Chapter 2

Modelization of CFD problems

2.1 Description of the governing equations

The fluid flow and heat transfer phenomena assumed throughout this work can be summa-
rized in the following hypotheses and restrictions:

Two or three dimensional flow structure

e Steady or unsteady flow
e Laminar flow

e Newtonian and incompressible fluid

Constant physical properties

e Buoyancy effect modeled by the Boussinesq’s hypothesis

Neglected viscous dissipation
e Neglected radiation

e Single phase fluid

¢ Single component

A detailed explanation of these hypothesis can be found in any book of fundamentals of
CFD (31, 32, 33]. Under these hypotheses it is possible to cover a wide range of engineering
applications.

The governing equations, i.e. the conservation of mass, momentum and energy equations
give us the tools necessary to deal mathematically with these applications. These equations
are written in differential form as:

¢ Conservation of mass (continuity equation)

VoV =0
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e Conservation of momentum (Navier-Stokes equations)

v ~ 1 25 4 =
5;+V(Vov)-—;vp+uv V +§B(T - To)

e Conservation of energy

+P(VoT) = Sver 4 5T
pCp pCp

93

The solution of these equations reports a detailed information of the fluid-flow variables
involved in the phenomena of study: the velocity V = {u,v,w}, the pressure P and the
temperature T'.

Since the geometry of the domain of study has a strong influence in the pattern flow, it
is suitable to choose the coordinate system which represent this pattern better. By doing
8o, generality is gained for the development of successive sections.

2.1.1 Cartesian and cylindrical coordinate systems

The governing equations are represented in two orthogonal coordinate systems: the cartesian
{z,y, 2} and the cylindrical {r, 6, 2} (see Fig. 2.1).

A )

z z

de

dy

Figure 2.1: Coordinate systems: cartesian (left) and cylindrical (right).

Hence, the representation of the governing equations in the cartesian coordinate system
leads to:

e Conservation of mass or continuity equation

Ou Ov 6 Ow

b‘;+%+5=0
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e Conservation of momentum in z direction

au+u%+v@+w@=—l@ [62u g:;; 62u]

E E ay Ep P oz +gz,3(T TO)

Conservation of momentum in y direction

LR BN 1 u[&+@+&]
ar Yoz Oy 9z pody 2 Oy? 022

+ gyﬂ(T - To)

Conservation of momentum in z direction

ow ow ow ow 190P Pw 82w Pw
E'F 5z +’Ua—y'+ B2 ——pa [3232 ay2 ] + 9.8(T — Tp)
¢ Conservation of energy
or ar  or T T T T
E'}'U'a—'f"va'f'waz pcp[6x2+6y2+ ]+ST

They are all summarized in the so called convection and diffusion equation [32] for the
cartesian coordinate system as:

¢  Oup  Ovp  Owp . [¢ 0% 8¢
67'+6:z:+3y+6z =Ts 3x2+602+6z2 + 5
Where the values of ¢, I'y and Sy are summarized in table 2.1.
Equation ARY) Se
Continuity 1( 0 0
. . . 190P
Momentum in z direction | v | v Y + g:08(T — Tp)
. .. 19P
Momentum in y direction | v | v oo + gy B(T — Tp)
. o 190P
Momentum in 2 direction | w | v Y + ¢,8(T — To)
energy T|Z -Si
P PCp

Table 2.1: Values of ¢, 'y and Sy for the convection and diffusion equation in a cartesian
coordinate system
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The representation of the governing equations for the cylindrical coordinate system leads
to:

e Conservation of mass or continuity equation

10ru 10v Ow _,
rér rdd 08z

e Conservation of momentum in r direction

6u+ 6u+v6u_v_2+w@_
or "ar rod r 8z

18P 0 [(10ru 1% 206v 62u
*;E*”[E(;—ar)*rzw r2aa+a2]+9'ﬂ(T To)
o Conservation momentum in @ direction
» a"+"a"+ v w2 =
or Br r 00 8z

