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RESUM 

 

 

 

Les fuites accidentals d'hidrocarburs inflamables en indústries de processos 

químics poden desencadenar greus riscos: explosions, incendis i dispersions de 

núvols de vapor tòxics. Les explosions i les dispersions de gasos poden ferir a 

persones en un radi de danys més gran; tanmateix, els incendis són els 

esdeveniments accidentals més habituals que poden causar conseqüències 

catastròfiques en termes de pèrdues de vida i de propietats. 

En aquest marc, la predicció dels efectes dels incendis pot contribuir 

significativament a identificar les mesures necessàries per eliminar o mitigar les 

conseqüències dels accidents en entorns de processos. Els mètodes semi-empírics 

poden proporcionar estimacions ràpides de la geometria de la flama així com del 

flux de calor rebut a una distància determinada de l'origen de l'incendi. A partir 

d'aquesta informació, es poden implementar sistemes de protecció actius i mesures 

de disseny inherents (és a dir, distàncies de seguretat entre equips) per evitar grans 

accidents d'incendis. No obstant, aquestes es basen en dades empíriques i no 

cobreixen les característiques generals del desenvolupaments dels incendis. 

El modelatge de dinàmica de fluids computacionals (CFD) pot proporcionar una 

visió més detallada dels efectes dels incendis ja que tenen en compte la complexitat 

addicional dels escenaris, com ara geometries i condicions límits diferents, i poden 

representar diferents mides d'incendis: des de petita fins a gran escala. No obstant, 

les simulacions CFD requereixen dades d'entrada detallades, coneixements experts 

sobre el fenomen simulat i sobre els models físics implementats, i exigeixen 

elevats recursos computacionals. L'ús del modelat CFD per a l'anàlisi del risc 

tecnològic encara és incipient, i per tant, es necessiten exercicis de validació abans 

de fomentar la seva aplicació en casos reals.  

Aquesta tesi està dirigida principalment a avaluar les capacitats predictives de 

diferents codis CFD (FDS, FLACS-Fire i FireFOAM) alhora de predir els efectes 

perillosos dels incendis de bassa i de dolls de foc. Concretament, de bassa a gran 

escala amb dièsel i gasolina (d'1.5 fins a 6 m de diàmetre), dolls de foc verticals 

sònics amb propà (de 0.09 fins a 0.34 kg·s-1 amb diàmetres d'orificis compresos 

entre 10 i 25.5 mm), dolls de foc verticals subsònics amb metà a diferents pressions 

atmosfèriques (des de 0.6 fins a 1 bar amb un diàmetre d'orifici de 3 mm), i dolls 

de foc verticals i horitzontals subsònics amb propà (de 0.007 fins a 0.11 kg·s-1 amb 

diàmetres d'orifici compresos entre 12.75 i 43.1 mm) s’han simulat amb les 
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diferents eines CFD. La prescripció de la velocitat de combustió proporciona 

prediccions precises dels efectes dels incendis de bassal quan la mida de la cel·la 

és de 0.2 m com a màxim. D'altra banda, la mida de la cel·la per a simulacions de 

dolls de foc sònics i subsònics s'ha de determinar tenint en compte un diàmetre 

característic de l'incendi de 16 i 12, respectivament. Es recomana un número 

mínim de 400 angles sòlids per obtenir estimacions precises dels fluxos tèrmics. 

A partir de les nombroses simulacions computacionals realitzades es 

desenvolupament directrius de bones pràctiques (BPG) per determinar un codi 

com a 'vàlid' o no, i per proporcionar orientació sobre els paràmetres de modelatge 

més adequats quan es realitzen simulacions CFD d'incendis accidentals 

d'hidrocarburs. La utilitat del les BPG es demostra mitjançant un cas d'estudi d'una 

granja d'emmagatzematge d'hidrocarburs situada al Port de Barcelona. Es troben 

grans sobreestimacions dels valors del fluxos de calor mitjançant correlacions 

semi-empíriques. Per tant, es recomana la utilització d'eines CFD per realitzar 

FHA detallats en indústries químiques i de processos.  

La tesi s'organitza de la manera següent: el Capítol 1 introdueix els diferents tipus 

d'incendis d'hidrocarburs que es poden produir en instal·lacions industrial i descriu 

els diferents mètodes de modelatge per determinar els efectes d’aquests; el Capítol 

2 presenta les dades experimentals considerades per a l’anàlisi de validació de les 

eines CFD; el Capítol 3 descriu les eines de simulació d’incendis CFD utilitzades; 

el Capítol 4 detalla els resultats d’incendis de bassal obtinguts amb les eines CFD; 

el Capítol 5 descriu els resultats de les simulacions CFD dels dolls de foc verticals 

i horitzontals amb propà i metà; el Capítol 6 recull les BPG sobre el modelat CFD 

d’incendis accidentals d’hidrocarburs en entorns oberts; el Capítol 7 mostra un cas 

d’estudi sobre l’ús del modelat CFD per avaluar els perills d’incendi; i el Capítol 

8 presenta les principals conclusions obtingudes a la tesi.  
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ABSTRACT 

 

 

 

Accidental releases of flammable hydrocarbons in chemical process industries can 

trigger severe hazards: explosions, fires, and dispersion of toxic vapour clouds. 

Explosions and toxic releases may injure people within a large damage radius; 

however, fires are the most common accidental events that may lead to 

catastrophic consequences in terms of life and property losses.  

Within this framework, the prediction of the related-fire effects may significantly 

contribute to identify measures needed to eliminate or mitigate the consequences 

of accidents in processing environments. Semi-empirical methods can provide 

rapid estimations of the flame-geometry descriptors as well as estimations of the 

heat flux received at a given distance from the fire origin. Based on that 

information, active protection systems and inherent safer design measures (i.e. 

safety distances between equipment) can be determined to prevent major fire 

accidents. Nevertheless, these are based on empirical and statistical data, and do 

not cover the overall characteristics of the fire behaviour.  

Computational Fluid Dynamics (CFD) modelling can provide more detailed 

insights of the related fire effects considering additional complexity, such as 

different geometries and alternative boundary conditions, and representing 

different fire sizes: from small to large scale fires. Nevertheless, CFD requires 

detailed input data, expert knowledge on the phenomenon simulated and on the 

physical models implemented, and demands high computational resources. The 

use of CFD modelling for technological risk analysis is still incipient, so detailed 

validation exercises are needed before their use in real applications.  

This thesis is mainly aimed at assessing the predictive capabilities of different CFD 

codes (FDS, FLACS-Fire and FireFOAM) when predicting the hazardous effects 

of hydrocarbon pool fires and jet fires. Specifically, large-scale pool fires of diesel 

and gasoline (from 1.5 to 6 m-diameter), vertical sonic jet fires of propane (from 

0.09 to 0.34 kg·s-1 with orifice diameters of from 10 to 25.5 mm), vertical subsonic 

jet fires of methane in normal- and sub- atmospheric pressures (from 0.6 to 1 bar 

with an orifice diameter of 3 mm), and vertical and horizontal subsonic jet fires of 

propane (from 0.007 to 0.11 kg·s-1 with orifice diameters of from 12.75 to 43.1 

mm-diameter) are modelled with the different CFD modelling codes. Prescribing 

burning rates provide accurate predictions of the pool fire effects with maximum 

cell sizes of 0.2 m. On the other hand, the cell sizes of sonic and subsonic jet fires 
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should be determined by considering a fire characteristic diameter of 16 and 12, 

respectively. A minimum number of 400 solid angles is recommended to obtain 

accurate estimations of the thermal flux.  

Based on the numerous computational simulations performed, Best Practice 

Guidelines (BPG) are developed to determine a code as ‘valid’ or not, and to 

provide guidance on the most suitable modelling settings when performing CFD 

simulations of accidental hydrocarbon fires. The BPG usefulness is proved 

through a case study of an oil storage farm located in the Port of Barcelona. Large 

over-estimations of the heat flux values are found with semi-empirical correlations 

and thus, the safety measures required would be very conservative and costly. 

Therefore, CFD modelling is recommended method to perform detailed FHA in 

chemical and process industries. 

The thesis is organized as follows: Chapter 1 introduces the different types of 

hydrocarbon fires that can occur in industrial facilities and describes the different 

modelling methods to estimate the related-fire effects; Chapter 2 presents the 

experimental data considered for CFD validation analysis; Chapter 3 describes the 

CFD fire codes used; Chapter 4 details the CFD modelling results of large-scale 

pool fires; Chapter 5 describes the simulations of methane and propane jet fires at 

different release and flow conditions; Chapter 6 gathers BPG in CFD modelling 

of accidental hydrocarbon fires in open environments; Chapter 7 reports a case 

study on the use of CFD modelling to assess the fire hazards in an oil storage farm; 

and Chapter 8 presents the main conclusions of this thesis.  
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CHAPTER 1 

INTRODUCTION 

 

 

 

Hydrocarbon fuels are involved in most of the major fire accidents occurring 

in industrial facilities, which may lead to catastrophic consequences in terms 

of life and property losses. In this regard, the prediction of the related-fire 

effects is essential to design effective protection measures to mitigate the fire 

impact. This chapter briefly introduces the reader to the different types of 

hydrocarbon fires that could occur in chemical and process plants (Section 1.1) 

and describes the different modelling techniques able to estimate the hazardous 

fire effects (Section 1.2). Based on findings from a wide literature survey of 

previous CFD modelling studies involving hydrocarbon fires, the main 

objectives of this thesis are proposed (Section 1.3). Finally, Section 1.4 

describes the structure of this thesis.  

1.1. Accidental hydrocarbon fires in industries 

1.1.1. Hydrocarbon fuels 

The U.S. Energy Information Administration (EIA) reported in 2016 that the 

industrial sector consumed about the 54% of the world’s total delivered energy for 

multiple purposes (U.S. Energy Information Administration (EIA), 2016). The 

diversity and the amount of fuels consumed vary notably between countries 

according to their economic activities and technological developments. Those 

countries outside of the Organization for Economic Cooperation and Development 

(OECD) register the highest consumption growth by an average of 1.5%/year from 

2012 to 2040, while those belonging to the OECD register a consumption growth 

of 0.5%/year (Figure 1.1). Globally, the energy consumed worldwide in the 

industrial sector is estimated to increase by an average of 1.2%/year until 2040.  

Among the different available energy sources, it is observed that hydrocarbons are 

and will be the most used in the near future. One of the main advantages of these 

fuels is their high calorific values, responsible of the release of tremendous 

amounts of energy. Also, the earth’s reservoirs containing hydrocarbons are easily 

found, hence facilitating its extraction and transportation to industrial sites. As a 

result, the process to produce energy from hydrocarbon fuels is cheaper and more 

cost-effective than with other non-conventional forms of energy, such as 
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renewables. Nevertheless, the amount of hydrocarbon fuels on earth is limited, and 

it is well acknowledged that the solid particles released from soot and smoke into 

the ambient can considerably damage the environment and human health.  

(a) OECD Countries 

 

(b) Non-OCED Countries 

 

 

Figure 1.1. Worldwide energy consumption in the industrial sector for a) OECD countries and b) 

non-OECD countries (U.S. Energy Information Administration (EIA), 2016). 

1.1.2. Hydrocarbon fires  

Accidental releases of flammable hydrocarbons in chemical and process industries 

can lead to hazardous events: explosions, fires and dispersion of toxic vapour 

clouds (Khan and Abbasi, 1999). Explosions and toxic releases may injure people 

within a larger damage radius. However, fires are the most common events 

(41.5%) as reported from a MHIDAS (Major Hazard Incident Data Service) survey 

involving 6,099 accidents (Palazzi and Fabiano, 2012).  
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Depending on the fuel properties and their state, different types of fires can be 

originated from a loss of containment (Casal, 2017). For example, spills of liquid 

fuels may lead to pool fires when finding an ignition source (Figure 1.2). 

Otherwise, if the liquid evaporates before ignition or a gas is released through a 

leak, a flammable vapour cloud may be originated and dispersed in the ambient. If 

the cloud reaches an ignition source, a flash fire may occur, which can travel back 

to the spill source (Rew et al., 1998). When a pipe is broken, when a hole forms in 

a tank, when gas leaks from a flange, or when a safety valve is opened, a high-

velocity leak of gas, or two-phase flow can be immediately ignited creating a jet 

fire or a flare (Gómez-Mares et al., 2009). The dynamics of jet fires are dominated 

by the initial jet momentum, while buoyancy controls liquid pool fires (Palacios et 

al., 2008). 

Pool fires are characterized by buoyancy-driven turbulent flames taking place on 

a horizontal pool of liquid fuel. The pool mainly receives heat from the flames by 

convection and radiation, hence allowing the vaporisation of the fuel. In particular, 

the pool diameter, 𝐷, has been recognised as the most important feature governing 

the mass evaporation rate and thus, the pool fire (Steinhaus et al., 2007). 

Accordingly, pool fires can be classified as small-scale pool fires (𝐷 < 0.1 m), 

medium-scale pool fires (0.1 m ≤ 𝐷 ≤ 1 m) and large-scale pool fires (𝐷 > 1 m) 

(Trouvé, 2008). The former are dominated by a laminar flow and a convective 

thermal feedback from the flame to the pool surface, whereas large-scale pool 

fires, which commonly occur in industrial accidents, are subjected to turbulent 

flows and radiant thermal feedback (Koylu and Faeth, 1992). Medium-scale pool 

fires represent a transitional stage between small and large pools. In addition, 

hydrocarbon pool fires release considerable amounts of soot that affect the overall 

thermal heat transfer (Casal, 2017). In the case of small-scale pool fires, soot 

particles are accumulated in the lower fire region (fuel rich), while these are 

accumulated in the upper fire region (fuel lean) for large-scale pools.  

In the case of jet fires, the mass flow rate, 𝑚̇, which depends on the orifice size 

and the exit pressure, governs the jet fire dynamics. A well-recognized 

classification criterion is given as follows: small-scale (0.03 - 0.3 kg/s); medium-

scale (0.3 - 3 kg/s); large-scale (3 - 30 kg/s); and major failure (> 30 kg/s) 

(Lowesmith et al., 2007). Depending on the exit velocity of the gas released 

through the orifice, 𝑢𝑜𝑟, two possible flow regimes can be found: sonic and 

subsonic flows. Sonic jet fires are the most common accidents involving gas fuel 

leaks in industries (Casal et al., 2012).  
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Initiating 

event 

Liquid 

fuel 

Boiling 

liquid 

Immediate 

ignition 

Delayed 

ignition 

Momentum 

dominated 
Final scenario 

       

   Yes   Flash fire + Pool fire 

  Yes     

    Yes  Flash fire + Pool fire 

   No    

    No  Vapour cloud dispersion 

 Yes      

   Yes   Pool fire 

       

  No  Yes  Pool fire 

Flammable 

release 
  No    

    No  Fuel puddle 

       

     Yes Jet fire 

   Yes    

     No Flare 

 No      

    Yes  Flash fire + Pool fire 

   No    

    No  Vapour cloud dispersion 

Figure 1.2. Event tree of accidental hydrocarbon fires. Adapted from (Beyler, 2016). 

1.1.3. Hazards and consequences of accidental hydrocarbon fires 

Among the possible fires occurring in process plants, pool fires were reported as 

the most common scenarios (66% of the cases), followed by flash fires (29%) and 

jet fires (5%) (Planas-Cuchi et al., 1997). The primary effects of accidental 

hydrocarbon fires are flames engulfment and thermal radiation, that can in turn 
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affect the equipment and personnel of the plant within a very short period of time 

(Pula et al., 2005).  

Jet fires are less frequent and smaller than other accidental fires; however, a sudden 

ignition of an accidental release of pressurized fuel can involve high risk regarding 

industry personnel and the installation itself (Lowesmith et al., 2007). Apart from 

the high radiative heat fluxe emitted, the probability of flame impingement on the 

surrounding equipment may trigger an escalation of the incident, known as domino 

effect, hence leading to additional fires and explosions. Particularly, an escalation 

of the incident normally occurs in the 50% of jet fire accidents with further 

inventory loss and structural collapse (Gómez-Mares et al., 2008; Masum et al., 

2015). Also, an escalation of the flash fire accident occurs in the 33% of the cases 

(Villafañe et al., 2011). Either way, flash fires are still poorly understood, being 

this partly due to experimental difficulties when controlling the gas release 

conditions in real tests. 

The consequences derived from accidental hydrocarbon fires can be catastrophic 

in terms of economic costs, number of injuries and deaths. Figure 1.3 shows the 

statistical data of fire accidents in industrial facilities registered from 1917 to 2011 

classified per continent (Mihailidou et al., 2012). As it can be seen, the number of 

hydrocarbon fires registered is greater in facilities from developed countries, 

whereas the number of deaths, injuries and costs per accident are considerably less 

than in developing ones. South and Central America, featured with the minor 

number of accidents, are the most affected regions, probably because of deficient 

preventive measures and lack of emergency planning. In contrast, Europe has the 

lowest number of injuries and deaths per accident; the reason behind this is the 

stronger regulations applied in European countries. 

Within this framework, fire hazard assessments (FHA) are needed to identify the 

required measures to eliminate or mitigate the consequences of fire accidents in 

processing environments (Health and Safety Executive, 2006). Essentially, FHA 

provides information on the flame-geometry descriptors needed to estimate the 

likelihood of flame impingement on plant equipment, as well as estimations of the 

heat flux received at a given distance from the fire origin (Casal et al., 2012). Based 

on that information, active protection systems and inherently safer design 

measures (i.e. safety distances) can be determined to prevent major fire accidents 

and the occurrence of domino effect, especially in compact arrangements, such as 

those found in certain process plants and offshore oil platforms. Two main 

modelling approaches can be used to perform FHA studies: semi-empirical 

correlations and Computational Fluid Dynamics (CFD) simulations. Both 

modelling methods are described in detail in the following section. 
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Number of Accidents Costs per Accident 

  

Injuries per Accident Deaths per Accident 

  

 

Figure 1.3. Number of major hydrocarbon fire accidents reported in industrial facilities from 1917 

to 2011 (Mihailidou et al., 2012). 

1.2. Modelling approaches in FHA 

1.2.1. Semi-empirical correlations 

During the last decades, semi-empirical correlations were developed from specific 

sets of well-defined experiments to predict the harmful effects of hydrocarbon fires 

(Cowley and Johnson, 1992). On one side, some of these were conceived to 

estimate the flame-geometry descriptors of jet fires (Costa et al., 2004; Gómez-

Mares et al., 2009; Gore, 1986; Hu et al., 2015, 2014; L. Hu et al., 2013; L. H. Hu 

et al., 2013; Kiran and Mishra, 2007; McCaffrey, 1989; Palacios et al., 2012, 2008; 

Palacios and Casal, 2011; Rokke et al., 1994; Santos and Costa, 2005; Sonju and 

Hustad, 1984; Sugawa and Sakai, 1995; T., 1984) and pool fires (Heskestad, 1999; 

Lam and Weckman, 2015; Mangialavori and Rubino, 1992; Moorhouse, 1982; 

Muñoz et al., 2004; Pritchard and Binding, 1992) (Figure 1.4). The flame length, 

𝐿𝐹, is defined as the distance from the base of the fire to the tip of the visible flame, 

whereas the flame height, 𝐻𝐹, is the orthogonal distance from the base of the fuel 

source to the tip of the visible flame. The flame area, 𝐴𝐹, represents the surface 
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covered by the visible flames where the combustion reaction occurs and the mean 

equivalent diameter, 𝐷𝑒𝑞, indicates the mean width of the flame. In the occurrence 

of jet fires, the lift-off distance, 𝑆𝐹, concerns the flameless distance between the 

nozzle orifice and the base of the flame. Also, in the presence of wind, the flames 

can be inclined due to the wind forces creating a tilt angle, 𝛺𝐹, between the total 

flame height and the flame length. More detailed information about the available 

semi-empirical correlations describing the flames shape of jet fires and pool fires 

can be found in Appendix A.  

Jet fire Pool fire 

  

Figure 1.4. Main geometrical parameters describing jet fires (left) and pool fires (right). 

On the other side, the thermal flux properties of jet fires (Brzustowski and 

Sommer, 1973; McCaffrey, 1981; Tan, 1967) and pool fires (Koseki, 1989; Muñoz 

et al., 2007; Shen et al., 2018) were reported for authors in different ways. Some 

of them measured the radiative fraction, 𝜒𝑟, which is referred to the amount of 

energy that is transferred by radiation in a fire. The greater the fire diameter, the 

lower the radiative fractions as a result of the higher amount of soot particles that 

block the radiation emitted from the luminous flame to the outside (Beyler, 2016). 

Based on the radiative fraction, the heat flux received at a given distance from the 

fire origin, 𝑞̇𝑟
′′, can be calculated by using the point source model (Drysdale, 

2011): 

𝑞̇𝑟
′′ =

𝜒𝑟𝑄̇

4𝜋𝑑𝑅
2 (1.1) 

where 𝑑𝑅 is the distance from the flame centre to the target location and 𝑄̇ is the 

heat release rate of the fire.  
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Radiative data is also reported in terms of surface emissive power, 𝐸, which 

represents the radiative heat flux at the flame surface: 

𝐸 = 𝜎𝜀𝑇𝐹
4 (1.2) 

where 𝜎 is the Stefan-Boltzmann constant (5.67·10-11 kJ/m2·s·K4), 𝑇𝐹 is the flame 

temperature and 𝜀 represents the emissivity. Then, by determining the view factor 

between the target and the flame, 𝜑𝐹,𝑡, and the atmospheric transmissivity, 𝜏, the 

radiant heat flux can be calculated with the solid flame model (Mudan, 1984): 

𝑞̇𝑟
′′ = 𝐸𝜑𝐹,𝑡𝜏 (1.3) 

Semi-empirical correlations can be rapidly applied to provide estimations of the 

flame shape and the thermal flux of hydrocarbon fires. Nevertheless, the results 

found are only valuable if the fire scenarios studied are identical to the 

experimental tests from which the equations were developed. Given the constantly 

changing processes performed in industrial plants affecting the configuration of 

the facility, the fuel inventory and the location of the ignition sources, the use of 

this type of correlations can be notably restricted to a few number of fire scenarios 

(Azzi and Rogstadkjenet, 2016). Therefore, alternative modelling approaches, 

such as Computational Fluid Dynamics (CFD) modelling, should be used to 

estimate the harmful effects of hydrocarbon fires for a wide range of complex 

scenarios.  

1.2.2. Computational Fluid Dynamics 

CFD is an emerging modelling technique that can help assessing the fire hazards 

in industries. CFD fire simulations are able to consider complex distributions of 

the equipment, different inventory and type of fuels, remote location of possible 

ignition sources and diverse environmental conditions (i.e. wind, ambient 

temperature and humidity). Also, a large set of variables can be calculated at any 

location within the computational domain according to the user’s interests. 

Therefore, this technique can provide a deeper understanding of the fire behaviour 

and the subsequent harmful effects.  

CFD simulations require detailed input data, expert knowledge of the sub-models 

solved within the codes and usually demand high computational resources. Table 

1.1 summarizes the main CFD fire codes developed by different research 

institutes, organizations and private companies during the last years. As it is 

shown, the availability of codes may differ depending on the developer’s interests. 

For example, there are commercial codes such as Fluent and CFX that require 

costly licences to be used, while others such as FDS or FireFOAM are open-source 

tools freely available. On the other hand, there are ‘private’ codes developed for 

the internal use of some organizations. 
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Table 1.1. Main CFD codes used for fire simulations. 

CFD Code Reference Source Developer 

FDS (McGrattan et al., 2017) Open NIST 

FireFOAM (Greenshields, 2017) Open FM Global & CFD Direct 

Fluent 
(ANSYS FLUENT User’s 

Guide, 2017) 
Commercial ANSYS 

CFX 
(ANSYS CFX-Pre User’s 

Guide, 2017) 
Commercial ANSYS 

VULCAN (DesJardin et al., 2000) Open NASA LaRC 

CAFE-3D (Suo-anttila et al., 2005) Private 
Sandia National 

Laboratories 

Isis-3D 
(Greiner and Suo-Anttila, 

2004) 
Private 

Sandia National 

Laboratories 

ISIS (IRSN, 2018) Open IRSN 

Code_Saturne (EDF R&D, 2018) Open EDF Energy 

Kameleon FireEx (Magnussen et al., 2000) Commercial ComputIT 

PHOENICS 
(Ludwing and 

Mortimore, 2013) 
Commercial CHAM 

FLACS-Fire (Gexcon AS, 2017) Commercial Gexcon AS 

ARCHES (Guilkey et al., 2009) Open University of Utah 

GENMIX (Spalding, 2013) Commercial CHAM 

JASMINE (Ciambelli et al., 2006) Commercial 
BRE - Fire Research 

Station 

SOFIE (Pierce and Moss, 2007) Commercial 
BRE - Fire Research 

Station 

FLEXSIM (Osenbroch, 2006) Commercial DNV-GL 

SOLVENT (Nilsen and Log, 2009) Commercial 

Parsion Brinckherhoff’s 

Tunnel Ventilation 

Division & Innovative 

Research, Inc. 

 

1.2.3. Validation analysis 

Validation of numerical codes, which consists in a comparison process between 

experimental and predicted data, is a necessary first step before their use in real 

applications. Through validation exercises, the appropriateness of the governing 

equations to represent the physical phenomena of interest can be determined and 

the uncertainties generated either in the conceptual modelling or during the 
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computational design phase can be highlighted (Mok et al., 2004). In consequence, 

validation analysis allows the model amelioration from the disparities reached and 

increases the accuracy of predictions (McGrattan and Miles, 2016).  

There exist two types of comparison methods often used to assess the predictions 

performance of CFD tools: qualitative scatter plots and quantitative statistical 

methods. The first method graphically illustrates the level of agreement reached 

between predictions and measurements. This comparison method can rapidly bring 

an idea about the accuracy of the results obtained with the CFD tools. Figure 1.5 

shows a qualitative scatter plot that compares the emissive power of large-scale 

pool fires predicted in FDS with those measured in real experiments. The 

presented graph was previously published in (Rengel et al., 2018). The solid 

diagonal line indicates perfect agreement between predictions and measurements, 

while dotted lines and long-dashed lines represent the ± 25% and ± 50% prediction 

error, respectively, with regard to the measurement. So, the closer to the solid 

diagonal line, the more accurate the predictions are. When possible, graphs include 

also vertical and horizontal bars to represent the standard deviation of the 

simulation results and the experiments, respectively. 

 

Figure 1.5. Example of a qualitative scatter plot comparing the emissive power predicted of 

different fire scenarios against the experimental measurements (Rengel et al., 2018). 

Moreover, quantitative statistical methods are complementarily used to evaluate 

both the computational uncertainties and the agreement reached over time 

(Oberkampf and Barone, 2006). Table 1.2 summarizes some of the quantitative 

methods often used in CFD validation analysis.  

The 𝐴𝑅𝐸 cannot adequately determine the model accuracy due to the strong 

smoothing nature of the integration operator, while the 𝑀𝑅𝐸 could bring more 

valuable information in particular cases where large errors at some points are 

found. On the other hand, the absolute error methods (𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 and 𝑁𝐸𝐷) 

indicate how far a value is from an original measurement. The 𝑅𝑀𝑆𝐸 was found 
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more suitable to quantify a model performance than the 𝑀𝐴𝐸, as it avoids the use 

of mean values (Chai et al., 2014). Similarly, the 𝑁𝐸𝐷 gives an overview of the 

code capabilities by considering the differences between computational results and 

measurements during all the fire duration. 

Table 1.2. Quantitative comparison methods applicable to CFD codes validation analysis. 𝑥̅𝑚 and 

𝑥̅𝑝 are the mean experimental and predicted values, respectively; 𝑥𝑚 and 𝑥𝑝 are single experimental 

and predicted values for each time step, respectively; and 𝑛 is the number of measures. 

Ref. Method Formulae 

(Oberkampf and 

Barone, 2006) 

Average relative error (𝐴𝑅𝐸) 𝐴𝑅𝐸 =
1

𝑛
∑|

𝑥𝑚 − 𝑥𝑝

𝑥𝑝
|

𝑛

𝑖=1

 

Maximum relative error (𝑀𝑅𝐸) 𝑀𝑅𝐸 = |
𝑥̅𝑚 − 𝑥̅𝑝

𝑥̅𝑝
| 

(Rew and 

Deaves, 1995) 

Fractional bias (𝐹𝐵) 𝐹𝐵 =
1

𝑛
∑2

𝑛

𝑖=1

𝑥𝑚 − 𝑥𝑝

𝑥𝑚 + 𝑥𝑝
 

Normalized mean square error (𝑁𝑀𝑆𝐸) 𝑁𝑀𝑆𝐸 =
1

𝑛
∑

(𝑥𝑚 − 𝑥𝑝)
2

𝑥𝑚𝑥𝑝

𝑛

𝑖=1

 

(Audouin et al., 

2011) 
Normalized Euclidean distance (𝑁𝐸𝐷) 𝑁𝐸𝐷 = √

∑ (𝑥𝑚 − 𝑥𝑝)
2𝑛

𝑖=1

∑ (𝑥𝑝)
2𝑛

𝑖=1

 

(Chai et al., 

2014) 

Root mean square error (𝑅𝑀𝑆𝐸) 𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑚 − 𝑥𝑝)
2𝑛

𝑖=1

𝑛
 

Mean absolute error (𝑀𝐴𝐸) 𝑀𝐴𝐸 =
|𝑥̅𝑚 − 𝑥̅𝑝|

𝑛
 

(Rigas and 

Sklavounos, 

2005) 

Geometric mean bias (𝑀𝐺) 𝑀𝐺 = 𝑒𝑥𝑝 [
1

𝑛
∑𝑙𝑛 (

𝑥𝑚
𝑥𝑝
)

𝑛

𝑖=1

] 

Geometric mean variance (𝑉𝐺) 𝑉𝐺 = 𝑒𝑥𝑝 [
1

𝑛
∑𝑙𝑛 (

𝑥𝑚
𝑥𝑝
)

2𝑛

𝑖=1

] 

 

The use of statistical performance measures (𝐹𝐵, 𝑀𝐺, 𝑉𝐺 and 𝑁𝑀𝑆𝐸) were 

recommended to evaluate the predictions of CFD codes (Hanna et al., 2004; Rew 
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and Deaves, 1995). A perfect model would have a MG and VG value of 1 and a 

FB and NMSE value of 0. In the case of the FB, negative results indicate that the 

values have been over-estimated, while positive ones note that the values have 

been under-estimated. NMSE is a measure of the scatter that reflects the fit of the 

estimations to data. In general, when performing any model evaluation exercise, 

multiple quantitative approaches must be applied as there is not a single measure 

that is universally applicable to all conditions.  

1.2.4. Literature review of CFD modelling of hydrocarbon fires 

During the last decades, CFD modelling has been used in the field of fire risk 

analysis due to the need for an in-depth understanding of the phenomena 

associated to hydrocarbon fires in industrial facilities. The present literature survey 

is aimed at reflecting the state of the art of CFD modelling when assessing this 

type of fires. For that purpose, articles in peer-reviewed journals and congress 

communications from the 90’s until nowadays containing CFD simulation studies 

of hydrocarbon pool fires, jet fires and flash fires in open environments have been 

considered. The complete list of surveyed works is tabulated in Appendix B. 

Among the simulations analysed, pool fires (55%) were the main scenarios 

modelled, followed by jet fires (40%) and flash fires (5%) (Figure 1.6). The limited 

quantity of flash fires modelled might be due to the reduced number of experiments 

available and the significant difficulties in obtaining reliable results given the large 

distances involved in these types of accidents (hundreds of meters); another reason 

could be the fact that flash fires have a negligible effect on equipment (except for 

the case of floating roof tanks) and its risk is usually estimated by applying a few 

simplifying assumptions. In contrast, jet fires and pool fires have been much more 

simulated mainly due to the great number of experimental tests performed under 

different configurations. This fact allows detailed comparisons between simulation 

results and experimental measurements. Also, the high number of accidents caused 

by these type of fires may have increased the interest in performing such 

simulations for a better understanding on their consequences. 

Figure 1.7 classifies the works considered as a function of the fire sizes, the fuels 

modelled, the CFD codes used and the variables of interest measured. As observed, 

most pool fires were modelled as large-scale (84%), while jet fires were simulated 

equally at different scales: small-scale (22%), medium-scale (36%) and large-scale 

(34%). Most of the simulations performed involved large and medium-scale fires, 

especially pool fires, as these represent the worst-case scenarios occurring in 

facilities. Otherwise, small fires were barely modelled due to their minor impact 

in comparison with medium and large-scale fires. Nevertheless, these can 

represent the initiating event of the domino effect and thus, the predictive 
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capabilities of CFD codes have not been widely studied when assessing the 

hazards and consequences derived from small-scale hydrocarbon fires.  

 

Figure 1.6. Accumulated frequency of the different published works involving CFD simulations of 

hydrocarbon fires. 

Concerning the substances involved, it is noted that heavy hydrocarbon 

combustibles, such as gasoline (32%) and diesel (17%), were the main fuels used 

to run pool fires simulations. Indeed, these are fuels associated to many industrial 

activities and applications such as transport, storage, paintings, coatings and 

energy sources for engine devices. On the other hand, jet and flash fires were only 

simulated with methane and propane, as these are well-investigated gas fuels 

commonly found in the industry. In particular, methane was the fuel used in the 

81% and in the 71% of the scenarios involving jet fires and flash fires, respectively. 

The main variables of interest measured were flame temperature, radiative heat 

flux received at a certain distance from the fire origin and flame-geometry 

descriptors (height, length, area and tilted angle). These are of special interest to 

determine the safety separation distances and to examine the flame impingement 

in adjacent structures (Ray et al., 2014). Particularly, two different approaches 

were used to measure the heat flux and the flame temperature: (i) monitor points 

to determine their evolutions at specific locations; and (ii) 2D slice files to register 

their results within a rectangular array of grid points. On the other hand, four 

different approximations were performed to determine the flame-geometry 

descriptors: image analysis, mixture fraction calculation, boundary flame 

temperature and semi-empirical methods (Sedano et al., 2017). Image analysis 

consists on measuring the point’s locations at which the products of combustion 

had the highest mass fractions around the flame. Mixture fraction calculation 



      

Chapter 1 

  14 

estimates the average mixture fraction along the centreline axis of the flame. Then, 

the geometrical parameters are determined depending on the stoichiometric value 

of the burning fuel. Boundary flame temperature calculates the flame shape by 

applying a threshold temperature that differentiates the flame region from the 

background. Semi-empirical methods predict the geometry of the flame based on 

empirical correlations that directly depend on the heat release rate and the fire 

diameter. Certain fire features were practically neglected by most authors (for 

example, surface emissive power and soot formation). Indeed, one of the key 

problems is that fire modelling techniques are still under development and thus, 

some fire characteristics and effects are difficult to be accurately obtained. 

Most of the simulations were intended to validate the modelling tools by using 

experimental data. In particular, a large number of authors preferred to validate a 

code under various scenarios (fuel and/or fire size) instead of analysing different 

tools under a single scenario. Nevertheless, a validation of multiple CFD tools 

under just one fire scenario might highlight the advantages and disadvantages of 

these in terms of computational times and results accuracy. Similarly, no 

comparisons between CFD codes and semi-empirical methods were found. 

Therefore, more research in this field is still required in order to determine the 

most appropriate technique (i.e. CFD code and/or semi-empirical method) as a 

function of a given fire scenario, the variables of interest and the available time 

computational resources. 

A reasonably good agreement was generally declared when comparing simulations 

with experiments, with slight under-predictions of the heat flux at larger distances. 

Nevertheless, the accuracy of the CFD outcomes cannot be totally guaranteed, as 

qualitative comparisons were done in the 67% of the validation exercises 

performed. Thus, it is recommended to carry out quantitative comparisons to 

recognize whether a CFD code is able to simulate accidental hydrocarbon fires.  

In addition, the mesh resolution still remains a concern as most authors simulate 

fire scenarios within random computational domains under one mesh 

configuration based on previous published works or according to the characteristic 

fire diameter and cell size ratio (Sally and Kassawara, 2007). Even if the chosen 

mesh could be the most appropriate for the scenario investigated, different cell 

sizes should be tested (from coarse to fine) to avoid possible errors caused by the 

cell size. Also, most published works barely provide the reader with the details of 

the computational domain set-up, which could affect the fire development 

calculations. 

