signal resulting in less
coefficients and better compression.

The first concept is visually rendered in Figure 5.1: instead of changing
the frequency of the basis function inside a window of fixed length, the idea
is to compress or stretch (scale) a time-limited oscillating function effectively
changing its support and frequency at the same time.

If we call 𝜓 this “time-limited oscillating function” then we can write this
idea as:

𝐶𝑊𝑇𝑠(𝑎, 𝑏) = 1
√|𝑎|

∫
+∞

−∞
𝑠(𝑡)𝜓∗ (𝑡 − 𝑏

𝑎 ) 𝑑𝑡. (5.3)

𝐶𝑊𝑇𝑠(𝑎, 𝑏) is the ContinuousWavelet Transform (CWT) of the signal 𝑠(𝑡)
and is function of two variables: 𝑎, calleddilation (scale) and 𝑏, the translation.
Dilating a wavelet means stretching it (if |𝑎| < 1) or compressing it (if |𝑎| >
1). We can restrict to 𝑎 > 0 without loss of generality.

Typically Eq. (5.3) is written in a more compact form as:

𝐶𝑊𝑇𝑠(𝑎, 𝑏) = ∫
+∞

−∞
𝑠(𝑡)𝜓∗

𝑎,𝑏(𝑡)𝑑𝑡

with

𝜓𝑎,𝑏(𝑡) = 1
√|𝑎|

𝜓 (𝑡 − 𝑏
𝑎 ) , with 𝑎, 𝑏 ∈ ℝ
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(a) STFT - The oscillations increase in frequency in-
side a window of fixed length.

(b) WT - The oscillating function is com-
pressed/stretched (scaled or dilated).

Figure 5.1: Simplified illustration of the STFT fixed window paradigm, versus the idea of
dilation and scale inWT.The idea for the illustrations in the upper row is taken from [Barford
et al., 1992].
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being themother wavelet, which has to satisfy a couple of properties. The first
is called the admissibility condition

∫ 𝜓(𝑡)𝑑𝑡 = 0,

and the second property asks for 𝜓 to be square integrable (i.e. have finite en-
ergy)

∫ 𝜓2(𝑡)𝑑𝑡 < ∞.

The admissibility condition is often reported for the Fourier tranformof𝜓(𝑡),
Ψ(𝜔), and translates into

∫ |Ψ(𝜔)|
|𝜔| 𝑑𝜔 < +∞.

with𝜔 = 2𝜋𝑓 . The admissibility condition implies thatΨ(𝜔) vanishes at the
zero frequency, (otherwise the integral would blow up at 𝜔 = 0)

|Ψ(𝜔)2|𝜔=0 = 0.

This means that the wavelets must have a band-pass like spectrum.
The inverse formula, the InverseContinuousWaveletTransform (ICWT),

is given by:

𝑠(𝑡) = 1
𝑐𝜓

∫
+∞

−∞
∫

+∞

−∞
(𝐶𝑊𝑇𝑠)𝑎,𝑏𝜓𝑎,𝑏(𝑡)

𝑑𝑎𝑑𝑏
𝑎2 (5.4)

where 𝑐𝜓 = 2𝜋 ∫+∞
−∞

|Ψ(𝜔)|2
|𝜔| 𝑑𝜔, and Ψ(𝜔) is the Fourier transform of 𝜓(𝑡).

Equation (5.4) can be interpreted in two ways:

• As a way of reconstructing 𝑠(𝑡) once its wavelet transform (𝐶𝑊𝑇𝑠)𝑎,𝑏
is known; this formula is known as the reconstruction formula or scheme
(or resolution of the identity)
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• As a way to write 𝑠 as a superposition of wavelets 𝜓𝑎,𝑏. the coefficients
in this superposition are exactly given by the wavelet transform of 𝑠.

Note that the𝜓𝑎,𝑏 are defined over every point in the (𝑎, 𝑏) space, and so they
are highly redundant. Is it possible to discretize the (𝑎, 𝑏) space so that the𝜓𝑎,𝑏
form a true orthonormal basis?

Discretized Wavelet Transform Let’s start from discretizing the dilation
parameter 𝑎 as a power of a fixed dilation step 𝑎0 > 1: 𝑎 = 𝑎𝑚

0 , with 𝑚 ∈ ℤ.
The parameter 𝑚 will control the dilation, while the translation will be 𝑏 =
𝑛𝑏0𝑎𝑚

0 with 𝑛 ∈ ℤ, so that is adapted to the width of the wavelet. This gives

𝜓𝑚,𝑛(𝑡) = 𝜓(𝑎𝑚
0 ,𝑛𝑏0𝑎𝑚

0 )(𝑡) = 𝑎−𝑚/2
0 𝜓(𝑎−𝑚

0 𝑡 − 𝑛𝑏0) (5.5)

and the discretized wavelet coefficients are

𝑑𝑚,𝑛 = ∫ 𝑠(𝑡)𝜓∗
𝑚,𝑛(𝑡)𝑑𝑡.

The choice of the 𝑎0 and 𝑏0 parameters defines the type of the wavelet family.
A common choice that goes under the name of dyadic sampling is 𝑎0 = 2 and
𝑏0 = 1, giving dyadic sampling along frequency and time respectively. The
question translates now in if the 𝜓𝑚,𝑛 and the inverse wavelet transform

̃𝑠(𝑡) = 𝑐 ∑
𝑚,𝑛

𝑑𝑚,𝑛𝜓𝑚,𝑛(𝑡) (5.6)

form a sort of discrete approximation3 of Eq.(5.4), so that ̃𝑠(𝑡) ≈ 𝑠(𝑡). The
short answer is yes: it is possible to design some 𝜓𝑚,𝑛 so that the Eq. (5.6)
is actually an equation that defines the Discrete Wavelet Transform (DWT).
The important thing to notice is that the wavelet transform can be redundant
(when 𝜓𝑚,𝑛 is a frame4) or not (when 𝜓𝑚,𝑛 is a basis), and this redundacy

3In math terms if a family of wavelets 𝜓𝑚,𝑛 constitutes a frame.
4A set of non-zero vectors {𝜙𝑖}𝑖∈𝐽 constitutes a frame in theHilbert spaceℋ, if exist an

𝐴 > 0 and a 𝐵 < ∞ such that, for all 𝑓 ∈ ℋ: 𝐴 ‖𝑓‖2 ≤ ∑𝑖∈𝐽|⟨𝜙𝑖|𝑓⟩|2 ≤ 𝐵 ‖𝑓‖2.
When 𝐴 = 𝐵 the frame is called a tight frame.
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can be (somewhat) tuned and can be actually an interesting feature for signal
analysis. It is also interesting to exploit this redundancy in (numerical) recon-
struction, because for a given reconstruction precision, the redundacy allows
to calculate the wavelet coefficients with less precision than the one needed
with zero redundacy (othonormal bases), at the cost of having more coeffi-
cients, [Daubechies, 1990].

Before reaching amoremodern way to build wavelets (via themultiresolu-
tion analysis), wehave to introduce a couple of notions, at least intuitively. The
first is the concept of scaling function (or smoothing function),𝜙(𝑡), introduced
byMallat [Mallat, 1989]. If we say that 𝑚 = 0 is the lowest value for the dila-
tion parameter or, in other words, the lowest level at which we are decompos-
ing the signal 𝑠(𝑡), we need something that takes what remains of 𝑠(𝑡) at the
point we stopped the decomposition. Since the wavelet functions are band-
pass like filters, we need a low-pass kind of function. The filter that fulfills this
role is the scaling function 𝜙(𝑡) and has the property that∫ 𝜙(𝑡)𝑑𝑡 = 1. Very
much like for wavelets, (5.5), the scaling functions families are also dilated and
translated copies of a an original scaling function

𝜙𝑚,𝑛(𝑡) = 𝑎−𝑚/2
0 𝜙(𝑎−𝑚

0 𝑡 − 𝑛𝑏0), with 𝑛 ∈ ℤ.

The Eq. (5.6), in this context, could become something like this

̃𝑠(𝑡) = 𝑐0,0𝜙0,0(𝑡) +
𝐽−1
∑
𝑚=0

∑
𝑛∈ℤ

𝑑𝑚,𝑛𝜓𝑚,𝑛(𝑡)

with 𝐽 the maximum level of decomposition.
The second concept is the distinction between the “First Generation

wavelets” and the “Second Generation wavelets”. The main differences are
two, one is about the relation between scaled/translatedwavelets and the other
concerns the framework to actually build the wavelet filters.

Regarding the relation between scaled/translated wavelets, Schröder and
Sweldens explain perfectly in [Schröder and Sweldens, 1995] the shift in
paradigm from the wavelet scheme described in this Section, called First Gen-
eration wavelets, to the Second Generation:
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“In the classicwavelet setting, i.e., on the real line, wavelets are de-
fined as the dyadic translates and dilates of one particular, fixed
function. They are typically built with the aid of a scaling func-
tion. Scaling functions andwavelets both satisfy refinement rela-
tions (or two scale relations). This means that a scaling function
orwavelet at a certain level of resolution (𝑗) canbewritten as a lin-
ear combination of scaling basis functions of the same shape but
scaled at one level finer (level 𝑗 + 1)5 [...] The basic philosophy
behind secondgenerationwavelets is to buildwaveletswith all de-
sirable properties (localization, fast transform) adapted to much
more general settings than the real line. [...] Adaptive construc-
tions rely on the realization that translation and dilation are not
fundamental to obtain the wavelets with the desired properties.
The notion that a basis function can be written as a finite linear
combination of basis functions at a finer, more subdivided level,
is maintained and forms the key behind the fast transform. The
main difference with the classical wavelets is that the filter coef-
ficients of second generation wavelets are not the same through-
out, but can change locally to reflect the changing (non transla-
tion invariant) nature of the surface and its measure.”

Concerning the actual method to operatively build the wavelets, they say:

The tool thatwe use to buildwavelets transforms is called the lift-
ing scheme. Themain feature of the lifting scheme is that all con-
structions are derived in the spatial domain. This is in contrast
to the traditional approach wich relies heavily on the frequency
domain6. Staying in the spatial domain leads to twomajor advan-
tages. First, it does not require the machinery of Fourier analy-
sis as a prerequisite. This leads to a more intuitively appealing
treatment better suited to those interested in applications, rather

5Tomake the dissertation more agile, we give a universal definition of the refinement rela-
tions (that works for first and second generation wavelets) in Section 5.2, instead of following
the historical development of the theory.

6See for example [Daubechies, 1992].
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than mathematical foundations. Secondly, lifting leads to algo-
rithms that can easily be generalized to complex geometric situa-
tions which typically occur in computer graphics. This will lead
to so called Second Generation Wavelet. [...] Even though the
wavelets which result from using the lifting scheme in the more
general settings will not be translates and dilates of one function
anymore they still have all the powerful properties of first genera-
tion wavelets: fast transforms, localization and good approxima-
tion.

The operative construction of second generation wavelets via the lift-
ing scheme is beautifully described in the same manuscript [Sweldens and
Schröder, 1995]. For an exhaustive mathematical definition of the lifting
scheme, the interested reader should refer to [Sweldens, 1998]. We will give
a concise definition in Section 5.4.

With this brief, and possibly agile, introduction we can move to a proper
and more modern definition of wavelet transforms.

5.2 Multiresolution Formulation with Matrix
Notation

The starting point to define wavelets is a mathematical framework calledmul-
tiresolution analysis. To define the multiresolution analysis, we have to define
first a nested set of closed vector subspaces 𝑉 0 ⊂ ⋯ ⊂ 𝑉 𝑗 ⊂ ⋯ ⊂ 𝑉 𝑛. The
higher the space index, the finer is the space. For each 𝑗, the basis functions of
𝑉 𝑗 are called scaling functions, and are denoted like this: 𝜙𝑗

𝑘 with 𝑘 ∈ 𝕂 (𝑗),
where 𝕂 is and index set with 𝕂 (𝑗) ⊂ 𝕂 (𝑗 + 1). Since the vector spaces are
nested, it is possible to write each 𝜙𝑗

𝑘 as a function of the next level 𝜙𝑗+1, and
obtain these refinement relations:

𝜙𝑗
𝑘 = ∑

𝑙
𝑝𝑗+1

𝑙,𝑘 𝜙𝑗+1
𝑙
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where 𝑛 > 𝑗 ≥ 0, 𝑘 ∈ 𝕂 (𝑗) and 𝑙 ∈ 𝕂 (𝑗 + 1). Note: in this refine-
ment relation there is no explicit mention to how dilation and translation are
implemented, e.g. (5.5). This definition is valid also in the second generation
wavelets, where the dilation and translation relations are not maintained be-
tween different levels. Additionally, the vector spaces used to build the mul-
tiresolution are very generic. The construction of wavelets in the multireso-
lution framework follows the same procedure for 1D, 2D or n-dimensional
spaces.

Adopting a more compact and convenient matrix notation, putting to-
gether the different scaling functions 𝜙𝑗

𝑘 for the level 𝑗 as one row vector:

Φ𝑗 = (𝜙𝑗
1 ⋯ 𝜙𝑗

𝑚𝑗)

where 𝑚𝑗 is the dimension of 𝑉 𝑗 (here we assume that 𝑉 𝑗 has a finite basis).
The wavelet spaces, 𝑊 𝑗, are defined to be the orthogonal complement of

𝑉 𝑗 in𝑉 𝑗+1, so that𝑉 𝑗⊕𝑊 𝑗 = 𝑉 𝑗+1. Meaning that𝑊 𝑗 includes all the func-
tions in 𝑉 𝑗+1 that are orthogonal to all those in 𝑉 𝑗 under some inner prod-
uct (typically ℒ2). The functions that form a basis of 𝑊 𝑗 are called wavelets,
and are denoted with 𝜓𝑗

𝑝. The corresponding refinement equations for the
wavelets are as follows:

𝜓𝑗
𝑘 = ∑

𝑙
𝑞𝑗+1

𝑙,𝑘 𝜙𝑗+1
𝑙

Similarly to the scaling functions, we can group them in a row vector:

Ψ𝑗 = (𝜓𝑗
1 ⋯ 𝜓𝑗

𝑛𝑗)

where 𝑛𝑗 is the dimension of 𝑊 𝑗, with 𝑚𝑗+1 = 𝑚𝑗 + 𝑛𝑗.
With this matrix notation it is possible to rewrite the refinement relations:

Φ𝑗 = Φ𝑗+1P𝑗+1, (5.7)

and, in similar fashion, a matrixQmust exist to satisfy:

Ψ𝑗 = Φ𝑗+1Q𝑗+1. (5.8)
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The biorthogonality conditions then become

⟨Φ𝑗|Ψ𝑗⟩ = 0 (5.9)

where

⟨Φ𝑗|Ψ𝑗⟩𝑘𝑙 = ⟨𝜙𝑗
𝑘|𝜓𝑗

𝑙 ⟩,

and ⟨𝜙|𝜓⟩ denotes the inner product. Substituting (5.8) into this last equa-
tion (5.9), it gives

⟨Φ𝑗|Φ𝑗+1⟩Q𝑗+1 = 0

this is an homogeneous system of linear equations and there is no unique so-
lution to it. The matrix Q is a basis of the space of all possible solutions. So
there is no uniqueQ, meaning that there are many different wavelet bases for
a given wavelet space 𝑊 𝑗. To determine uniquely the Q matrices we have to
impose further constraints to the orthogonality alone. The discussion to the
different constraints options and resultingwavelets available in literature is out
of the scope of this introduction to wavelets, more information can be found
in [Stollnitz et al., 1995].

Each multiresolution analysis is accompanied by a dual multiresolution
analysis consisting of nested spaces ̃𝑉 𝑗 with bases given by dual scaling func-
tions Φ̃𝑗, which are biorthogonal to the scaling functions:

⟨Φ̃𝑗|Φ𝑗⟩ = 1.

The dual scaling functions satisfy similar refinement relations as of Eq. (5.7):

Φ̃𝑗 = Φ̃𝑗+1[A𝑗+1]𝑇 . (5.10)

Similarly, for any given wavelet basis there is a dual basis Ψ̃𝑗 and the two are
biorthogonal with respect to each other: ⟨Ψ̃𝑗|Ψ𝑗⟩ = 1. This also implies
⟨Ψ̃𝑗|Φ𝑗⟩ = ⟨Φ̃𝑗|Ψ𝑗⟩ = 0. And similarly to Eq. (5.8), a matrix 𝐵 will exists,
so that:

Ψ̃𝑗 = Φ̃𝑗+1[B𝑗+1]𝑇 . (5.11)
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Combining the fact that 𝜙𝑗
𝑘 ∈ 𝑉𝑗 ⊕ 𝑊𝑗 with the biorthonormality relations

leads to the inverse refinement equations for the original scaling function:

Φ𝑗+1 = Φ𝑗A𝑗+1 + Ψ𝑗B𝑗+1. (5.12)

The scaling function coefficients c𝑗 andwavelet coefficientsd𝑗 of any func-
tion 𝑓 can be obtained by inner product with the dual scaling function and
dual wavelets respectively:

c𝑗 = ⟨Φ̃𝑗|𝑓⟩,
d𝑗 = ⟨Ψ̃𝑗|𝑓⟩.

