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1.1 English version 
 

         During endurance exercise, Tsk plays a fundamental role in body temperature 

regulation. Environmental temperature is the biggest determinant of Tsk, which is the 

result of the balance between metabolic heat production and heat dissipation to the 

environment. During exercise, Tsk response might be influenced by oxygen 

consumption (VO2peak) and the metabolic flexibility, both powerful predictors of aerobic 

performance. Increased skin thermoregulatory capacity and FATox rates are 

characteristics of highly trained athletes, while decreased oxidative capacity and Tsk 

rates and higher [La-] concentrations are characteristics of individuals with low aerobic 

capacity, at the same absolute submaximal exercise intensities. The purpose of this 

project was to analyze and compare the dynamic of Tsk in different populations with 

different metabolic responses during an incremental maximal stress treadmill test. For 

this purpose, we performed two studies. The first study analyzed and compared the 

correlation between Tsk and cardiorespiratory variables in high fit  (HF) (n= 35; VO2peak 

= 56.62 ± 4.31 ml/kg/min) and moderately fit MF (n = 44; VO2peak = 47.86 ± 5.29 

ml/kg/min) male endurance runners during an incremental test with stages of 2 mins 

until exhaustion, followed by a recovery period of five minutes. The second study 

analyzed and compared the correlation between Tsk and metabolic flexibility by 

measuring [La
-
] concentrations along with FATox and CHOox rates in high trained 

(HT) (n= 22; VO2peak = 58.57 ± 2.33 ml/kg/min) competitive endurance runners, 

moderately active (MA) (n= 20; VO2peak = 49.07 ± 4.67 ml/kg/min) runners and 

professional soccer (PS) (n= 23; VO2peak = 53.34 ± 3.67 ml/kg/min) players during an 

incremental maximal test with stages of 3 mins until exhaustion, followed by a recovery 

period of five minutes. Results of the first study revealed that the MF group exhibited 

lower VO2peak, speedpeak, Ventilation (VE) and higher body mass index (BMI) and fat 

mass % than the HF group (all p < 0.001). Tsk was significantly higher at baseline, and 

at 60% and 70% of peak workload (all p < 0.05). Results of the second study revealed 

that MA group exhibited lower VO2peak, speedpeak, and higher BMI and fat mass % (all p 

< 0.05) than both HT and SP groups. There were correlations between Tsk with FATox 

and CHOox rates and [La-] concentrations for all data points of all groups (all p < 

0.001). These findings indicate that higher VO2peak and FATox rates and lower [La-] 
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concentrations were associated with increased Tsk during incremental maximal exercise 

across individuals of widely different metabolic capabilities. These differences should 

be taken into account in the training and nutritional strategies for enhancing endurance 

and team sports. 

 

1.2 Versión en castellano 
 

        Durante el ejercicio aeróbico, la temperatura cutánea (Tsk) juega un rol 

fundamental en la regulación de la temperatura corporal. La temperatura ambiental es el 

mayor determinante de la Tsk, la cual es el resultado del equilibrio entre la producción 

metabólica de calor y la disipación de calor hacia el ambiente. Durante el ejercicio, la 

respuesta de la Tsk puede estar influenciada por el consumo de oxígeno (VO2peak) y por 

la flexibilidad metabólica, ambos potentes predictores del rendimiento aeróbico. La 

capacidad elevada de termorregulación cutánea y la tasa de FATox son características 

en atletas altamente entrenados, mientras que una capacidad oxidativa disminuida, 

menores valores Tsk y mayor concentración de [La-] son característicos de individuos 

con una baja capacidad aeróbica, en una misma intensidad de ejercicio sub-máximo 

absoluto. EL objetivo de este proyecto fue el de analizar y comparar la dinámica de la 

Tsk en diferentes poblaciones con diferentes respuestas metabólicas durante una prueba 

de esfuerzo incremental máxima sobre una cinta de correr. Para este propósito se 

desarrollaron dos estudios. El primer estudio analizó y comparó la correlación entre la 

Tsk y las variables cardio-respiratorias en varones corredores de fondo con una alta 

condición física (HF) (n= 35; VO2peak = 56.62 ± 4.31 ml/kg/min) y con una condición 

física moderada (MF) (n = 44; VO2peak = 47.86 ± 5.29 ml/kg/min) durante un test 

incremental con periodos de 2 minutos hasta el agotamiento, seguido de un periodo de 

recuperación de 5 minutos. El segundo estudio analizó y comparó la correlación entre la 

Tsk y la flexibilidad metabólica midiendo la concentración de [La
-
] junto con la tasa de 

FATox y CHOox corredores de competición altamente entrenados (HT) (n= 22; VO2peak 

= 58.57 ± 2.33 ml/kg/min), corredores moderadamente activos (MA) (n= 20; VO2peak = 

49.07 ± 4.67 ml/kg/min) y jugadores de futbol (SP)  (n= 23; VO2peak = 53.34 ± 3.67 

ml/kg/min) durante un test máximo incremental con periodos de 3 minutos hasta el 

agotamiento, seguido de un periodo de recuperación de 5 minutos. Los resultados del 
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primer estudio mostraron que el grupo MF presentaba menor VO2peak, velocidad máxima 

(speedpeak), ventilación (VE) y mayor índice de masa corporal (BMI) y % de masa grasa 

que el grupo HF (todos p < 0.001). La Tsk fue significativamente mayor en el punto de 

partida, a los 60% y 70% de la carga máxima (todos p < 0.05). Los resultados del 

segundo estudio mostraron que el grupo MA presentaba menor VO2peak, speedpeak, y 

mayor BMI y % masa grasa (all p < 0.05) que los grupos HT y SP.  Existían 

correlaciones entre Tsk con las tasas de FATox y CHOox y la concentración de [La-] en 

todos los puntos de datos de todos los grupos (todos p < 0.001). Estos resultados indican 

que el mayor VO2peak y mayor tasa de FATox y menor concentración de [La-] estaban 

asociadas con un aumento de Tsk durante un ejercicio incremental máximo entre 

individuos con una amplia diferencia de su capacidad aeróbica. Estas diferencias 

deberían tenerse en cuenta en las estrategias nutricionales y de entrenamiento para 

mejorar los deportes aeróbicos y de equipo. 

 

1.3 Versió en Català 
 

       Durant l’exercici aeròbic, la temperatura cutània (Tsk) juga un rol fonamental en la 

regulació de la temperatura corporal. La temperatura ambiental és el major determinant 

de la Tsk, la qual és el resultat de l’equilibri entre la producció metabòlica de calor i la 

dissipació de calor cap a l’entorn. Durant l’exercici, la resposta de la Tsk pot estar 

influenciada pel consum d’oxigen (VO2peak) i per la flexibilitat metabòlica, ambdós 

potents predictors del rendiment aeròbic. La capacitat elevada de termoregulació cutània 

i la tassa de  FATox són característiques en atletes altament entrenats, mentre  que una 

capacitat oxidativa disminuïda, menors valors de Tsk i major concentració de [La-] són 

característics d’individus amb una baixa capacitat aeròbica, en una mateixa d’exercici 

sub-màxim absolut. L’objectiu d’aquest projecte va ser el d’analitzar i comparar la 

dinàmica de la Tsk en diferents poblacions amb diferents respostes metabòliques durant 

una proba d esforç incremental màxima sobre una cinta de córrer. Per aquest propòsit es 

desenvoluparen dos estudis. El primer estudi analitzà i va comparar la correlació entre 

la Tsk i les variables cardio-respiratòries en homes corredors de fons amb una alta 

condició física (HF) (n= 35; VO2peak = 56.62 ± 4.31 ml/kg/min) i amb una condició 

física moderada (MF) (n = 44; VO2peak = 47.86 ± 5.29 ml/kg/min) durant un test 
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incremental amb períodes de 2 minuts fins l’ esgotament, seguit d’un període de 

recuperació de 5 minuts. El segon estudi analitzà i va comparar la correlació entre la 

Tsk i la flexibilitat metabòlica mesurant la concentració de [La
-
] juntament amb la tassa 

de FATox i CHOox en corredors de competició altament entrenats (HT) (n= 22; VO2peak 

= 58.57 ± 2.33 ml/kg/min), corredors moderadament actius (MA) (n= 20; VO2peak = 

49.07 ± 4.67 ml/kg/min) i jugadors de futbol (SP)  (n= 23; VO2peak = 53.34 ± 3.67 

ml/kg/min) durant un test màxim incremental amb períodes de 3 minuts fins 

l’esgotament, seguit d’un període de recuperació de 5 minuts. Els resultats del primer 

estudi mostraren que el grup MF presentava menor VO2peak, velocitat màxima 

(speedpeak), ventilació (VE) i major índex de massa corporal (BMI) i % de massa grassa 

que el grup HF (tots p < 0.001). La Tsk va ser significativament major en el punt de 

partida, als 60% i 70% de la càrrega màxima (tots p < 0.05). Els resultats del segon 

estudi mostraren que el grup MA presentava menor VO2peak, speedpeak, i major BMI i % 

massa grassa (all p < 0.05) que els grups HT y SP.  Existien correlacions entre Tsk amb 

les tasses de FATox i CHOox i la concentració de [La-] en tots els punts de dades de 

tots els grups (tots p < 0.001). Aquests resultats indiquen que el major VO2peak i la major 

tassa de FATox i menor concentració de [La-] estaven associades amb un augment de 

Tsk durant un exercici incremental màxim entre individus amb una ampla diferència de 

la seva capacitat aeròbica. Aquestes diferències haurien de tenir-se en consideració a les 

estratègies nutricionals i d’entrenament per millorar els esports aeròbics i d’equip.  
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2.1 Introduction 

 

        The present PhD thesis and the data analyzed belong to the following research   

project: “Thermoregulation in male endurance runners: role of skin temperature during 

an incremental maximal exercise test”. 

 

          The leading researchers of this 4 years long project have been Dr. Miriam Guerra 

Balic and Dr. Andrea Suárez Segade, supported by the Facultad de Psicología, Ciencias 

de la Educación y el Deporte de la Blanquerna, Universidad Ramon Llull (Ref.: 

BRB14-15 SAFE). The project has been developed in collaboration with the Laboratory 

of Exercise Physiology and Performance Assessment (Labsportsalud) in Cornella 

(Barcelona). I had the good fortune to participate in an international academic internship 

with Dr. Bo Fernhall and his team of researchers at their Integrative Physiology 

Laboratory (IPL) at the University of Illinois at Chicago (UIC), for which this can be 

considered an international thesis. 

 

          In this project, the influence of the skin thermoregulatory response on endurance 

aerobic performance during an incremental exercise test was studied, where participants 

were trained endurance runners at different levels of athletic performance, recruited 

from running and triathlon teams in the Barcelona city area (Spain). 

 

           Thermoregulation is key for controlling fatigue and regulating physiological 

homeostasis during rest and physical exercise. Exercise disturbs the maintenance of 

body temperature, but humans have the ability to thermoregulate in order to adapt to 

exercise demands and minimize changes in body core temperature (Tc), and maintain 

physiological homeostasis (Romanovsky, 2006). Changes in temperature can be 

perceived at different areas of the human body, where the most critical are the skin, 

muscle, and core tissues (i.e., of the rectal, visceral, and esophageal) (Kenny & 

McGinn, 2016). Skin temperature (Tsk) plays a fundamental role in body temperature 

(BT) regulation, providing negative and positive auxiliary feedback to the 

thermoregulation system (Romanovsky, 2014).  
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          Measuring Tsk provides important information about the complex thermal control 

system when studying thermoregulation. Skin temperature is a key factor in the 

thermoregulatory process, as it is the result of the balance between metabolic heat 

production and heat dissipation to the environment (José González-Alonso, 2012). This 

balance is influenced mainly by the responses of Tc, environment temperature (Ta) and 

complex relationships between cutaneous vasodilation and sweating, which implies that 

Tsk can be used as an index to predict thermal changes during exercise (H. Liu et al., 

2014; Takada, Matsumoto, & Matsushita, 2013). 

 

        It has been scientifically demonstrated that changes in skin thermoregulatory 

capacity may have important physiological implications and substantially influence 

aerobic exercise performance, and can limit the maintenance of thermal homeostasis 

during exercise (Charkoudian, 2003; Cuddy, Buller, Hailes, & Ruby, 2013; José 

González-Alonso, Calbet, & Nielsen, 1999a; Pierzga, Frymoyer, & Kenney, 2003). 

 

       Despite these discoveries, Tsk response remains unstudied as an independent 

parameter in the control of BT during exercise. Tsk response could provide insight into 

the behavior of the thermoregulatory system during aerobic exercise. Furthermore, it is 

unclear if the level of aerobic fitness shown as maximal oxygen consumption (VO2peak) 

influences Tsk response and other metabolic responses, such as metabolic flexibility, 

during exercise.  

 

        Regarding the influence of skin thermoregulatory response on athletic 

performance, there is a lack of literature reporting the Tsk dynamic in endurance 

runners during a maximal stress test. We believe that studying and comparing Tsk 

dynamic across healthy populations during an incremental maximal stress running test 

may lead to a better understanding of the influence the skin thermoregulatory response 

has on aerobic performance. 

 

       To the best of our knowledge, the dynamic of the skin thermoregulatory response 

during a maximal stress exercise test and its association with other physiological 

variables has not been directly studied. Therefore, the main objective of the present 

study was to analyze and compare the Tsk dynamic and its correlation with other 

physiological variables across healthy populations with different metabolic 
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characteristics during an incremental maximal running exercise test. Two separate 

studies were conducted. 

 

         In the first study, the main aim was to analyze and compare the Tsk dynamic in 

highly (HF) and moderately (MF) fit endurance runners during an incremental maximal 

stress running test. Furthermore, we analyzed the correlations between Tsk and 

cardiorespiratory variables.  

 

       In the second study, the aim was to analyze the relationships between Tsk and 

metabolic flexibility (measurements of [La
-
], and FAT and CHO oxidation rates) in 

highly trained (HT) competitive endurance runners, moderately active (MA) runners 

and professional soccer (PS) players during an incremental maximal stress treadmill 

test. 

 

       In both studies, a recovery period was objectively monitored for any changes that 

might take place after exercise, which could indicate a relationship between 

thermoregulatory and physiological responses in endurance runners. 

 

        During the development of the study, thanks to the collaboration of various teams 

and participants, we had the support needed to perform all the proposed tests 

independent of each participant’s level of athletic performance. 
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2.2 PhD Thesis Development 
 

        This thesis is divided into seven parts. The Introduction explains and justifies  

the present study. The Literature review is where different concepts relevant to the 

present thesis are presented, such as the role of Tsk in thermoregulation, Tsk response 

to exercise, and the relationship between Tsk and both cardiorespiratory and metabolic 

responses related to VO2peak. Relevant studies are also discussed. In Aims and 

hypothesis, we present our hypothesis based on the literature review and goals for the 

study are presented. The PhD project is divided into two separate studies. In Material 

and methods, the equipment, protocols and procedures are described, as well as the 

field and laboratory tests used. Next, the Results of the different tests are presented. In 

Discussion, we present the main findings obtained from the study, and the study’s 

limitations. Finally, in Conclusions the most relevant results from this thesis are 

summarized and future research directions are presented. 
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3.1  Thermoregulation 
  

        Thermoregulation is defined as the body’s ability to maintain BT within certain 

values, even when the Ta is very different. The regulation of BT is a key factor in 

controlling fatigue and ensuring the proper functioning of the body’s homeostasis 

process (Romanovsky, 2006).  Therefore, knowledge of BT regulation is necessary for 

understanding the basic concept of “homeostasis” and for a wide variety of 

physiological and clinical applications (Etain et al., 2015). Gagge (1967) concluded that 

regulation of BT is one of the most important examples of homeostasis, which 

influences the maintenance and balance of internal temperature (Maté et al., 2007). 

Maintenance of BT within narrow limits is a major homeostatic function critical for 

survival (Sessler, 2009). 

 

3.2  Human Thermoregulation and the Environment 

 

        A warm body is one of the primary conditions of life. Humans have the 

physiological, intellectual, and cultural ability to maintain feasible body temperatures 

under several conditions. The ability to feel and regulate BT is a key feature of human 

survival. As in other mammals, the thermoregulation process in humans is an important 

aspect of homeostasis: a state of dynamic stability in an organism's internal conditions, 

maintained separately from thermal equilibrium with its environment. Different 

strategies to regulate BT are used to maintain physiological homeostasis.  

  

         Humans are homeothermic organisms that regulate and maintain the temperature 

of the Tc at a constant level regardless of external conditions and the level of motor 

activity (Romanovsky, 2006). This is achieved by controlling body heat loss and heat 

gain via autonomic and behavioral thermoeffectors so that heat balance can be achieved. 

  

        Our body is our principal source of heat, as opposed to ectothermic animals that 

receive heat primarily from the environment. For instance, ectotherms rely on 

environmental conditions to heat up before they can perform vital actions such as 

foraging or reproducing. Endotherms, in turn, are less dependent on environmental 

conditions and can therefore live in a wider range of climates, thereby reducing 
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competition for resources and increasing chances of survival. Our organism generates 

heat internally to regulate BT through a balance of heat production, absorption, and loss 

(Cheuvront & Haymes, 2001). Nevertheless, maintaining a stable BT comes at a cost, as 

endotherms maintain higher energy expenditures than ectotherms with the same body 

mass. In general, humans are most productive and comfortable in thermoneutral 

conditions (Schellen et al., 2010). 

  

         Human beings are warm-blooded animals, which means that they are able to 

maintain their vital organs at a stable temperature despite large fluctuations in 

environmental conditions. Humans do this by carefully balancing heat production and 

heat loss in a cold or hot environment, which is shown in Figure 1, which is a 

modification by Ashof and Weber (1958). If more heat is lost than produced, BT will 

drop, and viceversa, if more heat is produced than lost, body temperature will increase 

(Sessler, 2009). Control of this heat balance is referred to as thermoregulation and is 

effectively executed by modulating behavior (e.g. changing clothes) and physiological 

mechanisms (e.g. shivering or sweating). However, continual presence in thermoneutral 

conditions is not necessarily healthy. In modern western societies, people tend to live 

most of their life in buildings where conditions are kept stable and within the 

thermoneutral zone. Hence, the body has to use fewer resources to defend BT against 

thermal challenges. What’s more, there are indications that reduced exposure to thermal 

challenges reduces the capacity to cope with thermal challenges in general (Ely et al., 

2009). Thermoregulation thus seems to fit the “use it or lose it” paradigm.  

                                 
Figure 1: Distribution of temperature during cold or hot exposure in a healthy resting man 

(adapted by Ashof & Weber, 1958) 
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       Humans possess an elaborate set of mechanisms which regulate BT, which can be 

broken down into two major processes or control systems: behavioral processes 

(maintaining  or searching for a preferable environment) and autonomic processes (e.g. 

vasodilation of the skin, sweating and shivering). Therefore, thermal homeostasis is 

controlled by both behavioral and physiological responses (Table 1). 

 

          A powerful form of human thermoregulation is behavioral, examples of such 

being putting on or taking off clothes, changing posture, moving, taking shelter, etc. 

Behavioral temperature regulation operates largely through conscious, willed behavior 

to employ any means available. Accordingly, although frequently overlooked as a 

physiological variable, behavioral temperature 

regulation is a crucial form of 

thermoregulation during both rest and 

exercise. The human body also has a 

physiological system of thermoregulation, 

which operates through the autonomic nervous 

system, and includes control of: a) the rate of 

metabolic heat production (i.e., shivering), b) 

the vasomotor function (i.e., heat flow via the 

blood from the core to the skin), and c) the 

sudomotor function (i.e., sweating). Both 

systems constantly interact with and respond 

to the changing environment in an attempt to 

ensure survival and comfort (Parsons, 2003).  

 

3.3 Human Behavioral Thermoregulation 
 

    Understanding the complex interactions amongst biological, psychological, and 

environmental factors in homoeothermic organisms represents the primary goal of 

behavioral thermoregulatory research, and has been the focus of many studies to date. 

Much progress has recently been achieved since behavioral thermoregulation (thermo-

behavior) has become a topic of considerable interest. This field of study has served as a 

link between thermal physiology, psychology, neurophysiology, and other scientific 

Table 1. Key points of Body Temperature       

(adapted from Schlader & Vargas, 2019) 

Body temperature is regulated via both autonomic 

and behavioral responses. 

Current evidence indicates that thermal behavior 

decreases the requirement for autonomic system 

responses, so autonomic response activation may 

contribute to decisions to behaviorally 

thermoregulate. 

Thermal behavior requires an increase in subjective 

thermal discomfort, the likes of which are 

perceived from afferent feedback stemming from 

thermoreceptor activation.  

Thus, the autonomic response, manifested in 

changes in Tsk (occurring secondary to changes in 

SkBF), skin wettedness (occurring secondary to 

sweating), or shivering, is consciously perceived to 

magnify perceptions of thermal discomfort and 

stimulate thermal behavior. 
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areas. Humans play a fundamental role in their own thermoregulation, responding to 

temperature changes with voluntary responses such as changing PA level, ingesting 

different types of food, contact with chemical substances, and seeking protection. 

 

       Thermoregulatory behavior is a coordinated action that establishes an optimal 

condition for heat exchange between the environment and the body, and, depending on 

the circumstance, could entail heat loss, heat gain, or heat balance (IUPS Thermal 

Commission, 2001). Thermoregulatory behavior is not limited to adjusting the external 

environment. Voluntary increases in metabolic heat production can also serve as 

thermoregulatory behaviors acting to achieve thermal comfort. Thermal perception and 

sense play pivotal roles in behavioral thermoregulation. Notably, the mammalian upper 

brainstem is known to control emotional whole-body homeostatic behaviors, including 

behavioral thermoregulation (Flouris & Schlader, 2015a; Schlader et al., 2011; Schlader 

et al., 2010). The recent attention directed at behavioral thermoregulation stems from 

the aforementioned evolution in this field as well as the realization of its significance in 

human thermoregulation. Indeed, thermal homeostasis in humans and other 

homoeothermic organisms is based primarily on behavioral and secondarily on 

autonomic and endocrine mechanisms (Flouris & Schlader, 2015b). This is because the 

latter mechanisms have a finite capacity in preventing hyper/hypothermia, whereas 

behavioral thermoregulation is a very powerful mechanism that triggers conscious 

actions that preserve thermal balance when possible (e.g., seeking shade in a hot 

environment) (Attia, 1984). 

 

3.4  Physiology of Human Thermoregulation 
 

         Our thermoregulatory center receives input from two sets of thermoreceptors 

within the peripheral and central nervous system. Regulation of BT takes place in a 

hierarchical order. Local mechanisms are at the bottom and central mechanisms are at 

the top (Guyton, 2000). In general, central thermoregulation is composed of three major 

components, namely: 1) thermal reception by temperature sensitive neurons, 2) 

integration through neural pathways and 3) the effective thermoregulatory response 

through separate branches of the nervous system (Figure 2). In central thermoregulation, 

information from the entire body is used to decide on the response, whereas in local 

thermoregulation only local information is used. Thermoregulatory control is dependent 
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on thermal stimuli from both skin and core (Pitoni et al., 2011). Figure 2 shows a 

schematic view of human thermoregulation, in which temperature is sensed by neurons 

that send the afferent information to the hypothalamus, where the information is 

integrated and the appropriate efferent response is stimulated through separate nervous 

systems (depicted on the lines). Core temperature cold sensitive neurons are scarce 

because of low numbers in deep body tissues. 
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Figure 2: Schematic view of human thermoregulation (adapted by Etain & Johnson, 2015). 
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3.4.1 Heat Conservation and Dissipation: central and peripheral compartments  
 

         Thermally, the human body is considered to be a two-compartment model: a 

central or core compartment and a cooler peripheral one (Figure 2). When discussing 

body temperature, we usually refer to the central core (Tc) and peripheral shell 

temperatures (Ts). In a state of relative physiological rest, BT varies between 36–37.5ºC 

(Etain et al., 2015). Body temperature is not homogeneous and is described as core body 

temperature (Tc), skin temperature (Tsk) and mean skin temperature (Tskm). Tc is the 

most reliable parameter for describing human thermal status and reflects the 

temperature within the “deep” body tissues and organs that have a high level of basal 

metabolism (such as the brain, heart, and liver). The strong association between Tc and 

physiological homeostasis and disturbances makes Tc an important clinical and 

laboratory indicator of thermal strain in the body. Core temperature is an important 

indicator of heat strain status and is usually measured using rectal or esophageal probes 

or ingested telemetry pills (Xu et al., 2013). 

  

        Instead, the shell temperature (Ts) refers to the temperatures of the skin, 

subcutaneous tissue and muscles (Lim et al., 2008). Tsk is used to evaluate local 

vasoconstriction and Tskm is used to calculate cutaneous heat loss and to estimate 

central thermoregulatory control (Pitoni et al., 2011). The peripheral tissues – skin and 

subcutaneous fat, particularly of the arms and legs – are cooler and act as insulation for 

the core compartment. Under normal thermally comfortable conditions, the temperature 

of peripheral tissues is about 5–6 ºC lower than the central compartment. Heat is 

transferred from the central to the peripheral compartments, or conserved in the central 

compartment, via circulation. A cold stimulus leads to peripheral vasoconstriction, 

mediated by the sympathetic nervous system, and heat conservation, while a warm 

stimulus leads to peripheral vasodilatation and heat loss. In extreme environmental 

temperatures, Tsk may approach central temperature in heat, or 0ºC in the cold. Blood 

flow and heat loss through the periphery is enhanced by the presence of arteriovenous 

anastomoses which increases flow and thus enhances heat loss via superficial veins in 

the skin. In the cold, deep veins, which run alongside the arteries supplying the limbs, 

take heat from the warm arterial blood supplying the extremities, thus leaving the 

extremities cold but conserving body heat as an example of a ‘countercurrent’ 

mechanism (Campbell, 2011).  



3. Literature review 

 

 38                                                                                             
Tesis doctoral  

Jonatan Galán  

 

        The complex interactions between metabolic heat production, the physical 

properties of skin, the environment, and body size are the principal components 

determining Tc responses (Figure 3), and ultimately determine whether heat balance is 

attainable or if Tc will progressively rise to levels that are potentially harmful to health 

and performance. 

 

 

 

 

 

3.4.2 Components of Human Heat Balance  
 

          In humans, normal thermoregulation involves a dynamic balance between heat 

production/gain and heat loss, thereby minimizing any heat exchange with the 

environment. Everyday activities require a functioning thermoregulatory system that 

will activate and suppress the heat-dissipating mechanisms to minimize changes in body 

core temperature. Therefore, we need to understand that heat balance is one of the 

pillars of successful thermoregulation. Under resting, fasting and thermoneutral 

conditions total heat production is attributed to the chemical heat released by metabolic 

processes necessary for keeping our bodies functioning (Parsons, 2003). 
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Figure 3: Biophysical factors affecting the change in Tc during exercise and environmental heat 

exposure (adapted by Cramer & Jay, 2016) 
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       A fundamental and useful reference point for any discussion of human energy 

exchange and Tc regulation is the conceptual heat balance equation: 

 

  S = M−Wk ± K ± R ± C ± Cres−Eres−Esk [W].                        (Cramer & Jay, 2016) 

 

        In accordance with the law of energy conservation, the rate of body heat storage 

(S) is equal to the difference between the rates of metabolic energy expenditure (or 

metabolic rate, M), external work (Wk), dry heat exchange from the skin by conduction 

(K), radiation (R), convection (C), convective heat exchange (Cres) and evaporative heat 

loss (Eres) from the respiratory tract, and evaporative heat loss from the skin (Esk). The 

SI unit for rates of energy conversion is watts (W); however, heat balance parameters 

are often expressed per square meter (W/m
2
) of total body surface area (AD), which is 

conventionally estimated from body mass and standing height (Cramer & Jay, 2016). It 

may also be useful to express these values per kilogram of total body mass (W/kg) for 

certain applications discussed below. In some contexts, metabolic rate is expressed in 

kilojoules per minute (1 kJ/min ≈ 17 W), kilocalories per minute (1 kcal/ min ≈ 70 W), 

or metabolic equivalents (1 MET = 58.2 W/m
2
). 

 

        Metabolism always represents a source of heat gain; dry heat average can lead to 

heat gain or loss depending on the temperature gradient between the skin and 

environment, but heat can only be lost by evaporation from the respiratory tract and 

skin. To maintain heat balance (S=0), the rate of total heat gain from metabolic and 

environmental heat sources must be equivalent to the rate of total heat loss. It follows 

that heat storage and internal temperature rises if the rate of total heat gain exceeds the 

rate of total heat loss (S > 0); conversely, heat storage and internal temperature fall if 

the rate of total heat loss outweighs the rate of heat gain (S < 0). The change in body 

heat content (i.e., change in thermal energy) in kilojoules is the product of time and the 

net difference between the rates of heat gain and loss. Thus, a constant Tc is maintained 

through a cascade of reflex vasomotor and cardiovascular responses which correct 

temperature change by heat loss or heat production (Johnson et al., 2014). 
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Heat Production 

         

         Heat production is counterbalanced through heat exchange with the environment. 

In general, the thermal environment is colder than our body surface. In that case, all 

heat exchange with the environment is in fact heat loss. The core consists of the brain 

and the abdominal and thoracic cavities, which contain the larger organs that under 

resting conditions are the main producers of heat. There are a limited number of ways to 

produce heat or increase heat production (Table 2).  

  

       Non-shivering thermogenesis (NST) likely takes place in brown adipose tissue and 

skeletal muscle (Lim et al., 2008). Specialized proteins in the cell mitochondria of these 

tissues enable the cell to reduce the efficiency of ATP production and release more heat. 

The increase in heat production by NST is around +5% to +20% of normal heat 

production (Smith & Johnson, 2016). Several types of heat exchange can be 

discriminated. 

 

Table 2: Mechanisms and different ways to produce heat, or increase his heat production 

Mechanism                           Effect 

Basal metabolism Minimum heat production (metabolism) for maintenance of life. 

Magnitude depends on body size, age and sex. 

Muscle contraction Shivering and voluntary (behavioral) activity. 

Dietary-induced thermogenesis Heat production rises by 10-15% following nutrient (food) intake. 

Particularly marked with protein. 

Non-shivering thermogenesis Hibernating animals and neonates. Sympathetic stimulation of 

‘uncoupled’ mitochondria in brown adipose tissue. 

Hormonal Thyroid controls overall basal metabolism. Catecholamines increase 

heat production by stimulation of various metabolic pathways. 

 

Heat Loss 

 

        Thermoregulation aims to reduce excessive heat produced by internal organs 

(Schellen et al., 2010), allowing exercise to be sustained longer (Mattern et al., 2008) 

and minimizing the risk of medical problems (Nybo, 2008). Heat transfer between the 

body and the external environment occurs through the processes of radiation, 

conduction, convection and evaporation, which are the four avenues of heat loss (Figure 

4). 
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   The following heat balance equation addresses the internal and external factors that 

contribute to thermal balance and, therefore, the maintenance of Tc (Etain et al., 2015): 

 

Heat storage = metabolism – work – evaporation ± radiation ± conduction ±convection  

            where 

 

 Metabolism refers to the chemical reactions occurring within the  

body that produce heat. During exercise, the working muscle liberates large 

amounts of heat. 

 Work is the external work done. 

 Evaporation is the heat loss to environment as water vaporized 

from the respiratory passages and skin surface. Total sweat vaporized from skin 

depends on the following three factors:    

 

1. The surface area exposed to the environment 

2. The temperature and relative humidity of environment air 

3. Convective air currents around the body 

 

          Evaporation is the most efficient way to lose heat during exercise, and the ability 

to thermoregulate is crucial for physical activity. 

 

 Radiation is the electromagnetic radiation (heat) transferred to 

bodies not in physical contact, including the ultraviolet light radiation from the 

sun, which penetrates through to the surface of the earth, and the infrared 

radiation of the body. This is the main method for removing heat from the body 

at rest. 

 

 Conduction is the movement of heat to/from the body directly to 

objects in contact with the body. Usually the amount of heat exchanged in this 

way is minimal, for example heat lost by our feet to the ground is a form of 

conduction. 

 

 Convection is the transfer of heat to a moving gas or liquid. 

When body is warm, the air molecules in contact with the body will be warmed,  
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reducing their density and causing the molecules to rise and be replaced with cooler air. 

Convective heat exchange is increased by movement of the body in air or water, or 

movement of air or water across the skin. Conduction and convection are difficult to 

separate from each other.  

 

       Heat transfer through convection, conduction and radiation is bidirectional, where 

heat transfer between the skin surface and the environment is driven by the temperature 

gradient between the skin and the surrounding environment. Unlike the other avenues of 

heat exchange, heat dissipation through evaporation is unidirectional, where heat is 

transferred only from the skin surface to the external environment (Cheuvront & 

Haymes, 2001). These components are often lumped together and when heat storage is 

zero, the body is thermally balanced. 

 

 
 

 

3.4.3 Role of the Hypothalamus  
 

         Body temperature is controlled by the hypothalamus, which determines the 

temperature value at which it is to be regulated – the ‘set point’. The hypothalamus is 

the coordinating or central integration center for thermoregulation and sends impulses to 

several different effectors to adjust BT, allowing the mechanisms of production and heat 

loss to balance (Figure 5). It is in a region of the brain that links the endocrine system to 

the nervous system and is therefore an important neural structure with the highest level 

of thermoregulatory integration (Wendt et al., 2007). This hypothalamic area is 

composed of the preoptic-anterior hypothalamus nucleus (NPHA), which is the 

Heat production Heat loss 

- Basal metabolism              

- Muscular activity 
(shivering)     

- Thyroxine and 
epinephrine (stimulating 
effects on metabolic rate)  

- Temperature effect on 
cells 

- Radiation   

- Conduction/ 

Convection  

- Evaporation 

Figure 4: Regulation of body temperature (heat production and heat loss)  
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thermostat center of excellence, dorsomedial nucleus of the hypothalamus, and the 

periaqueductal gray or raphe nuclei (Boulant, 2000). Evidence suggests that the NPHA 

is the most important region for autonomic temperature control (Etain et al., 2015). The 

NPHA coordinates all thermoregulatory responses hierarchically and receives afferent 

sensory input from thermoreceptors throughout the body, including the spinal cord, 

abdominal viscera, the greater veins and skin. The preoptic area of the hypothalamus 

contains heat- and cold-sensitive neurons that respond to changes in blood temperature, 

although heat-sensitive neurons far outnumber cold-sensitive sensors. In this way, the 

thermosensitive neurons in the hypothalamus are able to initiate the thermoregulatory 

response most appropriate for any given thermal stress (Wendt et al., 2007). The critical 

threshold temperature in the hypothalamus, above or below which processes are 

initiated to increase heat production or heat loss, is ≈ 37ºC and the temperature control 

mechanisms tend to bring the BT back to the 'set-point' (Benzinger TH., 1969). This 

regulated level of Tc varies ≈ 1ºC as a result of the BT circadian rhythm. For women, 

the menstrual cycle also has an influence and BT distribution also varies (Pitoni et al., 

2011; Sessler, 2009). 

