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SUMMARY 
The intracellular signaling cascades constitute the means by which addictive 

substances induce the remodeling of the circuits involved in motivated behaviors 

which underlie the learning processes and the development of memories at the basis 

of the progression of addiction. A protagonist in such signaling cascades is the 

Extracellular signal-Regulated Kinase (ERK), a member of the mitogen-activated 

protein kinase, that constitutes an important biochemical factor common to many 

cellular functions. The abundant expression of ERK in brain areas of addiction circuits 

emphasizes the relevance of this kinase in modulating behavioral functions mediated 

by these circuits. These findings led to the development of new research lines aimed at 

understanding the involvement of ERK in the processes related to the onset of 

addiction and at characterizing their role in various aspects of this pathology, including 

substances’ consumption, sensitization as well as substances’ involvement in its 

cognitive and motivational aspects. Another biochemical factor involved in this process 

is the Dopamine and cAMP-regulated phosphoprotein Mr 32,000 kDa (DARPP-32), 

which acts upstream of the MEK/ERK cascade, and regulates the activity and the 

phosphorylation state of this pathway. Thus, the general aim of the present doctoral 

thesis was to study the role of ERK in terms of protein kinase expression induced by 

ethanol, caffeine and their association, and its relationship with some behavioral 

responses in validated animal models of drug addiction such as the response to stimuli 

associated to their intrinsic properties and conditioned to the environment (place 

conditioning), or the psychomotor activation mediated by these substances. 

The first and second chapters of this dissertation examined the involvement of protein 

kinases ERK in different aspects of ethanol-induced place conditioning. Specifically, in 

the first chapter we used SL327, a compound that inhibits MEK, to study how the 

blockade of this cascade could affect the acquisition and expression of Conditioned 

Place Preference (CPP) and Conditioned Place Aversion (CPA) induced by ethanol. 

Furthermore, we also studied the expression of ERK phosphorylation (pERK) in 

different areas of the motivation circuit in response to acute SL327 and ethanol 

administration. In the second chapter we explored the results of the pharmacological 
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relationship between caffeine, ethanol and their association in the experimental 

paradigm of ethanol-elicited CPP and CPA previously utilized for experiments 

described in chapter 1. We also investigated the expression of pERK in various brain 

areas as a result of either the acute administration of both substances and of the 

presentation of the positively (CPP) or negatively (CPA) stimuli conditioned to ethanol. 

The last chapter examines the effects of caffeine, ethanol and their interaction through 

the analysis of horizontal and vertical locomotion. Moreover, using the open field, we 

studied the effects of these substances and their interaction in novelty-induced 

exploration in order to observe whether a cross-sensitization effect could develop. 

Finally, we studied the phosphorylation in the nucleus accumbens of ERK and DARPP-

32(Thr75), related to D1 and D2 receptor activation, respectively. The findings of these 

studies revealed that:  

• The MEK/ERK pathway is differentially involved in distinct phases of associative 

learning behavior expressed in the CPP and CPA elicited by ethanol; specifically, 

the acquisition phase, as well as the appetitive motivation (CPP), seems to be 

more sensitive to the blockade of the intracellular signaling cascade. However, 

the ability of the kinase inhibitor, SL327, to prevent ethanol-induced ERK 

phosphorylation is not reflected in the differential results of behavioral 

experiments. 

• Caffeine was devoid of conditioning effects but significantly impaired ethanol-

elicited place conditioning (both CPP and CPA), which could be referred to a 

functional antagonistic action exerted by these two drugs on the adenosinergic 

system. Furthermore, the results of acute administration experiments support 

this hypothesis of a functional antagonistic interaction since caffeine is able to 

prevent ethanol-induced pERK expression in several brain areas. Nevertheless, 

the evaluation of pERK expression following the presentation of the 

conditioned stimuli reflects a differential activation patterns depending on the 

brain area examined. 

• Caffeine and ethanol, administered acutely, affected horizontal and vertical 

locomotion in the open field in a biphasic manner and caffeine potentiated 

acute ethanol-induced locomotion. However, the acute administration of 
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caffeine to mice that were previously sensitized to the effects of ethanol had 

reduced stimulating effects compared to ethanol naïve mice. Finally, caffeine 

prevented the ethanol-elicited pERK expression in the nucleus accumbens 

whereas there were no effects on pDARPP-32(Thr75), suggesting an effect 

mediated by D1-A1 receptors on this area. 

Taken together the results of the present thesis offer new insights into the complexity 

of the involvement of ERK cascade in the acquisition of associative learning and in the 

expression of acquired responses related to models of drug addiction. These data 

provide new information about the antagonistic interaction between caffeine and 

ethanol in the motivational properties expressed in the place conditioning paradigm 

and in the ability of ethanol sensitization to blunt the stimulatory effects of caffeine. 
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RESUMEN 
Las cascadas de señalización intracelular constituyen el medio por el cual las sustancias 

adictivas inducen la remodelación de los circuitos involucrados en comportamientos 

motivados que subyacen en los procesos de aprendizaje y desarrollo de memorias en 

base a la progresión de la adicción. Una molécula protagonista en tales cascadas de 

señalización es “Extracellular signal-Regulated Kinase” (ERK), un miembro de la 

proteína quinasa activada por mitógenos, que constituye un importante factor 

bioquímico común a muchas funciones celulares. La abundante expresión de ERK en 

áreas cerebrales implicadas en el circuito de la adicción, enfatiza la relevancia de estas 

quinasas en la modulación de las funciones del comportamiento mediadas por estos 

circuitos. Estos hallazgos condujeron al desarrollo de nuevas líneas de investigación 

destinadas a caracterizar el papel de la ERK en varios aspectos de la adicción a las 

drogas, incluido el consumo, la sensibilización y la participación de las sustancias en 

aspectos cognitivos y motivacionales de esta patología, para comprender la 

participación de la ERK en los procesos relacionados con su inicio. Otro factor 

bioquímico involucrado en este proceso es “Dopamine and cAMP-regulated 

phosphoprotein Mr 32,000 kDa (DARPP-32)”, que actúa como parte de la cascada 

MEK/ERK, regulando la actividad y el estado de fosforilación de la ERK. De este modo, 

el objetivo general de la presente tesis doctoral fue estudiar el papel de ERK, en 

términos de expresión de proteína quinasa inducida por drogas (etanol, cafeína y su 

asociación), así como su relación con respuestas conductuales relacionadas con el 

desarrollo de la adicción tales como la respuesta a estímulos asociados a las 

propiedades intrínsecas y condicionadas al entorno (condicionamiento de lugar). 

Finalmente, también investigamos la actividad psicomotora mediada por estas 

sustancias. 

Los capítulos primero y segundo de esta tesis doctoral examinan la participación de la 

proteína quinasa ERK en diferentes aspectos del condicionamiento de lugar inducido 

por etanol. Específicamente, en el primer capítulo usamos SL327, un compuesto que 

inhibe la MEK, para estudiar cómo el bloqueo de esta cascada podría afectar la 

adquisición y la expresión de la preferencia de lugar condicionada (CPP) y la aversión 

de lugar condicionada (CPA) inducidas por etanol. Además, también estudiamos la 
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expresión de la fosforilación de ERK (pERK) en diferentes áreas de circuitos 

motivacionales tras la administración aguda de SL327 y etanol. El segundo capítulo 

explora los resultados de la relación farmacológica entre cafeína, etanol y su 

asociación en el mismo paradigma experimental de CPP y CPA inducidos por etanol. 

También investigamos la expresión de pERK en diversas áreas del cerebro como 

resultado de la administración aguda de ambas sustancias y su impacto en la expresión 

del condicionamiento positivo (CPP) o negativo (CPA) al etanol. El último capítulo 

examina los efectos de la cafeína, el etanol y su interacción a través del análisis de la 

locomoción horizontal y vertical. Además, utilizando el campo abierto, estudiamos los 

efectos de estas sustancias y su interacción en la exploración inducida por novedad 

para observar si se desarrolla un efecto de sensibilización cruzada. Finalmente, 

estudiamos la fosforilación en el núcleo accumbens de pERK y pDARPP-32(Thr75), 

relacionado con la activación de los receptores D1 y D2, respectivamente. Los 

resultados de estos estudios revelaron que: 

• La vía MEK/ERK participa de manera diferencial en distintas fases del 

comportamiento de aprendizaje asociativo expresado en el CPP y el CPA 

inducido por el etanol; específicamente, la fase de adquisición, así como la 

motivación apetitiva (CPP), parece ser más sensible al bloqueo de la cascada de 

señalización intracelular. Sin embargo, la capacidad del inhibidor de la quinasa 

SL327, para prevenir la fosforilación de ERK inducida por etanol, no se refleja 

en los diferentes resultados de los experimentos conductuales. 

• La cafeína no produce efectos por sí misma en condicionamiento, pero afecta 

significativamente el condicionamiento de lugar inducido por el etanol (tanto 

CPP como CPA), lo que podría reflejar una acción antagonista funcional ejercida 

por estos dos fármacos sobre el sistema adenosinérgico. Además, los 

resultados de los experimentos de administración aguda respaldan esta 

hipótesis de una interacción antagónica ya que la cafeína puede prevenir la 

expresión de pERK inducida por etanol en varias áreas del cerebro. Sin 

embargo, la evaluación de la expresión de pERK después de la expresión de los 

estímulos condicionados refleja diferentes patrones de activación dependiendo 

del área del cerebro examinada. 



7 
 

• La cafeína y el etanol, administrados de manera aguda, afectan la locomoción 

horizontal y vertical en campo abierto de manera bifásica y la locomoción 

inducida por etanol potenciada por cafeína. Sin embargo, la administración 

aguda de cafeína a ratones que previamente habían estado sensibilizados a los 

efectos del etanol reduce los efectos estimulantes en comparación con los 

ratones sin tratamiento previo con etanol. Finalmente, la cafeína evita la 

expresión de pERK provocada por etanol en el núcleo accumbens, mientras que 

no hay efectos sobre pDARPP-32(Thr75), lo que sugiere un efecto mediado por 

los receptores D1-A1 en esta área cerebral. 

Tomados en conjunto, los resultados de la presente tesis ofrecen nuevos 

conocimientos sobre la complejidad de la participación de la cascada ERK en la 

adquisición del aprendizaje asociativo y en la expresión de las respuestas adquiridas. 

Estos datos proporcionan nueva información sobre la interacción antagónica entre la 

cafeína y el etanol en las propiedades motivacionales expresadas en el paradigma del 

condicionamiento de lugar y en la capacidad de sensibilización del etanol para mitigar 

los efectos estimulantes de la cafeína. 
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GENERAL INTRODUCTION 

MOTIVATED BEHAVIOR 
Since the dawn of psychology, the study of the mechanisms underlying the concept of 

motivation has been considered essential for understanding human behavior. In 

general, the term motivation refers to the set of conditions that convey our behavior, 

determining the orientation towards a specific goal. Motivation is a necessary 

ingredient of interaction for all the species. In fact, all animals are guided by 

motivation to satisfy natural needs essential for survival and these behaviors are the 

result of biological and psychological processes that have been subjected to evolution 

at various levels (Simpson & Balsam 2016). Motivated behavior can be described by 

activational and directional aspects. The activational aspects concern the fact that the 

beginning and the maintenance of motivated behaviors can be represented by high 

levels of activity and vigor and persistence in the working results (Salamone et al. 

2018). Moreover, the directional aspects are related to the fact that the behavior can 

be directed towards or away from a specific stimulus, in order to search for some (i.e., 

water, food, social and sex interaction) and avoid others (i.e., pain, discomfort) 

(Salamone 2010; Salamone & Correa 2012). This difference in the emotional response 

reflects the motivational valence of the stimulus and can be positive or negative, 

depending on the purely instinctive perception of reacting to stimuli. Natural stimuli 

are characterized by a positive motivational value and can be considered appetitive 

stimuli and, due to their intrinsic nature, the descending behavior will be indeed 

“motivated” to their research. On the contrary, in case of unpleasant stimuli, the 

reaction will be avoidance (aversive behavior). Operationally, a motivated behavior can 

be defined as the result of two consecutive phases: the initial phase consisting mainly 

of approaching or seeking the reinforcing goal stimulus (e.g., seeking behavior), while 

in the subsequent phase the organism gains access to the stimulus and directly 

interacts with it (consummatory behavior) (Salamone & Correa 2012). However, 

motivated behaviors are widely adaptable, even though they can become habitual. 

Both the first motivation to emit the behavior and the subsequent behaviors are 

influenced by past and present experience with the reinforcing stimulus (Volkow et al. 
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2017). Therefore, the perception of a stimulus can be manipulated through learning 

processes, such as in the associative learning. 

A MODEL OF ASSOCIATIVE LEARNING: PAVLOVIAN CONDITIONING 

The associative learning can be described as a process in which the subject learns the 

relationships between two stimuli, or between a stimulus, and a behavior. In the 

classification of the experimental procedures, the associative learning can be 

distinguished in classic conditioning, that involves learning the relationships between 

two stimuli, and operant conditioning, that includes learning the relationship existing 

between one or more stimuli and the reaction derived from interacting with it. The 

modern neuroscientific study of classical conditioning, also called "Pavlovian 

conditioning", was originally described by Russian physiologist Ivan Pavlov (1927). In 

Pavlov’s seminal experiment two stimuli were presented paired to a dog: a bell tone 

simultaneously with some food. The repeated association (conditioning procedure) 

between these two stimuli changed the dog’s behavior in response to the presentation 

of the first stimulus. In fact, the tone never would have caused a reaction (salivation) 

until it would have been paired with the food. In this study, the tone is called 

conditioned stimulus (CS), whereas the food is the unconditioned stimulus (US) and 

the learned response, as a consequence of a repeated exposure to the appetitive 

stimulus, is named the conditioned response (CR) to differentiate it from the innate 

unconditioned response (UR), because dog salivated less or more depending on its 

hunger status. In fact, the CS upon the learning experience acquires the property of 

eliciting a new response, the CR, strictly related to and dependent from the 

conditioning process (Fanselow & Wassum 2016). 

CONDITIONED PLACE PREFERENCE AND CONDITIONED PLACE AVERSION 
A model of Pavlovian conditioning is the experimental procedure of place conditioning 

in its two variants, Conditioned Place Preference (CPP) and Conditioned Place Aversion 

(CPA). The CPP paradigm is characterized by the pairing of two distinct sets of 

environmental cues (e.g., apparatus with different wall color or pattern, size or shape) 

with the US (e.g., drug, food). The conditioning itself is represented by the repeated 

exposure to the US in one compartment of the CS (conditioned stimulus paired with 



11 
 

drug; CS+), while the exposure to the other compartment occurs without the US 

(conditioned stimulus paired without the drug; CS-). At the end of the conditioning, the 

animal, in US absence, is exposed to both contexts (CS+ and CS-) and a choice test is 

performed. This condition is one of the greatest advantages of place conditioning as, 

being the animal tested in a drug-free state, there cannot be interference with the 

emitted choice as a consequence of the pharmacological effects of the drug. A 

significant increase in time spent in the paired compartment relative to a control value 

is an indication that the US was provided of positive motivational properties (Bardo & 

Bevins 2000; Tzschentke 2007). A significant reduction in time spent in the paired 

compartment relative to a control value is an indication that the US was provided of 

negative motivational properties (Bardo & Bevins 2000; Tzschentke 2007). The CPP, 

under appropriate conditions, is a method for measuring drug reinforcement. Drugs of 

abuse have been widely used for CPP experiments, such as cocaine (Sellings 2006), 

ecstasy (Robledo et al. 2004), morphine (Ruiu et al. 2013; Zhu et al. 2015), nicotine 

(Ahsan et al. 2014), THC (Vann et al. 2008) and ethanol (Cunningham et al. 2003, 2006; 

Spina et al. 2015), although this latter, similarly to others such as nicotine, is endowed 

with the property, under appropriate conditions, to elicit both CPP and CPA 

(Cunningham et al. 2006; Spina et al. 2015). Moreover, if the learning process resulting 

in CPP is grounded on the ability of animals to transfer the positive biological 

significance (wellness and euphoria), that related to CPA is founded on the opposite 

principle, i.e. to the transposition of negative (sickness and dysphoria) feelings to 

motivationally neutral components of the environment (Bardo and Bevins 2000; 

Tzschentke 2007). In addition, upon an appropriate manipulation of the experimental 

conditions it is possible to shift the ability of a given US from that of resulting in a 

preference state, in which the animals choose to spend more time in the context 

associated with the drug, to that of resulting in an aversion state, such as in case of 

high doses of the same drug, e.g. nicotine that has dose-dependent rewarding and 

aversive effects (Risinger & Oakes 1995). With due caution, also the condition of 

withdrawal (from a drug) states have been shown to elicit CPA (Stinus et al. 2005). 
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FROM MOTIVATION TO ADDICTION 

The mesolimbic system: neurophysiology 

The mesolimbic system plays a pivotal role in the coordination of behaviors, emotions 

and memories, and interconnects cortical and subcortical structures devoted to linking 

primordial states and emotion to learning and behavior. The stimulation of the circuit 

is involved in the acquisition of motivational properties to neutral stimuli (Catani et al. 

2013). This system has been described for the first time in 1954 by Olds and Milner. In 

their experiment these Authors discovered that rats responded to reinforcing stimuli, 

brain electrical stimulation, only when applied in specifically brain areas (Olds & Milner 

1954). Subsequently, it was established that the area of mesolimbic system most 

involved in reinforcement processes and related behavior is the nucleus accumbens 

(Acb). Natural stimuli, such as food, water and sex, but also drugs of abuse, have the 

common property to enhance the release of dopamine in the Acb (Di Chiara & 

Imperato 1988). However, the continuous stimulation of dopaminergic neurons and 

the consequent increases of extracellular dopamine in the Acb elicited by addictive 

drugs, unlike the natural stimuli, does not develop the adaptive mechanisms of 

habituation but, on the contrary, strongly encourages the acquisition of motivational 

properties by drug conditioned stimuli (Di Chiara & Bassareo 2007). Furthermore, 

drugs of abuse promote an adaptive function, the incentive learning, defined as the 

acquisition by previously neutral stimuli of the capacity to elicit effects and other 

responses and occurs in association with the presentation of reinforcing stimuli 

(Berridge & Robinson 1998). Thus, abnormal changes in the motivation are a key 

element to develop disorders of motivated behaviors that can be divided into two 

groups. The first group is characterized by pathological deficits in motivation 

frequently in patients with schizophrenia and affective disorders. The second group 

consists in problematic excesses in behavior as well as addiction disorder elicited by 

addictive drugs (Simpson & Balsam 2016). Indeed, in susceptible subjects, repeated 

use of drugs of abuse carries the risk of developing dependence and addiction, defined 

as a chronic disease characterized by compulsive drug use despite adverse 

consequences, loss of control over drug-seeking behavior and high risk of relapse 

(Koob & Volkow 2009). Since ancient times humans began to use psychoactive 
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substances, initially in a ritual and/or religious context and then inspired by personal 

‘‘recreational’’ desires. These substances have the common characteristic to induce a 

set of emotional and physical feelings that, by mimicking the reinforcing properties of 

natural stimuli, are recognized as pleasurable (pleasure). The perception of pleasure, 

due to the stimulation of the mesolimbic system, leads a motivated behavior aimed to 

seek and re-experience the same gratifying feeling perceived during the consumption 

of the drug. Consequently, the substance acquires a positive value (primary 

reinforcement) in the individual who carries out a series of behaviors with the sole 

purpose of obtaining the drug of abuse (Spanagel & Weiss 1999; Koob & Volkow 2009). 

Addictive drugs can reinforce previous intake behavior by inducing pleasant effects 

(positive reinforcement) or by ending an unpleasant feeling (negative reinforcement). 

In this regard, the development of physical addiction/dependence could be explained 

by the possibility of another form of reinforcement: whenever the use of a drug 

relieves the unpleasant effect of the withdrawal syndrome, the previous behavior is 

further supported. Even when the development of tolerance attenuates the initial 

reinforcing effects, drugs of abuse can elicit a recurrent and regular sense of dysphoria 

or suffering, which is immediately eliminated, and sustained, by another 

administration (Di Chiara 2002; Koob & Volkow 2009). 

The nucleus accumbens: neuroanatomy 

The Acb is the central area of the limbic system and it is supposed to play a critical role 

in the motivated behavior, and, specifically, in the translation of limbic information 

into goal-directed behavior. It receives glutamatergic projections from the 

hippocampus, basolateral amygdala, prefrontal cortex and dopaminergic inputs from 

the ventral tegmental area (VTA) (Charara & Grace 2003). The Acb and VTA receive 

glutamatergic output from the prefrontal cortex and, moreover, a reciprocal 

glutamatergic connection has been described between the amygdala and prefrontal 

cortex. All these regions, that make up a circuit whose key role is played by dopamine, 

appear to perform an important role in learning processes, motivation, memory and 

adaptive behavior (Kelley 2004). The Acb is characterized by two functionally distinct 

subregions termed core and shell. The core is the dorsolateral part, associated with the 

anterior and orbitofrontal cortex, and regulates the motor expression of motivated 
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behavior. The medioventral compartment, the shell, is interconnected with the 

hypothalamus and VTA and is mostly involved in the perception of gratification. 

Additionally, the shell is implicated in the relationship between motivational events 

and simultaneous environmental perceptions that contribute to learning 

establishment (Kalivas & Volkow 2005). In the Acb the main cell types are GABAergic 

and the majority of these are medium spiny neurons (MSNs), on which dendrites 

converge dopaminergic and glutamatergic inputs (Cahill et al. 2014). Based on the 

peptide that contain, the MSNs can be divided into two groups, one subpopulation of 

neurons that express substance P and dynorphin, and another group containing 

enkephalin. Furthermore, MSNs express different types of receptors, predominantly 

glutamatergic and dopaminergic. Studies of receptor localization have shown that D1 

dopaminergic receptors in the striatum are located predominantly at the postsynaptic 

level (Altar & Marien 1987), are coupled with a G-protein that stimulates adenylate 

cyclase activity (Gs) and co-express substance P (Lu et al. 1997), while dopaminergic D2 

receptors are located both in the presynaptic and postsynaptic terminals (De Mei et al. 

2009), are coupled to G-proteins that inhibit adenylate cyclase (Gi/olf) and co-express 

mainly enkephalin (Lu et al. 1997). When D2 receptors are in homologous terminations 

are inhibitory auto-receptors, but also can be localized in glutamatergic, cholinergic 

and GABAergic neurons. However, there are biochemical and physiological findings 

that support the hypothesis that a subpopulation of MSNs that express both D1 and D2 

receptors is also present (Lu et al. 1997; Svenningsson et al. 1999). 

BIOCHEMICAL BASIS OF ADDICTION 

ERK signaling 

The Extracellular signal-Regulated Kinases (ERK) are part of the Mitogen-Activated 

Protein Kinase (MAPK)-signaling cascade, which is a family of serine‐threonine kinases 

expressed in all eukaryotic cells, where they play an essential role in several cellular 

processes, such as cell proliferation, differentiation and apoptosis (Sweatt 2004). There 

are several ERK isoforms, but the most characterized and more involved in 

neurophysiological processes as well as in drug addiction are ERK1 and ERK2, with 

molecular weight of 44 and 42 kDa, respectively (Girault et al. 2007). Their activation 
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requires the dimerization and phosphorylation on two regulatory residues, 

Thr202/Tyr204 for ERK1 and Thr183/Tyr185 for ERK2 (Khokhlatchev et al. 1998). This 

double phosphorylation is commonly detected by antibodies, and is thereby 

considered as a reliable index of ERK activation. In neurons ERK are activated through 

phosphorylation by various extracellular signals and, consequently, by the stimulation 

of different cellular receptors, including metabotropic G protein-coupled receptors 

(GPCRs) and tyrosine kinase receptors. The two pathways converge on the 

phosphorylation of one common kinase, the mitogen-activated protein kinase/ERK 

kinase (MEK) which is responsible of ERK phosphorylation. Once activated, ERK can 

phosphorylate other cytosolic proteins or move into the nucleus where they play a key 

role in gene regulation, thereby they can phosphorylate a number of transcription 

factors and control the transcription of immediate early genes (e.g. c-Fos) (Valjent et 

al. 2001; Davis & Laroche 2006; Girault et al. 2007; Sun et al. 2016).  

ERK and drugs of abuse 

ERK phosphorylation is elicited also by drugs of abuse in a subset of neurons in brain 

areas related to addiction. The first study which showed an increase of ERK expression 

in response to morphine or cocaine reported an increase in the VTA of rats after a 

chronic treatment (Berhow et al. 1996). In particular, in the MSNs of the striatum, the 

most expressed GPCRs are the dopaminergic D1 and D2, receptors positively and 

negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) 

pathway, respectively. Nevertheless, ERK activation requires the activation of both 

dopamine D1 and N-methyl-D-aspartate (NMDA) glutamate receptors, that converge 

onto the dendrites of the MSNs, in fact, the stimulation of D1 receptors cannot elicit 

ERK phosphorylation per se, but requires an increase of calcium influx through NMDA 

receptors as a consequence of endogenous glutamate (Pascoli et al. 2011). D1 

receptors are represented in the cerebral cortex, limbic system, thalamus and dorsal 

and ventral regions of the striatum (Girault et al. 2007; Cahill et al. 2014). It has been 

demonstrated that pretreatment with a D1 receptor antagonist (SCH23390) is able to 

prevent cocaine-elicited ERK phosphorylation (Fontana et al. 1993) and raclopride, a D2 

receptor antagonist, fails to prevent this increase (Valjent et al. 2000). Moreover, 

studies using D1 receptors knock-out mice demonstrated that both the locomotor 
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activation (Xu et al. 2000) and the self-administration (Caine et al. 2007) elicited by 

cocaine have been prevented. Furthermore, also glutamatergic inputs, which attain in 

the striatum from cortical and subcortical regions, are required for ERK activation. 

