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Abstract

NUMERICAL ALGORITHMS FOR THREE DIMENSIONAL
COMPUTATIONAL FLUID DYNAMIC PROBLEMS

The target of this work is to contribute to the enhancement of numerical methods for the
simulation of complex thermal systems. Frequently, the factor that limits the accuracy of
the simulations is the computing power: accurate simulations of complex devices require
fine three-dimensional discretizations and the solution of large linear equation systems.

Their efficient solution is one of the central aspects of this work. Low-cost parallel
computers, for instance, PC clusters, are used to do so. The main bottle-neck of these
computers is the network, that is too slow compared with their floating-point performance.

Before considering linear solution algorithms, an overview of the mathematical models
used and discretization techniques in staggered cartesian and cylindrical meshes is provided.
The governing Navier-Stokes equations are solved using an implicit finite control volume
method. Pressure-velocity coupling is solved with segregated approaches such as SIMPLEC.

Different algorithms for the solution of the linear equation systems are reviewed: from
incomplete factorizations such as MSIP, Krylov solvers such as BiICGSTAB and GMRESR
to acceleration techniques such as the Algebraic Multi Grid and the Multi Resolution Anal-
ysis with wavelets. Special attention is paid to preconditioned Krylov solvers for their
application to parallel CFD problems.

The fundamentals of parallel computing in distributed memory computers as well as
implementation details of these algorithms in combination with the domain decomposition
method are given. Two different distributed memory computers, a Cray T3E and a PC
cluster are used for several performance measures, including network throughput, perfor-
mance of algebraic subroutines that affect to the overall efficiency of algorithms, and the
solver performance. These measures are addressed to show the capabilities and drawbacks
of parallel solvers for several processors and their partitioning configurations for a problem
model.

Finally, in order to illustrate the potential of the different techniques presented, a three-
dimensional CFD problem is solved using a PC cluster. The numerical results obtained are
validated by comparison with other authors. The speedup up to 12 processors is measured.
An analysis of the computing time shows that, as expected, most of the computational effort
is due to the pressure-correction equation, here solved with BiICGSTAB. The computing
time of this algorithm, for different problem sizes, is compared with Schur-Complement and

Multigrid.
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