Chapter 4

Parallel linear solvers

4.1 Introduction

The reliability of the engineering community on CFD is growing due to the ability to solve
complex fluid flow and heat transfer phenomena with accuracy and within a reasonable
elapsed time. During the past decade, the increase of the speed of processors and memories
has contributed to the reduction of this time, and hence, it has enabled to afford large
engineering problems. However, while the complexity of such problems grows, the improve-
ments in processor technology become physically limited. For that reason, only parallelism
is able to boost performance significantly and to deal with long time and large memory
consuming problems.

4.1.1 Hardware for parallel computing

Among the different architecture types derived along the past two decades, only a few of
them have become nowadays the commonly used machines for scientific computing.

Following the classification of computers introduced by Flynn (1972), the most recent ar-
chitectures fit into the SIMD (Single Instruction stream/Multiple Data stream) and MIMD
(Multiple Instruction stream/Multiple Data stream) categories. The term stream relates
to the sequence of data or instructions as seen by the machine during the execution of a
program. However, it was not until the early to mid 1980s that machines conforming to the
MIMD classification were available commercially. At this point, it is worth distinguishing
between two MIMD categories, shared memory and distributed memory MIMD computers.
The shared memory machines are considered to be tightly coupled, whilst the distributed
memory machines are regarded as loosely coupled and employ the relatively slow message
passing approach. See [56] for a comparative study of various computers.

More recently and following the development of distributed memory computers, there
is an increasing interest in the use of clusters of workstations [57] connected together by
high speed networks. The trend is mainly driven by the cost effectiveness of such systems
as compared to large multiprocessor systems with tightly coupled processors and memories.

Although the numerical algorithms presented throughout this work are developed for
any MIMD machine, the validation and measures of performance are carried out only for
distributed memory machines. A Cray T3E with 32 tightly coupled processors and a 32 PC

71

72 4. PARALLEL LINEAR SOLVERS

cluster with fast ethernet based network are used for the numerical experiments. Further
details of these computers may be found in the appendix.

4.1.2 Parallel programming models

The two basic models used in parallel computing are the Single Program Multiple Data
(SPMD) model and the Multiple Program Multiple Data (MPMD) model. For our pur-
pouses, i.e. CFD problems, the model most commonly used is SPMD. In this approach,
each processor p runs an identical program but only computes on its own data data,. To
do so, the whole data or computational domain is distributed over all the processors, say
np. For CFD problems, the distribution of data is done via domain decomposition, as it
will be described later on. Furthermore, since the communication of data among processors
may be necesary, each processor knows who is it and who are its neighbour processors nbgp.
Hence, the SPMD model is written in Alg. 19 as follows.

Algorithm 19 SPMD model

get a processor, an identification number from 1,...,np : p
set the neighbour processors: ngb,
get a portion of data from the np-partitioned domain: data,

compute on data,
communicate with ngb,

This model enables the programmer to write the same or different operations (both
computations and communications) for each processor. This depends on the parallelization
of the operations.

For example, the matrix-vector product, say y = Az, where A,z and y represent the
whole computational domain is partitioned into np subdomains containing the data: Ay,
zp and yp for p = 1..,np. In order to perform the global product, each processor performs
its own subproduct and exchanges data with its neighbour processors ngb, where needed.
Since all processors does the same this operation is summarized with independence of the
processor in Alg. 20.

Algorithm 20 SPMD example: y=Ax

get a processor, an identification number from 1,..,np : p

set the neighbour processors: ngb,

get a portion of data from the np-partitioned domain: data,
Ap=partition(A, np)
zp=partition(z, np)
yp=partition(y, np)

exchange data with processors ngb,

evaluate the matrix-vector product with the p-portion of the domain

Yp = Apzp

4.1. INTRODUCTION 73

Although Alg. 20 will be explained in detail later on, it is executed at each processor
doing more or less all processors the same, and hence, taking similar timings. However, this
fact depends on the load of processors in both the computation and communication sense.
It is worth noting that a significative delay among processors would produce bottlenecks.
Hence, in order to ensure the high efficiency of the parallel algorithm, a few synchronizations,
like barriers, must be introduced in strategic points and for all processors. By doing so, the
processors drop the continuously unbalanced load that may arise during the computation
or communication of several, say k, consecutive steps. The synchronization points are
introduced implicitly in the communication steps such as the represented in Alg. 21.

Algorithm 21 Synchronization of computation and communication

computation (1)
communication + synchronization (1)

computation (2)
communication + synchronization (2)

computation (k)
communication + synchronization (k)

More precisely, the communication is composed by an exchange of data followed by a
synchronization. At the exchange step, there is a pair of send and receive processes from
processor p with the neighbour processors ngb,. Once a processor has finished these tasks,
it waits until the rest have done their respective tasks. This procedure is detailed in Alg.
22,

Algorithm 22 Communication + synchronization

communications of processor p
send local data to neighbour processors ngby,
receive local data from neighbour processors ngby

synchronization with all processors
wait for all processors

MPI implements this algorithm in different manners as it will be discussed in detail later
on.

Although most of the parallel algorithms implemented under the SPMD model do the
same operations for all processors, there are few operations that, for their implementation,
require a hierarchy of processors, and hence, a different set of operations. As an example,
we refer to the master-slave paradigm.

An example of the master-slave paradigm is the following. There is a master processor
(often it is identified with p = 0) which collects the data sent from the rest of processors,
named slaves (for p = 1,...,np). The master carries out a set of operations which are

74 4. PARALLEL LINEAR SOLVERS

considered global operations, and finally, if it is required, the final result is distributed back
to all the slaves. As represented in Alg. 23, there is an idle step for the group of slave
processors while the master is doing its work. Therefore, a synchronization point at the end
of the algorithm must be introduced in order to drop the arising bottlenecks.

Algorithm 23 Master-slave paradigm

if (p=master)
receive local data from p =slaves
compute master operations
send global data to p =slaves
end if

if (p=slave)

send local data to p =master

keep waiting idle

receive global data from p =master
end if

synchronize master and slaves

The inner product of two vectors can be coded as an example of the master-slave
paradigm. Although all processor compute a part of the inner product, namely local in-
ner product, one processor (the master) collects these partial results and compute a global
summation. After that, the master distributes back to the rest of processor (the slaves) the
resulting value. However, there are better implementations of this operation by minimizing
the number of messages and hence, improving the efficiency. Other operations that can be
implemented with the master-slave paradigm are the input(read)/output (write) of global
results from/to a file disk respectively.

4.1.3 Message-passing programming

On these distributed memory machines, the parallel programming model is based on ex-
plicit message-passing programming. The first MIMD machines implemented proprietary
message-passing libraries, basically specifying the sending and receiving messages between
processors and grouped in two categories of communication: the point-to-point communi-
cation and the group communication. Although the concepts of these proprietary libraries
were equal, the no portability between platforms was not considered as ideal. For that rea-
son, research efforts have been conducted to develop portable and standard message-passing
libraries. Currently, the PVM (Parallel Virtual Machine) and more recently, MPI (Message
Passing Interface) are adopted by all of the parallel computer vendors.

Since MPI is becoming de-facto standard for message passing, it has been set for the
implementation and description of the communication subroutines of this work.

4.2. PERFORMANCE MEASUREMENTS OF AN IMPLEMENTATION 75

4.2 Performance measurements of an implementation

Once an algorithm is implemented for the parallel execution the next step is the evaluation
of the parallel performance for np processors. To do so, we compare the wall clock time of
the computation of the parallel implementation, denoted by 7(np) with the wall clock time
of computation of the sequential version, namely 7(1). We call this rapport the efficiency
E(np) of the parallel implementation for np processors.

)

npr(np)
If a parallel implementation with np processes was ideally 100% efficient, it means a np
reduction of the time of computation respect to the computation with one processor. This
reduction is called the speed-up S(np) and it is measured as

)

7(np)

This is the ideal case but under certain circumstances, it is also possible to obtain a super
linear speed-up. This usually occurs when the sparsity of a matrix is exploited on a parallel
architecture or advantageous caching occurs.

It should be noted that there is currently some debate as to which sequential time, the
parallel computation should be compared to. In this work the sequential time has been
evaluated from the serialized version np = 1 of the parallel implementations.

The efficiency and speed-up are closely related and give an indication of how well bal-
anced the computational load is and how the problem scales. In practice, an ideal speed-up
cannot be attained and there are several reasons for this, which are:

E(np)

S(np) = npE(np) =

e Inherent sequential parts
e Unbalanced load

e Overhead of the communication and synchronization

The first item refers to the those parts of the algorithm that may not be perfectly parallel.
For example, the inner product between two vectors and the factorization of a matrix. The
second one refers to a the different distribution of load among processors. For example, the
computational domain may not be equally distributed, or some operations require a master
which performs more tasks than the slaves. These factors may be more or less controlled
by our implementation. However, the major factor that contributes to the decrease of the
efficiency of the parallel implementation is the overhead due to the exchange of data among
processors. Each time a message is sent, an overhead in timing cost is incurred. Therefore, if
these factors are included in the efficiency formula, it is possible to point out the drawbacks
to a given implementation.

For instance, an improved measure of the efficiency is based on an accurate description
of the operations and the time spent in each operation. This is in essence the measure of
the sequential algorithm. For the parallel algorithm, we have to add the time spent in the
communication processes needed in some operations. Then the efficiency is computed as

_ no(1) 7o
E(np) = np(no(np)7, + ne(np)re(np))

76 4. PARALLEL LINEAR SOLVERS

Where n, stands for the number of operations, 7, the time spent in one of these operations,
n(p) the number of communications and 7.(np) the time spent in one of these communi-
cations. Notice that the time spent in the communication process depends on the number
of processors p. More processors means more number of communications n.(np) but the
quantity of data transferred per communication and processor is reduced. Furthermore it
is convenient to express more accurately the time of communication 7, split into two parts:
the proper time of communication when sending a packet of data with size d at 3! rate of
communication and the time of setting up the communication ,.

Te(np) = 75 + Bd

Since the bandwidth 38 and the latency 7, are hardware dependent parameters, the efficiency
would be very different when it is evaluated in either tightly coupled processors or loosely
coupled processors. Introducing these concepts in the previous expression the efficiency
leads to
no(1)7

np(no(p)To + nc(np)(7s + fd(np)))
Having a look at this expression and assuming that n,(1) = npn,(np) in our algorithms,
we see that the efficiency is always less than 100% and it decreasses as np increases. The
number of communications n.(np) increases linearly with np, and although the time of
communication of data 7.(np) decreases because the overall data are better distributed, the
latency remains constant and hence the overall time of communication per process increases.

If we partition our domain with a certain overlapping, the number of operations per-
formed in sequential and in parallel per processor np is different. If we express the number
of operations per process n,(np) in terms of the number of control volumes handled by the
processor nq,(np) multiplied by the number of operations per control volume og,(np), we
get

E(np) =

no(np) = Ney(np)ocy(np)

and substituting it into the efficiency, we obtain an expression with three component effects:
algorithm E,(np), load E;(np) and communication E.(np).