 

         Thus, thermoregulation is an example of the integrative role of the hypothalamus 

in generating patterns of autonomic, endocrine, motor and behavioral responses to adapt 

to environmental challenges. Experimental studies have provided new information on 

mechanisms of thermal sensation, hypothalamic integration, and central effect or 

pathways involved in thermoregulation (Campbell, 2011). Moreover, experimental 

evidence indicates that the medial NPHA area, the dorsomedial nucleus of the 

hypothalamus, the periaqueductal gray matter of the midbrain and the nucleus raphe 

pallidus in the medulla play a critical role in thermoregulation (Romanovsky, 2006). 

Deviation from resting BT affects various physiological systems in the body, which 

dictates the duration of biological functions and dysfunctions that interact with the 

thermoregulatory mechanisms (Lim et al., 2008). Communication between neural 

centers within the hypothalamus and peripheral sensors and effector organs regulate, 

almost exclusively, the processes that maintain stable Tc in homeotherms (Mcdonald, 

2009). 

  

         We mentioned above that the hypothalamus receives inputs from central and 

peripheral temperature receptors situated in the ‘core’ and the outer ‘shell’. Peripheral 
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skin receptors (especially on the trunk) regulate heat loss and transmit temperature 

information from our skin and the Ta (Sessler, 2009). The mechanism by which 

temperature is sensed is largely dependent on a temperature-specific family of transient 

receptor potential (TRP) ion channels (Güler et al., 2002; Romanovsky, 2006). 

Cutaneous thermoreception is sensed by the TRP family of cation channels, widely 

expressed in sensory neurons (Pitoni et al., 2011). A subtype, the TRPM8 is activated 

when environmental temperature is below 27ºC, sensing modest cooling. Afferent 

signals ascend via thermosensory neurons through pathways such as the 

spinothalamocortical tract and lateral parabrachial neurons. They are integrated at 

various levels: the spinal cord, brainstem and hypothalamus. They respond to 

temperatures between 30ºC and 42ºC, whereas peripheral receptors in the skin respond 

selectively to either cold or hot stimuli. Cold receptors are present in greater numbers 

than warm ones, and both are transmitted to the hypothalamus via the spinal cord. The 

heat receptors respond maximally to a skin temperature of 44ºC and the cold ones to a 

skin temperature of 25ºC. The cold signals activate the lateral parabrachial nucleus 

neurons, which promote excitatory inputs to drive Gamma-Aminobutyric acid (GABA) 

interneurons to inhibit other inhibitory output neurons in the medial preoptic subregions 

of the preoptic area. These results in a disinhibition of thermogenesis-promoting 

neurons in dorsomedial hypothalamus and the rostral ventromedial medulla. These 

fibers activate spinal sympathetic and somatic motor circuits to increase thermogenesis 

(Flouris & Schlader, 2015b). 

  

       There are upper and lower thresholds for hypothalamic temperature, above and 

below which thermoregulatory mechanisms come into play to conserve/generate or 

dissipate heat. These upper and lower limits delineate the so called ‘thermoneutral 

zone’. The thermoneutral zone is a range of temperatures over which a naked individual 

can maintain body temperature by simply altering vascular tone. These vary with 

circadian rhythm, sex, exercise, etc., but vasoconstrictive responses are initiated at 

around 36.5ºC and shivering at 36–36.2ºC.  
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3.4.4 Temperature Receptors and the Control of Thermoregulatory Mechanisms 
 

       Temperature regulation in humans is achieved via autonomic and behavioral 

thermoeffectors. Autonomic thermoeffectors promote heat loss, heat conservation, or 

heat gain (Figure 6). 

 

      Autonomic responses are governed by inputs sensed by core and surface receptors. 

Changes in temperature can be perceived at various levels of body tissue with the most 

critical areas being the skin, muscle, and core (i.e., of the rectal, visceral, and 

esophageal) tissues. The central thermoregulatory system provides a proportional output 

that is influenced by both internal and whole-body skin temperatures. Per degree 

increase above thermoneutral values, the internal temperature is about 10 times more 

important than mean Tsk in eliciting an output to the sweat glands (Nagashima et al., 

2012).  
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Figure 5: Thermoregulatory mechanisms, an estimate based on the concept of control engineering 
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         In humans, Tc is maintained in a narrow range known as the interthreshold range 

(Pitoni et al., 2011), which is around 37°C (98.6°F), and controlled within a narrow 

range (33.2–38.2°C) to preserve normal physiological function. Under normal 

physiological conditions temperature can only  increase or decrease by a few tenths of a 

degree Celsius without reaching threshold triggering autonomic thermoregulatory 

responses (sweating or shivering), (Sessler, 2009). No person has exactly the same 

temperature at every moment of the day. There is a nearly 1ºC sinusoidal circadian 

variation around this temperature, with the maximum occurring mid-afternoon and the 

minimum 12 hrs later (Sessler, 2009). The BT of a healthy person varies during the day 

by about 0,5°C (0,9°F) with lower temperatures in the morning and higher temperatures 

in the late afternoon and evening, as the body’s needs and activities change (Kelly, 

2007). It is interesting that Tc, at any given time, is regulated to within just a few tenths 

of a degree centigrade, but that the daily variation is much higher. For instance, BT also 

changes when a person is hungry, sleepy, sick, or cold. In humans, the entire sweating-

to-shivering range spans only approximately 0.68ºC (Sessler & Lee, 1991). All this 

thermal information from the skin surface, peripheral tissues, core organs, and the 

neuraxis per se are integrated at various levels, finally arriving at the thermoregulatory 

controller in the hypothalamus (Sessler, 2009). 

  

       The dynamics of heat flux during sustained exercise can be briefly summarized 

(Rowland, 2008) (Figure 6): heat liberated by contracting muscle fibers is transferred 

away by surrounding blood flow, resulting in an increase in body Tc. In response, 

hypothalamic control centers and peripheral receptors trigger compensatory cooling 

mechanisms, principally by 1) cutaneous vasodilation, augmenting SkBF for convective 

heat loss to the surrounding air and 2) increasing the rate of sweating via sympathetic 

cholinergic stimulation to dissipate heat by evaporation at the skin-air interface. The 

magnitude of convective heat loss is governed by the local skin-air temperature gradient 

as well as adequacy of cutaneous blood flow. This means of heat dispersal is thus most 

effective in conditions of moderate environmental temperature, and it becomes less so 

as Ta rises. Heat loss by evaporation is directly related to both the rate of sweat 

production and the skin-air water vapor pressure gradient. In high Ta, then, body heat 

loss is affected primarily through sweating, particularly in conditions of low ambient 

humidity (Rowland, 2008). 
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3.5 Skin Temperature: its role in thermoregulation  
 

          Skin is a key factor in the homeothermic function of maintaining internal BT. The 

human body can be separated into an always warm-blooded thermal core and a cold-

blooded shell, where the average Tc is 37°C, while the body surface is commonly found 

to be 33°C. These temperatures depend on a number of variables and are a function of 

internal organ temperature as well as the thermal properties of the tissues that separate 

an organ from the surface of the body, including, among others, the muscle tissue and 

fat content, as well as blood flow, blood temperature, skin moisture and the amount of 

energy produced during regulated homeostatic metabolic processes (Chudecka & 

Lubkowska, 2012; Gerrett et al., 2019; Xu et al., 2013). 

  

         Human Tsk is an important physiological parameter that reflects the state of heat 

exchange between the human body and a thermal environment. Romanovsky (2014) 
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Figure 6: Overview of human temperature regulation as it occurs via both autonomic and 

behavioral thermoeffectors (adapted by Schlader & Vargas, 2019) 
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states that Tsk is one of the body’s temperatures, and that thermal cutaneous signals 

serve as feedback signals in the thermoregulation system. Autonomic thermoregulation 

does not use thermal feedforward signals; all thermal signals used are feedback signals. 

Thermoregulatory behaviors use similar feedback signals. Overall, the main 

thermoregulatory role of thermal cutaneous signals is to provide negative and positive 

auxiliary feedback to the thermoregulatory system, thus reducing the system’s response 

time and making BT more stable (Romanovsky, 2014). 

 

3.5.1 Human Skin  
 

       Skin is an essential organ for maintaining Tc within the normal range of 36.1 to 

37.8 ºC, which preserves the vital functions of the body (Campbell, 2011). Skin is the 

largest sensory organ on our body, and serves as a barrier between our internal and 

external environments and protects the former from diverse unfavourable factors of the 

latter, thus allowing us to maintain homeostasis (Romanovsky, 2014). Properties of 

human skin will vary across different areas of the body and will also change with time. 

In addition to intra-subject differences there will be inter-subject differences. Despite 

these differences, however, human skin, both between and ‘within’ humans, has a 

common structure and most skin is similar in function.  

 

       The specific structure of any particular area of skin will depend upon the function 

of that skin. For example, a vital area for thermoregulation will have a rich blood supply 

and many sweat glands. Human skin is made up of layers: an outer horny layer of dead 

cells, the epidermis and the dermis (Figure 7). Under the dermis is a layer of fat: 

panniculus adiposus. The cutaneous epithelium, at the base of the epidermis, continually 

generates epidermal cells that move to the surface of the skin, die and eventually are 

removed from the skin surface (Parsons, 2003). 

 

        The function of skin can is to act mainly as a protective and containing barrier 

while allowing necessary interaction between the body and the environment. Two 

important interactions are the regulation of heat exchange and the sensory perception of 

the environment. To aid in performing these functions, human skin contains systems for 

supporting surface hair and mechanisms for controlling moisture on the skin surface 

(sweat). These systems are based in the dermis of the skin but penetrate the epidermis to 
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the surface of the skin. The dermis is also supplied with blood vessels and mechanisms 

for controlling the lymphatic vessels and nerve receptors which are sensitive to 

temperature, superficial touch and pressure, and for controlling the flow of blood 

through them. The skin therefore functions as a dynamic system, changing its condition 

depending upon the requirements of the body. 

 

 

 

 

 

       The surface of the human body is a rich map of isotherms with a very wide 

temperature range that is influenced by endogenous and exogenous changes. The skin 

contributes to homeostasis by sensing various disturbances occurring at the border of 

the two environments, including thermal disturbances, and triggering defense responses. 

But, there is no agreement on which thermal disturbances are detected by the skin, 

external or internal (Liu et al., 2013).  

 

       All body heat loss takes place at the interfaces between the body and the 

environment. Skin surface accounts for about 92% of total heat loss and the respiratory 

tract accounts for the remaining 8% (Parsons, 2003). At proximal sites such as the 

abdomen and thorax, body heat is transported to the skin by conduction from underlying 

heat producing organs and convection (i.e. blood flow). At distal areas such as the 

hands, most heat is transported to the skin by blood flow. Skin vasoconstriction reduces 

Figure 7: Simple model of human skin  
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blood flow to the skin. Hence, less heat is transported from the body core to the skin 

(Romanovsky, 2014). 

 

         Reaction of skin to contact with different environmental conditions may depend 

upon the initial condition of the skin, and may vary in cold conditions where there are 

low skin temperatures, low blood supply, and ‘dry’ skin, to hot conditions involving 

relatively high skin temperatures, rich blood supply and possibly wet skin due to 

sweating. The above describes the reaction of skin to allow ‘normal’ thermoregulation. 

It provides a framework for identifying the possible initial skin condition under which 

contact with a hot object may occur. Important factors that will affect intra and inter- 

human variation in skin condition are provided in Table 3 (Wong & Hollowed, 2016). 

 
Table 3: Factors which influence variation in human skin 

                   Factor                                                                 Explanation 

                                         Intra- subject factors 

Area of the body  Regional difference in epithelium structure and thickness; 

water content; pigmentation 

State of 

vasodilation/vasoconstriction 

Instantaneous state of local capillary flood flow 

Wet or Dry (e.g. state of 

thermoregulatory sweating) 

Hibernating animals and neonates. Sympathetic stimulation 

of ‘uncoupled’ mitochondria in brown adipose tissue. 

                                         Inter- subject factors 

Age Children, adults 

Occupation Use of skin– manual/office worker adults 

Sex Males/females 

Ethnic differences  

 

       In humans, an increase in internal Tc elicits large increases in SkBF and sweating. 

An increase in SkBF serves to transfer heat convection from the body core to the skin 

surface while sweating results in evaporative cooling of the skin (Ho et al., 1997). 

 

3.5.2 Skin Temperature and Skin Blood Flow  
 

        Thermal homeostasis in humans is mainly achieved by regulation of the level of 

blood flow in the skin. Accordingly, blood perfusion through the vessels in the skin 

surface constantly adjusts to Tsk (Bruck, 1989) and the heat loss rate changes as a 

result. If the whole-body becomes ‘too hot’, blood flows through the dermis 

(vasodilation) to release heat through the epidermis to the environment. If greater heat 

loss is required, then the surface of the skin is moistened with sweat so that the latent 
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heat of vaporization may be lost through evaporation. Under normothermic conditions, 

blood vessels are under a basal sympathetic tone. Any increase in sympathetic nerve 

activity induces vasoconstriction, and any decrease in sympathetic nerve activity 

induces passive vasodilation. Sympathetic adrenergic (vasoconstrictor) nerves innervate 

both glabrous skin (e.g. lips, forehead, palms and soles) and non-glabrous skin. 

Therefore, all skin regions are able to modulate SkBF by vasoconstriction or passive 

vasodilation. Conversely, active vasodilation only occurs in non-glabrous skin, since 

sympathetic cholinergic (vasodilator) nerves innervate non-glabrous but not glabrous 

skin. It is not exactly known how neural vasodilation is mediated. However, 

experiments showed that acetylcholine released by cholinergic nerves is broken down 

by vessel endothelium (Wendt et al., 2007). During this process, nitric oxide is formed 

which is a powerful vasodilator. Release of acetylcholine also stimulates the production 

of sweat from sweat glands (i.e. the sudomotor response). Therefore, the onset of 

sweating and active vasodilation often coincide. In fact, it has been hypothesized that 

active vasodilation is actually a side effect of sudomotor control.  

 

       During passive heat stress or exercise, the latter of which increases Tc secondarily 

to increases in metabolic heat production, warm blood is distributed toward the skin via 

cutaneous vasodilation and subsequent increases in SkBF. When Ta is less than or equal 

to Tsk, the resulting elevations in Tsk increase the gradient for convective and radiative 

heat exchange between the skin and the environment. However, when ambient 

temperature is greater than Tsk, increases in Tsk narrow the temperature gradient, 

thereby minimizing heat gain from the environment. During cold stress, warm blood is 

kept in the central circulation via reductions in SkBF that are mediated by cutaneous 

vasoconstriction. This decreases Tsk, thereby narrowing the temperature gradient 

between the skin and the environment, which reduces heat loss (Neves et al., 2015). 

 

    Changes in SkBF can be elicited by both reflex and local mechanisms, with the 

former being controlled by the sympathetic nervous system and the latter by local 

changes in Tsk. Reflex modification of cutaneous vasomotor tone is mediated by both 

sympathetic vasoconstrictor and active vasodilator systems. The sympathetic 

vasoconstrictor nerves release norepinephrine that binds with postsynaptic α1- and α2-

receptors in the cutaneous vasculature (Smith & Johnson, 2016). Thus, during cold 

stress, increases in sympathetic vasoconstrictor neural activity promote cutaneous 
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vasoconstriction. In contrast, during heat stress, decreases in sympathetic 

vasoconstrictor neural activity promote vasodilation of the cutaneous vascular beds. In 

addition, further increases in SkBF during heat stress are mediated by active cutaneous 

vasodilation brought about by activation of the sympathetic vasodilator system. The 

active vasodilator system is characterized by sympathetic cholinergic nerve 

transmission, but there are a number of additional important contributors to this 

response (Johnson et al., 2014). Almost all the increases in SkBF during heat stress are 

mediated via activation of sympathetic vasodilator nerves (Johnson et al., 2014). Under 

such circumstances, BP is generally well maintained owing to relatively profound 

increases in cardiac output (Palombo et al., 2010). The activation of active vasodilation 

largely corresponds with increases in Tc, whereas the extent to which the cutaneous 

vasoconstrictor system can modify SkBF is achieved solely through changes in Tsk 

(Schlader & Vargas, 2019) 

 

           In this sense, control of the distribution of blood between the core and skin is 

explained by applying a concept of control engineering (i.e. feedback system) to the 

thermoregulation system. In addition, inputs from skin thermal sensors monitoring Ta 

are involved in a feedforward system, modulating the negative feedback system (Figure 

8). This allows the primary regulated variable, Tc, to remain relatively constant under 

widely varying environmental conditions. 
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(adapted by Nagashima et al., 2012) 



3. Literature review 

 

 53                                                                                             
Tesis doctoral  

Jonatan Galán  

 

3.5.3 Sweating  
 

        Sweating is a powerful mechanism for increasing heat loss; vaporization of 1 ml of 

sweat removes about 2.4 kJ of heat from the body (Sessler, 2009). Sweating involves 

the secretion of body fluids onto the surface of the skin, which increases skin 

wettedness, and evaporative heat loss. Sweating is activated when Tc is increased, but 

can be influenced by the temperature of the skin (Shibasaki et al., 2010). When the 

gradient between Tsk and Ta is reduced, heat dissipation via changes in SkBF is 

minimized. In these instances, heat loss is mostly dependent on sweat evaporation. The 

rate of evaporative heat loss from the skin (Esk) is driven by the water vapor pressure 

gradient between the skin and the environment air. Environments with high absolute 

humidity reduce the water vapor pressure gradient between the skin and environment 

air, which can further impede heat loss. Sweat glands are largely innervated by 

sympathetic cholinergic nerves. The stimulation of the sweat glands is controlled by the 

acetylcholine, along with a number of other neurotransmitters, from the cholinergic 

nerves on the muscarinic receptors on the eccrine sweat gland (Shibasaki et al., 2010). 

Upon stimulation, the secretory bulbous secretes an isotonic precursor fluid that is 

similar in osmolality to plasma, but without plasma proteins, into the duct portion of the 

gland. As this fluid moves through the secretory duct toward the surface of the skin, 

most of the electrolytes are reabsorbed. Thus, sweat is a hypotonic fluid and 

hypovolemia caused by prolonged sweating results in a hyperosmotic state (Schlader & 

Vargas, 2019). 

 

3.6  Respiratory Heat Loss  
 

        In addition to skin, heat is also exchanged between the respiratory tract and the 

external environment during pulmonary ventilation. When a person inspires, air travels 

down the airway, is heated and fully saturated with moisture drawn from the airway 

surface. Upon expiration, heat transferred to the inspired air via convection and 

evaporation is lost to the surrounding environment. The rate of respiratory heat 

exchange will depend on the temperature gradient between the inspired air and body 

core, environment humidity, and ventilation rate. Although respiratory heat loss is 

highest in cold/dry conditions, it contributes marginally to total whole-body heat loss 

due to the relatively poor thermal conductivity of air (Cramer & Jay, 2016). 
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3.7  Thermoregulation to Heat Stress 
 

        Heat stress causes a transient or persistent imbalance between heat gained and heat 

lost to the environment, resulting in body heat storage. Heat gain arises as a byproduct 

of cellular metabolism and/or exposure to external temperatures greater than the body 

surface. Humans use sweat thermoregulation for body heat removal, particularly to 

remove the heat produced during exercise. It is commonly recognized that Tc and 

thermoregulatory sweating responses to heat stress demonstrate a high degree of 

individual variability that may be explained by a variety of physiological and 

biophysical factors (Périard et al., 2014). 

  

        The effects of biological maturation on thermoregulatory responses to exercise in 

hot ambient conditions have been well documented (Campbell, 2011; Rowland et al., 

2008; Xu et al., 2013). 

 

3.8  Exercise Physiology  
 

         The physiology of physical exercise (PE) involves the study of acute responses 

and chronic adaptations to exercise. Exercise is the most common stress experienced by 

our body and requires the integrated functioning of all body systems (Froelicher, 1993): 

 

 Nervous system is essential for the coordination of the different organs and for 

the exercise performance. 

 Somatic nervous system regulates the musculoskeletal function and allows 

movement to be performed.  

 Autonomic nervous system acts largely unconsciously and regulates bodily 

functions such as HR, digestion, respiratory rate, pupillary response, blood 

circulation, urination and sexual arousal. It is regulated by the hypothalamus. 

 Skeletal-muscle system regulates the movement. 

 Cardiovascular system increases the supply of oxygen and energy substrates. 

This implies an increase in the blood circulation rate and, consequently, an 

increase in cardiac output.       
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 Respiratory system regulates ventilation with changes in respiratory rate, tidal 

volume and minute respiratory volume in order to maintain the correct gas 

exchange (O2 and CO2). 

  Endocrine system is a chemical messenger system comprising feedback loops 

of hormones released by internal glands of an organism directly into the 

circulatory system, regulating distant target organs. 

 Thermoregulatory system regulates the BT, maintaining internal temperature in 

a state of equilibrium (homeostasis). This system will conserve the vital 

functions, and plays a major role in high thermal stress conditions and 

prolonged events. 

 

        Maximal effort may be limited by any of the systems involved. Thus, when there is 

an increase in workload, it is necessary to provide enough oxygen and other substrates 

to active muscles, in which the resulting CO2 must also be eliminated (Caspersen, 

1985).  

  

        So that muscles can perform more work, the bioenergetic conversion of stored 

chemical energy, such as glucose or fatty acids, into kinetic energy is needed. The 

respiratory system ensures that changes in respiratory mechanisms are adequate for 

maintaining the correct functioning of gas exchange. To meet the needs of peripheral 

muscles, the supply of oxygen and glucose must be increased, which implies more 

blood volume and therefore an increase in cardiac output.  In individuals with normal 

peripheral respiratory and muscle function, it seems that the cardiac output limits 

exercise capacity. The nervous system regulates and controls the different systems 

during exercise (Despopoulos, 1996). 

  

         The physiological adaptation to effort differs for sedentary individuals or 

physically active ones. Adaptation to effort is significantly modified for individuals 

with high weight or who are very sedentary, to the point that functional assessment 

sometimes suggests normal behavior (Despopoulos, 1996). 
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3.9  Physical Exercise  
 

       The term PE refers to “performance of some activity in order to develop or 

maintain physical fitness and overall health”. It is often directed toward also honing 

athletic ability or skill. The characteristics of the personal and socio-cultural experience 

(Devís, 2000) must be added to this concept in order to understand why people perform 

certain activities and not others (López-López, 2008).  

 

  This PE may have several aspects or purposes (Shepard, 1994): 

 As a useful activity, including job activities and domestic tasks. 

 Leisure time activities, mainly ludic and recreational. 

 Physical Education, an activity with an educational purpose, which doesn’t 

exclude the previous ones. 

 

        When we talk about PE we refer to a subcategory of PA, which is any body 

movement, structured and repetitive, whose purpose is improving or maintaining fitness 

level and/or motor capacities and abilities (motor learning). So, PE constitutes a 

stimulus to the development and improvement of the psycho-physical qualities of 

people (López-López, 2008). 

 

Movement becomes a PA when it has the following characteristics: 

 Willfulness: full conscience activities. 

 Intentionality: activities with a clear intention. For education, health, leisure, and 

other. 

 Systematization: activity with a specific order, intensity and difficulty, among 

other characteristics. 

 

         Exercise and exercise training frequently are used interchangeably and generally 

refer to PA performed during leisure time with the primary purpose of improving or 

maintaining physical fitness, physical performance, or health (Physical Activity 

Guidelines Advisory Committee, 2008). 

  

           PE can be classified as an aerobic or anaerobic activity depending on the 

principal metabolic pathways involved to produce energy, and can be of several types, 
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depending on aerobic endurance, strength (resistance) or balance (Giannuzzi et al., 

2003). 

  

            The intensity with which PA is performed represents the rhythm or effort level 

used. To classify intensity, the Metabolic Equivalent of Task (MET) is very commonly 

used. The MET corresponds to the quantity of energy that the body consumes at rest, 

and 1 MET is defined as oxygen consumption (VO2) at rest, which is approximately 

equivalent to 3.5 ml·Kg-1·min-1. Based on the metabolic units, the intensity of PA can 

be classified as: low (< 3.00 METs), moderate (3.00 a 5.99 METs), vigorous (6.00 a 

8.99 METs) and very vigorous (≥ 9.00 METs) (Ainsworth et al., 2000; Haskell et al., 

2007). 

  

          Table 4 shows the classification of exercise intensities using relative and absolute 

methods commonly used in practice. Not all of these methods of measurement for 

exercise intensity have been compared simultaneously, therefore, it cannot be assumed 

that one method of determining exercise intensity is necessarily equivalent to that 

derived using another method. It is prudent to keep in mind that the relationships among 

actual energy expenditure, HR reserve (HRR), VO2R, percent of maximal HR (%Hr max) 

and VO2max % can vary considerably depending on exercise test protocol, exercise mode, 

exercise intensity, resting HR, fitness level, age, body composition, and other factors 

(American College of Sports Medicine, 2018; Cunha, Midgley, Monteiro, & Farinatti, 

2010; Fernhall et al., 2001) 
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Table 4. Classification of exercise intensity: relative and absolute exercise intensity for cardiorespiratory endurance and resistance exercise (American College of Sports Medicine, 2018) 

 Cardiorespiratory Endurance Exercise 

 

Resistance 

Exercise 

  

Relative Intensity 

 

Intensity (%VO2max ) Relative to 

Maximal 

Exercise Capacity in METs 

 

Absolute 

Intensity 

 

Absolute Intensity (MET) by 

Age 

 

 

Relative 

Intensity 

 

Intensity 

 

 

%HRR 

or 

%VO2 R 

 

 

%HRmax 

 

%VO2max 

 

Perceived 

exertion 

(Rating on 

6-20 RPE 

Scale) 

 

20 METs 

%VO2max 

 

 

10 METs 

%VO2max 

 

5 METs 

%VO2max 

 

 

METs 

 

 

Young 

(20-39 

yr) 

 

 

Middle-

aged 

(40-64) 

 

 

Older 

(≥ 65 

yr) 

 

 

% 1RM 

 

Very light 

 

<30 

 

 

 

<57 

 

<37 

 

<Very light 

(RPE <9) 

 

<34 

 

<37 

 

<44 

 

<2 

 

<2.4 

 

<2.0 

 

<1.6 

 

<30 

 

Light 

 

30-39 

 

 

57-63 

 

37-45 

Very light-

fairly 

light 

(REP 9-11) 

 

34-42 

 

37-45 

 

44-51 

 

2.0-2.9 

 

2.4-4.7 

 

2.0-3.9 

 

1.6-3.1 

 

30-49 

 

Moderate 

 

40-59 

 

 

64-76 

 

46-63 

Fairly light 

to somewhat 

hard 

(RPE 12-13) 

 

43-61 

 

46-63 

 

52-67 

 

3.0-5.9 

 

4.8-7.1 

 

4.0-5.9 

 

3.2-4.7 

 

50-69 

 

Vigorous (very 

hard) 

 

60-89 

 

 

77-95 

 

64-90 

Somewhat 

hard to very 

hard 

(RPE 14-17) 

 

62-90 

 

64-90 

 

68-91 

 

6.0-8.7 

 

7.2-10.1 

 

6.0-8.4 

 

4.8-6.7 

 

70-84 

Near-maximal 

to maximal 

 

≥90 

 

≥96 

 

≥91 

   ≥Very       

     hard 

(RPE  ≥ 18) 

 

≥91 

 

≥91 

 

≥92 

 

≥8.8 

 

≥10.2 

 

≥8.5 

 

≥6.8 

 

≥85 

Abbreviations: Hrmax (maximal HR); HRR (heart rate reserve); MET (metabolic equivalent) ; RPE (ratings of perceived exertion); VO2max  (maximal oxygen uptake); VO2 R (oxygen 

uptake reserve); 1RM (one maximal repetition).  
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         In Spain, Chodzko-Zajko et al. (2012) found that 84% of autonomous communities have 

some kind of recommendations for aerobic PE and 37% do for resistance training. The WHO 

criteria are: aerobic PA (n = 11; 58%), adults (n = 10; 53%), older adults (n = 5; 26%), 

childhood and adolescents (n = 1; 5%); resistance training for adults (n = 6; 32%), older adults 

(n=3; 16%), childhood and adolescents (n=1; 5%); balance (n=5; 26%); bouts of continuous PA 

for at least 10 minutes (n=6; 32%); recommendation of 300 minutes of PA a week (n=10; 53%); 

PA intensities (n=2; 11%). Communities with higher aging indexes and higher percentages of 

children/adolescents mostly don’t give recommendations of PA related to the WHO guidelines 

(World Health Organization, 2010). 

  

       Tables 5 and 6 show recommendations for PA by different institutions, and evidence of 

their influence on health status. 

 
 

 

 

 

 

 

 

 

Table 5. Recommendations from different institutions for the practice of PA in adults (ACSM, 2018) 

Institution Document Year Recommendation of PA for 

adults 

Other 

recommendations 

 

Gobierno de 

Chile 

Program of PA for Prevention 

and Control of Cardiovascular 

Risk Factors 

 

2004 

20 to 60 minutes of 

moderate-vigorous PA 

 

3 to 5 days a week 

Generalitat de 

Catalunya 

Prescription 

Guidelines of Exercise 

for Health 

 

2007 

 

≥30 minutes of PA 

 

2 – 5 days a week 

 

 

WHO 

Global 

recommendations on 

PA for health 

 

2010 

≥150 minutes a week 

of moderate PA 

≥75 minutes a week of 

vigorous PA 

≥5 days a week 

 

Bouts  ≥10 minutes 

 

Ministerio de 

Salud de la 

Presidencia de 

la Nación 

 

Reference Manual of 

PA and Health in Argentina 

 

2012 

 

≥150 minutes a week 

of moderate PA 

≥75 minutes a week of 

vigorous PA 

 

≥5 days a week 

 

Bouts  ≥10 minutes 

 

 

ACSM 

 

Quantity and quality of 

exercise for developing and 

maintaining cardiorespiratory, 

musculoskeletal, and 

neuromotor fitness in 

apparently healthy adults: 

guidance for prescribing 

exercise 

 

 

 

2014 

 

 

≥30 minutes moderate 

PA 

≥20-25 minutes of vigorous 

PA 

 

 

 

 

≥5 days a week 

 

≥3 days a week 
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Table 6. Health benefits associated with regular physical activity (US Department of Health and 

Human Services, 2008) 

Children and Adolescents 

 

Strong evidence 

 Improved cardiorespiratory and muscular fitness 

 Improved bone health  

 Improved cardiovascular and metabolic health biomarkers 

 Favorable body composition 

 

Strong evidence 

 Reduced symptoms of depression 

Adults and Older Adults and Adolescents 

 

           Strong evidence 

 Lower risk of early death 

 Lower risk of coronary heart disease 

 Lower risk of stroke 

 Lower risk of high blood pressure 

 Lower risk of adverse blood lipid profile 

 Lower risk of type 2 diabetes 

 Lower risk of metabolic síndrome 

 Lower risk of colon cáncer 

 Lower risk of breast cancer 

 Prevention of weight gain 

 Weight loss, particularly when combined with reduced calorie intake 

 Improved cardiorespiratory and muscular fitness 

 Prevention of falls 

 Reduced depression 

 Better cognitive function (for older adults) 

 

         Moderate to strong evidence 

 Better functional health (for older adults) 

 Reduced abdominal obesity 

 

         Moderate evidence 

 Lower risk of hip fracture 

 Lower risk of lung cancer 

 Lower risk of endometrial cancer 

 Weight maintenance after weight loss 

 Increased bone density 

 Improved sleep quality 

 

3.10 Physical Fitness and Training 
 

        Fitness is the energy and vitality status that allow people to perform daily and 

regular tasks, like enjoying active leisure time, confronting unexpected events without 

excessive fatigue (Pancorbo Sandoval, 2004). 

  

        Physical fitness can be divided into health-related and skill-related components. 

Health-related fitness includes those components of physical fitness that are most 
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directly related to good health, decreased morbidity and mortality, and improvement in 

quality of life and well-being (Departament de Salut i Secretaria General de l’Esport del 

Departament de la Vicepresidència de la Generalitat de Catalunya, 2007; Ministerio de 

Salud de la Nación Argentina, 2012; Rimmer, 2000). The Sport Committee of the 

European Council states that “fitness related to health is composed of the following 

elements: cardiorespiratory endurance, strength, muscle resistance, flexibility, 

anthropometric dimensions (body composition), coordination-balance and a good 

psycho-emotional status” (Pancorbo Sandoval, 2004). Good physical fitness reduces the 

risk of health problems related to lack of exercise, and establishes a fitness base for 

participation in a variety of activities.  

  

      Different motors skills such as coordination, balance, gait and agility (neuromotor 

exercise training) are not the main goals for health-related fitness, but the lack of them 

may in fact be harmful in some cases. Developing these skills should be part of a 

comprehensive exercise program (ACSM, 2018). A program of regular exercise that 

includes cardiorespiratory, resistance, flexibility, and neuromotor exercise training 

beyond activities of daily living for the improvement and maintenance of physical 

fitness and health is essential for most adults. In addition to exercising regularly, there 

are health benefits in concurrently reducing total time engaged in sedentary pursuits, 

and by interspersing frequent, short bouts of standing and PA between periods of 

sedentary activity, even in physically active adults (ACSM, 2018). Sport training is the 

planned and complex process of organizing progressively increasing  workloads in 

order to stimulate the physiological process of super-compensation of the organism, 

facilitating the development of different physical qualities and capacities, to promote 

and consolidate sport performance (Vicente, 1995). 