Glutamate receptors, both metabotropic and ionotropic, are co-expressed closely to 

the dopaminergic receptors. In particular, studies with NMDA receptors antagonist 

(MK801), as well as with GluN1-knockdown mice, demonstrated a complete 

prevention of cocaine-induced sensitization (Ramsey et al. 2008; Valjent et al. 2010). 

Thus, the convergence of dopaminergic and glutamatergic signals on the ERK pathway 

in response to binding of DA to D1 receptor involves the activation of PKA, that quickly 

phosphorylates the NMDA receptor at Ser897 of the GluN1 subunit. Notably, however, 

the trigger event for the ERK activation depends on a non-canonical signaling pathway 

that involves the phosphorylation of GluN2B by the protein-tyrosine kinase Fyn with a 

consequent increase of Ca2+ influx into the neuron (Pascoli et al. 2011). This last event 

causes the activation of the calcium-sensitive Ras-guanine releasing factor (Ras-GRF1) 

that turns on the MEK/ERK pathway, whereas the maintenance of ERK 

phosphorylation depends on cAMP/PKA pathway. Specifically, the maintenance of 

activation is due to the deactivation of MEK/ERK-related phosphatases via dopamine 

and cAMP-regulated phosphoprotein Mr 32,000 kDa (DARPP-32) and striatal-enriched 

tyrosine phosphatase (STEP). In fact, the activation of PKA via D1 receptors can 

phosphorylate DARPP-32 at Thr-34 site, which converts it in a strong inhibitor of the 

protein phosphatase PP-1, which dephosphorylates the other substrate, STEP (Valjent 

et al. 2005; Baik 2013; Cahill et al. 2014) (see figure 1). 

Moreover, ERK pathway is activated in response to acute (Valjent et al. 2000, 2004; 

Salzmann et al. 2003; Zhang et al. 2004; Brami-Cherrier et al. 2005; Acquas et al. 2007; 

Ibba et al. 2009) and chronic (Berhow et al. 1996; Muller & Unterwald 2004) exposure 

to addictive drugs in mesolimbic circuit, that play a critical role on neuroplasticity, gene 

expression and behavioral changes underlying the reinforcing processes induced by 

these substances. Moreover, the role of these kinases has also been correlated to the 

motivational properties of drugs evaluated through CPP procedures (Valjent et al. 

2000, 2001; Salzmann et al. 2003; Gerdjikov et al. 2004; Lu et al. 2006; Spina et al. 

2010) but also to the ability of contextual stimuli to evoke the expression of acquired 
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CPP (Miller & Marshall 2005) and of conditioned stimuli on reinstatement of ethanol-

seeking behavior in self-administration experiments (Radwanska et al. 2008; Schroeder 

et al. 2008; Peana et al. 2013). 

 
Figure 1. Schematic representation of ERK activation signaling pathway. The simultaneous stimulation 
of dopaminergic D1 (D1R) and glutamatergic NMDA receptors (NMDAR) in the striatum mediates ERK 
phosphorylation. AC: adenylate cyclase; cAMP: cyclic adenosine monophosphate; PKA: protein kinase A; 
DARPP-32: dopamine and cAMP-regulated phospho-protein Mr 32,000 kDa; STEP: striatal-enriched 
tyrosine phosphatase; PP1: protein phosphatase 1; Ras-GRF1: Ras-guanine releasing factor; MEK: 
mitogen-activated protein kinase/ERK kinase; ERK: Extracellular signal-Regulated Kinase. 

DARPP-32 signaling 

DARPP-32 is a protein kinase/phosphatase inhibitor highly expressed in dopaminergic 

brain areas, the major levels of DARPP-32 being found in the striatum (caudate-

putamen and Acb), olfactory tubercle and nuclei of amygdala (Ouimet et al. 1998). 

Moreover, DARPP-32 is abundantly expressed in all parts of MSNs including dendrites, 

axons and terminals. Given its ability to be phosphorylated on different sites, and their 

different resulting effects, DARPP-32 appears of fundamental importance for the 

integration of biochemical and behavioral responses regulated by dopamine and other 

neurotransmitters (Svenningsson et al. 2005). Interestingly, the phosphorylation of 
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DARPP-32 (pDARPP-32) at various sites and their effects on several substrates, as well 

as on DARPP-32 itself, produces a multifaceted system of positive and negative 

feedbacks (Yger & Girault 2011). Indeed, it has been hypothesized that DARPP-32 is a 

sensor of glutamatergic and dopaminergic inputs, allowing to assume a role in the 

processing of responses in the MSNs (Barbano et al. 2007). Dopaminergic signaling is 

controlled by the phosphorylation of DARPP-32 at various residues in D1 and D2 

receptors of MSNs (Nishi & Shuto 2017). One of the most widely studied sites is the 

phosphorylation at Threonine-34 (Thr-34) by PKA that converts DARPP-32 in a potent 

inhibitor of the serine/threonine protein phosphatase-1 (PP1). This event has 

important consequences in the amplification of D1 dopaminergic signaling because 

allows to increase the phosphorylation state of all the substrates PKA/PP1 downstream 

regulated and, moreover, is crucial to maintain the ERK activation elicited by addictive 

drugs through the regulation of STEP, a potent inhibitor of ERK (Yger & Girault 2011). 

Furthermore, DARPP-32 is a physiological target of the cyclin-dependent kinase 5 

(Cdk5) which phosphorylates it at Threonine-75 (Thr-75) residue with the resulting 

effect of PKA inhibition and consequent reduction of D1 signaling cascade. Specifically, 

the phosphorylation at Thr-75 is more potent than that at Thr-34 in terms of PKA 

inhibition and related substrates. On the contrary, the inactivation of pDARPP-32 at 

Thr-75 is caused by dopamine through the phosphatase PP2A/B56δ via D1 

receptor/PKA, which results in the disinhibition of PKA, i.e. in the removal of their tonic 

inhibition (Bibb et al. 1999) (see figure 2). 

However, also glutamate can regulate the DARPP-32 signal. In fact, via NMDA and 

AMPA receptors glutamate reduces pDARPP-32(Thr-34) with the resulting effects to 

activate PP1. Nevertheless, when pDARPP-32(Thr-34) is low, the dephosphorylation of 

pDARPP-32(Thr-75) and the consequent disinhibition of PKA could act to potentiate 

dopamine D1 receptor/PKA/pDARPP-32(Thr34) cascade. Furthermore, as mentioned 

above, pDARPP-32(Thr-34) plays a critical role in the regulation of the ERK pathway, 

not only with the inhibition of PP1, but also preventing ERK deactivation through the 

maintaining of the tyrosine phosphatase STEP in an inactive, phosphorylated, state 

(Svenningsson et al. 2005). Thus, as a consequence of D1 receptors activation, pDARPP-
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32(Thr-34) moves to the nucleus and enables the phosphorylation of histone H3 on 

Ser- 10 which promotes gene expression (Stipanovich et al. 2009). 

 
Figure 2. Schematic representation of the intracellular cascade and effect of dopamine on the 
phosphorylation of DARPP-32 at -Thr34 and -Thr75 residues. The different stimulation of D1 and D2 
dopamine receptor is critical to exert opposing effects on the two different types of MSNs. D1R: D1 
receptor; D2R: D2 receptor; AC: adenylate cyclase; PKA: protein kinase A; DARPP-32: dopamine and 
cAMP-regulated phospho-protein Mr 32,000 kDa; PP2A: protein phosphatase 2A; GABA/SP: GABAergic 
medium spiny neurons co-express substance P; GABA/ENK: GABAergic medium spiny neurons co-express 
enkephaline. 

DARPP-32 and drugs of abuse 

DARPP-32 plays an essential role in addictive disorders mediating or modulating short- 

and long-term effects of drugs of abuse. This implication has been shown in several 

studies using DARPP-32 knockout and transgenic mice (Svenningsson et al. 2005; 

Borgkvist & Fisone 2007). DARPP-32 is ubiquitously expressed in two types of MSNs 

but seems to be subjected to different regulatory mechanisms in D1 and D2 receptors. 

It has been demonstrated that acute cocaine administration increases pDARPP-

32(Thr34) and reduces pDARPP-32(Thr75) expression in MSNs containing D1 receptors, 

while opposite results were found upon the activation of MSNs that express D2 

receptors (Bateup et al. 2008). Furthermore, in mutant mice selective deletion of D1 

receptors in MSNs elicited a reduction of cocaine-induced locomotor stimulation, 
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while the deletion of D2 receptors caused an increase of locomotor activity (Bateup et 

al. 2010). Moreover, in a CPP paradigm DARPP-32 knockout and DARPP-32(Thr34) 

mutant mice show a reduction in cocaine-elicited place preference compared to the 

DARPP-32(Thr75) mutant mice (Zachariou et al. 2006). In addition, also acute 

morphine treatment shows an increase of pDARPP-32(Thr34) via D1 receptors in the 

Acb but not of pDARPP-32(Thr75) (Borgkvist & Fisone 2007). This different activation 

of DARPP-32 seems to be correlated to the duration of the pharmacological treatment: 

indeed it has been observed that in acute psychostimulant treatment, the expression 

of pDARPP-32(Thr34) sustains the reinforcing effects through D1/PKA signaling, 

whereas in a schedule of repeated administration the inhibition of PKA, as a 

consequence of pDARPP-32(Thr75) expression, appears as a homeostatic event against 

the development of addiction (Nishi & Shuto 2017).  

ETHANOL MOTIVATIONAL PROPERTIES 
Ethanol is the psychopharmacological active component of alcoholic drinks and it is 

responsible for several disorders and alcohol-related chronic diseases that strongly 

interest individuals and society. Ethanol is a small molecule with lipophilic and 

hydrophilic characteristics, that render it able to distribute rapidly in all the body 

districts. Curiously, the precise target(s) of ethanol have not yet been established, but 

it is well known that its effects in neurons and synapses of the brain are due on one 

hand to an increase of inhibitory transmission via γ-aminobutyric acid-A (GABAA) 

receptors, and on the other hand to an inhibition of excitatory transmission via NMDA 

glutamate receptors (Ron & Wang 2009; Trudell et al. 2014). The characteristic acute 

behavioral effects of ethanol range from disinhibition to sedation, and acute 

intoxication with hypnosis at high doses. The reinforcing properties of ethanol can be 

attributed to the activation of mesolimbic dopaminergic system, indeed, ethanol 

preferentially increases firing of dopaminergic neurons in the VTA and dopamine 

transmission in the Acb and other brain regions of extended amygdala (Gessa et al. 

1985; Di Chiara & Imperato 1988; Carboni et al. 2000; Gonzales et al. 2004) through a 

mechanism of disinhibition of GABAergic control on dopaminergic neurons of the VTA 

(Brodie & Appel 1998). This mechanism is supported with intra-VTA ethanol self-

administration experiments (Gatto et al. 1994; Rodd et al. 2004). 
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Moreover, through place conditioning studies it has been widely confirmed the ability 

of ethanol to induce a significant CPP and CPA for the drug-paired compartment. The 

literature describes several studies of ethanol place conditioning in rats and mice, 

using different routes of administration and different doses of ethanol. The 

intraperitoneal administration of the drug at the dose of 2 g/kg produces a significant 

CPP in mice (Cunningham et al. 1997; Itzhak et al. 2009; Bhutada et al. 2010; Spina et 

al. 2015; Rosas et al. 2017) and rats (Cole et al. 2003), as well as the intragastric 

administration (Peana et al. 2008). However, the final result of the conditioning 

process is closely dependent on the timing of administration; in fact, in mice an 

intraperitoneal injection of ethanol (2 g/kg), immediately before the exposure for 5 

min in a given compartment of the conditioning apparatus, is able to elicit CPP, while 

the same dose administered immediately after a 5 min exposure to the paired 

compartment elicits CPA (Cunningham & Henderson 2000; Cunningham 2019). 

Similarly, intragastric administration of ethanol can produce CPP or CPA (Cunningham 

et al. 2002; Fidler et al. 2004). The ability to give CPA or CPP, independently from the 

route, intraperitoneal or intragastric administration, is dependent on the dose of 

ethanol and the temporal relationship between its administration and the exposure to 

the compartment. In both modalities of administration, the CPA can be due to an 

initial, but temporary, adverse effect of ethanol, while the CPP has a delayed gratifying 

effect. Furthermore, the CPA produced by the intraperitoneal administration of 

ethanol is attributed to the burning sensation and irritation given by the substance, 

while the CPA induced by the intragastric administration can be correlated with the 

rapid passage from the condition of sobriety to that of the state of intoxication 

(Cunningham et al. 2002). 

As previously described, the key role of dopamine in the reinforcing effects of ethanol 

has been widely demonstrated, and, furthermore, the literature contains several 

studies that relate the role of dopaminergic receptors in the learning of stimuli 

associated with ethanol. It has been shown that the D1 receptor antagonist SCH-23390 

is able to impair the acquisition of conditioned taste aversion elicited by ethanol in 

mice (Risinger et al. 1999) and the self-administration in rats (Hodge et al. 1997). 

Moreover, it has also been demonstrated a positive correlation between the capacity 
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of ethanol to induce a significant CPP for the drug-paired compartment and 

dopaminergic D1 receptor activation, which has been fully prevented by the pre-

treatment with the D1 antagonist SCH39166 (Spina et al. 2010). The differential role of 

dopaminergic receptor subtypes in the Acb in the effects of ethanol has been widely 

confirmed with several studies. It has been demonstrated that the down-regulation of 

D1 receptors using lentiviral vectors in the Acb of mice significantly reduced ethanol 

consumption, ethanol-elicited-locomotor sensitization and acquisition, but not 

expression, of ethanol-elicited CPP (Bahi & Dreyer 2012). Moreover, in other studies 

with D2 knockout mice, ethanol-elicited CPP is reduced (Cunningham & Henderson 

2000) and in a more recent study it has also been observed that the bilateral intra-Acb 

infusions of the D1 receptor antagonist, SCH23390, but not the use of D2 antagonist 

raclopride, is able to prevent the acquisition of ethanol-elicited CPP (Young et al. 

2014).  

However, the individual response to ethanol depends on the additive actions exercised 

on the integration of the glutamate-dopamine signal at MSNs level (Tabakoff & 

Hoffman 2013). In this sense, the activation of the ERK pathway plays a key role since it 

depends on both glutamate and dopaminergic receptors activation and is one of the 

focal points of adaptive behaviors in response to substances of abuse (Girault et al. 

2007). Thereby, the study of Ibba et al. (2009) demonstrated for the first time that 

ethanol, in a dose-dependent manner, is able to activate ERK in the core and shell of 

Acb and in the nuclei of extended amygdala, through a mechanism mediated by D1 

receptors. The pre-treatment with the D1 antagonist SCH39166, administered 10 min 

before ethanol, totally prevented the expression of ERK (Ibba et al. 2009). Thus, the 

activation of ERK in these areas and the involvement of D1 receptors suggests a 

contribution of the brain structures implicated in positive reinforcement processes. 

Moreover, also the DARPP-32 seems to be implicated in both acute and long-term 

responses to ethanol. Different ethanol-related behaviors have been evaluated using 

DARPP-32 knockout mice. These mice showed a reduction of the motivational 

properties of ethanol measured in CPP and self-administration experiments (Risinger 

et al. 2018). Nevertheless, in the same study ethanol induced sensitivity to locomotor 

activation produced by a single dose (Risinger et al. 2018), suggesting that the DARPP-
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32 signaling may be a critical intracellular mechanism regulating ethanol motivated 

behaviors. A further study with knockout mice showed that DARPP-32 is involved in 

the reinforcing properties of ethanol through a mechanism mediated by NMDA 

receptors. Under normal conditions, ethanol reduces NMDA synaptic currents; in 

DARPP-32 knockout mice the regulation of ethanol sensitivity of NMDA receptors via 

D1 receptors is absent and the D1 activation does not impair the ethanol ability to 

inhibit NMDA receptors (Maldve et al. 2002).  

Taken together, all these evidences support the idea that dopaminergic activation of 

D1 receptors in the Acb is involved in developing and mediating the rewarding effects 

of ethanol or in learning of motivated behaviors related to its effects. 

CAFFEINE AND ETHANOL INTERACTION: EFFECTS ON ADENOSINERGIC SYSTEM 
Caffeine (1,3,7-trimethylxanthine) is a natural alkaloid derived from xanthine and is 

contained in the seeds, nuts, or leaves of a various plant species. The most well-known 

source of caffeine is the coffee bean and is, actually, the most widely taken 

psychoactive stimulant in the world (Evans & Battisti 2019). It is rapidly absorbed in 

humans and the process is not influenced by the ingestion of food or alcohol. 

Moreover, rapidly crosses the body membranes and is uniformly distributed in all 

district and fluids (Ferré & O’Brien 2011). 

The impact of caffeine on ethanol consumption and abuse has become a topic of great 

interest due to the rise in popularity of “energy drinks”, whose main, although not the 

only, active ingredient is caffeine. These drinks are frequently taken in combination 

with ethanol (i.e. alcoholic drinks), with the belief that caffeine can offset some of the 

intoxicating effects of ethanol. However, scientific research has not universally 

supported the idea that caffeine can antagonize the effects of ethanol in humans or in 

rodents, and the mechanisms mediating caffeine-ethanol interactions are not well 

understood.  

Caffeine and ethanol act on different neurotransmitters and neuromodulators, but the 

adenosinergic and the dopaminergic systems are the ones more evidently affected by 

these two substances. Adenosine is a central neuromodulator and performs its effects 
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through four subtypes of GPCRs; A1, A2A, A2B, and A3, with the A1 and A2A receptor 

subtypes being the most abundant in the central nervous system (Fuxe et al. 2003). It 

has been demonstrated with binding studies that A1 receptors are largely distributed in 

the brain, with a quite high concentration in the hippocampus, whereas A2A subtypes 

are highly expressed, almost exclusively, in the striatum and olfactory bulbs and 

tubercle (Svenningsson et al. 1999). Caffeine is a non-selective A1/A2A receptor 

antagonist and, as such, mediates its stimulant (Ferré 2008), anxiogenic (Correa & Font 

2008) and motivational effects (López-Cruz et al. 2018). If an increase of adenosine 

concentration induces sleep and fatigue, caffeine has the opposite effect, in fact it is 

popularly consumed to increase alertness (Johnson et al. 1990).  

Adenosine A1 and A2A receptors are co-localized with DA D1 and D2 receptors in striatal 

areas, including the Acb, but they are differentially segregated in distinct populations 

of neurons (Nunes et al. 2013). In particular, D2 and adenosine A2A receptors are co-

localized on enkephalin-containing MSNs, whereas D1 and A1 receptors are co-localized 

on substance P-containing MSNs (Fuxe et al. 2003). These pairs of receptors can form 

functional heteromers and can converge on common mechanisms, such as intracellular 

signaling cascades with opposite effects (Fuxe et al. 2003; Ferré 2008). Indeed, the 

relationship between these pairs of receptors is antagonistic: it has been shown that 

the adenosine stimulation of presynaptic A1 receptors shunts DA release, whereas that 

of postsynaptic A1 antagonistically interacts with D1 receptors and the result is a minor 

binding and coupling ability of Gs proteins. Furthermore, the activation of A2A reduces 

the binding availability of D2 receptors (Ferré 2008).  

Moreover, caffeine and adenosine A1 or A2A antagonists elicit opposite effects to DA 

antagonists on markers such as DARPP-32 (Nunes et al. 2013). In particular, through 

the blockade of A2A receptors, caffeine can modulate the neural substrates through 

which dopamine produces excitation (Lazarus et al. 2011). Caffeine can also increase 

dopaminergic neurotransmission through additional block-related mechanisms of 

presynaptic A1 striatal receptors that modulate the release of dopamine and glutamate 

(Ferré 2016). Furthermore, from the analysis of the literature on this specific aspect it 

emerges that in very few studies A1 and A2A receptors antagonists and agonists were 

used in order to investigate their role in the effects derived from the co-administration 
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of caffeine and ethanol. Specifically, it has been shown that caffeine acts preferentially 

through A1 receptors as regards the reduction of motor incoordination due to ethanol, 

although this effect of caffeine is evident only when it is administered at low doses (3 

mg/kg), because at moderate concentrations (30 mg/kg) it supports the negative 

effects of ethanol (López-Cruz et al. 2013). Moreover, regarding the effects of ethanol 

on the adenosinergic system, although ethanol does not act directly on adenosine 

receptors, it can enhance adenosine extracellular concentrations by increasing the 

release and the synthesis, or decreasing Equilibrative Nucleoside Transporters type-1 

(ENT-1)-dependent adenosine uptake (Nagy et al. 1990; Nagy 1992; Fredholm & 

Wallman-Johansson 1996) (see figure 3). 

 

Figure 3. Schematic representation of opposite effects of ethanol and caffeine on brain adenosinergic 
system. Ethanol regulates adenosine’s level by increasing the its production (1), release (3) and 
preventing the uptake (3), whereas caffeine acts as a non-selective adenosine A1 and A2A receptors 
antagonist (4). ADH: alcohol dehydrogenase; CYP-2E1: cytochrome P-4502E1; CAT-H2O2: catalase; ALDH 
II: aldehyde dehydrogenase class 2; ATP: adenosine triphosphate; AMP: adenosine monophosphate; 
ENT-1: equilibrative nucleoside transporters type 1; A1 and A2A: adenosine A1 and A2A receptors; AC: 
adenylate cyclase; cAMP: cyclic adenosine monophosphate; PKA: protein kinase A. 

Thus, from the available pre-clinical studies that have investigated the interaction 

between caffeine and ethanol in rodents, it emerges that it has effects on locomotor 

activation, learning and memory in different experimental paradigms, as well as in 
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ethanol self-administration paradigm (López-Cruz et al. 2013). The literature reveals 

also a significant lack of data, especially as regards the combined treatment of the two 

substances in the associative model of ethanol-elicited CPP. Specifically, a work 

investigated the effect of co-administration of caffeine (3 mg/kg) and ethanol (1.75 

g/kg) in C57BL/6J male mice subjected to the CPP paradigm. The results have showed 

that both ethanol and caffeine administered individually increase the time spent in the 

compartment paired with the drug, although the effect of caffeine was significantly 

more modest than that of ethanol. This study also revealed that the combination of 

the two drugs results in a significant place preference, even if more modest than that 

determined by ethanol alone (Hilbert et al. 2013). Both the motivational properties of 

ethanol highlighted through the experimental model of place conditioning and the 

acute effects, not associated with conditioned stimuli, have also been correlated to the 

expression of pERK but, also in this case, the combined acute effects of the two drugs 

have not been extensively investigated. 

IS CAFFEINE AN ADDICTIVE DRUG? 
The dopaminergic theory of addiction predicts that all drugs of abuse, although with 

different molecular mechanisms, are able to directly activate the dopamine 

transmission in the mesolimbic system (Pontieri et al. 1995; Berridge & Robinson 

1998). It has been demonstrate that caffeine causes an increase of extracellular 

dopamine (Acquas et al. 2002) and enhances the number of positive pERK neurons in 

the superficial and deep layers of the prefrontal cortex, but not in the Acb of rats 

(Valjent et al., 2004; Acquas et al. 2010) as well as in the other regions of extended 

amygdala of mice (Valjent et al. 2004). Furthermore, the phosphorylation of ERK in 

prefrontal cortex seems to depend on D1 receptors, in fact their blockade prevents the 

activation of caffeine-induced pERK expression. In this way D1 receptors appear to 

modulate caffeine-mediated activation of pERK and it has been hypothesized that 

these mechanisms are at the basis of the behavioral consequences of caffeine in the 

cognitive and memory processes (Acquas et al. 2010). These effects could be linked to 

the psychostimulant properties of the substance, but it is not yet clear if this is the 

cause or effect of these properties, raising a still controversial topic about the 

behavioral and pharmacological properties of caffeine and whether it can be 
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considered a substance of abuse, despite its psychostimulant effects (Acquas et al. 

2002, 2010). Indeed, caffeine has both positive effects that drive humans to its 

continuous intake, but also negative ones. However, the withdrawal symptoms it 

determines are limited and not particularly severe, such as headache and lethargy 

(Satel 2006). 

Furthermore, while the reinforcing properties of ethanol have been widely highlighted 

in studies of CPP and CPA (Cunningham & Henderson 2000; Cunningham et al. 2002, 

2003; Font et al. 2006) and self-administration (Peana et al. 2014; Faccidomo et al. 