Based on the main findings and suggestions noted in the present review, it is 

deduced that the development and implementation of Best Practice Guidelines 

(BPG) in CFD modelling of accidental hydrocarbon fires would be of high interest 

to the fire community. These may contribute to properly perform further CFD 
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validation analysis and to provide guidance in performing real fire simulations, 

hence increasing the reliability of simulation outcomes.  

Fire Size Fuels 

 
 

CFD Codes Variables predicted 

 

 

 

Figure 1.7. Main features of the pool, jet and flash fires simulated: a) sizes represented, b) fuels 

modelled, c) CFD tools used and d) variables of interest measured. 

Although a significant effort has been made to improve the knowledge concerning 

the fire-related phenomena of hydrocarbon fires by means of CFD modelling, there 

is still a long way to go, as this literature review has shown. In general, fires in 

open environments have been poorly evaluated with CFD codes, as there is a 

considerable lack of data regarding the most suitable modelling parameters and 

comparison methods. Therefore, further CFD validation works should be carried 
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out, especially in complex fire scenarios, due to the need to perform more reliable 

risk analysis in chemical industries and thus, to provide safer plants. 

1.3. Thesis objectives 

Considering the expected growth on the use of hydrocarbon fuels in the industrial 

sector, the severe consequences triggered by accidental hydrocarbon fires and the 

stated limitations of semi-empirical methods, there is an essential need to promote 

the use of CFD modelling to estimate the hazardous effects of industrial fires. In 

this context, the main goal of this thesis is to assess the predictive capabilities of 

three CFD modelling tools (FDS, FireFOAM and FLACS-Fire) to estimate the 

effects derived from accidental hydrocarbon fires in open environments. To 

address the main goal defined, the following specific objectives are proposed:  

- Determine the most appropriate numerical settings of CFD codes to obtain 

reasonable estimations of the fire scenarios examined.  

- Establish a comparison between CFD codes and determine the most appropriate 

one to predict the related-fire effects according to the hydrocarbon fire accident of 

interest.  

- Develop best practice guidelines in CFD modelling of hydrocarbon fire accidents 

in open environments to be used in real applications. 

- Examine the applicability of CFD codes for their implementation on fire 

emergency prevention and management. 

1.4. Thesis structure 

This thesis is structured as follows: 

Chapter 2 describes the experimental data considered for CFD validation analysis. 

There is a brief description of the experimental set-up for both pool and jet fires, 

and the main characteristics of our dataset.  

Chapter 3 describes the CFD fire codes used in the thesis providing detailed 

information on the mathematical correlations implemented at hand to solve the 

different phenomenon (i.e. turbulence, combustion, radiation, etc.). 

Chapter 4 details the CFD modelling results of large-scale pool fires of gasoline 

and diesel under different wind conditions, and Chapter 5 describes the simulations 

of methane and propane jet fires at different release and flow conditions: 

subsonic/sonic and vertical/horizontal.  

Chapter 6 gathers best practice guidelines in CFD modelling of accidental 

hydrocarbon fires in open environments based on the main findings of previous 
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chapters. Firstly, a standard methodology developed for carrying out CFD 

validation analysis of this type of fire accidents is proposed. Secondly, 

recommendations on the most appropriate numerical parameters are provided. 

Chapter 7 reports a case study showing the use of CFD modelling to assess the fire 

hazards in an oil storage farm. For that purpose, computational simulations are 

performed based on the best practice guidelines suggested. Finally, Chapter 8 

presents the main conclusions of this thesis. 
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CHAPTER 2 

EXPERIMENTAL DATA 

 

 

 

In this thesis no experimental work has been performed, but experimental data 

from several sources have been used to assess the predictive capabilities of 

different CFD fire codes. This chapter includes a brief description of the 

experimental set-up and the data available of different hydrocarbon fire tests: 

(i) large-scale liquid pool fires of gasoline and diesel (Section 2.1.), (ii) vertical 

sonic jet fires of propane (Section 2.2.), (iii) vertical subsonic jet fires of 

methane in normal- and sub- atmospheric pressures (Section 2.3.) and (iv) 

horizontal and vertical subsonic jet fires of methane (Section 2.4.). 

The experimental measurements used in this thesis are summarized in 

Appendix C. These have been obtained during the steady state of the fire, which 

coincides with fully developed flames. The data are mainly related with 

hazardous fire effects (i.e. flame-geometry descriptors, flame temperature, 

emissive power and radiative heat flux) and when possible, these are expressed 

in dimensionless quantities to allow further comparison with other fire 

experiments.  

2.1. Large-scale pool fires 

2.1.1. Experimental set-up 

A series of outdoor large-scale pool fire tests carried out under different conditions 

are used in this thesis (Ferrero et al., 2007, 2006; Muñoz et al., 2007, 2004). As 

shown in Table 2.1, pool fire experiments involved gasoline and diesel as fuel, 

lying on top of a thin layer of water in five concentric circular pools made of 

reinforced concrete, of 1.5 m, 3 m, 4 m, 5 m and 6 m-diameter. 

Different measuring devices were used to record the main variables of interest. 

The weather conditions were obtained by using a meteorological station located at 

10 m height, which provided the ambient temperature, 𝑇̅∞, the wind velocity, 𝑢̅𝑤, 

and the wind direction. A set of five K-type thermocouples (3 mm-diameter) were 

located in the pool centreline axis to measure the flame temperatures at different 

heights over the fuel layer: 2.84 m (TB1), 3.96 m (TB2), 5.53 m (TB3), 6.96 m 

(TB4) and 11.01 m (TB5). A wide-angle radiometer, whose axial and radial 
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distance to the pool origin varied according to the experiments performed, was 

located opposite to the wind direction to measure the irradiance received at a 

certain distance. Particularly, in some experiments the radial distance was three 

times the pool diameter (3D) while in others was five times the pool diameter (5D). 

The burning rates of pool fires were measured through a system of communicating 

vessels connected to an electronic balance that measured the amount of 

combustible loss (Chatris et al., 2001)..  

Table 2.1. Main features of the large-scale pool fire experiments of diesel and gasoline used in this 

thesis. Data sources come from (Ferrero et al., 2007, 2006; Muñoz et al., 2007, 2004). 

Experiment Fuel 𝑫 (m) 𝒖̅𝒘 (m·s-1) 𝑻̅∞ (ºC) 
Radiometer distance (m) 

Axial Radial 

22_D15 Diesel 1.5 1.33 22 1.5 7.5 

21_G15 Gasoline 1.5 0.44 20 1.5 7.5 

01_D3 Diesel 3.0 2.39 12 0.1 9.0 

17_G3 Gasoline 3.0 1.14 14 1.5 9.0 

04_D3 Diesel 3.0 0.00 16 0.1 15.0 

03_G3 Gasoline 3.0 0.00 13 0.1 15.0 

14_D4 Diesel 4.0 0.43 20 0.1 12.0 

13_G4 Gasoline 4.0 0.52 19 0.1 12.0 

10_D5 Diesel 5.0 1.02 16 1.0 15.0 

08_G5 Gasoline 5.0 0.00 19 0.1 15.0 

07_D6 Diesel 6.0 1.10 19 0.1 18.0 

06_G6 Gasoline 6.0 0.00 18 0.1 18.0 

 

Apart from the 03_G3 and 04_D3 pool fires, the rest of the experiments were 

filmed with a VHS camera that registered the visible images of the fire (Figure 

2.1a) and with a thermographic IR camera that recorded the apparent temperature 

distribution of the flame (Figure 2.1b). Both cameras were placed together 

perpendicular to the predominant wind direction, at different distances from the 

fire origin depending on the pool diameter to record the complete structure of the 

flames. 

2.1.2. IR image segmentation process 

For each test, the recorded IR images corresponding to the stationary state of the 

fire were lately treated with an in-house MATLAB algorithm (Mata et al., 2018). 

The main goal of this software developed is to differentiate the flame region from 
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the smoke plume, hence allowing the determination of the mean flame height, 𝐻̅𝐹, 

and the mean flame area, 𝐴̅𝐹. To achieve this objective, the IR images were 

exported and stored in an appropriate format within a private project file. These 

contained the temperature matrix for each instant of time, the matrix size and the 

camera parameters. Then, segmentation was performed using a normalized 

threshold temperature, 𝑇𝑟 (Figure 2.1c). This is intended to separate the flame 

region from the background for each IR image by comparing the temperature at 

each pixel element, 𝑇𝑖,𝑗, with the defined threshold temperature: 

𝐼(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑇𝑖,𝑗 ≥ 𝑇𝑟 

0, 𝑖𝑓 𝑇𝑖,𝑗 < 𝑇𝑟
 (2.1) 

where 𝐼(𝑖, 𝑗) is the segmented image, 1 indicates that the pixel is within the flame 

region and 0 means that the pixel element belongs to the background of the image. 

In particular, a threshold temperature of 600 K was applied to segment the IR 

images of pool fires (Audouin et al., 1995; Cox and Chitty, 1980). 

(a) VHS Camera (b) IR Camera (c) Segmented Image 

   

Figure 2.1. Example of video images recorded during the stationary state of the 06_G6 pool fire by 

means of a) a VHS camera, b) a IR camera and c) the corresponding segmentation process 

applied. 

Given the temperatures distribution of the segmented flame images, we calculated 

the surface emissive power at each pixel, 𝐸𝑖,𝑗: 

𝐸𝑖,𝑗 = 𝜀𝜎𝑇𝑖,𝑗
4  (2.2) 

where 𝑖 and 𝑗 indicate the position of the pixel in the IR image. As hydrocarbon 

pool fires become optically thick at diameters of ~ 3 m (Planas-Cuchi et al., 2003), 

the following emissivity values were adopted according to the pools sizes: 0.95 for 

diameters of 1.5 m, 0.98 for 3 m, and 1 for diameters equal or higher than 4 m. 

Then, the time averaged surface emissive power of a pixel element during the 

steady state, 𝐸̅𝑖,𝑗, can be calculated by: 

𝐸̅𝑖,𝑗 =
∑ 𝐸𝑖,𝑗

𝑁
1

𝑁
 (2.3) 
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where 𝑁 represents total number of images in the thermographic sequence. Finally, 

the mean surface emissive power of the whole flame, 𝐸̅, is written as: 

𝐸̅ =
∑ ∑ 𝐸̅𝑖,𝑗𝑎𝑖,𝑗𝑗𝑖

∑ ∑ 𝑎𝑖,𝑗𝑗𝑖
 (2.4) 

where 𝑎𝑖,𝑗 is the area of a pixel in the infrared image. 

2.1.3. Data available 

Data obtained during the experiments include: flame temperatures and emissivity, 

heat fluxes captured by the radiometers, fuel mass loss rates and flame geometry 

(height and area). Figure 2.2 depicts the mean flame temperature as a function of 

the dimensionless thermocouples heights, 𝐻𝑇 𝐷⁄ . Three diesel pool fire 

experiments with different diameters (22_D15, 01_D3 and 10_D5) registered 

similar low temperatures along the centerline axis (~40 ºC). In those cases, the 

lateral winds significantly tilted the flames and thus, the centerline thermocouples 

were not in contact with the flames. Other diesel pool fires under the presence of 

wind (i.e. 14_D4 and 07_D6) achieved higher temperatures along the axis, while 

the highest ones were reached in the absence of wind (i.e. 04_D3). Consequently, 

it is highlighted that wind significantly affects the mean centerline temperatures of 

diesel pool fires as flames may be tilted depending on the pool diameter and the 

wind velocity (Figure 2.3). In addition, it might be inferred that for each pool 

diameter there is a characteristic wind speed that inclines its flame, hence 

modifying its height and area: the larger the pool diameter, the higher the 

characteristic wind speed should be to overcome the buoyancy-driven forces of 

the pool fire.  

Gasoline pool fires commonly reached greater centerline flame temperatures than 

diesel pool fires under similar boundary conditions. For example, 3 m-diameter 

pool fires in the absence of wind achieved mean maximum temperatures of 900 ºC 

and 750 ºC when involving gasoline and diesel, respectively. Significant 

temperature fluctuations are observed in some pool fire experiments (i.e. 04_D3, 

07_D6, 06_G6, 13_G4) when 𝐻𝑇 𝐷⁄ ≤ 2, which may be due to possible measuring 

errors induced by the type of thermocouples used and the experimental conditions. 

This fact may lead to disagreements between the temperatures predicted in CFD 

codes and those registered in the tests.  
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Figure 2.2. Mean values of flame temperature registered by the thermocouples as a function of 

their dimensionless height above the liquid fuel for large-scale pool fires of diesel (up) and 

gasoline (down). Vertical error bars indicate the standard deviation of the measurements. 

10_D5 14_D4 07_D6 

   

Figure 2.3. IR images belonging to one instant of time during the steady state of different pool fire 

experiments that reveal flame tilting. 

Figure 2.4 shows the mean mass loss rate obtained for gasoline and diesel pool 

fires as a function of the pool diameter (up) and wind velocity (down). As 

observed, the amount of mass loss increases as the pool diameter or the wind 

velocity increases for both fuels. In addition, higher values are found for gasoline 

compared to diesel pool fires, with negligible deviations among the mean values. 
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The burning rate data can be used as input variables within the CFD codes to 

reasonably estimate other variables of interest (i.e. flame temperature, radiative 

heat flux, emissive power and geometrical features of the flame). Otherwise, mass 

loss rates may be predicted in computational codes by solving advanced pyrolysis 

sub-models. Nevertheless, modelling errors may be derived given its high 

dependency on the pool diameter and the wind velocity.  

 

 

Figure 2.4. Mean values of mass loss rate as a function of the pool diameter (up) and the wind 

velocity (down) for large-scale pool fires of diesel and gasoline.  

Figure 2.5 depicts the mean heat fluxes received by the wide-angle radiometer 

located at 5D m from the fire origin. As seen, steady values are generally registered 

regardless of the pool diameter, which may be due to the smoke blockage effect. 

The soot particles released in the fire plume retain the heat flux emitted by the 

flames. The occurrence of this phenomenon highlights the importance of 

prescribing reliable soot yield values for both fuels in CFD codes to obtain 

reasonable heat flux estimations. On the other hand, the wind considerably affects 

the radiative heat transfer in large-scale pool fires: the greater the wind velocity, 

the greater the heat fluxes registered. This occurs as a result of the tilt effect under 

significant wind speeds, which shorten the separation distance between flames and 
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the wide-angle radiometer. Therefore, the wind velocity profile must be well 

defined in CFD codes to increase the agreement reached between simulation 

results and experimental data in windy pool fire scenarios.  

 

 

Figure 2.5. Mean values of heat flux received at a 5D m distance from the fire origin obtained as a 

function of the pool diameter (up) and the wind velocity (down) for large-scale pool fires of diesel 

and gasoline. Vertical error bars indicate the standard deviation of the measurements. 

Figure 2.6 shows the mean dimensionless flame height determined through the IR 

image segmentation process for diesel and gasoline pool fires as a function of the 

pool diameter (up) and wind velocity (down). Regardless of the pool diameter and 

wind velocity, constant flame heights are generally found with greater mean values 

in gasoline pool fires. In contrast, the mean dimensionless values of flame area 

(Figure 2.7) and surface emissive power (Figure 2.8) noticeably varied as the 

diameter of the pool or the wind velocity increased in both liquid fuels. The large 

amount of smoke generated and the possible changes in wind direction and 

velocity could have affected the reliability of the image segmentation process by 

temperature difference criteria. Multiple IR cameras differently located could have 

allowed a more precise determination of the geometrical features of the flames and 

thus, of the surface emissive power. In addition, it is worth noting that significant 
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deviations of the mean flame height, mean flame area and mean emissive power 

are found all over the pool diameters and wind velocities experimented. In 

consequence, certain lack of agreement may be found when compared with 

simulation results.  

 

 

Figure 2.6. Mean dimensionless values of flame height obtained as a function of the pool diameter 

(up) and the wind velocity (down) for large-scale pool fires of diesel and gasoline. Vertical error 

bars indicate the standard deviation of the measurements. 
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Figure 2.7. Mean dimensionless values of flame area obtained as a function of the pool diameter 

(up) and the wind velocity (down) for large-scale pool fires of diesel and gasoline. Vertical error 

bars indicate the standard deviation of the measurements. 
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Figure 2.8. Mean values of surface emissive power obtained as a function of the pool diameter (up) 

and the wind velocity (down) for large-scale pool fires of diesel and gasoline. Vertical error bars 

indicate the standard deviation of the measurements. 

2.2. Vertical sonic jet fires of propane 

2.2.1. Experimental set-up 

Vertical sonic jet fire tests of propane carried out in an open environment are also 

considered in this thesis for CFD validation analysis (Gómez-Mares et al., 2010, 

2009; Palacios et al., 2012, 2008; Palacios and Casal, 2011). Table 2.2 shows the 

main conditions at which the jet fire experiments were undertaken. The first figure 

corresponds to the diameter of the jet orifice in mm, 𝐷𝑜𝑟, and the second figure the 

mean mass flow rate of the gas through the exit orifice in kg/s, 𝑚̇𝑜𝑟.  

A wide-angle radiometer was located at 5 m distance from the fire origin and 1 m 

above the exit orifice to record the radiative heat flux. Also, a B-type uncoated 

thermocouple (0.35 mm-diameter) was located 3.2 m above the gas exit orifice to 

register the centreline flame axis temperature. The mean ambient temperatures, 

𝑇̅∞, for the different jet fire experiments were recorded using a meteorological 
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station located at 10 m height, while the wind velocities, 𝑢𝑤, were accounted for 

some cases. The mean Reynolds number, 𝑅𝑒̅̅̅̅ , was calculated based on the nozzle 

diameter, the mean gas exit velocity, the gas density and dynamic viscosity of 

propane.  

Moreover, jet fires were filmed using a VHS camera that registered visible images 

of the fires (Figure 2.9a) and a thermographic IR camera that recorded the apparent 

temperature distribution of the flames (Figure 2.9b). The IR image segmentation 

process undertaken was done as described in Section 2.1.2 for large-scale pool 

fires. The only difference is that the threshold temperature defined to segment 

sonic jet fires was of 800 K instead of 600 K, as suggested in different works 

(Bradley et al., 2016; Gómez-Mares et al., 2009; Palacios et al., 2012; Palacios and 

Casal, 2011). Figure 2.9c shows a segmented image of G25.5_0.34 jet fire scenario 

corresponding to one instant of time during the steady state of the fire. 

Table 2.2. Main features of the vertical sonic jet fire experiments of propane used in this thesis. Data 

sources come from (Gómez-Mares et al., 2010, 2009; Palacios et al., 2012, 2008; Palacios and 

Casal, 2011). 

Experiment 𝑫𝒐𝒓 (mm) 𝒎̇𝒐𝒓 (kg·s-1) 𝒖̅𝒘 (m·s-1) 𝑻̅∞ (ºC) 𝑹𝒆̅̅ ̅̅  

D10_0.09 10 0.09 n.a 20 2.1·106 

D12.75_0.13 12.75 0.13 1.02 27 2.7·106 

D15_0.18 15 0.18 n.a 21 3.1·106 

D20_0.27 20 0.27 1.55 22 4.2·106 

D25.5_0.34 25.5 0.34 n.a 24 5.3·106 

 

(a) VHS Camera (b) IR Camera (c) Segmented Image 

   

Figure 2.9. Example of video images recorded during the stationary state of the G25.5_0.34 sonic 

vertical jet fire by means of a) a VHS camera, b) a IR camera and c) the corresponding 

segmentation process applied. 

2.2.2. Data available 

Data obtained during the experiments include flame temperature, heat flux 

captured by the radiometers and flame-geometry descriptors (height and area). 
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Figure 2.10 shows the mean flame temperature (up) and heat flux (down) obtained 

as a function of the Reynolds number. Regardless of the experimental sonic jet 

conditions, the mean flame temperature oscillated between 1100 and 1600 ºC. The 

type of thermocouple used and the possible inclination of the flames resulting from 

high wind velocities may have originated these temperature differences. On the 

other hand, the measured heat fluxes slightly increase as the Reynolds number 

became greater. The notorious standard deviations found in the D15_0.18 may 

lead to some disagreements when compared against CFD predictions.  

 

 

 

Figure 2.10. Mean values of flame temperature registered by the thermocouple (up) and heat fluxes 

by the radiometer (down) as a function of the Reynolds number for vertical sonic jet fires of 

propane. Vertical error bars indicate the standard deviation of the measurements. 

Figure 2.11 shows mean dimensionless values of flame height (up) (which include 

the lift-off distances) and flame area (down) determined through the IR 

segmentation process. The mean heights of the flames were almost constant 

despite the unknown wind conditions at which the sonic jet fires were exposed. 

The lowest mean dimensionless flame height (𝐻̅𝐹 𝐷𝑜𝑟⁄ ~ 300) is found when 

𝑅𝑒̅̅̅̅ > 3 · 106, while the rest are maintained around 𝐻̅𝐹 𝐷𝑜𝑟⁄ ~ 450. In contrast, the 

non-dimensional flame areas constantly decrease as the Reynolds number 
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increases. This fact remarks that sonic jet flames become thinner and shorter as the 

𝑅𝑒 increases. 

 

 

 

Figure 2.11. Mean dimensionless values of flame height (up) and flame area (down) obtained as a 

function of the Reynolds number for the vertical sonic jet fires of propane. Vertical error bars 

indicate the standard deviation of the measurements. 

2.3. Vertical subsonic jet fires of methane in normal- and 

sub- atmospheric pressures 

2.3.1. Experimental set-up 

A series of vertical subsonic jet fire tests of methane in normal- and sub- 

atmospheric pressures performed in Hefei (China) are also used in this thesis 

(Rengel et al., 2019). Table 2.3 shows the five different atmospheric pressures, 𝑃∞, 

and jet fire conditions examined during the experiments: 0.6 atm, 0.7 atm, 0.8 atm, 

0.9 atm and 1.0 atm. As the ambient pressure decrease, other parameters affecting 

the jet fires development also decrease: the effective amount of oxygen in air, 

𝑂2,𝑒𝑓𝑓, the fuel density, 𝜌𝑓, the mass flow rate of the gas released through the 



      

Chapter 2 

  32 

orifice, 𝑚̇𝑜𝑟, and the mean Reynolds number, 𝑅𝑒̅̅̅̅ . Each test began when the 

pressure inside the chamber was stable for a period of about 5 min after pumping 

fresh air into the low pressure chamber to replace previous air. The duration of 

each experimental test was 2 min.  

Table 2.3. Main features of the vertical jet fire experiments of methane in normal- and sub- 

atmospheric pressures used in this thesis. Data source come from (Rengel et al., 2019). 

Experiment 𝑷∞ (atm) 𝑶𝟐,𝒆𝒇𝒇 𝝆𝒇 (kg·m-3) 𝒎̇𝒐𝒓 (kg·s-1) 𝑹𝒆̅̅ ̅̅  

1 0.6 0.12 0.39 6.7·10-5 2.6·103 

2 0.7 0.14 0.46 7.8·10-5 3.0·103 

3 0.8 0.16 0.52 8.9·10-5 3.5·103 

4 0.9 0.18 0.59 1.0·10-4 3.9·103 

5 1.0 0.21 0.66 1.1·10-4 4.3·103 

 

2.3.2. Video image segmentation process 

A charged-coupled device (CCD) digital camera of sensor size 8.5 mm and an 

image size of 320 x 240 pixel was used to film the jet fire experiments. The 

recording frequency was 25 Hz. For each video footage, a video image 

segmentation process was performed to discriminate the flame region from the 

background and determine the flame-geometry descriptors of the jet fire 

experiments. Figure 2.12 shows the main steps followed to segment the images 

with the Interactive Segmentation Tool® (McGuinness and O’Connor, 2010). 

First, the frames belonging to the steady state of the fires were individually 

extracted and imported into the software (Step 1). Then, for each image, a red 

continuous line was manually drawn to define the flame contour, which could be 

clearly distinguished through the colourful shapes (Step 2).  

Thereupon, an outer contour was also drawn within the background of the image 

in a yellow continuous line to facilitate the colour distinction between the flame 

and the rest of the picture (Step 3). Automatically, the Binary Partition Trees 

algorithm (Adamek, 2006) was applied to segment the image and save it as a 

binary file (Step 4). After that, the ImageJ® software (Ferreira and Rasband, 2012) 

was used to convert the binary files created into spreadsheet documents containing 

a binary matrix where 0 corresponds to background regions and 1 to flame regions. 

Based on the exit orifice diameter and the dimensions of the imported image, the 

flame-geometry descriptors were determined for the complete set of segmented 

images. 
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Step 1 Step 2 Step 3 Step 4 

    

Figure 2.12. Instant captures of a test (atmospheric pressure = 0.7 atm) in the steady state. The 

four steps followed during the image segmentation process are depicted. Red line depicts the 

manually drawn flame contour. Yellow line depicts the outer contour.  

2.3.3. Data available 

Figure 2.13 shows instant captures of the original and segmented images during 

the stationary state of the different jet fire tests. As it can be seen, the shapes and 

the colours of the jet flames significantly varied according to the ambient pressure. 

This may be due to the effective amount of oxygen available, which altered the 

soot formation rate and the chemical reaction rate (Joo et al., 2013; Lee et al., 

2000). At 1.0 atm, there was sufficient oxygen present near the base of the flame 

to support the reaction of combustion from the nozzle orifice. As the axial distance 

from the orifice increased, the flame turned to be more yellow and luminous, 

indicating the oxidation of the soot particles as a result of an incomplete 

combustion process (Flower and Bowman, 1988). At lower pressures, there was 

no formation of soot given the lower amount of oxygen particles present in air, 

hence creating a blue and smaller flame. Indeed, reduced atmospheres lead to 

premixed flames due to the lower concentration of oxygen molecules, which 

requires a better fuel/air mixing process to allow the reaction of combustion. 

Data related to the geometrical features of the methane jet flames was obtained 

during the experiments. Figure 2.14 shows the mean dimensionless values of lift-

off distance, flame length and equivalent diameter obtained from the image 

segmentation process as a function of the Reynolds number.  

The mean lift-off distances varied according to the ambient pressure: the lower the 

atmospheric pressure, the larger the flameless distances. This occurred due to the 

high amount of fuel released downstream the orifice that required a significant 

amount of oxygen molecules, which were not present at reduced pressures. As the 

methane gas was diluted into the ambient air, its concentration decreased until the 

fuel-oxidizer mixture was within the flammability limits. A similar tendency on 
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the lift-off behaviour was found in the methane jet fire experiments performed by 

Zeng et al. [20], who examined laminar flames released from 3 mm-diameter 

nozzles and ambient pressures ranged from 0.5 atm to 1.0 atm. 

(a) Original Images 

 1.0 atm  0.9 atm  0.8 atm  0.7 atm  0.6 atm 

 

(b) Segmented Images 

 1.0 atm  0.9 atm  0.8 atm  0.7 atm  0.6 atm 

 

Figure 2.13. Instant captures of (a) original and (b) segmented images obtained during the 

stationary state of the vertical jet fire experiments of methane in normal- and sub- atmospheric 

pressures. 

The mean flame lengths increased with the Reynolds number, whereas the 

equivalent diameter remained approximately steady with slight variations. Thus, 

vertical jet flames of methane became thinner as the ambient pressure decreased. 

Given the opposite behaviour of the lift-off distance and the radiant flame length, 

the flame length remained steady regardless the ambient pressure. Therefore, the 

flames always achieve the same length from the exit orifice and occupy the same 

area. These values were found to be 𝐻̅𝐹 = 200𝐷𝑜𝑟 and 𝐴̅𝐹 = 3000𝐴𝑜𝑟 (Figure 

2.15). 
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Figure 2.14. Mean dimensionless values of lift-off distance, flame length and equivalent diameter 

obtained as a function of the Reynolds number for the vertical subsonic jet fire experiments of 

methane in normal- and sub- atmospheric pressures. Vertical error bars indicate the standard 

deviation of the measurements. 

It is worth noting that sooty flames, such as those occurring at 1 atm, are featured 

with lower temperatures since the radiative fraction is higher than at sub-

atmospheric pressures (Hu et al., 2014, 2013). In addition, jet flames at 1 atm are 

larger and closer to the nozzle orifice than at reduced atmospheres. Consequently, 



      

Chapter 2 

  36 

in terms of geometrical characteristics, jet flames pose a more hazardous situations 

at 1 atm than at reduced pressure given the greater possibility of flame 

impingement in adjacent equipment. However, higher thermal fluxes are expected 

to be emitted in sub-atmospheric pressures. 

 

 

 

Figure 2.15. Mean dimensionless values of flame length and flame area as a function of the 

Reynolds number for the vertical subsonic jet fire experiments of methane in normal- and sub- 

atmospheric pressures. Vertical error bars indicate the standard deviation of the measurements. 

2.4. Vertical and horizontal subsonic jet fires of propane 

2.4.1. Experimental set-up 

Vertical and horizontal subsonic jet fire tests of propane carried out in an open 

environment are considered in this thesis. The data shown and the measuring 

devices used can be found in the original reports: (Gopalaswami et al., 2016; 

Laboureur et al., 2016; Zhang et al., 2015) for horizontal jet fires and (Palacios et 

al., 2012, 2008) for vertical ones. Table 2.4 summarizes the experimental 

conditions of the horizontal and vertical jet fire tests. The first figure indicates the 

jet orientations (i.e. ‘V’ for vertical ones and ‘H’ for horizontal ones) followed by 

the diameter of the nozzle orifice in mm and the second figure indicates the mean 
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mass flow rate of the gas in kg/s. For this dataset there are no standard deviations 

reported among the mean values found. 

Table 2.4. Main features of the horizontal (Gopalaswami et al., 2016; Laboureur et al., 2016; Zhang 

et al., 2015) and vertical (Palacios et al., 2012, 2008) subsonic jet fire experiments of propane used 

in this thesis. 

Orientation Experiment 𝑫𝒐𝒓 (mm) 𝒎̇𝒐𝒓 (kg·s-1) 𝒖̅𝒘 (m·s-1) 𝑻̅∞ (ºC) 𝑹𝒆̅̅ ̅̅  

Vertical V12.75_0.007 12.75 0.007 0.88 28.8 6.9·104 

 V12.75_0.016 12.75 0.016 0.88 28.8 1.7·105 

 V20_0.020 20 0.020 1.80 25.0 1.4·105 

 V43.1_0.066 43.1 0.066 1.0 25.0 2.6·105 

 V43.1_0.142 43.1 0.142 1.0 25.0 5.7·105 

Horizontal H19.05_0.015 19.05 0.015 2.2 30,85 5.3·104 

 H19.05_0.016 19.05 0.016 2.2 29.85 5.6·104 

 H19.05_0.025 19.05 0.025 2.2 29.85 8.8·104 

 H19.05_0.040 19.05 0.040 2.2 29.85 1.4·105 

 H19.05_0.042 19.05 0.042 2.2 21.85 1.4·105 

 

Different measuring devices were set-up to register the main variables of interest. 

A meteorological station was used to measure the ambient temperature and the 

wind speed. In the case of horizontal jet fires, the wind and the exit orifice were 

aligned in the same direction. An IR camera located perpendicular to the wind 

direction was used to register the temperature evolution of the fire tests, from 

which the mean geometrical parameters of the jet flames were determined: flame 

length, flame area and lift-off distance. In addition, the surface emissive power 

was calculated based on the IR camera recordings. A detailed description of the 

post-processing methods applied can be found in the original reports.  

2.4.2. Data available 

Figure 2.16 shows the mean dimensionless values of the experimental 

measurements regarding lift-off distance, flame length and flame area found as a 

function of the Reynolds number for horizontal (blue) and vertical (red) subsonic 

jet fires of propane. 
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Figure 2.16. Mean dimensionless values of lift-off distance, flame length and equivalent diameter 

obtained as a function of the Reynolds number for horizontal ( ) and vertical ( ) subsonic jet fires 

of propane. 

The lift-off distance varied according to the jet fires orientation. In the case of 

horizontal releases, the lift-off distance considerably increased as the Reynolds 

numbers became greater. On the other hand, the flameless regions between the exit 

orifice and the flame base barely varied for vertical flames. In consequence, 

vertical flames are closer to the equipment surrounding the exit orifice than 
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horizontal ones. The mean flame lengths increased as a function of the Reynolds 

number for both types of jet releases, with greater values under horizontal jet 

flames than vertical ones for a given Reynolds number. Similarly, greater mean 

equivalent diameters are found in horizontal jet flames than in vertical ones. In 

particular, slight variations of the equivalent diameters are found in horizontal 

releases, while these became greater as the Reynolds number increased for vertical 

jet flames. Therefore, horizontal jet flames are longer and wider than vertical ones 

possibly due to the influence of the gravitational acceleration on the combustion 

process, which slows down the vertical velocity of the gas upward the nozzle. As 

a result of longer and wider flames, horizontal jets are featured with greater flame 

areas than vertical ones for similar Reynolds numbers (Figure 2.17). In addition, 

Reynolds numbers lower than 106 lead to surface emissive powers ranged between 

20 kW/m2 and 80 kW/m2 for both types of jet releases.  

 

 

Figure 2.17. Mean values of dimensionless flame area (up) and surface emissive power (down) 

obtained as a function of the Reynolds number for horizontal ( ) and vertical ( ) subsonic jet fires 

of propane. 
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CHAPTER 3 

COMPUTATIONAL FLUID DYNAMICS  

 

 

 

The predictive capabilities of three Computational Fluid Dynamics (CFD) 

codes have been assessed in this thesis: Fire Dynamics Simulator v6.7 (FDS), 

the fire solver of OpenFOAM v6.0 (FireFOAM 2.2.x) and Flame Accelerator 

Simulator Fire v10.7 (FLACS-Fire). In particular, FDS and FLACS-Fire are 

used for modelling large-scale pool fires (Chapter 4), while FDS, FireFOAM 

and FLACS-Fire are used for modelling jet fires (Chapter 5). Firstly, this 

chapter individually introduces the codes used to perform validation analysis 

(Section 3.1) and describes the sub-models solved in each of them to predict 

the fire development (Section 3.2). Then, the definition of the mesh resolution 

within the computational domain (Section 3.3) and the measuring techniques 

applied to estimate the main variables of interest are described in detail (Section 

3.4). Next, the qualitative and quantitative methods used to evaluate the 

predictions found are summarized (Section 3.5). Unless indicated otherwise, 

the default numerical settings of the CFD codes used, which are described in 

the present chapter, are the ones used to perform the hydrocarbon fire 

simulations in this thesis. 

3.1. Fire codes 

FDS v6.7 is an open source code developed by the National Institute of Standards 

and Technology (NIST) that numerically solves a form of the Navier-Stokes 

equations appropriate for low-speed, thermally-driven flow, with an emphasis on 

smoke and heat transport from fires. FireFOAM 2.2.x is another open-source code 

developed between CFD Direct and FM Global, based on a set of object-oriented 

toolboxes written in C++. FLACS-Fire v10.7 is a commercial CFD code 

developed by Gexcon AS, especially built for quantitative risk assessment 

applications related to fire hazards in the process industry. The CFD fire codes 

used consider the low Mach number formulation of the Navier-Stokes equations 

to reduce the number of equations solved (𝑀𝑎 ≤ 0.3), hence improving the 

numerical stability and reducing the computational times.  

The numerical model in FDS uses a 2nd order explicit Runge-Kutta scheme. The 

spatial derivatives are estimated with 2nd order finite differences on a rectangular 
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grid, with scalar and velocity quantities assigned to the cell center and cell faces, 

respectively. On the other hand, the equations are advanced in time using a 1st 

order implicit Euler scheme in FireFOAM, while the convective terms are 2nd order 

centrally differenced. All quantities are assigned to the cell centres with velocities 

linearly interpolated to the cell faces. The stability criteria in the explicit schemes 

applied is regulated through the Courant-Friedrichs-Lewy (CFL) condition, which 

places a restriction on the time step to maintain physically realizable conditions. 

In both codes, a CFL default value of 0.8 was defined to avoid a fluid element to 

traverse more than one cell within a time step hence keeping the implicit temporal 

and spatial filters consistent in LES turbulence model.  

FLACS-Fire uses a 2nd order central difference scheme for resolving diffusive 

fluxes and a 2nd order so-called kappa scheme to resolve the convective fluxes. 