 

3.10.1 Cardiorespiratory Fitness 
 

          A person’s total capacity for physical performance is determined by his/her 

capacity for aerobic and anaerobic performance. His/her aerobic or cardiorespiratory 

fitness (CRF) is related to the ability to perform large muscle, dynamic, moderate-to-

vigorous intensity exercise for prolonged periods of time (ACSM, 2018). CRF is the 

ability of the circulatory and respiratory systems to supply oxygen to working muscles 
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during sustained PA (Chicharro et al., 2006; Physical Activity Guidelines Advisory 

Committee, 2008). Performance of exercise at this level of physical exertion depends on 

the integrated physiologic and functional state of the respiratory, cardiovascular, and 

musculoskeletal systems. 

  

           CRF is considered a health-related component of physical fitness because (a) low 

levels of CRF have been associated with a markedly increased risk of premature death 

from all causes and specifically from CVD; (b) increases in CRF are associated with a 

reduction in death from all causes; and (c) high levels of CRF are associated with higher 

levels of habitual PA, which in turn are associated with many health benefits. Because 

of that, the assessment of CRF is an important part of any primary or secondary 

prevention and rehabilitative program. 

  

        A sedentary lifestyle and a low CRF are known to be major independent risk 

factors for cardiovascular diseases (CVDs) and all-cause mortality (U.S. Department of 

Health and Human Services, 2008; World Health Organization, 2007, 2010). CVDs are 

the first cause of disability and premature morbidity and mortality throughout the world 

(World Health Organization, 2007, 2010). 

  

     The standard measure to express CRF is VO2max or VO2peak, which provides 

important information about CRF and is a powerful marker of aerobic performance. It is 

defined as the maximum amount of oxygen that the body is able to absorb, transport and 

consume per unit of time and is achieved during a maximal cardiorespiratory exercise 

test, in which a large muscle mass is used (Chicharro et al., 2006). This variable is 

typically expressed clinically in relative (mL · kg
–1

 · min
–1

) as opposed to absolute (mL 

· min
–1

) terms, allowing for meaningful comparisons between/among individuals with 

differing body weight. VO2max is the product of the maximal cardiac output cardiac 

output (Q) (L blood · min
–1

) and arterial-venous oxygen difference (mL O2 · L blood
–

1
). Significant variation in VO2max across populations and fitness levels results primarily 

from differences in Q in individuals without pulmonary disease; therefore, VO2max is 

closely related to the functional capacity of the heart. The designation of VO2max implies 

an individual’s true physiologic limit has been reached and a plateau in VO2 may be 
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observed between the final two work rates of a progressive exercise test. This plateau is 

rarely observed in individuals with CVD or pulmonary disease. Therefore, peak VO2 is 

commonly used to describe CRF in these and other populations with chronic diseases 

and health conditions (ACSM, 2018). 

 

        A variety of submaximal and maximal exercise tests can be used to estimate 

VO2max. These tests have been validated by examining (a) the correlation between 

directly measured VO2max and VO2max estimated from physiologic responses to 

submaximal exercise (e.g., HR at a specified power output); or (b) the correlation 

between directly measured VO2max and test performance (e.g., time to run 1 or 1.5 mi 

[1.6 or 2.4 km]), or time to volitional fatigue using a standard graded exercise test 

protocol. It should be noted that there is the potential for a significant overestimation 

of directly measured VO2max by these types of indirect measurement techniques.  

  

        It must be taken into account that results can be overestimated when (a) the 

exercise protocol chosen for testing is too aggressive for a given individual (i.e., Bruce 

treadmill protocol in patients with congestive heart failure (CHF); or (b) when treadmill 

testing is employed and the individual relies on handrail support (ACSM, 2018). 

  

      Aerobic fitness level is an important determinant in the health status of individuals 

of any age. It was reported that maximum oxygen consumption (VO2max) decreases by 

about 7% per decade (Wilson & Tanaka, 2000). The highest achieved O2 during a 

maximal cardiorespiratory exercise test can be considered as VO2max (a plateau in O2 

with an increase in work rate). Secondary criteria to check whether VO2max is reached 

without a plateau, at least two of these criteria must be met: (1) a RER >1.1, (2) a 

plateau in HR with an increase in work rate or within 10 beats of the estimated HRmax, 

(3) no change (increase lower than 150 ml·min-1) in O2 with an increase in workload, 

and (4) high levels of lactic acid in the minutes following exercise (Chicharro & Redín, 

2006; Reaño & Ricart, 2001; Wilmore & Costill, 2004). VO2peak is the highest achieved 

oxygen uptake during a test without the VO2max criteria. Oxygen consumption is a 

marker of metabolic rate, and it is directly proportional to training intensity. Whilst this 
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measurement may be accurate in the laboratory, it is difficult to measure out of the 

laboratory during training. 

  

           The variability among different subjects is wide and depends on various factors 

such as: genetic endowment, age (Table 7), body composition, sex, and training levels 

or fitness conditioning (ACSM, 2018). Genetic factors determine the initial VO2max 

value observed before any training, as well as the capacity to adapt to training by 

increasing VO2. This capacity varies between 0 and 50%.  

  

           Possible mechanisms that limit VO2max could be both centrals and peripherals. 

Within the centrals are cardiac output (ACSM, 2018), which is the product of heart rate 

(HR) and stroke volume (SV). Peripherals factors are mitochondrial mass and capillary 

density (López Chicharro & Izquierdo Redín, 2006). 

 

Table 7. Cardiorespiratory fitness classifications (VO2max) for men by age (ACSM, 2018) 

VO2max  (mL · kg–1 · min–1) 

Percentile   20-29 30-39 40-49 50-59 60-69 

95 Superior 66.3 59.8 55.6 50.7 43.0 

90   

Excellent 

  

61.8 56.5 52.1 45.6 40.3 

85 59.3 54.2 49.3 43.2 38.2 

80 57.1 51.6 46.7 41.2 36.1 

75   

 

Good 

55.2 49.2 45.0 39.7 34.5 

70 53.7 48.0 43.9 38.2 32.9 

65 52.1 46.6 42.1 36.3 31.6 

60 50.2 45.2 40.3 35.1 30.5 

55   

 

Fair 

  

49.0 43.8 38.9 33.8 29.1 

50 48.0 42.4 37.8 32.6 28.2 

45 46.5 41.3 36.7 31.6 27.2 

40 44.9 39.6 35.7 30.7 26.6 

35   

 

Poor 

 

43.5 38.5 34.6 29.5 25.7 

30 41.9 37.4 33.3 28.4 24.6 

25 40.1 35.9 31.9 27.1 23.7 

20 38.1 34.1 30.5 26.1 22.4 

15   

Very poor 

  

35.4 32.7 29 24.4 21.2 

10 32.1 30.2 26.8 22.8 19.8 

5 29.0 27.2 24.2 20.9 17.4 

    (n = 513) (n= 963) (n= 1,327) (n= 1,078) (n= 593) 
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3.11 Physical Fitness Evaluation  
 

      Measurement of physical fitness is a common and appropriate practice in research 

and clinical settings. The purposes of health-related fitness testing in such programs 

include the following (ACSM, 2018): 

 

- Educating participants about their present health-related fitness status relative to 

             health-related standards and age and sex matched norms. 

- Providing data that are helpful in the development of exercise prescriptions to 

             address all fitness components. 

- Collecting baseline and follow-up data that allow evaluation of progress by 

             exercise program participants. 

- Motivating participants by establishing reasonable and attainable fitness goals. 

- Stratifying cardiovascular risk. 

 

3.11.1 Measurement of Breath-by-Breath Respiratory Systems 
 

       The measurement of VO2max and carbon VCO2max are standard tools of exercise 

physiology that are used to assess aerobic capacity, exercise intensity and energy 

expenditure (EE). In addition, measurement of VO2 and VCO2 allows to indirectly 

measure substrate utilization.  

  

        Open circuit spirometry is used to measure VO2max. Modern automated systems 

provide ease of use and a detailed printout of test results (ACSM, 2018). However, 

system calibration is still essential to obtain accurate results. Because of costs associated 

with the equipment, space, and personnel needed to carry out these tests, direct 

measurement of VO2max is generally reserved for research settings.  

 

3.11.2 Body Composition 
 

       Body composition is a common and important element in fitness evaluation. It 

involves a relative representation of the various constituent elements of total body 

weight. It is well known that it changes under the influence of continuous PA, and is 
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one of the major components of fitness and the general health of athletes (Mazić et al., 

2014). 

  

         Body composition refers to the relative proportions of fat, muscle, bone and 

residual body mass (BM) of the total weight of a person. All fitness components depend 

on body composition to some extent. It has been well demonstrated than excess body fat 

(BF) is bad for health, and the pattern of fat distribution is important. Body composition 

gives more information than weight alone.  

  

       Another simple index of weight-for-height that is commonly used to classify 

underweight, overweight and obesity in adults is body mass index (BMI). It is defined 

as weight in kilograms divided by the square of height (kg·m
–2

), and is commonly used 

as a health indicator. Body composition can be estimated using both laboratory or field 

techniques (ACSM, 2018); Esparza Ros, 1993; WHO, 2000).  

  

          Basic body composition can be expressed as the relative percentage of BM that is 

fat and fat-free tissue using a two-compartment model. Before collecting data for body 

composition assessment, the technician must be trained, experienced in the techniques, 

and already have demonstrated reliability in his or her measurements, independent of 

the technique being used.  

  

        Body composition assessment in elite athletes and everyone who is involved in 

physical activity is of great importance as a determinant of their performance. 

Endurance athletes such as distance runners, cyclists, and triathletes benefit greatly from 

having a low BF %. An increase in lean body mass contributes to strength and power 

development. Strength and power are related to muscle size. Thus, an increase in lean 

body mass enables the athlete to generate more force in a specific period of time. A 

sufficient level of lean BM also contributes to speed, quickness, and agility performance 

(in the development of force applied to the ground for maximal acceleration and 

deceleration). Additional weight (nonessential fat) provides greater resistance, forcing 

the athlete to increase the muscle force of contraction per given workload. The 

additional body fat can limit endurance, balance, coordination, and movement capacity. 
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Joint range of motion can be negatively affected by excessive body mass and fat as 

well, and mass can form a physical barrier to joint movement in a complete range of 

motion (Table 8). 

 
Table 8.  Fitness categories for body composition (% Body Fat) for men by age 

 Age (year) 

%  20-29 30-39 40-49 50-59 60-69 70-79 

99   Very lean 4.2 7.3 9.5 11.0 11.9 13.6 

95 6.4 10.3 12.9 14.8 16.2 15.5 

90  

Excellent 

7.9 12.4 15.0 17 18.1 17.5 

85 9.1 13.7 16.4 18.3 19.2 19.0 

80 10.5 14.9 17.5 19.4 20.2 20.1 

75  

Good 

11.5 15.9 18.5 20.2 21.0 21.0 

70 12.6 16.8 19.3 21.0 21.7 21.6 

65 13.8 17.7 20.1 21.7 22.4 22.3 

60 14.8 18.4 20.8 22.3 23.0 22.9 

55  

Fair 

15.8 19.2 21.4 23.0 23.6 23.7 

50 16.6 20.0 22.1 23.6 24.2 24.1 

45 17.5 20.7 22.8 24.2 24.9 24.7 

40 18.6 21.6 23.5 24.9 25.6 25.3 

35  

Poor 

19.7 22.4 24.2 25.6 26.4 25.8 

30 20.7 23.2 24.9 26.3 27.0 26.5 

25 22.0 24.1 25.7 27.1 27.9 27.1 

20 23.3 25.1 26.6 28.1 28.8 28.4 

15  

Very poor 

24.9 26.4 27.8 29.2 29.8 29.4 

10 26.6 27.8 29.2 30.6 31.2 30.7 

5 29.2 30.2 31.3 32.7 33.3 32.9 

1 33.4 34.4 35.2 36.4 36.8 37.2 

n =  1,844 10,099 15,073 9,255 2,851 522 

 

3.12 Cardiorespiratory Tests 
 

a) Laboratory tests: 

 

            Aerobic laboratory tests are used to obtain metabolic data. The use of maximal 

treadmill/bike tests with open circuit spirometry allows for direct and accurate 

assessment of VO2 and anaerobic threshold in sport populations. This test has been 

shown to be a reliable and feasible test (ACSM, 2018). 

 

a) Body Composition Tests: 

 

Anthropometric methods for body composition assessment are (Mazić et al., 2014): 

 

1.     Direct laboratory methods: the values obtained with these techniques are quite 
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accurate but invasive, so their use is practically unviable; they give us direct values 

without the necessity of posterior transformation equations (Sirvent Belando & Garrido 

Chamorro, 2009). These two methods are:  

 

-       Body dissection, very difficult and with technical problems. 

-       Tissue biopsy, but its viability is greatly limited due to the requirement of 

penetration in human tissues. 

  

1. a) Indirect laboratory tests: 

 

-       Hydrodensitometry (Underwater) weighing: this technique of measuring body 

composition is based on Archimedes’ principle related to water displacement. This loss 

of weight in water allows calculation of body volume. Hydrodensitometry weighing has 

a high reliability (r = .98 to .99) as reported by Rimmer et al., (1987). 

 

-          Dual-energy X-ray absorptiometry (DEXA): these scanners remain relatively  

straightforward to operate with no need for participant involvement and have reported 

accurate measurements in diverse populations (Pritchard et al., 1993). The review 

performed by Mazić et al., (2014) found a high correlation between DEXA and BMI as 

indicators of adiposity in athletes. 

 

-         Plethysmography: In this test, body volume is measured by air rather than water 

displacement. One commercial system uses a dual-chamber plethysmograph that 

measures body volume by changes in pressure in a closed chamber. It has been shown 

as a valid and reliable method in the general population (ACSM, 2018). 

 

-           Bioelectrical impedance analysis (BIA): the accuracy of BIA is similar to 

skinfolds, as long as a stringent protocol is followed and the equations programmed into 

the analyzer are valid and accurate for the population being tested (ACSM, 2018). 

Rieken et al. (2011) reported that BIA is more accurate at assessing nutritional status 

than the measurement of skinfold thickness. 
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-         Near-infrared intercadence requires additional research to substantiate the validity 

and accuracy for body composition assessment. 

  

3.     b) Indirect field tests for the study of body composition: 

  

          It is based on anthropometric measures that include height, weight, waist and hip 

circumferences, and skinfolds. Although skinfold measurement is more difficult than 

other anthropometric procedures, it provides a better estimation of body fat than those 

based only on height, weight, and circumferences (ACSM, 2018). 

 

        The BMI shows the degree of overweight and obesity, is used to assess weight 

related to height and is calculated by dividing weight in kilograms by height in m
–2

. 

These are simple measurements that provide a convenient and inexpensive alternative 

for estimating body composition, and thus are frequently used in clinical studies and 

fitness conditioning. 

  

-    Skinfold Measurements: body composition determined from skinfold measurements 

correlates well (r = .70 to .90) with body composition determined by 

hydrodensitometry.  

 

         The principle behind this technique is that the amount of subcutaneous fat is 

proportional to the total amount of body fat. It is assumed that close to one third of total 

fat is located subcutaneously. The exact proportion of subcutaneous-to-total fat varies 

with sex, age, and ethnicity. Therefore, regression equations used to convert sum of 

skinfolds to BF% must consider these variables for greatest accuracy (ACSM, 2018).  
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3.13 Rate of Perceived Effort (RPE) 
 

      In studies on physical work it is important to assess various subjective symptoms, 

complaints, and annoyances. To measure such symptoms, psychophysical ratio scales 

may be used, along with simpler category rating scales. These types of ratio scaling 

methods are very useful when one wants to describe how the subjective intensity varies 

with the physical intensity. The category scale, commonly referred to as the Borg Scale 

(Borg et al., 1982), has been widely used to study the rate of perceived effort (RPE) 

during exercise in laboratory, occupational and clinical settings. This scale was 

developed by Borg so that the perceptual ratings increased linearly with power output 

and heart rate on a cycle ergometer (G. Borg, 1987).  

  

       Then, Borg et al. (1990) developed a new psychophysical scale with perceptual 

ratings that increase as a positively accelerating function. The score was based on the 

Borg category ratio scale and consisted of a scale ranging from 6 to 20 (Table 9). 

 

Table 9. There are many adapted scales for different ages and sport, all of them based                                

in the original one (Borg, 1982) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 No exertion at all 

    7            

     8 

Extremely light 

Very light 

     9                                       

10  

Light 
11 

12 

13 Somewhat hard 

 

Hard 
14 

15 

16 

17 Very hard 

 

Extremely hard 

Maximal exertion 

18 

19 

20 
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3.14 Energy Metabolism during Exercise 
 

         Phosphocreatine (PCr) breakdown through the creatine kinase reaction and 

glycogen breakdown into lactate (glycogenolysis/glycolysis) are the primary pathways 

of ATP provision during short exercise events requiring maximal force and power 

output (PO). For example, during a 6-second sprint, during which PO corresponds to 

~250% of  VO2max, PCr hydrolysis and glycogenolysis each contribute ~50% of the total 

ATP (adenosine triphosphate) requirement with very little contribution from oxidative 

phosphorylation (Saris et al., 2003). The relative contribution of PCr to energy turnover 

increases as the exercise duration becomes shorter. Conversely, during maximal 

exercise lasting 5 to 6s to about 90s to 2min, glycogen degradation to lactate rather than 

the creatine kinase reaction is primarily involved in the regeneration of ATP (Mujika, 

2012). 

         ATP turnover rate under normal conditions is not a limiting factor in short 

‘explosive’ exercise performance (throwing, jumping, weight lifting etc.). Muscle 

structure (physiological cross sectional area (CSA), muscle length, muscle architecture), 

neural factors (neuromotor drive, coordination) as well as skill ability are the 

predominant factors limiting performance. However, when sprint exercises cause PCr 

depletion and involve substantial activation of glycogenolysis, the rate of ATP 

breakdown often exceeds the rate of ATP synthesis, which results in net ATP 

breakdown and increasing intracellular content of the end products of adenine 

nucleotide degradation, notably inorganic phosphate (Pi), adenosine diphosphate 

(ADP), adenosine monophosphate (AMP), inosine phosphate (IMP) and ammonia. A 

small proportion of the IMP formed is converted to inosine and further to hypoxanthine, 

which appear in the venous effluent of muscles (Saris et al., 2003). There is substantial 

evidence to indicate that hydrogen ion (H+) production (~pH drop) from 

glycolysis/glycogenolysis in excess of available buffer capacity, in conjunction with 

intracellular accumulation of ADP and Pi resulting from adenine nucleotide 

degradation, are implicated in fatigue during short maximal exercise (Mujika, 2012). 
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3.14.1 Energy Expenditure (EE) 
 

         There are several ways to measure or estimate energy expenditure (EE). Methods 

for measuring EE range from direct but complex measurements of heat production 

(direct calorimetry), to relatively simple indirect metabolic measurements (indirect 

calorimetry), and from very expensive tracer methods (doubly labelled water) to 

relatively inexpensive and convenient estimations of EE (heart rate monitoring and 

accelerometry). 

 

3.14.2 Substrates Oxidation Rates (FATox and CHOox) 
  

      During prolonged exercise, CHO and FAT are the primary substrates oxidized to 

fuel energy metabolism (Romijn et al., 1993; van Loon et al., 2001). Humans 

predominantly store carbohydrates as glycogen in skeletal muscle (Bergström et al., 

1967) and the liver (Nilsson et al., 1973) with modest quantities also found in the brain, 

kidneys, and adipose tissue (Meyer et al., 2009), and ∼4 g circulating in plasma as 

glucose (Wasserman, 2009). 

  

       Carbohydrate and fatty acids are the main fuels oxidized by skeletal muscle to 

provide energy during aerobic exercise at intensities between 30 to 80% VO2max (Van 

Loon et al., 1999). However, at a given exercise intensity and metabolic demand, there 

can be reciprocal shifts in the proportions of CHO and FAT that are oxidized (Spriet, 

2014). 

  

       It has been shown that exercise intensity is one of the main factors that influences 

substrate utilization during exercise. Shifts in energy substrate mobilization and 

utilization occur as exercise intensity increases (Achten, 2002). There is a progressive 

increase in the relative contribution of CHOox to EE and a corresponding decrease in 

the relative contribution of FATox to EE. However, from low to moderate intensities of 

exercise, the absolute rate of FATox increases and then declines as exercise becomes 

even more intense (Horton et al., 1998; Randell et al., 2017; San-Millán & Brooks, 

2017; Spriet, 2014). Several mechanisms have been proposed to explain the lower 

FATox rates at high compared with moderate exercise intensities. It has been shown in 
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athletes that after endurance training, FATox at a given intensity is increased and 

coincides with increases in performance (Jeukendrup, 2011; San-Millán & Brooks, 

2017). These observations indicate that the ability to oxidize fatty acids is related to 

improved performance. These changes are likely to be the results of an overall increase 

in aerobic capacity (Randell et al., 2017).  

  

       Therefore, it is necessary to use an exercise protocol to determine substrate 

oxidation rate (FATox and CHOox), such as a continuous incremental exercise test on a 

cycle (Achten, 2002) or treadmill (Mohebbi & Azizi, 2011) with 3-min stages and 

increments of 35-W and 1km/h respectively, at a work rate that allows for valid 

assessment of Fatmax and a Fatmaxzone in well-trained athletes. 

 

Fat Oxidation 

 

       Lipids are the major fuel (approximately 60%) for non-contracting skeletal muscles 

and the body at rest (Brooks, 1997). Lipids stores are sufficient to ensure physical 

activity for several hours, or even several days, even in the thinnest athletes (Mujika, 

2016). Indeed, given that 1g of fat provides ∼9.75 kcal of energy (Jeukendrup, et al., 

1998), it can be estimated that even very lean individuals of 70 kg and 10% body fat 

possess ∼68,250 kcal (7,000 g) of endogenous fat energy.  

  

       Human fat energy storage is effectively unlimited in the context of exercise 

(Gonzalez et al., 2016), and so identifying the determinants of, and enhancing, FATox 

during exercise is a pertinent training and research goal in endurance sports. Indeed, 

FATox capacity has been correlated with performance in Ironman triathlons, which are 

ultra-endurance events (>8 h) in which CHO availability is likely limiting (Frandsen et 

al., 2017). Studies demonstrated that increased lipid availability in the form of plasma 

free fatty acids (FFAs) increased FATox and decreased CHOox in muscles (Spriet, 

2014). 

  

     Lastly, fat metabolism is of great relevance in a health setting, given the observed 

positive and negative relationships between 24-h FATox and markers of metabolic 

health such as insulin sensitivity and weight gain (Robinson et al., 2015), and that the 
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capacity for FATox during exercise has been associated with insulin sensitivity, 

metabolic flexibility (San-Millán & Brooks, 2017), and lower metabolic risk factors 

(Achten et al., 2002; Robinson et al., 2015). 

  

      Fat oxidation increases from low to moderate exercise intensities and decreases 

from moderate to high exercise intensities. Perhaps the most fundamental determinant 

of whole-body FATox rate is exercise intensity. The relationship between exercise 

intensity and FATox is generally parabolic; with FATox initially increasing with 

exercise intensity before declining at high work rates (Romijn et al., 1993).  

  

       Generally, the highest rates of FATox are found at low to moderate exercise 

intensities (range 33-65% VO2max) (Achten & Glesson, 2002; Achten, 2003; Randell et 

al., 2017; San-Millán & Brooks, 2017; Saris et al., 2003). Most studies, however, 

measured FATox at only two (Randell et al., 2017; Spriet, 2014), three (van Loon et al., 

2001), or four (Achten et al., 2003) different exercise intensities. This makes it difficult 

to accurately determine the exercise intensity that elicits maximal FATox. To our 

knowledge, there are no papers in the literature that have systematically studied FATox 

over a large range of exercise intensities to identify the exercise intensity at which 

FATox is maximal. Previous studies demonstrated that training status had a significant 

effect on substrate utilization (Van Loon et al., 1999).  

  

       Fat oxidation during exercise is more difficult to measure in non-active individuals 

compared to athletes because the rates of FATox are lower relative to the measurement 

error. For an overview of methods for measuring fat metabolism see Table 10. 
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Table 10. Fat oxidation 

Method Reproducibility 

(CV in %) 

Precision Advantages Disadvantages References 

 

Respiratory 

exchange 

ratio 

 

 

~3–5% 

 

 

Good 

-Metabolic 

measurements 

possible                     

-Exaggerates 

differences 

-Difficult to measure in 

the field 

-Does not give 

information about the 

source of fatty acids 

oxidised 

 

(Carter & 

Jeukendrup, 

2002) 

 

Stable 

isotopes 

(13C-

palmitate 

infusion) 

 

 

? 

 

 

 

Good 

Gives an indication 

of the source of the 

fatty acids oxidised 

Useful in 

combination with 

indirect calorimetry 

Relatively non-

invasive 

 

-Can only be used in 

steady-state conditions 

-Can only be measured 

in lab conditions 

-Is a whole body 

measurement and not 

specifically muscle                      

-Specialised equipment 

and personnel needed to 

perform analysis 

 

(Wolfe, 

1992) 

 

Muscle 

biopsy 

 

 

26% 

 

 

Good 

Direct measurement 

of intramuscular 

triglyceride 

concentration 

 

-Invasive 

-Large variability 

depending on 

the site of the biopsy                      

-Samples easily 

contaminated with 

adipose tissue 

 

(Wendling, 

Peters, 

Heigenhaus

er, & 

Spriet, 

1996) 

 
 

13C-NMR 

 

 

6% 

 

 

2012 

-Direct 

measurement of 

intramuscular 

triglyceride 

concentration 

-Can distinguish 

between intra- and 

extramyocellular 

triglycerides 

-Non-invasive 

-Potential problems 

with localisation 

-Expensive 

-Can only be performed 

in specialised hospital 

units 

 

(Jeukendru

pet al., 

1998) 

 

 

 

 

 

The “Fatmax” Test 

 

       The concept of Fatmax (maximal fat oxidation) has received a great deal of attention 

in recent years (Jeukendrup & Achten 2001; Achten et al., 2002; Achten, et al., 2003). 

This is due to an effort to recognize that facilitating fat metabolism is of importance for 

both aerobic performance and health-related benefits.  

  

       The specific intensity at which the FATox rate is maximal (commonly presented as 

a percentage of VO2max) is defined as Lipoxmax, Fatoxmax, or Fatmax by different 

researchers (Brun et al., 2011) and provides a measurement of MFO: the highest rate of 

FATox observed at various intensities (Randell et al., 2017).  
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        Fatmax was defined as the intensity where the greatest FATox was observed. In 

order to comprehensively define the relationship between whole-body FATox rates and 

exercise intensity, the “Fatmax” test was developed (Achten, et al., 2002). This protocol 

describes FATox over a wide range of exercise intensities, is relatively quick and allows 

measurements to be recorded in a single visit to the laboratory. This graded exercise test 

elucidates whole-body FATox rates across a range of exercise intensities, the maximal 

rate of FATox (MFO), and the intensity at which the MFO occurs (Fatmax) using indirect 

calorimetry (Figure 9). The protocol, often called a FATmax test, provides a measure of 

maximal FATox, as well as the exercise intensity (most commonly represented as a % 

VO2max) at which MFO occurred (FATmax). First developed on a cycle ergometer, the 

test involves continuous increases in work rate, every 3 min by 35 W, until exhaustion. 

Throughout the test, breath-by-breath measurements are obtained and rates of FATox 

are calculated (using stoichiometric equations) for each stage of the test. Thanks to this 

inaugural study, a treadmill Fatmax test protocol has also been developed (Achten, et al., 

2003). In addition, studies investigating the reproducibility of MFO and FATmaxusing 

this test protocol have found small intraindividual variation (Achten, 2003). 
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Figure 9: Representative illustration of fat oxidation (g.min–1) against exercise intensity 

(W) during a graded, cycling Fatmax test. 
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Carbohydrate Oxidation (CHO) 

   

      Human CHO storage is finite, and typically amounts to <3,000 kcal (<740 g) 

(Gonzalez, et al., 2016), ∼80% of which is in skeletal muscle and ∼10–15% in the liver 

(Jensen et al., 2011). The main CHO sources are muscle and liver glycogen, liver 

gluconeogenesis, and ingested CHOs (Van Loon et al., 1999). The relative contribution 

of these fuel sources also varies with exercise intensity (Brooks, 1997; Coggan, 1997) 

and training status (Van Loon et al., 1999).  

 

        Carbohydrates are the quantitatively most important metabolic substrate during 

prolonged exercise at moderate-to-high intensities (Romijn et al., 1993; Van Loon et al., 

1999), and skeletal muscle glycogen can become depleted to near-zero concentrations 

after exercise of sufficient length and intensity (Bergström, et al., 1967; Bergström & 

Hultman, 1967). The availability of CHO reserves as a substrate for muscle metabolism, 

and for the central nervous system, constitutes a key factor in performance during 

activities of extended duration (Mujika, 2012). 

  

        Since endogenous CHO stores are limited, depletion of these stores may occur 

within several hours of exercise. Depletion of carbohydrate stores (liver glycogen 

and/or muscle glycogen) have been recognised as causes of fatigue. Prevention of 

glycogen depletion can enhance performance and it is generally believed that an 

increased delivery of substrate from exogenous sources is beneficial. During exercise, 

breath 13CO2 will become enriched and together with a measurement of the total CO2 

production rate, exogenous CHOox rates can be quantified. 

 

Muscle Glycogen  

 

       Muscle glycogen and blood glucose are the most important substrates for 

contracting muscles (Romijn et al., 1993). Muscle glycogen is an important substrate 

for muscular work. When exercise intensity is 65–90% it is usually the most important 

substrate. Glycogen stores can potentially be exhausted when the duration of exercise 

exceeds 90 mins (Mujika, 2016). 
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       Fatigue during prolonged exercise is often associated with muscle glycogen 

depletion and reduced blood glucose concentrations (Asker & Jeukendrup, 2011) and, 

therefore, high pre-exercise muscle and liver glycogen concentrations are believed to be 

essential for optimal performance, although it is unlikely that any of these factors alone 

limits prolonged exercise performance. Studies in the 1960s demonstrated that muscle 

glycogen depletion is one of the main causes of fatigue (Bergström & Hultman, 1967). 

Since then, there has been enormous interest by exercise physiologists in studying the 

role of muscle glycogen, and a variety of techniques have been used to measure muscle 

glycogen concentration, muscle glycogen breakdown, or both. 

  

       Muscle glycogen is also thought to be important for recovery and many studies 

have investigated the effects of nutritional and performance interventions on the rate of 

muscle glycogen synthesis after depletion. When carbon isotope (
13

C) labelled glucose 

is infused at a constant rate of disappearance (Rd), glucose can be determined. In most 

conditions the Rd glucose will be equal or very similar to the rate of plasma glucose 

oxidation (Jeukendrup et al., 1999). 

 

Measuring FAT and CHO Oxidation – Gas Exchange 

 

     Fat and CHO oxidation rates can be measured using indirect calorimetry. Gas 

exchange measurements not only allow for an estimation of EE but also of the substrate 

mixture used. Krogh and Lindhard (1920) in the beginning of the 20th Century used the 

inherent differences in chemical properties of CHO, fat and protein to obtain 

information about fuel utilisation. The respiratory quotient reflects the relative 

contribution of CHO and fat to total EE. Absolute rates of FATox can then be 

calculated using stoichiometric equations (Frayn, 1983).  

  

        The application of the respiratory exchange ratio (RER) is based on the premise 

that the exchange of O2 and CO2 at the mouth represents the processes that occur in the 

tissues that oxidise the fuels. This assumption is valid at rest and during exercise up to 

about 80–85% VO2max, above which RQ measured at the mouth does not always reflect 

the oxidation processes in cells (due to hyperventilation and excess CO2 output). 

Normally FATox increases from low to moderate intensities, peaks around 64% VO2max 
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in trained individuals and becomes negligible around 80% VO2max (Achten et al., 2003). 

In order to demonstrate the effect of an intervention on whole body FATox, it is 

advisable to measure FATox over a wide range of exercise intensities as discussed in a 

recent paper by Achten et al., (2003). 

  

       Gas exchange measurements will only allow conclusions to be drawn about total 

whole body FATox, but the source of FFAs cannot be identified. Whether the fatty 

acids oxidised are derived from adipose tissue, or triglycerides (IMTG) can only be 

determined with the use of isotopic tracers or magnetic resonance spectroscopy or 

imaging techniques (Gonzalez et al., 2016). 

  

      Reductions in FATox have been observed after CHO ingesting, with increasing 

CHO content in the diet. Other factors like exercise intensity and exercise duration also 

affect FATox rates. Training not only lowers FATox but also changes the source of the 

fatty acids oxidised. The importance of increased FATox rates is subject to current 

debate. A claim has been made that increased FATox during exercise reduces the 

breakdown of CHO, though the relevance is unclear unless it can be demonstrated that 

glycogen depletion can be prevented (Saris et al., 2003).   

 

        The coefficient of variation of rates of FATox, measured by RER at a given 

exercise intensity are between 10 and 30%, whereas the coefficient of variation (CV) of 

the intensity at which maximal FATox occurs has a coefficient of variation between 6-

10% (Achten et al., 2003). In order to minimise variation in the measurements and 

decrease the coefficient or variation of all fat metabolism related parameters. 

 

Indirect Calorimetry 

 

    Indirect calorimetry is one of the most common tools in exercise physiology, and 

provides one the most sensitive, accurate, and noninvasive measurements of EE in an 

individual. It is used for various purposes, including the assessment of aerobic power, 

determination of exercise intensity and the measurement of EE (Carter & Jeukendrup, 

2002). This method remains a gold standard in measuring EE in research and clinical 

settings (Haugen, Chan, & Li, 2007).  
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       Indirect calorimetry is the method by which the type and rate of substrate utilization 

and energy metabolism are estimated in vivo starting from gas exchange measurements  

(CO2 production and O2 consumption during rest and steady-state exercise). An RER of 

0.7 indicates that fat is the predominant fuel source, a value of 1.0 is indicative of CHO 

being the predominant fuel source, and a value between 0.7 and 1.0 suggests a mix of 

both fat and CHO. As exercise intensity increases and CHO become the dominant or 

primary fuel, the respiratory quotient and the RER increase to between 0.9 and 1.0. The 

RER can also exceed 1.0 during intense exercise.    

 

     Therefore, using a short-duration step protocol and continuous indirect calorimetry, 

whole rates of FATox and CHOox can be estimated across a range of exercise 

workloads. This method is of interest in endurance sports. Studies show that endurance 

training increases FATox during progressive maximal exercise.  