2015; Lorrai et al. 2019) in rodents, likewise this does not occur with regard to 

caffeine. In fact, the studies reporting on caffeine-elicited CPP are inconclusive for 

different doses and experimental schedules (Steigerwald et al. 1988; Brockwell et al. 

1991; Brent Bedingfield et al. 1998; Patkina & Zvartau 1998). Furthermore, it has been 

observed that caffeine, in rats, is able to elicit CPP at the dose of 3 mg/kg (Patkina & 

Zvartau 1998) and CPA at the dose of 30 mg/kg (Brockwell et al. 1991). These results 

suggest that low doses have probably a weak and inconsistent gratifying effect, while 

high doses produce aversion to associated environmental stimuli (Patkina & Zvartau 

1998). These data support the biphasic effects expressed by caffeine in both humans 

and animals. At low doses it determines a stimulation of the central nervous system 

with positive and desirable effects: increase in concentration, alertness and a state of 

well-being, while at high doses it determines negative consequences, such as tension, 

nervousness, anxiety, restlessness, palpitations, sweating and depressive effects (Daly 

& Fredholm 1998). Notably, studies investigating the effects of co-administration of 

the two substances are even less, describing that caffeine, administered either alone 

(3.0 mg/kg) (Brockwell et al. 1991) or in the same injection with ethanol (1.75 g/kg of 

ethanol and 3.0 mg/kg of caffeine) induced a significant CPP, but the effect of caffeine 

was more modest than that of ethanol itself (Hilbert et al. 2013).  

However, as a consequence of the interaction on the adenosinergic and dopaminergic 

system, caffeine could amplify and act synergistically enhancing the effects of other 

more powerful drugs, such as psychostimulants as cocaine and amphetamine (Gasior 

et al. 2000). It has been investigated that administration of caffeine enhanced 

intravenous cocaine self-administration in rats (Horger et al. 1991; Schenk et al. 1994) 
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and reinstatement of cocaine self-administration (Schenk & Partridge 1999), whereas 

the self-administration of caffeine alone did not show consistent results (Briscoe et al. 

1998). It has been recently demonstrated that caffeine increased the motivation to 

obtain non-drug rewards, such as saccharin, in a dose-dependent manner. In fact, 

intravenous caffeine (at moderate doses of 0.5–1 mg/kg/infusion) when combined 

with oral saccharin significantly increased the operant responding to it at, whereas oral 

caffeine increased responding at all doses tested (2.5, 3.5, 5, 7.5 mg/ml) when it was 

combined with saccharin. In contrast, oral caffeine administration without saccharin 

did not increase responding at any dose (Bradley & Palmatier 2019). 

Taken together it appears that the results made available so far from animal studies 

are not conclusive to define caffeine as a drug of abuse although it produces 

behavioral and physiological effects similar to other addictive substances. 

Furthermore, neither the DSM-4 nor the DSM-5, the Diagnostic and Statistical Manual 

of Mental Disorders, officially recognizes caffeine as a drug that elicits typical addiction 

symptoms and an addictive-like disorder similar to that elicited by other substances of 

abuse, although the DSM-5 recognizes the “Caffeine Use Disorder” as a condition that 

deserves further investigation (Meredith et al. 2013). 

 

  



 
 

 

 

 

 

Aims  
  



 
 

 

  



29 
 

AIMS 
The general aim of the present doctoral thesis was to investigate the involvement and 

significance of the ERK pathway in the psychopharmacological effects of ethanol, 

caffeine and of their interaction in terms of behavioral and biochemical responses. The 

motivational properties of ethanol have long been studied in validated experimental 

models, among which the place conditioning paradigm can be considered a valid 

investigation tool to model the conditions of acquiring and recalling of drug-associated 

affective memories. Thus, the same drug is able to elicit and transfer both positive and 

negative motivational properties to the environment during the conditioning process, 

which can be highlighted in the behavioral model of CPP and CPA, respectively. 

Furthermore, while the growing trend of mixing caffeine, often contained in 

caffeinated beverages, with ethanol is increasingly common, the knowledge of the 

pharmacological bases of this interaction and the related mechanisms are still 

unknown. The experimental approach taken to challenge this research question is 

translated in the structure of the present thesis that sees the experimental part 

divided into the following three chapters: 

Chapter 1: describes the involvement of MEK/ERK protein kinases cascade in the 

acquisition and expression of CPP and CPA induced by a single dose of ethanol and the 

effects of the blockade of the kinases downstream ERKs, MEK, by the use of the MEK 

inhibitor SL327 in both experimental phases of place conditioning. Moreover, following 

the acute treatment with SL327, chapter 1 describes the results and discusses the 

experiments aimed at investigating the biochemical results of ethanol-elicited 

phosphorylated ERK expression in different regions constituting the mesolimbic 

system. 

Chapter 2: explores the interaction of ethanol and caffeine in the acquisition of 

ethanol-induced place conditioning and, in particular, the effects of caffeine pre-

treatment on the validated motivational properties of ethanol expressed in CPP and 

CPA paradigms. Furthermore, it investigates whether caffeine may prevent the 

ethanol-elicited pERK in different brain regions. Chapter 2 also discusses the results of 

the experiments aimed at verifying if the stimuli (positive and negative) conditioned to 
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ethanol and the drugs combination are related to a differential pERK expression in all 

brain areas examined. 

Chapter 3: evaluates the effects of different doses of ethanol and caffeine 

administration and their interaction on psychomotor performance measured as 

horizontal and vertical locomotion in the open field apparatus. Chapter 3 also 

describes the results of caffeine on mice previously sensitized with ethanol, to 

investigate if there may be cross sensitization effect. Finally, it discusses the results of 

the expression of two biochemical markers of neural activation, pERK and pDARPP-

32(Thr75), in the nucleus accumbens of mice acutely treated with both substances. 
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CHAPTER 1: Differential effects of the MEK inhibitor SL327 on the 
acquisition and expression of ethanol-elicited conditioned place 
preference and aversion in mice 
 

ABSTRACT 
The involvement of mitogen-activating extracellular kinase (MEK) in place conditioning 

may vary depending on the motivational sign (positive or negative) and nature 

(pharmacological or nociceptive) of the unconditioned stimulus (US) and on the phase 

(acquisition or expression) of the learning process. This study investigated the role of 

MEK on the acquisition and expression of ethanol-elicited (given 2 g/kg) backward 

(preference, CPP) and forward (aversion, CPA) place conditioning. The MEK inhibitor 

SL327 (50 mg/kg for CPP, and 50 and 100 mg/kg for CPA) was administered to CD-1 

mice 60 min before an ethanol dose (acquisition) or 60 min before the post-

conditioning tests (expression). Ethanol significantly elicited CPP and CPA; SL327 (50 

mg/kg) significantly blocked the acquisition of ethanol-elicited CPP, but not that of 

CPA. Moreover, SL327 (50 and 100 mg/kg) significantly reduced the expression of 

ethanol-elicited CPP, but not that of CPA. Finally, SL327 also prevented ethanol-elicited 

(given 2 g/kg) increases of phosphorylated extracellular signal regulated kinase (pERK)-

positive neurons in the nucleus accumbens and other nuclei of the extended 

amygdala. Overall, these results confirmed the differential involvement of MEK in the 

acquisition and expression of drug-elicited place conditioning and suggested its 

differential involvement in distinct behavioral outcomes, depending on the 

motivational sign of the (same) US and on the significance of the experimental phase 

of the learning process. 
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INTRODUCTION 
The place conditioning is an experimental model widely used to characterize the 

motivational properties of drugs (both positive and negative) and the role of neural 

substrates underlying this process. The result of a conditioning paradigm of associative 

learning leads to the establishment of memories, and more specifically, the CPP 

aroused by the drug is based on the establishment of positive memories and as such 

represents a valid experimental model for studying the drug-seeking behavior 

(Tzschentke 2007). Conversely, the elicited-CPA determines the onset of negative 

memories and is a model to study negative reinforcement, since the resulting behavior 

is aimed to prevent adverse experiences previously conditioned to drug-associated 

stimuli (Tzschentke 2007). In addition, acquiring and recalling of drug-associated 

memories can be modeled by different phases of place conditioning, the acquisition 

and the expression, respectively. Interestingly, the ERK pathway represents one of the 

most investigated molecular mechanisms that have been related to place conditioning. 

Several previous studies have demonstrated that these kinases cascade is involved in 

different learning paradigm, such as conditioned taste aversion (Marotta et al. 2014), 

conditioning fear (Atkins et al. 1998; Villarreal & Barea-Rodriguez 2006), spatial 

learning (Blum et al. 1999; Selcher et al. 1999), recognition memory (Kelly et al. 2003), 

appetitive-reward seeking behavior (Kirschmann et al. 2014) and drug-elicited place 

conditioning (Valjent et al. 2000; Gerdjikov et al. 2004; Girault et al. 2007; Spina et al. 

2010; Longoni et al. 2011; Rosas et al. 2018). Moreover, phosphorylated ERK (pERK) 

are widely expressed in the mesolimbic circuit areas, such as Acb and nuclei of 

extended amygdala (bed nucleus of stria terminalis and central and basolateral nuclei 

of the amygdala) (Valjent et al. 2004; Ibba et al. 2009; Vinci et al. 2010). Furthermore, 

the involvement of MEK, the kinases that are upstream of ERK, in the acquisition of 

drug-elicited CPP has been demonstrated with several drugs of abuse, such as d-

amphetamine (Gerdjikov et al. 2004), ecstasy (Salzmann et al. 2003), morphine 

(Mazzucchelli et al. 2002; Spina et al. 2010) and cocaine (Valjent et al. 2000) but in the 

case of ethanol, their involvement is not satisfactorily clear (Groblewski et al. 2011). 

Additionally, in contrast to the evidence supporting the role of the MEK on the 
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acquisition of CPP, their contribution in the expression of drug-elicited CPP and CPA 

awaits further clarifications. 

There are evidences regarding the involvement of MEK in the acquisition of cocaine-

elicited CPP (Valjent et al. 2000; Miller & Marshall 2005), but not to its expression 

(Miller & Marshall 2005). Similarly, in the CPA paradigm, it has been confirmed that the 

reversible MEK inhibitor, SL327 (Selcher et al. 1999), is able to prevent the acquisition 

of lithium-elicited CPA (Longoni et al. 2011) but not the expression of acquired 

(conditioned) response. However, the literature described that blockade of MEK in the 

anterior cingulate cortex prevents both phases of CPA procedure induced by intra-

plantar formalin but not by foot shock nor by the κ opioid agonist, U69,593 (Cao et al. 

2009). Taken together these results suggest that the involvement of MEK in aversive 

memories could depend on the force and nature (nociceptive vs pharmacological) of 

the unconditioned stimulus (US) as well as on the brain regions involved. Furthermore, 

these different results are also probably due to different neurobiological mechanisms 

at the basis of the behaviors modeled by these different phases of place conditioning 

and may have a common but also distinct and unique mechanisms with respect to MEK 

involvement (Sanchis-segura & Spanagel 2006; Shiflett & Balleine 2011). 

To avoid these possible discrepancies, in the present study we decided to characterize 

the role of MEK/ERK cascade in the place conditioning paradigm using an identical US, 

the effect of a pharmacologically active, non intoxicating, dose of ethanol, that under 

appropriate experimental conditions is able to elicit either CPP and CPA (Cunningham 

et al. 1997). Indeed, in the experiments of Cunningham and Co-workers (1997) it has 

been established that ethanol, after its intraperitoneal administration, may initially 

exert an aversive reaction succeeded shortly after by pleasant feelings. As a 

consequence, depending on the experimental schedule followed during conditioning, 

the association of the US to the paired compartment (conditioned stimulus, CS) results 

in CPP if the CS follows the US (backward conditioning) or results in CPA if the CS 

anticipates the US (forward conditioning) (Cunningham et al. 1997). Therefore, to 

characterize the role of this kinase cascade in the acquisition and expression of the CS, 

elicited by the identical US, ethanol, we will establish first whether in our experimental 

conditions the administration of the MEK inhibitor SL327 can affect the acquisition and 
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expression of ethanol-elicited (given 2 g/kg) backward (preference, CPP) and forward 

(aversion, CPA) place conditioning. The MEK inhibitor SL327 (50 mg/kg for CPP, and 50 

and 100 mg/kg for CPA) will be administered to CD-1 mice 60 min before an ethanol 

dose (acquisition) or 60 min before the post-conditioning tests (expression). Finally, we 

will assess if SL327 pre-treatment also prevented ethanol-elicited pERK-positive 

neurons in the nucleus accumbens and other nuclei of the extended amygdala. 
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MATERIALS AND METHODS 

Animals 

Male CD-1 mice (22-24 g, Envigo, Udine, Italy) were housed in groups of four per cage 

for at least 6 days before use and maintained on a 12:00/12:00 h light/dark cycle 

(lights on at 08:00 h) with food and water freely available. All the experiments were 

carried out during the light phase, between 09:00 and 16:00 h. The total numbers of 

mice were n=42 and n=50 in the CPP and CPA acquisition experiments, respectively, 

and n=46 and n=40 in the CPP and CPA expression experiments, respectively. The total 

numbers of mice used in the immunohistochemical experiments were: n=9 for the 

group vehicle/saline, n=7 for the group SL327/saline, n=8 for the group vehicle/ethanol 

and n=8 for the group SL327/ethanol. All the experimental procedures were 

performed in accordance with the Principles of laboratory animal care and with the 

guidelines and protocols approved by the European Union (2010/63/UE L 276 

20/10/2010). Every possible effort was made to minimize animal pain and discomfort 

and to reduce the number of experimental subjects. 

Drugs 

Ethanol (Sigma-Aldrich, Milan, Italy) 20% (v/v) in isotonic saline, was administered at 

the dose of 2 g/kg (12 mL/kg volume injection). The reversible MEK inhibitor, SL327 

(Ascent Scientific Ltd, Bristol, UK), was dissolved at 50 and 100 mg/kg in a vehicle made 

as follows: dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Milan, Italy), cremophor (Sigma 

Aldrich, Milan, Italy) and isotonic saline 30/30/40% (v/v) (injection volume: 20 mL/kg). 

The dose of 50 mg/kg of SL327 was selected in agreement with previous studies 

(Selcher et al. 1999; Valjent et al. 2000, 2006; Salzmann et al. 2003; Longoni et al. 

2011) 2006), whereas the dose of 100 mg/kg was selected after Longoni et al.  (2011). 

Sodium pentobarbital (Carlo Sessa Spa, Sesto San Giovanni, Milan, Italy) (50 mg/kg) 

was dissolved in isotonic saline. All drugs and vehicle were administered 

intraperitoneally (IP). 

Apparatus 

The apparatus consisted of two rectangular Plexiglas boxes (48Lx20Wx30H cm) 

separated by a guillotine door. The apparatus was placed in a sound-proof room with a 
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constant light of 37.5 Lux (ELD 9010 Luxmeter, Eldes Instruments, Italy) provided by a 

40W lamp placed above each compartment. Different visual and tactile cues 

distinguished the two compartments: vertically striped black and white walls and white 

smooth floor for one compartment (A) and horizontally striped black and gray walls 

and fine grid floor for the other compartment (B). The spontaneous preference was 

randomly distributed between compartments (49.2 % A and 50.8% B) and average 

spontaneous preference times (sec./900±SEM) were not significantly different 

between compartments (Paired t-test: t=1.68, p=0.093, df=354, number of pairs=178; 

with average total session times being 443±5.89 sec./900 and 457±5.89 sec./900 

respectively). However, in spite of such unbiased apparatus, the experimental groups 

for CPP experiments were made by grouping mice whose spontaneous preferences 

were, no matter the compartment, A or B, closer to 400 sec. Similarly (but opposite), 

the experimental groups for CPA experiments were made by grouping mice whose 

spontaneous preferences were, no matter the compartment, closer to 500 sec. 

Acquisition of Conditioned Place Preference and Conditioned Place Aversion 

Each experiment consisted of three phases. During the first phase (day 1), the 

guillotine door was kept raised and each mouse was placed randomly in one or the 

other compartment and given access to both compartments of the apparatus for 15 

min (900 sec.). The time spent in one compartment was recorded and taken as an 

indication of spontaneous preference. Behavioral schedules for backward and forward 

conditioning (figure 1) were designed after Cunningham et al. (1997). In particular, 

during the second phase (days 2-5) of CPP experiments, mice of distinct experimental 

groups, were administered SL327 (50 mg/kg) or vehicle, 60 min before ethanol (2 g/kg) 

or saline, and were returned to their home cage. Ten minutes after ethanol 

administration mice were exposed for 5 min to a given compartment and returned to 

their home cage. Four hours later, mice were administered vehicle (SL327, 0 mg/kg) or 

SL327 (50 mg/kg), then returned to their home cage 60 min before the second 

administration (ethanol, 0 or 2 g/kg). Ten min after this second administration mice 

were placed in the compartment opposite to that of the morning exposure. During the 

second phase (conditioning days 2-5) of CPA experiments, mice of distinct 

experimental groups, were administered SL327 (50 and 100 mg/kg) or vehicle, and 
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returned to their home cage for 60 min. At the end of this period mice were exposed 

for 5 min to the given compartment. Upon removal from the compartment (i.e. before 

being returned to their home cage) mice were administered the second injection 

(ethanol, 2 g/kg) or vehicle. Four hours later, mice were administered vehicle (SL327, 0 

mg/kg) or SL327 (50 mg/kg), 60 min before the 5 min exposure to the opposite 

compartment. Upon removal from the apparatus, i.e. before being returned to their 

home cage, mice were administered the second injection (ethanol 0 or 2 g/kg). During 

conditioning days for both CPP and CPA the order of vehicle and ethanol 

administration was counterbalanced [i.e. the order of the combined pre-

treatment/treatment [SL327 (50-100 or 0 mg/kg)/ethanol (0 or 2 g/kg)] 

administrations was opposite on even days with respect to that one on odd days]; 

similarly, the number of mice receiving saline and ethanol was counterbalanced over 

the four days of conditioning. The same counterbalanced design was also applied to 

the assignment of mice to compartments A and B. As a result of these conditioning 

schedules, saline (ethanol, 0 g/kg) and ethanol (2 g/kg) were paired four times with the 

given compartment. The four hours interval between conditioning sessions was chosen 

in order to avoid carryover effects of both SL327, whose ability to prevent MAPK 

activation is most effective between 30 min and 2 hours (Selcher et al. 1999), and 

ethanol. During the third phase of both CPP and CPA experiments (post-conditioning 

test), 24 h after the last conditioning treatment, the guillotine door was kept raised 

and the time spent by each mouse in the drug-paired (backward conditioning, CPP) 

and in the drug-assigned (forward conditioning, CPA) compartment during 15 min was 

recorded. The conditions of the post-conditioning test were identical to those of the 

pre-conditioning test. Pre- and post-conditioning recordings were done with stop 

watch by observers blind to pharmacological treatments. Hence, a statistically 

significant difference between the time spent during pre- and post-conditioning tests 

of the drug group with respect to that of the saline group was taken as indication of 

the development of place conditioning. 
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Expression of Conditioned Place Preference and Conditioned Place Aversion 

In the expression experiments, in agreement with Cunningham et al. (1997), 60 min 

before the beginning of the post-conditioning test, distinct groups of ethanol-

conditioned mice were administered SL327 (0, 50 and 100 mg/kg). Testing for CPP or 

CPA expression was done on the first day following conditioning in the time frame 

corresponding to the interval between “morning” and “afternoon” conditioning 

sessions of days 2-5. The difference between the time spent in the drug-paired (CPP) 

and drug-assigned (CPA) compartments during the post-conditioning test and that 

Home cage Home cage 

SL327 

10’ -60’ 15’ 

Ethanol 

0’ 

Conditioned Place Preference (CPP) 

A 

Apparatus 
(conditioning) 

Home cage Home cage 

SL327 

0’ -60’ 5’ 

Ethanol 

Conditioned Place Aversion (CPA) 

B 

Apparatus 
(conditioning) 

(0 or 2 g/kg) (0, 50 or 100 mg/kg) 

(0 or 2 g/kg) (0, 50 or 100 mg/kg) 

Figure 1. CPP and CPA conditioning procedures. Diagrammatic representation of the place conditioning 
procedures used in the CPP (A) and CPA (B) experiments. (A) Mice were administered vehicle (SL327 0 
mg/kg) or SL327 (50 and 100 mg/kg) 60 min before administration of saline or EtOH (2 g/kg) and were 
returned to their home cage. After 10 min of saline or EtOH administration, mice were exposed for 5 min 
to the given compartment of the conditioning apparatus and returned to their home cage. (B) Mice were 
administered vehicle (SL327 0 mg/kg) or SL327 (50 and 100 mg/kg) and returned to their home cage for 
60 min. At the end of this period, each mouse was exposed for 5 min to the given compartment of the 
conditioning apparatus. Upon removal from the apparatus, i.e. before being returned to their home 
cage, mice were administered saline (0 g/kg EtOH) or EtOH (2 g/kg EtOH). 



39 
 

spent during the pre-conditioning test (side preference shift) was taken as a measure 

of the degree of place conditioning induced by the drug (Carr et al. 1989). Hence, a 

statistically significant difference between the time spent during pre- and post-

conditioning tests of the drug group with respect to that of the saline group indicates 

the development of place conditioning. 

Immunohistochemistry 

For these experiments mice of distinct experimental groups were anesthetized with 

sodium pentobarbital (Valjent et al. 2001) 15 min after the administration of saline or 

ethanol (Ibba et al. 2009). Doses and timing of pre-treatment and treatment 

administrations exactly reproduced those followed on day 2 (first conditioning day) of 

the behavioral experiments. Following pretreatment administrations, mice were 

placed back in their home cages with their cage-mates. Under deep anesthesia, 

animals were subjected to trans-cardiac perfusion with ice-cold Phosphate Buffered 

Saline (PBS): 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, and 4% 

paraformaldehyde (PFA). After perfusion, brains were removed and post-fixed 

overnight in 4% PFA. Brain slices (40 µm) of the regions of interest were cut, on ice-

cold PBS with a vibratome (Leica VT1000, Leica, Germany) according to the mouse 

brain atlas (Paxinos & Franklin 2001). Slices were kept in ice-cold PBS and processed 

for immunohistochemistry according to a protocol for free-floating slices. 

Immunoreactions for pERK-positive cells detection were applied to at least two every 

other slices obtained from each brain. After incubation for 30 min in 1% H2O2, slices 

were incubated for 1 hour with 3% BSA. The incubation with the primary anti pERK 

antibody (phosphorylated ERK, Cell Signalling Technology, Beverly, MA, USA (1:350)) 

was conducted overnight. On the following day, after rinsing, slices were incubated for 

1 hour with the biotinylated secondary antibody (1:800). After three rinses the slices 

were incubated in avidin biotin peroxidase complex prepared according to the 

manufacturer’s suggestions (Vectastain ABC kit, Vector Laboratories, Burlingame, CA, 

USA) and a 3-3’-diaminobenzidine solution (10 mg/mL) was added until development 

of brown staining. Slices were rinsed and mounted onto gelatine-coated slides and 

processed through alcohol-xylene for light microscopy examination. pERK-positive 

neurons were identified in the regions of interest of both hemispheres at the lowest 
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magnification (10X) and quantitative analysis was performed using a Zeiss Axioskop 40 

light microscope, equipped with PL Fluotar 10X (na=0.3), 40X (na=1.00–0.5) and 100X 

oil (na=1.3) objectives, coupled with a digital camera (Nikon D5000, Melville, NY, USA). 

Images of the regions of interest were obtained at the lowest magnification (10X) from 

at least two every other 40 µm thick slices, according to the atlas Paxinos and Franklin 

(2001), and used to automatically count the number of pERK-positive neurons/area 

(pERK expression) by application of the software ImageJ (v. 1.42, National Institutes of 

Health sponsored image analysis program) in conjunction with automated background 

to avoid experimenter bias, and entropy threshold plug-in. pERK-positive neurons/area 

were counted in the regions of interest whose borders in the slices were 

depicted/recognized according to plates 15-17 (approximately from AP 1.94 to AP 1.70 

mm from bregma for the prefrontal cortex), to plates 21-23 (approximately from AP 

1.18 to AP 0.98 mm from bregma for the nucleus accumbens), to plates 31-32 

(approximately from AP 0.02 to AP -0.1 mm from bregma for the bed nucleus of stria 

terminalis) and to plates 36-38 (approximately from AP -0.58 to AP -0.82 mm from 

bregma for the central nucleus of the amygdala) of the Paxinos and Franklin (2001) 

brain atlas. These brain regions were selected for their involvement in learning and 

motivation and their relationship with pERK in these processes (Valjent et al. 2004; 

Ibba et al. 2009; Marotta et al. 2014). The reported numbers for each brain region 

(table 1 and figure 6) are the average ± SEM of average counts/slice from each animal. 

