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Abstract 
 

Global Navigation Satellite Systems (GNSS) signals are broadly used for positioning, 

navigation and timing (PNT) in many different applications and use cases. Although different 

PNT technologies are available, GNSS is expected to be a key player in the derivation of 

positioning and timing for many future applications, including those in the context of the 

Internet of Things (IoT) or autonomous vehicles, since it has the important advantage of being 

open access and worldwide available. Indeed, GNSS is performing very well in mild 

propagation conditions, achieving position and time synchronization accuracies down to the cm 

and ns levels, respectively. Nevertheless, the exploitation of GNSS in harsh propagation 

conditions typical of urban and indoor scenarios is very challenging, resulting in position errors 

of up to tens or even hundreds of meters, and timing accuracies of hundreds of ns.  

This thesis deals with the processing of GNSS signals for positioning and timing in harsh 

propagation conditions. In particular, the focus is on signal processing techniques exploiting 

the spatial diversities present both at transmission and reception levels when multiple GNSS 

satellites are in view by multiple receiver antennas, which form a multiple-input multiple-output 

(MIMO) system. In this context, three problems or research areas open in the GNSS literature 

are targeted. The first research area is the unambiguous estimation of and positioning with high-

order binary offset carrier (BOC) signals. The second research area is the time synchronization 

in indoor conditions. And the third research area is the positioning with co-located and 

distributed receiver antennas. 

In the first research area, this thesis shows that the robust unambiguous positioning with 

high-order BOC signals in harsh propagation conditions is possible when jointly exploiting 

these signals in the position domain and taking advantage of the spatial diversity introduced by 

arrays of antennas. The proposed estimators introduce an important benefit with respect to 

single-satellite-based unambiguous techniques (operating at pseudorange level) thanks to the 

processing gain introduced by the MIMO-GNSS system formed. Indeed, when multiple 

antennas are featured by the receiver, the proposed approach allows the exploitation of high-

order BOC signals even in indoor conditions, achieving positioning accuracies of few meters 

in propagation conditions for which BPSK(1) signals can only achieve accuracies of tens of 

meters. Moreover, the proposed solutions are implementable based on state-of-the-art multi-

correlator receiver architectures, and allow a drastic reduction of the computational burden with 

respect to the typical implementation of the so-called direct positioning estimation (DPE) 

techniques. 

In the second research area, this thesis proposes a joint time and channel estimation approach 

for static indoor GNSS receivers featuring an array of antennas in order to improve the timing 
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accuracy in indoor propagation conditions. This approach exploits both the structure of the 

diffuse multipath components of the indoor channel and the MIMO system formed by all the 

GNSS signals received via an array of antennas. Simulation results with a wideband satellite-

to-indoor channel model show that the proposed timing estimators allow an important 

mitigation of the dominant indoor multipath conditions. Therefore, the joint time and channel 

estimation approach proposed is considered an appealing solution for indoor applications with 

tight synchronization requirements, as can be the case in indoor small cells for 5G. 

Finally, in the third research area, this thesis proposes the exploitation of co-located and 

distributed receiver antennas for positioning in harsh propagation conditions. In order to 

improve the performance achieved with co-located antennas, a distributed array processing 

approach for collaborative GNSS-based snapshot positioning is proposed in the MIMO-GNSS 

framework. In this solution, one of the receivers is used as anchor and a distributed array is 

formed, allowing to transform the positioning problem into an angle estimation problem in 

order to reduce the computational burden. The exploitation of the spatial diversity introduced 

by multiple receivers enables the derivation of an improved position solution for receivers in 

degraded propagation conditions, taking in particular advantage of those in better propagation 

conditions.  
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Notation 
 

Vectors and matrices are denoted by lower case and upper case bold letters, respectively. 

Scalars are denoted by italic letters. The superscripts T and H denote the transpose and 

Hermitian transpose operations, respectively. 

 

𝑗   Imaginary unit (𝑗 = √−1) 

𝜋   Pi 

ℝ𝑁×𝑀 , ℂ𝑁×𝑀  Set of 𝑁 ×𝑀 matrices with real and complex entries, respectively. 

𝑥̂   Estimation of the parameter 𝑥. 

|𝑥|   Absolute value of the scalar 𝑥. 

‖𝐱‖    ℓ2-norm of vector 𝐱, such that ‖𝐱‖2 = 𝐱𝐻𝐱. 

[𝐱]𝑖   i-th element of vector 𝐱.  

[𝐗]𝑖,𝑗   The element of matrix 𝐗 in row 𝑖 and column 𝑗. 

{𝑥𝑖}𝑖=1
𝑁    Set of terms 𝑥𝑖 with index from 𝑖 = 1 to 𝑖 = 𝑁.  

{𝐱𝑖}𝑖=1
𝑁    Set of vectors 𝐱𝑖 with index from 𝑖 = 1 to 𝑖 = 𝑁. 

𝐈   Identity matrix. 

det(𝐗)   Determinant of 𝐗. 

𝐶𝑁(𝝁, 𝚺)  Complex multivariate Gaussian distribution with mean 𝝁 and 

covariance matrix 𝚺. 

𝑈(𝑎, 𝑏)  Uniform distribution with 𝑎 and 𝑏 as minimum and maximum values, 

respectively. 

arg max
𝑥

𝑓(𝑥)  Values of 𝑥 that maximize the function 𝑓(𝑥). 

arg min
𝑥

𝑓(𝑥)  Values of 𝑥 that minimize the function 𝑓(𝑥). 

exp(∙)   Exponential function. 

log10(∙)  Base-10 logarithm. 
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sgn(∙)   Signum function. 

𝑓̇(𝑡)   Derivate of time of function 𝑓(𝑡).   

=   Equal to. 

≜   Defined as. 

≈   Approximately equal to. 

~   Distributed according to. 

𝑠. 𝑡.   Subject to. 
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3G   Third Generation mobile networks 

4G   Fourth Generation mobile networks 

5G   Fifth Generation mobile networks 

ADC   Analog to Digital Converter 

A-GNSS  Assisted GNSS  

AWGN  Additive White Gaussian Noise   

BOC   Binary Offset Carrier 

BPSK   Binary Phase Shift Keying 

C/A   Coarse/Acquisition 

C/No   Carrier-to-Noise Density Ratio 

Co-MIMO-GNSS Collaborative MIMO-GNSS  

CRLB   Cramér-Rao Lower Bound  

DLL   Delay-Locked Loop 

DOME   Double-Optimization Multi-correlator-based Estimator 
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Introduction 
 

 

 

 

HIS thesis deals with the processing of Global Navigation Satellite Systems (GNSS) 

signals for positioning and timing in harsh propagation conditions. In particular, the focus 

is on signal processing techniques exploiting the spatial diversities present both at transmission 

and reception levels when multiple GNSS satellites are in view by multiple receiver antennas, 

which form a multiple-input multiple-output (MIMO) system. In this context, three problems 

or research areas open in the GNSS literature are targeted. The first research area is the 

unambiguous estimation of and positioning with high-order binary offset carrier (BOC) signals. 

The second research area is the time synchronization in indoor conditions. And the third 

research area is the positioning with co-located and distributed receiver antennas.  
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This chapter is organized in two sections. Section 1.1 introduces the motivation and 

objectives of the thesis. Then, Section 1.2 presents the thesis outline and the research 

contributions.  

 

1.1 Motivation and objectives 
 

GNSS signals are broadly used for positioning, navigation and timing (PNT) in many different 

applications and use cases, including location-based services (LBS) in smartphones and other 

devices, road and vehicular applications, agriculture, aviation, or time synchronization of 

critical infrastructures, just to name a few. Moreover, GNSS is expected to play a key role in 

applications like the Internet of Things (IoT) or autonomous vehicles. In many of the current 

applications, the achieved accuracy and availability of the positioning and/or timing solution/s 

are important parameters. Furthermore, some of the future applications and services are 

expected to impose increasingly demanding performance requirements in scenarios typically 

challenging for the exploitation of GNSS signals, like indoors. 

GNSS is performing very well in mild propagation conditions (e.g., open-sky conditions), 

with position and time synchronization accuracies of the order of few meters and tens of ns, 

respectively, when standard positioning techniques are used; and sub-meter position accuracies 

are achievable with high-accuracy solutions based on carrier-phase observables, like precise 

point positioning (PPP) or real-time kinematic (RTK) solutions. Nevertheless, the exploitation 

of GNSS in harsh propagation conditions typical of urban and indoor scenarios is very 

challenging. Indeed, in these scenarios, the impact of effects like blockage and multipath can 

highly degrade the achievable availability and accuracy of both standard and high-accuracy 

PNT solutions, resulting in position errors of up to tens or even hundreds of meters, and timing 

accuracies of hundreds of ns. 

Other technologies may be exploited together with, or as alternative to, GNSS to improve 

the availability and accuracy of the final positioning and navigation solution in harsh 

propagation conditions. Examples of these technologies include very different user sensors like 

inertial measurement units (accelerometers, gyroscopes), magnetometers, barometers, cameras, 

radars or lidars, and signals of opportunity (SoO) from terrestrial communication systems like 

WiFi, Bluetooth, or cellular communication systems like 3G, 4G and 5G. Future positioning 

and navigation solutions are expected to be based on a fusion or hybridization of different 

technologies and techniques, including GNSS. These hybrid solutions may exploit additional 

assistance or support data, including 2D/3D maps or radio and magnetic fingerprint maps based 

on crowd-sourced data. The set of specific technologies used will highly depend on the specific 

use case and application, which will impose requirements in terms of accuracy and availability; 

but also in terms of integrity and authenticity of the solution; and cost, size or power 

consumption of the receiver or device. In terms of performance, the relative contribution of 
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GNSS to the hybrid position solution will highly dependent on the technologies and additional 

support data used, the fusion and estimation techniques exploited, and the propagation 

conditions of the GNSS signals.  

Although different technologies are available, GNSS is expected to be a key player in the 

derivation of positioning and timing for many future applications since it has the important 

advantage of being free, open access, worldwide available, no additional infrastructure is 

needed, and enables the derivation of very accurate solutions in certain environment conditions. 

Additionally, hybrid solutions are expected in general to target the exploitation of all the 

technologies and measurements considered in the best way possible to enable ubiquitous 

positioning with the best achievable accuracy; and in certain use cases the GNSS contribution 

may drive the final achieved performance. This can be the case in situations where SoOs, 

assistance data or fingerprinting maps are not available, or do not provide the required accuracy 

(note that the user may operate in very different and changing conditions); or when the quality 

of the sensors used by the receiver is not good enough for achieving the required accuracy in a 

continuous way (accuracy comes at a cost, and this cost may not be compatible with the target 

application). Moreover, for some applications a GNSS-only solution may be a good option for 

meeting the target user requirements. Therefore, it is in general not only of interest, but also 

necessary, to derive estimation techniques enabling the enhanced exploitation of the GNSS 

signals received for the achievement of the ultimate performance possible.  

There are several open GNSS research areas with potential to enable the achievement of 

future stringent positioning and timing requirements, but at the same time with quite some room 

for improvement. Among these areas, one can find the unambiguous estimation of high-order 

BOC signals. These signals allow the achievement of high-precision code-based solutions, but 

at the cost of introducing an ambiguity in the estimation problem. Indeed, in practice the 

achievement of accurate and precise positioning solutions in harsh propagation conditions is 

very challenging with state-of-the-art unambiguous estimation techniques due to the impact of 

the so-called false locks (resulting in biases of several meters or tens of meters in the position 

solution). Based on this, the first objective of this thesis is to enable the achievement of robust 

unambiguous positioning with high-order BOC signals in harsh propagation conditions where 

the usage of state-of-the-art unambiguous techniques results in biases in the position estimation 

due to the impact of false locks. 

Another research area of high interest is indoor timing. Future applications to come may 

require accurate and precise timing to operate. An example of this is indoor small cells in 5G, 

which are expected to have very tight time synchronization requirements of the order of tens of 

ns. Different current technologies and technical solutions may be considered for this purpose, 

like the precise time protocol (PTP), or commercial solutions based on satellite signals from 

low-earth orbits. But these solutions either require additional infrastructure or their usage is not 

for free. Being able to exploit GNSS signals in indoor small cells or similar future applications 

would be of high interest to enable a free and open access timing solution independent of 

additional ad-hoc infrastructure. Nevertheless, the exploitation of GNSS signals indoors is a 



 

Chapter 1. Introduction 

 
 

4 
 

challenging topic due to the dominant impact of the non-line-of-sight (NLOS) signal 

propagation conditions, which limit the achievable timing accuracy. Based on the current 

limitations and the potential of GNSS for indoor timing applications, the second objective of 

this thesis is to enable the exploitation of GNSS signals in indoor conditions for timing with 

accuracies of the order of tens of ns. 

Moving back to positioning, many different techniques have been proposed in the literature 

to improve the exploitation of GNSS signals in scenarios in which the impact of effects like 

blockage, fading or multipath are dominant. Among them, array processing and cooperative or 

collaborative positioning are interesting research areas to deal with the harsh propagation 

conditions typical of urban and indoor scenarios. In the former, the multiple antennas featured 

by a receiver are typically used to mitigate fading and multipath, as well as other interferences. 

In the latter, a set of multiple GNSS receivers in a certain location are used together to derive 

or improve their position solution. For this purpose, the distances or ranges between the 

receivers considered need to be estimated e.g., based on vehicle-to-vehicle (V2V) or vehicle-

to-everything (V2X) communication technologies, ultra-wideband (UWB) or WiFi RTT 

(round-trip time) solutions. The way different antennas or receivers are exploited for 

positioning in harsh propagation conditions is an open problem in the literature, and there are 

alternative implementations still to be investigated. Moreover, the fast evolution of 5G 

standards and V2V/V2X communications, together with commercial Cloud platforms, could 

make feasible a broad application of the collaborative positioning concept to enable ubiquitous, 

accurate and precise positioning in urban and indoor scenarios. Therefore, the third objective 

of this thesis is to enable the improvement of positioning in harsh propagation conditions based 

on GNSS signals received with co-located and distributed receiver antennas. 

In order to achieve the three main objectives defined above, this thesis focuses on signal 

processing techniques exploiting spatial diversity. In particular, the thesis proposes to exploit 

both the spatial transmission and reception diversities available when the GNSS signals 

transmitted by multiple satellites are received by multiple antennas. In this case, the system 

formed by the multiple GNSS satellites and the multiple receiver antennas (featured by a single 

or multiple receivers) can be modeled as a multiple-input multiple-output GNSS system 

(hereafter referred to as MIMO-GNSS system). Therefore, the positioning and timing problems 

in harsh propagation conditions can be seen as MIMO-GNSS estimation problems in which the 

different received versions of each of the signals transmitted by the GNSS satellites in view are 

jointly exploited. It is to be noticed that the usage of multiple co-located antennas in GNSS 

receivers may be a suitable solution in applications like autonomous vehicles or critical 

infrastructures; and for other use cases with stringent cost, size and power consumption 

requirements, like in the case of IoT and smartphone devices, the exploitation of multiple 

distributed receivers is still an option.         

It is important to remark that the “MIMO” term is typically used in communications when 

multiple transmission and reception antennas are exploited for improving the capacity of the 

radio communication link in multipath propagation conditions. The “MIMO-radar” term is 
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typically used in radar when multiple transmission and reception antennas are exploited for 

improving the spatial resolution (by creating the so-called “virtual” antenna array), and for 

fading and interference mitigation. As opposed to MIMO communications, possibly orthogonal 

transmitted waveforms are used in MIMO-radar. Similarly, the “MIMO-SAR” term is used in 

the particular case of synthetic aperture radar (SAR). Analogously to the exploitation of the 

MIMO terminology in communications and radar, we will use the “MIMO-GNSS” term when 

multiple GNSS satellites and multiple reception antennas are jointly exploited for achieving a 

ubiquitous, accurate and precise PNT solution in degraded or harsh propagation conditions 

where this is challenging with state-of-the-art techniques. This will be the case in fading and 

multipath conditions typical of urban and indoor scenarios; but this framework may be also 

interesting in scenarios in which GNSS signals are vulnerable, like in the presence of external 

interferences, or under jamming or spoofing attacks. Note that in this case, similarly to the case 

of MIMO-radar, (quasi-) orthogonal transmitted waveforms are typically used by GNSS. 

The exploitation of the signals from multiple satellites and/or multiple reception antennas in 

GNSS is not a new topic. Indeed, there has been extensive research on areas like arrays of 

antennas, cooperative and collaborative positioning, and direct position estimation (DPE) for 

the exploitation of the spatial diversity in GNSS; and this thesis builds on it. Moreover, the 

MIMO-GNSS system could just be exploited to derive solutions already available in the 

literature, so under certain assumptions we may not get any benefit or difference with respect 

to other estimators. As discussed in the previous paragraphs, the exploitation of GNSS signals 

in harsh propagation conditions is still very challenging, and there is still room for improving 

the estimation techniques and processing approaches available in the literature. In particular, 

some of the assumptions typically assumed in the signal model used in state-of-the-art 

estimators for exploiting the spatial diversity in GNSS may not be adequate in realistic 

propagation conditions typical of urban and indoor scenarios. An example of this is the typical 

assumption of the availability of the line-of-sight (LOS) signals (i.e., the components of 

interest) and the presence of one or several specular interference components to be mitigated 

(e.g., multipath ray/s or other interference contributions). Although this type of signal model 

may allow to derive elegant, accurate and precise estimators performing optimally when the 

model applies (e.g., in open-sky and controlled scenarios), this may not be the case in more 

realistic conditions where the exploitation of GNSS signals by state-of-the-art receivers is still 

challenging (e.g., in NLOS propagation conditions and in the presence of diffuse multipath).  

Based on the previous discussion, this thesis focuses on the exploitation of the MIMO-GNSS 

system based on signal models that are considered “useful” in realistic harsh propagation 

conditions (i.e., that allow the robust application of the derived estimators in these conditions 

for achieving an improvement of the positioning or timing performance with respect to state-

of-the-art solutions). This will be in general translated in the usage of simplified signal models 

with respect to the reality, acknowledging that in practice it is very complex (if not unfeasible) 

to model correctly the actual signal propagation conditions faced by the receiver in urban and 

indoor scenarios. This is also related to the methodology that is followed in this thesis to assess 

the performance of the proposed positioning and timing estimators, which is based on the 
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execution of simulations with controlled and realistic channel models (including ITU-R 

channels). This approach targets the demonstration of the benefits of the proposed techniques 

in the propagation conditions in which they are expected to operate and be useful (i.e., in those 

conditions in which the usage of GNSS currently has important limitations).  

 

1.2 Thesis outline and research contributions  
 

This section lays out the structure of this dissertation, which is divided in six chapters, and the 

research contributions of the thesis. The research performed in this thesis has been published in 

different journal articles and international conferences, and is partially part of two patents. 

These research contributions can be separated in three main research areas aligned with the 

three main objectives of this thesis: a) the unambiguous estimation of and positioning with high-

order BOC signals, b) indoor timing, and c) positioning with co-located and distributed array 

solutions. Each of these research areas are covered in separate chapters, as described below.  

 

Chapter 1 presents the motivation and objectives of this thesis, and the thesis outline and 

research contributions presented herein. Chapter 2 presents a summary of the background and 

state-of-the-art, briefly introducing GNSS and its exploitation for positioning and timing, as 

well as the current limitations faced by GNSS receivers in harsh propagation conditions. In 

particular, the main operational concepts behind GNSS receivers are briefly presented, as well 

as different technology trends being currently considered for the processing of GNSS signals. 

Different signal processing techniques that have been addressed in the literature to deal with 

the estimation of GNSS signals in harsh propagation conditions are briefly reviewed, 

identifying the limitations when exploiting BPSK and BOC signals.  

 

Chapter 3 focuses on the unambiguous estimation of and positioning with high-order BOC 

signals in harsh propagation conditions. The research performed on this topic can be divided in 

two main research areas: techniques operating at pseudorange or single-satellite level (i.e., 

following the DOME approach), and techniques operating at positioning level (i.e., in the 

MIMO-GNSS framework). First, the DOME approach is presented together with the different 

estimators proposed in this context and the corresponding simulation results. Compared to state-

of-the-art techniques, the DOME approach further exploits the time diversity in the 

unambiguous estimation problem via the usage of multiple integration periods; and relies on a 

multi-correlator architecture in order to consider in the problem multiple correlation peaks of 

the cross-correlation function (instead of only the main and secondary peaks). Then, the 

unambiguous positioning in the MIMO-GNSS framework is introduced, presenting the 

estimators in the position domain both for the single- and multiple-antenna receiver 

configurations and the corresponding simulation results. The estimators in the MIMO-GNSS 

framework build on DPE and array processing techniques in order to introduce an additional 

processing gain in the unambiguous estimation problem by exploiting the spatial transmission 
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and reception diversities. The conclusions are presented at the end of the chapter. This chapter 

is based on the material of the following publications: 

 

• [Gar19a] J. A. Garcia-Molina, and J. A. Fernandez-Rubio, “Collective Unambiguous 

Positioning with High-Order BOC Signals,” IEEE Transactions on Aerospace and 

Electronic Systems, vol. 55, no. 3, pp. 1461-1473, June 2019. © 2018 IEEE. 

https://ieeexplore.ieee.org/document/8477092  

 

• [Gar16a] J. A. Garcia-Molina, M. Navarro-Gallardo, G. Lopez-Risueño, and M. Crisci, 

“Robust unambiguous Estimation of High-Order BOC Signals: The DOME approach,”  

NAVIGATION, Journal of the Institute of Navigation, vol. 63, no. 4, pp. 509–518, 

Winter 2016. © 2016 Institute of Navigation. https://doi.org/10.1002/navi.162 

 

• [Gar15a] J. A. Garcia-Molina, “Method and Apparatus for Tracking a Binary Offset 

Carrier Navigation Signal,” European Patent Application No. EP3104195A1, 10 Jun. 

2015. 

 

• [Gar19b] J. A. Garcia-Molina, and J. A. Fernandez-Rubio, “Array Processing and 

Unambiguous Positioning of Signals with Multi-Peak Correlations,” ION GNSS+ 2019, 

Miami, Florida, Sep. 2019. https://doi.org/10.33012/2019.17024 

 

• [Gar17a] J. A. Garcia-Molina, J. A. Fernandez-Rubio, R. Weiler, and M. Crisci, 

“Snapshot Processing of High-Order BOC Signals in the Cloud: on Sensitivity and 

Distortion Effects,” ION GNSS+ 2017, Portland, Oregon, Sep. 2017. 

https://doi.org/10.33012/2017.15245 

 

• [Gar15b] J. A. Garcia-Molina, M. Navarro-Gallardo, G. Lopez-Risueño, and M. Crisci, 

“Robust Unambiguous Tracking of High-Order BOC Signals: a Multi-Correlator 

Approach,” ION GNSS+ 2015, Tampa, Florida, Sep. 2015. 

https://www.ion.org/publications/abstract.cfm?articleID=13049  

 

Chapter 4 focuses on indoor timing based on GNSS signals, targeting the enhancement of 

the timing accuracy in indoor propagation conditions. In particular, the concept of “composite 

MIMO channel” is introduced, and a joint time and composite MIMO channel estimation 

approach for static indoor GNSS receivers featuring an array of antennas is proposed. This 

approach allows to rely on the coarse timing estimations performed by state-of-the-art 

techniques (typically based on pseudorange estimations) as a priori information; and enables 

to further mitigate the impact of the indoor channel by exploiting both the structure of the 

diffuse multipath components and the spatial diversity introduced by the array of antennas. 

Simulation results in realistic indoor channel conditions are presented at the end of the chapter, 

followed by the conclusions. This chapter is based on the material of the following publications:  

https://ieeexplore.ieee.org/document/8477092
https://doi.org/10.1002/navi.162
https://doi.org/10.33012/2019.17024
https://doi.org/10.33012/2017.15245
https://www.ion.org/publications/abstract.cfm?articleID=13049
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• [Gar18a] J. A. Garcia-Molina, “Method and Apparatus for Performing Joint Channel 

and Time Estimation in a GNSS Receiver,” International Patent Application No. 

PCT/EP2018/063660, 2018. 

 

• [Gar18c] J. A. Garcia-Molina, and J. A. Fernandez-Rubio, “Positioning and Timing in 

the MIMO-GNSS Framework,” NAVITEC 2018, Noordwijk, The Netherlands, Dec. 