 

3.14.3 Blood Lactate Concentration 
 

       Blood lactate is another measurement that is often associated with quantifying 

metabolic stress associated with exercise. The traditional approach to using [La
–
] as a 

marker of exercise intensity is to develop a [La
–
] concentration/workload relationship, 

or simply to measure the concentration of blood lactate after a bout of exercise. Blood 

lactate concentration during exercise is often used as a marker of exercise intensity and 

training status (Swart & Jennings, 2004).  

  

         Lactate is a product of oxygen-independent metabolism of glycogen via the 

glycolytic pathway. Lactic acid, which appears in the muscle and blood during exercise, 

is a product of pyruvate/lactate conversion in the process of glycolysis, which regulates 

cytosolic NADH+H/NAD equilibrium thus making possible anaerobic generation of 

ATP. For each molecule of glucose metabolised, two molecules of either lactate or 

pyruvate are formed. [La
–
] levels are a result of the balance between lactic acid 

production in muscle and elimination from the bloodstream, the main pathways of [La
–
] 

elimination being 1) uptake in the liver for oxidation and gluconeogenesis and 2) uptake 

in active as well as inactive muscles for oxidation. Lactate levels in arterial blood are 

considered to be a good reflection of the whole body status of lactate production and 
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elimination. While low levels of exercise are not associated with arterial lactate 

increase, high exercise intensities induce a rise in [La
–
] and metabolic acidosis. Thus, 

during low-intensity exercise, muscle lactate production is in balance with lactate 

elimination, while this balance is disturbed during higher exercise intensities during 

which lactate production is enhanced more than lactate elimination (Billat, 1996; Swart 

& Jennings, 2004). The increase of lactate production during high intensity exercise is 

associated with a need of additional energy formation over what can be provided by 

aerobic pathways. In these conditions, conversion of pyruvate to lactate becomes 

increasingly important for an adequate regeneration of ATP. The metabolic acidosis 

resulting from the increase of lactic acid is one of the mechanisms of muscle fatigue, 

limiting the duration of high intensity exercise. Between the two states of [La
–
] balance 

there is a transition area of intensities of exercise in which the shift to lactate 

accumulation occurs (Table 7). This area can be identified as “lactate threshold”, “onset 

of blood lactate accumulation”, “maximal steady state of blood lactate level” or, the 

most frequent but perhaps the most imprecise, “anaerobic threshold” (Billat, 1996) 

  

      According to the ‘anaerobic threshold’ theory, the change from oxygen-dependent 

to oxygen-independent metabolism is presumed to be a result of a limit in the supply of 

oxygen to working muscles at higher exercise intensities. Increases in cardiac output are 

insufficient to meet the demands for oxygen in working muscles and the production of 

lactate from oxygen- independent metabolism is presumed to then cause metabolic 

acidosis (Messonnier et al., 2013). 

  

      Recents studies show that the presence of lactatemia leads to impaired FFAs 

clearance and elevated plasma FFAs concentration, another symptom of some metabolic 

diseases such as insulin resistance. Blood lactate accumulation is negatively correlated 

with FATox and positively correlated with CHOox during exercise across populations 

with widely ranging metabolic capabilities (San-Millán & Brooks, 2017).  
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Lactate / Ventilatory Threshold 

 

     The exercise intensity corresponding to the increase in [La
–
] above resting levels 

(lactate threshold (LT)) and the associated changes in gas exchange (ventilatory 

threshold (VT)) are powerful predictors of endurance performance (Jones & Carter, 

2000; Jones AM, 1988; Messonnier et al., 2013). 

  

     The lactate threshold is defined by the lowest intensity at which lactate production 

exceeds the muscle’s oxygenation capacity. A significant increase in muscular oxidation 

capacity is one of the main factors explaining the high lactate threshold values observed 

in top-level endurance athletes. A possible approach for evaluation of the status of [La
–
] 

accumulation is to determine the area of exercise intensities which represent the 

transition between the intensities corresponding to the steady state of [La
–
] and those 

which induce [La
–
] increase. According to this traditional theory, the exercise intensity 

coinciding with the ‘lactate threshold’ is well defined and is an accurate marker of 

training status. It has been suggested that training at and above the ‘lactate threshold’ 

will result in adaptations that reduce the concentration of blood lactate during 

subsequent submaximal and maximal exercise. A common assumption is that training at 

the intensity coinciding with the LT will cause an improvement in lactate clearance or a 

decrease in lactate production at submaximal workloads. This theory has promoted the 

testing of blood lactate concentration in the field as a marker of training intensity and 

training status. This is based on the assumption that [La
–
] concentrations are repeatable 

at controlled workloads and that the concentration of [La
–
] decreases as training status 

improves (Swart & Jennings, 2004). 

     

         Lactate is a key element of performance and well-trained athletes have a higher 

lactate clearance capacity and decreased [La-] levels at the same relative and absolute 

submaximal exercise intensities, owing to mitochondrial abundance and function (San-

Millán & Brooks, 2017). However, [La
–
] accumulation in response to high intensity 

exercise can be modified by training status (the more highly trained subject having 

lower lactate levels at a given intensity of exercise), by modifications of oxygen supply 

to the exercising subject (hypo- or hyper-oxia) and/or by administration of exogenous 

nutritional or other products. The claims of such products to modify lactate 
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accumulation should be substantiated by methods enabling the detection of lactate 

accumulation and, eventually, associated metabolic acidosis. 

  

      Exercise-induced lactic acidosis results in the consumption of HCO3-ions for 

buffering hydrogen ions and, consequently, in the rise of CO2 production. When 

measuring VCO2 as a function of VO2, then the exercise intensity at which the VCO2 

increase is accelerated corresponds to the onset of metabolic acidosis and, thus, of [La
–
] 

accumulation (designated as “ventilatory threshold”) (Saris et al., 2003). Ventilatory 

expired gas responses are often used in fitness tests as an estimation of the point at 

which lactate accumulation in the blood occurs. Assessment of this physiologic 

phenomenon through ventilatory expired gas is typically referred to as VT. Several 

different methods using ventilatory expired gas responses exist for the estimation of this 

point. These include the ventilatory equivalents and V-slope method (López Chicharro, 

J., & Izquierdo Redín, 2006). Whatever approach is used, it should be remembered VT 

provides only an estimation, and the concept of anaerobic threshold during exercise is 

controversial (ACSM, 2014). Because exercise beyond the LT is associated with 

metabolic acidosis, hyperventilation, and a reduced capacity to perform work, its 

estimation is a useful physiological measurement when evaluating interventions in 

patients with heart and pulmonary disease as well as studying the limits of performance 

in apparently healthy individuals. However, it should be noted that secondary to 

abnormal ventilatory responses observed in a significant proportion of patients with 

CHF (i.e., exercise oscillatory ventilation), determination of VT may not be possible 

(ACSM, 2018). In addition to estimating when [La
–
] values begin to increase, maximal 

minute ventilation (VEmax) can be used in conjunction with the maximal voluntary 

ventilation (MVV) to assist in determining if there is a ventilatory limitation to maximal 

exercise.  

 

     Numerous studies also testify to the sensitivity of LT and VT to endurance training 

(Jones & Carter, 2000; Messonnier et al., 2013; San-Millán & Brooks, 2017) (Figure 

10). A rightward shift of the LT/VT to a higher power output or running speed is 

characteristic of successful ET programmes. 
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Measurement of Blood Lactate Accumulation 

 

        The recent development of portable blood lactate analyzers has made it relatively 

easy to test blood lactate concentration in the field. The most simple and most widely 

used method of [La
–
] monitoring is the measurement of lactate concentration in blood 

samples. Four sites are commonly used for blood sampling: forearm arteries, forearm 

veins, earlobes and fingertips, with the role of sampling size is mentioned below. The 

blood sample is analysed mostly by enzymatic methods for [La
–
] concentrations (Billat, 

1996).  

  

        [La
–
] accumulation during exercise may be assessed by monitoring the evolution of 

[La
–
] concentrations during exercise with increasing levels of intensities. Therefore, the 

lactate levels in arterial blood are considered to be a “gold standard” for evaluation of 

lactate balance as they do reflect the whole body status of [La
–
] and elimination (Table 

11). 
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Table 11. A classification of the different terminologies that exist in the literature to define specific changes in the 

exercise blood lactate response adapted from Billat (1996) and Saris et al., (2003) 

Blood lactate 

value (mmol/L) 

               Definition and designation Protocol 

 

 

Baseline +1 

Onset of plasma lactate accumulation: the VO2 

observed during the incremental exercise with a 

[La–] concentration that is 1 mmol/L above the 

baseline [La–] level 

Discontinuous incremental test with 8 

stages, of 10 min 

 

2.2 

 

Maximal steady-state: the oxygen, heart rate 

and/or treadmill velocity at which plasma lactate 

level was 2.2 mmol/L 

2 discontinuous stages, of 10 or 15 min 

 

2.5 

Lactate threshold: the exercise intensity that elicits 

a [La–] level of 2.5 mmol/L after 10 min of 

exercise 

Discontinuous incremental test with 

stages of 10 min 

 

4 

Anaerobic threshold: the VO2 or velocity 

associated with a [La–] concentration of 4 mmol/L 

Continuous incremental test with stages 

of 3 min 

4  Onset of [La–] accumulation Continuous incremental test with stages 

of 4 min 

 

2-7 

Individual anaerobic threshold: metabolic rate 

where the increase of [La–] is maximal and equal 

to the rate of diffusion of lactate from the 

exercising muscle 

Continuous incremental test with stages 

of 4 min with measurement of the lactate 

time course after the test 

 

3.5-5 

Lactate threshold: the starting point of an 

accelerated lactate accumulation around 4 mmol/L 

and expressed in %"il02max 

Continuous incremental test with stages 

of 3 min 

 

2.2-6.8 

Maximal steady-state of [La–] level: the exercise 

intensity (WCL) which produces the maximal 

steady-state of [La–] level 

2 submaximal intensities (60-65% and 

75-80% of VO2max) of 20 min carried out 

on the same day and separated by 40 min 

of complete rest 

Abbreviations: VO2 = oxygen uptake; VO2max = maximal oxygen uptake. 

 

 

3.14.4 Metabolic Flexibility 
 

       Human physiology needs to be well adapted to cope with major discontinuities in 

both the supply of and demand for energy. This adaptability requires ‘a clear capacity to 

utilize lipid and CHO fuels and to transition 

between them’ (Kelley et al., 2002). Such 

capacities characterize the healthy state and can 

be termed ‘metabolic flexibility’ (Table 12). 

Metabolic flexibility and inflexibility are terms 

proposed well over a decade ago by Kelley and 

colleagues (Storlien et al., 2004), and are 

gaining popularity among researchers and 

clinicians working with CVD, T2DM and 

obesity. Metabolic flexibility reflects the ability 

Table 12. Key points of Metabolic Flexibility 

adapted from San-Millán & Brooks, (2017) 

Measurements of [La-] concentration and FATox 

provide an indirect method to assess metabolic 

flexibility and oxidative capacity during exercise 

in different populations. 

The inverse correlations between [La-] and 

FATox are quite robust, therefore assessing [La-]  

alone could be an effective way to indirectly 

assess mitochondrial function and metabolic 

flexibility during exercise in different 

populations. 

Since lactate exerts profound effects on fat and 

CHO metabolism, a poor mitochondrial lactate 

clearance capacity due to decreased 

mitochondrial function could greatly affect 

FATox and CHOox. 
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to oxidize fat and CHOs, which is needed to match fuel availability with metabolic 

responses and meet large increases in energy demands. Increased metabolic flexibility, a 

high capacity to oxidize lipids and a later transition from FATox/CHOox, as well as 

elevated [La-] as exercise PO increases, are characteristic of endurance athletes (San-

Millán & Brooks, 2017, while decreased oxidative capacity and higher [La-] 

concentrations are characteristic of individuals with low aerobic fitness at the same 

absolute submaximal exercise intensities (Messonnier et al., 2013). San Millán & 

Brooks (2017) showed the presence of an overarching major effect of lactatemia on 

limiting FATox in individuals of widely ranging exercise capacities. In 1994, Brooks 

and Mercier proposed the ‘crossover concept’ (CO) (Brooks, 1997) as a novel approach 

to studying CHO and fat metabolism during exercise (Figure 11). 

 

        Cross-sectional (Messonnier et al., 2013) and longitudinal training studies 

(Bergman et al., 1999a) on healthy, young individuals show that training lowers 

circulating [La-] by increasing lactate clearance (Bergman et al., 1999a), increasing 

lipid oxidation (Bergman et al., 1999b), and decreasing glucose and total CHO 

utilization (Bergman et al., 1999c) during exercise at given absolute exercise PO. San-

Millán & Brooks (2017) showed consistent and strong inverse correlations between [La-

] and FATox, and since both lactate and fatty acids are mitochondrial substrates, 

measurements of [La-] and FATox rates during exercise provide an indirect method for 

assessing metabolic flexibility and oxidative capacity across individuals of widely 

different metabolic capabilities (San-Millán et al., 2009; San-Millán & Brooks, 2017).  
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3.15 Thermoregulation during Physical Exercise 
     

       The human thermoregulatory system is complex, and the influence of exercise on 

the system is complicated. Exercise promotes several physiological and thermal 

changes, leading to changes in thermal homeostasis of the human body, metabolic rate 

(M) variation and increased internal heat.   

  

        During physical exercise, human thermoregulatory functions are critical for 

survival and sustenance of physical work. Thermoregulatory balance during strenuous 

exercise depends on the interaction of metabolic heat production and exchange with the 

environment. Studying heat generation and dissipation during strenuous PA is of great 

interest due to the significant increase in BT compared with the resting state, which may 

lead to hyperthermia and reduced efficiency. In these conditions, thermal regulation 

processes play a major role in maintaining BT within the narrow range tolerated by the 

body.  

  

        Humans have a remarkable ability to adapt and sustain physiological functions in 

different conditions of exercise. When heat production exceeds heat dissipation 

(physical activity or high Ta), BT increases, which activates the adaptation mechanisms 

of dissipation of excessive heat (Etain et al., 2015).  

     

      Physical exertion poses a challenge to thermoregulation by causing a substantial 

increase in metabolic heat production. During PE, metabolic heat production can 

increase 10- to 20-fold, but less than 30% of the heat generated is converted to 

mechanical energy (Périard et al., 2014). During exercise, the increase in metabolic heat 

production increases the rate at which heat must be dissipated to the environment to 

prevent dangerous elevations in tissue temperature. In the case of increased heat 

production, including intense PE, the activation of heat dissipation is carried out both by 

changes in the skin’s vascular tone and increased perspiration. Increases in heat loss via 

cutaneous vasodilation and sweating induced by the activation of the autonomic nervous 

system facilitate increases in dry heat exchange (primarily convection and radiation) 

and evaporative heat loss, respectively. Evaporative heat loss takes place when sweat 

changes from liquid to gaseous states. During PE, >80% of heat is dissipated through 
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evaporative heat loss, making it the primary means of heat removal from the body 

(Gisolfi, 1993). Therefore, the ability to sweat is very important for thermoregulation 

and the sustenance of exercise over long periods. About 1 litre of sweat is lost for each 

hour of exercise in hot conditions, and higher sweat rates (>2 L/h) have been reported in 

well-trained athletes (Gisolfi, 1996). However, the propensity for sweat to be 

evaporated is inversely related to the amount of water vapour in the air. A high relative 

humidity inhibits evaporative heat loss whereas evaporative heat loss is promoted when 

relative humidity in the air is low. Exercising in a warm and humid environment causes 

the body to lose fluid through sweat loss with minimal heat loss.  

  

       For competitive athletes and active individuals, the effective dispersal of the heat 

load generated by contracting muscle bears particular importance. Failure of 

mechanisms to effectively remove body heat during strenuous exercise could result in 

substantial decreases in physical performance (Rowland, 2008). During exercise, the 

body stores heat as a result of an imbalance between the rate of heat gain and heat loss. 

Under compensable conditions, heat balance is achieved within 30–45 min of steady-

state exercise, with the greatest rate of body heat storage, and therefore increase in Tc, 

occurring in the first 15–20 min (Kenny & Jay, 2013). During the performance of 

intermittent exercise, a greater increase in evaporative heat loss occurs following initial 

exercise, such that the amount of heat stored in successive exercise bouts is reduced by 

as much as 40–60% under compensable conditions (Kenny et al., 2009; Kenny & 

McGinn, 2016). This has been associated with either a priming effect induced by the 

progressive increase in body Tc (Kenny et al., 2009; Kenny & McGinn, 2016; Taylor et 

al., 2014) and/or enhanced peripheral and/or central adaptations of thermo-effector 

activity (Gagnon & Kenny, 2011). However, as discussed below, although these 

conditions may alter the body’s capacity to dissipate heat during exercise-induced heat 

stress, differences may only be evidenced above a given heat load threshold (i.e., 

exercise intensity) (Kenny & McGinn, 2016; Stapleton et al., 2014).  

 

In summary, then, thermoregulatory efficacy during exercise is most closely linked to: 

1.     Adequacy of circulatory responses 

2.     Rate of sweat production 
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3.     Maintenance of body fluid volume,  

all in response to exercise intensity (Gant et al., 2004; Rowland, 2008). 

 

      There are numerous factors which can enhance or limit the capacity for heat loss 

during exercise, including ambient conditions and clothing, hydration status, advanced 

age, reduced VO2max, energy substrate utilization, body composition, wind velocity, the 

presence of chronic diseases, and others (Kenny & Jay, 2013). Also some biological 

determinants of exercise thermoregulation, including body mass, surface area-to-mass 

ratio, and sweat rate, are gender-discrete variables with the potential to alter the 

exercise-thermoregulatory response to different environments, fluid intake, and exercise 

metabolism. There have been extensive studies examining the influence of these factors 

on thermoregulatory function during exercise. 

  

      Numerous individual and external factors can influence BT, but consensus is 

lacking on which factor, or set of factors, has the most impact during prolonged 

physical exertion during endurance events and race-like circumstances. Environmental 

conditions, dehydration, and metabolic rate are commonly referenced as limiting 

thermoregulatory control; gender may also contribute independently or in conjunction 

with other factors. However, some reports have shown that, when age, thermal 

acclimation, body size, maximal aerobic capacity, cardiovascular responses during 

exercise and relative workload are matched, thermoregulatory sex differences are 

relatively negligible (Nagashima et al., 2012). 

 

3.15.1 Role of the Environment 
 

       In most places where we exercise, a variety of ambient temperatures are available 

and external insulation is easily adjusted. The thermodynamic properties of the 

environment can significantly add to the challenge that work imposes on human 

thermoregulation. Lind (1963) was the first to propose a ‘prescriptive zone’ of 

environmental temperatures dependent on exercise intensity for the prediction of a 

thermal steady state. As metabolic heat production rises with the intensity of exercise, 

the need to transfer heat away from the body becomes paramount for the maintenance 
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of thermal equilibrium. Environmental extremes can severely limit a favourable thermal 

gradient for heat loss, thus imposing additional thermoregulatory strain. 

  

Performance in Hot Environments  

 

       Degraded physical performance and exhaustion can be caused by multiple 

physiological factors. Investigators studying the performance-limiting factors during 

exercise-heat stress have historically focused on the implications of the profound 

cardiovascular demand of simultaneously perfusing both exercising muscle and skin 

(González-Alonso, 2012).  

  

       Athletes frequently train and compete in temperatures of 25–30ºC (Cheuvront & 

Haymes, 2001). The avoidance of a large increase in Tc during exercise in such an 

environment is essential, given that the onset of fatigue has been found to be closely 

associated with the attainment of a ‘critical’ Tc (González-Alonso, 2012;González-

Alonso et al., 1999a). The concept of premature fatigue in warm or hot environments as 

a consequence of elevated Tc was firmly established after several studies (González-

Alonso et al., 1999a; Wong et al., 2016) demonstrated that an excessive rise in BT 

impairs endurance performance. It is well known that the limit of core body temperature 

is about 40°C in order to maintain prolonged exercise. Extremes in Tc (>42°C) can be 

detrimental to cellular and organ functions, which can threaten survival of the host (Lim 

et al., 2008). The central nervous system may also rely on hyperthermia to protect the 

body from “overheating”. Hyperthermia may serve as a self-limiting signal that triggers 

central inhibition of exercise performance when a temperature threshold is achieved 

(Nybo, 2008). 

  

      When exercise is performed in the heat, the additional heat gained from the 

environment must be compensated through an increase in the rate of heat dissipation. 

During heat stress, skin blood flow increases, resulting in an increase in Tsk and an 

increase in heat dissipation to the environment. However, sustained exercise places high 

demands on body thermoregulatory mechanisms, especially in conditions of high Ta 

and humidity. In addition, high humidity suppresses evaporation of sweat on the skin 

(Etain et al., 2015). 
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Performance in Cool Environments  

 

       Instead, during mild thermal challenges, more subtle thermoregulatory mechanisms 

such as skin blood flow and NST are the key players. Contrary to heat stress, cold stress 

reduces blood flow to the skin, which leads to a decrease in Tsk and conservation of 

heat in the body. The ectothermic properties of Tsk and the endothermic properties of 

Tc function in synchrony to maintain thermal balance within the body. The central 

nervous system may also rely on hypothermia to protect the body from “overcooling”. 

Hypothermia (Tc <35°C) impairs cardiovascular, respiratory and central nervous system 

functions, which can lead to muscle damage, pulmonary edema, hypotension, 

bradycardia, and renal failure (Lim et al., 2008). 

 

Role of Acclimatization 

 

        Exercising in the heat represents a circulatory challenge for both unacclimated and 

acclimated athletes. Human thermoregulation and acclimatization are core components 

of the human coping mechanism for withstanding variations in environmental heat 

exposure. Human survival require increasing reliance on these mechanisms.  

 

       Heat acclimation provides an important thermoregulatory advantage, and the effect 

of heat acclimation on submaximal exercise performance can be quite dramatic, such 

that acclimated individuals can easily complete tasks in the heat that earlier were 

difficult or impossible. Heat acclimation may result in protective cellular adaptations. 

The intracellular heat shock protein (HSP) 72 is likely involved in maintaining cellular 

protein conformation and homeostasis during hyperthermia, inflammation, and injury, 

and a ten-day heat- and exercise-acclimation increased HSP72 in peripheral blood 

mononuclear cells. Exercise in humid heat appears to decrease the resting Tc in 

acclimated individuals (Patterson et al., 2004). Increases in both Tc and Tsk contribute 

to the various changes involved in heat acclimation (Nielsen et al., 1993). 

  

     Accordingly, heat acclimation/acclimatization mediates improved submaximal 

exercise performance by reducing physiological strain and abating a variety of other 

potential fatigue mechanisms (Nybo, 2008). Heat acclimation enhances heat dissipation 
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(i.e., through increases in SkBF and sweating), reduces Tc and Tsk, and enhances fluid 

balance and cardiovascular control during exercise in the heat (Lorenzo & Minson, 

2010; Nielsen et al., 1993). Therefore, the time to exhaustion in heavy exercise will be 

affected by initial BT (Nagashima et al., 2012). There is evidence that individuals living 

and training many weeks in the heat might tolerate higher maximal Tc than those heat 

acclimated over 1 or 2 weeks (Sawka et al., 2012), and that trained individuals can 

tolerate higher Tc (González-Alonso et al., 1999b; Mallette et al., 2016; Périard et al., 

2014). 

3.15.2  Role of Age on Body Temperature 
 

        Age related reductions in whole body and/or local heat loss and/or increased body 

heat storage during exercise in the heat have been reported in a number of studies (Ho et 

al., 1997; Kenney et al., 1997; Larose et al., 2013; Stapleton et al., 2014; Tankersley et 

al., 1991). 

  

         Infants, children, and adults maintain comparable Tc. Heat loss is proportional to 

surface area and heat production is proportional to volume, so infants, who have a high 

surface to volume ratio, are at a higher risk of heat loss and hypothermia than adults. 

Young and older adults are particularly vulnerable to thermal extremes. Aging is a key 

modulator of the body’s physiological capacity to dissipate heat, with adults as young as 

40 yrs of age demonstrating marked impairments in heat loss (Larose et al., 2013). The 

elderly are also at risk of hypothermia; their thermoregulatory mechanisms are less 

efficient and lean body mass, which produces heat, diminishes with age (Campbell, 

2011).  

  

     These impairments in heat loss are evidenced even in the very early stages of 

exercise (i.e., the first 10 min) (Kenny & McGinn, 2016; Larose, Wright, et al., 2013). 

In terms of the restoration of Tc in post-exercise, these age-related differences have 

recently been shown to further extend the time required to reestablish normal Tc. 

However, this is due solely to the greater amount of heat stored during exercise and not 

a more rapid and/or pronounced suppression of heat loss in the recovery period (Kenny 

& McGinn, 2016; Larose, Wright, et al., 2013). For example, a recent study showed that 
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older adults (60–70 yr) stored ~63% more heat than their younger (20–30 yr) 

counterparts over the course of four successive 15-min moderate-intensity exercise 

bouts (each separated by a 15 min recovery). Despite this, the older group exhibited a 

similar rapid decay in whole body heat loss (Larose, Wright, et al., 2013). Moreover, 

during and post-exercise suppression of heat loss responses remained intact with 

successive exercise bouts despite a progressively greater residual heat load measured at 

end exercise, a heat load which was substantially more elevated in the older adults 

(Larose, Wright, et al., 2013). 

  

      The whole-body sweating rate of an adult male is approximately 40% greater than 

that of a prepubertal boy, reflecting a larger output per gland and greater gland 

sensitivity to thermal stimuli. Consequently, children rely to a greater extent on 

cutaneous blood flow for convective heat loss during exercise. At a given work level, 

heat production per kg of body mass is inversely related to body size–a disadvantage in 

small child that is offset by a greater surface area:mass ratio. In addition, the rate of heat 

acclimatization is slower in children than adults (Rowland, 2008). 

 

3.15.3 Role of Body composition and Gender on Body Temperature 
 

      It is well known that body composition can influence peripheral heat loss and Tsk, 

that the distribution of BF is affected by gender is well known (Eduardo Borba Neves, 

Salamunes, de Oliveira, & Stadnik, 2017). Body temperature is influenced by a variety 

of intrinsic factors, such as metabolic rate (M), and changes in health or in body 

composition may lead to differences in Tsk.  

 

       Many early studies comparing male and female response to prolonged exercise, 

especially in hot environments, concluded that women were more susceptible than men 

to thermal stress and physical ‘harm’ (Eduardo Borba Neves et al., 2017). Women have 

a number of physiologic and morphologic characteristics that produce subtle differences 

in the regulation of BT.  

  

      Studies showed that the temperature increase after exercise was higher in the 

subjects with lower biceps skinfold thickness than in the group with higher biceps 
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skinfold thickness (Weigert, Nitzsche, Kunert, Lösch, & Schulz, 2018). Therefore, 

individuals with a low BF% can show higher and faster variations in BT than those with 

a high BF%. In conclusion, a greater BF% and greater skinfold thickness are associated 

with lower resting values of Tsk and delayed and lower increases in Tsk during and 

after exercise.  

 

3.15.4 Role of Metabolic Rate (M) 
 

        Metabolic rate can play a significant role in influencing exercise, which elevates 

Tc at the start of exercise until a new thermal equilibrium is reached. Exercise imparts a 

large internal heat load caused by the inefficiency with which chemical energy is 

converted to mechanical work. When performing PE, M increases to satisfy the needs of 

the human body (Merla et al., 2010). Approximately 30-70% of the energy produced 

during muscle contraction is dissipated as heat (Bangsbo et al., 2007). Even at maximal 

mechanical efficiency, more than 75% of the energy liberated during exercise is 

transferred to the surrounding tissues and environment as heat, while the remainder is 

used to perform Wk (Cheuvront & Haymes, 2001; González-Alonso et al., 1999b). 

Therefore, during exercise about 80% of energy consumption is converted into heat 

with only with about 20% going to the actual work produced by the contraction of the 

muscles. A high muscle temperature increases the efficiency of muscle contraction 

(Spencer et al., 2005). However, an excessive rise of BT impairs endurance 

performance. 

  

      Increases in M raise the rate of heat production. Thus, with decreases in Tsk or Tc 

occurring subsequent to cold stress, thermoregulation is supported by elevating heat 

production and cutaneous vasoconstriction, the latter of which only attenuates the rate 

of heat loss. An increase in the rate of metabolic heat production can be evoked via 

increases in nonshivering or shivering responses. NST is activated by the sympathetic 

nervous system (Schlader & Vargas, 2019). The primary end-organ for NST is brown 

adipose tissue, which possesses uncoupling proteins that, upon sympathetic activation, 

elevate heat production (17). Shivering thermogenesis evokes increases in heat 

production occurring secondary to involuntary muscle contraction (Mercer, 2001), 

which are initially fueled by increases in CHOox and increased FATox during more 
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prolonged cold stress. Shivering is brought about by activation of motor neurons 

recruited via activation of the sympathetic nervous system (Schlader & Vargas, 2019).  

 

Metabolic Energy 

 

        Heat is an inevitable by the product of the inefficiencies in the body’s metabolic 

reactions and muscle movements. The rate of metabolic energy expenditure refers to the 

rate of free energy released from the catabolism of CHO, fat, and amino acids to 

resupply ATP for cellular activities such as biosynthesis, transport, and muscular 

contractions. In oxidizing carbohydrates and fats to carbon dioxide and water during 

ATP production, and transferring the ATP produced to the functional systems of the 

cells, about 75% of the original chemical potential energy appears as heat. Except for 

excreted energy or that used to perform physical work, the remaining 25% of the 

original energy is also converted to heat when ATP is utilized in the numerous 

metabolic reactions of the body. 

  

      Since metabolic energy is derived primarily through oxidative pathways at rest and 

during exercise of low-to-moderate intensity (i.e., below the LT), M is generally 

proportional to the rate of VO2. Estimates of whole-body M are typically performed 

using indirect calorimetry based on steady-state VO2 and the non-protein RER, which 

accounts for calorific differences between CHO and FAT (Murgatroyd et al., 1993). 

Metabolic energy is ultimately converted into one of two forms: mechanical energy to 

perform external work and thermal energy (heat). In the laboratory, Wk rate is regulated 

using an ergometer or estimated from BM, movement velocity, and the angle of incline 

during weight-bearing exercise (Snellen, 1960). By combining indirect calorimetry and 

ergometric values, the rate of metabolic heat production can be estimated as the 

difference between the rates of metabolic energy expenditure and Wk. 

 

      During exercise, greater heat production arises from the increase in VO2 required to 

meet the energy demands of the active musculature. Some metabolic energy is 

converted to useful Wk during activities such as cycling or rowing, but Wk output is 

negligible during many weight-bearing exercises, e.g. running on a flat surface. Uphill 

walking and running lead to a net vertical displacement of body mass against gravity 
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and thus result in a positive external work rate and a greater rate of heat production 

compared to level-grade walking/running at the same velocity (Bobbert, 1960). 

  

      Although heat production rises with exercise intensity, the amount of heat produced 

at any absolute intensity will vary with mechanical efficiency or movement economy, 

that is, the ability to transform metabolic energy into useful work or movement. Gross 

efficiency refers to the percentage of whole-body metabolic energy expenditure that is 

converted to external work, and typically equals ≤ 25% during cycling or rowing 

(Fukunaga et al., 1986; Gaesser & Brooks, 1975; Moseley et al., 2004). During weight-

bearing activities, movement economy is the mass-specific oxygen cost of moving 1 km 

(ml·kg
−1

·km
−1

) correlative VO2 (ml·kg
−1

·min
−1

) at a specific velocity. Running 

economy usually ranges from 180 to 220 ml·kg
−1

·km
−1

, depending on a variety of 

physiological and biomechanical factors (Barnes & Kilding, 2015; Daniels, 1985; 

Saunders et al., 2004). Extraordinary values in elite male and female runners of 150 

ml·kg
−1

·km
−1

 (Lucia et al., 2008) and 165 ml·kg
−1

·km
−1

 (Jones, 2006), respectively, 

have also been reported. 

 

3.15.5 Role of Dehydration 
 

       Dehydration during prolonged exercise in the heat is known to exacerbate 

cardiovascular strain, increase Tc and impair endurance performance compared with 

when fluids are ingested during exercise (Fritzsche & Coyle, 2000; González-Alonso et 

al., 1999b; González-Alonso et al., 1999a; Latzka et al., 1997; Pitts et al., 1944; Sawka 

& Wenger, 1988). Dehydration can markedly impair cardiovascular function and lead to 

more pronounced elevations in Tc, which is particularly emphasized in the heat when 

the requirements for evaporation are maximized. 

  

       Relatively few studies have compared the effects of active dehydration to 

euhydration on human thermoregulatory responses under controlled conditions. Pitts et 

al., (1944) was the first to systematically demonstrate that active dehydration resulted in 

a progressive and continued rise in Tc during extended treadmill marches in the heat. 

The same experiments showed convincingly how both modest and complete 

replacement of fluid losses attenuated the hyperthermia of dehydration. Costill et al., 
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(1970) measured the Tc responses of runners during 2 hours of treadmill running (≈ 

25°C) with and without fluid replacement. The observed rise in Tc was ameliorated 

beyond 1 hour of exercise when fluid was taken.  

  

       The integrity of the thermoregulatory system during exercise is logically 

determined by the maintenance of adequate blood volume. Body water losses 

(dehydration) increase thermoregulatory strain. The methods used to create a fluid 

deficit often vary and include diuretic administration, food and fluid restriction, pre-

experiment exercise and passive thermal exposure before exercise. These studies are of 

little practical application for athletes who are adequately hydrated (euhydrated), well 

nourished, rested and otherwise prepared for competition. Additionally, the method of 

water loss is known to differently affect the partitioning of fluid between the 

intracellular and extracellular spaces and can produce both volume and osmotic changes 

that in- dependently affect temperature regulation (Sawka, 1992).  

 

        Losses in plasma volume, even in the absence of osmotic changes, can impair heat 

loss (Cheuvront et al., 2005). The role of osmotic and volume loss factors in the 

evolution of hyperthermia is also demonstrable and in agreement with a comprehensive 

review of hypohydration studies (Sawka, 1992). Therefore, it is clear that active 

dehydration increases thermoregulatory strain under controlled laboratory conditions. 