This last is a hybrid scheme, which does weighting between 2nd order upwind and 

2nd order central difference, with delimiters for some equations. The time stepping 

scheme relies on the CFL numbers based on the speed of sound (CFLC) and flow 

velocity (CFLV). As recommended in the user’s guide, a CFLC of 20 and a CFLV 

of 2 were set-up for the fire simulations.  

3.2. Sub-models solved 

The proposed fire codes solve the fundamental conservation equations governing 

fluid dynamics, coupled with additional sub-models (i.e. turbulence, combustion, 

radiation and wind) to describe the processes occurring during a fire. 

3.2.1. Turbulence  

Due to the high-turbulent flows occurring in accidental fires, the exact solution of 

the governing equations is beyond the capabilities of the most powerful computers. 

Alternatively, turbulent structures are modelled in a sub-grid scale stress (SGS) 

that accounts for the important small-scale processes, hence neglecting some of 

the very small effects derived from turbulent flows. The resolved scales are 

commonly obtained by introducing the SGS turbulent viscosity, 𝜇𝑡, on the stress 

tensor parameter, 𝜏𝑖𝑗, to filter out the unresolvable small scales of turbulence.  

Numerous turbulence sub-models have been developed to determine the value of 

the turbulent viscosity, which arises as a key parameter that governs the turbulence 

phenomenon on CFD fire simulations. One of the least expensive is used in the 

FLACS-Fire, the Reynolds Averaged Navier-Stokes (RANS) (Jones and Launder, 

1972), which essentially solves the Navier-Stokes equations for the mean flow 

variables. The 𝑘 − 𝜀 two-equation eddy viscosity model is used to closure the 

RANS equations: 
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𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
 (3.1) 

where 𝑘 is the turbulent kinetic energy, 𝜀 is the dissipation rate and 𝐶𝜇 is a model 

constant experimentally determined with a value of 0.09 (Launder and Spalding, 

1974). On the other hand, FDS and FireFOAM use the Large Eddy Simulations 

(LES) equations, which is very similar to that of RANS with subtle differences in 

the interpretation of the decomposition of the primitive variables. LES emphasizes 

spatial filtering by considering the structures smaller than the grid cell size, while 

RANS emphasizes temporal averaging. In addition, LES does not require 

additional equations, hence rendering a more realistic-looking flow field than the 

time-averaged RANS model. However, it is more computational expensive and 

more grid sensitive; non-reliable results can be obtained if there are not enough 

cells to describe the flow field (McGrattan and Miles, 2016). Both codes use 

different LES closure methods. Particularly, FireFOAM uses by default one of the 

simplest ones, the Smagorinsky model (Smagorinsky, 1963): 

𝜇𝑡 = 𝜌(𝐶𝑠∆)2|𝑆| (3.2) 

where 𝐶𝑠 is a model constant with a value of 0.2 (Lilly, 1967), 𝑆 is the strain rate 

tensor and ∆ is the LES filter size (i.e. cubic root of the cell volume). The model 

generally over-predicts the turbulent viscosity in near-wall regions, hence 

rendering the model unsuitable for certain transitional flows. In order to correct 

the shortcomings derived from the Smagorinsky model, FDS solves by default the 

Deardoff turbulence model (Deardorff, 1980). Instead of solving the strain rate 

tensor, the model mainly depends on the SGS turbulent kinetic energy, 𝑘𝑠𝑔𝑠: 

𝜇𝑡 = 𝜌𝐶𝑑∆√𝑘𝑠𝑔𝑠 (3.3) 

where 𝐶𝑑 is a model constant with a value of 0.1 (Pope, 2012). 

3.2.2. Combustion 

The gas phase combustion refers to the reaction of fuel vapour and oxygen and the 

associated entrainment of air into the fire plume. FDS, FireFOAM and FLACS-

Fire calculate the chemical reaction rate, 𝜔̇′′′, between the fuel and the oxidizer 

via the Eddy Dissipation Concept (Magnussen and Hjertager, 1977): 

𝜔̇′′′  =
𝜌

𝜏𝑚𝑖𝑥
𝑚𝑖𝑛 (𝑌𝑓 ,

𝑌𝑂2

𝑠
) (3.4) 

where 𝑌𝑓 and 𝑌𝑂2
 are the mass fractions of the fuel and the oxygen, respectively, 𝑠 

is the oxygen-fuel mass stoichiometric ratio and 𝜏𝑚𝑖𝑥 is the mixing time scales. 

The approach uses the simple chemistry by assuming the ‘mixed is burnt’ 
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statement for computational cost reasons. Therefore, the reaction of fuel species 

and air occurs immediately when fuel and air are available in a cell. 

This is an appropriate model when the detailed kinetics of the fuel are not 

important and when the products of combustion released are known from 

experimental data (McGrattan and Miles, 2016). The chemistry is simplified into 

the calculation of mixing time scales, 𝜏𝑚𝑖𝑥, which dictate the necessary time to 

carry out the mixture between the fuel and the oxidizer (Maragkos and Merci, 

2017). The main difference between codes using the EDC approach lies on the 

way they deal with the mixing time scales. In particular, FDS uses a detailed 

reaction time scale model based on the fastest physical process of the local state 

of the flow field:  

𝜏𝑚𝑖𝑥 = 𝑚𝑎𝑥[𝜏𝑐 ,𝑚𝑖𝑛(𝜏𝑑 , 𝜏𝑎 , 𝜏𝑔)] (3.5) 

where 𝜏𝑐 represents the mixing time scale for chemical species, 𝜏𝑑 for diffusion, 

𝜏𝑎 for advection and 𝜏𝑔 for buoyant acceleration. As a result, the total mixing scale 

solved in FDS can be expressed as: 

𝜏𝑚𝑖𝑥 = 𝑚𝑎𝑥

[
 
 
 

10−4,𝑚𝑖𝑛

(

 
∆2

𝛼
,

0.4∆

√(
2
3) 𝑘𝑠𝑔𝑠

, √
2∆

𝑔

)

 

]
 
 
 

 (3.6) 

where 𝛼 is the thermal diffusivity. On the other hand, FireFOAM solves by default 

a simplified mixing time scale expressed as: 

𝜏𝑚𝑖𝑥 = 𝐶𝐸𝐷𝐶

𝜀𝑠𝑔𝑠

𝑘𝑠𝑔𝑠
 (3.7) 

where 𝐶𝐸𝐷𝐶 = 4 is a model constant (Maragkos et al., 2017) and 𝜀𝑠𝑔𝑠 =

1.048𝑘𝑠𝑔𝑠
3 2⁄

∆−1 is the sub-grid scale dissipation rate (Fureby et al., 1997). 

Therefore, the resulting mixing time scale becomes: 

𝜏𝑚𝑖𝑥 = 4.192
𝑘𝑠𝑔𝑠

1 2⁄

∆
 (3.8) 

Otherwise, the mixing time scales in FLACS-Fire is resolved as follows: 

𝜏𝑚𝑖𝑥 =
2.433(

𝜀
𝜈
)
1 2⁄

𝛾3𝜒

1 − 𝛾3𝜒
 

(3.9) 

where 𝜈 the kinematic viscosity, 𝜒 the reacting fractions of fine structures and 𝛾 

the isentropic ratio determined as:  
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𝛾 = 𝑚𝑖𝑛 (0.8,2.13 (
𝜈𝜀

𝑘
)
1 4⁄

) (3.10) 

The formation of soot significantly affects the heat transfer process during the gas-

phase combustion due to its capacity to absorb/emit part of the radiative energy of 

the flame. There exists some detailed models intended to calculate the formation 

and growth of soot from large fires; however, these require some form of 

adjustment to provide reasonable predictions. Because of that, the simplified 

Conversion Factor Model (CFM) is used in the CFD codes to reduce the derived 

uncertainties of complex soot models and the computational times. The CFM 

model directly converts a certain fraction of the fuel carbon to soot. To that end, a 

soot yield value is prescribed in computational simulations, which depends on the 

fuel used. 

3.2.3. Radiation  

There are two main models used in CFD fire modelling to solve the radiation 

transport equation (RTE): the discrete ordinate method (DOM) (Fiveland, 1984) 

and the discrete transfer method (DTM) (Shah, 1979). The DOM model is used by 

default in FDS and FireFOAM simulations and the DTM in FLACS-Fire. Both 

approaches are based on a refined spatial discretization of the RTE through a finite 

number of solid angles. The calculation of the radiation source term is based on 

the distance travelled for the rays fired from the surface elements.  

The discretization can lead to a non-uniform distribution of the radiative flux for 

targets far away from the fire plume. This error, which is known as “ray effect”, 

can be lessened by the inclusion of more solid angles. This, in turn, increases the 

computational cost of the radiation solution proportionally to the number of angles 

defined. Thus, the radiation phenomenon poses a significant challenge in CFD 

simulations since it has to be a proper balance between accuracy and 

computational times. In the simulations proposed, 100 solid angles are defined by 

default to solve the radiative heat transfer within the computational domains. It 

was found adequate to provide distributions of the radiant heat flux emitted of fires 

(Chatterjee et al., 2015). The DOM model uses a complex ray tracing algorithm as 

follows: 

𝑞̇𝑟
′′ = 𝜅(4𝐼𝑏 − 𝐺) (3.11) 

where 𝐺 is the total irradiance, 𝜅 is the Planck absorption coefficient and 𝐼𝑏 is the 

black body radiation intensity: 

𝐼𝑏 = 𝜎𝑇4 (3.12) 

where is 𝜎 is the Stefan-Boltzmann constant. Although FDS and FireFOAM use 

the DOM model, there exist subtle differences between their applications. FDS 
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incorporates a correction factor for the 𝐼𝑏 estimation, 𝐶𝑟, that is dynamically 

calculated and is aimed to improve the results accuracy as recommended by the 

code developers. Differently, the DTM approach used in FLACS-Fire simulations 

is based on the solution of the radiative heat transfer equation along specified 

directions: 

𝑞̇𝑟
′′ = (1 − 𝜀)𝐺 + 𝜀𝜎𝑇4 (3.13) 

Even though the DTM model is theoretically acceptable for fires simulations, it 

may become computationally expensive. 

3.2.4. Wind 

Some of the hydrocarbon fire experiments described in Chapter 2 were performed 

under the presence of wind. In this sense, the wind effect affecting the fire 

development must be represented in computational simulations. For that purpose, 

there exist different wind sub-models able to reproduce wind velocities in a given 

computational domain. For example, FLACS-Fire solves by default the Monin-

Obukhov (MO) similarity model (Monin and Obukhov, 1959), which is able to 

determine the buoyancy effects on the atmospheric boundary layer as follows:  

𝑢𝑤 {

𝑢𝜃

𝐾
[ln (

ℎ − ℎ𝑐 + 𝜂

𝜂
) − 𝜓 (

ℎ

𝐿
)]   𝑖𝑓 𝜂 > 0

𝑢𝑟𝑒𝑓                                                 𝑖𝑓 𝜂 = 0
 (3.14) 

where 𝑢𝑤 is the wind velocity at a height ℎ, 𝑢𝑟𝑒𝑓 is the wind velocity measured in 

the experiments, 𝜂 = 0.03 is the ground roughness for open grass terrains (Möller, 

1973), 𝐾 = 0.41 is the Von Kármán constant, ℎ𝑐 is the canopy height, which refers 

to the height above the ground where the vegetation and buildings are located,  𝜓 

is a similarity function that is dynamically determined, 𝐿 = 100 is the Obukhov 

length for stable conditions and 𝑢𝜃 is the velocity friction defined as: 

𝑢𝜃 =
𝐾𝑢𝑟𝑒𝑓

ln (
ℎ𝑟𝑒𝑓 − ℎ𝑐 + 𝜂

𝜂 ) − 𝜓(ℎ𝑟𝑒𝑓)

 
(3.15) 

where ℎ𝑟𝑒𝑓 is the reference height. It is worth noting that the MO approach can be 

also used in FDS. Nevertheless, the atmospheric wind conditions are modelled by 

default in FDS and FireFOAM through the Power Law (PL) wind profile. This 

approach essentially creates a ‘wall of wind’ where an entire side of the 

computational domain is turned into a giant fan blowing air laterally: 

𝑢𝑤 = 𝑢𝑟𝑒𝑓 (
ℎ

𝜂
)
𝑝

 (3.16) 
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where 𝑝 is the altitude exponent, commonly defined with a value of 0.6, which is 

a function of the roughness length and the thermal stability of the planetary 

boundary layer. In addition, there is another available wind model in FDS, which 

is the so-called Mean Forcing Concept (MFC), that simply consists on adding a 

forcing term to the momentum equation to represent the wind force throughout the 

domain in a given direction: 

𝜕𝑢𝑖

𝜕𝑡
+ ⋯ =

𝑢𝑖(ℎ, 𝑡)

𝜏𝑖𝑗
 (3.17) 

3.3. Mesh resolution 

The size of the cells probably represents the most important numerical parameter 

user-defined in CFD simulations. The grid sizes coupled with the numerical 

methods significantly influence the accuracy of the results and the computational 

simulation times: the thinner the cell size, the better the computational resolution 

and the greater the simulation time (Miralles et al., 2014). Therefore, it is necessary 

to provide a good balance between high grid resolution and reasonable 

computational costs.  

The selection of suitable cell sizes mostly depends on the fire regime. In the case 

of hydrocarbon accidental fires occurring in industry plants, two main regimes can 

be identified: (i) one for buoyancy-dominated flames that merges large-scale pool 

fires and subsonic jet fires and (ii) one for momentum-dominated flames involving 

sonic and supersonic jet fires. For simulations involving buoyant and subsonic 

fires, the non-dimensional expression 𝐷∗/𝛿𝑥 is recommended to measure how well 

the fluid flows in buoyant and subsonic fire regimes (Lin et al., 2010): 

𝐷∗ = (
𝑄̇

𝜌∞𝑐𝑝𝑇∞√𝑔
)

(2/5)

 (3.18) 

where 𝐷∗ is the characteristic diameter of the fire, 𝛿𝑥 is the cell size, 𝑄̇ is the heat 

release rate of the fire, 𝜌∞ is the ambient air density, 𝑐𝑝 is the specific heat, 𝑇∞ is 

the ambient temperature and 𝑔 is the gravitational acceleration. The 𝐷∗/𝛿𝑥 

expression can be seen as the number of grid cells spanning the characteristic 

diameter of the fire, whose values should be ranged between 4 (coarse cell size) 

and 16 (thin cell size) for being solved adequately (Sally and Kassawara, 2007). 

On the other hand, different regimes can be found depending on the nature of the 

jet fire. Based on a vast data bank covering 880 sets of flame height measurements, 

Bradley et al. (Bradley et al., 2016) identified the flow regimes of jet flames as a 

function of the dimensionless flow number for choked and unchoked flow, 𝑈∗: 
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𝑈∗ = (
𝑢𝑓

𝑆𝐿
)𝑅𝑒𝐿

−0.4 (
𝑃𝑖

𝑃∞
) (3.19) 

where 𝑢𝑓 is the gas velocity, 𝑆𝐿 is the laminar burning velocity, 𝑅𝑒𝐿 = 𝐷𝑜𝑟𝑆𝐿 𝜈⁄  is 

the Reynolds number based on 𝐷𝑜𝑟 and 𝑆𝐿 and 𝑃𝑖 and 𝑃∞ are the stagnation and 

ambient pressures, respectively. They noted that buoyant and turbulent subsonic 

regimes are featured with 𝑈∗ < 10, whereas sonic and supersonic flames with 

𝑈∗ > 80. Between both, there is the transition regime from buoyant to momentum-

dominated fires. In this sense, the Eq. 3.21 can be applied to subsonic jet fires and 

those in the early transition regime. Differently, under momentum-dominated 

flows (𝑈∗ > 80), the 𝐷∗/𝛿𝑥 correlation is no longer applied and alternative 

techniques must be used according to the modeller’s needs. When possible, 

sensitivity analysis is recommended to find out the most suitable cell size for the 

fire scenario of interest. 

The domain modelled in FDS and FireFOAM can be divided in multiple meshes 

contained in different CPU cores. This fact speeds up the computational time and 

can be of high interest when high resolution is required to simulate complex 

obstructions. The amount and location of the meshes considered can vary 

according to the modeller’s interests. In contrast, FLACS-Fire simulations are run 

in one only grid that fills the entire volume under a single CPU core. Given the 

nature of the experiments, the computational boundaries of the simulations are 

opened to the outside to allow the external flow to enter and to leave the domain. 

The Nozzle formulation is used in FLACS-Fire simulations, while Open vents are 

applied in FDS and FireFOAM. 

The computational domains in the whole codes used are composed by rectangular 

and isotropic grid cells that varied according to the simulated tests. Round 

geometries are drawn in FLACS-Fire to represent nozzle orifices and pool bases, 

while squared ones are drawn in FDS and FireFOAM. FLACS-Fire also 

incorporates the porosity concept, from which the code is able to estimate the 

fraction of the area or volume accessible for a fluid to flow: 0 means that the 

volume is completely blocked and 1 that the volume is completely open. 

3.4. Simulation outputs 

When performing a CFD validation analysis, experimental data must be compared 

against simulation results to assess the predictive capabilities of the code. To that 

end, the parameters measured during the fire tests, which are commonly related to 

the hazardous fire effects (i.e. temperature, heat flux, emissive power and flame 

geometry), must be numerically calculated. The following measuring techniques 

have been applied for the CFD codes used in this thesis. It is pointed out that the 

whole computational measurements have been registered each 0.50 s. 
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The temperatures and radiative heat fluxes received at a certain distance from the 

fire origin are determined through virtual sensors located and oriented as described 

in the experimental set-up within the computational domain. The flame-geometry 

descriptors are calculated by means of a  slice file (SF) positioned on the centreline 

axis of the fire, parallel to the wind direction to register the temperatures 

evolutions. Different post-processors are used to convert the slice files into 

spreadsheets containing the mean temperatures registered at each cell of the 

domain simulated: fds2ascii for FDS, ParaView v5.4 for FireFOAM and Flowvis 

v5 for FLACS-Fire. Then, a normalized threshold temperature, 𝑇𝑟, is applied to 

perform a segmentation process intended to discriminate the flame region, 𝐼(𝑖, 𝑗), 

from the background by comparing the temperature at each pixel element, 𝑇𝑖,𝑗, 

with the defined threshold temperature: 

𝐼(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑇𝑖,𝑗 ≥ 𝑇𝑟 

0, 𝑖𝑓 𝑇𝑖,𝑗 < 𝑇𝑟
 (3.20) 

where 1 indicates that the pixel is within the flame region and 0 means that the 

pixel element belongs to the background of the image. This segmentation process, 

which is based on temperature difference criteria, is identical to the one used for 

the IR images obtained from the experiments (Section 2.1.2). Pixels with apparent 

temperatures ≥ 600 K are considered as flames for pool fires and subsonic jet fires 

(Audouin et al., 1995; Cox and Chitty, 1980), whereas temperatures ≥ 800 K are 

considered as flames for sonic jet fires (Palacios et al., 2012; Palacios and Casal, 

2011). Figure 3.1 depicts the location of the SF within the computational domain 

and exemplifies the post-processing methodology undertaken to determine the 

flames shape.  

 

Figure 3.1. Example of a pool fire scenario simulated in FDS: (left) perspective view of the fire; 

(centre) front view of the temperatures distribution registered in the SF; and (right) flame contour 

determined by applying the appropriate threshold temperature. 

Moreover, the surface emissive power, 𝐸, is also obtained in certain fire 

simulations. To that end, an additional wide-angle radiometer (RD_SEP) is 

perpendicularly located to the predominant wind direction facing the fire flames 

(Figure 3.2).  

Fire 

SF 
SF 
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Figure 3.2. Example of a pool fire scenario simulated revealing the location of the RD_SEP 

defined to calculate the surface emissive power. Data source from (Rengel et al., 2018). 

Based on the heat fluxes received by the radiometer and assuming an atmospheric 

transmissivity of 1, the emissive power of the flames can be calculated as (Mudan, 

1984): 

𝐸 =
𝑞̇𝑟

′′

𝜑𝐹,𝑡𝜏
 (3.21) 

where 𝜑𝐹,𝑡 represents the view factor between the flame and the radiometer 

obtained as: 

𝜑𝐹,𝑅 = √𝜑𝑉
2 + 𝜑𝐻

2 (3.22) 

where 𝜑𝑉 and 𝜑𝐻 are the vertical and horizontal view factors. Both can be 

estimated as follows (Mishra, 2010): 

𝜑𝑉 =
1

𝜋𝑆
tan−1 (

ℎ

√𝑆2 − 1
) −

ℎ

𝜋𝑆
tan−1 √

𝑆2 − 1

𝑆2 + 1
+

𝐴ℎ

𝜋𝑆√𝐴2 − 1
tan−1 √

(𝐴 + 1)(𝑆 − 1)

(𝐴 − 1)(𝑆 + 1)
 (3.23) 

𝜑𝐻 =
(𝐵 − 1

𝑆⁄ )

𝜋√𝐵2 − 1
tan−1 √

(𝐵 + 1)(𝑆 − 1)

(𝐵 − 1)(𝑆 + 1)
−

(𝐴 − 1
𝑆⁄ )

𝜋√𝐴2 − 1
tan−1 √

(𝐴 + 1)(𝑆 − 1)

(𝐴 − 1)(𝑆 + 1)
 (3.24) 

where 𝑆, ℎ, 𝐵 and 𝐴 are model constants calculated as: 

𝑆 =
2𝑑𝑅

𝐷
 (3.25) 

ℎ =
2𝐿𝐹

𝐷
 (3.26) 

𝐴 =
ℎ2 + 𝑆2 + 1

2𝑆
 (3.27) 
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𝐵 =
1 + 𝑆2

2𝑆
 (3.28) 

where 𝑑𝑅 is the radial distance between the radiometer and the centre of the flame. 

3.5. Assessment of the predictions 

Qualitative and quantitative comparisons between simulation results and 

experimental measurements have been carried out to assess the result’s accuracy 

obtained with the CFD codes. In a first instance, scatter plots are performed to 

graphically illustrate the level of agreement. These represent the mean values of 

the variables estimated, which are obtained by averaging the simulation results 

over 30 s during the steady state. Solid diagonal lines indicate perfect agreement 

between simulated and experimental values, while dotted and long-dashed lines 

represent the ± 25% and ± 50% prediction error with regard to the measurements, 

respectively. All graphs include vertical and horizontal bars that represent the 

standard deviation of the simulation results and the experiments, respectively. 

Complementarily, the 𝐹𝐵 and 𝑁𝑀𝑆𝐸 methods are determined to quantitatively 

assess the code’s performance (Rew and Deaves, 1995): 

𝐹𝐵 =
1

𝑛
∑2

𝑛

𝑖=1

𝑥𝑚 − 𝑥𝑝

𝑥𝑚 + 𝑥𝑝
 (3.29) 

𝑁𝑀𝑆𝐸 =
1

𝑛
∑

(𝑥𝑚 − 𝑥𝑝)
2

𝑥𝑚𝑥𝑝

𝑛

𝑖=1

 (3.30) 

where 𝑥𝑚 and 𝑥𝑝 are the single experimental and predicted values for each time 

step, respectively; and 𝑛 is the number of measures. The following performance 

criteria is adopted to dictate a code as ‘valid’: the random scatter is within a factor 

of 2 of the mean (𝑁𝑀𝑆𝐸 ≤ 0.5) and the mean bias is within ± 30% of the mean (-

0.3 ≤ 𝐹𝐵 ≤ 0.3) (Hanna et al., 2004). More details on the both types of assessment 

techniques can be found in Section 1.2.3. 
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CHAPTER 4 

CFD MODELLING OF LARGE-SCALE POOL FIRES 

 

 

 

This chapter includes the investigation of the predictive capabilities of FDS and 

FLACS-Fire codes when modelling large-scale hydrocarbon pool fires (𝐷 ≥ 1 

m). A preliminary sensitivity analysis of the cell size and the computational 

domain is firstly carried out in both codes to assess their influence on the 

outcomes obtained (Section 4.1.). Later on, the complete set of large-scale pool 

fires is simulated by considering the most appropriate modelling features 

previously found (Section 4.2. and Section 4.3.). Given the notable differences 

between the mathematical methods applied to solve the CFD sub-models, this 

study is not aimed at directly comparing both codes (i.e. using identical sub-

models choices). The present CFD analysis is intended to reveal the potential 

of each software separately by applying the most appropriate modelling options 

for each tool. Based on a qualitative and a quantitative assessment of the 

predictions found (i.e. flame temperature, burning rate, heat flux, flame length, 

flame surface and surface emissive power), the main strengths and weaknesses 

of FDS and FLACS-Fire are identified. The work presented in this chapter have 

been presented in the 2nd SFPE Europe Fire Safety Engineering Conference & 

Expo and in the 10th World Congress of Chemical Engineering as well as 

published in the paper entitled A priori validation of CFD modelling of 

hydrocarbon pool fires at Journal of Loss Prevention in the Process Industries 

(Rengel et al., 2018). 

4.1. Analysis of cell size and computational domain 

Model predictions are highly sensitive to uncertainties in input data, to the level of 

rigour used in modelling the relevant physics and chemistry of the fire and to the 

accuracy of numerical treatment (Hasofer, 2009). Input data are defined as 

provided from the experiments, whereas the sub-models solved and the numerical 

schemes are commonly defined by the code developers. Therefore, there are many 

modelling parameters affecting the estimations reached that cannot be modified. 

Chapter 3 provides more details about the mathematical equations solved and the 

constants considered by default in CFD fire codes. 
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Nevertheless, there are some user-defined parameters that may have a significant 

impact on the simulation outcomes. For example, the cell sizes defined in CFD 

simulations have a direct influence on the turbulent viscosity solved under the LES 

approach, 𝜇𝑡, and the mixing scale times solved in the EDC combustion model, 

𝜏𝑚𝑖𝑥. Similarly, the computational domain, which is often defined according to the 

obstacles dimensions and their locations, may affect the amount of air entrained 

and mixed with the combustible gases. Also, it must be large enough to simulate 

the entire flame shape and its effects.  

As previously discussed, both parameters may greatly affect the predicted fire 

development and its related hazardous effects. Consequently, it is essential to 

determine the most precise cell sizes and computational domains prior to perform 

simulations aimed to assess the effects of large-scale pool fires. To that end, a 

preliminary sensitivity analysis is proposed, which consists on running numerous 

CFD fire simulations under different cell sizes and computational domains. The 

results obtained are qualitatively compared against experimental data to determine 

the most appropriate ones: the closer the agreement reached, the more suitable the 

modelling conditions defined. 

Firstly, there is a short description of the fire scenarios used and the modelling 

settings applied in FDS and FLACS-Fire. Then, the mesh size is firstly evaluated 

given its greater influence on the predicted results, especially in the turbulence and 

combustion sub-models. Based on the most suitable cell size results, five cubic 

computational domains are then assessed. 

4.1.1. Fire scenarios and modelling settings 

Table 4.1 gathers data regarding the gasoline and diesel pool fires of 3 and 6 m-

diameter at 0 and 3 m/s wind speeds considered for sensitivity analysis. In the first 

column, the first figure corresponds to the diameter of the pool in meters followed 

by the liquid fuel (i.e. ‘G’ for gasoline and ‘D’ for diesel) and the second one 

indicates if there is a presence of wind in the fire scenario (i.e. 0 for windless 

scenarios and 1 for windy scenarios).  

The mean flame height obtained in the experimental tests, 𝐻̅𝐹, are compared 

against those determined in FDS and FLACS-Fire through a 2D temperature slice 

file. For all the simulations performed, an ambient temperature of 293 K is defined, 

a soot fraction of 0.12 kg/kg is considered for the reaction of combustion for both 

fuels (Kent and Honnery, 1987) and the burning rates are prescribed according to 

the experimental data. Simulations are run for 60 s to achieve long-duration steady 

states of the fires in an Intel® Xeon® E5 2.20 GHz with 256 GB RAM. Table 4.2 

summarizes the sub-models solved in both codes for the analysis of the cell size 

and the computational domain. More details about the mathematical correlations 

and models constants applied can be found in Section 3.2. 
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Table 4.1. Pool fire scenarios considered for assessing the cell size and computational domain 

influence in FDS and FLACS-Fire simulations.  

Fire Scenarios 𝑫 (m) Fuel 𝒖̅𝒘 (m·s-1) 𝒎̇ (kg·s-1) 𝑯̅𝑭 (m) 

3G_W0 3 C6H14 0 0.51 6.58 

3G_W1 3 C6H14 1.5 0.60 6.50 

3D_W0 3 C12H26 0 0.30 5.65 

3D_W1 3 C12H26 1.5 0.40 5.57 

6G_W0 6 C6H14 0 1.92 11.74 

6G_W1 6 C6H14 3 2.09 11.64 

6D_W0 6 C12H26 0 1.30 10.44 

6D_W1 6 C12H26 3 1.50 10.33 

 

Table 4.2. CFD sub-models solved in FDS and FLACS-Fire simulations for the preliminary 

sensitivity analysis. 

CFD Sub-models FDS FLACS-Fire 

Turbulence 

LES 

𝜇𝑡 = 𝜌𝐶𝑑∆√𝑘𝑠𝑔𝑠 

RANS 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
 

Combustion 

EDC 

𝜏𝑚𝑖𝑥 = 𝑚𝑎𝑥[𝜏𝑐 , 𝑚𝑖𝑛(𝜏𝑑 , 𝜏𝑎 , 𝜏𝑔)] 

EDC 

𝜏𝑚𝑖𝑥 =
2.433(

𝜀
𝜈
)
1 2⁄

𝛾3𝜒

1 − 𝛾3𝜒
 

Radiation 

DOM 

𝑞̇𝑟
′′ = 𝜅(4𝐼𝑏 − 𝐺) 

𝐼𝑏 = 𝐶𝑟𝜎𝑇
4 

DTM 

𝑞̇𝑟
′′ = (1 − 𝜀)𝐺 + 𝜀𝜎𝑇4 

Wind 

PL 

𝑢𝑤 = 𝑢𝑟𝑒𝑓 (
ℎ

𝜂
)
𝑝

 

MO 

𝑢𝑤 =
𝑢𝜃
𝐾
[ln (

ℎ − ℎ𝑐 + 𝜂

𝜂
) − 𝜓 (

ℎ

𝐿
)] 

 

4.1.2. Cell size 

The 3G_W0 and 6G_W0 are the scenarios modelled for the cell size assessment 

because there is no presence of wind affecting the fire behaviours. Also, the noted 

scenarios are the ones where the highest flame heights were found 3 and 6 m-

diameter. The computational domains set-up were of 3D (Length) x 3D (Width) x 

8D (Height) to predict the entire shape of the flames. Figure 4.1 depicts the mean 

flame heights obtained in FDS and FLACS-Fire for the two fire scenarios based 
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on the 𝐷∗ 𝛿𝑥⁄  recommended values (see Section 3.3). Black dotted lines indicate 

the experimental flame height of each fire scenario. 

 

 

Figure 4.1. Mean flame height evolutions of the 3G_W0 (up) and 6G_W0 (down) fire scenarios 

obtained in ( ) FDS and ( ) FLACS-Fire under different cell sizes. 

As it can be observed, similar mean flame height are found in FLACS-Fire under 

cells ranged from 0.05 to 0.2 m and in FDS from 0.05 to 0.4 m. Regardless of the 

fire scenario assessed, significant over-predictions are found in FLACS-Fire: the 

greater the cell size, the more notable the over-estimation achieved. On the other 

hand, under/over estimations are found in FDS for 3 and 6 m-diameter scenarios, 

respectively, with less noticeable variations among the cell sizes tested. In general, 

the thinner the cell size, the better the agreement reached in FDS simulations. 

According to these results, it is noted that the maximum cell size able to reasonably 

predict the mean experimental flame height in both CFD codes should be of 0.2 

m.  

4.1.3. Computational domain  

Five different cubic computational domains have been used in this analysis, with 

the cube side changing as a function of the pool diameter: 3D, 4D, 6D, 8D and 
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10D. Figure 4.2 and Figure 4.3 show the mean flame height obtained for pool fires 

of 3 m and 6 m-diameter, respectively, simulated in both CFD codes by 

considering a uniform mesh composed by cells of 0.2 m. The diagonal straight line 

indicates the height of the computational domain, while the dotted one represents 

the maximum experimental flame height, which corresponds to the windless 

gasoline pool fires.  

 

 

  3G_W0  3G_W1  3D_W0  3D_W1  

Figure 4.2. Mean flame heights obtained for the 3 m-diameter pool fire scenarios simulated in FDS 

(up) and FLACS-Fire (down) under different computational domains. 

As it can be seen, windless pool fire simulations commonly reached the maximum 

computational heights under the 3D domain in both fire codes. Nevertheless, for 

greater domains, the predictions found in FDS barely varied regardless of the fire 

scenarios modelled. Therefore, it is noted that the domain defined in FDS had a 

negligible influence on the simulation results. On the other hand, noticeable 

variations on the mean flame heights are found in FLACS-Fire as the domain 

varied, especially in the windless fire scenarios. In particular, pool flames achieved 

the top of the computational domain under the 3D, 4D and 6D cases. Because of 
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that, larger domain heights should be defined in FLACS-Fire to represent the 

whole flame surface. 

Both CFD codes tended to over-estimate the experimental flame heights in most 

pool fire simulations in the absence of wind. The greatest differences between 

predictions and experiments are achieved in FLACS-Fire. In contrast, under-

estimations are often found in both CFD codes in the presence of wind, especially 

under 6 m-diameter pool fires. This is mainly due to the lateral wind forces that 

inclines the flames, hence leading to shorter flames than in windless fire scenarios.  

 

 

  6G_W0  6G_W1  6D_W0  6D_W1  

Figure 4.3. Mean flame heights obtained for the 6 m-diameter pool fire scenarios simulated in FDS 

(up) and FLACS-Fire (down) under different computational domains. 

Table 4.3 shows the absolute differences of the mean flame heights predicted as a 

function of computational domains. These have only been reported when the 

whole flame surface is contained within the domains compared. The lowest 

absolute differences between domains corresponds to FDS (~1.35 m), while the 

highest ones correspond to FLACS-Fire (~2.65 m). Consequently, it is 

demonstrated that FDS arises as the least affected code by the domain dimensions, 
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whereas FLACS-Fire results are strongly influenced. Particularly, the smallest 

deviations of the flame height obtained in FDS (~0.60 m) are found when 

simulated between 4D and 8D domains. In contrast, noticeable absolute 

differences are obtained in FLACS-Fire despite the domains modelled.  

Table 4.3. Absolute differences of the mean flame heights predicted between computational domains 

as a function of the fire scenarios simulated and the CFD code used. 

Fire Scenarios CFD Code 3D-4D 4D-6D 6D-8D 8D-10D 

3D_W0 
FDS 0.40 0.20 0.40 0.40 

FLACS n.a. 0.60 7.60 4.00 

3D_W1 
FDS 0.20 0.20 0.40 2.60 

FLACS 1.40 0.00 1.20 0.80 

3G_W0 
FDS n.a. -0.20 0.20 0.60 

FLACS n.a. n.a. n.a. 0.20 

3G_W1 
FDS n.a. n.a. 0.40 0.00 

FLACS 4.80 1.00 0.40 2.20 

6D_W0 
FDS 0.80 0.00 0.80 0.40 

FLACS n.a. 11.60 2.00 8.60 

6D_W1 
FDS 4.40 -2.20 1.20 9.20 

FLACS 3.20 -1.60 2.00 2.80 

6G_W0 
FDS 0.40 1.20 0.40 0.40 

FLACS n.a. n.a. n.a. 3.80 

6G_W1 
FDS 0.80 0.80 1.20 7.60 

FLACS 0.40 0.40 0.40 4.40 

 

The computational time arises as another key factor when determining the most 

suitable domain. Table 4.4 shows the mean time required to simulate a second per 

CPU-core according to the number of cells defined. As expected, the smaller the 

domain modelled, the lower the time required to complete simulations. Given the 

large flame height obtained, the prediction’s deviations between domains and the 

computational time, the 8D domain is the minimum recommended for both codes 

to simulate large-scale pool fires in open environments. Greater domains may be 

modelled with no impact on the simulation results; however, computational times 

would significantly increase. 