2018. https://ieeexplore.ieee.org/document/8642703  

 

Chapter 5 focuses on positioning in harsh propagation conditions, going from co-located to 

distributed array solutions. The chapter starts with the exploitation of receivers featuring 

multiple antennas for positioning in indoor conditions in the MIMO-GNSS framework. This 

approach builds on DPE and array processing techniques in order to exploit the spatial 

transmission and reception diversities available. Simulation results in this case are presented. 

Then, the exploitation of distributed receivers for the formation of distributed arrays of antennas 

is introduced to further improve the achievable positioning accuracy. In particular, the joint 

exploitation of all the signals received by a set of receivers as a collaborative positioning 

problem is proposed. Compared to state-of-the-art cooperative and collaborative solutions, 

where typically the pseudoranges derived by the receivers are used as baseline in the estimation, 

the proposed solution exploits directly the signals gathered by all the receivers. Moreover, 

taking one of the receivers as anchor, the collaborative positioning problem is proposed to be 

transformed into a collaborative angle estimation problem in order to reduce the computational 

burden. The simulation results are presented at the end of the chapter, followed by the 

conclusions. This chapter is based on the material of the following publications: 

 

• [Gar19c] J. A. Garcia-Molina, and J. A. Fernandez-Rubio, “Collaborative Snapshot 

Positioning via Distributed Array Processing,” ION GNSS+ 2019, Miami, Florida, Sep. 

2019. https://doi.org/10.33012/2019.16876  

 

• [Gar18c] J. A. Garcia-Molina, and J. A. Fernandez-Rubio, “Positioning and Timing in 

the MIMO-GNSS Framework,” NAVITEC 2018, Noordwijk, The Netherlands, Dec. 

2018. https://ieeexplore.ieee.org/document/8642703 

 

• [Gar18b] J. A. Garcia-Molina, J. A. Fernandez-Rubio, and J. M. Parro, “Exploiting 

Spatial Diversity for NLOS Indoor Positioning,” ION GNSS+ 2018, Miami, Florida, 

Sep. 2018. https://doi.org/10.33012/2018.15865 

 

• [Gar17c] J. A. Garcia-Molina, and J. M. Parro, “Cloud-based GNSS Processing of 

Distributed Receivers of Opportunity: Techniques, Applications and Data-collection 

Strategies,” 6th International Colloquium on Scientific and Fundamental Aspects of 

GNSS/Galileo, Valencia, Spain, Oct. 2017. 

 

https://ieeexplore.ieee.org/document/8642703
https://doi.org/10.33012/2019.16876
https://ieeexplore.ieee.org/document/8642703
https://doi.org/10.33012/2018.15865


 

Chapter 1. Introduction 

 
 

9 
 

• [Gar17b] J. A. Garcia-Molina, and J. A. Fernandez-Rubio, “Exploiting Spatial Diversity 

in Low-cost SDR Platforms: the MIMO-GNSS approach,” 6th International 

Colloquium on Scientific and Fundamental Aspects of GNSS/Galileo, Valencia, Spain, 

Oct. 2017. 

 

Finally, Chapter 6 presents the conclusions of the thesis and the areas for future research. 

In summary, the contributions of this thesis to the three main research areas covered in 

Chapters 3, 4, and 5 are the following: 

i. An approach and estimators for the robust unambiguous estimation or tracking of high-

order BOC signals based on the solution of a double optimization problem exploiting a 

multi-correlator architecture and multiple integration periods (dubbed the DOME 

approach). This enables the enhancement of the SNR conditions under which the 

identification of the main correlation peak is performed (targeting the reduction of the 

probability of false lock), and the exploitation of a priori known distortions of the cross-

correlation function (which may degrade the probability of false lock). (See Section 3.2.) 

ii. An approach and estimators for the robust unambiguous positioning with high-order 

BOC signals directly in the position domain, both in single- and multiple-antenna 

configurations, achieving enhanced performance with respect to techniques operating 

at pseudorange or single-satellite level. This enables the exploitation of high-order BOC 

signals in harsh propagation conditions where the usage of single-satellite level 

techniques result in a high probability of false lock. (See Section 3.3.) 

iii. A framework (dubbed the MIMO-GNSS framework) for positioning and timing 

exploiting the transmission and reception spatial diversities available in GNSS receivers 

featuring multiple antennas and operating in harsh propagation conditions where NLOS 

propagation conditions may be dominant, like urban and indoor environments. (See 

Chapter 3, 4, and 5.) 

iv. The concept of composite MIMO channel in the MIMO-GNSS framework, enabling 

the achievement of enhanced timing performances in indoor environments thanks to the 

exploitation of the structure of the diffuse multipath and to the improvement of the 

equivalent SNR conditions in the MIMO-GNSS system formed. (See Chapter 4.) 

v. A joint time and composite MIMO channel estimation approach for static indoor GNSS 

receivers featuring an array of antennas. This approach enables the achievement of 

accurate and precise time synchronization in indoor propagation conditions even when 

NLOS propagation conditions are dominant. Two estimators based on the solution, via 

Monte Carlo methods, of multi-hypothesis optimization problems in the receiver’s clock 

bias domain are proposed. Each of the estimators follows a different approach to exploit 

the spatial correlation of the NLOS multipath components. (See Chapter 4.) 
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vi. The exploitation of the MIMO-GNSS framework in collaborative positioning, moving 

from a co-located to a distributed array configuration for improving the positioning 

solution of receivers in harsh propagation conditions. This enables the joint exploitation 

of receivers in nearby locations experiencing different propagation conditions. (See 

Chapter 5.) 

vii. A distributed array processing approach for positioning based on a) the formation of a 

distributed array “rigid body” based on the exploitation of peer-to-peer ranges between 

receivers and using one of the receivers as anchor, and b) the estimation of a 

collaborative position as the solution of the angle of the distributed array rigid body, 

which is used as constraint in the estimation problem. This enables the derivation of a 

position solution for receivers in highly degraded propagation conditions (or 

experiencing external interferences) by exploiting other receivers in nominal or less 

degraded propagation conditions. (See Chapter 5.)  

viii. The concept of “trusted” distributed array rigid body as the one composed by the subset 

of receivers, out of the ones in nearby locations, with “positive” contribution to the 

collaborative position solution. This targets the exclusion of receivers impacted by 

strong multipath reflections or spoofing attacks. (See Chapter 5.) 

ix. The assessment of the proposed estimators for positioning and timing based on both 

controlled and realistic channel models. (See Chapter 3, 4, and 5.)  
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Background and State-of-the-Art 
 

 

 

 

NSS signals are currently exploited in the context of many different applications and use 

cases for positioning and timing purposes. The great success of GNSS-based PNT 

solutions may be explained by the availability of open access and worldwide available GNSS 

signals allowing the achievement of positioning and timing accuracies down to the sub-meter 

and ns levels, respectively. Nevertheless, GNSS signals received on-ground are very weak. 

Indeed, the achievable accuracy and availability of the GNSS-based PNT solutions is highly 

dependent on the user environment in which the GNSS signals are received, and on the specific 

receiver techniques and technologies exploited. This explains the important amount of research 

performed on GNSS signal processing in the last years to deal with the exploitation of GNSS 

signals in degraded propagation conditions. 

This chapter is organized in two sections. Section 2.1 is briefly introducing the basics of 

GNSS at conceptual level, and provides references available in the literature going into further 
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details on general GNSS system, signal and receiver aspects of interest in the context of this 

thesis. Then Section 2.2 briefly reviews the state-of-the-art on the exploitation of GNSS signals 

in harsh propagation conditions.   

The material presented in this chapter has been partially published by the author in [Gar15a], 

[Gar15b], [Gar16a], [Gar17a], [Gar17b], [Gar17c], [Gar18a], [Gar18b], [Gar18c], 

[Gar19a], [Gar19b], and [Gar19c]. 

 

2.1 Brief introduction to GNSS 
 

Assuming we are outdoors, if we look up in the sky we may have in view a certain number of 

GNSS satellites, each of them transmitting different GNSS signals potentially targeting 

different user services. Some of those GNSS signals are open access signals waiting to be 

exploited worldwide by users and devices that want to know, with a certain accuracy, their 

current position and/or time. Let us consider a receiver with 𝑀 GNSS satellites in view from a 

certain GNSS system (i.e., a certain GNSS constellation) in ideal LOS signal propagation 

conditions, as depicted in Fig. 2.1. The processing of a GNSS signal per satellite is assumed 

(all with the same modulation and transmitted at the same frequency band) such that 𝑀 GNSS 

signals with equivalent modulation are targeted to be tracked for estimating the receiver’s 

position. In ideal LOS conditions, the complex baseband signal received by the GNSS antenna 

from the 𝑀 GNSS satellites in view can be modeled as 

 

𝑥(𝑡) = ∑ 𝑎𝑚(𝑡)𝑔𝑚(𝑡 − 𝜏𝑚(𝑡)) exp{𝑗2𝜋𝑓𝑚(𝑡)𝑡} + 𝑒(𝑡),

𝑀

𝑚=1

 

 

(2.1) 

 

 

where 𝑎𝑚, 𝜏𝑚 and 𝑓𝑚 are the complex amplitude, time-delay and frequency-shift for the LOS 

signal of the m-th satellite, respectively, 𝑒 is the noise component, and 𝑔𝑚 is the complex 

baseband model of the direct-sequence spread-spectrum (DSSS) signal transmitted by the m-th 

GNSS satellite. 

The GNSS signals transmitted by the different satellites of a certain constellation are 

expected to be time-synchronized (i.e., all the satellites of the constellation are aligned with a 

common GNSS system time). Based on this, the concept behind GNSS-based positioning is 

quite straightforward, and is based on the estimation of the so-called “pseudoranges” between 

the receiver and the set of 𝑀 GNSS satellites in view. In general, the pseudoranges are not 

equivalent to the geometric ranges between receiver and satellites due to the potential time 

offset between the receiver time and the GNSS system time (this explains the usage of the 

prefix). Therefore, in practice both the receiver’s position and time need to be typically 
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estimated, with the derived solution corresponding to that being consistent with the estimated 

pseudoranges. For a good summary of the conventional positioning process based on the 

estimated pseudoranges, the reader is referred to [San13]. 

In the introduction above, a certain GNSS signal from a GNSS system has been considered.  

Nowadays, there are different GNSS systems being exploited in parallel by mass-market and 

commercial GNSS receivers, including the ones that can be already found in smartphones: from 

the American GPS, and the Russian GLONASS systems, to newer systems like the European 

Galileo and the Chinese Beidou. The availability of multiple GNSS systems is of interest for 

the receivers from a position availability and accuracy point of view in harsh propagation 

conditions (where only few areas of the sky may be observed by the receiver, such that a limited 

number of satellites per constellation can be tracked). Each of the GNSS systems is using its 

own reference time to which the transmitted DSSS signals are synchronized. These DSSS 

signals are typically consisting on a pseudorandom noise (PRN) code different for each of the 

signals/satellites considered (being quasi-orthogonal between them and known a priori by the 

receiver), and the navigation data modulated on it. Other GNSS signals are not containing any 

navigation data, being only modulated by a secondary or overlay code (typically referred to as 

pilot signals). Different signal modulations are considered in practice, from legacy BPSK to 

more complex BOC-based modulations. The exploitation of BPSK signals is typically of 

interest from the acquisition point of view, while BOC-based signals are being introduced 

targeting high-accuracy code-based pseudorange estimations. Moreover, current GNSS 

systems transmit different signals in different frequencies within the L-band (e.g., L1/E1, 

L5/E5, L2, E6, etc.), offering different services to the users, from open services to governmental 

and/or military services. This is additionally of interest to the receivers for achieving higher 

 

 
 

Fig. 2.1: Illustration of the system composed by 𝑀 GNSS satellites and a GNSS receiver in 

open-sky conditions (with the GNSS signals in LOS signal conditions). 
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positioning accuracies thanks to the usage of precise positioning techniques exploiting the 

carrier-phase pseudorange estimations in multiple GNSS frequencies. A good overview on 

GNSS systems and signals can be found in [Kap06] and [Teu17]. 

Looking more into the details of conventional GNSS receivers, the receiver processing is 

typically divided in two general and separated steps: a first step in which the receiver is 

performing the code and carrier synchronization of the GNSS signals received (required for the 

estimation of the pseudorange measurements), and a second step in which the pseudorange 

measurements for the different satellites in view are used in the positioning solution (process 

typically referred to as multilateration). Additionally, navigation data is required for deriving 

the receiver’s position, which can be obtained by demodulating the broadcasted navigation 

message transmitted in the GNSS signals (typically containing the TOW, clock and orbit data 

for the satellite, the almanacs of the GNSS constellation, and ionospheric corrections, among 

others). Alternatively, assisted-GNSS (A-GNSS) may be considered instead, removing the need 

to demodulate the broadcasted navigation message. 

Typical GNSS receivers are featuring a single antenna receiving the GNSS signals, together 

with noise and potential interferences. After the antenna, the RF front-end is in charge of 

amplifying, filtering, down-converting and digitizing the signal received. Then, the digitized 

signal goes through a “baseband” processing stage (note that the processed GNSS signals may 

not be necessarily in baseband), in which the acquisition and tracking of each of the GNSS 

signals in view is performed. Both acquisition and tracking stages are based on the cross-

correlation of the received signal with the local PRN code replicas of the target GNSS signals 

to be exploited by the receiver. It is to be noticed that the GNSS signals are received with a 

certain time delay and frequency offset depending on the position, velocity, time, and time-drift 

of the receiver and each of the GNSS satellites. Therefore, the estimation of the time delay and 

frequency offset of the GNSS signal received gives information about the receiver’s position, 

time, and velocity. Fig. 2.2 illustrates a generic GNSS receiver architecture. A good overview 

on GNSS receiver architectures can be found in [Kap06] and [Teu17].  

 
 
 

 
 
 

Fig. 2.2: Illustration of a generic GNSS receiver architecture. 
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The acquisition stage targets the detection of the signals from the GNSS satellites in view 

and a first coarse estimation of the PRN code phase (i.e., the code delay) and the carrier 

frequency of each GNSS signal. For this purpose, multi-correlator and/or parallel search 

approaches (e.g., FFT-based) may be used to scan the code phase and carrier frequency areas 

in which the signals are expected. These architectures are typically exploited in mass-market 

receivers in order to allow the acquisition of multiple satellites/signals in parallel, which is 

beneficial for reducing the time required to derive the first position solution (typically referred 

to as the time-to-first-fix, TTFF). 

One of the key aspects highly impacting the ability of a GNSS receiver to acquire GNSS 

signals at the beginning of its operation is the initial receiver conditions (i.e., how much a priori 

information is available by the receiver). This limits the ability of the receiver to provide a first 

position fix in the shortest possible time (i.e., in the shortest TTFF). Basically, the better we 

know the receiver’s state vector (i.e., its position, time, reference frequency, and velocity) and 

the satellites’ state vectors (or the data needed to derive them), the more we can reduce the 

search space (in the code phase and frequency dimensions) that needs to be scanned by the 

acquisition engine. This has a direct impact on the resources required to acquire the GNSS 

signals. Indeed, assistance data is nowadays exploited in mass-market receivers to reduce the 

TTFF and enable higher acquisition sensitivities with equivalent processing resources. This is, 

of course, of interest to allow the exploitation of GNSS signals in harsh propagation conditions 

typical of urban and indoor scenarios. The assistance is typically composed by navigation data, 

and coarse or fine time, frequency and position information. Also important in harsh 

propagation conditions, the availability of assistance data allows to reduce the amount of data 

needed from the broadcasted navigation modulated in the GNSS signals (eventually, no 

demodulation may be needed). A good overview on A-GNSS can be found in [Dig09]. 

Once the acquisition is performed, a refinement of the code phase and carrier frequency for 

each GNSS signal is typically performed by the tracking stage. Additionally, the carrier phase 

tracking may be also performed (from which carrier-based pseudoranges can be obtained). The 

tracking stage of conventional receivers is typically based on delay-locked loops (DLL) in 

charge of the fine alignment of the code phase of the received signal and the local replica; and 

frequency-locked loops (FLL) and/or phase-locked loops (PLL) aligning the carrier frequency 

and/or phase, respectively. Conventional DLL, FLL and PLL are based on closed-loops 

operating at post-correlation level and exploiting up to three correlators (the so-called “early”, 

“prompt”, and “late” correlators) uniformly distributed around the main peak of the cross-

correlation function between the received signal and the local replica of the target GNSS signal. 

These up to three correlators are exploited by the “discriminator” used by the DLL (i.e., the 

code delay error estimator); while the discriminators of the FLL and PLL only exploit the 

prompt correlator (which, ideally, is aligned with the maximum of the cross-correlation 

function). Alternatively to the closed-loops, open-loops may be also used in the case very low 

C/No conditions are targeted (with the objective to be more stable than closed-loops) [Gra09]; 

and alternatively to the usage of up to three correlators, multi-correlators may be used as well 
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to derive multiple correlation points of the cross-correlation function (with the objective of 

having a more robust and/or accurate tracking) [Phe01].  

Most of current commercial receivers are based on the so-called narrow-correlators (see 

[Die92] and [Kap06] for details). The concept behind narrow-correlators consists in reducing 

the separation between the early and late correlators used by the DLL (i.e., to reduce the so-

called early-late spacing) such that: a) the noise contribution of the corresponding correlation 

samples have a higher correlation between them, and, thus, a lower impact on the code phase 

estimation performed by the discriminator; and b) the discriminator is less impacted by 

multipath rays with a delay relatively long with respect to the early-late spacing. Narrow-

correlators are typically exploited in steady-state code tracking conditions to enable the 

derivation of accurate code-based pseudoranges, while “wide-correlators” are typically used 

right after acquisition (due to the higher code phase uncertainty). 

Another important factor impacting the accuracy of the code-based pseudoranges is the 

modulation used by the GNSS signals, as introduced earlier. For BPSK signals, a higher 

accuracy is achieved by exploiting a higher chip rate thanks to the sharper correlation peak 

obtained. In this case, BPSK(𝑛) typically denotes a BPSK signal with a chip rate of 𝑅𝑐 = 𝑛 ∙ 𝑓0 

(with 𝑓0 = 1.023 Mcps). The usage of BOC signals is being introduced in new GNSS 

generations in order to obtain a sharper correlation peak than with legacy BPSK signals (which 

is translated in a more accurate code phase estimation), at the cost of side-peaks appearing in 

the autocorrelation function. The complex baseband model of the BOC-modulated DSSS signal 

can be modeled as [Kap06] 

 

𝑔(𝑡) = 𝑣(𝑡)sgn{sin(2𝜋𝑓𝑠𝑐𝑡 + 𝜑)}, (2.2) 

 

where 𝑣(𝑡) is the PRN code, 𝑓𝑠𝑐 is the so-called subcarrier frequency of the BOC signal, and 𝜑 

is the phase angle typically used to define if the BOC signal is sine phased (BOCsin, for 𝜑 = 0), 

or cosine phased (BOCcos, for 𝜑 = 𝜋/2). BOC signals are typically denoted as BOC(𝑚, 𝑛), with 

the subcarrier frequency 𝑓𝑠𝑐 = 𝑚 ∙ 𝑓0, and the chip rate 𝑅𝑐 = 𝑛 ∙ 𝑓0. The ratio between 𝑚 and 𝑛 

defines the number of correlation peaks of the autocorrelation function. For the so-called high-

order BOC signals (where 𝑚 > 𝑛, and multiple peaks are present in the autocorrelation 

function), the identification of the main peak (marking the reference for the code phase 

estimation) can be very challenging, even in additive white Gaussian noise (AWGN conditions 

[Gar16a]. Fig. 2.3 depicts an example of the cross-correlation functions in the case of a BPSK 

signal (with a triangular-like correlation) and of a high-order BOC signal (with multiple 

correlation peaks) with respect to the chip period 𝑇𝑐 = 1/𝑅𝑐. It is to be noticed that the cross-

correlation functions in this example consider the filtering of the received signals, resulting in 

a smoothing of the correlation peaks. In general the lower the filter bandwidth, the lower the 

code phase estimation accuracy due to the reduced sharpness of the main correlation peak. 

In order to improve the signal-to-noise ratio (SNR) conditions in which the GNSS estimators 

operate at post-correlation level (i.e., the equivalent SNR conditions observed) for the coarse 
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or fine estimation of the GNSS signals’ time delay and frequency offset (at acquisition or 

tracking level), longer integration times are typically considered when performing the 

correlation with the local code replicas. In particular in the acquisition of the GNSS signals, 

both coherent and non-coherent integrations may be considered to achieve a certain acquisition 

sensitivity linked to a given probability of detection and false alarm. Typically, the coherent 

integration time is limited by the data modulation of the GNSS signal (unless a pilot signal is 

available, or the data is wiped off), the receiver’s clock quality, and the user’s dynamics. After 

this point, non-coherent integrations (insensitive to the previous limitations) are used to further 

improve the SNR conditions, but at the cost of the so-called squaring losses (reducing the SNR 

gain introduced with respect to the coherent integration case). A good overview on this topic 

can be found in [Pan09]. It is to be noticed that, in this thesis, in many occasions results refer 

to certain SNR conditions instead of C/No conditions. The reason for this is that, in practice, 

the receiver’s RF FE, the processing architecture and the integration time exploited is impacting 

the SNR conditions observed by the estimators. Thus, for equivalent C/No conditions at GNSS 

antenna or baseband level, different SNR conditions may be obtained at post-correlation level. 

Using as reference the SNR conditions at post-correlation level allows to unambiguously define 

the conditions in which the estimators are assessed, independently of the actual receiver 

architecture and integration time used. Moreover, when indicating C/No values in this thesis 

they will typically refer to the equivalent C/No values available at post-correlation level (i.e., 

independent of the implementation losses introduced by a specific receiver architecture). 

The PRN code phase estimated by the tracking stage marks the so-called “fractional” 

pseudorange, defined within a PRN code length. This can be later translated into the 

pseudorange used in the positioning solution based on the time marks provided in the navigation 

 
 

Fig. 2.3: Illustration of the cross-correlation function for BPSK and BOC signals. 
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message modulated on the GNSS signals, e.g., the time of week (TOW); or by solving the 

transmission time as an additional unknown in the positioning problem (see [Dig09]). Once 

enough satellites are tracked and the corresponding pseudoranges are derived (at least 4 

satellites are required for deriving 3D position and time, assuming the receiver is located on-

ground), a position fix can be derived. After the first fix, the receiver may continue operating 

in continuous mode (as done in conventional receivers) or applying a certain duty-cycling in 

order to save power (i.e., being the receiver engine active only a portion of the time). In the 

former, both code- and carrier-based pseudoranges may be targeted to be exploited in the 

positioning solution, eventually using PPP and/or RTK carrier-based solutions for achieving a 

high-accuracy position estimation when precise products are made available to the receiver (see 

[San13] for an introduction to carrier-based positioning). In the latter, signal snapshots with a 

certain period and duty cycle are exploited to achieve the target position accuracy (typically, a 

lower accuracy than the continuous mode may be expected), while maintaining the power 

consumption as low as possible. In both cases, additional user sensors may be exploited to 

improve the accuracy and/or availability of the positioning solution. Also in both cases, the 

processing is typically performed locally in the GNSS chipset. An alternative to this is the 

application of the Cloud-GNSS processing approach [Luc16], [Gar17c], in which part of, or all, 

the GNSS processing is offloaded from the GNSS chipset to the Cloud (i.e., the signal snapshots 

can be processed directly in the Cloud). This might be of interest for the application of advanced 

signal processing techniques not feasible to be implemented in the GNSS chipset due to the 

high computational resources and/or power consumption required with respect to conventional 

techniques. Moreover, not only advanced assistance information may be available for 

exploitation in the Cloud (e.g., 3D maps, radio or magnetic fingerprint maps, etc.), but also the 

signal snapshots from receivers in nearby locations allowing the cooperative or collaborative 

processing for positioning purposes [Gar17c].   

In practice, the processing architectures and techniques applied in GNSS receivers are highly 

dependent on the target application and use case, where different design drivers may apply. In 

some cases, achieving a high accuracy is the main target; in other cases, the driver is low power 

consumption, cost and size of the GNSS chipset, even if at the cost of degraded performance; 

some applications are targeting open-sky conditions, while others are operating in urban or 

indoor conditions; some receivers may be connected to a network, while others may not; and 

additional user sensors and/or signals or sources of opportunity may be used in the positioning 

solution. So, in reality, the general GNSS receiver operations introduced above should be 

considered only as illustrative of what may be happening in the receiver we are using.      