E(np) = E,4(np)Ei(np) E(np)
Where

) = Sy B gy PP = g
no(np

The first effect means the rapport of operations performed in the sequential algorithm
versus the parallel algorithm. For Krylov solvers, we consider an equal number of operations
so this effect is neglected. The second effect takes account of the overlapping ov. Each
processor contains its own data plus an overlapping. However for large scale problems
the overlapping is much smaller than the data contained in the processor so this effect is
reduced. The third effect is the rapport between the amount of work done of computation
and communication per processor. Therefore, the efficiency not only depends on the parallel
implementation but also on the parameters of communication, i.e. the latency 7, and the
bandwidth 3~! which are hardware dependent.

4.3. MODELLIZATION OF THE COMMUNICATION TIME 77

Finally, there is another performance measure so called scalability, which is related with
the computing time of the problem with np and how it increase when increasing in the same
ratio (e.g. doubling) both the problem size and the number of processors. It is clear that, for
an ideal scalability of the implementation, the computing time will remain constant. Hence,
the problem may be scaled by two, four, and so on, by means of 2np, 4np, ... processors.

Thus, the scalability may be computed as

TnpSiZenp
TnpSizey

Sc(np)

4.3 Modellization of the communication time

As mentioned above, the loss of performance of the parallel algorithm depends directly on
the time spent in the communication of data between processors. A low communication
cost is always desirable for high performance computing. The time of communication while
sending a block of data is affected by two parameters the latency or setup time 7, and
the bandwidth or byte transferred rate per second 3~ . The correlation between the time
of communication 7. (given in seconds) and the transferred data d (given in bytes) was
expressed in the first approximation by a linear equation:

Te=Ts + Bd

Indeed, both parameters depend clearly on the hardware (netcards, switch and crossbars)
and the software (operating system, TCP/IP and MP library implementations, compilation
and executing flags). Details about the influence of such hardware and software issues over
the communication performance are out of the scope of this work.

An approximate evaluation of the latency and bandwidth parameters can be done by
sending blocks of data with different sizes, and measuring the time spent in the commu-
nication [56]. This procedure or test is commonly named microbenchmark of the network
because it transfers small data packets that takes short time of communication. Since the
measure of time can be either intrusive or do nor have enough accuracy, the time of commu-
nication is enlarged by returning the same packets of data (i.e. a round-trip of the packets)
and halving the measured time. The test does a thousand of experiments by sampling the
size of the packed data randomly within a range of 0-1MB and measuring the time of the
round-trip. For instance, the type of data transferred is the char, which size in bytes is the
unit.

In order to ensure non overlapped send and receive process which can reduce the time
of the round-trip, the block communication mode is used. Alg. 24 summarizes this test.

78 4. PARALLEL LINEAR SOLVERS

Algorithm 24 Latency and bandwidth parameters

for (sample = 1 to sample < 1000)
set size[sample]=random(0,1000000)
synchronize processors
MPI_Barrier(MPI.COMM_WORLD)
time the round-trip
t0=MPI_Wtime()
if (fmod(rank,2)=0)
MPI_Send(char_send,size[sample],rank+1,..,..)
MPI_Recv(char_recv,size[sample],rank+1,..,..)
else
MPI_Recv(char_recv,size[sample|,rank-1,..,..)
MPI _Send(char_send,size[sample],rank-1,..,..)
end if
t1=MPI_Wtime()
time[sample]=(t1-t0)/2

end for

The MPI_Barrier step ensures the synchronization of the measured times and therefore
reduces the dispersion of results. Furthermore, this test is executed by a wide range of
even numbers of processors 2,4,6,8 obtaining results (see Fig. 4.2) without significative
differences.

This figure shows the linear behaviour of the communication time of the transferred
pack of bytes. The difference of slopes for each facility indicates different byte rates per
second. For the estimation of the slope, the range of large messages (1KB,..,1MB) has been
used. And the inverse of the slope is the estimated bandwidth.

For the estimation of the latency parameter, there are two possibilities. The first one is
taking the time value for a zero pack of bytes. But as mentioned before, time measure may
be inaccurate. In a second approach, a zoom (see Fig. 4.1) near the short transferred pack of
bytes (0,..,1KB) is used with a linear fit regression. The latency parameter is then estimated
for a zero pack of bytes. The different values of latency and bandwidth parameters for both
facilities are summarized in the table 4.1.

Facility | Latency (1) usec | Latency (2) usec | Bandwidth MB/sec
PC cluster 226.98 218.95 10.46
Cray T3E 23.17 21.18 119.98

Table 4.1: Latencies measured (1) and estimated (2) and bandwidth estimated.

4.3. MODELLIZATION OF THE COMMUNICATION TIME

79

5.0E-04

a JFF cluster

cray T3E
A otk

4.0E-04

3.0E-04

seconds
%[]Illllllllll![lllflll]
[

2.0E-04 |-
N o
1.0E-04 F
:-,:tn:u iy R O S 9o by patie dg
1] | | l 1 1] | I i | 1 L l 1 1 1 | '
0.0E+005 250 500 750 1000

bytes transferred

Figure 4.1: Zoom of previous figure near the short transferred pack of bytes.

009F s JFFciuster | s g’;ﬁ
: o cray T3E] £t
0.08 - i a
5 A
- &
0.07 f
0.06 a8
[2) - £
'g N A
5005 ‘gf
8 C
9 0.04 £
0.03F Py
3 s
C &
0.02 r’s
- A
001 &ﬂf & m
- A i oo pomnmE o O
[O oo o SEOEEY S o Co
000*?"'1-’-1"“!111"*”]6”]}11 ':rl"rhuu-; I O T T T |
=70 250000 500000 750000 1000000

bytes transferred

Figure 4.2: Timing results on two facilities the PC cluster and the Cray T3E,

80 4. PARALLEL LINEAR SOLVERS

These values clearly show the great difference of communication performance between
facilities. The low latency and large bandwidth of the Cray T3E explain in part the high
price against the PC cluster.

4.4 Communication modes

The exchange of data among processors can be performed over two different modes of
communication: blocking and non blocking. The blocking communication mode disables
the processors to perform other operations while the communication is being done. Since
the process of sending or receiving the data involves the access to the buffer of memory,
MPI library protects the data by blocking the processor and hence, avoiding the access to
the data for reading or writing. The blocking communication mode among processor p and
its neighbours ngb, for a given buffer of data, say datay, is described in Alg. 25.

Algorithm 25 Blocking communication

send data, to neighbours ngb,
block_send (datay, ngby,)

receive data, from neighbours ngb,
block_receive (data,, ngby)

Since the communications in this mode follow the order of the algorithm, processors
either the sender or the receiver keep idle waiting for completion of the communication
processes, and hence, resulting in poor efficiency. However this mode has an implicit syn-
chronization procedure so it is not necessary to explicitly synchronize the processors after
the ends of the pairs of send and receive processes.

The order of the communication processes among processors has to be considered care-
fully. A very important fact in a bad scheduled communication is the dead lock. It appears
when two or more processors send and receive data in a wrong order. When this happens,
the processors do not understand themselves and keep waiting infinitely for the communica-
tion request. The dead lock may be avoided by organizing the communication in two simple
steps. Firstly, all procesors send their respective data to their respective receivers, i.e., the
neighbour processors. Any order for the senders could be defined. Secondly, the senders
are ready to receive the data from their respective receivers. The dead locks are avoided
by ensuring the existence of pairs of send and receive messages. If not, it will appear to
have an orphan message process (a sender without a receiver or a receiver without a sender)
and thus resulting into a dead lock. The use of tags is convenient for the right schedule of
sending and receiving data.

4.4. COMMUNICATION MODES 81

The other mode of communication to be used in data exchange is the non blocking
communication. Each processor copies the data to communicate x, to another buffer y,.
Then MPI library acts on that data without blocking the processors to perform other
operations on the original buffer. The non blocking communication for the same vector is
described in Alg. 26.

Algorithm 26 Non blocking communication (zp)

copy data from z, into another buffer y,

send data of y, from p to neighbours ngb,
non_block_send (yp, ngbp)

operate over r,

receive data in yp, from neighbours ngb, to p
non_block_receive (yp,ngb,)

operate over rp

synchronize all processes
wait for all

copy data from y, into the buffer x,

However, this procedure could reduce the performance of parallel algorithms due to the
elapsed times of the pre step of copying data from the buffer x, to the buffer y, and, after
the communication step, the post step of copying back the data to the original buffer. In
addition, for large amounts of data, the performance of buffering decreases due to the cache
missings.

Furthermore, the data in z, to be exchanged, e.g. halos and inside blocks, are usually
located in non contiguous locations of the buffer. Therefore the data must be arranged
continuously in the buffer y, before any communication. After the communication is done,
the data contained in the buffer y, must be redistributed to z, in the non contiguous
locations.

In order to see the differences of performance of both modes of communication, a second
test is done. This test (see Alg. 27) shows the performance of the implementation of an
exchanged pack of bytes.

82 4. PARALLEL LINEAR SOLVERS

Algorithm 27 Blocking and non-blocking communication modes

for (mode=blocking to mode=non-blocking)
for (sample=1 to 1000)

size[mode|[sample]=random(0,1000000)
MPI_Barrier(MPL.COMM._WORLD)

t0=MPI_Wtime()
if (mode=blocking)
if (fmod(rank,2)=0)
MPI_Send(char_send,size[mode][sample],rank+1,..,..)
MPI_Recv(char_recv,size[mode][sample],rank+1,..,..)
else
MPI_Recv(char_recv,size[mode][sample],rank-1,..,..)
MPI_Send(char_send,size[mode][sample|,rank-1,..,..)
end if
end if

if (mode=non-blocking)

if (fmod(rank,2)=0)
MPI_Isend(char_send,size[mode][sample],rank+1,..,..)
MPL Irecv(char_recv,size[mode][sample],rank+1,..,..)

else
MPI Isend(char_send,size[mode][sample],rank-1,..,..)
MPL Irecv(char_recv,size[mode|[sample],rank-1,..,..)

end if

MPI_Wait(send)
MPI_Wait(recv)

end if
t1=MPI_Wtime()
time[mode][sample]=t1-t0

end for
end for

Regarding the blocking communication mode, it performs the send and the receive
processes of a given pack of bytes consecutively. It is like the round-trip of the pack described
in the previous test, but the measure of time is not halved.

If the network enables communications among processors in both senses at same time
(i.e. duplex network), a pair of send and receive processes can be done in half of time.
Conversely, the non-blocking communication mode enables one to do this pair of processes
at same time and to wait until it completes the two processes independently.

Like in the previous test, a thousand of experiments with randomized packet sizes of
type char and covering the range of (0,..,1MB) is done.

Due to the duplex network feature, the order of the non-blocking communication pro-

4.4, COMMUNICATION MODES 83

cesses within the algorithm does not affect the communication procedure and therefore
no dead-locks could arise. The scope of the MPI_Wait step is to wait for termination of
comrmunication processes.