1aP 18rv 182v 28u &
ar 22 T 2o T o2

~or 08 20 T ~ 5 + ] + 908(T — To)

e Conservation of momentum in 2 direction

1 6P d (106rv 1%v 208u &%
‘;37*”[37(:?) 2ot 2aa+a2]+9‘ AT~ To)

e Conservation of energy

or oT  voT or n[la(aT) 1 8T T

e T T T lror ar ) TRee T o

] + St
Analogously as in the cartesian coordinate system, they are written in the convection and
diffusion equation for the cylindrical coordinate system.

?_té_'_larud: Ovg 8fw¢=r¢[lg(%)+ 162¢+62¢]+S¢
roér

wtr o Tt ror) T eee v a2
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with ¢, I'y and Sy values summarized in table 2.2

Equation ¢ | Ty Se
Continuity 1] 0 0
. N 10P v? 2 ov u
Momentum in r direction | v | v oo +9.8(T — Tp) + — Vg V2
. o 10P uv 2 Ov v
Momentum in @ direction | v | v ~5 5y + 9. 8(T — T) — - + v a9e V3
. o 10P
Momentum in z direction | w | v Y + g.8(T — Tp)
Energy T . &
PCp P

Table 2.2: Values of ¢, I'y and Sy for the convection and diffusion equation in a cylindrical
coordinate system

These equations are written in differential form and all together, they represent a system
of partial differential equations with non linear terms and coupling between variables. It is
clear that no analytical solution is feasible in a general case. Conversely, numerical methods
such as finite differences, finite elements or finite volumes can handle this problem.

2.2 Discretization by finite volume method

The finite volume method is used here because it is easy to understand from the physical
point of view. In this sense, the work done by Patankar [32] for the discretization of the
governing equations and the linking procedure between systems of equations was adopted
and followed.

Firstly, the domain is discretized into a finite number of volumes covering all domain.
The grid defined by this discretization is called the centered grid. At the center of these
volumes, the scalar variables P and T are evaluated. In addition three staggered grids in
each direction of the coordinate system, i.e. the {z,y, z} directions for the cartesian and the
{r, 0, z} directions for the cylindrical, are also used for the evaluation of each component of
the velocity vector V = {u,v, w}.

The integration of these partial differential equations in the respective grid can be briefly
described by means of the integration of the convection and diffusion equation for a general
grid whether it is centered or staggered.

The convection and diffusion equation composed by four terms, i.e. the convection,
the diffusion, the source term and the unsteady term, is integrated in a generic volume
V. Fig. 2.2 shows the geometry of the volume, as well as the faces and distances between
centers of the neighbour volumes.
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Figure 2.2: Coordinate systems: left, cartesian {y,y, 2z} and right, cylindrical {r, 6, z}.

In both pictures, it is followed the same notation. The uppercase letters {P,W, E, S, N, B, T}

represent the values of the variable ¢ at the center of volumes whilst the lowercase letters
represent the values at faces f = {w, e, s,n,b,t}.

Therefore, the resulting integrated convection and diffusion equation is expressed in
algebraic form as

)%
E(er-h) +
Fed’e - Fwd’w +
Fnd’n - Fsd’s +
Figo— Fopp =

De(¢E — ¢p) ~ Duw(dp — ¢w) +
Dy(éNn — ¢p) — Ds(dp — ¢s) +
Dy(¢r — ¢p) — Do(¢pp — éB) + SpV
where Fy and Dy are the convective and diffusive transport coefficients respectively of the
variable ¢ at face f with surface Sy

S
Fy = (puS)f, Dy = (F—A—>
!

The algebraic equation for a given volume P can be solved to find the variable ¢ at its

center ¢p.

It is worth noting that this equation contains also the variables of its neighbour volumes
¢NGB- Values of variables at faces ¢y are evaluated by interpolations of second order of
accuracy or using higher order schemes that consider the closest values at centered points

and the Peclet number at face f.