Besides the receiver architecture and techniques exploited, and the signals used, a key factor 

impacting the achievable accuracy and availability of the positioning and timing solution is the 

channel propagation conditions. Indeed, GNSS systems are originally designed for their 

exploitation outdoors, where LOS signals are available with enough received power. This 

explains the amount of research performed by the GNSS and signal processing community for 

enabling the usage of GNSS signals in harsh conditions where the receiver has to be able to 

process very weak signals and deal with effects like blockage, fading and multipath. 
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2.2 GNSS in harsh propagation conditions 
 

The exploitation of GNSS signals in harsh propagation conditions is very challenging, limiting 

the availability of the GNSS-based PNT solution, as well as the achievable accuracy. Multiple 

processing approaches and techniques have been proposed and studied in the literature to deal 

with the presence of fading and multipath conditions, as well as other interference conditions 

(see in particular [Pan09], [Bro11a], [Sah08], [Won12], [Clo07], [Clo08], [Clo09], [Axe11], 

[Bha17], [Sec05], and [Fer16]). In general, the modeling of the channel conditions can be very 

complex (in particular, in urban and indoor scenarios), and some of the techniques proposed 

may be highly sensitive to the signal models exploited in their derivation (making them work 

in controlled and/or mild conditions, but being potentially not applicable, or not robust, in 

realistic conditions). Indeed, some of the techniques broadly applied in practice in harsh 

propagation conditions (like narrow-correlators [Die92]) do not rely on highly complex signal 

models, being robust and relatively low-complexity solutions adaptable to different user and 

environment conditions. Nevertheless, there is still room for improvement of the GNSS-based 

solutions (or of the contribution of GNSS in the overall PNT solution, potentially based on 

different technologies/signals). 

In urban and indoor conditions, effects like blockage, fading and multipath impact both the 

ability of the receiver to derive its position and the achievable accuracy of the PNT estimation 

for both standard and high-accuracy solutions. This results in position errors of up to tens or 

even hundreds of meters, and timing accuracies of hundreds of ns. Therefore, in practice, when 

targeting ubiquitous positioning in this type of scenarios, the GNSS receivers or the devices 

embedding them might rely on other sources and/or systems to be able to continuously derive 

the receiver’s position in those harsh propagation conditions (in some cases, at the cost of a 

degraded performance).  

In general, in harsh propagation conditions the signal received by the GNSS antenna from 

the 𝑀 GNSS satellites in view can be modeled in a simplified way as  

 

𝑥(𝑡) = ∑ 𝑥𝑚
𝐿𝑂𝑆(𝑡) + ∑ 𝑥𝑚

𝑁𝐿𝑂𝑆(𝑡)

𝑀

𝑚=1

 + 𝑒(𝑡),

𝑀

𝑚=1

 

 

(2.3) 

 

where 𝑥𝑚
𝐿𝑂𝑆(𝑡) is the LOS contribution for the m-th satellite (i.e., the desirable GNSS signal 

component), and 𝑥𝑚
𝑁𝐿𝑂𝑆(𝑡) embeds the contribution of the NLOS multipath components for 

the m-th satellite (i.e., the undesired GNSS signal components). In practice, 𝑥𝑚
𝑁𝐿𝑂𝑆 may 

contain multiple components (from few specular components to diffuse multipath) [Sec12], 

[Ste03], [Hei08], [Jos14]. Moreover, it is to be noticed that in propagation conditions typical of 

indoor scenarios, the LOS signals can be highly degraded, or even missing, so NLOS 

propagation conditions may be dominant (i.e., the receiver operates in “NLOS conditions”). 
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Fig. 2.4 illustrates, in a simplified way, the propagation conditions in the case of an urban 

scenario, where both LOS and NLOS multipath components may be received by the GNSS 

receiver. Fig. 2.5 illustrates the impact of a harsh propagation channel on the cross-correlation 

function of a BPSK signal (the land mobile multipath channel in [ITU09] is considered) 

compared to the ideal case in absence of noise, and in the case of AWGN conditions. As can 

be observed, the cross-correlation function is distorted by the propagation channel, inducing a 

bias of its maximum. Thus, this would be translated in a bias of the code phase estimation 

performed based on this cross-correlation function.  

The main limitation in terms of signal and position availability in a GNSS receiver is the 

low SNR (or C/No) conditions in which the GNSS receiver needs to operate to derive the 

synchronization parameters of the individual GNSS signals. In order to increase the observed 

SNR per satellite signal, longer coherent and non-coherent integration periods are typically 

considered in the literature, as discussed in the previous section, but receiver, environment and 

user constraints limit in practice the maximum integration periods that can be applied in 

commercial receivers. Additionally, open-loop architectures may be exploited, trying to 

perform a more stable estimation or tracking of the GNSS signals at low SNR conditions with 

respect to the conventional closed-loop architectures [Phe01]. Other receiver architectures have 

been proposed in the literature in order to make the estimation of the GNSS signals more robust. 

Some of those techniques are based on the application of vector tracking loops (VTL) [Las09] 
 
 
 

 
 

Fig. 2.4: Simplified illustration of the propagation conditions in an urban scenario (note that in 

reality several NLOS multipath components may be received). 
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in which the position estimation is exploited to assist or help the tracking loops of the receiver 

(in order to support the tracking of weak signals). Following a similar approach, collective 

detection and estimation, and direct position estimation approaches have also been proposed 

for the joint exploitation of the received GNSS signals in order to enable the operation at low 

SNR conditions (see [DiE07], [Clo07], [Clo09b], [Clo09a]).  

In terms of accuracy, many research lines have targeted the mitigation of the multipath 

impact on the estimation or tracking of GNSS signals, including the estimation of the multipath 

components via maximum likelihood (ML) based solutions, like in [Sah08], or solutions based 

on the usage of Bayesian-like estimators, like in [Clo08]. In general, multipath estimation 

techniques are performing well in mild or controlled scenarios (e.g., open-sky scenarios, or 

controlled multipath conditions) but are actually not performing well in realistic conditions 

(where signals are buried in noise, multipath cannot be modeled with one or few components, 

and the channel conditions are rapidly changing in time). DPE solutions have also been 

proposed to mitigate, to some extent, the impact of multipath without the need to estimate it 

(see [Clo07], [Clo09b]). In practice, most of the current commercial receivers are based on 

narrow-correlators for achieving good accuracies and multipath rejection, being, so far, the 

most robust and simple technique for that purpose (see [Die92] and [Kap06] for details). 

Moreover, it is to be noticed that carrier-based positioning can be applied without the need to 

estimate the multipath in the mild propagation conditions in which some of the multipath 

estimation techniques available in the literature can perform well.  

 
 

Fig. 2.5: Illustration of the impact of the propagation channel on the cross-correlation function 

(example for a BPSK signal). 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 C

o
rr

e
la

ti
o
n

Tc [chips]

 

 

No channel

AWGN channel

Harsh propagation channel



 

Chapter 2. Background and State-of-the-Art 

 
 

22 
 

Additionally, array signal processing techniques have also been extensively proposed in the 

literature for the detection and mitigation of multipath and interference (see in particular 

[Sec05], [Fer06], [Fer09a], [Fer09b], [Clo09a], and [Fer16]). In general, state-of-the-art 

techniques have focused on mild propagation conditions where LOS signals are considered to 

be present, and the target is the mitigation (i.e., rejection) of other undesired multipath 

reflections and/or interference signals. Nevertheless, the exploitation of spatial diversity in 

realistic propagation conditions typical of urban and indoor conditions, where LOS signals can 

be highly degraded, or even missing, and NLOS propagation conditions may be dominant, has 

not been dealt with in detail in the GNSS literature. In these conditions, distinguishing between 

the desired and undesired components is far from being trivial due to the low C/No conditions 

and the important multipath reflections received from different directions of arrival (not 

anymore few specular components, but diffuse multipath, may be received). Fig. 2.6 illustrates 

an example of a system with a GNSS receiver featuring a uniform linear array with 𝑁 antenna 

elements. 

Another approach to take advantage of spatial diversity at reception level, in this case in a 

distributed way, is the application of cooperative and collaborative techniques exploiting the 

GNSS observables or signals from different receivers in nearby locations, together with the 

information about the distances between those receivers (see [Gare12a], [Gare12b], [Sol13], 

and [And18]). Fig. 2.7 illustrates the cooperative/collaborative positioning configuration for the 

case of three receivers. The distances or ranges between each pair of receivers or peers (i.e., the 

peer-to-peer ranges) can be obtained by exploiting different communication systems that may 

 
 
 

 
 

Fig. 2.6: Illustration of a system with a GNSS receiver featuring an array of antennas. 
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be available in the receivers (e.g., UWB-based and Wi-Fi RTT range estimation solutions 

[Guv18], [Au16]). Thus, collaborative positioning can be considered a hybrid positioning 

approach since different technologies are exploited. This has been shown to be an interesting 

approach for enabling the derivation of a PNT solution for receivers in highly degraded 

propagation conditions (for which otherwise it would be very difficult to achieve a position fix, 

or it would be achieved with a very poor performance), thanks to other receivers in nearby 

locations operating in better propagation conditions.  

The usage of GNSS signals in harsh propagation conditions is challenging in general for any 

GNSS signal considered, but in particular for high-order BOC signals, as shown in [Gar16a], 

[Gar19b]. In this case, the cross-correlation function observed by the receiver presents multiple 

correlation peaks, so the receiver needs to resolve the ambiguity (i.e., identify the main peak of 

the cross-correlation function) such that the resulting pseudorange measurement is not biased 

(and no biases are present in the final position estimation). This task is in particular challenging 

for low SNR conditions (since the relative power between main and side peaks can be below 1 

dB). Additionally, receiver front-end distortions can modify the actual cross-correlation 

function observed by the receiver, so some calibration and/or correction might be additionally 

needed in some cases. 

 

 

 

 

 
 
 

Fig. 2.7: Illustration of cooperative/collaborative positioning configuration. 
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3  

 

Unambiguous Positioning with High-

Order BOC Signals 
 

 

 

 

HE unambiguous estimation of high-order BOC signals, and the later positioning based on 

these, remains an open problem in the literature. Although extensive research has been 

published on the topic, this is a very challenging problem when the receiver is operating in 

harsh propagation conditions where fading and multipath effects are dominant, resulting in 

potentially biased pseudorange and/or position estimations. The estimation techniques available 

in the literature are typically able to provide accurate and precise code-based estimations in 

mild propagation conditions. Nevertheless, these techniques start being unstable or not accurate 

(i.e., not applicable in practice) in propagation conditions typical of urban or indoor 

environments where it is difficult to identify correctly the main correlation peak out of the 
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multiple peaks of the cross-correlation function. This imposes an important limitation in the 

exploitation of this type of signals in harsh propagation environments.  

This thesis proposes to overcome the limitations observed in state-of-the-art unambiguous 

estimation techniques based on two different estimation approaches. The first approach 

proposed operates at pseudorange or single-satellite level, and targets the robust unambiguous 

estimation of high-order BOC signals based on the solution of a double optimization problem 

exploiting a multi-correlator architecture (dubbed the DOME approach). The second approach 

proposed operates in the position domain, targeting an enhanced robustness with respect to 

techniques operating at single-satellite level (including the DOME approach). In this case, both 

single- and multiple-antenna configurations are considered (i.e., the unambiguous estimation in 

the MIMO-GNSS framework is considered), jointly exploiting the available spatial diversities 

in each case for improving the robustness of the unambiguous position solution based on high-

order BOC signals.  

This chapter is organized as follows. Section 3.1 discusses the background and motivation. 

Section 3.2 describes the DOME approach, the signal model exploited and the resulting 

estimators, and the simulation results obtained. Section 3.3 describes the unambiguous 

positioning in the MIMO-GNSS framework, the signal model exploited and the resulting 

estimators for single- and multiple-antenna configurations, and the corresponding simulation 

results. Finally, Section 3.4 presents the conclusions.  

The material presented in this chapter has been published by the author in [Gar15a], 

[Gar15b], [Gar16a], [Gar17a], [Gar19a], and [Gar19b]. 

 

3.1 Background and motivation 
 

The exploitation of BOC signals in GNSS enables the achievement of higher code-based 

pseudorange accuracies than legacy BPSK signals, at the cost of new correlation peaks 

appearing in the autocorrelation function. Therefore, there is a certain risk that the receiver 

estimates, or locks onto, a side peak of the cross-correlation function instead of the main peak, 

resulting in a bias in the pseudorange estimation and, consequently, in the estimated receiver’s 

position when this happens. The probability to estimate, or lock onto, the wrong correlation 

peak (i.e., to have a “false lock”, as referred to throughout the thesis) can be in particular 

important when considering high-order BOC signals in harsh propagation conditions [Gar16a], 

[Gar19a]. In this case, main and side correlation peaks can have very similar powers and be 

only few meters away from each other, making the unambiguous estimation challenging due to 

the low C/No conditions during fading periods and to the additional impact of multipath. 

The unambiguous estimation problem has been extensively discussed in the literature, 

resulting in the proposal of many different techniques and processing approaches to deal with 
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the ambiguity problem [Loh17]. Some of these techniques focus on getting rid of the ambiguity 

problem either by estimating and/or tracking the equivalent BPSK envelope of the BOC signal 

[Mar03], resulting in the non-exploitation of the original accuracy provided by the BOC signal 

structure; or by trying to cancel the side peaks of the BOC’s cross-correlation function via the 

application of so-called un-matched filters [Kim07], which in practice results in a loss of the 

equivalent SNR observed at post-correlation level, in particular at low SNR conditions [Nav12]. 

Other techniques focus on solving the ambiguity problem by identifying the main peak out of 

the multiple peaks present in the cross-correlation function, preserving the original accuracy of 

the BOC signal, but resulting in a risk to lock onto a false lock. In this group, we can find 

techniques like the Bump Jumping [Fin99], the Double Estimator [Hod07], the Code-Subcarrier 

Smoothing [Nav13], or the Astrium Correlator [Sch13], just to name a few. In general, these 

techniques are well suited for mild propagation conditions typical of open-sky scenarios, but 

start having limitations or become unstable in urban scenarios where low C/No conditions 

(typically below around 30 dB-Hz) are experienced by the receiver [Gar14]. Indeed, it is 

important to highlight that just AWGN channel conditions, without the need of additional 

multipath components, are enough to trigger the appearance of false locks given the 

autocorrelation properties of the high-order BOC signals [Gar16a], [Gus16a].  

The unambiguous estimation problem has also been proposed to be solved using the 

LAMBDA method [Wen14], tackling the problem as a carrier phase ambiguity one. In this case 

the ambiguity is solved at position level based on the code and subcarrier observables 

previously estimated for all the BOC signals being tracked. This approach has shown a higher 

robustness than other subcarrier-based tracking methods operating at pseudorange level when 

operating in the presence of multipath in nominal C/No conditions [Wen14]. Nevertheless, the 

robustness of the LAMBDA method in harsh propagation conditions has not been demonstrated 

in the literature.    

In summary, most of the techniques available in the literature may not be applicable in 

practice in urban scenarios in which the receiver needs to operate at low C/No conditions and 

in the presence of multipath. The problem is even more challenging when moving to light-

indoor or indoor conditions where NLOS propagation conditions may be dominant. Therefore, 

there is a need to derive robust estimators enabling the unambiguous exploitation of high-order 

BOC signals in harsh propagation conditions. This is of high interest in order to extend the 

operational region in which GNSS receivers can exploit in practice the high code-based 

accuracies provided by high-order BOC signals. For this purpose, this thesis discusses two 

different solutions, as introduced earlier: the DOME approach originally proposed in [Gar15a], 

[Gar15b] and [Gar16a], operating at single-satellite level (Section 3.2); and the unambiguous 

positioning based on the MIMO-GNSS approach originally proposed in [Gar19a], operating in 

the position domain (Section 3.3). 
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3.2 The DOME approach  
 

Most of the current unambiguous estimation techniques are based on legacy GNSS receiver 

architectures exploiting few correlators (e.g., 5 correlators, including the so-called very-early 

and very-late correlators on top of the nominal early, prompt and late correlators) and a closed-

loop tracking architecture. In order to overcome the problems encountered on the estimation of 

high-order BOC signals in harsh environments, a possible alternative approach is the usage of 

a multi-correlator architecture for the partial or complete sampling of the cross-correlation 

function and the application of open-loop estimation techniques allowing for the unambiguous 

estimation of high-order BOC signals even at low C/No conditions. A further knowledge of the 

cross-correlation function, including not only the main peak but also some or all the side peaks, 

may provide useful information for estimating the code delay unambiguously. This idea is 

already partially applied in techniques like Bump Jumping [Fin99], where a single sample of 

the secondary peaks of the cross-correlation function is used for detecting false locks. We can 

extend the estimation problem to the case in which multiple samples of the cross-correlation 

function (i.e., multiple cross-correlation samples) are available and the target is to perform an 

unbiased code delay estimation considering the full set of samples while maintaining the 

original BOC accuracy. This approach will allow to perform a direct recovery from a false lock 

beyond the secondary peaks in case more than two side peaks are observed.  

A multi-correlator-based approach for the unambiguous estimation of high-order BOC 

signals is presented in this section. In particular, the ambiguity problem is proposed to be solved 

at post-correlation level via the solution of two parallel and dependent optimization problems 

in which multiple cross-correlation samples are exploited, as originally presented in [Gar15a], 

[Gar15b] and [Gar16a]. The proposed approach can be applied in both open- and closed-loop 

architectures, being therefore suitable for application in both snapshot-based and continuous-

tracking-based GNSS receivers. This approach is dubbed the DOME (Double Optimization 

Multi-correlator-based Estimation) approach. 

The two optimization problems considered are defined as follows. On the one hand, the first 

optimization problem targets the accurate and precise estimation of the code delay of the main 

correlation peak, for which, in general, a subset of the multiple cross-correlation samples 

available (e.g., the ones corresponding to the main correlation peak) are exploited in order to 

reduce the impact of noise and multipath on the estimation (i.e., resembling the narrow-

correlator estimation approach [Die92]). This optimization problem is subject to a constraint 

(the unambiguous estimation of the main peak) which is defined based on the solution of the 

second optimization problem. On the other hand, the second optimization problem targets the 

identification of the main correlation peak (constraint imposed to the first optimization 

problem), for which, in general, the full set of cross-correlation samples available are exploited, 

covering not only the main correlation peak but two or more side peaks. The high-level 

description of the DOME approach is summarized in Fig. 3.1. 
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In the definition of the optimization problems used by the DOME approach, several 

integration periods may be considered in order to improve the SNR conditions in which the 

estimations are performed (i.e., the equivalent SNR conditions observed by the estimator), with 

the final target to operate in the linear region of the estimators. This is of interest in the first 

optimization problem of the DOME approach in order for the code delay estimator to attain the 

Cramér-Rao Lower Bound (CRLB) even at low C/No conditions. In this way, the variance of 

the estimations is reduced and, consequently, also the probability to lock onto a false lock 

during the tracking of the BOC signal in harsh propagation conditions. And it is of course also 

of interest in the second optimization of the DOME approach in order to maximize the 

probability to identify correctly the main peak out of the multiple peaks of the cross-correlation 

function. 

In case important distortions are introduced in the cross-correlation function by the receiver 

(e.g., distortions induced by the RF front-end filtering stages), this may have an important 

impact on the ability to unambiguously track the BOC signals. In particular, the probability of 

false lock in this case may increase due to the introduced asymmetries in the cross-correlation 

function (e.g., increasing the relative power of some of the side peaks with respect to the main 

peak). In this case, a model of the expected cross-correlation function can be considered in the 

estimation problem in order to account for any filtering or a priori known distortion introduced 

by the receiver, targeting to mitigate the impact on the probability of false lock. The model of 

the expected cross-correlation function may also be of interest to make the approach applicable 

to any BOC signal or receiver configuration (e.g., in terms of the correlator spacing used). 

Nevertheless, this has the important drawback to increase the computational burden of the 

resulting solution. 

In the following, Section 3.2.1 presents the signal model exploited, Section 3.2.2 presents 

the DOME approach, and Section 3.2.3 presents the simulation results obtained.  

 

 
 
 

Fig. 3.1: High-level description of the DOME approach [Gar15a], [Gar15b], [Gar16a]. 
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3.2.1  Signal model for the DOME approach 
 

Let us consider a system consisting of a GNSS satellite transmitting a high-order BOC signal 

with a given PRN code which is then received by the antenna of a GNSS receiver. The PRN 

code is assumed to be known a priori by the receiver, and it is considered that the acquisition of 

the high-order BOC signal has been already performed and the receiver is in the tracking stage. 

A multi-correlator matched filter is applied by the GNSS receiver based on the coherent 

integration period corresponding to the time instant 𝑖 for the generation of a sampled version of 

the cross-correlation function 𝑅̂𝑥𝑏,𝑖(𝜏) between the sampled versions of the received signal 𝑥(𝑡) 
and the local signal replica 𝑏(𝑡) around the code delay 𝜏̂𝑐 estimated by the tracking loop. 

Let us define the complex vector 𝐫𝑖 ≜ 𝐫𝑖(𝜏) ∈ ℂ𝑍×1 containing the set of 𝑍 = 2𝐹 + 1 

complex cross-correlation samples at the output of the multi-correlator matched filter for the 

time instant 𝑖 as 

 

𝐫𝑖 = [𝑟𝑖,1 𝑟𝑖,2 . . .  𝑟𝑖,𝑍]
𝑇
, (3.1) 

 

with 𝑟𝑖,𝑧 the complex cross-correlation sample for the z-th correlator, which can be defined as 

[Gar17a] 

 

𝑟𝑖,𝑧 = 𝑅̂𝑥𝑏,𝑖(𝜏̂𝑐 − (𝐹 − 𝑧 + 1)𝛿), (3.2) 

 

where 𝛿 is the correlator spacing used. In order to define a signal model for 𝐫𝑖, let us define the 

expected cross-correlation vector 𝐬(𝜏) ∈ ℂ𝑍×1 for a given code delay 𝜏 as  

 

𝐬(𝜏)  = [𝑠1(𝜏)  . . .  𝑠𝑍(𝜏)]
𝑇, (3.3) 

 

where the correlation samples are defined as  

 

𝑠𝑞(𝜏)  = 𝑅𝑓(𝜏̂𝑐 − 𝜏 − (𝐹 − 𝑧 + 1)𝛿), (3.4) 
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with  𝑅𝑓(𝜌) the reference filtered cross-correlation function (with 𝜌 = 0 corresponding to the 

expected maximum of the main lobe of the cross-correlation function for the high-order BOC 

signal), which includes the impact introduced by the GNSS receiver’s RF front-end.  

It is to be noticed that the correlation samples observed by the receiver are impacted by the 

multipath and noise components, as well as other interference components that might be present 

in the scenario in which the receiver operates. Therefore, in general we can model the complex 

cross-correlation vector as 

 

𝐫𝑖 = ∑𝑎𝑖,𝑑𝐬(𝜏𝑖,𝑑)

𝐷

𝑑=0

+ 𝐞𝑖, 
 

(3.5) 

 

where the 0-th component in the summation models the LOS signal, D is the number of 

multipath rays present during the coherent integration time, 𝑎𝑖,𝑑 and 𝜏𝑖,𝑑 are the complex 

amplitude and delay at time instant 𝑖 of the d-th multipath ray, respectively, and 𝐞𝑖 ∈ ℂ𝑍×1 is a 

complex colored Gaussian noise vector with covariance matrix 𝐂, i.e., 𝐞𝑖~𝐶𝑁(𝟎, 𝐂). 

