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Abstract
This thesis focus on internal logistics flows (ILF), which is defined as the
flows of materials inside the same business or the same plant. Precisely, this
work approaches the ILF of SEAT, a company in the Volkswagen group. So,
a set of Operational Research or Business Analytics based methods is pre-
sented. These methods contribute both to enrich the literature and provide
useful techniques to the industry. Those methods refer to new mathemat-
ical formulations, Iterated Local Search metaheuristics, simulation models
applications as well as a data set. So, the main purpose of this work is
providing suitable methods to face internal logistics routing problems in
car-assembling companies. Moreover, these methods were developed and
applied considering the SEAT’s workshop and data. The results expose sev-
eral opportunities that can improve the company’s logistics operations as
well as reducing some operational costs. The study was presented to the
company’s employees that found it interesting and appropriate.

Resum
Aquesta tesi es centra en els fluxos logístics interns (ILF), que es definei-
xen com els fluxos de materials dins del mateix negoci o la mateixa planta.
Precisament, aquest treball s’apropa a la ILF de SEAT, una empresa del
grup Volkswagen. Es presenta, per tant, un conjunt de mètodes basats en
la Recerca Operativa o en Business Analytics. Aquests mètodes contribu-
eixen tant a enriquir la literatura com a proporcionar tècniques útils per
a la indústria. Aquests, es refereixen a noves formulacions matemètiques,
metaheurística de cerca local iterada, aplicacions de models de simulació i
un conjunt de dades. L’objectiu principal d’aquest treball és proporcionar
mètodes adequats per afrontar els problemes de les rutes internes logístiques
de les empreses fabricants de vehicles. A més a més, s’han desenvolupat i
aplicat aquests mètodes tenint en compte el treball i les dades de SEAT. Els
resultats presenten diverses oportunitats que poden millorar les operacions
logístiques de l’empresa, així com reduir alguns costos operatius. L’estudi
es va presentar als empleats de l’empresa que ho van trobar interessant i
adequat.
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Resumo
Esta tesis se centra en los flujos logísticos internos (ILF), que se define como
los flujos de materiales dentro del mismo negocio o la misma planta. Preci-
samente, este trabajo considera los ILF de SEAT, una compañía del grupo
Volkswagen. Por lo tanto, se presentan un conjunto de métodos basados
en investigación operativa o Business Analytics. Estos métodos contribuyen
tanto a enriquecer la literatura como a proporcionar técnicas útiles para la
industria. Éstos, se refieren a nuevas formulaciones matemáticas, metaheu-
rística de búsqueda local iterada, aplicaciones de modelos de simulación y
un conjunto de datos. Por lo tanto, el objetivo principal de este trabajo es
proporcionar métodos adecuados para hacer frente a los problemas de en-
rutamiento logístico interno en las empresas de ensamblaje de automóviles.
Además, estos métodos se desarrollaron y se aplican teniendo en cuenta el
trabajo y los datos de SEAT. Los resultados presentan varias oportunidades
que pueden mejorar las operaciones logísticas de la compañía, así como re-
ducir algunos costos operativos. El estudio fue presentado a los empleados
de la compañía que lo encontraron interesante y apropiado.
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Preface
The world is being transformed through the data connection and its inter-
pretation. Consequently, terms such as Big Data, Internet of the Things
(IoT) and data Cloud are getting established among the industry and the
society. According to the World Economic Forum (WEF) [World-Economic-
Forum (2016)], there were more gadgets and mobile phones than people in
2016. Moreover, by 2020, the forecast is that the total number of connected
devices surpass 28.1 billion.

Likewise, the automotive industry is also passing for a moment of trans-
formation that concerns the introduction of these technologies into its pro-
duction systems, processes, and business models. As a result, terms like
industry 4.0 and Smart Factory were born to refer to that new phase that
the industry is facing.

So, taking into account observations done through reports provided by
the World Economic Forum and some consulting companies, a Strengths,
Weaknesses, Opportunities, and Threats (SWOT) matrix scheme is pro-
vided to present the main issues related to the introduction of these new
technologies into the automotive industry. The SWOT table is illustrated
in figure 1.

Strengths 

Opportunities Threats 

Weaknesses 

• More restrictive laws; 

• The decrease in the traditional market in 

the long-term; 

• Disruptive Technologies (Opportunities for 

new competitors). 

• Slow  reactiveness when facing a 

disruptive scenario; 

• Incorporation of new technologies among 

the workforce. 

• Substantial economic resources to be 

applied in R&D; 

• Connection with the World-Class 

technological companies; 

• Great ability to retain talent. 

• Introduction of the industry 4.0 concepts: 

Autonomous Automated-Guided-vehicle; 

 IoT; 

Smart Warehouse; 

Additive manufacturing;  

Virtual reality; 

BIG DATA; 

Blockchain tracks;  

Machine learning; 

Automatic and flexible reports; 

• Costs reduction; 

• Reduce Time-to-Market; 

• Introduction of new business models. 

  

Figure 1: The SWOT matrix for the current scenario of the automotive
industry

The automotive industry is known for its influence in our daily lives.
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Actually, according to WEF [World-Economic-Forum (2016)], the automo-
tive industry has enough power to continue to influence the direction of our
society. That can be view as a remarkable strength because it means the
automotive industry has enough resources to allocate a tremendous amount
of capital in Research and Development (R&D) as well as training and re-
taining high-qualified employees. Moreover, the automotive companies are
leading important R&D projects in collaboration with world-class techno-
logical companies, such as the collaboration between Google and Volkswa-
gen, through the development of better routing algorithms [Cristina Farrés
(2017)]. As a result, the Automotive industry has enough resources and
connections to innovate and introduce new technologies into the companies.
Indeed, the WEF also pointed out that the exploding growth of data from
the connected Internet of Things throughout the supply chain will demand
new skills for workers and managers.

On the one hand, those novel technologies may represent substantial
competitive advantages in such constraining market. On the other hand,
companies must find out the best approach to implement those innovations
into their business. Otherwise, those companies that not succeed in the
phase of implementing new technologies will always find themselves as the
last ones to have the technological concepts applied, which can be viewed as
a weakness. It is especially true concerning manufacturing companies. Ac-
cording to a survey disclosed by McKinsey & Company [Altmeier et al.,
(2019)], in which participated 146 machinery and industrial automation
companies, more than 90% of the respondents believe that they need to
adapt their business to be more successful in future. In other words, those
companies are not so agile when facing disruptive scenarios as well as in-
troducing novelties into their businesses. That is an affirmation that is also
true to the automotive industry that has many factories with more than
ten years and an experienced workforce, e.g., the SEAT factory has been in
operation since 1986. Furthermore, even though we see many products that
are more and more connected, e.g., automatic-connected vacuum cleaners,
the cars companies have not disclosed any similar disruptive product to the
market yet. Indeed, it is not a simple task considering the size and the
repercussion of the automotive industry in society.

Note that launching disruptive products requires remarkable effort in a
variate of areas, such as engineering, marketing, legal, and quality. These
tasks are especially difficult for the automotive industry due to its applica-
tions and scale. Despite that outlook, the automotive industry is expected
to disclose disruptive products in a near future. Some companies have been
testing Autonomous cars for some years, but public regulations neither allow
then to be disclosed in public streets nor to be commercialized. Therefore,
restrictive laws are viewed as a threat to the automotive companies because
they may limit a businessâs revenue. Another threat is the demographic
growth of some key markets that are facing aging issues on its population.
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According to a study disclosed by Bain Company, [Gottfredson, Stricker &
Tsang, (2018)], the aging issue means a limitation on the number of new
car buyers. In addition, there is another significant threat according to the
WEF [World-Economic-Forum (2016)], the digital evolution of the automo-
tive ecosystem has also enabled several non-traditional and technology-based
companies to enter at various points along the automotive value chain. In
other words, the market’s entry barriers are getting smaller.

So, the digital transformation of the automotive ecosystem may repre-
sent a threat in some sense. By contrast, it also means opportunities for the
automotive industries. First, companies may set new business models and
diversify their activities, e.g., SEAT has started a new business model that
relies on car-sharing [Dolors (2019)]. Second, the increasing pace of inno-
vation is also viewed as opportunities to reduce both new products’ Time-
to-Market and the manufacturing costs. Some examples of novel concepts
that allow the companies to achieved such benefits would be Autonomous
Automated-Guided-vehicle, IoT applications, Smart Warehouse, Additive
manufacturing, Virtual reality, Big Data, Blockchain, Machine Learning,
and Logistics Control Tower concept. See [Velandia et al.(2016), Lin et
al.(2018),Ferràs-Hernández et al.(2017),Pelliccione et al.(2017)].

To conclude, this thesis aims to support the automotive sector to achieve
those opportunities highlighted before. Precisely, this work intends to ag-
gregate mathematical optimization procedures to the company’s daily ac-
tivities, as well as strategic planning projects. In particular, Operations-
Research-based algorithms and a Discrete-Event-Simulation model were de-
veloped to offer novel tools to car-assembling companies to improve their
internal logistics flows. That set of techniques decreases the amount of effort
and time required to conduct the implementation of new internal logistics
flows, as well as promoting evaluations over workshops’ layouts. As a result,
it is a step further towards the industry 4.0 concept.

Regarding the academic point of view, that thesis represents a contribu-
tion to the knowledge due to its novelty in terms of (i) novel mathematical
formulations; (ii) a new class of Vehicle-Routing-Problem (VRP), which is
defined as the In-house Logistics Routing Problem; (iii) novel applications of
Metaheuristics algorithms; and (iv) a novel real-world dataset that regards
to the company’s orders.
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Chapter 1

INTRODUCTION

Designing efficient logistics systems has been one of the main topics
in many industries, including the manufacturing ones. The logistics
field is related to a flow of materials between and within organizations.
Indeed, companies focus more and more on the logistics field because
they see that area as a strategical one to gain competitiveness in the
market by reducing costs as well as providing a better service’s level to
customers, [Muñuzuri et al. (2005)].

In the literature, most of the works published in Logistics focus on
external logistics, i.e., flows of materials and products between differ-
ent companies or customers. See [Braekers et al.(2016)]. However, this
thesis focus on internal logistics operations, which means flows of ma-
terials inside the same business or the same plant, for example from
the warehouse to an assembly line. The improvement of these flows
can lead to a reduction of the delays, disruptions, accidents, and also
contribute to minimizing logistics costs. Precisely, this work consid-
ered the automotive sector to conduct the research over the internal
logistics.

That thesis was carried out under collaboration and agreement with
SEAT S.A., which provided us with all the necessary data and support.
SEAT (Sociedad Española de Automóviles de Turismo) is a Spanish
company, a subsidiary of the Volkswagen Group (www.seat.es). In
2018, SEAT was present in more than 75 countries. Moreover, SEAT
achieved a volume of sales of more than 517,600 units and an EBITDA
equal to e254,000,000 in the same year.

In order to provide suitable guidance to the reader, the next sections
present the essential pillars used to conduct this work, which are (i) the
main SEAT’s production and logistics processes and (ii) the procedures
used by the company to compute the logistics flows. Afterward, the
research objectives and the thesis’ content are summarized.
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1.1 The company’s main processes

This section is divided into two subsections. The first subsection
presents the company’s main processes under the production point of
view. Then, the second subsection describes those processes under the
logistics point of view.

1.1.1 Production Processes

Currently, SEAT’s factory is placed in Martorell, which is a city lo-
cated in the Barcelona’s Province in Spain. That factory is compound
by several workshops that are in charge of executing the entire cars’
production phases. These phases are summarized as follows: Body
Shop, Paint Shop, and Assembly Shop. Figure 1.1 illustrates these
phases.

ASSEMBLY SHOP PAINT SHOP BODY SHOP 

Figure 1.1: The main car’s manufacturing processes: Body Shop, Paint Shop
and Assembly Shop. The Assembly Shop phase is highlighted because it is
the main focus of this work.

This work concerns with the assembly shop only, and there is a
major reason to justify that approach. Generally, a standard car is
compound by nearly 3,000 materials on average. Most of the 3,000
materials are supplied and assembled in the assembly shop. Conse-
quently, the logistics issues in that phase tend to be more significant
than the previous ones. Besides that, the level of automation in the
assembly shop is lower than the others. Therefore, the assembling pro-
cesses tend to present higher variability than the body shop and the
paint shop ones. These reasons suggest that the assembly shop is the
one that deserves to be the focus on, regarding the study over internal
logistics.

Currently, SEAT’s factory counts with one assembling line dedi-
cated to assembling engines and others three car-assembling lines that
produce up to 2,400 cars each day. Moreover, more than one car model
can be produced in the same assembling line. That is the case for the

2
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SEAT Ibiza and the SEAT Arona models, see figure 1.2. These models
share both the same chassis platform and assembling line.

(I) (II) 

Figure 1.2: Example of two car models that share the same assembling line.
The number (i) refers to the SEAT Ibiza model and the number (ii) refers
to the SEAT Arona.

1.1.2 Logistics Processes

Regarding the logistics processes, those can be also clustered into three
main groups that are: Inbound, Inhouse and Outbound. The Inbound
phase refers to the materials arrival into the company. It can be done
through trucks and trains. Then, the Inhouse phase refers to the mate-
rials handling inside the company. Later, the Outbound phase concerns
the final products distribution towards the clients. See figure 1.3.

OUTBOUND INHOUSE INBOUND 

WAREHOUSE SUPERMARKET ASSEMBLING 

Figure 1.3: The main logistics processes: Inbound, Inhouse and Outbound.
The Inhouse phase is highlighted because it is the main focus of this work.

The main focus in this work is on the inhouse activities. The in-
house activities are in charge of storing the received materials in the
warehouse, execute the picking of these materials, and proceed with
the supply of the orders in the assembling lines directly.

Those placed orders are supplied through routes or logistics flows.
These logistics flows are presented by table 1.1 and defined as fol-
lows: (i) supplying routes; (ii) cycle routes Automated-Guided-Vehicle
(AGV); (iii) cycle routes operator; and (iv) Just-in-Time (JIT).

To summarize, the supplying routes are the logistics flows responsi-
ble for delivering those materials whose consumption rate is not regular.
The supplying routes main processes are presented in table 1.4.

3
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Logistics Flow Main Characteristics

Supplying routes Non-regular departure; Overtaking allowed
Cycle routes AGV Regular departure; Overtaking not allowed
Cycle routes Operator Regular departure; Overtaking allowed
JIT Regular departure; Overtaking allowed

Table 1.1: Summary of logistics flows observed.

Departure from 

WHS 

• Unsteady Orders 

are clustered and 

assigned to 

convoys; 

 

• A convoy leaves 

the Warehouse 

(WHS) based on 

the “Capacity vs. 

Time” rule. 

Check 
Workstations 

• Each workstation 

(WKS) is assigned 

to a respective 

route; 

 

• The logistic 

operator is in 

charge to place the 

WKSs’ orders. 

Supply the 

Orders 

•Before starting the 

material supply, 

the operator must 

check the parking 

availability; 

 

•The order goes 

directly to the SAP 

system in the 

WHS. 

Back to the 

WHS 

•After checking the 

WKSs under his 

responsibility, the 

operator drives 

back to the WHS.  

1 2 3 4 

Figure 1.4: The summary of the processes of a non-regular departure logistic
flow.

There are four main steps to be considered that are: (i) depar-
ture from the warehouse (WHS), (ii) check workstations, (iii) supply
workstations and (iv) return back to the WHS. Each step is explained
next.

First, the WHS receives orders through the commercial system SAP.
Notice that these orders are not steady in this case, which results in
a non-regular departure. Consequently, a ”Capacity vs. Time” rule is
defined. This rule ensures that each convoy leaves the WHS as soon as
it is either loaded completely or a defined amount of time is achieved
since the first order had been assigned to that convoy. So, there are
two criteria that regulate the departure that refer to the capacity and
the time. So, after the arrival of the first orders, the maximum time
a convoy can wait to be loaded is 30 minutes, for instance. Moreover,
there is a relevant materials’ classification that concerns to the Stocking
Keeping Unit’s (SKU) size. In the company, there are two main classes
of SKU, i.e., the Small Boxes class (SB) and the Large Container (LC)
one. So, there is a premise that establishes the division between SB
convoys and LC ones. In other words, it is not allowed to mix SB and
LC in the same convoy. Figure 1.5 illustrates both classes of SKU.
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(I) (II) 

Figure 1.5: An illustration of tof SEAT’s Stock Keeping Units (SKU). The
(i) refers to the materials stored in Large Container (LC), which volume can
reach one m3, for instance. Likewise, the (ii) refers to the materials stored
in Small Box (SB), which volumes can reach 0,175 m3, for instance. Note
that there are different containes and boxes sizes. Also, one convoy is not
allowed to receive both classes of SKU.

Afterward, the second phase is checking workstations. In Seat, one
operator is assigned to one route is compounded by a set of workstations
that must be visited. Moreover, one workstation cannot be served by
more than one route. As a result, a workstation is not allowed to be
supplied by different routes. That premise is valid for routes of the
same SKU class only. Other relevant premises refer to the logistics
flows’ trajectory. By definition, a logistics flow must complete all its
trajectory whenever it starts. Also, the set logistics flows are considered
to be kept fixed for a long-term period, e.g., months. It is justified
because the logistics operators are in charge of both supply the material
and place the orders. As a result, the routes are fixed to keep the
placing orders and supplying activities under control.

Later, the third phase refers to the supplying activity. During a
route trajectory, an operator must park the convoy to supply a work-
station, and each workstation has its own parking spot. So, if there
is not any spot available, the operator must wait for an empty spot.
Then, the operator will supply the material and restart its trajectory.

Lastly, the final step is the return to the WHS. After checking the
workstations’ under his/her responsibility, the operator returns back to
the WHS to deliver the empty racks and get new loaded ones. Later,
the convoy departs from the WHS towards the assembly line, and the
cycle starts again.

There are also other logistics flows that receive materials with con-
stant consumption rate. Therefore, all of them follow a regular depar-
ture routine that is defined as regular departures. Therefore, note that
the departure frequency of a route depends on the material consump-
tion rate.

5
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Among the regular departure flows, there are the "cycle routes
AGV" and "cycle routes Operator" that are conducted by an AGV and
a logistics operator, respectively. Finally, there are the JIT flows that
are executed by outsourced employees. These are the main flows that
circulate throughout the warehouse, supermarket and Assembly lines.
Figure 1.6 presents the processes for those logistics flows that have a
regular departure from the WHS (for example each 15 minutes).

Departure from 

WHS 

• Steady orders are 

clustered and 

assigned to 

convoys; 

 

• Convoys have a 

fixed departure 

interval. 

Check 
workstations 

• Workstations 

(WKS) are 

previously 

assigned to the 

routes; 

 

• The logistic 

operator is not in 

charge to place the 

WKSs’ orders. 

Supply the 

Workstations 

•Before starting the 

material supply, 

the operator must 

check the parking 

availability; 

•Orders are 

managed directly 

to the SAP system 

in the WHS. No 

intervention is 

needed. 

Back to the 

WHS 

•After supplying 

the orders, the 

operator drives 

back to the WHS 

and prepare its 

next convoy.  

1 2 3 4 

Figure 1.6: The summary of the processes of a regular departure logistic
flow.

The processes represented in figure 1.6 are quite similar to those in
the non-regular departure. On the one hand, the routes are divided
into SKU class and the routes do not share supplying locations. On
the other hand, the materials supplied here are viewed as steady ones
because its consumption rate is well defined. Therefore, there is no
need to ask the logistics operator to place orders because it is ruled by
SAP.

Concerning to the assembling workshops, each one is compound
by more than 120 workstations. Those workstations are able to pro-
duce nearly 2,400 personalized cars each day. As a result, the logistics
manager must define the best set of routes to supply all the required
materials throughout the day from the warehouse to the production
line. Currently, the placed orders are sent to the SAP system. Then,
an outsourced company organizes all the orders and execute the picking
activities in the warehouse according to the First-In-First-Out (FIFO)
criterion.

Afterward, those materials are placed in a turnover area located
in the warehouse. The turnover area is the place where the SEAT’s
logistics operators organize the racks to be supplied following the FIFO
fashion as well. The racks are set together to form a convoy, which

6
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delivers the orders to the assembly line.
Figure 1.7 illustrates a small example of a layout compound by a

warehouse, a turnover area, a supermarket and an assembly line.

W
ar

eh
o

u
se

 
  

Assembly Area 

A workstation’ two SKUs spots A route’s delivery point  A route’s trajectory A workstation Transit flow 

Legend: 

  
Gate 

Gate 

Supermarket Area 

A Workshop 

Gate 

Gate 

T
u

rn
 O

v
er

 A
re

a 

Figure 1.7: An illustration of the warehouse, turnover area, supermarket,
and the assembly line distribution. A workshop is compound by the aggre-
gation of one supermarket and assembling line.

The dimensions of the workshops studied are nearly 350 meters in
width by 60 meters in height. A workshop is compound by the aggre-
gation of one supermarket and assembling lines. Also, a workshop is
divided into two main parts, with different logistics operations. The
left-hand part contains verticals aisles as the majority, and it is called
Supermarket. Next, the right-hand part has horizontal aisles as a ma-
jority and is viewed as the assembly line area. Notice that both of these
areas are considered in this work because both of them must receive
materials through the logistics flows. However, the supermarket is also
a location where logistics flows depart as well.

As said, once the logistics flows reach the assembling lines, they
should look for their respective workstations to supply the orders. For
each workstation, there are four areas where to place the materials: on
the right-hand side and on the left-hand side of the workstation. So,
on each side, there are two spots to place the material, as illustrated
by figure 1.7. As a result, one of these spots is a temporary buffer
while the second one is being consumed, which is defined as a double
presence rule. As a result, the probability that a workstation runs out
of materials is minimized.

So, to sum up, the Internal Logistics Routes Management (ILRM)
system applied by SEAT is summarized by the following characteris-
tics: (i) long-term and fixed routes; (ii) the logistics operator is the one
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responsible for both placing orders and delivering the materials; (iii)
First-In-First-Out criterion; (iv) each workstation is assigned to one
logistics operator only; (v) convoys are loaded with one type of prod-
uct only, which are large containers or small boxes; and (vi) unsteady
demand.

On the one hand, one may state that the advantages of that sys-
tem are: (i) the production operator is totally focused on the assem-
bling operations because he/she is not supposed to check the level of
the workstations’ materials; (ii) each workstation is continuously su-
pervised by the logistics operators; and (iii) there is no need to add
support systems to check the level of the workstations’ material. On
the other hand, there are some drawbacks such as unsteady orders and
the possible presence of backorders, which are the orders that are not
delivered at the expected period.

Figure 1.8 illustrates what a period means in this work. By defini-
tion, a period is a discrete part of any time horizon. e.g., a time horizon
of two weeks may be partitioned into periods of one hour. The period
concept is useful to cluster the company’s orders chronologically, as
illustrated in figure 1.8.

Assign the orders in the 

respective slot: 

SAP 
Workstation Y 

Workstation Z 

Workstation X 

Orders: 

Period 

Workshop: 

1 2 3 

Figure 1.8: Steps to Cluster orders into periods: (1) to select the worksta-
tions in the workshop; (2) to collect the respective orders in the Orders’
system; (3) to place them in the time-horizon chronologically. Later, those
orders may be clustered considering the time-window assigned to a period.

Next, an example that illustrates the trajectory of two routes is
presented in figure 1.9.

The first route (yellow) is in charge of supplying the orders of the
workstations 6, 7, and 8. In contrast to the first route, the second route
(green) is responsible for supplying the orders of workstations 1, 2, 3,
4, and 5. The workstations 1, 2, 3, and 8 represent those ones that
are placed inside the Supermarket, and the workstations 4, 5, 6, and 7
represent those located inside the Production Line. The cars that are

8
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Resources Allocated  

Capacity = 72 boxes/convoy 

Supermarket Production line 

Locations set = { 1, 2, 3, 4, 5, 6, 7, 8} 

Possible Solution 

Route Locations Material type Resource 

{ 6, 7, 8} Boxes 1 

{ 1, 2, 3, 4, 5} Boxes 2 

Production line 1 

Production line 2 

Supermarket 

T
u

rn
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v
er
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re

a
 

4 

1 

2 

3 

5 

6 

7 

8 

Demand Table 

Route Period 1 Period 2 Period 3 

Locations { 6, 7, 8} 

Dem. { 100, 72, 2} 

Loc. { 6, 7, 8} 

Dem. { 10, 22, 67} 

Loc. { 6, 7, 8} 

Dem. { 12, 70, 66} 

Loc. { 1, 2, 3, 4, 5}  

Dem. {2, 34, 3, 8, 9} 

Loc. { 1, 2, 3, 4, 5}  

Dem. {0, 32, 3,8,99} 

Loc. { 1, 2, 3, 4, 5}  

Dem. {2, 34, 3,8,9} 

Routes departure 

Routes arrival 

Turn Over Area Areas Legend: 

1 

2 

Figure 1.9: An example of the factory workshop and two routes.

being produced are represented by red blocks. Each route begins its
trajectory from the Turn Over area. The route must pass through its
respective workstations and finishes at the Turn Over area. Also, the
routes’ path can be partially shared. Moreover, the logistics operator
must pass through the Supermarket, even though there is not a single
workstation to supply. That premise is applied to the flows that depart
from the WHS. Also, figure 1.9 depicts fictitious workstations’ orders
during three periods.

To illustrate how the orders are placed in SEAT, the figure 1.10 is
presented.

Figure 1.10: An example of two workstations requests’ pattern over three
months.

9
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Figure 1.10 illustrates the amount of orders placed over 117 days.
That data correspond to two workstations’ orders. Notice that the
orders present an unsteady behaviour. In this work, the orders data
introduced in the methods was gathered through the SAP system. As
a result, real-historical data was approached.

Therefore, note that the definition of the logistics flows in SEAT is
a challenging task. Furthermore, it becomes even more inspiring when
fixed routes scenario is considered along unsteady orders behaviors.

1.2 The current company’s Logistics Flows analy-
sis

This section presents the main steps conducted by the company during
the phase of logistics flows calculations. Usually, whenever the pro-
duction of a new car model is approved by the company’s executives,
a series of meetings are scheduled to tackle the production issues. In
fact, these meetings are workshops that deal with many production
concepts, such as layouts evaluation, workstations’ tasks, assignment
of materials to classes of containers, and so on. Those workshops meet-
ings are scheduled to occur up to model’s start-of-production (SOP)
and follow standard procedures developed by the Volkswagen group.

To summarize, the following phases resume the actual procedures
to evaluate a new workshop layout and the logistics flows: (i) Car
dissembling process; (ii) Materials assignation; (iii) Routes definition;
and (iv) Comparison with the current scenario.

So, first, a multi-functional team conducts a range of workshop to
evaluate which tasks to assign to the workstations as well as the materi-
als that these workstations will require. So, the main methodology here
is the disassembling process. The objective is to learn about the car
assembling processes by disassembling it. So, at each step, a set of pro-
cedures is defined. These procedures refer to the necessary activities to
be executed in that phase and the required components. Consequently,
the workstations’ tasks are defined during the disassembling process as
well as the materials assigned to them.

Second, during a car disassembling process, each car’s component
is assigned to a SKU according to three main factors: volume, weight,
and quantity. Regularly, the Larger Containers (LC) are preferred
under the logistics point of view because it incurs in a lower supplying
frequency. On the contrary, the Small Boxes (SB) may be preferred
under the production point of view because it requires less space in the
assembling line.

Third, once the workstations’ tasks and its SKU are set, the routes

10
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configuration phase starts. Usually, the company’s experts execute
routes calculations based on the previous workshop’ routes. Also, the
company’s experts decide which materials should be assigned to JIT
flows and those that must be sequenced inside the company’s super-
markets (Cycle ones). One typical material assigned to JIT are tires
because of its dimensions, combustion properties, and necessity to be
sequenced. It is noteworthy to say that JIT flows are more expensive
than the internal ones. Also, the flows are modified taking into account
the workload that each new route receives. The workload is calculated
based on the distance covered, the departure frequency, and the time
spent to manage a convoy’s racks.

Lastly, the new routes are ready to be tested in real pilots inside the
factory. Frequently, it suffers adjustments at the beginning, but it tends
to be steady after the proofing phase. Moreover, the company’s experts
always look for the most economical solutions. In other words, a good
solution is a set of different routes categories that are able to supply
the orders in time and incurs in the cheapest cost possible. The factors
that most impacts on a solution cost are: (i) the route classification
because a JIT flow is more expensive than a standard flow, for instance;
(ii) the number of routes because each one will incur in several costs,
such as convoy rent and operator’s wage; and (iii) the distance covered
by all the convoys that are also important because it implies on battery
recharging costs and traffic volume inside the workshop.

To the best of the author’s knowledge, there is not any standard
procedure to follow, regarding the logistics flows and workshops’ lay-
outs evaluations after the SOP of a new model.

Therefore, regarding those concepts presented so far, the research’s
objectives are stated in the next section.

1.3 Research Objectives

As described in the last sections, there are many challenges to tackle
concerning the internal logistics flows in a car-assembly company. Each
of these challenges could be faced as a broad research topic that can be
approached from a number of perspectives. As a result, it is necessary
to determine and delimit the scope of the research presented in the
thesis, as well as setting the objectives of the thesis clearly. So, the
broad research objective of this work is to study the internal logistics
flows of an actual car-assembly line. Nevertheless, that broad objective
may be divided as follows:

• The first objective of the research is to understand the company’s

11
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routing calculation procedures and propose mathematical opti-
mization methods to support that activity.

• The second objective is to propose simulation models, which are
able to simulate a set of routes through the company’s worksta-
tions demands and premises.

• The third objective is to develop a simulation model, in which
several internal logistics flows are inserted, as well as any desired
layout. The major goal is to evaluate the main traffic issues in a
workshop.

Consequently, numerous questions come up aiming at determining
the thesis’ scope. However, all those questions may be summarized into
a broad one, which is: what is the best approach to deal with the
in-house supplying routes design, regarding a car-assembling
company scenario?

Therefore, this work pursues these research objectives as well as
aims to answer the proposed question. Next, the thesis’ structure is
presented.

1.4 Organization and Thesis Overview

The company’s central processes are those described in the previous
paragraphs. Next, the scope of each thesis’ chapter is presented.

The chapter 2 presents the literature review of the main topics ap-
proached in this work. So, each chapter’s section refers to one of the
following topics: Linear Programming formulations, Iterated-Local-
Search Metaheuristic, Vehicle Routing Problems, and Simulation anal-
ysis. Note that at the end of each section, the related research contri-
butions are presented.

Next, the chapters 3 to 7 represents the works developed through-
out the doctor degree. In order to guide the reader throughout this
work, figure 1.11 is presented. That figure is a scheme that repre-
sents the warehouse, the assembling workshop, and a dispatching area.
Then, each chapter’s scope is represented by the respective yellow cir-
cle. Later, the chapters’ content are summarized and presented in table
1.2.

Consequently, chapters 3, 4, 5, and 6 compound the first part of this
thesis that is called Simulation-Optimization over car-assembly
lines. Here, both optimizing and simulating methods are developed
and presented. Those methods’ goal is to support SEAT to improve
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Figure 1.11: An scheme to locate the application of the following chapters.

its internal logistics operations in the assembling lines. Also, to con-
tribute to the literature by providing a novel data set as well as new
Integer Linear Programming formulations and Metaheuristics that fit
the SEAT’s background. These chapters are detailed next:

• Chapter one presents the first attempt to optimize a specific logis-
tics flow inside an assembling workshop of this work. A feasible
solution was obtained through an Integer Linear Programming
(ILP) model, and its solution is compared with the current com-
pany’s solution through data generated by the Monte Carlo Sim-
ulation. The proposed solution achieved excellent performance in
terms of the KPIs set by the company. However, it has limitations
on the way to deal with the orders variability.

• Chapter 4 is a step further in comparison to the previous one.
Here the orders’ stochastic property is the main issue to deal
with. Consequently, the In-house Logistics Routing Problem and
a simulation-based Iterated Local Search (ILS) Metaheuristic are
presented. These methods have in common an objective function
that aims to minimize the total of routes applied, the distance
covered by those routes and the number of backorders. Moreover,
these new methods are more realistic than the chapter 3 one be-
cause the company’s historical orders are considered individually.
As a result, this chapter presents a more robust approach than

13
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in the previous chapter. However, high level of backorders is still
observed in the new proposed solutions. Concluding, the results
show that the ordering premise, which states that logistics oper-
ators are in charge of placing orders is likely one of the factors
that contribute to a significant number of backorders found in this
work so far.

• Chapter 5 aims to provide to SEAT feasible alternatives to im-
prove its logistics activities by reducing the number of backo-
rders. This chapter conducts an assessment of an Internal Logis-
tics Routing Management (ILRM) system in the car-assembling
company. Therefore, this chapter works over a strategic-decision
level, in which SEAT’s current ILRM system is evaluated, and
three new scenarios are suggested. To evaluate and optimize these
scenarios, an ILP model and an ILS algorithm are developed to
calculate variable routes to ILRM systems. Furthermore, a sim-
ulation procedure is presented to evaluate and compare all these
scenarios in a realistic environment using real data. From the
optimization point of view, the ILS was able to reduce the total
distance covered throughout the considered time-horizon and it
generates no backorders solutions. Finally, the advantages and
challenges of each scenario are presented. As a result, this chap-
ter presents interesting problems in a car-assembly company, pro-
poses an ILP model and an ILS algorithm and evaluates a real
case in SEAT company. This proposed methodology can be ap-
plied and extended to any car-assembling company.

• Chapter 6 proposes an Internal Logistics Flows simulation based
on a Discrete-Event-Simulation (DES) model to evaluate the in-
teraction between assembly lines’ aisles and logistics flows. The
major objective is to identify the main bottlenecks in the assembly
line under the logistics perspective. Moreover, a case study that
evaluates the introduction of new premises is conducted through
the DES model.

The second part refers to the delivery of the final products (cars)
to clients. That part is represented by the chapter 7 that presents a
methodology to support any car assembling company on scheduling
the jobs on its final processes, which are (i) checking the final product
and (ii) loading the delivery trucks. Usually, these activities are found
in the outbound area of any manufacturing company. Moreover, this
chapter tackles a problem that is defined as the Flow shop problem
with precedence constraints, release dates, and delivery times. The
main target is to minimize the latest date a client receives its products.

14
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Then, a time-indexed ILP model is presented. Also, a Lagrangean
Relaxation procedure is developed to compute valid Lower and Upper
Bounds for that problem. To conclude, the results showed that the
proposed methodology was able to compute feasible solutions for all
the instances tested. Also, the Lagrangean Relaxation approach was
able to calculate better bounds in a shorter computational time than
the ILP for the more complicated instances.