These operatorsA𝑗,B𝑗 andP𝑗,Q𝑗 are thedecomposition and reconstruction
filters (respectively). The biorthogonality properties imply that the operators
A𝑗, B𝑗, P𝑗 andQ𝑗 need to verify the following properties:

⟨Ψ̃𝑗|Φ𝑗⟩ = 0 ⟹ B𝑗P𝑗 = 0, (5.14a)

⟨Φ̃𝑗|Ψ𝑗⟩ = 0 ⟹ A𝑗Q𝑗 = 0, (5.14b)

⟨Φ̃𝑗|Φ𝑗⟩ = 1 ⟹ A𝑗P𝑗 = 1, (5.14c)

⟨Ψ̃𝑗|Ψ𝑗⟩ = 1 ⟹ B𝑗Q𝑗 = 1 (5.14d)

and can be rewritten in matrix notation like:

[A
𝑗

B𝑗] [P𝑗 Q𝑗] = [AP AQ
BP BQ] = [1 0

0 1] and [P𝑗 Q𝑗] [A
𝑗

B𝑗] = 1 (5.15)

Additionally, applying the biorthogonality properties to (5.12) it means that:

P𝑗A𝑗 + Q𝑗B𝑗 = 1. (5.16)

Equations (5.14) and (5.16) can be combined by stating that the decomposi-
tion and reconstruction filters are globally inverse to the other:

(A𝑗

B𝑗) = (P𝑗 Q𝑗)−1 .
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5.3 Subdivision Mesh

Now we are going to introduce a concept that is crucial for the practical con-
struction of wavelets throughout the rest of the thesis. A subdivision mesh is a
method of representing a smooth surface (in this case, the sphere) as the limit
of a series of increasingly finer polygonal meshes. Themesh is built recursively
starting from a primitive polygonal mesh (e.g. an octahedron), and subdivid-
ing (i.e. adding new vertices) this original mesh according to some rule, called
subdivision scheme. Examples of subdivision schemes are Loop [Loop, 1987],
Catmull-Clark [Catmull and Clark, 1978], Doo-Sabin [Doo, 1978]. At each
iteration a finer (more dense) mesh is obtained. In this work we will call each
iteration a level, and the primitive mesh is referred to as level 0. The wavelet
framework is built out of the subdivision mesh. A given wavelet level will be
associated to a certainmesh level. Wewill only consider subdivisionmeshes up
to some given order 𝑛, corresponding to the finest mesh.

To close the circle, when the function space is a finite vector space defined
over the finest space 𝑉 𝑛, and the dimensionality of the function space coin-
cides with the dimensionality of the finest mesh, the scaling functions at the
finest level 𝑛 can be taken to delta functions: 𝜙𝑛

𝑘(𝑝) = 𝛿(𝑝 − 𝑘). In this case
the wavelets and dual wavelets can be computed from the decomposition and
reconstruction filters at each level as follows:

𝜙𝑗
𝑘(𝑝) = (P𝑛 ⋯ P𝑗+2 P𝑗+1)𝑝𝑘

𝜓𝑗
𝑘(𝑝) = (P𝑛 ⋯ P𝑗+2 Q𝑗+1)𝑝𝑘
̃𝜙𝑗
𝑘(𝑝) = (A𝑗+1 A𝑗+2 ⋯ A𝑛)𝑘𝑝
̃𝜓𝑗
𝑘(𝑝) = (B𝑗+1 A𝑗+2 ⋯ A𝑛)𝑘𝑝

(5.17)

In fact, by using the procedural approach that we will outline in Section 6.2, it
is perfectly possible to ignore the scaling functions, thewavelets and their duals
andwork onlywith the scaling andwavelet coefficients and the decomposition
and reconstruction filters.
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5.4 Second Generation Wavelets via the Lifting
Scheme

From the construction of wavelets in the scale and dilate paradigm we intro-
duced in Section 5.1 to the method we implemented for our specific applica-
tion, that will be discussed in Chapter 7, there is quite a leap forward in meth-
ods and meanings. To cover this distance we introduce a procedural method
to build wavelets, the Lifting Scheme.

5.4.1 Lifting Scheme

Given an initial set of bihortogonal filter operators {A𝑗,P𝑗,B𝑗,Q𝑗}, then a
new set of bihortogonal filters {A,P,B,Q} can be found as

P𝑗 = P𝑗

A𝑗 = A𝑗 + S𝑗B𝑗

Q𝑗 = Q𝑗 − P𝑗S𝑗

B𝑗 = B𝑗

(5.18)

Indicating explicitly the dimensions of the operators, as in Section 6.1.3,

P𝑗
𝑀×𝐾 = P𝑗

𝑀×𝐾

A𝑗
𝐾×𝑀 = A𝑗

𝐾×𝑀 + S𝑗
𝐾×(𝑀−𝐾)B

𝑗
(𝑀−𝐾)×𝑀

Q𝑗
𝑀×(𝑀−𝐾) = Q𝑗

𝑀×(𝑀−𝐾) − P𝑗
𝑀×𝐾S𝐾×(𝑀−𝐾)

B𝑗
(𝑀−𝐾)×𝑀 = B𝑗

(𝑀−𝐾)×𝑀

It is quite straightforward to prove writing the lifting scheme in matrix nota-
tion (we assume for simplicity that all matrices are real valued)

[A
𝑗

B𝑗] = [1 S𝑗

0 1 ] [A
𝑗

B𝑗]
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and

[P
𝑗

Q𝑗] = [ 1 0
−S𝑗 1] [P

𝑗

Q𝑗]

and if we recall the bihorthogonality relations (5.15), we get

[A
𝑗

B𝑗] [P𝑗 Q𝑗] = [1 S𝑗

0 1 ] [A
𝑗

B𝑗] [P𝑗 Q𝑗] [1 −S𝑗⊺

0 1 ]

= [1 S𝑗

0 1 ] [1 −S𝑗⊺

0 1 ]

= [1 0
0 1] ■

From the relations (5.7) (5.8) (5.10) (5.11) and the definition of lifting
scheme (5.18), it is possible to see how the lifting scheme impacts the scaling
functions, the wavelets, and their duals:

Φ𝑗 = Φ𝑗

Φ̃𝑗 = A𝑗Φ̃𝑗+1 + S𝑗B𝑗Φ̃𝑗+1 = A𝑗Φ̃𝑗+1 + S𝑗Ψ̃𝑗

Ψ𝑗 = Q𝑗Φ𝑗+1 − P𝑗S𝑗Ψ𝑗+1 = Ψ𝑗 − S𝑗Φ𝑗

Ψ̃𝑗 = B𝑗Φ̃𝑗

A note of caution: the notation we are using while being convenient, be-
cause it is extremely compact, it partially hides the inner workings of S. For an
explicit element-by-element definition of the lifting scheme (index notation),
we refer to [Sweldens, 1998].

The great benefit of the lifting scheme is that, starting from some simple or
even trivial filters {A𝑗,P𝑗,B𝑗,Q𝑗} it is possible to build more complex ones
just by tuning the operator S𝑗. By controlling the operator S, it is possible to
control the properties of the wavelets and dual scaling functions that are built
from the original scaling function Φ𝑗. Essentially, the new functions and op-
erators are improved lifted versions of the old ones, and can have customprop-
erties. Once the operator S is set, the lifting scheme keeps the bihortogonality

70



of the old filters to the new ones. Before getting to one practical example on
how to build non-trivial wavelets from trivial ones, wewill define the fast lifted
wavelet transform and the dual lifting scheme.

5.4.2 Fast Lifted Wavelet Transform

Anotherbenefit of the lifting scheme, is that it allows towrite thewavelet trans-
form just using the old filters and the S filter, without the need to explicitly
derive the new ones. The forward lifted transform is

c𝑗 = A𝑗c𝑗+1 = A𝑗c𝑗+1 + S𝑗d𝑗

= A𝑗c𝑗+1 + S𝑗B𝑗c𝑗+1 (5.19)

The coarse signal c𝑗 is calculated via theA𝑗c𝑗+1 and then liftedwith the details
d𝑗. Often in the literature this operation of lifting is called an update, and
is denoted with the operator 𝑈 . In the Eq. (5.19) the new filter A𝑗 is never
calculated explicitly.

The inverse lifted transform then becomes

c𝑗+1 = P𝑗c𝑗 + Q𝑗d𝑗 = P𝑗 (c𝑗 − S𝑗d𝑗) + Q𝑗d𝑗

It is possible to see that the operations in these transforms can be done in-
place, meaning the only required storage is for the original signal c at the finest
level. There is no need to calculate and store the full matrices, resulting in an
easy implementation and a fast algorithm. We are not going in the details of
the implementation since for our specific study and application the efficiency
is not a primary requirement, and we actually compute the full matrices.

5.4.3 Dual Lifting Scheme

We have seen that via the lifting scheme it is possible to build an improved
version of the startingmatricesA andQ, while theP andB remain unchanged.
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It is possible to lift the dual step, and build a dual lifting scheme:

P𝑗 = P𝑗 + Q𝑗 ̃S𝑗

A𝑗 = A𝑗

Q𝑗 = Q𝑗

B𝑗 = B𝑗 − ̃S𝑗A𝑗

where the operators that are improved are the P and B, while the other two
remain unchanged. The dual operator ̃S is often called prediction operator.
Indicating explicitly the dimensions of the operators, as in Section 6.1.3,

P𝑗
𝑀×𝐾 = P𝑗

𝑀×𝐾 + Q𝑗
𝑀×(𝑀−𝐾) ̃S𝑗

(𝑀−𝐾)×𝐾

A𝑗
𝐾×𝑀 = A𝑗

𝐾×𝑀

Q𝑗
𝑀×(𝑀−𝐾) = Q𝑗

𝑀×(𝑀−𝐾)

B𝑗
(𝑀−𝐾)×𝑀 = B𝑗

(𝑀−𝐾)×𝑀 − ̃S𝑗
(𝑀−𝐾)×𝐾A𝑗

𝐾×𝑀

In the following we will give an example of a common trivial wavelet, and
build a lifted set of wavelets, the interpolating wavelet. This interpolating
wavelet is going to be useful later in the dissertation.

5.4.4 The Lazy Wavelet
As a trivial set of filters to start the lifting process, it is possible to define two
operators E, D that essentially split the signal c𝑗 into even and odd samples.
These two operators are obviously orthogonal (as before we will assume that
we are dealing with real operators)

[ED] [E⊺ D⊺] = [1 0
0 1] and [E⊺ D⊺] [ED] = 1.

This means that the Lazy wavelet operators are exactly E andD only:

A𝑗
𝐿𝑎𝑧𝑦 = P𝑗⊺

𝐿𝑎𝑧𝑦 = E and B𝑗
𝐿𝑎𝑧𝑦 = Q𝑗⊺

𝐿𝑎𝑧𝑦 = D
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The Lazy wavelet transform is a transform that splits and merges back the sig-
nal, without actually doing anything. This trivial set of filters is sufficient to de-
fine more interesting transforms, like the the interpolating wavelet transform.

5.4.5 InterpolatingWavelet TransformBuilt via the Lifting
Scheme

First we have to note that any operatorW can be split into two operators, one
that acts on the even samples and one on the odd ones, like this:

W = W𝑒E + W𝑑D,

with
W𝑒 = WE⊺ and W𝑑 = WD⊺. (5.20)

By definition, an interpolating filter is a filter that satisfies this equation

P𝑗
𝑖𝑛𝑡E⊺ = 1.

The filter corresponding to the dual scaling function is thenA𝑗
𝑖𝑛𝑡 = E. If we

define ̃S𝑗 = P𝑗
𝑖𝑛𝑡D⊺, then from (5.20) any interpolating filter can be written

as P𝑗
𝑖𝑛𝑡 = E + ̃S𝑗D. This expression is equivalent to applying the dual lift-

ing scheme to the Lazy wavelet, and so we can write the set of interpolating
bihortogonal filters as

P𝑗
𝑖𝑛𝑡 = E⊺ + D⊺ ̃S𝑗

A𝑗
𝑖𝑛𝑡 = E

Q𝑗
𝑖𝑛𝑡 = D⊺

B𝑗
𝑖𝑛𝑡 = D − ̃S𝑗E

(5.21)

Note that the A𝑗
𝑖𝑛𝑡 andQ

𝑗
𝑖𝑛𝑡 are essentially Dirac deltas. These filters do not

form amultiresolution analysis inℒ2, since the duals do not belong toℒ2. We
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Figure 5.2: The interpolating wavelet transform is composed by three stages: the Lazy wavelet
transform, the dual lifting and the normal lifting.

can apply the lifting scheme to the interpolating filters, so to improve theA𝑗
𝑖𝑛𝑡

andQ𝑗
𝑖𝑛𝑡, obtaining

P𝑗 = P𝑗
𝑖𝑛𝑡 = E⊺ + D⊺ ̃S𝑗

A𝑗 = A𝑗
𝑖𝑛𝑡 + S𝑗B𝑗

𝑖𝑛𝑡 = (1 − S𝑗 ̃S𝑗)E + S𝑗D𝑗

Q𝑗 = Q𝑗
𝑖𝑛𝑡 − P𝑗

𝑖𝑛𝑡S𝑗 = −E⊺S𝑗 + D⊺(1 − ̃S𝑗S𝑗)
B𝑗 = B𝑗

𝑖𝑛𝑡 = D − ̃S𝑗E

(5.22)

The new filters we obtain are then result of applying first the Lazy wavelet
transform (that performs the splitting), then the dual lifting step and finally
the regular lifting. Quite often in literature the union of these three opera-
tions it is identified with the lifting scheme, even if the lifting is actually only
one stage. In Figure 5.2 we illustrate the flow of these operations. From the
scheme in Figure 5.2 we can alsomanually derive the two filtersA𝑗 andB𝑗 just
following the arrows. The filter A𝑗, for example, connects the c𝑗+1 with the
c𝑗, and there are three paths that connect the two: from c𝑗+1 via E directly to
c𝑗, from c𝑗+1 via D and S𝑗 and the last one goes through E, ̃S𝑗, back via S𝑗

and to c𝑗. And we get A𝑗 = E − ̃S𝑗E + S𝑗D. Similarly, to build the filter B𝑗

that connects the c𝑗+1 with the d𝑗 there are two paths: one that goes directly
throughD, and one that gets to d𝑗 viaE and ̃S𝑗. Giving exactlyB𝑗 = D− ̃S𝑗E.

Figure 5.3 shows the scheme for the complete interpolating wavelet trans-
form with decomposition and reconstruction. It is possible to notice that the
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Figure 5.3: The complete interpolating wavelet transform with decomposition and recon-
struction. The reconstruction is made by the same steps as decomposition, but performed
backwards.

Figure 5.4: Alternative writing of the complete interpolating wavelet transform scheme. This
form of writing is probably the most common in literature.

reconstruction stage is made by exactly the same steps as the decomposition,
but performed backwards.

In Figure 5.4 we show an alternative way of depicting the lifting scheme
that is quite common in literature. The operator ̃S𝑗 is called prediction opera-
tor 𝑃 , while the S𝑗 is called update 𝑈 . Here we preferred to keep the operator
P as the upsampling operator from c𝑗 to c𝑗+1 and avoid confusion with differ-
ent typesets of 𝑃 . In this same figure it is possible to notice that the operators
E and D are replaced by two boxes called split and merge. Often they are de-
picted with boxes containing a [↓ 2] for the split stage (meaning downsample
by a factor of 2) and a [↑ 2] for themerge (meaning upsample by a factor of 2).
To give a broader picture, since the wavelet literature its very diverse in origin
and scope, we wanted to collect here some different notations used in other
frameworks. Nevertheless the meaning is exactly the same.

We have described the lifting scheme as a way to build improved operators
starting from trivial ones. Another way to understand the lifting scheme is
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Figure 5.5: Graphic representation of linear (left) and cubic (right) prediction operators in
the reconstruction stage. The idea for the graphical illustration is taken from [Sweldens and
Schröder, 1995].

by interpreting the ̃S𝑗 and S𝑗 as prediction and update operators. Assuming
that the original signal has some sort of local correlation, once the signal is split
into odd and even subsets, these two signals are highly correlated. This means
that given one, it should be possible to predict the other with a certain accu-
racy. And this is what the prediction operator does, e.g. getting an odd sample
using its even neighbour(s). Intuitive examples of prediction operator are the
polinomial prediction operators, e.g. linear, quadratic or cubic ones, where 2,
3 or four even neighbours respectively are used to predict one odd sample. A
graphic illustration is reported in Figure 5.5. The update operator is designed
so to preserve the overall average of the signal. The idea is that the coarser sig-
nals c𝑗 have the same average value of the original signal, and going down to
last possible level c0 this will capture its constant offset (or average). This is
equivalent to ask for zero average details d𝑗.