Eventually, the domain width (X and Y axis) may be diminished to reduce the 

number of cells and thus, the computational times. Figure 4.4 and Figure 4.5 show 
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the mean flame height obtained for windless pool fires of 3 m and 6 m-diameter, 

respectively, simulated in both CFD codes as a function of the width modelled. 

The computational height is of 8D according to previous recommendation. 

Table 4.4. Mean time required to simulate a second per CPU-core according to the number of cells 

modelled. Time is expressed in minutes. 

Computational Domain (per axis) Nº of Cells Time in FDS Time in FLACS 

3D 91,125 0.93 ± 0.25 4.25 ± 1.93 

4D 216,000 1.37 ± 0.50 7.62 ± 3.37 

6D 729,000 20.58 ± 6.76 25.70 ± 2.73 

8D 1,728,000 56.47 ± 8.28 53.76 ± 2.29 

10D 3,375,000 162.96 ± 8.17 167.89 ± 23.77 

 

 

 

Figure 4.4. Mean flame height obtained for the 3 m-diameter windless pool fire scenarios of diesel 

(up) and gasoline (down) simulated in ( ) FDS and ( ) FLACS-Fire under different X-

computational domains.  
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As it can be observed, the computational width had a negligible influence as the 

results obtained slightly varied in FDS (± 0.54 m) and FLACS-Fire (± 1.62 m). 

Therefore, cubic domains are not necessary if there are no other objects or 

geometrical restrictions that must be included within the volume modelled. 

 

 

Figure 4.5. Mean flame height obtained for the 6 m-diameter windless pool fire scenarios of diesel 

(up) and gasoline (down) simulated in ( ) FDS and ( ) FLACS-Fire under different X-

computational domains. 

4.2. A priori validation analysis 

In general, there are two types of CFD validation analysis techniques: a posteriori 

or open simulations (Jahn et al., 2011) and a priori or blind simulations (Torero et 

al., 2009). In a posteriori simulations, the user has complete access to the 

experimental data (i.e. fuel source, ventilation conditions, mass loss rate, etc.). 

Modelling parameters can be modified if necessary to improve the agreement 

reached between simulation results and measurements. A posteriori simulations 

were shown to satisfactorily reproduce the general fire behaviour in previous 

works (Jahn et al., 2008; Lazaro et al., 2008). In contrast, in a priori simulations 
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the user has no information about the experimental results and has access only to 

a brief description of the initial scenario conditions. Consequently, the user is 

responsible for developing appropriate modelling assumptions in order to obtain 

reasonable predictions of the fire scenario of interest.  

Furthermore, blind simulations are commonly performed in fire hazard assessment 

studies, where the modeller has to estimate the consequences of the possible fire 

scenarios (Fu et al., 2016). Consequently, a priori validation analysis is necessary 

to assess the predictive capabilities of CFD codes and to quantify the uncertainties 

that can be reached. This section presents a priori CFD simulations performed in 

FLACS-Fire and FDS aimed at reproducing large-scale pool fire experiments of 

diesel and gasoline. More details about the experimental data can be found in 

Section 2.1. 

4.2.1. Numerical modelling 

In a priori simulations, the fuel mass loss rate is unknown and thus, it should be 

estimated by means of the fuel evaporation models implemented in the CFD codes. 

Prior to the liquid ignition, the evaporation process of fuel should generate a 

certain volume of flammable gases over the liquid fuel layer. In FLACS-Fire, the 

evaporation rate of the liquid fuel is determined through a heat transfer balance 

dominated by the heat from the flame, the sun and the substrate. In order to 

accelerate the formation of the combustible gas cloud downstream the pool, a 

ground temperature of 490 K and 341 K is set-up for diesel and gasoline pools, 

respectively. These values correspond to the boiling temperatures of each 

compound at which their vapour pressures are equal to the atmospheric pressure, 

hence changing their states from liquid to gas. Higher temperature values have not 

been proposed to avoid possible numerical instabilities. After a while, a heat 

source is settled just above the liquid surface to allow the ignition of the 

combustible gases released.  

The liquid evaporation rate in FDS is calculated as a function of the temperature 

of the liquid and the fuel vapour pressure, as presented by Sikanen and Hostikka 

(Sikanen and Hostikka, 2016). Regardless of the fuel layer depth, the liquid is 

treated as a thermally-thick solid to consider the heat conduction within the pool. 

The evaporation model directly allows the flame ignition of gasoline pools due to 

vapour pressure of the compound. On the other hand, a static particle at 800 K 

remained during a short period of time above the diesel pools to heat the liquid 

fuel, hence allowing the evaporation and ignition of the flammable gases. Table 

4.5 summarizes the thermal properties of both liquid fuels (diesel (Sikanen and 

Hostikka, 2017) and gasoline (Sudheer, 2013)) used for solving the reaction of 

combustion in FDS. 
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The sub-models solved and constants applied are those described in Table 4.2. 

According to the previous cell size analysis, a uniform cell size of 0.2 m is defined 

for the whole set of simulations run in FLACS-Fire. Similarly, a cell size of 0.2 m 

is also defined for FDS simulations; however, smaller ones of 0.05 m and 0.10 m 

are located near the liquid pool region to improve the accuracy of the evaporation 

rate as proposed by Sikanen and Hostikka (Sikanen and Hostikka, 2016). Multiple 

meshes are used in FDS to speed up the computational calculations. The amount 

and location of the meshes considered in the fire scenarios simulated varied 

according to the fire experiment simulated and the boundary conditions. The 

computational domains set-up in both codes were of 4D (L) x 4D (W) x 8D (H) to 

predict the entire shape of the flames. In previous experiments, it was found that 

the steady state of gasoline and diesel fires are approximately achieved 50 and 100 

s after the ignition occurs, respectively (Muñoz et al., 2004). Because of that, 

numerical simulations are set to run for 150 s to achieve long-duration steady state 

in both CFD codes (> 30 s).  

Table 4.5. Thermal properties of the pool liquid fuels required to solve the fuel evaporation and the 

reaction of combustion in FDS. 

Parameter Units Diesel Gasoline 

Density kg·m-3 749 750 

Specific heat kJ·kg-1·K-1 2.4 2.06 

Conductivity W·m-1·K-1 0.18 0.11 

Absorption coefficient m-1 300 200 

Heat of reaction MJ·kg-1 42.0 44.4 

Boiling temperature ºC 215.8 68 

Soot yield kg·kg-1 0.12 0.12 

Carbon monoxide yield kg·kg-1 0.012 0.010 

 

Simulation measurements include flame temperatures at different heights above 

the liquid fuel, radiative heat flux and surface emissive power of the flames, fuel 

mass loss rate and the geometrical features of the flames (height and area,. In 

particular, the emissive power was obtained through an additional wide-angle 

radiometer located at 4.5 m from the fire base and 0.5 above the ground facing the 

flames perpendicular to the predominant wind direction. 
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4.2.2. Assessment of the predictions 

Table 4.6 summarizes the 𝐹𝐵 and 𝑁𝑀𝑆𝐸 statistical values determined for the 

variables predicted in the different fire scenarios. Italic blue values indicate that 

the measurement is within the performance criteria.  

Flame temperature 

The predicted flame temperatures are obtained by averaging the mean values 

registered on the different thermocouples set-up for each fire simulation. As it can 

be seen in Figure 4.6, notable discrepancies are found between simulation results 

and experimental data. In particular, the mean flame temperatures meet the 

performance criteria in the 8% of the simulations performed in both CFD codes. 

This significant lack of agreement reached may be partly due to certain measuring 

errors derived during the tests. The thermocouples used were of 3 mm-diameter 

and thus, thinner thermocouples would have probably led to more accurate 

temperature results.  

 

 

 

Figure 4.6. Mean temperatures obtained for the large-scale pool fires simulated in FDS (up) and 

FLACS-Fire (down). 
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Table 4.6. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the main variables of interest obtained in FDS and FLACS-fire for the large-scale pool fires simulated. Italic blue values 

indicate that the measurement is within the performance criteria established. 

Fire  

Scenarios 

Statistical 

Measurements 

𝑻𝑭 𝒎̇′′ 𝒒̇𝒓
′′

 𝑯𝑭 𝑨𝑭 𝑬 

FDS FLACS FDS FLACS FDS FLACS FDS FLACS FDS FLACS FDS FLACS 

22_D15 
𝐹𝐵 -1.71 0.49 -0.30 -0.46 1.30 1.35 -0.47 -1.32 0.25 1.60 0.06 0.91 

𝑁𝑀𝑆𝐸 10.9 0.26 0.15 0.22 3.36 3.45 0.24 3.10 0.06 6.99 0.00 1.05 

21_G15 
𝐹𝐵 -1.23 1.28 -0.26 0.85 1.20 1.59 -0.78 -1.28 -0.25 0.08 0.03 0.68 

𝑁𝑀𝑆𝐸 2.65 2.9 0.07 0.88 2.63 6.98 0.73 2.77 0.06 0.01 0.00 0.53 

17_G3 
𝐹𝐵 -1.42 0.45 -0.13 -0.25 1.05 -0.87 -0.23 -0.69 0.76 1.44 -0.33 -0.37 

𝑁𝑀𝑆𝐸 4.18 0.57 0.02 0.06 1.67 1.30 0.05 0.54 0.67 4.36 0.12 0.14 

04_D3 
𝐹𝐵 -0.81 0.63 -0.52 -0.04 1.90 0.28 n.a. n.a. n.a. n.a. n.a. n.a. 

𝑁𝑀𝑆𝐸 0.87 1.41 0.29 0.00 49.2 0.30 n.a. n.a. n.a. n.a. n.a. n.a. 

03_G3 
𝐹𝐵 -0.39 1.00 -0.32 -0.44 1.76 0.24 n.a. n.a. n.a. n.a. n.a. n.a. 

𝑁𝑀𝑆𝐸 0.16 5.02 0.11 0.20 17.7 0.25 n.a. n.a. n.a. n.a. n.a. n.a. 

01_D3 
𝐹𝐵 -1.86 0.65 -0.53 -0.84 0.69 1.81 -0.04 -1.00 0.16 0.23 0.24 -0.50 

𝑁𝑀𝑆𝐸 25.6 0.47 0.31 0.86 0.71 18.6 0.00 1.32 0.03 0.05 0.06 0.27 

14_D4 
𝐹𝐵 -1.46 -1.32 -0.23 0.13 1.61 1.39 -0.23 -0.63 0.76 1.87 -0.02 0.02 

𝑁𝑀𝑆𝐸 4.66 3.43 0.06 0.02 10.2 4.89 0.05 0.44 0.67 27.86 0.00 0.00 

13_G4 
𝐹𝐵 -0.93 -0.28 -0.15 -0.30 1.59 1.08 -0.27 -0.43 0.17 -0.53 0.24 0.68 

𝑁𝑀𝑆𝐸 1.17 0.48 0.02 0.09 8.52 3.75 0.07 0.19 0.03 0.30 0.06 0.52 
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Table 4.6. Cont. 

Fire  

Scenarios 

Statistical 

Measurements 

𝑻𝑭 𝒎̇′′ 𝒒̇𝒓
′′

 𝑯𝑭 𝑨𝑭 𝑬 

FDS FLACS FDS FLACS FDS FLACS FDS FLACS FDS FLACS FDS FLACS 

10_D5 
𝐹𝐵 -1.73 -0.58 0.02 -0.55 1.68 -1.06 -0.36 -0.96 0.72 -0.19 -0.26 0.90 

𝑁𝑀𝑆𝐸 12.0 1.73 0.00 0.33 11.6 3.58 0.14 1.20 0.60 0.03 0.07 1.01 

08_G5 
𝐹𝐵 -0.92 -0.13 0.18 -0.52 1.77 1.22 -0.45 -0.62 0.08 -1.00 0.44 1.12 

𝑁𝑀𝑆𝐸 1.10 1.09 0.04 0.29 22.6 3.45 0.21 0.43 0.01 1.33 0.21 1.83 

07_D6 
𝐹𝐵 -1.24 -0.64 -0.28 -0.30 1.74 -0.74 -0.21 -0.61 0.63 0.22 0.17 0.18 

𝑁𝑀𝑆𝐸 3.56 1.81 0.08 0.09 15.3 0.83 0.05 0.41 0.44 0.05 0.03 0.03 

06_G6 
𝐹𝐵 0.09 1.48 -0.24 1.39 1.75 1.54 -0.22 -0.42 0.27 -0.24 0.46 -0.39 

𝑁𝑀𝑆𝐸 0.02 15.5 0.06 3.72 19.4 6.06 0.05 0.18 0.08 0.06 0.23 0.16 
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In the case of FDS, the wind profile modelled may have also affected the 

predictions found. Most of the mean flame temperatures are notably over-

estimated, which can be due to the low impact of the wind forces. Figure 4.7 shows 

instant captures of the flame contours belonging to the diesel pool fires of 1.5 and 

3 m-diameter (i.e. 22_D15 and 17_G3) in the presence of wind obtained by means 

of the IR camera and the slice files defined in FDS. These images reveal that the 

modelled flames are less tilted than in reality and thus, these remain in permanent 

contact with the thermocouples, hence leading to greater temperature values than 

the measured ones.  

22_D15 

 

  

17_G3 

  

Figure 4.7. Instant captures of the flame contours belonging to the 22_D15 (up) and 17_G3 (down) 

pool fire scenarios obtained by means of the IR images (left) and the slice files defined in FDS 

(right). 

IR camera 

IR camera 

FDS 

FDS 
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On the other hand, FLACS-Fire randomly under/over-estimates the registered 

mean flame temperatures. For example, these are always under-predicted for pool 

fires of 3 m-diameter, while over-predictions are reached when simulating 4 and 5 

m-diameter pool fires. In addition, it is remarked that the standard deviation of the 

flame temperatures is more noticeable in FLACS-Fire than in FDS throughout the 

fire scenarios simulated. This fact indicates that more stable flames are modelled 

in FDS, whereas those estimated in FLACS-Fire are featured with high puffing 

frequencies.  

Burning rate 

Regardless of the fuels involved and the boundary conditions modelled, the 

agreement between the burning rate simulated and measured mostly depend on the 

pool diameter in both CFD codes (Figure 4.8). More accurate mean burning rate 

is obtained in FDS as the pools diameter increase: 1.5 and 3 m-diameter pool fires 

have an over-estimation error slightly higher than 25%, whereas the rest of the 

fires modelled are identified with an estimation error lower than 25%. Specifically, 

5 m-diameter pool fires show perfect agreement with measurements. These 

comply within the performance criteria in the 75% of the cases, which highlights 

the appropriateness of the assumptions solved within the fuel evaporation model 

implemented and the thin cell size defined in this region.  

In contrast, lower accuracy is found as the pool diameter increases in FLACS-Fire: 

1.5 and 3 m-diameter pool fires reached the highest mean burning rate agreements. 

Therefore, as the pool’s size increase in FLACS-Fire simulations, the radiative 

heat from the flame considerably accelerates the liquid evaporation rate, hence 

releasing a greater amount of vapour fuel than what was observed in the 

experiments. In particular, the 42% of the pool fire simulations are in accordance 

with performance criteria.  
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Figure 4.8. Mean burning rates obtained for the large-scale pool fires simulated in FDS (up) and 

FLACS-Fire (down). 

Flame height 

As it can be seen in Figure 4.9, both CFD codes over-estimate the mean 

dimensionless flame height. Particularly, FDS is able to reasonably predict the 

flame height measured, where the 60% of the pool fires simulated agree with the 

established performance criteria. However, more noticeable over-predictions are 

found in FLACS-Fire, especially when modelling 1.5 m-diameter pools and fire 

scenarios with wind velocities greater than 1 m/s (01_D3 and 10_D5). 

Consequently, none of the pool fires modelled in FLACS-Fire meet the defined 

criteria. As occurred in FDS simulations, the modelled flames in FLACS-Fire are 

less tilted than in the experiments. Different constant values for the MO wind 

approach, such as the canopy height, ℎ𝑐, and the ground roughness, 𝜂, may have 

led to more accurate results. 
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Figure 4.9. Mean dimensionless flame height obtained for the large-scale pool fires simulated in 

FDS (up) and FLACS-Fire (down). 

Flame area 

Figure 4.10 depicts the mean dimensionless flame areas estimated in both codes, 

which correspond to the surfaces projected on the centreline axis plane of the pool 

fires with temperatures greater than 600 K. Good qualitative agreement is often 

found in FDS with slightly under-predictions. In particular, the 60% of the flame 

areas analysed in FDS agree with the quantitative criteria defined. The non-

complying simulations are those concerning pool fires of 4 m, 5 m and 6 m-

diameter under wind speeds higher than 0.75 m/s. Based on the flame geometry 

predictions (areas and heights), it is noted that FDS commonly reproduces longer 

and thinner pool flames than those observed in the tests.  
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Figure 4.10. Mean dimensionless flame area obtained for the large-scale pool fires simulated in 

FDS (up) and FLACS-Fire (down). 

On the other hand, the 50% of the simulations performed in FLACS-Fire meet the 

performance criteria and thus, more precise estimations of the flame-geometry 

descriptors are generally obtained in FDS. Apart from the wind profile modelled, 

which considerably affects the predicted pool flame shapes, other modelling 

settings may be also responsible for this lack of agreement found in FLACS-Fire. 

For example, the fact of averaging the flow motion in the RANS turbulence model, 

or the simplified mixing scale times adopted in the EDC combustion model, may 

also result important when estimating the flame-geometry descriptors of large-

scale pool fires.  

Heat flux 

The heat flux is significantly under-estimated in both CFD codes (Figure 4.11), 

which may be probably due to the negligible impact of the wind velocity on the 

modelled flames. Given the insignificant inclination of the flames, the separation 

distances between the fire and the wide-angle radiometer are greater than those 

observed in the experiments and thus, lower heat flux values are received by the 
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virtual radiometers. In addition, the default number of solid angles considered may 

also have affected the heat flux estimations.  

 

 

 

Figure 4.11. Mean radiative heat flux obtained for the large-scale pool fires simulated in FDS (up) 

and FLACS-Fire (down). 

Despite the general disagreements reached, better heat flux estimations are found 

in FLACS-Fire than in FDS, especially in the case of the 3 m-diameter windless 

pool fires (04_D3 and 03_G3), whose heat fluxes are reasonably well predicted. 

In particular, only the 17% of the simulation results agree within the performance 

criteria in FLACS-Fire. Therefore, the DTM radiation model, which is the one 

used in FLACS-Fire, seems to provide more reliable results than the DOM 

approach. 

Surface emissive power 

The mean surface emissive power obtained in FDS reasonably agrees with the 

experimental data (Figure 4.12). In particular, the estimations are in accordance 

with the performance criteria in the 70% of the cases. On the other hand, less well 

predictions of the emissive powers are found in FLACS-Fire as only the 20% of 

the cases agree with the criteria. Windless gasoline pool fires modelled in FDS 

lead to erroneous predictions as they often estimate higher flame temperatures than 
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expected, while the low agreement found in FLACS-Fire may be due to the 

erroneous flame height predictions.  

 

 

 

Figure 4.12. Mean surface emissive power obtained for the large-scale pool fires simulated in FDS 

(up) and FLACS-Fire (down). 

4.3. A posteriori sensitivity analysis  

As observed in previous section, numerous discrepancies between simulations 

results and measurements were often reached in both CFD codes. The 

disagreements became particularly noticeable when determining the flame 

temperatures and the heat fluxes received at a certain distance from the pool origin. 

Consequently, this lack of agreement restricts the use of the CFD codes examined 

to a limited number of fire scenarios.  

In order to extend the use of FDS and FLACS-Fire to multiple scenarios involving 

large-scale pool fires, a posteriori sensitivity analysis is proposed. This study is 

mainly intended to reveal the most appropriate modelling settings able to deliver 

accurate estimations of the variables of interest. For that purpose, the present 

analysis is focused on quantitatively assessing the influence of different modelling 

hypothesis than those used in the a priori validation analysis. In particular, 
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different wind sub-models, fuel evaporation approaches and number of solid 

angles are evaluated to study its influence on the results accuracy. The cell sizes 

and the computational domains considered are the same as in the previous analysis. 

4.3.1. Wind 

The wind velocity arose as one of the most important modelling features affecting 

the development of buoyancy-dominated fires in open environments. The Monin-

Obukhov approach is the only wind sub-model available in FLACS-Fire; however, 

different methods can be used in FDS to determine the wind influence: (i) the 

power law wind profile (PL), which was used in a priori simulations, (ii) an 

approximation Monin-Obukhov similarity theory (MO) and (iii) the mean forcing 

concept (MFC), which simply consists on adding a forcing term to the momentum 

equation to represent the wind force throughout the computational domain in a 

given direction. More details on the wind sub-models can be found in Section 

3.2.4. 

Table 4.7 gathers the quantitative performance measures of the flame temperatures 

and heat fluxes obtained in windy fire scenarios simulated in FDS under the MO 

and MFC approaches. As it can be seen, both wind sub-models commonly provide 

more accurate results than the PL previously applied in both variables. In 

particular, the 50% of the flame temperatures and the 40% heat fluxes estimated 

with the MFC method are in agreement with the experimental data. On the other 

hand, none of the flame temperature obtained with the MO approach are in 

accordance with the performance criteria. Predicted flame temperature these 

largely over-estimate the values recorded with the centreline axis thermocouples 

set-up. Nevertheless, the 50% of the heat flux obtained in windy fire scenarios 

under the MO approach are in agreement with measurements. So, considering the 

reasonable flame temperature and heat flux estimations found, the MFC approach 

is noted as the most appropriate one to simulate windy fire scenarios in FDS. 

  



  

CFD Modelling of Large-Scale Pool Fires 

 75 

Table 4.7. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the flame temperature and heat flux obtained in FDS 

under different wind sub-models. Italic blue values indicate that the measurement is within the 

performance criteria established. The symbols ✔ and ✘ indicate that the results are more and less 

accurate than those obtained in the a priori validation analysis, respectively. 

Fire Scenarios 
Statistical 

Measurements 

𝑻𝑭 𝒒̇𝒓
′′

 

MFC MO MFC MO 

22_D15 
𝐹𝐵 0.14 ✔ -1.31 ✔ -0.50 ✔ 0.14 ✔ 

𝑁𝑀𝑆𝐸 0.02 ✔ 3.15 ✔ 0.34 ✔ 0.26 ✔ 

21_G15 
𝐹𝐵 -0.85 ✔ -0.97 ✔ 0.22 ✔ -0.05 ✔ 

𝑁𝑀𝑆𝐸 0.98 ✔ 1.67 ✔ 0.14 ✔ 0.13 ✔ 

17_G3 
𝐹𝐵 0.27 ✔ 1.23 ✔ -0.98 ✔ 0.05 ✔ 

𝑁𝑀𝑆𝐸 0.09 ✔ 2.93 ✔ 1.35 ✔ 0.09 ✔ 

01_D3 
𝐹𝐵 0.00 ✔ -1.22 ✔ -0.30 ✔ -0.22 ✔ 

𝑁𝑀𝑆𝐸 0.00 ✔ 2.66 ✔ 0.25 ✔ 0.22 ✔ 

14_D4 
𝐹𝐵 -1.02 ✔ -1.34 ✔ 0.95 ✔ 1.79 ✘ 

𝑁𝑀𝑆𝐸 1.46 ✔ 3.50 ✔ 1.38 ✔ 21.54 ✘ 

13_G4 
𝐹𝐵 -0.17 ✔ -0.56 ✔ 0.76 ✔ 0.50 ✔ 

𝑁𝑀𝑆𝐸 0.07 ✔ 0.40 ✔ 0.81 ✔ 0.57 ✔ 

10_D5 
𝐹𝐵 -0.93 ✔ -1.70 ✔ -0.12 ✔ 1.05 ✔ 

𝑁𝑀𝑆𝐸 1.14 ✔ 10.39 ✔ 0.12 ✔ 2.51 ✔ 

07_D6 
𝐹𝐵 0.05 ✔ -1.23 ✔ 0.08 ✔ 1.11 ✔ 

𝑁𝑀𝑆𝐸 0.24 ✔ 3.49 ✔ 0.09 ✔ 3.51 ✔ 

4.3.2. Fuel evaporation 

Rather than determining the fuel evaporation rate by means of a heat transfer 

balance (FLACS-Fire), or by means of a one-dimensional heat transfer model 

(FDS), it can be prescribed in both CFD codes as the mass of fuel entering into the 

domain through a horizontal vent. Table 4.8 shows the 𝐹𝐵 and 𝑁𝑀𝑆𝐸 

measurements of the flame temperatures and heat fluxes obtained in FDS and 

FLACS-Fire when the mass loss rates are prescribed according to the experimental 

data. The PL wind model is used in the FDS simulations to observe the differences 

in predicting and prescribing the fuel evaporation rate.  
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Table 4.8. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the flame temperature and heat flux obtained when 

prescribing the mass loss rates in FDS and FLACS. Italic blue values indicate that the measurement 

is within the performance criteria established. The symbols ✔ and ✘ indicate that the results are 

more and less accurate than those obtained in the a priori validation analysis, respectively. 

Fire Scenarios 
Statistical 

Measurements 

𝑻𝑭 𝒒̇𝒓
′′

 

FDS FLACS FDS FLACS 

22_D15 
𝐹𝐵 -1.43 ✔ 0.38 ✔ 1.15 ✔ 1.21 ✔ 

𝑁𝑀𝑆𝐸 7.52 ✔ 0.19 ✔ 3.02 ✔ 3.41 ✔ 

21_G15 
𝐹𝐵 -1.32 ✘ 0.37 ✔ 1.38 ✘ 0.35 ✘ 

𝑁𝑀𝑆𝐸 3.25 ✘ 0.17 ✔ 4.22 ✘ 0.16 ✔ 

17_G3 
𝐹𝐵 -1.51 ✘ 1.31 ✘ 0.77 ✔ -1.24 ✘ 

𝑁𝑀𝑆𝐸 5.37 ✘ 3.04 ✘ 0.83 ✔ 2.78 ✘ 

04_D3 
𝐹𝐵 -0.66 ✔ 1.38 ✘ 1.83 ✔ -0.77 ✔ 

𝑁𝑀𝑆𝐸 0.56 ✔ 0.73 ✔ 9.26 ✔ 0.71 ✔ 

03_G3 
𝐹𝐵 -0.30 ✔ 0.21 ✔ 1.15 ✔ 0.08 ✔ 

𝑁𝑀𝑆𝐸 0.10 ✔ 0.05 ✔ 8.72 ✔ 0.01 ✔ 

01_D3 
𝐹𝐵 1.76 ✔ 0.64 ✔ 1.46 ✘ 0.90 ✔ 

𝑁𝑀𝑆𝐸 20.8 ✔ 0.46 ✔ 5.28 ✘ 1.22 ✔ 

14_D4 
𝐹𝐵 -1.37 ✔ -1.12 ✔ 1.33 ✔ 0.29 ✔ 

𝑁𝑀𝑆𝐸 3.55 ✔ 2.05 ✔ 4.06 ✔ 0.13 ✔ 

13_G4 
𝐹𝐵 -0.89 ✔ 1.51 ✘ 1.53 ✔ 0.26 ✔ 

𝑁𝑀𝑆𝐸 1.03 ✔ 5.60 ✘ 6.75 ✔ 0.16 ✔ 

10_D5 
𝐹𝐵 -1.61 ✔ 0.45 ✔ 1.13 ✔ -1.38 ✘ 

𝑁𝑀𝑆𝐸 7.53 ✔ 0.65 ✔ 3.37 ✔ 3.87 ✘ 

08_G5 
𝐹𝐵 -0.99 ✘ 1.31 ✔ 1.66 ✔ 1.68 ✘ 

𝑁𝑀𝑆𝐸 1.34 ✘ 3.03 ✔ 11.10 ✔ 9.79 ✘ 

07_D6 
𝐹𝐵 -1.09 ✔ 1.48 ✘ 1.58 ✔ -1.29 ✘ 

𝑁𝑀𝑆𝐸 2.70 ✔ 6.77 ✘ 11.07 ✔ 3.03 ✘ 

06_G6 
𝐹𝐵 0.06 ✔ 0.16 ✔ 1.46 ✔ -0.30 ✔ 

𝑁𝑀𝑆𝐸 0.01 ✔ 0.04 ✔ 5.87 ✔ 0.15 ✔ 
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In general, a better agreement of the variables predicted is found in both CFD 

codes when prescribing evaporation rates. In the case of the flame temperature, the 

agreement reached increases by 75% in both tools. Regarding the heat flux 

predictions, the increase is of 83% in FDS and of 58% in FLACS-Fire. Although 

more accurate predictions have been obtained, only the 10% and the 37.5% of the 

variables predicted are still in accordance with the performance criteria in FDS 

and FLACS-Fire, respectively.  

4.3.3. Number of solid angles 

Increasing the number of solid angles, which directly affects the RTE equation, 

may contribute to improve the accuracy of the heat flux estimations. In this sense, 

gasoline pool fires are modelled under different number of solid angles to figure 

out the most suitable option at reasonable computational time: 100, 200, 300 and 

400. As gathered in Table 4.9, the agreement reached completely varies depending 

on the CFD code used, the pool size and the wind conditions. For example, windy 

fire scenarios of 1.5 and 3 m-diameter simulated in FDS match with the 

measurements under 200 solid angles or more, whereas windless fire scenarios or 

pool fires with greater diameters require at least 400 solid angles. These 

differences may be due to the higher radial distances originated as a result of longer 

flame heights and greater flame areas. Conversely, good agreement is achieved for 

the wide range of solid angles examined in the windless 3-m diameter pool fires 

in both CFD codes. In the absence of wind, the radiative heat transfer can be 

accurately predicted under 100 solid angles. Nevertheless, for the rest of simulated 

pool fires, the minimum number of rays recommended is of 300 in FLACS-Fire 

and of 400 in FDS to reasonably estimate the radiative heat fluxes. 

Table 4.9. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the heat flux predicted in FDS and FLACS-Fire under 

different number of solid angles. Italic blue values indicate that the measurement is within the 

performance criteria established. 

Fire 

Scenarios 

Statistical 

Measurements 

100 200 300 400 

FDS FLACS FDS FLACS FDS FLACS FDS FLACS 

21_G15 
𝐹𝐵 1.20 1.59  0.21 0.83 0.07 0.23 -0.20 0.19 

𝑁𝑀𝑆𝐸 2.00 2.00 0.11 0.83 0.05 0.43 0.07 0.39 

17_G3 
𝐹𝐵 1.05 -0.87 0.18 -0.75 0.11 -0.27 0.00 -0.22 

𝑁𝑀𝑆𝐸 1.67 1.30 0.10 0.65 0.06 0.36 0.07 0.35 

03_G3 
𝐹𝐵 1.76 0.24 1.02 0.07 1.01 -0.10 0.25 -0.20 

𝑁𝑀𝑆𝐸 2.00 0.25 2.00 0.00 1.67 0.01 0.11 0.04 

13_G4 
𝐹𝐵 1.59 1.08 0.86 1.08 0.35 0.47 0.29 0.30 

𝑁𝑀𝑆𝐸 2.00 2.00 1.05 1.66 0.44 0.35 0.40 0.09 
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Table 4.9. Cont. 

Fire 

Scenarios 

Statistical 

Measurements 

100 200 300 400 

FDS FLACS FDS FLACS FDS FLACS FDS FLACS 

08_G5 
𝐹𝐵 1.77 1.22 1.11 1.01 0.78 0.37 0.15 0.28 

𝑁𝑀𝑆𝐸 2.00 2.00 2.00 1.35 2.00 0.24 0.40 0.15 

06_G6 
𝐹𝐵 1.75 1.54 1.28 0.80 0.84 0.29 0.28 0.28 

𝑁𝑀𝑆𝐸 2.00 2.00 2.00 0.76 0.98 0.08 0.29 0.08 

4.4. Concluding remarks  

The predictive capabilities of FDS and FLACS-Fire were examined when 

determining the related-fire effects of unconfined large-scale pool fires of different 

sizes: 1.5, 3, 4, 5 and 6 m-diameter. First, a preliminary sensitivity analysis of the 

cell size and the computational domain was performed. It was found that the 

maximum cell size able to reasonably predict the mean experimental flame height 

in both CFD codes should be of 0.2 m. Also, a minimum domain height of 8D was 

recommended to simulated heavy hydrocarbon buoyant plumes, while the domain 

width had a negligible impact on both CFD codes.  

When performing a priori CFD simulations, the modelled flames were usually 

higher and less tilted than in the experiments. Consequently, numerous 

discrepancies were found when comparing flame temperatures and heat flux in 

both tools. On the other hand, accurate burning rates were commonly found in 

FDS, while less accurate ones were obtained in FLACS-Fire as the diameter 

increased. Additionally, reasonable predictions of the flame shapes and the surface 

emissive powers were found, with more accurate values in FDS than in FLACS-

Fire.  

Moreover, a posteriori sensitivity analysis of the fuel evaporation rate, the wind 

sub-models and the number of solid angles was performed in both CFD codes. The 

aim of this study was to find out the most suitable modelling settings different to 

those implemented in the a priori validation analysis. Predictions of the flame 

temperatures and heat fluxes were more accurate when prescribing the mass loss 

rate of the pool fires in both codes. Similarly, the wind sub-models applied in FDS 

notably improved the simulation results found. Particularly, the MO wind 

approach was revealed as the most accurate one. Also, a higher number of solid 

angles improved the heat flux estimations. The minimum number of rays 

recommended was of 300 for FLACS-Fire and of 400 for FDS to reasonably 

estimate the radiative heat fluxes. 
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CHAPTER 5 

CFD MODELLING OF JET FIRES 

 

  

 

In this section, the predictive capabilities of CFD codes when modelling 

different types of hydrocarbon jet fires are investigated. Given the possible jet 

fire scenarios occurring in industrial facilities, a considerable number of 

computational simulations have been performed involving different jet release 

orientations and flow conditions. Firstly, the expanded regions of vertical sonic 

propane jet fires are modelled with FDS, FireFOAM and FLACS-Fire to 

estimate the flame temperature, the emitted heat flux and the flame shape 

(Section 5.1). To that end, the pseudo-diameter approach is used to convert the 

sonic compressible flow conditions to subsonic expanded flow conditions due 

to the Mach number constraint of these codes. Then, the flame-geometry 

descriptors of vertical subsonic jet fires of methane in normal- and sub- 

atmospheric pressures are estimated by using the same codes (Section 5.2). 

Lately, the flame shape and the emissive power of vertical and horizontal 

subsonic jet fires of propane are predicted in FDS (Section 5.3). The main 

strengths and weaknesses of each fire code are identified and recommendations 

on the most suitable cell size ranges are provided according to the different jet 

fire scenarios assessed. Fragments of this chapter have been presented in the 9th 

International Seminar on Fire and Explosions Hazards (Rengel et al., 2019a) 

and are planned to be published in the paper entitled Experimental and 

computational analysis of vertical jet fires in normal- and sub- atmospheric 

pressures (Rengel et al., 2019b). 

5.1. Vertical sonic jet fires of propane 

For most gases, the sonic velocity (𝑀𝑎 = 1) is reached when the gas exit source 

pressure exceeds 1.9 bar, which is common in many storage tanks and pipelines 

(Palacios et al., 2008). Sonic jet fires are usually divided into three zones related 

to different Mach numbers: (i) the nearfield or under-expanded zone (𝑀𝑎 ≥ 1.0), 

(ii) the transition zone (0.3 < 𝑀𝑎 < 1.0) and (iii) the farfield or expanded zone 

(𝑀𝑎 ≤ 0.3) (Franquet et al., 2015). Within the nearfield zone, the sonic velocity 

can be found at the nozzle exit (𝑀𝑎 = 1.0) with a gas pressure greater than the 

ambient. The released flow undergoes rapid expansion and quickly accelerates to 

supersonic expansion (𝑀𝑎 ≫ 1.0) with the decrease in pressure and density. 
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Consequently, the outflowing gas is governed by compressible and viscous effects, 

which prevents its mixture with the ambient flow. As the supersonic flow crosses 

the Mach disk, which is perpendicular to the jet flux where flows produce a normal 

shock (Fu et al., 2014), better mixing occurs in the transition zone, due to an abrupt 

decrease in velocity to subsonic speeds and to an increase in pressure and density. 