In the following, the knowledge and, therefore, the estimation, of the multipath rays is not 

considered in the problem since multipath estimation in realistic harsh propagation conditions 

is a difficult problem still open in the literature. This is mainly due to the difficulties to model 

the multipath with a set of specular rays (in the best case, the number of specular rays and their 

properties are still unknown), and to the fact that multipath components are typically buried in 

noise (making very challenging, or unfeasible, to distinguish between LOS, multipath and noise 

components). The focus, therefore, is on the unambiguous tracking of the LOS signal delay 

(i.e., the tracking of the main correlation peak) without considering the multipath rays in the 

signal model (resulting eventually in a biased estimation due to multipath). Based on this, we 

can model the cross-correlation vector 𝐫𝑖 as 

 

𝐫𝑖 ≈ 𝑎𝑖𝐬(𝜏𝑖) + 𝐞𝑖, (3.6) 

 

where and 𝑎𝑖 and 𝜏𝑖 are the complex amplitude and delay of the LOS signal for time instant 𝑖. 
Taking into account that under this assumption 𝐫𝑖~𝐶𝑁(𝑎𝑖𝐬(𝜏𝑖), 𝐂)), the complex multivariate 

probability density function (PDF) of 𝐫𝑖 with 𝑎𝑖 and 𝜏𝑖 as parameters can be defined as 

 

𝑝(𝐫𝑖; 𝜏𝑖, 𝑎𝑖) =
1

𝜋𝐾 det(𝐂)
exp[−(𝐫𝑖 − 𝑎𝑖𝐬(𝜏𝑖))

𝐻𝐂-1(𝐫𝑖 − 𝑎𝑖𝐬(𝜏𝑖))]. (3.7) 
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3.2.2  Dual-optimization multi-correlator-based estimators  
 

Let us start considering the case in which the cross-correlation function 𝑅̂𝑥𝑏,𝑖(𝜏) is a symmetric 

filtered version of the ideal autocorrelation function, such that no distortions or asymmetries are 

introduced in the cross-correlation function by the receiver RF front-end. Moreover, the 

correlator spacing 𝛿 used in the generation of the cross-correlation vector 𝐫𝑖 is such that the 

main peak can be identified with a residual impact of the correlation sampling process. Under 

these assumptions, the maximum likelihood estimator (MLE) of 𝜏𝑖 corresponds to the delay that 

maximizes the cross-correlation function, such that it can be derived as 𝜏̂𝑖 = 𝜏̂𝑐 − (𝐹 − 𝑧̂𝑖 +
1)𝛿, where    

 

𝑧̂𝑖 = argmax
𝑧

|[𝐫𝑖]𝑧|, (3.8) 

 

with 𝑧 = {1, . . . , 𝑍}. In the case 𝑍 and 𝛿 are such that 𝐫𝑖 allows to sample the complete cross-

correlation function (i.e., the main and side peaks of the high-order BOC signal), the estimator 

in (3.8) allows us to directly derive an unambiguous estimation of the code delay. Nevertheless, 

it is to be noticed that the accuracy of the code delay obtained in (3.8) is limited by 𝛿. Therefore, 

a refinement process is needed in order to fully exploit the accuracy provided by the high-order 

BOC signal. This may be done in different ways. One option is to perform a fine estimation, 

equivalent to the fine acquisition typically done in snapshot receivers [Sec12]. For doing this, 

we can exploit the signal model defined for 𝐫𝑖, in which a model of the expected cross-

correlation function 𝐬(𝜏) is considered. This allows us not to be limited by the correlator spacing. 

In this case, the MLE at post-correlation level (i.e., based on 𝐫𝑖 and 𝐬(𝜏)) is found by minimizing 

the cost function [Gar15a] 

 

Λ𝑖(𝜏𝑖, 𝑎𝑖) = (𝐫𝑖 − 𝑎𝑖𝐬(𝜏𝑖))
𝐻𝐂-1(𝐫𝑖 − 𝑎𝑖𝐬(𝜏𝑖)). (3.9) 

 

Another alternative is to apply a standard code tracking loop based on a DLL with a 

discriminator exploiting the 3 correlators around the main correlation peak. In this case, the 

usage of a narrow-correlator will allow us to fully exploit the accuracy of the high-order BOC 

signal, attaining the CRLB for nominal-to-high C/No conditions (at least, in ideal AWGN 

channel conditions). 

In order to derive an unambiguous code estimation, while fully exploiting the code accuracy 

of high-order BOC signals, we may apply a dual-optimization or dual-estimation approach. In 

this configuration, one of the estimators is in charge of resolving the code ambiguity (i.e., 

estimate the main correlation peak out of the multiple peaks in the cross-correlation function), 
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for which in general the exploitation of the 𝑍 correlation samples available are of interest; and 

the other estimator is in charge of performing a fine estimation of the main peak, for which in 

general the exploitation of the correlation samples of the main correlation peak are of interest 

for mitigating the impact of noise and multipath. Additionally, in order to allow a robust 

unambiguous estimation, we may exploit several integration periods, targeting the operation of 

the estimators in their linear region. Thus, in the following it is consider that a set of the last 𝑅 

complex cross-correlation vectors from instant 𝑖 − 𝑅 + 1 to instant 𝑖 are available, i.e., 

{𝐫𝑖−𝑗}𝑗=0
𝑅−1

 = {𝐫𝑖, … , 𝐫𝑖−𝑅+1}. Based on this, we can define the unambiguous code delay estimation 

𝜏̂𝑖 (i.e., a code delay estimation based on the main correlation peak of the BOC’s cross-

correlation function) at time instant 𝑖 as the solution of the non-linear minimization problem 

subject to a constraint [Gar15a] 

 

𝜏̂𝑖 = argmin
𝜏
 ∑(𝐫𝑖−𝑗 − 𝑎̂𝑖−𝑗,1𝐬(𝜏))

𝐻(𝐖1𝐂
-1)(𝐫𝑖−𝑗 − 𝑎̂𝑖−𝑗,1𝐬(𝜏))

𝑄−1

𝑗=0

 

                       𝑠. 𝑡.   |𝜏 − 𝜏̂𝑟𝑒𝑓𝑖| < 𝜃,  

 

 

 

(3.10) 

 

where 𝜃 is a design parameter –which is BOC modulation dependent– defining the maximum 

allowed difference between the estimated code delay 𝜏̂𝑖 and a reference estimation 𝜏̂𝑟𝑒𝑓𝑖 = 𝜏̂𝑐 −

(𝐹 − 𝑧̂𝑟𝑒𝑓𝑖 + 1)𝛿 , where 𝑧̂𝑟𝑒𝑓𝑖 is defined as the solution of the maximization problem 

 

𝑧̂𝑟𝑒𝑓𝑖 = argmax
𝑧

∑|[𝐫𝑖−𝑗]𝑧|

𝑃−1

𝑗=0

 

                                                                𝑠. 𝑡.  𝑧 < 𝑍𝑡, 

 

 

 

(3.11) 

with 𝑍𝑡 ≤ 𝑍. The estimators in (3.10) and (3.11) are a possible implementation of the first and 

second optimization problems in the DOME approach, respectively. In the following, the 

estimator (3.11) is referred to as the maximum correlation estimator (MCE). It is to be noticed 

that the exploitation of several integration periods in (3.10) is performed via the summation of 

several cost functions (defined based on the MLE approach), instead of applying the typical 

non-coherent (or differential) integrations directly to the set of complex cross-correlation 

vectors {𝐫𝑖−𝑗}𝑗=0
𝑃−1

. This approach is followed in order to be able to apply the MLE as baseline 

since the complex multivariate PDF of the non-coherent integrations of {𝐫𝑖−𝑗}𝑗=0
𝑃−1

 does not 

follow anymore a Gaussian distribution. Nevertheless, this results in a high computational 
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burden, so alternative approaches may be exploited in practice (e.g., applying the non-coherent 

integrations to the complex correlation vectors before the cost function is generated).  

The estimators in (3.10) and (3.11) are defined in an open and flexible way via the usage of 

the selection matrix 𝐖1 and 𝑍𝑡. This allows for the selection of the number of correlation 

samples to be considered in both optimization problems and to be able to choose between the 

exploitation or not of the covariance matrix 𝐂. The definition of the covariance matrix 𝐂, the 

selection matrix 𝐖1 and 𝑍𝑡, the complex amplitudes 𝑎̂𝑖−𝑗,1, and the number of integration 

periods 𝑄 and 𝑃 used in (3.10) and (3.11), respectively, are discussed in the following 

paragraphs.  

The covariance matrix 𝐂 of the complex colored noise present at post-correlation level is 

defined as a 𝑍 × 𝑍 non-diagonal matrix and it depends on the BOC signal to be tracked. 

Therefore, in practice it is not needed to be computed since the expected value is known a priori. 

The selection matrix 𝐖1 will be in general defined such that a subset of the 𝑍 available samples 

are in practice exploited in the minimization problem; while 𝑍𝑡 will be in general equal to 𝑍 in 

order to exploit all the available samples of the cross-correlation function. It is to be noticed that 

𝐖1 can be defined as a 𝑍 × 𝑍 diagonal positive definite matrix (used as weighting matrix), 

although it could be defined in any other different way, e.g., as 𝐖1 = 𝐀1𝐂, with 𝐀1 an 𝑍 × 𝑍  

diagonal positive definite weighting matrix, resulting in 𝐖1𝐂
−1 = 𝐀1𝐂𝐂

−1 = 𝐀1, being 

therefore in this case the minimization in (3.10) not dependent on 𝐂 (thus, following a non-linear 

least squares approach). Taking into account that the noise component in the cross-correlation 

function is correlated and overlapped in the frequency domain with the BOC signal component 

(which is a normal consequence of the matched filter applied in the correlation and dump 

process typically applied by the receiver), the exploitation of the covariance matrix will not 

bring the noise filtering benefits that would be obtained in the case in which noise and signal 

components follow different covariance matrices (i.e., are not overlapped in the frequency 

domain). Therefore, the main benefit of the implementation of the DOME approach based on 

the estimators in (3.10) and (3.11) is to enable the adaptation of the number of correlators used 

and of the integration periods exploited to make each of the estimators work in its linear region. 

The complex amplitudes 𝑎̂𝑖−𝑗,1 for every summand 𝑗 (corresponding to the coherent 

integration performed for time instant 𝑖 − 𝑗) in the minimization problem in (3.10) can be 

estimated following the well-known least squares (LS) solution [Kay13] 

 

𝑎̂𝑖−𝑗,1 = (𝐬𝑇(𝜏)(𝐖1𝐂
-1)𝐬(𝜏))−1𝐬𝑇(𝜏)(𝐖1𝐂

-1)𝐫𝑖−𝑗. (3.12) 

 

𝑄 and 𝑃 are integer numbers defining the number of integration periods that are considered 

in the minimization problems in (3.10) and (3.11), respectively, in order to increase the 

unambiguous estimation sensitivity (note 𝑄, 𝑃 ≤ 𝑅). It has to be noticed that this process is 

analogous to the non-coherent integration typically performed in GNSS receivers operating in 
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harsh propagation conditions. 𝑄 and 𝑃 can be defined adaptively depending on the propagation 

environment under which the code tracking is performed. In general, 𝑄 will be set such that the 

estimator of the code delay based on the main correlation peak attains the CRLB (i.e., the code 

delay estimator works in its linear region) while minimizing the response time to the signal 

dynamics. This way, a good definition of 𝑄 will minimize the probability of false locks during 

tracking conditions. And 𝑃 will be set such that the unambiguous identification of the main 

peak can be performed with a given probability of false lock, while minimizing the time to 

detect eventual false locks. It is to be noticed that for high-order BOC signals the equivalent 

integration period required might be in the order of one second to keep the false detection 

probability low at low C/No conditions (i.e., below around 30 dB-Hz). And for very low C/No 

conditions (i.e., below around 20 dB-Hz) low false detection probabilities might be difficult to 

be maintained, being therefore of interest to disable the false lock detection/correction until 

better C/No conditions are achieved.  

The DOME approach is compatible with both open- and closed-loop receiver architectures. 

In the former, the estimator can be applied per signal snapshot to provide the current 

unambiguous code delay estimation, being therefore applicable in snapshot-based receivers or 

in the fine acquisition stage of typical continuous-tracking receivers. In the latter, it can be used 

as a non-coherent discriminator, providing the code phase error based on the set of 𝑍 samples 

available, or just as detector and corrector of eventual false locks, working then in parallel to the 

closed tracking loop. In both cases an additional low-pass filter can be applied to the code delay 

estimation in (3.10) in order to decrease the code estimation variance. And, as for any typical 

GNSS receiver, carrier phase and/or frequency estimations can be considered as aiding in the 

tracking of the user dynamics, which will allow for a higher flexibility in the definition of 𝑄 in 

the first optimization problem of the DOME approach. 

It is to be noticed that a closed form expression cannot be found for the proposed estimator 

in (3.10). Therefore, the optimization problem has to be solved iteratively (e.g., following the 

Newton-Raphson method) or via the application of grid-search approaches [Kay13]. In order to 

reduce the computation burden, a possible implementation of the DOME approach can be based 

on the usage of a typical DLL-based receiver architecture. In this case, a narrow-correlator DLL 

can be used to replace the estimator in (3.10), which is then “aided” by an open-loop estimator 

implementing (3.11), in charge of identifying the correct peak. This approach, depicted in Fig. 

3.2, allows the straightforward implementation in state-of-the-art closed-loop-based receivers. 

Let us consider now the case in which the cross-correlation function 𝑅̂𝑥𝑏,𝑖(𝜏) is impacted by 

the RF front-end filtering stage, such that it is not anymore symmetric, being the original relative 

power of the side peaks with respect to that of the main peak altered. This may result in an 

important impact on the ability to identify the main peak of the cross-correlation function, and, 

thus, in a degraded probability of false lock. In order to tackle this issue, one possible solution 

is to exploit the model of the expected cross-correlation function 𝐬(𝜏) in the second 

optimization problem of the DOME approach in order to account for a priori known distortions 

introduced by the receiver. This, of course, has the important drawback to increase the 
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computational burden of the resulting solution. In this case the reference code delay marking 

the main correlation peak can be defined as [Gar15a] 

 

𝜏̂𝑟𝑒𝑓𝑖 = argmin
𝜏
 ∑(𝐫𝑖−𝑗 − 𝑎̂𝑖−𝑗,2𝐬(𝜏))

𝐻(𝐖2𝐂
-1)(𝐫𝑖−𝑗 − 𝑎̂𝑖−𝑗,2𝐬(𝜏))

𝑃−1

𝑗=0

, 
 

(3.13) 

 

where 𝐖2 and 𝑎̂𝑖−𝑗,2 are defined similarly to 𝐖1 and 𝑎̂𝑖−𝑗,1, but in this case 𝐖2 is such that, in 

general, the 𝑍 samples of the cross-correlation vector will be exploited to identify the main 

correlation peak out of the multiple side correlation peaks. In the following, the estimator (3.13) 

is referred to as the post-correlation MLE (PC-MLE). 

 

3.2.3  Simulation results 
 

The DOME approach has been implemented in a baseband software receiver in order to assess 

its performance via simulation in both controlled and realistic scenarios when tracking high-

order BOC signals, as originally presented in [Gar15a], [Gar15b] and [Gar16a]. A BOCcos(15, 

2.5) signal is considered herein as a representative case of high-order BOC signal. The DOME 

configuration used for the derivation of the performance results presented in the following 

subsections is summarized in Table 3.1. 

As discussed in the previous section, the variance of the code delay estimation is driven by 

the first optimization problem of the DOME approach, defined in (3.10). The performance of 

 
 

Fig. 3.2: Application of the DOME concept to a DLL-based architecture [Gar15a], [Gar15b], 

[Gar16a]. 
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the code delay estimation in AWGN conditions has been assessed when the number of 

integrations periods considered is 𝑄 = 10, three correlation samples are effectively exploited 

(via the matrix 𝐖1), and a low-pass filter with a bandwidth of 1 Hz is used in order to smooth 

the estimations. Additionally, 𝐖1 is such that the noise covariance matrix 𝐂 is in practice not 

exploited in the estimation. As expected, and based on the fact that (3.10) is a non-coherent 

estimator using the ML approach as baseline, the variance of the code delay estimation in 

AWGN conditions attains the CRLB (derived based on [Wei03]) when the equivalent SNR 

observed by the estimator is relatively high (equivalent to post-correlation C/No values above 

around 25 dB-Hz when considering the configuration in Table 3.1 for 𝑄 = 10), while for low 

equivalent SNRs the variance is notably higher than the CRLB. This can be observed in the code 

delay error (1σ) depicted in Fig. 3.3, where the √CRLB is included for comparison, and the SNR 

per coherent integration period is indicated (note that a processing gain of up to 10 dB is 

introduced for 𝑄 = 10). Moreover, it is important to remark that the usage of 𝑄 > 1  is of interest 

in order to make the estimator work in its linear region at low SNR conditions per coherent 

integration period, reducing also in this way the probability to go to a false lock during tracking 

conditions. 

The ability to identify the main correlation peak for ensuring the unambiguous code delay 

estimation of high-order BOC signals is driven by the second optimization problem in the 

DOME approach. The target in this case is to allow for a low probability of false lock (i.e., a low 

probability to have a biased pseudorange estimation). This can be in particular challenging for 

low C/No conditions (for which the equivalent SNRs observed by the estimators are low). 

Assuming that the receiver is in tracking conditions and no distortions are introduced in the 

cross-correlation function by the filtering stage, Fig. 3.4 shows the probability of false lock in 

AWGN conditions for the MCE estimator in (3.11) with 𝑃 equal to 1, 10 and 100, and the 

configuration in Table 3.1 (note that the full set of correlation samples available are exploited, 

corresponding to half of the correlation span, i.e., ±0.5 chips). The impact of the number of 

integration periods 𝑃 exploited can be clearly observed in the results, enabling to improve the 

equivalent SNR conditions observed by the estimator. For 𝑃 = 10, the MCE estimator shows a 

Parameter  Value 

Modulation BOCcos(15, 2.5) 

Receiver bandwidth 40 MHz 

Coherent integration time 10 ms 

Correlator spacing 0.031 chips 

Z 33 

Q, P  

Wm 

Variable  

Variable  

Low-pass filter bandwidth 1 Hz 

 

Table 3.1. Simulation configuration for the DOME approach [Gar15a], [Gar15b], [Gar16a]. 
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probability of false lock below 10-3 for SNR values per coherent integration period above around 

10 dB. This is equivalent to a probability of false lock below around 10-3 for post-correlation 

 
 

Fig. 3.3:  Code delay error (1σ) in AWGN conditions for a BOCcos(15, 2.5) and the receiver 

configuration in Table 3.1 for 𝑄 = 10. Note that the SNR per coherent integration period is 

indicated [Gar15b], [Gar16a]. 
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Fig. 3.4:  Probability of false lock in AWGN conditions when considering the MCE estimator 

in tracking conditions and the receiver configuration in Table 3.1 for 𝑃 equal to 1, 10 and 100. 

Note that the SNR per coherent integration period is indicated [Gar16a]. 
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C/No values (not considering implementation losses) above around 30 dB-Hz. Even when using 

𝑃 = 100 (equivalent to a total integration period of 1 second), achieving a relative low   

probability of false lock down to 20 dB-Hz is still challenging (indeed, this is considered the 

lowest C/No conditions that can be achieved with reasonable integration periods). It is to be 

noticed that the MCE estimator is equivalent to the MLE when considering the application of a 

perfect match filter in the correlation process. Therefore, in this case the application of (3.11) in 

the DOME approach is of interest, being both desirable in terms of computational burden and 

probability of false lock achieved.  

The unambiguous estimation can be also challenging when certain correlation spacings are 

used by the receiver and no previous code delay estimations have been performed (e.g., when 

performing a single snapshot processing or, equivalently, when performing a fine estimation of 

the code delay in the acquisition stage of high-order BOC signals). In order to illustrate this, Fig. 

3.5 shows the probability of false lock obtained when the DOME approach is applied to the 

processing of signal snapshots (with several coherent integration periods within each signal 

snapshot), and considering two different estimators for resolving the ambiguity (second 

optimization problem in the DOME approach): the MCE estimator, and the PC-MLE estimator 

defined in (3.13). For the PC-MLE estimator, 𝐖2 in (3.13) is such that the noise covariance 

matrix 𝐂 is in practice not exploited in the estimation (therefore, showing the benefit introduced 

by the usage of the expected cross-correlation function). In both cases, ten integration periods 

are considered in order to improve the equivalent SNR conditions observed by the estimators 

(i.e., 𝑃 = 10) and the full set of correlation samples available are exploited in the estimations 

(i.e., 𝑍 = 33). 

 

 
 

Fig. 3.5:  Probability of false lock in AWGN conditions when considering a signal snapshot 

processing for the receiver configuration in Table 3.1 and 𝑃 = 10 for the MCE and PC-MLE 

estimators. Note that the SNR per coherent integration period is indicated [Gar15b], [Gar16a]. 
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As can be observed in Fig. 3.5, when the expected cross-correlation function is exploited in 

the problem (PC-MLE), the probability of false lock decreases for higher SNR conditions, as 

expected. Nevertheless, when the maximum of the correlation samples is used to identify the 

main peak (MCE), there is a saturation effect, resulting in high probabilities of false lock even 

for high SNR conditions. Indeed, the limiting factor in this case is the correlator spacing used by 

the receiver in the processing of a signal snapshot when no a priori information about the 

expected position of the main peak is considered. The reason for this saturation of the probability 

of false lock comes from the fact that, in some cases, independently of the SNR conditions, the 

main peak of the cross-correlation function cannot be properly sampled (even for relatively low 

correlator spacing values in terms of code tracking), inducing that the maximum of the received 

correlation samples corresponds to a side peak. This “distortion” effect of the sampled cross-

correlation function that the receiver observes is illustrated in Fig. 3.6. It is to be noticed that the 

correlator spacing considered in the simulation presented is such that an optimum fine code delay 

estimation can be obtained (i.e., representative narrow-correlator spacing values are used). The 

results shown demonstrate the benefit, in terms of performance, of exploiting the expected cross-

correlation function in (3.13) under the conditions considered in this simulation. Nevertheless, 

it is important to remark that the application of the PC-MLE instead of the MCE introduces an 

important computational burden. Moreover, comparing the results in Fig. 3.4 and 3.5, the best 

performance is obtained by the MCE estimator in tracking conditions (i.e., when no sampling 

resolution issues are observed). A possible way to get rid of this sampling resolution issue in 

snapshot processing mode is the usage of lower correlator spacing values, at the cost of a higher 

number of correlators needed to cover the same number of correlation peaks (see [Gus16b]).  

 

 
 

Fig. 3.6:  Illustration of the sampling impact when processing a signal snapshot and no a priori 

information about the expected position of the main correlation peak is considered [Gar16a]. 
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 In order to illustrate how the DOME approach behaves in case of a false lock for nominal 

and low C/No conditions, a controlled scenario is used, inducing the tracking of the secondary 

peak of a BOCcos(15, 2.5) signal, which is at around 10 m from the main peak. In this controlled 

scenario (an illustration of this controlled scenario can be found in [Nav14]), at instant t = 0 s 

the LOS signal is highly attenuated (-30 dB) and a strong multipath ray appears. The delay of 

this multipath ray increases linearly from 0 to around 10 m (achieved at 𝑡 = 5 s, inducing this 

equivalent bias in the code delay tracking). Immediately after, the LOS signal is back to nominal 

power conditions and the multipath ray disappears. At this point the secondary peak is being 

tracked. From then on, the DOME approach is used to detect and recover from the false lock. 

Fig. 3.7 shows an example of the DOME results obtained for the controlled scenario when the 

post-correlation C/No considered is 40 and 20 dB-Hz (representative of nominal and low C/No 

conditions, respectively – and equivalent to SNR values per coherent integration period of 20 

and 0 dB for the configuration in Table 3.1). In this case, 𝐖1 is such that three correlation 

samples are used in the fine estimation and the noise covariance matrix 𝐂 is in practice not 

exploited, and 𝑄 = 10. The PC-MLE estimator is used and 𝐖2 is defined as an identity matrix. 