Statistical analysis 

To determine statistically significant differences between pre-conditioning values of 

the experimental groups depicted in figures 2-5, one-way Analysis of Variance 

(ANOVA) was applied (Statistica, v. 8.0, StatSoft Inc., Tulsa (OK), USA). To determine 

the effect of pre-treatment (2 levels: SL327 0 or 50 (or 100) mg/kg) on conditioning 

and those of treatment (2 levels: EtOH 0 or 2 g/kg) on acquisition of ethanol-elicited 

CPP or CPA, data were analyzed by three-way ANOVAs with pre-treatment and 

treatment as independent factors (between subjects) and with pre-conditioning and 

post-conditioning values as a within-subjects factor (repeated measures). Two-way 

ANOVA, with pre-treatment as an independent factor (between subjects) and pre-

conditioning and post-conditioning values as within subjects factors (repeated 
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measures), was also applied to assess the statistical significance of data from the 

expression experiments. All statistical analyses were carried out using data from the 

experimental groups depicted in each figure. Post hoc analyses (with multiple 

comparisons), carried out using Newman-Keuls tests, were undertaken if significant 

effects were found (p<0.05). 

pERK-positive neurons/area following each treatment were expressed as the average 

number of pERK-positive neurons/area of each experimental group and indicated as 

pERK-positive neurons/area (pERK expression). These values were used as dependent 

variables for statistical analyses by one-, two- and three-way ANOVAs with pERK-

positive neurons/area as dependent variables and with the factors brain area (2 levels: 

shell and core), pre-treatment (2 levels: vehicle or SL327) and treatment (2 levels: 

EtOH 0 or 2 g/kg) used as independent variables. Newman-Keuls post-hoc analyses, 

whereby allowed by ANOVAs significant main effects, were applied for multiple 

comparisons, with the statistical significance set at p<0.05. 

RESULTS 

Effects of SL327 on acquisition of ethanol-elicited CPP and ethanol-elicited 
CPA 

Figure 2 shows the effects of pre-treatment with SL327 (0 or 50 mg/kg), 60 min before 

the administration of ethanol (0 and 2 g/kg) and 10 min before exposure to the 

assigned compartment for 5 min (see figure 1A). Pre-conditioning preference times did 

not significantly differ between experimental groups [F3,38=1.52, NS]. Repeated 

measures, three-way ANOVA revealed significant effects of pre-treatment [F1,38=9.52, 

p<0.05], time [F1,38=22.28, p<0.001] and treatment [F1,38=8.23, p<0.05], and significant 

pre-treatment by time [F1,38=11.46, p<0.001], treatment by time [F1,38=7.849, p<0.05] 

and pre-treatment by treatment by time [F1,38=8.76, p<0.05] interactions. Newman-

Keuls’ post hoc analysis revealed a significant difference in the time spent in drug-

paired compartment in post-conditioning between the group SL327 (0 mg/kg)/ethanol 

(0 g/kg) and the group SL327 (0 mg/kg)/ethanol (2 g/kg) (p<0.05). 
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Figure 3 shows the effects of pre-treatment with SL327 (0, 50 and 100 mg/kg), 60 min 

before the exposure to the assigned compartment for 5 min, and of ethanol (0 and 2 

g/kg) administration upon removal from the place conditioning apparatus (see figure 

1B). Pre-conditioning preference times did not significantly differ between 

experimental groups [F5,44=0.99, NS]. Repeated measures, three-way ANOVA revealed 

significant effects of pre-treatment [F1,44=46.44, p<0.001] and time [F1,44=56.66, 

p<0.001], and significant pre-treatment by time [F1,44=63.53, p<0.001] and treatment 

by time [F2,44=3.99, p<0.05] interactions. Newman-Keuls’ post hoc analysis revealed a 

significant difference in the time spent in drug-paired compartment in post-

conditioning between the group SL327 (0 mg/kg)/ethanol (0 g/kg) and the group SL327 

(0 mg)/kg/ethanol (2 g/kg), that SL327 (50 and 100 mg/kg) was devoid of motivational 

properties and that SL327 (50 and 100 mg/kg) failed to prevent, but significantly 

(p<0.05) reduced, the acquisition of ethanol-elicited CPA. 

Figure 2. Effects of SL327 pre-treatment on acquisition of ethanol-elicited CPP. Data are shown as 
average time spent (sec.) ± SEM in the drug-paired compartment. Pre-conditioning preference times 
were 393±8 for SL327 (0 mg/kg) + ethanol (0 g/kg) (n=12), 403±14 for SL327 (50 mg/kg) + ethanol (0 
g/kg) (n=7), 414±9 for SL327 (0 mg/kg) + ethanol (2 g/kg) (n=13) and 388±9 for SL327 (50 mg/kg) + 
ethanol (2 g/kg) (n=10) groups. *Indicates a significant difference (p<0.05) of time spent during post-
conditioning test as compared to SL327 (0 mg/kg) + ethanol (0 g/kg) group; §indicates a significant 
difference (p<0.05) of time spent during post-conditioning test as compared to SL327 (0 mg/kg) + 
ethanol (2 g/kg) group; #indicates a significant difference (p<0.05) between pre- and post-conditioning. 
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Effects of SL327 on expression of ethanol-elicited CPP and ethanol-elicited 
CPA 

Figure 4 shows the effects of SL327 (0, 50 and 100 mg/kg) administered 60 min before 

the post-conditioning test of mice of three independent SL327 (0 mg/kg) + ethanol (2 

g/kg) conditioned groups. Repeated measures, two-way ANOVA revealed significant 

effects of time [F1,43=56.54, p<0.001] and pre-treatment [F2,43=5.48, p<0.05] and a 

significant time by pre-treatment [F2,43=5.13, p<0.05] interaction. Newman-Keuls’ post 

hoc analysis revealed that ethanol elicited a significant CPP, that SL327 pre-treatment 

(50 and 100 mg/kg) failed to prevent, but significantly (p<0.05) reduced, ethanol-

elicited CPP expression. 

Figure 5 shows the effects of pre-treatment with SL327 (0, 50 and 100 mg/kg) 

administered 60 min before the post-conditioning test of mice of three independent 

SL327 (0 mg/kg) + ethanol (2 g/kg) conditioned groups. Repeated measures, two-way 

ANOVA of the effects of SL327 revealed a significant effect of time [F1,37=110.39, 

p<0.001] and a significant time by pre-treatment [F2,37=3.45, p<0.05] interaction. 

Figure 3. Effects of SL327 pre-treatment on acquisition of ethanol-elicited CPA. Data are shown as 
average time spent (sec.) ± SEM in the drug-paired compartment. Pre-conditioning preference times 
were 513±9 for SL327 (0 mg/kg) + ethanol (0 g/kg) (n=10), 508±1 for SL327 (50 mg/kg) + ethanol (0 
g/kg) (n=7), 498±6 for SL327 (100 mg/kg) + ethanol (0 g/kg) (n=6), 540±2 for SL327 (0 mg/kg) + ethanol 
(2 g/kg) (n=11), 494±1 for SL327 (50 mg/kg) + ethanol (2 g/kg) (n=10) and 507±9 for SL327 (100 mg/kg) 
+ ethanol (2 g/kg) (n=6) groups. *Indicates a significant difference (p<0.05) of time spent during post-
conditioning test as compared to SL 327 (0 mg/kg) + ethanol (0 g/kg) group; #indicates a significant 
difference (p<0.05) between pre- and post-conditioning. 
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Newman-Keuls’ post hoc analysis revealed that ethanol elicited a significant CPA and 

that SL327 pre-treatment at the doses of 50 and 100 mg/kg failed to affect the 

expression of ethanol-elicited CPA. 

 

Figure 4. Effects of SL327 pre-treatment on expression of ethanol-elicited CPP. Data are shown as 
average time spent (sec.) ± SEM in the drug-paired compartment. Pre-conditioning preference times 
were 400±8 (n=18), 396±10 (n=17) and 385±21 (n=11) for SL327 (0, 50 and 100 mg/kg, respectively, on 
SL327 (0 mg/kg) + ethanol (2 g/kg) -conditioned groups). *Indicates a significant difference (p<0.05) of 
time spent during post-conditioning test as compared to pre-conditioning test of SL327 (0 and 50 mg/kg) 
+ ethanol (2 g/kg) conditioned groups; §indicates a significant difference (p<0.05) of time spent during 
post-conditioning test between SL327 (0 mg/kg) and SL327 (50 and 100 mg/kg) groups; #indicates a 
significant difference (p<0.05) between pre- and post-conditioning. 

 

 

Figure 5. Effect of SL327 pre-treatment on the expression of ethanol-elicited CPA. Data are shown as 
average time spent (sec.) ± SEM in the assigned compartment. Pre-conditioning preference times were 
527±15 (n=21) 512±10 (n=11) and 517±14 (n=8) for SL327 (0, 50 and 100 mg/kg, respectively, on SL327 
(0 mg/kg) + ethanol (2 g/kg) conditioned groups. *Indicates (p<0.05) of time spent during post-
conditioning test as compared to pre-conditioning test of SL327 (0, 50 and 100 mg/kg) + ethanol (2 g/kg) 
conditioned groups; #indicates a significant difference (p<0.05) between pre- and post-conditioning. 
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Effects of SL327 on the expression of ethanol-elicited pERK-positive neurons 

Figure 6 shows the effects of 60 min pretreatment with SL327 (0 and 50 mg/kg) on the 

expression of ethanol (2 g/kg)-elicited pERK-positive neurons in the shell and core of 

the nucleus accumbens. Three-way ANOVA of the results of ethanol administration in 

the shell and core of the nucleus accumbens, revealed a main effect of pre-treatment 

[F1,49=46.29, p<0.001], treatment [F1,49=9.02, p<0.05] and brain region [F1,49=8.56, 

p<0.05] and a significant pre-treatment by treatment interaction [F1,49=41.00, 

p<0.001]. Newman-Keuls’ post-hoc test revealed that ethanol increased pERK-positive 

neurons/area with respect to saline in the shell and core of the nucleus accumbens. 

Moreover, one-way ANOVA of the results of SL327 administration followed by saline 

(ethanol vehicle group) administration in the shell and core of the nucleus accumbens 

yielded not significant effects (Fshell1,13=0.04, NS; Fcore1,12=0.33, NS).  

 

Figure 6. Effect of SL327 on the expression of ethanol-elicited pERK-positive neurons in the nucleus 
accumbens. Data are shown as mean ± SEM of pERK-positive neurons/area. Effects of pre-treatment 
with SL327 (0 and 50 mg/kg) on ethanol (EtOH 0 (sal) and 2 g/kg) -elicited pERK-positive neurons/area in 
the shell (AcbSh) and core (AcbC) of the nucleus accumbens [n=9, for the group veh/sal; n=6, for the 
group SL327/sal; n=5, for the group veh/EtOH; n=7, for the group SL327/EtOH]. *indicates a significant 
difference (p<0.05) with respect to veh/sal (same brain region); §indicates a significant difference 
(p<0.05) with respect to veh/EtOH (same brain region). 

 

In addition, table 1 shows the effects of 60 min pretreatment with SL327 (0 and 50 

mg/kg) on the expression of ethanol (2 g/kg)-elicited pERK-positive neurons in the 
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prefrontal cortex (prelimbic and infralimbic), bed nucleus of stria terminalis and central 

nucleus of the amygdala. One-way ANOVA of the results of SL327 administration 

followed by saline (ethanol vehicle group) administration in the prefrontal cortex 

(prelimbic and infralimbic), bed nucleus of stria terminalis and central nucleus of the 

amygdala yielded not significant effects (FPrL1,12=0.055, NS; FIL1,12=0.11, NS; 

FBSTL1,12=0.25, NS and FCeA1,12=0.09, NS). Furthermore, two-way ANOVAs, followed by 

Newman-Keuls’ post-hoc tests revealed that SL327 significantly prevented the 

expression of ethanol-elicited pERK-positive neurons/area in all brain regions. 

 

pERK-positive neurons/area 

 veh/sal SL327/sal veh/EtOH SL327/EtOH Two-way ANOVAs 

PrL 42±10 38.2±10.9 156±23.2 54±13** 
Fpre-treament (1.26)=11.05 p<0.05 

Ftreatment (1.26)=16.5, p<0.001 

Finteraction (1.26)=9.62, p<0.05 

IL 33±8 29.5±7.9 93.5±1* 
 

39±10** 
 

Fpre-treament (1.26)=7.27, p<0.05 

Ftreatment (1.26)=10.6, p<0.05 

Finteraction (1.26)=5.48, p<0.05 

BNST 
 

25±8 
 

18.9±8.2 
 

102±14* 
 

29±10** 
Fpre-treament (1.26)=14.5, p<0.001 

Ftreatment(1.26)=17.77, p<0.001 

Finteraction (1.26)=10.62, p<0.05 

CeA 3±1 9.3±5.7 55±10* 13±6** 

Fpre-treament(1.26)=6.6, p<0.05 

Ftreatment(1.26)=15.95, p<0.001 

Finteraction(1.26)=11.94, p<0.05 

Table 1. Effects of SL327 (0 and 50 mg/kg) on ethanol (2 g/kg)-elicited pERK-positive neurons in the 
pre-limbic (PrL); and infralimbic (IL) prefrontal cortex, in the bed nucleus of stria terminalis (BNST) and 
in the central nucleus of the amygdala (CeA). Data are the average ± SEM raw numbers of pERK-
positive neurons/area from at least three every other slices. For all the brain regions the number of 
animals was: n=7, for the group veh/sal; n=7, for the group SL327/sal; n=8, for the group veh/EtOH; n=8, 
for the group SL327/EtOH. *indicates p<0.05 at Newman-Keuls post hoc test with respect to veh/sal; 
**indicates p<0.05 at Newman-Keuls post hoc test with respect to veh/EtOH.  
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DISCUSSION 
In agreement with Cunningham and Co-workers (1997), the results of this study 

confirm the ability of ethanol to elicit CPP and CPA (figure 1). Furthermore, the results 

demonstrate the differential involvement of MEK/ERK cascade in the acquisition and 

expression of place conditioning as the consequence of the of the blood brain barrier-

penetrant compound, SL327 (Selcher et al. 1999), ability to block some of these effects 

(figures 2-5). The immunohistochemistry experiments also establish that SL327 

significantly reduces the MEK mediated expression of pERK-positive neurons elicited 

by ethanol in the nucleus accumbens shell and core and in other nuclei of extended 

amygdala, at the same doses and timing of place conditioning experiments (table 1 

and figure 6). 

Effects on CPP and CPA Acquisition 

The administration of SL327 (50 mg/kg) significantly prevents the acquisition of 

ethanol-elicited CPP, whereas its administration (50 and 100 mg/kg) is not able to 

prevent, but significantly reduces, the acquisition of ethanol-elicited CPA. The result 

that pre-treatment with SL327 affects the ability of ethanol to elicit CPP (figure 2) is in 

agreement with several studies (Valjent et al. 2000, 2001; Salzmann et al. 2003; 

Gerdjikov et al. 2004; Spina et al. 2010). In fact, it has been demonstrated that the 

local administration of MEK inhibitors, PD98059 in the nucleus accumbens (Gerdjikov 

et al. 2004) or U0126 in the VTA (Lin et al. 2010), during conditioning phase, precludes 

d-amphetamine- and morphine-elicited CPP, respectively. On the same vein, in 

another study the intracerebroventricular administration of PD98059 impairs the 

acquisition of morphine-elicited CPP (Spina et al. 2010). Moreover, the acute 

administration of ethanol (Ibba et al. 2009; Rosas et al. 2014; Agoglia et al. 2015) is 

able to increase the phosphorylation of ERK in the nucleus accumbens, brain region 

which has been shown to be involved in the acquisition of CPP (Di Chiara 2002; 

Gerdjikov et al. 2004). The involvement of MEK/ERK pathway is also in agreement with 

self-administration experiments in which the administration of SL327 at a low dose (30 

mg/kg) increases the operant behavior, whereas at a higher dose (100 mg/kg) prevents 

it (Faccidomo et al. 2009). Furthermore, it has also been shown that the voluntary 

consumption of ethanol enhances pERK expression in medial prefrontal cortex, nucleus 
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accumbens and amygdala (Faccidomo et al. 2015). Although different circuits are 

involved in the self-administration experiments, it is demonstrated that the 

neurobiological mechanisms and the brain regions that underlie the learning process 

of operant behavior are in common with Pavlovian learning (Sanchis-segura & 

Spanagel 2006) and are triggered by the pharmacological effects of ethanol. In this 

regard, our result that MEK blockade prevents the acquisition of CPP is in agreement 

with the hint of a pivotal role of the MEK/ERK cascade in positive reinforcement 

mediated by ethanol (Faccidomo et al. 2009, 2015). However, this suggestion appears 

in contrast with the study of Groblewski, Franken and Cunnigham (2011) reporting that 

administration of SL327 (50 mg/kg) before two conditioning sessions failed to affect 

acquisition of ethanol (2 g/kg i.p.)-elicited CPP. These differences could be due to 

different experimental schedules [unbiased (Groblewski et al. 2011) vs biased design 

(present data)], different strain of animals (DBA/2J), different vehicle for the 

dissolution of SL327 and time intervals (90 min vs 60 min in the present study) before 

the exposure to the conditioning apparatus.   

Regarding the results of the CPA acquisition, SL327 is unable to fully prevent, but 

significantly reduces, the ability of ethanol to elicit CPA (figure 3) appears in contrast 

with the ability of SL327 to prevent the acquisition of ethanol-elicited CPP. The effects 

of SL327 on the acquisition of ethanol-elicited CPA appear also at variance with the 

results of Cao and Co-workers (2009) in which the local administration of MEK 

inhibitor, U0126, in the anterior cingulate cortex, affects the acquisition of CPA 

induced by intra-plantar formalin (Cao et al. 2009). Also, in this case the differences 

between this study and present data could be due to different routes of administration 

(local vs systemic) of the MEK inhibitors and nature and strength (pharmacological vs 

nociceptive) of the US, that play a critical role in determining the ability of MEK 

blockade to affect CPA acquisition. Similar, but opposite, results on the role of MEK 

blockade on CPA acquisition were reported by Cao et al. (2009) by showing that other 

MEK inhibitors prevent intra-plantar formalin- but not foot-shock or U69,593-elicited 

CPA. Moreover, the immunohistochemical data (table 1 and figure 6), in agreement 

with Valjent et al. (2000), clearly demonstrate that, at the same dose and timing 

observed in the place conditioning experiments, SL327 totally prevents the activation 
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of ERK in brain regions involved in the acquisition of associative learning (Marotta et al. 

2014) and positive (Gerdjikov et al. 2004) and negative conditioning (Deyama et al. 

2007). However, due to a significantly different experimental design, the 

immunohistochemical data cannot be offered to provide a consistent explanation 

about the effect of SL327 on ERK phosphorylation in animals exposed to the CS, but 

only the effects of SL327 on pERK expression induced by an acute administration of 

ethanol. Hence, we can only assume that SL327 may prevent ethanol-elicited ERK 

phosphorylation in the following conditioning sessions as in the first one. 

Thus, in light of the ability of SL327 to prevent the acquisition of ethanol-elicited CPP, 

these observations overall suggest that learning the aversive US-CS association 

encompasses differentially the MEK/ERK cascade so that its involvement may or may 

not result critical for the specific behavioral outcome. 

In summary, while we cannot offer any conclusive interpretation that may 

comprehensively explain such experimental differences, including the finding of a 

significant reduction by SL327 of the acquisition of ethanol-elicited CPA, these 

observations suggest that MEK blockade may represent the necessary but not 

sufficient condition to prevent aversive associative learning. 

Effects on CPP and CPA Expression 

The expression phase of the place conditioning experiments allows establishing 

whether drug-associated affective memories are able, in a drug-free state and in a 

state of free choice between CS+ and CS-, to direct animals’ behavior toward 

preferring or avoiding the CS+. This indicates that measurements of place conditioning 

expression may be the result of both attraction to the CS+ or aversion/avoidance of 

the CS-. The finding that SL327 significantly reduces, although not fully preventing 

(figure 4), the expression of ethanol-elicited CPP is in agreement with previous studies 

showing that MEK inhibitors could prevent retrieval of cocaine (Miller & Marshall 

2005) and morphine (Lin et al. 2010)-elicited CPP and with the observation that 

presentation of conditioned stimuli, either in CPP (Nygard et al. 2015) and in self-

administration experiments (Radwanska et al. 2008; Peana et al. 2013; Faccidomo et 

al. 2015) is associated with an increased expression of phosphorylated ERK. However, 
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these studies, at least in terms of brain structures involved, fail to provide a view that 

may sustain a unifying hypothesis on the role of MEK and the significance of activated 

ERK in the expression of responses to conditioned stimuli. In fact, the critical 

involvement of this kinase pathway has been reported in different brain structures 

such as the VTA (Lin et al. 2010), the medial prefrontal cortex (Faccidomo et al. 2015), 

the amygdala (Radwanska et al. 2008) and the core of the nucleus accumbens (Miller & 

Marshall 2005) whereby its blockade results in prevention to express the acquired 

association. 

In contrast with the observation that SL327 significantly reduces CPP expression (figure 

4), we found, in agreement with Longoni et al. (2011), that its administration before 

the post-conditioning test to rats undergone the schedule of aversive conditioning, 

fails to affect the ability of the CS+ to elicit place aversion (figure 5). Interestingly, 

although ERK phosphorylation has been reported under a number of experimental 

conditions related to the establishment of aversive memories such as conditioned 

taste aversion (Marotta et al. 2014) and opiate withdrawal (Wang et al. 2015) to our 

knowledge only few studies, Cao et al. (2009) and Longoni et al. (2011), have 

addressed, with opposite results, the issue of the role of MEK in the ability of a CS+ to 

evoke aversive memories. A number of methodological differences might be 

responsible for discrepancies between these studies and the present data and we can 

only state at the present that recalling aversive memories by a CS+ may or may not 

require the involvement of MEK/ERK cascade as a function of the US. 

In summary, since the acquisition is more sensitive to MEK/ERK disruption, these 

results suggest that the signaling kinase under study may be more involved in the 

initial learning than in the expression of a previously learned association as well as that 

it may be more involved in appetitive (present data; Salzmann et al.  (2003); Valjent et 

al.  2000 and 2001)) than in aversive motivation. Furthermore, the observation that 

SL327 (50 and 100 mg/kg) significantly reduces the expression of ethanol-elicited CPP 

whereas fully fails to affect the expression of ethanol-elicited CPA allows also to 

speculate that in CPP expression experiments the attraction toward the CS+ succeeds 

over the repulsion from the CS-.  
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In conclusion, given the significance of the place conditioning model, i.e. to highlight 

the appetitive or aversive motivational properties of USs on one side, and to 

characterize the strength of CSs to evoke responses of attraction to, or repulsion from, 

the USs, on the other, the present study provides new insight on the complexity of the 

involvement of MEK in the establishment of associative learning and in the expression 

of the acquired responses. 
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CHAPTER 2: Caffeine prevents ethanol-elicited place preference 
and aversion and ERK phosphorylation in the nucleus accumbens 
and other areas of the extended amygdala 

ABSTRACT 
Although several epidemiological studies focus on the consequences of the association 

between caffeinated and alcoholic beverages, the effects of the combination of 

caffeine and ethanol in animal models of drug addiction are currently still 

underexplored. 

To characterize the pharmacological interaction between caffeine and ethanol and 

establish if caffeine can affect the ability of ethanol (2 g/kg) of eliciting conditioned 

place preference (CPP) and conditioned place aversion (CPA), we administered caffeine 

(3 or 15 mg/kg) to male CD-1 mice before saline or ethanol. Moreover, we assessed 

whether caffeine, at doses at which fails to affect the expression of Extracellular-signal 

Regulated Kinase (ERK) phosphorylation (pERK) in the nucleus accumbens, bed nucleus 

of stria terminalis, central and basolateral amygdala, could prevent ethanol (2 g/kg)-

elicited pERK expression in these brain regions. 

In the place conditioning paradigm, caffeine was devoid of reinforcing properties 

whereas ethanol elicited significant CPP and CPA. Moreover, caffeine (15 mg/kg) 

significantly prevented ethanol-elicited CPP and at both doses also ethanol-elicited 

CPA. Caffeine (3 and 15 mg/kg) also prevented ethanol-elicited pERK expression in all 

brain areas examined.  

These results, that could be interpreted as due to the functional antagonistic action of 

caffeine and ethanol on the adenosine-mediated regulation of associative learning and 

motivated behaviors, disclose exciting insights on the consequences of the acute 

interaction between two of the most used psychotropic substances and provide 

exciting grounds to further study their pharmacological interaction. 
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INTRODUCTION 
Ethanol and caffeine are two of the most widely consumed substances in the world. 

Ethanol is a sedative/hypnotic drug that is recognized as being responsible for 

initiating and sustaining a wide array of conditions that are fundamental to alcohol use 

disorders, including alcohol dependence, a progressive escalation from low or 

moderate to high doses, and compulsive ethanol intake (Koob & Volkow 2009). 