Finally, the chapter 8 concludes the thesis.
Table 1.2 summarizes each chapters’ applications, regarding the

data approach, the used optimization methods, and the scope.

C. Data Approach Opt. Method Scope

3 Average - Det. ILP Warehouse and
Orders - Monte Carlo Shipping Problem

Simulation (Fixed routes)

4 Actual - Det. ILP Internal Logistics
Individual - SimILS algorithm Routing Problem
Orders - Simulation (Fixed routes)

procedure

5 Actual - Data Analysis Internal Logistics
Individual - Det. ILP Routing Management
Orders - ILS algorithm Systems Evaluations

- Simulation (Fixed and Variable routes
procedure & Placing orders systems)

6 Actual - DES model Internal Logistics
Individual Flows Simulation
Orders (Flows and Layout analysis)

7 Randon - Det. ILP Flow shop problem with
Generated precedence constraints,
Data release dates,

and delivery times
(An outbound jobs scheduler)

Table 1.2: Chapters’ scope. The first column C. refers to each chapter’s
number. The second column regards to the orders data approach. The third
column presents the main chapters’ methods. Lastly, the fourth column
refers to each chapter’s main applications. Note that the Deterministic
Integer Linear models are represented by Det. ILP.

15
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Chapter 2

LITERATURE REVIEW

The Literature Review chapter aims to introduce the main components
approached in this work. So, the methodologies applied in this thesis
are introduced as well as several related works. Also, the thesis’ contri-
butions will be discussed at the end of each section. Consequently, the
reader may find the main methodologies of this work all summarized
in the same chapter.

Consequently, the topics approached in this work are presented in
the following sections: Linear Programming Formulations; Iterated Lo-
cal Search Metaheuristic; Vehicle Routing Problem; and Simulation
analysis.

2.1 Linear Programming Formulations

According to [Hillier & Lieberman (1995)], the creation of linear pro-
gramming has been viewed as one of the most significant scientific
advances of the mid-20th century. Nowadays, the linear programming
is a standard tool that has saved a remarkable amount of resources for
many companies or businesses, of even moderate size, in the various
industrialized countries of the world.

[Hillier & Lieberman (1995)] state that linear programming uses
a mathematical formulation to describe the problem of concern. The
term linear means that all the mathematical functions in this formu-
lation are asked to be linear functions. Moreover, the term ”program-
ming” does refer as a synonym for planning. Consequently, linear pro-
gramming concerns to the planning of activities to obtain an optimal
result, i.e., a result that reaches the specified goal best (according to
the mathematical formulation) among all feasible alternatives.

So, it is right to affirm that any problem whose mathematical model
fits the very general format for the linear programming model is a lin-
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ear programming problem. Moreover, an efficient solution procedure,
called the simplex method, is available for solving linear program-
ming problems of even huge size. These are some of the reasons for
the remarkable impact of linear programming in recent decades. De-
tails about the simplex method can be found in [Hillier & Lieberman
(1995)].

According to [Wolsey (1998)], a linear program is defined as follows:

max{cx : Ax ≤ b, x ≥ 0} (2.1)
Where A is an mxn matrix, c an n-dimensional row vector, b an

m-dimensional column vector, and x an n-dimensional column vector
of variables.

So, if the variables assume integer values only, the term integer
will refer to the fact that the variables must take these integer values.
Those variables are placed in the model’s constraints and the objective
function. As a result, the formulation will be called as an Integer Linear
Programming model.

Notice that there are other possibilities such as the Mixed Integer
Program (MIP) and Binary Integer Program (BIP). A MIP describes
a model compound by both integer and real variables. Also, BIP refers
to a model that is compound by binary variables.

Moreover, there is another type of problem that is relevant in this
work, the Combinatorial Optimization Problem (COP). Accord-
ing to [Grasas et al.(2016)], COP is a problem, in which the best so-
lution needs to be obtained from a finite or countably infinite set of
objects, such as permutations, graphs, etc.

[Wolsey (1998)] defined COP as follows: for a given infinite set N
= {1,...,n}, weights cj for each j ∈ N , and a set F of feasible subsets of
N. The problem of finding a minimum weight feasible subset is a COP:

(COP ) −→ minS⊆N{
∑
j∈S

cj : S ∈ F} (2.2)

Next, one example that illustrates the concepts stated before is the
Traveling Salesman Problem (TSP). In this problem, a salesman must
visit each of n cities exactly once and then return to his initial point.
Considering that the time spent to travel from city i to city j is cij. The
goal is to find the order in which the salesman should make his tour
to finish as quickly as possible. Likewise, one may state that problem
on many other forms, such as an internal logistics operator has a list
of workstations he/she must visit on a given shift. Indeed, that is the
model chosen in this work to sort the SEAT current routes, as explained
further ahead. The TSP is presented by [Miller et el. (1960)] as follows:
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The set N represents the total of locations to visit (n ∈ N). The
variables xij = 1 if the salesman goes directly from city i to city j, and
xij = 0 otherwise. The Ui variable represents the load of the salesman
after visiting city (i ∈ n).

min
n∑
i=1

n∑
j=1

cijxij (2.3)

∑
j:j 6=i

xij = 1 ∀i ∈ N (2.4)
∑
i:i 6=j

xij = 1 ∀j ∈ N (2.5)

Uj − Ui + Cxij ≤ C − dj ∀i ∈ N, j ∈ N\{i 6= j} (2.6)
Di ≤ Ui ≤ C ∀i ∈ N (2.7)
xij ∈ {0, 1} ∀i ∈ N, j ∈ N\{i 6= j} (2.8)

U+
i ∈ Z ∀i ∈ N (2.9)

The 2.3 refers to the objective function, whose objective is to min-
imize the total travel time. Constraints 2.4 and 2.5 state that the
salesman must leave and arrive at each city exactly once. Constraints
2.6 and 2.7 avoid sub-tours to happen. Finally, constraints 2.8 and 2.9
define the variables.

The TSP is stated as a combinatorial problem because the optimal
solution is a subset of a finite set. Consequently, in principle, that
problem can be solved by enumeration. If the salesman starts at city
1, he has (n-1) possibilities to proceed to the next city. For the next
choice, there are (n-2) cities to be chosen, and so on. Therefore, there
are (n-1)! feasible tours to be selected. By curiosity, a SEAT’s work-
shop has 120 workstations. So, it will have 6,68 x 10198 possibles tours
to be executed.

So, enumerating can be an useful method for small cases only. To
overcame this issue for those large cases or the real-world ones, many
algorithms have been developed to enable the calculation of feasible
and optimal solutions. One of them is the Lagrangean Relaxation,
which is explained in subsection 2.1.2. Before, the term complexity is
discussed in the next subsection.

2.1.1 Complexity

The primary purpose in this subsection is briefly explaining what P
and NP problems mean. Note that there is not any tentative to go
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further than explain to a standard reader what complexity refer about.
These concepts matter because they are important to understand the
reason why one problem is viewed as more complicated than others.

So, back in the seventies, researchers were exploring how to deal
with several problems that were considered somehow important. Also,
they were pursuing procedures to make difficult problems easier to
solve. The reader may think that the terms easy and difficult may
be subjective. Consequently, in this work, these terms will refer to
the computational effort to solve a problem. Then, a difficult problem
requires much more effort to be solved than an easy one.

Afterward, the researches have succeeded to improve the methods
to solve some classes of problems, but there were still many problems
that no improvement was observed, in terms of solutions calculation.
Indeed, most of these complicated problems are not easily solved up to
present date. Examples of easy problems are those related for sorting
or multiplications. One example of a complicated one is the TSP, which
was presented in the previous subsection 2.1.

According to [Wolsey (1998)], the easiest classes of problems are
stated as P ones because they can be solved in polynomial time. In
other words, the time spent to solve those problems is a polynomial
function of the problems’ size. On the contrary, the complexity to solve
a TSP does not polynomially increase as the number of cities increases,
but exponentially. So, those classes of problems are defined as NP,
which means Nondeterministic polynomial time. It is noteworthy to
state that the Moore’s law, [Schaller (1997)], could not help in this
issue because a problem’s complexity may become intractable even for
the most powerful computer.

To sum up, problems defined as P ones are much easier to solve
than the NP ones. So, nowadays, the questions that researchers do is:
Is it possible to tackle NP problems as P ones? Likewise, there exist
some problems that are indeed more difficult than others?

These questions were stated in 1971 and, surprisingly, up to the date
of the publication of this thesis, there is not an answer to these ques-
tions. That topic is so important under the research and practical point
of view because it would change the way many problems are faced to-
day deeply. Indeed, it was stated as a Millennium Prize Problem by the
Clay Mathematics Institute (https://www.claymath.org) that offered a
considerable prize to whom get it solved. Unfortunately, answering
that question is not a contribution of this thesis.

To conclude, notice that these two classes do not cluster all the
possible problems, but the ones that are studied in this work. For
example, a parallel interpretation for the NP problems refers to the
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effort to prove that a solution is feasible. Considering the TSP, it is
not so difficult to verify if a tour considers all the stated premises. On
the other hand, it is challenging to affirm which is the best move to
do in the middle of a chess game because there are numerous possible
scenarios to evaluate after a move done by one player. So, chess games
are viewed as problems more difficult to solve than NP ones.

2.1.2 The Lagrangean Relaxation

Before defining the Lagrangean Relaxation algorithm, concepts like
Lower Bound, Upper Bound, relaxation and optimality must be stated.
So, considering the following COP, which is quite similar to the equa-
tion 2.2:

z = min{cx : x ∈ X} (2.10)

An optimal solution x∗ is the one that produces the best value for z.
So, the questions is how to guarantee that the x∗ is the best solution.
One practical way to prove it is to find a lower bound (z ≤ z) and an
upper bound (z = z) such that (z = z = z).

Notice that, for minimization problems, an upper bound is defined
as any feasible solution and it defines the primal bound. Also, it is
interesting to achieve the minimum upper bound possible because that
value refers to the optimal solution. Taking the TSP model as an
example, for a minimization objective function, any feasible tour would
be an upper bound or a primal bound.

Likewise, for the minimization problems, there is the lower bounds
or the dual bound. These bounds may be calculated through a proce-
dure called relaxation. In other words, a relaxation makes the original
problem less constrained or easier to be solved.

So, relaxations are able to provide information about the original
problems optimality through its dual bounds. If the provided dual
bound matches the primal bound, then the computed solution is the
optimal solution. Otherwise, other relaxation methods must be exe-
cuted to improve the dual bound value, in this case, a dual bound that
matches the primal bound. So, relaxations are an important tool to
prove solutions optimality. However, a dual bound may be unfeasible
for the original problem because it is a relaxed solution.

Examples of relaxations are the Linear Relaxation that permits in-
teger or binary variables to achieve real values. Also, there is the La-
grangean Relaxation that is explained next based on the work of [Van-
derbeck & Wolsey (2010)].
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Considered that the presented problem 2.10 is a difficult one. On
the contrary, there is a set defined as Z that is a subset of the constraints
of X. Also, that subset Z contains less constrained restrictions that let
the optimization over the set Z easier than all set X. Consequently:

z = min{cx : Dx ≥ d,Bx ≥ b, x ∈ Zn+} (2.11)

In equation 2.11, {Dx ≥ d,Bx ≥ b, x ∈ Zn+} represents the previous
set X. Also, constraints Dx ≥ d represent the most complicated con-
straints of the model and define the integer set Y = {x ∈ Zn+ : Dx ≥ d}.
The constraints Bx ≥ b represent the more tractable constraints and
define the set Z = {x ∈ Zn+ : Bx ≥ b}.

So, the Lagrangean Relaxation (LR) consists of relaxing those com-
plicated constraints and solve the problem for the simpler set Z. More-
over, if the LR computes solutions that do not respect or violate the
constraints placed in set Y, the objective function will be penalized.
Therefore, that method produces dual bounds by relaxing the diffi-
cult constraints and penalizing their violation in the objective func-
tion. Also, the dual variables, which are associated with each con-
straint placed in the objective function, are called Lagrange multipliers
or prices. The goal is to choose most suitable Lagrange multipliers
to try to enforce satisfaction of the complicating constraints Dx ≥ d.
That gives rise to the Lagrangean sub-problem, defined below:

L(α) = min{cx : α(d−Dx) : Bx ≥ b, x ∈ Zn+} (2.12)

Where α represents the Lagrange multipliers. According [Vander-
beck & Wolsey (2010)], the Lagrangean sub-problem is assume to be
relatively tractable. Moreover, notice that the equation 2.12 provides a
dual bound on the optimal value of z (equation 2.11). As a result, the
maximum α values of that dual bound may lead to the optimal solu-
tion for z , considering that dual bound respects the constraints placed
beforehand (Bx ≥ b). So, the problem of maximizing this bound over
the set of admissible penalty vectors is known as the Lagrangean dual
(LD):

zLD = max
α≥0

L(α) = max
α≥0

min
x∈Z
{cx : α(d−Dx)} (2.13)

One classical method to solve the Lagrangean dual is the sub-
gradient one. According to [Vanderbeck & Wolsey (2010)], even though
its convergence in practice is worse than other methods, such as a
column generation approach, it remains useful because of their easy
implementation and their ability to tackle large size problems. The
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sub-gradient algorithm is summarized next. The detailed algorithm
can be found in [Vanderbeck & Wolsey (2010)] and [Beasley (1993)].
Algorithm 1: The Sub-Gradient Algorithm
1 Initialize α0 = 0, t = 1, where t is the number of iterations
2 Iteration t,
3 Solve the Lagragean sub-problem (eq. 2.12) to obtain the dual

bounds L(αt) and an optimal solution xt
4 Calculate the xt ’s violation of the dualized constraints

(d−Dxt), which provide a type of sub-gradient that may guide
to modify the dual variables.

5 Update the dual solution using αt+1 = max{0, αt + βt(d−Dxt)},
in which β is an appropriately chosen step-size.

6 If t ≤Maxiterations, increment t and return to 3.
7 Return a dual bound over problem z.
So, on the one hand, one may think that Linear Relaxations are

so much easier to be implemented than the Langragean one, which
is a true statement. On the other hand, the Lagrangean Relaxations
are able to provide better dual bounds than the Linear one, according
to [Vanderbeck & Wolsey (2010)]. That justifies the effort invested on
Lagrangean relaxations.

As a result, the Langrangean relaxation achieves an optimal solution
whenever the computed Upper (primal) bound and the Lower (dual)
bound values are the same. Consequently, it requires that both bounds
converge to an equal value to obtain the optimal solution. Figure 2.1
illustrates that scenario.

Research Contribution
In the remainder of this section, the author summarizes the main

topics approached in this work that are related to the methodology
present so far.

• Chapter 3 studies and analyses a real case of a warehouse ship-
ping and routing problem at a car-assembling factory. An Integer
Linear Programming (ILP) model for a deterministic version of
the problem is proposed to provide feasible solutions or a set of
routes.

• Chapter 4 presents a novel ILP model that tackles the stated
In-house Logistics Routing Problem.

• Chapter 5 also presents a novel ILP model that copes with an
extension of the In-house Logistics Routing Problem.
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Figure 2.1: A scheme of the Lagrangean Relaxation method solved through
the subgradient algorithm. The first figure represents a scenario that the
optimal solution was found because the LB and UB achieved the same value.
On the contrast, the second figure represents a scenario that the optimal
solution was not found.

• Chapter 7 presents an ILP that faces the two-machine Flow shop
Scheduling problem with precedence constraints, release dates
and delivery times. Also, a method based on a Lagrangean Re-
laxation procedure was executed to provide optimal solutions.

2.2 Iterated Local Search Metaheuristic

Before introducing the concept of Iterated Local Search, two impor-
tant concepts will be presented first, which refer to Exact Methods
Algorithms and Heuristics.

According to [Glover (1977)], Exact Methods Algorithms are com-
pound by a set of finite mathematical steps that are able to ensure a
problem’s optimal solution. Therefore, Exact Methods are largely used
both in the literature and in industries to achieve optimal solutions for
relevant problems. The Lagrangean Relaxation methods presented in
subsection 2.1.2 is an Exact Method example. So, on the one hand,
Exact Methods can ensure that a solution is the optimal one. On the
other hand, these methods are not always successful, as indicated by
the non-convergence cases in the Lagranegan Relaxation.

Consequently, heuristics can be applied to overcome the disadvan-
tages of the Exact Methods. Heuristics are a set of procedures that
relies on both mathematical methods and practical assumptions. On
the one hand, these methods are able to produce excellent solutions in
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a short amount of time. On the other hand, those solutions cannot be
stated as the optimal ones because heuristic procedures are not able
to guarantee it by itself. The mathematical procedures that embedded
heuristics are not sufficient to give that information.

Also, heuristics methods are mostly based on searches over a set of
feasible solutions. That search can be guided by a method called Local
Search. As the name says, it looks for feasible solutions over a limited
or local space of solutions. Consequently, one heuristic must avoid the
risks to be trapped in a solution that is optimal, but locally and not
globally. Therefore, there is a necessity to extend the search to other
regions to look for the optimal global solution, which is a problem’s
optimal solution. To do so, there are perturbation methods that are in
charge of bringing the search over a different set of solutions.

Consequently, one may say that heuristics may not be so useful, but
it not true at all. As said, solutions are computed really fast because
there is no need to prove that it is the best one. For many practi-
cal cases, solutions must be computed in milliseconds, and there are
problems, which are so robust, that even calculating a feasible solution
will take hours of computational time. For those cases, heuristics are
a good call. Practical cases of heuristics applications are presented
by [Feo & Resende (1989)], [Koç et al. (2016)] and [Cota et al.(2016)].
Moreover, Exact Methods and heuristics can be joined to take advan-
tage of the benefits that each method brings. That class of problems
is called Hybrid Metaheuristics or Matheuristics. See [Boschetti et al.
(2009)], [Fischetti & Lodi (2003)] and [Glover & Laguna (1997)].

Later, the literature developed an extension of the heuristic con-
cepts, which is the Metaheuristics algorithms. These algorithms were
developed to cope with difficult problems, such as the Combinatorial
Optimization ones presented before. These methods were introduced
by Fred Glover in 1986 in his paper Future Paths for integer program-
ming and links to artificial intelligence, see [Glover (1986)]. Also, a
formal definition of the concept of metaheuristics may be: a heuris-
tic solution developed to regulate and guide specific problem-oriented
heuristics.

Regarding the metaheuristics’ practical point of view, there are four
main topics to be considered, according to [Cordeau et al. (2002)]: (i)
accuracy, (ii) speed, (iii) simplicity, and (iv) flexibility. So, metaheuris-
tics need to be accurate and fast to compute, in a short computational
time, solutions that are close to the optimal one. Moreover, these meth-
ods should be simple and flexible in the sense that it can be quickly
setup to work with other problems.

In the literature, there are many metaheuristic procedures that
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are based on different concepts. [Gendreu & Potvin (2019)] presents
the main metaheuristics applied in the literature in their handbook.
Some of the presented methods are: Tabu Search, Greedy Randomized
Adaptive Search Procedures (GRASP), Genetic Algorithms (GA), Ant
Colony Optimization, Hybrids Metaheuristic, Variable Neighborhood
Search (VNS), and Iterated Local Search (ILS). In this thesis, the ILS
is the metaheuristic chosen to tackle the stochastic COPs that will be
introduced further ahead. By the way, for a survey of metaheuristics
applications over stochastic COPs, see [Bianchi et al. (2006)]. The ILS
framework is presented next.

2.2.1 Iterated-Local-Search framework

The Iterated-Local-Search (ILS) is presented by [Lourenço et al.(2019)].
According to the authors, the ILS has been applied to complex Com-
binatorial Optimization Problems (COP) successfully. See [Coelho et
al. (2016)], [Penna et al.(2013)] and [Vansteenwegen et al. (2009)].

The main idea of ILS relies on the fact that it focuses on a smaller
subset of solutions, instead of considering the whole space of solutions.
This subset is defined by the local optimum of a given optimization
procedure [Lourenço et al.(2019)]. Also, [Grasas et al.(2016)] affirm
that the ILS extends a local search method by introducing a perturba-
tion at each new local optimal solution before restarting the search for
a new local optimal solution.

The ILS metaheuristic implementation is compound by four main
steps, which are defined as follows: (i) compute an initial solution; (ii)
execute a Local Search, which improves the solution initially obtained;
(iii) execute the perturbation phase, where a new starting point is
computed through a perturbation of the solution returned by the Local
Search; (iv) acceptance Criterion, which decides from which solution
the search should continue. Algorithm 2 presents the ILS framework.
Algorithm 2: The ILS Algorithm
1 (S0) ← Generate_Initial_Solution
2 (S∗) ← Execute a Local_Search(S0)
3 while Stopping criterion is not met do
4 (S ′) ← Perturb(S∗)
5 (S∗∗) ← Execute a Local_Search(S ′)
6 (S∗) ← Acceptance_Criterion (S∗∗, S∗)
7 end
8 Return (S∗)
So, the ILS’s target is to escape the disadvantages of random restarts

by exploring the region of feasible solutions using procedures that move

26



“output” — 2019/9/23 — 6:34 — page 27 — #47

from one locally optimal solution S∗ to a close (related) one. Given the
current solution S∗, a change or perturbation is first applied to lead to
an intermediate feasible solution, S ′ . Next, a Local Search is applied
in S

′ to obtain a new local optimal solution, S∗∗. If S∗∗ is approved
by an acceptance test, it becomes the new current solution; otherwise,
one returns to the previous one, S∗.

Also, according to [Grasas et al.(2016)], a well-designed ILS is char-
acterized by all the essential attributes described in [Cordeau et al.
(2002)].

2.2.2 Simulated-based Iterated-Local-Search

As presented before, heuristics may be linked with other approaches
such as exact methods. Additionally, heuristics can perfectly work
with simulation procedures as described by [Glover et al. (1996)].

Moreover, those works that cluster both heuristics and simulation
methods refer to the simulation-optimization or the Simheuristics fields.
In the literature, there are authors that refer to these class of problems
as simulation-optimization ones, see [Carson & Maria (1997)]. On the
contrary, there are authors that use the Simheuristics term as well,
see [Juan et al. (2015)] for a complete review of related works.

So, this subsection presents the Simulated-based Iterated Local
Search (SimILS) Metaheuristic. It is based on the methodology pro-
posed by [Grasas et al.(2016)], which refers to the aggregation of ILS
with simulation procedures.

The reason to select the SimILS is due to the remarkable results of
the ILS to solve COP. Also, it is a suitable method to solve Stochastic
COPs, such as real problems that demand is unknown, see [Lourenço
et al.(2019)] and [Grasas et al.(2016)]. Therefore, the SimILS is con-
sidered as an appropriate method to handle real-based problems.

According to [Grasas et al.(2016)], the aggregation of a standard
SimILS framework and a simulation-optimization procedure result in
a method capable of dealing with stochastic COPs. The SimILS’s
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framework is described in Algorithm 3.
Algorithm 3: The SimILS Algorithm
1 (S0) ← Generate_Initial_Solution
2 (S∗) ← Execute a Local_Search(S0)
3 (S∗, of(S∗)) = Simulation(S∗, long)
4 while Stopping criterion is not met do
5 (S ′) ← Perturb(S∗)
6 (S∗∗) ← Execute a Local_Search(S ′)
7 (S∗∗, of(S∗∗)) = Simulation(S∗∗, short)
8 (S∗) ← Acceptance_criterion (S∗∗, S∗)
9 end

10 (S∗, of(S∗)) = Simulation(S∗, long)
11 Return (S∗, of(S∗))

From the algorithm 3, the simulations procedures are placed after
applying the Local Search to evaluate the current local optimal solu-
tion (S∗ and S∗∗). These simulations consider both a solution and a
parameter, which indicates if the simulation should be run for a long
time (Simulation(S∗, long)) or a short time (Simulation(S∗∗, short)).
So, the SimILS obtains the corresponding simulated objective function,
of(solution), as well as other relevant statistics that can be used later
to improve the search (eg., level of backorders). Finally, a simulation
procedure is also inserted at the end of the ILS process. The algorithm
3 resumes the SimILS Metaheuristic developed.

As a result, the simulation has two main functions: (i) estimate
the expected cost value of a newly generated solution; (ii) check that a
newly generated solution satisfies some probabilistic constraints. Those
cases are applied whenever a problem has stochastic components in
both objective function and constraints.

Research Contribution
In the remainder of this section, the author summarizes the main

topics approached in this work that are related to the methodology
present so far.

• Chapter 4 presents a novel SimILS metaheuristic that tackles
the stated In-house Logistics Routing Problem, which is a
stochastic COP.

• Chapter 5 also presents a novel ILS metaheuristic that tackles an
extension of the In-house Logistics Routing Problem.
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2.3 Vehicle Routing Problems

As the Travel Salesman Problem (TSP), the Vehicle Routing Problem
(VRP) is a classical problem in the Operations Research literature.
Indeed, one may say that the VRP is an extension of the TSP because
both problems share some components, such as routes calculation. On
the contrary, VRP permits more than one route to be computed. That
idea is supported by the first work that approaches the VRP [Dantzig
& Ramser (1959)] back in 1959. Also, according to the authors, the
VRP is a NP problem, likewise the TSP.

According to [Laporte (2009)], the VRP is stated as the problem of
designing least-cost delivery routes from a depot to a set of geograph-
ically sparse customers, subject to side constraints. Consequently, due
to a significant variety of side constraints, as well as different opti-
mization goals, there are several variants of the problem because of the
diversity of operating rules and constraints found in real-life applica-
tions. To a further explanation about the VRP methodology, the reader
is invited to see [Toth & Vigo(2002)]. Also, for a complete survey of
the VRP literature, see [Braekers et al.(2016)], [Laporte (2009)], [Koç
et al. (2016)], and [Laporte (2000)].

Notice that the amount of literature that compound the VRP area
is huge. So, from now on, only the VRP works that are similar to the
thesis’ approach will be discussed. These studies are presented next.

According to the surveys presented by [Laporte (2009)] and [Braek-
ers et al.(2016)], the Traditional VRP’s primary objective is to min-
imize the total cost of routing a fleet of vehicles to supply a set of
clients. Both the fixed-routes and the variable-routes scenarios con-
sider the minimization of the total number of vehicles. Among the
traditional VRP is the Asymmetric Capacited VRP (ACVRP), which
is defined by a asymmetric distance matrix and capacited fleet, [Crainic
& Laporte(2012)].

Regarding the Consistent VRP, the problem was introduced by
[Groër et al.(2009)]. In this scenario, the routes are kept fixed, and
the drivers with the routes as well. Orders are known in advance by
the managers. Also, when a customer receives service, the same driver
visits the client at roughly the same time over the planning horizon.

Concerning the Stochastic VRP, it arises whenever any part of the
data is stochastic or unknown in advance such as stochastic travel times
or stochastic demand, see [Gendreau et al.(1996), Adulyasak, & Jail-
let(2015)]. The main idea of the Stochastic VRP is to compute a set
of routes that perform well considering the stochastic data input. In
this work, the data input that is considered as stochastic one is the de-
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mand. That approach can also be observed in [Bertsimas(1992),Novoa,
& Storer(2009)].

The Dynamic VRP is described by [Braekers et al.(2016)], in which
relevant data is continuously updated over the considered time horizon,
such as the costumers’ demand. Then, based on these inputs, the vehi-
cles could adapt their routes dynamically. [Albareda et al.(2014)] con-
sider probabilistic information to compute each period’s set of routes.

The VRP with Balance main goal is to compute a set of routes,
in which each router should have about the same amount of work for
each period of the time horizon. Related work is presented by [Levy &
Bodin(1988)], [Sniezek & Bodin (2006)], and [Jozefowiez et al. (2002)].
Moreover, [Campbell & Wilson(2014)] extended that approach by join-
ing the Balanced VRP with the periodic one. The authors stated that
found little work on variants of the problem that explicitly address the
stochasticity of customer demand or travel times.

Regarding the Periodic VRP application, it assumes that the cus-
tomers require visits on one or more days within a planning period.
Also, there are a set of feasible visit options for each customer. A
VRP is solved for each component in the planning period. Usually,
the main goal is to minimize the total distance traveled over the plan-
ning period. [Francis et al.(2007)] define the operational complexity in
implementing a solution to the periodic VRP, such as crew size defini-
tions.

Lastly, [Coelho et al.(2013)] and [Moin, & Salhi(2007)] present a
literature review of the Inventory-Routing Problem (IRP), in which
the demand is stochastic, and there are not clients’ orders. Instead,
the supplier decides when to visit each customer, based on forecasts,
communications, and monitoring. The planning horizon is multiple pe-
riods in length. Note that the IRP and the VRP are different categories
of problems. However, they share some concepts, such as the routing
calculations and pursuing solutions with a minimal number of routes.

Regarding the Vehicle Routing Problem tackled by this work, it
is defined as In-house Logistics Routing Problem (ILRP). Also,
to the best of the author’s knowledge, it represents a novel Vehicle
Routing problem approach. The In-house Logistics Routing Problem
is summarized as follows: (i) stochastic and unknown demand; (ii)
self-ask-supply approach; (iii) long-term and fixed routes; (iv) drivers
must return to the depot after concluding the route; (v) orders are
made throughout the time-horizon; (vi) time-window constraints; (vii)
backorders are allowed; (viii) each customer is assigned to a route; (ix)
fixed-customer-sequence definition; (x) capacitated; and (xi) homoge-
neous fleet.
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So, these characteristics are observed in many problems presented
in the literature. However, those aspects are not viewed all together to
compound a similar VRP approach. So, figure 2.2 presents the VRP
works that are most related to this thesis’ approach. Moreover, the
table presents some comments about the consolidate VRP approach
and the In-house Logistics Routing Problem.

Research Contribution
In the remainder of this section, the author summarizes the main

topics approached in this work that are related to the VRP methodol-
ogy.

• To the best of the author’s knowledge, chapters 4 and 5 present
a novel Vehicle Routing approach stated as In-house Logistics
Routing Problem, which is a stochastic COP. Also, chapter 4
introduces both ILPs and ILS metaheuristics to tackle this prob-
lem.

• Chapter 5 present four scenarios that fit the Internal Logistics
Routing Management (ILRM) system of a car-assembly company.
These scenarios refer to the ILFP, periodic VRP and IRP. As a
result, a real interesting problem in a car-assembling company
is considered. That problem consists of finding the most suit-
able ILRM system that is responsible for both placing orders and
delivering them.

2.4 Simulation analysis

Section 2.1 describes analytic models that aim to represent reality
through mathematical equations. Likewise, this section presents other
classes of models that aim to reproduce real problems, which are the
simulation models.

According to [Banks et al.(2005)], simulations reproduce the op-
eration of a real-world process or system over time. That involves
the generation of an artificial history of a system and the observation
of that artificial history to draw inferences, concerning the operating
characteristics of the real system. Moreover, a simulation analysis is
conducted through a model that takes the form of a set of premises
regarding the operation of the system. These premises are expressed in
mathematical, logical, and symbolic relationships between the entities,
or objects of interest.

Notice that these models must be checked to verify its ability to
reproduce the real-world system. For this reason, simulation models
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Item Characteristics Comments 

Traditional 

VRP 

The major objective of the VRP is to minimize 

the total cost of routing a fleet of vehicles to 

supply a set of clients.  

Likewise, the major objective of the ILRP is to 

minimize the total cost of routing a fleet of 

vehicles to supply a set of clients. The ILRP 

aims to minimize the total number of vehicles, 

the routes’ distance and the number of 

backorders. 

Consistent 

VRP  

The routes are kept fixed and the routers with the 

routes as well. Orders are known in advance by 

the managers. Also, when a customer receives 

service, the same router visits the client at 

roughly the same time over the planning horizon.  

In the ILPF, the routes must be kept fixed on the 

long-term horizon as well. On the contrast, the 

router is the one in charge of placing orders 

instead of the client (self-ask-supply procedure). 

That procedure contributes to making the 

demand stochastic. 

Stochastic 

VRP  

To find a set of routes that perform satisfactory, 

considering the stochastic data input. A set of 

routes may be constructed at the beginning of 

each period. Moreover, in some cases, that set of 

routes may be adapted as soon as new demand 

information is revealed. 

In the ILFP, the demand is viewed as stochastic 

and unknown due to the following factors: (i) 

self-ask-supply procedure; (ii) issues in the 

assembly line, and (iii) the cars-production 

scheduling is not shared among the departments. 

Dynamic 

VRP 

There is a continuous input update over the 

considered time horizon. Then, based on these 

new inputs, the vehicles could adapt their routes 

dynamically. The routers receive information 

online. A practical example is the taxi fleet 

management.  

On the one hand, the ILFP does not allow routes 

adaptations. On the other hand, chapter 5 

presents scenarios that variable-routes are 

considered. So, these routes are computed at the 

beginning of each period, considering the 

previous period's demand. As a result, it may 

state the variables routes approach as the first 

period of a Dynamic VRP only, but not as a 

standard  Dynamic VRP. Routes are not updated 

within a period. 

VRP with 

Balance  

For each period of the time horizon, each router 

should have about the same amount of work.  

In SEAT’s current scenario, one of the most 

important criteria is the work balance among the 

routes. As a result, the purpose is to distribute 

equally the total workload between the routers. 

By contrast, the ILFP prioritizes the three main 

factors discussed in the Traditional VRP’ line. 

Periodic 

VRP  

Customers require visits on one or more days 

within a planning period, and there are a set of 

feasible visit options for each customer. A VRP is 

solved for each day in the planning period. 

Usually, the main goal is to minimize the total 

distance traveled over the planning period. 

In the variable-routes scenario (chapter 5),  the 

customer’s orders are allocated in periods. Also, 

a VRP is solved at the beginning of each period.  

In this point, there is an issue regarding the 

current demand because it is not steady. As a 

result, a scenario without steady demand may be 

viewed as a traditional VRP. 

Inventory-

Routing 

Problem 

In the IRP, demand is stochastic and there are not 

clients' orders. Instead, the supplier decides when 

to visit each customer, based on forecasts, 

communications, and monitoring. The planning 

horizon is multiple periods in length. 

The ILFP states the logistics operators are in 

charge of placing orders. That is the main 

difference between the ILFP and the IRP. By 

contrast, chapter 5’ variable routes and automatic 

placing orders system may fits to the IRP 

correctly. 