Most studies suggest that dehydration is the most influential factor in determining Tc 

during a running event. All research showing positive relationships between 

dehydration and Tc incurred a ≥ 3% body weight deficit. 

 

3.16 Skin Temperature during Exercise 
 

     Thermogenesis from exercise is associated with large hemodynamic changes 

involving multiple thermoregulatory processes. These changes are reflected in Tsk 

response during exercise (Zontak et al., 1998), and represent a good indication of 

whether physiological mechanisms are functioning properly, which are vital to the 

maintenance of thermal homeostasis.  
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Blood circulation 

 

      Physical activity naturally increases muscle metabolism, which can lead to a rise in 

both muscle and BT by the generation of heat. In such circumstances, the body’s 

surface temperatures change as a consequence of thermoregulatory homeostatic 

mechanisms that attempt to prevent hyperthermia and release excess heat from the 

body. Although a small amount of the heat produced by the working skeletal muscles is 

passively conducted by surrounding tissues to the outer skin, the majority of this heat is 

transferred by con C through the venous blood flowing from these muscles (Périard et 

al., 2014). This balance is influenced mainly by the responses of Tc, environment 

temperature and complex relationships between cutaneous vasodilation and sweating, 

which facilitate heat exchange with the environment (Merla et al., 2005; Wong & 

Hollowed, 2016). The delivery of heat from the deeper parts of the body to the skin is 

accomplished primarily by blood circulation (Zontak et al., 1998), which implies that 

Tsk can be used as an index to predict thermal changes during exercise (H. Liu et al., 

2014; Takada et al., 2013). 

 

Conduction/Convection 

 

      Depending on the extent of metabolic energy expenditure, catabolic processes lead 

to the release of thermal energy (Cramer & Jay, 2016), and therefore muscle activity 

leads to an increase in muscle temperature (Sawka & Wenger, 1988). The heat 

generated by the muscle is transferred to adjacent layers of the body and can reach the 

epidermis via the subcutaneous fatty tissue and the dermis, where it is emitted to the 

environment.  

  

        Heat conduction from the muscle to the skin surface is achieved by conduction of 

the different layers of the body, which are in direct contact. The subcutaneous fat layer 

between the heat-generating muscles and skin has a major influence on the heat emitted 

from the skin surface. Furthermore, heat reaches the skin surface through C in the blood 

and is then released into the environment through conduction the epidermis, which lacks 

blood vessels. The influence of convection on thermal transport to the skin surface is 
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largely affected by the degree of perfusion in the skin; decreasing with vasoconstriction 

and increasing accordingly with vasodilation.  

 

Environment  

 

         Skin temperature varies depending on heat exchange between the body and the 

environment, primarily mediated by enhanced transportation of blood to skin surface 

(Taylor et al., 2014). Therefore, during exercise, the impact of environmental conditions 

influences the skin thermoregulatory response and capacity for heat exchange with the 

environment (Sawka & Wenger, 1988). 

 

 Skin Blood Flow  

 

        Thermoregulation is the major process that governs SkBF in humans (Boegli et al., 

2003) and several studies use SkBF to describe and characterize the skin 

thermoregulatory response to exercise (Lee et al., 2000; Zontak et al., 1998). Several 

studies have been proposed to estimate skin thermoregulatory response from SkBF, and 

analyze the relationship between Tsk and SkBF during exercise (Xu et al., 2013). 

Kenney and Johnson (1992) found that the modification of cutaneous blood flow during 

exercise depends on the individual level of vasodilation and vasoconstriction. The 

vasoconstrictor response decreases Tsk, induced by a reduction in SkBF; on the 

contrary, the vasodilator response leads to increase Tsk, associated with a substantial 

increase in SkBF. Accordingly, there is a close link between thermoregulatory 

vasodilation and increased SkBF (together with sweating), which is essential for heat 

dissipation during exercise (Smith et al., 2013).  

 

Type of Exercise 

 

       Studies suggest that Tsk behavior varies according to the type of exercise, intensity, 

duration, as well as muscle mass and subcutaneous fat layers (Neves et al., 2015). Skin 

temperature during exercise could be related to muscular work, which reflects the 

efficiency in dissipating the heat produced and in turn depends on the circulatory system 

recruiting level and sweating rate (Chudecka & Lubkowska, 2012; Xu et al., 2013). A 
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significant reduction in Tsk is observed during or after an incremental workload or 

intense workload exercise (Chudecka & Lubkowska, 2012; A. Merla et al., 2010a; 

Torii, Yamasaki, Sasaki, & Nakayama, 1992; Zontak et al., 1998), which can be related 

to sweat evaporation for heat dissipation during exercise (Chudecka & Lubkowska, 

2012; Gerrett et al., 2019).  

 

      Differences in the kinetics of Tsk during exercise were observed between trained 

and untrained subjects (Abate et al., 2013), and a correlation between Tsk and aerobic 

capacity was suggested (Chudecka & Lubkowska, 2012; Priego Quesada et al., 2015). 

However, studies of the relationship between level of VO2max and Tsk are still scarce. 

  

       In summary, the relationship of skin thermoregulatory response with Tc, SkBF and 

environment are modulated by several factors, such as sex (Eduardo Borba Neves et al., 

2017), an individual’s acclimatization state (Périard et al., 2015), environmental 

conditions (Cheuvront & Haymes, 2001), body composition (Salamunes et al., 2015), 

aging (Eduardo Borba Neves et al., 2017), circadian rhythms (K. A. Lee, 1988), the 

wearing of protective clothing (Kenny & McGinn, 2016), hydration status and/or diet 

(Baillot & Hue, 2015; Palombo et al., 2010), lifestyle (Atkinson et al., 2005), 

physiological characteristics (De Andrade Fernandes et al., 2014; Ho et al., 1997a), and 

relevant to this study, physical conditioning (Boegli et al., 2003; Ho et al., 1997a; 

Eduardo B. Neves et al., 2015). 

 

3.17 Endurance Aerobic Exercise 
 

      Aerobic endurance plays a vital role in overall aerobic performance for endurance 

and team sports. Both sports have to meet intense aerobic and anaerobic demands 

during exercise, leading to major metabolic and thermodynamic changes. Endurance 

exercise refers to events lasting 30 min or more, as defined in the PASSCLAIM 

document (Saris et al., 2003). 

 

      Endurance sports are becoming increasingly popular and more people are running 

half marathons, marathons, ultramarathons, half Ironmans, and even Ironman 
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competitions, lasting anywhere between 2 and 17hrs. Many events are organized to 

encourage people to take up endurance sports, and events of 30 min to 2 hrs, which are 

more manageable for the novice athlete, are also rapidly increasing in popularity. When 

determining aerobic fitness, VO2max is considered the most important element for 

endurance athletes. In studies investigating the physiological effects of endurance 

exercise, running and cycling have been the most commonly used exercise modes. 

There are, however, a number of different physiologic, metabolic, and ergogenic 

responses to endurance exercise  (ACSM, 2014) (Table 13).  

  

      In team sports, like soccer, players have to perform at high intensities at many 

points throughout a game, although low intensity activities are performed in more than 

70% of the game and are primarily aerobic in nature. As such, soccer-specific 

endurance should be developed so that players are able to perform at the highest level 

for 90 minutes and even longer (Jemni, et al., 2018). 

  

        In the literature, the terms endurance performance and endurance capacity are 

often used as synonyms. However, endurance capacity refers to the exercise time to 

volitional fatigue, whereas performance relates to completing a certain task (running a 

certain distance, cycling a certain amount of work) as fast as possible. Endurance is 

typically defined as resistance to fatigue. This could be resistance to fatigue during brief 

intense exercise but also during sub-maximal prolonged exercise of several hours. For 

this study and we will define endurance as resistance to fatigue during a mode of 

exercise where the primary cause of fatigue is induced by substrate depletion or central 

factors. Typically endurance exercise is 30 minutes or longer. When exercise is longer 

than 4–5 hours we will refer to this exercise as ultra-endurance exercise (Saris et al., 

2003).  

  

        In order to understand how thermoregulatory adaptations can improve endurance 

performance, it is important to understand underlying fatigue mechanisms. In other 

words, what are the factors that cause fatigue during endurance exercise. Studies in the 

1960s demonstrated that one of the main factors was substrate depletion (Sawka & 

Wenger, 1988). Muscle glycogen depletion seemed to coincide with fatigue, and 
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athletes with high muscle glycogen stores exercised for longer at a given exercise 

intensity compared to those with low muscle glycogen stores. In order to decrease 

muscle glycogen breakdown and to delay or prevent muscle glycogen depletion, various 

methods have been employed to increase FATox at the cost of CHOox (Saris et al., 

2003). In addition, it was shown that with CHO ingestion, blood glucose concentrations 

and high rates of CHOox could be maintained during exercise, resulting in increased 

time before exhaustion (Gonzalez et al., 2016). It is generally believed that a rapid 

delivery of carbohydrates may enhance performance because endogenous carbohydrate 

stores will be spared (Nilsson et al., 1973). 

 

Table 13. Modes of aerobic (Cardiorespiratory Endurance) exercise to improve physical fitness 

(ACSM, 2018) 
Exercise 

group 

Exercise description Recommend for Examples 

 

A 

Endurance activities 

requiring minimal skill 

or physical fitness to 

perform 

All adults Walking, leisurely cycling, aqui-

aerobics, slow dancing 

 

B 

 

Vigorous intensity 

endurance activities 

requiring minimal skill 

Adults, who are habitually 

physically active and/or at 

least average physical fitness 

Jogging, running, rowing, 

aerobics, spinning, elliptical 

exercise, stepping exercise, fast 

dancing 

 

C 

Endurance activities 

requiring skill to 

perform 

Adults with acquired skill 

and/or at least average 

physical fitness levels 

Swimming, cross- country skiing, 

skating 

D 

 

Recreational sports 

 

 

Adults with a regular exer- 

cise program and at least 

average physical fitness 

Racquet sports, basketball, soccer, 

down-hill skiing, hiking 

 

3.17.1 Recovery 
 

      Recovery can be defined as the rate at which maximal force/power output is restored 

to normal after prior fatigue-inducing exercise (Saris et al., 2003). During exercise 

involving glycogenolysis as the primary source of energy provision spared (Nilsson et 

al., 1973), the rate of post-exercise lactate elimination is important to the restoration of 

normal performance level. Post-exercise [La-] elimination can be studied by 

investigating the time course of muscle lactate elimination as well as the fall of arterial 

blood lactate during an ~1h time window immediately following a short all-out exercise 

bout(s), causing muscle and [La-] concentration to substantially increase. The physical 

activity level during this recovery period must be strictly standardised (rest or well-
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controlled low intensity exercise). Especially in ultra-endurance events, recovery 

becomes an extremely important factor and maintaining energy balance may be an 

important issue (Saris et al., 2003). 

 

3.17.2 Measuring Endurance Performance  
 

          Endurance performance is largely determined by the ability of the athlete to 

mobilize and oxidize fat and to spare reserves of CHO, and this is most likely 

susceptible to specific training (Jeukendrup & Achten).  

  

        In the scientific literature, we find studies that have measured endurance capacity 

as the time to exhaustion when exercising at a constant workload or speed. The 

advantage of this technique is that it is relatively easy to control and the constant 

workload allows comparison of metabolic and other measurements in an experimental 

and a control condition. Such designs make it possible to perform metabolic and other 

relevant measurements and are also a valid performance measurement. Performance 

trials have been developed for the treadmill (self-paced runs for a fixed distance), 

intermittent running (Loughborough Intermit- tent Shuttle Run test; Saris et al., 2003), 

cycling (self-paced time trial), rowing ergometer and various other intermittent sports 

such as squash and tennis (Saris et al., 2003). 

  

         A performance test must be reliable (reproducible) and valid. The validity of a test 

refers to the extent to which an individual’s test performance reflects true performance. 

Reliability refers to the consistency of performance when an individual performs the 

test repeatedly (Saris et al., 2003; Hopkins, 2000). Time trials (constant work tests) and 

constant duration tests are the most reliable measurements and are also likely to be more 

valid indicators of true performance. However, it must also be noted that it may be 

easier to detect differences between two experimental protocols using a time to 

exhaustion test (Saris et al., 2003). 

  

         It is crucial that performance tests are conducted under strictly controlled 

conditions. Heart rate, work rate, speed and time should not be shown to subjects in 

studies with multiple trials. Experiments should not be conducted in pairs and they 
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should be performed in quiet labs with no distractions. Trained subjects will generally 

give more reliable results than untrained subjects, especially when using time trial 

protocols. A familiarisation trial is necessary as a learning effect is generally observed. 

Hopkins et al. (2000) reported that performance increased between the first and second 

trial on average by 1.2% (likely range 0.5 to 1.9%), whereas the increase in subsequent 

trials was only 0.2% (likely range –0.3 to 0.7%). 

 

3.18 Endurance Training 
 

      The extreme physical endurance demands and varied environmental settings of 

endurance sports have provided a unique opportunity to study the limits of human 

thermoregulation for more than a century.  

  

        Endurance exercise training results in profound adaptations of the cardio-

respiratory and neuromuscular systems that enhance the delivery of oxygen from the 

atmosphere to the mitochondria and enable a tighter regulation of muscle metabolism. 

These adaptations affect an improvement in endurance performance that is manifest as a 

rightward shift in the ‘velocity-time curve’. This shift enables athletes to exercise for 

longer at a given absolute exercise intensity, or to exercise at a higher exercise intensity 

for a given duration. The performance of repeated bouts of exercise over a period of 

time causes numerous physiological changes that result in improved performance in that 

exercise activity. The magnitude of the training response depends on the duration of the 

exercise bouts, their intensity and the frequency with which they are performed along 

with the initial training status, genetic potential, age and gender of the individual 

(Mujika, 2016). 

 

     Endurance training results in numerous adaptations within skeletal muscle that may 

be significant for exercise performance, including increases in sodium-potassium pump 

concentration, lactate transport capacity and possibly myoglobin concentration (Jones & 

Carter, 2000). Endurance training also results in a marked increase in the oxidative 

capacity of skeletal muscle, contributing to an increased capacity to oxidize lipid 

reserves in the muscles, thus reducing mobilization of glycogen stores at submaximal 

exercise (60-85% VO2max). Therefore, endurance adaptations following chronic 
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endurance includes improved muscle glycogen storage and glycogen ‘sparing’ at sub-

maximal exercise intensities through increased fat utilization, enhanced lactate kinetics, 

morphology changes including greater type I fibre proportions per muscle area, and 

increases in capillary and mitochondrial density (Jones & Carter, 2000).  

 

      Therefore, endurance exercise training results in numerous adaptations to the 

neuromuscular, metabolic, cardio-vascular, respiratory, endocrine and thermoregulatory 

systems. These adaptations are reflected in improvements in the key parameters of 

aerobic fitness. These are the VO2max, exercise economy, the lactate/ventilatory 

threshold and O2 kinetics (Figure 9). Other parameters that may help determine 

endurance performance, and that are related to the other 4 parameters, are the velocity at 

VO2max (V-VO2max) and the maximal lactate steady state or critical power (Jones & 

Carter, 2000).  

 

3.18.1 Endurance Training and Thermoregulatory System 
 

       Regular aerobic training improves thermoregulatory function, leading to 

improvements in heat dissipation during exercise (Fritzsche & Coyle, 2000; Larose, 

Wright, et al., 2013; Stapleton et al., 2014), a response which recently has been shown 

to result in a correspondingly greater rate of Tc recovery (Stapleton et al., 2014). 

However, this was not paralleled by improvements in the rate of heat dissipation during 

recovery, which highlights the strong influence of nonthermal intrinsic factors in the 

modulation of post exercise thermoregulation. Indeed, restoration of body Tc was more 

rapid in the adults with higher fitness due only to an enhanced capacity to dissipate heat 

during exercise (Merla et al., 2010b). In contrast to long-term endurance training, the 

influence of short-term exercise training on thermoregulatory function has yielded 

mixed findings, with some studies reporting greater heat loss responses of SkBF and 

sweating, paralleled by reductions in Tc (González-Alonso et al., 1999a; González-

Alonso et al., 1999b), whereas others reported no effect (Palombo et al., 2010). One 

study reported comparable improvements in local heat loss responses (i.e., earlier onset 

threshold for SkBF and sweating) and Tc (lower resting and end-exercise values) 

following an 8-wk exercise training program, although this was not paralleled by 

improvements in whole body heat loss during and following moderate-intensity exercise 
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in warm ambient conditions (Laursen et al., 2006). Therefore, physical training also 

increases SkBF at any given increase in core temperature. 

  

       Therefore, it does appear that aerobic fitness confers an increased capacity to 

tolerate higher Tc. However, as recently reported, the lack of an improvement in the 

body’s ability to dissipate heat should be interpreted with caution as differences may 

only be evident beyond a given heat load (Karlsen et al., 2015) and whether heat 

acclimation provides a similar benefit remains to be determined (Karlsen et al., 2015). 

  

       Endurance training in temperate climates reduces physiological strain and increases 

exercise capacity in the heat, as endurance-trained athletes exhibit many of the 

characteristics of heat-acclimated individuals (Périard et al., 2014). However, while 

physical training by virtue of the thermoregulatory strain can impart some heat 

acclimation, the requirement of profuse sweating and warm skin is critical. Trained 

individuals exercising at the same relative intensity, but at a higher metabolic rate as 

untrained individuals, experience a higher rate of heat storage (Fernández-Elías et al., 

2015) and fatigue at a similar (Périard et al., 2014; Sawka, 1992), or higher Tc (Mallette 

et al., 2016; Selkirk & McLellan, 2001). Hence, adaptations related to training may 

allow for greater rates of body heat accumulation before a reduction in work rate occurs, 

be it voluntary or involuntary (Fernández-Elías et al., 2015). In addition, aerobically fit 

individuals develop heat acclimation more rapidly than their less fit counterparts, and 

high aerobic fitness might reduce the susceptibility to heat injury/illness (Gardneret al., 

1996). It has been estimated that VO2max accounts for approximately 44% of the 

variability in exercise heat tolerance, and the number of days required for complete 

development of heat acclimation (Latzka et al., 1997). However, endurance training 

alone does not totally replace the benefits of heat acclimation produced by a program of 

exercise in the heat (Périard et al., 2014). 

 

        To achieve improved thermoregulation from endurance training in temperate 

climates, either strenuous interval training or continuous training at an exercise intensity 

greater than 50% VO2max should be employed. Lesser training intensities produce 

questionable effects on performance during exercise heat stress (Périard et al., 2014).      
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       The endurance training must last at least 1 week (Lorenzo et al., 2010) and some 

authors show that the greatest improvements require 8–12 weeks of training (Périard et 

al., 2014). 

 

3.18.2 Skin Temperature and Aerobic Fitness 
 

      During endurance exercise, Tsk plays a fundamental role in thermoregulatory 

processes. During exercise, the response and relationship of skin thermoregulatory 

response to Tc, SkBF and the environment are modulated by important factors, such as 

physical fitness.  

  

       Aerobic fitness level is an important determinant in the health status of individuals 

of any age. It was reported that VO2peak decreases about 7% per decade (Wilson & 

Tanaka, 2000). Based on this discovery, the decrease in skin thermoregulatory capacity, 

associated with reduced SkBF, may be related to the decline in VO2peak (Stapleton et al., 

2014). However, other studies reported that fitness level, associated with regular 

endurance-type exercise, can induce partial acclimation (Périard et al., 2014; Selkirk & 

McLellan, 2001) and thereby improve the ability to thermoregulate, enhancing the skin 

vasodilation response during exercise (Lee et al., 2000; Shibasaki et al., 2010). Boegli 

(2003) concluded that endurance training modifies the skin thermoregulatory response, 

as manifested by a greater augmentation of skin perfusion and maintenance of active 

cutaneous vasodilation during exercise (Lee et al., 2000; Shibasaki et al., 2010). Other 

studies (Lee et al., 2000; Shibasaki et al., 2010) also reported that physical endurance 

training and increased VO2peak improve skin thermoregulatory response, which appears 

to be one of the main elements needed for an effective thermoregulatory active 

vasodilation response, as well as increased SkBF (Ely et al., 2009; Stapleton et al., 

2014). Moreover, Richmond et al., (2014) found that there was an association between 

enhanced SkBF response and increased VO2peak after exercise training in older subjects. 

These changes in VO2peak seemed to affect Tsk responses. Périard et al. (2014) also 

postulated that a better skin thermoregulatory response during endurance exercise could 

indicate a higher cardiorespiratory fitness level, despite aging. 
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      In recent years, the measurement of Tsk has played an important role, and interest in 

Tsk adaptations during and after endurance exercise has increased since studies have 

shown that endurance exercise leads to an increase in Tsk (Périard et al., 2014; 

Richmond et al., 2014; Michael N. Sawka et al., 2012; Stapleton et al., 2014). Despite 

these discoveries, Tsk response remains unstudied as an independent parameter in the 

control of BT during exercise, and it is unclear if the level of aerobic fitness can 

influence Tsk response, irrespective of age (Best et al., 2014; Shellock & Prentice, 

1985).
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4.1 Aims  
 

           The main purpose of the project was to analyze and compare the dynamic of Tsk 

during exercise in different populations with different metabolic responses to exercise. 

For this purpose, it was necessary to carry out two studies:  

 

1. A first study analyzed an compared the correlation between Tsk and 

cardiorespiratory variables during an incremental maximal stress test in high 

fit (HF) and moderately fit (MF) male endurance runners. 

 

2. A second study analyzed and compared the correlation between Tsk and 

metabolic flexibility by measuring [La
-
] along with FATox and CHOox rates 

during an incremental maximal stress test in highly trained (HT) competitive 

endurance runners and moderately active (MA) male runners, and 

professional soccer (PS) players.   

 

The secondary aims of the present project were: 

 

1. To analyze the dynamic of Tsk response in different populations during an 

incremental exercise test to VO2peak on an ergometer treadmill. 

 

2. To analyze the five minutes recovery period after the exercise tests in both 

studies, to monitor any responses that may take place. 

 

3. To determine the skin thermoregulatory response as related to thermal 

changes during exercise. Measuring Tsk could offer indirect hemodynamic 

information of the vasodilation response during exercise-related thermal 

adjustment. 

 

4. To determine the skin thermoregulatory response as related to the level of 

aerobic fitness during an incremental maximal exercise test. 
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5. To determine if the validated exercise protocol of Achten (2003) can provide 

a measurement of maximal rate of Fat oxidation (MFO), and to assess the 

correlation with the thermoregulatory response. 

 

6. To determine the correlation between VO2peak,, [La
–
] concentrations, FATox 

and CHOox rates, skin thermoregulatory response, RPE values, and Fat % 

and muscle Mass % in HT endurance runners, MA runners and professional 

soccer players during an incremental maximal exercise test. 

 

4.2  Hypothesis 
 

These aims were based on the following working hypotheses: 

 

First study: 

 

1. We hypothesized that higher aerobic capacity could be associated with an 

enhanced Tsk response in male endurance runners. 

 

2. We hypothesized that HF endurance runners have the ability to maintain a 

higher Tsk response than MF runners during maximal exercise. 

 

3. We hypothesized that Tsk measurement can indirectly provide 

hemodynamic information of the vasodilation response during exercise-

related thermal adjustment, and can be used to predict the vasodilatation 

response. 

 

4. We hypothesized that Tsk response can be used as an index to predict 

aerobic fitness. 
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Second study: 

 

1. We hypothesized that higher metabolic flexibility could be associated with 

an enhanced Tsk response in highly trained endurance and moderately active 

runners and professional soccer players. 

 

2. We hypothesized that HT endurance runners have the ability to maintain 

higher Tsk rates than MA runners and PS players during absolute 

submaximal exercise intensities.  

 

3. We hypothesized that HT endurance runners have higher metabolic 

flexibility, and therefore higher oxidative and lactate clearance capacities.  
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5.1  First Study 
 

5.1.1 Study Design and Participants  
 

       The present study is a cross-sectional observational study that analysed the 

cardiorespiratory behavior related to Tsk in men who were highly and moderately fit 

endurance runners.  

 

        A total of 89 fit male endurance runners participated in this study, recruited from 

running and triathlon teams in the Barcelona city area, who were divided into two 

groups depending on their fitness level. They all performed progressive exercise tests to 

maximal oxygen consumption (VO2peak) on a treadmill. Participants were eligible for the 

study if they met the following inclusion criteria: all subjects had to be at an aerobic 

fitness level ≥ 40th percentile, based on the American College of Sports Medicine 

(ACSM) age-specific cardiorespiratory fitness classification (ACSM, 2018); participate 

in regular running training, at least three times/week and a minimum of 120-150 

min/week; have competed in an endurance event (> 5km) within the 3 months prior to 

the study; and have ≥3 years of competitive running or triathlon experience (Saris et al., 

2003). All subjects were nonsmokers, deemed healthy (assessed by completion of a 

general health questionnaire), with no known cardiovascular or metabolic disorders, and 

were not taking medication that had the potential to impact cardiovascular or 

thermoregulatory function. All significant inclusion criteria were the same for all 

runners, except age, which was between 18 and 50 yrs. 

 

 

         Participants were divided into two groups: highly fit endurance runners (HF) and 

moderately fit runners (MF). The HF (n = 35; age 36 ± 8 yrs) was >80th percentile and 

the MF (n = 44; age 37 ± 9 yrs) was 80th percentile based on the ACSM age-specific 

cardiorespiratory fitness classification (ACSM, 2018) (Table 7). 

 

          After the initial screening (Appendix II), 10 were not enrolled because of severe 

exercise contraindications, or use of medicines/supplements that may have an effect on 
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their thermoregulatory and physical response to exercise. This left a total of 79 

endurance runners that met the study criteria for participation in the study.  

 

         Subjects were instructed to maintain their training routines throughout the 

experimental period and to refrain from intense exercise for 48 hours before testing. 

 

5.1.2 Ethical Concerns 
 

        The present study respects the ethical principles of (Amaro et al, 1996; Gillon, 

1994) non maleficence, beneficence, autonomy, justice and confidentiality. It also 

followed the guidelines of the World Medical Association (2006), which regulates the 

obligatory nature of informed consent in clinical investigations, as it is a PA study but 

with the application of sports medical tests. The procedures of this study followed the 

Helsinki guidelines (WMA, 2016) for ethical behavior and was approved by the local 

Human Research Ethics Committee of Blanquerna, University of Ramon Llull (Ethical 

Code: 1819006D). 

 

      Therefore, all participants signed an informed consent form prior to participation. 

All subjects were informed of the purpose of this study, its risks and procedures. At a 

meeting, the project was explained and all questions were addressed. After signing the 

informed consent form, a health screening questionnaire was completed by each 

participant (Appendix II). 

 

5.1.3 Testing Procedures 
 

       All subjects participated in familiarization sessions prior to testing at the lab 

facilities, even though each participant had previously done between 1 to 3 maximal 

stress tests to measure VO2max on a treadmill. 

 

           Because external and internal factors can influence performance on the day of the 

test, and in order to measure Tsk under similar conditions, the following characteristics 

were used as exclusion criteria and participants were asked not to: a) smoke or drink 
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alcohol at least 12h before the test; b) sunbathe or expose themselves to UV rays 24h 

before the test c) use body lotions or creams 24h before the test; d) carry out high-

intensity or exhaustive exercise less than 24h before the test; e) eat at least 2h before the 

test and refrain from having a heavy meal; f) drink coffee or stimulants 2h before the 

test; and g) use medications, such as antipyretics or diuretics, or any dietary supplement 

that could potentially interfere with water homeostasis and body temperature in the two 

weeks prior to the test. Each participant was measured at a similar time in order to 

reduce the intra-subject effect of the circadian cycle. Finally, as heat acclimation can 

influence overall control of Tsk during exercise (Karlsen et al., 2015), we decided to 

perform our study in winter and spring, avoiding the possible effects of heat acclimation 

during the warmer season. 

 

         Before the test, all participants underwent a medical screening to evaluate possible 

contraindications (Appendix II). This was followed by body composition measurements 

(Appendix III). Afterwards, participants completed an incremental maximal treadmill 

test (Appendix III). Tsk and cardiovascular data were also continuously monitored 

during the exercise test, followed by a recovery period of five minutes.  

 

5.1.4 Anthropometric Measurements 
 

         Body mass was measured to the nearest 0.1 kg on a digital scale (Seca 861, 

Hamburg, Germany), with the subject wearing lightweight clothing and no shoes. Body 

height was measured using a stadiometer to the nearest 0.1 cm (Seca 225, Seca, 

Hamburg, Germany). Body mass index (BMI) (kg/m
2
) was calculated using body mass 

and body height, following the recommendations of the International Society for the 

Advancement of Kinanthropometry (Marfell-Jones, M.J., Olds, T., Stewart, A.D. and 

Carter, 2006). 

 

         Body density was estimated using the seven site skinfold equation (chest, axilla, 

subscapular, midaxillary, triceps, abdominal and thigh) developed by Jackson and 

Pollock (Jackson & Pollock, 1978). Skinfold measurements were taken on the right side 

from the average of the measurements three obtained by the same researcher using a 

Holtain skinfold caliper (Holtain Ltd., Walles, UK) and following the International 
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Society for the Advancement of Kinanthropometry guidelines (Garber et al., 2011). 

Body fat percentage (%) was calculated using Siri’s equation (1961), with muscle mass 

percentage determined thereafter. Muscle mass percentage (%) was determined together 

with bone and organs percentages using the equation of the sum of seven perimeters 

(arm, contracted arm, forearm, wrist, chest, upper thigh, medial thigh and calf) and 6 

diameters (biacromial iliac spine, breadth, chest, humerus, femur, anterior-posterior 

thoracic and transverse thoracic) (Drinkwater, D.T. and Ross, 1980). Bone mass % was 

calculated using Rocha’s equation, residual mass % was calculated using Wurch’s 

equation and fat-free mass % was determined thereafter (Esparza Ros, 1993). 

 

5.1.5 Cardiorespiratory Fitness Assessment  
 

           All tests were performed in the morning between 9am and 12pm to reduce the 

intra-subject effect of the circadian cycle. The test was carried out in a controlled 

environment, where conditions were maintained at 22 ± 1 ºC and 50 ± 5% relative 

humidity.  

 

         Each participant performed progressive an incremental maximal stress test on a 

treadmill (Quasar model, HP Cosmos sports & medical gmbh, Nussdorf-Traunstein, 

Germany). All cardiorespiratory variables, the rate of perceived exertion (RPE) and Tsk 

were monitored at rest, during exercise and during the 5 min recovery period 

 

       At rest and during exercise values of cardio-vascular and ventilation responses were 

monitored using a gas analyzer. The following parameters were obtained: 

 

 Absolute oxygen consumption (VO2, L·min
-1

): liters of O2 consumed per minute 

and its value at rest is ~0.22 L·min
-1

 (López Chicharro & Izquierdo Redín, 2006; 

Wilmore & Costill, 2004).  

 

 Relative oxygen consumption (VO2, mL·kg·min
-1

): oxygen uptake with respect 

to body weight in milliliters of oxygen consumed per minute per kilogram of 

body weight. 
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 Respiratory exchange ratio (RER): is the relationship between the volume of 

CO2 produced (VCO2) and the volume of O2 consumed (VCO2·VO2
-1

) (López 

Chicharro & Izquierdo Redín, 2006; Wilmore & Costill, 2004). 

 

 Carbon dioxide production (VCO2, L·min
-1 

STPD): the amount of CO2 

produced.  

 

 Ventilation (VE, L·min
-1

): the basic functions of pulmonary ventilation are O2 

and CO2 exchange with the environment, which regulates blood pH and oral 

communication. The ventilation level is regulated by the respiratory center as a 

function of metabolic needs, the gaseous state, the acid-base balance of the 

blood, and the mechanical conditions of the lung-thorax. The purpose of 

ventilation is to transport O2 to the alveolar space so the exchange at the 

pulmonary capillary space is done and the CO2 produced at a metabolic level is 

evacuated. In a maximal exercise test, these values indicate the magnitude of the 

response of the lung function, showing the amount of air exchanged per minute. 

The values at rest are ~ 6 L·min
-1

 (López Chicharro & Izquierdo Redín, 2006; 

Wilmore & Costill, 2004). 

 

            All these variables were measured breath-by-breath with an automatic gas 

analysis system (Ergospirometer, Metalyzer 3B; Cortex-medical, Leipzig,  Germany) 

equipped with a pneumotachometer and a two-way mask (Hans Rudolph, Kansas, 

USA). Gas and volume calibrations were performed before each test, according to the 

manufacturer’s guidelines. The system’s volume and gas analysers were calibrated 

using a 3 litre calibration pump and calibration gas (15.12% o2; 5.10% CO2), 

respectively. VO2peak was calculated as the average oxygen uptake over the last 30s of 

the test. Subjects were required to wear the mask to collect respiratory gases, which 

were averaged every 10s throughout the entire test, and then used to calculate substrate 

metabolism (López Chicharro & Izquierdo Redín, 2006; Wilmore & Costill, 2004).  

 

         The twelve lead electrocardiograms (CardioScan v.4.0, DM Software, Staline, 

Nevada, USA) and heart rate (HR) (Polar RS800CX, Polar Electro, Lake Success, New 
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York) were monitored continuously during the test and during the five minute recovery 

period. 

 

         The test was determined to be maximal if two of the following four criteria were 

met: 1) a levelling off of VO2max with further increases in workload (< 2 ml 
x 

kg
-1

 body 

mass), 2) a HR within 10 beats
 x

 min
-1

 of age predicted maximum (220 beats
 x

 min
-1

 

minus age), 3) RER exceeded >1.05, respiratory gas measurements (VO2 and VCO2), or 

4) a rating of perceived exertion (RPE) of >17. 

 

          As exercise starts, HR increases directly in proportion to the increase in the 

intensity of the exercise up to a point close to exhaustion. Some authors suggest that the 

linear relationship holds up submaximal HRs around 170 beats·min-1, and from this 

point HR tends to increase slowly and approach asymptotically at a maximum value 

(López Chicharro & Izquierdo Redín, 2006). Achieving the theoretical maximum HR is 

a criterion for maximality of the stress test. There are many equations for calculating 

maximum HR based on age. The most commonly used is 220 beats minus the age in 

years of the subject. However, it should be kept in mind that this equation is only an 

approximation and that individual values can vary considerably (Wilmore, J., & Costill, 

2004).  