As can be observed, the DOME is able to detect and correct the false lock successfully even at 

low C/No conditions. For C/No conditions below around 20 dB-Hz it is in practice very difficult 

to keep a relatively low probability of false lock for reasonable integration periods, as shown 

earlier. It is to be noticed that the time to detect and correct the false lock (i.e., the latency of 

the ambiguity resolution) depends on the P parameter used in the second optimization problem, 

whose selection is a design trade-off between the probability of false lock to be achieved and 

the latency to detect and correct eventual false locks. In the example shown, P is set to 10 and 
 
 

 
 

Fig. 3.7:  Comparison of the code delay estimation error for a BOCcos(15, 2.5) signal in a 

controlled scenario in which the false lock is induced for different C/No conditions [Gar15a], 

[Gar15b], [Gar16a]. 
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100 when the simulated C/No is 40 and 20 dB-Hz, respectively, which explains the different 

latencies in the correction of the false lock. It is to be noticed that in the configurations presented 

the false lock probability achieved will not be the same. P is actually limited to 100 in order to 

consider realistic integration periods in the simulation (equivalent to a total integration period 

of 1 s), although higher values would be in practice needed to ensure a relatively low probability 

of false lock. The code delay error obtained for a typical DLL (without any false detection 

engine being implemented) is included for completeness, showing a code delay bias of around 

10 m that remains until the end of the simulation (as expected). Results in similar simulation 

conditions for state-of-the-art techniques can be found in [Gar14], where it can be observed that 

the assessed techniques (including Bump Jumping [Fin99], Double Estimator [Hod07], and 

Code-Subcarrier Smoothing [Nav13]) start being unstable at 30 dB-Hz. 

The ITU-R P.681-7 land mobile multipath channel [ITU09] is considered for the assessment 

of the DOME approach in realistic propagation conditions typical of an urban environment. In 

particular, a scenario in which a vehicular user is tracking a satellite at low elevation in the 

presence of some fading events is considered as example of harsh propagation conditions. Fig. 

3.8 shows the channel fading conditions for the simulation period discussed in the following. 

Note that a nominal SNR of 10 dB per coherent integration period for the LOS signal has been 

simulated (equivalent to a post-correlation C/No of 30 dB-Hz), therefore being the actual C/No 

observed by the estimators below 15-20 dB-Hz for some instants. Fig. 3.9 shows the code 

tracking error results obtained for the DOME in the simulated scenario. In this case the DOME 

is configured with 𝑄 = 10, 𝑃 = 100, and 𝐖1 is such that three correlation samples are used in 

 
 

 
 

Fig. 3.7:  Comparison of the code delay estimation error for a BOCcos(15, 2.5) signal in a 

controlled scenario in which the false lock is induced for different C/No conditions [Gar15a], 

[Gar15b], [Gar16a]. 
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Fig. 3.8:  Example of fading conditions in an urban environment realisation as simulated with 

the ITU-R P.681-7 land mobile multipath channel [Gar15b], [Gar16a]. 
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the fine estimation and the noise covariance matrix 𝐂 is in practice not exploited. The PC-MLE 

estimator is used and 𝐖2 is defined as an identity matrix. As can be observed, the DOME 

approach is able to deal with the appearance of the fading events and keeps tracking the signal 

even when the C/No is below 20 dB-Hz. It is to be noticed that in a real application it would be 

recommended to disable the ambiguity resolution for very low C/No conditions (at least, below 

around 20 dB-Hz) since a low probability of false lock for the ambiguity resolution in the 

DOME will not be achievable for reasonable values of P. During the deep fading period 

between seconds 8 and 10, some peak errors are obtained due to the higher noise and multipath 

impact (as expected), but in this example the DOME is able to deal with it thanks to the usage 

of 𝑄 = 10 (i.e., making the fine code delay estimator work in its linear region thanks to the 

improvement of the equivalent SNR). Additionally, the results obtained for a narrow-correlator 

DLL-based DOME implementation (following the architecture depicted in Fig. 3.2) are 

presented. In this case it can be observed that a false lock happens during the deep fading period, 

which is detected and corrected afterwards by the open-loop ambiguity solution (implemented 

in this case as a false lock detector/corrector). The latency in the detection and correction of the 

false lock is explained by the usage of P = 100, equivalent to a total integration time of 1 s (the 

usage of a lower P would decrease the latency, but at the cost of increasing the probability of 

false lock in the ambiguity resolution). It is to be noticed that in the DLL implementation the 

code loop noise bandwidth is 1 Hz and only coherent integrations (of 10 ms) are considered 

(i.e., improved configurations could still be applied).  

 
 

Fig. 3.9: Example of code delay error for the DOME (exploiting the PC-MLE) and a narrow-

correlator DLL-based DOME implementation in harsh propagation conditions (corresponding 

to fading conditions in Fig. 3.8) [Gar15b], [Gar16a]. 

 

 

0 2 4 6 8 10 12

-10

-8

-6

-4

-2

0

Time [s]

C
o
d
e
 D

e
la

y
 E

rr
o
r 

[m
]

 

 

DOME (PC-MLE)-aided DLL

DOME (PC-MLE)



 

Chapter 3. Unambiguous Positioning with High-Order BOC Signals 

 
 

44 
 

To complete the performance assessment for the DOME approach, Fig. 3.10 shows an 

example of the impact of the distortions induced by the RF front-end filtering stages on the 

cross-correlation function obtained for a BOCcos(15, 2.5) signal when considering two different 

infinite impulse response (IIR) filters: a 9th order Butterworth filter, and a 6th order Chebyshev 

filter (with a 5 dB ripple in the passband as a worst-case scenario). In both cases a bandwidth of 

40 MHz is considered such that the two main frequency lobes of the BOCcos(15, 2.5) signal can 

be used. As can be observed, when considering a bad filtering stage an important asymmetry is 

introduced, making it more difficult to identify the main peak of the cross-correlation function. 

Fig. 3.11 shows the results obtained when the MCE estimator in (3.11) and the PC-MLE in 

(3.13) are used to identify the main correlation peak in snapshot mode when considering the IIR 

filters defined above. In particular, a signal snapshot of 10 ms in AWGN channel conditions is 

considered (i.e., 𝑃 = 1). Note that the correlator spacing 𝛿 considered in this case is around 0.016 

chips (i.e., half of the correlator spacing used in the previous simulations; required for avoiding 

sampling resolution issues in the unambiguous estimation of the maximum of the cross-

correlation function, as discussed earlier). The number of correlation samples of the complex 

vector is Z = 129, covering the full correlation span (i.e., ±1 chip), unless the opposite is 

indicated.  As can be observed, the impact of the false locks is very important at low-to-nominal 

SNR conditions for both estimators, even when considering nominal filtering conditions. For 

higher SNR conditions, it is observed that the probability of false lock for the MCE estimator 

decreases substantially in nominal filtering conditions (as expected), while remains high in the 

worst-case filtering scenario. In the worst-case filtering scenario, the benefit introduced by the 

exploitation of the a priori knowledge of the cross-correlation distortion in the PC-MLE is very 

clear. The probability of false lock obtained by the PC-MLE is in line with the one obtained by 

 

 
 

Fig. 3.10. Illustration of the impact of non-linear phase filtering on the cross-correlation 

function of a BOCcos(15, 2.5) signal [Gar17a]. 
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the MCE in nominal filtering conditions when considering half of the correlation span (i.e., 

±0.5 chips). Indeed, the exploitation of the full correlation span in the PC-MLE, instead of half 

of the span, is not beneficial in terms of probability of false lock due to the higher impact of the 

noise component in the estimator (as also observed in [Gus16b]). 

Based on the simulation results in controlled and urban conditions, it can be concluded that 

the DOME approach fully exploits the BOC signal accuracy while being robust at low C/No 

conditions (down to around 20 dB-Hz) and in the presence of fading and multipath.  

Nevertheless, for very low C/No conditions (below around 20 dB-Hz) the equivalent SNR 

observed by the estimator remains also low and the probability of false lock is still important. 

In the absence of distortion or sampling resolution issues degrading the cross-correlation 

function observed by the estimators (achievable with a proper receiver design), the exploitation 

of the MCE estimator in the second optimization problem of the DOME is of interest both from 

a performance and computational burden point of view. Moreover, the first optimization 

problem of the DOME can be based on a standard DLL exploiting as discriminator the estimator 

in (3.10) or state-of-the-art solutions. In any case, other advanced solutions are needed to allow 

the exploitation of high-order BOC signals in harsh propagation conditions typical of urban or 

indoor conditions. A potential approach is to move the unambiguous estimation problem from 

the single-satellite level to the position domain, as is discussed in Section 3.3. 

 

 
 

Fig. 3.11. Probability of false lock obtained for the simulated scenario with the MCE and PC-

MLE estimators for a BOCcos(15, 2.5) signal [Gar17a]. 
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3.3 Unambiguous positioning in the MIMO-GNSS 

framework 
 

As has been observed in Section 3.2 for the DOME approach, longer coherent and non-coherent 

integration periods can be considered in order to increase the SNR observed by the 

unambiguous estimators (reducing the probability of false lock). Nevertheless, the maximum 

number of integration periods that can be applied in practice are limited by receiver, user and 

environment constraints [Sec12], [Pan09], [Bro11a], such that for very low C/No conditions 

(below around 20 dB-Hz) the equivalent SNR observed by the estimator remains also low and 

the probability of false lock is still important. 

This section proposes to overcome the limitations observed in state-of-the-art unambiguous 

estimation techniques (including the DOME approach) by introducing an additional processing 

gain in the unambiguous estimation problem in two spatial dimensions, as originally presented 

in [Gar19a]. The first dimension is the spatial transmission diversity introduced by the multiple 

GNSS satellites in view to the receiver. The second dimension is the spatial reception diversity 

introduced when the receiver features an array of antennas. These two spatial dimensions, and 

the corresponding spatial processing gains, are proposed to be efficiently exploited in the 

receiver’s position domain, tackling the unambiguous estimation problem at position level 

instead of at pseudorange level. Working directly in the position domain (collectively exploiting 

multiple satellites’ signals) has shown advantages in the detection and estimation of legacy 

GNSS signals in terms of sensitivity at low SNR conditions [DiE07], [Clo07], [Clo09b], 

[Axe11], [Bra10], [Est14], [Nar14], at the cost of a very high complexity of the resulting 

solution. Nevertheless, the unambiguous positioning problem can be considered as a fine 

estimation problem in which an a priori coarse position solution has been already estimated by 

the receiver (which can be derived based on e.g., the potentially ambiguous pseudoranges 

estimated with any conventional tracking technique, or the noisier pseudoranges estimated via 

the tracking of the BPSK envelope of the BOC signals [Mar03]). Therefore, in practice, the 

range of positions of interest in the unambiguous positioning problem is bounded. This is 

drastically reducing the complexity of the implementation with respect to the so-called direct 

positioning and collective detection techniques [DiE07], [Clo07], [Clo09b], [Axe11], [Bra10], 

[Est14], [Nar14], since the solution can be based on state-of-the-art receiver architectures. 

The main target of the proposed approach is to efficiently exploit the spatial dimensions for 

enabling the robust unambiguous positioning with high-order BOC signals in the presence of 

deep fading and at very low SNR conditions (per satellite’s signal) for which state-of-the-art 

single-satellite level unambiguous estimation techniques are already unstable. In the case of the 

single-antenna receiver configuration, this is achieved by treating the unambiguous estimation 

of the receiver’s position as a multiple-input single-output (MISO) estimation problem in which 

the multiple transmitted high-order BOC signals are jointly exploited. And when an array of 
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antennas is featured by the receiver, this is achieved by jointly exploiting both transmission and 

reception diversities in the resulting multiple-input multiple-output (MIMO) GNSS system. 

For both MISO- and MIMO-GNSS systems, the MLE of the receiver’s position is used as 

baseline in the proposed solutions. In both cases, the signal model used in the derivation of the 

solution is defined such that the focus is kept on efficiently improving the equivalent SNR 

conditions observed by the estimator, while mitigating the multipath impact taking advantage 

of the spatial diversities available. In the particular case of the MIMO-GNSS system, a 

generalist unstructured array signal model not relying on the typical narrowband array 

assumption used in the GNSS literature [Fer09b] is considered due to the structure of the high-

order BOC signals. The proposed array signal model will additionally allow to keep the problem 

open to the eventual exploitation of unknown spatial GNSS signal structures with directions of 

arrival different to those of the expected LOS signals. It is to be noticed that this can be of high 

interest (and a need) in urban and indoor conditions, where only highly attenuated refracted, 

diffracted and/or reflected multipath components (i.e., NLOS components) might be received 

[Sec12], [Ste03], [Hei08], [Jos14] (i.e., when the  receiver operates in NLOS conditions). 

Therefore, the proposed approach differs from the typical application of arrays of antennas in 

the GNSS literature [Fer09a], [Fer09b], [Fer16], [Sec05], where the LOS signal is considered 

to be always available and the spatial reception diversity is exploited to get rid of multipath 

components and/or interferences disturbing the estimation of the LOS signal.  

In the following, Section 3.3.1 discusses the unambiguous estimation problem in the position 

domain for a single-antenna configuration, and Section 3.3.2 extends the problem to a multiple-

antenna configuration when considering a generalist unstructured array model. Then, Section 

3.3.3 presents the simulation results for both single- and multiple-antenna configurations.  

3.3.1 Unambiguous positioning with high-order BOC signals for single-

antenna receivers 

3.3.1.1 System and signal model 
 

Let us consider a system consisting of M GNSS satellites, each of them transmitting a high-

order BOC signal at a given frequency band with a PRN code orthogonal to the other satellites. 

The M BOC signals are then received by a GNSS receiver equipped with a single antenna. It is 

considered that a coarse estimation of the receiver’s position has been already performed by the 

receiver without unambiguously exploiting the accuracy of the high-order BOC signals. 

Moreover, it is considered that other parameters needed in practice for the derivation of the fine 

receiver’s position solution (like the GNSS satellites’ navigation data or the receiver’s clock 

bias, just to mention some) are known or estimated by other means by the GNSS receiver. The 

target now is to perform a fine estimation of the receiver’s position by fully exploiting, in an 

unambiguous way, the accuracy of the high-order BOC signals received.  
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In general, in harsh propagation conditions typical of urban or indoor scenarios the complex 

baseband signal received by the GNSS antenna from the 𝑀 GNSS satellites in view can be 

modeled as 

 

𝑥𝑀𝑃(𝑡) = ∑ 𝑎𝑚,0(𝑡)𝑔𝑚(𝑡 − 𝜏𝑚,0(𝑡)) exp{𝑗2𝜋𝑓𝑚,0(𝑡)𝑡}

𝑀

𝑚=1

 

+ ∑ ∑ 𝑎𝑚,𝑑(𝑡)𝑔𝑚(𝑡 − 𝜏𝑚,𝑑(𝑡)) exp{𝑗2𝜋𝑓𝑚.𝑑(𝑡)𝑡}

𝐷𝑚−1

𝑑=1

𝑀

𝑚=1

+ 𝑒(𝑡), 

 

 

 

(3.14) 

 

 

where one LOS signal and 𝐷𝑚 − 1 NLOS multipath rays for the m-th satellite are considered, 

𝑎𝑚,𝑑, 𝜏𝑚,𝑑 and 𝑓𝑚,𝑑 are the complex amplitude, time-delay and frequency-shift for the d-th 

signal propagation ray (with 𝑑=0 for the LOS signal) of the m-th satellite, respectively, and 𝑒 

is the noise component, which is modeled as a complex, circularly-symmetric, zero-mean and 

temporally-white Gaussian process. The Doppler effect is considered to be modeled not only 

in the frequency-shift, but also in the time-delay for each signal propagation ray. 𝑔𝑚 is the 

complex baseband model of the BOC-modulated DSSS signal transmitted by the m-th GNSS 

satellite, which can be modeled as in (2.2) in Section 2.1. It is to be noticed that the complex 

amplitudes 𝑎𝑚,𝑑 model both the changes introduced by the data modulated onto the BOC signal 

and any complex amplitude change introduced by the propagation channel for each of the 

propagation rays. 

In the following, the NLOS multipath components appearing in reality in harsh propagation 

conditions are not considered in the signal model used as baseline for the derivation of the 

proposed unambiguous position estimator. The reason is twofold. On the one hand, the joint 

exploitation of the received signals in the unambiguous estimation of the receiver’s position 

(taking advantage of the different satellites’ propagation conditions and geometries), is not only 

a way to improve the SNR conditions observed by the estimator, but also to mitigate the impact 

of multipath on the ambiguity resolution, as will be shown later on in the simulation results. 

Thus, multipath mitigation can be achieved, to some extent, without the need of estimating the 

multipath components (as shown for legacy GNSS signals in [Clo07], [Clo09b]), which would 

increase the complexity of the estimator. And, on the other hand, in realistic harsh propagation 

conditions it is difficult to estimate those multipath components. In practice, the received 

multipath components are typically buried in noise (making very challenging, or unfeasible, to 

distinguish between LOS, NLOS and noise components), it is difficult to model them with a set 

of specular rays (in the best case scenario, the number of rays is still unknown), and their 

properties (in terms of delay and complex amplitude) are changing continuously in time as fast 

as the environment surrounding the user does (in particular for mobile users) [Sec12], [Ste03], 

[Hei08], [Jos14].  
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Based on the previous considerations, the complex baseband signal received by the GNSS 

antenna is modeled based on the LOS contributions of the 𝑀 GNSS satellites in view as 

 

𝑥(𝑡) = ∑ 𝑎𝑚(𝑡)𝑔𝑚(𝑡 − 𝜏𝑚(𝑡)) exp{𝑗2𝜋𝑓𝑚(𝑡)𝑡} + 𝑒(𝑡),

𝑀

𝑚=1

 

 

(3.15) 

 

where the 0-th sub-index used in (3.14) for the LOS signals is omitted for simplicity (i.e., 

𝑎𝑚 ≜ 𝑎𝑚,0, 𝜏𝑚 ≜ 𝜏𝑚,0 and 𝑓𝑚 ≜ 𝑓𝑚,0). The time-delay 𝜏𝑚(𝑡) and frequency-shift 𝑓𝑚(𝑡) 
parameters observed by the receiver for each satellite at time 𝑡 are dependent on the receiver 

position, such that 𝜏𝑚(𝑡) ≜ 𝜏𝑚(𝑡, 𝐩) and 𝑓𝑚(𝑡) ≜ 𝑓𝑚(𝑡, 𝐩), with 𝐩 ≜ 𝐩(𝑡) ∈ ℝ3×1 the position 

vector in the ECEF coordinate system at time 𝑡. This trivial fact can be exploited to derive the 

receiver’s position directly in the position domain, as already proposed in the literature for 

legacy signals [DiE07], [Clo07], [Clo09b], [Axe11], [Bra10], [Est14], [Nar14], or, 

equivalently, for solving the unambiguous estimation problem in the position domain when 

using high-order BOC signals. Based on this dependence and (3.15), we can define a basis 

function 𝑏𝑚 for the m-th satellite as 

 

𝑏𝑚(𝑡, 𝐩) = 𝑔𝑚(𝑡 − 𝜏𝑚(𝑡, 𝐩)) exp{𝑗2𝜋𝑓𝑚(𝑡, 𝐩)𝑡}, (3.16) 

 

where the dependence of the position vector 𝐩 with the time is omitted for simplicity. Let us 

consider now the vector 𝐱 = [𝑥(𝑡0)…  𝑥(𝑡0+𝐾−1)]
𝑇 ∈ ℂ𝐾×1 containing a snapshot of 𝐾 samples 

of the signal received by the GNSS antenna with sampling period 𝑇𝑠 = 𝑡𝐾 − 𝑡𝐾−1. Assuming 

that 𝑎𝑚, 𝜏𝑚 and 𝑓𝑚 parameters are constant during the observation time 𝑇𝑠𝐾 (being therefore 

the position 𝐩 considered constant during the observation time), the vector 𝐱 can be modeled 

as  

 

𝐱 ≈ 𝐁(𝐩)𝐚 + 𝐞, (3.17) 

 

where  𝐚 = [𝑎1… 𝑎𝑀]
𝑇 ∈ ℂ𝑀×1 gathers the complex amplitudes for the M LOS contributions, 

𝐞 ∈ ℂ𝐾×1 is the complex noise vector (with 𝐞~𝐶𝑁(𝟎, σ2𝐈)), and 𝐁(𝐩) = [𝐛1(𝐩)…𝐛𝑀(𝐩)] ∈
ℂ𝐾×𝑀 is the basis function matrix, which is composed by the basis function vectors for each 

satellite 𝐛𝑚 = [𝑏𝑚(𝑡0, 𝐩)…𝑏𝑚(𝑡0+𝐾−1, 𝐩)]
𝑇 ∈ ℂ𝐾×1. 
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3.3.1.2 Unambiguous position estimator: the MISO-MLE solution 
 

Based on the signal model defined in (3.17), and neglecting irrelevant additive and 

multiplicative constants, the MLE of the position can be obtained by minimizing the cost 

function [Kay13] 

 

Λ1(𝐩, 𝐚) = ‖𝐱 − 𝐁(𝐩)𝐚‖2. (3.18) 

 

In the following, an a priori coarse position estimation 𝐩̂𝑐 is considered in the optimization 

problem, which will drastically simplify in practice the implementation of the proposed ML-

based solution. Exploiting this a priori coarse position, we can define the unambiguous 

positioning problem as the ML-based optimization problem [Gar19a] 

 

𝐩̂, 𝐚̂ = argmin
𝐩,𝐚

Λ1(𝐩, 𝐚)

                 𝑠. 𝑡. ‖𝐩 − 𝐩̂𝒄‖ < 𝜓,
 

 

(3.19) 

 

where 𝜓 defines the search area around the coarse position estimation. In order to derive the 

ML-based solution at post-correlation level, let us define the correlations r̂𝑥𝑥 = 𝐱𝐻𝐱, 𝐫̂𝑥𝑏(𝐩) =
𝐁𝐻(𝐩)𝐱, and 𝐑̂𝑏𝑏(𝐩) = 𝐁𝐻(𝐩)𝐁(𝐩). Based on these definitions, the vector of complex 

amplitudes 𝐚 minimizing Λ1 corresponds to the well-known LS estimator [Kay13] 

 

𝐚̂ = 𝐑̂𝑏𝑏
−1
(𝐩)𝐫̂𝑥𝑏(𝐩). (3.20) 

 

Substituting now (3.20) into (3.18), a cost function only dependent on 𝐩 is obtained,  

 

Λ2(𝐩) = r̂𝑥𝑥 − 𝐫̂𝑥𝑏
𝐻(𝐩)𝐑̂𝑏𝑏

−1
(𝐩)𝐫̂𝑥𝑏(𝐩), (3.21) 

 

which is equivalent to the cost function exploited in the DPE solution for legacy GNSS signals 

[Clo07]. Therefore, the unambiguous ML-based estimator of the position can be defined as 

[Gar19a] 
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𝐩̂ = argmax
𝐩

{𝐫̂𝑥𝑏
𝐻(𝐩)𝐑̂𝑏𝑏

−1
(𝐩)𝐫̂𝑥𝑏(𝐩)}

𝑠. 𝑡. ‖𝐩 − 𝐩̂𝒄‖ < 𝜓.
 

 

(3.22) 

 

In the following, the estimator in (3.22) is referred to as the MISO-MLE solution. 

Fig. 3.12 shows an example of the cost function to be maximized in (3.22) (shown for 

illustrative purposes only with respect to the horizontal position plane) when considering the 

transmission of a BOCcos(15, 2.5) signal by eleven satellites in view by the receiver at good 

SNR conditions, and with an horizontal dilution of precision (HDOP) equal to one. As can be 

observed in this example, the multiple correlation peaks of the BOCcos(15, 2.5) signals (see Fig. 

2.3 in Section 2.1) induce the appearance of multiple peaks also in the position domain. In 

particular, the maximum at the [0,0] position corresponds to the actual position of the receiver, 

while the rest of local peaks (i.e., “false” position peaks) correspond to the contributions of the 

side peaks in the horizontal position plane. 

In case low SNR conditions are observed for the signals of all or most of the satellites in 

view, it might be challenging to unambiguously derive the receiver’s position for high-order 

BOC signals, even when considering the exploitation of the transmission diversity in the 

position domain, as proposed herein, resulting in biased position solutions with a non-negligible 

probability. In this situation, different alternatives might be followed. One possibility is to 

 
 

 
Fig. 3.12. Illustration of the normalized cost function in the horizontal position plane for a 

scenario with eleven satellites (with an equivalent HDOP equal to 1.0) transmitting BOCcos(15, 

2.5) signals when considering high SNR conditions for all the satellites [Gar19a]. 
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derive only a coarse position estimation based on the BPSK envelopes of the high-order BOC 

signals in view, losing the higher accuracy provided by the BOC signals, but avoiding the 

ambiguity problem. Another option is to filter the obtained position solutions in the time domain 

(e.g., applying a Kalman filter or other filtering approaches) such that the biased positions (i.e., 

the outliers in the position domain) are filtered out. This solution might be applicable at SNR 

conditions for which the probability to derive biased positions is still relatively low. For worse 

conditions, we can also consider the non-coherent integration (or other integration approaches) 

of 𝑅 consecutive signal snapshots in order to increase the equivalent SNR conditions under 

which the position estimator will operate. Last, but not least, we could consider the exploitation 

of an array of antennas in order to introduce an additional processing gain, as will be proposed 

later on. 