Figure 2.2: The VRP literature review outline.
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should be validated by experts who know that system.
Afterward, analysts can somehow play with the simulation model

to investigate a wide variety of "what if" questions about the real-world
system. By the way, that is the great advantage of simulation models
because it enables one person to experiments a vast range of scenarios,
such as new policies and operating procedures scenarios. Consequently,
simulation models give support in performing bottleneck analysis by
understanding how a complex and random system operates, for in-
stance.

On the contrary, [Banks et al.(2005)] and [Chwif & Medina (2006)]
state that there are some drawbacks and not appropriate conditions
concerning the application of simulations methods. First, simulation
models maybe not so easy to build and also time demanding. Second,
the simulation by itself neither guarantee that a solution is optimal nor
propose another solution. Finally, usually simulation models need to
be fed with much data and, in many cases, there is not even a clue to
estimate then. As a result, the simulation models are not the answer
for all situations.

This work considers two simulation approaches, which are the Monte
Carlo Simulation (MCS) and the Discrete-Event Simulation (DES).
These methods are briefly introduced next.

[Banks et al.(2005)] define MCS as a static simulation model that
represents a system at a particular point in time. Also, [Hillier &
Lieberman (1995)] describe it as straightforward simulation approach
that involves generating some random observations from a statistical
distribution or a set of data, for instance. So, MCS simulates a system
through the generation of data from a specific pre-defined set of data.
One application may be the generation of workstations’ orders based
on a set of historical company’s orders, for example.

Contrasting with MCS, the DES can simulate a bit more complex
system. According to [Banks et al.(2005)], DES is the modeling of
systems in which the considered variables changes only at a discrete
set of points in time. For example, in a queueing system where the
state of the system is the number of orders in the system, the discrete
events that change this state are: (i) the arrival of an order; (ii) the
elimination of an order due to its supply. Moreover, [Hillier & Lieber-
man (1995)] state that several applications of simulation in practice are
based on DES. However, in the last years, the agent-based simulation
is becoming an interesting and efficient procedure to deal with real-
world problems. In that approach, the objects or entities are viewed
as autonomous ones. Also, they can learn from the system and take
decisions by themselves.Agent-based simulation’s applications can vary
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from logistics and assembling lines to healthcare issues, see [Bonabeau
(2002)] and [Macal & North (2010)].

In this work, MCS and DES were approached to develop simulation
models that cope with internal logistics flows (ILF) in an assembling
line of a manufacturing company. Consequently, this thesis is placed
among those simulation-based works that are related with the Logistics
and Production fields. Also, the MCS is applied to cope with the Ve-
hicle Routing Problem with Stochastic Demand. So, next sub-sections
highlight several works that share some concepts with this thesis.

2.4.1 Logistics and Production works

Usually, the literature associates the logistics related works to Supply
Chain Management (SCM) studies. That can be checked through the
surveys and literature revisions executed by [Sachan & Datta (2005)],
[Wilding et al.(2012)] and [Tako & Robinson(2012)]. These works are
discussed next.

The survey conducted by [Sachan & Datta (2005)] reviewed 442
papers of SCM and logistics research to examine the state of logistics
and SCM research. Surprisingly, only 20 out of these 442 papers used
simulation as the main methodology.

Moreover, [Wilding et al.(2012)] conducted a review of the litera-
ture on manufacturing, organizational and supply chain agility from
1991 through 2010. The authors reviewed 175 papers and concluded
that Supply chain agility has primarily been explored in the literature
through a focus on manufacturing flexibility, supply chain speed, and
lean manufacturing. Another curious point that those works brought is
the fact that there is not any work in these surveys, whose main scope
focus on internal logistics. However, internal logistics is a theme to be
considered when facing logistics concepts.

Finally, [Tako & Robinson(2012)] presented a survey on simulation
studies under Logistics and SCM perspectives and their application in
several industries. Their work suggests that the DES has been applied
more frequently to work on supply chains. On the other hand, System
Dynamics is the preferred method to deal with the bullwhip effect.

Centralizing the search over manufacturing logistics, which is one of
the main topics of this work, there are two surveys studies to highlight.
These are the studies presented by [Negahban & Smith (2014)] and
[Semini et al.(2006)].

[Negahban & Smith (2014)] conducted a review of 290 DES publi-
cations with a particular focus on applications in manufacturing. The
authors classified the literature into three general classes: (i) manu-
facturing system design, (ii) manufacturing system operation, and (iii)
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simulation language/package development. Even though the authors
did not create a specific category for logistics, the logistics-based works
were somehow considered through the studies that focus on automated
material handling systems. Also, the authors pointed out that logistics-
based works were mostly related to automated-guided-vehicles (AGV).
So, no further discussion about internal logistics flows concepts was
provided.

Regarding the AGV-based works, a complete survey about design
and control of AGV systems is presented by Vis2006. In this AGV
systems survey, the author considers topics related to flow path layout,
traffic management, and vehicle routing. So, issues like single loops,
tandem and segmented flow configurations are discussed. However, the
focus is always on the AGV itself and not on how an AGV interacts with
the environment. Therefore, no work that considers both workshops’
aisles utilization and flows strategies were presented by the authors.

[Semini et al.(2006)] presented a survey on the use of DES in real-
world manufacturing logistics decision-making. It concludes that the
majority of applications has been reported to the following fields: pro-
duction plant design; evaluation of production policies; lot sizes; work
in progress levels; and production plans/schedules. The sample of the
survey consists of 52 application papers, which there are three points
to highlight: (i) the considered papers are specially aligned to the topic
of this work (real-world manufacturing logistics); (ii) it shows that the
automotive industry is one of the industries that most demand simu-
lation studies. In the paper’s rank, that sector is placed in the second
position in numbers of papers; (iii) it supports the argument that the
literature lacks of works that consider both workshops’ aisles utilization
and flows strategies because the authors also did not present a work
like that.

Therefore, from the best of the author’s knowledge, there is not a
similar work that faces the internal logistics flows and the traffic inside
a workshop as proposed in this thesis.

On the contrary, it does exist works that share common aspects
to the Internal Logistics Flows topic. So, these works are introduced
through four categories: (i) production flow, (ii) layout evaluation, (iii)
material handling flow, and (iv) routing strategy.

Works that tackle issues related to Production Flow are presented
next. [Michalos (2010)] discusses technologies in the automotive as-
sembly, along with techniques used in the vehicle assembly plants. The
discussion involves technologies that deal with assembly processes such
as handling, joining, and human resources. [Ruiz-Torres & Nakatani
(1998)] presents a real-time simulation to assign due dates on logistic-
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manufacturing networks. Information from the manufacturing, trans-
portation, and supplier elements was integrated into a simulation model
of the system to help the assignment of consistent delivery dates. [See-
bacher et al. (2015)] presents a DES model that has been constructed
to model the workflow of a production system with discrete manu-
facturing processes and its in-plant logistics processes. The authors’
goal is to evaluate both machines (workstations) and vehicles utiliza-
tion, but nothing was reported regarding the aisles. [Ĉujan (2016)]
presents a DES that evaluates a supplying process. The focus is on the
transportation time and the usage of the capacity. Also, [Patchong et
al.(2003)] describes a simulation study applied over the internal logis-
tics in a PSA Peugeot Citroen factories. The work’s target is on the
body shop phase. The authors combine simulation and Markov-chain
models of series-parallel systems to reduce the bottlenecks found.

In the same way, [Roman-Verdugo (2014)] develop a methodologi-
cal framework concerning the construction of a simulation model of the
process flow. The work took place at the body-shop sector of a car-
assembling company. [Faget et al.(2005)] describing a method to detect
bottlenecks in DES models and applied to the Toyota Motor Company.
The goal is to automate the bottleneck analysis. Finally, [Ludavicius &
Ali(2014)] present a DES model to identify process throughput for the
automotive manufacturing powertrain sub-assembly line. The work ex-
plored any potential machine bottlenecks to improve process through-
put.

Regarding issues linked to Layout Evaluation, [Martínez-Barberá &
Herrero-Pérez (2010)] approaches the issue of navigation using an au-
tomated guided vehicle (AGV) in industrial environments. The work
describes the navigation system of a flexible AGV intended for oper-
ation in partially structured warehouses and with frequent changes in
the floor plant layout. [Wang & Chang (2015)] presents the Facility
Layout Problem that aims to minimize the material handling costs
by determining the most efficient arrangement of facilities within a
space. [Horta et al. (2016)] propose a mathematical programming ap-
proach, based on a min-max formulation that returns the optimized
layout of a cross-docking warehouse that feeds a just-in-time distribu-
tion operation.

Concerning works that focus on Material Handling Flow (MHF),
[Zhou & Peng (2017)] investigate the just-in-time (JIT) in-house lo-
gistics problem for automotive assembly lines. A point-to-point JIT
distribution model has been formulated to specify the destination sta-
tion and parts quantity of each delivery for minimizing line-side in-
ventory levels. Also, [Klug (2013)] discuss the consequences of the
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bullwhip effect in a car-manufacturing. The focus is on the impact on
the processes. Finally, [Mason et al. (2003)] develop a DES model of
a multi-product supply chain to examine the potential benefits to be
gained from global inventory visibility and trailer yard dispatching and
sequencing techniques.

Moreover, there are works that approaches both MHF and ware-
house issues. [Atieh et al. (2016)] investigate the impact of a ware-
house management system on supply chain performance that provides
fewer resources effort and reliable inventory management system. It
also highlights the gap between theory and practice. [Caridade et al.
(2017)] develop a proposal to restructure and optimize a company’s
warehouse. The main goal is to improve the efficiency of warehouse
functions, reduce stock quantities and enhance the capacity to meet
customer’s demand. Lastly, [Poon et al. (2009)] study the introduc-
tion of RFID technology to facilitate the collection and sharing of data
in a warehouse. The author main objectives are: (i) a simplification
of RFID adoption procedure, (ii) an improvement in the visibility of
warehouse operations and (iii) an enhancement of the productivity of
the warehouse.

Concerning works that use simulation to tackles MHF on ware-
houses, [Ribino et al.(2018)] considered an agent-based simulation to
analyze the behavior of automatic logistics warehouses and get informa-
tion for the decision-makers. Likewise, [Gagliardi at al.(2007)] worked
on warehouse problem but based on a DES model instead. The authors
faced a real high throughput warehouse which handles more than 12
millions of cases annually. Results presented potential savings by re-
ducing the number of stock-outs at the picking area.

Finally, the Routing Strategy were the focus of the following works.
[Mehami et al. (2018)] study AGVs in a real factory scenario. The au-
thors highlighted three aspects to effectively implement a smart AGV
system: reconfigurability, flexibility, and customizability. [Vavrík et
al. (2017)] introduces a method of the determination of the num-
ber of AGV and choosing optimal internal company logistics track.
Also, [Lima & Ramalhinho(2017)] present a study focus on internal
logistics routes’ construction and optimization in the SEAT S.A. The
routes generated were evaluated through different levels of demand.
The demand was generated by the Monte-Carlo simulation. Table 2.1
summarizes the cited works.

To sum up, although there are many references of works that ap-
proach both logistics and manufacturing activities through DES or
other simulation-based methodologies, those works that focus on the
simulation of Internal Logistics Flows (ILF), under an aggregate per-
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The work’s focus References

Production Flow [Michalos (2010)], [Ruiz-Torres & Nakatani (1998)],
[Seebacher et al. (2015)] , [Ĉujan (2016)]

[Patchong et al.(2003)], [Roman-Verdugo (2014)],
[Faget et al.(2005)], [Ludavicius & Ali(2014)]

Layout Evaluation [Martínez-Barberá & Herrero-Pérez (2010)],
[Wang & Chang (2015)], [Horta et al. (2016)]

Material Handling [Zhou & Peng (2017)], [Klug (2013)],
Flow [Mason et al. (2003)], [Atieh et al. (2016)],

[Caridade et al. (2017)], [Poon et al. (2009)],
[Ribino et al.(2018)], [Gagliardi at al.(2007)]

Routing Strategy [Mehami et al. (2018)],
[Vavrík et al. (2017)], [Lima & Ramalhinho(2017)]

Table 2.1: Logistics and Production related works.

spective, are unusual. To the best of the author’s knowledge, the sim-
ulation literature lacks of studies that integrate more than one class of
ILF to evaluate how a workshop can absorb all the traffic, for instance.

Moreover, the automotive sector can be viewed as a particular case
regarding manufacturing companies. First, a significant amount of data
is required to conduct a DES study over an entire assembly line. Usu-
ally, that sector does not disclose that required data. Second, the
complexity of the DES is significant in terms of the number of pro-
cesses. There are many processes to be considered because many types
of ILF are introduced into the model. Third, besides the ILF processes,
there are the workstations’ orders to take into account. In SEAT, one
assembling line can produce more than 600 cars each day. Also, a car
is assembled with more than 2,500 materials in those workstations. So,
the scope of the DES model is quite significant. Therefore, from the au-
thor’s point of view, the absence of simulation studies in the literature
over ILF in the automotive sector may be explained by its complexity
and confidential issues.

2.4.2 Monte Carlo Simulation and the Vehicle Routing Prob-
lem with Stochastic Demand

Concerning the use of MCS in Vehicle Routing Problem with Stochas-
tic Demand (VRPSD), [Juan et al. (2015)] state that the classic goals
applied to the VRPSD could be to minimize the total distance traveled
and to minimize the number of vehicles employed. The authors also
describe the main classes of constraints applied to that problem. These
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classes are: all routes must begin and finish at the same depot; the vehi-
cles are capacitated, and the capacity is the same for all of them; all the
clients’ demand must be satisfied, and each client should be supplied
by a single-vehicle. One example of the VRPSD problem application
was done by [Juan et al. (2013)]. The authors combined the Monte
Carlo Simulation and parallel-computing in the search for solutions to
the VRPSD. Earlier, [Juan et al. (2011)] combine the Monte Carlo
simulation with the splitting techniques and the Clarke and Wright
savings heuristic to find solutions to the Capacitated Vehicle Routing
Problem (CVRP).

Research Contribution
In the remainder of this section, the author summarizes the main

topics approached in this work that are related to the simulation method-
ology.

• Chapter 3 presents a Monte Carlo simulation method that eval-
uates the performance of a set of Internal Logistics Flows (ILF),
considering a realistic and stochastic environment.

• Chapter 4 introduces a SimILS algorithm to calculate suitable
fixed ILF. The simulation that embedded the ILS is based on the
MCS, which considers the company’s historical data to generate
data.

• Chapter 5 introduces a simulation algorithm to evaluate the per-
formance of both the company’s current ILF and the flows com-
puted through an ILS method.

• Chapter 6 provides a DES model whose objective is to assess
the ILF in a car-assembling workshop. Besides, it presents
a set of best practices for bench-marketing purposes for those who
want to develop DES models centered on ILF analysis.
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Chapter 3

OPTIMIZING INTERNAL
LOGISTICS FLOWS OVER
DETERMINISTIC DATA

This chapter is based on the following work:
Lima, M. F., Ramalhinho, H. (2017, December). Designing internal

supply routes: A case study in the automotive industry. In 2017 Winter
Simulation Conference (WSC) (pp. 3358-3369). IEEE.

3.1 Introduction and problem statement

This chapter represents the first mathematical optimization procedure
conducted during this work. The company stated that the current
methodology applied to compute and evaluate internal routes should
be improved. So, an Integer Linear Programming (ILP) and a Monte-
Carlo Simulation methods were developed. For further detail about
the current processes applied by the company, see chapter 1.

The ILP model aims to compute an optimal set of routes that are
responsible for supplying all placed orders, considering a determined
type of SKU and a specific assembling line. So, it deals with one class of
SKU. Also, the ILP must take into account the main Key-Performance-
indicators (KPI), which are: (i) the number of routes calculated; (ii)
the total distance traveled; (iii) the number of backorders; and (iv) the
number of free spots in convoy. All these KPI were set by the company.

The problem is defined as the Warehouse Shipping and Routing
problem. It can be seen as an extension of the well-known Capacitated
Vehicle Routing Problem (CVRP), see [Crainic & Laporte(2012)], [La-
porte (2009)], [Juan et al. (2015)], which is an NP-hard problem as
stated by [Solomon (1987)].
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Moreover, a Monte Carlo simulation was developed to evaluate dif-
ferent scenarios based on the real data provided by the company. Con-
sequently, the simulation enables the comparison between the com-
puted set of routes and the company’s set of routes into different pro-
duction’s backgrounds.

In this sense, this chapter deals with the warehouse shipping and
routing at SEAT, which can be seen as an one-product capacitated ve-
hicle routing problem with deterministic demand in a car assembling
company. On the one hand, the workstations’ demands are stochastic
in practice. On the other hand, in this chapter, the demand was simpli-
fied and treated as deterministic in the ILP. However, the stochasticity
is considered and evaluated during the Monte Carlo Simulation.

Next, subsection 3.1.1 discusses the applied methodology.

3.1.1 Methodology

In this subsection, the overall methodology applied in this chapter is
presented. The main purpose is to evaluate the performance of the
input routes. So, there are some steps to follow, as described in figure
3.1. Each step is described in detail next.

Current one Future ones 

Scenarios Comparison 

Solution 

(Set of Routes) 

Monte Carlo 

Simulation 

Statistical 

Analyzes 

(KPIs) 

Data Collection 
Routes 

Parameters 

Simulation 

Output 

Scenarios Performance 

Parameters 

Figure 3.1: Methodology phases’ interaction

First, it starts with the Data Collection process. The Data Col-
lection is important to understand all aspects and processes of the
problem. In addition, a statistical study is performed to evaluate the
workstations orders, as discussed in chapter 1. Second, a set of feasible
solutions is inserted. It may be either an output of an ILP model or
the company’s current solutions. The ILP model is presented in sub-
section 3.2. Third, the performance of the input routes is evaluated
through a Monte Carlo simulation. The simulation procedure is in
charge of analyzing how the routes work when facing different stochas-
tic scenarios (discussed at subsection 3.2). Fourth, the performance of
the routes is evaluated through several KPIs. These KPIs were defined
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based on strategic parameters set by the company. The fifth step is to
prepare the conclusions of the tested scenarios, which regard to differ-
ent demand levels. This methodology was designed after observing the
decision process currently implemented in the company.

The remainder of this chapter is organized as follows. Section 3.2
presents the ILP model and the simulation method. Section 3.3 refers
to the experiments performed, and section 3.4 presents the conclusions
and describes future work.

3.2 The Solution Method

In the Optimization procedure, the routes are obtained by solving an
ILP model in a deterministic environment. Next, these routes are
tested through the Monte Carlo simulation that is based on stochas-
tic scenarios. The company’s current routes are evaluated through the
same stochastic scenarios as well. Next, the ILP model and the Monte
Carlo simulation are presented.

3.2.1 The Integer Linear Programming model

The ILP model of the current problem is an extension of the Asym-
metric Capacitated Vehicle Routing Problem (ACVRP). So, the next
paragraphs present data sets, parameters, variables, the objective func-
tion (OF), and constraints that were introduced in that ILP model.

The introduced data sets refer to the locations to supply (n ∈ N),
where n = 0 represents the depot and the rest represent the work-
stations; The arc set (a ∈ A), in which arc (ij) ∈ A represents the
connection between the nodes (i, j ∈ N).

Next, the parameters are introduced; The fixed travel cost spent
to go from node i up to node j (DC); The fixed cost of introducing
a route (RC); The fixed cost of a free spot in the convoy (EC); The
distance between nodes (i, j ∈ N) is (dij); The convoy’s capacity (C);
The maximum number of convoys is (m); The convoy’s average speed
(v); The time required to supply a material at the workstation or node
(tsup); The average demand (Di) of the node (i ∈ N), which is the
average demand of a workstation during the considered time-horizon.
A workstation’s average demand is the sum of the total demand per
the total of periods considered. As illustrated in figure 1.8, the total
of periods is the ratio between the time-horizon per a considered time-
window. In this work, the considered time-window is set to 60 minutes.
Also, the workstations’ average demands were considered based on the
company’s historical data.
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Lastly, the decision variables are presented: the xij variable will
be equal 1 if arc (ij) ∈ A is activated, 0 otherwise. The Ui variable
represents the load of a vehicle after visiting workstation (i ∈ N)\i 6= 0.
The model is presented next.

min
N∑
i

N∑
j\(i 6=j)

(DCdijxij) +RC
N∑

j\(j 6=0)
xj0 +

EC(
N∑

j\(j 6=0)
xj0C −

N∑
i\(i 6=0)

Di) (3.1)

N∑
i\(i 6=j)

xij = 1 ∀j ∈ N\{0} (3.2)

N∑
j\(i 6=j)

xij = 1 ∀i ∈ N\{0} (3.3)

N∑
i\(i 6=0)

xi0 ≤ m (3.4)

Uj − Ui + xijC ≤ C −Di ∀i ∈ N, j ∈ N\{i 6= j} (3.5)
Di ≤ Ui ≤ C ∀i ∈ N\{0} (3.6)
xij ∈ {0, 1} ∀i ∈ N, j ∈ N\{i 6= j} (3.7)

Ui ∈ Z+ ∀i ∈ N\{0} (3.8)

The equation 3.1 represents the Objective Function that aims to
minimize the sum of the costs associated with the real problem, which
are: the total distance of the routes, the total number of routes, and
the cost related to a convoy that is not loaded fully. In this last case,
each empty spot (i.e., without a box) represents a lost opportunity to
the company. Also, these KPIs are aligned with others works from the
literature, which already considered different variants of the Vehicle
Routing Problem with Stochastic Demand (VRPSD). See [Juan et al.
(2015)]. Then, the constraints 3.2 state that all the workstations must
be attended. The constraints 3.3 state that all vehicles must leave
the workstation after unloading. The constraints 3.4 ensure that the
maximum number of convoys that departs from the depot is m. The
constraints 3.5 and 3.6 are the sub-tour elimination constraints. These
constraints impose both the connectivity of the solution and the vehicle
capacity requirements. The constraints 3.7 state that variables xij are
binaries. The constraints 3.8 state that variables Ui are integer and
positive.
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3.2.2 The Monte Carlo Simulation

In this chapter, the simulation evaluates the routes’ performance by
testing them through different scenarios. These scenarios were cal-
culated based on the average and the standard deviation (SD) of a
two-weeks workstations’ demand (demand from Monday to Friday).
Table 3.1 describes the seven scenarios tested. In scenario 0 (Historical
Data), a set of routes is evaluated by applying the actual historical
demand. Then, scenarios 1 to 6 correspond to the Monte Carlo simula-
tion output. The demand for each workstation is randomly generated
based on variations of the SEAT’s actual demand.

Item Standard Deviation Description Average Demand

0 Historical data Historical data
1 Low (↓ 5%) Current
2 High (↑ 5%) Demand
3 Low (↓ 5%) Higher
4 High (↑ 5%) Demand (↑ 5%)
5 Low (↓ 5%) Lower
6 High (↑ 5%) Demand (↓ 5%)

Table 3.1: Scenarios’ description. The disclosed percentage is based on the
company’s historical data. As a result, the Monte Carlo simulation gen-
erates orders based on an assumed normal distribution, whose parameters
are detailed in the table. For example, scenario four considers a normal
distribution, in which both the SD and the demand are 5% higher than the
company’s actual values.

The demand for each one of 113 workstations was generated through
the Monte Carlo method. A normal distribution was assumed to com-
pute the workstations’ demand. So, the average and SD of this Normal
distribution were calculated based on the two-week historical data. By
assumption, it is stated that the likelihood of a workstation asks more
or fewer materials is equal. That is the reason that normal distributions
were chosen. The implementation of this procedure was done through
C++ code.

Then, for each proposed scenario, a time horizon of ten days are
evaluated. Each day contains 45 periods of 60 minutes. These periods
were established after removing all scheduled pauses in the production
line. Also, the cumulative variation of 10 percent in the average demand
is coherent to the actual level of production and corresponds to the
planning objectives. Likewise, the cumulative SD variation was set up
to 10% (the difference between the higher and lower SD) because a
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greater variety would be an unreal overestimated factor, considering
the analyzed historical data.

So, the orders generated through the Monte Carlo simulation should
be assigned to its respective route and the period when it must be
supplied. Afterward, the supplying activity is simulated, considering a
route’s trajectory, a convoy’s average speed, a material handling time,
and the convoy’s capacity. The system also considers those orders that
are not attended at the correspondent period. In those cases, the orders
will be supplied at the following period. Notice that the routes are fixed
and backorders may occur due to lack of supplying capacity. In this
chapter, orders that are not supplied during the simulation due to lack
of capacity will be defined as backorders. The simulation’s scheme is
presented in figure 3.2.

Simulation 

(Monte Carlo Data) 

Set of Routes 

Parameters 

Backorders 

Materials Supplied 

Load Distribution 

Input Process Output 

Empty places 

Workstations’ Demand 

Figure 3.2: Simulation scheme

Then, the expected simulation’s outputs are (i) the total of backo-
rders, (ii) the total of materials supplied, (iii) the total of empty places
(spots) in all convoys and, (iv) the cargo loaded distribution among
the routes.

3.3 Experiments

Section 3.3 presents the experiments executed and the analysis of the
results obtained. First, the ILP output is presented and compared to
the company’s current solution. Next, the simulated results are pre-
sented. Those results refer to the simulation of the scenarios presented
in table 3.1.

3.3.1 ILP Output

The experiment was processed in a machine equipped with Intel i7
processor, 2.70GHz, 16GB RAM and Linux 64 bits Ubuntu 11.0.4. The
program languages C++ and AMPL were used. The mathematical
model was solved through the compiler GNU GCC and the software

46



“output” — 2019/9/23 — 6:34 — page 47 — #67

CPLEX version 12.8.0. Time processing limit of 3,600 seconds was
set for the CPLEX execution. Then, the best solution provided was
considered and stated as the feasible proposed routes. The ILP’s output
and the company’s solution are presented in table 3.2.

Item Total of Distance Traveled OF
Routes (meters) Costs

Current Routes 6 3,959.0 4,559.0
Proposed Routes 3 2,779.8 3,079.8

Table 3.2: ILP Solution and the current one comparison in terms of the
number of routes and the sum of these routes’ distances.

The ILP model achieved much better results in comparison to the
current company’s solution, as presented in table 3.2. The comparison
is made in terms of the number of routes and the sum of the routes’
distance. The simulation phase is responsible for providing KPI results
for all solutions through the considered scenarios. Although the ILP
solution’s GAP is 19.5%, the objective functions’ result is 3,084.16.
The GAP is defined as the following equation: (Upper Bound - Lower
Bound)/Upper Bound. Regarding the costs assigned for each objective
function component, the Route’s cost (RC) is defined as 100 monetary
units, the distance’s cost (DC) is stated as one monetary unit per meter,
and the empty spot’s cost (EC) is stated as one monetary unit as well.

The current Routes’ results were obtained through the calculation
of these results based on the costs stated in the last paragraph. So,
regarding the performance of the company’s KPIs, the first KPI refers
to the total of routes needed to execute the warehouse shipping. The
current set of routes presents six routes, and the optimized one presents
three routes. So, the proposed routes are half of the current ones.
The second KPI regards the total distance traveled during the studied
period. The current set of routes presents a total of 3,959 meters, and
the proposed one presents 2,779.8 meters, which is about 30% lower
than the current one.

It is noteworthy mention the company evaluate the routes through
a term called ”Logistics group”. It refers to a set of workstations that
were clustered and create a Logistic group. By contrast, this work
evaluates the workstations individually. As a result, it permits work-
stations from different logistics groups to be joined and compound one
route.
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3.3.2 Simulations Outputs

Before describing the simulations results, some premises are stated.
First, a route’s trajectory completion time is limited up to 60 minutes.
Second, the total number of empty spots was calculated by summing
all the empty spots in each convoy throughout the considered time-
horizon. Moreover, if a route has not any material to supply in a
period, then the total of empty spots will be zero for that period. It
means the convoy stays in the warehouse during that period. The
simulation results are presented in tables 3.3, 3.4 and 3.5.

Item Scenario 0 Scenario 1
P.R. C.R. P.R. C.R.

(I) Backorder 0% 0% 0% 0%
(II) Supplied 100% 100% 100% 100%
(III) E.Spots 98,266 198,043 139,248 310,529
OF cost 7,205 12,877 8,952 17,601

Table 3.3: Simulation output - Scenarios 0 and 1. The letter P.R. represents
the proposed routes and the letter C.R. the current ones. The items I, II,
and III represent the percentage of backorders, the percentage of attended
demand, and the sum of empty spots, respectively. The percentage of the
items I and II refer to its respective metrics and the total demanded during
the simulation.

Item Scenario 2 Scenario 3
P.R. C.R. P.R. C.R.

(I) Backorders 0% 0% 0% 0%
(II) Supplied 100% 100% 100% 100%
(III) E.Spots 139,248 310,530 138,347 309,628
OF cost 8,928 17,601 8,890 17,563

Table 3.4: Simulation output - Scenarios 2 and 3. The letter P.R. represents
the proposed routes and the letter C.R. the current ones. The items I, II,
and III represent the percentage of backorders, the percentage of Attended
demand, and the Sum of empty spots, respectively. The percentage of the
items I and II refer to its respective metrics and the total demanded during
the simulation.

The main conclusion regarding those experiments is that both sets
of routes were able to supply all demand. That is an important ob-
servation since the number of proposed routes is significantly smaller
than the number of actual routes. The reduced number of routes leads
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Item Scenario 4 Scenario 5 Scenario 6
P.R. C.R. P.R. C.R. P.R. C.R.

(I) Backorders 0% 0% 0% 0% 0% 0%
(II) Supplied 100% 100% 100% 100% 100% 100%
(III) E.Spots 9137,793 309,654 141,123 311,681 140,549 311,395
OF cost 8,867 17,564 9,007 17,650 8,983 17,638

Table 3.5: Simulation output - Scenarios 4, 5, and 6. The letter P.R. repre-
sents the proposed routes and the letter C.R. the current ones. The items
I, II, and III represent the percentage of backorders, the percentage of At-
tended demand, and the Sum of empty spots, respectively. The percentage
of the items I and II refer to its respective metrics and the total demanded
during the simulation.

to a cost reduction on equipment and personal. In addition, the total
number of empty spots also reduced. The proposed routes presented
nearly 45% less empty spots compared with the current routes. That
output is another significant result because it represents a substantial
improvement in the efficiency of the use of resources.

Regarding the load distribution among the routes, figure 3.3 illus-
trates the load distribution related to the worst-case scenario, which
is the fourth one. This scenario represents both the higher demand
and higher Standard Deviation (SD) levels. So, that scenario was se-
lected to evaluate how a set of routes manages the load distribution
between the routes. Consequently, figure 3.3 illustrates that the com-
puted ILP solution does not handle that KPI properly because there is
one route that is responsible for half of the workload. On the contrary,
the current company’s solution tackles better this issue. As a result,
the logistics manager should evaluate the pros and cons of both solu-
tions. Note that this indicator is measured in terms of the number of
orders assigned to each route.

3.4 Conclusion

The main contributions of this chapter are summarized as follows: (i)
presenting a case study about a real internal logistics routing prob-
lem in the car-assembling factory, (ii) designing an ILP model that
provides suitable and feasible solutions, and (iii) presenting a Monte
Carlo simulation method that evaluates the performance of a set of
routes, considering a realistic and stochastic environment. Also, this
chapter considered both real data and the company’s KPI’s, leading to
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Figure 3.3: The workload distribution between the proposed routes and the
current solution. This indicator is measured in terms of the number of orders
assigned to each route. The letter A represents the results achieved by the
proposed routes and the letter B the current ones. Moreover, each figure’s
number represents a different route.

interesting business insights for the SEAT Logistics department.
To sum up, this chapter studies and analyses a real case of a ware-

house shipping and routing problem at a car-assembling factory. An
ILP model for a deterministic version of the problem and a simulation
procedure based on Monte Carlo simulation were proposed. The ILP
model aims to provide feasible solutions or a set of routes, and the sim-
ulation’s goal is to evaluate the performance of the routes on a realistic
stochastic environment using the company’s KPIs.

The ILP’s solution overcame the current solution over the two main
KPI’s: Total of routes and routes’ distance. The third KPI refers
to the number of backorders. For this one, both ILP’s routes and
current’s routes were able to deliver all the demand on time and without
backorders because all orders were delivered in the considered time-
horizon. Finally, the fourth KPI is the number of empty spots in
convoy. The proposed set of routes presented a better performance on
this KPI than the current one through the simulated scenarios. The
total average number of empty spots for the new routes is about 45%
lower than the current ones.

Another important aspect is the loaded cargo balance among the
routes, which should be reviewed in future work due to the poor perfor-
mance observed of the proposed routes. This aspect could be improved
by including specific constraints on the model.

Therefore, on the one hand, it can be concluded that the pro-
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posed set of routes can be implemented in a real context. The applied
methodology enables decision-makers to evaluate the performance of a
mathematical model’s output in a realistic context, via the Monte Carlo
simulation phase. Consequently, a better knowledge of the strengths
and the weakness of the mathematical model’s solution are unveiled.
Moreover, one of the main applications and benefits of this work is
to enable the company to obtain better insights and to plan, more
efficiently, when it launches a new car model, for instance.

On the other hand, that work is viewed as the first attempt to opti-
mize a specific logistic flow inside an assembling workshop. A feasible
solution was achieved. However, it has some limitations concerning the
way that the orders variability are tackled. Perhaps, the premise that
considers the workstations demands as average values is not the most
suitable one. Also, the solution provided by the ILP model is not the
optimal one. As a result, it also should be further evaluated in future
work.

Moreover, future works may focus on developing strategies to im-
prove the interface between the Optimization and the Simulation phases,
by feeding optimization models’ parameters with insights from the sim-
ulation phase, see [Osorio & Selvam (2017)]. That approach can be
made using a Simheuristic, [Juan et al. (2015)]; [Grasas et al.(2016)],
that integrates the optimization and simulation phase in a repeated
cycle intending to improve the solution.

Furthermore, we could extend this work by considering the pro-
duction forecast. These areas could help to plan the impact on that
forecast in the logistics activities and, in particular, the warehouse
shipping problem at a car manufacturer.
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Chapter 4

THE IN-HOUSE
LOGISTICS ROUTING
PROBLEM

4.1 Introduction and problem statement

In this chapter, the internal logistics routing problem is further studied.
That problem is viewed as an operational and strategic one because it
is highly relevant to the company’s business due to several reasons that
are pointed next. First, it is directly connected with the activities that
add value to the product. Second, it is a problem with high complexity,
there are more than 120 workstations to supply in each production line,
and each workstation has a singular demand behavior. Moreover, if the
supply fails, the production may stop. A company that produces 2,400
cars daily cannot afford regular fails in the production line.