Caffeine is a minor stimulant that is often consumed in the form of drinks like tea or 

coffee, but in recent years also as an ingredient in “energy drinks” that contain 

relatively high caffeine concentrations (e.g., 50–500 mg caffeine per serving) (Scholey 

& Kennedy 2004; Reissig et al. 2009; Peacock et al. 2015). Energy drinks are frequently 

consumed by teenagers and young adults in order to increase athletic performance by 

reducing fatigue, and/or to improve cognitive performance by increasing memory and 

concentration (Lalanne et al. 2017). Furthermore, the combined intake of alcohol and 

energy drinks is an emerging phenomenon. The tendency to combine caffeine with 

ethanol during binge drinking may be due to the popular belief that caffeine 

antagonizes intoxicating effects of alcohol, and improves social interactions (Weitzman 

et al. 2003; Reissig et al. 2009; Marczinski 2011). 

Caffeine and ethanol both act on adenosine function, but in opposite ways. 

Specifically, caffeine acts as a non-selective antagonist of A1 and A2A adenosine 

receptors (Cauli & Morelli 2005; Ferré et al. 2008), while ethanol acts indirectly via the 

production of its second metabolite, acetate, to increase adenosine levels (Nagy et al. 

1990; Nagy 1992; Fredholm & Wallman-Johansson 1996). Interestingly, although 

epidemiological studies have shown that there can be a positive correlation between 

the consumption of caffeine and that of ethanol (Marczinski & Fillmore 2014; 

Kristjansson et al. 2015), the results reported in the preclinical literature are often 

complex and contradictory, and the nature of the interaction varies across the doses 

and behavioral tasks used. Administration of caffeine at the dose of 5.0 mg/kg to rats 

subsequently given access to ethanol (10% v/v) facilitated its ingestion, while the 

administration of doses of 2.5 and 10.0 mg/kg failed to increase ethanol intake (Kunin 

et al. 2000). In mice, high doses of caffeine (20 mg/kg) reduced ethanol intake under 

restricted access conditions, but increased it when ethanol was available 24 hours. 
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Lower doses of caffeine (5-10 mg/kg) did also increase ethanol consumption under 

unrestricted access conditions (SanMiguel et al. 2019). Moreover, high doses of 

ethanol are known to cause amnesia and learning impairments, which are frequently 

associated with episodes of binge drinking (Wetherill & Fromme 2016), whereas 

caffeine at moderate doses (5.0-10.0 mg/kg) was able to improve memory acquisition 

and retention in different learning models (Angelucci et al. 2002; Dash et al. 2004; 

Spinetta et al. 2008). However, caffeine (5.0-40.0 mg/kg) did not reverse the learning 

deficits caused by ethanol (1.0-1.4 g/kg) in a plus-maze discriminative avoidance task 

(Gulick & Gould 2009) or in a social interaction three-chamber test (López-cruz et al. 

2016). Low doses of ethanol that did not impair social interaction reduced social 

recognition 24 hours later, and co-administration of caffeine was unable to block these 

amnesic effects (López-cruz et al. 2016). 

Ethanol has motivational properties that are consistently highlighted in studies of place 

conditioning, such as conditioned place preference (CPP) and conditioned place 

aversion (CPA) (Cunningham et al., 2002, 2003; Cunningham and Henderson, 2000; 

Font et al., 2006; Rosas et al., 2017; Spina et., 2015), as well as voluntary intake and 

ethanol-induced reinforcement of operant behavior (Bassareo et al., 2017; Faccidomo 

et al., 2015; Lorrai et al., 2019; Peana et al., 2014). In contrast, the motivational effects 

of caffeine are not well characterized. In fact, the few studies focusing on caffeine-

induced CPP have reported inconclusive results, mostly due to substantially different 

doses and schedules of administration across studies (Brockwell et al. 1991; Brent 

Bedingfield et al. 1998; Patkina & Zvartau 1998; Hsu et al. 2009). Moreover, the studies 

that investigated the effects of caffeine and ethanol co-administration on place 

conditioning reported that caffeine, administered either alone (3.0 mg/kg) (Brockwell 

et al. 1991) or in the same injection as ethanol (3.0 mg/kg of caffeine and 1.75 g/kg of 

ethanol), did induce a significant CPP, although this effect was more modest than that 

of ethanol itself (Hilbert et al. 2013). In addition, a single administration of caffeine 

(3.0 mg/kg) was reported as being able to reduce the expression of ethanol-elicited 

CPP and its reinstatement (Okhuarobo et al. 2019). 

The Extracellular signal-Regulated Kinase (ERK) is part of the Mitogen-Activated Protein 

Kinase (MAPK)-signaling cascade that plays a critical role in neuroplasticity, gene 
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expression, and behavioral changes underlying the reinforcing processes induced by 

substances of abuse (Valjent et al. 2005). The active form of this protein, 

phosphorylated ERK (pERK), plays a key role in the acute effects of ethanol. Increases 

in ERK expression following acute ethanol administration has been demonstrated in 

several brain areas, including both the core (AcbC) and shell (AcbSh) subregions of the 

nucleus accumbens, nuclei that are part of the extended amygdala (bed nucleus of 

stria terminalis (BNST) and central nucleus of the amygdala (CeA)) (Ibba et al. 2009), 

and basolateral amygdala (Spanos et al. 2012). These brain areas are involved in 

positive and negative effects of ethanol reinforcement and in the development of 

dependence (Koob et al. 1998). Moreover, ERK expression is related to the 

motivational properties of drugs as demonstrated by CPP experiments (Valjent et al. 

2000, 2001; Salzmann et al. 2003; Gerdjikov et al. 2004; Lu et al. 2006; Spina et al. 

2010). ERK appears to be involved in the acquisition of motivational valence by neutral 

stimuli paired with the primary effects of addictive drugs (Valjent et al. 2001; Gerdjikov 

et al. 2004). 

In order to shed light on the interaction between low but pharmacologically significant 

doses of caffeine and the motivational properties of ethanol, the aims of this study 

were: 1) determining if pre-treatment with different doses of caffeine (3.0 and 15.0 

mg/kg) may affect the acquisition of ethanol (2 g/kg)-elicited CPP and CPA 

(Cunningham et al. 1997; Spina et al. 2015; Rosas et al. 2017), and 2) investigating if 

caffeine has the ability to affect the increases of pERK expression elicited by ethanol in 

the nucleus accumbens, extended amydgala (bed nucleus of stria terminalis and 

central nucleus of the amygdala), and basolateral amygdala. Moreover, the study was 

also undertaken to verify if the stimuli (positive or negative) associated with ethanol 

may induce a differential expression of pERK in the brain areas examined, and if the 

effects of caffeine on the acquisition of place conditioning may also be reflected in the 

differential expression of ERK in brain areas involved in ethanol-conditioned 

reinforcement. 
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MATERIALS AND METHODS 

Animals 

Adult male CD-1 mice (22-24 g, Charles River, Calco, Italy) were housed in groups of 

four per cage for at least 6 days before use and maintained on a 12:00/12:00 h 

light/dark cycle (lights on at 08:00 a.m.) with food and water ad libitum. All the 

experiments were carried out during the light phase, between 09:00 and 16:00 h. The 

total numbers of mice were n=89 and n=80 in the CPP and CPA experiments, 

respectively, and n=19 and n=20 in the immunohistochemistry experiments after CPP 

and CPA expression, respectively. Finally, the total number of mice used in the 

immunohistochemical experiments were n=19. 

All the experimental procedures were performed in accordance with the Principles of 

laboratory animal care and with the guidelines and protocols approved by the 

European Union (2010/63/UE L 276 20/10/2010). Every possible effort was made to 

minimize animal pain and discomfort and to reduce the number of experimental 

subjects. 

Drugs 

Ethanol (Sigma-Aldrich, Milan, Italy) 20% (v/v) in isotonic saline, was administered at 

the dose of 2 g/kg (12 ml/kg volume injection). Caffeine (Sigma-Aldrich, Milan, Italy) 

was dissolved in isotonic saline (10 ml/kg volume injection) and was administered at 

the doses of 3 and 15 mg/kg. All drugs and vehicle (saline) were administered 

intraperitoneally (IP). 

Apparatus 

The apparatus consisted of two rectangular Plexiglas boxes (48L x 20W x 30H cm) 

separated by a guillotine door. The apparatus was placed in a sound-proof room with a 

constant light of 37.5 Lux (ELD 9010 Luxmeter, Eldes Instruments, Italy) provided by a 

40W lamp placed above each compartment. Different visual and tactile cues 

distinguished the two compartments: vertically striped black and white walls and white 

smooth floor for one compartment (A) and horizontally striped black and gray walls 

and fine grid floor for the other compartment (B). The spontaneous preference was 

randomly distributed between compartments (45,4% for compartment A and 54,6% 
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for compartment B in CPP experiments; 49% for compartment A and 51% for 

compartment B in CPA experiments). Moreover, mice whose spontaneous preference 

times, at the pre-conditioning test, were between 441 and 459 sec were randomly 

assigned half to compartment A and half to compartment B. 

Conditioned Place Preference and Conditioned Place Aversion: procedure 
and experimental design 

Each experiment consisted of three phases. During the first phase (pre-test, day 1), the 

guillotine door was kept raised and each mouse was placed randomly in one or the 

other compartment and given access to both compartments of the apparatus for 15 

minutes (900 sec). The time spent in one compartment was recorded and taken as 

indication of spontaneous preference. Behavioral schedules for backward (CPP) and 

forward (CPA) conditioning (figure 1A and 1B, respectively) were designed after Rosas 

et al. (2017) and Spina et al. (2015) with some modifications related to the timing of 

pre-treatment with caffeine.  In particular, during the second phase (conditioning, days 

2-5) of CPP experiments, mice of distinct experimental groups, were administered 

caffeine (3 or 15 mg/kg) or saline 20 min before ethanol (2 g/kg) or saline, and were 

returned to their home cage. 10 min after ethanol administration mice were exposed 

for 5 min to a given compartment and returned to their home cage. 6 hours later mice 

were administered saline or caffeine (3 or 15 mg/kg), then returned to their home 

cage 20 min before the second administration (ethanol, 0 or 2 g/kg). 10 min after this 

second administration mice were placed (for 5 min) in the compartment opposite to 

that of the morning exposure.  

During the second phase (conditioning, days 2-5) of CPA experiments, mice of distinct 

experimental groups were administered caffeine (3 or 15 mg/kg) or saline and 

returned to their home cage for 30 min. At the end of this period mice were exposed 

for 5 min to the given compartment. Upon removal from the compartment (i.e. 

immediately before being returned to their home cage) mice were administered the 

second injection (ethanol, 0 or 2 g/kg). 6 hours later, mice were administered caffeine 

(0, 3 or 15 mg/kg) or saline 30 min before the 5 min exposure to the opposite 

compartment. Upon removal from the apparatus (i.e. before being returned to their 

home cage) mice were administered the second injection (ethanol 0 or 2 g/kg).  
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During conditioning days for both CPP and CPA the order of saline and ethanol 

administration was counterbalanced [i.e. the order of the combined pre-

treatment/treatment [caffeine (0, 3 and 15 mg/kg)/ethanol (0 or 2 g/kg)] 

administrations was opposite on even days with respect to that one on odd days]; 

similarly, the number of mice receiving saline and ethanol was counterbalanced over 

the 4 days of conditioning. The same counterbalanced design was also applied to the 

assignment of mice to compartments A and B. As a result of these conditioning 

schedules, saline (ethanol, 0 g/kg) and ethanol (2 g/kg) were paired four times with the 

given compartment.  

Home cage Home cage 

Caffeine 

0’ -30’ 5’ 

Ethanol 

-10’ 

Conditioned Place Preference (CPP) 

A 

Apparatus 
(conditioning) 

Home cage Home cage 

Caffeine 

0’ -30’ 5’ 

Ethanol 

Conditioned Place Aversion (CPA) 

B 

Apparatus 
(conditioning) 

(0 or 2 g/kg) (0, 3 or or 15 mg/kg) 

(0 or 2 g/kg) (0, 3 or or 15 mg/kg) 

Figure 1. CPP and CPA conditioning procedures. Schematic representation of the place conditioning 
procedures used in the CPP (A) and CPA (B) experiments. (A) Mice were administered caffeine (0, 3 or 15 
mg/kg) 20 min before administration of ethanol (0 or 2 g/kg) and were returned to their home cage. 10 
min after ethanol (0 or 2 g/kg) administration, mice were exposed for 5 min to the given compartment 
of the conditioning apparatus and returned to their home cage. (B) Mice were administered caffeine (0, 
3 or 15 mg/kg) and returned to their home cage for 30 min. At the end of this period, each mouse was 
exposed for 5 min to the given compartment of the conditioning apparatus. Upon removal from the 
apparatus, i.e. before being returned to their home cage, mice were administered ethanol (0 or 2 g/kg). 
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During the third phase of both CPP and CPA experiments (post-conditioning test, day 

6), 24 h after the last conditioning treatment, the guillotine door was kept raised and 

the time spent by each mouse in the drug-paired (backward conditioning, CPP) and in 

the drug-assigned (forward conditioning, CPA) compartment during 15 min was 

recorded. The conditions of the post-conditioning test were identical to those of the 

pre-conditioning test. Pre- and post-conditioning recordings were done with stop 

watch by observers blind to pharmacological treatments. Hence, a statistically 

significant difference between the time spent during pre- and post-conditioning tests 

of the drug group with respect to that of the saline group was taken as indication of 

the development of place conditioning (Carr et al. 1989). 

Immunohistochemistry 

For these experiments mice of distinct experimental groups were administrated 

caffeine (0, 3 or 15 mg/kg, IP) 20 min before ethanol (0 or 2 g/kg, IP) and deeply 

anesthetized 15 min after the last administration (Ibba et al. 2009). Under deep 

anesthesia, animals were subjected to trans-cardiac perfusion with ice-cold PBS 

(Phosphate Buffered Saline: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM 

KH2PO4, pH 7.4) and 4% paraformaldehyde (PFA) solutions. After perfusion, brains 

were removed and post-fixed overnight in 4% PFA. Brain slices (40 µm) of the regions 

of interest were cut, on ice-cold PBS with a vibratome (Leica VT1000, Leica, Germany) 

according to plates 21-23 (approximately from AP 1.18 to AP 0.98 mm from bregma for 

the nucleus accumbens core and shell), to plates 30-32 (approximately from AP 0.14 to 

AP -0.10 mm from bregma for the bed nucleus of stria terminalis) and to plates 40-41 

(approximately from AP -1.06 to AP -1.34 mm from bregma for the basolateral and 

central nucleus of the amygdala) of the mouse brain atlas (Paxinos & Franklin 2001). 

Slices were kept in ice-cold PBS and processed for immunohistochemistry according to 

a protocol for free-floating slices. Immunoreactions for pERK-positive cells detection 

were applied to at least two every other slice obtained from each brain. After an 

incubation for 30 min in 1% H2O2, slices were incubated for 1 hour with 3% BSA. The 

incubation with the primary anti pERK antibody (phosphorylated ERK, Cell Signalling 

Technology, Beverly, MA, USA (1:350)) was conducted overnight. On the following day, 

after rinsing, slices were incubated for 1 hour with the biotinylated secondary antibody 
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(1:800). After three rinses the slices were incubated in avidin biotin peroxidase 

complex prepared according to the manufacturer’s suggestions (Vectastain ABC kit, 

Vector Laboratories, Burlingame, CA, USA) and a 3-3’-diaminobenzidine solution (10 

mg/mL) was added until development of brown staining. Slices were rinsed and 

mounted onto gelatine-coated slides and processed through alcohol-xylene for light 

microscopy examination. pERK-positive neurons were identified in the regions of 

interest of both hemispheres at the lowest magnification (10X) and quantitative 

analysis was performed using a Zeiss Axioskop 40 light microscope, equipped with PL 

Fluotar 10X (na=0.3), 40X (na=1.00–0.5) and 100X oil (na=1.3) objectives, coupled with 

a Nikon D5000 digital camera (Melville, NY, USA). Images of the regions of interest 

were obtained at the lowest magnification (10X) from at least three every other 40 µm 

thick slices and used to automatically count the number of pERK-positive neurons/area 

(pERK expression) by application of the software ImageJ (v. 1.42, National Institutes of 

Health sponsored image analysis program).  

Statistical analysis 

To determine statistically significant differences between pre-conditioning values of 

the experimental groups depicted in figures 2-6, one-way Analysis of Variance 

(ANOVA) was applied (Statistica v. 8.0, StatSoft Inc., Tulsa (OK), USA). To determine the 

effect of pre-treatment (3 levels: caffeine 0, 3 or 15 mg/kg) on conditioning and those 

of treatment (2 levels: EtOH 0 or 2 g/kg) on acquisition of ethanol-elicited CPP or CPA, 

data were analyzed by three-way ANOVAs with pre-treatment and treatment as 

independent factors (between subjects) and with pre-conditioning and post-

conditioning values as a within-subjects factor (repeated measures). All statistical 

analyses were carried out using data from the experimental groups depicted in each 

figure. Post hoc analyses (with multiple comparisons), carried out using Newman-Keuls 

post-hoc analyses, were undertaken if significant effects were found (p<0.05). 

pERK-positive neurons/area following each treatment were expressed as the average 

number of pERK-positive neurons/area of each experimental group and indicated as 

pERK-positive neurons/area (pERK expression). These values were used as dependent 

variables for statistical analyses by one-way ANOVAs with pERK-positive neurons/area 

as dependent variables and with pre-treatment (3 levels: caffeine 0, 3 or 15 
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mg/kg)/treatment (2 levels: EtOH 0 or 2 g/kg) used as independent variable. Fishers 

Least Significant Difference (LSD) post-hoc analyses, whereby allowed by ANOVAs 

significant main effects, were applied for multiple comparisons, with the statistical 

significance set at p<0.05. 

RESULTS 

Effects of caffeine on acquisition of ethanol-elicited CPP 

Figure 2 shows the effects of pre-treatment with caffeine (0, 3 or 15 mg/kg) 20 min 

before the administration of ethanol (EtOH, 0 or 2 g/kg) and exposure to the 

associated compartment for 5 min (see figure 1A). Pre-conditioning preference times 

did not significantly differ between experimental groups [F5,81=0.06, NS]. Repeated 

measures three-way ANOVA with preference times (pre- and post-conditioning) as 

dependent factors and with pre-treatment (caffeine 0, 3 or 15 mg/kg) and treatment 

(EtOH 0 or 2 g/kg) doses as independent factors, revealed a significant effect of time 

[F1,83=19.21, p<0.001], and significant treatment by time [F1,83=10.37, p<0.05] and pre-

treatment by treatment by time [F2,83=7.24, p<0.05] interactions. Post-hoc analysis 

according to Newman-Keuls test revealed 1) that EtOH stimulates a significant 

preference shift from 343±15 to 528±23 sec/900 (p<0.05), 2) that caffeine 3 and 15 

mg/kg is devoid of motivational properties and 3) that caffeine 15 but not 3 mg/kg 

significantly prevents the acquisition of CPP induced by EtOH (p<0.05). 
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Figure 2. Effects of caffeine pre-treatment on acquisition of ethanol-elicited CPP. Data are shown as 
average time spent (sec.) ± SEM in the drug-paired compartment. *Indicates a significant difference 
(p<0.05) of time spent during post-conditioning test as compared to caffeine (0 mg/kg) + EtOH (0 g/kg) 
group; #Indicates a significant difference (p<0.05) in time spent during the post-conditioning test as 
compared to caffeine (0 mg/kg) + EtOH (2 g/kg) group. 

 

Effects of caffeine on acquisition of ethanol-elicited CPA 

Figure 3 shows the effects of pre-treatment with caffeine (0, 3 or 15 mg/kg) 30 min 

before the exposure to the assigned compartment for 5 min, and of ethanol (EtOH 0 or 

2 g/kg) administration upon removal from the place conditioning apparatus (see figure 

1B). Pre-conditioning preference times did not differ significantly between 

experimental groups [F5,74=0.03, NS]. Repeated measures three-way ANOVA with 

preference times (pre- and post-conditioning) as dependent factors and with pre-

treatment (caffeine 0, 3 or 15 mg/kg) and treatment (EtOH 0 and 2 g/kg) doses as 

independent factors, revealed significant effects of pre-treatment [F2,74=3.51, p<0.05], 

treatment [F1,74=13.10, p<0.001] and time [F1,74=8.87, p<0.05], and significant pre-

treatment by time [F2,74=3.83, p<0.05] and treatment by time [F1,74=14.54, p<0.001] 

interactions. Post-hoc analysis according to Newman-Keuls test revealed that 1) EtOH 

stimulated a significant CPA from 513±13 to 269±38 sec/900 (p<0.001) 2) caffeine (3 

and 15 mg/kg) is devoid of motivational properties and 3) caffeine (3 and 15 mg/kg) 

significantly prevents the acquisition of CPA induced by EtOH (p<0.05). 
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Figure 3. Effects of caffeine pre-treatment on acquisition of ethanol-elicited CPA. Data are shown as 
average time spent (sec.) ± SEM in the drug-paired compartment. *Indicates a significant difference 
(p<0.05) of time spent during the post conditioning test between caffeine (0 mg/kg) + EtOH (2 g/kg) 
group and all other groups. 

 

Effects of acute administration of caffeine on the expression of ethanol-
elicited pERK-positive neurons 

Figure 4 shows the effects of pre-treatment with caffeine (0, 3 or 15 mg/kg) 20 min 

before the administration of ethanol (EtOH 0 or 2 g/kg) on the number of pERK-

positive neurons in AcbC and AcbSh, BNST, CeA and BLA. 

The administration of EtOH (2 g/kg), according to previous studies (Ibba et al. 2009) 

increases the number of pERK-positive cells in the AcbC and AcbSh (p<0.05) (from 41±2 

and 50±10 to 149±13 and 168±34, respectively) and caffeine pretreatment reduces to 

78±10 and 101±21 at the doses of 3 mg/kg and to 51±3 and 82±15 at the dose of 15 

mg/kg, the ability of EtOH to stimulate ERK phosphorylation in both Acb subregions 

(figure 4A). One-way ANOVA, with pre-treatment/treatment factor as independent 

variable and with the number of pERK-positive cells/area as dependent variable, 

revealed significant pre-treatment/treatment effects in AcbC [F3,15=6.91, p<0.05] and 

AcbSh [F3,15=5.12, p<0.05]. Post hoc analysis according to Fishers Least Significant 

Difference (LSD) test revealed that 1) EtOH stimulates a significant increase of the 
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number of pERK-positive neurons both in the AcbC and in the AcbSh (p<0.05) and 2) 

pre-treatment with caffeine at both doses significantly reduces this effect in both 

areas. 

Moreover, the administration of EtOH (2 g/kg) increases pERK-positive cells in the 

BNST (p<0.05) (respectively from 23±3 to 103±9 and caffeine pretreatment reduces, to 

77±3 at the dose of 3 mg/kg and to 72±6 at the dose of 15 mg/kg, the ability of EtOH to 

stimulate ERK phosphorylation in this area (figure 4B). One-way ANOVA, with pre-

treatment/treatment as independent variable and with the number of pERK-positive 

cells/area as dependent variable, revealed significant effects of pre-

treatment/treatment [F3,15=28.04, p<0.001]. Post hoc analysis according to Fishers 

Least Significant Difference (LSD) test revealed 1) that EtOH stimulates a significant 

increase of the number of pERK-positive neurons in the BNST (p<0.001) and 2) that 

pre-treatment with caffeine at both doses significantly reduces (p<0.05) this effect. 
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Figure 4. Effects of acute administration of caffeine on the expression of ethanol-elicited pERK-positive 
neurons in the Acb, BNST, CeA and BLA. Data are shown as mean ± SEM of pERK-positive neurons/area. 
Figure 4A: *indicates a significant difference (p<0.05) between caffeine (0 mg/kg) + EtOH (2 g/kg) and 
caffeine (3 and 15 mg/kg) + EtOH (2 g/kg) groups in AcbC and AcbSh; **indicates a significant difference 
(p<0.001) between caffeine (0 mg/kg) + EtOH (2 g/kg) and caffeine (0 mg/kg) + EtOH (0 g/kg) groups in 
AcbC and AcbSh. Figure 4B: *indicates a significant difference (p<0.05) between caffeine (0 mg/kg) + 
EtOH (2 g/kg) and caffeine (3 and 15 mg/kg) + EtOH (2 g/kg) groups in BNST; **indicates a significant 
difference (p<0.001) between caffeine (0 mg/kg) + EtOH (2 g/kg) and caffeine (0 mg/kg) + EtOH (0 g/kg) 
groups in BNST. Figure 4C: **indicates a significant difference (p<0.001) between caffeine (0 mg/kg) + 
EtOH (2 g/kg) and all other groups in CeA. Figure 4D: *indicates a significant difference (p<0.05) between 
caffeine (0 mg/kg) + EtOH (2 g/kg) and caffeine (3 and 15 mg/kg) + EtOH (2 g/kg) groups in BLA; 
**indicates a significant difference (p<0.001) between caffeine (0 mg/kg) + EtOH (2 g/kg) and caffeine (0 
mg/kg) + EtOH (0 g/kg) groups in BLA. 