 

3.3.1.3 Implementation aspects of the MISO-MLE solution 

 

The non-linear optimization problem in (3.22) is bounded by the constraint imposed, limiting 

the search space around the a priori coarse position solution available by the receiver before 

the fine unambiguous position estimation is performed. Taking into account that the error of 

the coarse position can be in practice in the order of several meters or tens of meters (being 𝜓 

in (3.22) defined accordingly), and that the optimization problem is non-convex (as shown in 

the example of Fig. 3.12), the direct application of a grid search approach [Kay13] is considered 

feasible and of interest. The resolution of the grid should be enough to detect unambiguously 

the maximum of the cost function corresponding to the actual receiver’s position (typically, 

sub-meter grid resolution may be needed). 

In case a multi-correlator architecture is considered by the receiver (i.e., a partial or complete 

sampling, with enough resolution, of the cross-correlation function for each of the satellites in 

view is already estimated by the receiver), the cross-correlation samples 𝐫̂𝑥𝑏 for each evaluated 

position 𝐩 in the grid search (as per (3.22)) can be derived from the available multi-correlation 

samples. Let us assume that in this case the prompt correlation sample (derived from the prompt 

correlator) for all the satellites in view is driven by the a priori coarse position estimation 𝐩̂𝑐 

(which is just a possible implementation scenario). Additionally, let us consider that each 

sampled cross-correlation function is interpolated in order to derive a continuous version of the 

estimated cross-correlation function r̂𝑚(𝛿), with r̂𝑚(0) corresponding to the prompt correlation 

sample for the m-th satellite. Based on this, the cross-correlation samples in 𝐫̂𝑥𝑏(𝐩) can be 

derived as [Gar19a] 

 

𝐫̂𝑥𝑏(𝐩) = [r̂1(𝛿1)… r̂𝑀(𝛿𝑀)]
𝑇 ∈ ℂ𝑀×1, (3.23) 
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where 𝛿𝑚 ≜ 𝛿𝑚(𝐩, 𝐩̂𝑐) is the expected difference in the m-th satellite’s pseudorange introduced 

by the change in position from the coarse position estimation 𝐩̂𝑐 to the evaluated position 𝐩. 

This makes the proposed approach fully compatible with state-of-the-art multi-correlator 

receiver architectures and single-satellite-based acquisition and tracking engines. The resulting 

unambiguous GNSS receiver can be based on the high-level architecture depicted in Fig. 3.13. 

Finally, the derivation of the cost function in (3.22) can be simplified by approximating 

𝐑̂𝑏𝑏(𝐩) as an identity matrix when the cross-correlations between the DSSS signals 𝑔𝑚 of the 

different GNSS satellites can be considered approximately null (as considered in some practical 

implementations of collective detection and direct positioning techniques [Axe11], [Est14], 

[Nar14]). This simplification is exploited in the simulations performed with the MISO-MLE in 

Section 3.3.3. 

 

3.3.1.4 Comparison with state-of-the-art techniques 
 

 
 
 

 
 

Fig. 3.13. High-level block diagram of a multi-correlator-based GNSS receiver applying the 

MISO-MLE solution [Gar19a]. 

RF FE 
& ADC

x

x

Multi-channel & multi-
correlator processing

channel 1

channel 2

channel M

.
.

.

-0
.8

-0
.6

-0
.4

-0
.2

0
0
.2

0
.4

0
.6

0
.8

-1

-0
.50

0
.51

Normalized Correlation
T
c
 [

c
h
ip

s
]

Position 
Engine

(coarse solution)

Z correlators
per channel 

𝐩̂𝑐

𝐩

Nav. 
data

Unambig. 
Position 

Estimator
(MISO-MLE)



 

Chapter 3. Unambiguous Positioning with High-Order BOC Signals 

 
 

54 
 

In terms of performance, the main advantage of the proposed single-antenna unambiguous 

position estimator with respect to the unambiguous state-of-the-art techniques operating at 

pseudorange level is the higher robustness solving the ambiguity problem at low C/No 

conditions and in the presence of severe multipath. In terms of computational complexity, the 

proposed approach requires a higher number of correlators per tracked signal (in the order of 

tens or hundreds, depending on the BOC signal being considered) than state-of-the-art 

unambiguous techniques, where typically five correlators are used to solve the ambiguity. 

Nevertheless, it is to be noticed that multi-correlator architectures are nowadays broadly used 

in mass-market receivers, in particular when targeting the operation in harsh propagation 

conditions, so their real-time implementation is not considered a problem. On the other hand, 

the computational burden of solving the unambiguous optimization problem in (3.22) based on 

the output of the multiple correlators is considerably higher than that of the discriminators used 

in state-of-the-art single-satellite-based unambiguous tracking techniques. Taking into account 

that the proposed unambiguous position estimator can be applied in parallel to a conventional 

positioning engine, as proposed in the block diagram depicted in Fig. 3.13, the solution of (3.22) 

can be derived with a lower rate (typically, down to 1 Hz) than the update rate of the single-

satellite tracking loops, such that the computational burden can be adjusted in order to allow 

the real-time implementation in conventional receiver architectures. 

Comparing now the proposed unambiguous estimator to direct positioning and collective 

detection and acquisition techniques applied to legacy signals [DiE07], [Clo07], [Clo09b], 

[Axe11], [Bra10], [Est14], [Nar14], it is to be noticed that the main target in this section is not 

to allow the exploitation of signals that otherwise could not be acquired or tracked (as achieved 

with the application of collective acquisition techniques), but to solve in a robust way the 

ambiguity problem appearing when tracking high-order BOC signals. This allows the 

application of the proposed unambiguous estimator based on conventional acquisition, tracking 

and positioning engines, relying directly on the output of the correlators and a potentially 

ambiguous position solution, as shown in Fig. 3.13. In this way, the computational burden of 

the overall receiver can be reduced with respect to conventional direct positioning and 

collective techniques, at the cost of not achieving an improved acquisition and tracking 

sensitivity. 

Last but not least, it is worth to briefly compare the single-antenna unambiguous position 

estimator to the LAMBDA-based method proposed in [Wen14]. Both techniques solve the 

ambiguity problem in the position domain. The main difference is that while the estimator 

proposed in this section exploits directly the complex samples obtained from the multiple 

correlators for each BOC signal being tracked, the LAMBDA-based method exploits the code 

and sub-carrier measurements previously estimated for each of the BOC signals (i.e., an 

estimation process has been already applied for each BOC signal before solving the ambiguity 

in the position domain). The direct exploitation of the output of the correlators (i.e., the sampled 

cross-correlation functions for each BOC signal being tracked) is expected to provide the 

optimum performance in terms of ambiguity resolution. Indeed, this will allow to solve the 

ambiguity problem even when most of the BOC signals being tracked are highly affected by 
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low C/No conditions and severe multipath. Moreover, this approach will allow the full 

exploitation of the spatial reception diversity in the multi-antenna configuration discussed in 

Section 3.3.2. 

 

3.3.2  Unambiguous positioning with high-order BOC signals for multiple-

antenna receivers 

3.3.2.1 System and signal model 
 

Let us consider the same system model used in Section 3.3.1, but exploiting now an array of 

N antennas in the GNSS receiver, as depicted in Fig. 3.14. In this array of antennas, the 

distribution of the antennas is arbitrary, and the relative position of each of the antennas with 

respect to the receiver phase center is a priori known by the receiver and does not change with 

time. Therefore, the position 𝐩𝑛 for each antenna can be defined based on the position 𝐩0 of 

the receiver phase center, i.e., 𝐩𝑛 = 𝐩0 − 𝚫𝐩𝑗, being 𝐩0 the position to be unambiguously 

estimated in this case. Moreover, all the signals received by the N antennas are considered to 

be referenced to the same receiver clock. As for the single-antenna case, it is assumed that the 

receiver has already performed a coarse estimation of the receiver’s position without 

 
 

 
 

Fig. 3.14. Illustration of the MIMO-GNSS system. 
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unambiguously exploiting the accuracy of the high-order BOC signals. Thus, the target in this 

section is to perform a fine estimation of the receiver’s phase center position by fully exploiting, 

in an unambiguous way, the accuracy of the high-order BOC signals received with the array of 

antennas and jointly exploiting both transmission and reception diversities. 

In order to build now the complete signal model for the 𝑁 receiver’s antennas with an 

arbitrary distribution, a generalist unstructured antenna array model is considered, not relying 

on the typical narrowband array assumption exploited in the GNSS literature [Fer09a], 

[Fer09b], [Fer16], [Sec05], and with an arbitrary structure of the complex amplitudes of the 

𝑀𝑁 LOS signal contributions received. The narrowband array model is proposed not to be 

applied herein given the high accuracy provided by the high-order BOC signals, which is in the 

order of few cm for nominal C/No conditions [Gar16a] (i.e., in the order, or below, the distance 

between the receiver’s antennas). Thus, modeling the propagation delays between the receiver’s 

antennas as phase shifts is not realistic, and could result in additional biases in the estimation 

of the high-order BOC signals. Therefore, the different propagation delays on the received high-

order BOC signals for each antenna need to be modeled. On the other hand, the unstructured 

array model is an interesting and desired feature for several reasons. First of all, this model is 

beneficial in order for the proposed solution to be independent of the quality of the phase 

calibration of the array of antennas, being applicable to un-calibrated arrays and/or low-end 

array solutions. Moreover, this makes the solution also independent of the phases of the 

transmitted signals, so it can be applied when unknown data is modulated on the BOC signals. 

And last, but not least, this will make the resulting array estimator robust to additional phase 

distortions introduced by the propagation channel.  

Temporally and spatially white Gaussian noise is considered in the array signal model. 

Therefore, the noise component is not meant to model unknown spatial signal structures created 

by multipath and/or interference sources, as typically considered in the GNSS literature 

[Fer09a], [Fer09b], [Fer16], [Sec05] (where the LOS signals are assumed to be always available 

and the spatially colored noise is filtered out to mitigate the impact of those multipath and/or 

interference sources). The presence of the LOS signal components in harsh propagation 

conditions typical of urban or indoor environments is not always ensured due to the blockage 

and shadowing effects. So, trying to spatially filter out the NLOS multipath components 

received with directions of arrival different to those of the originally expected LOS signals, 

might not be necessarily beneficial in this type of environment. Indeed, those NLOS signal 

components might be needed to be exploited for enabling the derivation of an unambiguous 

position solution in the absence of most or all of the LOS signal components. Therefore, instead 

of mitigating the impact of multipath on the ambiguity resolution by filtering out the spatially 

colored noise components (which would additionally increase the computational burden of the 

estimator), it is proposed to do so by jointly exploiting the different satellites’ propagation 

geometries together with the spatial diversity provided by the array of antennas (being the 

multipath mitigation tackled without the need of modeling or estimating the multipath 

components, as will be shown later on). 
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Based on the previous considerations, the complex baseband signal received by the n-th 

GNSS antenna from the LOS contributions of the 𝑀 GNSS satellites in view is modeled as 

 

𝑥𝑛(𝑡) = ∑ 𝑎𝑚,𝑛(𝑡)𝑔𝑚(𝑡 − 𝜏𝑚,𝑛(𝑡)) exp{𝑗2𝜋𝑓𝑚,𝑛(𝑡)𝑡} + 𝑒𝑛(𝑡),

𝑀

𝑚=1

 

 

(3.24) 

 

where 𝑎𝑚,𝑛, 𝜏𝑚,𝑛 and 𝑓𝑚,𝑛 are the complex amplitude, the time-delay and the frequency-shift 

of the BOC signal from the m-th satellite received by the n-th antenna, respectively, and 𝑒𝑛 is 

the complex noise observed by the n-th antenna. Following the same approach used for the 

single-antenna case in (3.16) and (3.17), we can define the vector 𝐱𝑛 =
[𝑥𝑛(𝑡0)… 𝑥𝑛(𝑡𝐾−1)]

𝑇 ∈ ℂ𝐾×1 containing a signal snapshot of K samples received by the n-th 

antenna, which is modeled as 𝐱𝑛 ≈ 𝐁(𝐩𝑛)𝐚𝑛 + 𝐞𝑛, with 𝐁(𝐩𝑛) the basis function matrix for 

the n-th antenna.  

Since the narrowband antenna array model should not be considered when targeting cm-

level accuracies with high-order BOC signals, as discussed earlier, the different propagation 

delays of the signals received by each antenna need to be modeled. Thus, a basis function 𝐁(𝐩𝑛) 
for each antenna needs to be considered in the signal model. Exploiting now the temporally and 

spatially white Gaussian noise assumption, we can simplify the array model representation by 

defining a multi-antenna basis function matrix 𝐒(𝐩0) based on the single-antenna basis function 

matrices 𝐁(𝐩𝑛) ≜ 𝐁(𝐩0 − 𝚫𝐩𝑛) as [Gar19a] 

 

𝐒(𝐩0) = [

𝐁(𝐩0 − 𝚫𝐩1) 𝟎

 𝟎 𝐁(𝐩0 − 𝚫𝐩2)
… 𝟎
…            𝟎           

⋮                      ⋮
𝟎                      𝟎

⋱ ⋮
… 𝐁(𝐩0 − 𝚫𝐩𝑁)

 ], 

 

 

(3.25) 

 

such that the signal snapshots observed by the 𝑁 antennas can be gathered in the vector 𝐲 =
[𝐱1

𝑇… 𝐱𝑁
𝑇]𝑇 ∈ ℂ𝑁𝐾×1, which can then be modeled as  

 

𝐲 ≈ 𝐒(𝐩0)𝐜 + 𝐢, (3.26) 

 

with the vector  𝐜 = [𝐚1
𝑇 … 𝐚𝑁

𝑇]𝑇 ∈ ℂ𝑀𝑁×1 containing all the complex amplitudes of the 

expected 𝑀𝑁 LOS contributions, and 𝐢 = [𝐞1
𝑇… 𝐞𝑁

𝑇] ∈ ℂ𝑁𝐾×1 gathering the noise 
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components of the 𝑁 antennas, being the noise considered to be normalized between antennas, 

with 𝐢~𝐶𝑁(𝟎, σ2𝐈)), and therefore 𝐲~𝐶𝑁(𝐒(𝐩0)𝐜, σ
2𝐈). It is to be noticed that the signal model 

in (3.26) differs from the typical matrixial representation of a MIMO signal model based on a 

MIMO channel matrix (i.e., typically the MIMO channel matrix is defined as 𝐇 = [𝐚1… 𝐚𝑁] ∈
ℂ𝑀×𝑁). Nevertheless, the representation used simplifies the later derivation of the proposed 

ML-based estimator and is in line with the assumptions considered. 

 

3.3.2.2 Unambiguous position estimator: the MIMO-MLE solution 
 

Based on the MIMO-GNSS signal model in (3.26), the complex multivariate Gaussian PDF of 

 𝐲 with 𝐩0 as parameter can be defined as [Kay13] 

 

𝑝(𝐲, 𝐩0) =
1

𝜋𝑁𝐾𝜎2𝑁𝐾
𝑒𝑥𝑝 [−

‖𝐲 − 𝐒(𝐩0)𝐜‖
2

𝜎2
]. 

 

(3.27) 

 

Therefore, neglecting irrelevant additive and multiplicative constants, the MIMO-MLE of the 

receiver’s phase center position can be obtained by minimizing the cost function 

 

Λ3(𝐩0, 𝐜) = ‖𝐲 − 𝐒(𝐩0)𝐜‖
2. (3.28) 

 

Exploiting now the vector of complex amplitudes 𝐜 minimizing Λ3, which corresponds to the 

LS estimator  

  

𝐜̂ = 𝐑̂𝑠𝑠
−1
(𝐩0)𝐫̂𝑦𝑠(𝐩0), (3.29) 

 

where 𝐫̂𝑦𝑠(𝐩0) = 𝐒𝐻(𝐩0)𝐲 and 𝐑̂𝑠𝑠(𝐩0) = 𝐒𝐻(𝐩0)𝐒(𝐩0), it can be shown that the minimization 

of the cost function in (3.28) is equivalent to maximizing the cost function [Gar19a] 
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Λ4(𝐩0) = ∑ 𝐫̂𝑥𝑛𝑏
𝐻(𝐩0 − 𝚫𝐩𝑛)𝐑̂𝑏𝑏

−1
(𝐩0 − 𝚫𝐩𝑛)

𝑁

𝑛=1

𝐫̂𝑥𝑛𝑏(𝐩0 − 𝚫𝐩𝑛), 
 

(3.30) 

 

where the cross-correlations for each of the receiver’s antennas are defined as 𝐫̂𝑥𝑛𝑏(𝐩0 −

𝚫𝐩𝑛) ≜ 𝐫̂𝑥𝑛𝑏(𝐩𝑛) = 𝐁𝐻(𝐩0−𝚫𝐩𝑛)𝐱𝑛, and 𝐑̂𝑏𝑏(𝐩0 − 𝚫𝐩𝑛) ≜ 𝐑̂𝑏𝑏(𝐩𝑛) = 𝐁𝐻(𝐩0 −

𝚫𝐩𝑛)𝐁(𝐩0 − 𝚫𝐩𝑛). Considering now the availability of an a priori coarse position estimation 

𝐩̂𝑐, we can define the unambiguous positioning problem as the ML-based optimization problem 

[Gar19a] 

 

𝐩̂0 = argmax
𝐩0

Λ4(𝐩0)

                   𝑠. 𝑡. ‖𝐩0 − 𝐩̂𝒄‖ < 𝜓,
 

 

(3.31) 

 

where 𝜓 is defined as for the single-antenna case in (3.22). In the following, the estimator in 

(3.32) is referred to as the MIMO-MLE solution. 

 

3.3.2.3 Implementation aspects of the MIMO-MLE solution 
 

The non-linear optimization problem subject to a constraint in (3.31) can be solved via the direct 

application of a grid search approach, given the bounded search space in the position domain. 

Moreover, considering the implementation of a multi-correlator architecture by the receiver for 

each of the receiver’s antennas (with all the correlators driven by 𝐩̂𝑐), the cross-correlation 

samples 𝐫̂𝑥𝑛𝑏(𝐩0 − 𝚫𝐩𝑛) for each evaluated position 𝐩0 can be derived from the available 

multi-correlation samples, as in (3.23) for the single-antenna configuration, but in this case 

accounting for the relative position of each of the antennas with respect to the receiver’s phase 

center, i.e., [Gar19a] 

 

𝐫̂𝑥𝑛𝑏(𝐩0 − 𝚫𝐩𝑛) = [r̂1,n(𝛿1,n)… r̂𝑀,n(𝛿𝑀,n)]
𝑇
, (3.32) 

 

with r̂𝑚,𝑛(𝛿) the continuous interpolated version of the estimated cross-correlation function for 

the m-th satellite and n-th antenna, and 𝛿𝑚,𝑛 ≜ 𝛿𝑚,𝑛(𝐩0, 𝐩̂𝑐) the expected pseudorange 

difference for the m-th satellite and n-th antenna introduced by the change in position from the 
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coarse position estimation 𝐩̂𝑐 to 𝐩0 − 𝚫𝐩𝑛, with 𝐩0 the current evaluated position. The resulting 

multi-antenna unambiguous GNSS receiver can be based on the high-level architecture depicted 

in Fig. 3.15.  

As for the single-antenna configuration, in the MIMO-MLE solution the derivation of the 

cost function in (3.30) can be simplified by approximating 𝐑̂𝑏𝑏(𝐩) as an identity matrix when 

the cross-correlations between the different GNSS signals can be considered approximately 

null. This simplification is exploited in the simulations performed with the MIMO-MLE in 

Section 3.3.3.  

As an alternative approach for the exploitation of the multiple antennas, these could be used 

in the unambiguous positioning solution only when required (i.e., during harsh propagation 

conditions), using by the default only one of the antennas (for which a high-accuracy solution 

can be derived in mild propagation conditions). Additionally, if only meter-level (or above) 

positioning accuracies are expected to be achievable with the MIMO-MLE solution (e.g., 

indoors), and considering relatively short baselines between antennas (e.g., of the order of tens 

of cm), the cost function in (3.30) may be also simplified by approximating 𝚫𝐩𝑛 as a zero 

vector. This simplification removes the need to know the baselines between antennas. 
 
 
 

 
 

Fig. 3.15. High-level block diagram of a multi-antenna and multi-correlator-based GNSS 

receiver applying the MIMO-MLE solution [Gar19a]. 
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3.3.3  Simulation results 
 

The unambiguous positioning with high-order BOC signals based on the MISO- and MIMO-

MLE solutions (for single- and multiple-antenna receiver configurations, respectively) have 

been simulated via a semi-analytical approach at post-correlation level when considering 

BOCcos(15, 2.5) signals being transmitted by the GNSS satellites, as originally presented in 

[Gar19a]. In order to focus on the BOC ambiguity resolution problem at low SNR conditions 

(which is already a very challenging task), other effects that could degrade further the ability of 

the receiver to identify unambiguously the main correlation peak are not considered herein since 

can be tackled by other means as part of the GNSS receiver front-end design (e.g., the 

application of non-linear phase filters in the receiver front-end highly distorting the cross-

correlation function of the BOC signal, or eventual under-sampling or quantization issues 

impacting the recovery of the original BOC autocorrelation function [Gar16a], [Gar17a], as 

discussed in Section 3.2). Therefore, it is considered that, for high SNR conditions (where the 

noise impact is negligible) and in the absence of multipath, the receiver should be able to 

recover a symmetric filtered version of the autocorrelation function. A bandwidth of 40 MHz 

is used, allowing the reception of the two main frequency lobes of the BOCcos(15, 2.5) signal.  

The usage of BOCcos(15, 2.5) signals is considered herein as a representative case of high-

order BOC signal. The probability of false lock (i.e., the probability to have a biased 

pseudorange estimation) when estimating the maximum of the BOCcos(15, 2.5) cross-

correlation function computed from a signal snapshot in AWGN conditions is relatively 

important for medium-to-low SNR conditions [Gar16a], as discussed in Section 3.2. As shown 

in Section 3.2.3, a probability of false lock above around 10-3 is obtained by the MCE estimator 

when exploiting 10 integration periods for SNR values per coherent integration period below 

around 10 dB (which corresponds to a post-correlation C/No of 30 dB-Hz for a coherent 

integration period of 10 ms). This results in a non-negligible probability of having biased 

position solutions when using the conventional two-steps positioning approach [Clo09b] based 

on single-satellite unambiguous estimation techniques, used in the following as reference. In 

the conventional two-steps approach considered in this section the position solution is 

computed per signal snapshot based on the application of a weighted least squares (WLS) 

solution to the individual pseudorange measurements derived from the estimation of the 

maximum of the cross-correlation function of the BOC signal for each satellite, which 

corresponds to the MCE estimator in the DOME approach (equivalent to the MLE of the 

pseudorange in the absence of correlation distortions or when considering the application of a 

perfect match filter in the correlation process). Note that a correlation span of ± 1 chip is 

considered in the MCE estimator (see Table 3.2 for further details).  

The first simulated scenario considers eleven satellites in view by a static receiver in a 

representative geometric configuration for which the HDOP is equal to one. An AWGN channel 
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(spatially white for the array of antennas) is considered in this scenario for simplicity since, at 

medium-to-low SNR conditions, a simple AWGN is sufficient for inducing the ambiguity 

problem (as proved in Section 3.2.3). The same SNR conditions are considered for all the 

received signals, and additional system errors (e.g., satellites’ clock and orbit errors) and 

ionospheric and tropospheric errors are not included in the simulations. For the MIMO system 

configuration, 4 antennas in an arbitrary distribution are simulated in the array of antennas, 

whose attitude and relative position with respect to the receiver phase center is considered to 

be known a priori, and with all the antennas’ signals considered to be referenced to the same 

receiver clock. The phase of the simulated correlation functions at post-correlation level per 

satellite and antenna is random and independent between satellites and antennas. Therefore, no 

phase calibration is considered in the array of antennas.  