So, the main issue consists of designing the internal supply routes
in a car-assembling factory, as illustrated in figures 1.7 and 1.9. Addi-
tionally, this problem can be seen as an extension of the one-product
Capacitated Vehicle Routing Problem with stochastic demand. How-
ever, it is not the same problem.

The characteristics of the tackled problem are the following: (i)
stochastic and unknown demand; (ii) self-ask-supply approach; (iii)
long-term and fixed routes; (iv) drivers must return to the depot after
concluding the route; (v) orders are made throughout the time-horizon;
(vi) time-window constraints; (vii) backorders are allowed; (viii) each
workstation is assigned to a route; (ix) fixed-customer-sequence defini-
tion; (x) capacitated vehicles; and (xi) homogeneous fleet. Therefore,
to the best of the author’s knowledge, all these assumptions give rise
to a brand-new problem of the vehicle routing class. That problem is
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stated as the In-house Logistics Routing Problem (ILRP). Chap-
ter 2 provides a comparison between the In-house Logistics Routing
Problem and the related Vehicle Routing Problems (VRP).

Furthermore, figure 4.1 summarizes the main concepts of the ILRP.
Note that figure 4.1 presents a scenario that considers two fixed routes,
which are illustrated by the green and orange trajectories introduced
in the workshop layout. Moreover, those routes must supply the work-
shops’ orders, whose locations are illustrated by the colored circles
placed in the workshop layout. Besides, observe that each workstation
is placed above a specific route because a workstation is supplied by one
route only. Also, at the bottom of the figure 4.1, there is a timeline, in
which the workstations’ orders are placed. Notice that those orders are
clustered into periods. Then, the defined fixed routes are responsible
for supplying all the period’s orders. However, a workstation’s orders
tend to be unsteady, as observed in the figure. That approach may
incur in backorders because there are periods, whose total number of
placed orders surpass a route supplying capacity.

Workshop: Main Premises: 

• Long-Term-Fixed Routes; 

• Unsteady demand; 

• Time-window constraints; 

• Backorders allowed; 

• Capacitated-Homogeneous fleet. 

Clustered 

Orders | P1 

Clustered 

Orders | P2 

Clustered 

Orders | P3 

Clustered 

Orders | P4 

Time 

Horizon 

Fixed Route 1 Fixed Route 2 

Period 1 Period 2 Period 3 Period 4 

Workstation A Workstation B Workstation C Workstation D 

Orders arrival chart per period and workstation: 

Figure 4.1: The In-house Logistics Routing Problem description.

To exemplify how the supply activity works, figure 4.2 presents a
three-period example. In this example, one fixed route is considered,
which is able to supply up to three SKU in each period. Also, figure
4.2 presents the Service-Quality-Level (SQL) Concept, which is defined
by the ratio between the number of units supplied on-time per the to-
tal of orders. Then, a simulation of each period is executed, taking
into account the stated premises. Note that backorders have priority
over current period’s orders. Also, a period’s backorder is defined as

54



“output” — 2019/9/23 — 6:34 — page 55 — #75

a delayed order that was not supplied in previous periods. As a re-
sult, backorders are viewed as the consequence of the time-windows
constraints violations.

Workshop: 

Fixed Route 2 Workstation (WKT)  

Parameters: 

/Convoy’s capacity per period: 3 units 

/Total of periods and the WKT’s demand: 

Demand: 

Period: 

5 2 1 

1 2 3 

/Service – Quality – Level (SQL): Units supplied on time 

Total demand 

Figure 4.2: The In-house Logistics Routing Problem simulation.

As a result, three major objectives are faced in this chapter. Firstly,
to propose a deterministic mathematical model based on Integer Linear
Programming (ILP), which provides solutions to the described prob-
lem. Secondly, to present a simulation-based Iterated Local Search
(SimILS) Metaheuristic capable of calculating good solutions for a
large-scale and stochastic version of the cited problem. Finally, to
apply these methods on a real data context and analyze the results.

Consequently, three major objectives are pursued that are trans-
lated into the following primary Key Performance Indicators (KPIs):
(i) the number of routes; (ii) the total routes’ distances; and (iii) the to-
tal volume of materials not supplied on time (backorders). All of these
indicators are standardized under the same measure, a cost function
defined by the company.

Also, the company considers other secondary KPIs, defined as (i)
the total orders supplied; (ii) the total distance covered throughout
the simulation; and (iii) the total of empty spots of the convoys that
departed from the warehouse during the simulation. It is noteworthy
to state that the secondary KPI are computed through a simulation
procedure.

Also, note that the primary KPIs will be used to calculate the best
supply routes. Consequently, the primary KPIs guide the optimization
procedures. Meanwhile, both the primary and secondary KPIs will

55



“output” — 2019/9/23 — 6:34 — page 56 — #76

be used to evaluate the performance of different solutions through a
simulation procedure over a realistic environment.

In this chapter, the SEAT’s workshop is assumed to have more than
120 workstations. Each workstation has an unknown and unsteady
demand, as illustrated by figure 1.10. So, the data evaluation was
executed as the following. First, data from a considered time horizon
was gathered. Then, all the data was distributed into different periods.
Likewise chapter 3, each period is compounded by one hour effectively
worked, in which the pauses were not considered. As a result, a total of
21 periods per day is assumed. So, if a scenario of 10 days is considered,
a total of 210 periods will be generated, in which the orders of more
than 120 workstations are placed.

The workstations’ orders used in this chapter is a sample of the
real data provided by the company. The provided orders refer to two
different periods of the years 2017 and 2018. Each year corresponds to
a data set. Next, each data set is separated into two clusters based on
a time sequence. The first cluster (cluster 1) regards to the first half
of the requests done, and its major purpose is to be the input data
for algorithms, which calculate suitable solutions. Then, the second
cluster (cluster 2) represents the requests done in the second half of
the considered time-horizon. The cluster 2’s purpose is to evaluate
the cluster 1 ’s solution, but considering a different set of data, see
figure 4.3. Note that the ILP is a deterministic formulation because the
input data is already known (cluster 1). However, the ILRP presents
stochastic orders actually. Therefore, the routes computed based on
known orders are verified considering a brand-new data set, which is
cluster 2. In this sense, estimated orders (cluster 1) are considered for
computing a feasible solution to be proofed by unknown orders.

Cluster 1 Cluster 2 

Solution calculation data Simulation data 

The Time-Horizon considered 

Figure 4.3: The data clustering scheme. The 1st cluster gives support for
the routes optimization. Then, the 2nd cluster major purpose is to evaluate
the previous solution obtained.

Consequently, the main goal of this work is to compute a solution to
the ILRP, which provides a satisfactory set of fixed routes to cope with
a stochastic system over an internal logistics context. The developed
methodology has two phases. The first phase consists of calculating
a set of fixed routes to handle the company’s supplying activity. In
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this phase, the cluster 1 data is introduced. Moreover, there are two
optimization approaches proposed: (i) an ILP model and (ii) a SimILS
Metaheuristic. The ILP is known to provide-proofed optimal solutions.
Also, the ILS has been successfully applied to complex Combinatorial
Optimization problems, see [Lourenço et al.(2019)]. Additionally, the
simulation aspect of the SimILS enables the introduction of stochastic
data. In this phase, the main goal is to compute a solution that can
handle further real scenarios.

In the second phase of the proposed methodology, the cluster 1’s
solution is evaluated. The computed set of routes is simulated over the
cluster 2 data, whose orders are different from cluster 1’s ones. Besides,
cluster 1’s solution is compared with the company’s one through the
simulation approach.

The remainder of this chapter is organized as follows. Section 4.2
presents the mathematical model. Next, section 4.3describes the Sim-
ILS method. Section 4.4 refers to the experiments performed, and
section 4.5 presents the conclusions and describes future work.

4.2 The Integer Linear Programming model

In this section, the Integer Linear Programming (ILP) model of the de-
terministic version of the In-house Logistics Routing Problem (ILRP)
is presented. This model is an extension of the Asymmetric Capaci-
tated VRP model described in [Crainic & Laporte(2012)]. The main
objective of the mathematical model is to find the optimal-fixed routes
to be applied. Therefore, an important aspect of the model is the input
data, in particular, how the workstations’ orders are considered in the
model.

As said in chapter 1, the workstations’ orders are gathered through
the SEAT’s SAP system. Consequently, the considered orders are a
sample of historical data. Then, the total demand of a workstation
will be the sum of the orders places throughout that a specific time
window. See figure 1.8 for further information about orders clustering.
The details of the ILP model are detailed next.

The data sets introduced are the following: the set of locations to
supply (n ∈ N), where n =1 represents the Depot and the rest represent
the workstations; the arc set (a ∈ A). The periods set (l ∈ L), in
which L represents the complete time horizon; the routes’ frequency
set (r ∈ R).

Next, the parameters are introduced; the convoy’s capacity (C); the
fixed travel cost spent to go from node (i ∈ N) up to node (j ∈ N)
(MC); the fixed cost of introducing a route (RC); the fixed cost of
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a backorder (SC); the distance between nodes (i, j ∈ N) is (dij); the
maximum number of convoys (K); one period’s length (T ); the time
required to supply a material at the delivery point (tsup); the convoy’s
average speed (v); the maximum frequency a route can have (R); the
demand (Dil) of the node (i ∈ N) at the period (l ∈ L), which is the
demand of a workstation during a period considered l. Notice that
deterministic data values, such as speed and a material’s supplying
time were defined by the company; and the considered workstations’
orders were based on historical data.

Finally, the decision variables are introduced: the xijkr variable will
be equal 1 if arc (i, j) ∈ A belongs to the route (k ∈ K) and has a
frequency (r ∈ R) within a period, 0 otherwise; the yikr variable will
be equal 1 if node (i ∈ A) is visited by vehicle (k ∈ K), which has a
frequency (r ∈ R); the bclk represents the backorders inserted in the
vehicle (k ∈ K) at the period (l ∈ L); the fkr represents the frequency
(r ∈ R) that a route (k ∈ K) has within one period time T. Finally,
the addk is the additional capacity that a route (k ∈ K) can receive.
The ILP model is presented next:

min
N∑
i

N∑
j\(i 6=j)

MCdij
K∑
k

R∑
r

xijkr + (4.1)

K∑
k

N∑
j\(j 6=1)

R∑
r

RCx1jkr +
L∑
l

K∑
k

SCbclk

R∑
r

fkr ≤ 1 ∀k ∈ K (4.2)

N∑
i\i>1

yikr ≤ fkr|N | ∀k ∈ K, r ∈ R (4.3)

K∑
k

R∑
r

yikr = 1 ∀i ∈ N\i > 1 (4.4)

K∑
k

R∑
r

y1kr ≤ K (4.5)

R∑
r

N∑
i\i>1

(Dilyikr) + bc(l−1)k ≤ (4.6)

R∑
r

(rCfkr) + addk + bclk ∀l ∈ L, k ∈ K
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N∑
j\(j 6=i)

xijkr = yikr ∀k ∈ K, r ∈ R, i ∈ N\i 6= 1 (4.7)

N∑
j\(j 6=i)

xjikr = yikr ∀k ∈ K, r ∈ R, i ∈ N\i 6= 1 (4.8)

N∑
i,j∈S\(j 6=i)

xijkr = |S| − 1 ∀S ⊂ N, k ∈ k, r ∈ R (4.9)

addk ≤ C ∀k ∈ K (4.10)

(
R∑
r

N∑
j\(i 6=1)

(Dilyikr) + bc(l−1)k − bclk)tsup+ (4.11)

R∑
r

N∑
i

N∑
j\(i 6=j)

r ∗ (dij/v)xijkr ≤ T ∀k ∈ K, l ∈ L

[T − (r + 1)(
N∑
i

N∑
j\(i 6=j)

(dij/v)xijkr) (4.12)

−(fkrrCtsup)]/tsup ≤ addk ∀k ∈ K, r ∈ R

xijkr ∈ {0, 1},Z ∀i, j ∈ A, k ∈ K, r ∈ R (4.13)
yikr ∈ {0, 1},Z ∀i ∈ N, k ∈ K, r ∈ R (4.14)

bclk ∈ Z+ ∀l ∈ L, k ∈ K (4.15)
fkr ∈ Z+ ∀k ∈ K, r ∈ R (4.16)

addk ∈ Z+ ∀k ∈ K (4.17)

The objective function (OF)(4.1) minimizes the sum of the costs
related to the total distances covered by all the routes, the number
of routes, and the costs related to the backorders of the route (k ∈
K) at a period (l ∈ L). The constraints (4.2) define the number of
laps, or the frequency (r ∈ R), that route (k ∈ K) does during one
period. Constraints (4.3) state the maximum number of nodes a route
(k ∈ K) can visit, considering its frequency (r ∈ R). Constraints
(4.4) state that each customer must be attended by only one route.
Constraint (4.5) states that the depot must be visited by |K| vehicles
at most. Next, the constraints (4.6) define the number of backorder
bclk of the route (k ∈ K) in the period (l ∈ L). The constraints (4.7)
and (4.8) define that the vehicles that visit a node (i ∈ N) must depart
from that location after the supplying activity. The constraints (4.9)
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are responsible for avoiding the sub-tours to happen. The constraints
(4.10) state that the maximum additional capacity a route can receive
is fewer or equal to C. The constraints (4.11) state that each route can
last up to T minutes, taking into account the capacity, the supplying
time, the distance, and the traveling speed. The constraints (4.12)
define the maximum additional capacity a route can receive, based on
the amount of time left in a period. Lastly, constraints (4.13), (4.14),
(4.15), (4.16), and (4.17) define the domain of the variables.

Notice that the constraints (4.6), (4.10), and (4.13) aim to increase
a convoy’s capacity as much as possible. To do so, the constraints con-
sider a rule called as residual capacity, which is explained as follows.
A convoy’s capacity is calculated through a function that has the fol-
lowing parameters: (i) convoy speed; (ii) period duration; (iii) time to
supplied materials; and (iv) route’s length. For example, suppose one
scenario, in which a period has 60 minutes and a route’s duration is
about 21 minutes, including the supplying time to place all materials
in the correct place. Consequently, the route can complete two trips
within 60 minutes. If the convoy has its capacity limited to 4 orders
per travel, the capacity will be equal to 8 as a result. Nevertheless,
there are 19 minutes left to supply. So, we add to the capacity the
exact number of orders the convoy is able to supply and back to the
depot before finishing the current period. So, if the trajectory takes
12 minutes, the supplying procedure three minutes per order and there
are 19 minutes left, the algorithm will be able to add two units more
in the total capacity. As a result, the total capacity of this route will
be ten units per period. That procedure enables the algorithm to come
closer to real practice.

To obtain the solutions for this model, the AMPL language was
used and solved by CPLEX 12.6.8, as explained in section 4.4.

4.3 The simulation-based Iterated Local Search

The Simulation-based Iterated Local Search (SimILS) Metaheuristic
is based on the methodology proposed by [Grasas et al.(2016)]. In
this section, a SimILS algorithm to solve the ILRP is presented. The
reason to select the SimILS is due to the remarkable results of the ILS
to solve Combinatorial Optimization Problems (COP), such as real
problems, whose demand is unknown, see [Grasas et al.(2016)]. So,
the SimILS is considered as an appropriate solution approach because
it can handle with real-based problems. The algorithm 4 resumes the
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complete SimILS Metaheuristic developed.

Algorithm 4: The complete SimILS Algorithm
1 (S0)← Generate_Initial_Solution
2 (S ′) ← Execute the SimILS procedure

(S0,WPriority_routes_weights)
3 (S∗) ← Execute the SimILS procedure (S ′ ,WPriority_SQL_weights)
4 Return Best_Sol(S∗)

It is noteworthy to state that the objective function introduced
in the SimILS is the same one introduced in the ILP (equation 4.1).
Moreover, the complete algorithm 4 shows that the SimILS procedure is
applied twice with different inputs and objectives; that is the reason it is
called as completed. In the first phase, the method seeks a solution with
a reduced number of routes. Indeed, a solution with a bigger number
of routes than the current solution is not allowed by the company. As
a result, the first phase calculates a solution (S ′) which is compounded
by the fewer number of routes possible. Consequently, fictitious high
weights are introduced on the routes’ and the distances’ terms, and low
fictitious weight is assigned to the backorders one. It is done to force
the reduction of the number of routes and the total routes’ distance.

Afterward, the SimILS procedure is repeated, but based on the solu-
tion (S ′), which was previous computed, and different fictitious weights.
The new weights are related to the Service-Quality-Level (SQL). The
SQL is defined as the rate between the number of orders supplied at
the correct period per the total of orders received during all considered
periods. In this phase, the SimILS is forced to improve the backorders
indicator without increasing the number of routes and the total routes’
distance. As a result, the output solution is a trade-off between those
three considered criteria, which are: (i) number of routes, (ii) sum of
each route’s distance, and (iii) total of backorders.

Next, the components that integrate the SimILS metaheuristic are
described. The algorithm 5 resumes the structure applied, which can
be divided as follows: (i) the initial solution, (ii) Local Search (Intra-
route phase), (iii) Local Search (inter-route phase) (iv) the simulation
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phase, (v) the perturbation phase, and (vi) the stopping criterion.
Algorithm 5: The Sim-ILS Algorithm
1 S0 ← Generate_Initial_Solution (sub-section 4.3.1)
2 S∗ ← Local_Search_Intra_Routes (S0) (sub-section 4.3.2)
3 SimOF ∗ ← Simulation (S∗,Weights) and Let S ′ = S∗

4 while (it_ils ≤ it_ils_LIM) do
5 S

′ ← Local_Search_Inter_Route(S ′) (sub-section 4.3.3)
6 S

′ ← Local_Search_Intra_Route(S ′)
7 SimOF

′ ← Simulation (S ′ ,Weights) (sub-section 4.3.4)
8 if (SimOF ∗>SimOF ′)∧
9 (SQL(SimOF ∗)<SQL(SimOF ′)∨(it_ils <

it_ils_LIM/2)) then
10 Let (S∗ ← S

′) and Let (SimOF ∗ ←SimOF′)
11 end
12 if (it_ils < it_ils_LIM) then
13 if (it_ils > it_ils_LIM/2) then
14 S

′ ← Perturbation
(S∗, P ert_Service_Level)(sub-section 4.3.5)

15 else
16 S

′ ← Perturbation (S ′ , P ert_Service_Level)
(sub-section 4.3.5)

17 end
18 end
19 it_ils ← it_ils+ 1
20 end
21 SimOF ∗ ← Simulation (S∗, Weights) and Return (SimOF ∗)

The main elements applied in algorithm 5 are introduced as follows:
S0 is stated as the initial solution; S∗ is defined as the output solution of
the Local Search Intra Routes moves (subsection 4.3.2) when the input
solution is (S0); SimOF ∗ is the objective function value computed
through the SimILS procedure.

Afterward, once the iterations phase is reached (line 4), the S ′ value
is considered, which may receive the output solutions computed by the
following procedures: (i) Local Search Inter Routes moves; (ii) Local
Search Intra Routes moves (subsection 4.3.3); and (iii) the perturbation
phase, lines 5, 6 and 14 (also 16) respectively of the algorithm 5. More-
over, there is one parameter applied that is the Pert_Service_Level,
which is introduced at the Perturbation phase’s description further
ahead.

Note that a Service level is defined as a solution’s capability of sup-
plying the orders during the correct period. So, based on the number
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of orders received and the number of backorders, the service level value
may be reached.

4.3.1 The Initial Solution

An initial feasible solution is obtained through a greedy algorithm,
which each workshop’s aisle is viewed as a route. So, on the one hand,
the initial solution will have many routes. On the other hand, these
routes are sequenced correctly. That is viewed as an advantage because
the workstations are supposed to be visited in sequence. The initial so-
lution is introduced through the method Generate_Initial_Solution
in the algorithm 5.

4.3.2 Local Search phase (Intra-Route Neighborhood Search)

Next, an Intra-Route Neighborhood Search (Intra-RNS) is executed.
In this work, the Intra-RNS consists of applying moves inside the same
route in a similar way proposed by [Penna et al.(2013)]. In other
words, one node (representing a workstation) or more nodes from a
route are transferred to another position in the same route. [Penna et
al.(2013)] define the Or-optK move, which refers to K adjacent nodes
that are removed from a route and inserted in another position of the
same route. Its computational complexity is O(n2). The purpose
of the Intra-RNS application here is to verify any route’s improve-
ment opportunity. This procedure is executed through the method
Local_Search_Intra_Routes procedure. The reader may observe
that the Intra-RNS moves are applied in the algorithm 5 in lines 2
and 6.

4.3.3 Local Search phase (Inter-Route Neighborhood Search)

The Inter-RNS moves involve a set of nodes that moves between routes.
In other words, one or more nodes from a route are transferred to
another different route. These moves are also based on the [Penna
et al.(2013)]’s work. In this work, the Inter-RNS moves that have a
positive impact on the local search are the Shift (1,0) and the k-Shift.
The Shift (1,0) selects a unique node and inserts it in any position
of the new route. The k-Shift move consists in selecting a subset of
consecutive nodes K from a route A and inserting them at the end of
a route B.

In both moves, it must be checked the new route’s capability to
deliver the relocated demand, concerning the route’s capacity. Notice
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that both Inter-RNS moves have the same computational complexity,
which is O(n2).

Then, the moves’ strategy is defined based on [Penna et al.(2013)].
However, a modification of the k-Shift movements is executed, which
is called k-Shift-complete. Even though a solution’s cost is still an
important acceptance criterion here, there are two main differences
between this work’s approach and the k-Shift and Shift (1,0) ones. The
first variance concerns the confrontation between demand and capacity.
On the one hand, the k-Shift-complete permits backorders to happen.
On the other hand, it will penalize the OF whenever it occurs. the
previous moves do not allow backorders. The second difference regards
the nodes relocation from the original route into a second one. The
subset of K consecutive nodes is placed at all the possible locations of
another route, including at the beginning and the end. By contrast,
[Penna et al.(2013)] state the k-Shift places the transferred nodes at
the end of a route only.

So, the k-Shift-complete is neither limiting the movement to a route’s
end location nor transferring only one node at each time. Regarding
the acceptance criterion, the solutions’ costs are considered as the main
measure. It is computed as same as equation 4.1.

To conclude, the SimILS takes into account the best improvement
strategy, whenever the local search phase is executed, because the prob-
lem is considered as a strategical one and the execution time is not a
relevant issue. The reader may observe that the Inter-RNS moves are
applied in the algorithm 5 line 5. An example of both Intra and Inter-
RNS moves is illustrated in figure 4.4.

A A` A B A` B` 

(I) (II) 

1 2 1 2 

4 3 4 3 

1 2 

4 3 

1 2 

4 3 5 7 

6 

5 7 

6 

Figure 4.4: An Or-opt2 (I) and a 2-Shift-complete (II) moves examples.

4.3.4 Simulation Phase

One important aspect of SimILS is the simulation phase. In this sub-
section, the simulation procedure is defined as Simulation(Solution,
Weights), in which Solution refers to the input solution and weights
refers to the OF’s weights, which were described in section 4.2. So, to
execute the simulation procedure, two main inputs are necessary, which
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are: (i) the fixed routes calculated in the Local Search phase, and (ii)
the workstations’ orders. Afterward, the simulation procedure discloses
the results related to the primary KPIs, which are necessary calculate
a solution’s OF. Moreover, the secondary KPIs can also be calculated
through the simulation. The later KPIs will be used as secondary cri-
teria to evaluate a solution. The simulation structure is presented by
algorithm 6. Note that the simulation procedure is entirely related to
the example presented by figure 4.2.
Algorithm 6: The Simulation Algorithm
1 S∗ ← Input Solution (Fixed Routes)
2 for (Route ∈ S∗) do
3 for (p ∈ Periods) do
4 Total_Backorders += Get_Back_Orders(Route, p)
5 Total_Dist_Traveled += Get_Distance_Traveled(Route,

p)
6 Total_Supplied_Route += Get_Supplied(Route, p)
7 Total_Empties_Route += Get_Empties(Route, p)
8 end
9 end

10 Return (SimOF ∗) Simulated OF and KPIs.

Here, all periods of the time horizon are considered. As a result, it
is defined as the complete simulation (Comp_Sim). The Comp_Sim
has its advantages and drawbacks. On the one hand, it may lead to
a high computational effort, depending on the time horizon’s size. On
the other hand, it permits a complete evaluation of the time horizon
considered. Therefore, the algorithm could assess extensively the solu-
tions calculated by the Local Search phase. In this sense, Comp_Sim is
a suitable approach because the SimILS deals with a strategic problem.
In other words, the company does not need to compute a new solution
so often because the routes do not change regularly. As a result, an
objective function value (SimOF ) is set based on the Comp_Sim’s
output, as described in the Algorithm 5.

Then, the Algorithm 5 executes the Comp_Sim in three moments.
The first one is placed at the beginning of the SimILS procedure to com-
pute and save the SimOF (Initial_Solution). Next, the Comp_Sim is
called after the LS phase to compute the SimOF (Local_Search). Fi-
nally, the Comp_Sim computes the SimOF (Final_Solution) to close
the SimILS procedure. Note that the Comp_Sim is responsible for
calculating a solution’s objective function value.

To conclude the Comp_Sim description, the residual capacity
rule, stated in subsection 4.2, is also considered here.
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4.3.5 Perturbation Phase

The purpose of the Perturbation phase is to make a significant change
in the current solution to start searching another space of feasible solu-
tions. It can be resumed into two main points. Firstly, that technique
must conduct the ILS to escape from an optimal local solution. Sec-
ondly, the Local Search should not easily undo the perturbation execu-
tion. By doing so, it will permit the ILS to go to a large search on the
space of feasible solutions. The perturbation can be found in the algo-
rithm 5 through the method Perturbation(Solution, Perturbation
SQL).

So, the perturbation procedure applied in this work is based on
the Inter-route moves described in subsection 4.3.3. Considering pre-
vious experiments, the algorithm is set to run ten iterations during
the perturbation phase. Moreover, it has the same Inter-route moves’
structure except for two main differences.

First, on the one hand, the inter-RNS algorithm evaluates the solu-
tion’s cost in order to decide if a new solution should be accepted or not.
On the other hand, the perturbation procedure does not care about the
solution’s cost but the Service-Quality Level (SQL). So, a new route
will be accepted in the solution as long as its SQL value is lower or
equal to the defined SQL limit. As a result, the SQL is a relevant in-
dicator because it avoids low-SQL solutions, which could produce poor
results at the local search phase further ahead. In addition, there is
another important criterion to take into account, which concerns the
solution introduced in the perturbation procedure. It varies depending
on the iteration that the SimILS algorithm is, see algorithm 5. So, the
current solution (S‘) will be the input up to the first half of the total
of iterations. Afterward, the best solution found so far (S∗) will be
introduced.

Then, the second divergence between the Local Search and the per-
turbation procedure refers to the way that the SQL is computed. So,
the complete simulation is executed in the Inter-RNS algorithm, but
a partial one (Partial_Sim) is applied in the perturbation phase in-
stead.

The Partial_Sim works over a single route only, which is the one
created by the inter-RNS moves. The main idea is to perform a short
simulation and reduce the computational effort during the simulations
executions. So, a biased-random method was created to reduce the
simulation iterations, in which all the periods are sorted in a decreasing
manner, regarding its backorders values. So, the first item of the list
will be the period that has the highest backorders value (likewise, the
worst SQL result). That method was developed based on the work
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of [Grasas et al.(2017)].
Afterward, an item (period) of this list is randomly selected. The

criterion to pick up one item is based on a geometrical distribution,
which usually prioritizes the top-ranked values. Also, the total number
of selected items is limited to one decimal part of the total of periods.
As a result, the simulation will considered only a small subset of the
total of periods. Moreover, the selected periods are likely to be the
most disruptive ones, in terms of the number of backorders.

4.3.6 The SimILS Stopping Criterion

Concerning the stopping criterion, the main condition to interrupt the
procedure is whenever the maximum number of iterations is achieved.
The SimILS’s maximum number of iterations value is presented in the
appendix 4.7 at the end of this chapter.

4.4 Experiments

The methods described in previous sections are evaluated through two
main computational experiments. The first experiment’s main goal is
to compare the performance between the ILP model and the SimILS
algorithm. The second experiment aims to compare the performance
between the SimILS algorithm and the company’s actual solution.

The experiments were carried out on the Operational System Win-
dows 7 Enterprise 64 bits, Intel Core i7-4810MQ, 2.80GHz, 8 cores and
16 GB of RAM as the maximum capacity. Moreover, the programming
languages JAVA were used to build the SimILS. Also, the ILP was
modeled through AMPL language and was solved by CPLEX 12.6.8.

4.4.1 The instances

An instance is defined as the number of orders that a set of worksta-
tions (WST) requires over a determined time-horizon. So, one instance
differs from another regarding the following aspects: (i) the set of WST
considered; (ii) the number of orders; and (iii) the time-horizon consid-
ered. Saturdays, Sundays, and holidays data were not included because
it does not represent a typical working day. So, two sets of data were
gathered. The data sets are divided into two categories, which are
the small boxes (SB) orders category, and the large containers (LC)
orders one. As described in the chapter 1, this work deals with a ”one-
product” problem that can tackle orders of SB and LC separately.

Next, for each SKU class, three groups of data were collected. The
first group is called Test data, which is a particular subset compound
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by a selection of all the workshop’s workstations and their respective
orders throughout a considered time-horizon. By contrast, the second
group considers all workstations that compound an assembly line, as
well as their respective orders; in this case, five working days were used.
Finally, the third group of data is like the second one (all workstations)
but considering the demand during a larger time-horizon size one, in
this case, four weeks.

Furthermore, those orders were collected over two different periods
in the year, which refer to different production level and other intrinsic
features. The orders were collected directly in the material manage-
ment system of the company (SAP). The table 4.1 summarizes the
instances’ characteristics, and the data’s details are presented in the
table 4.7. Then, in the table 4.1, there are the following indications,
concerning the data clustering strategy: (1) test data; (2) real data
with five-days time horizon; and (3) real data with a four-weeks time
horizon. Next, the Item column refers to the name of the instances;
the Material Type refers to an instance’s SKU class; the column
Days refers to the instance’s number of days; column Period repre-
sents the number of periods an instance considers; the WST refers an
instance’s total of workstations considered. The * marker highlights
the real-world instances.

Class (Group) Item Material Type Days Periods WSTs

Test Data(1) 1-3 5 105 10
4-6 5 105 15
7-9 Small Boxes 5 105 20

Real Data(2) 10* 5 105 123
Real Data(3) 11* 22 420 122
Test Data(1) 12-14 5 105 10

15-17 5 105 15
18-20 Large Containers 5 105 20

Real Data(2) 21* 5 105 127
Real Data(3) 22* 22 420 126

Table 4.1: The summary of the instances’ structure.

As mentioned, two main experiments are performed in this chapter.
Experiment 1 aims to evaluate the performance between the ILP model
and the SimILS approaches through a subset of workstations and their
respective demands. Figure 4.6 summarizes the main four steps of
experiment 1. Note that the methods’ performance is measured based
on the Objective Function value (expression 4.1) and the computational
time using the Test data class (1), which is presented in table 4.1.
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Figure 4.5: The ILRP experiment 1’s scheme. A sample of the company’s
data is collected. Note that a subset of the total of workstations is consid-
ered. Then, the optimization methods are executed under the same input
data. Next, the respective computed solutions and further premises are
inserted in a simulation procedure. Finally, the simulated output are com-
pared.

Afterward, experiment 2 is presented by figure 4.6, in which two
phases are observed. Those phases represent the data set clustering
idea illustrated by figure 4.3. In this sense, the first phase represents
the cluster 1 application, in which the SimILS algorithm calculates
fixed routes through the real historical data (2) and (3) presented in
table 4.1. As a result, the first phase of experiment 1 is compound by
the steps one, three, five, and six of the figure 4.6.

Later, the second phase of experiment 2 refers to the cluster 2 ap-
plication over the real historical data (2) and (3). So, that phase is
present by figure 4.6 through steps two, four, five, and six. Note that
the solutions computed in step three are introduced in step four. More-
over, notice that the simulation procedure (algorithm 6) is applied to
the current fixed solutions used in the company also. As a result, the
purpose is to compare the SimILS solution with the company’s current
one. The table 4.2 resumes the experiments conducted.

Item Method Data

1 ILP vs. SimILS Test Data (A subset of workstations)
2 SimILS_sol vs.Current_sol Real Data (Phases 1 and 2)

Table 4.2: The experiments outline.
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Figure 4.6: The data clustering scheme. The 1st cluster gives support for
the routes optimization. Then, the 2nd cluster major purpose is to evaluate
the previous solution obtained.

The Parameters

The parameters used in the experiments are both set by the company
directly (e.g., cost values or vehicles capacity ) and obtained via prelim-
inary experiments (e.g.,total of iterations in the perturbation phase).
The parameters used in the experiments are indicated in table 4.7.
Moreover, a C++ code procedure was developed to build a distance
matrix. That matrix presents the minimum distance from one work-
station to the others, considering the workshop layout.

4.4.2 The Experiment 1

Experiment 1’s goal is to compare the results provided by the ILP
model and the SimILS. Once these methods have the same OF expres-
sion, they will be evaluated based on the OF values and computational
time. The results related to the experiment 1 are presented in the
tables 4.3 and 4.4.

So, a total of nine experiments were conducted regarding the ILP
and the SB class. The ILP model found the optimal solution for four
instances; feasible solutions with about 14.5% gap for two instances;
and could not find any feasible solution for three instances. Likewise,
nine ILP experiments were conducted for large containers. Then, the
ILP model found the optimal solution for three instances; feasible so-
lutions with about 20% gap for three instances, and could not find any
feasible solution for three instances.

Concerning the SimILS’s results, the algorithm was able to find fea-
sible solutions for all tested instances. Precisely, two of these solutions
were optimal ones, as proved by the ILP.
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As a result, the ILP and SimILS methods were compared, taking
into account the optimal solutions provided by the ILP. For those op-
timal solutions, the GAP between the methods’ solutions has been
smaller or equal than 5% for six out of seven optimal solutions found.
Notice the GAP = OF (ILP )/OF (SimILS)− 1.

Even though the ILP model can manage to compute the better so-
lutions in the easiest instances, the SimILS outperformed the ILS in the
most complicated ones in a very short computational time. Notice also
that the computer ran out of memory when running the ILP model for
the larger instances (20 workstations). Consequently, no solution was
computed in those cases. Therefore, the SimILS is able to provide very
good results in short time making the SimILS a proper algorithm to
deal with more complicated or real-world instances, like those applied
in experiment 2.