The test is carried out, analogously to the previous test, on both facilities PC cluster
and Cray T3E. whose networks are duplex. The results are shown in Fig. 4.3,

020
- o blocking, JFF cluster 8
0.18 |~ o non-blocking, jFF cluster DEQSP
- o blocking, cray T3E e
0.16 < non-blocking, cray T3E &
~ -~ = = - - a
0.14F &
- lﬁﬁ : %c- ©
» 012F o N §
-g [* <
S 0.10F f o ¥ o
@ o &%
_ G
® 008F £ o %
5 el
- -3 0\\ P
0.06 :— ‘9590 (}C-;f o
B P . &
0.04 - égfsf D
- oo
- -6
0.02F 34" o
N #’ oo moo :::LEBD ~
i i " -%ﬂﬁ?‘b%ﬁ] waéi
750000 1E+06

bytes exchanged

Figure 4.3: Blocking and non-blocking communication modes for the PC cluster and the
Cray T3E.

Fig. 4.3 shows that the behaviour of both communication modes are similar in both
machines but at different scales of time. The non-blocking communication of any pack of
bytes is performed more efficiently and nearly at half time of the the time taken by the
blocking communication, The byte exchanged rates (i.e. the inverse of the slopes), for each
implementation and their rapports are given in table 4.2.

Therefore, it is convenient to use a non-blocking commmunication implementation for
those operations where an exchange of information is required such the matrix-vector prod-
uct. For that reason, MPI library provides a set of data types which enables to skip these
pre and post copying steps, and hence, to improve the communication performance.

84 4. PARALLEL LINEAR SOLVERS

modes PC cluster | Cray T3E
blocking (1) MB/sec 5.255 60.321
non-blocking (2) MB/sec 7.889 110.387
rapport: (2)/(1) 0.66 0.54

Table 4.2: Megabyte exchanged rates (MB/sec) and rapports for both modes of communi-
cation on the PC cluster and the Cray T3E.

4.5 Domain decomposition

The most popular approach to solving CFD problems on MIMD architectures whether it
is memory shared or memory distributed is that of the domain decomposition [58]. The
objective is to distribute the computational domain onto a number of processors such that
the work load on each processor is equivalent. The practical application involves the dis-
cretization and the solution of the systems of equations derived in previous chapters on an
equally distributed load per processor. The details of the implementation of the domain
decomposition are given hereinafter from an algebraic point of view.

Most algebraic operations involved in the discretization and solution procedures are
based on the addition, the subtraction and the product of three types of objects: scalars,
vectors and matrices. The implementation of these operations on these objects can be
thought to be performed either in sequential or in parallel. In a one-processor machine the
operation and the storage of objects are done as it is expressed mathematically. However,
in a MIMD machine, the algebraic operations are performed on a part of the objects. The
vector object, for example, is equally distributed as much as possible and stored among all
processors. This equally distribution of objects is stressed to balance the load, and hence,
to obtain a good efficiency of the implementation.

From here on, we shall use subindex for distinct parts of the objects. If we have a np-
processor machine where np stands for the number of processors and object, named o, the
object is partitioned into np objects and stored at each processor. Labeling the resulting
objects from p = 1 to p = np it follows that

o= U 0;

p=1,...,np

An algebraic operation, named for generality &, between two objects = and y is performed
in each process p using only the respective parts z, and y,. The result can be stored in
another distributed object 2.

2=y 2p=2pDYp, p=1,...,np

Thinking this way, it seems easy to implement parallel np > 1 or sequential np = 1 algebraic
operations with distributed objects. Nevertheless, some operations like the inner product
between two vectors or the 2-norm of a vector, the maximum and minimum value of the
components of a vector, and the product of a matrix with a vector involve information
stored in the closest processors or even in all processors. Therefore, this information must

) @

4.5, DOMAIN DECOMPOSITION 85

be copied from these processors, named neighbour processors ngpp to the affected processor
p. This yields to an extra information per processor of the object.

ov # ﬂ Op

p=righp

Hereinafter, we shall call this additional information as the overlapping values ov. Most
operations requires an overlapping of a single point, one line of points or a surface of points
for a one, two or three dimensional object respectively. The implementation of these ideas
to vectors and matrices are developed in next subsections.

4.5.1 Block vector

Let us suppose & to be a vector ohject which maps a d-dimensional domain §2. The partition
of this domain in np parts is carried out in an equally distributed wmanner among the np
processors. Assuining that the domain € is discretized onto a structnred grid of points, the
partition is performed easily following the orthogonal directions. For instance, a vector that
maps a three dimensional domain (see Fig. 4.4) is partitioned in two orthogonal directions
p1 =2 and p» = 3 leading into 6 block vectors xp with p=1,...,np = p; x p2.

P

Figure 4.4: Two dimensional partition of a vector that maps a three dimensional domain.

Let I x.J x K be the overall grid points over the domain €2, the block vector x, maps the
p-part of the domain at least in (f/py) x (J/p2) x K grid points. Notice that, a perfect load
balancing in all directions is considered. An unbalanced partition leads into a generalized
grid size id x jd x kd. Fig. 4.5 shows the mapping of x, with a generalized index ¢, j, k.

86

4. PARALLEL LINEAR SOLVERS

i1,j1.k2 i2,j1k
i1j2.K2 i2,j2.k2
kd
id
ikl 2,41k
id
ij2.kt i2j2k1 i

Figure 4.5: Generalized id x jd x kd partition), of a three dimensional vector z. The index
1,4,k has a range from il, j1, k1l to 42, j2, k2.

The overlapping ov is added in those directions where the information of the neighbour
processors is needed. The blue dashed lines in Fig. 4.6 show the overlapping areas among
Processors.

T - J{
e dan a0
- - = -
e e e s g - Lo e AL _ _
-~ = = g = = |
- S 4 -~
Ak e T s i U
] I o e i U] Lmata®ed | r an
i ¢ 1 i 1 “1) Vo
L]] L] T F] T
1 \ | | i o 1 L I
1 . 1 1 . I "4 |]
o | 1|2 | : JlE | !
3 | ' il 4 i [
11, 1 1]y k |
15 | 1 ' I il 1 L1 1
|
1 i L 4 L i1y H 14 —
] - —— 7 Cr o B -~
[i [2220 |0 1 -, =
1 [N 3 1 i
] 111 § - i = o = —~
P I P 7 S e g
—— e e i, = s om——— - o (E—— Er———
1 e ! o -
B! N i} 1| g e 4]
ey
N | 4

pl/ '
Figure 4.6: Overlapping areas ov for a 2x 3 partitioned vector that maps a three dimensional =
domain.

4.5, DOMAIN DECOMPOSITION 87

The resulting dimeunsion of & generalized x, vector with grid size id X jd X Ad and with
the same overlapping ov in all directions is represented in Fig. 4.7.

i A e ~
S| L S SRR ENTE A R
v ’ |
s | 4 |
7 . N i
v TRIN: L1, b
. | s 7 s
% I
% [’ s
- = = = = = = = - - I
| 4 J
P | | [3}% Ve L |
11g2.k2 12.)2,k2 |
= T L - Iy
| ay ov |
| A _ _ | PN _ i {
. I : ! i i
| y i ! | L
fi I ‘ ‘ | b
I |
1 bk | | oy
[i ! | b
) i ' ! L g
’ oy~ . i T T TT 7
g I ov id kS I I
i * ‘ [p— T
A . it gkl ‘ [iZiLk! p
i id ; 7
| " i el ity Y (LT]T 1S _
| - A |] s
i | 7 ! ;7
| s I I t s
L S1 oA 1 B s
th i1§3.K1 i2J2.k1 Py
7 v
i P I s
TL7 ———————————— ’

Figure 4.7: Overlapping areas ov for a generalized @d x jd x kd partition z, of a three
dimensional vector .

Therefore, the three dimensional vector x that represents the domain) is expressed in
terms of & set of np partitioned vectors x, with a defined size id x jd x kd plus an overlapping
of ov. Ior practical implementation reasons, this overlapping is added to all block vectors
and in all directions whether there are neighbour processors or not.

In order to gain clarity of the algebraic representation of the full vector a, the overlapping
information is omitted yielding to a representation of the vector as follows

= (:I:134E2’ cee za:npflaxnp)

By doing so, it is easy to represent the operations with vectors. For instance, the copy
of a vector x into another vector i is represented by omitting the overlapping as

+1 ()1

L3 Y2

y=x Pt E = K
Tnp—1 Unp—1

Inp Ynp

88 4. PARALLEL LINEAR SOLVERS

However, the implementation of this operation considers the overlapping. Alg. 28 gives
such example considering an overlapping of ov.

Algorithm 28 Copy_vect(zp,yp)

for i =il —ov toi=1i2+ov)
for (j=jl-ovtoj=j2+o0v)
for (k =kl —ov tok=£k2+0v)
yp(iajv k) = zp(i’jv k)
end for
end for
end for

4.5.2 Block matrix

Let A be a N-square matrix such that N = (I x J x K) arises from the discretization of
the governing equations of a CFD problem onto a grid of 7 x J x K points. We represent
the matrix A partitioned by rows as balanced as possible in np blocks of matrices Ay:

A
A
Anp— 1
Anp

Each of these matrices A, contains the matrix coefficients of the linear system Ar = b
associated with the partition p.

A1 I b1
A2 T b2
Aﬂp Tnp bnp

In previous chapter, we described the different patterns of these sparse matrices for a natural
ordering (i.e. the 7-point and the 19-point formulation in a three dimensional CFD problem.
Since a narrowed band of coefficients are non zero, we shall store only the blocks of non
zero coefficients of each partition.

Here, we used the following notation for a one dimensional partition:

Ai A2 O .. T b

Ag,l Az A2,3 0 cee T2 b2

0 e e [N 0 : = .
0 Anp-1mp-2 Amp-1 Anp-1mp Tnp—1 brp—1

O AﬂP;ﬂP" 1 An'p znp bn,p

4.6. EXCHANGE OF DATA BLOCKS 89

Having a look at the structure of this matrix each process p stores two different matrices A,
and Ap g, Where ngbp stands for the neighbour processes of process p. The first matrix
indicates the operations performed with the information stored within the processor p and
the second orne indicates the operations performed with the information stored at neighbour
ProCessors.

IFor a generalized partition in two or three directions, the structure of blocks of matrix
A the linear system is written as follows:

Ay an Angbl Tngb, by
‘4'2) Angbz Lngby b')_
+ . . _
Anp—l Tpp—1 Angb,‘p,l Lngbup 1 bnpfl
Anp B Inp L Angbnp J Lngbnp bn.p

Thus, a set of communications between the processes involved in such operations niust share
the information of the ngb, process to the p process. In the chapter ahead, we shall explain
some issues of this communication between the different processcs.