Figure 5.1 shows the schematic representation of the under-expanded structure of 

sonic jet fires and the Mach number distribution (Dulov and Lukyanov, 1984). As 

the distance from the gas release orifice increases, the velocity of the flow and the 

Mach number decrease progressively, until the air-fuel mixture is completed and 

the jet flame occurs. At this point, at the farfield zone, the jet is totally expanded, 

the subsonic regime is achieved and the flow becomes incompressible.  

 

 

Figure 5.1. Schematic representation of the under-expanded structure of sonic jet fires. Data 

source come from (Dulov and Lukyanov, 1984). 

5.1.1. Mach number constraint 

Most CFD fire tools consider the incompressible flow formulation of the Navier-

Stokes equations to reduce the number of equations to be solved, hence improving 

the numerical stability and reducing the computational times. Therefore, these 

codes are only able to simulate the farfield zones, where the jet flow is in pressure 

equilibrium with the ambient fluid.  

Given the Mach number constraint of computational codes, the pseudo-diameter 

approach is used in the present analysis to scale the compressible initial conditions 

of the sonic jet fires at the exit orifice to the equivalent ones in the expanded zone 

(Figure 5.2) (Birch et al., 1984). The method relies on mass conservation and 

prevents the air entrainment within the compressible region. The equivalent 

pressures and temperatures are assumed to be the same as the ambient fluid:  

𝑚̇𝑒𝑞 = 𝑚̇𝑜𝑟 (5.1) 

𝑇𝑒𝑞 = 𝑇∞ (5.2) 

𝑀𝑎 = 1.0 𝑀𝑎 ≫ 1.0 

𝑀𝑎 > 1.0 

𝑀𝑎 > 1.0 

𝑀𝑎 < 1.0 𝑀𝑎 ≤ 0.3 

Mach disk 
Jet flame 
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𝑃𝑒𝑞 = 𝑃∞ (5.3) 

Considering 𝑢𝑒𝑞 = 𝑀𝑎𝑐, where 𝑐 is the sound velocity of the fluid, the equivalent 

nozzle diameter, 𝐷𝑒𝑞,𝑛, of the sonic jet fires can be determined as a function of 

𝑀𝑎: 

𝐷𝑒𝑞,𝑛 = √
4𝑚̇𝑒𝑞

𝜋𝜌𝑒𝑞𝑀𝑎𝑐
 (5.4) 

 

 

 

 

 

 

Figure 5.2. Sketch of the pseudo-diameter approach used to scale the initial conditions of the sonic 

jet fires. Data source come from (Birch et al., 1984). 

It is worth noting that the pseudo-diameter approach proposed for analysis clearly 

neglects some of the real physical effects of sonic jet fires that could disturb the 

predictions obtained. First, the amount of ambient air entrained into the base of the 

flame that mixes with the fuel is not considered. Also, the flameless distance 

between the exit orifice and the flame base is not estimated. Instead, an equivalent 

nozzle diameter of the flame base is directly assumed as a function of a Mach 

number. 

This section presents simulations of the expanded regions of vertical sonic jet fires 

of propane performed in FDS, FireFOAM and FLACS-Fire. For that purpose, five 

different Mach numbers are suggested for each jet fire scenario with values lower 

than 0.3, which represents the threshold accounting for compressibility flow: 0.01, 

0.025, 0.05, 0.10 and 0.20. More details about the experimental data can be found 

in Section 2.2.  

Expanded region 

𝑀𝑎 < 0.3 

𝑚̇𝑒𝑞 , 𝑢𝑒𝑞 , 𝐷𝑒𝑞,𝑛 , 𝑇𝑒𝑞 , 𝜌𝑒𝑞  

Compressible zone 

𝑀𝑎 ≥ 0.3 

𝑆𝐹 

𝑚̇𝑜𝑟 , 𝑢𝑜𝑟 , 𝐷𝑜𝑟 , 𝑇𝑜𝑟 , 𝜌𝑜𝑟 
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5.1.2. Numerical modelling 

Table 5.1 gathers the 5 different equivalent nozzle diameters determined for each 

vertical jet fire of propane as a function of the Mach number proposed. As it can 

be seen, the greater the Mach number, the smaller the equivalent nozzle diameter 

of the jet fire after the expanded region. Greater Mach numbers would lead to 

thinner cells; however, the compressibility threshold (𝑀𝑎 < 0.3) would be largely 

exceeded. Predictions of the mean flame temperature, mean heat flux, mean flame 

length and mean flame areas are compared against those measured in the 

experiments. Virtual sensors are located as described in the experimental set-up to 

estimate the flame temperatures and heat fluxes received, while the flame shapes 

are calculated by means of a slice file that recorded the temperatures evolution in 

the centreline plane of the jet fires. Pixels with apparent temperatures greater than 

800 K are considered as flame, while the rest are considered as background.  

Table 5.1. Equivalent nozzle diameters of the sonic jet fire experiments as a function of the Mach 

numbers. See Table 2.2 for main experimental features.  

𝑴𝒂 - 0.01 0.025 0.05 0.10 0.20 

Experiment 𝑫𝒐𝒓 (mm) 𝑼∗ 𝑫𝒆𝒒,𝒏 (mm) 

D10_0.09 10 142.6 140 90 60 40 30 

D12.75_0.13 12.75 129.4 160 100 70 50 40 

D15_0.18 15 121.2 190 120 90 60 40 

D20_0.27 20 108.1 240 150 110 70 50 

D25.5_0.34 25.5 98.1 260 170 120 80 60 

 

The whole set of sonic jet fires are featured with 𝑈∗ values higher than 80 and 

thus, the cell size cannot be determined based on the 𝐷∗/𝛿𝑥 expression (see 

Section 3.3). Alternatively, the maximum cell size of the sonic jet fire scenarios is 

based on the only geometrical constraint: the equivalent nozzle diameters. 

Accordingly, the cell size of each jet fire scenario (in m3) will have a side equal to 

𝐷𝑒𝑞,𝑛 (in m). For example, the D10_0.09 (𝑀𝑎 = 0.01) scenario is modelled with 

a cell size of 0.14 x 0.14 x 0.14 m3 and the D12.75_0.13 (𝑀𝑎 = 0.05) with a cell 

size of 0.07 x 0.07 x 0.07 m3. A sensitivity analysis of the mesh resolution is 

indirectly performed as for each Mach number proposed, there is a cell size equal 

to the equivalent diameter calculated.  

The ambient temperature and the mass flow rate are prescribed according to the 

experimental data. A soot fraction of 0.09 kg/kg is considered for the combustion 

of propane (Kent, 1986) and the lateral and the upper boundaries are open to the 

outside. Simulations are run for 30 s to achieve long-duration steady states. Table 
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5.2 summarizes the sub-models solved in FDS, FLACS-Fire and FireFOAM. More 

details about the mathematical correlations and models constants applied can be 

found in Section 3.2. 

Table 5.2. Sub-models solved in the CFD codes used to simulate the expanded zones of vertical sonic 

jet fires of propane. 

CFD Sub-

models 
FDS FLACS-Fire FireFOAM 

Turbulence 

LES 

𝜇𝑡 = 𝜌𝐶𝑑∆√𝑘𝑠𝑔𝑠 

RANS 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
 

LES 

𝜇𝑡 = 𝜌(𝐶𝑠∆)2|𝑆| 

Combustion 

EDC 

𝜏𝑚𝑖𝑥 = 𝑚𝑎𝑥[𝜏𝑐 , 𝑚𝑖𝑛(𝜏𝑑 , 𝜏𝑎 , 𝜏𝑔)] 

EDC 

𝜏𝑚𝑖𝑥 =
2.433 (

𝜀
𝜈

)
1 2⁄

𝛾3𝜒

1 − 𝛾3𝜒
 

EDC 

𝜏𝑚𝑖𝑥 = 4.192
𝑘𝑠𝑔𝑠

1 2⁄

∆
 

Radiation 

DOM 

𝑞̇𝑟
′′ = 𝜅(4𝐼𝑏 − 𝐺) 

𝐼𝑏 = 𝐶𝑟𝜎𝑇4 

DTM 

𝑞̇𝑟
′′ = (1 − 𝜀)𝐺 + 𝜀𝜎𝑇4 

DOM 

𝑞̇𝑟
′′ = 𝜅(4𝐼𝑏 − 𝐺) 

𝐼𝑏 = 𝜎𝑇4 

 

5.1.3. Assessment of the predictions 

Prior to the analysis, it is worth noting that FLACS-Fire could not run with cell 

sizes smaller than 0.06 m, which occurred in those tests with Mach numbers of 

0.10 and 0.20. The use of very thin grids under RANS turbulence model creates 

convergence problems in the near boundary surfaces of the domain, hence leading 

to numerical instabilities. Therefore, FLACS-Fire simulations are run under Mach 

numbers comprised between 0.01 and 0.05. On the other hand, when FireFOAM 

simulations are run with cell sizes greater than 0.15 m (Mach numbers of 0.01 and 

0.025), jet flames are represented as 'columns of fire' ranging from their bases to 

the upper boundary layer. In that case, the coarse grids cannot accurately resolve 

the rate of fuel/oxidant mixing. Consequently, FireFOAM simulations are run 

under Mach numbers of 0.05, 0.10 and 0.20.  

Table 5.3 summarizes the 𝐹𝐵 and 𝑁𝑀𝑆𝐸 statistical measurements obtained for the 

expanded regions simulated in FDS, FireFOAM and FLACS-Fire of vertical sonic 

jet fires. Italic blue values indicate that the measurement is within the performance 

criteria established. 
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Table 5.3. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the main variables obtained in the CFD codes used for 

the vertical sonic jet fires as a function of the Mach number. Italic blue values indicate that the 

measurement is within the established performance criteria established. 

CFD 𝑴𝒂 
𝑻𝑭 𝒒̇𝒓

′′
 𝑳𝑭 𝑨𝑭 

𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 

FDS 

0.01 0.32 0.14 -0.42 0.30 0.06 0.01 0.18 0.13 

0.025 0.47 0.25 0.05 0.15 0.02 0.01 0.10 0.13 

0.05 0.63 0.49 0.26 0.39 -0.15 0.03 0.04 0.14 

0.10 0.61 0.46 0.30 0.23 -0.04 0.00 -0.21 0.20 

0.20 0.57 0.40 -0.03 0.10 0.00 0.01 -0.63 1.09 

FireFOAM 

0.05 0.70 0.60 -0.96 1.33 -0.03 0.08 0.67 0.62 

0.10 0.71 0.65 -1.01 1.44 0.32 0.47 1.05 5.56 

0.20 0.71 0.64 -1.07 1.65 0.36 0.28 1.12 3.06 

FLACS-Fire 

0.01 0.33 0.62 0.27 0.38 -0.47 0.26 0.49 1.02 

0.025 0.27 0.13 0.06 0.13 -0.60 0.39 0.63 0.62 

0.05 0.28 0.14 -0.28 0.40 -0.65 0.32 0.57 0.51 

 

Flame temperature 

The mean flame temperature are often under-predicted in the CFD codes used 

(Figure 5.3). FDS estimations lead to an error estimation ranged between 25% and 

50%. Better agreement is often found when jet fires are modelled at smaller Mach 

numbers and thus, thinner cell sizes. Although the qualitative comparison may 

reveal reasonable agreement, the 𝐹𝐵 statistical values of FDS are higher than 0.3, 

hence showing evidence of the discrepancies regarding the mean flame 

temperature.  

The disagreement is more noticeable in FireFOAM as the qualitative error 

estimation observed is higher than 50% in most cases. The maximum simulated 

mean temperatures are of 650 ºC, while the measured ones notably exceeded 1000 

ºC. None of the estimations agree with the quantitative performance criteria. In 

general, lower result’s accuracy are obtained in FireFOAM than in FDS, which 

may be due to the model constants implemented within the combustion approach, 

as well as the simplicity of the mixing scale time calculation method.  
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Figure 5.3. Mean jet flame temperature obtained for the vertical sonic jet fires simulated in FDS 

(up), FireFOAM (centre) and in FLACS-Fire (down). 

On the other hand, FLACS-Fire appears to be the most precise CFD model to 

predict mean flame temperature, as most of the values lead to an error estimation 
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lower than 35%. In particular, the quantitative statistical methods show good 

performance when the Mach number defined is of 0.025 and 0.05. This fact 

highlights the suitability of the 𝑘 − 𝜀 turbulence model and the methodology used 

to compute the mixing scale times within the EDC approach.  

Heat flux 

Each code behaves differently when predicting the mean heat flux received at a 

certain distance from the nozzle (Figure 5.4). For example, over/under estimations 

are obtained in FDS and in FLACS-Fire with an error estimation often lower than 

50%, while these are largely over-estimated in FireFOAM with an averaged error 

estimation greater than 50%. Specifically, the 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements are in 

agreement in FDS for Mach numbers comprised between 0.025 to 0.20. Very 

coarse grids corresponding to smaller Mach numbers, may lead to significant error 

predictions in FDS. On the other hand, the good estimations obtained in FLACS-

Fire highlight the suitability of the DTM model to solve the radiant heat flux 

distribution throughout the computational domain regardless of the mesh 

resolution.  

In contrast, noticeable over-predictions of the mean heat fluxes are determined in 

FireFOAM for the whole cell sizes modelled. Consequently, none of the statistical 

methods agree with the performance criteria. FDS and FireFOAM used the DOM 

approach for solving the RTE equation; however, the heat flux predictions are 

considerably less accurate in FireFOAM. This fact demonstrates that the model 

constant implemented in FDS, 𝐶𝑟, is able to correct the emission term in the DOM 

equation, hence leading to more precise estimations.  

Flame length 

Figure 5.5 shows the mean flame lengths estimated by the CFD codes. As it can 

be seen, very good agreement is found in FDS with error estimations always lower 

than 25%, which leads to a quantitative agreement of the statistical methods for 

the whole simulations performed. Regardless of the Mach number defined and 

thus, the cell size modelled, less accurate estimations are obtained in FireFOAM 

and FLACS-Fire. In both codes the 𝑁𝑀𝑆𝐸 values are always in accordance with 

the performance criteria; however, discrepancies are often achieved when 

assessing the 𝐹𝐵 statistical measures.  
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Figure 5.4. Mean radiative heat flux obtained for the vertical sonic jet fires simulated in FDS (up), 

FireFOAM (centre) and in FLACS-Fire (down). 
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Figure 5.5. Mean flame length obtained for the vertical sonic jet fires simulated in FDS (up), 

FireFOAM (centre) and in FLACS-Fire (down). 
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Flame area 

The mean flame areas are reasonably estimated in FDS, with better agreement 

obtained under smaller cells (Figure 5.6). Apart from simulations carried out with 

a Mach number of 0.20, the rest of the simulations performed agree with both 

statistical measurements. Considering the previous flame length predictions 

obtained in FDS, it is noted that the thinner the cell size defined in the code, the 

wider the surface occupied by the flame. In contrast, these are remarkably under-

estimated in FireFOAM and in FLACS-Fire for any cell size defined. Therefore, 

both codes simulate very thin flames, hence demonstrating that the air entrained 

into the domain mixes with the released fuel much faster than in reality. 

5.1.4. Concluding remarks 

FDS, FireFOAM and FLACS-Fire codes were used to predict flame temperature, 

the heat flux and flame-geometry descriptors of five propane jet fire experiments 

in an open environment. Due to the low Mach number formulation implemented 

in the CFD codes, the pseudo-diameter approach was used to determine the 

conditions of the jets after the expansion of the released gas. The equivalent 

properties of these (temperature, velocity and diameter) were simulated as a 

function of five Mach numbers proposed for analysis for each jet fire experiment.  

According to the different levels of agreement reached in the CFD codes when 

varying the Mach number, it is deduced that the equivalent nozzle diameter 

calculated by means of the pseudo-diameter approach and thus, the cell sizes 

modelled, have a strong impact on the estimated variables. Even though some 

discrepancies have been observed in FDS, it arises as the most suitable code to 

predict the related-fire effects of vertical sonic jet fires of propane. Excepting 

flame temperature, the rest of the variables estimated are in accordance with the 

defined performance criteria. In contrast, significant error predictions are found in 

FireFOAM, hence highlighting the need for further improvement of the 

mathematical models and the numerical schemes solved. It is highly recommended 

to carry out a posteriori sensitivity analysis of the modelling parameters 

previously discussed (i.e. models constants, mixing scale times, number of solid 

angles, etc.) before its use in real applications involving sonic jet fires. 

Furthermore, the flame temperatures and the heat fluxes can be reasonably 

predicted in FLACS-Fire. However, neither the flame lengths nor the flame 

surfaces can be accurately calculated. 

Table 5.4 summarizes the suitable Mach number intervals at which the variables 

assessed in the present analysis can be reasonably estimated in each CFD code 

used. The last row of the table includes recommended Mach number intervals to 

predict most of these. Based on the suggested Mach number interval, the precise 
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cell size for a given sonic jet fire scenario, which coincides with the equivalent 

nozzle diameter, can be determined from Eq. 5.4.  

 

 

 

 

Figure 5.6. Mean flame area obtained for the vertical sonic jet fires simulated in FDS (up), 

FireFOAM (centre) and in FLACS-Fire (down). 
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Table 5.4. Recommended Mach number intervals at which FDS, FireFOAM and FLACS-Fire should 

be set-up to reasonably predict the flame temperature, the radiative heat flux and the flame shape.  

Variables FDS FireFOAM FLACS-Fire 

𝑇𝐹  n.a n.a 0.025 ≤ 𝑀𝑎 ≤ 0.05 

𝑞̇𝑟
′′ 0.025 ≤ 𝑀𝑎 ≤ 0.20 n.a 0.01 ≤ 𝑀𝑎 ≤ 0.05 

𝐿𝐹 0.01 ≤ 𝑀𝑎 ≤ 0.20 0.05 ≤ 𝑀𝑎 < 0.10 n.a 

𝐴𝐹 0.01 ≤ 𝑀𝑎 ≤ 0.10 n.a n.a 

Any 𝟎. 𝟎𝟐𝟓 ≤ 𝑴𝒂 ≤ 𝟎. 𝟏𝟎 𝟎. 𝟎𝟓 ≤ 𝑴𝒂 < 𝟎. 𝟏𝟎 𝟎. 𝟎𝟐𝟓 ≤ 𝑴𝒂 ≤ 𝟎. 𝟎𝟓 

 

Although the examined sonic jet flames are momentum-dominated, acceptable cell 

size can be also given in the form of 𝐷∗ 𝛿𝑥⁄  for each fire scenario (Table 5.5). The 

last row includes recommended intervals that can be applied when modelling the 

expanded regions, which can be determined through the pseudo-diameter 

approach, of vertical sonic jet fires involving hydrocarbon fuels.  

Table 5.5. Recommended 𝐷∗ 𝛿𝑥⁄  intervals from which suitable cell sizes can be defined to simulate 

the expanded regions of vertical sonic jet fires in FDS, FireFOAM and FLACS-Fire. 

Fire scenario 𝑫∗ FDS FireFOAM FLACS-Fire 

D10_0.09 1.44 18 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 35 25 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 35 18 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 25 

D12.75_0.13 1.66 17 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 34 24 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 34 17 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 24 

D15_0.18 1.89 16 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 33 23 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 33 16 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 23 

D20_0.27 2.23 16 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 32 22 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 32 16 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 22 

D25.5_0.34 2.44 15 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 31 22 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 31 15 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 22 

Any - 𝟏𝟔 ≤ 𝑫∗ 𝜹𝒙⁄ ≤ 𝟑𝟑 𝟐𝟑 ≤ 𝑫∗ 𝜹𝒙⁄ ≤ 𝟑𝟑 𝟏𝟔 ≤ 𝑫∗ 𝜹𝒙⁄ ≤ 𝟐𝟑 

 

5.2. Vertical subsonic jet fires of methane in normal- and 

sub- atmospheric pressures 

Minor jet fire accidents involving subsonic gas releases may also occur in 

industrial facilities. Their consequences are less severe than sonic jet fires; 

however, they are more likely events that may cause accident propagation 

(Cozzani and Zanelli, 2001). As shown in Appendix A (see Table A.1), most of 

the subsonic jet fire experiments performed by researchers considered a wide 

variety of hydrocarbon fuels and nozzle diameters. In contrast, most of these were 

undertaken in an atmospheric pressure of 1.0 atm, which could be useful to 
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determine the hazardous jet fire effects in offshore platforms (i.e. Troll A platform, 

Norway (Structurae. International Database and Gallery of Structures, n.d.)), in 

marine gas and oil fields (i.e. Blake oil field, UK (Hydrocarbons Technology, 

n.d.)) and in liquefied natural gas terminals (i.e. LNG terminal on Maasvlakte, The 

Netherlands (Industry About, 2016)). However, gas power plants, oil and gas 

refineries and aerial pipelines, which are the most economical transportation mode 

of large hydrocarbon quantities on land (Bolonkin, 2010), can be located at high 

altitude regions: Permian Basin oil field at 800 m a.s.l. (USA) (Industry About, 

2017), F’Krina gas power plant at 947 m a.s.l. (Algeria) (Industry About, 2014) 

and A13 oil pipeline at 2892 m a.s.l. (Iran). Thus, fire behaviour research has to 

be addressed to check fire protection requirements under sub-atmospheric 

pressures. 

Variations in the ambient pressure directly affect the fuel density, hence affecting 

the heat release rate, defined as one of the most important parameters governing 

the fire behaviour. Reduced atmospheres also alter the chemical reaction of 

combustion due to the changes on the effective amount of oxygen available in the 

ambient air. Although the percentage of oxygen in air is constant at different 

altitudes (20.9%), at reduced atmospheres the air is less compressed and lighter 

(Peacock, 1998). Consequently, fewer molecules of oxygen are present in a 

volume of air to be mixed with the released fuel.  

An historical survey revealed that most of the fire incidents involving natural gas 

occurred in pipelines, closely followed by process plants (Montiel et al., 1999). 

Actually, natural gas is one of the most processed, transported and used 

hydrocarbon fuels these days (Varahrami and Haghighat, 2018), whose worldwide 

production has continuously increased since 1990 as reported by the US Energy 

Information Administration (EIA) (U.S. Energy Information Administration 

(EIA), 2018).  

Nevertheless, studies on the behaviour of methane jet fires are still very limited at 

reduced atmospheric pressures. This fact has hindered the assessment of the 

predictive capabilities of CFD codes when modelling jet fire accidents at high 

altitudes. This section is aimed at filling this gap by presenting CFD simulations 

of vertical subsonic jet fires of methane in normal- and sub- atmospheric pressures. 

Specifically, FDS, FireFOAM and FLACS-Fire codes are used to estimate the 

flame-geometry descriptors of these type of fires at 0.6 atm, 0.7 atm, 0.8 atm, 0.9 

atm and 1.0 atm. More details about the experimental data can be found in Section 

2.3.  
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5.2.1. Numerical modelling 

The 𝑈∗ values obtained for the experiments analysed are ranged between 10.6 (for 

1 atm) to 12.5 (for 0.6 atm) and thus, the jet flames are at the beginning of the 

transition regime from buoyant to momentum-dominated flames. This fact allows 

the application of the 𝐷∗ 𝛿𝑥⁄  correlation to define the most suitable mesh 

resolution. According to the values commonly recommended (see Section 3.3), 

four different cell sizes are proposed for each jet fire experiment: 32 mm-cell for 

𝐷∗ 𝛿𝑥⁄  of 4, 24 mm-cell for 𝐷∗ 𝛿𝑥⁄  of 8, 16 mm-cell for 𝐷∗ 𝛿𝑥⁄  of 12 and 8 mm-

cell for 𝐷∗ 𝛿𝑥⁄  of 16. Therefore, a total of 20 fire simulations are performed in each 

fire code.  

As it can be observed, the cell sizes calculated are larger than the original exit 

orifices (3 mm-diameter). Because of that, equivalent nozzle diameters are defined 

with the same size than the calculated cell. For example, a vertical subsonic jet fire 

modelled with a 𝐷∗ 𝛿𝑥⁄ = 12 is modelled with an equivalent nozzle diameter of 

0.016 m and a cell volume of 0.016 x 0.016 x 0.016 m3. As a consequence, an 

equivalent mass flow rate, 𝑚̇𝑒𝑞 = 0.25𝜌𝑓𝑢𝑓𝜋𝐷𝑒𝑞,𝑛
2, is calculated for each cell 

size defined and prescribed within the computational simulation.  

The lift-off distance, flame length and equivalent flame diameter of the flames are 

determined via a slice file that recorded the temperature’s evolution in the 

centreline axis of the jet fires. Pixels with apparent temperatures greater than 600 

K are considered as flame, while the rest are considered as background. The 

turbulence and combustion sub-models described in Table 5.2 are the ones used in 

the present study for FDS, FireFOAM and FLACS-Fire. Radiation is not 

accounted in any code due to its negligible influence on the flame shapes. 

Simulations lasted 30 s to achieve long-duration steady states. A soot fraction of 

0.007 kg/kg is assumed as the fraction of carbon from methane fuel converted to 

soot (Kent, 1986) and the lateral and the upper boundaries are open to the outside. 

The volume domain modelled in the CFD codes is of 0.6 (L) x 0.6 (W) x 1.0 (H) 

m3 for all simulations. 

5.2.2. Assessment of the predictions 

Regardless of the atmospheric pressure modelled and the geometrical flame 

feature analysed, it is noted that the cell size is generally the most decisive 

parameter determining the estimation’s accuracy. Also, it is worth noting that 

neither FLACS-Fire nor FireFOAM are able to predict flame temperatures higher 

than 600 K under cells of 32 mm. Therefore, both codes are unable to solve the 

reaction of combustion between the fuel and the oxidant for subsonic flows under 

coarse grids. Table 5.6 summarizes the 𝐹𝐵 and 𝑁𝑀𝑆𝐸 statistical measurements 

obtained for the vertical subsonic jet fires simulated in FDS, FireFOAM and 

FLACS-Fire as a function of the different cell sizes and atmospheric pressures set-
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up. Italic blue values indicate that the metric is within the performance criteria 

established.  

Table 5.6. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the flame-geometry descriptors obtained in the CFD 

codes used for the vertical subsonic jet fires as a function of the cell sizes and atmospheric pressures. 

Italic blue values indicate that the metric is within the established performance criteria. 

CFD 

Code 

𝑷∞ 

(atm) 

𝜹𝒙 

(mm) 

𝑺𝑭 𝑳𝑭 𝑫𝒆𝒒 𝑨𝑭 

𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 

FDS 

0.6 

8 2.00 1.00 -0.02 0.00 -0.39 0.16 -0.29 0.18 

16 1.06 1.59 0.08 0.00 -0.28 0.08 -0.20 0.04 

24 0.49 0.25 0.28 0.00 0.14 0.02 0.41 0.18 

32 -0.11 0.01 0.84 0.87 0.13 0.02 0.95 1.15 

0.7 

8 2.00 1.00 0.06 0.00 -0.38 0.15 -0.30 0.11 

16 0.93 1.11 0.24 0.06 -0.18 0.03 0.06 0.00 

24 0.20 0.04 0.30 0.11 0.13 0.02 0.46 0.22 

32 -0.29 0.08 0.83 0.83 0.10 0.01 0.91 1.06 

0.8 

8 2.00 1.00 0.11 0.01 -0.47 0.23 -0.28 0.12 

16 0.69 0.55 0.26 0.14 -0.20 0.04 0.18 0.03 

24 -0.19 0.04 0.42 0.18 0.02 0.00 0.46 0.22 

32 -0.56 0.34 0.91 1.03 0.02 0.00 0.94 1.14 

0.9 

8 2.00 1.00 0.16 0.03 -0.51 0.28 -0.26 0.13 

16 0.22 0.05 0.30 0.13 -0.46 0.22 -0.11 0.01 

24 -0.67 0.50 0.51 0.28 0.00 0.00 0.50 0.27 

32 -0.98 1.28 1.03 1.44 -0.03 0.00 1.00 1.34 

1.0 

8 2.00 1.00 0.22 0.09 -0.54 0.31 -0.25 0.07 

16 2.00 1.00 0.29 0.20 -0.41 0.18 0.04 0.00 

24 2.00 1.00 0.57 0.35 -0.05 0.00 0.52 0.29 

32 2.00 1.00 1.07 1.63 -0.06 0.00 1.03 1.44 

FireFOAM 

0.6 

8 1.47 4.73 0.73 0.61 0.35 0.13 1.02 1.39 

16 0.74 0.65 0.59 0.38 0.11 0.01 0.69 0.54 

24 0.09 0.01 0.30 0.11 -0.06 0.00 0.26 0.07 

0.7 

8 1.38 3.68 0.85 0.88 0.21 0.05 1.02 1.40 

16 0.59 0.38 0.52 0.28 0.01 0.00 0.53 0.30 

24 -0.29 0.10 0.29 0.09 0.01 0.00 0.30 0.09 
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Table 5.6. Cont. 

CFD 

Code 

𝑷∞ 

(atm) 

𝜹𝒙 

(mm) 

𝑺𝑭 𝑳𝑭 𝑫𝒆𝒒 𝑨𝑭 

𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 

FireFOAM 

0.8 

8 1.22 2.36 0.98 1.27 -0.09 0.01 0.93 1.11 

16 0.31 0.10 0.82 0.82 -0.19 0.04 0.68 0.43 

24 -0.58 0.37 0.23 0.12 -0.17 0.03 0.19 0.04 

0.9 

8 0.22 0.05 0.74 0.63 0.50 0.27 1.14 1.91 

16 -0.18 0.03 0.65 0.47 -0.05 0.00 0.60 0.40 

24 -0.82 0.82 0.28 0.36 -0.27 0.10 0.28 0.08 

1.0 

8 2.00 1.00 0.76 0.67 0.18 0.03 0.91 1.04 

16 2.00 1.00 0.49 0.25 -0.07 0.01 0.42 0.18 

24 2.00 1.00 0.30 0.14 -0.18 0.03 0.20 0.04 

FLACS-Fire 

0.6 

8 1.23 2.45 -0.18 0.03 -1.68 9.66 -1.73 12.01 

16 0.23 0.06 0.53 0.31 -1.08 1.64 -0.63 0.45 

24 0,30 0.12 0.58 0.36 -1.02 1.42 -0.52 0.29 

0.7 

8 1.11 1.80 -0.20 0.04 -1.70 10.22 -1.75 12.89 

16 0.43 0.20 0.25 0.06 -1.33 3.13 -1.17 2.08 

24 0.28 0.29 0.47 0.24 -1.03 1.44 -0.63 0.44 

0.8 

8 1.19 2.21 -0.16 0.03 -1.70 10.24 -1.73 12.03 

16 0.95 1.18 -0.02 0.00 -1.39 3.74 -1.39 3.74 

24 0.15 0.02 0.57 0.36 -1.06 1.55 -0.55 0.33 

0.9 

8 1.10 1.72 -0.12 0.01 -1.71 10.78 -1.74 12.41 

16 0.53 0.30 0.11 0.01 -1.46 4.58 -1.41 3.97 

24 -0.29 0.08 0.59 0.39 -1.10 1.74 -0.61 0.41 

1.0 

8 2.00 1.00 -0.05 0.00 -1.71 11.11 -1.73 11.83 

16 2.00 1.00 0.16 0.03 -1.47 4.64 -1.39 3.71 

24 2.00 1.00 0.68 0.52 -1.11 1.78 -0.53 0.30 

 

Lift-off distance 

Figure 5.7 shows the mean predicted values of the lift-off distance estimated for 

different pressures and cell sizes with FDS, FireFOAM and FLACS-Fire. None of 

the codes is able to capture the influence of the ambient pressure on the lift-off 

distance (i.e. a constant trend is generally obtained) and, according to the cell sizes 
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modelled, the greater the grid, the larger the lift-off distance. This fact may be 

probably due to the ‘mixed is burnt’ assumption considered in the EDC 

combustion model, which immediately ignites the gas fuel entering into the 

domain simulated. (Favrin et al., 2018) also pointed out the limitations of 

computational combustion models to simulate jet fires. 

Flame length 

Reasonable mean flame length predictions are found in FDS with an error 

estimation lower than 50% only when simulations are performed with cells thinner 

than 32 mm (Figure 5.8). In particular, the 8 mm and 16 mm-cell sizes are always 

in agreement with the statistical measurements. In contrast, the 24 mm-cell match 

the performance criteria under atmospheric pressures of 0.6 atm and 0.7 atm. In 

this sense, the pressure solver in FDS is affected by variations on the atmospheric 

pressure defined within the domain.  

Otherwise, notorious under-estimations can be reached in FireFOAM under thin 

cells. Specifically, the error estimation is around 25% when the cells are of 24 mm, 

whereas thinner cells lead to higher discrepancies. Indeed, the performance criteria 

of the statistical measurements are met under 24 mm-cell regardless of the 

atmospheric pressure. Therefore, the size of the cell has a greater impact than the 

pressure defined. Compared to FDS, the notable differences on the result’s 

accuracy can be from the model constants adopted by default to solve the turbulent 

viscosity and the mixing scale times. More complex models, as those implemented 

in FDS, may contribute to provide higher precision on the estimation of flame 

length. 

The mean flame lengths are also acceptably predicted in FLACS-Fire for different 

atmospheric pressures. In particular, cell sizes of 8 mm lead to an over-estimation 

of the measured values, while greater cells lead to under-estimations. Although the 

qualitative error estimation observed is lower than 50%, the performance criteria 

is not met under cells of 24 mm. Therefore, lower cell sizes (i.e. 8 mm to 16 mm) 

must be defined to provide accurate estimations of the flame length.  
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Atmospheric Pressure (Symbols):  

Cell Size (Colours):  

Figure 5.7. Mean dimensionless lift-off distance obtained for the vertical subsonic jet fires 

simulated in FDS (up), FireFOAM (centre) and in FLACS-Fire (down) as a function of the 

different atmospheric pressures and cell sizes modelled. 
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Atmospheric Pressure (Symbols):  

Cell Size (Colours):  

Figure 5.8. Mean dimensionless flame length obtained for the vertical subsonic jet fires simulated 

in FDS (up), FireFOAM (centre) and in FLACS-Fire (down) as a function of the different 

atmospheric pressures and cell sizes modelled. 
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Equivalent flame diameter 

Figure 5.9 depicts the mean equivalent flame diameter predicted by the CFD 

codes, which correspond to the mean width of the flames, for the different 

pressures and cell sizes. These are often over-predicted in FDS with reasonable 

agreement between estimation and experimental measurements. The error 

estimation is lower than 25% when the cells are of 24 mm or higher, whereas it is 

comprised between 25% and 50% under smaller cells. The performance criteria is 

always met when simulations are performed with cells of 16 mm, 24 mm and 32 

mm.  

Similarly, mean equivalent diameters calculated by FireFOAM provide an average 

error estimation of 30% with subtle differences among cell sizes. In this sense, the 

atmospheric pressure defined has a negligible influence on the equivalent 

diameter. Only some simulations under 8 mm-cell lead to disagreements when 

assess by means of the statistical measurements. In contrast, significant over-

estimations of the mean equivalent flame diameters are found in FLACS-Fire 

regardless of the cell size and atmospheric pressure. The error estimations 

observed are much higher than 50% and thus, none of the statistical measurements 

are in agreement with the performance criteria established. Meaning that, the 

flames predicted in FLACS-Fire are much wider than in reality.  

Flame area 

According to the grid sizes defined, different levels of accuracy are obtained on 

the mean flame areas predicted by the CFD codes (Figure 5.10). For example, the 

error prediction observed in FDS is of 25% or lower when simulations are 

performed with cells of 8 mm and 16 mm; however, greater cells lead to notable 

under-predictions of the experimental results. In particular, the performance 

criteria is only met with simulations with cells of 8 mm and 16 mm. The 

estimations obtained in FireFOAM always under-estimate the measured flame 

areas with lower accuracy than FDS. In particular, the highest agreements occur 

with cells of 24 mm, which is in accordance with the flame length predictions. On 

the other hand, the flame areas calculated in FLACS-Fire are significantly over-

estimated, with error estimations greater than 50%. This lack of agreement arises 

as a result of the large equivalent flame diameters previously found.  