4.4.3 The Experiment 2

Here, the objective is to compare the performance between the com-
pany’s set of routes and the solutions computed through the SimILS
procedure. To better explain those experiments, this section is divided
into two parts. The first part refers to a solution calculation applying
the cluster 1 concept, see 4.3. Then, the second part refers to solu-
tion evaluation through the simulation of cluster 1’s solution over the
cluster 2 data.

Solution Calculation Experiments - Cluster 1

As presented in section 4.1 and illustrated by figure 4.3, the complete-
real data was distributed into two clusters. In experiment 1, only
the instance’s solutions gathered through cluster 1 are available. The
table 4.5 presents both the results computed by the SimILS and the
results provided by the simulation of the current routes provided by
the company.
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Item WST Method OF R. Distance Back GAP Time
Value (m) Orders cplex(%) (sec)

1 10 ILP 1459,8 1 1359,8 0 0% 16
1 10 SimILS 1607,2 1 1507,2 0 - 6
GAPmet. 10% 11% 0% -
2 10 ILP 1953,9 1 1853,9 0 0% 12
2 10 SimILS 1956,3 1 1856,3 0 - 5
GAPmet. 0,1% 0% 0.1% -
3 10 ILP 2308,9 1 1853,9 355 0% 37
3 10 SimILS 2311,3 1 1856,3 355 - 6
GAPmet. 0.1% 0% 0.1% -
4 15 ILP 1686,9 1 1586,9 0 0% 2219
4 15 SimILS 1741,4 1 1641,4 0 - 6
GAPmet. 3% 3% 0% -
5 15 ILP 2020,4 1 1920,4 0 14% 7200
5 15 SimILS 2032,3 1 1932,3 0 - 6
GAPmet. 1% 1% 0% -
6 15 ILP 2247,18 1 2147,2 0 15% 7200
6 15 SimILS 2251,1 1 2151,0 0 - 5
GAPmet. 0.2% 0.2% - -
7 20 ILP (*) (*) (*) (*) (*) (*)
7 20 SimILS 2357,2 1 2257,2 0 - 8
8 20 ILP (*) (*) (*) (*) (*) (*)
8 20 SimILS 2002,7 1 1902,7 0 - 11
9 20 ILP (*) (*) (*) (*) (*) (*)
9 20 SimILS 2247,2 1 2147,2 0 - 7

Table 4.3: The Summary of the small boxes Experiment 1’s results. The
bolded values represent optimal solutions. The (*) marker indicates that no
feasible solution was provided. The R. refers to the number of routes. Also,
the GAPmet.term refers to the comparison between the values computed by
the ILP and SimILS. It is computed as (ILPV alue/SimILSV alue − 1).
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Item WST Method OF R. Distance Back GAP Time
Value (m) Orders cplex(%) (sec)

12 10 ILP 1100,4 1 997,49 3 0% 16
12 10 SimILS 1150,4 1 1047,4 3 - 5
GAPmet. 5% 5% 0% -
13 10 ILP 1317,2 1 1217,2 0 0% 17
13 10 SimILS 1317,2 1 1217,2 0 - 7
GAPmet. 0% 0% 0% -
14 10 ILP 1349,2 1 1217,2 32 0% 34
14 10 SimILS 1349,2 1 1217,2 32 - 9
GAPmet. 0% 0% 0% -
15 15 ILP 1409,2 1 1132,2 177 13% 7200
15 15 SimILS 1293,9 1 1144,9 49 - 11
GAPmet. -8% 1% -72% -
16 15 ILP 1670,9 1 1493,9 77 26% 7200
16 15 SimILS 1509,4 1 1362,4 47 - 9
GAPmet. -10% -9% -39% -
17 15 ILP 2126,3 2 1920,3 6 21% 7200
17 15 SimILS 1959,5 1 1765,5 94 - 7
GAPmet. -8% -8% 1467% -
18 20 ILP (*) (*) (*) (*) (*) (*)
18 20 SimILS 4756,5 1 1492,5 3164 - 10
19 20 ILP (*) (*) (*) (*) (*) (*)
19 20 SimILS 2658,5 1 2288,5 270 - 8
20 20 ILP (*) (*) (*) (*) (*) (*)
20 20 SimILS 4260,1 1 2537,1 1623 - 11

Table 4.4: The Summary of the Large Containers Experiment 1’s re-
sults. The bolded values represent optimal solutions. The (*) marker
indicates that no feasible solution was provided. The R. refers to the
number of routes. Also, the GAPmet.term refers to the comparison be-
tween the values computed by the ILP and SimILS. It is computed as
(ILPV alue/SimILSV alue − 1).
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Solution Evaluation Experiments - Cluster 2

To conclude the experiment 2’s executions, the second phase of tests
was conducted. Here, the goal is to evaluate the solution computed
before (cluster 1) into a new set of data (cluster 2). As a result, both
SimILS solutions and the company’s current solution are simulated
based on the cluster 2 data basis. Table 4.6 presents the results.

Regarding the analysis of the results, the SimILS method outper-
formed the company’s solutions. It can be confirmed by each OFâs in-
dicators. Moreover, the secondary KPIs were improved in most of the
cases as well. Even though the number of routes is the same for each
instance, the reader may notice that the SimILS’s solutions presented
a better OF values in all tested instances. The difference between the
SimILS routes and the company’s ones relies on two premises. The first
premise concerns with how the high/low turnover materials are faced.
That premise is explained next. As an assumption, a single worksta-
tion is split into two workstations whenever it receives both classes of
materials; in other words, low and high turnover materials. Likewise,
the company does the same strategy in their current analysis. Also, the
company prefers routes that join workstations, which receive materials
with related consumption rate.

On the contrary, this work did not take it into account to com-
pute solutions. As a result, materials with different consumption rates
are allowed to be mixed in the same route in this work. The reader
may notice that our approach may avoid two routes to visit the same
workstation. The second premise concerns the workstations cluster-
ing as well, but focus on its locations instead. The company usually
does not merge workstations from different areas, or aisles, in the same
route. By contrast, this work did not take into account any clustering
limitation rule.
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4.5 Conclusion

This chapter considers a real problem in a real car-assembling company
that consists of finding the best supply routes from the warehouse to
workstations, which are located along an assembly line. These routes
are maintained fixed for an extensive period. Meanwhile, demand is
unknown. The objective is to find routes that are cost-efficient and do
not lead to delays in production. To the best of the author’s knowl-
edge, a brand-new problem to the VRP literature is presented, which is
called the In-house Logistics Routing Problem. That problem is
compound by a set of premises stated as follow: (i) the stochastic and
unknown demand; (ii) the self-ask-supply approach; (iii) the long-term
and fixed routes; (iv) the driver must return to the depot after con-
cluding the route; (v) requests are made throughout the time-horizon;
(vi) time-window constraints; (vii) backorders are allowed; (viii) each
customer is assigned to a route; (ix) the fixed-customer-sequence defi-
nition; (x) capacitated; and (xi) homogeneous fleet.

So, both an ILP model to a deterministic version of the problem and
a SimILS algorithm were proposed to calculate suitable fixed routes.
Also, a comparison between these two approaches was performed, and
the conclusion is that the SimILS obtained excellent solutions, in par-
ticular for the larger instances.

Another experiment that compares the solutions obtained by the
SimILS with the actual company solution was conducted, using large
and real data (historical data). For those cases, the SimILS obtained
the best overall results, considering the objective function values and
computational time. Moreover, taking into account the KPIs presented
by the company, the SimILS presented better performance than the
company’s solutions in all the real-world instances evaluated.

As a result, it is possible to state that this work presents a valuable
methodology to be applied to any car-assembling company. Indeed, the
methodology and results received positive and valuable feedback from
the company’s experts, who found it novel and interesting. So, the
third conclusion refers to the remarkable contribution to the company,
as depicted by the results presented.

As future work, methods that are able to solve large instances of
the In-house Logistics Routing Problem should be explored, such as the
branch-and-cut procedure and lagrangean relaxation. Moreover, exten-
sions of the SimILS and the simulation procedure may be improved by
adding a more realistic aspect, such as the traffic on the assembly-lines,
the use of a different type of vehicles and self-guided automatic vehicle.

Finally, concerning the real application, it would be quite interesting
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studying the introduction of alternatives systems that do not count
with the logistics operator as the one responsible for placing orders but
an automatic-placing-order system. That study should also evaluate
the most suitable management procedure to regulate the logistics flows
based on that new scenario.
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Data Application SimILS Parameters
1st phase 2nd phase

Number of Iteration ILS 8 8
Number of Iteration LS 8 8
Fictitious Weight Route 1,000 1,000
Fictitious Weight Distance 100 1
Fictitious Weight Backorders 0.08 1
Max K-value The LS moves 10 nodes
Convoy Speed All cases 7 km/h
Convoy Capacity Large Boxes 4
Convoy Capacity Small Boxes 48
Placing a Large SKU Large Boxes 2.69 min
Placing a Small SKU Small Boxes 0.66 min

Table 4.7: Chapter 4 - Appendix A: Summary of the SimILS’s parameters
structure.
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Chapter 5

ASSESSING IN-HOUSE
LOGISTICS FLOWS

5.1 The internal logistics routing management sys-
tem

The objective of this chapter is to analyze the current company’s sce-
nario and to propose three alternative ones for the company’s Internal
Logistics Routing Management (ILRM) system. The three scenarios
refer to Internal Logistics alternatives that are evaluated through Op-
erational Research methodologies, which are seen as supportive tools.
The main target is to reduce the number of backorders. Therefore, that
chapter conducts an assessment of the ILRM system in a car-assembling
company.

So, the first alternative scenario considers variables routes using the
actual placing-orders system (the logistics operator is responsible for
placing the orders); the second one uses variable routes but consider-
ing that the demand is given by automatic-ordering system; the third
alternative scenario also considers variable routes dependent on the
demand but using a forecast demand obtained by the Manufacturing
Resource Planning (MRP) system.

To proceed with that analysis, a set of methods based on Operations
Research were developed, which are: (i) a data analysis to understand
the demand behavior; (ii) an Integer Linear Programming (ILP)
model to compute feasible solutions for each alternative scenario; (iii)
a metaheuristic that consists of an Iterated Local Search (ILS) algo-
rithm to solve the large-scale realistic instances; and (iv) a Simulation
procedure to evaluate the performance of the scenarios in a realistic
environment using real data.

As a result, this chapter presents interesting problems in a car-
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assembly company as well as it proposes an ILP model and an ILS
algorithm that evaluate a real case in SEAT company. This proposed
methodology can be applied and extended to any car-assembling com-
pany.

The remainder of this chapter is organized as follows. Section
5.2 presents the internal-logistics routing management system and the
methods applied to make the analysis of the considered scenarios. Sec-
tion 5.3 describes data analysis. Section 5.4 presents the mathemati-
cal model. Next, section 5.5 describes the ILS algorithm to solve the
routing problem for large-scale applications. Section 5.6 describes the
simulation algorithm responsible for evaluating the company’s current
solution. Section 5.7 reports the computation experiments and its re-
sults. Finally, section 5.8 presents the conclusions and describes future
work.

5.2 The internal logistics routing management sys-
tem

An internal logistics routing management (ILRM) system controls the
delivery of the orders from the warehouse towards the assembling line.
This work considers four ILRM systems, which are the SEAT’s cur-
rent one and three alternatives systems. The three new scenarios are
defined as follows: (i) variable routes and current orders, (ii) variable
routes and automatic-ordering system and (iii) variable routes and fore-
casted orders. Therefore, four possible scenarios of ILRM system are
discussed. These scenarios differ from themselves regarding the routing
and order concepts, as shown in figure 5.1.

Concerning the routing concepts, two classes are considered, which
are thefixed routing and the variable routing. In other words, fixed-
routing management considers scenarios where the routes are always
the same for an extended period, which is similar to a public-buses
routes. In this case, the manager must decide which set of routes is the
most suitable one to supply all the materials for a long-term horizon,
e.g., months. By contrast, the variable-routing management enables
to rebuild a set of routes periodically, according to the workstations’
demands. Moreover, the manager must decide the frequency that those
routes will be updated.

Regarding the ordering concepts, three possibilities are considered
in this work. The first possibility considers the actual system of the
company, in which the logistics operator visits the workstations each
time the route is executed and decide if orders should be placed or
not. The second possibility refers to an ordering system based on an
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automatic-placing-orders system (automatic one). Lastly, there is a
possibility that considers a forecast demand system obtained by the
Manufacturing Resource Planning (MRP) system (forecasted orders).
The company actual orders are taken into account to develop these
three ordering systems.

So, for the first system (current order one), the company’s histori-
cal demand is analyzed. For the automatic-placing-orders system, the
company’s historical demand is considered to propose an automatic
system that places orders steadily. Finally, the real-orders provided by
the company are taken into consideration to propose a forecasted based
order procedure. Each scenario is explained next.

Current scenario 

(1) 

Variable routes and 

current orders 

scenario  

(2) 

Variable routes and 

automatic-orders 

system scenario 

(3A) 

Variable routes and 

forecasted orders 

scenario 

(3B) 

Variable Routes 

Fixed Routes 

Routes 

Orders 
Current Orders 

Automatic-Orders 

System 

Forecasted 

Orders 

N/A N/A 

Figure 5.1: The proposed scenarios outline. The "N/A" term means the
scenario is not considered.

5.2.1 The Current System - Scenario 1

The current scenario is represented by fixed-routes management and
the historical orders premises. As stated before, the fixed-route ap-
proach does not allow the managers to adapt the routes in the short-
term horizon. Also, the logistics operator is the one responsible for
placing orders. That approach is defined as the self-ask-supply or-
der approach. This scenario is defined as follows: (i) self-ask-supply
order approach; (ii) stochastic and unknown demand because the de-
mand depends on the behavior of the logistic operator; (iii) long-term
and fixed routes; (iv) drivers must return to the depot after conclud-
ing the route; (v) requests are made throughout the time-horizon; (vi)
time-window constraints; (vii) backorders are allowed; (viii) each work-
station is assigned to a specific route; (ix) capacitated vehicles; and (x)
homogeneous fleet.

The self-ask-supply order approach may increase the order’s vari-
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ability because the logistic operator has the autonomy to decide if an
order should be placed or not. This scenario is similar to the In-house
Logistics VRP proposed in chapter 4, which employs a mathematical
formulation and a Simulation-based Iterated Local Search algorithm to
provide feasible solutions for a real-case application. However, chapter
5 introduces an additional realistic characteristic. The logistics op-
erators do not need to visit all the workstations during a circuit. It
is considered that a logistics operator knows the workstations’ aver-
age consumption. As a result, he/she is allowed to not visit all the
workstations during its trajectory, which can be viewed as a short-cut
procedure.

5.2.2 The Variable Routes and Current Orders System - Sce-
nario 2

The variable routes and current orders scenario is defined by variable-
routes management and the historical orders premises. Consequently,
the ILRM system enables the routes to be changed at each considered
period. A period could be seen as a 60 minutes time-window range,
for example. Also, the company’s real orders are clustered into a set
of periods, likewise the current scenario.

As a result, in each period, a set of routes is computed to supply all
the orders assigned to that period. This scenario is defined as follows:
(i) stochastic and unknown demand; (ii) self-ask-supply approach; (iii)
variable routes; (iv) the driver must return to the depot after con-
cluding the route; (v) orders are made throughout the time-horizon;
(vi) time-window constraints; (vii) backorders are not allowed; (viii)
capacitated vehicles, and (ix) homogeneous fleet.

Also, this scenario may be classified as the traditional VRP be-
cause the routes are calculated at the beginning of each period when
the demand is disclosed. In practice, a period’s demand corresponds
to the clustered orders that were placed in the previous period. Also,
the computed routes are kept fixed during the whole period but not
during the whole planning time horizon. So, that scenario is evaluated
through an ILP formulation and an ILS Metaheuristics that are able
to compute feasible solutions. These methods are presented in sections
5.4 and 5.5 respectively.

5.2.3 The Variable Routes and Automatic-Orders System -
Scenario 3A

The next scenario considers the variable routes and an automatic-
orders system. It means the routes may vary at each period depending
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on the demand. However, an alternative ordering system is consid-
ered. The alternative system places the orders automatically instead
of the logistics operator, and it works as follow. First, the historical de-
mand data is considered to simulate how the automatic ordering system
would work because it is not an actual system. Then, after computing
those automatic orders, it is evaluated the impact of introducing an
automatic-placing-orders system.

So, to compute the automatic orders, each workstation’s ordering
frequency is reached through the real data. As a result, an estimation
of the real workstations’ consumption can be obtained.

Next, orders are created based on that estimation and clustered into
periods. The orders are now expected to be more stable because they
are controlled through an algorithm that stores and evaluate all the
workstations’ consumption data. So, the unsteady orders’ behavior is
reduced considerably.

To sum up, this scenario is defined as follows: (i) the driver must
return to the depot after concluding the route; (ii) requests are made
throughout the time-horizon; (iii) variable routes; (iv) time-window
constraints; (v) backorders are not allowed; (vi) capacitated vehicles;
and (vii) homogeneous fleet. This scenario fits the Periodic VRP
because the customer’s orders are allocated in periods, see [Campbell
& Wilson(2014)]. A VRP is solved at the beginning of each period
considering the actual workstations’ consumption obtained throughout
an automatic-placing-orders system. Likewise scenario 2, that scenario
is evaluated through the ILP formulation and the ILS Metaheuristics
that are able to compute feasible solutions for scenario 3 as well.

5.2.4 The Variable Routes and Forecasted Orders - Scenario
3B

The variable routes and forecasted orders scenario is based on the pre-
vious scenario presented in subsection 5.2.3. However, no orders are
placed instead. Consequently, this scenario is considered as a step
further because it considers the assumption that there is no need for
placing orders. The workstations’ consumption information may be
gathered through the company’s production scheduling and the Manu-
facturing Resource Planning (MRP), which is the methodology applied
to compute the materials and resources needed to deliver a produc-
tion schedule. As a result, that scenario may be interpreted as the
Inventory Routing Problem (IRP). Therefore, following the con-
cepts stated by [Coelho et al.(2013)], this scenario is defined as follow:
(i) finite time horizon, (ii) single products, (iii) many-to-many struc-
ture, (iv) multiple routing, (v) Order-up-to-level inventory policy, (vi)
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lost sales not allowed, (vii) homogeneous-fleet composition, and (viii)
multiple-fleet size. According to the authors, the parameters (iii) many-
to-many structure and (v) Order-up-to-level inventory policy are not
observed together usually.

5.3 Demand data analysis

In order to conduct the demand data analysis, the first step is to un-
derstand the demand behavior. It is an essential step as the orders are
the basis for evaluating the different scenarios.

To illustrate how the data is managed in this work, a five-days data
collection is taken into account, as an example. Next, those five-days
orders are clustered into different periods. So, the following periods’
sizes are considered: 60, 120, and 180 minutes. Notice that bigger pe-
riods are not feasible because the logistic operator will be supposed to
forecast more than three-hours materials consumption. Furthermore,
there are cases, in which a workstation’s buffer capacity is smaller than
three-hours consumption. Therefore, this will lead to frequent stock-
outs.

Figure 5.2 illustrates the five-days orders clustered in the 60, 120
and 180 minutes time-periods. The reader may notice that there is not
a clear demand’s pattern for each considered time period. Furthermore,
the deviation is quite high regarding the smallest period, which is 60
minutes one.

Total of Orders 

Figure 5.2: The orders placed throughout a five-days time horizon. All
workshop’s workstations were considered. The orders were clustered into
periods of 60, 120, and 180 minutes. The lines’ bullets represent the exact
moment when an order was placed.

In the current scenario, the company assigns the orders to fixed
routes and executes the supply of these orders following the FIFO
premises. Consequently, that approach allows backorders to happen
because the routes have a limited capacity, and the orders have a sig-
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nificant variability, as shown in figure 5.2. Usually, the production
does not stop due to backorders because each workstation has a small
buffer, as said in chapter 1. A workstation’s small buffer is a company’s
premise by the way.

For the remaining scenarios (2, 3A and 3B), one relevant decision
to be made is to identify the most suitable periods’ size to recalculate
the routes. So, the main criteria to take into account when making a
decision refer to the number of routes and backorders that each option
will imply. So, the methods to solve those questions are discussed in
sections 5.4 and 5.5.

5.3.1 The automatic-placing-orders process

Since the company’s historical data only reflects the orders placed by
the logistics operators, the subsequent data analysis’ is relevant to de-
velop a methodology that represents an automatic-placing-orders sys-
tem. That automatic system’s purpose is to reduce the orders dis-
persion throughout the time-horizon. The automatic-placing-orders
systems are supposed to send orders through lots of sensors placed in
strategical locations throughout the assembly line. So, to reproduce
that automatic-placing-orders system, a three-step strategy is devel-
oped. Figure 5.3 illustrates that strategy.

(I) 

Gathering the data 

(II) 

Disjoining up to the workstations 

level 

(III) 

Computing the average time-window 

between orders 

Figure 5.3: Creating the automatic-placing-orders processes.

The first step is the data collection, which was presented previ-
ously in this section. Next, the second step is disjoining the data
into workstations level. Consequently, a workstation’s consumption
rate may be observed, as well as further workstation’s metrics, such as
the maximum and minimum time windows between two orders; the
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average time window between two consecutive orders; and its standard
deviation as well. Besides, three premises are considered at this point.
First, each workstation’s order is view in terms of Stock-Keeping-Unit
(SKU), and the replenishing will be always a SKU’s total capacity.
Second, the gathered real-historical-orders data reflects an unsteady
ordering procedure. Then, neither the maximum nor the minimum
time window between two consecutive orders can be considered. The
minimum time window may be a consequence of an excess of orders and
the maximum time window may be a consequence of a buffer created
previously. As a result, the average time window between two con-
secutive orders is considered to develop the automatic-placing-orders
pattern that smooths the demand. Third, the production level and the
products’ mix must be the same along the considered time-horizon.
As a result, the average ordering ratio of each workstation may be
inferred as illustrated by phase (iii) Computing the average time
window between orders in figure 5.3. The figure 5.4 represents an
automatic-ordering-system behavior.

1 

2 

3 

1 2 3 4 

1 3 2 2 

W
o
rk

st
at

io
n
s 

Periods 

Total of Orders/Period 

Order 

Workstation 1 

Order 

Workstation 2 

Order 

Workstation 3 

Average time window 

between orders 
A period 

Legend: 

Figure 5.4: Computing the average time window between two consecutive
orders.

5.3.2 The forecasting-orders data process

Next, the process that computes the forecasted orders is introduced.
The forecasted orders represent a MRP based system, which is a further
step regarding the automatic-orders process because no order is placed.
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Instead, the demand can be forecasted based on the company’s MRP.
In practice, it will be the consequence of the collaboration between the
production and logistics teams.

Consequently, for each cars-production schedule, the required ma-
terials are set, and the time-window between visits may be defined for
each workstation. As a result, the company can reach the step (iii) of
the figure 5.3 as soon as the production schedule is stated. In this case,
there is no need for placing orders. To guarantee some management
insurance and reduce the probability of running out materials, due to
any production causality, one may introduce some checking and stan-
dard procedures across the line, which are responsible for verifying the
level of materials in the workstations, for instance. It is entirely related
to the IRP scenario that is described by chapter 2.

To conclude, the scenario 3B is not implemented currently. As a re-
sult, the automatic-placing-orders procedure, described in sub-section
5.3.1, is replicated to reproduce the forecasted orders. This procedure
presented in scenario 3A is able to manage to compute a suitable set
of forecasted orders, taking into account the premises described in the
previous paragraph.

5.4 The Integer Linear Programming model

In this section, the Integer Linear Programming (ILP) model that
solves the deterministic version of the Periodic VRP is presented. It is
applied in scenarios 2 (current orders, variable routes), 3A (automatic
orders, variable routes) and scenario 3B (forecasted orders, variable
routes), see section 5.2. This model is an extension of the Asymmetric
Capacitated VRP model described in [Crainic & Laporte(2012)]. The
main objective of the formulation is to find the optimal set of routes for
each period of the considered time horizon. Therefore, an important
aspect of the model is the input data, in particular how the worksta-
tions’ orders are considered in the model. As discussed in section 5.3,
the considered orders are samples of the historical data gathered dur-
ing a selected time-horizon. So, the real demand of each workstation is
considered and allocated into time-periods, i.e., the real orders of one
day are clustered into one-hour periods, for instance. The details of
the ILP model are detailed next.

The data sets introduced are the following: The set of locations to
supply (n ∈ N), where n =1 represents the Depot and the rest represent
the workstations; The arc set (a ∈ A). The periods set (l ∈ L); The
routes’ frequency set (r ∈ R).

Next, the parameters are introduced; the convoy’s capacity (C);
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the fixed travel cost spent to go from node i up to node j (MC); the
fixed cost of introducing a route (RC); the distance between nodes
(i, j ∈ N) is (dij); the maximum number of convoys in one period (K);
One period’s length (T ); the time required to supply a material at the
delivery point (tsup); the convoy’s average speed (v); the maximum
frequency a route can have (R); the demand (Dil) of the node (i ∈ N)
at the period (l ∈ L), which is the demand of a workstation during a
period considered l. It is noteworthy to highlight that the deterministic
data values, such as speed and a convoy’s capacity were defined by
the company; and the considered workstations’ orders were based on
historical data.

Finally, the decision variables are presented: the xijkrl variable will
be equal 1 if arc (i, j ∈ A) belongs to the route (k ∈ K) and has a
frequency (r ∈ R) within the period (l ∈ L), 0 otherwise. We state the
route’s frequency as the number of times a route can be started and
concluded within a period. The yikrl variable will be equal 1 if node
(i ∈ A) is visited by vehicle (k ∈ K), which has a frequency (r ∈ R)
during the period (l ∈ L). The fkrl represents the frequency that a
route (k ∈ K) has within the period (l ∈ L). Finally, the addkl is the
additional capacity that a route (k ∈ K) can receive during the period
(l ∈ L). The ILP model is presented next:

min
N∑
i

N∑
j\(i 6=j)

MCdij
L∑
l

K∑
k

R∑
r

xijkrl +
L∑
l

K∑
k

N∑
j\(j 6=1)

R∑
r

RCx1jkrl (5.1)

R∑
r

fkrl ≤ 1 ∀k ∈ K, l ∈ L (5.2)

N∑
i\i>1

yikrl ≤ fkrl|N | ∀k ∈ K, r ∈ R, l ∈ L (5.3)

K∑
k

R∑
r

y1krl ≤ K ∀l ∈ L (5.4)

K∑
k

R∑
r

yikrl ≤ 1 ∀i ∈ N\i > 1, l ∈ L (5.5)

K∑
k

R∑
r

y1krl ≤ Dil ∀i ∈ N\i > 1, l ∈ L (5.6)

N∑
i\i>1

Dil =
N∑

i\i>1
Dil

K∑
k

R∑
r

yikrl ∀l ∈ L (5.7)
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N∑
j\(j 6=i)

xijkrl = yikrl ∀k ∈ K, r ∈ R, i ∈ N\i 6= 1, l ∈ L(5.8)

N∑
j\(j 6=i)

xjikr = yikrl ∀k ∈ K, r ∈ R, i ∈ N\i 6= 1, l ∈ L(5.9)

N∑
i,j∈S\(j 6=i)

xijkrl = |S| − 1 ∀S ⊂ N, k ∈ k, r ∈ R, l ∈ L (5.10)

R∑
r

N∑
j\(i 6=1)

Dilyikrltsup+
R∑
r

N∑
i

N∑
j\(i 6=j)

r ∗ (dij/v)xijkrl (5.11)

≤ T ∀k ∈ K, l ∈ L

[T − (r + 1)(
N∑
i

N∑
j\(i 6=j)

(dij/v)xijkrl)− (5.12)

(fkrlrCtsup)]/tsup ≤ addkl ∀k ∈ K, r ∈ R, l ∈ L

addkl ≤ C ∀k ∈ K, l ∈ L (5.13)
xijkrl ∈ {0, 1},Z ∀i, j ∈ A, k ∈ K, r ∈ R, l ∈ L (5.14)
yikrl ∈ {0, 1},Z ∀i ∈ N, k ∈ K, r ∈ R, l ∈ L (5.15)

fkrl ∈ Z+ ∀k ∈ K, r ∈ R, l ∈ L (5.16)
addkl ∈ Z+ ∀k ∈ K, l ∈ L (5.17)

The objective function (5.1) minimizes the sum of the costs related
to the total distances covered by all the routes and the number of
routes, for each period the period (l ∈ L). The constraints (5.2) define
the number of laps, or the frequency (r ∈ R), that a route (k ∈ K)
does during the period (l ∈ L). Constraints (5.3) state the maximum
number of nodes a route (k ∈ K) can visit during the period (l ∈
L). Constraints (5.4) state that the depot must be visited by |K|
vehicles at most during the period (l ∈ L). Constraints (5.5) state that
each workstation must be attended by only one route at most, during
the period (l ∈ L). Then, constraints (5.6) and (5.7) ensure that
only the workstations that have placed orders at the period (l ∈ L)
will be visited during the period (l ∈ L). The constraints (5.8) and
(5.9) define that, for each customer i, the vehicle that visits it must
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enter and leave during the period (l ∈ L). The constraints (5.10)
are responsible for avoiding the sub-tours to happen. The constraints
(5.11) state that each route can last up to T minutes during the period
(l ∈ L), taking into account the capacity, the supplying time, the
distance, and the traveling speed. The constraints (5.12) define the
maximum additional capacity a route can receive, based on the amount
of time left in the period (l ∈ L). The constraints (5.13) state that the
maximum additional capacity a route can receive during the period
(l ∈ L) is fewer or equal to C. Lastly, constraints (5.14), (5.15), (5.16),
and (5.17) define the domain of the variables.

Note that the residual capacity rule, which aims to increase a
convoy’s capacity is also applied in this model. The constraints (5.12)
and (5.13) are responsible for introducing and regulating that rule in
this chapter. The complete description of the residual capacity rule
can be found in section 4.2. Also, notice that the ILP presented in this
chapter considers that none backorder is allowed.

The AMPL language is used to solve the presented ILP model. Also,
it is solved through CPLEX 12.8. As discussed further ahead, the ILP
formulation is suitable for small instances. For the large or the real-
world instances, a Metaheuristic was developed, and it is presented in
the next section.

5.5 Routing Problem and Large-scale applications

Even though the ILP formulation is able to provide feasible solutions,
its performance tends to fall as larger instances are introduced. As
a result, to deal with large-scale applications, or the companies ones,
a metaheuristic is proposed to compute feasible solutions, which are
applied to scenarios 2, 3A and 3B.

So, the developed metaheuristic is an Iterated Local Search (ILS)
based on the methodology proposed by [Lourenço et al.(2019)]. The
reason to select the ILS is due to its remarkable results solving COP, as
presented previously. The algorithm 7 resumes the ILS Metaheuristic
developed.
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Algorithm 7: The ILS Algorithm
1 Scomplete ← ∅
2 for (p ∈ Periods) do
3 S0p ← Generate_Initial_Solution (sub-section 5.5.1)
4 S∗p ← Local_Search (S0p) (sub-section 5.5.2)
5 S

′
p ← An empty solution of period (p)

6 while (it_ils ≤ it_ils_LIM) do
7 S

′
p ← Local_Search(S ′p) (sub-section 5.5.2)

8 if (S∗p>S
′
p) then

9 Let (S∗p ← S
′
p)

10 end
11 S

′
p ← Perturbation (S ′p) (sub-section 5.5.3)

12 it_ils ← it_ils+ 1
13 end
14 Spcomplete ← S∗p
15 end
16 Return Scomplete

The algorithm 7 is executed for each considered period, as indi-
cated by line 2. Moreover, the algorithm 7’s structure is resumed in
four steps, as follows: (i) Initial Solution; (ii) Local-Search phase and
Acceptance Criterion; (iii) Perturbation phase; and (iv) Stopping Cri-
terion. Besides, the main elements applied are introduced as follows:
Scomplete is defined as the complete final solution, in which each period’s
solutions is inserted; the S0p is stated as a period’s initial solution; S∗p
is a period’s current best solution. Afterward, once the iterations phase
is reached, at line 6, the S ′p value is considered. The S ′p receives the
output solutions computed by the local search procedure, at lines 5,
7, and at the perturbation phase, at line 11. Next, each ILS’s step is
explained.

5.5.1 The Initial Solution

Likewise the the SimILS algorithm presented in chapter 4, an ini-
tial feasible solution is obtained through a greedy algorithm, in which
each workshop’s aisle is viewed as a route. In addition, the worksta-
tions are supposed to be visited in sequence. By doing so, the in-
put solution will be one that the routes’ workstations are sequenced
adequately. This initial solution is introduced through the method
Generate_Initial_Solution in the algorithm 7, which generate a pe-
riod’s initial solution S0p, at line 3. Next, a further second greedy
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algorithm is introduced, which aims to aggregate the created routes
S0p. The criterion to merge two routes is the cost and the number
of backorders. If the resultant solution has a fewer cost and there is
no backorder, a second initial solution S02 is generated. It is stored
and will be useful further ahead in the perturbation phase presented at
sub-subsection 5.5.3. Note that the second procedure is not considered
by the former SimILS algorithm.

5.5.2 The local search phase and the acceptance criterion

Next, the local search phase is executed. It consists of applying moves
inside the same route, called as Intra-Neighbourhood-Search (Intra-
NS), in a similar way proposed by [Penna et al.(2013)] and described
in chapter 4 in subsection 4.3. In other words, one node (representing
a workstation) or more nodes from a route are transferred to another
position in the same route. For further information about the local
search moves applied here, see subsection 4.3.

Furthermore, the Inter-Neighbourhood-Search (Inter-NS) is also con-
sidered. It involves a set of nodes that move between routes. In other
words, one or more nodes from a route are transferred to another route.
These moves are also proposed by [Penna et al.(2013)]. For further in-
formation about the local search moves applied here, see subsection
4.3.

In both moves, the new route’s capability to supply the relocated
demand is checked. To do so, the new route’s capacity and its resul-
tant number of orders are evaluated. Again, according to [Penna et
al.(2013)], both Intra-NS and Inter-NS moves presented have the same
computational complexity, which is O(n2).

Regarding the acceptance criterion, a solution’s cost is viewed as
the main measure. Also, a solution’s cost is calculated as same as
represented in equation 5.1 in section 5.4. To conclude, the best im-
provement strategy is taken into account whenever the local search
phase is executed. Moreover, the execution time has not shown to be
a major issue during the experiments’ phase. The reader may observe
that the local search moves are applied in the algorithm 7 in lines 4
and 7.