 

        Finally, the rating of perceived exertion (RPE) on the Borg scale  (Borg et al., 

1987) was recorded during the last 15 s of each exercise stage. 

 

Testing Protocol 
 

         In this study, each participant performed an incremental exercise test to obtain 

VO2max on a treadmill ergometer. During the test, participants started at a speed of 7 

km/h
-1

, which increased by 1 km/h
-1

 every 2 min until exhaustion with a maximal speed 

reached, followed by a recovery period of five minutes. The participants performed the 

test at a constant slope (1.5%). In this study, all cardiorespiratory variables, the rate of 

perceived exertion (RPE) and Tsk were monitored at rest, during exercise and during 

the recovery period. 
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5.1.6 Skin Temperature Assessment 
 

       On the day of the test, subjects reported normal hydration. Skin temperature was 

continuously recorded with a Tsk sensor (thermistor sensor, TSD202D, Biopac Systems 

Inc., Goleta, CA, USA) that was placed on the left pectoralis muscle 2.5 cm medial and 

2.5 cm above the nipple. Accuracy and precision of the device model is ± 0.2 C. Before 

monitoring Tsk, participants were acclimated to the environment by standing in the 

room for 15 min. During the incremental test, Tsk data was recorded every half second 

and the mean value of each 10s was used for data analysis (Biopac Student Lab 

Analysis software, Biopac Systems Inc., Goleta, CA, USA). 

 

5.1.7 Statistical Analysis 
 

       Descriptive statistics were calculated for all variables. To test the normality of the 

variables the Kolmogorov-Smirnov test was applied. Experiment data are presented as 

means ± SED in all tables unless stated otherwise. 

 

      In the first study, a one-way ANOVA with post-hoc Bonferroni test was used to 

determine between-group differences. Pearson’s r correlation was used to analyze the 

associations between Tsk and cardiorespiratory variables. Finally, a multiple linear 

regression identifying significant variables was developed with Tsk used as the response 

variable. The explanatory variables were those found to be significantly correlated              

(p < 0.05) with Tsk, based on a linear relationship. Multicollinearity was checked with 

the variance inflation factor (VIF), which needed to be below 10 for all predictor 

variables 

(Field, 2009).  
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5.2  Second Study 
 

5.2.1 Study Design and Participants 
 

       The present study is a cross-sectional observational and comparative study that 

analyses the metabolic behaviors related to Tsk in three different populations: highly 

trained competitive male endurance runners, moderately active male runners, and 

professional male soccer players. 

 

         A total of 22 highly trained competitive male endurance runners (HT), 20 

moderately active male runners (MA) and 23 professional male soccer players (PS) 

participated in this study, performing graded exercise tests to obtain VO2peak on a 

treadmill. All participants from the HT, MA and SP groups were eligible for the study if 

they met the following inclusion criteria: all subjects had to have an aerobic fitness level 

≥40th percentile based on the American College of Sports Medicine (ACSM) age-

specific cardiorespiratory fitness classification (ACSM, 2018), be nonsmokers, be 

deemed healthy (based on responses to a general health questionnaire), have no known 

cardiovascular or metabolic disorders, and not be on medication with the potential to 

impact cardiovascular or thermoregulatory function.  

 

       Both HT endurance and MA runners were recruited for the study from running and 

triathlon teams in the Barcelona city area. Members of the HT group ranged in 

competitive level from club/county standard to elite endurance runners; had a maximal 

oxygen uptake (VO2max) of 55-65 ml·kg
–1

·min
–1

; had competed in an endurance event 

(> 5km) within 3 months prior to the study; and had ≥3 years of competitive running or 

triathlon experience (Saris et al., 2003; Zourdos et al., 2012). For the MA group, the 

requirements were to exercise at least three times/week with a minimum of 120-150 

min/week. 

 

       For the SP group, the requirement for participation was placement on a national 

soccer team in the professional spanish league system, operated by the Spanish Football 

Federation. In this case, we recruited soccer players from a club in the 2ºB professional 

league. 
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         Fifty participants were recruited for the HT and MA runners groups from various 

running and triathlon teams in the Barcelona city area. After the initial screening 

(Appendix II), 8 runners from these clubs were not enrolled because of severe exercise 

contraindications or use of medicines/supplements that may have an important effect on 

their thermoregulatory and physical response to exercise. This left a total of 22 highly 

trained/competitive endurance runners and a total of 20 moderately active runners that 

met the criteria for participation in the study.  

 

           Twenty-seven PS players were recruited for this study from a professional soccer 

team in the 2ºB professional Spanish league. After the initial screening (Appendix II), 4 

soccer players were not enrolled because of the use of medicines/supplements that may 

have a large effect on their thermoregulatory and physical responses to exercise. 

Furthermore, both goalkeepers were unable to participate, which left a total of 23 PS 

players that met the criteria for participation in the study. The soccer players 

participated in this study during the soccer season, in winter and spring.  

 

        In this study, Tsk, cardiovascular data, substrate oxidation rates (FATox and 

CHOox), and [La
-
] measurements were continuously monitored during an incremental 

exercise test, followed by a recovery period of five minutes.  

 

5.2.2 Ethical Concerns 
 

                The present study respects the ethical principles of (Amaro et al, 1996; Gillon, 

1994) non maleficence, beneficence, autonomy, justice and confidentiality. It also 

followed the guidelines of the World Medical Association (2006), which regulates the 

obligatory nature of informed consent in clinical investigations, as it is a PA study but 

with the application of sports medical tests. The procedures of this study followed the 

Helsinki guidelines (WMA, 2016) for ethical behavior and was approved by the local 

Human Research Ethics Committee of Blanquerna, University of Ramon Llull (Ethical 

Code: 1819006D). 

 

      Therefore, all participants signed an informed consent form prior to participation. 

All subjects were informed of the purpose of this study, its risks and procedures. At a 
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meeting, the project was explained and all questions were addressed. After signing the 

informed consent form, a health screening questionnaire was completed by each 

participant (Appendix II). 

 

5.2.3 Testing Procedures 
 

           All subjects participated in familiarization sessions prior to testing at the lab 

facilities, even though each participant had previously done between 1 to 3 maximal 

stress tests to measure VO2max on a treadmill. 

 

           Because external and internal factors can influence performance on the day of the 

test, and in order to measure Tsk under similar conditions, the following characteristics 

were used as exclusion criteria and participants were asked not to: a) smoke or drink 

alcohol at least 12h before the test; b) sunbathe or expose themselves to UV rays 24h 

before the test c) use body lotions or creams 24h before the test; d) carry out high-

intensity or exhaustive exercise less than 24h before the test; e) eat at least 2h before the 

test and refrain from having a heavy meal; f) drink coffee or stimulants 2h before the 

test; and g) use medications, such as antipyretics or diuretics, or any dietary supplement 

that could potentially interfere with water homeostasis and body temperature in the two 

weeks prior to the test. Each participant was measured at a similar time in order to 

reduce the intra-subject effect of the circadian cycle. Finally, as heat acclimation can 

influence overall control of Tsk during exercise (Karlsen et al., 2015), we decided to 

perform our study in winter and spring, avoiding the possible effects of heat acclimation 

during the warmer season. 

 

         Before the test, all participants underwent a medical screening to evaluate possible 

contraindications (Appendix II). This was followed by body composition measurements 

(Appendix III). Afterwards, participants completed an incremental maximal treadmill 

test. Tsk, cardiovascular and metabolic data were also continuously monitored during 

the exercise test, followed by a recovery period of five minutes. For all participants did 

he same test was repeated with all groups subjects.  
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5.2.4 Anthropometric Measurements 
 

         Body mass was measured to the nearest 0.1 kg on a digital scale (Seca 861, 

Hamburg, Germany), with the subject wearing lightweight clothing and no shoes. Body 

height was measured using a stadiometer to the nearest 0.1 cm (Seca 225, Seca, 

Hamburg, Germany). Body mass index (BMI) (kg/m
2
) was calculated using body mass 

and body height, following the recommendations of the International Society for the 

Advancement of Kinanthropometry (Marfell-Jones, M.J., Olds, T., Stewart, A.D. and 

Carter, 2006). 

 

         Body density was estimated using the seven site skinfold equation (chest, axilla, 

subscapular, midaxillary, triceps, abdominal and thigh) developed by Jackson and 

Pollock (Jackson & Pollock, 1978). Skinfold measurements were taken on the right side 

from the average of the measurements three obtained by the same researcher using a 

Holtain skinfold caliper (Holtain Ltd., Walles, UK) and following the International 

Society for the Advancement of Kinanthropometry guidelines (Garber et al., 2011). 

Body fat percentage (%) was calculated using Siri’s equation (1961), with muscle mass 

percentage determined thereafter. Muscle mass percentage (%) was determined together 

with bone and organs percentages using the equation of the sum of seven perimeters 

(arm, contracted arm, forearm, wrist, chest, upper thigh, medial thigh and calf) and 6 

diameters (biacromial iliac spine, breadth, chest, humerus, femur, anterior-posterior 

thoracic and transverse thoracic) (Drinkwater, D.T. and Ross, 1980). Bone mass % was 

calculated using Rocha’s equation, residual mass % was calculated using Wurch’s 

equation and fat-free mass % was determined thereafter (Esparza Ros, 1993). 

 

5.2.5 Cardiorespiratory Fitness Assessment  
 

           All tests were performed in the morning between 9am and 12pm to reduce the 

intra-subject effect of the circadian cycle. The test was carried out in a controlled 

environment, where conditions were maintained at 22 ± 1 ºC and 50 ± 5% relative 

humidity.  

 

         Each participant performed progressive an incremental maximal stress test on a 
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treadmill (Quasar model, HP Cosmos sports & medical gmbh, Nussdorf-Traunstein, 

Germany). All cardiorespiratory variables, substrates oxidation rates (FATox and 

CHOox), [La
-
] measurements, rating of perceived exertion (RPE) and Tsk were 

monitored at rest, during exercise and during the 5 min recovery period 

 

       At rest and during exercise values of cardio-vascular and ventilation responses were 

monitored using a gas analyzer. The following parameters were obtained: 

 

 Absolute oxygen consumption (VO2, L·min
-1

): liters of O2 consumed per minute 

and its value at rest is ~0.22 L·min
-1

 (López Chicharro & Izquierdo Redín, 2006; 

Wilmore & Costill, 2004).  

 

 Relative oxygen consumption (VO2, mL·kg·min
-1

): oxygen uptake with respect 

to body weight in milliliters of oxygen consumed per minute per kilogram of 

body weight. 

 Respiratory exchange ratio (RER): is the relationship between the volume of 

CO2 produced (VCO2) and the volume of O2 consumed (VCO2·VO2
-1

) (López 

Chicharro & Izquierdo Redín, 2006; Wilmore & Costill, 2004). 

 

 Carbon dioxide production (VCO2, L·min
-1 

STPD): the amount of CO2 

produced.  

 

 Ventilation (VE, L·min
-1

): the basic functions of pulmonary ventilation are O2 

and CO2 exchange with the environment, which regulates blood pH and oral 

communication. The ventilation level is regulated by the respiratory center as a 

function of metabolic needs, the gaseous state, the acid-base balance of the 

blood, and the mechanical conditions of the lung-thorax. The purpose of 

ventilation is to transport O2 to the alveolar space so the exchange at the 

pulmonary capillary space is done and the CO2 produced at a metabolic level is 

evacuated. In a maximal exercise test, these values indicate the magnitude of the 

response of the lung function, showing the amount of air exchanged per minute. 

The values at rest are ~ 6 L·min
-1

 (López Chicharro & Izquierdo Redín, 2006; 

Wilmore & Costill, 2004). 
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            All these variables were measured breath-by-breath with an automatic gas 

analysis system (Ergospirometer, Metalyzer 3B; Cortex-medical, Leipzig, Germany) 

equipped with a pneumotachometer and a two-way mask (Hans Rudolph, Kansas, 

USA). Gas and volume calibrations were performed before each test, according to the 

manufacturer’s guidelines. The system’s volume and gas analysers were calibrated 

using a 3 litre calibration pump and calibration gas (15.12% o2; 5.10% CO2), 

respectively. VO2peak was calculated as the average oxygen uptake over the last 30s of 

the test. Subjects were required to wear the mask to collect respiratory gases, which 

were averaged every 10s throughout the entire test, and then used to calculate substrate 

metabolism (López Chicharro & Izquierdo Redín, 2006; Wilmore & Costill, 2004).  

 

         The twelve lead electrocardiograms (CardioScan v.4.0, DM Software, Staline, 

Nevada, USA) and heart rate (HR) (Polar RS800CX, Polar Electro, Lake Success, New 

York) were monitored continuously during the test and during the five minute recovery 

period. 

 

         The test was determined to be maximal if two of the following four criteria were 

met: 1) a levelling off of VO2max with further increases in workload (< 2 ml 
x 

kg
-1

 body 

mass), 2) a HR within 10 beats
 x

 min
-1

 of age predicted maximum (220 beats
 x

 min
-1

 

minus age), 3) RER exceeded >1.05, respiratory gas measurements (VO2 and VCO2), or 

4) a rating of perceived exertion (RPE) of >17. 

 

          As exercise starts, HR increases directly in proportion to the increase in the 

intensity of the exercise up to a point close to exhaustion. Some authors suggest that the 

linear relationship holds up submaximal HRs around 170 beats·min-1, and from this 

point HR tends to increase slowly and approach asymptotically at a maximum value 

(López Chicharro & Izquierdo Redín, 2006). Achieving the theoretical maximum HR is 

a criterion for maximality of the stress test. There are many equations for calculating 

maximum HR based on age. The most commonly used is 220 beats minus the age in 

years of the subject. However, it should be kept in mind that this equation is only an 

approximation and that individual values can vary considerably (Wilmore, J., & Costill, 

2004).  
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        Finally, the rating of perceived exertion (RPE) on the Borg scale  (Borg et al., 

1987) was recorded during the last 15 s of each exercise stage. 

 

Testing Protocol 
 

       A total of 65 male participants (22 highly trained competitive endurance runners, 

20 moderately active runners, and 23 professional soccer players) performed an 

incremental maximal exercise test. Each participant was measured at a similar time in 

order to reduce the intra-subject effect of the circadian cycle. Anthropometric 

characteristics (body height and mass) were collected before the test. Participants 

performed an incremental maximal exercise test with 3-min stages, followed by a 

recovery period of 5 min. The interval duration in the Fatmax test was selected based on a 

previous study (Achten & Jeukendrup, 2003a,b, 2004). Tsk, FATox and CHOox 

(Achten et al., 2003) and [La¯], measurements were taken. 

 

        In this study, each participant performed an incremental exercise test to obtain 

VO2max on a treadmill ergometer. During the test, participants started at an initial speed 

of 5.0 km/h
-1

 at a gradient of 1,5% for 1 min, after which the speed increased to 9 km/h
-

1
, then increased by 1 km/h every 3 min until exhaustion with a maximal speed reached, 

followed by a recovery period of five minutes. The exercise protocol used here was 

adapted from a previously described and validated protocol on treadmill (Mohebbi & 

Azizi, 2011) in which it was concluded that an incremental exercise test with 3-min 

stages could be used to determine both MFO and FATmax (Achten & Jeukendrup, 

2003a,b, 2004). 

 

       In this study all cardiorespiratory variables, substrate oxidation rates, metabolic 

responses, the rate of perceived exertion (RPE), and Tsk were monitored at rest, during 

exercise and during the recovery period. We used indirect calorimetry (FATox, CHOox) 

and [La
-
] measurements to assess metabolic flexibility during exercise across 

populations 
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5.2.6 Calculations of Fat and Carbohydrate Oxidation 
 

    We used indirect calorimetry and [La-] measurements to study the metabolic 

responses to exercise in HT runners, MA runners, and PS players. 

      Values of VO2 consumption and VCO2 production were averaged for each exercise 

stage. The raw data was then analyzed manually for each athlete. Breath-by-breath data 

were averaged in 10s increments for the maximal cardiopulmonary test, and 60s average 

values were used to calculate substrate oxidation in the Fatmax test. For each of these 

stages, substrate oxidation (FATox and CHOox) rates were calculated by using 

stoichiometric equations applied according to the methodology described by  

Frayn (1983), with the assumption that urinary nitrogen excretion rate was negligible. 

FATox and CHOox rates were calculated as follows: 

 

- FATox (g 
x
 min

-1
) = 1.67 x VO2 (L.min

-1
) – 1.67 x VCO2 (L.min

-1
) 

 

- CHOox (g 
x 
min

-1
) = 4.55 x VCO2 (L.min

-1
) – 3.21 x VO2 (L.min

-1
)  

(Frayn, 1983) 

 

       FATox and CHOox rates were calculated for each stage by averaging the data from 

the last 1 minute of each stage, and the stage with the highest level of FATox was 

recognized as Fatmax. FATox and CHOox rates were then plotted as a function of 

exercise intensity, expressed as a percentage of maximal oxygen uptake (VO2peak). From 

each fat oxidation curve, several features were identified according to a previously 

described procedure (Achten J, 2003): 1) MFO, the peak rate of fat oxidation measured 

over the entire range of exercise intensities, 2) FATmax, the exercise intensity at which 

the FATox rate was maximal, and 3)FATmin: the exercise intensity where the fat 

oxidation rate becomes negligible and reached zero (i.e., where RER >1.0).     

 

5.2.7 Lactate Concentration Measurement 
 

      At the end of each stage of the test, around the last 30 seconds, a capillary blood 

sample was collected from the finger and used to analyze blood lactate concentration 

(Lactate Plus). Measurements of [La
-
], together with FATox and CHOox, provide an 
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indirect method to assess metabolic flexibility and oxidative capacity during the test for 

all groups (San-Millán & Brooks, 2017). 

 

5.2.8 Skin Temperature Assessment 
 

       On the day of the test, subjects reported normal hydration. Skin temperature was 

continuously recorded with a Tsk sensor (thermistor sensor, TSD202D, Biopac Systems 

Inc., Goleta, CA, USA) that was placed on the left pectoralis muscle 2.5 cm medial and 

2.5 cm above the nipple. Accuracy and precision of the device model is ± 0.2 C. Before 

monitoring Tsk, participants were acclimated to the environment by standing in the 

room for 15 min. During the incremental test, Tsk data was recorded every half second 

and the mean value of each 10s was used for data analysis (Biopac Student Lab 

Analysis software, Biopac Systems Inc., Goleta, CA, USA). 

 

5.2.9  Statistical Analysis 
 

      Descriptive statistics were calculated for all variables. To test the normality of the 

variables the Kolmogorov-Smirnov test was utilized. Experimental data are presented as 

means ± SEM in all tables unless stated otherwise.  

 

       In this study, a one-way ANOVA with post-hoc Bonferroni test for multiple 

comparisons were used to determine the statistical significance of mean values observed 

in the three groups at baseline, at the end of the test and the end of the recovery period. 

Pearson’s r correlation coefficients were used to assess the statistical significance of the 

relationships among the variables studied.  

 

        Statistical significance was set at p < 0.05. Statistical analyses were conducted 

using the Statistical Package for the Social Sciences (IBM SPSS, v 22.0, Chicago, IL, 

USA). 
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6.1  First Study 
 

        A total of 79 male participants (35 high fit endurance runners; 44 moderately fit 

runners; (Table 14) performed an incremental maximal exercise test. Participants had 

participated in familiarization sessions on they already performed previously other 

maximal stress exercise test on a treadmill. Measurements to every participant were 

obtained at a similar time in order to reduce the intra-subject effect of the circadian 

cycle. Anthropometric characteristics (body height and mass) were collected before the 

test, the participants performed an incremental maximal test, where the speed was 

increased every 2 min until exhaustion, followed by a recovery period of 5 mins. 

 

6.1.1 Participants Characteristics and Cardiorespiratory Assessments  
 

        A total Table 14 shows general and physiological characteristics of all participants. 

All subjects were similar in height and age. Body weight and BMI were significantly 

higher in the MF group (p = .001), compared with the subjects of the HF group. The HF 

group had a higher muscle mass % and a lower fat mass % than the MF group                       

(all p < .001). 

 

Table 14. Physical characteristics of the whole sample and of the two study groups separately  

Variables n=79 HF (n=35) MF (n=44) p-value 

Characteristics 

Age (years) 36 ± 9 36 ± 8 37 ± 9 .734 

Height (cm) 177 ± 0.1 176 ± 0.5 178 ± 0.6 .189 

Weight (kg) 75.62 ± 7.56 72.72 ± 5.67 77.93 ± 8.12 .001 

BMI (kg/m2) 24.03 ± 2.11 23.23 ± 1.50 24.68 ± 2.32 .001 

Fat mass (%) 14.04 ± 4.52 11.69 ± 3.2 15.91 ± 4.59 < .001 

Muscle mass (%) 45 ± 3.48 46.51 ± 2.70 43.80 ± 3.61 < .001 

VO2peak (L/min) 3.82 ± 0.38 4.02 ± 0.35 3.65 ± 0.33 .001 

VO2peak (ml/kg/min) 51.74 ± 6.54 56.62 ± 4.31 47.86 ± 5.29 < .001 

HR (beat/min) 181 ± 9 182 ± 8 181 ± 11 .554 

RER (VCO2/VO2) 1.05 ± 0.05 1.05 ± 0.05 1.04 ± 0.05 .590 

VE (L/m) 136 ± 20 145 ± 21 129 ± 17 < .001 

Speedpeak (km/h) 15.91 ± 1.78 16.98 ± 1.50 15.06 ± 1.50 < .001 

Time spent (sec) 1200 ± 212 1329 ± 181 1099 ± 180 < .001 

Note: values are means ± SD. Abbreviations: BMI (body mass index), VO2peak (peak oxygen consumption), HR (heart rate), 
RER (respiratory exchange ratio), VE (ventilation), Speedpeak (peak speed), HF (highly fit endurance runners), MF (moderately 

fit endurance runners).  
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Cardiovascular response 

    

       VO2peak was significantly higher in the HF group than the MF group (56.62 ± 4.31 

vs. 47.86 ± 5.29 ml/kg/min, p < 0.05). Also, both the maximal speed reached during the 

test and VE were higher in the HF group compared with the MF group (all p < .001). 

Significant differences in peak HR (HRpeak) and peak RER (RERpeak) were not found. 

 

6.1.2 Skin Temperature Measurements  
 

Results from the analysis of Tsk are shown in Table 15. These results provide the 

mean Tsk responses at rest (baseline), during exercise, and after exercise during the 

recovery period. Baseline Tsk was significantly higher (p = .049) in the HF group 

compared with the MF group. 

 

Table 15. Skin temperature response in an incremental exercise test until volitional exhaustion in high 

and moderately fit endurance runners 

Variables n=79 HF (n=35) MF (n=44) p-value 

Tskbaseline (°C) 34.06 ± 0.75 34.24 ± 0.84 33.91 ± 0.74 .049 

Tskpeak (°C) 36.03 ± 0.73 36.20 ± 0.60 35.90 ± 0.79 .062 

Tskfinal (°C) 35.59 ± 0.95 35.70 ± 0.77 35.50 ± 1.07 .322 

Tsk variation from Tskbaseline to Tskpeak (°C) 1.97 ± 0.81 1.96 ± 0.65 1.99 ± 0.92 .833 

Tsk variation from Tskbaseline to Tskfinal (°C) 1.53 ± 1.03 1.49 ± 0.84 1.56 ± 1.16 .747 

Tsk variation from Tskpeak to Tskfinal (°C) - 0.45 ± 0.49 - 0.50 ± 0.50 - 0.41 ± 0.49 .413 

Time-duration from Tskbaseline to Tskpeak (sec) 996 ± 240 1105 ± 244 910 ± 201 < .001 

Time-duration from Tskpeak to Tskfinal (sec) 204 ± 163 223 ± 159 189 ± 167 .348 

Tskpeak during recovery (°C) 36.25 ± 0.81 36.38 ± 0.79 36.14 ± 0.81 .187 

Tskfinal during recovery (°C) 36.12 ± 0.88 36.28 ± 0.87 36 ± 0.88 .167 

Tsk variation from Tskfinal at end of exercise to 

Tskpeak during recovery (°C) 

0.71 ± 0.59 0.76 ± 0.56 0.68 ± 0.61 .557 

Tsk variation from Tskfinal at end of exercise to 

Tskfinal at end of recovery (°C) 

0.60 ± 0.68 0.65 ± 0.56 0.54 ± 0.75 .452 

Note: values are means ± SD. Abbreviations: Tsk (skin temperature), Tskbaseline (baseline skin temperature), Tskpeak (maximal skin 

temperature), Tskfinal (skin temperature at the end of exercise/recovery), HF (highly fit endurance runners) and MF (moderately 
fit endurance runners).   

 

Values of Tsk at each percentage of peak workload during the incremental test are 

shown in Figure 12. Mean Tsk and standard error (SEM) of both groups together during 

exercise are shown in Figure 12. This figure also shows mean Tsk and SEM for each 



                                                                                                                           6. Results  

 

 

 133                                                                                             
Tesis doctoral  

Jonatan Galán  

 

group during the recovery period. During the test, Tsk values were higher in the HF 

group compared with the MF group (Figure 12). However, these were not statistically 

significant differences. As the duration and intensity of the test increased, the maximal 

Tsk (Tskpeak) reached was lower in the MF group compared with the HF group 

throughout exercise (35.90 ± 0.79 vs 36.20 ± 0.60 ºC, respectively). Nevertheless, there 

were not statistically significant differences between groups (Figure 12). Similarly, 

during the recovery period, the peak values of Tsk were higher in the HF group 

compared with the MF group (Figure 12). Both groups reached their Tskpeak during 

recovery. However, there were not statistically significant differences between groups. 

 

 

 

Figure 12. Values are means ± SEM. The black circles represent the highly fit endurance runners (HF) group and the white 

circles represent the moderately fit endurance runners (MF) group. Significant level was set at p < 0.05. Analysis was performed at 

the end of each relative workload of exercise and recovery period. Significant differences between highly and moderately fit 

endurance runners. 

 

 

    During the test, irrespective of Tskpeak and fitness level, the increase of Tsk from 

Tskbaseline to Tskpeak was not statistically different (1.96 ± 0.65 vs. 1.99 ± 0.92 ºC in HF 

and MF, respectively) during the test. The difference between the Tsk at the beginning 

of the recovery period and the higher Tsk achieved in this period for both groups was 

not statistically different (0.65 ± 0.56 vs 0.54 ± 0.75 ºC in HF and MF, respectively) 

(Figure 12). 
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Figure 12 also illustrates the mean responses of Tsk for each group during the 

recovery period, in which there were not significant differences between groups. The 

comparison of percentage workload (%) of Tsk responses in the HF and MF subjects 

during the test and recovery period are shown in Figure 12. Throughout the exercise 

period, Tsk response for the HF group was significantly higher at baseline (p = .049), at 

60% (p = .048) and 70% (p = .048) of peak workload (%) compared with the MF group 

(Figure 13). There were no other differences in Tsk among the groups during test and 

recovery periods (Figure 13). The mean values of Tsk at the end of the test were slightly 

higher in the HF group, nevertheless, the difference among groups was not significant 

(HF 35.70 ± 0.77 vs MF 35.50 ± 1.07 ºC). During the incremental test both groups 

reached stable Tsk values (plateau) at 80 to 90% of peak workload (Figure 12). After 

reaching the plateau, Tsk started decreasing in both groups (HF = 0.50 ± 0.50 vs LF = 

0.41 ± 0.49 ºC). The Tskpeak during the recovery period was greater than the Tskpeak 

reached during exercise in both groups (HF 36.38 ± 0.79 ºC vs MF 36.14 ± 0.81 ºC, 

respectively), and was also greater than the final Tsk value after recovery. 

 

        As showed in Table 16, Tskpeak of both group was inversely correlated with fat 

mass %. On the other hand, Tsk was positively correlated with age, muscle mass %, 

VO2peak, HRpeak, VEpeak (p < 0.05) and Speedpeak (p = .002) (Table 16). 

 

Table 16. Correlation Coefficients and p-values among Tskpeak and Age, BMI, Fat mass %, Muscle 

mass %, VO2peak, HRpeak, RERpeak, VEpeak and Speedpeak. 

Variables Correlation coefficient p-value 

Age, years .306 .006 

BMI (kg/m2) -.147 .196 

Fat mass (%)  -.276 .014 

Muscle mass (%)  .263 .019 

VO2peak (ml/kg/min) .299 .007 

HRpeak (beat/min) .286 .011 

RERpeak -.035 .760 

VEpeak (L/min) .256 .023 

Speedpeak (km/h) .337 .002 

Note: values are means ± SD. Abbreviations: Tskpeak (peak skin temperature), BMI (body mass index), VO2peak (peak oxygen 

consumption), HRpeak (peak heart rate), RERpeak (peak respiratory exchange ratio), VEpeak (peak ventilation) and Speedpeak (peak 
speed).  
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       The multivariate linear regression that was used to identify factors that significantly 

affected Tskpeak showed that Speedpeak had a significant effect on Tskpeak. Although 

HRpeak has positive effects on Tskpeak, no significant difference was found between 

groups for this variable (Table 17). 

 

Table 17. Variables that affect Tskpeak 

Variables β β error t p VIF 

(Constant) 31.668 1.453 21.790 < .001 - 

Speedpeak .111 .046 2.392 .019 1.139 

HRpeak .014 .008 1.694 .094 1.138 

Regression model statistically significant p = .002; R2 = 0.146. 

Abbreviations: Tskpeak (peak skin temperature), VIF (variance inflation factor); Speedpeak (peak speed) and HRpeak (peak heart 

rate). 
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6.2  Second Study 
 

6.2.1 Participants Characteristics and Cardiorespiratory Assessments  
 

      The physical characteristics of the participants are shown in Table 18. A total of 65 

male participants (22 high trained endurance runners; 20 moderately active runners; 23 

professional soccer player; (Table 18) performed an incremental maximal exercise test. 

Participants had participated in familiarization sessions on they performed previously 

other maximal stress exercise test on a treadmill. Measurements for every participant 

were obtained at a similar time in order to reduce the intra-subject effect of the circadian 

cycle. Anthropometric characteristics (body height and mass) were collected before the 

test, the participants performed an incremental maximal stress exercise test on a 

treadmill with stages of 3–min duration, followed by a recovery period of 5 mins. 

 

 

Cardiovascular  

 

      The anthropometric, cardiopulmonary and metabolic responses of each group to the 

maximal test are given in Table 19. All subjects were similar in height and muscle mass 

%. BMI and fat mass % were significantly lower in the HT and PS groups compared 

with the subjects from the MA group (p = .001 and p < .001, respectively). The MA 

group had a lower weight than the HT and PS groups (all p = .017). 

Table 18. General characteristics of the whole sample  

Variables n Mean Minimum Maximum SD 

Age, years 65 31.38 19 45 7.03 

Height (cm) 65 177.59 160.00 194.00 7.00 

Weight (kg) 65 74.01 57.00 89.90 6.96 

BMI (kg/m2) 65 23.47 19.84 27.08 1.45 

Fat mass (%)  65 10.26 6.55 19.04 2.12 

Muscle mass (%)  65 46.90 40.67 53.06 2.51 

VO2peak (ml/kg/min) 65 53.80 39.45 62.50 5.27 

HRpeak (beat/min) 65 181.42 161 200 8.37 

RERpeak 65 1.07 0.96 1.20 0.44 

VEpeak (L/min) 65 142.09 99.00 197.00 21.42 

Speedpeak (km/h) 65 16.09 12.00 18.00 1.51 

Note: values are means ± SD. Abbreviations: BMI (body mass index), VO2peak (peak oxygen consumption), HRpeak (peak heart 

rate), RERpeak (peak respiratory exchange ratio), VEpeak (peak ventilation) and Speedpeak (peak speed).  
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        VO2peak was significantly higher in the HT group than in the PS group (58.57 ± 

2.33 vs. 53.34 ± ml/kg/min, p < 0.05) and the MA group (49.07 ± 4.67 ml/kg/min, p < 

0.05). Maximal speed reached during the test was significantly higher in HT than PS (p 

< .001) and MA groups (p < .001)  (Table 19). Significant differences in peak heart rate 

(HRpeak), peak RER (RERpeak) and VE were not found.  

 

Table 19. Anthropometrics and cardiorespiratory characteristics of the three study groups. 

Variables HT (n=22) MA (n=20) PS (n=23) F p-value 

Anthropometric 

Age (years) *; **; *** 33 ± 5 37 ± 5 25 ± 4 41.484 < .001 

Height (cm) 176 ± 6.7 176 ± 7.8 181 ± 5.7 3.828 .027 

Weight (kg) ** 70.68 ± 6.67 75.65 ± 7.41 75.94 ± 5.80 4.374 .017 

BMI (kg/m2) *; *** 22.86 ± 1.33 24.39 ± 1.48 23.25 ± 1.16 7.457 .001 

Fat mass (%) *; *** 9.19 ± 1.38 12.11 ± 2.32 9.66 ± 1.39 17.106 < .001 

Muscle mass (%) 47.75 ± 2.09 45.96 ± 3.33 46.90 ± 1.75 2.823 .067 

Cardiorespiratory 

VO2peak (L/min) *; **; *** 4.14 ± 0.33 3.7 ± 0.53 4.03 ± 0.33 6.899 .002 

VO2peak (ml/kg/min) *; **; *** 58.57 ± 2.33 49.07 ± 4.67 53.34 ± 3.67 35.901 < .001 

HR (beat/min)  181 ± 9 183 ± 8 180 ± 7 0.662 .520 

RER (VCO2/VO2) 1.07 ± 0.03 1.08 ± 0.05 1.06 ± 0.05 1.320 .275 

VE (L/m) 148 ± 16 135 ± 24 142 ± 23 1.897 .159 

Speedpeak *; **; *** 17.41 ± 0.80 14.45 ± 1.14 16.26 ± 0.81 54.552 < .001 

Note: values are means ± SD. Abbreviations: BMI (body mass index), VO2peak (peak oxygen consumption), HR (heart rate), 
RER (respiratory exchange ratio), VE (ventilation), Speedpeak (peak speed), HT (high trained endurance runners), MA 

(moderately active runners) and PS (professional soccer players). * Significant difference (p ≤ 0.05) between HT vs. MA.           