4.6 Exchange of data blocks

MPI data type has been used to send and receive at once the non contiguous data y, of
a vector xp. MPI data type provides a new type of variables in order to send and receive
blocks of information located in different points of the buffer at once. By doing so, we can
reduce, on one hand, the number of communications and latency, and on the other, the
numiber of cache missings in the buffering processes. A sender processor can explicitly pack
nouncontiguous data into a contiguous buffer and then send it. A receiver processor can
explicitly unpack data received in a contiguous buffer and store in noncontiguous locations.

For sitnplicity, let us suppose that a @, vector has dimensions 4 x4 and the noncoutiguous
data y, has dimensions 2 x 3 (see Fig. 4.8).

4 | 12 i5
3 8 3
2 4 6 7
1 0 1 2 3
L 2 3 4

Figure 4.8: The 4 x 4 z, vector and the 2 x 2 y, data filled in blue. The uumbers written
withiu the z, vector represent the order of data in the buffer.

90 4. PARALLEL LINEAR SOLVERS

A schematic representation of the buffer (see Fig. 4.9) shows the noncontiguous data y,
embedded in the map 1),

cnt=3

ol1]2]3 4@’7 8 | 11 nlmji

. str=4 . str=4

-l

Figure 4.9: Buffer representation of z, and the noncontiguous data y,. The noncontiguous
data follows a pattern of ent = 3 noncontiguous blocks of length 6l = 2 separated with an
stride of str = 4.

Notice that the noncontiguous data follows a pattern of 3 noncontiguous blocks of di-
mension 2 separated with an stride of 4. This information is cnough to construct a new
data type with continuous data by packing the y, data.

This idea has been easily extended to more complex noncontiguous data such as a three
dimensional vectors, with two different munber of blocks with different lengths and strides.
Fig. 4.10 shows a three dimensional iz, vector with dimensions I x .J x K andai x j x k
noncontiguons data yp.

i
X j
o _ I3 s P
ra
i
- g J
- o
| [T 1)
|
— 1
]
k
K
1
1 strl=I, cntl=j, bll=i

ste2=I], cnt2=k, bl2=]

Figure 4.10: Representation of z;, vector and the noncontiguous data yp. The noncontiguous
data follows a pattern of two noncontiguous blocks entq, ents with different lengths by, bly
separated with strides str) and st respectively.

In this case, we apply recursively two data types. The first one has j blocks of length ¢
with an stride of I. The second one put over the first one, has k& blocks of length 1 with an
stride of I.J.

4.6. EXCHANGE OF DATA BLOCKS 91

Finally, the data type implementation over a non blocking communication leads to Alg.
29, used in the product of a matrix by a vector.

Algorithm 29 Update (ov, zp)

set the data type y, for noncontiguous data of x,
data_type (ov, Ty, yp)

send y, data from p to neighbours ngb,
non_blocking send (yp, ngbp)

compute over T,

receive y, data from neighbours ngb, to p
non_blocking_receive (yp, ngb,)
compute over I,

synchronization of all process
wait for all

Further details on data types can be found in MPI documentation available in internet
[7].

The following test measures and compares the communication performance of two pos-
sible implementations of the update(ov,z,) subroutine. Both implementations use the
non-blocking mode of communication which has been tested to be the better. Furthermore,
both implementations perform a copy of values to be exchanged to a buffer and then they
are exchanged. By doing so, it is possible to perform operations with the original values
and exchange a copy at same time. Therefore, this procedure increases the performance of
operations because it overlaps the computation and the communication. A draft (see Fig.
4.11) of the processes shows this procedure.

However the implementation of the buffering process affects this overlapping. The orig-
inal buffer contains the amounts of data in non-contiguous blocks and the copied buffer
must contains the data in contiguous blocks before they are sent to another process. This
process is called packing. Conversely, after the communication is done, the received pack
of data contained in a contiguous buffer has to be unpacked at non-contiguous locations in
the original buffer of the receiver process.

In order to reduce the time of the whole procedure of exchange of data, an efficient
implementation of the packing and unpacking procedures is desired. A first implementation
does an explicit copy of the non-contiguous blocks of data in a contiguous buffer. This
implementation is tedious to implement: dynamic allocations, initializations and copying
data from one buffer to the other. In addition, it may suffer possible overheads due to the
cache missings. This implementation is called simply non-blocking.

92 4. PARALLEL LINEAR SOLVERS

process left process right
original V/§ original
buffer Z§ buffer
.
packing %\\ unpacking
.
2=

f

exchanging

Figure 4.11: Pack, exchange and unpack procedure between two processes

A second and easier implementation use the MPI_datatype to do implicitly the copy
from the original and non-contiguous buffer to a contiguous buffer, thus reporting coding
and time savings. This implicit copy means that only a structure of pointers to the different
locations of the non-contiguous blocks are stored in a MPI_datatype. After that, the MPI
library performs the packing and unpacking processes implicitly and in an efficient way
when the non-blocking send and receive subroutines are called.

Differences of both implementations are tested as follow. A three dimensional halo with
random size in k direction is updated between two processes, left and right. It has been
chosen to vary the k direction instead of ¢ or j since the distribution of non-contiguous
blocks is sparser and may produce more cache missings. See Fig. 4.12 for details of block
data sizes and graphical explanation of the communication process.

4.6. EXCHANGE OF DATA BLOCKS

93

process left process right
K= /
I j
Y
i=ov
B I .

ov ov

send to W receive

right from right

ight
process left process righ
/
ov ov
. send to
receive
from left Ny left

Figure 4.12: Update of ov halo between processes left and right.

w)l

The test is run at PC cluster for three different halos: ov=1, ov=2 and ov=4, which

are often used in the algebraic operations with communications. For each size of halo, two

measures of times are taken. The time of packing and unpacking, called pack, and the time
of communication, called comm. These results and the overall time (i.e. the addition of
these quantities) are presented for both implementations.

94

4. PARALLEL LINEAR SOLVERS

A comparison of all cases is given in Fig. 4.13:

0.16
s | pack+comm, non-blocking
014 B pack+coemm, MPI datatype
0.12 :— 0 E
B @ = [@Jr@j ov=4
01fF | & fgﬁj m F.J]'E‘,E':HJ
| [} ') . T
@ - ﬁr’ {d e O
2 - % (mi= U-J-'I-1= L
§ 0.08F %ﬁigm“ -
i) L O mﬁ% R
0 E Eﬂl’l [h 0 @
ooeﬁ%@i :@3: % f . ov=2
0.04 5] ov=1
0-02§ H
0 : il | I l 1 i 1 4 I 4 L L | I L 1
200000 250000 300000

byles exchanged / ov

Figure 4.13: Comparison of both implementations for all halo sizes.

For each size of halos, the times of packing and unpacking of both implementations are

very different. The details of each case are reported in Figs. 4.14, 4.15, 4.16, 4.17, 4.18 and
4.19.

The efficiency of the MPI_datatype implementation at PC cluster is based on the cache

optimization for non-contiguous blocks when they are packed and unpacked. In addition,
the packing and unpacking processes of this implementation have to be done only once
because it only points to the non-contiguous data. Conversely, in the first implementation,
the packing and unpacking processes are done at cach exchange thus it is an explicit copy.
So the performance of the overall communication is poor.

Although the results of Cray T3E has not been presented here, the difference of both

implementations are not meaningful. We guess that this fact is due to the special cache
built-in the cpu (see hardware issues in Appendix).

4.6. EXCHANGE OF DATA BLOCKS 95

Q.16 »
E] | comm, MP{ datatype, ov=1
0.14 - O pack, MPI datatype, ov=1
N 0 pack+comm, MPI datatype, ov=1
0.12f
0.9 F
u} -
B2 -
8 0.08 —~
m -
@ :
0.06 »
- O
0041+

byles exchanged

Figure 4.14: Update of ov = 1 with MPI_datatype.

0.16 ~
a] comm, non-dlocking, ov=1
014 0 pack, non-blocking, ov=1
N 0 pack+comm, non-blocking, ov=1
o12F
0.1
u} -
i g
O 0.08F
8 B
q’ o
@ [
0.06 |-
0.04 - ’Ei:
o.oabw% el Ii‘mﬁ%@m@@ﬁ
[ﬂl D"“L K] i o J
(B CTTMI Iy IO '”*'ﬂ“’mllm”m
0 200000 250000 300000
bytes exchanged

Figure 4.15: Update of ov = 1 with explicit copy.

96

4. PARALLEL LINEAR SOLVERS

seconds

seconds

0.16

0.14

0.12

0.1

0.04

=

IlIlllgllll!lll[lllllllllllI]IIIIIW!WI'

0.02

0

comm, MP! datatype, ov=2
pack, MPI datatype, ov=2
pack+comm, MP| datatype, ov=2

400000

500000 600000

bytes exchanged

Figure 4,16: Update of ov = 2 with MPI_datatype.

0.16

0.14

0.12

=
o

e
=
=]

a
a

comm, non-blocking, ov=2
pack, non-blocking, ov=2
pack+comm, non-biocking, ov=2

l?’fll]lrllll‘l‘{1llfl1li[IIII]III

i 1] S s ST
i o S e COEOMCS

1 |

o I N o
: _'l'l{_i,.. I

o BT

i @@@D@ﬁa& FEdi

iy f@:ﬁ‘_' iy ..‘ﬂ_' = I

] 1] _
s mmin g

L L | B L1 | I

40

0000 500000 600000

bytes exchanged

Figure 4.17: Update of ov = 2 with explicit copy.

4.6. EXCHANGE OF DATA BLOCKS 97

016
| comm, MP| datatype, ov=4
- 0.14 O pack, MPI datatype, ov=4
O pack+comm, MP| datatype, ov=4
012

o

(=]

[+
1|\IrlrlllTE‘ll\llllI]'lllIllrlllllll

m

800000 1E+06 1.2E406

bytes exchanged

Figure 4.18: Update of ov = 4 with MPI_datatype.

- 0.16
- O comm, non-blocking, ov=4

0.14 D pack, non-blocking, ov=4
z O pack+comm, non-blocking, ov=4

o12F O
= 0 &{@3
- ® B

0.1 B B o ﬁ iy

i § 0.08 % o m%ﬁfp‘l r:I- |
il]] UEE@ Dy "f"rgt‘c s
L @ Q:' H F-:'-;F'-'.r'i; LE =

0.06 %] -',E,:,Ehj; iz
3) I : = e -

o (e

0.04 o B

- 15 M | =
] L B T ,_[EI[U]U_ !

- O) (] ([

0.02F D (0] T
-_ 0 L L L ' L L Il L l . L L [L L

800000 1E+08 1.2E+06

@ bytes exchanged

Figure 4.19: Update of ov = 4 with explicit copy.

98 4. PARALLEL LINEAR SOLVERS

4.7 Algebraic operations with vectors and matrices

Three types of algebraic operations are detailed: those without communication between
processors, so the parallel efficiency is 100%, those operations that combine computation
and communication, and those operations where most part of the job is the communication.