To conclude the local search description, note that the residual
capacity rule, which was defined in section 5.5, is also considered
in this in the proposed ILS algorithm. That procedure enables the
algorithm to come closer to real practice. Besides, it is represented by
constraints 5.12 and 5.13 in section 5.4 as well.
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5.5.3 Perturbation Phase

The purpose of this phase in the ILS method is to make a significant
change in the current solution to start searching another space of feasi-
ble solutions. As described in previous chapters, that procedure must
conduct the ILS to escape from an optimal local solution. By doing so,
it will permit the ILS to go to a comprehensive search on the space of
feasible solutions. The perturbation can be found in the algorithm 7
through the method Perturbation(Solution) at line 11.

The perturbation procedure applied in this work is based on the
inter-routes moves described in sub-subsection 5.5.2. The perturbation
procedure is presented in algorithm 8.
Algorithm 8: The perturbation phase
1 Let (S ′ ← Current Solution) and Let (S∗ ← Best Solution)
2 //it_ils_LIM(x%) indicates the reached percentage of the total

iterations
3 if (it_ils = it_ils_LIM(50%)) then
4 Let (S ′ ← S02)
5 end
6 if (it_ils ≤ it_ils_LIM(25%)) or ((it_ils >

it_ils_LIM(50%)) and (it_ils ≤ it_ils_LIM(75%))) then
7 S

′ ← Perturbation (S ′) (//Input the current solution)
8 end
9 if (it_ils > it_ils_LIM(25%) and (it_ils <

it_ils_LIM(50%)) or ((it_ils ≥ it_ils_LIM(75%))) then
10 S

′ ← Perturbation (S∗) (//Input the best solution)
11 end

Then, the perturbation phase is split into four parts, which concerns
to the achieved number of iterations, and is illustrated by figure 5.5.

Current LS 

Solution 

Best Solution 

Found 

Current LS 

Solution 

Best Solution 

Found 

0% – 25% 26% – 50% 51% – 75% 76% – 100% 

% of completed 

Iterations 

Inserted Solution vs. Perturbation Procedure Phase 

Figure 5.5: The figure illustrates the introduced solution in the perturbation
procedure, which regards to the number of iterations reached.

So, the first and the third part will receive the last solution found,
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as presented in the algorithm 8 at line 6. On the contrary, the second
and the fourth parts will receive the best solution found so far, as
indicated in line 9. Whenever the half of a period’s total iterations is
achieved, a new initial solution S02 is introduced. Note that the S02
was defined in sub-section 5.5.1. Also, the perturbation algorithm is
iterated ten times. This structure was achieved after the execution of
a set of experiments.

Also, the perturbation algorithm is quite similar to the local search
one, but there is one main difference instead. On the one hand, the
local search algorithm evaluates both (i) a solution’s cost and (ii) the
absence of backorders to decide if a new solution should be accepted
or not. On the other hand, the perturbation does not care about a
solution’s cost, but the number of backorders generated. So, if a new
route presents none backorder, it will be accepted as a new route of the
new solution.

So, the algorithm 8 presented the general perturbation procedure
that is applied during an ILS iteration. It indicates which solution to
input depending on the ILS’s iteration. Additionally, the algorithm 9
is presented to introduce the perturbation calculation procedure itself.
Notice that the algorithm 8 refers to the Perturbation(Solution)
procedure that is found in algorithm 8 in lines 7 and 10.
Algorithm 9: The perturbation pseudo-code
1 Get S ′ (The Solution to be perturbed)
2 Set S∗ (The Solution after the perturbation)
3 for (it ≤ it_lim_Perturbation) do
4 S∗ ← Local_Search (S ′) (The Intra-RNS and Inter-RNS)
5 if (S∗ has none backorders) then
6 Let (S ′ ← S∗)
7 end
8 end
9 Return S∗

5.5.4 The ILS-Stopping Criterion

Concerning the stopping criterion, the condition established to inter-
rupt a procedure is related to the number of iterations. Thus, the
algorithm breaks when the algorithm achieves the maximum number
of iterations set, as stated in line 6 in the algorithm 7. The ILS’s
maximum number of iterations value is presented in the appendix B
5.7.
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5.6 The current-routes simulation

In this section, the simulation procedure defined as the current-routes
simulation is presented. It is applied to evaluate the scenario 1 or the
company’s ILRM system. Notice that in scenario 1, the routes are fixed
for all time horizon and do not vary depending on the demand, which
is similar to the simulation example described by figure 6 in chapter 4.
To be able to compare this scenario with the three alternatives ones,
the company’s routes need to be simulated in a realistic environment.
Note that other scenarios do not require the simulation, because the
KPIs have already been calculated through the ILS algorithm.

To run this procedure, the following inputs are necessary: (i) the
company’s current routes; (ii) the historical orders; (iii) the company’s
deterministic data; and (iv) the definition of the periods’ sizes. After-
ward, the input data is simulated to obtain the statistics related to the
primary KPIs. Then, a realistic objective function is calculated, which
is the same one presented in the ILP model in section 5.4. Therefore,
the main KPIs of the objective function are the number of routes and
the total of all the route’s trip distance.

The secondary KPIs are also available through the simulation and
can be used to evaluate a solution. These secondary KPIs are (i) total
of backorders; (ii) total distance traveled; (iii) total of orders supplied;
and (iv) total of empties spots in each convoy’s departure. An empty
spot is a free spot in the convoy that could be filled with an order. For
example, a convoy whose capacity is four units, and it is loaded with
three units results in one empty spot. Besides, note that backorders are
computed here because the simulation refers to the current company’s
scenario, in which backorders are likely to happen.

So, the algorithm 10 presents the current routes’ simulation, and
the following notation is presented. The complete solution (Spcomplete)
contains each period’s solution. Therefore, each period has its solution,
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which is defined by (S∗p).
Algorithm 10: The current-routes simulation
1 Get Spcomplete (The Solution to be Simulated)
2 Cluster the historical data (To sort the orders chronologically)
3 for (p ∈ Periods) do
4 S∗p ← Input Solution (Spcomplete)
5 for (Route ∈ S∗p) do
6 Eliminate the route’s nodes with null demand
7 S∗p ← Local_Search (S∗p) (The Intra-NS only)
8 Collect the route’s Objective Function and KPIs
9 end

10 end
In that algorithm, the historical orders are clustered into the con-

sidered periods, as described in section 5.3. Regarding the solution
analysis, on the one hand, the routes will be the same for each period.
On the other hand, the algorithm withdraws each node that has not
any order assigned to it. That procedure enables a route to become
more efficient in terms of distance and time. Also, an Intra-RNS is
executed to certify that each route is distributed properly. Afterward,
the objective function is computed as well as the secondary KPIs.

5.7 Experiments

To evaluate the scenarios described in section 5.2, four main computa-
tional experiments are presented. Each experiment is defined as follows:
The first experiment has as the main goal to compare the performance
between the ILP model and the ILS algorithm. The second experiment
aims to assess the company’s current internal logistics routing manage-
ment (ILRM) system through the simulation method (algorithm 10).
Then, the third and fourth experiments apply the ILS algorithm to
compute the proper routes for the SEAT’s ILRM system. These ex-
periments are presented in table 5.1.

Exp. Method Data Applied Scenario

1 ILP vs. ILS Test Data -
2 Current-routes simulation Real Data (2) and (3) 1
3 ILS variable routes Real Data (2) and (3) 2
4 ILS variable routes Real Data (2) and (3) 3(A and B)

Table 5.1: The ILRM system experiments outline.

98



“output” — 2019/9/23 — 6:34 — page 99 — #119

The experiments were carried out on the Operational System Win-
dows 7 Enterprise 64 bits, Intel Core i7-4810MQ, 2.80GHz, 8 cores and
16 GB of RAM as the maximum capacity. Moreover, the programming
languages JAVA were used to build the ILS. Also, the ILP was modeled
through AMPL language and was solved by CPLEX 12.8.0.

5.7.1 The instances

An instance is stated as the number of orders that a set of workstations
(WST) requires over a determined time horizon. So, one instance differs
from another regarding the following aspects: (i) the SKU class; (ii)
the set of WST considered; (iii) the number of orders placed; (iv) the
time-horizon considered; and (v) the periods’ size.

Saturdays, Sundays, and holidays data were not included because
they do not represent a typical working day. Therefore, two sets of
data were gathered. Each one refers to a SKU class, which are the
small boxes (SB) and the large containers (LC). For each SKU class,
three groups of data were collected. The first group is called Test
data, which is a particular subset compound by a selection of all the
real workshop’s workstations and their respective demands throughout
the considered time horizon. The second group refers to the set of
all workstations that compound an assembly line and their respective
demand during a short time horizon; in this case, five working days.
The third group of data is like the second one (all workstations are
considered) but considering a larger time-horizon size, in this case, four
weeks.

Moreover, those orders were collected over two different periods
in the year. As a result, instances of different production levels and
other intrinsic features were considered. The orders data was collected
directly in the material management system of the company, which is
the commercial software SAP. The table 5.2 summarizes the instances’
characteristics. The data is available in the data set proposed by [Fabri
(2019)], which can be found in the Mendeley plataform. In the table
5.2, the instances are classified into three groups: (i) test data; (ii)
real data with smaller time-horizon size; and (iii) real data with larger
time-horizon size. The second column (Item) refers to the name of the
instances, and WST represents the number of workstations considered.
Also, there are indications related to the types of materials (small boxes
and large containers), the number of periods considered in the historical
data, and the periods’ size considered. The * marker highlights the
real-world and complete instances.

The parameters used in the experiments are either directly set by
the company, as cost values and vehicles capacity, or defined via pre-
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Class (Group) Item SKU Total of Period’s WSTs
Type Periods size (hour)

Test Data(1) 1-2-3 10-50-100 1 5
4-5-6 10-50-100 1 10
7-8-9 SB 10-50-100 1 15

Real Data(2) 10*-14* 105-55-35-30-15 1-2-3-4-8 123
Real Data(3) 15*-19* 441-231-147-126-63 1-2-3-4-8 122
Test Data(1) 20-21-22 10-50-100 1 5

23-24-25 10-50-100 1 15
26-27-28 LC 10-50-100 1 20

Real Data(2) 29*-33* 105-55-35-30-15 1-2-3-4-8 127
Real Data(3) 34*-38* 441-231-147-126-63 1-2-3-4-8 126

Table 5.2: The summary of the instances’ structure.

liminary experiments as the setting data related to the algorithm. The
distance matrix between the workstations was computed by the author
based on the workshop layout and through a C++ procedure. The
parameters used in the experiments are indicated in the appendix B
5.7. The experiments are summarized in table 5.1.

5.7.2 The Experiment 1

Experiment 1’s goal is to compare the results provided by the ILP
model and the ILS algorithm. These methods are evaluated based on
objective function values and computational time. The results related
to the experiment 1 are presented in the tables 5.3 and 5.4.

Regarding the achieved results, the ILP model found the optimal
solution in five out of nine SB instances; among the four instances left,
feasible solutions were obtained for two of them with 12% gap and 3%
gap, respectively. Besides, the ILP model could not find any feasible
solution for two instances.

For the LC instances, the ILP model found the optimal solution in
six out of nine LC instances; it got feasible solutions up to 9% optimally
gap for one instance, and it could not find any feasible solution for two
instances.

Concerning the ILS’s results, the algorithm was able to find feasible
solutions for all instances of both SB and LC SKU classes. Besides,
the ILS computed the optimal solution for six out of 18 instances, as
proved by the ILP.

As a result, it can be stated that the ILS presented a satisfactory
performance. It is concluded comparing the ILS’s results and the ILP’s
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optimal solutions. The GAP between the methods’ solutions has never
been bigger than 6%, for those instances that the ILP proofed the
optimality.

Although the ILP model can manage to compute the better solu-
tions in the easiest instances, the ILS outperformed the ILP in the
most complicated ones in a shorter computational time. Notice also
that when running the ILP model for the larger instances (15 worksta-
tions) the computer ran out of memory. Consequently, no solution was
computed in those cases. Therefore, the ILS is able to provide excel-
lent results in short time, which makes the ILS a proper algorithm to
deal with more complicated or real-world instances, like those applied
in experiments 3 and 4.

5.7.3 The Experiment 2

Experiment 2 aims to compute the performance of the company’s set of
routes through the simulation procedure defined by algorithm 10. This
algorithm is applied to real data (2) and (3). Moreover, experiment
2 obtains results for the scenario 1 described in sub-section 5.2.1.
Also, three clustering possibilities are evaluated, in which the orders
are assigned to periods with the following sizes; 60 min, 120 min, and
180 min. The experiment 2’s results are disclosed in tables 5.5 and 5.6.

5.7.4 Experiment 3

Experiment 3’s goal is to compute routes for an ILRM system defined
by variable routes and the company’s current orders. These character-
istics represent the scenario 2, which is described in subsection 5.2.2.
The purpose is to understand the consequences of computing variable
routes in a non-steady orders context. The algorithm 7 is responsible
for computing these routes. Tables 5.5 and 5.6 present the results.

5.7.5 Experiment 4

Experiment 4’s goal is to compute routes for an ILRM system defined
by variable routes and an automatic-placing-orders system context. It
is defined as the scenarios 3A and 3B, which are described in sub-
sections 5.2.3 and 5.2.4, respectively. The experiment’s motivation is
to understand the benefits of introducing an automatic-placing-orders
system that smooths the orders’ placement. The algorithm responsi-
ble for computing these routes is the 7 one, as well. Tables 5.5 and
5.6 present the results. The discussion of the results of these last 3
experiments is presented in the following subsection 5.7.6
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Item WST Per. Met. OF Routes Distance Gcplex Time
Value (m) (%) (sec)

1 5 10 ILP 4,177.64 4 3,777.64 0% 0
1 5 10 ILS 4,177.64 4 3,777.64 - 0
G 0% - - -
2 5 50 ILP 36,953.44 37 33,253.44 0% 1
2 5 50 ILS 37,055.73 37 33,253.44 - 0
G 0.3% - - -
3 5 100 ILP 76,470.61 77 68,770.61 0% 4
3 5 100 ILS 76,739.19 77 69,039.19 - 0
G 0.4% - - -
4 10 10 ILP 5,454.35 77 4,954.35 0% 0
4 10 10 ILS 5,551.21 77 5,051.21 - 0
G 2% - - -
5 10 50 ILP 50,613.87 43 46,313.87 3% 7,200
5 10 50 ILS 51,933.94 43 47,633.94 - 0
G 3% - - -
6 10 100 ILP 105,449.17 92 96,249.17 0% 282
6 10 100 ILS 108,481.09 92 99,281.09 - 0
G 3% - - -
7 15 10 ILP 15,931.65 12 14,731.65 12% 7,200
7 15 10 ILS 16,940.26 12 15,740.26 - 0
G 6% - - -
8 15 50 ILP (*) (*) (*) (*) (*)
8 15 50 ILS 81,720.32 50 76,720.32 - 3
9 15 100 ILP (*) (*) (*) (*) (*)
9 15 100 ILS 160,378.14 100 15,740.26 - 6

Table 5.3: The summary of the SB SKU Experiment 1’s results. The
bolded values represent optimal solutions. The (*) marker indicates that
no feasible solution was provided. Also, the Gterm refers to the compar-
ison between the values computed by the ILP and ILS. It is computed as
(ILPV alue/ILSV alue − 1).
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5.7.6 The large-scale experiment’s results

One of the main objectives of this work is to evaluate the new proposed
scenarios and compare them to the actual one. Tables 5.5 and 5.6
resume the results of experiments 2, 3 and 4. The results achieved are
discussed next.

Considering that the routes are divided into SB and LC categories,
the results will be described taking into account the SB and LC re-
sults separately, as well. Furthermore, the major indicators to take
into account to decide on a scenario to another are: (i) the maximum
number of routes; (ii) the number of backorders; (iii) the total distance
traveled, in this order of importance.

So, regarding the SB experiments, ten sets of experiments were
carried out in total (items 10-19 from table 5.2) that represents 26 in-
dividual experiments. Thus, the results are evaluated comparing those
ten instances items, see table 5.2.

Even though the scenario 2 achieved excellent overall results, such
as solutions’ costs (five out of ten), none backorders reported and the
best solutions in terms of distance covered (six out of ten), it is not a
suitable solution. It is explained by the variability of the number of
routes from one period to another. As a result, some periods requires
much more resources than others. That makes the system’s manage-
ment quite complex and expensive. Moreover, scenario 1 achieved good
solutions’ costs as well (three out of ten). However, that scenario in-
curs in a lot of backorders (six out of six). That is why it is discarded.
Finally, that scenario 3A has the best overall results as well as suitable
management procedures. First, it presents the best performance re-
garding the maximum number of routes (ten out of ten). Second, there
are no backorders reported. Third, it computes solutions with good
performance in terms of distance covered (four out of ten). There-
fore, concerning the main performance indicators and the company’s
management premises, the most suitable scenario is the 3A one.

Then, regarding the LC experiments, ten sets of experiments were
carried out in total (items 29-38 from table 5.2) that represents 26
individual experiments. So, the results are evaluated comparing those
ten instances items, as well. The scenario 3A has the best overall
results. First, it presents the best performance regarding the maximum
number of routes (nine out of ten) and the solutions’ costs (six out of
ten). Second, there are no backorders reported. Third, it computes
solutions with good performance in terms of distance covered (three
out of ten). Therefore, concerning the major performance indicators
and the company’s management premises, the most suitable scenario is
the 3A one. Scenario 2 also achieved excellent results, such as the best
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solutions’ distance covered (seven out of ten). However, it achieved
solutions with high variability in terms of the number of routes, as well
as the SB context. Moreover, scenario 1 also must deal with a high
number of backorders that makes it not the best system to choose.

Concerning the decision of choosing the best time-window size to
cluster all orders. For this question, it is observed that there is not
the right answer because it is a trade-off between solutions’ costs and
management procedures.

According to the tables 5.5 and 5.6, the best period size would be
the 480 minutes, or a shift one, because it incurs in the best KPIs’
results (instances 19 and 38). By contrast, the managers in charge of
that decision should evaluate the consequence of retaining and joining
all the order placed in a 480 minutes range. Notice that the orders
placed in one period must be delivered in the next period only. As a
result, concerning the evaluated company’s context, it is recommended
the scenario 3A with 60 minutes of period size as a first implemen-
tation. Even though the 60 minutes size does not represent the best
solutions’ costs, it enables to correct the routes more frequently and
avoid longer-term failures. Further ahead, alternatives periods’ sizes
could be evaluated, and its implementation analyzed further.

Also, scenario 3A (experiment 4) is viewed as the most suitable one.
Moreover, notice that scenario 3A is entirely related to scenario 3B, as
described in section 5.3.2. It is because the automatic-placing-orders
systems may represent the forecasted demand obtained by the Man-
ufacturing Resource Planning (MRP) system. So, the placed orders
would be quite similar for both scenarios. As a result, experiment 4
represents both scenarios 3A and 3B. Therefore, scenario 3B is also a
suitable alternative to be implemented.

To conclude that subsection, the instance number 30 is taken into
account to illustrate the number of routes and the number of orders
calculated in this instance, see figures 5.6 and 5.7.
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Figure 5.6: The number of orders applied for scenarios 1, 2, 3A, and 3B,
regarding instance number 30.
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Figure 5.7: The number of routes applied for scenarios 1, 2, 3A, and 3B,
regarding instance number 30.

5.8 Conclusion

In this chapter, a real problem in a real car-assembling company was
considered. That problem consists of finding the most suitable internal
logistics routing management (ILRM) system in charge of both plac-
ing orders and deliver them. A total of four scenarios were discussed,
which cover the current company’s system and three alternatives sys-
tems. To summarize, the first scenario represents the current com-
pany’s approach. The second scenario considers variables routes using
the company’s actual orders. The third one computes variable routes
through an automatic ordering system. Finally, the fourth one also
considers variable routes dependent on the demand but using a fore-
cast demand obtained by the Manufacturing Resource Planning (MRP)
system.

These scenarios were evaluated through Operations Research-based
methodologies, which are: (i) an ILP model; (ii) a Metaheuristics;
and (iii) a simulation procedure. Besides, a class of IRP, which is
uncommon to be evaluated in the literature, was approached. That is
represented by the scenario 3B, which is described in subsection 5.2.4.

Also, this work proposes an ILP model for a deterministic version
of the Periodic VRP, as well as an ILS algorithm to calculate variable
routes to internal logistics routing management systems. A compari-
son between these two approaches was performed and concluded that
the ILS obtained outstanding solutions, in particular for the real-world
instances. It was considered the objective function values and compu-
tational time as a comparative basis. Therefore, the ILS presented a
better performance than the company’s solutions in all the real-world
instances evaluated.

Regarding the ILRM system scenarios, scenario 3B is the recom-
mended one. That is the one defined by variable routes and the fore-
casted orders system. Even though it may be challenging to integrate
the logistics and production to work together and work at the worksta-
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tions’ consumption rates, it will imply in the same benefits pointed to
the experiment 4 (scenario 3A), but without any complex automatic-
placing-orders system implementation. Moreover, for those conserva-
tive managers, who may view that alternative as a risky one due to
the lack of checking procedures in the assembly line, the introduction
of checkpoints along the assembly line is suggested. These checkpoints
will verify the level of materials in the workstations.

Furthermore, it is also recommended scenario 3A, which is the vari-
able route and automatic-placing-orders system. It may ensure an on-
line control of each workstation. However, it could require a significant
initial investment to introduce the automatic-placing-orders system.
Figure 5.8 summarizes the advantages and challenges of each scenario
described in this work.

Scenario Advantages Challenges 

1 

• The number of routes is steady. 

• No need for routes computing and  

     order placing systems. 

• Lack of routes’ flexibility. 

• Deal with backorders. 

• It may incur in higher battery consumption 

2 

• There are periods with a reduced number 

of routes. 

• None backorders. 

• Deal with the high variability of the number 

of routes. 

• Implementing the routes computing system. 

3 

• The number of routes is steady and 

flexible. 

• The best trade-off between solutions’ 

costs, stability, and battery consumption. 

• None backorders. 

• Implementing both the routes computing and 

automatic placing-orders systems. 

4 

• The number of routes is steady and 

flexible. 

• No need for an automatic placing-orders 

system. 

• The cheapest alternative, in terms of 

implementation of supportive systems. 

• None backorders. 

• The integration between Production and 

Logistics teams. 

• Implementing the methodology of 

forecasting demand. 

• Ensure the workstations consumption level. 

Figure 5.8: The summary of the scenarios’ conclusions.

As a result, it is stated that this work presents a valuable method-
ology to be applied to any car-assembling company. Indeed, the pre-
sented methodology and results were presented to the company’s ex-
perts, and they found it novel and interesting. Concluding, this work
refers to the remarkable contribution to the company, as depicted by
the results presented.

As future work, methods to optimally solve large instances of the
presented ILP should be explored, such as the branch-and-cut proce-
dure. Moreover, extensions of the ILS and the simulation procedure
may be improved by adding a more realistic aspect, such as the traf-
fic on the assembly-lines, the use of a different type of vehicles and
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self-guided automatic vehicle.
Finally, concerning the real application, would be quite useful for

studying the interaction between the flows that compound the logistics
activities inside an assembly line. One suitable alternative to achieve
such level of analysis would be a simulation model based on a Discrete-
Event-Simulation. That model is able to evaluate the assembly lines’
aisles and the introduced logistics flows. So, the major objective would
be to identify the main bottlenecks in the assembly line under the
logistics perspective.
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Item WST Per. Met. OF Routes Distance Gcplex Time
Value (m) (%) (sec)

20 5 10 ILP 3,533.24 6 2,933.24 0% 0
20 5 10 ILS 3,533.24 6 2,933.24 - 0
G 0% - - -
21 5 50 ILP 17,479.91 30 14,479.91 0% 0
21 5 50 ILS 17,479.91 30 14,479.91 - 0
G 0% - - -
22 5 100 ILP 33,472.93 57 27,772.93 0% 1
22 5 100 ILS 33,472.93 57 27,772.93 - 0
G 0% - - -
23 10 10 ILP 4,311.03 6 3,711.03 0% 4
23 10 10 ILS 4,311.03 6 3,711.03 - 0
G 0% - - -
24 10 50 ILP 31,645.39 44 27,245.39 0% 44
24 10 50 ILS 32,627.02 48 27,827.02 - 1
G 3.1% - - -
25 10 100 ILP 62,839.74 87 54,139.74 0% 1,556
25 10 100 ILS 63,082.27 87 54,382.27 - 2
G 0.4% - - -
26 15 10 ILP 7,797,09 10 6,797.09 9% 7,200
26 15 10 ILS 7,746.68 10 6,746.68 - 0
G -0.6% - - -
27 15 50 ILP (*) (*) (*) (*) (*)
27 15 50 ILS 42,194.62 54 36,794.62 - 2
28 15 100 ILP (*) (*) (*) (*) (*)
28 15 100 ILS 85,098.06 107 85,098.06 - 4

Table 5.4: The summary of the LC SKU Experiment 1’s results. The
bolded values represent optimal solutions. The (*) marker indicates that
no feasible solution was provided. Also, the Gterm refers to the compar-
ison between the values computed by the ILP and ILS. It is computed as
(ILPV alue/ILSV alue − 1).
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I. E. OF Cost M. R. T. B. T. Trav. Proc.
Value Per. R. (Uts) Sup. Emp P.(m) (sec)

10 2 4,507,047 42,924 4 395 20,547 3,779 8,256 8,780 82
10 3 4,501,578 42,872 7 402 20,547 - 11,033 7.050 589
10 4 4,715,301 44,908 4 419 18,218 - 12,209 6,049 3,998
11 2 2,383,686 43,340 4 208 20,547 1,820 6,958 14,109 213
11 3 2,316,067 42,110 6 206 20,547 - 9,012 12,010 4,137
11 4 2,334,270 42,441 4 207 19,083 - 9,636 11,886 8,921
12 2 1,557,189 44,491 4 136 20,547 2,123 8,992 20,512 203
12 3 1,504,610 42,989 6 134 20,547 - 7,573 17,078 4,160
12 4 1,436,351 41,039 4 127 18,220 - 8,158 16,845 7,684
13 3 1,184,716 39,491 7 105 20,547 - 8,395 20,062 4,055
13 4 1,212,621 40,421 4 107 20,835 - 7,960 22,081 7,588
14 3 637,237 42,482 4 56 20,547 - 9,424 42,642 4,000
14 4 591,755 39,450 4 52 20,835 - 7,151 43,256 4,837
15 2 17,671,405 40,071 4 1,610 108,514 29,026 28,060 6,754 659
15 3 20,136,547 45,661 11 1,857 108,514 - 52,778 6,422 8,546
15 4 19,266,988 43,689 4 1,763 95,079 - 54,110 6,653 73,888
16 2 9,375,251 40,586 4 853 108,514 20,139 37,068 11,641 1,454
16 3 10,093,791 43,696 8 927 108,514 - 39,049 10,129 23,515
16 4 10,117,435 43,798 4 923 99,605 - 47,778 10,645 44,098
17 2 6,073,949 41,319 4 552 108,514 21,577 41,322 17,284 1,101
17 3 6,715,634 45,685 9 617 108,514 - 30,810 15,479 16,597
17 4 6,433,192 43,763 4 587 95,079 - 36,740 15,224 26,773
18 3 5,138,631 40,783 10 470 108,514 - 31,436 18,073 16,999
18 4 5,532,133 43,906 4 504 108,673 - 40,139 20,444 23,155
19 3 2,559,889 40,633 6 234 108,514 - 28,745 35,770 14,628
19 4 2,752,616 43,692 4 252 108,673 - 39,955 37,355 15,544

Table 5.5: The summary table of the experiments 2, 3, and 4 regarding the
SB. The first column refers to instances’ items. Then, the next columns
present the experiments (E.), the OF, costs per period, maximum of routes
in one period, instance’s total of routes, the orders supplied, the total of
backorders, the total of free spots in each convoys’ departure, the average
distance covered per period and the computational time. The bolded OF
value represents an instance’s best value.
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I. E. OF Cost M. R. T. B. T. Trav. Proc.
Value Per. R. (Uts) Sup. Emp P.(m) (sec)

29 2 6,540,724 62,293 6 588 5,670 658 1,972 16.517 11
29 3 5,726,599 54,539 11 529 5,670 - 945 11,929 276
29 4 5,330,844 50,770 6 490 5,011 - 920 11,261 345
30 2 3,474,148 63,166 6 309 5,670 417 2,410 32,699 25
30 3 2,877,858 52,325 8 265 5,670 - 1,111 22,502 697
30 4 2,757,777 50,141 5 253 5,249 - 1,116 22,037 1,097
31 2 2,305,580 65,874 6 204 5,670 561 3,056 52,184 46
31 3 1,933,952 55,256 9 178 5,670 - 1,296 35,308 948
31 4 1,763,448 50,384 5 162 5,015 - 1,234 31,677 1,505
32 3 1,458,842 48,628 9 134 5,670 - 1,272 40,235 1,160
32 4 1,545,908 51,530 5 142 5,751 - 1,700 42,409 1,844
33 3 762,750 50,850 5 70 5,670 - 1,690 82,227 1,523
33 4 773,966 51,598 5 71 5,751 - 1,751 83,549 1,783
34 2 26,025,245 59,014 6 2,429 30,183 6,148 8,940 13,086 87
34 3 26,167,575 59,337 12 2,454 30,183 - 2,807 11,806 2,145
34 4 24,885,138 56,429 7 2,320 26,403 - 3,577 11,596 4,836
35 2 13,836,652 59,899 6 1,284 30,183 4,806 13,196 25,220 112
35 3 13,532,374 58,582 10 1,263 30,183 - 4,255 23,636 3,872
35 4 12,976,102 56,174 6 1,202 27,663 - 3,744 24,509 8,477
36 2 8,972,787 61,039 6 830 30,183 5,038 16,312 39,848 162
36 3 9,029,160 61,423 11 842 30,183 - 5,140 37,108 4,520
36 4 8,243,240 56,076 6 762 26,403 - 3,940 37,187 9,332
37 3 6,886,625 54,656 11 641 30,183 - 5,633 43,044 5,179
37 4 7,036,361 55,844 6 650 30,191 - 4,563 49,245 12,129
38 3 3,623,168 57,511 8 336 30,183 - 7,293 91,676 6,713
38 4 3,492,228 55,432 6 322 30,191 - 4,418 99,140 10,175

Table 5.6: The summary table of the experiments 2, 3, and 4 regarding the
LC. The first column refers to instances’ items. Then, the next columns
present the experiments (E.), the OF, costs per period, maximum of routes
in one period, instance’s total of routes, the orders supplied, the total of
backorders, the total of free spots in each convoys’ departure, the average
distance covered per period and the computational time. The bolded OF
value represents an instance’s best value.
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Data Application ILS Parameters
Values

Number of Iteration ILS 8
Number of Iteration LS 8
Fictitious Weight Route 10,000
Fictitious Weight Distance 1
Max K-value The LS moves 10 nodes
Convoy Speed All cases 7 km/h
Convoy Capacity Large Boxes 4
Convoy Capacity Small Boxes 48
Placing a Large SKU Large Boxes 2.69 min
Placing a Small SKU Small Boxes 0.66 min

Table 5.7: Chapter 5 - Appendix B : Summary of the ILS’s parameters
structure.
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Chapter 6

INTERNAL LOGISTICS
FLOWS SIMULATION

6.1 Introduction

The motivation to study the Internal Logistics Flow (ILF) in an as-
sembly line come from the study of a real case based on SEAT S.A.,
which expressed the importance of analyzing assembly lines focus on
the internal logistics processes.

Even though the ILFs represent relevant activities in assembly lines
studies, companies have dedicated more effort to evaluate production
activities than the internal logistics ones. Consequently, most of the
assembly line simulations focus on the product point of view, evaluating
machines failures, cycle times, and lines’ throughput, see [Negahban &
Smith (2014)] and [Semini et al.(2006)]. The logistics processes are
introduced in the analyses as the procedures responsible for delivering
materials. By contrast, the logistics flows observed in the workshop are
not the focus on those simulations studies.

To analyze the ILF, the Simulation methodology presented by [Banks
et al.(2005)] was considered. Also, according to [Tako & Robinson(2012)],
simulation is a suitable methodology to face logistics problems. Among
the Simulation methodologies, there are three approaches to be high-
lighted: the System Dynamics, Agent-based Modelling, and Discrete
Event Simulation (DES), as discussed in chapter 2. Also, simulation
models have been extensively used to deal with logistics problems, as
observed in [Tako & Robinson(2012)], [Hillier & Lieberman (1995)]
and [Banks et al.(2005)]. In the Logistics field, most of the simulation
studies focus on external logistics. Those studies that focus on as-
sembly lines are focused on the production point of view because they
consider aspects such as the production flow in the assembly line and
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machines interruptions.

To sum up, in this chapter, the main goal is to propose a simula-
tion model to evaluate and analyze the internal logistics activities in
an assembly line of a car-manufacturing company. A DES model is
developed through the Plant Simulation software as well as an analysis
of the internal logistics in SEAT is performed. So, to evaluate the in-
ternal logistics flows, two main KPIs are stated by the company, which
are related to the logistics flows’ performance and the assembly line’s
aisles utilization. Moreover, three scenarios are evaluated based on the
actual system, the introduction of autonomous vehicles and applying a
transit flow policy. The results indicated the main aspects and areas of
the assembly line that contribute to a disruption of the logistics opera-
tions. Notice that the proposed DES concepts can be applied whenever
a new scenario occurs or even in other industries that rely on assembly
lines. As a result, in the end, a set of best practices are disclosed for
bench-marketing purposes.

Note that there some characteristics that differ the automotive in-
dustry from other manufacturing industries, regarding a DES model
development. First, to conduct a DES study over an entire assembly
line, a significant amount of data is required. Usually, the automotive
industry does not disclose that required data. Second, the DES’s com-
plexity is significant in terms of the number of processes. There are
many processes to be considered because many types of internal logis-
tics flows are introduced into the model. Third, there are the worksta-
tions’ orders to take into account. In SEAT, one assembling line can
produce more than 600 cars each day. Considering that a car is assem-
bled with more than 2,500 materials, in those workstations, the scope
of the DES model is quite significant. By contrast, a DES model de-
veloped for the automotive industry is completely applicable to other
industries because we assume that many relevant concepts and pro-
cedures have already been considered. Consequently, businesses that
share similar concepts, but on a smaller scale, can take advantage of
this work as well.