Note: recall the intuitive definition given in Section 5.4.4 for odd and even
operators, that essentially split a signal in two signals based on the sample in-
dex. Whenmoving to spaces that are more complex than the line or the plane,
e.g. generic meshes, this simple definition can be generalized and the lifting
scheme can still be applied in the very same way. As an example, we will see
now how the lifting scheme generalizes on a spheric mesh and how we can
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Figure 5.6: Mesh neighbours. Given 𝑚 a point on the 𝑗 + 1 mesh, we define three levels of
neighbourhood: the closest ones {𝑣1, 𝑣2}, then {𝑓1, 𝑓2} and {𝑒1, 𝑒2, 𝑒3, 𝑒4}.

build interpolating wavelets on this sphere.

5.5 SecondGeneration SphericalWavelets via the
Lifting Scheme

To build wavelets on spaces other than the line, we need a data structure with
hierarchical subdivision and a (re)definition of odd and even samples (or ver-
tices). In Section 5.3 we defined already a subdivisionmesh based on the inter-
ative Loop subdivision of an octahedron. In Figure 5.6 we show an example of
a mesh obtained via Loop subdivision. The yellow dots represent the vertices
of the mesh at level 𝑗, while the blue dots (plus the yellow ones) represent the
vertices of the mesh at level 𝑗 + 1. If we take into consideration the point 𝑚
of the 𝑗 + 1 level, that would be the odd vertex in the previous dissertation,
then its neighbours are defined at different distances. The vertices {𝑣1, 𝑣2}
represent the even vertices, and are at equal distance from𝑚. With two points
we can already build the linear interpolating wavelet transform. If we want to
build interpolating wavelets on this mesh with higher predictivity, we have to
define other (further) neighbours searching for close vertices at level 𝑗. The
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next closest points are the two {𝑓1, 𝑓2}, and the successive ones are the four
{𝑒1, 𝑒2, 𝑒3, 𝑒4}.

Defined these three sets of neighbours, to operatively build thewaveletswe
have to define the lifting operators ̃S and/or the S. In the paper from [Schröder
andSweldens, 1995] thedual lifting operators to generate linear, quadratic and
butterfly wavelet filters are defined. Here we are interested in the linear inter-
polating wavelet transform, which is not much different to the real line case,
since the prediction operator uses only the immediate neighbours. Recalling
the expressions in (5.21), the dual lifting step (or the prediction step) for the
interpolating wavelets is for the analysis (lifting of B𝑖𝑛𝑡 and P𝑖𝑛𝑡)

cdual𝑗,𝑘 = c𝑗+1,𝑘

ddual𝑗,𝑚 = c𝑗+1,𝑚 − 1/2(c𝑗+1,𝑣1
+ c𝑗+1,𝑣2

)
even A𝑖𝑛𝑡

odd B𝑖𝑛𝑡
(5.23)

and for the synthesis

c𝑗+1,𝑘 = cdual𝑗,𝑘

c𝑗+1,𝑚 = ddual𝑗,𝑚 + 1/2(cdual𝑗,𝑣1
+ cdual𝑗,𝑣2

)
even Q𝑖𝑛𝑡

odd P𝑖𝑛𝑡
(5.24)

The dual lifting weights are then ̃𝑠𝑗,𝑣1,𝑚 = ̃𝑠𝑗,𝑣2,𝑚 = 1/2.
This construction can be lifted and the weights for the lifting step or up-

date step are chosen so that the wavelet has zero integral

s𝑗,𝑘,𝑚 = 𝐼𝑗+1,𝑚/2𝐼𝑗,𝑘, with 𝐼𝑗,𝑘 = ∫
𝕊2

𝜓𝑗,𝑘𝑑𝜔

and the integrals 𝐼𝑗,𝑘 can be approximated at the finest level, and calulated
resursively at coarser levels using the refinement relations. The update step
updates the coarse coefficients via the details, as seen in (5.18). Explicitly, for
the analysis (lifting ofA𝑖𝑛𝑡)

clift𝑗,𝑣1
= cdual𝑗,𝑣1

+ s𝑗,𝑣1,𝑚ddual𝑗,𝑚

clift𝑗,𝑣2
= cdual𝑗,𝑣2

+ s𝑗,𝑣2,𝑚ddual𝑗,𝑚
(5.25)
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and for during synthesis the analysis step is essentially undone (lifting ofQ𝑖𝑛𝑡)

cdual𝑗,𝑣1
= clift𝑗,𝑣1

− s𝑗,𝑣1,𝑚ddual𝑗,𝑚

cdual𝑗,𝑣2
= clift𝑗,𝑣2

− s𝑗,𝑣2,𝑚ddual𝑗,𝑚.
(5.26)

The signal flow is then: apply the prediction step (5.23), then theupdate (5.25)
for the analysis stage, and thenundo theupdate (5.26) andundo theprediction
(5.24) for the synthesis.

The resulting interpolating wavelets and scaling functions, for the mesh
described in Section 5.3, are depicted in Figures 5.7, 5.8, 5.9 and 5.10. Note
that in this particular space, the sphere, because there are no boundaries the
wavelets are all identical at the same level. For this reason we show only one
filter per level. In these figures it is possible to realize that higher level filters are
actually shrunk versions of lower levels’ ones.

Note: in the lifting scheme we never build explicitly the scaling functions
orwavelets, butwe can get themby running a delta into the graph and running
it ad infinitum, as described in (5.17).
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Figure 5.7: Dual scaling filter at levels 0, 1,
2 (given by one row ofA1,2,3).
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Figure 5.8: Dual wavelet filter at levels 0, 1,
2 (given by one row of B1,2,3).
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Figure 5.9: Scaling filter at levels 0, 1, 2
(given by one column of P1,2,3).
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Figure 5.10: Wavelet filter at levels 0, 1, 2
(given by one column ofQ1,2,3).
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Chapter 6

WAVELET-BASED SPHERICAL
AUDIO FRAMEWORK

In this Chapter we will describe the full audio chain for a wavelet based audio
format. Section 6.1 describes the multiresolution scheme over a subdivision
mesh. Section 6.2 depicts the strategy for the encoding of an audio source over
the subdivision mesh. Up to this point, the setup is completely general, and
can be used to generate a wide diversity of formats. For this reason we call this
audio encoding scheme a framework for wavelet audio formats. In Section 6.3
we particularize this wavelet format to the spherical domain. Section 6.4 is
about the decoding of the new spherical wavelet format.

6.1 Wavelet Format
In this section we will describe the basics of wavelet multiresoution analysis,
with emphasis on the practical aspects that are relevant for an audio encod-
ing/decoding chain.

6.1.1 Decomposition or Spatial Downsampling

Being 𝕄 some mesh in ℝ3, obtained with some subdivision scheme, then the
set of data f = (𝑓1 ⋯ 𝑓𝑁)𝑇 defined over the finest level of this mesh, is called
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f
c𝑛−1

d𝑛−1

c𝑛−2

d𝑛−2
…

A𝑛

B𝑛
B𝑛−1

A𝑛−1

Figure 6.1: Scheme of signal decomposition and encoding to wavelet space.

fine data. The process of downsampling decomposes the fine data f into two
signals (sets of data), a coarse approximation c and an additional information
called details d. The decomposition is defined then as:1

c = Af,
d = Bf,

where A and B are the decomposition or analysis filters introduced in Sec-
tion 5.2.

The filtersA and B connect levels: from the finest level 𝑛 to a coarser level
𝑛 − 1. There are as many decomposition filters, or encodingmatrices, as mesh
levels minus one. The signal c represents a spatially low-passed and downsam-
pled version of f.

c0

d0
+

P1

Q1

c1

d1
+

P2

Q2

… c𝑛−1

d𝑛−1
+

P𝑛

Q𝑛

f

Figure 6.2: Scheme of reconstruction of the original signal from the wavelet space.

1For the definition of scaling and wavelet filters, we use an adaptation of the the notation
in [Olsen et al., 2007].
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6.1.2 Reconstruction or Spatial Upsampling
The upsampling process increases the spatial resolution of the coarse data c to
the fine data f, and if the details d are available, then the reconstruction process
will give back the original fine data:

f = Pc + Qd.

where P and Q are the reconstruction or synthesis filters introduced in Sec-
tion 5.2. The filtersP andQ connect levels: from the coarser level𝑛 − 1 to the
finest level 𝑛. There are as many reconstruction filters, or decoding matrices,
as mesh levels minus one.

6.1.3 Wavelet Transform
Consider the finest subdivision level 𝑛, consisting of 𝑁 points, and the next
coarser level 𝑛 − 1, consisting of 𝑀 points, with 𝑁 > 𝑀 . Consider a data
vector f = [𝑓1, … , 𝑓𝑁 ]𝑇 , defined at the finest level𝑛. The subdivision process
would proceed as follows:

c𝑛−1
𝑀×1 = A𝑛

𝑀×𝑁f𝑁×1,
d𝑛−1

(𝑁−𝑀)×1 = B𝑛
(𝑁−𝑀)×𝑁f𝑁×1,

where the subindices indicate the dimension of each matrix. The sum of ele-
ments in c and d is𝑀 +(𝑁 − 𝑀) = 𝑁 . Now if the even coarser subdivision
level 𝑛 − 2 has 𝐾 points, the decomposition can continue:

c𝑛−2
𝐾×1 = A𝑛−1

𝐾×𝑀c𝑛−1
𝑀×1,

d𝑛−2
(𝑀−𝐾)×1 = B𝑛−1

(𝑀−𝐾)×𝑀c𝑛−1
𝑀×1,

and so on. See Figure 6.1 for a representation.
If the decomposition is followed up to the coarsest level available (level 0),

there will be a list of 𝑛 − 1 detail signals or wavelet coefficients, d0, … , d𝑛−1,
and one last coarse signal or scaling function coefficients c0; the representation
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{c0, d0, … , d𝑛−1} constitutes the wavelet transform. In compact form, the
wavelet transform can be computed recursively as:

c𝑗−1 = A𝑗c𝑗,
d𝑗−1 = B𝑗c𝑗,

with c𝑛 = f and 𝑗 = 𝑛, … , 1.
To perform the inverse wavelet transform, namely, to reconstruct the orig-

inal signal, the procedure is recursive but this time starting from the coarsest
level 0 and going to the finest level 𝑛:

c1
𝐽×1 = Q1

𝐽×(𝐽−𝐿)d
0
(𝐽−𝐿)×1 + P1

𝐽×𝐿c0
𝐿×1

c2
𝐾×1 = Q2

𝐾×(𝐾−𝐽)d
1
(𝐾−𝐽)×1 + P2

𝐾×𝐽c1
𝐽×1,

see Figure 6.2 for a diagram. In compact form, the inverse wavelet transform
can be represented recursively as:

c𝑘 = P𝑘c𝑘−1 + Q𝑘d𝑘−1, (6.3)

with 𝑘 = 1, … , 𝑛.
The filtersA𝑗, B𝑗, P𝑗 andQ𝑗 are the building blocks of the proposed spa-

tial audio format. They are not arbitrary: to define a wavelet framework they
need to follow relations (5.14) and (5.16). Several methods to build these fil-
ters are available in literature. In Section 5.4we describe amethod based on the
Lifting Scheme in Section 5.5, and in Chapter 7 our optimization scheme. In
the following we will assume that some filters with appropriate characteristics
are available.

A note of caution: thematricesA𝑗 andB𝑗 connect the level 𝑗with the level
𝑗 − 1, while the matrices P𝑗 and Q𝑗 connect the level 𝑗 − 1 with the 𝑗. The
index of the matrices is the same, but the dimension of their output signal is
different.
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6.2 Audio Source Encoding

6.2.1 First Step: Source Interpolation
In spatial audio, any source can have an arbitrary position in spherical space,
with continuous azimuth and elevation coordinates (𝜃, 𝜙). This point source
needs to be represented on the finestmesh, which is definedonly over a discrete
set of points. The first step of the encoding process is the interpolation of the
point source to the finest mesh. The most natural interpolation for triangular
meshes is the tri-linear interpolation over the three vertices of the triangle. In
spatial audio this tri-linear interpolation is the basis of Vector-Base Amplitude
Panning [Pulkki, 1997] (VBAP). In this thesis we use a tri-linear (or VBAP-
like) interpolation to represent the point source in the subdivisionmesh (other
choices are also possible).

6.2.2 Second Step: Wavelet Encoding

As a result of the interpolation, a set of coefficients f = (𝑓1 ⋯ 𝑓𝑁)𝑇 will be
available at the finest mesh (order 𝑛). If the source is a point source, at most
three of these coefficients will be non-zero. Second step is to apply the wavelet
transform, recursively downsampling the subdivision mesh, by repeated ap-
plication of the decomposition filtersA and B, as explained in Section 6.1 and
described in Figure 6.1. The result of the wavelet transform will be the set of
signals {c0, d0, … , d𝑛−1}, having the same total dimensionality𝑁 as the orig-
inal.

6.2.3 Third Step: Wavelet Truncation
At this stage, one of the most common techniques in different fields is zeroing
all the details coefficients smaller than some fixed threshold in order to achieve
compression. In spatial audio, the goal is also to transmit a low-dimensional
field, but to ensure a smooth and consistent playback experience, and in anal-
ogy to Ambisonics, we will follow a different path by limiting the decomposi-
tion up to a given order.
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Therefore, the third step in the encoding is truncating the decomposition
to order ℓ, with 0 ≤ ℓ < 𝑛, which amounts to zeroing the detail coefficients
with order equal or greater than ℓ. Namely, the truncated decomposition at or-
der 𝑙 be {c0, d0, … , dℓ−1, 0ℓ, … , 0𝑛−1}, or, more simply, {c0, d0, … , dℓ−1}.
(In the case ℓ = 0 all wavalet coefficients will be zero, with only the coarser
scaling coefficient remaining.)

6.3 Spherical Wavelet Format
A Spherical Wavelet Format (SWF) is defined to be each one of the spherical
audio encodings determined by:

1. A recursive subdivisionmesh over the sphere, ranging from the coarsest
level 0 to the finest level 𝑛.

2. A set of filters {A𝑗,B𝑗,P𝑗,Q𝑗|𝑗 ∈ [1, 𝑛]}, defining a wavelet space,
and verifying the set of equations (5.14) and (5.16).

3. A truncation level ℓ ∈ [0, 𝑛], defining the order of the wavelet decom-
position.

The signals in SWF can be represented in two alternative equivalent ways: ei-
ther as the scaling function at the coarser level plus a set of successively finer
wavelet details, {c0, d0, … , dℓ−1}, or as the scaling functions at the trunca-
tion level ℓ: {cℓ}. In this second representation only the downsampling A𝑗

and upsampling P𝑗 filters are strictly needed.
There are many different ways to generate the filters defining the wavelet

space. One method is the Lifting Scheme, described in Section 5.4. Other
methods build on the lifting scheme, generating optimized filter for specific
applications e.g. [Kammoun et al., 2012]. InChapter 7we describe our audio-
tailored method.

Another possibility is given by the application ofVBAP as the interpolator
between mesh levels. VBAP implicitly defines a set of downsampling,A𝑗 and
upsampling P𝑗 filters for any subdivision mesh. This filters can be computed
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by considering a given mesh at level 𝑗 as a set of sound sources, and rendering
those meshes to the finer level (P𝑗 is generated) or coarser level (A𝑗 is gener-
ated). In this case the filters created via VBAP have a maximum length of 3
points for A𝑗, because VBAP activates at most three neighbouring points of
themesh. In the case ofP𝑗 VBAP generates a trivial filter, which is a blockma-
trix with an identity on the first block and zeros elsewhere (since the points of
level 𝑗 are contained in the level 𝑗+1mesh), so there is no effective upsampling.
These VBAP-inspired wavelets are close in spirit to the interpolating wavelets
[Schröder and Sweldens, 1995], with the difference of having a different set
of neighbours and with the dual and direct spaces swapped. We will call this
version of SWF based on VBAP: VBAP-SWF.

6.4 Spherical Wavelet Format Decoding
Let us consider a SFW encoding of an arbitrary sound source distribution. If
this wavelet encoding has not been truncated, a trivial decoding can be gener-
ated by inverting thewavelet transform,making repeated use of Eq. (6.3). This
will lead to the original source c𝑛 = f. By associating a loudspeaker to each
point of the finer mesh, the values of f can be interpreted as the loudspeaker
signals. This is represented on the first four blocks on the left column of Fig-
ure 6.3. Essentially, this trivial decoding reproduces the VBAP decoding of
the original sound source to the finer mesh.

Amore interesting case happenswhen thewavelet encoding has been trun-
cated to order ℓ < 𝑛: the encoding can be partially inverted to order ℓ, again
by repeated use of Eq. (6.3). The truncated signal can be represented by the
scaling coefficients at order ℓ, cℓ. If the nodes of the ℓ-th mesh are interpreted
as speakers, then the values of cℓ can be considered as the speaker feeds corre-
sponding to a decoding to a regular layout with one loudspeaker in each one
of the vertices of the mesh at ℓ-th level.

Actually, the signal at level ℓ can be upsampled by applying repeatedly the
reconstruction filter P, ignoring the details beyond level ℓ:

c̃ℓ+1 = Pℓ+1cℓ,
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Figure 6.3: Encoding, transmission and decoding of a SWF, without wavelet truncation (on
the left), and with wavelet truncation (on the right).
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where the tilde indicates that the reconstruction comes from a truncated rep-
resentation. Ultimately, the signal can be reconstructed to the finest level. The
resulting signal f̃ = c̃𝑛, corresponds to a spatial low-pass version of the original
signal f.