4.7.1 Addition, difference and scaling of vectors

The addition or the difference of two vectors = and y is stored in a third vector z. The
algorithm (see Alg. 30) that represents any of these operations may be written as

Algorithm 30 operation_vect(zp, yp, 2p)

for (i =il toi=12)
for (j = jl1 to j = j2)
for (k =kl tok =k2)
zp(ia ja k) = zp(i’j’ k) + yp(i,j, k)
end for
end for
end for

Another 100% parallel algebraic operation is the vector scaling (see Alg. 31). A vector
x can be scaled by a real value « leading to a vector z.

Algorithm 31 Scal_vect(zp, o, 2,)

for (i =il toi=12)
for (j = jl to j = j2)
for (k = k1 to k = k2)
zﬂ(iaja k) = C!Ip(i,j, k)
end for
end for
end for

Notice that we have not considered the overlapping area in the computation of the vector
2. This fact reduces the number of floating point operations, and it produces a reduction
of time of the computation. Furthermore, it is possible to perform these operations reusing
any vector, e.g., £ = rtz, £ = r+y and x = az, and hence, reducing storage requirements.

4.7. ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES 99

4.7.2 Saxpy operation

The name of the subroutine saxpy [59] comes from the scientific literature and it represents
a composition of two previous types of operations.

z=z+ay

Although it can be implemented in two steps by means of the above algebraic operations,
it has been packed in one step. Alg. 32 also enables the reuse of any vector.

Algorithm 32 Saxpy(zp, @, yp, 2p)

for (i =1l to i =1i2)
for (j = j1 to j = j2)
for (k =kl to k = k2)
zp(i, j’ k) = (Ep('l:,j, k) + ayp(i’ j’ k)
end for
end for
end for

4.7.3 Inner product of vectors

The computation of the inner product of two vectors is one of the most important keys in
the parallel efficiency of most solvers, because it involves a global communication between
all processors. Let

p=<z,y>

be the inner product of two vectors, it is performed in two steps (see Alg. 33). It starts
with the inner product of each pair of sub vectors z, and y, where p = {1,2,...,np}.
The resulting set of np inner products is stored in an auxiliar variable p,. Then a global
sum of these values is performed and shared to all the processors by means of a global
communication, so there is a fraction of time spent on the communication, and hence a lose
of efficiency.

100 4. PARALLEL LINEAR SOLVERS

Algorithm 33 Inner_product(zy, yp, p)

evaluate inner product of vectors z, , yp
pp=0
for (i =il to i =12)
for (j = j1 to j = j2)
for (k =kl to k= k2)
Pp = Pp + xP(i,jv k)yp(iaj’ k)
end for
end for
end for

evaluate global summation of p,
global_sum (py, p)

Notice that Alg. 33 enables to compute the 2-norm of a vector = (see Alg. 34).

The inner product operation contains a global communication that broadcast each sub
inner product to the rest of processors. After that, a sum of all values is performed in each
processor. The implementation of this broadcast plus the summation relays on the MPI
library and it is performed in the MPI_Allreduce subroutine.

Algorithm 34 Norm_vect(zy, p)

compute the inner product of x with itself.
inner_product(zy, Zp, po)

evaluate the 2-norm of =

p=+Po

Since the number of messages and data does not depend on the partitioning configura-
tion, differences of the speed-ups are due to the differences in computation. Therefore, only
the cache missing effects may arise for some configurations for a given case with large size.
For instance, the size of vectors are 20 x 20 x 20, 40 x 40 x 40, 60 x 60 x 60, 80 x 80 x 80
and 100 x 100 x 100.

The test is executed on both facilities, PC cluster and Cray T3E within the range of 1
to 12 processors and for different partitioning directions (see Fig. 4.20).

4.7. ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES 101

z 1 1
¢ 0 1 Ix 1y 2z
x *——9 0 1x2y 1z
2x ly 1z 0
2 3
Oo- 1o Ze— N
2x 2y 1z
4x 1y 1z 0

3x 2y 2z

Figure 4.20: partitioning directions that yield different topologies of processors: (line, plane
and hexahedron) with 2, 4, 6, 8 and 12 processors.

The results are represented in terms of the speed-up in Figs. 4.21,4.22 and tables 4.3,4.4
for PC cluster and the Cray T3E respectively.

102 4. PARALLEL LINEAR SOLVERS
12 s
—a—— 20x20x20 s
M | —=a—— 40x40x40 L7
—a—— B60x60x60 y
101 | 80x80x80 y
gl | —=—— 100x100x100 e
— — — - deal speed-up L7
8 /
s s
E— 7+ ; s]
2 °r 7 AT _____Pi“"‘.“m !
& Sr / g zr""’. 1 E ~8
sk i t
7 g o~ a - 'E
3F) /;{-,ﬁ-“_’_—g_ —
/
il : '
%2 3 4 5 6 7 8 9 10 11 12
np
Figure 4.21: Speed-up for the inner product of 3D vectors in PC cluster.
np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80 | 100 x 100 x 100
1 Ixlylz 1.00 1.00 1.00 1.00 1.00
2 Ixly2z 0.27 1.30 17 1.22 1.85
4 Ix1lydz 0.13 1.63 1.82 3.15 3.38
4 1x2y2 0.13 1.42 2.49 3.09 3.35
6 1x1y6z 0.12 2.00 3.14 4.10 4.71
6 1x2y3z 0.12 2.02 3.11 3.77 4.73
8 Ix1y8z 0.11 2.00 3.30 4.80 5.80
8 1x2y4z 0.11 1.95 3.38 4.72 3.99
8 | 2x2y2z 0.11 1.98 3.55 4.76 5.86
10 | 1x1lyl0z 0.09 1.74 3.41 5.02 6.20
10 | 1x2y5z 0.09 1.73 3.25 5.28 5.99
12 | 1xlyl2z 0.09 1.73 3.75 5.73 5.03
12 | 1x2y6z 0.09 1.71 3.90 5.48 7.29
12 | 1x3ydz 0.09 1.68 3.79 5.68 7.30
12 | 2x2y3« 0.09 1.64 3.60 5.29 7.33

Table 4.3: Speed-np of the inner product of 3D vectors in the PC cluster.

4.7, ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES

103

Figure 4.22: Speed-up for the inner product of 3D vectors in the Cray T3E.

[
- N

—_

speed-up
3*] Lo} E=N [4;] [=)] -l fe-) [1=] Lee]

——

20x20x20
40x40x40
B60x60x60
80x80x80
ideal spaed-up

np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80
1 Ixlylz 1.00 1.00 1.00 1.00
2 1xly2z 1.70 2,23 1.96 1.98
4 1xlydz 2.72 4.14 3.77 3.84
4 1x2y2z 2.70 4.21 3.82 3.88
6 1x1ybz 2.74 5.85 5.32 .66
6 1x2y3z 2.94 5.74 5.47 5.79
8 1xly8z 3.96 7.18 7.28 7.26
8 Ix2ydz 3.85 7.01 7.24 7.46
8 | 2x2y22 3.92 7.47 7.29 7.49
10 | 1xlyl0z 3.08 7.66 7.90 8.71
10 | 1x2y5z 3.23 8.18 8.54 9.10
12 | 1x2yl12z 3.57 8.94 9.36 10.96
12 | 1x2ytz 3.53 9.38 10.01 10.80
12 | 1x3ydz 3.60 0.36 10.03 11.01
12 | 2x2y3z 3.28 9.25 10.09 10.96

Table 4.4: Speed-up of the inner product of 3D vectors in the Cray T3E.

104 4. PARALLEL LINEAR SOLVERS

As stated above, the effect of the partitioning configuration has a slight influence on the
inner product speed-up.

4.7.4 Matrix-vector product

This operation appears in almost all the solver algorithms. Due to the intensive computa-
tional work, it is even used as a work counter in solvers instead of the number of iterations
which involve additional operations but with cheaper work. Moreover in a np-parallel
machine, the matrix-vector product becomes less effective due to the extra work of commu-
nication among the the processor p and the neighbour processors ngb,. The information of
neighbour processors ngb, is previously ”passed” and stored in the mentioned overlapping
areas of processor p and then the operation is fully performed in processor p as

Yp = ApTp + Angb,Tngs,

Indeed the size of the overlapping area plays an important role in the time spent in the
communication processes. Furthermore, the type of formulation defines the sparsity of the
matrix or in other words, the dependencies between the nodes stored in the processor p
and those nodes stored in the neighbour processors ngb,. For a matrix-vector product in
a 5,7,9 or 19-point formulation, it is only necessary an overlapping of one (ov = 1) in the
orthogonal directions of the domain.

Higher order schemes lead to formulations where the overlapping must be higher (ov >
2), and thus, the amount of data passed among processes increases the time of communi-
cation. A generalization of the product of a 7-point formulation matrix with a 3D vector
named mat — vect is written for a given overlapping ov in Alg. 35.

Algorithm 35 Mat_vect (A, zp, ¥p)

update overlapped information of x,
update(ov, =)

evaluate the matrix-vector product
for (i=il—-ov+1ltoi=i24+0v-1)
for (j=jl—-ov+1ltoj=352+0v—-1)
for (k=kl-ov+1tok=k2+0v-1)
yp(i’ja k) = Ag('l.,], k)xp(i’j’ k)+
AR (i, §, K)zp(i — 1,5,K) + AL, 5, K)zp(i + 1,5, k)+
A;(i’j’ k)xp(z’] -1, k) + A;('L,], k)xp(z’] +1, k)+
Ap(3, 4, k)zp(i, 5 k — 1) + A5, 5, K)ap(i, 5, k + 1)
end for
end for
end for

At this point, the above algebraic operations enable us to build more complicate op-
erations. For example, let us show how the residual needed in the stopping criteria for a
7-point formulation matrix is built in Alg. 36.

4.7. ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES 105

Algorithm 36 Residual(Ay, zp, by, 7p)

evaluate the operation r, = Apz,
mat.vect (Ap, Tp,Tp)

evaluate the operation rp = by, — 1y
diff_vect (bp,7p,Tp)

4.7.5 Minimum matrix-vector product size per processor

The following test models the communication and computation timings of the matrix-vector
product. It is designed to show the need of an overlapping of the communication and the
serial local computation within the operation. The matrix-vector operation for both two
dimensional I x I and three dimensional I x I x I CFD problems has been taken (i.e.
5-point and 7-point formulations respectively). The measures of both times, the serial
local computation of the matrix-vector product and the exchange of halos of size ov=1, are
compared for a wide range of size problems.

The measures of the serial local computation timings are carried out in one processor
for different size problems. For instance, the two dimensional problem version is described
in Alg. 37.

Algorithm 37 Serial local computation of y=Ax

for (sample =1 to sample = 1000)
I[sample]=J[sample]=random(1,1000)
MPI_Barrier()
t0=MPI_Wtime()
for (j =1 to j = J[sample])

for (i = 1 to i = I[sample))
y(i,5) = AP(i, j)a(i, 5)
+ Aw(‘t,])x(‘t - 17.7)
+ A°(i,)z(i + 1, 5)
+ A*(i, j)x(i, j — 1)
+ A4, 5)z (3,5 + 1)
end for
end for
t1=MPI_Wtime()
tcomp(sample]=t1-t0
end for

Meanwhile, the exchange of halos is simulated in only two processors for the same range
of size problems and on the assumption that the exchange of halos is in all directions. The
measure of the times while the exchange of the halos of = for the two dimensional problem
is described in Alg. 38.