The deferred correction [34] is one of these approaches.

i
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The set of coefficients of the resulting algebraic equation has the following structure

apyedp + Z aNGB,¢PNGB = bpphi
NGB

where

aw,y = DyA(Pey)+ Fymaz(F,,0)
agy = DeA(Pe.)+ Femaz(—F,,0)

as,¢ = DsA(Pes) + Fsmx(Fs,O)
ang = DnA(Pey)+ Fymaz(—F,,0)
apy = DyA(Pep)+ Fymaz(F,0)
ary = DiA(Pe;)+ Fymaz(—F;,0)

_ p)
@P0 = A7

\%

apg = —(awg+agg+ase+ang+apg+arg)+pi

v
bpg = pr-0p+ SV

where A(Pey) is a scheme function whose argument is the Peclet number. Further details
of these implementations may be found in Patankar [32] and others [33].

The integration of the convection and diffusion equation for all volumes at all domain
leads to an algebraic system of equations for a single variable ¢.

By doing so for the momentum equations at each direction and in the respective stag-
gered grid and the energy equation in the centered grid, an amount of four algebraic systems
of equations is obtained.

apyup + Z GNGBuUNGB = bpu
NGB

apyvp + E GNGBwYNGB = bPy
NGB

apwwp + Z ANGBwWNGB = bPw
NGB

apTlp + Z anGB,rINGB = bpT
NGB
Where the subscript P represent a generic point of the domain but into their respective
grids.

Regarding these systems, the right hand side of the first three systems of equations
contains the pressure gradient, the temperature effects over the density, i.e. the Boussinesq’s
hypothesis, and the source term derived from the cylindrical coordinate system on their
respective directions.

Pg — P,
bpy = _LA__EV" +SuVu = —cu (Pr — Pp) + SyVu
e
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Py - Pp

bP,v = —T'—Vv + Squ = —Cv (PN - PP) + SvVv
- P
bP,w = —%t—ev‘” + SV = —cw (PT - PP) + SwVuw

Where V,, V, and V,, are the volumes for each staggered direction.

For the resulting four systems of equations, it is said to have a coupling between the fluid-
flow variables V = {u,v,w}, T and P. The first three systems give the velocity components
under the assumption of a pressure field, whilst the last one gives the temperature field.
Therefore, the complete solution of the problem, i.e. the solution of the pressure P, would
require an additional system of equations.

2.2.1 The SIMPLE-like algorithms

For the above three systems of equations that represent the momentum equations in each
direction, a field of pressures P* has to be guessed in order to solve the velocities say V*.
This is written as:

aputp+ Y aNGButNGp = —cu (Ph — Pp) + SuV
NGB

apyvh + D anNGBuNGE = ~Co (Pir — PB) + SuVs
NGB
* * * *
apwWp + Z ANGBwWNGB = —Cw (PT - PP) + Suvw
NGB

Since the velocities evaluated with momentum equations satisfy only the momentum, there
is no guaranty about continuity. In this sense, the continuity equation serves to introduce
the correction values of velocities V.

V=V +V

Moreover, it is necessary to evaluate the right value of the pressure P. This is carried out
by the addition of a pressure correction P’.

P=pP*'+P

If the correction of the velocities V" is set in function of a pressure correction rate AP’ such

that
up = up + up = up — dy (Pg — Pp)

up =up +p = vp - dy (P  P)
wp = wp + wp = wp — dy (Pr — Pp)

The substitution of these expressions in the respective algebraic systems of equations under
the assumption that the V* values satisfy each equation, the following systems of equations
in V/ and P’ are obtained.