This way, by interpreting the coefficients c̃𝑘 as loudspeaker signals associ-
ated to the vertices of the meshes at level 𝑘, decodings to the different layouts
corresponding to themesh geometry at different levels are generated, from the
coarse level ℓ to the finest level𝑛. This is represented on the first four blocks on
the right column of Figure 6.3. This decoding procedure is the wavelet equiv-
alent to the basic decoding of Ambisonics to a regular layout. It is to be noted
however that in wavelets, differently to Ambisonics, there is no guarantee that
the pressure, the acoustic velocity or any other relevant acoustical or psychoa-
coustical parameter are correctly reconstructed at the origin, unless thewavelet
family has been designed in some special way.

Here we propose to optimize the matrix responsible for the decoding to
speakers leveraging some acoustical and psychoacoustical observables, as we
did for Ambisonics with IDHOA (see Chapter 3).

6.4.1 Decoding of SWF to an Irregular Loudspeaker Lay-
out

The goal is, given a loudspeaker layout and a given SWF signal, to generate the
speaker signals s as a linear combination of the scaling function coefficients at
the truncation order ℓ:

s = Dℓ+1cℓ

This is represented on the bottom blocks of Figure 6.3. The decoding matrix
has as many rows as speakers and as many columns as channels in the SWF.
The scaling function channels at level ℓ, cℓ, can be computed out of the chan-
nels in the wavelet transform representation, {c0, d0, … , dℓ−1}, by applying
repeatedly Eq. (6.3). Actually, the decodingmatrix can be also computed from
a upsampled version of the coarse channels:

s = D𝑗+1 ̃c𝑗, ℓ < 𝑗 ≤ 𝑛.
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The decoded sproduced viaDℓ+1 andD𝑗+1 should be equivalent, but in prac-
tice, since the different decodingmatrices are obtained a via separate non-linear
optimization processes, there might be differences.

We have developed a numerical optimization method to find the optimal
decoding of a given SWF, based on IDHOA. With respect to the implemen-
tation described in Chapter 3, IDHOA has been adapted to accept any input
in any format, as long as a sound source can be encoded in a sufficient number
of points on the sphere of the sphere. With ‘sufficient’ wemean that the num-
ber of points where the sound source can be encoded has to be greater than
the number of speakers of the destination layout. The same perceptual crite-
ria used for Ambisonics are still valid for Wavelets decoding: pressure, energy,
radial velocity, radial intensity, while the transverse velocity and transverse in-
tensity are minimized. A quadratic term is responsible for penalizing negative
gains. This way IDHOA can now produce decoding matrices for both Am-
bisonics and SWF.

Schematically:

1. Initialization: Operations that are performed only once when the algo-
rithm is launched.

2. Given the loudspeakers’ layout, calculate Dinit. In this case we might
not have a hint on the decoding matrix, like the projection matrix in
Ambisonics, so we can initializeDinit completely random.

3. Calculate the various physical variables that constitute the cost func-
tion: 𝑝,𝐸, v, I. In the case of SWF, the set of 𝑛 points where is actually
possible to evaluate these variables coincides with the set of points of
the finest mesh at which the wavelets are available. (The set of sampling
points is not arbitrary anymore like for Ambisonics, where the func-
tions defining the format are continuous and it is possible to calculate
the encodingmatrix at any point in space.) Calculate the objective func-
tion, which is 𝑓 = 𝑓(Dinit).

4. Fix constraints (optional): constrain some parameters to have a fixed
value (e.g. lock to zero).
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5. Minimization stage: Call to the external minimization algorithm, pass-
ingDinit and𝑓 . When theminimization algorithmterminates, it returns
a D̃.

6.5 Summary
In this Chapter we have described amethod for spatial audio encoding and de-
coding leveraging the multiresolution paradigm. The encoding and decoding
filters are built directly on themultiresolutionmesh (in Section 5.5 andChap-
ter 7 we show two different methods to actually build them). The final step of
decoding to speakers is demanded to IDHOA, leveraging the same observables
used for Ambisonics decoding.

91





Chapter 7

BUILDING SECOND
GENERATION SPHERICAL
WAVELETS VIA NUMERICAL
OPTIMIZATION

7.1 Motivation
The application of wavelets in spatial audio is very different from the other
fields such as computer graphics or image compression. On the one hand, the
number of coefficients is very limited, e.g. between 4 and 20, while typically for
analysis or compression the number of coefficients can be of the order of thou-
sands; this fact impacts the maximum length of the filters and their shape. On
the other hand, the tuning of the analysis and synthesis filters is not targeted to
the minimization of some reconstruction error, but to specific characteristics:
pressure preservation, smooth filtering, or limiting the negative components
of the filters (which correspond to out-of-phase contributions).

In the conclusions of [Dremin et al., 2001], they say:

“[...] the wavelet applications in various fields are numerous and
give nowadays very fruitful outcome. [...] The potentialities of
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wavelets are still not used at their full strength. However one
should not cherish vain hopes that this machinery works auto-
matically in all situations by using its internal logic and does not
require any intuition. According to [Wickerhauser, 1994], “no
‘universal algorithm’ is appropriate for the extreme diversity of
the situations encountered”. Actually it needs a lot of experi-
ence in choosing the proper wavelets, in suitable formulation of
the problem under investigation, in considering most important
scales and characteristics describing the analyzed signal, in the
proper choice of the algorithms (i.e., the methodology) used, in
studying the intervening singularities, in avoiding possible insta-
bilities etc. By this remarkwewould not like to prevent newcom-
ers from entering the field but, quite to the contrary, to attract
those who are not afraid of hard but exciting research and expe-
rience.”

We found that the standard lifting scheme, while it makes it very easy to
tune the characteristics of the synthesis operator, makes the tuning of the anal-
ysis operator much more challenging, often leading to very non-smooth con-
structions. Looking at Eq. (5.22) it is apparent that in the construction ofA𝑗

andQ𝑗, both lifting and dual lifting steps get mixed together. There is no way
of constructing, for example, a P𝑗 without affecting theA𝑗 (and vice versa).

7.2 Numerical Optimization
We instead designed a brute force approach based on numerical optimization
which aims at optimizing simultaneously bothA𝑗 and P𝑗 operators, retaining
the idea of locality of the wavelets and the symmetries of the multiresolution.

The unknowns of the problem are all the four operators: A𝑗, B𝑗, P𝑗 and
Q𝑗. Since our main interest is on the (scaling function) operators A and P,
the optimization problem has been split into two stages: stage 1 with A, P
as unknowns, and stage 2 with B, Q unknowns. All the unknowns grow
quadratically with the number of points in the mesh, and so their constraints
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(i.e. biorthogonality relations, Eq. (5.15)). For this reason we exploit the reg-
ularity of the mesh, that reflects in symmetries in the target matrices, to re-
duce the dimensionality of the problem (see Appendix B). The structure of
the mesh also suggests some relations of neighbourhood, as we discussed in
Section 5.5 with the help of Figure 5.6.

For the first stage, the optimization of scaling function operators, the cost
function is made of 4 terms:

𝐶 = 𝛼Λ𝐶Λ + 𝛼𝑝1𝐶𝑝1 + 𝛼𝑝2𝐶𝑝2 + 𝛼neg𝐶neg,

which are optimized with respect to operators A𝑗 and P𝑗. The first term is
related to the shape of the low-pass filtering induced byA and P. Being Λ the
desired target for the subsequent application of A and P, the associated cost
term is:

𝐶Λ = 1
𝑁𝑘𝑁𝑚

∑
𝑘,𝑚

[∑
𝑙

𝑝𝑗
𝑘𝑙𝑎𝑗

𝑙𝑚 − Λ𝑘𝑚]
2

,

where 𝑎𝑗
𝑙𝑚 ∈ A𝑗 and 𝑝𝑗

𝑘𝑙 ∈ P𝑗 and 𝑁𝑘 and 𝑁𝑚 indicate the number of
elements in each one of the terms in the sum. The second term asks for pressure
preservation during decomposition, and is:

𝐶𝑝1 = 1
𝑁𝑚

∑
𝑚

[∑
𝑙

𝑎𝑗
𝑙𝑚 − 1]

2

,

The third term asks for pressure preservation across decomposition and recon-
struction, also among different levels, and is:

𝐶𝑝2 =
𝑗

∑
𝑗′=0

1
𝑁𝑚

∑
𝑚

[∑
𝑘

(P𝑗 ⋯P𝑗′A𝑗′ ⋯A𝑗)
𝑘𝑚

− 1]
2

.

The fourth and last term asks for positive panning laws, penalizing negative
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coefficients, and is a condition on the matrices alone:

𝐶neg = 1
𝑁𝑙𝑁𝑚

∑
𝑗𝑘

(𝑎𝑗
𝑙𝑚)2𝜃(−𝑎𝑙𝑚)

+ 1
𝑁𝑘𝑁𝑙

∑
𝑘𝑙

(𝑝𝑗
𝑘𝑙)2𝜃(−𝑝𝑗

𝑘𝑙).

Besides, there is an orthonormality constraint

A𝑗P𝑗 = 1.

Theoptimization is thenperformed level by level, from level 0 to level ℓ, leaving
all previous coarser levels frozen in each subsequent step.

For the second stage, onceA and P are set, the wavelet operators B andQ
can be obtained almost algebraically, from the requirementQ𝑗B𝑗+P𝑗A𝑗 = 1,
Eq. (5.16), and the constraints given by Eqs. (5.14a), (5.14b) and (5.14d).

7.3 Example of Optimized Scaling Functions
In this section we will specify some of the free parameters in the optimization
ofA and P, and illustrate the resulting optimized filters.

Define Λ The only explicit free parameter to set is the target Λ. Since we
desire the operators to act locally, we have to limit the distance of the non-zero
neighbours. In other words, the Λ matrix will be mostly zero valued, with the
largest value on the diagonal, say 𝛾. In this work the Λ is designed so that the
only non zero neighbours are the {𝑣1, 𝑣2, 𝑓1, 𝑓2} defined in Figure 5.6. These
vertices are set to a same value 𝜂 = 1/2𝛾, and so that the matrix results to be
normalized.

Independent parameters and free parameters In the optimization of A
and P all the entries of the matrices can be left completely free or they can be
bound by the symmetries of the mesh, as already mentioned (a more detailed
discussion can be found in Appendix B). Moreover, we can decide how many
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of the independent parameters remaining from the symmetries reduction are
effectively let free. By design, wewould like the filter to go to zero for the points
of themesh far from the point under consideration. One option is to constrain
them to be zero. With these choices we can considerably reduce the number
of degrees of freedom of the problem.

Plots of resulting scaling filters In Figures 7.1 and 7.2 we report an exam-
ple of dual scaling filters (A1, A2) obtained with this method for the spheri-
cal mesh described in Section 5.3. These figures show a comparison between
the interpolating and butterfly wavelets with the optimized one. In these pic-
tures the wavelets and scaling coming from the lifting scheme (interpolating
and butterfly) are swapped for their duals (the reason will be explained in Sec-
tion 8.1.2). The optimization is robust, meaning that we get the same filters by
starting from very different initial conditions. A more interesting result is the
Figure 7.3 which shows the combined action of cascading two filters together
A1 A2, that is the operation of downsampling performed during the SWF en-
coding, which is a representation of the dual scaling function. The resulting
filters are still in number of 6, that is the number of filters at level 0, but they
have a length of 66 taps.

In Figures 7.4, 7.5 and 7.6we report the filters generated by thePmatrices.
Similar considerations to theA filters apply.

In general, the filters generated via the optimization tend to have less neg-
ative values and have higher values in the vicinity of the main peak, we can say
that are slightly rounder, but not wider.

In Figures 7.7 and 7.8 we report the optimized filters against the swapped
interpolating and butterfly ones. It is possible to notice that while the A and
P filters are very similar among the different families, while the optimized B
andQ filters are very different from the ones coming from the lifting scheme.
Nevertheless, they all satisfy the equations (5.15) and (5.16). It is apparent that
the imposed constraints are not sufficient to determine uniquely the B andQ.
We did not investigate further on their additional properties, since they reach
their purpose, and these filters are not central in our construction.

In Chapter 8 we will analyze in more detail the effects of the differences
between the filters on the SWF audio chain.
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Figure 7.1: Horizontal representation of
one filter of A1, for the butterfly, interpo-
lating and optimized filters.
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Figure 7.2: Horizontal representation of
one filter of A2, for the butterfly, interpo-
lating and optimized filters.
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Figure 7.3: Horizontal representation of one filter of A1A2, for
the butterfly, interpolating and optimized filters.
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Figure 7.4: Horizontal representation of
one filter of P1, for the butterfly, interpo-
lating and optimized filters.
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Figure 7.5: Horizontal representation of
one filter of P2, for the butterfly, interpo-
lating and optimized filters.
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Figure 7.6: Horizontal representation of one filter of P1P2, for
the butterfly, interpolating and optimized filters.
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Figure 7.7: Horizontal representation of
one filter of Q1, for the butterfly, interpo-
lating and optimized filters.
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Figure 7.8: Horizontal representation of
one filter of B1, for the butterfly, interpo-
lating and optimized filters.

7.4 Summary
In this Chapter we have described how to generate numerical wavelet families
in the Second Generation framework leveraging the Lifting Scheme. The def-
inition of the lifting scheme is completely general and can be applied to any
multiresolution mesh. We detailed the generic construction of the interpolat-
ing wavelet and then particularized it for a spherical mesh. Lastly, we report
our method for wavelet filters optimization and we illustrate some of its out-
comes.
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Chapter 8

IMPLEMENTATION AND
EVALUATION OF SPECIFIC
SPHERICALWAVELET
FORMATS

In this Chapter we will describe three specific SWF implementations: VBAP-
SWF based on VBAP interpolation, SINT-SFW based on the interpolating
wavelet, andOPT-SWF is the result of a numerical optimizedwavelet. We then
proceed to compare their properties in terms of pressure, energy, velocity and
intensity preservation.

8.1 Constructing a Specific SWF Implementa-
tion

In Section 6.3we defined SWF as an audio encodingwith three characteristics:
a subdivision mesh defined over the sphere, a set of filters defining a wavelet
space, a truncation level. In this Section we build three different implemen-
tations of SFW. All the three implementations have the first and third point
in common: the subdivision mesh starts from an octahedron and gets refined
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Figure 8.1: Mesh points at different levels: red level, red+blue level 1, red+blue+green level 2.

with the Loop subdivision method (see Figure 8.1). The number of channels
is 6 for level 0 and 18 for level 1. The difference between the three SWF imple-
mentations is the set of filters defining the wavelet space.

To compare the three SWF implementations, we take the finest level to
be 2 (66 points), and we encode a point source rotating over the horizontal
plane to a 66 points mesh using VBAP to interpolate from the continuous
space to the discrete mesh, 𝑓 (𝜃, 𝜙) → 𝑓66. The 66 channels are later down-
sampled to 18 or 6 using the decomposition matrices of each format. At level
zero the 6 channels correspond to the six components of the coarser dual scal-
ing function c0, and at level 1 the 18 channels are the 18 components of the
dual scaling function at level 1, c1. As discussed in Section 6.3, the signals in
SWF can be represented in two alternative equivalent ways: either as the scal-
ing function at the coarser level plus a set of successively finer wavelet details,
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{c0, d0, … , dℓ−1}, or as the scaling functions at the truncation level ℓ: {cℓ}.
In the first representationwe need thematricesA𝑗 andQ𝑗, and for this Section
𝑗 = 1. In the second representation only the downsampling A𝑗 and upsam-
pling P𝑗 filters are strictly needed. By looking at c0 and c1 we investigate the
properties ofA1 andA2, if we limit ourselves to the downscaling operation. If
we reconstruct c1 with the help of d0, c1 = P1c0 + Q1d0 (Eq. (6.3)), we can
inspect separately the effect of P1 and especially Q1. Upsampling to ̃c0 from
c0, gives us the possibility to analyze the action of P1 alone. In Section 5.2
we presentedA and P as the dual scaling filters and scaling filters respectively,
and c as the coarse coefficients resulting from the wavelet transform. Now, we
can interpret c, A and P in a different way. If we place a set of virtual speak-
ers on the points defining the mesh, then the signals carried by cwould be the
feeds for the speakers. If the encoded signal is a point source in a certain posi-
tion, then the c represent the gains for each virtual speaker needed to represent
a point source in that position. For this reason, and in this specific case, we
could call the c the ‘panning functions’ of the SWF. With this interpretation,
the matricesA and P connect layouts with different numbers of virtual speak-
ers; in spatial audio this kind of matrices are called downmixing and upmixing
matrices, respectively.

The objective of this Section is to see how different types of filters behave,
in terms of pressure preservation and encoding gains for a panning around the
horizontal axis. These quantities would be the ones reconstructed by a set of
speakers (6 or 18) placed exactly on themesh points location. Referring to Fig-
ure 8.2, we will compare the different flavours of SWF after the reconstruction
and before the decoding to speakers.