The remainder of this chapter is organized as follows. Section 6.2
describes the case-study tackled in this chapter. Section 6.3 presents
the developed simulation model and the experiments result. Finally,
section 6.4 concludes the paper.
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6.2 The Internal Logistics Flows Simulation in as-
sembling lines

In this chapter, the main goal is to identify the highest logistics flows
bottlenecks in the system, which are those aisles that are more collapsed
in terms of traffic. It can be achieved through an Internal Logistics
Flows (ILF) simulation focus on the company’s assembly line.

The ILF study is a relevant issue for companies, in particular for
those that tackle scenarios with high variable demand. A proper ILF
simulation study enables a company to carry on analysis of the fol-
lowings items: (i) flows’ bottlenecks; (ii) layout evaluation; and (iii)
introduction of new premises such as the input of traffic new rules or
a new product. Consequently, this approach is highly recommended
whenever there are changes in the operation of the assembly lines and
production plannings, such as the introduction of a new layout.

Next, it is presented the main processes related to the supplying
activities in SEAT. It is quite related to those explained in chapter
1. So, first, non-regular logistic flows are presented in figure 6.1. In
other words, those logistics flows whose departure from the warehouse
towards the assembly line is not periodical. Later, those flows with
periodical departure are presented through figure 6.1. Notice that these
processes were considered for the development of the DES model
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• Unsteady Orders 
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assigned to 

convoys; 

 

• A convoy leaves 

the Warehouse 

(WHS) based on 

the “Capacity vs. 

Time” rule. 
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• Each workstation 
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route; 
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Supply the 

Orders 

•Before starting the 
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Back to the 

WHS 

•After checking the 
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responsibility, the 

operator drives 

back to the WHS.  

1 2 3 4 

Figure 6.1: The summary of the processes of a non-regular departure logistic
flow.

There are four main steps to be considered in figure 6.1 that are:
(i) departure from the warehouse (WHS); (ii) check workstations; (iii)
supply workstations; and (iv) return back to the WHS. Each step is
explained in detail in chapter 1.

Concerning the convoys’ departure frequency, notice that it depends
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on the material consumption rate. Consequently, materials with non-
uniform consuming rates are delivered not periodically as well. Then,
the convoys that have these material assigned to them depart under
demand. On the contrary, some materials are requested regularly. So,
those materials are assigned to another class of convoys. As a result,
it is stated that there are two main classes of convoys, those with non-
regular departure and those with regular departures. The processes for
those logistics flows that have a regular departure from the WHS (for
example every 15 minutes) is presented figure 6.2.
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Figure 6.2: The summary of the processes of a regular departure logistic
flow.

The processes represented in figure 6.2 are quite similar to those in
the non-regular departure. On the one hand, the routes are divided
into SKU classes, and the routes do not share supplying locations. On
the other hand, the materials supplied here are viewed as steady ones
because its consumption rate is well defined. Therefore, there is no
need to ask the logistics operator to place orders because SAP rules
the orders. Figure 6.2 presents the main components of these regular
departure routes.

Then, all classes of flows are tested through an assembly-line simu-
lation model. That model was developed based on classical simulation
models methodologies stated by [Banks et al.(2005)] and [Brooks &
Robinson (2001)], which can be resumed into five steps: (i) problem
formulation; (ii) model construction; (iii) data collection; (iv) experi-
ments; and (v) validation. Figure 6.3 summarizes the main procedures
to take into account.

As presented in subsection 2.4, most of the works in the literature
prioritize the manufacturing issues and consider the body-shop phase
when car-assembling lines are evaluated. So, this work provides a set
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Figure 6.3: The classical simulation modeling framework and the best prac-
tices over an DES assembly-line model construction.

of best practices for those who develop DES models centered on ILF
analysis.

Next, it is presented a simulation model that copes with the ILF
processes faced in SEAT.

6.3 The Simulation Model Description

In this section, the DES model applied to the ILF of two car-assembly
lines, which is motivated by the application in SEAT. The DES model
developed in this work is defined as a terminating simulation model,
as stated by [Banks et al.(2005)]. Besides, it follows the concept of the
building blocks design. According to [Valentin et al.(2003)], building
blocks are suitable for logistics environments because there are pro-
cesses that repeat over the model. As a result, routines were developed
to the users drag and drop them in the frame. Furthermore, some pa-
rameters of the model are done through excel tables that can be filled
previously by the user. Then, to better explain the model’s concepts,
the simulation model is presented through the framework illustrated
by figure 6.3.

6.3.1 Problem Description

The first step concerns the problem description. It is compound by
three main phases: (i) set the main processes; (ii) set the main goals;
and (iii) propose new premises, such as a new layout and the intro-
duction of new technologies. So, the main processes have already been
presented in the last section by figures 6.1 and 6.2. So, the main goal of
this work is identifying the logistics flows’ bottlenecks through a sim-
ulation model that considers a company’s workshop. Also, evaluating
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the consequences of introducing a set of established premises, such as
layout, convoys’ speed, and workstations’ demands. Finally, the new
premises evaluated are the introduction of an autonomous vehicle and
a single flow traffic policy. As stated in chapter 1, that model does
not consider the content of the supplied boxes and containers but the
number of SKU units a route must deliver.

6.3.2 Model Construction

The second framework’s step is the model construction. The prob-
lem is modeled through The DES model’s. To provide a better under-
standing of the model and set its scope, it is presented the main model’s
concepts as follows: (i) layout; (ii) traffic flow; (iii) non-regular routes
departure; (iv) supplying activity; and (v) KPIs report.

The first concept is the layout one that is defined by the aisles’ and
intersections’ rules. Here, the main traffic rules are stated, such as over-
taking permissions, intersection priorities, and workstations’ location.
Figure 6.4 illustrates the layout developed through the Plant Simula-
tion software. The dimensions of the studied workshop are nearly 350
meters in width by 60 meters in height. Moreover, it contains two
assembly lines that can process more than 1.300 cars per day.

The workshop is divided into two main parts, with different logistics
operations. The left-hand part contains verticals aisles as the majority,
and it is called Supermarket. Next, the right-hand part has horizontal
aisles as a majority and is viewed as the assembly line zone. Notice
that both of these areas are considered in this chapter because both of
them must receive materials through the logistics flows. However, the
supermarket is also a location from where logistics flows depart.

Second, to set the traffic rules in all the workshop’ areas, traffic
flow concepts were developed. These concepts or rules are responsible
for defining items such as routes’ directions, routes departure, and a
convoy’s decision whether an overtaking is possible or not.

The third concept regards the non-regular convoys departures
that are called as supplying routes. It concerns the logistics flows that
are in charge of supplying the materials with variable consumption
rate. The workstations’ consumption or orders are available in the
company’s SAP system. So, the author introduced in the model those
orders that refer to real-historical data. Therefore, the workstations’
demands are the main component of the variability of the DES model.
Figure 6.5 illustrates how orders are placed along five days considering
one workstation.

Next, a routine was built that is in charge of assigning requests
to the respective convoys. By definition, a workstation’s orders must
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Supermarket Area Assembly Line Area 

An aisle track An intersection icon 

A couple of workstations 

Entrance/Exit WHS 

Entrance/ 

Exit WHS 

Figure 6.4: The layout of the studied workshop. It is compound by the
aisles (tracks) and the workstations (grey dots). Besides, there are two main
parts. The left-hand part that contains verticals aisles is called Supermarket.
Next, the right-hand part that contains long horizontal aisles is viewed as
the assembly line zone.
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Figure 6.5: The demand behavior of a workstation throughout five consec-
utive days.

be assigned by a unique and pre-established convoy. The departure
is allowed either whenever a time-limited is reached or the number of
orders assigned is equal to the convoy’s capacity. Notice that each
convoy is unique and refers to a specific route.

The fourth concept is the supplying activity. It is important be-
cause it provides information about how the unloading activity may
interfere on both aisle’s traffic and over workstations areas. Particu-
larly, for those workstations that receive both LC and SB materials
from more than one convoy. Figure 6.6 illustrates two convoys supply-
ing their workstations.

Finally, the last concept concerns the KPI reporting. To report
the KPIs, the model collects the data generated throughout the simu-
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Convoys supplying AGV 

Legend: 

Figure 6.6: A piece of layout that shows two convoys supplying their respec-
tive workstations.

lation. That data refers to the convoys’ and aisles’ information, orders’
information and interferences data, such as overtaking and logistics
flows’ interruptions.

To conclude the subsection, it is stated that the developed DES
model shares some concepts with the Agent-Based modeling based on
the premises stated by [Macal & North (2010)]. On the one hand, it is
stated that each vehicle, or agent, is a modular and uniquely identifiable
individual. Besides, it is assigned attributes to each vehicle such as
name, route’s tracks, workstations to be visited, and departure time.
Moreover, those vehicles interact with other vehicles dynamically, as it
is observed in the interference data collection. As a result, the vehicles
have a sort of protocol for interactions with other vehicles. On the other
hand, the vehicles cannot learn and adapt their behavior completely,
for example, deciding to change the routes’ trajectory due to huge
traffic congestion. In this sense, it is assumed that the proposed model
incorporates some concepts of the agent-based simulation. However, it
is a DES model.

6.3.3 Data Collection

The third step of the framework is data collection, which was briefly
cited in the last step (Model Construction). So, to carry on this study,
the real data provided by the SEAT was considered. Deterministic
parameters were defined by the company, such as speed, capacity, and
time spent to deliver the material at the correct place. Concerning to
the models’ input data, the table 6.1 is presented. It contains the main
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parameters applied in this work.

Data Value

Supplying Average Time LC 2.69 min
Supplying Average Time SB 0.66 min
Convoy’s Average Capacity LC 4 units
Convoy’s Average Capacity SB 48 units
Convoy’s Average Speed 7 km/h
AGV Convoy’s Average Speed 4 km/h
Number of workstations 154 units
Number of assembly Lines 2 lines
One replication simulation Period One day (2 shifts)
Warm-up Period 15 minutes
Time-slot for Supplying routes 30 minutes
Number of days applied Five days

Table 6.1: Summary of the parameters’ structure. Notice that LC means
Large Containers and SB means Small Boxes.

The orders of 154 workstations are delivered through four main
logistics flows, which are presented by table 6.2 and defined as follows:
(i) supplying route; (ii) cycle route AGV; (iii) cycle route operator; and
(iv) JIT.

To summarize table 6.2, the supplying routes refer to the convoys
that deliver materials whose consumption rate is not regular, e.g., the
workstation described by figure 6.5. By contrast, the remaining logis-
tics flows receive materials with regular consumption rate. Therefore,
all of them follow a systematic departure routine that is defined as reg-
ular departures. Among those flows, there are the "cycle routes AGV"
and "cycle routes Operator" that are conducted by an AGV and a lo-
gistics operator, respectively. Finally, there are the JIT flows that are
executed by outsourced employees.

Logistics Flow Main Characteristics

Supplying route Non-regular departure; Overtaking allowed; 17 Routes
Cycle routes AGV Regular departure; Overtaking not allowed; 4 Routes
Cycle routes Operator Regular departure; Overtaking allowed; 2 Routes
JIT Regular departure; Overtaking allowed; 5 Routes

Table 6.2: Summary of logistics flows applied.

As stated in subsection 6.3.2, the demand assigned to the supplying-
routes category is the main variable component introduced in the model.
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Table 6.3 present a summary of that data according to the supplying
routes only.

R. Mat. Line D1 D2 D3 D4 D5 Confidence Interval p-
LB ≤ µ ≤ UB value

1 LC 1 243 247 277 287 279 241≤ µ ≤ 291 25
2 LC 1 112 115 129 138 135 110 ≤ µ ≤ 140 15
3 LC 1 211 210 239 236 230 208 ≤ µ ≤ 242 17
4 LC 1 163 158 191 180 199 156 ≤ µ ≤ 200 22
5 LC 1 243 231 277 275 285 233≤ µ ≤ 291 29
6 SB 1 8 9 14 11 9 7≤ µ ≤ 13 3
7 SB 1 67 60 72 68 63 60 ≤ µ ≤ 72 6
8 LC 1 36 37 51 55 44 33 ≤ µ ≤ 55 11
9 SB 2 57 55 67 73 77 54≤ µ ≤ 78 12
10 SB 2 306 328 352 328 343 309 ≤ µ ≤ 353 22
11 LC 2 89 79 93 106 103 81 ≤ µ ≤ 107 13
12 LC 2 241 279 286 320 301 249 ≤ µ ≤ 321 36
13 LC 2 225 209 259 277 285 210 ≤ µ ≤ 292 41
14 LC 2 164 177 189 200 190 167 ≤ µ ≤ 201 17
15 SB 2 189 200 221 234 220 190 ≤ µ ≤ 234 22
16 SB 2 244 250 289 280 263 241 ≤ µ ≤ 289 24
17 LC 2 56 62 62 71 69 56 ≤ µ ≤ 72 8

Table 6.3: The summary of the applied variable demand. The first, sec-
ond, and third columns refer to a route-identification item, a route’s load
type and the assembling line assigned, respectively. The five-days demand
is presented throughout columns four to eight. The ninth column represents
the confidence interval, concerning the route’s five-days demand. The LB
and UB refer to the lower bound and upper bound values of the CI, re-
spectively. The last column presents the p-value applied to the confidence
interval, which is defined as 5%.

The reader may observe that the table 6.3 contains a confidence
interval (CI) study among the five-days demand sample. It represents
the measure of error because the µ is defined as the average value
computed through the sample. As a result, it is an estimated value
of the population average µ∗ . Consequently, µ has an error that is
measured through the CI.

To identify that error, it is introduced the CI construction procedure
state by [Banks et al.(2005)]. Besides, in that case, the average and the
standard deviation is not known for all the population, but the sample
only. Assuming that each sample’s elements are normally distributed,
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the equation approached is the following:

CI = µ± tα/2,n−1
S√
n

(6.1)

In equation 6.1, it is considered that µ value represents the sample’s
average, S value represents the standard deviation of that sample, n is
the total number of sample’s elements, and tα/2,n−1 is the quantile of
the t distribution with n-1 degrees of freedom that cuts off α/2 of the
area of each tail. So, setting the α value equal to 5%, the probability
of the demand fits a CI is 95%.

6.3.4 Experiments and validation

As said, the main objective of this chapter is to analyze the logistics
flows’ bottlenecks through a simulation model. That model considers
the company’s workshop and evaluates the consequences of introducing
all parameters and demands previous presented. So, table 6.4 presents
the three scenarios considered. The objective is to evaluate these new
scenarios and contrast them with the actual system.

Scenario Main Purpose

A - Current company’s scenario. Collect the current metrics.
B - Introduction of autonomous AGVs. Enable an AGV to overtake by itself.
C - Introduction of a single flow policy. One flow aisles whenever possible.

Table 6.4: Scenarios evaluated through the simulation.

The first scenario aims to compute the current system’s metrics.
The second scenario evaluates the introduction of an autonomous-AGV
concept that permits an AGV to overtake other vehicles by itself and
without any external support. The purpose is to evaluate how these
robots will affect the level of interferences in the workshop. Lastly, the
third scenario refers to the introduction of a single flow policy. So, the
workshop’s aisles will have a single flow whenever it is possible. Then,
for each scenario, five experiments were executed, one for each consid-
ered day, see table 6.3. Moreover, scenarios B and C were defined based
on the company’s suggestions and discussions. The model was built on
the Plant Simulation software (version 13) developed by Siemens.

As explained, that model integrates the workshop layout, the logis-
tics flows, the workstations’ demand and further premises defined by
the company. For each scenario, the model was executed five times
and, at each time, a different set of demands were introduced. Besides,
the simulation time was set as one day-processing time, and two shifts

123



“output” — 2019/9/23 — 6:34 — page 124 — #144

within a day were considered. As mentioned, the introduced demand
presents different values along the days and different levels over a single
day, see figure 6.5 and table 6.3. However, all other parameters, such
as speed and convoys’ capacity were maintained.

Afterward, the experiments’ results were evaluated under the com-
pany’s KPIs. These KPIs concerns to the routes and aisles utilization.
Considering the performance of the routes, each route was observed in-
dividually based on the following indicators: (i) total of backorders; (ii)
backorders’ duration; (iii) trip’s duration; and (iv) a route’s trip dis-
tance. Notice that backorder is defined as a material that was supplied
later than its due date.

Then, regarding the aisles’ performance, the following indicators
were considered: (i) total of interferences; (ii) interferences’ duration;
and (iii) total of vehicles. Interferences are actions that disturb a con-
voys’ trajectory. In this sense, an interference may be an overtaking or
breaking at the intersections, for instance. Furthermore, the interfer-
ences are classified into five groups defined as follows: (i) overtake; (ii)
blocked AGV; (iii) waiting before the intersection; (iv) overtake with
both vehicles moving; and (v) overtaking not allowed.

The computed KPIs are presented in tables 6.5, 6.7 and 6.6. Also,
these tables present the results of the scenarios A, B, and C. Notice
that the KPIs are computed after 15 minutes of warm-up or simulated
minutes.

Table 6.5 presents the results related to aisles’ performance. Each
line represents a different workshop’s aisle. So, for each aisle and each
scenario, the total of interferences are indicated. Moreover, it presents
the length those interferences last and the total of vehicles that passed
through that aisle along the day. As said, five experiments are executed
per scenario. So, each experiment was replicated just once because the
variability is linked to a day’s orders only. Also, to present the aisles’
results properly, the main ones were selected to expose the results. The
criteria to select an aisle was based on its average number of interfer-
ences throughout the simulation.

In addition to table 6.5, figures 6.7 and 6.8 are presented. These
figures illustrate heat-maps layouts based on the number of interfer-
ences. Moreover, the following reference is considered to build these
heat maps: blue color, or the absence of geometric symbols, is set if
the number of interferences is fewer o equal to 4; yellow, or squares
icons, for total of interferences values between 5 and 15; red, or circles,
applied for total of interferences values bigger than 15.

The reader may notice that the conflicting areas are placed where
there are higher workstations concentrations. Usually, these areas re-
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Total Duration Total
Aisle Interf. (units) Interf. (min) vehicles (units)

Scenarios Scenarios Scenarios
A B C A B C A B C

1 143 139 151 14 5 23 613 618 636
2 126 132 91 7 8 4 439 445 379
3 92 93 103 4 4 9 414 421 330
4 68 68 58 3 3 3 529 525 503
5 44 45 51 2 2 2 515 520 335
6 40 47 90 2 2 3 332 338 532
7 17 18 15 3 3 2 588 592 569
8 7 8 6 1 1 1 1031 1050 943
9 6 6 6 1 1 1 647 659 594
10 6 7 4 1 1 1 659 672 656
11 6 6 6 1 1 1 558 566 627

Table 6.5: The summary of the aisles’ result throughout the three considered
scenarios. It is sorted in a decreasing fashion, according to the number
of interferences. Only aisles with a relevant number of interferences were
selected. Note that the values of each column refer to the average results
computed through the simulation of the five-days data.

ceive all kinds of logistics flows. Also, the workshop’s entrance and exit
points are viewed as complicated ones. For example, the aisle number
7 receives the main entrance and exit doors to the assembling line.
Therefore, many logistics flows must pass by there.

To continuing the interferences analyses, table 6.6 indicates the
main types of interferences. Moreover, for each type, the average
value found through the simulations and the respective scenario are
presented.

Table 6.6 suggests that the main disturbing item is the overtake
one. Indeed, the convoys must overtake themselves on many occasions,
such as whenever slower AGVs are ahead, and a workmate is parked
supplying materials. Also, blocked AGV has significant values in sce-
narios A and C because the current AGVs are able neither to overtake
nor to take decisions. Consequently, it must interrupt its trajectory
frequently. On the contrary, scenario B enables the AGV to overtake
other vehicles. As a result, the interferences related to blocked AGV
were significantly reduced, as well as the interferences’ average dura-
tion. Moreover, scenario B does not contribute to minimizing the total
of interferences, as observed in figure 6.7. However, the interferences,
in that case, tend to be quicker. It is explained by the fact that the
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Figure 6.7: A heat map based on the workshop’s layout and the number
of interferences computed through the simulation of the scenarios A and
B. Notice that the level of interferences is quite similar in both scenarios.
However, those scenarios’ interferences are not the same ones, as observed
in table 6.6.
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Figure 6.8: A heat map based on the workshop’s layout and the number of
interferences computed throughout the scenario C.

blocked AGV cases were replaced by the overtakes ones. The overtakes
interferences are faster than blocked AGV ones.

Regarding the impacts of scenario C, on the one hand, that ap-
proach contributes to increasing the total number of interferences be-
cause the number of overtakes increases as well. On the other hand,
it decreases the number of overtakings when both vehicles are moving,
which is representative due to security reasons. Moreover, according to
table 6.5, the total of vehicles that pass through those aisles is reduced.
In many situations, a vehicle goes back to the warehouse through the
same aisle where it was. That is counted as two vehicles by the system.
It explains the high level of vehicles in scenarios A and B. Moreover,
notice in figure 6.8 that aisles number 7 has reduced the number of
interferences due to the application of scenario C.

Concerning the routes’ evaluation, table 6.7 presents the results
related to the introduced logistics flows. So, it is reported for each
route the following indicators: (i) the total of backorders; (ii) the sum
of the length the backorders last; (iii) routes’ trip duration; and (iv)
a route’s trip distance. Once again, it is assigned to each route its
average value of each scenario.

Notice that the considered routes are the supplying ones, which are
the ones that must supply materials with variable consumption rate.
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Scenarios
Interferences A B C

Interferences (units)

Overtake 402 465 475
AGV Blocked 67 0 64
Waiting before the Intersection 69 62 64
Overtake with both vehicle moving 47 50 5
Overtaking not allowed 1 1 1

Table 6.6: Summary of the average number of interferences found during
the experiments. Note that the values of each column refer to the average
results computed through the simulation of the five-days data.
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Concerning table 6.7’s results, the first general analysis one may do
is that the considered routes are not balanced. In other words, there
are some logistics operators that received more load than others. As
a result, the reassignment of the workstations into the routes should
be considered. Besides, the SB routes are better to execute their tasks
than the LC ones. Indeed, the LC routes presented the major overall
backorders values because the demand for LC is also higher.

Moreover, the reader can observe that scenarios A and B are quite
similar because the autonomous AGVs does not improve the perfor-
mance of other vehicles. Notice that the AGV routes are not consid-
ered here because they supply materials with steady consumption rate
only.

By contrast, scenario C do incur on a reduction of the level of
backorders as well as a reduction on the backorders duration for most
of the routes. It is explained because the routes were reorganized in
such a way that the distance of their trips became a little shorter. Also,
the routes were able to complete a trip faster than before, as presented
by table 6.7. Note that the routes’ reconfiguration was necessary to
adapt them to the new layout’s flows found in scenario C.

Regarding the model’s validation, the model structure and the com-
puted results have been exposed to the company’s employees. They
found them interesting and wondering about introducing it as a sup-
portive methodology to evaluate logistics flows in other areas as well,
for example, the Warehouse. It was noticed that the graphical tools,
such as the heat maps, are good options to promote a model validation.

To conclude, the author suggests that scenario C should be tested
in practice because of its overall performance in reducing the number
of backorders. Also, it is a cheaper scenario than the autonomous AGV
one. However, scenario C requires a higher effort to organize all the
routes’ trajectories and processes because it impacts on many of them.

Also, the following managerial insights may be interpreted based on
the previous results: (i) workshop areas that receive a high number of
workstations are likely to be defined as a conflicting one; (ii) shorter
routes may implicate in a fewer number of backorders as well as the av-
erage duration a backorder last. So, the longer a route is and the more
workstations it receives, a higher level of backorders it will have; (iii)
single-flow aisles may increase the traffic security because it minimizes
both the number of overtakes with two moving vehicles and the chance
of frontal accidents; (iv) the introduction of autonomous AGV supports
the ILF to become more fluid because there are not issues regarding
blocked AGV. However, the number of overtakes in the workshop will
increase; (v) heat-maps are a suitable tool to present results to stake-
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holders because these maps are straightforward and widely accepted
by them.

6.4 Conclusions

This chapter tackled a real-world case study that faces the internal
logistics operations in a workshop, which contains two assembly lines
in a car-manufacturing company.

Also, an ILF simulation based on a DES model to evaluate the
workshop’ aisles and the introduced logistics flows. The major objective
was to identify the main bottlenecks in the assembly line under the
logistics perspective, such as the flows’ obstructions or interferences.

The study was carried out in a real car-assembling company, con-
sidering real data and the actual assembly-lines operations. Also, two
further scenarios were evaluated. The first scenario introduced au-
tonomous AGVs that can overtake other vehicles. The second one
referred to a one flow policy in the company’s workshop aisles. The
results exposed which aisles are overused, the disturbs among the logis-
tics flows, and the logistics flow’s performance, regarding the total of
backorders, trips duration, and the routes’ length in terms of distances
and time.

As a result, this chapter contributes to both the literature and the
industry by providing a DES model whose objective is to assess the
ILFs in a car-assembling workshop. To the best of the author’s knowl-
edge, the simulation literature lacks of studies that integrate more than
one class of ILFs to evaluate how a workshop can absorb all the traffic.
Therefore, a set of best practices for bench-marketing purposes was
presented for those who want to develop DES models centered on ILFs
analysis. Focusing on real operations, it was proposes a set of manage-
rial insights related to ILFs in assembling lines that can impact on the
efficiency of the logistics operations.

To conclude, the study was presented to the company’s employees
that found it interesting and useful. They observed that it may be ex-
tended to the warehouse’s flows as well, which could be viewed as future
work. Concerning further applications, it would be useful to introduce
the concepts developed for external logistics into internal logistics, such
as drivers’ behaviors. Also, methods should be introduced to support
the company to compute those routes, such as the metaheuristic that
faces combinatorial optimization problems presented in chapters 4 and
5. Later, those routes may be introduced and tested in a similar DES
model.
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Chapter 7

APPLYING
LAGRANGEAN
RELAXATION TO SOLVE
THE FLOW SHOP
SCHEDULING PROBLEM
WITH PRECEDENCE
CONSTRAINTS, RELEASE
DATES AND DELIVERY
TIMES

This chapter is based on the following publication:
Fabri, M., Ramalhinho, H. (2019 )The Lagrangean Relaxation for

the Flow shop Scheduling Problem with Precedence Constraints, Re-
lease Dates and Delivery Times. Journal of Advanced Transportation.

7.1 Introduction and problem statement

Several manufacturing companies sort their processes in a sequential
fashion. The sequenced standard follows the concept that each process
has its suppliers and clients, which may be represented by previous and
successor processes, respectively. That concept may be interpreted as
a Flow Shop one [Pinedo (2016)].
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In the Flow Shop methodology, each process may be viewed as a
single or a set of machines. Then, each machine is responsible for
executing a specific task. Furthermore, all the jobs must follow the
same sequence of machines. So, after a job completes a task in a
machine, it must join a queue at the next machine. Also, the tasks must
be executed under some constraints, such as release dates or resources
availability.

In this chapter, a real-world problem, inspired in the SEAT ac-
tivities, is presented. It is equivalent to the Flow shop problem with
precedence constraints, release dates, and delivery times. Precisely,
three final processes of a company’s production flow are considered,
which are the Checking, Loading, and Departing processes.

Therefore, the studied problem is stated as the Flow shop problem
with precedence constraints, release dates, and delivery times with the
objective function of minimizing the makespan. That problem is de-
fined as a strongly NP-hard problem [Lourenço .(1996)]. Figure 7.1
summarizes the processes of interest.

A 

B 

C 

B 

A 

B 

C 

A 

C 

B 

A 

C 

B 

A/B/C 

A/B/C 

A/B/C 

Check Load Assortment 
Departure Set of Products 

Figure 7.1: The outbound processes’ scheme

As disclosed in chapter 1, SEAT is able to produce up to 2.400
cars (products) each day. Notice that these products are not all the
same because the products are customized according to the client’s
demands. So, after the manufacturing phases, each product is assigned
to a cluster.

A cluster is represented by the letters A, B, and C in figure 7.1.
Regularly, a cluster is compound by a set of products that are similar
to each other, such as a car model. Also, each cluster must pass by a
quality control process to avoid sending poor-quality products to the
final clients. The control consists of evaluating each product individu-
ally. As a result, the operator receives a list of clusters to be checked.
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Then, each cluster is scheduled and checked one by one. Notice that
the time spent at each cluster may vary according to the type of the
products that compound the cluster as well as the found failures.

In contrast, some products do differ from themselves, and that is
the reason that justifies the clustering procedure at the checking phase.
So, the company avoids mixing different products in the same cluster
in that first phase.

After the checking phase, an established cluster is fragmented. In
other words, the products that compound that cluster are placed in
a waiting zone and assorted according to its destinations. So, after a
truck’s load has already been wholly sorted in the waiting area, the re-
lated dispatching truck is authorized to get inside the marquee. There-
fore, a truck is not allowed to get inside te marquee before all its cargo
have already been sorted in the waiting zone.

So, it can be assumed that each outgoing truck has a precedent-
jobs list. Then, after the truck’s arrival, the operators start to load the
truck. The loading task is concluded after an amount of time, which
may vary according to the truck type, the cargo, and the required
paperwork. In this work, it is assumed that there is one team in charge
of loading the trucks. As a result, the trucks will be loaded one by one.

Finally, the last process is the Departure one. Here the truck de-
parts from the company towards the client’s location. Notice that it is
not considered to evaluate which route the truck driver should do, but
the average duration to reach the clients’ locations instead.

Therefore, the checking and the loading process were modeled as
machines. So, the checking process is defined as the Machine 1 (M1)
and the loading process as Machine 2 (M2). Moreover, it is stated that
the main objective is to minimize the maximum date when a client
receives its products. As a result, this problem is tackled as the two-
machine Flow shop Scheduling problem with precedence constraints,
release dates, and delivery times.

Moreover, the described problem is modeled as a time-indexed for-
mulation, which is based on the discretization of the time horizon.
This kind of formulation is known to provide tighter linear relaxation
bounds. However, the model presents a high number of variables.
See [Cota et al.(2016), Souza & Wolsey (1992), Van den Akker et al.
(2000)].

To sum up, this chapter faces two primary objectives. The first
is to present a suitable model to cope with the Flow shop problem
with precedence constraints, release dates, and delivery times. The
second goal is to solve the proposed model problem through an appro-
priated decomposition method. Here, an Integer Linear Programming
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(ILP) model on time-indexed variables is presented. Additionally, a
Lagrangean Relaxation (LR) is proposed to obtain both upper and
lower bounds. The sub-gradient method was chosen to conduct the
convergence of the LR. See [Vanderbeck & Wolsey (2010)].
The paper is organized as follows. Section 7.2 presents the developed
ILP model. Section 7.3 describes the Lagrangean Relaxation. Next,
section 7.4 discusses the computational experiments and results. Fi-
nally, the 7.5 concludes the chapter.

7.2 The Integer Linear Programming model

The two-machine Flow shop Scheduling problem with precedence con-
straints, release dates, and delivery times are set as (F2|prec, rj, qj|Dmax),
based on the notation presented by [Pinedo (2016)]. In other words,
the described problem aims to solve a scheduling problem, whose target
is to minimize the date when the last product will be delivered to the
client. Also, as stated before, the checking and departing processes are
viewed as a machine each. Moreover, there are a set of constraints to
take into account. These constraints state that the machines are not
allowed to work with more than one job at the same time. Also, all
jobs must be executed only once. Besides that, there is a precedence
list that must be respected. That precedence list enables a job to be
processed in machine 2. The mathematical model of this formulation
is presented next.

The term F2 means that there are two machines in sequence. The
terms (prec, rj, qj) mean that there are three classes of constraints ap-
plied, which are: the precedence, the release dates, and the delivery
times ones, respectively. Finally, the Dmax term refers to the objective
function, which minimizes the latest date a client receives its products.

Moreover, the (F2|prec, rj, qj|Dmax) can be described as follows.
Consider a set J1 = {1, . . . , n} of jobs to be processed on the first
machine M1, which correspond to the clusters to be processed at the
first machine. Likewise, consider a set J2 = {1, . . . ,m} of jobs to be
processed on the second machine M2, which correspond to outgoing
trucks to be loaded at the loading process. The processing time of a
job j at a machine i is denoted by pij, which corresponds to the time
for processing a cluster at the M1. The precedence constraints imply
that for each job (truck) j ∈ J2 is associated a nonempty set Sj ⊆ J1

such that j can only be processed in M2 after all clusters belonging to
Sj have been processed in M1. Furthermore, it considers the delivery
time dj for each job j ∈ J2. It corresponds to the time required to
deliver the job j ∈ J2 to its final client. The delivery time data refers
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to the time spent in transit. As a reference, the reader may consider
that the delivery time is related to the time spent from the factory
location to a range of destinations, such as another European country
or even a country in North Africa.

So, the problem consists of finding a sequence of clusters in J1 to
be processed in M1 and a sequence of the jobs in J2 to be processed in
M2 to minimize the maximum date when a client receives its job. In
other words, the target is to minimize Dmax, which is equivalent to the
latest time that one client receives its products.

So, it is proposed a time-indexed model, which is based on a time-
discretization of the planning horizon into a set T = {0, . . . , h} of
periods. Time-indexed formulations have been shown in the litera-
ture to be likely to provide better LP-relaxation bounds than other
formulations for scheduling problems, see [Cota et al.(2016), Souza &
Wolsey (1992),Van den Akker et al. (2000)]. Continuing, it is defined
two binary variables: xjt (resp. yjt) assumes value 1 if a job j ∈ J1

(resp. j ∈ J2) starts its processing in M1 (resp. M2) in period t ∈ T ,
and 0 otherwise. Also, the integer variable Dmax, which is the maxi-
mum time when the last client receives its products. The proposed ILP
formulation for that version of the (F2|prec, rj, qj|Dmax) is presented
as follows:

minDmax (7.1)

h−p1j∑
t=0

xjt = 1 ∀j ∈ J1 (7.2)

h−p2j∑
t=0

yjt = 1 ∀j ∈ J2 (7.3)

h−p2j∑
t=0

tyjt −
h−p1k∑
t=0

(t+ p1k)xkt ≥ 0 ∀j ∈ J2,∀k ∈ Sj (7.4)

∑
j∈J1

t∑
s=max (0;t−p1j+1)

xjs ≤ 1 ∀t ∈ T (7.5)

∑
j∈J2

t∑
s=max (0;t−p2j+1)

yjs ≤ 1 ∀t ∈ T (7.6)

Dmax ≥
h−p2j∑
t=0

(t+ p2j + dj)yjt ∀j ∈ J2 (7.7)
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xjt ∈ {0, 1} ∀j ∈ J1,∀t ∈ T, t ≤ h− p1j (7.8)
yjt ∈ {0, 1} ∀j ∈ J2,∀t ∈ T, t ≤ h− p2j (7.9)
Dmax ∈ Z+ (7.10)

The objective function (7.1) minimizes the time of reception of the
last job. It is equivalent to the biggest value possible of (t+p2j+dj)yjt,
in which t represents the initial processing time of the job (j ∈ J2).
Constraints (7.2) (resp. (7.3)) state that each job j ∈ J1 (resp. j ∈ J2)
has to be started exactly once atM1 (resp.M2). In other words, one job
must be processed only once by either the machines. The precedence
constraints (7.4) ensure that a job j ∈ J2 cannot be processed at M2
before all jobs in Sj have been completed at M1. Further explanation
could be find in figure 7.2. Constraints (7.5) (resp. (7.6)) state that
machine M1 (resp. M2) can handle at most one job at any time period.
Consequently, the M1 and the M2 are not able to process more than one
job at the same time. Next, theDmax value is established by constraints
(7.7). The Dmax value represents the makespan of the delivery time.
Lastly, constraints (7.8), (7.9) and (7.10) define the domain of the
variables.