1 1 / ’
aputip+ ¥ GNGBuUnGE = —du (PE - Pp)
NGB
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apyvp + Z aNGB,vU;VGB = —d, (PI'V - P,',)
NGB
apwWp+ Y GNGBwWNGE = —du (P T — P, P)
NGB
For a first approach of d,, d, and d,, the neighbour summation of each system can be
neglected yielding to
Cy Cy Cw
dy = — ) dy, = - ) dy = —
apy apy ap,w
This approach has been named SIMPLE [32]. A much better improvement is SIMPLEC [35]
wich considers the neighbour summation.
Cy Cy Cw
dy = - , dy=-— , dy=—
apu — 3 NGB ONGBu apy — 2 NGB NGB,y aPw ~ 2 NGB ONGBw
Finally, the values of pressure corrections P’ are obtained from the continuity equatign
by substitution of the velocities V' by the guessed velocities V* plus the corrections V'
expressed in terms of the pressure corrections.
Integrating the convection and diffusion equation for ¢ = 0 there is the continuity
equation:

PUueSe — PuywSw + punSn — pUsS, + pwSt — pwpSp = 0
where the velocities at faces are
Ue = up|, — dul, (P& — Pp) = u¢ — dul, (P& -
n = Upl, — dul, (Py = Pp) = v — dol,, (Py -
wy = wp|, — dul, (PTI‘_PIIJ) = w; — dul, (Pil‘—
Substituting these velocities in the continuity equation leads to
p(ui — dul. (Pg — Pp))Se = p(uy — duly, (Pp— Piy)) Suw +
p(vn~ dul, (Pv = Pp))Sa — p(v; — dol, (Pp— Pg)) S, +
p(wi — duly (Pr—Pp)) St — p(w; — duly, (Pp - Pp)) S, =0
The arrangement of terms of V* to the right hand side gives the so called pressure
correction equation.

)

)
)

S

app Pp + Z anee,p Pygp = bp

NGB
Where
aw,pr = DyA(Pey)+ maz(Fy,0)
agp = D.A(Pe.)+ maz(—F,,0)
as,pr = DsA(Pe;)+ max(F;,0)
an,p = DpA(Pey)+ maz(—F,,0)
app = DyA(Pep)+ maz(F,0)

arpr = DiA(Pe) + maz(-F,0)
ap,pr ~(aw,pr + ag,pr +asp +anp +app + ar,pr)
bpr = puySuy — pucSe + pU; Sy — P Sn + pwpSp — pwr S
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Solving this system of algebraic equations the desired map of pressure corrections P’ is
obtained. With it, the pressure and velocities are corrected satisfying both criteria momen-
tum and continuity.

Finally, the system of equations for the temperature is solved with the corrected veloci-
ties. By doing so iteratively, the coupling between all variables V, P and T is achieved. The
coupling of the segregated systems is summarized in the so called SIMPLE-like algorithm
(see Alg. 1).

Algorithm 1 SIMPLE-like

start with k=0
V(k), Pk), T(*)
do
new iteration k =k + 1

guess fluid flow variables
V* = V(k—l), P* = P(k_l), ™ = Tlk-1)

evaluate coefficients of Navier-Stokes equation using: 17*, P, T
(%) k) _
SOIVG aP’uuP + ZNGB aNGB,uuNGB - bP,u
k k
solve aP,vvga + 2 neB aNGB,vvgvg:B = bpy
k k
solve ap,ww;.) +2 NGB aNGB,wwgvg:B = bpu
evaluate coefficients of continuity equation using: V)
! (k ! (k
solve app Pr") + 3 yepancs.p Pagy = bpp
correct the velocity and the pressure
VE) = Pk 4 o V'(R)
Pk = pk) 4 qpp'(¥)
evaluate coefficients of energy equation using: vk
k k
solve ap’TTI(;. ) + ZNGB aNGB,TTI(VC)JB = bp,T

until (mass, momentum and energy conservation)

Notice that the velocities and pressures are underrelaxed with ay, ap for convergence at
time of the correction step. Typical values of these parameters are ay = 0.5 and ap = 0.8.