Figure 5.11 shows instant captures and the corresponding segmented images of jet 

flames at 0.6 atm and 1.0 atm obtained from the slice files of temperatures set in 

the CFD codes with a cell size of 16 mm. These images depict the tendency of the 

estimated flame shape obtained with the different computational codes. Regardless 

of the ambient pressure, more reasonable predictions (lengths and diameters) are 

obtained with FDS and FireFOAM, while large flames are found with FLACS-

Fire. 
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Atmospheric Pressure (Symbols):  

Cell Size (Colours):  

Figure 5.9. Mean dimensionless equivalent diameter obtained for the vertical subsonic jet fires 

simulated in FDS (up), FireFOAM (centre) and in FLACS-Fire (down) as a function of the 

different atmospheric pressures and cell sizes modelled. 
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Atmospheric Pressure (Symbols):  

Cell Size (Colours):  

Figure 5.10. Mean dimensionless flame area obtained for the vertical subsonic jet fires simulated 

in FDS (up), FireFOAM (centre) and in FLACS-Fire (down) as a function of the different 

atmospheric pressures and cell sizes modelled. 
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(a) 0.6 atm  (b) 1.0 atm 

 

 

 

 

 

 

 

Figure 5.11. Instant captures (up) and segmented images (down) of the slice file of temperatures corresponding to the fire scenarios at (a) 0.6 atm and at (b) 1.0 

atm obtained with FDS, FireFOAM and FLACS-Fire. 
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5.2.3. Soot yield influence 

Experiments have shown that different flame colours and shapes can be observed 

depending on the ambient pressure (see Figure 2.13). This may be due to 

differences in combustion efficiency. In this regard, the soot yield fraction 

prescribed in CFD codes for methane (0.7 %) (very low compared to other 

hydrocarbon fuels, such as propane (9.0 %) or heptane (12.9 %)), which directly 

affects the products of combustion, may have a direct influence on the estimated 

flame shapes. In order to assess the influence of this parameter on flame shape, six 

simulations have been run in FDS with cell sizes of 16 mm (as it was previously 

observed that it is a good cell size for most of the geometry descriptors). 

Specifically, different soot yield fractions have been tested in jet flames at 0.7 atm 

and 1.0 atm: 0.7 %, 0.5 %, 0.3 % and no soot at all.  

Table 5.7 shows the estimations of flame length, equivalent diameter and flame 

surface obtained with FDS for different soot yield fractions and ambient pressures 

of 0.7 atm and 1.0 atm. As it can be observed, the estimated flame shape is very 

similar regardless of the soot yield fraction and the ambient pressure defined. Thus, 

its influence on the flame shape predictions is negligible.  

Table 5.7. Mean geometrical features of the jet fires predicted in FDS with cell sizes of 16 mm and 

different soot yield fractions.  

Soot yield fractions 𝑷̅∞ (atm) 𝑳̅𝑭 (m) 𝑫̅𝒆𝒒 (m) 𝑨̅𝑭 (m2) 

0.7 % 
0.7 0.41 0.047 0.018 

1.0 0.42 0.050 0.021 

0.5 % 
0.7 0.41 0.048 0.020 

1.0 0.42 0.050 0.022 

0.3 % 
0.7 0.44 0.052 0.023 

1.0 0.44 0.051 0.022 

0.0 % 
0.7 0.45 0.051 0.023 

1.0 0.42 0.047 0.019 

 

5.2.4. Concluding remarks 

The geometrical parameters of vertical subsonic jet fires of methane in normal- 

and sub- atmospheric pressures were predicted by FDS, FireFOAM and FLACS-

Fire. Four different grids were selected for each methane jet fire experiment: 8 

mm, 16 mm, 24 mm and 32 mm.  
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The lift-off distances could not be predicted in any of the CFD codes used by 

means of the EDC combustion approach. Reasonable predictions of flame length, 

equivalent flame diameter and flame area were usually found in FDS and 

FireFOAM. Nevertheless, more precise outcomes were obtained in FDS due to the 

more detailed mixing scale time based on the fastest physical process of the local 

state of the flow field. On the other hand, a considerable lack of agreement of the 

equivalent diameter and flame area was obtained in FLACS-Fire in spite of the 

reasonable flame length estimations. 

Table 5.8 summarizes the suitable 𝐷∗ 𝛿𝑥⁄  correlation values suggested to estimate 

the flame shape (except the lift-off distances) of vertical subsonic jet fires of 

propane at reduced atmospheres in CFD codes. The last row includes 

recommended 𝐷∗ 𝛿𝑥⁄  values from which suitable cell sizes can be calculated to 

accurately determine the flame shapes of these type of fires in FDS, FireFOAM 

and FLACS-Fire. Taking into account the above-mentioned points, FDS is noted 

as the most suitable code to correctly estimate the flame shape of vertical methane 

jet fires in reduced atmospheres. FireFOAM could also be used for assessing the 

hazardous effects of subsonic jet fires; however, the results are less accurate than 

those found in FDS. In addition, the soot yield fraction had a negligible influence 

on the flame shape predictions. 

Table 5.8. Recommended 𝐷∗ 𝛿𝑥⁄  intervals suggested to predict the flame shape of vertical subsonic 

jet fires of propane at reduced atmospheres in FDS, FireFOAM and FLACS-Fire. 

Variables FDS FireFOAM FLACS-Fire 

𝐿𝐹 12 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 16 𝐷∗ 𝛿𝑥⁄ = 8 𝐷∗ 𝛿𝑥⁄ = 16 

𝐷𝑒𝑞  4 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 12 8 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 12 n.a 

𝐴𝐹 12 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 16 𝐷∗ 𝛿𝑥⁄ = 8 n.a 

Any 𝑫∗ 𝜹𝒙⁄ = 𝟏𝟐 𝑫∗ 𝜹𝒙⁄ = 𝟖 𝑫∗ 𝜹𝒙⁄ = 𝟏𝟔 

 

5.3. Vertical and horizontal subsonic jet fires of propane 

In previous sections, the predictive capabilities of CFD codes were assessed when 

modelling vertical sonic and subsonic jet fires involving hydrocarbon gas releases. 

Nevertheless, high-pressurized gas leaks leading to jet fire accidents can also occur 

in horizontal or inclined orientations (Casal et al., 2012). Particularly, the jet fire 

orientation is of special interest as it will directly affect the flame shape, its size 

and the intensity of thermal fluxes emitted. (Gopalaswami et al., 2016) observed 

that the number of horizontal jet fire experiments reported in literature was 

minimal compared to vertical jet fires. Consequently, there are very few CFD 
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simulation analysis of non-vertical jet flames involving hydrocarbon gases 

(Bennett et al., 1991; Chakrabarty and Aloqaily, 2011; Huang et al., 2018, 2017; 

Osenbroch, 2006; Zhao and Magenes, 2016).  

Given the lack simulation studies of horizontal jet fires, the present chapter 

presents CFD simulations of vertical and horizontal jet flames. Unlike the sections 

described above, FDS is the only CFD code used to perform the complete set of 

simulations. Up until now, FDS has been revealed as the most appropriate code 

able to reasonably predict the related-fire effects of different types of hydrocarbon 

fires: from large-scale pool fires, to sonic and subsonic jet fires in normal- and 

sub- atmospheric pressures. Firstly, predictions of the flame-geometry descriptors 

are compared against experimental measurements. Based on quantitative statistical 

measurements, the most appropriate cell size range is defined. Then, the surface 

emissive power is estimated and compared against experiments by modelling jet 

fire scenarios with the proposed cell size. To that end, different number of solid 

angles are also assessed. More details about the experimental data can be found in 

Section 2.4. 

5.3.1. Numerical modelling 

Both sets of experiments, vertical and horizontal jet fires of propane, are featured 

with 𝑈∗ < 12 and thus, the 𝐷∗ 𝛿𝑥⁄  correlation can be used to provide a good 

balance between low grid resolution and computational cost. In this regard, a 

sensitivity analysis of the mesh resolution is also carried out in this study given the 

differences of the gas fuels and jet flame orientations. In general, a minimum and 

a maximum values of 4 and 16 are suggested to resolve the proposed correlation 

(see Section 3.3). Nevertheless, in previous sections a minimum 𝐷∗ 𝛿𝑥⁄  value of 8 

was always recommended to reasonably estimate the related-fire effects. Given 

that, four different 𝐷∗ 𝛿𝑥⁄  values are suggested for analysis: 8, 12, 16 and 32.  

Table 5.9 summarizes the cell sizes calculated for each fire scenario according to 

the 𝐷∗ 𝛿𝑥⁄  values proposed. A total of 40 fire simulations are performed in FDS. 

As it can be seen, the sizes of the cells determined are always greater than the 

original nozzle diameters. Consequently, and as done in section 5.2.1., equivalent 

nozzle diameters are defined with the same size than the calculated cell. For 

example, the V12.75_0.007 (𝐷∗ 𝛿𝑥⁄ = 8) scenario is modelled with an equivalent 

nozzle diameter of 0.08 m and a cell size of 0.08 x 0.08 x 0.08 m3 and the 

H19.05_0.042 (𝐷∗ 𝛿𝑥⁄ = 32) with an equivalent nozzle diameter of 0.04 m and a 

cell size of 0.04 x 0.04 x 0.04 m3.  

Flame length, equivalent flame diameter and flame area are determined via a slice 

files that recorded the temperatures evolution in the centreline axis of the jet fires. 

Pixels with apparent temperatures greater than 600 K are considered as flame, 

while the rest are considered as background. Figure 5.12 shows instant captures of 
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horizontal and vertical jet fires modelled in FDS during the steady state of the fires. 

The white contours represent the flame surfaces obtained in both scenarios after 

having applied the temperature threshold. The lift-off distances are not accounted 

in this case due to the ‘mixed is burnt’ assumption considered in the EDC 

combustion model. More details about the model limitation can be found in 

Section 5.2.2. 

Table 5.9. Cell sizes obtained for the different subsonic jet fires as a function of the 𝐷∗ 𝛿𝑥⁄  

recommended values. 

𝑫∗ 𝜹𝒙⁄   - 8 12 16 32 

Experiment 𝑫𝒐𝒓 (mm) 𝑫∗ 𝑸̇∗𝟐 𝟓⁄
 𝜹𝒙 (mm) 

V12.75_0.007 12.75 0.51 40.1 80 50 40 20 

V12.75_0.016 12.75 0.72 55.7 120 80 60 30 

V20_0.02 20 0.78 38.8 120 80 60 30 

V43.1_0.066 43.1 1.26 29.1 200 120 100 50 

V43.1_0.142 43.1 1.72 39.5 260 180 130 75 

H19.05_0.015 19.05 0.70 36.3 120 80 60 30 

H19.05_0.016 19.05 0.72 37.3 110 70 50 30 

H19.05_0.025 19.05 0.56 44.6 120 90 60 30 

H19.05_0.040 19.05 1.03 53.8 160 100 80 40 

H19.05_0.042 19.05 1.05 54.9 160 100 80 40 

 

Horizontal Release  Vertical Release 

 

Figure 5.12. Examples of horizontal (left) and vertical (right) releases of the jet fires simulated in 

FDS. The white contour indicates the area of the flame obtained from a temperature slice file. 
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Moreover, the surface emissive power is calculated with a wide-angle radiometer 

located perpendicular to the predominant wind direction facing the flames. Its 

radial distance from the exit orifice varied from 1.7 m to 3.7 m depending on the 

jet fire scenario to avoid the direct contact with the resulting flames.  

The turbulence, combustion and radiation sub-models described in Table 5.2 

belonging to FDS are the ones used in the present study. When performing these 

simulations, a newer FDS version incorporated by default the Monin-Obukhov 

(MO) approximation to represent the lateral wind velocity. Therefore, the MO 

method is used to simulate the presence of wind in the horizontal jet fire scenarios. 

Simulations are run for 30 s to achieve long-duration steady states. The mass flow 

rate and the ambient temperature are prescribed according to the experimental 

data. A soot fraction of 0.09 kg/kg is assumed as the fraction of carbon from 

propane fuel converted to soot (Kent, 1986) and the lateral and the upper 

boundaries are open to the outside. 

5.3.2. Assessment of the predictions 

Cell size 

Table 5.10 shows the statistical measurements of the flame-geometry descriptors 

obtained in FDS for horizontal and vertical subsonic jet fires of propane as a 

function of the cell size and the geometrical variable. Italic blue values indicate 

that the metric is within the performance criteria established.  

Table 5.10. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the flame-geometry descriptors obtained in FDS for the 

vertical and horizontal subsonic jet fires of propane. Italic blue values indicate that the metric is 

within the established performance criteria.  

Jet Release 𝑫∗ 𝜹𝒙⁄  
𝑳𝑭 𝑫𝒆𝒒 𝑨𝑭 

𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 𝑭𝑩 𝑵𝑴𝑺𝑬 

Vertical 

8 -0.05 0.15 -0.30 0.42 -0.34 0.92 

12 -0.02 0.11 -0.28 0.39 -0.30 0.64 

16 -0.16 0.20 -0.33 0.62 -0.45 1.47 

32 -0.34 0.51 -0.34 0.63 -0.62 2.42 

Horizontal 

8 -0.19 0.16 0.17 0.17 -0.02 0.29 

12 -0.22 0.14 0.29 0.22 0.07 0.04 

16 -0.22 0.15 0.51 0.63 0.30 0.26 

32 -0.24 0.12 0.55 0.68 0.26 0.23 
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For vertical jet fires, the mean flame lengths are well predicted with 𝐷∗ 𝛿𝑥⁄  values 

ranged from 8 to 16, while these should be of 8 and 12 to provide acceptable 

estimations of the equivalent flame diameters. On the other hand, none of the cell 

sizes examined are able to provide reasonable estimations of the mean flame area. 

This is due to the slight over estimations achieved in the flame length and 

equivalent diameter. Differently, the mean flame length and area of horizontal jet 

fires are in accordance with the performance criteria for the whole cell sizes. In 

particular, the predicted flames are longer and narrower than those measured. The 

mean equivalent flame diameters can only be reasonably calculated under 𝐷∗ 𝛿𝑥⁄  

values of 8 and 12. Moreover, the reasonable results obtained demonstrate the 

suitability of the wind approach used in these simulations. 

Despite the discrepancies achieved in the flame areas predicted in vertical jet fires, 

it is noted that 8 ≤ 𝐷∗ 𝛿𝑥⁄ ≤ 12 is the most convenient correlation range to 

estimate the flame shapes in both jet fire orientations. Recent works involving 

turbulent heptane flames suggested a 𝐷∗ 𝛿𝑥⁄  value of 13 to deliver reasonable 

estimations of the flame lengths (Ferng and Lin, 2010; Lin et al., 2009), which is 

in accordance with the main findings highlighted in the present study.  

Number of solid angles 

Surface emissive power of the jet fire experiments predicted in FDS are 

summarized in Table 5.9. The cell sizes of the simulations are determined by 

considering 𝐷∗ 𝛿𝑥⁄ = 12, which is the recommended value previously found. 

Also, four different number of solid angles are defined to assess its influence on 

the emissive power predicted by FDS: 100, 200, 400 and 800.  

Table 5.11 shows the 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the mean surface emissive 

powers obtained in FDS for both types of jet fire releases according to the number 

of rays fired. As it can be seen, the greater the number of solid angles, the more 

accurate the predictions. Emissive power of vertical jet fires is always in 

accordance within the performance criteria defined, while the horizontal ones met 

the criteria only under 400 and 800 solid angles. In addition, emissive power is 

over-estimated in vertical releases, while under-predictions are found in horizontal 

jet fires. These differences are derived from the geometrical parameters estimated 

by FDS. The vertical jets are featured with greater flame areas than those measured 

and thus, greater surface emissive power is obtained. In contrast, the narrower and 

smaller flames predicted from horizontal releases lead to lower estimations of the 

emissive power. Based on the present assessment, a minimum number of solid 

angles of 400 is recommended to provide reasonable predictions of the radiative 

heat fluxes and thus, of the emissive power of the flames for both types of jet 

releases. The results found are also in agreement with those presented in previous 

researches (Ferng and Lin, 2010; Lin et al., 2009). 
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Table 5.11. 𝐹𝐵 and 𝑁𝑀𝑆𝐸 measurements of the surface emissive power obtained in FDS for the 

vertical and horizontal subsonic jet fires of propane as a function of the number of solid angles. Italic 

blue values indicate that the metric is within the established performance criteria. 

Jet Release 
Statistical 

Measurements 

Nº of Solid Angles 

100 200 400 800 

Vertical 
𝐹𝐵 -0.06 -0.07 -0.08 -0.09 

𝑁𝑀𝑆𝐸 0.22 0.20 0.18 0.15 

Horizontal 
𝐹𝐵 0.53 0.33 0.30 0.28 

𝑁𝑀𝑆𝐸 0.68 0.50 0.45 0.44 

 

5.3.3. Concluding remarks 

Flame-geometry descriptors and surface emissive power of vertical and horizontal 

subsonic jet fires of propane were estimated in FDS. An assessment of different 

cell sizes revealed that the most suitable 𝐷∗ 𝛿𝑥⁄  values should be comprised 

between 8 and 12 for both type of jet releases. In particular, more precise 

estimations of the flame shapes were achieved in horizontal jet fires than in vertical 

ones. Also, a minimum number of 400 solid angles is recommended to accurately 

estimate the radiative heat fluxes and thus, the emissive powers of the flames.  
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CHAPTER 6 

BEST PRACTICE GUIDELINES IN CFD MODELLING OF 

ACCIDENTAL HYDROCARBON FIRES IN OPEN ENVIRONMENTS 

 

 

 

This section provides a complete set of Best Practice Guidelines (BPG) focused 

on the practical needs of engineers and Authorities Having Jurisdiction (AHJ) 

to (i) validate and to (ii) perform computational simulations involving large-

scale pool fires and jet fires in open environments. The reader of this BPG 

document is firstly introduced to a methodology developed for carrying out 

CFD validation analysis, which details the main steps required to state a code 

as ‘valid’ or not to perform real computational fire simulations. Secondly, 

recommendations on the most appropriate CFD numerical settings are provided 

to reasonably predict the hazardous effects of accidental hydrocarbon fires. The 

suggestions noted are based on the main findings of the Chapter 4 and Chapter 

5. The suggestions noted must be used with caution, especially for scenarios in 

which the flow characteristics and code versions could be very different from 

the examined ones. This work represents a key first step towards a better 

understanding on the application and use of computational fluid dynamics on 

accidental hydrocarbon fires in open environments for risk analysis purposes.  

6.1. The need of BPG in CFD fire modelling 

Since CFD modelling has entered into the research and industrial community, it 

has become a very useful and promising tool to predict many phenomena of 

practical interest in different engineering fields (Tolias et al., 2018). This is partly 

due to the lower costs of computational simulations compared to experiments and 

to the capabilities of assessing many parameters of the same problem without 

significant extra cost. Within the fire safety sector, CFD codes are routinely used 

as analysis tools able to handle complex geometries and significant amount of fire 

characteristics (Dayanandan et al., 2015). Nowadays, the growth on the number of 

performance-based designs (PBD) as an alternative approach to prescriptive fire 

codes has contributed to increase the number of computational fire simulations 

performed (Chow, 2015). Particularly, PBD codes are being developed to regulate 

its application given the higher flexibility and innovation capacity that may lead 
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to lower construction costs without lowering the level of safety (Zalok and 

Hadjisophocleous, 2011). 

The raising trend of CFD simulations has arisen the concern of AHJ about the 

possible lack of full appreciation of the users concerning the complex modelling 

parameters required and thus, their impact on the solutions reached 

(Hadjisophocleous and McCartney, 2005). The development of graphical user 

interfaces (GUI) and the growth in high performance computing (i.e. from PC-

cluster systems to massively parallel supercomputers) allow users without any 

knowledge of the mathematical models solved nor the fire physics involved, to 

easily run simulations with good-looking and defendable outcomes. As a result, 

the predictions obtained could be lacking reliability, hence leading to under- or 

over- fire protection measures. If the equipment remains under-protected, more 

severe consequences will be originated in an accidental fire event. In contrast, 

over-protective measures able to diminish the fire impact will imply excessively 

and/or unaffordable high costs.  

In order to provide reliable estimations of the phenomena of interest through 

computational simulations, it is essential to firstly address the crucial aspects of 

the numerical modelling. For that purpose, Best Practice Guidelines (BPG) have 

been developed to provide guidance on the use of CFD in numerous engineering 

fields: for reactor safety analysis (Menter et al., 2002; Nuclear Energy Agency, 

2015), for marine applications (WS Atkins Consultants, 2002), for dispersion 

flows in urban environments (Franke et al., 2007; INERIS, 2015), for the design 

and assessment of ventilation and gas dispersion in gas turbine enclosures (Ivings 

et al., 2003), for smoke control and management system designs in complex 

enclosed spaces (Gobeau and Zhou, 2004; Hadjisophocleous and McCartney, 

2005) and for hydrogen safety applications (Tolias et al., 2018). Despite the 

considerable number of BPG documents available, there is no one developed to 

provide guidance on CFD simulations of accidental hydrocarbon fires occurring 

in chemical and process industries. Consequently, there are no guidelines bringing 

support to engineers and AHJ when assessing the predictive capabilities of CFD 

codes or when performing simulations involving large-scale pool fires and jet fires 

in open environments. 

6.2. BPG in CFD validation analysis 

CFD validation analysis examines whether the physical models used in computer 

simulations agree with real world observations. The basic validation strategy is to 

identify and quantify both error and uncertainty through comparison of simulation 

predictions with experimental data.  
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Validation analysis is increasingly been performed and reported in technical 

documents to reveal the model’s uncertainties in a way that is useful for the end 

users (McGrattan and Hostikka, 2012). However, CFD validation analysis may be 

worthless in a high percentage given the large number of possible fire scenarios 

occurring in real accidents and the continuous development and release of new 

code’s versions. Consequently, it is almost preferable to conduct CFD validation 

analysis according to the user’s interests than considering out-of-date validation 

exercises or those involving different fire scenarios than those required.  

Figure 6.1 presents a detailed description of an in-house methodology developed 

to carry out CFD validation analysis of accidental hydrocarbon fires in open 

environments. It provides guidance on the assessment of the predictive capabilities 

of any computational code when modelling these types of fires. The proposed 

procedure could be adopted for future CFD validation analysis involving similar 

fire scenarios as there is no need for implementing extensive statistical methods. 

In addition, it may be of great interest for AHJ and end users to better define the 

appropriateness of a CFD code to simulate or not certain fire scenarios.  
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1. Experimental Data 
 

 

Fire experiments description 

Hydrocarbon fuel 

 Fire area/diameter geometry 

 Mass flow rate/Burning rate 

 Measuring devices 

 Experimental results 
 

2. A Priori Validation Analysis 
 

 

Code selection 

Previous validation analysis 

 License costs 

 Graphical user interfaces 

 Computational resources 
 

 

Numerical parameters 

Simulation time 

 Default modelling options 

 Computational domain 

 Mesh resolution 
 

 

Computational measurements 

Virtual sensors 

 Slice files 

 Data processing 
 

 
Results comparison 

Statistical measures 

 Performance criteria 
 

3. A Posteriori Sensitivity Analysis 
 

 Numerical adjustments Sub-models and models constants 
 

 
Quantitative results comparison 

Statistical measures 

 Performance criteria 
 

4. Reporting Conclusions 
 

 
Technical document 

Validity of the code 

 Recommendations  
 

Figure 6.1. Methodology developed to perform CFD validation analysis of computational 

simulations involving accidental hydrocarbon fires in open environments. 
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6.2.1. Experimental data 

The first task of the CFD validation analysis consists on describing the fire 

experiments willing to be compared against simulation results. These can be either 

obtained from previous investigations or from in-house tests, which should at least 

contain the following information:  

 Chemical composition of the hydrocarbon fuel used. Additional 

information such as the heat of combustion, the heat of reaction, the 

kinematic/dynamic viscosity of the fuel and its density is highly valuable.  

 

 Geometry and dimensions of the fire base (area, diameter or radius) from 

which the fuel flow is released or burnt. The possible inclination and the 

orientation (horizontal or vertical) must be given.  

 

 Mass flow rate or gas velocity in the case of jet fires and burning rates for 

liquid pool fires. Alternatively, dimensionless numbers, such as the 

Froude number or the Reynolds number, may be given. Mach numbers are 

highly valuable to detail the flow regime of gas fuel releases. 

 

 Description of the type, location and number of devices set-up and 

cameras used to measure the different variables of interest, as well as the 

time step at which the variables are registered. Special attention must be 

given to the environmental conditions: ambient temperature, wind 

velocity and direction, terrain description and altitude above the sea level. 

Description of other equipment and apparatus involved on the fire 

experimentation are highly valuable, such as obstacles and structures. The 

segmentation processes performed from the video recordings determining 

the flame-geometry descriptors must be completely detailed.  

 

 Spreadsheets containing the variables evolutions as a function of time. 

Instead, the averaged values and the standard deviations can be provided 

for specific fire states. The steady state is the one commonly reported; 

however, the growth or the extinction states could also be considered if 

required. Complementarily, graphical scatter plots of the variables 

measured as a function of time can be shown: thermocouples temperature, 

heat fluxes and boundary conditions.  

6.2.2. A priori validation analysis 

After having described the experimental set-up, the second task of the CFD 

validation analysis entails a priori computational simulations. These are basically 

intended to represent the fire phenomenon of interest by setting up the default 
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numerical options of a CFD code. Following there is a description of the most 

important features of a priori fire simulations.  

Code selection 

Sometimes the user must perform computational simulations with a specific code 

according to regulations or to the stakeholder’s requests. In these cases, there is no 

choice for selecting a different CFD tool and the a priori validation analysis must 

be carried out with the enforced code. Otherwise, the user is responsible for 

selecting the most appropriate code, which can be based on the following 

recommendations:  

 Previous validation exercises reported in technical documents. Possibly, 

similar scenarios as those of interest have been previously validated 

against certain CFD tools. Therefore, no further validation analysis is 

required only if the code version is the same and similar modelling options 

have been assessed (i.e. combustible, fire size, burning/mass loss rates and 

boundary conditions). 

 

 Licence costs. Open-source codes, such as FDS and FireFOAM, are more 

likely to be selected because these can be freely downloaded and used. 

Nevertheless, commercial codes can be of great interest depending on the 

case study. For example, if the impact of flash fires must be evaluated in 

an offshore platform, FLACS-Fire is more adequate than the previous 

ones because of the greater number of studies made involving this type of 

fires as summarized in the user’s guide. 

 

 Graphical user interface (GUI). The existence of GUI’s can facilitate the 

definition of the input numerical parameters and the design of complex 

geometries. Consequently, the time needed to build fire scenarios is 

considerably reduced. Nevertheless, certain GUI possess limitations that 

should be checked in advance such as the use of specific sub-models.  

 

 Computational resources. The time required to complete simulations is of 

crucial importance when selecting a CFD tool. In general, the number of 

cells modelled is the parameter that dictates the computational simulation 

time; however, there are other factors that must also be considered. For 

example, the code capability for splitting multiple meshes into different 

PC cores can significantly reduce the computational time. The sub-models 

defined to solve the turbulence, combustion, radiation and soot 

phenomena may also affect the times needed to complete simulations. 

CFD user’s guides generally contain more information on the 

computational costs associated to the sub-models solved.  
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Numerical parameters 

Default modelling options must be maintained with no modification at all as these 

are based in a wide range of validation exercises and numerical assessments 

performed by the code developers. Either for pool fires and jet fires, the amount 

of combustible burnt per unit of time should be always prescribed as a flow 

entering through a vent located according to the experimental set-up rather than 

predicting its value via pyrolysis sub-models. The soot yield fraction should be 

also prescribed to facilitate the conversion of combustion products into soot to 

avoid long and complex mathematical calculations. Table 6.1 provide details on 

the burning rates and soot yield fractions of most common hydrocarbon fuels used 

in industrial facilities.  

Table 6.1. Burning rate, soot yield fraction and heat of combustion of the most common hydrocarbon 

fuels used in industrial facilities. Data sources come from (Babrauskas, 1983; Kent, 1986). 

Fuel Chemical formula 𝒎̇′′ (kg·s-1·m-2) Soot yield (%) ∆𝑯𝒄 (MJ·kg-1) 

Methane CH4 0.078 0.7 50 

Propane C3H8 0.099 9.0 46 

Heptane C7H16 0.101 12.0 44.6 

Gasoline C6H14 0.083 10.0 44.7 

Diesel C12H26 0.062 12.0 42.4 

Butane C4H10 0.078 10.0 45.7 

 

Computational domains must be defined according to the obstacles restrictions, 

the measuring devices, or to the flame length estimated in the experiments. Apart 

from the ground, the rest of the lateral boundaries of the volume modelled must be 

left open unless otherwise specified. Wind velocity and direction must be 

prescribed in windy fire scenarios as described in the experiments.  

A preliminary mesh sensitivity analysis must be undertaken for buoyancy-

dominated plumes based on the 𝐷∗ 𝛿𝑥⁄  correlation, whose values should be ranged 

between 4 and 16 (Sally and Kassawara, 2007). The most suitable cell sizes can 

be determined in two different ways: (i) when there is reasonable agreement 

between simulation results and measurements, or (ii) when the estimations found 

are very similar for different 𝐷∗ 𝛿𝑥⁄  values. The exit orifices of jet fires can be 

smaller than the proposed cell sizes. In those cases and when the jet fires are 

subsonic, equivalent nozzle diameters must be calculated, whose values are the 

same as the cell sizes determined. Otherwise, when the jet fires are sonic, the 

pseudo-diameter approach must be applied, which determines an equivalent nozzle 

diameter as a function of the Mach number. Then, the cell size is defined with the 
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same value of the resulting equivalent nozzle diameter. In either case, equivalent 

mass flow rates must be calculated and defined within the computational 

simulation. Depending on the computational resources available and the CFD code 

used, multiple meshes may be configured to reduce the computational times 

required. The split grids should approximately contain the same number of cells 

to improve the computer performance.  

CFD simulations must be lasted for at least 60 s to obtain reasonable steady state 

predictions of the different parameters. Longer simulation times can be considered 

if there are conditions that vary over time (i.e. mass of fuel burnt, ambient 

temperature or the wind velocity/direction), or if proposed by the AHJ.  

Computational measurements 

The time step for registering variables should be equal that the one used in the 

experimental dataset. If this was not reported, a time step of 0.25 s or 0.50 s is 

suggested. Virtual sensors can be used to directly determine the temperature 

registered for thermocouples and the heat flux received at a certain distance from 

the fire origin by radiometers or radiant panels. On the other hand, slice files 

recording the temperature contour must be placed in the centreline axis of the fire 

and parallel to the wind direction (only if wind is present) to determine the 

geometrical features of the flames (i.e. flame length, flame area, flame height, or 

tilted angle). It is worth noting that lift-off distance of jet fires cannot be predicted 

under the ‘mixed is burnt’ assumption used by the EDC combustion model.  

The surface emissive power of the flames cannot be directly measured from CFD 

simulations. Instead, these can be determined by means of alternative methods 

such as the solid flame model. To that end, virtual sensors that capture the heat 

flux received must be placed facing the fire at a maximum radial distance of 5 m 

from its origin and perpendicular to the wind direction. In addition, the flame 

shapes of the fire must also be measured by means of slice files as previously 

explained. An atmospheric transmissivity of 1 should be assumed given the short 

distance between the sensor and the fire, and the view factor between the sensor 

and the fire flames must be determined.  

Comparison of results 

Qualitative scatter plots are suggested to rapidly offer an overview of the code 

capabilities to estimate the variables of interest. If so, vertical and horizontal bars 

of the mean values predicted should be added to depict the standard deviations of 

the simulation results and the experimental data, respectively. However, these are 

not mandatory as there is no quantification of the computational uncertainties nor 

of the agreement reached over time (Oberkampf and Barone, 2006). Instead, at 

least two quantitative statistical measurements must be undertaken simultaneously 

to compare computational predictions against experimental measurements and 
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thus, to determine the possible uncertainties derived from simulation predictions. 

To that end, a performance criterion must be defined for each quantitative 

comparison method applied, by which a code can be stated as valid or not. In the 

present document, the Fractional Bias (𝐹𝐵) and the Normalised Mean Squared 

Error (𝑁𝑀𝑆𝐸) are the statistical measures suggested (Rew and Deaves, 1995). 

These must comply with the following performance criteria: the mean bias must 

be within ± 30 % of the mean (-0.3 ≤ 𝐹𝐵 ≤ 0.3) and the random scatter about a 

factor of 2 of the mean (𝑁𝑀𝑆𝐸 ≤ 0.5) (Hanna et al., 2004). If the predictions are 

within the performance criteria defined, the code is declared ‘valid’ for carrying 

out computational simulations of the fire scenarios investigated. If not, a posteriori 

sensitivity analysis offers a second-modelling change to meet the criteria by 

modifying some numerical parameters within the CFD tool used.  

6.2.3. A posteriori sensitivity analysis 

Computational simulations are highly sensitive to the uncertainties in the input 

data, to the level of rigor used in modelling the relevant physics and chemistry of 

the fire phenomenon and to the use of inadequate numerical models (ISO 16730-

1:2015(E) Fire safety engineering - Procedures and requirements for verification 

and validation of calculation methods - Part 1: General, 2015). Therefore, it could 

be possible that the a priori validation analysis do not meet the minimum level of 

agreement expected. In these cases, further adjustments are necessary to improve 

the accuracy of results, which can be accomplished through a posteriori sensitivity 

analysis. These mainly consists on performing new CFD simulations by modifying 

certain parameters of the code in order to reasonably estimate the fire scenario of 

interest. As occurred with the a priori validation analysis, the new predictions must 

be compared against more than one quantitative statistical measures, such as the 

𝐹𝐵 and 𝑁𝑀𝑆𝐸 and must meet the performance criteria. The adjustments envisaged 

are related with the sub-models solved and the model constants implemented.  

In the case of windy fire scenarios, different wind sub-models may be firstly 

evaluated only if more than one are available within the fire code. 

Complementarily, the wind sub-models constants user-defined, such as the ground 

roughness and the reference heights, could also be modified to find out the most 

appropriate ones. If the lack of agreement remains, whatever the ambient 

conditions are, additional modelling changes are necessary. The variables leading 

to disagreements act as indicators of where the modifications should be made. For 

example, if the heat fluxes registered by the virtual radiometer are not accurate 

enough, adjustments must be performed to the approach used to solve the RTE. 

For instance, other radiation sub-models may be used to estimate the radiative heat 

fluxes or the number of solid angles should be progressively increased until 

convergence on the radiative fluxes predictions is achieved. If this does not occur, 
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radiation sub-model constants, such as the correction factor, may be varied in last 

instance.  

On the other hand, modifications on the turbulence and combustion sub-models 

should be undertaken if discrepancies are observed in the temperatures measured. 

In this sense, different turbulence approaches intended to closure the RANS or 

LES equations may be assessed. Likewise, some models constants, such as the 

Smagorinsky constant or similar ones, may be varied until the agreement is 

reached. Secondly, variations on the constants defined to determine the mixing 

time scales could be performed only if previous modifications do not improve the 

accuracy of estimations. It is worth noting that adjustments on the model’s 

constants may lead to numerical instabilities and modelling errors when modelling 

different types of fire scenarios. Because of that it is suggested to avoid when 

possible their modifications. 

6.2.4. Concluding remarks  

When AHJ review engineering projects involving computational fire simulations, 

or when users are seeking for an appropriate CFD tool to perform simulations, they 

typically begin by reviewing validation analysis reports. These are essentially 

focused on notifying if a code is ‘valid’ or not to estimate the fire-related effects 

for certain fire scenarios based on quantitative comparisons. Possibly, the 

performance criteria are met under some variables, whereas there are others that 

do not agree with the experimental results. In these cases, the CFD tool can be 

noted as ‘valid’ for estimating certain variables even if there are others that cannot 

be accurately predicted.  

It is essential to provide well-documented validation reports in order to avoid 

misunderstandings that might arise and to facilitate the understanding of the 

modelling options defined. For that purpose, the technical document must contain 

at least all the details corresponding to the different phases previously described. 