106 4. PARALLEL LINEAR SOLVERS

Algorithm 38 Exchange of halos ov=1 of x

for (sample = 1 to sample = 1000)
Ifsample]=random(1,1000)
MPI_Barrier()

exchange sides
t0=MPI_Wtime()
exchange(I[sample[*ov)
t1=MPI_Wtime()
tcomm{sample]=4*(t1-t0)

end for

Here, in order to reduce as much as possible the time of communication, the exchange
subroutine transfers the packed data from one processor to another in the non-blocking
mode.

The test is run in both machines PC cluster and the Cray T3E. The time results versus
the size problem are presented in Figs. 4.23, 4.24, 4.25 and 4.26.

If the communication process and the serial local computation process are performed
consecutively (i.e. in non-overlapped fashion), the intersection points for each case define
the minimum estimate sizes of the local problem which a processor could do with a parallel
efficiency of 50%.

Let tcomp(1) and teomp(p) + teomm(p) b€ the sequential and parallel (for np processors)
timings of the overall operation, the efficiency is approximately expressed as

teomp(1) ~ NPLeomp(np)
np(tcomp(np) + tcomm(np)) np(tcomp(np) + tcomm(np))

E(np) =

In the intersection point ¢.omm(np) = tcomp(np)- Therefore

NP teomp(np) 1
E(np) = ==
(np) np(tcomp(np) + tcomp(np)) 2

These points are given in table 4.5:

Problem PC cluster Cray T3E
Two dimensional | 40.000 = (200 x 200) 2.500 = (50 x 50)
Three dimensional | 64.000 = (40 x 40 x 40) | 3.375 = (15 x 15 x 15)

Table 4.5: Minimum estimate size per processor for a parallel efficiency of 50% for the
non-overlapped computation and communication.

Analogously to the previous section, the measure of the speed-up of the matrix-vector
product for a given size problem is obtained by timing the algebraic operation at different
number of processors. The test is executed within the range of 1 to 12 processors in both
facilities PC cluster and Cray T3E. Indeed, partitioning in two or three directions affects

4.7. ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES 107

100;
@ tcomm
T s lcomp
10" -
104
E (=] o 0O oDpDoaoa dmco
.f
S 0F .
[o %
[e) - [
8 - o
» 107 . f
o
= &
- o
"
10° P
10°®
10'7 0\ ‘unu.l‘ J_L!IHIZ‘ JJJIJJ[JIL! “1].‘|J||u|| xnu-uje
10 10 10 10 10 10° 10
N

Figure 4.23: Timings of computation and comrmmunication of a two-dimensional matrix-
vector product in PC cluster.

10°

3 s tcomm
-4 tcomp
10" |
107 =
] -
810 y
s o o e RS L
O | o G 0 o0 G ob e . y
® 10 Pa
3 &
o i
10“‘L— a
10°
F
10-7— T IT] AU B AR BT SSWTETT BEEAENEEIe B ANEEEIT |
10° 10’ 10° 10° 10° 10° 10°
N

Figure 4.24: Timings of computation and communication of a two-dimensional matrix-
vector product in the Cray T3E,

108

4, PARALLEL LINEAR SOLVERS

10015' LR
s a icomm i
u tcomp ‘?"j
10" - f
107
E -] a a a
@ 10°F W
c = ="
o [
8 o "
N 10-‘ = & L
E a
107
10°¢
10’7- L \)JII!I | leJUJ"J 111111J L IJII\III L J\llllll n JlllJiJ
107 10 10 10° 10* 10° 10°
N

Figure 4.25: Timings of computation and communication of a three-dimensional matrix-

vector product in PC cluster.

10°

E o tcomm
- . tcomp
10"
107
-3
g 10°F
c - bt g
Q - B e 4)
[&] - a @
% 104:'—- _l:
05| o
s
10 3
10-77 peennd oo bl
10° 100 10° 10° 100 10° 10°
N

Figure 4.26: Timings of computation and communication of a three-dimensional

vector product in the Cray T3E.

matrix-

4.7. ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES 109

the efficiency due to (1) the different ratios of computation versus the exchange of data and
(2) the cache effects for large amounts of data distributed in few processors.

These effects are analyzed for a set of cases (20 x 20 x 20), (40 x 40 x 40), (60 x 60 x 60),
(80 x 80 x 80) and (100 x 100 x 100) (the last one only for PC cluster).

As mentioned above, the size of all of these cases is over the minimum estimated for the
Cray T3E (15 x 15 x 15) so one may expect efficiencies higher than 50%. For PC cluster,
these efficiencies are expected under the (40 x 40 x 40) size.

The experiment is repeated several times for each number of processors and for each
partitioning configuration. The speed-up for each case is evaluated with the averaged tim-
ings. Full results (all partitioning configurations) are represented in Figs. 4.27, 4.28 and
tables 4.6, 4.7 for the PC cluster and the Cray T3E respectively.

The successive experiments have been computed with a generalized algorithm 39 where
the number of processors, partitioning configurations, and problem sizes are expressed in a
set of nested loops.

Algorithm 39 Performance of operations

for (np=1 tonp=12)
for (partitions = p;, py, p; = 1 to 12, such that p;p,p, = np)
for (size = 20 to size = 100, size=size+20)
for (sample = 1 to sample = 20)
MPI_Barrier()
t0=MPI_Wtime()
evaluate algebraic operation or solve a problem

t1=MPI_Wtime()
time=time + t1-t0

end for

tcomploperation){size][partition][np] = tz2r(r)ze
end for
end for
end for

Where the algebraic operations are the matrix vector product and inner product, and the
solvers are Jacobi, Gauss-Seidel, MSIP, Conjugate Gradient, BiCGSTAB and GMRESR.

110 4., PARALLEL LINEAR SOLVERS

121+
—a— 20x20x20
M= | o 40x40x40
ok —a—— B0x60x60
; 80x80x80
ok j—=— 100x100x100
— — — - ideal speed-up
8 b
a 71
:|; s
% s ’
8_ /
i /
[# =)
s
4= AR
T e S
3 s A
P
2 “/if i
W L —1
L.
0 1 1 1 1 1 1

Figure 4.27: Speed-up for the matrix-vector product in PC cluster.

np | partition | 20 x 20 x 20 | 40 x 40 x 40] 60 x 60 % 60 | 80 x 80 x 80 | 100 x 100 x 100
1 Ixlylz 1.00 1.00 1.00 1.00 1.00
2 | Ixly2z 1.04 1.04 1.90 0.84 1.82
4 | 1xlydz 1.29 1.87 1.10 2.79 2.97
4 | 1x2y2z 0.93 1.13 3.08 3.38 3.50
6 Ixlytz 1.36 2.30 3.42 3.50 3.81
6 | 1x2y3z 0.71 2.09 3.37 3.22 4.57
8 Ixly8z 1.43 2.55 3.03 3.95 4.45
8 | 1x2ydz 0.71 2.33 3.91 3.81 291
8 | 2x2y2z 0.53 2,01 4.33 5.14 6.36
10 | 1xlyl0= 1.52 2.63 4.26 3.74 4.10
10 | 1x2y5z 0.72 2.50 4.62 5.32 4.62
12 | 1x2yl2z 1.51 2,67 4.59 4.80 3.31
12 | 1x2y6s 0.72 2.74 5.04 5.19 6.95
12 | 1x3ydz 0.52 2.31 4.53 6.37 7.48
12 | 2x2y3z 0.37 1.85 4.50 4.47 7.75

Table 4.6: Speed-up of matrix-vector product in PC cluster.

4.7. ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES

111

- =
- N

—
o

speed-up
N 9] i wn (o2 | e] w0

—

——ni—— 20x20x20
— 40x40x40
60x60x60
3 80x80x80
— = — - ideal speed-up

—_——

=

9 10 11 12

Figure 4.28: Speed-up for the matriz-vector product in the Cray T3E.

np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 < 60 | 80 x 80 = 80
1 Ixlylz 1.00 1.00 1.00 1.00
2 1x1y2z 2,12 2.09 1.97 2.02
4 1x1lydz 3.29 3.84 3.74 3.92
4 1x2y24 3.46 4.03 3.31 3.67
] Ixly6z 5.20 5.96 5.30 5.85
6 1x2y3z 4.70 5.78 5.21 5.63
8 lxly8z 7.29 6.42 7.21 7.38
8 1x2y4z 5.47 7.15 6.66 6.83
8 2x2y2z 3.96 6.44 6.79 7.44
10| Ixlyl0z 6.89 8.01 8.29 8.78
10 | 1x2y5z 6.04 8.96 8.12 9.31
12 | 1x2y12z 8.65 9.77 7.98 11.47
12 | 1x2y6z 7.62 10.59 8.93 11.18
12 | 1x3ydz 6.65 10.44 9.84 9.99
12 | 2x2y3z 4.56 8.18 9.06 10.91

Table 4.7: Speed-up of matrix by vector in the Cray T3E.

112 4. PARALLEL LINEAR SOLVERS

Seeing these figures it is stated that for a given size of the problem and number of pro-
cessors, the partitioning configuration is definitively a critical factor on the speed-up. The
reason is that while the time of computation remains constant independently of the parti-
tioning configuration, the time of communication varies strongly. Then the ratio between
the times of computation and communication varies with the partitioning configuration.
This ratio in PC cluster is greater than the obtained in the Cray T3E because the time of
communication of any packet of data is longer in PC cluster while the time of computation
is quite similar in both facilities.

4.8 Parallel performance of solvers

The parallel implementation of these solvers has been tested and the performance, in terms
of the speed-up, is measured for a three dimensional Laplace problem (e.g. the 3D heat
conduction problem) with full Dirichlet boundary conditions. In this test, the stopping
criterion of € = 10~6 has been chosen and analogously to the parallel performance of the
algebraic operations, the different partitioning configurations have been tested in different
sizes of problems: 20 x 20 x 20, 40 x 40 x 40, 60 x 60 x 60, 80 x 80 x 80, 100 x 100 x 100.
For each solver, size of problem number of processors and partitioning configurations, the
test is repeated several times and the timings are averaged.

The test is executed at both computers PC cluster and the Cray T3E. The results are
summarized by means of the speed-ups. Figures and tables for each solver are reported
below.

e For Jacobi solver see Figs. 4.29, 4.30 and tables 4.8,4.9.

e For Gauss-Seidel solver see Figs. 4.31, 4.32 and tables 4.10,4.11.

e For MSIP solver with o = 0.5 see Figs. 4.33, 4.34 and tables 4.12,4.13.

e For preconditioned BiCGSTAB solver see Figs. 4.35, 4.36 and tables 4.14,4.15.
For preconditioned GMRESR(10) solver see Figs. 4.37,4.38 and tables 4.16,4.17.