In the following we will look at the coefficients of the encoding, or the
gains of the virtual speakers, c0, c1 and ̃c0 for different versions of SWF: in Sec-
tion 8.1.1 VBAP-SWFwhere the interpolation betweenmeshes is the trilinear
interpolation used in VBAP; in Section 8.1.2 the SINT-SWF where the inter-
polation betweenmeshes is given by the swapped-interpolating liftingwavelet,
which is a modification of the interpolating wavelet family illustrated in Sec-
tion 5.5; and finally in Section 8.1.3 the OPT-SWF which is the result of the
optimization procedure described in Chapter 7. All the gains plots are re-
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Figure 8.2: Example of a possible SWFworkflow, corresponding to the particular implementation described in the text. The number
of channels is noted in red.
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ported in linear scale to make apparent the eventual negative gains, even if the
logarithmic scale is probably more common.

8.1.1 VBAP-SWF
In Section 6.3 we defined the matricesAVBAP and PVBAP for the VBAP-SWF.
These matrices are the only ones we can design with the procedure described
there. To get the full set {AVBAP,BVBAP,PVBAP,QVBAP, }, we should apply
the othonormality relations (5.15) and (5.16). For several reasons, the fil-
ters B and Q typically are not obtained directly from Eqs. (5.15) and (5.16),
but with procedures (e.g. Lifting Scheme) that guarantee to satisfy those
equations. Since the VBAP-SWF is not obtained via the Lifting Scheme,
but is somewhat built procedurally, we skip the construction of BVBAP and
QVBAP𝑎𝑛𝑑𝑤𝑒𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑜𝑛𝑙𝑦c0

VBAP, c1
VBAP and ̃c0

VBAP coming fromAVBAP and
PVBAP.

The gains produced by the format VBAP-SWF defined in 6.3 for an hor-
izontal panning at level 0 and 1 are reported in Figures 8.3, 8.4, 8.5. In the
plots representing the gains, we represent with solid lines the (virtual) speak-
ers located in the horizontal plane (zero elevation) and with dashed lines the
(virtual) speakers with non-zero elevation.

In particular, Figure 8.4 displays the effect ofA2
VBAP alone, downsampling

from 66 to 18 points. Schematically: 𝑓 (𝜃, 𝜙) → 𝑓66 → 𝑐1
18. It is possible to

notice that the downsampling is in fact a linear interpolation.
Figure 8.3 shows the joint action ofA1

VBAPA2
VBAP downsampling the pan-

ning from 66 to 6 points. Schematically: 𝑓 (𝜃, 𝜙) → 𝑓66 → 𝑐0
6. Pressure is

preserved at each application ofAVBAP.
Finally, in Figure 8.5 we present the effect of upsampling the c0 (6 points)

to ̃c0 (18points), which is the result of applyingP1
VBAPA1

VBAPA2
VBAP to the hor-

izontal rotating delta, which is our signal. Schematically: 𝑓 (𝜃, 𝜙) → 𝑓66 →
𝑐0

6 → ̃𝑐0
18. It is possible to note how the pressure is preserved also after this

stage. The interesting fact to notice is that only the four horizontal points (or
virtual speakers) at level 0 are activated, even if we effectively upsampled to
level 1. This is due to the fact that the PVBAP matrices are trivial (an identity
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for the points at the lower resolution and zero elsewhere).
In this particular version of SWF all the gains are strictly positive.

8.1.2 SINT-SWF
Wementioned in6.3 that the VBAP-inspired wavelets are close in spirit to the
interpolating wavelets, with the difference of having a different set of neigh-
bours and with the dual and direct spaces swapped. Here we show the result
of swapping thewavelets and the scalingwith their duals in the case of the lifted
spherical interpolating wavelets presented in Section 5.5. In the literature sev-
eral types of lifted wavelets are available, other than the interpolating one, but
in general they don’t preserve pressure even when swapping direct and dual
spaces. In this dissertation we chose the swapped interpolating wavelets for
the sake of simplicity and for the analogy with the VBAP case.

In Figures 8.6, 8.7 and 8.8 we report the c0, c1, ̃c0 for the lifted spherical
interpolating wavelets (as defined in Section 5.5). It is evident that the pres-
sure is not preserved by these AINT and this type of scaling functions is not
interesting for our application.

In Figures 8.9, 8.10 and 8.11we showwhat happens to the c0, c1, ̃c0 when
we swap the dual for the direct, essentiallyASINT = P⊺

INT and PSINT = A⊺
INT.

We will call this format SINT-SWF. Similarly to the VBAP-SWF pressure is
preserved at all moments and Figure 8.10 shows the result ofA2

SINT interpola-
tion alone. Unlike thePVBAP thePSINT are not trivial, andwe get ameaningful
upsampling, see Figure 8.11. Small negative gains are introduced in the upsam-
pling procedure.

It is interesting to see which is the contribution of the details d0 when the
c1 is obtained via thementioned reconstruction equation c1 = P1c0 +Q1d0.
In Figure 8.12 we show the bare wavelet coefficients d0. These d0 do not have
an interpretation per-se, but they have to be uplifted viaQ1 to make sense in
the virtual speaker interpretation. In Figure 8.13 we illustrate the isolated ef-
fect of the upsampled Q1d0 over the 18 points of the mesh at level 1. If we
look at these upsampled details in the interpretation where the mesh is a set
of virtual speakers, then the gains carried byQ1d0 are summed linearly to the
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Figure 8.3: Scaling coefficients c0
6 for an horizontal panning of VBAP-SWF at level 0. These

can be interpreted as the gains of 6 virtual speakers located on the mesh. (𝑓66 → c0
6).
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Figure 8.4: Scaling coefficients c1
18 for an horizontal panning of VBAP-SWF at level 1. These

can be interpreted as the gains of 18 virtual speakers located on the mesh. (𝑓66 → c1
18).
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Figure 8.5: Upsampled scaling coefficients c0
6 for an horizontal panning ofVBAP-SWFat level

0̃. These can be interpreted as the gains of 18 virtual speakers located on the mesh. (𝑓66 →
c0

6 → ̃c0
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Figure 8.6: Scaling coefficients c0
6 for an horizontal panning of interpolating SWF at level 0.

These can be interpreted as the gains of 6 virtual speakers located on the mesh. (𝑓66 → c0
6).
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Figure 8.7: Scaling coefficients c1
18 for an horizontal panning of interpolating SWF at level 1.

These can be interpreted as the gains of 18 virtual speakers located on themesh. (𝑓66 → c1
18).
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Figure 8.8: Upsampled scaling coefficients c0
6 for an horizontal panning of interpolating SWF

at level 0̃. These can be interpreted as the gains of 18 virtual speakers located on the mesh.
(𝑓66 → c0

6 → ̃c0
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Figure 8.9: Scaling coefficients c0
6 for an horizontal panning of SINT-SWF at level 0. These

can be interpreted as the gains of 6 virtual speakers located on the mesh. (𝑓66 → c0
6).
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Figure 8.10: Scaling coefficients c1
18 for an horizontal panning of SINT-SWF at level 1. These

can be interpreted as the gains of 18 virtual speakers located on the mesh. (𝑓66 → c1
18).
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Figure 8.11: Upsampled scaling coefficients c0
6 for an horizontal panning of SINT-SWF at

level 0̃. These can be interpreted as the gains of 18 virtual speakers located on the mesh.
(𝑓66 → c0

6 → ̃c0
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Figure 8.12: Wavelet coefficients, d0, for an horizontal panning of SINT-SWF at level 0.
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Figure 8.13: Upscaled wavelet coefficients,Q1d0, for an horizontal panning of SINT-SWF at
level 0..

ones coming fromP1c0. It is important to notice that these details donot carry
pressure, that is already preserved by theA and Pmatrices.

8.1.3 Optimized-SWF Gains for Horizontal Panning
In Figures 8.14, 8.15 and 8.16 we report the same signals as before for the op-
timized set of filters of the OPT-SWF. It is possible to notice that pressure is
properly preserved at all stages, similarly to what happens for VBAP-SWF and
SINT-SWF. Noticeable negative gains are introduced only in the upsampling
stage (Figure 8.16) and are smaller than in the equivalent processing for SINT-
SWF. The panning functions have a more ‘round’ shape than in VBAP-SWF
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and INT-SWF.
As before, it is interesting to see which is the contribution of the de-

tails d0 when the c1 is obtained via the mentioned reconstruction equation
c1 = P1c0 + Q1d0. In Figure 8.17 we report the bare d0 wavelet coefficients
for OPT-SWF. It is interesting to note that the d0 from OPT-SWF are less
sparse than the one coming from SINT-SWF. This effect is due to the fact
that we did not ask for special properties of B1 and Q1, a part from the oth-
onormality withA1 and P1. Notice that the properties of d0 do not influence
the localization properties of the wavelet-based audio format, because those
are given byQd. The d0 influence only the compression qualities of the audio
format. In Figure 8.18 we illustrate the isolated effect of the upsampledQ1d0

over the 18 points of the mesh at level 1. It is important to notice that these
details do not carry pressure, that is already preserved by theA and Pmatrices.

The main difference with respect to the upsampled details of SINT-SWF
inFigure 8.13 is the shapeof the contributionof the details. In thenext Section
we will investigate more on this subject.

8.2 Reconstructed Velocity, Energy and Inten-
sity for Different SWF Flavours

In the previous Section we have seen that the analyzed SWF flavours preserve
pressure along thewhole audio chain, and present some differences in panning
functions’ shape. In this sectionwewill investigate the differences between the
three SWF flavours, VBAP/SINT/OPT, in terms of reconstruction of some
relevant observables: velocity, energy and intensity. These quantities would
be the ones reconstructed by a set of speakers (6 or 18) placed exactly on the
mesh points location.

We want to stress the fact that we are looking at these values as recon-
structed on the points of the original mesh, as if they were virtual speakers,
and no actual decoding is involved. Making a parallel with Ambisonics, it is
possible to interpret the reconstructed physical quantities we are investigating
as the quantities reproduced by a basic decoding with a regular layout. With
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Figure 8.14: Scaling coefficients c0
6 for an horizontal panning of OPT-SWF at level 0. These

can be interpreted as the gains of 6 virtual speakers located on the mesh. (𝑓66 → c0
6).
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Figure 8.15: Scaling coefficients c1
18 for an horizontal panning of OPT-SWF at level 1. These

can be interpreted as the gains of 18 virtual speakers located on the mesh. (𝑓66 → c1
18).
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Figure 8.16: Upsampled scaling coefficients c0
6 for an horizontal panning ofOPT-SWF at level

0̃. These can be interpreted as the gains of 18 virtual speakers located on the mesh. (𝑓66 →
c0

6 → ̃c0
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Figure 8.17: Wavelet coefficients, d0, for an horizontal panning of OPT-SWF at level 0.
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Figure 8.18: Upscaled wavelet coefficients,Q1d0, for an horizontal panning of OPT-SWF at
level 0.
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this exploration we are effectively looking at the internals of the format, in-
specting which quantities are preserved and which are not along the encoding
chain.

In Figures 8.19, 8.20 and 8.21 we report the velocity reconstruction, sepa-
rated in its radial and transverse components, for the three SWF flavours that
are object of this analysis. In Figures 8.19 and 8.20 (where only the A are in-
volved) it is possible to see that the velocity (in particular the radial compo-
nent) is properly reconstructed only at the points of the mesh; in between the
mesh points the type of interpolation is responsible for the preserved proper-
ties. In Figure 8.21 the action of P adds up, modifying the reconstruction of
the radial component of velocity for OPT-SWF and SINT-SWF. VBAP-SWF
component remains unchanged, with respect to Figure 8.19, since PVBAP is
trivial.

Very similar considerations to the velocity reconstruction can be done for
the intensity, reported in Figures 8.22, 8.23 and 8.24, with the only differ-
ence of a more relevant transverse component starting to appear in between
the mesh points. The value of the radial intensity is very good already at level
0.

The downside of a good intensity reconstruction, is a quite non-uniform
energy reconstruction, see Figures 8.25, 8.26 and 8.27. The variation in energy
across the horizontal plane is greater or equal than 3 dB, which is expected for
a pressure-preserving panning technique but not ideal for reproduction. In a
typical workflow (e.g. Ambisonics) when decoding to speakers, two decoders
are produced: one that aims at pressure and velocity reconstruction for low
frequencies, and one that aims at energy and intensity reconstruction for high
frequencies, as explained in Section 3.1. For this task we built (and later modi-
fied to cope with wavelets decoding) IDHOA.We can, for example generate a
decoding that attempts to properly recover the energy, while maximizing the
radial intensity (max-𝑟𝐸). As en example, in Figures 8.28 and 8.29 we demon-
strate the action of IDHOAwhen generating a decoder for the virtual speakers
on the mesh. The result is a reduced reconstructed energy variation, less than
2 dB, at the cost of a slight reduction in the radial intensity.

These considerations are quantified numerically in Tables 8.1 and 8.2,
where we report the average (and its minimum andmaximum values) for each
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Figure 8.19: Velocity at level 0; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.20: Velocity at level 1; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.21: Velocity at level 0̃; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.22: Intensity at level 0; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.23: Intensity at level 1; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.24: Intensity at level 0̃; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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observable and SWF version. In the last column of each table we show the ac-
tion of applying the max-𝑟𝐸 IDHOA decoding shown in Figures 8.28 for the
energy and 8.29 for the intensity. It is possible to generate a different IDHOA
decoder for low frequencies, that preserves pressure and optimizes the velocity,
and we report the values for the improved velocity in italics in the last column
of the mentioned tables. The reconstructed pressure in this decoding scheme
is exactly 1, so we preferred to omit it from the Table.

As a final task, it is interesting to inspect what are the physical quantities
carried by the d0, for SINT-SWF and OPT-SWF. In Figures 8.30 and Fig-
ures 8.31 we report the reconstructed energy and intensity carried by ̃c0 =
P1c0, d̃0 = Q1d0 and c1 for SINT-SWF. The same quantities are shown in
Figures 8.32 and8.33 forOPT-SWF.Wecan conclude that thephysical quanti-
ties carried by the d0 are mainly energy and intensity, while their contribution
to the pressure is zero by design.

8.3 Summary
In this Chapter we constructed three versions of SWF that share the same sub-
divisionmesh, but differ in the wavelet families that constitute the SWF filters.
Even if the three wavelet families are built in very different ways (VBAP inter-
polation, lifting scheme, numerical optimization), when looking at physical
reconstructed quantities, they perform remarkably similar.
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Figure 8.25: Energy at level 0; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.26: Energy at level 1; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.27: Energy at level 0̃; com-
parison between OPT/SINT/VBAP-SWF
flavours.
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Figure 8.28: Energy as reconstructed by
OPT-SWF alone and with the addition of
the IDHOA decoding at levels 0 and 1.
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Figure 8.29: Intensity as reconstructed by
OPT-SWF alone and with the addition of
the IDHOA decoding at levels 0 and 1.
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Figure 8.30: Energy contributions from
̃c0 = P1c0 and d̃0 = Q1d0, which con-
stitute c1, for SINT-SWF.
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Figure 8.31: Intensity contributions from
̃c0 = P1c0 and d̃0 = Q1d0, which con-
stitute c1, for SINT-SWF.
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Figure 8.32: Energy contributions from
̃c0 = P1c0 and d̃0 = Q1d0, which con-
stitute c1, for OPT-SWF.
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Figure 8.33: Intensity contributions from
̃c0 = P1c0 and d̃0 = Q1d0, which con-
stitute c1, for OPT-SWF.
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observable VBAP-SWF SINT-SWF OPT-SWF OPT-SWF + IDHOA

𝐸 energy (dB) −1.910.00
−3.01 −1.950.00

−3.01 −1.95−0.01
−3.00 0.061.36

−0.54
𝐼R intensity 0.851.00

0.71 0.851.00
0.71 0.851.00

0.71 0.790.94
0.69

𝐼T intensity 0.130.21
0.00 0.120.20

0.00 0.130.20
0.00 0.060.11

0.00
𝐼T intensity (deg) 7.512.1

0.0 6.911.5
0.0 7.511.5

0.0 3.46.3
0.0

𝑣R velocity 0.801.00
0.71 0.791.00

0.71 0.780.96
0.71 0.951.18

0.87
𝑣T velocity 0.010.03

0.0 0.010.03
0.0 0.010.03

0.0 0.020.04
0.00

𝑣T velocity (deg) 0.61.7
0.0 0.61.7

0.0 0.61.7
0.0 1.12.3

0.0

Table 8.1: Level 0 - comparison between different SWF formats. Each entry reports the average and maximum and minimum values
of the specified observable, avgmax

min . In italics the results for a decoder optimizing pressure and velocity.

observable VBAP-SWF SINT-SWF OPT-SWF OPT-SWF + IDHOA

𝐸 energy (dB) −1.760.00
−3.01 −1.760.00

−3.01 −1.670.00
−3.44 −0.300.70

−0.97
𝐼R intensity 0.961.00

0.92 0.961.00
0.92 0.961.00

0.91 0.900.94
0.86

𝐼T intensity 0.080.14
0.00 0.090.18

0.00 0.130.30
0.00 0.090.22

0.00
𝐼T intensity (deg) 4.68.0

0.0 5.210.4
0.0 7.517.5

0.0 5.212.7
0.00

𝑣R velocity 0.951.00
0.92 0.951.00

0.92 0.930.99
0.89 0.991.07

0.95
𝑣T velocity 0.020.02

0.00 0.040.10
0.00 0.090.19

0.0 0.090.20
0.00

𝑣T velocity (deg) 1.11.1
0.00 2.35.7

0.00 5.210.9
0.0 5.211.5

0.0

Table 8.2: Level 1 - comparison between different SWF formats. Each entry reports the average and maximum and minimum values
of the specified observable, avgmax

min . In italics the results for a decoder optimizing pressure and velocity.
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Chapter 9

OBJECTIVE EVALUATION OF
THE DECODING OF SWF
FLAVOURS AND AMBISONICS

In this Chapter we compare a VBAP-SWF and OPT-SWF implementations
with Higher Order Ambisonics, both decoded with IDHOA to a standard
layout.