** Significant difference (p ≤ 0.05) between HF vs. PS. *** Significant difference (p ≤ 0.05) between MA vs PS. 

 

6.2.2 Skin Temperature Measurements 
 

        Results from the analysis of Tsk of all groups are shown in the Figure 13. These 

results provide the mean Tsk responses at rest (baseline) and during exercise of all 

groups. The mean value of the Tskbaseline was significantly lower in the MA group 

compared with SP group (33.86 ± 0.54 vs. 34.20 ± 0.42 ºC, p < 0.05) (Figure 13; Table 

20). Tskpeak was significantly higher in both HT and PS groups (36.68 ± 0.68 vs. 36.96 

± 0.42 ºC, p < 0.01) compared with the MA group (35.97 ± 0.66 ºC, p < 0.01) (Figure 

13; Table 20). There were not significant differences in the Tskfinal at the end of the 

recovery period between groups.  
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Figure 13. Relationships between average rates of Tsk and exercise speed in HT endurance runners, MA runners, and PS players. 

Note: values are means. Abbreviations: HT high trained endurance runners, MA moderately active healthy runners, PS professional 

soccer players. 

 

 
 

6.2.3 Substrates Oxidation Rates (FATox and CHOox) 
 

     During the treadmill test, results from the analysis of FATox and CHOox of all 

groups are shown in the Figure 14. These results provide the mean FATox and CHOox 
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Table 20. Metabolic and skin temperature data of the three study groups. 

Variables HT (n=22) MA (n=20) PS (n=23) F p -value 

Metabolic 

FAToxbaseline (g·min) *** 0.19 ± 0.05 0.14 ± 0.06 0.21 ± 0.09 4.915 .010 

FAToxpeak (g·min) ** 0.63 ± 0.13 0.51 ± 0.23 0.49 ± 1.17 3.935 .025 

FAToxfinal (g·min) during recovery  0.03 ± 0.03 0.01 ± 0.02 0.03 ± 0.05 2.144 .126 

CHOoxbaseline (g·min)  0.10 ± 0.09 0.17 ± 0.11 0.16 ± 0.16 1.515 .228 

CHOoxpeak (g·min)  6.07 ± 0.83 5.76 ± 1.20 5.72 ± 0.98 0.811 .449 

CHOoxfinal (g·min) during recovery 1 ± 0.33 1.10 ± 0.36 0.96 ± 0.33 0.417 .661 

[La¯]baseline (mmol∙L¯1) 1.12 ± 0.40 1.16 ± 0.39 1.13 ± 0.34 0.068 .934 

[La¯]peak (mmol∙L¯1) *** 7.19 ± 1.21 8.25 ± 1.90 7.08 ± 1.22 3.963 .024 

[La¯]final (mmol∙L¯1) during recovery *** 6.99 ± 1.36 7.77 ± 2.00 6.23 ± 1.59 4.554 .014 

Skin Temperature 

Tskbaseline (°C) *** 34.13 ± 0.34 33.86 ± 0.54 34.20 ± 0.42 3.428 .039 

Tskpeak (°C) *; *** 36.68 ± 0.68 35.97 ± 0.66 36.96 ± 0.79 10.786 < .001 

Tskfinal (°C) during recovery 36.51 ± 0.53 36.31 ± 0.59 36.32 ± 0.66 0.746 .478 

Note: values are means ± SD. Abbreviations: FAToxbaseline (baseline fat oxidation), FAToxpeak (maximal fat oxidation),  

FAToxfinal (final fat oxidation), CHOoxbaseline (baseline carbohydrate oxidation), CHOoxpeak (maximal carbohydrate oxidation),  

CHOoxfinal (final carbohydrate oxidation), [La¯]baseline (baseline blood lactate concentrations), [La¯]peak (maximal blood lactate 
concentrations), [La¯]final  (final blood lactate concentrations) Tskbaseline (baseline skin temperature), Tskpeak (maximal skin 

temperature), HT (high trained endurance runners), MA (moderately active runners) and PS (professional soccer players). * 

Significant difference (p ≤ 0.05) between HT vs. MA. ** Significant difference (p ≤ 0.05) between HF vs. PS. *** Significant 

difference (p ≤ 0.05) between MA vs PS. 
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rates at rest (baseline) and during exercise of all groups. The mean value of FAToxbaseline 

rates was significantly higher in the PS group compared with MA (0.21 ± 0.09 vs. 0.14 

± 0.06 ºC, p < 0.05) (Figure 14; Table 20). However, MFO oxidation or FAToxpeak was 

significantly higher in the HT group compared with the SP group (0.63 vs. 0.49 g·min
–1

, 

p < 0.05) but we did not find differences with the MA group (0.63 vs. 0.51 g·min
–1

). 

Fatmax oxidation occurred at an exercise intensity around 64 ± 3%; 60 ± 4.2%; and 59 ± 

5.1% VO2peak in HT, MA and PS groups, respectively. There were not significant 

differences in the FAToxfinal at the end of the recovery period between groups (Table 

20). There were no significant differences in CHOox rates between groups (Figure 15, 

Table 20).  

 

 

Figure 14. Relationships between average rates of FATox and exercise speed in HT endurance runners, MA runners, and PS 

players. Note: values are means. Abbreviations: HT high trained endurance runners, MA moderately active healthy runners, PS 

professional soccer players. 

 

 
Figure 15. Relationships between average rates of CHOox and exercise speed in HT endurance runners (HT), MA runners, and PS 

players. Note: values are means. Abbreviations: HT high trained endurance runners, MA moderately active healthy runners, PS 

professional soccer players 
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6.2.4 Blood Lactate Response  
 

         Figure 16 shows the blood lactate values during the incremental maximal exercise 

used. These results provide the mean [La¯] concentrations at rest (baseline) and during 

exercise of all groups. Resting lactate concentrations, [La¯]baseline were similar for all 

groups (Table 20). Blood lactate concentrations were significantly higher in the MA 

group at the end of the test [La¯]peak compared with the PS group (8.25±1.90 vs. 

7.08±1.22 mmoL/L
–1

, p < 0.05). At the end of the test, HT group and PS group had 

similar maximal [La¯] concentrations (7.19±1.21 vs. 7.08±1.22 mmoL/L
–1

), 

respectively (Table 20; Figure 16). At the end of recovery period, PS players showed 

significantly lower [La¯] concentrations compared with MA runners (6.23±1.59 vs. 

7.77±2 mmoL/L
–1

, p < 0.05).   

 

 

 

Figure 16. Relationships between average blood lactate levels and exercise speed in HT endurance runners, MA 

runners, and PS players. Note: values are means. Abbreviations: HT high trained endurance runners, MA moderately 

active healthy runners, PS professional soccer players. 

 

 

 

         Figure 17 shows the correlations between [La¯] concentrations and Tsk for all 

data points of the HT group (A); MA group (B) and PS group (C). Significant 

correlations were found between [La¯] and Tsk for each group (HT: r = 0.572, p < 0.01; 

MA: r = 0.589, p < 0.01; PS: r = 0.603, p < 0.01). 
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Figure 17. Relationships between blood lactate and skin temperature for all data points from A) high trained 

endurance runners, B) moderately active healthy runners, and C) professional soccer players. 
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          Figure 18 shows the correlations between FATox rates and Tsk for all data points 

of the HT group (A); MA group (B) and PS group (C). Significant correlations were 

found between FATox rates and Tsk for each group (HT: r = - 0.497, p < 0.01; MA: r = 

-0.430, p < 0.01; PS: r = -0.378, p < 0.01). 

 

 

 

 

 

Figure 18. Relationships between FATox rates and skin temperature for all data points from A) high trained 

endurance runners, B) moderately active healthy runners, and C) professional soccer players. 
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        Figure 19 shows the correlations between CHOox rates and Tsk for all data points 

points of the HT group (A); MA group (B) and PS group (C). Significant correlations 

were found between CHOox rates and Tsk for each group (HT: r = -0.739, p < 0.01; 

MA: r = 0.651, p < 0.01; PS: r = 0.726, p < 0.01). 

 

 

 

 

Figure 19. Relationships between CHOox and skin temperature for all data points from A) high trained endurance 

runners, B) moderately active healthy runners, and C) professional soccer players. 
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       Table 21 shows the averages of  FATox and CHOox rates, [La
–
] concentrations, 

Tsk, RPE values and VO2 at rest (baseline), during the different stages of test and 

during the recovery period for the HT group. In the HT group, the correlation between 

FATox and [La¯] was r = –0.605 (p < 0.05) (Table 21; Figure 20). 

 

 

Table 21. Average rates of FAT and CHO oxidation, blood lactate levels, skin temperature response, 

RPE and oxygen uptake in an incremental maximal exercise test in high trained endurance runners. 

       Speed     

       (km/h) 

FATox 

(g·min) 

CHOox 

(g·min) 

[La¯] 

(mmol∙L¯1) 

Tsk  

(ºC) 

RPE             

(6-20 Borg) 

VO2 

(ml/min/kg) 

Baseline 

0 0.19 ± 0.05 0.10 ± 0.09 1.1 ± 0.40 34.13 ± 0.34 6 ± 0 6.48±1.74 

  Test  

9 0.58 ± 0.12 0.92 ± 0.47 1.1 ± 0.27 34.39 ± 0.44 8 ± 1 27.37 ± 5.45 

10 0.58 ± 0.17 1.49 ± 0.54 1.1 ± 0.24 34.58 ± 0.49 9 ± 1 33.72 ± 4.18 

11 0.51 ± 0.17 2.02 ± 0.42 1.2 ± 0.33 34.90 ± 0.59 10 ± 1 38.87 ± 2.62 

12 0.41 ± 0.13 2.62 ± 0.42 1.3 ± 0.44 35.32 ± 0.76 11 ± 1 42.76 ± 2.67 

13 0.33 ± 0.13 3.09 ± 0.38 1.8 ± 0.65 35.73 ± 0.76 13 ± 1 45.83 ± 2.45 

14 0.24 ± 0.12 3.65 ± 0.53 2.6 ± 0.82 36.02 ± 0.66 14 ± 2 49.46 ± 2.53 

15 0.12 ± 0.13 4.26 ± 0.57 3.6 ± 0.97 36.23 ± 0.55 15 ± 2 52.53 ± 2.67 

16 0.04 ± 0.08 5.08 ± 0.70 5.0 ± 1.45 36.27 ± 0.55 17 ± 2 55.40 ± 2.36 

17 0.02 ± 0.04 5.81 ± 0.72 6.0 ± 1.67 36.20 ± 0.71 19 ± 1 57.95 ± 2.13 

18 0.00 ± 0.00 6.44 ± 0.83 7.0 ± 1.13 36.24 ± 0.66 20 ± 0 59.49 ± 2.18 

Recovery 0.03 ± 0.03 1.00 ± 0.33 6.9 ± 1.36 36.51 ± 0.53 9 ± 1.38 10.93 ± 2.17 

Note: values are means ± SD. Abbreviations: FATox (fat oxidation), CHOox (carbohydrate oxidation), [La¯] (blood lactate 

concentration), Tsk (skin temperature), RPE (rating of perceived exertion) VO2 (oxygen uptake) and HT (high trained endurance 
runners) * p < .050  

 

 

 

Relationships: 

Tsk and FATox: r = 0.187 (p = 0.405) 

Tsk and [La¯]: r = –0.61 (p = 0.788) 

Tsk and CHOox: r = –0.57 (p = 0.80) 

FATox and [La¯]: r = –0.605 (p < 0.05) 
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       Table 22 shows the averages of FATox and CHOox rates, [La
–
] concentrations, 

Tsk, RPE values and VO2 at rest (baseline), during the different stages of test and 

during the recovery period for the MA group. The relationships between FATox and 

[La¯] in the MA group was r = –0.547 (p < 0.05) (Table 22, Figure 20). 

 

 

 

 

 

Relationships: 

Tsk and FATox: r = 0.70 (p = 0.769) 

Tsk and [La¯]: r = –0.175 (p = 0.459) 

Tsk and CHOox: r = –0.108 (p = 0.651) 

FATox and [La¯]: r = –0.547 (p < 0.05) 

 

 

 

 

 

 

 

 

 

Table 22. Average rates of FAT and CHO oxidation, blood lactate levels, skin temperature response, 

RPE and oxygen uptake in an incremental maximal exercise test in moderately active runners. 

       Speed     

       (km/h) 

FATox 

(g·min) 

CHOox 

(g·min) 

[La¯] 

(mmol∙L¯1) 

Tsk  

(ºC) 

RPE            

(6-20 Borg) 

VO2 

(ml/min/kg) 

Baseline 

9 0.14 ± 0.06 0.17 ± 0.12 1.17 ± 0.39 33.86 ± 0.54 6 ± 0 6.04 ± 1.67 

Test  

9 0.51 ± 0.23 1.68 ± 0.56 1.33 ± 0.36 33.99 ± 0.54 8 ± 1 32.44 ± 3.27 

10 0.35 ± 0.24 2.49 ± 0.62 1.93 ± 0.82 34.23 ± 0.68 10 ± 2 36.32 ± 3.15 

11 0.25 ± 0.19 3.09 ± 0.69 2.71 ± 1.08 34.78 ± 0.63 12 ± 1 39.62 ± 3.15 

12 0.15 ± 0.18 3.63 ± 0.80 3.74 ± 1.82 35.33 ± 0.67 14 ± 2 42.49 ± 3.13 

13 0.05 ± 0.10 4.50 ± 0.94 4.66 ± 1.27 35.62 ± 0.59 16 ± 2 45.72 ± 3.00 

14 0.01 ± 0.03 5.31 ± 0.96 6.65 ± 1.89 35.60 ± 0.66 18 ± 2 48.26 ± 2.91 

15 0.00 ± 0.00 6.01 ± 1.11 7.65 ± 1.98 35.64 ± 0.50 20 ± 1 51.26 ± 1.86 

16 0.00 ± 0.00 5.93 ± 0.95 9.55 ± 0.49 35.77 ± 0.04 20 ± 0 53.56 ± 1.19 

Recovery  0.01 ± 0.02 1.05 ± 0.36 7.77 ± 2 36.31 ± 0.59 9 ± 2 9.28 ± 1.39 

Note: values are means ± SD. Abbreviations: FATox (fat oxidation), CHOox (carbohydrate oxidation), [La¯] (blood lactate 
concentration), Tsk (skin temperature), RPE (rating of perceived exertion) VO2 (oxygen uptake) and MA (moderately active 

runners). * p < .050  
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        Table 23 shows the averages of FATox and CHOox rates, [La
–
] concentrations, 

Tsk, RPE values and VO2 at rest (baseline), during the different stages of test and 

during the recovery period for the PS group. The relationships between FATox and 

[La¯] in the MA group was r = –0.547 (p < 0.05) (Table 22, Figure 20). The 

relationship between FATox and [La¯] in the SP group was r= –0.808 (p < 0.01) (Table 

23; Figure 20).  

 

 

Table 23. Average rates of fat and carbohydrate oxidation, blood lactate levels, skin temperature 

response, RPE and oxygen uptake in an incremental maximal exercise test in professional soccer 

players. 

Speed        

(km/h) 

FATox 

(g·min) 

CHOox 

(g·min) 

[La¯] 

(mmol∙L¯1) 

Tsk          

(ºC) 

RPE             

(6-20 Borg) 

VO2 

(ml/min/kg) 

Baseline 

9 0.21 ± 0.10 0.16 ± 0.16 1.1 ± 0.34 34.20 ± 0.42 6 ± 0 6.73 ± 1.82 

Test 

9 0.48 ± 0.19 1.71 ± 0.58 1.2 ± 0.34 34.49 ± 0.39 8 ± 1 31.30 ± 2.82 

10 0.40 ± 0.19 2.19 ± 0.55 1.5 ± 0.51 34.83 ± 0.45 10 ± 1 34.80 ± 2.27 

11 0.35 ± 0.19 2.67 ± 0.69 1.9 ± 0.69 35.26 ± 0.55 12 ± 2 38.36 ± 2.48 

12 0.29 ± 0.21 3.14 ± 0.74 2.4 ± 0.96 35.69 ± 0.53 13 ± 2 41.56 ± 2.22 

13 0.21 ± 0.20 3.64 ± 0.82 3.1 ± 1.15 35.96 ± 0.56 15 ± 2 44.38 ± 2.41 

14 0.13 ± 0.18 4.36 ± 1.00 4 ± 1.49 36.15 ± 0.64 16 ± 2 47.50 ± 2.68 

15 0.07 ± 0.13 4.96 ± 1.15 5.1 ± 1.78 36.24 ± 0.70 18 ± 2 49.97 ± 2.47 

16 0.05 ± 0.12 5.30 ± 1.03 5.7 ± 1.89 36.24 ± 0.62 19 ± 1 53.07 ± 3.38 

17 0.02 ± 0.07 5.55 ± 0.96 6.6 ± 1.51 36.29 ± 0.73 20 ± 0 54.41 ± 3.80 

Recovery 0.03 ± 0.05 0.96 ± 0.33 6.2 ± 1.59 36.32 ± 0.66 9 ± 1 10.36 ± 1.72 

Values are means ± SD. Abbreviations: FATox (fat oxidation), CHOox (carbohydrate oxidation), [La¯] (blood lactate 

concentration), Tsk (skin temperature), RPE (rating of perceived exertion) VO2 (oxygen uptake) and PS (professional soccer 

players).  * p < .050  

 

Relationships: 

Tsk and FATox: r = 0.67 (p = 0.762) 

Tsk and [La¯]: r = –0.090 (p = 0.683) 

Tsk and CHOox: r = 0.034 (p = 0.878) 

FATox and [La¯]: r = –0.808 (p < 0.01) 

 

 

      Inverse relationships were observed among the average rates of FATox and the 

average [La¯] concentrations across the three groups studied. In the HT group, the 

correlation between FATox and [La¯] was r = –0.605 (p < 0.05) (Table 20; Figure 20). 

While in the relationships between the averages FATox and average CHOox was only 
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significant in the SP group (r = –0.776 (p < 0.01). We did not find significant 

correlations between the average Tsk vs. average FATox or average Tsk vs. CHOox 

rates or average Tsk vs. [La
–
] concentrations. 

 
 

 

 

 

 

Figure 20. Relationships between the average FATox rates and blood lactate concentrations as a function of exercise 

speed in A) high trained endurance runners, B) moderately active healthy runners, and C) professional soccer players
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7. DISCUSSION 
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7.1  First Study 
 

      In this study we hypothesized that higher aerobic capacity could be associated with 

an enhanced Tsk response in male endurance runners. This hypothesis was tested by 

comparing two groups of male endurance runners with different levels of aerobic 

capacity during a maximal exercise test. We observed that the HF group achieved 

higher Tsk values compared with the MF group, however, the Tskpeak achieved by the 

groups were not statistically different. As shown in Figure 12, the Tsk dynamic in both 

groups followed a similar pattern. This may be due to the fact that all subjects were in 

good physical condition, based on their VO2peak (Degens et al., 2019). It is unclear if the 

observed larger increases in Tsk for the HF group could be due to the fact that subjects 

with higher aerobic fitness levels may have a better skin thermoregulatory response 

during exercise. 

  

        The Tsk dynamic during the incremental test can be divided into three parts: (i) 

initial rise to Tskpeak, at around 80% of workload, with an increase in Tsk in the HF and 

MF groups of 1.96 ºC and 1.99 ºC, respectively; (ii) a plateau of Tsk at 80 to 90% of 

peak workload in both groups and, (iii) a decrease in Tsk until the end of exercise. 

Accordingly, this pattern of increases in Tsk during exercise is consistent with previous 

observations in individuals with high fitness levels (Boegli et al., 2003). Our results 

show that as exercise intensity and VO2 increase during the test, Tsk increases until 80-

90% of peak workload is reached. It is likely that this continuous increase in Tsk is 

associated with active cutaneous vasodilation, resulting from increased absolute SkBF 

as exercise intensity increases (Etain et al., 2015). At 80 to 90% of peak workload 

(Figure 12), we observed a plateau of Tsk in both groups (Wong & Hollowed, 2016). 

From this point, both groups showed a critical and sudden decrease in Tsk, which is 

likely associated with decreased SkBF and cutaneous vasodilation. Based on previous 

studies (Takada et al., 2013), a Tsk plateau at high exercise intensities shows a 

withdrawal of active vasodilation, which reduces the ability of the athlete to dissipate 

heat, causing cutaneous vasoconstriction, which is associated with increased adrenergic 

activity (Okazaki et al., 2002). Our results also seem to confirm the results found by 

Zontak et al. (1998), in which the rate of decrement of Tsk was dependent on the 

intensity of the workload. 
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          During the initial period of the recovery phase, Tsk values increased quickly in 

both groups due to the need to dissipate heat after exercise. In this phase, our objective 

was to analyze and compare the behavior and increases in Tsk in both groups. Another 

study also found similar patterns, and demonstrated that these increases in Tsk reflect 

the convective transfer of heat from the core to the periphery (Charkoudian, 2003).  

  

         Skin temperature is influenced by fitness level, as well as by other variables such 

as body composition, fat and muscle mass %, age, and other cardiovascular variables, 

like VE and HR. Aerobic fitness level, along with age, appear to be the most important 

limiting factors in the cutaneous vasodilation response to exercise (Kenney et al., 1997). 

Therefore, physical inactivity and aging contribute to reducing VO2peak, which decreases 

heat dissipation capacity and, consequently, BT control during strenuous exercise 

(Reilly et al., 2006; Rowland, 2008). The MF subjects had a higher BMI and fat mass 

%, and lower muscle mass and VO2peak (Table 14). These variables and age itself 

(Larose et al., 2013) have all been found to be independently and negatively associated 

with Tskpeak, which is related to maximal cutaneous vasodilation (Boegli et al., 2003). 

However, future studies should evaluate VO2peak and age as potential considerations in 

thermoregulation. 

 

      The result of the multiple linear regression shows that Speedpeak has a significant 

effect on the Tskpeak of participants (Table 17). Nevertheless, these results should be 

interpreted with caution as only 15 % of the variance in Tskpeak is explained by the 

model. 

  

       The results of our study are similar to the results of Merla et al. (2005), in which 

changes in Tsk during exercise were associated with highly trained individuals, due to a 

major activation of the sympathetic active vasodilator system and better thermal 

adaptations (Pergola et al., 1996). These findings may be linked to direct and substantial 

vasodilation of blood vessels (Cuddy et al., 2013), which contributes importantly to 

SkBF, helping to reach high Tsk values. Stapleton et al. (2014) also found that higher 

levels of aerobic fitness were associated with an increased rate of Tsk for a given 

increase in mean body temperature and exercise intensity. We suggest that future 
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studies examine the relationship between the thermoregulatory response and the 

variability of HR and its contribution to the sympathetic system. 

  

      It is also unclear if higher aerobic fitness levels in the HF group may be associated 

with an enhanced ability to maintain higher skin thermoregulatory response (Priego 

Quesada et al., 2015) resulting in increased heat dissipation (Boegli et al., 2003), 

compared with the MF group during an incremental maximal exercise test. 

  

     During the test, changes in Tsk are accomplished primarily by blood circulation 

(Zontak et al., 1998), which implies that Tsk can be used as an index to predict thermal 

changes during exercise (H. Liu et al., 2014; Takada et al., 2013). While our results 

seem to indicate that Tsk response is a good indicator of training status and aerobic 

fitness. In future studies, it would be of interest to see if the correlation between aerobic 

fitness and Tsk could be a powerful predictor of aerobic performance. 

  

     We conclude that despite between-group differences in fitness level, our results did 

not show significant differences in Tsk increases between groups. However, we provide 

evidence that a moderate to high fitness level may enhance skin thermoregulation 

response, at least in the torso where the Tsk sensor was located. The influence of 

aerobic capacity shows a close relationship between Tsk and cardiovascular responses 

to relative exercise intensity. 
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7.2  Second Study 
 

       Metabolic flexibility is a term proposed well over a decade ago by Kelley and 

colleagues (Storlien et al., 2004). It reflects the ability to oxidize FATs and CHOs, and 

is associated with a good level of aerobic performance (San-Millán & Brooks, 2017). A 

number of studies have investigated Tsk and metabolic response to exercise (José 

González-Alonso et al., 1999b). In this study we hypothesized that higher metabolic 

flexibility could be associated with an enhanced Tsk response across populations with 

different metabolic characteristics. This hypothesis was tested by comparing three 

groups of individuals (HT competitive endurance runners, MA runners and PS players) 

during an incremental maximal exercise test.  

  

       We observed that the HT and PS groups achieve higher Tsk values compared with 

the MA group, in which the Tskpeak achieved for these groups were statistically different 

compared with the MA group (Table 19; Figure 15). This may be due to the fact that 

both HT and PS groups had better physical conditioning, based on their VO2peak (Degens 

et al., 2019; Ho et al., 1997b; Jemni et al., 2018; Selkirk & McLellan, 2001) compared 

with the MA group (Table 19). Regardless, although there were significant differences 

in VO2peak (ml/min/kg) between the HT runners and the PS players (Table 19), we did 

not find significant differences in the Tskpeak between the HT and PS groups. 

Furthermore, it is unclear if the observed larger increases in Tsk for the HT and PS 

groups could be due to the fact that subjects with higher aerobic fitness levels may have 

a better skin thermoregulatory response during exercise. In the course of the exercise 

test, the HT competitive endurance runners and PS players had a higher Tsk at any 

given level of workload, when compared with healthy MA subjects (Table 19). Cross-

sectional data analysis have shown that endurance exercise trained individuals have 

greater Tsk rates, which is associated with an increased heat dissipation capacity, than 

sedentary individuals (Boegli et al., 2003; Ho et al., 1997a; Tankersley et al., 1991; 

Pierzga et al., 1999). As shown in Table 19, the relationship of Tskpeak and the training 

status (VO2peak) of individuals are positively associated during incremental exercise.  

  

      Although, soccer players have to perform at high intensities at many points 

throughout a game, low intensity activities are performed in more than 70% of the 
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game, and are primarily aerobic in nature (Jemni et al., 2018). Therefore, aerobic 

endurance plays a vital role in overall soccer aerobic performance (Bangsbo et al., 2007; 

N. Gibson, J. Currie, 2013). Taking these observations into account, the average aerobic 

workload is influenced by metabolic flexibility and the effectiveness of the skin 

thermoregulatory capacity in PS, and is also associated with aerobic capacity. As shown 

in Figure 15, the Tsk dynamic in both the HT and PS groups followed a similar pattern. 

Though PS had higher Tsk values, this might be due to the fact that PS subjects were 

younger, which could be associated with enhanced Tsk response during exercise (Ho et 

al., 1997b; Mcdonald, 2009). We recruited endurance runners, healthy active 

individuals and soccer players in an age range of 18-45 years, so perhaps the soccer 

players’ age may have influenced the Tsk response. Therefore, it is unclear if higher 

aerobic fitness levels in the HT group may be associated with an enhanced ability to 

maintain a higher skin thermoregulatory response (Priego Quesada et al., 2015), 

resulting in increased heat dissipation (Boegli et al., 2003) compared to the PS group 

during an incremental maximal exercise test. Under acute stress metabolic induced 

thermogenesis during the test, the HT and PS groups have the ability to maintain higher 

increases in Tsk during a longer time compared with the MA group, which showed a 

drop or lower increases in Tsk. Sympathetically-mediated vasoconstriction causes a 

drop in Tsk (Herborn et al., 2015), and this influx of peripheral blood and adrenergic 

activation simultaneously increases [La
-
].    

  

      Our results showed slower increases of Tsk in the MA group (Figure 13, Table 19) 

during the test at the same absolute submaximal exercise intensities of the HT and MA 

groups, which may likely be associated with decreased SkBF, cutaneous vasodilation 

and the formation of sweating which dissipates body heat. Skin temperature is 

influenced by VO2peak, as well as by other variables such as body composition, age and 

metabolic variables, FATox and CHOox rates and blood lactate concentrations. The 

MA subjects had a higher BM, fat mass %  and VO2peak compared with the HT and PS 

groups. Our study also shows the presence of significant differences in the relationships 

between Tsk with blood lactate accumulation (Figure 17) and FATox (Figure 18) and 

CHOox (Figure 19) rates in the three groups studied during the graded incremental 

exercise.  
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      Our data show inverse relationships between FATox and Tsk across the range of 

exercise intensities studied in all three groups (Fig. 18). Our data also show a 

significantly higher capacity to oxidize FAT in the HT group, followed by the PS group 

and, finally, by the MA group who had a poor FATox capacity (Fig. 16). Accordingly, 

our data are in concordance with the scientific literature showing that endurance 

training increases the capacity to oxidize FFAs (Bergman et al., 1999; Phillips et al., 

1996; Turcotte, Richte et al., 1992). Our data are in concordance with the scientific 

literature (Takada et al., 2013) that shows that an increase of Tsk, associated with 

increased active vasodilation, may increase the ability to oxidize FFA during exercise 

(Johnson et al., 2014), and allow heat to dissipate. The PS and MA groups had less 

ability to oxidize fat, causing cutaneous vasoconstriction, which is associated with 

increased adrenergic activity (Okazaki et al., 2002). Our results also seem to confirm 

the results found by Zontak et al. (1998), in which the rate of increases of Tsk is 

dependent on cardiorespiratory fitness (Ho et al., 1997b; Gibson et al., 2013; Selkirk & 

McLellan, 2001) and intensity of the workload (Herborn et al., 2015).        

  

       In our study, higher FATox levels and lower [La
-
] at all given intensities suggest a 

highly developed skin thermoregulatory response in the HT and SP groups compared 

with the MA group. On the other hand, significantly lower FATox rates and 

significantly higher levels of   [La
-
] are associated with lower Tsk values at low exercise 

speed in the MA group. Therefore, both FATox rates and [La-] seem to represent a valid 

indirect method to test for thermoregulatory capacity and metabolic flexibility during a 

long bout of exercise in individuals ranging from athletes to moderately active 

individuals and soccer players. We observed important differences in the ‘crossover’ 

(CO) (Brooks, 1997) between all three groups (Figure 20). In the HT group, CO occurs 

at high absolute exercise intensities, at approximately 85% of maximal VO2peak, 

denoting an exceptional capacity for FATox. In the MA group, CO occurs at 

approximately 78% of maximal VO2peak, denoting a reduced capacity to oxidize FAT 

and an earlier reliance on CHO during the exercise test. For the SP group, CO was at 

approximately 82% of maximal VO2peak, showing a good capacity to oxidize FAT. In 

conclusion, the results obtained are in concordance with San-Millán & Brooks (2017), 

who proposed this method of viewing FATox and [La-] during exercise (Figure 20) as 
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an alternative approach to assessing metabolic flexibility (Storlien et al., 2004) in 

clinical settings and research.   

 

       In 1962 and 1964, Issekutz et al., noted the effect of lactatemia on diminishing 

circulating FFA in individuals during hard exercise (Issekutz et al. 1962; Rodahl et al 

al., 1964). Interestingly, we can observe this phenomenon in Figure 20, which may be 

associated with a plateau and even sudden decrease in Tsk during hard exercise at the 

final stages of the test, and is also likely associated with decreased SkBF and cutaneous 

vasodilation. Based on previous studies (Takada et al., 2013), a Tsk plateau at high 

exercise intensities shows a withdrawal of active vasodilation, which reduces the ability 

of the athlete to dissipate heat, causing cutaneous vasoconstriction; lactate production is 

also greater, which is associated with increased adrenergic activity (Okazaki et al., 

2002), and lactate inhibits lipolysis in fat cells through activation of a G-protein-coupled 

receptor (GPR81) (San-Millán & Brooks, 2017). Our results also seem to confirm the 

results found by Zontak et al. (1998), in which the rate of decrement of Tsk was 

dependent on the intensity of the workload. Not surprisingly, our data also show 

consistent and strong inverse correlations between [La-] and FATox in all three groups, 

as expected, as both are mitochondrial substrates and lactate inhibits lipolysis, as 

previously illustrated by other studies (San-Millán & Brooks, 2017). 

  

      As shown in Figure 20, lactatemia significantly affects and downregulates fat 

metabolism. Our study shows the presence of an overarching major effect of lactatemia 

on limiting FATox rates in individuals of widely ranging exercise capacities, as in the 

SP and MA groups. These findings may be explained by reduced FATox rates and 

increased La (lactatemia) at the same absolute submaximal exercise intensities, and 

decreased oxidative capacity with lower aerobic power compared with the HT 

endurance runners. Therefore, our results also seem to confirm the results found by 

(San-Millán & Brooks, 2017), in which blood lactate accumulation is negatively 

correlated with FATox and positively correlated with CHOox during exercise across 

populations with different metabolic characteristics.         
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     Our correlations between FATox rates and [La¯] implicate differences in Tsk across 

the three categories of fitness level, HT > SP > MA. As previously shown, increases in 

FATox and lactate clearance capacity have been observed after endurance training (B. 

C. Bergman et al., 1999; Bryan C. Bergman et al., 1999; Messonnier et al., 2013; 

Phillips et al., 1996; Turcotte et al., 1992). The slope of blood lactate increases in 

response to exercise speed in the HT group, which was low compared with PS group 

who, in turn, showed lower [La¯] accumulation curve than MA subjects (Figure 16). As 

previously shown, increases in FATox and lactate clearance capacity in HT endurance 

runners have been observed in recent studies (Messonnier et al., 2013; San-Millán & 

Brooks, 2017). Based on other studies, we know that while [La¯] is lower in trained, 

compared with untrained, individuals at a given exercise PO (Bergman et al., 1999; 

Messonnier et al., 2013; San-Millán & Brooks, 2017), and we also know that during 

high-intensity exercise, lactate production, and hence [La¯] appearance rate, is greater 

in trained than in untrained individuals, probably as a simple mass effect of higher EE. 

However, [La¯] is lower due to the training adaptations in the HT and SP groups that 

increase [La¯] clearance capacity. 