The second simulated scenario is equivalent to the first scenario, but controlled fading and 

multipath are introduced for some of the simulated propagation paths. In particular, out of the 

eleven satellites in view by the receiver, the LOS signals of the five satellites with the lowest 

elevations (which correspond to the satellites in view with an elevation below around 30 

degrees) are received with an attenuation of 30 dB with respect to the previous scenario (i.e., a 

constant fading of 30 dB is introduced to the LOS signals of those satellites). For the remaining 

six satellites, an additional constant attenuation of the LOS signal of 30 dB and a multipath ray 

with a relative delay of 10 m and a relative power of -10 dB with respect to the original LOS 

signal are introduced in the simulation in an incremental way (i.e., added to one more satellite 

 
 

Parameter  Value 

Modulation BOCcos(15, 2.5) 

Receiver BW 40 MHz 

Correlator spacing 0.031 chips 

Correlation Span ± 1 chip 

Number of satellites (M) 

Number of antennas (N) 

11 

[1, 4, 8] 

Noise  AWGN  

Fading and multipath Controlled (2nd scenario) and light-

indoor (3rd scenario) 
 

 

Table 3.2. Simulation parameters used for the assessment of the MISO- and MIMO-MLE 

solutions [Gar19a]. 
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for each new simulation). It is to be noticed that, for the satellites in which controlled fading 

and multipath are introduced, the multipath ray component is dominant, with 20 dB more power 

than the attenuated LOS signal. Moreover, the relative delay of the multipath ray with respect 

to the LOS signal (i.e., 10 m) corresponds approximately to the relative delay of the secondary 

peak of the autocorrelation function of the BOCcos(15, 2.5) with respect to the main peak (see 

Fig. 2.3 in Section 2.1). Thus, the second scenario is considered a worst-case scenario  for the 

pseudorange ambiguity resolution since it is inducing that the maximum of the resulting cross-

correlation function is approximately located where the secondary peak of the original 

autocorrelation function is expected (i.e., biased pseudorange estimations are induced when the 

MLE of the pseudorange is used) . This scenario has been used in order to assess the robustness 

of the proposed estimators in controlled fading and multipath conditions highly impacting the 

ambiguity resolution per satellite for a different number of satellites. In the case of the array of 

antennas, the same fading and multipath conditions are considered for all the antennas for 

simplicity. Although the simulated fading and multipath conditions are simplified with respect 

to those observed in real urban or indoor propagation scenarios (where multiple refracted, 

diffracted and/or reflected multipath components are actually received, as assessed in third 

scenario), it is of interest to perform the assessment of the MISO- and MIMO-MLE solutions 

emulating in a controlled way the harsh propagation conditions that are in practice triggering 

the main problems that the estimators are expected to be facing when operating in reality (i.e., 

with an important fading of the LOS signal for many of the satellites in view, and an additional 

impact of the NLOS multipath rays).  

Finally, a third simulated scenario in light-indoor conditions is considered. For this purpose, 

the realistic wideband satellite-to-indoor channel model in the Recommendation ITU-R P.681 

[ITU17] has been used.  In particular, the propagation conditions for a room with windows are 

simulated (for further details, see Section 4.4). In this scenario, a receiver featuring 1, 4 and 8 

antennas is considered. An 8-antenna configuration is also considered in this third simulated 

scenario in order to further understand the benefit introduced by the spatial diversity in realistic 

propagation conditions. It is to be noticed that the spatial correlations between the signals 

received for each antenna are considered by the indoor channel model used. Therefore, the 

actual processing gain introduced by the exploitation of arrays of antennas in indoor 

propagation conditions is assessed in a realistic way. The simulation parameters used in the 

simulated scenarios presented above are summarized in Table 3.2. The reference SNR at post-

correlation level per satellite LOS signal (when not considering yet the channel) is 35 dB for 

all the satellites (equivalent to a post-correlation C/No of 45 dB-Hz for a coherent integration 

period of 100 ms). 

The MISO- and MIMO-MLE estimators are used to unambiguously estimate the horizontal 

2D position of the receiver. The conventional two-steps approach (applied to the single-antenna 

configuration) exploiting a WLS solution is used as reference in order to understand the benefit 

of jointly exploiting the spatial diversity in the proposed estimators. In the MISO- and MIMO-

MLE estimators, the solution is derived considering a search space in the horizontal 2D position 

domain limited to a square of 100 by 100 m around the truth receiver position, which is a 
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realistic search space considering the availability of an a priori coarse position estimation (e.g., 

based on the position solution obtained from the unambiguous, but noisier, BPSK-envelope of 

the BOC signal). Based on the assumption of an a priori coarse position estimation, other 

parameters like e.g., the receiver’s clock bias, are also considered a priori known in the 

problem, since can be estimated by other means as part of the coarse position estimation. For 

the first and second scenarios, 1000 Monte Carlo independent runs are considered per receiver 

configuration and evaluated SNR value for the derivation of the results.  

The root-mean-square error (RMSE) of the horizontal position solution obtained for the 

proposed MISO- and MIMO-MLE estimators for the first simulated scenario is shown in Fig. 

3.16 with respect to the SNR per satellite signal at post-correlation level, together with the 

results obtained for the reference WLS solution. Additionally, the lower bound (LB) of the 

horizontal position error is also included for both single- and multiple-antenna configurations. 

This LB is computed based on the CRLB in AWGN conditions of the pseudorange estimation 

per satellite (based on [Wei03] without considering the potentially biased estimations), and the 

HDOP for the single-antenna configuration (i.e., LB=HDOP√CRLB); and, for the multiple-

antenna configuration, also the maximum gain expected to be introduced by the array of 

antennas (i.e., 10log10(𝑁), with 𝑁 equal to four in the simulated case).  

As can be observed, the reference WLS solution is impacted by the occurrence of false locks 

at pseudorange level (i.e., biased pseudorange estimations) for SNR values (at post-correlation 

level) below around 22.5 dB, and only above this value attains the single-antenna LB (which is 

 
 

 
 

Fig. 3.16. RMSE of the horizontal position estimated with the MISO- and MIMO-MLE 

solutions and the conventional two-steps approach based on a WLS solution in an AWGN 

channel. Note that the SNR per satellite signal at post-correlation level is indicated [Gar19a]. 
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in line with the results obtained in Section 3.2.3, where a probability of false lock below around 

10-3 is achieved for an SNR per coherent integration period of 20 dB). The MISO-MLE 

(equivalent to DPE) is able to attain the single-antenna LB for lower SNR conditions than the 

reference WLS solution, down to around 10 dB (or an equivalent post-correlation C/No level 

of  20 dB-Hz for a coherent integration period of 100 ms). This important improvement in the 

unambiguous estimation of the position is introduced by the joint exploitation of the 𝑀 

satellites’ BOCcos(15, 2.5) signals in the position domain, which enables an improvement of the 

equivalent SNR conditions observed by the MISO-MLE in the position domain with respect to 

the one observed per satellite’s signal. In this first simulated scenario, where the same SNR 

conditions are considered for all the received signals, the observed improvement is of up to 

10log10(𝑀) dB. This makes the MISO-MLE in the position domain more robust solving the 

ambiguity problem than the conventional two-steps approach, in which the ambiguity is solved 

at pseudorange level and the position solution is derived based on a WLS solution. Moving to 

the multi-antenna configuration, it is observed that the MIMO-MLE solution attains the multi-

antenna LB even at lower SNR conditions than the MISO-MLE (from around 10 dB down to 5 

dB) thanks to the additional processing gain introduced by the array of antennas, of up to 

10log10(𝑁) dB (i.e., 6 dB for the four antennas considered in the simulation).    

In order to complete the comparison between the different receiver configurations assessed 

in the first simulation scenario, Fig. 3.17 shows the 95-percentile of the horizontal position 

errors instead of the RMSE shown in Fig. 3.16. The RMSE is already impacted even when the 

probability to obtain biased positioning solutions is relatively low, so the 95-percentile figure 

might be actually more interesting to really understand, from a practical point of view, the 

 
 

 
 

Fig. 3.17.  Horizontal position error (95-perc) for the results shown in Fig. 3.16 [Gar19a]. 
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robustness of the proposed solution (i.e., for which SNR conditions can we reasonably trust the 

position solution). In practice, in a typical receiver implementation we might actually filter the 

position solutions obtained per time epoch (e.g., with a Kalman filter) in order to smooth the 

final positioning solution and remove potential outliers. In some cases, this process might be 

also aided by other sources like e.g., inertial sensors. Therefore, it might be reasonable to think 

that the receiver should be able to handle biased positioning solutions appearing from time to 

time (e.g., below 5% of the time). Based on this, and assuming the same AWGN conditions for 

each of the eleven satellites simulated, the conventional two-steps approach can be considered 

in practice robust for SNR values down to around 20 dB, while the MISO- and MIMO-MLE 

solutions can be considered robust for SNR values down to around 7.5 and 2.5 dB, respectively. 

Regarding the second simulated scenario, Fig. 3.18 shows the results obtained for the 

different receiver configurations assessed in terms of the 95-percentile of the horizontal position 

errors with respect to the number of satellites impacted by the simulated fading and multipath 

(as described earlier in this section). Two nominal SNR conditions are considered (with an SNR 

equal to 15 and 20 dB for the satellites not impacted by fading). As can be observed, the 

conventional two-step approach based on a WLS solution is highly impacted by the simulated 

fading and multipath conditions. On the other hand, the MISO- and MIMO-MLE solutions are 

robust to the strong fading and multipath conditions simulated. In particular, the MIMO-MLE 

shows horizontal errors (95-perc) below the meter, even with four satellites impacted by a 

multipath bias of 10 m and only two satellites in LOS conditions (for the worst case in which 

the nominal SNR is set to 15 dB, the horizontal error (95-perc) for the MIMO-MLE solution is 

 
 

 
 

Fig. 3.18.  Horizontal position error (95-perc) for the second simulated scenario with SNR set 

to 15 and 20 dB for the nominal LOS signals [Gar19a]. 
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0.86 m, with respect to around 36 m for the MISO-MLE solution, and around 125 m for the 

conventional two-steps approach based on the WLS solution). 

Moving to the third simulated scenario in light-indoor conditions, Fig. 3.19 shows the RMSE 

results obtained for the MIMO-MLE with 1, 4 and 8 antennas [Gar19b]; and Fig. 3.20 shows 

the corresponding horizontal position solutions. In this scenario, 200 independent Monte Carlo 

runs are considered per receiver configuration. As can be observed from Fig. 3.19 and 3.20, a 

clear benefit is introduced by the exploitation of the MIMO-MLE solution when the number of 

antennas increases. Indeed, for the single-antenna configuration (MISO-MLE) the positioning 

results are highly impacted by false locks, resulting in horizontal errors of several tens of 

meters. This slightly improves for the 4-antenna configuration, but only with an 8-antenna 

configuration the impact of false locks is effectively mitigated thanks to the higher processing 

gain and the spatial diversity introduced by the multiple antennas. This allows to achieve 

accuracies of few meters indoors, which is far better than what can be achieve with BPSK(1) 

signals in the same conditions (as will be shown in Section 5.2). Therefore, the proposed 

estimators in the MIMO-GNSS framework are a promising approach to enable the 

unambiguous positioning of high-order BOC signals in harsh propagation conditions typical of 

urban and indoor environments (with C/No levels below 20 dB-Hz), while being implementable 

based on state-of-the-art multi-correlator receiver architectures. 

 

 
 

 
 

Fig. 3.19.  RMSE and 95-percentile errors for the third simulated scenario in light-indoor 

conditions [Gar19b]. 
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3.4 Conclusions 
 

This chapter has started presenting the DOME approach in Section 3.2, focusing on the 

robust unambiguous code delay estimation of high-order BOC signals at single-satellite level. 

The proposed approach exploits the time diversity in the unambiguous estimation problem via 

the usage of multiple integration periods, and relies on a multi-correlator architecture in order 

to consider multiple correlation peaks of the cross-correlation function. This additionally allows 

the exploitation of a model of the expected cross-correlation function, which may include a 

priori known distortions introduced by the GNSS receiver. Performance results in both 

controlled and realistic simulated scenarios have been presented when considering a BOCcos(15, 

2.5) signal. The results obtained have shown that the DOME approach fully exploits the BOC 

signal accuracy while being robust at low C/No conditions (down to around 20 dB-Hz) and in 

the presence of fading and multipath. 

The DOME approach allows the adaptation to different BOC signals, receiver and filtering 

configurations, and propagation environments. In the absence of distortion or sampling effects 

degrading the cross-correlation function observed by the estimators (achievable with a proper 

receiver design), the exploitation of the MCE estimator in the second optimization problem of 

the DOME is of interest both from a performance and computational burden point of view. 

Moreover, the first optimization problem of the DOME can be based on a standard DLL. The 

 

 
 

Fig. 3.20.  Horizontal position results in the third simulated scenario in light-indoor conditions 

[Gar19b]. 
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exploitation of several integration periods is considered by the DOME approach in order to 

improve the observed SNR conditions in which the estimations are performed. Nevertheless, 

since the integration periods that can be applied in practice are limited by receiver, user and 

environment constraints, for very low C/No conditions (below around 20 dB-Hz) the equivalent 

SNR observed by the estimator remains also low and the probability of false lock is still 

important. Therefore, other advanced solutions are needed in order to allow the exploitation of 

high-order BOC signals in harsh propagation conditions typical of urban or indoor scenarios. 

Section 3.3 has presented the unambiguous positioning problem with high-order BOC 

signals in the MIMO-GNSS framework in order to overcome the limitations observed in state-

of-the-art unambiguous estimation techniques operating at single-satellite level (including the 

DOME approach). In particular, it has been proposed to tackle the ambiguity resolution problem 

directly in the position domain, enabling the joint exploitation of all the BOC signals received 

by the GNSS receiver. For this purpose, the MISO- and MIMO-MLE solutions exploiting one 

or multiple antennas, respectively, have been derived. The processing gain introduced in the 

unambiguous estimation problem by the spatial transmission and reception diversities allows 

to improve the equivalent SNR conditions in which the estimator operates and, thus, a reduction 

of the impact of false locks. 

The simulation results obtained show that the proposed MISO-MLE solution outperforms 

the conventional two-steps positioning approach in both AWGN and fading conditions, being 

more robust in the unambiguous positioning with high-order BOC signals, and resulting in a 

lower occurrence of biases in the position solution. Indeed, the joint exploitation of the high-

order BOC signals received from all the satellites in view allows the MISO-MLE to attain the 

lower bound of the position estimation for lower SNR values per satellite signal thanks to the 

transmission diversity gain. For the MIMO-MLE, an additional improvement of the position 

performance is obtained thanks to the processing gain introduced by the array of antennas. The 

MIMO-MLE attains the lower bound even at relatively low SNR conditions, and the position 

estimator is robust even when the signals from multiple satellites are impacted by severe fading 

and multipath conditions. Moreover, when several receiver antennas are available, the proposed 

estimator allows the exploitation of high-order BOC signals even in indoor conditions. This 

enables to achieve accuracies of few meters indoors, which is far better than what can be 

achieved with BPSK(1) signals in the same conditions, as will be discussed in Chapter 5. 

Therefore, the proposed estimators in the MIMO-GNSS framework are a promising approach 

to enable the unambiguous positioning with high-order BOC signals in harsh propagation 

conditions typical of urban and indoor environments (with C/No levels below 20 dB-Hz), while 

being implementable based on state-of-the-art multi-correlator receiver architectures. 
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4  

 

Indoor Timing 
 

 

 

 

HE exploitation of GNSS signals in indoor conditions is a challenging topic due to the 

dominant impact of the indoor propagation conditions. In the particular case of indoor 

timing applications, this results in an important degradation of the achievable timing accuracy 

due to the important impact of the NLOS multipath signal components. This limits the usage of 

current GNSS receivers in applications with time synchronization requirements in the order of 

tens of ns.  

This thesis proposes a joint time and composite MIMO channel estimation approach for 

static indoor GNSS receivers featuring an array of antennas in order to improve the timing 

accuracy in indoor conditions. This approach exploits both the structure of the diffuse multipath 

components of the indoor channel and the MIMO system formed by all the GNSS signals 

received via an array of antennas. The concept of composite MIMO channel is introduced for 

enabling a robust mitigation of the dominant diffuse multipath in indoor timing applications. 
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Multiple hypotheses on the structure of the composite MIMO channel are proposed to be 

assessed via Monte Carlo methods in order to derive a physically plausible estimation of it (and, 

therefore, an accurate and precise estimation of the clock bias), avoiding the derivation of sparse 

channel solutions (with few dominant channel components instead of the expected diffuse 

channel). The proposed estimators can be implemented based on state-of-the-art multi-

correlator receiver architectures, which is of interest to optimize their implementation in real 

applications. Moreover, they can be applied to low-end arrays of antennas, where phase-

calibration might not be ensured. 

This chapter is organized as follows. Section 4.1 discusses the background and motivation. 

Section 4.2 presents the system and signal model exploited by the timing solutions proposed. 

Section 4.3 presents the joint time and composite MIMO channel estimator based on an a priori 

knowledge of the receiver’s position and a coarse clock bias estimation to be refined. A first 

refinement of the coarse clock bias exploiting the spatial diversity introduced by the MIMO-

GNSS system based on the MLE is proposed in order to reduce the computational burden. Then, 

the structure of the diffuse channel is exploited in the estimation problem to obtain the ultimate 

fine clock bias estimation. Section 4.4 presents the simulation results obtained in light-indoor 

and indoor conditions based on a realistic indoor channel model. Finally, Section 4.5 presents 

the conclusions. 

The material presented in this chapter has been published by the author in [Gar18a], and 

[Gar18c]. 

 

4.1 Background and motivation 
 

GNSS signals are broadly used for precise time synchronization in many different applications, 

including the telecom, finance and energy sectors [GNS17]. In this context, the exploitation of 

GNSS signals is typically limited to outdoor applications where there is no GNSS coverage 

problem. Indeed, the usage of GNSS signals in indoor conditions is very challenging due to the 

important impact of blockage and multipath [Sec12], [He17], [Hei08], [Bro11b], which highly 

degrade the accuracy achieved with current GNSS receivers. Tight time synchronization 

requirements of the order of tens or hundreds of ns may be expected in near-future applications 

operating in indoor conditions. An example of this is 5G small cells covering indoor areas 

[Jun14], where time synchronization is expected to be a key enabler of some of the underlying 

technologies exploited [3GP17]. Although several technical solutions may be considered for 

meeting future time synchronization requirements (e.g., wire-based solutions like the precise 

time protocol [IEE07], or commercial solutions based on satellite signals from low-earth orbits 

[Cor17], [Lau17]), a solution based on free, open access and worldwide available GNSS 

signals, and not requiring any additional infrastructure to operate, would be of high interest.  
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The performance of GNSS-based time synchronization solutions in indoor scenarios is 

driven by the indoor channel propagation conditions, where the impact of effects like blockage, 

diffraction, scattering and reflection introduce important degradations with respect to open-sky 

scenarios. The main reasons are the high attenuation, or complete absence, of the LOS GNSS 

signals (impacting the SNR conditions in which the estimators are operating) and the presence 

of dominant NLOS multipath components (introducing biases in the estimation) [Sec12], 

[Hei08], [Jos14]. Under the assumption that the receiver’s position is a priori known, the 

reception of a single satellite’s signal can be enough for solving the time synchronization 

problem (i.e., to obtain the time offset between the receiver’s time and the GNSS system time, 

in the following referred to as the receiver’s clock bias) [Kap06]. This is actually the approach 

followed by some commercial timing receivers designed for operating in static indoor 

conditions, at the cost of timing accuracies of the order of hundreds of ns with respect to tens 

of ns achieved in open-sky scenarios [NEO16]. This limits the direct application of current 

GNSS receivers to meet the tight time synchronization requirements foreseen in future indoor 

applications. 

In order to be able to operate in degraded signal conditions and mitigate the impact of 

multipath in GNSS receivers, different high-sensitivity architectures and multipath estimation 

or mitigation techniques have been proposed in the literature [Pan09], [Bro11a], [Sah08], 

[Won12], [Clo08], including direct position and time estimators (DPE/DTE) [Clo07], [Axe11], 

[Bha17], and array-based mitigation techniques [Sec05], [Fer16], [Clo09], [Gar18a], [Gar18c]. 

Nevertheless, these techniques still present limitations in indoor conditions. On one hand, the 

techniques based on the estimation of the multipath components for mitigating their impact are 

typically considering the presence of a LOS signal component and one or few multiple 

multipath components. Nevertheless, the low C/No conditions in which the signals are received 

indoors make difficult, or unfeasible, to distinguish between LOS, NLOS and noise components 

[Sec12], [Hei08], [Jos14]. Moreover, the diffuse (i.e., non-sparse or unresolvable) multipath 

expected in indoor propagation conditions [Sec12] makes even more complex the identification 

and estimation of the multipath components (due to the large number of e.g., diffracted and 

scattered contributions received in very close time-delays). On the other hand, high-sensitivity 

techniques enable the exploitation of GNSS signals in harsh propagation environments like 

indoor conditions [Pan09], [Bro11a], but typically at the cost of an important degradation of 

the accuracy achieved. Therefore, a combination of both high-sensitivity and multipath 

estimation approaches may be required for achieving an accurate and precise time 

synchronization in indoor conditions. Based on this, a joint time and composite MIMO channel 

estimation approach is presented in this chapter for static indoor GNSS receivers, as originally 

proposed in [Gar18a]. 

 

4.2 System and signal model  
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Let us consider a system consisting of a static receiver featuring an array of 𝑁 antennas (with 

𝑁 ≥ 1) and receiving 𝑀 navigation signals with equivalent correlation properties (with 𝑀 ≥ 1) 

from a given GNSS constellation in indoor propagation conditions. The signals received by all 

the antennas are referenced to the same receiver clock. The receiver’s position and the baseline 

between each of the antennas and the receiver’s phase center is considered to be known a priori, 

as well as the coarse clock bias and drift estimations 𝛿𝑡̂𝑐 and 𝛿𝑡̂̇𝑐 (e.g., estimated by the receiver 

based on state-of-the-art techniques [Kap06]). The navigation data required for the derivation 

of the GNSS satellites’ state vectors is also considered to be known by the receiver (e.g., via 

assistance data [Dig09]) The target now is to perform a fine estimation of the receiver’s clock 

bias based on the defined MIMO-GNSS system.  

In general, in indoor propagation conditions the complex baseband signal received by the n-

th GNSS antenna from the LOS and NLOS multipath contributions of the M GNSS satellites 

above the horizon can be modeled as 

 

      𝑥𝑛(𝑡) = ∑ 𝑎𝑚,𝑛,0(𝑡)𝑔𝑚 (𝑡 − 𝜏𝑚,𝑛,0(𝑡)) exp{𝑗2𝜋𝑓𝑚,𝑛,0(𝑡)𝑡}

𝑀

𝑚=1

 

+∑ ∑ 𝑎𝑚,𝑛,𝑑(𝑡)𝑔𝑚 (𝑡 − 𝜏𝑚,𝑛,𝑑(𝑡)) exp{𝑗2𝜋𝑓𝑚,𝑛,𝑑(𝑡)𝑡}

𝐷𝑚,𝑛

𝑑=1

𝑀

𝑚=1

+ 𝑒𝑛(𝑡), 

 

 

 

 

(4.1) 

 

where a LOS signal and 𝐷𝑚,𝑛 NLOS multipath rays received by the n-th antenna from the m-th 

satellite are considered; 𝑎𝑚,𝑛,𝑑, 𝜏𝑚,𝑛,𝑑 and 𝑓𝑚,𝑛,𝑑 are the complex amplitude, time-delay and 

frequency-shift, respectively, for the d-th signal propagation ray (with 𝑑 = 0 for the LOS 

signal) of the m-th satellite received by the n-th antenna; 𝑒𝑛 is the noise component for the n-th 

antenna, which is modeled as a complex, circularly-symmetric, zero-mean and temporally and 

spatially white Gaussian process; and 𝑔𝑚 is the complex baseband model of the modulated 

DSSS signal transmitted by the m-th GNSS satellite. It is to be noticed that the complex 

amplitudes 𝑎𝑚,𝑛,𝑑 model both the changes introduced by the data modulated onto the GNSS 

signal and any change introduced in the complex amplitude by the propagation channel. 

Additionally, the NLOS multipath rays received by the different antennas are expected to be 

spatially correlated (depending on the separation between antennas and on the geometry with 

respect to each of the satellites).  