9.1 Objective Evaluation of VBAP-SWF, OPT-
SWF and Ambisonics for the 7.0.4 Layout

As a first comparison, the chosen destination speakers’ layout is a standard
7.0.4, meaning: 7 speakers on the horizontal plane, 0 LFE, 4 ceiling speak-
ers, located as shown in Figure 9.1. The benefits of this layout are that it an
industry-standard layout with loudspeakers above the horizontal plane, that is
meaningful and can be easily replicated. With meaningful wemean than has a
sufficient number of elevated speakers to distinguish front, back, left and right
in the upper part of the layout (which is not the case for the 5.0.2). Moreover,
the number of loudspeakers is still moderate with respect to other industry
standards, e.g. 9.0.6, 22.2, and it is increasingly common in mixing facilities.
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Figure 9.1: Detailed view of 7.0.4 speakers’ layout.

With reference to the signal processing scenarios described in the introduc-
tion of thisChapter, for the sake of claritywe can represent them schematically
as follows. The first scenario 𝑓 → 𝑓66 → 𝑐6 → 𝑠7.0.4:

𝑓 (𝜃, 𝜙) → f66

c0
6 = A1

6×18A2
18×66f266

s07.0.4 = D0
7.0.4×6c0

6

The second scenario 𝑓 → 𝑓66 → 𝑐18 → 𝑠7.0.4:

𝑓 (𝜃, 𝜙) → f66

c1
18 = A2

18×66f266, or

s17.0.4 = D1
7.0.4×18c1

18
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type order # channels

Ambisonics 1 4
Ambisonics 2 9
Ambisonics 3 16

type level # channels

Wavelet 0 6
Wavelet 1 18
Wavelet ̃0 6 ( ̃18)

Table 9.1: Comparison of number of channels per order/level for Ambisonics, on the left,
andWavelets, on the right.

Finally, the third scenario 𝑓 → 𝑓66 → 𝑐6 → ̃𝑐18 → 𝑠7.0.4:

𝑓 (𝜃, 𝜙) → f66

c0
6 = A1

6×18A2
18×66f266

c̃0
18 = P1

18×6c0
6

̃𝑔0
7.0.4 = D1

7.0.4×18c̃0
18

The stages outlined here, encoding (consisting of interpolation and de-
composition), transmission, upsampling (optional) and decoding to speakers,
are graphically illustrated in Figure 8.2with the number of channels annotated
in red close to each box. Note that the downsampling, upsampling and decod-
ing steps are kept separate for clarity, but they can be performed as one single
matrix product.

Given the difference in number of channels between Ambisonics orders
and SWF levels, see Table 9.1 it is difficult to fairly compare the two. More-
over, the destination layout has 11 speakers and theoretically, for a regular Am-
bisonics layout— only up to second order 3D Ambisonics could be decoded
to it. Given these facts, we show the activation gains, reconstructed energy and
intensity in the horizontal plane only (for the sake of brevity) for the follow-
ing formats decoded to 7.0.4: 1𝑠𝑡, 2𝑛𝑑, 3𝑟𝑑 order Ambisonics, levels 0, 1, ̃0
in OPT-SWF and VBAP-SWF. For the SWF (both flavours) we report the re-
sulting gains obtained with two fairly extreme configurations of IDHOA, and
hence two very different decoders. The first decoder is designed to mimic the
smoothness of Ambisonics (at 1𝑠𝑡, 2𝑛𝑑 order), we call it smooth in the follow-
ing. The second one is built with the intent of activating less (neighbouring)
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Figure 9.2: Energy comparison for lev-
els and orders with similar channel count:
SWF at level 0 with the smooth decoding
preset andAmbisonics at order 1 and 2, de-
coded to a 7.0.4 layout.
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Figure 9.3: Intensity comparison for lev-
els (with the smooth decoding preset) and
orders with similar channel count. The
point and dash lines represent radial inten-
sity and the dashed ones the transverse in-
tensity component.

speakers possible, mimicking a VBAP-like behaviour, and we call it focus. The
decoders are obtainedbybalancing the terms of energy reconstruction, and the
request for focused sources represented by the radial intensity, both described
in Section 3.1.

9.1.1 Comparison between SWF Levels 0 and 0̃ and Am-
bisonics Orders 1 and 2

ForVBAP-SWF the differences between level 0 and level ̃0 are given only by the
decoding matrixD, and not by the upsampling, since the matrix P generated
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Figure 9.4: Horizontal panning for VBAP-SWF at level 0 decoded to 7.0.4 layout, using the
smooth decoding preset.
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Figure 9.5: Horizontal panning for OPT-SWF at level 0 decoded to 7.0.4 layout, using the
smooth decoding preset.
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Figure 9.6: Horizontal panning for OPT-SWF at level 0̃ decoded to 7.0.4 layout, using the
smooth decoding preset.
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Figure 9.7: Horizontal panning for Ambisonics at order 1 decoded to 7.0.4 layout.

130



0°

45°

90°

135°

180°

225°

270°

315°

5
4

3
2

1
0

1
2

energy VBAP-SWF order 0 ( E = 2.2 dB)
energy OPT-SWF order 0   ( E = 2.0 dB)

energy OPT-SWF order 0   ( E = 2.5 dB)
energy Ambisonics order 1  ( E = 0.0 dB)
energy Ambisonics order 2  ( E = 0.2 dB)

Figure 9.8: Energy comparison for lev-
els and orders with similar channel count:
SWF at level 0 with the focus decoding pre-
set and Ambisonics at order 1 and 2, de-
coded to a 7.0.4 layout.
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Figure 9.9: Intensity comparison for levels
(with the focus decoding preset) and orders
with similar channel count. The dashed
lines represent radial intensity and the dot-
ted ones the transverse intensity compo-
nent.

by VBAP is trivial. For this reason (and for a clearer presentation), for VBAP-
SWF we show only level 0, e.g. Figure 9.4.

For OPT-SWF, instead, the differences are given by the combination of P
and D matrices. Figures 9.5 and 9.6 show the activation gains for the smooth
decoding preset, and Figures 9.11 and 9.12 show the activation gains for the
focus decoding preset.

It is interesting to observe how the two SWF formats compare with Am-
bisonics in terms of apparent source width, which is related to the radial inten-
sity reported in Figures 9.3 and 9.9 for the two decodings. Figure 9.3, for the
smooth decoder, shows that VBAP-SWF, OPT-SWF-0 and Ambisonics-1 are
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Figure 9.10: Horizontal panning for VBAP-SWF at level 0 decoded to 7.0.4 layout, using the
focus decoding preset.
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Figure 9.11: Horizontal panning for OPT-SWF at level 0 decoded to 7.0.4 layout, using the
focus decoding preset.
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Figure 9.12: Horizontal panning for OPT-SWF at level 0̃ decoded to 7.0.4 layout, using the
focus decoding preset.

very similar. Interestingly, OPT-SWF- ̃0 performs better than the plain level 0
and performs in some areas (front and sides) as Ambisonics-2. The improve-
ment comes with a worsened reconstruction error, see Figure 9.2. Figure 9.9,
for the focus decoder, shows that it is possible to improve SWF’s focusing of the
sources in some areas (front and sides, where the points of the original mesh
are located) at the expense of some worsening in the energy reconstruction.
Given the activation gains for this decoder, Figures 9.10, 9.11 and 9.12, and
the experience during listening, this decoder sounds more “jumpy” than the
smooth one. This effect is given by the fact that the L and R speakers are less
active during the transition to the side-surrounds, with respect to the smooth
decoder.

All these considerations are summarized in Tables 9.2 and 9.3. These ob-
servations are confirmed in informal listening tests described in Section 9.1.3.

Note that it is legit to compare level ̃0 with Ambisonics order 1 and 2 be-
cause level ̃0 has effectively only 6 channels, since the upsampling operation
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consists of a matrix product that can be precalculated and embedded into the
decoding matrix, leading to a new decoding matrix.

Ambisonics, at all orders considered here, is the one with largest negative
gains. VBAP-SWF, by construction, has no negative gains, but the decoding
to speakers can introduce them. OPT-SWFhas some negative gains embedded
in the downsampling and upsampling matrix, and the decoding to speakers
can further increase them. For these reasons, in general, the two SWF flavours
are better behaved than Ambisonics (order 1 and 2) when listening out of the
sweet spot and are closer to a pure amplitude panner.

9.1.2 Comparison between SWF Level 1 and Ambisonics
Orders 2 and 3

In this case VBAP-OPT-1 (Figures Figures 9.14, 9.15) and OPT-SWF-1 (Fig-
ures 9.14, 9.16) performs comparably to Ambisonics-2 (Figures 9.14, 9.17)
for the smooth decoding. For the focus decoding SWF-1 performs on par (or
slightly better) than Ambisonics-3, see Figures 9.20, 9.22 and 9.18. In partic-
ular, looking at the linear gains plots, it is possible to notice that SWF-1 focus
makes use of the central loudspeaker in a neater way than Ambisonics-3 does.

All these considerations are summarized in Tables 9.4 and 9.5.
In general, the price to pay for a greater radial intensity is a worsened re-

constructed energy. This effect is highlighted in the polar plots showing the
reconstructed energy by reporting the 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 = Δ𝐸 in the legend.
At the levels indicated here,< 2 dB, this effect does not seem to be noticeable,
but further investigation is needed.

9.1.3 Informal Listening
During the evaluation of the formats and decodings, we carried out some in-
formal listening tests. The tests where performed in a critical listening room
with RT60 below 0.25 s above 200 Hz and 0.4 s below. The listening tests
assessed the quality of the decoders and the different audio chains.

The differences in the perceived localization properties of the audio chains
described in Sections 9.1.1 and 9.1.2 are confirmed also during the subjective
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Figure 9.13: Energy comparison for lev-
els and orders with similar channel count:
SWF at level 1 with the smooth decoding
preset andAmbisonics at order 2 and 3, de-
coded to a 7.0.4 layout.
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Figure 9.14: Intensity comparison for lev-
els (with the smooth decoding preset) and
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Figure 9.15: Horizontal panning for VBAP-SWF at level 1 decoded to 7.0.4 layout, using the
smooth decoding preset.
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Figure 9.16: Horizontal panning for OPT-SWF at level 1 decoded to 7.0.4 layout, using the
smooth decoding preset.
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Figure 9.17: Horizontal panning for Ambisonics at order 2 decoded to 7.0.4 layout.
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Figure 9.18: Horizontal panning for Ambisonics at order 3 decoded to 7.0.4 layout.

137



0°

45°

90°

135°

180°

225°

270°

315°

5
4

3
2

1
0

1
2

energy VBAP-SWF order 1 ( E = 1.4 dB)
energy OPT-SWF order 1   ( E = 1.7 dB)
energy Ambisonics order 2  ( E = 0.2 dB)
energy Ambisonics order 3  ( E = 0.3 dB)

Figure 9.19: Energy comparison for lev-
els and orders with similar channel count:
SWF at level 1 with the focus decoding pre-
set and Ambisonics at order 2 and 3, de-
coded to a 7.0.4 layout.
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Figure 9.20: Intensity comparison for lev-
els (with the focus decoding preset) and
orders with similar channel count. The
dashed lines represent radial intensity and
the dotted ones the transverse intensity
component.
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Figure 9.21: Horizontal panning for VBAP-SWF at level 1 decoded to 7.0.4 layout, using the
focus decoding preset.
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Figure 9.22: Horizontal panning for OPT-SWF at level 1 decoded to 7.0.4 layout, using the
focus decoding preset.
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observable VBAP-SWF 0 OPT-SWF 0 OPT-SWF ̃0 Ambi 1 Ambi 2

𝐸 energy (dB) 0.050.73
−0.27 0.190.70

−0.22 −0.070.82
−0.84 0.140.16

0.14 −0.060.03
−0.16

𝐼R intensity 0.630.78
0.55 0.640.76

0.57 0.720.83
0.61 0.660.73

0.58 0.810.89
0.60

𝐼T intensity 0.100.12
0.08 0.130.23

0.07 0.130.25
0.04 0.110.13

0.10 0.110.20
0.09

𝐼T intensity (deg) 5.76.9
4.6 7.513.3

4.0 7.4714.5
2.3 6.37.5

5.5 6.311.5
5.2

Table 9.2: Summary table for the comparison between SWF levels 0 and 0̃ and Ambisonics order 1 and 2, decoded to a 7.0.4 layout
with the smooth preset. Each entry reports the average and maximum and minimum values of the specified observable, avgmax

min .
Highlighted in italic the values of mean radial intensity that are similar across different formats. Highlighted in blod the highest value
for the mean radial intensity.

observable VBAP-SWF 0 OPT-SWF 0 OPT-SWF ̃0 Ambi 1 Ambi 2

𝐸 energy (dB) −0.041.40
−0.80 0.301.35

−0.63 −0.330.92
−1.62 0.140.16

0.14 −0.060.03
−0.16

𝐼R intensity 0.740.90
0.60 0.750.90

0.60 0.750.88
0.60 0.670.73

0.58 0.810.89
0.60

𝐼T intensity 0.110.18
0.05 0.160.31

0.04 0.160.30
0.03 0.110.13

0.10 0.110.20
0.09

𝐼T intensity (deg) 6.310.4
2.9 9.218.1

2.3 9.217.5
1.7 6.37.5

5.7 6.311.5
5.2

Table 9.3: Summary table for the comparison between SWF levels 0 and 0̃ and Ambisonics order 1 and 2, decoded to a 7.0.4 layout
with the focus preset. Each entry reports the average and maximum and minimum values of the specified observable, avgmax

min . High-
lighted in italic the values of mean radial intensity that are similar across different formats. Highlighted in blod the highest value for
the mean radial intensity.
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observable VBAP-SWF 1 OPT-SWF 1 Ambi 2 Ambi 3

𝐸 energy (dB) 0.000.43
−0.23 −0.100.32

−0.46 −0.060.03
−0.15 0.010.14

−0.12
𝐼R intensity 0.790.86

0.63 0.790.87
0.63 0.810.89

0.60 0.860.92
0.63

𝐼T intensity 0.090.16
0.05 0.100.22

0.01 0.110.20
0.09 0.080.17

0.03
𝐼T intensity (deg) 5.29.2

2.9 5.712.7
0.6 6.311.5

5.2 4.69.8
1.7

Table 9.4: Summary table for the comparison between SWF level 1 and Ambisonics order 1 and 2, decoded to a 7.0.4 layout with the
smooth preset. Each entry reports the average and maximum and minimum values of the specified observable, avgmax

min . Highlighted
in italic the values ofmean radial intensity that are similar across different formats. Highlighted in blod the highest value for themean
radial intensity.

observable VBAP-SWF 1 OPT-SWF 1 Ambi 2 Ambi 3

𝐸 energy (dB) −0.120.74
−0.70 −0.240.59

−1.08 −0.060.03
−0.15 0.010.14

−0.12
𝐼R intensity 0.870.96

0.63 0.870.96
0.64 0.810.89

0.60 0.860.92
0.63

𝐼T intensity 0.100.29
0.02 0.110.26

0.00 0.110.20
0.09 0.080.17

0.03
𝐼T intensity (deg) 5.716.9

1.1 6.315.1
0.0 6.311.5

5.2 4.69.8
1.7

Table 9.5: Summary table for the comparison between SWF level 1 and Ambisonics order 1 and 2, decoded to a 7.0.4 layout with
the focus preset. Each entry reports the average and maximum and minimum values of the specified observable, avgmax

min . In bold we
highlight the highest values of mean radial intensity, which in this case are also similar across different formats.
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listenings. This supports the fact that the radial intensity models well the per-
ceived source size. With the tests we performed, it is difficult to quantify how
relevant is the small non-zero transverse intensity for the incorrect positioning
of the source. Specific tests should be carried out. As for the loudness across
the horizontal trajectory of the audio source, we didn’t notice any variation
with these moderate energy differences.

9.2 Objective Evaluation of OPT-SWF and Am-
bisonics for the Hamasaki 22.2 Layout

In this Section we would like to briefly illustrate a reduced comparison be-
tween OPT-SWF and Ambisonics for a layout that is the channel-based setup
with themost number of speakers to date, theHamasaki 22.2 [Hamasaki et al.,
2005]. For this comparison we are not in the position to be able to assess the
differences also via listening tests, even if limited and informal. We rely only on
the psychoacoustic indicators described in the manuscript. For this compari-
son, we created a decoding for OPT-SWF at level 1 and Ambisonics at order
3. In both cases the number of loudspeakers exceeds the number of format’s
channels to decode.