 

Finally, the administration of EtOH (2 g/kg) also increases the number of pERK-positive 

cells in the CeA and BLA (p<0.05), respectively, from 13±2 to 30±3 in the CeA and from 

9±1 to 39±6 in the BLA; pretreatment with caffeine, at the doses of 3 and 15 mg/kg, 

reduces to 7±2 and 11±3 respectively, in the CeA and to 20±1 and 16±4, respectively, 

in the BLA, the number of pERK-positive neurons elicited by ethanol (figures 4C and 

4D). One-way ANOVA, with pre-treatment/treatment as independent variables and 

with the number of pERK-positive cells/area as dependent variable, revealed 



71 
 

significant effects of pre-treatment/treatment [F3,15=10.76, p<0.05]. Post hoc analysis 

according to Fishers Least Significant Difference (LSD) test revealed that 1) EtOH 

stimulates a significant increase of the number of pERK-positive neurons in the CeA 

and BLA (p<0.05) and 2) pre-treatment with caffeine at both doses significantly 

reduces (p<0.001) this effect in both areas. Representative images of these results are 

shown in Figure 5. 
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Figure 5. Coronal sections with bregma coordinates taken from the mouse brain atlas of Paxinos and 
Franklin (2001) showing the location of the areas (AcbC and AcbSh, BNST, CeA and BLA) for pERK 
immunoreactivity counting (figure 5A). Low (20X) magnification images of pERK-positive neurons from 
mice representative of each treatment group (figure 5B). 
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Effects of the expression of ethanol-elicited CPP on ERK phosphorylation 

Figure 6 shows the effects of ethanol-elicited CPP expression behavior on the number 

of pERK-positive neurons/area in AcbC and AcbSh, BNST, CeA and BLA. 

 

Figure 6. Effects of the expression of ethanol-elicited CPP on ERK phosphorylation in the Acb, BNST, 
CeA and BLA. Animals of each group, in a drug-free state, performed the post-conditioning test (15 min) 
and immediately afterwards were anesthetized and perfused for immunohistochemical analysis. Data 
are shown as mean ± SEM of pERK-positive neurons/area. Figure 6A: *indicates a significant difference 
(p<0.05) between caffeine (0 mg/kg) + EtOH (2 g/kg) and caffeine (0 mg/kg) + EtOH (0 g/kg) groups and 
between caffeine (0 mg/kg) + EtOH (2 g/kg) and caffeine (3 and 15 mg/kg) + EtOH (0 g/kg) groups in 
AcbC and AcbSh. 

 

The administration of ethanol (2 g/kg) during conditioning, according to the schedule 

depicted in figure 1A, resulted, as also shown in figure 2, in a significant CPP; the 

expression of this acquired preference during the post conditioning test, in turn, 

increases the number of pERK-positive cells in the AcbC and AcbSh (p<0.05), 

respectively from 45±2 to 86±2 and from 54±9 to 111±7; pretreatment with caffeine 

during conditioning reduces to 39±6 in AcbC and to 50±16 in AcbSh at the dose of 

caffeine 3 mg/kg and to 62±5 in AcbC and 56±14 in AcbSh at the dose of caffeine 15 
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mg/kg, the ability of the EtOH-conditioned stimulus to increase ERK phosphorylation in 

both subregions of nucleus accumbens (figure 6A). One-way ANOVA, considering 

pretreatment/treatment as independent variables and the number of pERK-positive 

neurons/area as dependent variable, revealed significant pre-treatment/treatment 

effects in the AcbC [F3,15=5.98, p<0.05] and AcbSh [F3,15=4.62, p<0.05] but not 

significant effects in BNST [F3,15=2.04, NS], CeA [F3,15=2.41, NS] and BLA [F3,15=2.23, NS]. 

Post-hoc analysis according to Fishers Least Significant Difference (LSD) test for the Acb 

revealed that 1) the expression of EtOH-elicited CPP is associated with a significant 

increase of the number of pERK-positive neurons/area both in the AcbC and in the 

AcbSh (p<0.05) and that 2) caffeine at both doses, during conditioning, significantly 

reduced this effect. 

Effects of ethanol-elicited CPA expression on ERK phosphorylation 

Figure 7 shows the effects of ethanol-elicited CPA expression behavior on the number 

of pERK-positive neurons/area (pERK expression) in AcbC and AcbSh, BNST, CeA and 

BLA. 

The administration of ethanol (2 g/kg) during conditioning, according to the schedule 

depicted in figure 1B, resulted, as also shown in figure 3, in a significant CPA; the 

expression of this acquired aversion during the post conditioning test, fails to increase 

the number of pERK-positive cells in the AcbC and AcbSh (p>0.05) (figure 7A). One-way 

ANOVA, considering the number of pERK-positive neurons/area as a dependent 

variable, and pretreatment/treatment as independent variables, reveled significant 

pre-treatment and treatment effects in the AcbC [F1,16=4.25, p<0.05] but not in the 

AcbSh [F3,16=1.30, NS] (figure 7A). Post-hoc test according to Fishers Least Significant 

Difference (LSD) revealed that 1) the expression of ethanol-elicited CPA is not 

associated with a significant increase of the number of pERK-positive neurons/area in 

AcbSh and AcbC (p>0.05) with respect to caffeine (0 mg/kg) + EtOH (0 g/kg) 

conditioned group. 

However, the expression of the acquired aversion during the post conditioning test, 

increases the number of pERK-positive cells in the BNST (p<0.001) (respectively from 

37±4 to 85±14) and caffeine pretreatment at both doses reduces, to 49±7 (caffeine 3 
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mg/kg) and 28±4 (caffeine 15 mg/kg) pERK-positive cells/area, the ability of EtOH-

elicited CPA expression to stimulate ERK phosphorylation in this area (figure 7B). One-

way ANOVA, with pre-treatment/treatment as independent variable and with the 

number of pERK-positive cells/area as dependent variable, revealed significant pre-

treatment and treatment effects [F3,16=9.06, p<0.001]. Post hoc analysis according to 

Fishers Least Significant Difference (LSD) test revealed that 1) expression of EtOH-

elicited CPA stimulated a significant increase of the number of pERK-positive neurons 

in the BNST (p<0.001) and that 2) pre-treatment with caffeine at both doses 

significantly reduced (p<0.001) this effect. 

Finally, the expression of the acquired aversion during the post conditioning test, 

increases of pERK-positive cells in the CeA (p<0.001) and BLA (p<0.05) of the amygdala 

complex (respectively from 7±1 to 17±1 for the CeA and from 18±2 to 31±4 for BLA) 

and caffeine pretreatment at both doses, during conditioning, significantly reduces it 

to 3±1 and 5±1 for the doses of caffeine of 3 and 15 mg/kg, respectively in the CeA and 

to 21±1 and 16±2 for the doses of caffeine of 3 and 15 mg/kg, respectively, in the BLA 

(figure 7C and 7D). One-way ANOVA, with pre-treatment/treatment as independent 

variable and with the number of pERK-positive cells/area as dependent variable, 

revealed a significant pre-treatment and treatment effects in CeA [F3,16=79.57, 

p<0.001] and BLA [F3,16=5.52, p<0.05]. Post hoc analysis according to Fishers Least 

Significant Difference (LSD) test revealed that 1) expression of EtOH-elicited CPA 

stimulates a significant increase of the number of pERK-positive neurons in both 

regions of amygdala complex (p<0.05) and that 2) pre-treatment with caffeine at both 

doses significantly reduced (p<0.05) this effect.  
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Figure 7. Effects of ethanol-elicited CPA expression on ERK phosphorylation in the Acb, BNST, CeA and 
BLA. Animals of each group, in a drug-free state, performed the post-conditioning test (15 min) and 
immediately afterwards were anesthetized and perfused for immunohistochemical analysis. Data are 
shown as mean ± SEM of pERK-positive neurons/area. Figures 7B and 7C: **indicates a significant 
difference (p<0.001) between caffeine (0 mg/kg) + EtOH (2 g/kg) and all other groups in BNST and CeA. 
Figure 7D: *indicates a significant difference (p<0.05) between caffeine (0 mg/kg) + EtOH (2 g/kg) and all 
other groups in BLA. 

 

DISCUSSION 
The consequences of drug interactions have an enormous importance both for 

substance abuse and therapeutic practice. Depending on the substances these 

interactions can lead to numerous and, a priori unsuspected, problems that can occur 

from pharmacokinetic, pharmacodynamic, metabolic and toxicological factors. The 

interaction between caffeine and ethanol is no exception in this regard. Moreover, not 

only does this interaction involve a very large number of individuals all over the world, 

but it also involves the functional antagonistic effects of two substances that share a 

pharmacological target represented by the adenosinergic system (López-Cruz et al. 

2013). The present work was designed and carried out in order to start laying a 
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foundation for systematically studying the consequences of the interaction between 

these two broadly-used psychoactive substances, especially with specific reference to 

the motivational effects descending from such interaction.  

In particular, the study was aimed at establishing whether the administration of 

caffeine at low to moderate doses that are thought to be on the borderline for altering 

behavior in terms of eliciting arousal (Acquas et al., 2002; De Luca et al., 2007; 

Hasenfratz et al., 1993) and locomotor activity (Dar 1988; López-Cruz et al. 2013) could 

affect the reinforcing properties of a moderate dose of ethanol (2.0 g/kg) as measured 

by the place conditioning method in adult male CD-1 mice (Cunningham et al. 2006; 

Spina et al. 2015; Rosas et al. 2017). To this end we adopted a dual approach, currently 

applied in our laboratory, which involves both behavioral and biochemical 

determinations. For the behavioral measure we assessed spontaneous preference for 

a given environment in terms of place conditioning (Acquas et al. 1989; Spina et al. 

2015; Rosas et al. 2017). The neurochemical measure involved the detection of pERK 

expression in specific brain regions involved in the affective and motivational 

responses to drug stimuli.  Phosphorylated ERK is important to assess because it is a 

cellular marker related to neural plasticity and short- and long-term adaptive 

responses to substances of abuse (Sweatt 2001, 2004; Gerdjikov et al. 2004; Acquas et 

al. 2007, 2010; Ibba et al. 2009; Sun et al. 2016; Rosas et al. 2017). 

Our behavioral model, which involved slight modifications of the methods introduced 

by Cunningham and Colleagues (Cunningham et al. 2003, 2006), had the added benefit 

of highlighting the fact that the same dose of the unconditioned stimulus (ethanol), 

can have both positive and negative motivational properties. This is useful for 

characterizing the opposite motivational aspects elicited by the same substance. In 

agreement with previous data (Cunningham & Henderson 2000; Cunningham et al. 

2002, 2003; Spina et al. 2015; Rosas et al. 2017), the results of the behavioral 

experiments confirmed that ethanol at the dose of 2.0 g/kg elicits strong and 

significant CPP (figure 2) and CPA (figure 3). The study also reports that caffeine at 

either dose (3.0 and 15.0 mg/kg) failed to alter the spontaneous preference of the 

animals as shown by the results of the post-conditioning tests of the caffeine (3.0 

mg/kg) + EtOH (0 g/kg) and caffeine (15.0 mg/kg) + EtOH (0 g/kg) groups. Nevertheless, 

the combination of caffeine and ethanol administration significantly altered the 
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outcome of ethanol elicited conditioning. In particular, 15.0 mg/kg caffeine 

significantly prevented the acquisition of ethanol-elicited CPP (figure 2), and both 

doses significantly prevented the acquisition of ethanol-elicited CPA (figure 3). These 

results appear at variance with those of the study of Hilbert and Colleagues (2013), 

who found that caffeine (3.0 mg/kg) exerted reinforcing effects in C57BL/6J mice that 

were generally weaker compared to ethanol (1.75 g/kg) and that their combination 

resulted in motivational properties indistinguishable from those of ethanol alone. 

Moreover, our results are also partly at variance with those of the study by Zuniga and 

Cunningham (2019), who reported that caffeine (3.0 or 30.0 mg/kg) administered in 

combination with ethanol (2.0 g/kg) fails to affect ethanol-elicited CPP. However, a 

number of significant differences may be taken into account to interpret these 

discrepant results. For example, the experimental design of the studies by Hilbert and 

Colleagues (2013) and Zuniga and Cunningham (2019) were quite different than that of 

the present one, including a different route of administration (single injection vs two 

separate injections at different times), different strains of animals (C57BL/6J or DBA/2J 

vs CD-1), different acquisition times (16 vs 8 conditioning sessions), different time 

intervals between administration of the US and exposure to the conditioning 

apparatus, and different numbers of post-conditioning tests. These substantial 

experimental differences could reasonably have led to different results. In addition, 

the significant CPP elicited by caffeine was observed only after test one in the study by 

Hilbert et al., (2013) and only after test three in the study by Zuniga and Cunningham 

(2019), while that for ethanol remained constant across tests (Hilbert et al. 2013; 

Zuniga & Cunningham 2019), and in this regard these results overall confirmed that 

caffeine has weak reinforcing properties (Liu et al. 2008). 

The results of our study on the whole indicate that the combination of appropriate 

doses of caffeine with the 2.0 g/kg of ethanol, a dose of ethanol which was capable of 

exerting motivational properties, prevented the establishment of learning the CS-US 

association and consequently its expression. This suggests that the acute effect of 

ethanol, i.e. its ability to transfer motivational properties to the environment 

(acquisition of place conditioning), is prevented by the blockade of A1 and/or A2A 

adenosinergic receptors by caffeine. In other words, these data show for the first time 
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that the acute administration of caffeine can interfere with the motivationally relevant 

conditioning effects of ethanol.  

Moreover, these present results also appear at variance with those of the recent study 

by SanMiguel et al., (2019) reporting that low to moderate doses of caffeine actually 

increased ethanol intake, in particular, in moderate ethanol-consumers (on average 

between 10.0 to 15.0 g/kg/24 hours) in C57BL6J mice. However, in the same study, a 

high dose of caffeine was indeed able to reduce high levels of ethanol intake in the 

drinking in the dark paradigm (SanMiguel et al. 2019).  

The results of the immunohistochemical experiments revealed that, consistent with 

previous studies (Ibba et al. 2009), ethanol stimulated a significant increase of the 

number of pERK-positive neurons both in the AcbC and in the AcbSh, and that pre-

treatment with caffeine at both doses significantly reduced these effects. These results 

also extend to the other brain areas examined (figures 4A-D), thus providing a possible 

interpretative mechanism for the behavioral results illustrated in figures 2 and 3 of this 

work. These findings also are in agreement with the observations that the expression 

of this phosphorylated kinase is, in fact, increased in the Acb and in other nuclei of the 

extended amygdala (central nucleus of the amygdala, bed nucleus of the stria 

terminalis) following the administration of numerous substances with addictive 

properties (Valjent et al. 2004) but not following that of other 

psychopharmacologically active, but not addictive, substances such as caffeine itself 

(Valjent et al. 2004; Acquas et al. 2010). 

In the present study, we also aimed to evaluate the expression of pERK in the core and 

shell of the Acb, and in the amygdala, after exposure to the conditioned stimulus. The 

results clearly demonstrate the dissociation between behavioral expression 

(preference shift compared to pre-test) and the brain regions showing increased 

expression of ERK phosphorylation in relation to the affective value acquired by the 

conditioned stimulus. These data also strongly support the specificity of the effects of 

caffeine on ethanol's ability to activate the behavior (figures 2 and 3) and to elicit 

expression of phosphorylated ERK in the AcbC, AcbSh, CeA and BLA (figure 4) after 

acute administration (Ibba et al. 2009). 

As previously mentioned, caffeine and ethanol act in opposite directions on the 

adenosinergic system. Caffeine is a non-selective antagonist of the A1 and A2A 
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adenosine receptors (Cauli & Morelli 2005; Ferré et al. 2008). In contrast, ethanol 

increases the levels of the endogenous agonist, adenosine, through different 

mechanisms that include the stimulation of its release, the reduction of its reuptake 

through inhibition of nucleoside transporter, and the promotion of its synthesis 

through the increased availability of acetate, an intermediate of adenosine 

biosynthesis, that accumulates in the cells upon ethanol’s oxidative metabolism (Nagy 

et al. 1990; Nagy 1992; Fredholm & Wallman-Johansson 1996). These biochemical 

actions could provide the basis of the results on pERK expression in animals that 

received combined administration of caffeine and ethanol, and in fact it can be 

hypothesized that the increase in adenosine concentrations induced by ethanol is the 

main factor responsible of the increased stimulation of adenosine A1 receptor activity. 

Adenosine A1 and A2A receptors are co-localized with dopaminergic D1 and D2 

receptors, respectively, in several areas of the brain including the mesolimbic 

dopaminergic system (Fuxe et al. 2003; Nunes et al. 2013). Thus, it is possible that 

ethanol activates pERK expression in both subregions of Acb, and in the amygdala, 

through a mechanism mediated by D1 receptors (Ibba et al. 2009).  Otherwise ethanol 

increases alongside dopaminergic transmission in the AcbC and in the AcbSh, either 

after contingent (Bassareo et al. 2017) and non-contingent administration (Bassareo et 

al. 2003, 2019).  Thus, a functional antagonism between caffeine and ethanol that is 

related to actions on adenosine receptors might be at least partially responsible for the 

behavioral interactions between these two substances seen in the present studies. 

Furthermore, the data shown in Figures 6 and 7 indicate that the conditioned stimulus 

(environment associated with ethanol, CPP; environment assigned to ethanol, CPA) 

has a different impact on the phosphorylation of ERK in these brain areas. In other 

words, the same conditioned stimulus, but with opposite motivational properties, 

stimulated the phosphorylation of ERK in a differential manner in the AcbC and AcbSh. 

Previous evidence demonstrated that a conditioned aversive stimulus (expression of 

lithium-elicited CPA) (Longoni et al. 2011) was not associated with increased ERK 

phosphorylation in the Acb. However, pERK expression is activated in nuclei in the 

amygdala complex, suggesting an involvement of these areas in associative learning 

and reinforcement (McDonald et al. 2010; Pati et al. 2019; Wscieklica et al. 2019). 

Thus, the results from the experiments on the effects of conditioned stimuli on pERK 
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expression appear in agreement with the role attributed to the activation of this kinase 

in the acquisition and expression of motivated behaviors (Gerdjikov et al. 2004; Zhai et 

al. 2008; Sun et al. 2016). 

Overall, these results cast fresh light on a critical topic that has considerable 

translational significance. Future experiments need to identify and further characterize 

the significance of the interaction between caffeine and ethanol. 
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CHAPTER 3: Impact of caffeine on ethanol induced sensitization: 
relation to dopamine metabotropic changes in ERK and DARPP-32 

ABSTRACT 
In recreational contexts, caffeine is frequently consumed with ethanol to reduce 

psychomotor slowing, sedation and coordination induced by this drug of abuse. Both 

drugs modulate dopamine and adenosine receptors, which are co-localized in nucleus 

accumbens (Acb), an area that regulates behavioral activation. 

To determine if caffeine can reverse these ethanol-induced impairments we evaluated 

in adult male CD-1 mice novelty-induced exploration in an open field. Acute effects of 

caffeine (7.5, 15 and 30 mg/kg) were evaluated on horizontal and vertical exploration 

(locomotion and supported rearing) as well as rearing non-supported by the wall (a 

measure of incoordination) modulated by acute or repeated administration of ethanol 

(1.5 g/kg). Phosphorylation of markers dependent on dopamine receptor activation 

were evaluated (increases in pERK and pDARPP-32(Thr75) related to D1 and D2 

receptor activation, respectively) in Acb. 

Acutely, ethanol decreased both types of rearing. Caffeine increased only supported 

rearing and also reversed ethanol-reduction in supported rearing. Both substances 

increased locomotion in a biphasic manner, and caffeine potentiated ethanol-induced 

locomotion. Ethanol administered repeatedly produced locomotion and supported 

rearing sensitization. However, caffeine administered acutely to those mice on an 

ethanol-free state, showed blunted stimulating effects compared to ethanol naïve 

mice. Finally, acute administration of ethanol increased pERK immunoreactivity in Acb, 

but co-administration with caffeine suppressed that increase. There were no effects on 

pDARPP-32(Thr75).  

Caffeine potentiates stimulation and reduces acute ethanol effects on suppression of 

vertical exploration, but cannot reverse its incoordinating effects. In ethanol-

experienced mice caffeine has a blunted or even impairing effect on horizontal and 

vertical exploration. Caffeine blocks dopaminergic D1 receptor-dependent markers 

induced by ethanol in Acb. 
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INTRODUCTION 
Caffeine is a substance commonly used for its known psychostimulant properties 

(Temple et al. 2017). Preferentially in form of beverages, contained in tea, coffee or 

more recently in popular drinks rich in caffeine called “energy drinks”, it is taken daily 

with the aim of improving cognitive and physical performance. A large number of 

studies in humans have highlighted its beneficial effects in terms of fatigue reduction, 

increase alertness and energy (Astorino & Roberson 2010; Duncan et al. 2012, 2013; 

Smirmaul et al. 2017). Moreover, its use in association with ethanol has, in the last 

decades, become widespread in order to counteract the sedative effects and the 

locomotor impairment of high, intoxicating, doses of ethanol (Hasenfratz et al. 1993; 

Drake et al. 2003; Attwood et al. 2012). In animal studies, it has been shown that the 

administration of caffeine and ethanol affects in different manners behavioral 

stimulation evaluated as locomotion. In rodents, both ethanol and caffeine are able to 

stimulate or inhibit the motor activity in a dose dependent manner, typically with bell-

shaped (or inverted-U) dose-response functions (Correa et al. 2001a; Hilbert et al. 

2013; López-Cruz et al. 2013). However, the long-term risks of repeated exposure to 

ethanol in interaction with caffeine are not yet well investigated. In animal models, the 

repeated administration of a stimulant substance may produce sensitization, 

measured as a progressive increase in locomotion (Steketee & Kalivas 2011). It has 

been also described cross-sensitization when a new drug shows potentiated 

stimulating effects in subjects that show sensitization to another drug, for example 

among ethanol and cocaine in rats (Xu & Kang 2017). Moreover, caffeine induces 

locomotor sensitization as well as cross-sensitization with other substances such as 

amphetamine and nicotine (Celik et al. 2006). Recently it has been reported the 

repeated intragastric coadministration of ethanol and caffeine induced significantly 

greater locomotor sensitization than the drugs alone (May et al. 2015). However, 

cross-sensitization between both drugs has not been assessed. 

Sensitization in locomotor exploration is related to the motivational properties of 

drugs of abuse (Robinson & Berridge 2000), such as the regulation of locomotion, 

behavioral activation, and processes such as incentive salience and vigor involved in 

goal directed responses, all of then regulated by the mesolimbic system; dopaminergic 
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neurons that project from ventral tegmental area to the nucleus accumbens (Acb) 

(Robinson & Berridge 2000; Salamone et al. 2016). Sensitization process may be 

considered as a drug-dependent behavioral plasticity that can lead to greater 

vulnerability to the development of addiction (Ferreira et al. 2013). Ethanol and 

caffeine act on the dopaminergic system via different mechanisms: ethanol 

preferentially increases the firing of dopaminergic neurons in the ventral tegmental 

area leading to an increase in dopamine (DA) transmission in Acb (Gessa et al. 1985; Di 

Chiara & Imperato 1988; Carboni et al. 2000) while caffeine causes an increase of 

extracellular DA in prefrontal cortex, but not in Acb (Acquas et al. 2002, 2010). The two 

drugs act on the adenosinergic system; ethanol increases endogenous adenosine 

(López-Cruz et al. 2014), while caffeine is an antagonist of adenosine receptors (Ferré 

2008). Adenosine A1 and A2A receptor subtypes, are highly expressed in brain areas rich 

in DA such as Acb (Ferré 2008; Nunes et al. 2013). In particular A2A receptors and 

dopaminergic D2 receptors are co-localized on encephalin-positive neurons, whereas 

adenosine A1 are co-localized with DA D1 receptors on substance P-positive neurons 

(Ferré et al. 2008). Adenosinergic and dopaminergic receptors converge on common 

mechanisms, showing opposite effects on metabotropic intracellular cascades (Agnati 

et al. 2003; Fuxe et al. 2003; Ferré 2008), such as Dopamine- and cAMP-regulated 

phosphoprotein Mr 32 kDa phosphorylated at the Threonine75 (Thr-75) site (pDARPP-

32-Thr75), which is associated with activation of DA D2 receptors (Svenningsson et al. 

1999; Nunes et al. 2013). Their interaction can be studied also on the expression of 

biochemical parameters related to DA receptor activation such as Extracellular signal-

regulated kinase (ERK), protein-kinase important for long-term synaptic plasticity 

(Valjent et al. 2005). 

Given these premises, the present experiments were developed with the purpose to 

determine the effects of acute administration of caffeine (7.5, 15 or 30 mg/kg), ethanol 

(1.5, 2.5 or 3.5 g/kg) and their interaction on different indicators of novelty induced 

behavioral activation and exploration measured in an open field apparatus. In addition, 

we also studied if an acute administration of caffeine at different doses (15 and 30 

mg/kg) can reverse the motor sensitization elicited by repeated administration of 

ethanol (1.5 g/kg). Furthermore, we assessed the effects of an acute challenge with 
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caffeine on ethanol-elicited pERK and pDARPP-32(Thr75) immunoreactivity in Acb core 

(AcbC) and shell (AcbSh), as a measure of neuronal markers of DA and adenosine 

receptor activation. 