2.2.2 Time marching algorithm

The algorithm outlined below enable us to evaluate all variables for a given instant of time
T, 8ay V7, P™ and T™ under the initial conditions at previous time step 7 — Ar. This
algorithm so called time marching [32] is carried out advancing in time until arriving at the
steady state of all variables.

This algorithm completes the full simulation from an initial state which originates an
unsteady state and the evolution to a final steady state. The full algorithm (see Alg. 2)
including the time marching and coupling of systems is written down.
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Algorithm 2 SIMPLE-like plus time marching

start with 7 =0
vT, P, T
do

new time step T =7 + AT

start with k=0
f/’(k) = f/"r—A'r’ P(k) = PT—AT’ T(k) = TT-Ar

do

new iteration k =k +1
guess fluid flow variables
V* = k-1 pr = pk-1) 7+ = 7lk-1)
evaluate coefficients of Navier-Stokes equations using: 17‘, pP* T*
(k) & _p
solve apyup’ + 3 NGBANGBuUNGE = bPu
solve ap,vy) + Xngp WNGBYigp = bPo
solve ap,wwgf) +> NGB aNGB,ww%% B = bpPw
evaluate coefficients of continuity equation using: 148
! ! k
solve appPR” + Y ngpaysp pPros = bpp
correct the velocity and the pressure
V&) = V&) 4 o, V' (R)
pk) = pk) 4 qppP'*)
evaluate coefficients of energy equation using: A
k) rnk k k k
solve a§>,2_rT}(> )+ Y NGB aSv%.'B,TTI(vc):B = bg,}_,
until (mass, momentum and energy conservation)
VT =V®, pr=pk 77=7k

until (steady state of all variables)

2.2.3 Calculation of the time step

In previous sections a spatial Az,Ay, Az and temporal A7 discretizations of the CFD
problem were supposed. Since the formulation is fully implicit, there is no stability criterion
that needs to be met in determining the time step A7. However, in order to model the
transient phenomena properly, it is necessary to set A7 at least one order of magnitude
smaller than the smallest time constant in the system being modeled. A good way to
judge the choice of A7 is to observe the number of iterations SIMPLE-like algorithm needs
to converge at each time step. The ideal number of iterations per time step is 10-20. If
SIMPLE-like algorithm needs substantially more, the time step is too large. If SIMPLE-like
algorithm needs only a few iterations per time step, A7 may be increased. Frequently a
time-dependent problem has a very fast startup transient that decays rapidly. It is thus
often wise to choose a conservatively small A7 for the first 5-10 time steps. A7 may then
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be gradually increased as the calculation proceeds.

At glance, a conservative approach [36] to A7 for implicit methods is obtained from an
explicit criteria based on the Courant-Friedrichs-Levy condition (CFL) and applied to all
ijk point of the domain:

. lul | v, |wl 11 1 \]
Ay < mingi <[-A—; + Ki =+ Az +2u AL + Ay + A2

The physical meaning underlying this expression is that, the time step A7 has to be small
enough to take account of variations of fluid flow due to the convection and diffusion effects
produced in small regions of dimension V = Az x Ay x Az.

2.3 Boundary conditions

In previous section, the time marching algorithm and the set of initial conditions were
described and they closed the problem in the temporal direction. With respect to the
spatial directions, the problem is constrained by the boundary conditions. Due to the
importance of the discretization of the boundary conditions this section is reserved.

2.3.1 Dirichlet and Neumann conditions

The first kind of boundary conditions to be treated is the Dirichlet boundary condition. It
sets a prescribed value ¢ to the variable ¢ at fixed points P of the domain.

dlp=¢

An example of this condition for viscous flows is the non-slip condition V.,,,,u = 0 that
appears in wall bounded viscous flows (see Fig. 2.3).

_—]
Illimmmmmm

wall

Figure 2.3: Velocity profiles and non-slip boundary condition at wall due to the viscous
effects.