The Hamasaki 22.2 layout is composed of 22 speakers disposed in three
levels and 2 subwoofers. The lower level has 3 loudspeakers in the frontal area
(between−15∘ and−25∘ of elevation). Themiddle layer has 10 loudspeakers,
and it is possible to think to it as an enriched 9.0 layout with an added speaker
right in the back of the sweet spot (or opposite to the center channel). The top
layer (between 30∘ and 45∘ of elevation) has 8 loudspeakers at an equal angular
distance between each other. To reach the number of 22 loudspeakers, the last
loudspeaker is placed at the zenith of the layout (90∘ elevation), typically called
“voice of god”.

In Figures 9.25 and 9.26 we report the panning functions for an horizon-
tal panning for Ambisonics at order 3 and OPT-SWF at level 1 decoded to
the Hamasaki 22.0 layout described. The solid lines represent the gains of the
speakers located in the horizontal plane (zero elevation) while the dashed lines
depict the gains of the speakers with non-zero elevation. This representation
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Figure 9.23: Energy comparison compari-
son for OPT-SWF at level 1 and Ambison-
ics at order 3, decoded to anHamasaki 22.0
layout, on the horizontal plane.
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Figure 9.24: Intensity comparison compar-
ison forOPT-SWF at level 1 andAmbison-
ics at order 3, decoded to an Hamasaki
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dashed lines represent radial intensity and
the dotted ones the transverse intensity
component.
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Figure 9.25: Horizontal panning for Ambisonics at order 3 decoded to an Hamasaki 22.0
layout.
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Figure 9.26: Horizontal panning forOPT-SWFat level 1, decoded to anHamasaki 22.0 layout.
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makes apparent that some speakers in the top layer are activated even if the pan-
ning is purely in the horizontal plane, that overlaps with the Hamasaki’s mid-
dle layer. The number of speakers activated by Ambisonics and OPT-SWF is
very similar. The only difference, that in this specific casewe considerminimal,
is the type of speakers activated: for a source located in the center inOPT-SWF
the central speaker is activated while in Ambisonics the left and right speakers
generate a phantom center.

In Figures 9.23 and 9.24 depict on the horizontal plane the reconstructed
energy and intensity, respectively, for Ambisonics at order 3 andOPT-SWF at
level 1 decoded to theHamasaki 22.0. It is possible to see that both techniques
achieve similar performances. The Δ𝐸 is limited around 1 dB for both tech-
niques except to the left and right of the back speaker (BC). That is an effect
due to the distance between the speaker at±110∘ and the speaker at 180∘, and
is controlled by a (tunable) parameter of IDHOA. We will elaborate more in
the discussion about the vertical plane plots.

A relevant difference that is not shown in the horizontal plots is the actual
difficulty to generate anAmbisonics decodingwith very limited negative gains.
The tweaking of parameters for the minimization parameters is non trivial, es-
pecially for layouts that cover only partially the surface of the sphere. This is
probably one of the reasonswhy there are no commercial tools to generateAm-
bisonics decoding matrices, but typically in commercial products static matri-
ces are provided. For OPT-SWF essentially any decoder produced will have
very limited negative gains by construction. To stress this point, we report the
same plots, gains, energy and intensity, for the vertical plane.

In Figures 9.29 and 9.30 we report the panning functions for a panning
around the vertical plane for Ambisonics at order 3 and OPT-SWF at level 1
decoded to theHamasaki 22.0 layout described. It is apparent thatAmbisonics
struggles tomaintain positive gains, while forOPT-SWF it is guaranteed by the
filters themselves. To try to not compensate for the areas without loudspeak-
ers, i.e. the lower half of the sphere, in IDHOAwe implemented amechanism
to reduce the contribution of these areas in the value of the cost function. This
is the motivation for the drop in the reconstructed energy between the 180∘

and 315∘ elevation, see Figure 9.27. The same happens for the radial intensity,
Figure 9.28.
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Figure 9.27: Energy comparison compari-
son for OPT-SWF at level 1 and Ambison-
ics at order 3, decoded to anHamasaki 22.2
layout, on the vertical plane.
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Figure 9.28: Intensity comparison compar-
ison forOPT-SWF at level 1 andAmbison-
ics at order 3, decoded to anHamasaki 22.2
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Figure 9.29: Vertical panning for Ambisonics at order 3 decoded to anHamasaki 22.2 layout.
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Figure 9.30: Vertical panning for OPT-SWF at level 1, decoded to an Hamasaki 22.2 layout.
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Both Ambisonics and the SWF implementation we show here have prob-
lems dealing with irregularly spaced speakers. It is quite evident in the 22.2
layout, since the layout is hemispherical and the frontal area is more dense in
speakers than the rear zone. The Hamasaki distribution of speakers is more
concentrated where the human perception accuracy is greater: in the horizon-
tal plane and especially in the frontal area. Both ambisonics and (this imple-
mentationof) SWF treat all directions equally: Ambisonics because of the sup-
port of the SH and SWF because our mesh has (almost) equispaced points on
the sphere. The improvement that SWF brings is the easiness of producing
a decoding with positive gains. Another implementation of SWF with an ir-
regular sampling by design (irregular mesh) could deal with irregular layouts
natively.

9.3 Summary
The SWF implementation described in Chapter 8.1 is designed to be com-
pared directly with Ambisonics: covers the full sphere, has equispaced sam-
pling points that correspond to one of the platonic solids (octahedron or 3-
design) to which Ambisonics has closed form decoding equations. In this
Chapter we compared the decoding of SWF and Ambisonics to two irregular
layouts of speakers. TWe summarize this comparison with a list of advantages
and disadvantages of SWF decoding over Ambisonics decoding:

+ More control of negative gains. Implies bigger sweet spot and more ro-
bust imaging.

+ More predictable fine tuning. Implies that we can push the decoder in
the smooth or focus direction without adding significant out-of-phase
contributions.

+ Possiblymore directional for a similar number of channels (for the focus
decoder).

- The energy reconstruction ismore irregular. It is the price to pay for not
having negative gains and encoding with the requirement of preserving
pressure.
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- At level 1 is mostly equivalent to Ambisonics at order 3. Because of the
construction of SFWalong the lines of Ambisonics, the two techniques
are not significantly different.

If we look at the performance in terms of radial intensity, the two formats
perfom similarly for an irregular array of speakers. Ambisonics stands out for
the smooth energy reconstruction, while SWF for the absence of negative gains
and decoding flexibility.

149





Chapter 10

CONCLUSIONS AND FUTURE
WORK

10.1 Conclusions and Discussion
In this thesis we have defined a new generic framework for spatial audio encod-
ings based on wavelet filters. We have described the complete audio workflow
that makes use of this new tool. Then, we have particularized the framework
to the spherical case for a specific mesh construction, resulting in a practical
realization: the spherical wavelet format (SWF). Similarly to Ambisonics, this
format is based on channels, but in the case of SWF the channels have a partic-
ular spatial localization. On the encoding side of the audio chain, we have de-
vised a numerical method for wavelets optimization (with short filter length),
enabling the creation of a possibly infinite set of core filters. On the decoding
side of the audio chain, we have built and made publicly available1 a universal
decodingmethod, based on the numerical optimization of some psychoacous-
tical observables.

SWF The objective of this thesis was to build a new channel agnostic for-
mat, that is homogeneous and coherent, but also has good localization with

1The version of IDHOA used in this work will be made public soon.
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few channels, easily handles irregular layouts and holds well whenmoving out
of the sweet spot. We have depicted the full audio chain: encoding to mesh
and downsampling, transmission, upsampling and decoding to speakers. The
new format is effectively channel agnostic, there is no reference to the destina-
tion layout in the definition of the format. The homogeneity and coherence
characteristics need a more detailed discussion.

SWF is homogeneous in the specific implementation defined in the the-
sis, since the mesh over which is defined the format is in fact homogeneous.
Nevertheless, it could be perfectly possible to define a wavelet format with a
non-homogeneousmesh andobtain a non-homogeneous format. The same in
fact happens with Ambisonics when decoding to irregular layouts. Ambison-
ics is by construction homogeneous, and the decoders for regular layouts are
also (typically) homogeneous. However, when decoding to irregular layouts
the theory does not assure that the resulting decoding will be homogeneous.
Actually, the best decoders for irregular layouts are not homogeneous (like the
ones produced by IDHOA and presented in this thesis). In this case SWF and
Ambisonics are no different. The coherence follows a similar train of thought,
both SWF andAmbisonics can be coherent in special conditions. SWF has in-
deed good localization with few channels and, thanks to the extremely limited
negative gains, holdswellwhenmovingout of the sweet spot, like an amplitude
panner does. It has been demonstrated that SWF behaves well when decoding
to layouts that are irregular (in the SWF sense) and with the help of IDHOA
it is possible to generate meaningful decoders in a matter of minutes.

We have explored three variations of a particular incarnation of this for-
mat. In both cases wavelets were defined over a spherical mesh, created from a
primitive solid (an octahedron) using a Loop subdivision scheme. In the first
variation thewavelet family is implicitly defined by theVBAPpanning rule. In
the second variation we use an off-the-shelf wavelet family, called interpolat-
ingwavelet. In the third variation thewaveletswere optimizednumerically by a
brute-forcemethod. The threemethods generate audio formats that have very
similar characteristics in terms of energy and intensity reconstruction. The
maindifferences lay in the shape of the panning functions and in the behaviour
of the upsamplingmatrix, P. It is to be noted that the three examples explored
do not necessarily represent the best possible realizations. One of the virtues
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of SWF is precisely the ability to adapt tomany different situations. We believe
that there is no such thing as the best possible SWF format, but rather it de-
pends on the particular context and goal. One of the drawbacks of SWF with
respect to Ambisonics is that the acoustical and perceptual interpretation of
the format in terms of pressure and velocity is lost in general (we still retain the
notion of the global pressure by a careful wavelet design). In this context, it is
key tohave a acoustically andperceptuallymotivateddecoder that can reinstate
the missing physical and perceptual observables.

A three-element comparison, OPT-SWF (using an optimized wavelet),
VBAP-SWF (trivial wavelet from VBAP) and Ambisonics, has been carried
out for two different speakers layouts. Observations from reconstructed sig-
nals, reconstructed energy and intensity indicate that SWF is a format that,
depending on the decoding, can fit between an amplitude panner and Am-
bisonics. It has localization characteristics similar to (or in some cases better
than) Ambisonics, with greater control on the negative gains. Informal listen-
ing tests confirm these characteristics.

In our experience, the difference between the two variations of the wavelet
format explored are relatively minor when evaluated in terms of the decoding
results. We noticed that final results depend only slightly on the wavelet fam-
ily as long as this family has been designed with reasonable characteristics. A
possible explanation is that the IDHOA decoding minimizes any possible in-
trinsic differences between the different encodings. Also, notice that we have
only explored meshes of relatively low order. It is possible that differences be-
comemore apparent when going to higher order meshes, since the filtering ef-
fects are cumulative. Additionally, besides the decoding characteristics, other
filter design properties, e.g. encoding performance, can be considered when
designing and evaluating the wavelet families. Anyway, we expect that the dif-
ferent characteristics of the wavelet families will be more evident when using
custom subdivisionmeshes that represent directly standard speaker positions.
When building custom meshes, the requirement for a spherical format could
be lifted, and we could define a format for meshes with a non-spherical topol-
ogy (e.g. half dome).

As a related remark, notice that the only filter which is strictly essential in
our framework is the analysis filter A, given that the decoding to speakers is
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computed separately with IDHOA via a numerical optimization. However,
we still believe that it is important to have a complete wavelet representation.
When optimizing the filters it is important to optimize at the same time the
analysis and synthesis filtersA and P to ensure that the wavelet transform can
have a well behaved reconstruction. This fact can later on ease the task of de-
coding to speakers performed by IDHOA. Besides, on practical grounds, hav-
ing a complete wavelet construction can be useful to be able tomanipulate the
spatial signal; on theoretical grounds, the wavelet construction is key to under-
stand what is left out by the truncation of SWF, in the spirit of the sampling
theorem, something we leave for future work.

Overall, SWF’s encoding, transmission and decoding flexibility and ren-
dering performance make it an interesting family of formats to explore in real-
life conditions.

IDHOA A fundamental piece for the new format, and also for the compar-
ison with the reference technology Ambisonics, is the stage of decoding to a
real world layout. One of themain outputs of the work is the formulation and
implementation of the IDHOA decoder. While initially oriented to solve the
problem of decoding Ambisonics to irregular layouts (to date still relevant),
we developed an algorithm that, leveraging psychoacoustic criteria, can gener-
ate a decoding matrix for any linear encoding format, as long as this encoding
format allows encoding a point source in any direction. Themain novelty fac-
tor is the separation of intensity vectors in radial and tangential components,
making it possible to optimize the two components separately.

Often in the past literature there has been an excessive stress, in our opin-
ion, on reducing the tangential component of velocity and intensity. This lim-
its the possibility of the radial part to reach relevant values, thus effectively
broadening the audio sources and making them difficult to localize in space.
In the same line of thought, forcing the velocity or intensity vector to have the
same value along the area covered by loudspeakers, which is the homogene-
ity characteristic of Ambisonics, does not make much sense for irregular lay-
outs. We think that separating the velocity and intensity into their radial and
tangent part, and trying to maximize the radial component without trying to
make it uniform, while minimizing the tangential one without requiring it to
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be strictly zero, generates decodings that are in practice much superior to the
commonly available ones. Alongwith the IDHOAcodewewill publish all the
decoding matrices used in this thesis to decode Ambisonics to the mentioned
layouts.

One final note, we believe that adopting this factorization in compo-
nents for the velocity and intensity vectors should become a common practice
among the researchers in the area ofAmbisonics decoding especially for report-
ing the results for different decoders and technologies. Typically the results are
reported with obscure sphere projections and reporting only the modulus of
the vectors. We think that it would be useful to adopt a common format for
reporting, that has proven to be very immediate to relate to the actual listening
experience.

10.2 Future Work
Reach out to the community disseminating this work is indeed our first prior-
ity. From there, we hope to get some feedback and shape the upcoming goals.
Ideally, it would be interesting to design amore industry-oriented format, that
does not necessarily need to compare directly with Ambisonics.

Along the line of searching for a more industry-oriented format and in
the spirit of (compressing) wavelets, whose philosophy is “to model a func-
tion, use a function similar to the function you want to model”, it would be
interesting to experiment with meshes similar to the destination speakers’ lay-
out. It should be quite straightforward to test this concept on any mesh using
a VBAP-SWF, while generating an optimized wavelet format requires more
work and fine-tuning.

Given the flexibility of our construction, a possibly interesting application
to test would be using SWF as a spatial encoder for other formats. For exam-
ple, it is possible to decode Ambisonics to a SWF mesh with a basic decoding
(pressure preserving), thenmanipulate the signals via the described SWF tools
(if needed), and decode perceptually with IDHOA to the destination layout.
Note that the spatial operations like rotations, zoomor spatial deformation are
quite trivial over the c signals, since they have a spatial meaning in the three-
dimensional space, and the usual operations apply. Another example, SWF
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could be used as a transport format for object-based formats to reduce the
number of transmitted audio files. The object based format could be encoded
to SWF, manipulated and transmitted, and decoded to the loudspeakers’ lay-
out via IDHOA.

After format and specific wavelet definition it would be interesting to un-
derstand what is left out by the truncation of SWF, i.e. the meaning of the
‘details’, in the spirit of the sampling theorem.
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Appendix A

MINIMIZATION PROBLEMS
IN PYTHON VIA IPOPT AND
PYTORCH

Both the optimization of the decoding cost function and the wavelets one are
the result of several years trying and experimenting with different technolo-
gies. We feel that it is relevant to leave in writing if not the whole trajectory, at
least the sketch of the final implementation. During the last 7 years we tried
NLopt [Johnson, 2007], IPOPT [Wächter andBiegler, 2006] asminimization
libraries, and several libraries for auto-differentiation, namely algopy [Walter
and Lehmann, 2013], Theano [Theano Development Team, 2016], Tensor-
flow [Abadi et al., 2015] and PyTorch [Paszke et al., 2017]. The final imple-
mentation uses IPOPT over NLopt, and PyTorch over the rest of mentioned
libraries. This combination is the one that proved to have the fastest execution
times, ease of debugging and programming flexibility.

A.1 IPOPTMinimization Library
IPOPT (Interior Point OPTimizer) is an open-source software package for
large non-linear optimization. It can be used to solve general nonlinear pro-
gramming problems, including arbitrary constraints. The software itself is
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written inC++ but has several native or contributedAPIs for other languages.
In our case, we wanted to interface with Python and we used PyIpopt [Xu,
2011] as the Python API for IPOPT. IPOPT requires the computation of the
Jacobian of the cost function and the constraints. If provided, IPOPT uses
also the Hessian of both cost function and constraints, otherwise it will inter-
nally calculate it numerically.

The main obstacle is then calculating the first and second derivatives.
IPOPT just requires the numerical value of the derivatives, so the choice of
the method is left to the researcher.