  

    An example of remarkable lactate clearance capacity can be observed in Fig. 16, 

where the [La-] response in the three groups can be observed at common exercise 

speeds. Also remarkable is that the [La-] levels accumulated in the HT group at 

approximately at 13km/h are close to the [La-] observed at 10 km/h and 11 km/h in the 

SP group and MA group, respectively (Bergman et al., 1999; Horton et al., 1998; 

Messonnier et al., 2013; San-Millán & Brooks, 2017; Swart & Jennings, 2004). For 

both the SP and MA groups, the first increase in [La-] over baseline levels or 1
st
-2

nd
 

stages, at 9km/h and 10 km/h respectively, coincides with the decrease in FATox 

(Figure 20 B, C), which is possibly due to the effects of lactate on lipolysis, as described 

above. However, the metabolic task for the HT group is low from the start of exercise to 

the 13 km/h stage, at which point there are increases in [La-] concentration and a 

reduction in FATox levels (Figure 20 A) at the same absolute submaximal exercise 

intensities. In Figure 20, we can also observe that regardless of the level of aerobic 

capacity, all groups show that FATox is suppressed at the [La
-
] level of approximately 
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4-6 mmol
.
L

–1
. This is also possibly due to the suppression of lipolysis at high [La

-
], and 

also indicates a ‘threshold-like’ phenomenon in all subject groups.  

  

      We conclude that despite between group differences in fitness level, age and 

oxidative capacity, our results show significant differences in Tsk increases, FATox 

rates and  [La
-
] concentrations between all groups. However, we provide evidence that a 

moderate to high fitness level may enhance the skin thermoregulation response, at least 

in the torso where the Tsk sensor was located. The influence aerobic capacity has shows 

a close relationship between Tsk and metabolic flexibility relative to exercise intensity. 

These differences should be taken into account in the training and nutritional strategies 

for enhancing professional soccer and endurance runner performance. 

 

7.3  Both Studies 
 

        Based both on previous studies and on our findings, it is clear that Tsk response 

plays an important role in the thermoregulatory process during maximal exercise 

(Cuddy et al., 2013; Pierzga et al., 2003; Schlader, Simmons, Stannard, & Mündel, 

2011a; Thomas et al., 1999). We examined Tsk response using a maximal test between 

two types of experimental protocols with different stages, however we didn’t examine 

the effects of a submaximal or graded experimental protocol on Tsk response, and the 

relationship with other physiological variables in other populations. We hypothesized 

that the use of longer stages may be helpful to elicit a proper ‘steady state’ status, and 

are therefore quite useful for gathering accurate thermoregulatory and metabolic data. It 

could be possible that the duration of the test, according to our protocol, may not be 

enough to register adaptations in other populations with less training. We provide 

further insight into the methodological considerations for future studies in this area. 

  

      Despite the fact that Tsk is an important measurement and contributor to 

thermoregulation and aerobic performance, it should be taken into account that Tsk is 

mainly a consequence of other important factors such as Tc, SkBF and the 

environmental temperature (Xu et al., 2013). For future studies, it would be of interest 
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to analyze if this correlation between aerobic fitness and Tsk may be strongly affected 

by these factors and other parameters. 

 

      Regarding Tc, it was not measured during the incremental test. Core temperature 

could show that differences in body temperature are due to differences in fitness level, 

as reported by the literature (Okazaki et al., 2002; Stapleton et al., 2014; Wong & 

Hollowed, 2016). The relationship of this thermal behavior with Tc and metabolic 

responses could help to better determine thermoregulatory response during exercise. 

Hence, it would be of interest to study the relationship between skin thermal behavior 

related to Tc and other metabolic responses during incremental exercise with longer 

stages in different populations.  
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8.1  General Conclusions 
 

The aims of this project was divided into two studies:  

 

1. A first study analyzed and compared the correlation between Tsk and 

cardiorespiratory variables during an incremental maximal stress test in high 

fit (HF) and moderately (MF) male endurance runners. 

 

2. A second study analyzed and compared the correlation between Tsk and 

metabolic flexibility by measuring [La
-
] along with FATox and CHOox rates 

during an incremental maximal stress test in highly trained (HT) competitive 

endurance runners and moderately active (MA) male runners, and 

professional soccer (PS) players.   

 

Through these studies, we propose: 

  

1. To analyze the dynamic of Tsk response in different populations during an 

incremental exercise test to VO2peak on an ergometer treadmill. 

These findings indicated that VO2peak was positively associated with the 

increased Tsk during incremental exercise in male endurance runners.  

 

2. To analyze the recovery period of five minutes after the same exercise tests, 

and the changes that could appear in both studies.  

In this phase, our objective was to analyze and compare the behavior and 

increases in Tsk in different groups. These results in both studies showed 

higher and faster increases in Tsk in trained subjects after the exercise. 

Higher VO2peak, taking into account the age of the PS group, which is 

associated with an increased skin thermoregulatory capacity. These increases 

reflect a major convective transfer of heat from the core to the periphery, as 

heat dissipation. 
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3. To determine the skin thermoregulatory response related to thermal changes 

during exercise. Hence, Tsk measurements could offer indirect 

hemodynamic information of vasodilation response during exercise-related 

thermal adjustment.  

In the first study, Tskpeak correlated with VO2peak, Speedpeak, HR and VE, 

which showed the association between hemodynamic changes and 

thermoregulatory responses. The dissipation of heat from the deeper parts to 

the skin is accomplished primarily by blood circulation, so we can use the 

Tsk as index to predict thermal changes during exercise.   

 

4. To determine if the validated exercise protocol of Achten (2003) can provide 

a measurement of maximal Fat oxidation (MFO) rate and assess the 

correlation with thermoregulatory response. 

 

We used two types of maximal test, one with stages of 2 minutes and other 

with 3 minute stages, to determine over a wide range of exercise intensities, 

with the objective to found small intraindividual variation. Based on other 

studies, the use of longer stages may be helpful to elicit a proper ‘steady 

state’ status and the metabolic flexibility and thermoregulatory response. We 

did not analyze this. 

 

5. To determine the correlation of VO2peak,, [La
-
] concentrations, FATox and 

CHOox rates, skin thermoregulatory response, RPE values, Fat % and Mass 

muscle % in HT endurance runners, MA runners and professional soccer 

players.  

These results showed that the HT group exhibited significantly higher Tsk 

values, VO2peak, FATox rates and lower [La
-
] concentrations, RPE values at 

the same absolute submaximal exercise intensities, BMI, fat mass% 

compared with MA group. Compared with PS group, who showed 

significant differences in age, also showed significant differences with 

higher Tsk values, FATox rates and speedpeak than MA group during the test.  
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8.2  Hypothesis 
 

First study 

 

1. We hypothesized that higher aerobic capacity could be associated with an 

enhanced response of Tsk in male endurance runners.  

The main findings of the present study indicate that VO2peak was positively 

associated with increased Tsk during incremental exercise in male endurance 

runners. 

  

2. We hypothesized that HF endurance runners have the ability to maintain 

higher Tsk response than MF runners during maximal exercise. 

Results revealed that the MF group exhibited lower Tsk at baseline, and at 

60% and 70% of peak workload compared with HF group. However, our 

results do not show that a higher level of aerobic fitness in male HF 

contributes to achieve higher Tsk, or a greater thermoregulatory capacity to 

dissipate heat during exercise.  

 

3. We hypothesized that Tsk measurement can provide indirect hemodynamic 

information of vasodilation response during exercise-related thermal 

adjustment and can be used as a predictable index of vasodilatation response. 

These results showed that Tskpeak correlated with VO2peak, Speedpeak, HR and 

VE in both groups, resulting that Tsk dynamic may reflect and may serve as 

a tool for assessing the integrity of these thermoregulatory mechanisms as 

part of the circulatory system, which interacts with the thermal and 

hemodynamic responses. These findings also may reflect a better 

understanding of the sympathetic vasodilator system and thermal 

adaptations. 

 

4. We hypothesized that Tsk can be used as an index to predict aerobic fitness.  

Our results did not show that a higher level of aerobic fitness in male 

endurance runners contributes to achieving higher Tsk during exercise, but it 
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reflects the relationships between other cardiorespiratory and metabolic 

responses during exercise in different groups. 

 

Second study 
 

1. We hypothesized that higher metabolic flexibility could be associated with 

an enhanced response of Tsk in well-trained endurance and active runners 

and professional soccer players. 

We observed that the HT group and PS groups achieved higher Tsk values 

compared with the MA group, in which the Tskpeak achieved for both of these 

groups were statistically different compared with the MA group. This may 

be due to the fact that both HT and PS groups had better physical 

conditioning. Results showed a poor metabolic flexibility in MA group, 

associated a decreased to oxidize fat and higher lactate concentrations during 

the test. Our study also showed the presence of significant differences in the 

relationships between Tsk with blood lactate accumulation and FATox and 

CHOox rates in the three groups studied during the graded incremental 

exercise.  

 

2. We hypothesized that HT endurance runners have the ability to enable a 

higher Tsk rates than MA runners and SP players during absolute 

submaximal exercise intensities.  

We observed that the HT group and PS groups both achieved statistically 

higher Tsk values compared with the MA group.  

 

3. We hypothesized that HT endurance runners have higher metabolic 

flexibility, therefore a higher oxidative and lactate clearance capacities.  

These findings showed a decreased FATox rates and increased La 

(lactatemia) at the same absolute submaximal exercise intensities in MA 

compared with HT and PS groups. This decreased oxidative capacity with 

lower aerobic power compared with the HT endurance runners, seem to 

confirm the results of other studies, in which blood lactate accumulation is 

negatively correlated with FATox and positively correlated with CHOox  
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during exercise across populations with different metabolic characteristics.  Therefore, 

poor lactate clearance capacity due to low metabolic flexibility affects skin 

thermoregulation, which could result in thermoregulatory dysregulation, resulting in a 

decreased ability to dissipate heat during exercise.        

 

8.3  Limitations  
 

        This study has some limitations, such as not using longer stages during the test to 

determine changes in Tsk and metabolic responses. It is important to acknowledge the 

limitations of this study. Firstly, between-group difference on Tskpeak, which was 

~0.3ºC, should be interpreted with caution as the accuracy of the device assessing the 

Tsk is ± 0.2 °C. Nevertheless, all participants were assessed by using the same device 

and methodology, so all assessments may present the same measurement error. 

Furthermore, in order to reduce the influence of sweat evaporation, the Tsk sensor was 

placed in a location where evaporative heat loss was minimal (Xu et al., 2013). In this 

study, the sensor on the torso was covered by elastic adhesive cloth. The low 

permeability of the cloth reduces evaporative heat loss in the covered area and, thus, 

likely reduces the error and increases the accuracy of the Tsk measurement. 

 

      Secondly, this is a cross-sectional study, and did not study the effects of specific 

endurance training programs, so differences between groups may be due to differing 

physiological capacities to control the skin thermoregulatory response during exercise. 

Thirdly, Tc was not measured during the incremental test. Core temperature could show 

that differences in body temperature are due to differences in fitness level, as reported 

by the literature (Etain et al., 2015; Stapleton et al., 2014; Wong & Hollowed, 2016). 

The relationship of thermal behavior with Tc and other metabolic responses could help 

to better determine thermoregulatory response during exercise. 

  

     Hence, it would be of interest to study the relationship between skin thermal 

behavior related to Tc and other metabolic responses during graded and progressive 

exercise in different populations. Finally, sweat on the skin surface at the end of 

exercise could have influenced Tsk data and should also be considered a limitation of 
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the present study. Ammer (2009) suggested that a film of water on the skin may work as 

a filter and, therefore, could lead to an underestimation of thermal data.  

  

   Moreover, it could be possible that the duration of the test, according to our protocol, 

may not be sufficient for registering adaptations in other populations, such as untrained 

individuals.  

 

    The participants in this study had a range of aerobic fitness levels and participate in 

different endurance sports activities, such as distance running, mountain running, 

triathlon and soccer. This is a strength when it comes to ensuring that the results of the 

present study not only apply to runners with high aerobic fitness, but also to those 

exercising at a high recreational level. Future studies should study the skin 

thermoregulatory response in female endurance runners, and compare the results with 

those of their male counterparts. Also, it would be interesting to compare and analyze 

the difference between peripheral and core temperatures of male and female runners. 

Our study does not discriminate between subjects in each group, especially between the 

HT and MA groups. 

  

     Further limitations of our study reside in the indirect nature of the assessment of 

metabolic flexibility and skin thermoregulatory response. Although we obtained robust 

data from indirect parameters of metabolic flexibility and thermoregulatory response, 

the ideal would be to directly study, through Tc measurements and other methods such 

as muscle biopsies or tracers, the ability to oxidize both FFA and [La
-
].  

   

    Another limitation of our study that should be highlighted is that this is a cross-

sectional study and did not study the effects of specific endurance training programs, 

where the differences between both groups may be due to different physiological 

capacity to control the skin thermoregulatory response during exercise. Regarding to Tc 

was not measured during the incremental test. Core temperature could show that 

differences in body temperature are due to differences in fitness level, as reported by the 

literature (Etain et al., 2015; Stapleton et al., 2014; Wong & Hollowed, 2016). The 

relationship of this thermal behavior with the Tc and other metabolic responses could 
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help to better determine thermoregulatory response during exercise. Hence, it would be 

of interest to study the relationship of skin thermal behavior related to Tc and other 

metabolic responses during graded and progressive exercise in different populations. 

Finally, sweat on the skin surface at the end of exercise could have influenced Tsk data 

and should also be considered a limitation of the present study. Ammer (2009) 

suggested that a film of water on the skin may work as a filter and, therefore, could lead 

to an underestimation of thermal data.  

8.4  Future Directions for Research  
 

      In future studies, it would be of interest to see if the correlation between aerobic 

fitness and Tsk is a powerful predictor of aerobic performance. However, future studies 

should also evaluate the influence of VO2peak and age on thermoregulation. 

  

     The relationship between Tsk response and Tc and other metabolic responses could 

help to better determine thermoregulatory response during exercise. Hence, it would be 

of interest to study the relationship of skin thermal behavior related to Tc and other 

metabolic responses during graded and progressive exercise in different populations. 

Also, it would be of interest to evaluate the correlation of Tc and metabolic flexibility, 

which may be powerful predictors of aerobic performance. 

  

       Future studies are needed to determine the accuracy of analyzing Tsk response in 

different areas of the body during varying intensities of exercise. It may help to obtain 

more accurate values when skin thermoregulatory response and other physiological 

responses are evaluated.  

 

       Future studies should study the skin thermoregulatory response in female endurance 

runners, and compare the results with those of their male counterparts. Also, it would be 

interesting to compare and analyze the difference between peripheral and core 

temperature of male and female runners. 

 

      For future studies, it would be of interest to evaluate the correlation of Tc and 

metabolic flexibility, which may be powerful predictors of aerobic performance. 
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10.1  Appendix I- Test Protocols 
 

Protocolo de pruebas 

DESCRIPCIÓN DE LA REVISIÓN MEDICO DEPORTIVA AVANZADA  

Se recomienda leer atentamente todas las siguientes indicaciones para realizar un RMD 

totalmente completo. 

Documentos a aportar el día de la prueba(opcional): análisis de sangre -orina recientes, 

informes médicos de cualquier patología o proceso que está siendo seguido por un 

especialista, informes de pruebas de esfuerzo previas. 

El RMD cuenta con diferentes partes:   

- Anamnesis completa: Se trata de hacer un historial médico – deportivo 

(antecedentes médicos, deportivos, historia clínica-deportiva, etc) 

- Exploración funcional del aparato locomotor: exploración motriz para 

observar posibles dismetrías y problemas osteoarticulares para prevenir riesgos 

de lesiones y optimizar el rendimiento. 

- Análisis antropométrico: Conjunto de medidas encaminadas a la valoración de 

porcentajes de grasa, muscular, óseo, además de observar posibles dismetrías. 

- Espirometría: Valoración de la capacidad pulmonar en reposo 

Test  Ergoespirométrico o Prueba de Esfuerzo: 

Consiste en la realización de una prueba progresiva en máxima en tapiz rodante (cinta 

ergométrica). 

- Cinta ergométrica: El protocolo se adaptará dependiendo de la disciplina deportiva y 

capacidad funcional y objetivo del estudio. 

 

Es importante tener en cuenta que la mayoría de los investigadores han observado que 

el VO2 Max es aproximadamente un 10 % más elevado cuando se evalúa en un tapiz 

rodante en comparación con la bicicleta ergométrica (American Collage Of. Sports 

Medicine, 2000).  

 

La prueba se realiza con monitorización cardioventilatoria continua. Las variables 

ventilatorias y metabólicas recogidas son las siguientes:  
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- Consumo de oxígeno, respuesta metabólica (uso de los diferentes sustratos 

energéticos), Volumen ventilatorio, volumen corriente, consumo de oxígeno, Pulso de 

oxígeno, producción de dióxido de carbono, cociente respiratorio, equivalentes 

respiratorios para el O2 y el CO2… 

- Monitorización electrecardiográfica y TA (al inicio, calentamiento y final de la 

prueba de esfuerzo). 

- Otros parámetros como: Temperatura corporal, saturación y lactacto (muestra 

sanguínea que se obtiene del lóbulo de la oreja) 

- Interiorizar el Test de Borg: para valorar la percepción de fatiga (adjuntamos 

explicación para que os familiaricéis con esta escala para utilizarla el día del test) 

Valoración de la percepción de esfuerzo (Escala de Borg) 

Las valoraciones en la percepción del esfuerzo nos ayudan a comprender mejor el 

trabajo realizado. Estas valoraciones son complementos importantes en las medidas 

fisiológicas y funcionales del rendimiento físico y en la capacidad de trabajo (Borg GA, 

1982).  

En los estudios sobre trabajo y rendimiento es importante evaluar varios síntomas 

subjetivos, quejas y molestias. Para medir estos síntomas, se pueden utilizar las escalas 

de percepción psicofísicas. Los aumentos en el ritmo de trabajo están asociados con 

valoraciones más altas en las escalas de percepción. En el campo de trabajo físico 

intenso y en la percepción de esfuerzo, uno de los métodos más populares es la 

utilización de la escala proporcional de categorías de percepción de esfuerzo. 
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IMPORTANTE TENER EN CUENTA 

Pautas recomendables para llegar en buenas condiciones al RMD 

- El día antes intentar descansar y preparar la prueba como si fuera un día 

previo a una competición. Se trata de preparar una prueba máxima y llegar en 

las mejores condiciones. 

- Desayunar con total normalidad, al menos 2h/1h30’ antes del RMD. 

- Hidratación en todo momento, después del desayuno y antes de la prueba. 

Llegar en fase de deshidratación marcara una prueba no válida, debido al 

momento a la aparición temprana de la fatiga. 

- Duración del RMD, aproximadamente, de 1h30’ -2h de tiempo. 

- Venir con vestimenta adecuada para una prueba de esfuerzo (ropa deportiva, en 

caso de practicar esta modalidad deportiva): 

 Cinta ergómetrica: venir en las mejores condiciones de carrera, 

simular la vestimenta de carrera (zapatillas de competición) 
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10.2 Appendix II- Informed Consent  
 

 

 
 

 

CONSENTIMIENTO INFORMADO 

REGLAMENTO EUROPEO DE PROTECCION DE DATOS 

Identificación del Responsable: Le informamos que los datos personales que Usted nos proporciona son 

incorporados a un tratamiento de datos personales denominado PACIENTES cuyo responsable es ANDREA 

SUAREZ SEGADE con CIF 44810725D y con domicilio en CL. NORTE, 74, 1º-1ª, 08950 de ESPLUGAS DE 

LLOBREGAT, BARCELONA (ESPAÑA). Puede contactar con el Responsable, bien por teléfono en el número 

606621768 o bien mediante correo electrónico en el buzón info@labsportsalud.com 

Delegado de Protección de Datos: No hay Delegado de Protección de Datos Designado  

Finalidad: La finalidad es la prestación de servicios médicos, concretamente el ámbito deportivo 

(revisiones federativas) y, realización y diagnóstico de pruebas de esfuerzo.  

Plazo de Conservación: El plazo de conservación será una vez finalizada la prestación de los  servicios 

médicos, el estipulado por la legislación vigente en materia Sanitaria y de Historia clínica. 

 

Decisiones automatizadas y elaboración de perfiles: No se toman decisiones automatizadas ni se 

elaboran perfiles. 

Base Jurídica del Tratamiento: La base jurídica del tratamiento es la prestación de un servicio médico. 

Destinatarios de cesiones: No se prevén realizar cesiones, salvo aquellas que están autorizadas por ley. 

Transferencias Internacionales: No se realizan transferencias internacionales. 

Derechos: De acuerdo con la legislación vigente tiene los siguientes derechos: 

- Derecho a solicitar el acceso a sus datos personales. 

- Derecho a solicitar su rectificación o supresión. 

- Derecho a solicitar la limitación de su tratamiento 

- Derecho a oponerse al tratamiento. 

- Derecho a la portabilidad de los datos. 

Para ejercer sus derechos, debe dirigirse al responsable, solicitando el correspondiente formulario para el 

ejercicio del derecho elegido. Opcionalmente, puede redirigir al interesado a la Autoridad de Control 

competente para obtener información adicional acerca de sus derechos. 

Por todo lo referido, manifiesto que he estado informado que todos los datos de carácter personal, 

incluidos los de salud, que me requieran  serán objeto de tratamiento con la finalidad de gestionar y 

prestar los servicios sanitarios y médicos que he solicitado o solicitaré, y con tal fin, ANDREA SUAREZ 

SEGADE, dispone de ficheros automatizados y manuales donde quedan registrados los datos con las 

finalidades indicadas, por lo que: 

CONSENTIMIENTO: En Cornellá  a ..................  del .............. Dn./a, 

......................................................................... con DNI / NIE ................................ en nombre propio, o 

como representante legal de Dn/a, …………………………………………………….. con DNI/NIE ………………………, doy 

mi consentimiento expreso de acuerdo con lo expuesto en el presente documento.                                                                                                               

                                                                                                                                                                               FIRMA  

 

Nota: en caso de menores de catorce años será necesaria la autorización de su representante legal. 
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10.3 Appendix III- Participant Information 

 
 

 

 

 

                                                                                               

Hoja de información para el participante  

Título del proyecto: “Termorregulación en adultos que entrenan deportes de resistencia” 
 

Estimado participante, 

Le agradecemos el interés demostrado en el estudio “Termorregulación en adultos que entrenan 

deportes de resistencia”.  

 

Objetivo del estudio: Evaluar la respuesta termoregulatoria en adultos entrenados en deportes de 

resistencia durante una prueba progresiva de esfuerzo máxima en tapiz rodante (cinta ergométrica), junto 

con la valoración de otras variables cardiorespiratorias y metabólicas. Estos parámetros serán evaluados 

y comparados entre diferentes grupos de sujetos con diferentes niveles de condición física. 

 

Participación voluntaria: Su participación es totalmente voluntaria. El participante es libre de aceptar ser 

incluido o no en el estudio. Esta decisión no afectará en ningún caso su atención o relación con los 

profesionales del centro ni con los profesionales que forman parte del equipo investigador del presente 

estudio. En caso de que haya discrepancia en la decisión de participar o no en el estudio entre el 

participante y el profesional, se descartará la participación del propio participante. 

 

Procedimientos del estudio: Se solicitará la colaboración en el estudio a personas adultas mayores de 18 

años que cumplan con los requerimientos en la práctica de la actividad física en cualquier disciplina en 

deportes de resistencia, haciendo ejercicio físico al menos 3 veces a la semana y un mínimo de 150 

minutos a la semana. Además de ser capaces de correr sin limitaciones físicas importantes y sin 

alteraciones que puedan contraindicar su participación en pruebas de esfuerzo máximo y programas de 

actividad física.  

Se seguirá un protocolo diseñado por un equipo de investigadores que ha sido evaluado y aprobado por 

el Comité Científico y Ético de la facultad de la Blanquerna. Se realizarán pruebas progresivas de esfuerzo 

máximo con diferentes protocolos e intensidad, según el nivel y la condición física. La inclusión en uno u 

otro programa se determinará al azar, sin poder escoger en qué grupo participar. Las pruebas y protocolos 

han sido diseñadas específicamente para personas con diferentes niveles de condición física, y se tendrá 

en cuenta las características individuales y el deporte de resistencia que practique. Adicionalmente, se 

podrán realizar sesiones de seguimiento individual para observar los cambios en la condición física de 

cada participante. 

 

Durante la visita inicial al laboratorio, además de explicarle el proyecto y de entregarle el consentimiento 

informado para ser firmado por el participante, se lo citará un día en el cual se realizará una primera parte 

de anamnesis completa que incluirá el historial médico – deportivo (antecedentes médicos, deportivos, 

historia clínica-deportiva, etc.). Todo con el objetivo de evaluar el estado de salud y los niveles de actividad 

física. Durante una segunda visita, evaluaremos el resto de pruebas laboratorio (exploración funcional 

del aparato locomotor, análisis antropométrico para valorar 
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composición corporal, la fuerza, y evaluaremos parámetros de la función cardiovascular en reposo y su capacidad 

aeróbica mediante una prueba de esfuerzo máxima y progresiva. Durante la prueba se trata de un protocolo 

incremental llegando a niveles máximos de intensidad y de esfuerzo. 

Durante o después de las evaluaciones de la condición física es posible que el participante sienta cansancio o alguna 
molestia muscular. Asimismo, los ejercicios a realizar durante el programa podrían provocar algún tipo de molestia 

muscular y/o fatiga, pero estas molestias desaparecerán con el transcurso del programa. En el caso de que el 
participante sufriera alguna molestia, dolor o problemas durante las evaluaciones o en el transcurso del estudio, 
tendrá la posibilidad de hablarlo el mismo día con el investigador principal o con los investigadores encargados, los 

cuales le brindarán la posibilidad de una visita suplementaria y si el participante acepta, se informará al médico de 
cabecera del participante para que pueda realizar un seguimiento en caso de lesión o enfermedad. 

Luego de ambas visitas y de finalizadas las evaluaciones, le informaremos en qué tipo de intervención será incluido. 

Una vez realizadas las evaluaciones iniciales y el protocolo, cada participante será citado nuevamente después de 

dichas evaluaciones para evaluar posibles cambios en la condición física. 

 

Confidencialidad: Todos los datos recogidos serán tratados de manera confidencial. En las listas de trabajo del 

estudio sólo constará el código asignado a cada participante del estudio. En el informe final o en caso de comunicarse 

los resultados de este estudio a la comunidad científica, la identidad del participante permanecerá totalmente 

anónima.  

De conformidad con la Ley orgánica 15/1999, de 13 de desembre, de protección de datos de carácter personal, y la 

normativa que la desarrolla, le informamos que los datos personales facilitados en este formulario pasarán a formar 

parte de un fichero informático que estará bajo la responsabilidad de la Facultad de Psicologia, Ciencias de la 

Educación i del Deporte de Blanquerna - Universidad Ramon Llull y Labsportsalud, al cual solamente tendrá acceso 

el Investigador Principal del proyecto (Jonathan Galán Carracedo). Estos ficheros serán guardados para poder 

explotar los datos en futuros proyectos de investigación relacionados con los deportes de resistencia y este tipo de 

poblaciones, teniendo en cuenta que la termorregulación y la edad forma parte de este estudio, y el interés que 

significa poder realizar un seguimiento a largo término. Así y todo, podrá ejercer sus derechos de acceso, 

rectificación, cancelación y oposición por escrito, mediante correo electrónico, fax o correo postal a: 

jonathangc@blanquerna.url.edu, o bien mediante una carta dirigida a la Secretaria de la FPCEE Blanquerna (C/ Císter 

34, 08022 Barcelona) mediante un escrito con fotocopia de su DNI. En tal caso, el fichero no será almacenado y será 

destruido una vez se acabe el proyecto actual. 

 

Responsabilidad del estudio: El equipo investigador asume la responsabilidad del estudio. Si desea realizar alguna 

pregunta o aclarar algún tema relacionado con el estudio o si precisa ayuda para cualquier problema de salud 

relacionado con el estudio, por favor, no dude en ponerse en contacto con: 

 

Facultat de Psicologia, Ciències de l’Educació i de l’Esport  

Blanquerna (Universitat Ramon Llull)  

C/ Císter 34, 08022 Barcelona 

+ 34677869387 email: jonathangc@blanquerna.url.edu 

Laboratorio de Fisiología del Ejercicio - Labsportsalud 
c/Verge de Montserrat s/n, Edificio Federación Catalana de Tenis 
 

08940 Cornellà (Barcelona)  
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10.4  Appendix IV – Colaborations Letters 

 
 

 

 

 

 

 

 

                                                                                                                                             

                                                 
                                                                                               

Carta de solicitud de colaboración para el centro   

A la atención de la Directora Andrea Suarez Segade y Adjuntos del centro y laboratorio……………………………………………. 

Estimados Señores, 

Nos es grato dirigirnos a la Dra. Andrea Suárez y al resto de integrantes del laboratorio para expresar nuestros 

cordiales saludos e informarles sobre el proyecto titulado “Termorregulación en adultos que entrenan deportes de 

resistencia”, cuyo objetivo es la evaluación de la respuesta termorreguladora, junto con otras variables 

cardiorrespiratorias y metabólicas, en diferentes sujetos entrenados en deportes de resistencia en personas mayores 

de 18 años con diferentes niveles de condición física. 

El presente estudio también cuenta con la colaboración de investigadores de Estados Unidos y otros colaboradores 

de la Universitat Ramon Llull de Barcelona. 

La entidad coordinadora es la Facultat de Psicologia, Ciències de l’Educació i de l’Esport Blanquerna (Universitat 

Ramon Llull) y además es la responsable de llevar a cabo las distintas evaluaciones e implementación de los 

protocolos de las pruebas. 

Mediante la presente, quisiéramos solicitarles vuestra colaboración a la hora de llevar a cabo las pruebas en el 

laboratorio y a la hora reclutar participantes. Hemos estimado que necesitaríamos evaluar entre 70-100 sujetos que 

practiquen deportes de resistencia con una edad a partir de 18 años. Dichos participantes deberán presentar nivel 

de condición física óptimo para rendir durante pruebas incrementales y máxima de esfuerzo, y tratarse de 

participantes que tengo una práctica habitual de actividad física en deportes de resistencia, al menos 3 veces a la 

semana y un mínimo de 150 minutos a la semana.  

Si están interesados en participar, les agradeceríamos que nos hicieran llegar un correo electrónico respondiendo a 

la presente carta. De esta manera podremos concertar un día y hora para realizar una reunión en vuestro laboratorio 

y les informaremos con más detalles del estudio (objetivos, reclutamiento de participantes, tests/protocolos a 

realizar y duración de las pruebas), así como cualquier otra información que puedan necesitar. 

Desde ya les agradecemos vuestra colaboración y les pedimos disculpas por cualquier molestia ocasionada.  

Atentamente,                                                                                       

Jonathan Galan Carracedo  

Facultat de Psicologia, Ciències de l’Educació i de l’Esport  

Blanquerna (Universitat Ramon Llull)  

C/ Císter 34, 08022 Barcelona 

+ 34677869387 email: jonathangc@blanquerna.url.edu 
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10.5 Appendix V- Authorization for Images Publication 
 

 
 

                                                                                                                                             

                                                 
                                                                                               

Hoja autorización para la publicación de imágenes  

Con la inclusión de las nuevas tecnologías y la posibilidad de que en estos puedan aparecer imágenes suyas durante 

la realización de las actividades de medicina deportiva. Y dado que el derecho a la propia imagen está reconocido el 

artículo 18. De la Constitución y regulado por la Ley 1/1982, de 5 Mayo, sobre el derecho al honor, a la intimidad 

personal y familiar y a la propia imagen y la Ley 15/1999, 13 de Diciembre, sobre la Protección de datos de Carácter 

Personal. La dirección de este centro y estudio pide la autorización para poder publicar las imágenes en las cuales 

aparezca individualmente o en grupo, en las diferentes secuencias y actividades realizadas en nuestro centro.     

 

CONSENTIMIENTO: En ……………….………………................................ a .................................. Dn./a, 

......................................................................... con DNI / NIE ................................ doy mi consentimiento expreso de 

acuerdo con lo expuesto en el presente documento. 
 

Jonathan Galán Carracedo  

Facultat de Psicologia, Ciències de l’Educació i de l’Esport  

Blanquerna (Universitat Ramon Llull)  

C/ Císter 34, 08022 Barcelona 

+ 34677869387 email: jonathangc@blanquerna.url.edu 

 
Laboratorio de Fisiología del Ejercicio - Labsportsalud 
c/Verge de Montserrat s/n, Edificio Federación Catalana de Tenis 
08940 Cornellà (Barcelona)  
+34684144629 email: info@labsportsalud.com 
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10.6 Appendix VI- Medical Screening  
 

NOMBRE Y APELLIDOS:  _________________________________________  
D.N.I:    EDAD:   FECHA NACIMIENTO: 
CLUB:   TELF.    E MAIL:  

ANTECEDENTES FAMILIARES 
¿Algún miembro de su familia directa ha padecido o padece algunas de las siguientes 
enfermedades?  Indique a la derecha su parentesco (padre, madre, hermano/a, abuelo, tío/a) 

□ Antecedentes de muerte súbita 

□ Diabetes 

□ Enfermedad cardiaca (angina de pecho, infarto de miocardio, congénita) 

□ Accidente cerebro-vascular (derrame, embolia, infarto cerebral) 

□ Hipertensión arterial 

□ Obesidad 

□ Colesterol elevado 

□ Tuberculosis 

□ Alcoholismo 

□ Enfermedades mentales 

□  Cáncer 

□ Alergias, asma 

□ Anemias u otras enfermedades de la sangre 

□ Enfermedades reumáticas (artritis) 

□ Otras (especifique) 

ANTECEDENTES PERSONALES 
□ No se refiere antecedentes médicos significativos 

□ Sufre alguna enfermedad ¿Cual?.............................................................. 

□ Intervenido quirúrgicamente de. .……………..Fecha intervención……….. 

□ Alérgico a………………………………………………………………………... 

□ Asma alérgica controlada. 

□ Intolerancias a…………………………………………………………………... 

□ Fumador de …………….cigarrillos /día. 

□ Medicación habitual o suplementos vitamínicos…………………………… 

□ Portados de gafas o lentillas. Miopía / Hipermetropía / Astigmatismo /  

Estrabismo 
□ Portador de plantillas 

 

 Inicia práctica deportiva a los .……años. 

 Actualmente entrena……….días a la semana, con una duración de 

…..min/sesión. Compite……veces/mes. 

 Otras consideraciones:  
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10.7 Appendix VII- Anthropometric Measurements 
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10.8 Appendix VIII- Test Measurements 
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10.9 Appendix IX- Scientific Production 
 

 

 Article 2019 
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Abstracts  

 

 2020 (American College of Sports Medicine, ACSM)- San Francisco (USA) 

(In review) 
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 2019 (American College of Sports Medicine, ACSM)- Orlando (USA) 
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