4.8. PARALLEL PERFORMANCE OF SOLVERS

113

12} j 7
| —8—— 20x20x20 /
HmE | —=s 40x%40x40 L7
10k ——&—— 60x60x60 ,)
: 80x80x80 ’ l]
gl | —=—— 100x100x100 s !
— — — - ideal speed-up , 7 '
8
ST j
-8 el . i o
b
o 5|
% sk A
8
4t . ~<q
3
2 b=
1
0 | I N TN SN N (NN SR S N N I
o 1 2 3 4 &6 6 7 8 9 10 11 12
np

Figure 4.29: Speed-up for the Jacobi in PC cluster.

np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80 | 100 x 100 x 100
1 Ixlylz 1.00 1.00 1.00 1.00 1.00
2 1xly2s 1.32 1.09 2.04 0.94 1.93
4 1xly4z 1.74 2.52 1.39 3.31 347
4 1x2y2z 1.41 1.52 371 3.92 3.78
6 1xlybz 1.77 3.33 4.30 4.28 4.37
6 1x2y3z 1.28 3.28 4.38 3.47 5.21
8 1x1y8z 1.85 3.94 3.63 4.68 5.28
8 1x2y4z 1.26 3.73 5.47 4.46 3.40
8 | 2x2y2z 1.05 3.34 5.77 6.50 7.39
10 | 1xlylOz 1.75 4.12 5.68 4.41 4.72
10 | 1x2y5z 1.24 4.02 6.94 6.79 5.49
12 | 1x2yl2z 1.74 4.03 6.12 6.04 3.72
12 | 1x2y6z 1.23 4.49 8.01 6.11 8.46
12 | 1x3ydz 0.99 3.91 6.94 8.72 9.05
12 | 2x2y3z 0.77 3.42 6.89 5.90 10.04

Table 4.8: Speed-up of Jacobi selver in PC cluster.

114

4, PARALLEL LINEAR SOLVERS

12 ’
— e 20x20x20 7 g
1" 40x40x40 VCalY
—a—— 60x60x60 -
L r = B
10 o 80xB0x80 P
gl 1— — — - ideal speec-up i /,.' [
£
. s
‘{1{-”7’: o
- !/.f‘
g— 7 ey s L
5 T
g 6 %’f
L1} & o
[aR -
@ 5 e
4
3
2
1
0 1 1 1 1 | I 1 1 1)
0o t 2 3 5 6 7 8 9 10 11 12
np

Figure 4.30: Speed-up for the Jacobi in the Cray T3E.

np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80
1 Ixlylz 1.00 1.00 1.00 1.00
2 Ixly2z 1.86 1.95 1.96 1.95
4 lxly4z 3.69 3.75 3.88 3.85
4 1x2y2z 3.78 4.00 3.97 3.80
6 1xly6z 4.62 5.17 5.69 4.67
] 1x2y3z 4,83 5.43 5.82 b.61
8 1x1y8z 6.12 7.37 7.06 7.33
8 1x2ydz 5.62 7.01 6.87 7.51
8 2x2y2z 6.53 7.25 7.76 7.94
10 | Ixlyl0z B.05 8.47 9.13 9.35
10 | 1x2y5= 6.93 8.47 9.44 9.12
12 | 1x2yl2z 8.18 8.51 10.59 10.59
12 | 1x2y6z 7.13 9.41 10.48 10.43
12 | 1x3ydz 6.62 10.14 11.35 10.71
12 | 2x2y3z 5.48 9.52 10.40 10.74

Table 4.9: Speed-up of Jacobi solver at Cray T3E.

4.8. PARALLEL PERFORMANCE OF SOLVERS

115

12 |-
—a—— 20x20x20

M | —a—— 40x40x40
1ok | — & 80x60x60
= B0x80x80

——a—— 100x100x100
- — — — ideal speed-up

speed-up
[%] w £y [4)] [=}] -l [»2] w
T

_---g_____;—g

L
10 11 12

Figure 4.31: Speed-up for the Gauss Seidel in PC cluster.

np | partition | 20 % 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80 ! 100 x 100 x 100
1 1xlylz 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.21 1.07 2.03 0.92 1.91
4 Ix1y4z 1.49 2.32 1.25 3.14 3.35
4 1x2y2z 1.19 1.38 3.54 3.88 3.77
6 1x1y6z 1.42 2.91 4.00 4.12 4.33
6 I1x2y3z 1.06 2.87 4.10 3.48 5.13
8 Ix1y8z 1.47 3.33 3.50 4.67 5.03
8 1x2y4dz 1.62 3.22 5.18 4.34 3.32
8 2x2y2z (.84 2.86 5.29 6.27 7.24
10 | Ixlyl0z 1.33 3.40 4.98 4,17 4.60
10] 1x2ydz 0.98 3.40 6.15 6.87 5.51
12 | 1x2y12z 1.33 3.15 5.16 5.93 3.52
12 | 1x2y6z 0.95 3.73 7.06 9.91 8.13
12 | 1x3ydz 0.78 3.28 6.22 8.28 8.86
12 | 2x2y3z 0.62 2.85 6.13 5.77 9.72

Table 4.10: Speed-up of Gauss-Seidel solver in PC cluster.

116

4, PARALLEL LINEAR SOLVERS

12
——— 20x20x20
11 i 40x40x40
10 —a—— B0x60x60
80x80x80
9 — — — - ideal speed-up
8
Q 7
37 <
5 g
g 5] /4’:/'
a s
[/
)) ;f,E/
£
3 i
2
1
ob—L 1 I Lt
0 1 2 3 4 5 6 7 8 9 10 11 12
np

Figure 4.32: Speed-up for the Gauss Seidel in the Cray T3E.

np | partition | 20 x 20 x 20 | 40 x 40 % 40 | 60 x 60 x 60 | 80 x 80 x 80
1 | Ixlylz 1.00 1.00 1.00 1.00
2 Ix1y2z 1.84 1.86 1.93 1.98
4 1x1ly4z 3.43 3.67 3.80 3.94
4 1x2y22 3.50 3.97 3.73 3.93
6 1x1y6z 4.20 4.93 5.50 4.97
6 1x2y3z 4.42 5.23 5.55 5.76
8 1x1y8z 5.6 6.87 6.75 7.55
8 1x2y4z 5.96 7.01 7.42 7.61
8 2x2y2z 4.97 6.75 6.47 7.73
10 | 1x1yl0z 6.97 7.86 8.67 9.40
10 | 1x2y5z 6.30 7.97 8.89 9.31
12 | 1x2y12z 7.00 7.77 9.91 10.32
12 | 1x2y6z 6.32 9.12 9.84 10.57
12 | 1x3y4z 5.70 9.68 10.62 10.98
12 | 2x2y3z 4.86 8.80 9.80 11.03

Table 4.11: Speed-up of Gauss-Seidel solver at Cray T3E.

4.8, PARALLEL PERFORMANCE OF SOLVERS

117

_- a -
o = N
T I T

speed-up
ho w H L&) [=2] ~J (-] [{+]
|

t

——a—— 20x20x20

——— 40x40x40
—a—— G0x60x60
80x80x80

—a——— 100x100x100
— — — - ideal speed-up

f a—- & -E,f——fﬂ————g

] —

o
o

123456
np

7 8 9 10 11 12

Figure 4.43: Speed-up for the MSIP in PC cluster.

np ! partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80 | 100 x 100 x 100
i Ixlylz 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.10 1.01 1.96 0.85 1.89
4 1xly4z 1.19 2.06 1.22 2.93 3.22
4 1x2y2z 0.85 1.15 3.18 3.46 3.59
6 Ixlytz 1.02 2.06 3.78 3.84 4.07
6 1x2y32 0.77 2.42 3.80 3.14 4.89
8 1x1y8z 1.03 2.79 3.04 3.99 4.78
8 1x2y4« 0.77 2.77 4.49 3.91 2.92
8 2x2y2z 0.60 2.41 4.69 5.43 6.47
10 | Ixlyl0z 0.95 2.78 4.59 3.52 3.92
10 | 1x2ydz 0.73 2.85 5.69 5.85 5.07
12 | 1x2yl12z 0.91 2.57 4.56 4.97 3.16
12 | Ix2y6z 0.69 3.15 6.13 5.14 7.60
12 | 1x3y4z 0.61 2.81 5.52 7.10 8.09
12 | 2x2y3z 0.45 2.42 5.56 4.78 8.62

Table 4.12: Speed-up of MSIP solver with @ = 0.5 in PC cluster.

118

4. PARALLEL LINEAR SOLVERS

12 s y
r —a—— 20%20x20 s
E = 40x40x40 , ’
ok ——i—— B0x60x60 P
; 80x80x80 F
gl | — — — - ideal speed-up 4 L
1 rd -
’ > J,
8 5 P
3 : 1
g 7F o A
'6 / ; / b
b 6 s “ /I] 2 J
o e T
% 5= - = _,-‘.i.-”' }
P
ar T
f’-‘/“ --""’- " 'B— g
3F /j _FEH_____-E,,--" i
2| A
Y
1t r
0] | I N | | S I TR N N |
0 1 2 3 4 5 8 7 8 9 10 11 12

Figure 4.34: Speed-up for the MSIP in the Cray T3E.

| np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x &0
1 Ixlylz 1.00 1.00 1.00 1.00
2 | 1xly2e 1.53 1.74 1.97 1.98
4 | 1xlyds 2.44 3.10 3.63 3.84
4 1x2y27 2.22 3.09 3.61 3.73
6 | lxlybz 2.53 4.04 5.02 4.55
6 | 1x2y3z 2.64 4.11 5.14 5.24
8 | 1xly8z 2.90 5.19 5.86 6.72
8 | Ix2ydz 3.08 5.31 6.58 6.88
8 | 2x2y2z 2.63 5.05 5.97 7.01
10 | 1xlyl0z 3.44 5.75 7.33 8.03
10 | 1x2y5z 3.31 5.40 7.84 8.32
12 | 1x2y12z 3.36 5.33 8.01 8.84
12 | 1x2y6z 3.18 6.88 8.89 9.19
12 | 1x3ydz 3.11 7.13 9.30 10.05
12 | 2x2y3z 2.69 6.70 B.87 9.79

Table 4.13: Speed-up of MSIP solver with o = 0.5 in the Cray T3E.