A.2 Calculating Derivatives
There are essentially three methods available, with their benefits and draw-
backs. We will list them schematically in the following:

1. Analytic differentiation: derivatives are computed and implemented
once, by hand or with the help of some computer algebra software,

+ Exact derivatives, the numerical evaluation is fast.
- The process of (manually) calculating the derivatives is time con-
suming, the implementation can be very complicated.

- Not flexible: the derivatives have tobe recalculated at every change
in cost function or constraints.

2. Numerical differentiation: approximate the derivatives by finite differ-
ences

+ Can be always calculated, even when the cost function doesn not
have a closed analytic expression.

- Approximation errors arise (round-off and truncation) and they
do accumulate.

- The evaluation can be really slow.

3. Automatic differentiation
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+ Exact derivatives, once calculated the numerical evaluation is fast.

+ Very flexible: since the derivatives are exact and calculated auto-
matically, it is possible to experiment with cost function and con-
straints.

- Can be calculated only if the cost function or constraints can be
expressed in terms of operations whose derivative is known by the
library.

- Needs some adaptation of the algorithms and introduces an exter-
nal dependancy.

- Can be slow of fast depending on the specific library.

We chose the analytic differentiation, sincewewant the flexibility to exper-
iment with different cost functions and constraints. In the recent years pack-
ages for automatic differentiation have evolved dramatically thanks to the rise
of artificial intelligence.

A.2.1 Automatic Differentiation Packages
Generally, the automatic differentiation packages are built on the fact that the
the derivative of any expression can be computed using the chain rule. Ap-
plying several times the chain rule, the composite expression is broken in ele-
mentary operations and functions whose derivatives are known. This way, the
derivative of the initial function is computed algorithmically in a finite num-
ber of steps. The automatic differentiation software has to build an internal
representation of the derivative of the function, which is called computational
graph. This computational graph can be built statically (first build the graph,
then compile it) of dynamically (the graph is built at execution time). Dif-
ferent libraries tend to use different methods, even if lately this difference is
gradually being relaxed.

We initially started our research using Theano, but we hit a wall when
starting to use sparsematrices (for reducing the problem’s dimensionality) and
Theano team announced that they would cease the development (3 October
2017). We thenmoved toTensorflow, that at the time built the computational
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graph only statically. A part from the inherent difficulty of debugging (cryptic
error messages that are related to internal graph and not the actual code), the
code results difficult to reuse for interfacing with IPOPT. Ideally we would
like to have the same function that outputs numerical values for IPOT and
that is the input to the automatic differentiation algorithm. We found the in-
teraction with IPOPTmuch more neat to handle using PyTorch.

A.2.2 Examples of Automatic Differentiation in Tensor-
flow and PyTorch

In the following, we will present a simple example showing how to calculate
the derivative of a function in the statical paradigm (with Tensorflow) and in
the dynamic paradigm (with PyTorch). Starting with Tensorflow:

1 # derivatives of a function in tensorflow
2

3 import tensorflow as tf
4

5 # get a number from terminal
6 print("type a number and press enter")
7 point = input()
8 point = float(point)
9 data = tf.placeholder(dtype=tf.float32, shape=())
10

11

12 # the function you want to calculate the gradient
13 def function(indata):
14 square = tf.pow(indata, 2)
15 return square
16

17

18 # start a TensorFlow session
19 # (you need it to evaluate numerically the symbolic expressions)
20 sess = tf.Session()
21

22 # TF symbolic version of function
23 tf_function = function(data)
24 # value of function in your point
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25 value_function = tf_function.eval(feed_dict={data: point},
session=sess)↪

26 print("Function value (the value you entered squared): %.3f" %
value_function)↪

27

28 # calculate the symbolic gradient of function
29 grad_function = tf.gradients(tf_function, [data])[0]
30 # evaluate the gradient in your point
31 value_grad_funct = grad_function.eval(feed_dict={data: point},

session=sess)↪
32 print("Derivative of the function's value (twice the value you

entered): %.3f" % value_grad_funct)↪

The output of the code is:

1 type a number and press enter
2 3
3 Function value (the value you entered squared): 9.000
4 Derivative of the function's value (twice the value you entered):

6.000↪

While with PyTorch:

1 # derivatives of a function in pytorch
2

3 import torch
4

5

6 # get a number from terminal
7 print("type a number and press enter")
8 point = input()
9 point = float(point)
10 data = torch.tensor(point, requires_grad=True,

dtype=torch.float32)↪
11

12 # the function you want to calculate the gradient
13 def function(indata):
14 square = torch.pow(indata, 2)
15 return square
16
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17

18 # value of function in your point (it's a torch object!)
19 value_function = function(data)
20 print("Function value (the value you entered squared): %.3f" %

value_function)↪
21

22 # calculate the symbolic gradient of function in your point
23 value_function.backward()
24 # get the value of the gradient in your point
25 value_grad_funct = data.grad.numpy()
26 print("Derivative of the function's value (twice the value you

entered): %.3f" % value_grad_funct)↪

The output is obviously the same as in the previous formulation. Even if we
tried to maintain the same steps, it is apparent than in the PyTorch case the
torch objects and the numerical values of those objects are carried together.
This makes much easier the (numerical) debugging.

To scale this simple example to matrices and complex operations is trivial.
Nevertheless there is a small detail missing that is very relevant in our context.
When scaling the problem of calculating the derivatives of a function that ac-
cepts as input a matrix (all) the libraries for automatic differentiation used in
deep learning return the sum of the derivatives, and not the full Jacobian. For
this reason we have to calculate a derivative for each component of the input
matrix, which is called stride. Fortunately, there is a small library that does ex-
actly this striding for us [Geiger, 2018]. Calculating Jacobians and Hessians
becomes extremely easy, as an example:

1 # jacobian and hessian of a function in tensorflow
2

3 import torch
4 import hessian as h
5

6 # define two variables
7 x = torch.tensor([1.5, 2.5], requires_grad=True)
8 y = torch.tensor([5.5, -4.], requires_grad=True)
9

10 # define the function
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11 function = x.pow(y)
12 # calculate its jacobian
13 jac = h.jacobian(function, [x, y])
14 # print result
15 print("Jacobian")
16 print(jac)
17

18

19 # define the function
20 function = x.pow(2).prod().sum()
21 hes = h.hessian(function, x)
22 # print result
23 print("Hessian")
24 print(hes)

The output is:

1 Jacobian
2 tensor([[ 3.4101e+01, -0.0000e+00, 3.7710e+00, 0.0000e+00],
3 [ 0.0000e+00, -4.0960e-02, 0.0000e+00, 2.3457e-02]])
4 Hessian
5 tensor([[12.5000, 15.0000],
6 [15.0000, 4.5000]])

Having the autodifferentiation machinery sorted out, we can use
PyIpopt [Xu, 2011] examples to start building a minimization using IPOPT
as a minimization library.
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Appendix B

STRATEGIES FOR PROBLEM
DIMENSIONALITY
REDUCTION

We have seen in Chapter 7 how the minimization problem for the wavelet fil-
ters is built, the cost functions we defined, and their constraints. In this Chap-
ter we will analyze more in detail the (critical) implementation aspects of the
wavelet optimization. Without loss of generality, wewill focus on the first step
of the minimization, the one whereA and P are optimized together.

In the first step then the unknowns are the whole matrices A and P. The
matrices connect two levels of the subdivision, so the number of elements in
each of these twomatrices is (number of mesh points at level n)× (number of
mesh points at level n+1). To give some numbers, and referring to the mesh
used for SWF (e.g. see Chapter 8), the A1 and P1 have 6 × 18 = 108 each,
and the number of unknowns would be then 108 × 2. A2 has 18 × 66 =
1188 elements, and A3 has 66 × 258 = 17028. The dimensionality of the
Jacobian and Hessian of the cost function grows with the growing number
of variables (linearly for the Jacobian and quadratically for the Hessian). To
this count, we have to add the constraints, in the case of the first step we have
only A𝑗P𝑗 = 1 (see Chapter 7), their Jacobian and Hessian. In the case of
the already mentioned SWF, we have 62 = 36 constraints at 𝑗 = 1, 182 =
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324 at 𝑗 = 2 and so on. Even at small dimension this brute-force approach,
where all the elements ofA andP are considered (to some extent) independent
unknowns, tends to blow up quickly.

B.1 Loop Spherical Subdivision Symmetries and
Reduction of Degrees of Freedom

A part from the constraints we impose, A𝑗P𝑗 = 1, we don’t impose any par-
ticular symmetry and we treat the points of the mesh as if they were indepen-
dent. Nevertheless, the mesh has its inherent symmetry which is given by the
symmetry of the solid that we chose as initial mesh. The idea is then to ex-
plicitly impose the (original) mesh symmetry and get an effective reduction of
the number of unknowns of the problem, resulting in a global reduction in
dimensionality (less unknowns, less constraints, less derivatives).

(As already discussed, there are approaches where the optimization affects
the prediction and update operators alone and not the full refinement matri-
ces. In this case we wanted complete flexibility and possibly avoid the fractal
shapes introduced by the recursion in the lifting together with the dual-lifting
(see Subsection 5.4.5, and especially Eq. (5.22)).

With the help of a couple of figures we will illustrate the concept behind
the reduction of the unknowns. In Figure B.1 we report the octahedral mesh
(level 0) as seen from above. The visible vertices are the gray circles numbered
in solid black {1, 2, 3, 4, 5}, the first four are positioned in the horizontal
plane, while the number 5 is the vertex at the top. The vertex number 6 is the
vertex at the bottom and is hidden in this figure, for this reason is indicated
with a gray number. If we apply the Loop subdivision to this initial mesh, we
obtain themesh (at level 1) reported in Figure B.2 (the exact numbering of the
vertices might not be the one reported in the figure, but it is not relevant in
this context). We report with a dark red cross the new visible vertices, accom-
panied with their numbering. The vertices hidden by this type of projection
are indicated in light red. The vertices added at this level are {7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18}.

Now, if we take the vertex 1 at level 0 and search for its immediate neigh-
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Figure B.1: View of the original octa-
hedron from above. The visible vertices
(dots) are numbered in solid black, the hid-
den vertex (6) is numbered in gray. The
original mesh has 6 vertices.

Figure B.2: View of the original octahe-
dron with the first Loop subdivision. The
original vertices are the dots, while the
crosses represent the new verices produced
by the Loop subdivision. The new visi-
ble vertices are numbered in solid dark red,
while the remaining hidden ones are num-
bered in light red. The newmesh has in to-
tal 18 vertices.

bours at level 1,wewill find the four vertices{7, 8, 9, 10}, and it is said that this
vertex has valence 4. (The vertices at level 1 will have valence 6, when searching
for their immediate neighbours at level 2. The Loop subdivision is a subdivi-
sion with valence 6.) We can schematically indicate this concept as:

level 0 has neighbours level 1
1 ⇝ {7, 8, 9, 10}

And we can write the same for the remaining vertices:

2 ⇝ {11, 12, 13, 14}
3 ⇝ {13, 15, 7, 16}
4 ⇝ {9, 17, 11, 18}
5 ⇝ {8, 12, 15, 17}
6 ⇝ {10, 14, 16, 18}

Since the original mesh has rotational symmetry, we can build a function
that maps each of the {2, 3, 4, 5, 6} to the vertex number 1, and that maps
their neighbours to 1’s neighbours. Graphically, for the vertex 2:
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2 ⇝ {11, 12, 13, 14}
↓ ↓
1 ⇝ {7, 8, 9, 10}

With this symmetry we reduce by 6 the number of unknowns (at the level of
this example). Essentially the six rows ofA (and the columns of P) are shifted
copies of each other.

Moreover, we can further reduce the dimensionality imposing left/right
and up/down symmetries, this way the free parameters represented by the
neighbours effectively reduce from 4 (or 6 in the next levels) to 1. The same
concept extends to further neighbours. The neighbours are grouped by their
distance from the original vertices. Typically we require a new parameter per
each group of neighbours. With this symmetry we reduce the number of pa-
rameters along the columns ofA (and rows ofP). (The reduction factor in this
case depends on the definition of the neighbour groups.) With thismethodwe
obtain a neighbour structure for each matrix, we will call themAstru and Pstru.

This approach can be obviously made recursive along the different levels
of the subdivision.

Introducing these symmetries we reduce considerably the number of in-
dependent parameters in the problem. The actual matricesA and P can be re-
duced to a list of degrees of freedom to be fed to the minimization algorithm.
We can design two functions: one that reduces the two matrices to a vector
(downscale) and one that recovers the full matrices from the unknowns vector
(upscale).

As a consequence of this reductionof degrees of freedom,we face two chal-
lenges:

• Implementation challenge: the minimization algorithm sees only the
independent parameters that now are reduced in number, but to calcu-
late the cost function needs the full matrices are needed. The jacobian
and hessian of the cost function have to be calculated only with respect
to the independent parameters. How does this fit into the automatic
differentiation implementation?

• The number of constraints reduces in a non-trivial manner: the con-
straints involve a matrix product of the full matrices. We have to figure
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out which constraints are effectively independent after the reduction of
degrees of freedom.

In the Sections B.2 and B.3 we will illustrate our approach to these problems.

B.2 Implementation of DOF Reduction Tech-
niques Inside the Automatic Differentiation

In this Section we will show how to calculate the automatic derivatives of a
function, with respect to its ‘true variables’. In the following code example,
we define our vector of unknowns as x, that has dimension 3. The function
mimics the cost function of our minimization problem, in a much more sim-
ple fashion. The first operation performed inside the function is to grow
the vector x into twomatrices, upscaled_A and upscaled_B. Then the two
matrices are multiplied together (@) and an identity matrix (torch.eye) is
subtracted. The result of these operations is summed up to obtain a scalar,
as for any typical cost function. The function returns the value of the cost
function and x, that somehow, in disguise, is gone through all the operations
described. We then can take the derivative of the function and see if PyTorch
is able to correctly calculate the derivatives of this function with respect to x.

1 # upscaling of variables
2 # and calculate derivatives of a function incorporating

up/downscaling↪
3

4 import torch
5 import hessian as h
6

7

8 # define two variables
9 x = torch.tensor([1.5, 2.5, -5.5], requires_grad=True,

dtype=torch.float32)↪
10

11

12 def function(x):
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13 # upscale tensor
14 rows = 2
15 cols = 2
16 upscaled_A = torch.zeros(rows, cols, requires_grad=True,

dtype=torch.float32)↪
17 upscaled_B = torch.zeros(rows, cols, requires_grad=True,

dtype=torch.float32)↪
18

19 upscaled_A[0] = x[[0, 1]]
20 upscaled_A[1] = x[[1, 0]]
21 print("Matrix A:")
22 print(upscaled_A)
23

24 upscaled_B[0] = x[[2, 1]]
25 upscaled_B[1] = x[[1, 2]]
26 print("Matrix B:")
27 print(upscaled_B)
28

29 cost = upscaled_A @ upscaled_B - torch.eye(rows)
30 cost = torch.sum(cost)
31 return cost, x
32

33

34 f_torch, x = function(x)
35 print("Function value:")
36 print(f_torch.data)
37

38 # calculate its jacobian
39 jac = h.jacobian(f_torch, [x])
40 # print result
41 print("Jacobian")
42 print(jac)

Gives this output:

1 Matrix A:
2 tensor([[1.5000, 2.5000],
3 [2.5000, 1.5000]], grad_fn=<CopySlices>)
4

5 Matrix B:
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6 tensor([[-5.5000, 2.5000],
7 [ 2.5000, -5.5000]], grad_fn=<CopySlices>)
8

9 Function value:
10 tensor(-26.)
11

12 Jacobian
13 tensor([[-6., 2., 8.]])

It is important to note that the Jacobian has the correct dimension, having x
dimension 3, the Jacobian will be of dimension 3 as well:

𝐽𝑓(x) = (𝜕𝑓/𝜕𝑥1, 𝜕𝑓/𝜕𝑥2, 𝜕𝑓/𝜕𝑥3)

and it is exactly what we get.
This example is quite simple, and it might look trivial, but it is not. The

non-trivial part is the “upscaling”,wherex is grown into twodifferentmatrices.
PyTorch is able to propagate the derivatives through this operation, which is
not one of the elementary operations we mentioned in Appendix A.

The same method works for the derivatives of the constraints, that are de-
fined in a very similar way, e.g. AP = 1. The challenge with the constraints
is to identify the independent constraints, now that the number of DOFs has
been reduced dramatically, i.e. not all the equations produced by AP = 1 are
linearly independent.

B.3 Method for Reduction of Constraints
From the reduction of variables (just described), we obtain a neighbour struc-
ture for each matrix. With this structure we can calculate the constraints and
then isolate the independent ones.

As an example, as before we will take the first stage of the minimization.
The constraints for this stage are the ones defined by AP − 1 = 0, as already
mentioned. Having this neighbour structure, we rewrite the constraints as
AstruPstru −1 = 0. This equation defines a set of non-independent equations.
We want to figure out which are the independent equations, that are our re-
maining constraints after the reduction of variables. Operatively, we put this
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linear system of equations in matrix representation and use the reduced row-
echelon form [Beezer, 2012] to identify the independent constraints.
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