MATERIALS AND METHODS 

Animals 

Adult male CD-1 mice (n=277) (30-40 g, Janvier, France S.A.) were 8-10 weeks old at 

the beginning of the study. Mice were housed in groups of three or four per cage, with 

standard laboratory rodent chow and tap water available ad libitum. The colony was 

kept at a temperature of 22+ 2 ºC with lights on from 08:00 to 20:00 h. All animals were 

under a protocol approved by the Institutional Animal Care and Use committee of 

Universitat Jaume I. All experimental procedures complied with directive 2010/63/EU 

of the European Parliament and of the Council, and with the “Guidelines for the Care 

and Use of Mammals in Neuroscience and Behavioral Research”, National Research 

Council 2003, USA. All efforts were made to minimize animal suffering and to reduce 

the number of animals used. 

Drugs 

Ethanol (Panreac Quimica S.A., Spain) 20% (v/v) in isotonic saline (0.9 % w/v) was 

administered intraperitoneally (IP) 10 minutes (min) before testing. Caffeine (Sigma-

Aldrich, Spain) was dissolved in 0.9% w/v saline and administered IP 30 min before 

testing. Saline solution was used as vehicle. Doses and time leads were chosen based on 

previous studies (Correa et al. 2004; López-Cruz et al. 2016). 

Apparatus and testing procedures 

Open Field (OF) 

The OF apparatus consists of a clear glass cylinder 25 cm in diameter and 30 cm high 

previously used to observe the effects of ethanol on spontaneous locomotion and 

locomotor sensitization (Correa et al. 2004). The floor of the cylinder was divided into 

four equal quadrants by two intersecting lines drawn on the floor. Animals were placed in 

the center of the cylinder and immediately observed for 10 min. The behavioral test room 

was illuminated with a soft light, and external noise was attenuated. Horizontal and 
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vertical locomotion in the OF were simultaneously recorded and registered manually. For 

horizontal locomotion, an activity count was registered each time the animal crossed 

from one quadrant to another with all four legs. A count of vertical locomotion was 

registered each time the animal raised its forepaws in the air higher than its back 

(unsupported rear) or rested them on the wall (supported rear). 

Blood ethanol determinations 

Additional mice were used to determine whether caffeine influenced blood ethanol levels 

at the high doses and times used in the behavioral studies. For that purpose, animals 

were injected with caffeine (0 or 30 mg/kg) and with ethanol (1.5 or 2.5 g/kg). Trunk 

blood samples (20 μl) were collected 10 and 20 min after ethanol and caffeine 

administration respectively. Following Boehm et al. (2000), each blood sample was 

immediately placed in a microcentrifuge tube containing 50 μl of ice-cold 5% ZnSO4 

solution. A 50-μl aliquot of 0.3 N Ba(OH)2 and 300 μl of deionized water was added. After 

centrifugation at 4°C (5 min, 12,000 rpm), the supernatant was removed and blood 

ethanol concentrations were determined by headspace gas chromatography with a 

flame-ionized detector (CE Instruments GC 8000, HS 850). 

pERK immunohistochemistry 

Mice were anesthetized with carbon dioxide for 30 s and perfused 15 min after the last 

treatment. The time interval between ethanol administration and anesthesia was 

selected on the basis of the time of the peak effect on DA transmission (Melis et al. 2007; 

Ibba et al. 2009). Brains were collected and stored in paraformaldehyde solution 3.7% 

during 24 h and refrigerated in sucrose (30%), sodium azide (2%) and phosphate buffer PB 

(0.1M) solution prior to slicing. Free floating coronal sections (40 µm) were serially cut 

using a microtome cryostat (Weymouth, MA, USA) according to plates 21-23 

(approximately from AP 1.18 to AP 0.98 mm from bregma for the nucleus accumbens 

core and shell) of the mouse brain atlas (Paxinos & Franklin 2001). After rinsing in 0.01 M 

0.01 M phosphate buffer saline (PBS) (pH 7.4) (3 times for 10 min) and incubating for 30 

min with 1% hydrogen peroxide and after three rinses of 30 min each one, the slices were 

incubated for 1 hr with 0.1% Triton X-100 (T.X) in TBS and 3% Bovine Albumin serum 

(BSA). The incubation with the primary anti-pERK antibody (phosphorylated ERK, Cell 
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Signaling Technology, Beverly, MA, USA) at 1:350 was conducted overnight at 4°C. On the 

following day, after rinsing, the slices were incubated with the second antibody, the anti-

rabbit HRP conjugate envision plus (DAKO) for 1.5 h on a rotating shaker at room 

temperature. Finally, sections were washed and rinsed for 1-3 min in 3,3-

diaminobenzidine chromagen (DAKO).  

pDARPP-32(Thr75) immunohistochemistry 

Other brain slices obtained from the same animals used for pERK immunohistochemistry 

were processed for pDARPP-32(Thr75) immunoreaction. Brain slices were rinsed in 0.01 

M PBS (pH 7.4) and incubated in 1% hydrogen peroxide for 30 min to block endogenous 

staining. Sections were then rinsed in 0.01 M PBS (pH 7.4) (3 times for 5 min). To measure 

the immunoreactivity to pDARPP-32 nonspecific binding sites were blocked, and cells 

were permeabilized in a solution containing 0.1% T.X and 3% BSA in PBS for 1h at room 

temperature on a rotating platform before primary antibody incubation. pDARPP-32 

immunoreactivity was visualized with a polyclonal rabbit antibody for pDARPP-32 

phosphorylated at the threonine 75 residue (pDARPP32-Thr75, 1:500; Cell Signaling 

Technology, Beverly, MA, USA). The antibody was dissolved in solutions that also 

contained 3% BSA and 0.1% T.X in PBS for 24 h incubation at 4°C. After the primary 

antibody treatment, the sections were rinsed in PBS (3 times for 5 min) and incubated in 

the secondary antibody, anti-rabbit HRP conjugate envision plus (DAKO) for 1.5 h on a 

rotating shaker at room temperature. Finally, sections were washed and rinsed for 1-3 

min in 3,3-diaminobenzidine chromagen (DAKO).  

Image analysis 

Processed brain sections were mounted to microscope slides (Menzel-Gläser, Superfrost 

® Plus, Thermo scientific), air dried, processed through alcohol-xylene and cover-slipped 

using Eukitt® (Sigma AldrichMerck KGaA) as a mounting medium. The sections were 

examined and photographed using a Nikon Eclipse E600 (Melville, NY, USA) upright 

microscope equipped with an Insight Spot digital camera (Diagnostic Instruments, Inc). 

Images of the regions of interest were magnified at 20X and captured digitally using 

Stereo Investigator software. Cells were quantified with ImageJ software (v. 1.42, 



95 
 

National Institutes of Health sponsored image analysis program) in three sections per 

animal, and the average value per mm2 was used for statistical analysis. 

Statistical analysis 

One-way analysis of variance (ANOVA) was used to analyze the effect of drug 

administration on the different dependent variables; horizontal and vertical supported 

and unsupported locomotion. Two-way factorial ANOVA was used for the interaction 

studies. When the overall ANOVA was significant, non-orthogonal planned 

comparisons using the overall error term were used to compare each treatment with 

the control group (Keppel 1991). For these comparisons, a level was kept at 0.05 alpha 

because the number of comparisons was restricted to the number of treatments minus 

one. A probability level of 0.05 or smaller was used to indicate statistical significance. 

Statistics were done using STATISTICA 8 (StatSoft Inc., Tulsa (OK), USA) software. 

RESULTS 

Effects of acute administration of caffeine on locomotion 

Figure 1 shows the effects of caffeine (0.0, 7.5, 15.0 or 30.0 mg/kg) administered 30 min 

before OF test (n=38). One way-ANOVA showed an overall effect of caffeine on horizontal 

crosses (F3,30=4.06, p<0.05), as well as on supported rear [F3,30=3.48, p<0.05]. Planned 

comparisons revealed that caffeine at low and moderate doses (7.5 and 15 mg/kg) 

significantly increased horizontal locomotion (p<0.05 and p<0.01, respectively) (Fig 1A). 

These doses of caffeine also produced significant increases in the number of supported 

rears (p<0.05) (Fig 1B). No significant effect of caffeine treatment on unsupported rear 

was observed [F3,30=0.45, NS] (Fig 1C). 

Effects of acute administration of ethanol on locomotion 

Figure 2 shows the effects of ethanol (0.0, 1.5, 2.5 or 3.5 g/kg) administered 10 min 

before OF test (n=40). One-way ANOVA revealed an overall effect of ethanol treatment 

on horizontal crosses [F3,39=3.75, p<0.05], supported rear [F3,39=24.11, p<0.01], and 

unsupported rear [F3,39=19.13, p<0.01]. Planned comparisons showed that ethanol 

significantly increased horizontal crosses at the dose of 2.5 g/kg (p<0.05) (Fig 2A). 

Supported rear was decreased by the highest doses of ethanol (2.5 and 3.5 g/kg, 
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p<0.01) (Fig 2B). All ethanol doses significantly decreased unsupported rear (p<0.01) 

(Fig 2C). 

 

Figure 1. Effects of acute administration of caffeine (0, 7.5, 15 or 30 mg/kg) on horizontal locomotion 
(A), supported rear (B), and unsupported rear (C) in the OF. Data are expressed as mean (±SEM) 
number of counts during 10 minutes. **p<0.01, *p<0.05 significantly different from vehicle (caffeine 0 
mg/kg) control group. 
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Figure 2. Effects of acute administration of ethanol (0, 1.5, 2.5 or 3.5 g/kg) on horizontal locomotion 
(A), supported rear (B), and unsupported rear (C) in the OF. Data are expressed as mean (±SEM) 
number of counts during 10 minutes. **p<0.01, *p<0.05 significantly different from vehicle (ethanol 0 
g/kg) control group. 
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Effects of acute administration of caffeine and ethanol on locomotion 

Figure 3 shows the effects of caffeine (0, 15 or 30 mg/kg) and ethanol (0.0, 1.5, 2.5 or 3.5 

g/kg) combination in mice (n=115) evaluated in the OF. Factorial ANOVA (Caffeine x 

Ethanol) showed an overall effect of caffeine [F2,112=11.18, p<0.01], ethanol [F3,112=59.35, 

p<0.01] and caffeine-ethanol interaction [F6,112=6.64, p<0.01] on horizontal crosses in the 

OF. Planned comparisons revealed that in caffeine 30 mg/kg treated mice, ethanol 1.5 

g/kg produced a significant increase in locomotion compared to caffeine (0 mg/kg) + 

ethanol (1.5 g/kg) treated mice (p<0.05). In addition, caffeine (15 and 30 mg/kg) + ethanol 

(2.5 g/kg) groups were significantly different from caffeine (0 mg/kg) + ethanol (2.5 g/kg) 

treated mice (p<0.01). Moreover, caffeine (0 mg/kg) + ethanol (2.5 g/kg) was significantly 

different compared to vehicle control group (p<0.01) (Fig 3A). The factorial ANOVA 

(Caffeine x Ethanol) for the variable supported rear, as a measure of vertical locomotion, 

also showed an overall effect of caffeine [F2,112=3.81, p<0.05], ethanol [F3,112=62.26, 

p<0.01] and their interaction [F6,112=2.29, p<0.05]. Planned comparisons showed that in 

vehicle treated group, caffeine 15 mg/kg increased supported rear compared to control 

(p<0.01). Among ethanol 1.5 g/kg treated mice, both caffeine (15 and 30 mg/kg) treated 

groups increased supported rearing compared to caffeine (0 mg/kg) + ethanol (1.5 g/kg) 

group (p<0.01) In addition, caffeine (0 mg/kg) + ethanol (2.5 and 3.5 g/kg) groups were 

significantly different from vehicle control group (p<0.01) (Fig 3B). Finally, the factorial 

ANOVA (Caffeine x Ethanol) for unsupported rear (Fig 3C) showed a significant effect of 

ethanol treatment [F3,112=66.89, p<0.01]. However, there was no significant effect of 

caffeine [F2,112=0.94, NS], and no significant interaction [F6,112=0.83, NS].  

Effects of caffeine administration on blood ethanol levels 

Additional mice (n=24) were used to determine whether caffeine influenced blood-

ethanol levels after motor stimulating doses. Animals received caffeine (0 or 30 mg/kg) 

and 20 min later ethanol (1.5 or 2.5 g/kg) was administered. Two-way factorial ANOVA 

(Ethanol x Caffeine) showed a significant effect of ethanol [F1,25= 326.82, p<0.01], but no 

significant effect of caffeine [F1,25=0.31, NS], nor of the interaction [F1,25=3.39, NS]. These 

data suggest that the observed behavioral effects of ethanol co-administered with 

caffeine are not due to changes in blood ethanol concentration. 
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Figure 3. Effects of acute co-administration of caffeine (0, 15 or 30 mg/kg) and ethanol (0, 1.5, 2.5 or 
3.5 g/kg) on horizontal locomotion (A), supported rear (B), and unsupported rear (C) in the OF. Mean 
(±SEM) number of counts during 10 minutes. **p<0.01, *p<0.05 significantly different from caffeine (0 
mg/kg) in the same ethanol dose group; ##p<0.01 significantly different from vehicle (caffeine 0 mg/kg + 
ethanol 0 g/kg) control group. 
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EtOH 
(g/kg) 

Caffeine (mg/kg) 

0 30 

1.5 0.89 ± 0.04 1.00 ± 0.07 

2.5 2.12 ± 0.07 2.03 ± 0.05 

Table 1. Effect of caffeine on blood ethanol levels. Mean ± SEM of blood ethanol levels (in milligrams 
per deciliter) after acute IP administration of ethanol (1.5 or 2.5 g/kg) and caffeine (0 or 30 mg/kg). 

Effects of repeated administration of ethanol on locomotion 

Figure 4 shows the effects of repeated ethanol (0 or 1.5 g/kg) administration in mice 

(n=32) during 5 sessions in alternating days. Factorial ANOVA with a between factor 

(session: 1 and 5) and a within factor (ethanol dose: 0 or 1.5 g/kg ethanol) showed a 

significant effect of treatment [F1,64=30.87, p<0.01], a significant effect of session 

[F1,64=18.15, p<0.01] and treatment x session interaction [F1,64=8.24, p<0.01]. Planned 

comparisons showed a locomotor stimulant effect of ethanol (1.5 g/kg) compared with 

vehicle treated mice in the first session (p<0.01). Ethanol treated group in session 5 was 

significantly different compared to vehicle group in the same session (p<0.01). Moreover, 

ethanol in session 5 increased locomotion compared to session 1 (p<0.01). This increase 

in locomotion over sessions was not observed in the vehicle treated groups, suggesting a 

sensitization of locomotion induced by ethanol (Fig 4A). The factorial ANOVA showed a 

significant effect of ethanol dose on supported rear [F1,64=6.42, p<0.01], no significant 

effect of session [F1,64=3.32, NS], but a significant effect of ethanol dose x session 

interaction [F1,64=4.61, p<0.05] (Fig 4B). Planned comparisons showed that although 

ethanol did not change supported rearing in session 1 when compared to the vehicle 

group, it increased the number of supported rears when administered in session 5 

compared to the vehicle group in the same session (p<0.01), and also compared to its 

administration in session 1 (p<0.05). The ANOVA for the dependent variable unsupported 

rear showed a significant effect of ethanol dose [F1,64=127.4, p<0.01], a significant effect 

of session [F1,64=21.62, p<0.01], but did not show a significant interaction [F1,64=2.60, NS] 

(Fig 4C).  
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Figure 4. Effects of repeated administration of ethanol (0.0 or 1.5 g/kg) on horizontal locomotion (A), 
supported rear (B), and unsupported rear (C) in the OF. Data are expressed as mean (±SEM) number of 
counts during 10 minutes. **p<0.01, *p<0.05 significantly different between vehicle (ethanol 0 g/kg) and 
ethanol (1.5 g/kg) in the same session. ##p<0.01 significantly different between sessions in the same 
ethanol (1.5 g/kg) group. 
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Effects of acute administration of caffeine on ethanol-induced locomotor 
sensitization 

Figure 5 shows the effects of an acute administration of caffeine on ethanol (1.5 g/kg)-

sensitized mice. Two days after the last drug administration, animals received an acute 

administration of caffeine (0, 15 or 30 mg/kg) in order to observe if there was a cross-

sensitization effect. The factorial ANOVA; previous ethanol treatment (0 or 1.5 g/kg) x 

caffeine dose (0, 15 or 30 mg/kg) showed an overall effect of previous ethanol dose 

[F1,65=11.48, p<0.01], caffeine dose [F2,65=25.45, p<0.01] and also a significant effect of 

their interaction [F1,65=3.82, p<0.05] on horizontal locomotion (Fig 5A). The same pattern 

of results was observed on supported rear (Fig 5B) [F1,65=9.66, p<0.01; F2,65=29.28, 

p<0.01; F1,65=3.25, p<0.05, respectively] and unsupported rear (Fig 5C) [F1,65=4.87, p<0.05; 

F2,65=10.90, p<0.01; F1,65=5.36, p<0.01, respectively]. Planned comparison showed a 

stimulant effect of caffeine at both doses (15 and 30 mg/kg) in the ethanol (0 g/kg) 

pretreated group (p<0.01). Only the dose of 15 mg/kg of caffeine induced locomotion in 

the ethanol (1.5 g/kg) pretreated group (p<0.01). Interestingly, caffeine at the highest 

dose (30 mg/kg) significantly decreased locomotion in animals pretreated with ethanol 

(1.5 g/kg) when compared to the effect of this dose of caffeine in the ethanol (0 g/kg) 

pretreated group (p<0.01) (Fig 5A). The effect of caffeine on supported rear showed a 

similar pattern of effects. Caffeine increased supported rear at both doses (15 and 30 

mg/kg, p<0.01 and p<0.05, respectively) in the ethanol (0 g/kg) pretreated group. 

However, only caffeine 15 mg/kg significantly increased this variable in the ethanol 

pretreated group (p<0.01). Caffeine 30 mg/kg decreased supported rear in the ethanol 

(1.5 g/kg) pretreated group compared to its effect in the ethanol (0 g/kg) pretreated 

group (p<0.05) (Fig 5B). Finally, caffeine 15 mg/kg increased unsupported rear in the 

ethanol (1.5 g/kg) pretreated group, but at the highest dose (30 mg/kg) significantly 

decreased this variable (p<0.05). Moreover, the effect of caffeine 30 mg/kg in the ethanol 

(1.5 g/kg) pretreated group was significantly different to the effect observed in the 

ethanol (0 g/kg) pretreated group (p<0.01). 
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Figure 5. Effects of caffeine (0, 15 or 30 mg/kg) in mice treated with ethanol (0 or 1.5 g/kg) in previous 
days on horizontal locomotion (A), supported rear (B) and unsupported rear (C) in the OF. Data are 
expressed as mean (±SEM) number of counts during 10 minutes. **p<0.01, *p<0.05 significantly 
different from vehicle in the same pretreatment group. ##p<0.01, #p<0.05 significantly different from the 
same dose of caffeine in animals that received vehicle in previous sessions. 
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Effects of caffeine on the expression of ethanol-elicited pERK and 
pDARPP32(Thr75) in the nucleus accumbens  

Figure 6 shows the effects of caffeine (0, 15 or 30 mg/kg) administered 20 min before of 

administration ethanol (0 or 1.5 g/kg) on the number of pERK- and pDARPP-32(Thr75)-

positive neurons in the AcbC and AcbSh. Immunoreactivity levels were analyzed 

separately for Acb subregions. One-way ANOVA on the number of pERK–positive cells 

revealed an overall effect of treatment on AcbC [F3,22=10.18; p<0.01] and AcbSh 

[F3,22=5.69; p<0.01] (Fig 6A). Planned comparison’s analysis showed a significant increase 

on pERK expression after caffeine (0 mg/kg) + ethanol (1.5 g/kg) treatment relative to 

caffeine (0 mg/kg) + ethanol (0 g/kg) groups in the AcbC and AcbSh (p<0.01). 

Furthermore, the administration of caffeine (15 and 30 mg/kg) + ethanol (1.5 g/kg) was 

significantly different from caffeine (0 mg/kg) + ethanol (1.5 g/kg) in the AcbC and AcbSh 

(p<0.01, both cases). Conversely, one-way ANOVA did not revealed a significant effect of 

caffeine (0 mg/kg) + ethanol (1.5 g/kg) nor a significant effect of co-administration of 

caffeine (15 and 30 mg/kg) + ethanol (1.5 g/kg) on the number of pDARPP-32(Thr75)–

positive cells in the AcbC [F3,24=0.29; NS] and AcbSh [F3,24=0.27; NS] (Fig 6B). 
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DISCUSSION 
In the present studies, using male CD-1 mice, we investigated the acute interaction of 

caffeine and ethanol, two of the most widely used psychoactive drugs, on different 

measures of locomotor exploration in an open field; horizontal and vertical locomotion. 

Moreover, vertical locomotion was separated in two measures; one more dependent on 

postural coordination (non-supported rearing), and another less so (wall-supported 

rearing). The biphasic effects of ethanol on locomotion have been widely known, both in 

mice (Phillips & Shen 1996; Correa et al. 2001a; Karlsson & Roman 2016), but also in rats 

Figure 6. Effects of acute administration of caffeine on the expression of ethanol-elicited pERK and 
pDARPP-32(Thr75)-positive neurons in the Acb. Data are expressed as mean (±SEM) of the number of 
positive neurons/mm2. Right upper parts: effect of caffeine acute treatment (0, 15 and 30 mg/kg) on the 
expression of pERK (A) and pDARPP-32(Thr75) (B) positive neurons in mice treated with ethanol (0, 1.5 g/kg). 
Left upper part: diagram of a coronal section with bregma coordinates from Franklin and Paxinos (2001) 
showing location of the brain areas for pERK and pDARPP32(Thr75) immunoreactivity counting. Lower part: 
photomicrographs of pERK and pDARPP-32(Thr75) staining in AcbC and AcbSh from representative mice in 
each treatment group. Low power images (20X). **p<0.01 significantly different from vehicle (caffeine 0 
mg/kg + ethanol 0 g/kg) groups in the AcbC and AcbSh. ##p<0.01 significantly different from caffeine (15 
and 30 mg/kg) + ethanol (1.5 g/kg) groups in the AcbC and AcbSh. 

Ac
bC

 
Ac

bS
h 

B 

Bregma 1.10 
 



106 
 

after central administration (Correa et al. 2003a b). Thus, at low doses, ethanol has 

stimulatory effects, whereas at high doses prevails the suppressant effect on locomotion 

(Correa et al. 2001b; Chuck et al. 2006), and then ataxia, incoordination and sedation 

predominate (Correa et al. 2001b; Chuck et al. 2006). Furthermore, the biphasic nature of 

caffeine on general locomotion has previously been described in mice (El Yacoubi et al. 

2003; Zhang et al. 2011; López-Cruz et al. 2014) although only very high doses of caffeine 

(100 mg/kg), much higher than the ones used in the present study, suppress locomotion 

(Zhang et al. 2011). Accordingly, in the present studies, the acute intraperitoneal 

administration of caffeine or ethanol showed a dose dependent effect on locomotion, 

with low and moderate doses (caffeine 7.5 and 15 mg/kg, and ethanol 2.5 g/kg) 

stimulating, and high doses (caffeine 30 mg/kg and ethanol 3.5 g/kg) reducing horizontal 

locomotion compared to the vehicle group. Furthermore, caffeine showed a bell-shaped 

dose response curve inducing stimulant effects on supported rear at low and moderate 

doses (7.5 and 15 mg/kg), but not at the highest (30 mg/kg) dose used, whereas ethanol 

dose dependently decreased both types of rearing. Interestingly, the acute administration 

of both drugs revealed that stimulant (15 mg/kg) and non-stimulant (30 mg/kg) doses of 

caffeine enhanced locomotion in mice treated with low and moderate (1.5 and 2.5 g/kg, 

respectively) doses of ethanol. Remarkably, caffeine (30 mg/kg) increased horizontal 

locomotion and supported rearing in interaction with a dose of ethanol (1.5 g/kg) that 

administered alone was not stimulatory. However, at the highest dose of ethanol (3.5 

g/kg) caffeine was not able to reverse ethanol’s effects in any of the three locomotion 

parameters. Our results are similar to previous results, in terms of the drug combination; 

caffeine in interaction with low doses of ethanol (1.75 g/kg) potentiates stimulation and 

at higher doses (2.5 and 3.25 g/kg) potentiates reduction in locomotion (Hilbert et al. 

2013). Thus, the synergistic activity of the two substances is revealed at low doses, while 

if one of the two is particularly high the antagonistic effect prevails and even at higher 

doses there is a potentiation in suppression of locomotion (Waldeck 1974; Hilbert et al. 