In addition, a summary document is suggested to highlight the main findings 

obtained through the CFD validation analysis performed. The final report can also 

include recommendations on further modelling adjustments that may improve the 

results accuracy, or that may reduce the computational times required, as well as 

comments about the user-tool friendliness. Lastly, the written reports could be sent 

to the code developers to discuss about the pros and cons found, hence contributing 

to its development and improvement. 
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6.3. BPG in CFD modelling for fire hazard assessments 

Assessing the hazards of possible accidental hydrocarbon fires occurring in 

industrial facilities is extremely useful to determine the safety design and the safety 

measures required to minimize their impact in equipment and personnel. To that 

end, semi-empirical methods can provide reasonable predictions of the related-fire 

effects; however, there are certain cases where computational simulations are 

highly recommended because of its modelling advantages (more details can be 

found in Section 1.2.) or when required by AHJ or stakeholders. In these cases, the 

selected CFD code must be validated prior to perform CFD simulations. Previous 

section brings details to undertake a CFD validation analysis. Nevertheless, 

validation analysis of CFD codes cannot be always carried out given the lack of 

experimental data or the complicated access to the databases. In consequence, the 

level of accuracy of the estimations obtained rest unknown, hence hindering its 

use in real engineering problems.  

The present section provides BPG in CFD for fire hazard assessments involving a 

wide range of possible hydrocarbon fire accidents that can occur in chemical and 

process industries (Table 6.2). It provides guidance on the numerical parameters 

that should be set-up within the CFD tool used to maximize the reliability of the 

estimations. The recommendations provided are based on the main findings 

obtained in Chapter 4 and Chapter 5 as a result of the good agreement commonly 

found between predictions and experimental measurements, especially in FDS. 

The presented document should be valuable for a broad audience, from 

unexperienced to expert CFD users. Any interested user in performing 

computational simulations related to large-scale pool fires or jet fires should be 

able to accomplish it with acceptable results. The presented suggestions are valid 

for different CFD tools; however, caution must always be taken as these can 

contain different sub-models and numerical schemes.  

The main sub-models solved (i.e. the turbulence, combustion, radiation, soot and 

wind) are the same regardless of the type of hydrocarbon fire. Consequently, there 

is no numerical modelling difference between simulations involving pool fires of 

kerosene of 6 m-diameter and for subsonic jet fires of methane with nozzle 

diameters of 10 mm. Mass loss rates must be prescribed rather than predicted via 

pyrolysis models. The minimum number of solid angles must be of 400 to provide 

reasonable estimations of the radiative heat fluxes. Additional values of the ground 

roughness used for solving the wind sub-model can be found in (Stull, 2000), while 

soot fraction values for different hydrocarbon fuels can be found in (Kent, 1986).  

The maximum numerical time step should be of 0.8 to avoid numerical instabilities 

and the minimum simulation time must be of 60 s under steady ambient conditions. 

Longer simulation times can be set-up if desired, or if some modelling conditions 
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vary over time. The minimum length of vertical axis only depends on the fire 

diameter. In contrast, the minimum length of lateral axis depends on the fire 

diameter and the wind conditions.  

On the other hand, the mesh resolution is defined according to the resulting Mach 

number, 𝑀𝑎, and the fire diameter, 𝐷. The dimensionless expression of the 

characteristic diameter of the fire, 𝐷∗ 𝛿𝑥⁄ , is calculated when the Mach number is 

equal or lower than 0.3. The cell size, 𝛿𝑥, is then determined by considering the 

recommended ranges for the expression, which should vary from 8 to 16 

approximately. If the calculated cell size is higher than the fire diameter (𝐷 < 𝛿𝑥), 

an equivalent nozzle diameter should be considered, 𝐷𝑒𝑞,𝑛, whose value must be 

the same as the cell size (𝐷𝑒𝑞,𝑛 = 𝛿𝑥). An equivalent mass flow rate is determined 

as a function of the equivalent nozzle diameter found. For fuel flows with Mach 

numbers higher than 0.3, the pseudo-diameter approach must be applied. Taking 

into account the initial ambient and flow release conditions, an equivalent nozzle 

diameter is obtained by considering a Mach number equal or lower than 0.10. The 

cell size defined is of the same value as the equivalent diameter found. In average, 

a mean error estimation of ± 22 % can be achieved when following the stated BPG 

to perform computational simulations of hydrocarbon fires in open environments.  
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Table 6.2. Numerical parameters suggested to perform computational simulations involving 

turbulent hydrocarbon fires in open environments. 

Numerical Parameters Recommendations 

Numerical Time Step  CFL ≤ 0.8 

Simulation Time  ≥ 60 𝑠 

Computational Domain 

 Min. length vertical axis: 8𝐷(1) 

 Min. length lateral axis in windless scenarios: 2𝐷(1) 

 Min. length lateral axis in windy scenarios: ≥ 6𝐷(1) 

Mesh Resolution 

 If 𝑀𝑎 ≤ 0.3 and 𝐷(1) > 𝛿𝑥: 

16 ≥ 𝐷∗ 𝛿𝑥⁄ ≥ 8.0 

 If 𝑀𝑎 ≤ 0.3 and 𝐷(1) < 𝛿𝑥: 

12 ≥ 𝐷∗ 𝛿𝑥⁄ ≥ 8.0  

𝐷𝑒𝑞,𝑛 = 𝛿𝑥 

𝑚̇𝑒𝑞 = 0.25𝜌𝑓𝑢𝑓𝜋𝐷𝑒𝑞,𝑛
2 

 𝑀𝑎 ≥ 0.3: 

Pseudo-diameter approach 

𝐷𝑒𝑞,𝑛 = √4𝑚̇𝑓 𝜋𝑐𝜌𝑓𝑀𝑎⁄ , with 𝑀𝑎 ≤ 0.10 

𝐷𝑒𝑞,𝑛 = 𝛿𝑥 

Fuel Evaporation  Prescribed mass flow rate 

Turbulence 
 LES: 

Deardorff model 

Combustion 
 EDC: 

Complex mixing time scales 

Radiation 
 DOM: 

Minimum number of solid angles: ≥ 400 

Wind 
 Monin-Obukhov Similarity:(2) 

Recommended values: 𝜂 = 0.03 and 𝐿 = 100 

Soot  Conversion Factor Model(3) 

Measurements 

 Measuring time step: ≥ 0.25 𝑠 

 Temperatures and radiative fluxes: Virtual sensors 

 Flame-geometry descriptors(4): temperature SF 

(1) Pool diameter in the case of pool fires and equivalent diameter in the case of jet fires. 

(2) Reference height depends on the experimental data. More values of the ground roughness can 

be found in (Stull, 2000).  

(3) Soot fraction values for several hydrocarbon fuels can be found in (Kent, 1986). 

(4) Lift-off distances cannot be predicted in the case of jet fires. 
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CHAPTER 7 

CASE STUDY: COMPUTATIONAL FIRE HAZARD ASSESSMENT IN 

STORAGE TANKS IN THE PORT OF BARCELONA 

 

 

 

This section presents a case study on the use of CFD simulations when 

performing a fire hazard assessment (FHA) in an oil storage farm. Specifically, 

FDS is the CFD code selected to carry out simulations of fires involving real 

oil storage tanks located at the Port of Barcelona. The main objective is to 

evaluate the impact of the possible accidental fires that may occur on the 

surrounding structures and people. For that purpose, different fire scenarios are 

proposed for analysis according to the distribution and number of storage tanks, 

as well as the ambient conditions (i.e. temperature and wind). Simulation 

results are compared with predictions obtained by means of semi-empirical 

correlations in order to examine the advantages and drawbacks of both 

modelling methods. Fire protection measures and safety recommendations are 

provided based on the related-fire effects estimated in the present study.  

7.1. Fire hazard assessment in oil storage tanks 

Liquid storage tanks are commonly used in chemical and process industries for 

storage of combustible and flammable liquids (Argyropoulos et al., 2012). The 

loss of containment of hazardous material may lead to accidental events with 

severe results: injuries, fatalities, business interruption, loss of a facility and 

environmental impact (Liu et al., 2017). A literature survey on storage tank 

accidents that occurred in industries from 1960 to 2003 revealed that fire was the 

most common cause (Chang and Lin, 2006). The 33 % of these were caused by 

lightning, the other 30 % by human errors, while the rest were originated by causes 

such as equipment failure, sabotage, leak and line rupture, static electricity, and 

radiant heat. 

Within this framework, the appropriate prevention and control measures must be 

determined to reduce the occurrence and effects of accidental fires. In this regard, 

fire hazard assessments (FHA) are convenient methods to identify possible fire 

hazards without consideration of the likelihood of occurrence (Meacham et al., 

2016). Consequently, fire protection procedures and management policies 

required to ensure safety can be implemented, hence minimising the impact of 
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accidental fires in oil storage farms. FHA’s typically involve surveys on the 

potential ignition sources, fuel sources, arrangements and configurations of fuel 

packages, boundary conditions, as well as the existence of fire safety features 

(John, 2016). Based on this information, different fire scenarios are then proposed 

to assess the related-fire effects in the affected area. It is worth noting that FHA’s 

can be used during design phase, as part of an approval process, or as part of an 

inspection and maintenance program. 

There exist different tools and methods to perform FHA’s in industrial facilities. 

International standards and regulations have been typically used to assess the fire 

hazards and the possible consequences triggered. Nevertheless, CFD simulations 

are increasingly being used to that end (more details on CFD modelling can be 

found in Section 1.2.). Recently, different authors performed fire simulations in 

FDS and Fluent codes involving oil storage tanks from 12 to 50 m-diameters 

containing hydrocarbon fuels such as kerosene, butane, and gasoline under 

different wind conditions (Ahmadi et al., 2019; Benucci and Uguccioni, 2010; Liu 

et al., 2017; Sun et al., 2014). Their main concern was to determine the heat fluxes 

received in the equipment and obstacles sited near the fire sources. These works 

essentially highlight the usefulness of CFD codes to provide insight into the 

possible consequences triggered by accidental fires. Following sub-sections show 

a computational FHA performed in a real oil storage farm located in the Port of 

Barcelona. 

7.2. The Port of Barcelona 

7.2.1. Situation 

The Port of Barcelona covers a total land area of over one thousand hectares, with 

wharves and berths totalling 20.3 kilometres with alongside depths up to 16 meters 

(World Port Source, 2019). Figure 7.1 shows the aerial view of the Port of 

Barcelona limited with the rest of the city by a straight dark and continuous line. 

The port area is divided into eight different terminals according to the activities 

performed in each one. Among these, the liquid bulk terminal (marked in orange) 

stores the hazardous materials arrived on cargoes prior to its distribution through 

the national road, rail and pipeline networks.  

In 2016, the port handled a total of almost 10.8 million tons of liquid bulk cargoes, 

including almost 9.0 million tons of hydrocarbons distributed as follows: 4.1 

million tons of natural gas, almost 2.4 million tons of diesel oils, over 1.5 million 

tons of gasoline, nearly 865.6 thousand tons of fuel oil, and almost 36 thousand 

tons of other liquid bulk cargo (i.e. petroleum products, fuel oil, coal, petroleum 

fuel gases, and crude oil). The other liquid bulk cargoes moving through the Port 
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of Barcelona included almost 1.2 million tons of chemical products and nearly 473 

thousand tons of oils and fats.  

 

Figure 7.1. Aerial view of the Port of Barcelona (Port of Barcelona, 2019). The continuous dark 

line separates the Port from the rest of the city. The red circle indicates the bulk liquids area. 

Table 7.1 summarizes the storage tanks information of the operating companies in 

the liquid bulk terminal. The largest ones correspond to Enagas, whose tanks have 

a storage capacity of 840,000 m3. Enagas is a common carrier for the high-pressure 

natural gas network and the technical manager for Spain's gas system. In a lower 

amount, Relisa receives, handles, and forwards bulk liquids that include chemical 

and biofuel products in an area of 2.7 hectares that is able to store up to 200,000 

m3 along 127 tanks. TEPSA is a leader for receiving, storage, and forwarding bulk 

liquid petroleum products, biofuels, and chemicals. It has the largest number of 

tanks in the Port of Barcelona (244) with a total capacity for almost 350,800 m3. 

Similar fuels are stored in Vopak Terquimsa's tanks, with a higher capacity per 

tank that could achieve 39,000 m3. The company provides logistic access to Spain, 

Southern Europe, and North Africa. Koalagas, a joint venture of Decal España, 

supplies, stores, and handles liquefied petroleum gas (LPG). It is the first company 

in Spain to use TEXSOL® protection for LPG spheres. Its facility has a total 

capacity for 4,000 m3 divided in two spheres. Meroil and Tradebe store and 

distribute a wide range of petroleum products such as gasoline, diesel, and 

kerosene, with tank capacities that could achieve 30,000 m3.  

Most of the tanks sited in the Port of Barcelona are fixed-roof with cone-shaped 

welded to the top edge of the tank shells. These are especially conceived for the 

storage of liquid fuels with vapour pressures close to atmospheric pressure. The 

design prevents water accumulation and permits a vapour space between the liquid 

surface and the roof underside (Shelley, 2008). This allows the roof to be separated 

from the tank shell and prevents it from propelling upwards in case of an internal 

Bulk liquids 
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overpressure (Nwabueze, 2016). The diameters, the heights and the separation 

distances between tanks vary according to the operating companies and their 

capacities. Although there are no details on the materials composing the vertical 

cylinders, it is assumed that the tanks are in carbon steel with epoxy paint as 

thermal insulator (American Petroleum Institution, 2018). 

Table 7.1. Storage tanks information of the operating companies in the Port of Barcelona. 

Company Ref. Stored fuels 
Nº of 

tanks 

Tank  

capacity (·103 m3) 

Total storage 

capacity (·105 m3) 

Enagas (Enagas SA, 2015) LNG 8 840 67.2 

Relisa 

(Receptora de 

Liquidos SA 

(Relisa), 2019) 

Miscellaneous(2) 

Biofuel 
127 0.1 to 7.5 2.0 

TEPSA 

(Terminales 

Portuarias SL 

(TEPSA), 2019) 

Petroleum(1) 

Miscellaneous(2) 

Biofuel 

244 0.05 to 18 3.5 

Vopak 

Terquimsa 

(Vopak 

Terquimsa, 2019) 

Petroleum(1) 

Miscellaneous (2) 

Lubricant/Vegetal 

44 0.18 to 39 1.95 

Decal & 

Koalagas 

(Decal España SA, 

2019) 
LPG 25 15 to 20 4.45 

Meroil (Meroil SA, 2019) Petroleum(1) 32 3 to 30 6.4 

Tradebe 
(Tradebe Port 

Services, 2019) 
Petroleum(1) 29 5 to 24 3.75 

(1) Combustibles such as fuel oil, diesel, gasoline, jet fuel, and kerosene among others. 

(2) Chemicals such as fertilizers, organic/inorganic acids, and alcohols among others. 

7.2.2. Fire accidents in fixed-roof tanks 

Fires are likely to occur when vapours or liquids are released from a controlled 

environment to areas where there may be an ignition source, or alternatively, when 

an ignition source is introduced into a controlled environment. There exist 

different accidental fires that can occur in fixed-roof tanks: overfill ground fires, 

vent fires, and full surface fires (Crippa et al., 2009). The overfill ground fires, also 

called dike fires, are considered the least severe type of fire incidents in fixed-roof 

tanks. These commonly result from piping or tank leakages, and operator error or 

equipment malfunction. Provided that the dikes are correctly designed, the liquid 

combustible released will be confined within the dikes and the fire would be 

treated as a pool fire. However, if the dike walls are compromised, the burning 

fuel could escape from it, which could lead to a possible escalation of the fire. 

Vent fires are mainly caused by lightning strikes that ignite combustible vapours 

on the top of the roof. These are small fires that can usually be extinguished with 

a dry chemical fire extinguisher or by reducing the pressure in the tank. On the 
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other hand, overpressures inside the tanks often provoke internal explosions above 

the liquid fuel layer, which propel upwards the shell of the roof. Immediately, the 

combustible is ignited and a full surface fire is originated. These are the most 

severe and challenging fire accidents in fixed-roof storage tanks because of the 

large burning areas and the considerable amount of resources needed to control 

and extinguish the fire. During full surface fires, the boilover event, which causes 

burning fuel to be ejected outside the tank area and increases the turbulence of the 

fire, may arise as a result of the fire-fighting extinction attempts such as the filling 

of the tanks with fresh water or foams (Koseki et al., 2003). In consequence, the 

combustible particles expelled from the liquid surface may present a hazardous 

situation for personnel and firefighters sited near the tank in fire, and may also be 

the initiating event for an additional fire or explosion (Hemmatian et al., 2014).  

7.2.3. Fire hazards and consequences 

The main hazardous effects of oil storage tank fires affecting the personnel and the 

structure equipment are the radiative heat fluxes, the heat stress, and the toxicity 

of the products of combustion (Nwabueze, 2016). Among these, the thermal fluxes 

equally pose a significant hazard for both, people and facilities. Depending on the 

amount of heat released, the distance from the fire to the targets affected, and the 

ambient conditions, the thermal radiation on people can range from first degree 

burn injury to fatality (Table 7.2). Unprotected general public is considered to be 

safe under maximum heat fluxes of 1.5 kW·m-2, while severe pain may be caused 

with values equal or higher than 2.5 kW·m-2 (British Standards Institution, 2004; 

LaChance et al., 2010). Protected fire responders may tolerate threshold values up 

to 5 kW·m-2. Greater heat flux may cause significant injuries and fatalities. On the 

other hand, structures can be also notably impacted by thermal fluxes (Table 7.3). 

Threshold values of 5 kW·m-2 or lower may cause light damages, such as windows 

breakage. Thermal fluxes ranged between 10 and 20 kW·m-2 imply moderate 

damages on structures as these are being heated up, and heat flux values of 100 

kW·m-2 or higher provoke the failure of the structure and the total loss of 

containment. 
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Table 7.2. Impact of radiant heat flux on people. Data sources come from (British Standards 

Institution, 2004; LaChance et al., 2010). 

Heat Flux (kW·m-2) Effects on People 

1.5 

 No harm.  

 Safe for the general public and for the stationery 

personnel. 

2.5 
 Intensity tolerable for 5 min. 

 Severe pain above 5 min exposure. 

3 
 Intensity tolerable for non-frequent emergency personnel 

for 30 min. 

5 

 Pain for 20 s exposure. 

 1st degree burn.  

 Intensity tolerable for frequent emergency personnel. 

9.5  2nd degree burn after 20 s. 

12.5 - 15 
 1st degree burn after 10 s. 

 1 % fatality in 1 min. 

25 
 Significant injury in 10 s. 

 100 % fatality in 1 min. 

35 - 37.5  1 % fatality in 10 s. 

 

Table 7.3. Impact of radiant heat flux on structures and equipment. Data sources come from (Lees, 

1996). 

Heat Flux (kW·m-2) Effects on Structures and Equipment 

5  Glass breakage (30 min exposure). 

8 - 12 

 Radiation intensity threshold capable to cause domino 

effects (> 30 min exposure). 

 Ignition vegetation (10 min exposure).. 

10 - 20 

 Ignition of hydrocarbon fuels (1 min exposure). 

 Melting of plastics (30 min exposure). 

 Failure of structures except concrete (20 min exposure). 

 Cable insulation degradation (> 30 min exposure). 

25 - 32 
 Steel deformation (> 30 min exposure). 

 Ignition of wood (15 min exposure).. 

35 - 37.5 
 Process equipment and structural damage (> 30 min 

exposure). 

100  Steel structure collapse (> 30 min exposure). 

200  Concrete structure failure (30 min exposure). 
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The air temperature is another hazardous factor that only affects people. Under 

high ambient temperatures, the body’s natural cooling efficiency could be 

impeded, hence causing heat stress that may result in severe pathological effects 

and possible fatal outcomes (Table 7.4). Under temperatures lower than 70 ºC 

there is an uncomfortable feeling, while between 70 ºC and 150 ºC the impact on 

people is often dominated by difficulty to breathe. Particularly, 149 ºC is the 

maximum survivable air temperature threshold defined. 

Table 7.4. Impact of air temperature on people. Data sources come from (DNV Technica, 2001; 

“NORSOK STANDARD - Risk and emergency preparedness assessment,” 2010). 

Temperature (ºC) Effects on People 

70  Uncomfortable situation 

127  Difficult breathing. 

140  5 min tolerance limit for escape 

149  Temperature limit for escape. 

 

Smoke and the products of combustion originated may also pose a critical situation 

for people. The species released from hydrocarbon fires notably vary according to 

the type of fuel and materials involved: carbon dioxide, carbon monoxide, nitrogen 

oxides, sulphur dioxide, volatile organic compounds, polycyclic aromatic 

hydrocarbons, hydrogen sulphide, aerosols and soot. These are of special concern 

in enclosed compartments due to the accumulation of toxic particles affecting 

people. Nevertheless, in open environments, the CO component is known to cause 

the majority of deaths by reducing the visibility and exposing people for 

unacceptable long periods of time (Ramsdale et al., 2003). Specifically, the 

minimum visibility levels that should be maintained in the escape routes must be 

at least of 10 m (British Standards Institution, 2019). 

7.3. Methodology 

7.3.1. Fire scenarios 

Figure 7.2 depicts an aerial (up) and a perspective (down) view of the oil storage 

tanks located in the Port of Barcelona proposed for analysis (limited with a straight 

red and continuous line). These belong to Tradebe company and are used to store 

petroleum products.  
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Figure 7.2. Aerial (up) and perspective view (down) of the oil storage tanks located in the Port of 

Barcelona considered for analysis. Both images obtained with Google Earth®. 

Figure 7.3 shows the location and separation distances of the oil storage tanks 

considered. Due to the lack of technical documentation, the dimensions noted have 

been measured with Google Earth®. In addition, Table 7.5 provides complete 

details of these: diameters, heights, and capacities. 
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Figure 7.3. Dimensions (in meters) of the oil storage tanks located in the Port of Barcelona 

considered in the present case study. Tanks are designated in red bold numbers. 

Table 7.5. Diameters, heights and capacities of the different tanks located in the Port of Barcelona 

area, considered in the present case study. 

Number Capacity (m3) Diameter (m) Height (m) 

1 to 4 18,000 32 22 

5 to 8 25,000 38 22 

9 to 12 18,000 32 22 

13 to 16 3,600 16 18 

17 8,600 24 19 

 

Wind and ambient temperatures are key elements that directly affect the 

development of port operations. In order to continuously obtain reliable and 

updated information on the weather conditions at any given time the Port of 

Barcelona has 8 meteorological stations scattered around the whole area and 

located at 10 m-height over the ground (Figure 7.4). These are equipped with 

sensors able to measure different variables such as wind velocity/direction, 

atmospheric pressure, ambient temperature, relative humidity, and solar radiation.  
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Figure 7.4. Location of the meteorological stations scattered around the Port of Barcelona.  

The meteorological station 2 brings the most precise weather conditions of the 

liquid bulk terminal, where the oil storage tanks considered for the current analysis 

are located. Table 7.6 summarizes the averaged statistical values of the wind 

velocities and ambient temperatures measured on it from 2008 to 2015 according 

to the seasons of the year (Port of Barcelona, 2015). Standard deviations are not 

included as these were not reported. As it can be observed, mean wind speeds 

remain constant during the whole year. The predominant direction of the wind in 

cold seasons (i.e. winter and autumn) is from the east, while the coastal breezes 

having a northerly component predominate warm seasons (i.e. spring and 

summer). In contrast, averaged minimum and maximum ambient temperatures 

clearly vary during the periods of the year: minimum ones of 7 ºC are achieved in 

winter, whereas maximum ones of 27 ºC are obtained in summer.  

Table 7.6. Mean statistical values of the wind velocities and directions and the ambient temperature 

measured from 2008 to 2015 by the meteorological station 2. Data sources come from (Port of 

Barcelona, 2015). 

Season 
Wind Velocity Ambient Temperature  

Mean (m·s-1) Max. (m·s-1) Direction(1) Min. (ºC) Mean (ºC) Max. (ºC) 

Spring 3.5 18.8 North 13 15 17 

Summer 3.4 17.0 North 23 25 27 

Autumn 3.2 20.4 East 11 14 16 

Winter 3.2 22.1 East 7 11 14 

(1) The direction indicates where the wind comes from. For example, a northerly wind indicates 

that the wind blows from the north to the south. 

Table 7.7 shows the 12 fire scenarios proposed for the present computational FHA. 

All these involve full surface fires occurring in the roof tanks due to its severity 

and difficulties for its extinction. Tanks are supposed to be completely filled with 

gasoline, which is used as the main hydrocarbon fuel in the all fire scenarios. As 
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it can be seen, different burning tanks and weather conditions are examined to 

assess the related-fire effects that could occur at different seasons of the year in 

the Port of Barcelona. Specifically, the first four fire scenarios have the fire origin 

in the tank number 6, which is completely surrounded by others. Thus, the fire 

effects can affect different adjacent tanks depending on the wind speed and 

direction. The rest of the fire scenarios proposed have the fire origin in the tank 

number 9 and number 1 under a fixed wind direction for each of them. By this, the 

hazardous effects at remote tanks from the burning ones can be assessed. 

Table 7.7. Fire scenarios proposed for the computational FHA involving gasoline storage tanks 

located in the Port of Barcelona. 

Fire  

Scenario 

Burning  

Tank 

Ambient  

Temperature (ºC) 

Wind 

Velocity (m·s-1) 

Wind 

Direction 

1 6 27 3.4 North 

2 6 7 3.2 East 

3 6 27 17.0 North 

4 6 7 22.1 East 

5 9 27 3.5 North 

6 9 13 3.4 North 

7 9 27 17.0 North 

8 9 13 18.8 North 

9 1 16 3.2 East 

10 1 7 3.2 East 

11 1 16 20.4 East 

12 1 7 22.1 East 

 

All the tanks surfaces are recovered with an epoxy paint film to protect them 

against the high radiative fluxes that could receive (Chiguma et al., 2013), whose 

thermal properties are summarized in Table 7.8. Active fire protection measures 

are often implemented in storage farms given the difficulties to achieve adequate 

separation distances in limited industrial areas. In the case of fixed-roof tanks, 

foam and water systems are designed to be applied through the tank wall and into 

the burning fuel area to minimise the effect of radiated heat (National Fire 

Protection Association, 2016). Nevertheless, both systems can fail while working 

or can be much less efficient than expected and thus, none of these are represented 

in the simulations performed. Consequently, the worst-case fire scenario can be 

determined without the influence of external agents.  
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Table 7.8. Thermal properties of the epoxy paint considered in FDS. Data sources come from 

(Chiguma et al., 2013). 

Thermal Property Units Value 

Diffusivity m2·s-1 1.60 · 10-7 

Specific heat J·kg-1·K-1 1,284.0 

Conductivity W·m-1·K-1 1.78 

Density Kg·m-3 8,664.3 

 

7.3.2. CFD modelling 

FDS v6.7.0 is the CFD tool used to simulate the fire scenarios proposed. The 

numerical parameters defined within the code are selected according to the BPG 

in CFD modelling for fire hazard assessments exposed in Section 6.3: 

- The numerical time step is of 0.8. 

- The computational domain composed by rectangular and isotropic grid 

cells is defined according to the obstacles dimensions: 150 m x 280 m x 

120 m.  

- The Deardorff turbulence model is used to close the LES equations. 

- The EDC model is used to solve the combustion phenomena. 

- The DOM model is used to solve the RTE under 400 solid angles. 

- The Monin- Obukhov Similarity model is used to represent the wind 

conditions with 𝜂 = 0.03, ℎ𝑟𝑒𝑓 = 10 𝑚, and 𝐿 = 100.  

- The CFM model is used to convert the gasoline products of combustion 

into soot (the soot yield is of 0.10 kg·kg-1, and the carbon monoxide yield 

is of 0.010 kg·kg-1 (Koseki, 1999)). 

Simulations are run for 15 minutes to obtain long duration of the fire in an Intel® 

Xeon® E5 2.20 GHz with 256 GB RAM. Apart from the ground, the rest of the 

boundary layers are open to the outside given the nature of the fire scenarios. The 

following values have been assumed for the determination of the heat release rate, 

𝑄̇, which is used for the calculation of the characteristic diameter of the fire: a heat 

of combustion, ∆ℎ𝑐, of 44.4 MJ·kg-1, and a mass loss rate per unit area, 𝑚̇′′, of 

0.083 kg·s-1·m-2 (Muñoz et al., 2004). According to the maximum recommended 

values for buoyancy-dominated flows (𝐷∗/𝛿𝑥 = 16), a cell size of 1.50 m is 

obtained and set-up for the computational simulations performed. The mesh 

volume is divided into 4 CPU cores to speed up the simulation times. 

Given the diverse harmful effects of storage tank fires on people and structures, 

different computational measurements are performed. Boundary files are used to 

calculate the heat flux received at the tanks surfaces. In addition, slice files at 1.8 
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m over the ground  are used to determine the temperatures, and visibility levels 

and the thermal flux that may harm people sited in the vicinity of the fire area 

(National Fire Protection Association, 2018). All variables are registered each 0.25 

s. The fds2ascii software is used to convert the boundary and slice files into 

spreadsheets containing the mean values of the measurements obtained at each 

cell.  

The fire scenarios and the modelling parameters defined are built in Pyrosim®, 

which acts as a graphical user interface for FDS. The rounded tanks are built in 

Autocad®, and lately imported in Pyrosim® in the appropriate location. Figure 7.5 

shows the storage farm design drawn in Pyrosim® used to perform the fire 

simulations proposed for analysis. 

 

Figure 7.5. Instant capture of the fire scenario 6 showing the geometry created in Pyrosim® and 

used for the present FHA performed in FDS.  

7.3.3. Semi-empirical correlations 

There are a considerable number of semi-empirical correlations developed from 

specific sets of well-defined experiments that can predict the geometrical features 

and thermal fluxes emitted by hydrocarbon fires (Cowley and Johnson, 1992). 

Particularly, the heat flux received at a given distance from the fire origin, 𝑞̇𝑟
′′, can 

be calculated by means of the point source model (Drysdale, 1999): 

𝑞̇𝑟
′′ =

𝜒𝑟𝑄̇

4𝜋𝑑𝑅
2 (7.1) 

where 𝜒𝑟is the radiative fraction (~ 0.35 for large-scale pool fires (Koseki, 1999)), 

which determines the amount of energy that is transmitted by radiation in a fire, 𝑄̇ 
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represents the heat release rate and 𝑑𝑅 is the distance from the flame centre to the 

target location. Specifically, the flame shape is needed to determine the separation 

distance between the fire origin and the tank’s surfaces. Muñoz et al. 2004 

developed a correlation that predicts the dimensionless flame length, 𝐿𝐹 𝐷⁄ , of 

large-scale pool fires, which was obtained from numerous diesel and gasoline pool 

fire experiments ranged from 1.5 to 6 m-diameters: 

𝐿𝐹

𝐷
= 7.74(𝑚∗)0.375(𝑢∗)−0.096 (7.2) 

where 𝑚∗ and 𝑢∗ are the dimensionless mass flow rates and wind velocities 

expressed as follows: 

𝑚∗ =
𝑚̇′′

𝜌∞√𝑔𝐷
 (7.3a) 

𝑢∗ = {
𝑢𝑤

𝑢𝑐
⁄      𝑖𝑓 𝑢𝑤 ≥ 𝑢𝑐  

1               𝑖𝑓 𝑢𝑤 < 𝑢𝑐

 (7.3b) 

where 𝑚̇′′ is the mass flow rate per unit area of the pool, 𝜌∞ is the ambient density, 

𝑔 is the gravitational acceleration, 𝑢𝑤 is the wind velocity, and 𝑢𝑐 is the 

characteristic wind speed determined as: 

𝑢𝑐 = (
𝑔𝑚̇′′𝐷

𝜌∞
⁄ )

1
3⁄

 (7.4) 

In addition, the same authors also provided an equation to estimate the tilted angle 

of the flame, 𝜃, which often occurs in the presence of high wind speeds: 

cos 𝜃 = {0.96𝑢∗−0.26

1
 𝑓𝑜𝑟 

 𝑢∗ ≥ 1
𝑢∗ < 1

 (7.5) 

7.4. Results and Discussion 

7.4.1. Computational estimations 

Figure 7.6 shows the mean maximum temperatures registered 1.8 m above the 

ground affecting personnel on the storage farm area due to the heat stress. The 4th 

fire scenario is the only one at which the temperature threshold beyond which an 

uncomfortable situation is originated is reached. Other fire scenarios, such as the 

3th, the 7th, the 8th, the 11th and the 12th also achieve considerable temperature 

values above the ground (i.e. ~60 ºC). Therefore, it is deduced that the highest 

temperature conditions are originated when the tank fire occurs under wind speeds 

equal or higher than 17.0 m·s-1 regardless of the ambient temperature.  
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Figure 7.6. Mean maximum temperature values predicted 1.8 m above the ground within the 

storage farm according to the different fire scenarios modelled in FDS. Long-dashed line 

represents the performance criteria beyond which uncomfortable conditions for people are 

originated. 

On the other hand, the higher the wind velocity, the lower the height above the 

ground at which the smoke and products of combustion travel throughout the 

storage farm. In consequence, the visibility levels are notably reduced as observed 

in Figure 7.7. The minimum visibility criteria is largely exceeded in highly windy 

scenarios, whose values may be even lower than 5 m distance in certain areas 

within the storage farm. Therefore, the possible lack of visibility represents a more 

hazardous situation than the high temperatures reached if an accidental fire occurs 

under high wind speeds.  

 

Figure 7.7. Mean minimum visibility levels predicted 1.8 m above the ground within the storage 

farm according to the different fire scenarios modelled in FDS. Long-dashed line represents the 

performance criteria below which unacceptable visibility conditions for people are reached. 
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The locations at which the highest temperatures can lead to uncomfortable 

situations and where the visibility levels are significantly reduced mainly depend 

on the burning tank location and the wind direction. Figure 7.8 and Figure 7.9 

show the temperature and visibility values, respectively, of two fire scenarios 

having different fires location and wind direction. As it can be seen, the most 

hazardous areas are those located far away from the fire origin in the same 

direction of the wind.  

Figure 7.10 shows the maximum radiative heat fluxes registered 1.8 m above the 

ground for the different fire scenarios modelled. As before, windy scenarios are 

more dangerous than windless ones, especially those with wind speeds equal or 

higher than 17.0 m·s-1. In these cases, the heat flux values calculated always pose 

a critical situation for un-protected people, while some of them also represent a 

risky scenario for protected personnel as the thermal fluxes may exceed the 5 

kW·m-2 in certain areas of the storage farm. 

Based on the results found, it is highly recommended that personnel positioned in 

the tank’s dikes, which are continuously exposed to the potential fire hazards, 

should wear protective clothing and masks, especially in windy days. They should 

also be informed about the wind direction in advance. By this, the evacuees, which 

are supposed to be familiar with the facility, may avoid escape routes directly 

affected by the smoke and the other products of combustion in case of an 

accidental tank fire. In addition, when facility workers are performing maintenance 

or other tasks in the storage farm, firefighters should firstly intervene in areas far 

away from the burning tank. All these are suggestions aimed at preventing 

fatalities in oil storage farms. 

  



  

Case Study: Computational FHA on Storage Tanks in the Port of Barcelona 

 141 

Fire Scenario 8 

 

 

Fire Scenario 12 

 

Figure 7.8. Instant capture of the temperature level at 1.8 m above the ground during the steady 

state of the fire scenario 8 (up) and the fire scenario 12 (down) that demonstrates temperature 

dependency on the fire location and the wind direction.  
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Fire Scenario 8 

 

 

Fire Scenario 12 

 

Figure 7.9. Instant capture of the visibility level at 1.8 m above the ground during the steady state 

of the fire scenario 8 (up) and the fire scenario 12 (down) that demonstrates visibility dependency 

on the fire location and the wind direction.  

Apart from the harmful fire effects on people, the plant equipment could be also 

highly damaged by the fire. Figure 7.11 depicts the mean maximum heat flux 

received at the surfaces of the tanks for those scenarios where at least one tank 

received more than 5 kW·m-2 (i.e. threshold beyond which the structures start 

suffering the thermal effects). Thus, the scenarios where the whole tanks 

composing the storage farm received less than 5 kW·m-2 have been not included, 

which correspond to fire scenarios with mean wind speeds of ~3.5 m·s-1. 

Particularly, the most affected tanks are the ones closest to the burning tank in the 

wind direction. For example, the fire scenario 3, which is featured with a fire in 

the tank number 6 and a northerly wind of 17 m·s-1, will mostly affect the tank 

number 7 (121.3 kW·m-2), the tank number 3 (38.1 kW·m-2) and the tank number 
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2 (9.4 kW·m-2). Therefore, the most affected structures are the closest ones to the 

fire origin in the same wind direction, while the most hazardous areas for people 

in windy scenarios are those remotely located from the burning tank.  