4.8, PARALLEL PERFORMANCE OF SOLVERS

119

12
1"

10F

—a—— 20x20x20
—8- 40x40x40
——&—— 60x60x60
80x80x80
100x100x100

— — — - ideal spead-up

speed-up
e [4)] 2] ~I »=} w
T

N W

Figure 4.35: Speed-up for the BICGSTAB preconditioned with MSIF in PC cluster.

np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80 | 100 x 100 x 100
1 Ixlylz 1.00 1.00 1.00 1.00 1.00
2 1xly2z 1.40 1.23 1.96 1.02 1.97
4 1xly4dz 1.30 2,58 1.78 3.50 2.91
4 1x2y2z 1.02 1.72 3.83 4.17 3.83
6 I1x1y6z 1.48 3.59 4.48 4,79 4.52
6 1x2y3z 0.93 3.30 4.42 4.38 4.88
8 Ix1y8 1.41 4,22 4.02 5.04 5.48
8 1x2y4z 0.97 3.80 5.85 5.23 3.04
8 2x2y2z 0.82 3.50 5.78 7.15 6.66
10 | 1x1yl0z 1.30 3.78 5.40 5.86 4.48
10 | 1x2y5z 1.01 4.08 6.97 7.56 5.24
12 | 1x2yl2z 1.20 3.91 5.16 7.07 4.10
12 | 1x2y6z 0.84 4.71 7.40 8.33 7.07
12 | 1x3ydz 0.85 4.47 7.24 9.07 7.56
12 | 2x2y3z 0.63 3.52 6.79 7.57 8.82

Table 4.14: Speed-up of BICGSTAB solver preconditioned with MSIP in PC cluster.

120 4. PARALLEL LINEAR SOLVERS

12 ¢
——a— 20x20x20 .

NE | —= 40x40x40 4 1

ok | —=— 60x80xE0 =2 B

| —= 80x80x80 Py ﬁ

gk | — — — - idealspeed-up < ~ 8

3 ¥

q

speed-up

Figure 4.36: Speed-up for the BICGSTAB preconditioned with MSIP iu the Cray THE.

np | partition | 20 x 20 x 20 | 40 x 40 x 40 [60 x 60 x 60 | 80 x 80 x 80
1 | Ixlylz 1.00 1.00 ‘ 1.00 1.00
2 | 1xly2z 1.97 1.71 1.60 1.69
1 | Ixlydz 3.23 3.50 3.95 361
4 | 1x2y22 2.99 3.91 3.43 3.51
6 | Ixlybz 413 5.15 4.70 1.36
6 1x2y3z 3.65 5.07 5.00 5.40
8 1xly8z 4.87 7.05 5.77 6.72
8 | 1x2ydz 471 6.83 7.25 7.65
8 | 2x2y2z 419 6.59 6.11 7.26
10 | 1x1y10z 6.14 7.41 7.90 9.17
10 | 1x2y5z 5.70 7.86 8.28 8.47
12 | 1x2y122 5.58 7.46 9.50 9.12
12 | 1x2y6z 1.85 9.66 9.33 11.12
12 | lx3ydz 5.62 10.45 10.50 10.13
12 | 2x2y3z 4.24 8.67 9.04 10.64

Table 4.15: Speed-up of BICGSTAB solver preconditioned with MSIP in the Cray T3E.

4.8. PARALLEL PERFORMANCE OF SOLVERS

12]

12 ’
e 20X20x20 d
1| G 40XA0X40 L7
ok —a—— BOX60X60 /
: 80x80x80 ’
ok | —= 100x100x100 4
— — — ~ ideal speed-up , %
8= ra
N Fa
3 7L //
'8 6 Ve \\. I
D F Ve - _ HH_"'-\-\.
@ si- ’ -~
s g
' ;ﬂ_‘ 3 " s |
al- P |
¥ - . :_n
L i -
/ S
2f ﬂ—é{ d
I ey oy g
0 I (S I I S N [N T E— —
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.37: Speed-up for the GMRESR preconditioned with MSIP in PC cluster.

np | partition | 20 x 20 x 20 { 40 x 40 x 40 [60 x 60 x 60 | 80 x 80 x 80 | 100 x 100 x 100
1 Ixlylz 1.00 1.00 1.00 1.00 1.00
2 1x1y2z 1.15 1.27 1.94 1.05 1.73
4 1xlydz L.O7 2.30 1.59 3.08 3.22
4 1x2y2z 0.94 1.56 3.06 3.35 3.43
6 1xly6z 1.09 3.07 4.27 3.99 4.04
6 1x2yJz 0.73 2.67 3.95 3.38 4.54
8 1x1y8z (.88 3.18 3.81 4.78 4.82
8 1x2ydz 0.70 3.04 4.58 4.74 3.49
8 | 2x2y2z 0.62 2.81 4.63 7.14 5.55
10 | 1xlylOz 0.80 3.17 4.84 4.26 5.07
10 | 1x2y5z 0.67 3.16 5.64 6.72 5.01
12 | 1x2y122 0.74 3.05 5.13 5.24 3.58
12 | 1x2y6z (.66 3.37 6.72 6.26 7.55
12 | 1x3yds 0.58 3.10 5.87 9.70 7.76
12 | 2x2y3« 0.49 2.77 5.34 5.04 3.02

Table 4.16: Speed-up of GMRESR solver preconditioned with MSIP in PC cluster.

122

4., PARALLEL LINEAR SOLVERS

Figure 4.38: Speed-up for the GMRESR preconditioned with MSIP in the Cray T3E.

—_ ok -
[R]

speed-up

N W s N 8 O

20x20%20
40x%40%40
60x60xE0
80x80x80

ideal speed-up

9 10 11 12

np | partition | 20 x 20 x 20 | 40 x 40 x 40 | 60 x 60 x 60 | 80 x 80 x 80
1 | 1xlylz 1.00 1.00 1.00 1.00
2 1x1ly2z 1.99 2.06 1.98 1.56
4 1xly4z 3.63 3.59 3.90 3.03
4 1x2y22 3.67 3.78 3.52 3.87
6 Ixly6z 4.14 4.91 5.71 3.57
] 1x2y3z 3.59 4.60 5.52 3.98
8 1xly8z 4.34 6.05 6.66 5.65
8 1x2y4z 4.67 6.11 6.93 6.44
8 | 2x2y2z 4.14 5.86 6.20 7.32
10 | 1xlylO=z 4,83 7.00 8.30 7.41
10 | 1x2y5z 5.19 6.96 8.20 6.28
12 | 1x2y12z 5.17 7.09 9.00 7.20
12 | 1x2y6x 4.91 8.06 10.25 7.99
12 | 1x3y4z 4.74 8.22 9.94 10.60
12 | 2x2y3z 4.06 7.74 8.46 7.04

Table 4.17: Speed-up of GMRESR solver preconditioned with MSIP in the Cray T3E.

4.8. PARALLEL PERFORMANCE OF SOLVERS 123

It is shown in these figures that both facilities PC cluster and the Cray T3E have
reported similar behaviours in spite of the differences on their respective communication
networks, being the speed ups in the PC cluster as good as those of the Cray T3E.

An unexpected result observed in these figures is that matrix-vector product’s speed-
ups are worst than Jacobi or Gauss-Seidel’s speed-ups for a given problem size. The reason
may be due to the better computation with communication ratio in solvers. l.e. the
computational load in solvers embeds other operations apart of the matrix-vector product
(e.g. the difference of vectors for the computation of the residual and its norm) while the
additional communication load, (e.g. communication in the inner product) doesn’t increase
as the computational load.

Apart from the Jacobi and Gauss-Seidel solvers, there is a similar degradation of MSIP
solver and MSIP preconditioner based solvers, i.e. BICGSTAB and GMRESR. The degra-
dation increases for the one partitioning direction while the multiple partitioning direction
reduce this degradation. This seems in contradiction with a bigger number of communi-
cation messages for a 3D partitioned domain respect to the 1D partitioned domain. The
reason is that the global ILU factorization, e.g. MSIP, is better represented by local ILU
factorizations in multiple directions.

This fact is also observed in the increment of the number of iterations when the the
number of processors in one direction increases. These numbers have been reported in the
table 4.18 for the case of 100 x 100 x 100, i.e. a linear system of 10% unknowns.

np | partition | Jacobi | Gauss | MSIP | biCGSTAB+prec | GMRESR(10)+prec
1 1x1ylz 6040 3021 634 35 32
2 1x1y2z 6040 3041 666 34 36
4 1x1y4z 6040 3063 700 4] 35
4 1x2y2z 6040 3060 712 35 36
6 1x1y6z 6040 3084 731 33 37
6 1x2y3z 6040 3072 730 38 38
8 1x1y8z 6040 3105 763 34 37
8 1x2y4z 6040 3083 745 41 35
8 2x2y2z 6040 3080 755 38 40
10 | 1x1yl10z | 6040 3127 794 41 34
10 | 1x2yb5z 6040 3093 761 41 40
12 | 1x2y12z | 6040 3149 826 35 40
12 | 1x2y6z 6040 3103 776 41 38
12 | 1x3y4z 6040 3094 770 4] 38
12 | 2x2y3z 6040 3092 772 39 40

Table 4.18: Iterations for the solution of a linear system with 1000000 unknowns.

It is worth noting that the Jacobi number of iterations remains constant and in the
case of the BICGSTAB it also decreases for some partitioning configurations. In order to
represent these numbers, the increment of the number of iterations respect to the sequential
computation have been calculated and given in terms of the percentage in figure 4.39.

124

4. PARALLEL LINEAR SOLVERS

% increment of iterations

100
ool —=—— Jacobi
—a—— Gauss
80 —e— MsIP
70 - = biCGSTAB + prec MSIP
—a-—— GMRESR(10) + prec MSIP
&0
50
40

10+
20
aob—1l 1 P 001)11)
2 3 4 5 8 7 8 9 10 11 12
np

Figure 4.39: Percentage of increment of iterations for the solution of a linear system with
105 unknowns when increasing number of processors.

)

Y)Y Y)

)

4.9. NOMENCLATURE

125

4.9 Nomenclature

discretization matrix
coeff. in A

right hand side

block lenght

block of data

efficiency

unknowns in x-direction
index for x-direction
unknowns in y-direction
similar to ¢

unknowns in z-direction
similar to 1

number of unknowns
number of

number of processors
neighbour processors
operations of
overlapping area
processor identification number
Reynolds number
residual

speed up

stride

measure of time
unknown

auxiliar vector, buffer vector
z auxiliar vector

{z,y,z} cartesian coordinates

S3zrxSCTNmRETe L

R A
S Q 8 Q.

S B

«

Greek symbols

a network latency

B network bandwidth
€ precission

p scalar value

Other symbols

7 — PF seven point formulation
<> inner product

{I-ll2 2-norm of a vector

D

general algebraic operation
Superscripts
(k) k-th iteration

	Chapter 4 Parallel linear solvers
	4.1 Introduction
	4.1.1 Hardware for parallel computing
	4.1.2 Parallel programming models
	4.1.3 Message-passing programming
	4.2 Performance measurements of an implementation
	4.3 Modellization of the communication time
	4.4 Comunication modes
	4.5 Domain decomposition
	4.5.1 Block vector
	4.5.2 Block matrix
	4.6 Exchange of data blocks
	4.7 Algebraic operations with vectors and matrices
	4.7.1 Addition, difference and scalling of vectors
	4.7.2 Saxpy operation
	4.7.3 Inner product of vectors
	4.7.4 Matrix-vector product
	4.7.5 Minimim matrix-vector product size per processor
	4.8 Parallel performance of solvers
	4.9 Nomenclature