This condition is added to the rest of equations of momentum in their respective direc-
tions as
ulwall =0, v|wau =0, 'wlwall =0
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If the problem has inlets the value of the velocity at these entrances is prescribed with either
a fixed value or a velocity profile. For thermal problems, some regions of the domain can
be fixed at a prescribed distribution of temperatures.

leall = T

In general, the Dirichlet condition is translated into an algebraic expression and included
within the rest of the algebraic equations in order to close the system. The set of coefficients
that represents this condition are

app=1, bpy=¢, angBe=0

The second kind of boundary condition i8 the Neumann boundary condition. It is
associated to the numerical treatment of the phenomena where the derivative of the variable
¢ is prescribed. Let P be a point of the boundary of the domain, the prescription with a
value gy is written as

o9
oz

P

For example, the free-slip condition or the null derivative of velocities should be fixed at
outlets, where the structure of the flow remains constant downstream. For instance, a fully
developed channel flow should consider this condition written as

ov

| =0

outlet

For wall bounded domains and due to the non-slip condition, a zero pressure gradient at
the pressure correction equation is set.

aP )

oP aP

—| =0, =—| =0
9 |s 9 |n
aP )

Fe R = el

For thermal problems, Neumann conditions describe heat fluxes (e.g. adiabatic walls).

or
oz

=q-
w

See Fig. 2.4 for a schematic representation of the points involved in the discretization of the
adiabatic wall condition.
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lN
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Figure 2.4: Adiabatic wall at west face of a domain.

Analogously to the Dirichlet condition, the Neumann condition is translated to an alge-
braic expression and included within the rest of algebraic equations and closing the system.
For instance, let us to specify an adiabatic wall condition in the west face of a square box
domain. The adiabatic wall condition is mathematically expressed as:

rr

Oz =0

w

Using the Taylor’s series the derivative is expanded and truncated to the first term.

aTr
—Fa_a:

Tg - Tp _

=-T Az

w

0

And rearranging terms it yields
apr=1, agr=-1, bpr=0, angBT =0

Discretization of these boundary conditions with higher accuracies [37] are out of scope
of this work.

2.3.2 Periodic condition

For those problems where the discretization is done in the cylindrical coordinate system,
there appears a spatial periodicity condition in the angular direction §. That implies a con-
nection between the variables at the beginning and end of the angular coordinate. Fig. 2.5
shows graphically this connection.
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Figure 2.5: Periodicity in the angular direction 6.

Where
¢N,n = ¢P,n+1 = ¢P,1

¢s,1 = ¢pPo = PP

There are two ways to implement these conditions and to close the system of equations.
The first one is simply adding explicitly the periodicity by including the two previous
expressions in the system as follows:

6=n+1, apg=1, bpy=¢p1, angBe =0

0=0, apy=1, bpyp=0dpn, ancBes =0

A similar treatment [38)] is also used in cartesian coordinate systems for periodic and
antiperiodic boundary conditions where an inlet flow is given by the outlet flow.

The second one is considering implicitly the periodicity in the solver and then no ad-
ditional algebraic equations are needed. This implicit treatment of the periodicity will be
discussed in the next chapter.

2.4 Stopping criteria for a simulation

An important issue in a simulation is the stopping criteria. The stopping criteria have
mainly to cover two issues: the coupling and the transition to the steady state.

The first one is the coupling between the velocity field V, the pressure P and the
temperature T at each time step. For this purpose, after the correction of velocities (mass
balance satisfied), the balance of momentum of each component of the velocity field and
the balance of energy must be guaranteed.