 

Figure 7.10. Mean maximum heat flux predicted 1.8 m above the ground within the storage farm 

according to the different fire scenarios modelled in FDS. Short and long-dashed lines represent 

the performance criteria above which unacceptable heat flux values are reached for unprotected 

and protected personnel, respectively.  

In certain cases, the estimated mean heat flux have been more than 100 kW·m-2 

and thus, the steel structure may collapse if the exposure time is of 30 minutes or 

longer. On the other hand, other tanks could receive lower heat fluxes than 100 

kW·m-2. Although simulated thermal values do not indicate structure failure, some 

equipment may stop working, and electric materials (i.e. cables, cabinets, etc.) and 

other hydrocarbon fuels may be ignited, hence leading to an escalation of the initial 

fire event. This fact highlights the importance of fireproofing the tanks and 

pipelines surfaces, and to properly isolate the possible combustible leaks that may 

form fuel pools on the ground. In short, it is observed that the consequences of a 

full surface fire occurring in an oil storage tank mainly depend on the geometry of 

the site, the wind speed and its direction, as well as the tank location.  
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Fire Scenario 3 Fire Scenario 4 

  
Fire Scenario 7 Fire Scenario 8 

  
Fire Scenario 11 Fire Scenario 12 

  

Figure 7.11. Mean maximum heat flux received at the tanks surfaces for those fire scenarios 

simulated in FDS where at least one of the tanks received more than 5 kW·m-2. Heat flux are 

expressed in kW·m-2. 

7.4.2. Heat flux predictions with semi-empirical correlations 

The fire scenarios 3, 4, 7 and 12 are considered in this section given the significant 

heat flux received in adjacent tanks as previously observed through FDS 

simulations. Table 7.9 presents the flame lengths (ranged between 25 and 30 m) 

and tilted angles (around 50º) calculated by means of the semi-empirical 

correlations for these fire scenarios.  

According to the geometrical features of the flames calculated, Figure 7.12 shows 

the heat flux received at the tanks surfaces determined by means of the point source 

model. As it can be seen, the radiative heat fluxes are considerably higher than 

those predicted in CFD simulations. This may be partly due to the noticeable 

inclination of the flames, which shorten the separation distances between the fire 
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and the tank’s surfaces, hence leading to higher heat flux values. In this analysis, 

at least two adjacent tanks can collapse as these receive more than 100 kW·m-2, 

while the rest can suffer steel deformation as the heat flux often exceed the 

threshold of 25 kW· m-2.  

Table 7.9. Flame shapes of the burning tank’s flames determined by means of the semi-empirical 

correlations for the fire scenarios considered.  

Fire 

Scenario 

Burning 

Tank 
𝒖𝒘 (m·s-1) 

Wind 

Direction 
𝑸̇ (MW) 𝑳𝑭 (m) 𝜽 (º) 

3 6 17.0 North 4,179.4 30.3 52.4 

4 6 22.1 East 4,179.4 28.8 55.5 

7 9 17.0 North 2,963.8 26.2 53.1 

12 1 22.1 East 2,963.8 24.9 56.1 

 

Fire Scenario 3 Fire Scenario 4 

  
Fire Scenario 7 Fire Scenario 12 

  

Figure 7.12. Heat flux received at the tanks surfaces determined through semi-empirical 

correlations for those fire scenarios simulated considered. Heat flux are expressed in kW·m-2. 

The heat flux calculated with semi-empirical correlations are more conservative 

than with computational simulations as the values are considerably greater. Thus, 

the safety measures proposed based on correlation’s results would be more 

restrictive and costly. These methods, which are daily used to assess the fire risk 

in chemical and process industries, cannot examine the temperatures nor the 

visibility affecting people. 
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Semi-empirical methods can provide estimations of the heat flux received at the 

tank’s surfaces facing the flames; however, these cannot determine the heat flux 

values at the tank’s shadows. For example, in the Figure 7.8 (down), we observe 

that the highest temperatures of the fire scenario 12 are found in the tank number 

10 (~70 ºC), which is located far away from the fire origin. These high 

temperatures, which cannot be determined with semi-empirical correlations, can 

lead to considerable high heat fluxes affecting the tank structure.  

On the other hand, computational simulations can provide estimations of the fire 

effects that can threat personnel and the tank’s surfaces. In addition, CFD 

modelling provides more realistic predictions of the related-fire effects in 

industrial facilities than semi-empirical correlations. Nevertheless, the appropriate 

numerical settings should be set-up to obtain reasonable results and the 

computational times required to complete simulations must be taken into account. 

In the current case study, the average computational time to run each fire scenario 

was of 228 hours (9.5 days) approximately, which was obtained by dividing the 

mesh volume into 4 CPU cores. A greater number of CPU cores would 

significantly reduce the mean simulation time. Although the noticeable times 

required to complete simulations may difficult its use in real applications, it is 

demonstrated that CFD modelling is a more appropriate calculation method than 

semi-empirical correlations when performing detailed FHA. The precise 

estimations and the considerable amount of data obtained can contribute to 

implement safety measures in chemical and process industries.  

 

  



 

 

147 

CHAPTER 8 

CONCLUSIONS 

 

 

 

The aim of this thesis was to assess the predictive capabilities of different CFD 

when determining the related-fire effects of accidental hydrocarbon fires that can 

occur in processing environments.  

The flame shape and thermal flux hazards of large-scale pool fires of 1.5, 3, 4, 5 

and 6 m-diameter were estimated with FDS and FLACS-Fire. A preliminary 

sensitivity analysis revealed that the maximum cell size and the minimum domain 

height in both codes should be of 0.2 m and 8D m, respectively. Accurate 

predictions of the flame shape and the surface emissive power were obtained in a 

priori simulations in both CFD codes. A posteriori sensitivity analysis outlined 

that better estimations of the flame temperature and heat flux are found in FDS 

and FLACS-Fire when the mass loss rates are prescribed instead of predicted. The 

MO wind sub-model defined in FDS also contributed to improve the agreement 

between simulation results and experimental measurements. The minimum 

number of rays recommended was of 300 for FLACS-Fire and of 400 for FDS to 

reasonably solve the RTE equation.  

The flame temperature, heat flux and the flame-geometry descriptors of vertical 

sonic jet fires of propane were predicted in FDS, FireFOAM and FLACS-Fire. The 

expansion conditions of the jet fire were simulated in the CFD codes due to the 

low Mach number formulation. Accurate estimations of the flame shape and heat 

flux were found in FDS, while noticeable disagreements were reached in 

FireFOAM. On the other hand, the flame temperature and the heat flux were well 

predicted in FLACS-Fire. The dimensionless fire characteristic diameter, 𝐷∗ 𝛿𝑥⁄ , 

should be of 16 for FDS and FLACS-Fire to determine the most suitable cell size. 

The flame-geometry descriptors of vertical subsonic jet fires of methane in 

normal- and sub- atmospheric pressures were predicted in FDS, FireFOAM and 

FLACS-Fire. The lift-off distance could not be estimated in any of the CFD codes 

used by means of the EDC combustion approach. The other geometrical 

parameters were well predicted in FDS and FireFOAM; however, a considerable 

lack of agreement was obtained in FLACS-Fire. The soot yield fraction had a 

negligible influence on the flame shape. The dimensionless fire characteristic 
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diameter, 𝐷∗ 𝛿𝑥⁄ , should be of 12 for FDS and of 8 for FireFOAM to determine 

the most suitable cell size 

Furthermore, the flame shape and surface emissive power of vertical and 

horizontal subsonic jet fires of propane were estimated in FDS. An assessment of 

different cell sizes revealed that the most suitable 𝐷∗ 𝛿𝑥⁄  values should be of 12 

for both type of jet releases. Particularly, more precise estimations were achieved 

in horizontal jet fires than in vertical ones.  

The results presented in this thesis show the great potential of CFD codes to 

estimate the hazardous effects of large-scale pool fires and jet fires under different 

release and ambient conditions. Specifically, FDS is noted as the most suitable 

code to perform risk analysis in chemical and process industries when applying 

the appropriate numerical settings. Thus, computational fire simulations may 

contribute to prevent major fire accidents in facilities, hence providing safer plants. 

It would be of great interest to expand the current study to different fuels, ambient 

conditions (i.e. wind and temperature), and additional measurements. 

Best Practice Guidelines (BPG) in CFD modelling of accidental hydrocarbon fires 

were developed based on the numerous computational simulations of different fire 

scenarios performed. These indicate the main steps required to determine a code 

as ‘valid’ or not, and provide guidance on the most suitable modelling settings able 

to accurately predict the hazards derived from accidental hydrocarbon fires. The 

BPG developed were used in a case study involving CFD simulations intended to 

assess the fire hazards derived from large pool fires in an oil storage farm located 

in the Port of Barcelona. Too conservative and unrealistic predictions were 

obtained with semi-empirical correlations. Therefore, CFD modelling is the most 

appropriate calculation method to perform detailed FHA in chemical and process 

industries only if the appropriate numerical parameters are defined within the 

computational simulations.  
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APPENDIX A 

SEMI-EMPIRICAL CORRELATIONS FOR THE FLAME SHAPE 

ESTIMATION OF JET FIRES AND POOL FIRES 

 

Table A.1 gathers the semi-empirical correlations developed to determine flame 

length, 𝐿𝐹, lift-off distance, 𝑆𝐹, and equivalent diameter, 𝐷𝑒𝑞, of hydrocarbon jet 

fires developed from real fire experiments. These variables can be obtained as a 

function of the gas velocity leaving through the exit orifice, 𝑢𝑜𝑟, or by means of 

dimensionless numbers such as Froude number, 𝐹𝑟, the Reynolds number, 𝑅𝑒, or 

the non-dimensional heat release rate, 𝑄̇∗, which is expressed as (Zukoski et al., 

1980): 

𝑄̇∗ =
𝑄̇

𝜌∞𝑐𝑝𝑇∞𝐷𝑜𝑟
2√𝑔𝐷𝑜𝑟

 (A.1) 

where 𝑄̇ is the heat release rate of the fire, 𝑐𝑝 is the specific heat, 𝐷𝑜𝑟 is the exit 

orifice diameter and 𝑇∞ is the ambient temperature.  

Table A.1. Experimental studies involving vertical hydrocarbon jet fires under different conditions 

and the correlations developed to predict some geometrical parameters. 

Ref. 𝑫𝒐𝒓 (mm) 𝑷∞ (atm) 
Flow 

Regime 
Fuel Correlation 

(Peter and 

Williams, 1983) 
4.0 - 12.0 1.0 Subsonic CH4 

𝑆𝐹

𝐷𝑜𝑟

= 3.6 · 10−3
𝑢𝑜𝑟

𝐷𝑜𝑟

 

(Sonju and 

Hustad, 1984) 
10 - 80 1.0 Subsonic 

CH4 
𝐿𝐹

𝐷𝑜𝑟

= 21𝐹𝑟0.2 

C3H8 
𝐿𝐹

𝐷𝑜𝑟

= 28𝐹𝑟0.2 

(McCaffrey, 

1989) 
38 - 102 1.0 

Subsonic 

Sonic 
CH4 

𝐿𝐹

𝐷𝑜𝑟

= 28𝐹𝑟0.2 

(Rokke et al., 

1994) 
0.84 - 2.58 1.0 Subsonic C3H8 

𝐿𝐹

𝐷𝑜𝑟

= 33𝐹𝑟0.2 

𝑆𝐹

𝐷𝑜𝑟

= 2.1 · 10−3
𝑢𝑜𝑟

𝐷𝑜𝑟
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Table A.1. Cont. 

Ref. 𝑫𝒐𝒓 (mm) 𝑷∞ (atm) 
Flow 

Regime 
Fuel Correlation 

(Sugawa and 

Sakai, 1995) 
6.5 - 27.6 1.0 Subsonic C3H8 

𝐿𝐹

𝐷𝑜𝑟

= 8.14𝑄∗1
3⁄
 

𝑆𝐹

𝐷𝑜𝑟

= 1.39 · 10−2𝑄∗3
5⁄
 

𝐷𝑒𝑞

𝐷𝑜𝑟

= 1.92𝑄∗1
3⁄
 

(Costa et al., 

2004; Santos and 

Costa, 2005) 

5 - 8 1.0 Subsonic 

CH4 

𝐿𝐹

𝐷𝑜𝑟

= 23𝐹𝑟0.2 

𝑆𝐹

𝐷𝑜𝑟

= 3.1 · 10−3
𝑢𝑜𝑟

𝐷𝑜𝑟

 

C3H8 

𝐿𝐹

𝐷𝑜𝑟

= 36𝐹𝑟0.2 

𝑆𝐹

𝐷𝑜𝑟

= 2.6 · 10−3
𝑢𝑜𝑟

𝐷𝑜𝑟

 

C2H4 

𝐿𝐹

𝐷𝑜𝑟

= 24𝐹𝑟0.2 

𝑆𝐹

𝐷𝑜𝑟

= 8.0 · 10−4
𝑢𝑜𝑟

𝐷𝑜𝑟

 

(Kiran and 

Mishra, 2007) 
2.2 1.0 Subsonic C4H10 

𝐿𝐹

𝐷𝑜𝑟

= 30𝐹𝑟0.2 

𝑆𝐹

𝐷𝑜𝑟

= 1.8 · 10−3
𝑢𝑜𝑟

𝐷𝑜𝑟

 

(Gómez-Mares 

et al., 2009; 

Palacios et al., 

2012; Palacios 

and Casal, 2011) 

10 - 43.1 1.0 
Subsonic 

Sonic 
C3H8 

𝐿𝐹

𝐷𝑜𝑟

= 𝑅𝑒0.4 

𝑆𝐹 = 6 · 10−4𝑅𝑒0.5 

𝐷𝑒𝑞

𝐷𝑜𝑟

= 0.14𝑅𝑒0.4 

(Hu et al., 2015, 

2014; L. Hu et 

al., 2013; L. H. 

Hu et al., 2013) 

4 - 10 

0.64 Subsonic C3H8 
𝑆𝐹

𝐷𝑜𝑟

= 1.36𝑢𝑜𝑟 − 5.88 

1.0 Subsonic C3H8 
𝑆𝐹

𝐷𝑜𝑟

= 0.6𝑢𝑜𝑟 − 5.33 
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Then, the total flame height of the jet flames, 𝐻𝐹, can be calculated as: 

𝐻𝐹 = 𝐿𝐹 𝑐𝑜𝑠 𝛺𝐹 + 𝑆𝐹 (A.2) 

where 𝛺𝐹 represents the flame tilt angle formed in the presence of wind: 

𝑐𝑜𝑠(𝛺𝐹) = {
𝑎(𝑢∗)𝑏     𝑖𝑓 𝑢∗ ≥ 1 
1               𝑖𝑓 𝑢∗ < 1

 (A.3) 

where 𝑎 and 𝑏 are experimental coefficients, and 𝑢∗ is the dimensionless wind 

velocity determined as: 

𝑢∗ = {
𝑢𝑤

𝑢𝑐
⁄      𝑖𝑓 𝑢𝑤 ≥ 𝑢𝑐  

1               𝑖𝑓 𝑢𝑤 < 𝑢𝑐

 (A.4) 

where 𝑢𝑤 is the wind velocity, and 𝑢𝑐 is the characteristic wind speed: 

𝑢𝑐 = (
𝑔𝑚̇′′𝐷𝑜𝑟

𝜌∞
⁄ )

1
3⁄

 (A.5) 

where 𝑚̇′′ is the mass flow rate per unit area, 𝜌∞ is the ambient air density and 𝑔 

is the gravitational acceleration.  

On the other hand, Table A.2 summarizes the most widely known equations for 

determining the dimensionless flame lengths of hydrocarbon pool fires. These are 

often obtained from the following correlation: 

𝐿𝐹

𝐷
= 𝑎(𝑚∗)𝑏(𝑢∗)𝑐 (A.6) 

where 𝑚∗ is the dimensionless mass flow rate of the pool fire:  

𝑚∗ =
𝑚̇′′

𝜌∞√𝑔𝐷
 (A.7) 

Alternatively, the flame length of pool fires may be also calculated as a function 

of the dimensionless heat release rate.  
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Table A.2. Experimental studies involving hydrocarbon pool fires under different conditions and the 

correlations developed to predict the dimensionless flame length. 

Ref. 𝑫 (m) Fuel Correlation 

(Moorhouse, 1982) ~ 15 CH4 
𝐿𝐹

𝐷
= 6.2(𝑚∗)0.254(𝑢∗)−0.044 

(Pritchard and Binding, 

1992) 
6.0 - 22.0 CH4 

𝐿𝐹

𝐷
= 10.615(𝑚∗)0.305(𝑢∗)−0.03 

(Mangialavori and 

Rubino, 1992) 
1.0 - 6.0 CxHy

(2) 
𝐿𝐹

𝐷
= 31.6(𝑚∗)0.58 

(Heskestad, 1999) (1) CxHy
(2) 

𝐿𝐹

𝐷
= −1.02 + 3.7𝑄̇∗

2
5⁄
 

(Muñoz et al., 2004) 1.5 - 6.0 
C12H26 

C6H14 

𝐿𝐹

𝐷
= 7.74(𝑚∗)0.375(𝑢∗)−0.096 

(1) Laboratory scale experiments 

(2) Wide range of hydrocarbon fuels 
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APPENDIX B 

LITERATURE REVIEW 

 

Table B.1. Summary of the main features regarding CFD simulation studies of hydrocarbon fires published in literature.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

1995 (Barker et al., 1995) Jet Methane L CFX     Qualitative 

(Sinai and Owens, 1995) Pool Kerosene L CFX     Qualitative 

1996 
(Tieszen et al., 1996) 

Pool Jet Fuel L VULCAN     Qualitative 

Pool Methane L VULCAN     Qualitative 

1997 

(Cook et al., 1997) 

Jet Methane L In-house     Qualitative 

Jet Methane MF In-house     Qualitative 

Jet Methane L In-house     Qualitative 

(Johnson et al., 1997) 
Jet Propane M CFX     Qualitative 

Jet Methane M CFX     Qualitative 
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Table B.2. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

1999 
(Johnson et al., 1999) 

Jet Propane M CFX     Qualitative 

Jet Methane L CFX     Qualitative 

2000 (Baum and McGrattan, 2000) Pool Diesel L In-house     - 

(Sinai, 2000) Pool Kerosene L CFX     - 

2002 (Rawat et al., 2002) Pool Methane L In-house      Qualitative 

2003 

(Cleaver et al., 2003) 

Jet Methane M In-house     Qualitative 

Jet Methane L In-house     Qualitative 

Jet Methane L In-house     Qualitative 

Jet Methane MF In-house     Qualitative 

Jet Methane MF In-house     Qualitative 

2004 
(Greiner and Suo-Anttila, 2004) 

Pool Jet Fuel L Isis-3D     Qualitative 

Pool Jet Fuel L Isis-3D     Qualitative 

(Are et al., 2004) Pool Jet Fuel L CAFE-3D     Qualitative 

2005 (Krishnamoorthy et al., 2005) Pool Methane M In-house     Qualitative 
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Table B.3. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2006 

(Cumber and Spearpoint, 2006) 

Jet Propane M GENMIX     Qualitative 

Jet Propane L GENMIX     Qualitative 

Jet Propane L GENMIX     Qualitative 

(Osenbroch, 2006) 

Jet Methane L FLEXSIM     Qualitative 

Jet Methane L FLEXSIM     Qualitative 

Jet Methane L FLEXSIM     Qualitative 

(Rigas and Sklavounos, 2006) 

Flash Methane - CFX     Quantitative 

Flash Methane - CFX     Quantitative 

Flash Methane - CFX     Quantitative 

Flash Methane - CFX     Quantitative 

2007 (Pierce and Moss, 2007) Pool Heptane M SOFIE     Qualitative 

(del Valle et al., 2007) Pool Jet Fuel L CAFE-3D     Qualitative 

2008 (Trouvé, 2008) Pool Propylene L FDS      - 

2009 (Chen et al., 2009) Pool Methane L FDS     Qualitative 
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Table B.4. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2009 

(Vela, 2009) 

Pool Jet Fuel L Fluent     Quantitative 

Pool Jet Fuel L Fluent     Quantitative 

Pool Jet Fuel L Fluent     Quantitative 

Pool Jet Fuel L Fluent     Quantitative 

2010 

(Aloqaily, 2010) 

Jet Methane M PHOENICS     Quantitative 

Jet Methane M PHOENICS     Quantitative 

Jet Methane L PHOENICS     Quantitative 

Jet Methane L PHOENICS     Quantitative 

Jet Methane L PHOENICS     Quantitative 

Jet Methane L PHOENICS     Quantitative 

Jet Methane L PHOENICS     Quantitative 

(Ferng and Lin, 2010) 
Pool Heptane M FDS     Qualitative 

Pool Heptane M FDS     Qualitative 

(Lopez and Figueroa, 2010) Pool Jet Fuel L CAFE-3D     Qualitative 
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Table B.5. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2010 
(Benucci and Uguccioni, 2010) 

Pool Kerosene L FDS      - 

Pool Kerosene L FDS      - 

2011 (Gavelli et al., 2011) Flash Methane - FLACS      - 

(Chakrabarty and Aloqaily, 2011) Jet Methane L PHOENICS     - 

(Satoh et al., 2011) Pool Diesel L FDS     - 

(Eldredge et al., 2011) Pool Heptane M ARCHES     Qualitative 

2012 (Ilic et al., 2012) Jet Methane M Fluent     - 

(Chen et al., 2012) Pool Crude Oil L FDS     - 

(Mansour, 2012) 
Pool Gasoline L FDS      Quantitative 

Pool Gasoline L FDS      Quantitative 

2013 (Li et al., 2013) Pool Propane L FDS     - 

(Vasanth et al., 2013) Pool Diesel L Fluent     Qualitative 

(Sudheer et al., 2013) 

Pool Gasoline M FDS     Qualitative 

Pool Gasoline M FDS     Qualitative 

Pool Gasoline M FDS     Qualitative 
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Table B.6. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2014 

(Sun et al., 2014) 

Pool Methane L Fluent     Quantitative 

Pool Methane L Fluent     Quantitative 

Pool Methane L Fluent     Quantitative 

Pool Methane L Fluent      - 

(Kelsey et al., 2014) Pool Methane L FDS     Quantitative 

(Vasanth et al., 2014) 

Pool Gasoline S Fluent     Qualitative 

Pool Gasoline S Fluent     Qualitative 

Pool Gasoline S Fluent     Qualitative 

2015 
(Muthusamy and Wingerden, 2015) 

Flash Propane - FLACS     Qualitative 

Flash Propane - FLACS     Qualitative 

(Malkeson et al., 2015) 

Jet Propane M KFK     Qualitative 

Jet Propane M FLACS     Qualitative 

Jet Propane M CFX     Qualitative 

(Rajendram et al., 2015) Jet Methane MF FDS      - 

(Masum et al., 2015) Pool Methane L CFX     Qualitative 
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Table B.7. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2015 
(Peris-Sayol et al., 2015) 

Pool Gasoline L FDS     - 

Pool Gasoline L FDS     - 

(Chatterjee et al., 2015) Pool Heptane M FireFOAM     Qualitative 

2016 (Sakamoto et al., 2016) Pool Gasoline L Fluent     - 

(Sikanen and Hostikka, 2016) 

Pool Acetone L FDS     Qualitative 

Pool Benzene L FDS     Qualitative 

Pool Butane L FDS     Qualitative 

Pool Heptane L FDS     Qualitative 

2017 (Jang and Choi, 2017) Jet Methane M KFK     - 

(Huang et al., 2017) 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 
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Table B.8. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2017 

(Huang et al., 2017) 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

Jet Methane S FDS     Qualitative 

(Sun et al., 2017) 

Jet Methane M FDS     - 

Jet Methane M FDS     - 

Jet Methane M FDS     - 

Jet Methane M FDS     - 

Jet Methane M FDS     - 

Jet Methane M FDS     - 

Jet Methane M FDS     - 

Jet Methane M FDS     - 
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Table B.9. Cont. 

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2017 (Baalisampang et al., 2017) Jet Methane M FDS     - 

2018 

(Rengel et al., 2018) 

Pool Diesel L FDS     Quantitative 

Pool Gasoline L FDS     Quantitative 

Pool Diesel L FDS     Quantitative 

Pool Gasoline L FDS     Quantitative 

Pool Diesel L FDS     Quantitative 

Pool Gasoline L FDS     Quantitative 

Pool Diesel L FDS     Quantitative 

Pool Gasoline L FDS     Quantitative 

Pool Diesel L FDS     Quantitative 

Pool Gasoline L FDS     Quantitative 

Pool Diesel L FLACS     Quantitative 

Pool Gasoline L FLACS     Quantitative 

Pool Diesel L FLACS     Quantitative 

Pool Gasoline L FLACS     Quantitative 
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Table B.10. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2018 

(Rengel et al., 2018) 

Pool Diesel L FLACS     Quantitative 

Pool Gasoline L FLACS     Quantitative 

Pool Diesel L FLACS     Quantitative 

Pool Gasoline L FLACS     Quantitative 

Pool Diesel L FLACS     Quantitative 

Pool Gasoline L FLACS     Quantitative 

(Davidy, 2018) Jet Heptane M FDS      - 

(Shen et al., 2018) 

Pool Propane S FDS     Qualitative 

Pool Propane S FDS     Qualitative 

Pool Propane S FDS     Qualitative 

Pool Propane S FDS     Qualitative 

Pool Propane S FDS     Qualitative 

Pool Propane S FDS     Qualitative 

Pool Propane S FDS     Qualitative 
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Table B.11. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2018 

(Bolek and Ergin, 2018) 

Pool Methane L FDS     - 

Pool Methane L FDS     - 

Pool Methane L FDS     - 

Pool Methane L FDS     - 

Pool Methane L FDS     - 

(Wang and Wen, 2018) 

Pool Heptane S FireFOAM     Qualitative 

Pool Heptane S FireFOAM     Qualitative 

Pool Heptane S FireFOAM     Qualitative 

Pool Heptane S FireFOAM     Qualitative 

Pool Heptane S FireFOAM     Qualitative 

(Y. B. Huang et al., 2018)(Y. Huang 

et al., 2018) 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 
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Table B.12. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2018 

(Y. B. Huang et al., 2018)(Y. Huang 

et al., 2018) 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

Jet Methane S FDS     - 

2019 

(Pio et al., 2019) 

Pool Methane L FDS     Qualitative 

Pool Methane L FDS     Qualitative 

Pool Methane L FDS     Qualitative 

Pool Methane L FDS     Qualitative 

(Lyu et al., 2019) Jet Methane M FDS     - 

 Jet Methane M FDS     - 
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Table B.13. Cont.  

Year Ref. 
Fire 

Type 
Fuel 

Fire 

Size (1) 

CFD 

Code (2) 

Measurements (3) Validation 

Simulation 

Comparison 

Method 𝑮𝑭 𝑻𝑭 𝒒̇𝒓
′′

 Others 

2019 (Ahmadi et al., 2019) Pool Kerosene M FDS      - 

  Pool Kerosene L FDS      - 

  Pool Kerosene L FDS      - 

 

(1) S: Small; M: Medium; L: Large; and MF: Major Failure 

(2) Codes versions are not included 

(3) 𝐺𝐹: Flame-geometry descriptors; 𝑇𝐹: Flame Temperature; 𝑞̇𝑟
′′: radiative heat flux  
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APPENDIX C 

EXPERIMENTAL DATA  

 

Large-scale pool fires 

Table C.1. Mean measurements registered with the experimental devices and determined through the 

IR image analysis performed in the large-scale pool fire tests. Data sources come from (Ferrero et 

al., 2007, 2006; Muñoz et al., 2007, 2004). 

Experiment 𝒎̇′′ (kg·s-1·m-2) 𝒒̇𝒓
′′

 (kW·m-2) 𝑨̅𝑭 (m-2) 𝑯̅𝑭 (m) 𝑬̅ (kW·m-2) 

D1.5_1.33 0.08 ± 0.00 1.83 ± 0.3 4.97 ± 1.3 2.96 ± 0.7 42.90 ± 8.5 

G1.5_0.44 0.10 ± 0.00 3.02 ± 0.5 6.53 ± 1.6 3.26 ± 0.7 42.33 ± 8.5 

D3_0.00 0.30 ± 0.01 0.98 ± 0.08 n.a n.a n.a 

G3_0.00 0.49 ± 0.01 1.71 ± 0.1 n.a n.a n.a 

D3_2.39 0.38 ± 0.00 6.12 ± 1.9 12.22 ± 1.9 5.40 ± 1.3 50.66 ± 7.8 

G3_1.14 0.60 ± 0.00 5.47 ± 1.0 25.06 ± 3.9 7.07 ± 1.5 51.32 ± 9.9 

D4_0.43 0.62 ±0.00 3.22 ± 0.4 34.60 ± 5.3 8.28 ± 1.7 47.79 ± 7.6 

G4_0.52 1.03 ± 0.00 4.89 ± 0.8 41.85 ± 4.8 11.60 ± 1.7 61.07 ± 8.7 

D5_1.02 1.40 ± 0.00 3.30 ± 0.8 37.67 ± 9.5 8.09 ± 2.3 37.51 ± 7.9 

G5_0.00 1.82 ± 0.06 4.87 ± 0.4 47.37 ± 4.2 12.08 ± 1.5 66.56 ± 9.4 

D6_1.10 1.14 ± 0.00 2.06 ± 0.4 59.57 ± 7.4 12.76 ± 2.7 61.21 ± 7.9 

G6_0.00 1.93 ± 0.09 2.80 ± 0.5 58.32 ± 7.2 14.76 ± 1.6 61.95 ± 8.9 

D1.5_1.33 0.08 ± 0.00 1.83 ± 0.3 4.97 ± 1.3 2.96 ± 0.7 42.90 ± 8.5 

G1.5_0.44 0.10 ± 0.00 3.02 ± 0.5 6.53 ± 1.6 3.26 ± 0.7 42.33 ± 8.5 
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Table C.2. Mean temperatures registered with the thermocouples set-up in the large-scale pool fire 

tests. Data sources come from (Ferrero et al., 2007, 2006; Muñoz et al., 2007, 2004). 

Experiment 𝑻̅𝑩𝟏 (ºC) 𝑻̅𝑩𝟐 (ºC) 𝑻̅𝑩𝟑 (ºC) 𝑻̅𝑩𝟒 (ºC) 𝑻̅𝑩𝟓 (ºC) 

22_D15 55.7 ± 1.0 35.5 ± 0.4 32.2 ± 0.1 32.9 ± 0.2 24.5 ± 0.1 

21_G15 194.5 ± 40.2 91.1 ± 16.5 70.6 ± 10.5 70.3 ± 9.4 39.4 ± 5.4 

01_D3 727.4 ± 117.4 423.9 ± 110.7 297.2 ± 81.8 174.3 ± 34.7 115.5 ± 18.5 

17_G3 889.6 ± 36.5 752.3 ± 28.9 576.8 ± 39.0 369.0 ± 25.2 233.3 ± 12.7 

04_D3 31.3 ± 1.3 28.9 ± 1.2 26.5 ± 1.6 16.1 ± 0.4 14.4 ± 0.2 

03_G3 196.2 ± 25.7 111.0 ± 10.9 87.9 ± 8.5 39.1 ± 2.6 29.8 ± 2.3 

14_D4 241.4 ± 29.9 164.6 ± 17.5 136.1 ± 14.3 77.7 ± 9.3 57.6 ± 4.8 

13_G4 545.6 ± 137.9 408.8 ± 82.2 351.3 ± 49.4 224.3 ± 29.8 139.7 ± 18.0 

10_D5 82.2 ± 5.5 74.5 ± 3.0 63.2 ± 1.6 41.1 ± 0.6 34.4 ± 0.3 

08_G5 532.2 ± 44.9 370.3 ± 43.9 345.5 ± 40.8 253.8 ± 39.9 151.8 ± 23.5 

07_D6 275.2 ± 67.5 189.2 ± 56.3 143.5 ± 59.1 101.3 ± 46.1 70.0 ± 30.3 

06_G6 1144.7 ± 51.6 1108.7 ± 82.2 1036.5 ± 104.9 909.0 ± 144.5 782.3 ± 155.7 

 

Vertical sonic jet fires of propane 

Table C.3 Mean measurements registered with the experimental devices and determined through the 

IR image analysis performed in the vertical sonic jet fire tests of propane. Data sources come from 

(Gómez-Mares et al., 2010, 2009; Palacios et al., 2012, 2008; Palacios and Casal, 2011). 

Experiment 𝑻̅𝑻 (ºC) 𝒒̇𝒓
′′

 (kW·m-2) 𝑯̅𝑭 (m) 𝑨̅𝑭 (m2) 

D10_0.09 1324.2 ± 119.3 1.04 ± 0.21 4.85 ± 0.60 4.42 ± 1.14 

D12.75_0.13 1600 ± 15.8 1.20 ± 0.08 4.93 ± 0.62 4.18 ± 0.47 

D15_0.18 1058.12 ± 145.7 2.35 ± 1.03 5.96 ± 1.55 6.60 ± 2.94 

D20_0.27 1126.9 ± 72.64 2.20 ± 0.13 5.63 ± 0.59 5.66 ± 0.78 

D25.5_0.34 1193.9 ± 66.5 2.05 ± 0.05 4.93 ± 0.42 5.07 ± 0.85 
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Vertical subsonic jet fires of methane at normal- and sub- 

atmospheric pressures 

Table C.4. Mean measurements determined through the VHS image analysis performed in the 

vertical subsonic jet fire tests of methane at normal- and sub- atmospheric pressures.  

Exp. 𝑷𝒂𝒕𝒎 (atm) 𝑺̅𝑭 (m) 𝑳̅𝑭 (m) 𝑯̅𝑭 (m) 𝑨̅𝑭 (m2) 𝑫̅𝒆𝒒 (m) 

D3_0.6 0.6 0.11 ± 0.009 0.50 ± 0.03 0.60 ± 0.04 0.02 ± 0.0 0.04 ± 0.0 

D3_0.7 0.7 0.09 ± 0.005 0.52 ± 0.04 0.60 ± 0.04 0.02 ± 0.0 0.04 ± 0.0 

D3_0.8 0.8 0.07 ± 0.004 0.54 ± 0.04 0.60 ± 0.05 0.02 ± 0.0 0.04 ± 0.0 

D3_0.9 0.9 0.04 ± 0.003 0.57 ± 0.03 0.60 ± 0.03 0.02 ± 0.0 0.04 ± 0.0 

D3_1.0 1.0 0.00 ± 0.00 0.60 ± 0.04 0.60 ± 0.04 0.02 ± 0.0 0.04 ± 0.0 

 

Vertical and horizontal jet fires of propane  

Table C.5. Mean measurements determined through the VHS image analysis performed in the vertical 

(Palacios et al., 2012, 2008) and horizontal (Gopalaswami et al., 2016; Laboureur et al., 2016; Zhang 

et al., 2015) subsonic jet fire tests of propane. 

Orientation Experiment 𝑺̅𝑭 (m) 𝑳̅𝑭 (m) 𝑫̅𝒆𝒒 (m) 𝑨̅𝑭 (m2) 𝑬̅ (kW·m-2) 

Vertical V12.75_0.007 0.13 0.80 0.24 0.19 55.00 

 V12.75_0.016 0.19 1.51 0.26 0.39 38.03 

 V20_0.020 0.12 2.18 0.35 0.76 33.63 

 V43.1_0.066 0.29 7.60 1.18 8.97 45.30 

 V43.1_0.142 0.46 9.27 1.34 12.42 80.00 

Horizontal H19.05_0.015 0.37 2.08 0.58 1.21 19.20 

 H19.05_0.016 0.51 2.76 0.65 1.79 46.00 

 H19.05_0.025 0.77 3.46 0.66 2.28 61.00 

 H19.05_0.040 0.98 3.67 0.69 2.53 69.00 

 H19.05_0.042 0.76 3.19 0.73 2.33 53.00 

 H19.05_0.110 1.81 4.41 0.76 3.35 77.0 

 H19.05_0.109 2.11 4.27 0.68 2.90 58.0 
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