2013). For example, 100 mg/kg of caffeine totally suppresses the locomotor activity 

induced by a low dose of ethanol (1 g/kg) (Waldeck 1974). In our study, a high dose of 

ethanol (3.5 g/kg) co-administered with moderate doses of caffeine (15 or 30 mg/kg) 

produced even a deeper suppression of locomotion. In addition, in terms of coordination, 

the oral administration of low dose of caffeine (10 mg/kg) reduced ethanol induced-ataxia 
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(Kuribara et al. 1992) and local intracerebroventricularly administration of caffeine at low 

doses (less than 25 micrograms) dose-dependently reduced ethanol-elicited 

incoordination in mice, while a high dose (75 micrograms) potentiated it (Dar 1988). 

In addition, we evaluated the impact of acute administration of caffeine on ethanol-

induced sensitization of those exploration parameters after repeated administration. This 

phenomenon is defined as a progressive increase of motor response measured as a 

behavioral consequence of a repeated ethanol exposure (Camarini & Pautassi 2016). 

There are very few evidences of cross-sensitization between ethanol and caffeine after 

repeated intragastric administration of both drugs which induced significantly greater 

locomotor sensitization than the substances alone (May et al. 2015). However, in our 

experiment, the repeated administration of a low dose of ethanol (1.5 g/kg) induced 

locomotor and supported rearing sensitization, and the acute administration of caffeine 

on ethanol (1.5 g/kg)-induced sensitization increase locomotion only at 15 mg/kg dose, 

whereas the highest dose (30 mg/kg) significantly decreased locomotion in animals that 

had been repeatedly exposed to ethanol in previous days, when compared with the effect 

of this dose of caffeine in the vehicle pretreated group. The impact of caffeine on 

supported rear showed a similar pattern of effects. Furthermore, although both doses of 

caffeine increased unsupported rear in naïve animals, in the ethanol pretreated group 

caffeine at the highest dose (30 mg/kg) significantly decreased this variable compared to 

vehicle. Thus, a non-stimulant dose of caffeine (30 mg/kg) totally blocked or produced 

suppression in all behavioral parameters in ethanol sensitized animals. 

These behavioral effects induced by the interaction of caffeine and ethanol can be due 

to neurobiological mechanisms involving neurotransmission systems common to the 

two substances. Thus, the dopaminergic and adenosinergic systems are the ones more 

evidently affected by ethanol and caffeine. The stimulatory effect of ethanol can be 

related to an increase in dopaminergic stimulation in the nucleus accumbens (Di Chiara 

& Imperato 1988; Ibba et al. 2009), whereas caffeine seems to act as a non-selective 

A1/A2A receptor antagonist and, as such, mediates its stimulant (Ferré 2008; Pardo et 

al., 2013), anxiogenic (Correa & Font 2008) and motivational effects (López-Cruz et al. 

2018). The colocalization of adenosinergic and dopaminergic receptors in brain striatal 

areas, such as nucleus accumbens (Acb), reflects a possible functional interaction and 
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can converge on common mechanisms, such as intracellular signaling cascades with 

opposite effects (Fuxe et al. 2003; Ferré 2008). 

Finally, as we have previously observed (Ibba et al. 2009), ethanol significantly 

increased postsynaptic intracellular markers related to DA signaling; the 

phosphorylated ERK and this ethanol-induced increase in markers of DA-related signal 

transduction were significantly reversed by caffeine at stimulant and non-stimulant 

doses. In contrast, pDARPP-32(Thr75) was not affected by any of the pharmacological 

manipulations, indicating that ethanol, at least under the present conditions, does not 

seem to change DA function in Acb. Caffeine at stimulant dose (15 mg/kg) in mice has 

previously demonstrated to suppress the increase in pDARPP-32(Thr34) produced by a 

DA depleting agent (tetrabenazine, TBZ) using western blotting (López-Cruz et a., 

2018). Also in rats, using immunohistochemistry, DA suppression potentiate 

phosphorylation of DARPP-32 (-Thr75 and -Thr34) in Acb shell and core, but in 

different populations of neurons (Nunes et al, 2013).  

The effects of caffeine on DA release in Acb are not very conclusive. In microdialysis 

experiments it has been shown that caffeine can elicit DA release in the shell of Acb 

(Solinas et al. 2002), and in the medial prefrontal cortex (Acquas et al. 2002), although 

not in the core of Acb (Acquas et al. 2002). Caffeine, as nonselective adenosine 

antagonist, can interact with both of adenosine receptors, that are co-localized with DA 

receptors in striatal medium spiny neurons. Both sets of receptors interact in an 

antagonistic way; agonism of dopamine D1 and D2 receptors leads to actions on the 

metabotropic cascade that are opposite to those produced by stimulation of adenosine A1 

and A2A receptors respectively (Svenningsson et al. 1999). Thus, in a direct or in an 

indirect way, caffeine can have similar effects on the mesolimbic circuit to drugs that act 

on the dopaminergic systems. Caffeine seems to act predominantly in A1 receptors (Ferré 

2008), leading to increase phosphorylation of DARPP-32 at Thr34. These receptors are 

widely distributed in the brain, but in Acb they are colocalized with D1 receptors typically 

located in Substance P containing medium spiny neurons (Svenningsson et al. 1999; 

Segovia et al. 2012; Nunes et al. 2013). Conversely, blockade of adenosine A2A receptors 

results in increased phosphorylation of DARPP-32 at Thr75 (Lindskog et al. 2002), in 

enkephalin containing neurons (Nunes et al. 2013). In the present results, an increase in 
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pDARPP32(Thr75) expression was not observed after the administration of ethanol, or 

after co-administration of caffeine plus ethanol. Is also possible that, ethanol at high 

doses or when enough time has elapsed can increase adenosine levels (Carmichael et al. 

1991; Diamond & Gordon 1994) and this purine is the endogenous agonist for adenosine 

receptors. If ethanol at 1.5 g/kg had induced potentiation of adenosine synthesis it would 

lead to a stimulation of A1 receptor activity by adenosine, which in turn would have 

increased pDARPP32(Thr75). In previous studies, ethanol at this dose but in rats which are 

much more sensitive to ethanol sedative and ataxic effects, was shown to increase 

phosphorylation of DARPP-32 at Thr34 in striatum (Nuutinen et al. 2011) pointing to an 

increase in adenosine formation and action on A1 receptors. Those receptors are widely 

distributed in the brain; thus, it is possible that the stimulating effects of this drug are not 

mediated by Acb actions. 

In summary, despite the popular assumptions about the ability of caffeine in energy 

drinks to counteract the impact of alcohol, the potential dangers of combining high-

caffeine “energy” drinks with ethanol have been demonstrated using the animal 

models employed in the present experiments. Our results have confirmed how 

caffeine can exacerbate the already disruptive effects of ethanol, and have identified 

at least one potential brain area, the nucleus accumbens, in which caffeine and 

ethanol interact to modulate behavior. This brain region also appears to be very 

important for the regulation of behavioral processes involved in ethanol seeking 

behavior and consumption, which can lead to phenomena such as ethanol 

dependence, abuse and addiction. 
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GENERAL DISCUSSION 
The present doctoral thesis was aimed at investigating the significance of the role of 

Extracellular signal-regulated kinase (ERK) expression and in broader perspective of the 

involvement of the ERK/MAPK signaling cascade in the behavioral and biochemical 

effects of ethanol. This aim was pursued through different behavioral and biochemical 

approaches: the behavioral one utilized the place conditioning paradigm (chapters 1 

and 2) and the assessment of locomotor activation (chapter 3); the biochemical 

approach was based on the immunohistochemical quantification of the 

phosphorylation of ERK-positive neurons in several areas of the addiction circuitry 

(chapters 1-3). 

Addiction can be considered as a result of molecular and cellular adaptations that take 

place in neurons of specific brain areas following repeated exposure to drugs of abuse 

(Nestler 2001). The involvement of phosphorylated ERK (pERK) in the action of 

addictive drugs has been widely demonstrated (Valjent et al. 2000, 2004; Cahill et al. 

2014; Sun et al. 2016). Accordingly, although still to be fully understood, ERK/MAPK 

pathway may be considered as a strategic tool through which these substances exert 

their addictive potential, generating neuronal changes that may underlie the onset of a 

series of pathological process which can evolve in addiction (Valjent et al. 2000, 2004). 

This signaling pathway is characterized by a phosphorylation cascade, among which 

key protagonists are the protein kinases ERK and MEK responsible of ERK’s activation. 

ERK, in turn, by activating transcription factors and early genes such as c-fos (Brami-

Cherrier et al. 2005), appear to be essential components to exert protein synthesis, 

changes in gene expression, stabilization of dendritic spines implicated in synaptic 

plasticity and memory formation (Sweatt 2004). Thus, ERK result important regulators 

of neuronal function and activity. Accordingly, several studies have correlated these 

biochemical markers with learning paradigms, such as conditioned taste aversion 

(Marotta et al. 2014), fear conditioning (Atkins et al. 1998; Villarreal & Barea-Rodriguez 

2006), spatial learning (Blum et al. 1999; Selcher et al. 1999), recognition memory 

(Kelly et al. 2003), appetitive-reward seeking behavior (Kirschmann et al. 2014) and 
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drug-elicited place conditioning (Valjent et al. 2000; Gerdjikov et al. 2004; Girault et al. 

2007; Spina et al. 2010; Longoni et al. 2011; Rosas et al. 2018).  

ERK phosphorylation has also been reported to be activated, in a dose-dependent 

manner, in the core and shell of nucleus accumbens (Acb) and in the nuclei of 

extended amygdala (bed nucleus of stria terminalis and central nucleus of the 

amygdala), by ethanol through a mechanism mediated by dopaminergic D1 receptors 

(Ibba et al. 2009). However still occurs, to date, a number of unanswered questions 

regarding, in particular, whether and in which brain regions ERK are involved in the 

effects conditioned to ethanol as well as whether the association of ethanol with other 

psychotropic substances also extends involving ERK at the basis of their behavioral 

effects. In this regard, recent evidence, both on the experimental (López-Cruz et al. 

2013) and on the clinical and epidemiological sides (Marczinski & Fillmore 2014; 

Kristjansson et al. 2015), reveals increasing interest on the combination of ethanol 

with the most consumed legal psychostimulant in the world, caffeine, often considered 

in the composition of “energy drinks”, as a consequence of the increasingly popular 

belief that this substance could decrease the adverse effects of ethanol in terms of 

motor impairment and narcosis (Hasenfratz et al. 1993; Drake et al. 2003; Attwood et 

al. 2012). Therefore, in the perspective of the general aim of this work as defined 

above, we considered also critical to investigate the pharmacological consequences of 

the interaction between caffeine and ethanol in terms of motivational, locomotor and 

motor coordination effects and, also, in the perspective of the impact of such 

interaction on ERK expression in different brain regions. 

In chapter 1 we described our investigation on the role of MEK/ERK cascade by 

studying to what extent these intracellular kinases are involved in the process of 

acquisition and expression of ethanol-elicited place conditioning. In particular, to 

investigate a possible differential involvement of this pathway in the acquisition and 

expression of the positive (conditioned place preference, CPP) and negative 

(conditioned place aversion, CPA) memories associated with ethanol (the 

unconditioned stimulus, US), we have chosen to adopt two distinct and appropriate 

behavioral schedules (Spina et al. 2015; Rosas et al. 2017) by which ethanol could 

result able, as a single US, to prompt two opposite effects, CPP or CPA. The results 
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disclosed, as a consequence of the systemic administration the blood brain barrier-

penetrant compound, SL327, unable to affect other kinases such as protein kinase A 

(PKA) or Ca2+/calmodulin-dependent protein kinase II (CAMKII) (Atkins et al. 1998; 

Selcher et al. 1999), a differential involvement of the MEK/ERK pathway in the effects 

of ethanol. In particular, SL327 (50 mg/kg) significantly prevents the acquisition of 

ethanol-elicited CPP, whereas its administration (50 and 100 mg/kg) fails to prevent, 

although significantly reducing, the acquisition of ethanol-elicited CPA. The result of 

CPP acquisition experiment is in agreement with previous data that showed the ability 

of different MEK inhibitors to impair the ability of this kinase of transferring ethanol’s 

affective value to conditioned stimuli (Valjent et al. 2000, 2001; Salzmann et al. 2003; 

Gerdjikov et al. 2004; Spina et al. 2010). Furthermore, the results of the expression 

experiments reveal that SL327 (50 and 100 mg/kg) is able to significantly reduce the 

expression of ethanol-elicited CPP, but not that of CPA. Moreover, the observation 

that SL327 (50 and 100 mg/kg) significantly reduces the expression of ethanol-CPP is in 

agreement with previous studies showing that MEK inhibitors could prevent retrieval 

of cocaine-(Miller & Marshall 2005) and morphine (Lin et al. 2010)-elicited CPP and 

with the observation that presentation of conditioned stimuli, either in CPP (Nygard et 

al. 2015) and in operant self-administration (Radwanska et al. 2008; Peana et al. 2013; 

Faccidomo et al. 2015) is related to the enhancement of phosphorylated ERK 

expression. Conversely, we found, in agreement with previous studies (Longoni et al. 

2011), that SL327 administration (50 and 100 mg/kg) fails to prevent the expression of 

ethanol-elicited CPA. The interpretation of the role of ERK in these conditioning effects 

is supported by the immunohistochemistry experiments demonstrating that pre-

treatment with SL327 prevents the increases of pERK-positive neurons elicited by 

ethanol in the prefrontal cortex, Acb core and shell and in other nuclei of extended 

amygdala. Interestingly, as mentioned above, the MEK/ERK pathway is involved also in 

ethanol self-administration experiments (Faccidomo et al. 2009) as pERK expression 

has been demonstrated in the Acb, medial prefrontal cortex and nuclei of amygdala 

(Faccidomo et al. 2015) upon ethanol oral self-administration supporting the 

hypothesis of the present dissertation that this kinases’ cascade is preferentially 

implicated in the positive reinforcement of ethanol. Overall, the first experimental 

study of this thesis work reveals that the acquisition phase of a behavior conditioned 
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to a US, i.e. the initial phase in which learning is established, seems to be more 

sensitive to the interruption of the MEK/ERK pathway than the expression phase 

(presentation of the CS after learning the US-CS association). Similarly, appetitive 

motivation (place preference) discloses a preferential sensitivity of a modulation of 

this pathway with respect to aversive motivation (place aversion), an observation that 

further highlights the complexity of the involvement of this pathway in ethanol-

sustained associative learning. 

In chapter 2 we studied the effects of pretreatment with caffeine on ethanol-elicited 

place conditioning with the aim of exploring the consequences of their interaction in 

terms of motivational properties, a subject of great translational valence, that is still 

inadequately investigated. In fact, very little is known about the pharmacological 

outcome of this interaction when using doses of ethanol that result in frank 

motivational effects devoid of serious intoxicative consequences and of caffeine, at 

doses with uncertain motivational effect (Liu et al. 2008) and considered in the low to 

moderate range to elicit behavioral activation (Zhang et al. 2011). Furthermore, in this 

chapter we also assessed the results of their combination in terms of pERK expression 

in different areas of the addiction circuity as well as in terms of the ability of stimuli 

conditioned to ethanol or to caffeine and ethanol (i.e. upon the expression of ethanol-

elicited CPP and CPA) to elicit ERK phosphorylation in those brain regions. Notably, 

ethanol and caffeine act in opposite manner on the adenosinergic system: the 

neuromodulator adenosine controls several mechanisms such as neuronal excitability 

and neurotransmitter release, and the combination of these substances is reflected in 

the modulation of multiple behavioral effects (López-Cruz et al. 2013). However, the 

literature does not provide sufficient information about the results of pre-treatment 

with caffeine on ethanol place conditioning and especially with reference to the 

aversive (negative motivational) effects of ethanol (CPA) there is a total lack of data. 

The results of these place conditioning experiments showed that caffeine (3 and 15 

mg/kg) was devoid of conditioning effects while, in agreement with previous reports 

(Cunningham et al. 2003; Spina et al. 2015; Rosas et al. 2017), ethanol (2 g/kg) elicited 

significant CPP and CPA. Moreover, caffeine (15 mg/kg) significantly prevented 

ethanol-elicited CPP and, at both doses (3 and 15 mg/kg), significantly impaired 
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ethanol-elicited CPA. These findings suggest that low and intermediate doses of 

caffeine are able to interfere with the acute effects of ethanol, expressed in the place 

conditioning paradigm, by preventing the establishment of the conditioned association 

and therefore by blocking such ethanol-induced acquisition of CPP and CPA. We 

postulate that these results can be referred to the antagonistic actions exerted by 

caffeine on A1 and A2A receptors. This hypothesis is supported by the results of the 

acute administrations in the immunohistochemical experiments in which caffeine at 

both doses also prevented ethanol-elicited increased pERK expression in all brain areas 

examined. Specifically, also on the basis of the observation made by Ibba et al. (2009) 

that ethanol-elicited ERK expression is mediated by dopaminergic D1 receptors, it is 

likely to assume that caffeine exerts the described antagonistic effect on ethanol-

elicited acquisition of conditioned responses by acting onto A1 adenosine receptors are 

colocalized with dopamine D1 receptors (Svenningsson et al. 1999; Nunes et al. 2013). 

Future experiments devoted to test this hypothesis will allow to confirm or reject this 

possibility. 

Furthermore, the set of results referred to the expression of ethanol-elicited CPP and 

CPA indicated that ethanol-conditioned stimuli, either positive (CPP) or negative (CPA), 

have a different impact on the expression of ERK phosphorylation. In particular, the 

‘’identical’’ US, but with opposite motivational properties, is able to increase the 

expression of ERK in the core and shell of Acb as well as in other brain regions of the 

extended amygdala in opposite manner, in agreement with previous studies of our 

laboratory in which the expression of lithium-induced CPA is not associated to 

increased pERK expression in the Acb (Longoni et al. 2011). In this study, 

unfortunately, the expression of pERK was determined only in the Acb and dorsal 

striatum and therefore we cannot extend the agreement of the interpretation of the 

present data also to other brain regions. However, pERK increases were detected in 

others nuclei of extended amygdala suggesting an involvement of these structures in 

stimulus-stimulus learning and in negative reinforcement (McDonald et al. 2010; Pati 

et al. 2019; Wscieklica et al. 2019). In summary, the findings of the second chapter 

demonstrated that caffeine is unable of eliciting pERK expression but interferes with 

both positive (CPP) and negative (CPA) properties of ethanol. This finding is also 
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supported by the dissociation between the behavioral expression of CPP and CPA and 

the differential anatomical localization of pERK expression (Acb in case of CPP 

expression and bed nucleus of stria terminals, central and basolateral nuclei of the 

amygdala in case of CPA). We postulate that these effects could be due to the 

functional antagonistic actions exerted by caffeine and ethanol on adenosinergic 

system as well as to the antagonistic effect of caffeine onto A1 adenosine receptors. 

These interpretations need to be corroborated by future experiments. 

Finally, in chapter 3 we examined the consequences of caffeine and ethanol 

interaction by exploring the results in terms of locomotor activation and motor 

coordination. The rationale at the basis of these experiments was the clinical 

observation of frequently consumed caffeine with ethanol in order to reduce its 

psychomotor slowing, sedation and motor incoordinating effects. We used an open 

field to test novelty-induced exploration expressed as horizontal and vertical 

locomotion. This last parameter was further distinguished into two measures: one 

more dependent on postural coordination (i.e.: non-supported rearing) and another 

less so (i.e.: wall-supported rearing). Furthermore, we also evaluated the expression of 

another biochemical marker of dopamine signaling, upstream of activation of pERK, 

the Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) 

phosphorylated at Threonine75 site (pDARPP-Thr75).  

The biphasic effects of caffeine and ethanol have been widely described in literature 

(Phillips & Shen 1996; Correa et al. 2001a b, 2003a b; El Yacoubi et al. 2003; Zhang et al. 

2011; López-Cruz et al. 2014; Karlsson & Roman 2016). However, there is a lack of data on 

further parameters concerning locomotion such as postural stability while the effects of 

caffeine on ethanol-induced sensitization require further investigation. The results of the 

present experiments revealed that, acutely, low and moderate doses of caffeine (7.5 and 

15 mg/kg) and a moderate dose of ethanol (2.5 g/kg) stimulate the horizontal locomotion 

whereas high doses of caffeine (30 mg/kg) and ethanol (3.5 g/kg) reduce it. Moreover, 

ethanol decreased both types of rearing whereas caffeine (7.5 and 15 mg/kg) increased 

only wall-supported rearing. Interestingly, the acute drugs combination showed that 

stimulant (15 mg/kg) and non-stimulant (30 mg/kg) doses of caffeine enhanced 

locomotion in mice treated with the stimulant (2.5 g/kg) dose of ethanol but did not 
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affect the supported rearing. In addition, a non-stimulant dose of caffeine (30 mg/kg) 

increased horizontal locomotion and supported rearing with the lowest and non-

stimulant dose of ethanol (1.5 g/kg). On the contrary at the highest dose of ethanol (3.5 

g/kg) caffeine (30 mg/kg) was not able to reverse the ethanol’s ataxic effect in any of the 

locomotion parameters. These results suggest that caffeine potentiates locomotion at 

stimulant doses of ethanol but at higher doses or after suppression of locomotion, 

caffeine at medium to high doses potentiates the incoordinating effects of ethanol. 

Hence, although this synergistic or antagonist dose-dependent effect of these substances 

was reported in the literature (Waldeck 1974; Dar 1988; Kuribara et al. 1992; Phillips & 

Shen 1996; Marin et al. 2011; Hilbert et al. 2013; López-Cruz et al. 2013) showing that 

only very high doses of caffeine (100 mg/kg) suppress locomotion (Zhang et al. 2011), this 

study for the first time evaluates the impact of the combined treatment of stimulant and 

non-stimulant doses of the two drugs on horizonal and vertical locomotion. Furthermore, 

we examined also the effects of caffeine pre-treatment (15 and 30 mg/kg) on mice 

previously sensitized to ethanol (1.5 g/kg), to investigate possible cross-sensitization 

effects. The results, compared to those from ethanol naïve mice, disclosed that the 

stimulant dose of caffeine (15 mg/kg) blunted the stimulating effects of ethanol whereas 

the non-stimulant (30 mg/kg) dose of caffeine produced suppression of locomotion in 

ethanol sensitized mice. Notably, and in contrast, this high dose of caffeine (30 mg/kg) 

when administered in combination with ethanol (at the dose of 1.5 g/kg) to non-

sensitized animals was able to increase horizontal locomotion and supported rearing. 

Thus, when caffeine is administered at high doses not only fails to reverse the impairing 

effects of ethanol, but in ethanol-experienced mice has a blunting or even impairing 

effect on horizontal and vertical exploration. Finally, the results of immunohistochemical 

experiments revealed that, in line with previous studies (Ibba et al. 2009), ethanol is able 

to significantly induce pERK-expression in the Acb core and shell and that combination 

with caffeine at both doses (15 or 30 mg/kg) significantly reversed this increase. 

Accordingly, caffeine resulted in a reduction of ethanol-induced ERK expression that, 

similarly to our previous speculation on data of chapter 2, we hypothesize to be mediated 

by D1 receptors.  This possibility would also be in agreement with the suggestion of the 

preponderant role of A1 receptors in these effects of caffeine, which may be a key 

element in the regulation of the caffeine-mediated modulation of ethanol-induced 
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behavioral activation. On the contrary, there was no significant effect on pDARPP-

32(Thr75). 

In conclusion, with the experiments of this doctoral thesis we aimed at investigating 

the differential involvement of ERK in a number of experimental conditions related to 

direct and conditioned effects of ethanol, as well as in relation to the effects of ethanol 

after a previous administration of caffeine. Using ethanol-elicited place conditioning 

we assessed not only the ability of MEK blockade to interfere with learning the 

association between US and CS (acquisition) but also the possibility that MEK blockade 

may also affect the behavioral performance evoked by the presentation of either the 

CS+ associated to positive, reinforcing effects of ethanol and the CS+ associated to 

negative, aversive effects of ethanol (that is, associated to the expression of CPP and 

CPA, respectively). Strikingly, these effects of ERK/MAPK kinase pathway result in a 

differential involvement of the expression of this phosphorylated kinase in different 

brain regions (nucleus accumbens core and shell vs bed nucleus of stria terminalis, 

central and basolateral amygdala). Overall, these studies suggest a different and 

complex involvement of the MEK/ERK pathway in associative learning and in the 

expression of conditioned responses. Furthermore, we also examined the effects of 

ethanol and caffeine interaction to explore the consequences on the motivational 

properties of ethanol assessed in the place conditioning model. The results of these 

experiments also indicate that the administration of caffeine at appropriate doses 

prevents the manifestation of the motivational properties of ethanol and suggest that 

its ability to induce pERK expression could be prevented by caffeine through the 

blockade of adenosinergic A1 receptors. Finally, the results of the experiments that 

evaluated locomotion demonstrate that caffeine does interact in a complex way with 

the effects of stimulant and non-stimulant doses of ethanol, sometimes increasing the 

impairing and sometimes blunting the stimulatory effect of ethanol on behavior.  

Overall, the impact of the translational value of these findings resides in the significant 

contribution toward the clarification of the complex interaction between caffeine and 

ethanol that is mostly highlighted by the dangerousness toward public safety of their 

prejudice-based use. 
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