7.3 The Lagrangean Relaxation

The proposed method to get the (F2|prec,rj, qj|Dmax) problem solved
is the Lagrangean Relaxation (LR). The LR is applied to the previous
ILP model. The precedence constraints (7.4) that couple the scheduling
on machines M2 and M1 are relaxed in the LR approach. Figure 7.2
illustrates a scheduling, which is not feasible to constraints (7.4).

1 2 3 4 5 Time: 

M1 

M2 

T = 5 
Machine 

Figure 7.2: Scheduling violating the precedence constraints 7.4.
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In this example, job 1 (J11) processed byM1 begins its processing at
t = 0, so, x10 = 1, and job 2 (J21) processed byM1 begins its processing
at t = 1, so, x21 = 1. Considering S1 = {J11, J21} as the predecessors
of job 1 (J12) processed byM2, it can only start its processing at t = 4.
However, in this example, J21 begins its processing at t = 3, y13 = 1,
and not at t = 4 as expected, violating the precedence constraints.

Let λjk ≥ 0, j ∈ J2, k ∈ Sj, be the Lagrangean multipliers associ-
ated with constraints (7.4). The Lagrangean multipliers are equivalent
to the dual variables associated with each relaxed constraint placed
in the objective function, see [Vanderbeck & Wolsey (2010)]. If a job
is scheduled in M2 before one of its predecessor has been completed,
the objective function will be penalized in the Lagrangean subproblem
L(λ) as follows:

L(λ) = minDmax+
∑
j∈J2

∑
k∈Sj

λjk

h−p1k∑
t=0

(t+ p1k)xkt −
h−p2j∑
t=0

tyjt

 (7.11)

s.t. (7.2), (7.3), (7.5), (7.6), (7.7), (7.8), (7.9) and (7.10).
The subgradient algorithm is used to solve the Lagrangean dual

max{L(λ) : λ ≥ 0}. The resulting model allows decomposing the
Lagrangean subproblem into one smaller subproblem L(λ)x in M1.

Notice that the subproblem L(λ)x is the total weighted completion
time scheduling problem on one machine. The completion of a job
k ∈ J1 is weighted by the sum of penalties applied on all jobs to be
scheduled on M2, which have job k among their predecessors. Setting
w1
k = ∑

j∈J2:k∈Sj
λjk, k ∈ J1, subproblem L(λ)x is written as follows:

L(λ)x = min
∑
k∈J1

w1
k

h−p1k∑
t=0

(t+ p1k)xkt (7.12)

s.t. (7.2), (7.5), and (7.7).
Subproblem L(λ)x can be solved by the weighted shortest processing

time first rule, in which jobs are sorted in decreasing order of w1
k

p1k
. The

proof is stated in [Pinedo (2016)]. So, an UB can be inferred based on
the jobs sequenced on the M1 because it is possible to calculate the
release dates of the jobs on the M2. The UB is discussed next.

In order to obtain a valid UB for the (F2|prec, rj, qj|Dmax) prob-
lem, let x̄kt, (k ∈ J1; t ∈ T ), be an optimal solution of subproblem
L(λ)x for a given value of the Lagrangean multipliers.

On the one hand, considering a schedule on M2 that the starting
time tj of each job j ∈ J2 satisfies tj ≥ maxk∈Sj

{∑h−p1k
t=0 (t + p1k)x̄kt}.

Consequently, that schedule is viewed as a feasible solution and pro-
vides an UB for the (F2|prec, rj, qj|Dmax) problem.

137



“output” — 2019/9/23 — 6:34 — page 138 — #158

On the other hand, the problem defined in the last paragraph is
viewed as the Total Weighted Completion Time Scheduling Problem on
one machine with release dates, which is a NP-Hard problem [Lenstra
(1977)]. Thus, it is proposed a Lagrangean heuristic that consists of
solving the subproblem L(λ)x inM1, for a given value of the Lagrangean
multipliers. Later, the approximation algorithm proposed by [Phillips
et al. (1998)] is applied to the resulting problem with release dates in
M2.

In the first step, the approximation algorithm allows preemption
to get an optimal schedule with the remaining weighted shortest pro-
cessing time first rule. In the second step, jobs are nonpreemptively
scheduled in the same order of their completion times. The algorithm
produces, in O(n) time, a nonpreemptive schedule. The produced non-
preemptive schedule increases the total weighted completion time by a
factor of 2, at most, regarding a preemptive schedule. As a result, a
UB is obtained.

After computing the UB, a valid LB value is required to run the
subgradient algorithm. As said in chapter 2, the subgradient algorithm
is responsible for solving the LR procedure. So, the goal is to obtain
the biggest LB value possible for each iteration of the subgradient al-
gorithm. In this problem, a LB value corresponds to a solution that do
not consider the constraints 7.6, which are relaxed. These constraints
regard to the availability of the M2. As a result, the M2 is able to pro-
cess more than one job at the same time. Afterward, a relaxed value
of the Dmax is necessary, which means a valid LB. The Dmax can be
evaluate as the biggest term of (rj + p2j + dj)yjt, j ∈ J2, in which rj
represents the initial processing time of the job (j ∈ J2). Note that
the M2 availability is not viewed as an issue. The relaxed Dmax is
computed following a rule that is introduced next.

To calculate the date a client will receive its products, the first step
is to assign a minimum release date rj value for each job j ∈ J2, which
is defined as rj = ∑

k∈Sj
p1k. Then, it is added to the rj value the

respective processing time in the M2 (p2j). Next, it is summed the
delivery time required to deliver the products the client’s location (dj).
Afterward, the computed values are sorted in a decreasing fashion. As
a result, it is assigned the biggest value found to the Dmax variable.

Notice that it is equivalent to the relaxation of the constraints (7.6).
Additionally, constraints (7.4) were maintained to compute the released
dates. In this sense, the computed value is a valid LB. The figures 7.3
and 7.4 depict examples of valid UB and LB solutions, respectively.

Therefore, notice that the complete formulation of the subproblem
L(λ) (equation 7.11) was not used to execute the LR because the ob-
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Dj6 

Cluster A Cluster B Cluster C 

j1 j2 j3 

j4 j5 j6 

M1 

M2 

Delivery 

Rd j4 Rd j5 | j6 UB  

Dmax 

Rd Dj4 Rd Dj5 Rd Dj6 

Dj4 

Dj5 

Figure 7.3: An Upper Bound solution example. The red triangles represent
the release dates for each job. Furthermore, the green triangle represents
the UB value.

jective function of the Lagrangean dual was not completely considered
to obtain the bounds. Instead, the sequence calculated on M1 was con-
sidered. So, this work took advantage of the LR and the subgradient
method structures to obtain valid UB values.

Moreover, the LB values were computed following a greedy rule
based on the three components: (i) the minimum release date regard-
ing each job j ∈ J2; (ii) the processing time in the M2; and (iii) the
delivery time. Afterward, both UB and LB values were introduced to
the subgradient algorithm to pursuit its convergence. In this sense,
that approach may be referred to as an adaptation of the LR method.
The figure 2.1 illustrates the conditions to the method achieves the
optimality.

7.4 Experiments

In this section, the computational results on random instances are pre-
sented as follows. The instances are divided into two groups: (i) small
processing-time jobs, and (ii) long processing-time jobs. In the first
(resp. second) group processing times are drawn from the uniform dis-
tribution between 1 and 10 (resp. 10 and 100). The number n of jobs
in J1 is set to 5, 10, 20, 40, and 60, and the number m of jobs in J2 is
set to 0.6n, 0.8n, n, 1.2n, and 1.4n.

The set Sj of predecessors of a job j ∈ J2 is a random subset of
J1 with cardinality |Sj| drawn from the uniform distribution between
1 and (n − 1). In the following tables, an instance is identified by
n − m − np − g, where np is the maximum number of predecessors
a job in J2 can have, and g is the processing-time group. Regarding
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Cluster A Cluster B Cluster C 

j1 j2 j3 

Dj5 

Dj6 

M1 

M2 + 

Delivery 

Rd j6 Rd j5 

Dj4 

LB Dmax 

j4 

j5 

j6 

j2 j3 

Rd j4 

Cluster B Cluster C 

Figure 7.4: A Lower Bound solution example. The red triangles represent
the release dates for each job. Furthermore, the green triangle represents
the LB value. The figure depicts how the minimum release date (Rd) is
computed for each j ∈ J2. Notice that the placed jobs are not necessary
processed at the same time in M1. The figure illustrates how to compute
the release dates for each job j ∈ J2, concerning its precedence list in M1.

the delivery times, it is calculated in terms of the uniform distribution
between 100 up to 1,000 and from 1,000 up to 5,000 for elements of
Group 1 and 2, respectively. The reader may interpret each slot of
time as 10 minutes in the real world. Moreover, the author believes
that this set of data represents quite well the studied processes and its
variability, as well.

Table 7.1 summarizes the structure of the generated instances. The
first column shows the instances’ Groups. The second and third columns
show the possible values for the number of jobs in J1 and J2, respec-
tively. The fourth and the fifth columns show the uniform distribution
intervals from which |Sj| and the processing times are drawn, respec-
tively. The sixth column refers to the time spent in transit to deliver
the products to the final clients. The last column shows the identifica-
tion, where one instance is generated for each value of m in the second
column.

The experiments were carried out on the Operational System Cen-
tOS 7.x x86_64 with 27 compute nodes, 720 cores, and 7.4 TB of
RAM as the maximum capacity. It is noteworthy that only one node
was applied to proceed with the calculations. As a result, none parallel
approach was used. Moreover, the programming languages C and C++
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G n m |Sj | pj dj Identification

5 3-4-5-6-7 U(1,4) U(1,10) U(102, 103) 5−m− 4− 1
10 6-8-10-12-14 U(1,9) U(1,10) U(102, 103) 10−m− 9− 1

1 20 12-16-20-24-28 U(1,19) U(1,10) U(102, 103) 20−m− 19− 1
40 24-32-40-48-56 U(1,39) U(1,10) U(102, 103) 40−m− 39− 1
60 36-48-60-72-84 U(1,59) U(1,10) U(102, 103) 60−m− 59− 1
5 3-4-5-6-7 U(1,4) U(10,102) U(103, 5, 000) 5−m− 4− 2
10 6-8-10-12-14 U(1,9) U(10,102) U(103, 5, 000) 10−m− 9− 2

2 20 12-16-20-24-28 U(1,19) U(10,102) U(103, 5, 000) 20−m− 19− 2
40 24-32-40-48-56 U(1,39) U(10,102) U(103, 5, 000) 40−m− 39− 2
60 36-48-60-72-84 U(1,59) U(10,102) U(103, 5, 000) 60−m− 59− 2

Table 7.1: Summary of the instances.

were used with compiler GNU GCC, and CPLEX 12.6.8. was used to
solve the ILP models.

So, the first results reported concerns to the ILP model experi-
ments, which is solved through the software CPLEX with a time limit
of 7,200 seconds. Tables 7.2 and 7.3 show the results for the instances
which CPLEX obtained lower and upper bounds within the time limit.
Also, these tables show the Lagragean Relaxation’s results regarding
the same instances and metrics

The results related to the Group 1’s instances are presented in table
7.2. Next, the results related to the Group 2’s instances are presented
in table 7.3. Then, tables 7.2 and 7.3 present the following data for
each instance: a instance’s identification, the final upper (UB) and
lower (LB) bounds obtained within the time limit, the percentage gap,
and the time in seconds. The Linear Relaxation bounds are presented
in the subsequent table 7.4, along with results for the LR, as well. The
percentage gap is computed as (UB−LB)

UB
. The dash symbol "-" in the

tables means that a method did not finish within the time limit.
Regarding the results, the mathematical model is able to obtain the

optimal solution for 16 instances of Group 1 and only nine instances for
Group 2. Furthermore, the CPLEX was not able to provide neither a
feasible UB nor a LB for the most complicated instances of Group 2. By
contrast, the LR was able to compute valid bounds for all instances.
Indeed, the LB values were verified to be the same as the optimal
solutions in 21 out of 50 opportunities. Moreover, LR’s GAP values
were smaller than 5% in 28 out of 50 opportunities. To conclude,
the maximum time spent by the LR to complete the method was 61
seconds, and it was observed for the most complicated instance.

Furthermore, it is presented two figures that illustrate the applica-
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Group 1 Instances
Integer Model CPLEX Lagrangean Relaxation

Instance LB UB G. Time LB UB G. Time
(%) (sec) (%) (sec)

5-3-4-1 794 794 0 0 794 799 1 0
5-4-4-1 671 671 0 0 671 671 0 0
5-5-4-1 842 842 0 0 842 852 1 0
5-6-4-1 801 801 0 0 801 812 1 0
5-7-4-1 901 901 0 0 901 905 1 0

10-6-9-1 939 939 0 1 939 955 2 0
10-8-9-1 983 983 0 5 983 989 1 0

10-10-9-1 1,002 1,002 0 10 996 1,024 3 0
10-12-9-1 1,001 1,001 0 2 1,001 1,013 1 0
10-14-9-1 906 906 0 0 906 916 1 0

20-12-19-1 926 926 0 28 926 953 3 0
20-16-19-1 962 962 0 24 954 984 3 0
20-20-19-1 1,048 1,048 0 43 1,048 1,125 7 0
20-24-19-1 1,082 1,082 0 51 1,082 1,096 1 0
20-28-19-1 1,100 1,100 0 189 1,1 1,167 6 0
40-24-39-1 1,012 1,012 0 2,332 1,006 1,085 7 0
40-32-39-1 1,096 1,159 5 7,200 1,144 1,266 10 0
40-40-39-1 1,084 1,128 4 7,200 1,092 1,26 13 1
40-48-39-1 1,074 1,146 6 7,200 1,116 1,251 10 1
40-56-39-1 1,051 1,126 7 7,200 1,069 1,155 7 2
60-36-59-1 1,184 1,288 8 7,200 1,233 1,324 7 2
60-48-59-1 1,16 1,505 23 7,200 1,225 1,259 3 3
60-60-59-1 1,194 1,58 24 7,200 1,268 1,381 8 4
60-72-59-1 1,195 1,618 26 7,200 1,289 1,442 10 5
60-84-59-1 1,118 1,100,843 99 7,200 1,283 1,502 14 7

Table 7.2: Results for the ILP model running CPLEX with a time limit
of 7,200 seconds. The GAP is defined as (UB − LB/UB) and represents
by ”G.”. Results depicted for Group 1’s instances. The bolded LB and UB
values represent an instance’s optimal solution.
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Group 2 Instances
Integer Model CPLEX Lagrangean Relaxation

Instance LB UB G. Time LB UB G. Time
(%) (sec) (%) (sec)

5-3-4-2 4,630 4,630 0 1 4,630 4,66 1 0
5-4-4-2 3,222 3,222 0 12 3,222 3,222 0 0
5-5-4-2 3,222 3,222 0 26 3,222 3,305 2 0
5-6-4-2 4,855 4,855 0 26 4,840 4,959 3 0
5-7-4-2 4,954 4,954 0 21 4,954 5,09 3 0

10-6-9-2 5,271 5,272 0.001 7,200 5,221 5,317 2 0
10-8-9-2 4,289 4,289 0 52 4,289 4,289 0 0

10-10-9-2 5,080 5,080 0 3,138 5,080 5,123 1 0
10-12-9-2 4,802 4,802 0 70 4,802 4,865 1 0
10-14-9-2 5,151 5,151 0 157 5,151 5,22 2 0

20-12-19-2 5,398 6,124 12 7,200 5,921 6,003 1 1
20-16-19-2 5,248 5,824 10 7,200 5,697 5,963 4 1
20-20-19-2 5,394 5,726 6 7,200 5,726 6,124 6 2
20-24-19-2 5,313 7,033 24 7,200 5,581 6,201 1 2
20-28-19-2 5,647 7,328 23 7,200 6,067 6,617 8 3
40-24-39-2 5,928 7,941 25 7,200 6,281 7,296 14 6
40-32-39-2 - - - 7,200 6,025 7,132 15 7
40-40-39-2 - - - 7,200 7,296 7,989 9 12
40-48-39-2 - - - 7,200 6,562 8,227 20 15
40-56-39-2 - - - 7,200 7,111 7,976 11 17
60-36-59-2 - - - 7,200 7,349 8,144 10 16
60-48-59-2 - - - 7,200 8,101 9,839 18 34
60-60-59-2 - - - 7,200 7,572 9,609 21 43
60-72-59-2 - - - 7,200 7,150 9,905 28 45
60-84-59-2 - - - 7,200 7,388 10,302 28 61

Table 7.3: Results for the ILP model running CPLEX with a time limit
of 7,200 seconds. The GAP is defined as (UB − LB/UB) and represents
by ”G.”. Results depicted for Group 2’s instances. The bolded LB and UB
values represent an instance’s optimal solution.
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tion of the sub-gradient algorithm when solving the Lagrangean Sub-
problem. The first figure represents a scenario that the optimal solu-
tion was achieved and the other figure represents a scenario that the
convergence was not achieved, figures 7.5 and 7.6, respectively.
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Figure 7.5: The instance G2 | (10-8-9- 2) did converge its LB and UB
values. As a result, both UB and the LB computed are considered optimal
solutions.
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Figure 7.6: The instance G1 | (40-24-39- 1) did not converge its LB and
UB values. As a result, neither UB nor the LB computed are considered as
optimal solutions.

Next, the results obtained with the linear relaxation of the ILP
model are reported. Also, the results based on the proposed La-
grangean Relaxation (LR) are presented as well. The time limit was
set as 7,200 seconds for both experiments.

Table 7.4 shows the results for instance of the Groups 1 and 2. Re-
sults obtained with Linear relaxation are shown from the second to the
third columns and from the eighth to the ninth columns. Moreover, the
LR results are shown from the fourth to the sixth columns and from
tenth to the twelfth columns. The first column presents the instance,
the second column refers to the Linear Relaxation solution, and the
third column presents the computational time in seconds. Then, the
Lower bound of te RL is presented in the next column, following by
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the ratio between both lower bounds found, and finally the LR’s com-
putational time. Afterward, the same structure repeats for instances
of Group 2. The dash symbol "-" in the tables means that a method
did not finish within the time limit.

For both Groups of instances, the results show a common pattern.
The LR provided either equal or better LB result than linear relaxation
for all out of the 50 instances. Also, the CPLEX was not able to
compute a valid LB for the four most complicated instances, which
refer to the Group 2 ones. As a result, LR outperformed the Linear
Relaxation for all out of 50 instances. Furthermore, the LR provided
valid LB for the four most complicated instances. By contrast, The
Linear relaxation was not able to compute valid LB for those instances
within 7,200 seconds of computing time.

As previously mentioned, instances of Group 2 were generated with
longer processing times than those of Group 1, c.f., Table 7.1. As a
result, those instances present a much larger time-horizon, increasing
the number of variables drastically. This fact has a significant impact
on the performance of the methods.
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7.5 Conclusion

In this chapter, a two-machine Flow shop Scheduling problem with
precedence constraints, release dates, and delivery time was consid-
ered. Moreover, the problem’s objective is minimizing the time a client
receives the last job.

Also, an adaptation of the Lagrangean relaxation (LR) approach
was proposed, which presented the best overall results. On the one
hand, the LR has obtained the optimal solution only in three out of 50
instances. On the other hand, the LR outperformed the CPLEX for
the most complicated instances. The LR was able to compute feasible
solutions for all instances within 61 seconds of computing time, which is
remarkable for an applied problem. Even though the ILP provided the
optimal solution for 26 instances, those optimal solutions were achieved
only for the easier instances.

Therefore, the work presents an alternative way for companies that
must schedule their activities in a flow shop fashion. Besides, the ac-
tivities described in that work may be adapted for a range of other
scenarios. As a result, the methodology presented is a contribution to
the companies that must schedule their processes, in particular, in the
outbound area.

As future works, a metaheuristic that provides better UB and LB
should be investigated. It could support to achieve better solutions for
large instances.
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Chapter 8

CONCLUSION

According to the World Economic Forum, the automotive sectors will
receive more innovation in the next 20 years than there has been in
the past 100 years [World-Economic-Forum (2016)]. The author hopes
that this thesis contributes to supporting that affirmative to become
real.

In this thesis, the automotive sector is the main scope. All the
developed methods were done based on that industry. Precisely, the
logistics concepts were considered with particular focus on the in-house
or internal logistics processes of a car-assembling company in Spain.

So, several problems were tackled in this thesis, which regards to
routes calculation and alternatives internal logistics management sys-
tems evaluations. Moreover, Monte Carlo simulations and a discrete-
event simulation (DES) model were developed to consider real issues
the problems assessments. As presented throughout the thesis, the re-
sults were validated by the company’s experts, who found the method-
ology novel and interesting.

So, the developed methods were introduced in this thesis throughout
the chapters 3 to 7. These chapters are summarized in the next section.
Later, final remarks are presented considering this industrial Ph.D.

8.1 Main contributions and future research

Chapter 3 presented the first attempt to optimize a specific logistic
flow inside an assembly workshop of this work. A feasible solution,
or a set of internal logistic routes, was obtained through an Integer
Linear Programming (ILP) model, and its solution was compared with
the current solution through a Monte Carlo Simulation. The proposed
solution achieved excellent performance in terms of the KPIs set by
the company. However, it has some limitation to deal with the orders
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variability.
Chapter 4 is a step further in comparison to the previous one. Here

the orders’ stochastic property is the main issue to deal with. Con-
sequently, the In-house Logistics Routing Problem and a Simheuristic
based on Iterated Local Search (ILS) were presented. These methods
have in common an objective function that aims to minimize the total
of routes applied, the distance covered by those routes and the number
of backorders. Moreover, the new methods were more realistic than the
previous one because the company’s historical orders were considered
individually. As a result, chapter 4 presented a more robust approach
than the previous chapter. However, high levels of backorders was still
observed in the new proposed solutions. Concluding, the results show
that the high number of backorders is related to the current ordering
system procedure, which is based on the logistics operators assump-
tions.

Chapter 5 provided to SEAT feasible alternatives to improve its
logistics activities by reducing the number of backorders. Then, that
chapter conducted an assessment of Internal Logistics Routing Man-
agement (ILRM) systems in a car-assembling company. So, the com-
pany’s current ILRM system was evaluated, and new scenarios were
suggested. The first new scenario considers variables routes using the
current ordering system. The second scenario uses variable routes that
are computed based on the placed orders. Also, an automatic order-
ing system is introduced. The third alternative scenario also considers
variable routes that depend on the demand but using forecasted de-
mand obtained through the Manufacturing Resource Planning (MRP)
system. To evaluate and optimize these scenarios, an ILP model and
an ILS algorithm were developed to calculate those variable routes.
Furthermore, a simulation procedure is presented to evaluate the com-
pany’s current set of routes. Then, a comparison between all scenarios
was executed. From the optimization point of view, the ILS was able to
reduce the total distance covered throughout the considered time hori-
zon, and none backorders were generated. Finally, the advantages and
challenges of each scenario were presented. As a result, this chapter
presented interesting problems in a car-assembly company, proposed
an ILP model and an ILS algorithm, and evaluated a real strategical
case in SEAT company. This proposed methodology can be applied
and extended to any car-assembling company.

Chapter 6’s main goal was proposing a simulation model to evaluate
and analyze the internal logistics activities in the SEAT’s assembly line.
A DES model was developed through the Plant Simulation software as
well as an analysis of the internal logistics in SEAT was performed. So,
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to evaluate the internal logistics flows, two main KPIs were stated by
the company that were: the logistics flows’ performance and the assem-
bly line’s aisles utilization. Moreover, three scenarios were evaluated
based on the following premises: (i) actual system; (ii) introduction
of autonomous vehicles; and (iii) applying a transit flow policy. The
results indicated the main aspects and areas of the assembly line that
contribute to a disruption of the logistics operations and should be
considered to be improved. It was concluded that the proposed DES
concepts could be applied whenever car manufacturer companies need
to evaluate new premises, or even in other industries that rely on as-
sembly lines. In the end, a set of best practices were disclosed for
bench-marketing purposes.

Chapter 7 presents a methodology to support a company in the au-
tomotive business on scheduling the jobs on its final processes. These
processes are: (i) checking the final product and (ii) loading the dis-
patch trucks. These activities are inspired in common procedures found
in the outbound area of any manufacturing company. The problem
faced is defined as the Flow shop problem with precedence constraints,
release dates, and delivery times. The major objective is to minimize
the latest date a client receives its products. The chapter presented a
time-indexed integer mathematical model to compute feasible solutions
for the presented problem. Moreover, a Lagrangean Relaxation proce-
dure was introduced to compute valid Lower and Upper Bounds. The
executed experiments were inspired by the company’s premises. As a
conclusion, the results showed that the proposed methodology was able
to compute feasible solutions for all the instances tested. For the more
complicated instances, the Lagrangean Relaxation approach was able
to calculate better bounds in a shorter computational time than the
Mathematical problem.

Then, back to the research question proposed in section 1.3, which
was: what is the best approach to deal with the in-house supplying routes
design, regarding a car-assembly company scenario? So, as a conclu-
sion, it can be stated that this work presents a suitable approach to
deal with the in-house supplying routes design in a car-assembly back-
ground. Furthermore, the three main objectives stated in section 1.3
were fulfilled. These affirmatives can be verified based on the discus-
sions and results disclosed at each chapter, as well as the company’s
feedback concerning the presented methodologies. As a result, the
main thesis’ contributions are stated based on the research objectives
presented in section 1.3.

• This thesis provides useful methods to be applied to the internal
logistics approach. Indeed, the developed methods are not limited
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to a car-assembly company only, but any manufacturing company
that shares similar concepts.

• A brand-new Vehicle Routing Problems was presented, which is
defined as Internal Logistics Routing Problem (ILRP). The
ILRP fits appropriately to the internal logistics flows evaluation
over a manufacturer company.

• Novel Integer Linear Problems (ILP) formulations were presented.
Those formulation are able to provided optimal solutions for the
ILRP.

• Novel Metaheuristics algorithms were presented. Also,those al-
gorithms are able to provided excellent feasible solutions for the
ILRP.

• A discrete-event-simulation model was developed to tackle the
Internal logistics flows evaluation over an assembly line, which
is an important topic not covered adequately by the literature.
Therefore, a set of best practices for bench-marketing purposes
was presented for those who want to develop DES models centered
on ILFs analysis, as well as a set of managerial insights related
to ILFs in assembly lines that can impact on the efficiency of the
logistics operations.

As a result, this work provides a new methodology to deal with
real manufacturing assembly lines. Precisely, novel applications were
conducted over a car-manufacturing company, as presented before. By
contrast, there are many further opportunities observed and much re-
search to be explored. As a result, future research is presented regard-
ing the chapters’ discussions. Later a final remark is stated in the next
section.

• Future works applied to chapter 4 should explore methods to solve
optimally large instances of the In-house Logistics Routing Prob-
lem, such as the branch-and-cut procedure and lagrangean relax-
ation. Moreover, extensions of the SimILS and the simulation
procedure may be improved by adding a more realistic aspect,
such as the traffic on the assembly-lines, the use of a different
type of vehicles and self-guided automatic vehicle.

• The chapter 5 should be extended by developing methods to solve
optimally large instances of the presented ILP, such as the branch-
and-cut procedure. Likewise chapter 4, extensions of the ILS
and the simulation procedure may be improved by adding a more
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realistic aspect, such as the traffic on the assembly-lines, the use
of a different type of vehicles and self-guided automatic vehicle.

• Extensions of the chapter 6 may concern further applications of
the developed DES, it would be interesting to introduce those
concepts developed for external logistics into internal logistics,
such as drivers’ behaviors. Also, further methods should be in-
troduced to support the company to compute those routes, such
as the metaheuristics developed in chapters 4 and 5 that faces
combinatorial optimization problems. Later, those routes may be
introduced and tested in a similar DES model.

• Related to the last chapter 7, future works may focus on meta-
heuristics that provide better UB and LB. It could support to
achieve better solutions for large instances.

8.1.1 Research in Progress

Besides the future work presented above, there are some practical ap-
plications that have been carried on in parallel to those topics presented
so far. Then, the next paragraphs present the research in progress that
is viewed as extensions of the methodology presented up to now.

So, the research in progress concerns to those applications related
to the warehouse mainly. Precisely, the warehouse’s issues refer to the
aisles’ traffic and the convoys setup mainly.

Regarding the traffic in the warehouse’s aisles, a DES-based model
was developed. That model considers some of the premises presented
in chapter 6, because it executes a simulation under the logistics point
of view, as well as the simulation modeling framework illustrated by
figure 6.3. However, the warehouse is the main area of interest instead
of an assembly area.

The warehouse simulation model (WSM) was developed through
the Plant Simulation software, as the DES model presented in chapter
6. The major interest is to evaluate the current traffic of each aisle.
Also, the main warehouse’s flows were considered. Figure 8.1 represents
the simulation model scheme, in which each process and logistics flow
were introduced.

Afterward, the WSM was executed and its results validated by the
company’s expert. The results were compiled and resume through fig-
ure 8.2. In that figure, the reader may observe the average number of
vehicles that pass through each specific part of the aisles. The graphic
below presents the number of vehicles for each considered part of the
warehouse.
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Figure 8.1: The WHS Simulation scheme. The layout description can be
consulted in figure 8.2.
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Figure 8.2: Warehouse traffic evaluation. The figure represents the ware-
house layout. Each inserted number refers to a specific area of interest. The
chart presents the average number of vehicles that pass through these areas
per hour.
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As a preliminary conclusion, it can be stated that the red aisles
absorb most of the warehouse’s traffic. Indeed, it represents the actual
scenario observed in the practice. As a result, that model can be further
applied by introducing new premises and alternatives to evaluate the
consequences of new scenarios.

Moreover, further studies were conducted to evaluate alternatives
approaches to prepare the convoys in the warehouse. These convoys
are related to the supplying routes discussed in chapter 1. So, the
target is to understand the most suitable procedure to organize the
platforms that receive Larger Containers (LC). Note that there are
different platforms because there are LC with different dimensions.

So, the study’s scope deals with an area called Preparation Area.
That area receives both empty platforms, which come back from the
assembly line, and LC that was extracted from the WHS through pick-
ing processes. The goal is to assign the LC to the right platform as
soon as possible. Consequently, the Preparation Area must receive the
right platforms to receives the LCs. Considering that a limited area is
available, the managers must take into account which set of platforms
is the most suitable one to be placed in the Preparation Zone.

As mentioned, that is a research in progress. On the contrary,
two preliminary results can be disclosed. The first result concerns the
current platforms necessity. Figure 8.3 presents a Pareto chart that
presents the platform consumption, regarding an one-day orders sam-
ple. It is observed that more than 75% of the orders can be allocated
into two classes of platforms.

As a result, it is quite useful to evaluate how these platforms should
be organized for those scenarios presented in chapter 5, which consid-
ers variable routes. Consequently, the figure 8.4 illustrates the plat-
form consumption, regarding a scenario with variable routes and an
automatic-ordering system. That is represented by scenarios three and
four, which were presented by chapter 5.

Next steps could extend the data range from one day to several
days. Also, propose different strategies to allocate those platforms in
the Preparation Area.

Notice that the developed methodologies could be applied in several
applications in the company, which is the target of any industrial Ph.D.
Therefore, a set of measures were taken to promote that integration
between the research and the application. The next section presents
these measures.
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Figure 8.3: The current platforms consumption graph. Note that the Plat-
form code refers to a platform’s dimension over a centimeter basis.

Figure 8.4: The platforms consumption graph. Note that the Platform code
refers to a platform’s dimension over a centimeter basis
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8.2 The Industrial Ph.D. remarks

This thesis is the result of an Industrial Ph.D. So, most of the methods
described in this work should be available to SEAT for further appli-
cations. Also, to explain how this research was conducted during the
three years of the project, a methodology framework was created and
presented to the company. Figure 8.5 illustrates that methodology.

7 3 
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2 

4 6 

8 

Flowchart 

Info. 

Exchange 

Methodology to apply in each process 

1/ To map the current processes/flow  

2/ The Problem Definition 

3/ The Data Collection 

4/ The Mathematical Problem Definition   

5/ The Algorithm and/or Heuristic definition 

6/ The Simulation Model definition 

7/ The Experiments 

8/ The Validation Report 

Figure 8.5: A methodological framework that resumes the approach in this
thesis. Notice that the phases may be connected between themselves.

Regarding the practical point of view, a set of interfaces were devel-
oped to support applications of the methods. In particular, those meth-
ods related to the simulation of an input solution, and the developed
metaheuristics (ILS and SimILS) applications presented in chapters 4
and 5.

These interfaces were programmed through JAVA code, as well as
the Metaheuristics. As a result, the methods were embedded in a set of
interfaces that are viewed as a tool. Consequently, a manual was writ-
ten to provide more information about the tool’s functions. Moreover,
another manual was created to support the creation of further simula-
tion models, based on the concepts and functionalities developed and
described in chapter 6.
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Figure 8.6: An interface to execute the SimILS, ILS and a Simulation pro-
cedure over an input solution. Also a checklist that refers to the required
data.

Figure 8.7: An interface that the users can introduce data by themselves,
such as the convoys’ average speed.

158



“output” — 2019/9/23 — 6:34 — page 159 — #179

Figure 8.8: The last interface from which the user can access the interface’s
manual.
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