The measure of the conservation of the momentum and energy is summarized into a
global value by joining all balances previously normalized and non dimensionalized. The
normalization adopted in this work is based on the 2-norm || - || of the residual r(*) at a
given iteration k of each algebraic system.
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Rewriting each algebraic systems of equations for their respective variable ¢ = {u,v,w, T}

for a given k iteration, there are:
AR = pB) () = plk) _ ARy, ()
AR yE) = pB) _y (R) — plk) _ A(R)y (k)
AR k) = pkR) _y p(B) — p(k) _ g(K)yy (k)
Agf)T(k) _ b(Tlf) N 7.¥=) - b(T'f) _ Agf)T(k)

where A((:) is the matrix of coefficients, ¢*¥) the variable expressed as a vector and the right
hand side b‘(:) another vector, all of them at iteration k.

The normalization and nondimesionalization, say coupling(k), is evaluated by

k
. (k) '|7"§>)||2
coupling,”’ =
p(k)
(165" 1l2

The addition of all of these quantities is the overall criterion of coupling of the systems for
a given time step t.
ccrupling(") = ccrupling,(f) + coupling,(,k) + couplingt(f) + co'uplinggc )

Another coupling criterion based on the mass balance may be used rather than the
described above. The reason is that the coupling among systems is strongly affected by the
velocities and pressure. Hence the guarantee of the continuity (after the correction step) for
each volume and in overall is an enough criterion to ensure the coupling among all variables.

The normalized mass balance based coupling criterion may be written as

VoS, — s, + s, — s, + pus, — ™ s,)2
couplz’ng(k) = J
> ik PV
AT

The second issue is the transition of the fluid flow from the unsteady state to the steady
state. After the steady state there is no need to continue evaluating the variables at new
time steps. Therefore a simply comparison of each variable in two close time steps is enough
to decide if the steady state is achieved. For a given variable ¢ evaluated at time step 7 the
steady state steadyf» is measured as follows:

ik |97 — ¢7AT|
2ijk 071
where | - | is the absolute value of the quantity between bars.

Since the steady state of the fluid flow is achieved when all variables have arrived at the
steady state, all measures in a single value are joined:

steadyg =

steady” = steady;, + steady, + steady;, + steadyr
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Once evaluate both measures coupling(¥) and steady™ the stopping criteria for numerical
simulations is fixed in the following values:

coupling(") <1075, steady” < 1073

These values have been chosen experimentally in order to guarantee the numerical coupling
of variables at each time step and an estimated situation of the steady state. Higher values
of the coupling criterion may not ensure convergence of the pressure correction system or
produce inaccurate field solutions. And higher values of the steady criterion may stop a
slow fluid flow transition, for example in natural convection phenomena. Conversely, smaller
values of the steady criterion may never stop the algorithm. The numerical perturbations of
the algorithm and solvers masquerade the steady fluid flow state, and hence, the sensibility
of the criterion cannot detect that the simulation has already reached the steady state.
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2.5 Nomenclature

Other symbols
A discretization matrix S surface of CV
a coeff. in A 1% volume of CV
b discretization right hand side
CV control volume Subscripts
S specific heat B neighbour at the bottom
D diffusion coefficient b CV face between P and B
d coeff. of the pressure diff. term E neighbour at the east side
F flow rate through the CV face e CV face between P and E
f general face N neighbour on the north side
g gravitational force NGB  general neighbour grid point
P pressure n CV face between P and N
Pe Peclet number P central grid point
q net flux S neighbour on the south side
T residual, radial coordinate s CV face between P and S
S general source term T neighbour at the top
T temperature t CV face between P and T
Vv fluid flow velocity vector w neighbour at the west side
{u,v,w} fluid flow velocity components w CV face between P and W
{z,y,2} cartesian coordinates
{1', 0, Z} cylindrical coordinates Superscripts

(k) k-th iteration
Greek symbols T time value
J¢] thermal volumetric expansion coeff. guessed value
A general width of a CV ! correction value
Ar r-direction width of CV - prescribed value
Az z-direction width of CV
Ay similar to Ax
Az similar to Az
AT time step
Ad similar to Ax
r general diffusion coeff.
K thermal conductivity
€ precission
I dinamic viscosity
v kinematic viscosity
P density
¢ general dependent variable
T time
0 angular coordinate
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