The time-delay 𝜏𝑚,𝑛,𝑑(𝑡) and frequency-shift 𝑓𝑚,𝑛,𝑑(𝑡) parameters of each of the signal 

components (LOS and NLOS rays) received by the n-th antenna for each satellite at time 𝑡 are 

dependent on a state vector 𝚽𝑛 for each antenna, i.e., 𝜏𝑚,𝑛,𝑑(𝑡) ≜ 𝜏𝑚,𝑛,𝑑(𝑡, 𝚽𝑛) and 𝑓𝑚,𝑛,𝑑(𝑡) ≜
𝑓𝑚,𝑛,𝑑(𝑡,𝚽𝑛). The state vector per antenna can be defined as 𝚽𝑛 ≜ 𝚽𝑛(𝑡) =
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[𝛿𝑡(𝑡), 𝛿𝑡(𝑡)̇ , 𝐩𝑛
𝑇]

𝑇
, where 𝛿𝑡 and 𝛿𝑡̇ are the receiver’s clock bias and clock drift, respectively, 

which are common to all the antennas, and 𝐩𝑛 is a vector containing the position of the n-th 

antenna in the ECEF coordinate system [Kap06]. The position of the n-th antenna and of the 

receiver’s phase center 𝐩0 are related as 𝐩𝑛 = 𝐩0 − 𝚫𝐩𝑛, with 𝚫𝐩𝑛 the relative vector between 

them, which is fixed for the static receiver considered herein. Therefore, we can define 𝚽𝑛(𝑡) =

[𝛿𝑡(𝑡), 𝛿𝑡(𝑡)̇ , 𝐩0
𝑇 , 𝚫𝐩𝑛

𝑇]
𝑇
.  

For the static indoor conditions considered herein, the frequency shift of the LOS and NLOS 

multipath components are expected to be in practice equivalent or very similar [Sat12], such 

that 𝑓𝑚,𝑛,𝑑 ≈ 𝑓𝑚,𝑛,0,  ∀𝑑. In order to simplify the signal model, and taking into account the 

diffuse structure of the indoor multipath components, let us approximate the LOS and NLOS 

multipath signal components as 𝐷 components at 𝐷 discrete time-delays uniformly distributed 

(with a time-delay resolution 𝑇𝛿, typically in the order of several ns), covering the channel delay 

spread for all the signals received by all the antennas. Therefore, in the following 𝐷𝑚,𝑛 = 𝐷 −
1, ∀𝑚, 𝑛, such that we can define the multipath rays’ time-delays based on the LOS signal’s 

time-delay as 𝜏𝑚,𝑛,𝑑(𝑡) = 𝜏𝑚,𝑛,0(𝑡, 𝚽𝑛) + 𝑑𝑇𝛿 . Based on the previous assumptions, let us now 

define the basis function 𝑏𝑚(𝑡,𝚽𝑛, 𝑑) for the m-th satellite, the n-th antenna and the d-th ray as 

 

𝑏𝑚(𝑡,𝚽𝑛, 𝑑) = 

𝑔𝑚(𝑡 − 𝜏𝑚,𝑛,0(𝑡,𝚽𝑛) − 𝑑𝑇𝛿)exp {𝑗2𝜋𝑓𝑚,𝑛,0(𝑡,𝚽𝑛)𝑡}, 

 

(4.2) 

 

such that the signal model in (4.1) can be redefined as  

 

      𝑥𝑛(𝑡) = ∑ 𝑎𝑚,𝑛,0(𝑡)𝑏𝑚(𝑡,𝚽𝑛, 0)

𝑀

𝑚=1

 

+ ∑ ∑𝑎𝑚,𝑛,𝑑(𝑡)𝑏𝑚(𝑡,𝚽𝑛, 𝑑)

𝐷−1

𝑑=1

𝑀

𝑚=1

+ 𝑒𝑛(𝑡). 

 

 

 

 

(4.3) 

 

As mentioned earlier, the target herein is the fine estimation of the clock bias 𝛿𝑡 when 

considering the receiver’s position is known a priori and a coarse estimation of 𝛿𝑡 and 𝛿𝑡̇ is 

available. Based on this, the dependence of the signal model with 𝛿𝑡̇, 𝐩0 and 𝚫𝐩𝑛 is omitted 

from now on for simplicity (i.e., 𝑏𝑚(𝑡, 𝚽𝑛, 𝑑) ≜ 𝑏𝑚(𝑡, 𝛿𝑡, 𝑑) = 𝑏𝑚(𝑡, 𝛿𝑡 − 𝑑𝑇𝛿)). The 
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dependence of all the received signals with the clock bias will be exploited later on for jointly 

estimating a fine version of 𝛿𝑡 in the clock bias domain. 

Let us define now the vector 𝐱𝑛 = [𝑥𝑛(𝑡0)… 𝑥𝑛(𝑡𝐾−1)]
𝑇 ∈ ℂ𝐾×1 containing a signal 

snapshot of 𝐾 samples received by the n-th antenna with a sampling period 𝑇𝑠 = 𝑡𝐾 − 𝑡𝐾−1. 

Assuming that 𝑎𝑚,𝑛,𝑑, 𝜏𝑚,𝑛,𝑑 and 𝑓𝑚,𝑛,0 parameters are constant during the observation time 

𝑇𝑠𝐾 (note that, in practice, variations of 𝜏𝑚,𝑛,𝑑 and 𝑓𝑚,𝑛,0 can be compensated based on the a 

priori known or estimated receiver’s position and clock drift), the vector 𝐱𝑛 can be modeled as 

  

𝐱𝑛 ≈ 𝐁(𝛿𝑡)𝐚𝑛,0 +∑𝐁(𝛿𝑡 − 𝑑𝑇𝛿)𝐚𝑛,𝑑

𝐷−1

𝑑=1

+ 𝐞𝑛, 
 

(4.4) 

 

where the dependence with 𝑡 has been omitted for simplicity,  𝐚𝑛,0 = [𝑎1,𝑛,0… 𝑎𝑀,𝑛,0]
𝑇
∈ ℂ𝑀×1 

gathers the complex amplitudes for the 𝑀 LOS contributions, 𝐚𝑛,𝑑 = [𝑎1,𝑛,𝑑 … 𝑎𝑀,𝑛,𝑑]
𝑇
∈

ℂ𝑀×1 gathers the complex amplitudes for the 𝑀 NLOS contributions for the d-th discrete time-

delay, 𝐞𝑛 ∈ ℂ𝐾×1 is the complex noise vector (with 𝐞𝑛~𝐶𝑁(𝟎, σ
2𝐈)), and 𝐁(𝛿𝑡 − 𝑑𝑇𝛿) =

[𝐛1(𝛿𝑡 − 𝑑𝑇𝛿)…𝐛𝑀(𝛿𝑡 − 𝑑𝑇𝛿)] ∈ ℂ𝐾×𝑀 is the basis function matrix for the d-th discrete time-

delay, which is composed by the basis function vectors for each satellite 𝐛𝑚(𝛿𝑡 − 𝑑𝑇𝛿) =
[𝑏𝑚(𝑡0, 𝛿𝑡 − 𝑑𝑇𝛿)…𝑏𝑚(𝑡0+𝐾−1, 𝛿𝑡 − 𝑑𝑇𝛿)]

𝑇 ∈ ℂ𝐾×1. 

Keeping now in mind the later exploitation of the structure of the diffuse channel in the 

clock bias estimation (an exponential PDP of the diffuse multipath components is in general 

expected [Jos14]), let us define the vector 𝐡 ∈ ℝ𝐷×1 containing the coefficients of the 

composite MIMO channel gathering the aggregated power contribution of the 𝑀𝑁 propagation 

channels for the 𝐷 discrete time-delays of interest, such that [𝐡]𝑑 ≜ ℎ𝑑 ≜ ∑ 𝐚𝑛,𝑑
𝐻𝐚𝑛,𝑑

𝑁
𝑛=1  is 

the d-th coefficient of the composite MIMO channel vector (with the coefficient ℎ0 

corresponding to the LOS contributions, which mark the actual receiver’s clock bias to be 

estimated). Therefore, the composite MIMO channel gives a measure of the aggregated PDP 

for the MIMO channel. Each of the coefficients of the composite MIMO channel (one per time-

delay) can be considered to follow an arbitrary and unknown PDF which in practice is going to 

be highly dependent on the indoor environment surrounding the receiver. It is to be noticed that 

the PDF per coefficient depends on the 𝑀𝑁 signal contributions received for the corresponding 

time-delay, with e.g., potentially different exponential PDPs for the 𝑀𝑁 indoor channels, and 

different attenuations of the LOS components. 

 

4.3 Exploiting the spatial diversity 
 



 

Chapter 4. Indoor Timing 

 
 

77 
 

Several aspects need to be considered in the receiver’s clock bias and channel estimation if 

targeting an accurate time synchronization in indoor conditions. First, GNSS signals received 

indoors are very weak [Sec12], so the estimation of the multipath components received for each 

of the GNSS signals is very challenging or unfeasible (indeed, both LOS and NLOS 

components are buried in noise). Therefore, a channel estimation per satellite is discarded. 

Second, the channel is expected to be spatially correlated. Thus, arrays of antennas may be 

exploited to obtain spatially correlated versions of the GNSS signals received indoors. Third, 

the indoor multipath channel is diffuse, with unresolvable multipath components, and is 

expected to follow an exponential PDP model highly dependent on the indoor environment 

[Jos14]. And, last but not least, the LOS signals expected to be received for each GNSS satellite 

are aligned in the clock bias domain (marking the time reference), while diffuse NLOS 

multipath components are received with a delay with respect to this reference to be estimated. 

Based on these aspects, the signals received by an array of antennas are proposed to be exploited 

for the estimation of a composite MIMO channel (as referred to in the text) embedding the 

aggregated contribution of 𝑀𝑁 propagation channels (with 𝑀 satellites and 𝑁 antennas) as a 

function of the time-delay with respect to the actual receiver’s clock bias, as originally 

presented in [Gar18a]. Both transmission and reception diversities available in the MIMO-

GNSS system are jointly exploited in order to improve the SNR conditions in which the 

estimator works. It is to be noticed that the composite MIMO channel gives a measure of the 

total aggregated power of all the received signal contributions as a function of the time-delay. 

Therefore, based on the estimation of the composite MIMO channel, an estimation of the 

receiver’s clock bias can be derived (i.e., a joint estimation process can be performed). 

Taking advantage of the relatively slow temporal decorrelation of the indoor channel (of the 

order of tens of seconds [Sat12]), a snapshot estimation of the composite MIMO channel is 

considered herein. The snapshot estimation approach will enable the straightforward 

application of the concept either continuously or with a certain duty cycle, allowing the 

adaptation of the computational burden of the implementation. Given the diffuse nature of the 

channel, the snapshot estimation is proposed to be performed based on a multi-hypothesis 

optimization problem in which different PDP models are evaluated based on Monte Carlo 

methods. Two different estimators are presented. The first one targets the direct fitting of the 

observed composite MIMO channel. The second estimator exploits the spatial correlation 

between the NLOS multipath components received by the different antennas as a way to reduce 

the spatially correlated miss-modeling errors. 

 

4.3.1 Intermediate clock bias estimation 
 

Let us consider the a priori coarse clock bias estimation 𝛿𝑡̂𝑐 derived by the GNSS receiver with 

an arbitrary state-of-the-art estimator. This coarse estimation is to be refined in the following 

by the estimators proposed herein. In AWGN conditions and under the assumption of only LOS 
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signal components being received (i.e., no multipath present), we can use the MLE to start 

exploiting all the signals of the MIMO-GNSS system, defining an “intermediate” estimation of 

the clock bias as the optimization problem  

 

 
𝛿𝑡̂𝑖𝑛𝑡 = argmax

𝛿𝑡
Λ̂(𝛿𝑡)

                         𝑠. 𝑡.   |𝛿𝑡 − 𝛿𝑡̂𝑐| < 𝜍,
 

 

(4.5) 

 

where Λ̂(𝛿𝑡) is referred to as the estimated composite MIMO cross-correlation function 

evaluated for the receiver’s discrete clock bias 𝛿𝑡, and 𝜍 is a threshold defining the search space 

around 𝛿𝑡̂𝑐 (being 𝜍 dependent on the quality of 𝛿𝑡̂𝑐, expected to be of the order of tens or 

hundreds of ns). Based on the MIMO-GNSS system considered, the composite MIMO cross-

correlation function can be derived as [Gar19a] 

 

  Λ̂(𝛿𝑡) = ∑ θ̂𝑛(𝛿𝑡)

𝑁

𝑛=1

, 
 

(4.6) 

 

where  θ̂𝑛(𝛿𝑡) is the estimated composite MISO cross-correlation function for the n-th antenna 

defined as [Gar19a] 

 

  θ̂𝑛(𝛿𝑡) = 𝐫̂𝑥𝑛𝑏
𝐻(𝛿𝑡)𝐑̂𝑏𝑏

−1
(𝛿𝑡)𝐫̂𝑥𝑛𝑏(𝛿𝑡), 

(4.7) 

 

with the cross-correlations for each of the receiver’s antennas defined as  

 

𝐫̂𝑥𝑛𝑏(𝛿𝑡) ≜ 𝐁𝐻(𝛿𝑡)𝐱𝑛, and 

𝐑̂𝑏𝑏(𝛿𝑡) ≜ 𝐁𝐻(𝛿𝑡)𝐁(𝛿𝑡). 

(4.8) 

(4.9) 

  

Therefore, the composite MIMO cross-correlation function can be obtained based on the output 

of the correlators implementing the matched-filtering operation in GNSS receivers. This will 

drastically ease the application of the concept based on state-of-the-art multi-correlator 

architectures. It is to be noticed that the term 𝐫̂𝑥𝑛𝑏
𝐻(𝛿𝑡)𝐑̂𝑏𝑏

−1
(𝛿𝑡) in (4.7) corresponds to the 
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LS estimator of the complex amplitudes for the n-th antenna (i.e., a different weighting applies 

for each satellite-antenna pair depending on the corresponding SNR conditions). Moreover, the 

derivation of the composite MISO cross-correlation function in (4.7) can be simplified by 

approximating 𝐑̂𝑏𝑏(𝛿𝑡) as an identity matrix when the cross-correlations between the different 

GNSS signals can be considered approximately null. This simplification is exploited in the 

simulations performed in Section 4.4. The estimation 𝛿𝑡̂𝑖𝑛𝑡 obtained in (4.5) is referred to as 

the intermediate clock bias estimation since an improvement of the accuracy is expected with 

respect to the coarse estimation 𝛿𝑡̂𝑐 thanks to the joint exploitation of all the received signals in 

the MIMO-MLE estimator, but the composite MIMO channel estimation is not yet considered 

in the problem. 

 

4.3.2 Exploiting the indoor channel properties 
 

In indoor propagation conditions the estimated composite MIMO cross-correlation function 

will be distorted by the presence of NLOS multipath components, making the estimator in (4.5) 

not any more optimum. To deal with that, the receiver’s clock bias is proposed to be jointly 

estimated with the composite MIMO channel, whose first coefficient actually marks the 

common time-delay of the 𝑀𝑁 LOS signals and, therefore, the receiver’s clock bias. In the 

following, the estimation of the composite MIMO channel is proposed to be solved as a multi-

hypothesis estimation problem in which different PDF assumptions for each coefficient of the 

composite MIMO channel are assessed. 𝑁𝑙 hypotheses on the PDF followed by each of the 

coefficients are exploited in the estimation. Under the l-th hypothesis, the coefficients of the 

composite MIMO channel {[𝐡]𝑑}𝑑=0
𝐷−1 are considered to follow the arbitrary set of PDFs 

{𝑝([𝐡]𝑑)}𝑑=0
𝐷−1 ≜ {𝑝𝑙,𝑑}𝑑=0

𝐷−1
, with 𝑝𝑙,𝑑 the PDF for the l-th hypothesis and the d-th coefficient. 

Let us define the fine clock bias estimator 𝛿𝑡̂𝑓 based on the intermediate clock bias estimator 

𝛿𝑡̂𝑖𝑛𝑡 in (4.5) and the integer offset 𝛽 ∈ ℤ (to be estimated) as 𝛿𝑡̂𝑓 = 𝛿𝑡̂𝑖𝑛𝑡 − 𝛽𝑇𝛿. Based on this, 

the joint estimator of 𝐡 and 𝛽 for the l-th hypothesis can be defined as the solution to the 

constrained optimization problem [Gar18a] 

 

𝐡̂𝑙 , 𝛽̂𝑙 = argmin
𝐡,𝛽

‖𝚼̂(𝐡, 𝛽)‖
2

                                           𝑠. 𝑡. [𝐡]𝑑~𝑝𝑙,𝑑, ∀𝑑  𝑎𝑛𝑑  |𝛽| < 𝑊 ,
   

 

(4.10) 

 

where the miss-modeling error for the composite MIMO channel 𝚼̂(𝐡, 𝛽) is defined as [Gar18a] 
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𝚼̂ = 𝚲̂ − 𝜅(𝐡) (∑[𝐡]𝑑|𝐬(𝛿𝑡̂𝑖𝑛𝑡 − (𝛽 − 𝑑)𝑇𝛿)|
2

𝐷−1

𝑑=0

) − 𝜛̂, 
 

(4.11) 

 

with 𝚲̂ = [Λ̂(𝛿𝑡1)… Λ̂(𝛿𝑡𝑄)]
𝑇
∈ ℝ𝑄×1 the estimated composite MIMO cross-correlation 

vector, which is uniformly sampling (with a time-delay resolution 𝑇𝛿) the composite MIMO 

cross-correlation function Λ(𝛿𝑡) at 𝑄 clock bias values, being centered at the intermediate clock 

bias estimation 𝛿𝑡̂𝑖𝑛𝑡, such that 𝛿𝑡(𝑄+1)/2 = 𝛿𝑡̂𝑖𝑛𝑡; 𝑊 ∈ ℕ constrains the values evaluated for 

the integer offset 𝛽 (in total, 𝑁𝑤 = 2𝑊 − 1 values evaluated) based on the expected error of 

the intermediate clock bias 𝛿𝑡̂𝑖𝑛𝑡; 𝐬(𝛿𝑡̂𝑖𝑛𝑡 − (𝛽 − 𝑑)𝑇𝛿)  ∈ ℝ𝑄×1 is a vector containing the 

samples of the reference correlation function (for the GNSS signal being considered) centered 

at the clock bias 𝛿𝑡̂𝑖𝑛𝑡 − (𝛽 − 𝑑)𝑇𝛿; the factor 𝜅(𝐡), defined as [Gar18a] 

 

𝜅(𝐡) =
‖𝚲̂ − 𝜛̂‖

‖∑ [𝐡]𝑑|𝐬(𝛿𝑡̂𝑖𝑛𝑡 + 𝑑𝑇𝛿)|
2𝐷−1

𝑑=0 ‖
 , 

 

(4.12) 

 

is normalizing the composite MIMO channel contribution to the MIMO cross-correlation vector 

(which allows to define 𝑝𝑙,0 normalized to 1, as discussed later on); and 𝜛̂ is an estimation of 

the noise floor of the composite MIMO cross-correlation function (which can be derived e.g., 

as 𝜛̂ = Λ̂(𝛿𝑡̂𝑐 + 𝜗), with 𝜗 > 2/𝑇𝑐 and 𝑇𝑐 the chip period of the GNSS signals being 

considered). 𝜛̂ is introduced in the problem to compensate the squaring loss [Kap06] introduced 

in the estimation of the composite MIMO cross-correlation vector. 

Taking into account that the optimization problem in (4.10) has no analytical solution, it is 

proposed to be solved via the application of Monte Carlo methods, being the coefficients of the 

composite MIMO channel vector 𝐡 treated as random variables drawn from the corresponding 

PDFs (with 𝑁𝑙 PDF hypotheses for each of the coefficients of the composite MIMO channel, 

and 𝑁𝑐 Monte Carlo runs assessed for each coefficient in each hypothesis). This way, the 

derivation of a physically plausible channel estimation (with diffuse multipath components with 

a certain PDP) is enforced, avoiding sparse channel solutions with few dominant components 

(as may be obtained when applying e.g., iterative approaches like SAGE-based algorithms 

[Fes94]). Additionally, the application of Monte Carlo methods allows a much more efficient 

implementation than grid-search methods [Kay13] (which is considered a non-practical 

approach in the diffuse channel estimation problem treated herein due to the large number of 

possible combinations to be evaluated). Algorithm 4.1 summarizes the proposed composite 

MIMO channel and fine clock bias estimation (in the following, this estimator is referred to as 

the MIMO-JTC estimator). Note that in step 3 the composite MIMO cross-correlation vector is 
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derived based on (4.6) to (4.9), such that the MIMO-JTC estimator is based on the cross-

correlation estimations for each satellite-antenna pair. Therefore, the MIMO-JTC is naturally 

operating with the output correlation samples of multi-correlator receiver architectures. For the 

definition of the PDFs {𝑝𝑙,𝑑}𝑑=0
𝐷−1

 the exponential PDP expected to be in general followed by the 

diffuse multipath channel for each pair satellite-antenna [Jos14] is proposed to be exploited. In 

practice, each of the 𝑀𝑁 indoor channels may be modeled by different exponential PDPs, with 

different relative powers and decay rates, as well as different delay spreads, depending on the 

geometry between each pair satellite-antenna [Jos14]. Moreover, in some cases attenuated LOS 

components may be received (e.g., via apertures in the walls in the case of light-indoor 

conditions), while in other cases only NLOS components can be received. In any case, in 

general a power decay as a function of the time-delay can be fairly expected for the composite 

MIMO channel. Based on this, a simplified PDF model is proposed herein in order to deal with 

different indoor scenarios and propagation conditions between the 𝑀𝑁 indoor channels. In 

particular, it is considered that, under the l-th hypothesis,  𝑝𝑙,𝑑 = 𝑈(0,℘𝑙(𝑑)), where ℘𝑙(𝑑) =

𝑒−𝜂𝑙𝑑, 𝑑 = 0,… , 𝐷 − 1, with 𝜂𝑙 ≥ 0 the decay rate (i.e., 𝑝𝑙,0 is normalized to 1 and a certain 

power decay vs. the time-delay is considered). With this approach the constraint in the 

optimization problem in (4.10) is in practice bounding the set of values that can be considered 

for each discrete time-delay, targeting to ensure that the estimated composite MIMO channel is 

in general physically plausible in indoor conditions (note that 𝜅(𝐡) is then normalizing the 

drawn samples to the composite MIMO cross-correlation vector). Despite the simplicity of this 

model, it will be shown that this approach allows to substantially improve the clock bias 

estimation accuracy with respect to the MIMO-MLE estimator in (4.5). Moreover, the approach 

can be made applicable to different indoor conditions by evaluating different hypotheses on the 

decay rate and delay spread. 

 

4.3.3 Alternative exploitation of the spatial correlation of the NLOS 

multipath components 
 

An alternative joint estimator of 𝐡 and 𝛽 is defined in the following for directly exploiting the 

spatial correlation of the NLOS multipath components. This estimator is referred to as the 

MIMO-JTCC estimator. In this case, the composite MIMO channel is derived by minimizing 

the correlated miss-modeling errors between all the antennas (i.e., the errors introduced by the 

correlated NLOS multipath components between antennas). Let us first define the multipath 

miss-modeling errors 𝛆𝑛 per antenna for the candidate composite MIMO channel vector being 

assessed as [Gar18a] 

𝜺̂𝑛(𝐡, 𝛽) = 𝛉̂𝑛 − 𝜅𝑛(𝐡) (∑[𝐡]𝑚|𝐬(𝛿𝑡̂𝑖𝑛𝑡 − (𝛽 − 𝑑)𝑇𝛿)|
2

𝐷−1

𝑑=0

) − 𝜈̂𝑛, 
 

(4.13) 
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where the factor 𝜅𝑛(𝐡), defined as [Gar18a] 

 

𝜅𝑛(𝐡) =
‖𝛉̂𝑛 − 𝜈̂𝑛‖

‖∑ [𝐡]𝑑|𝐬(𝛿𝑡̂𝑖𝑛𝑡 + 𝑑𝑇𝛿)|
2𝐷−1

𝑑=0 ‖
 , 

 

(4.14) 

 

Algorithm 4.1 MIMO-JTC estimator [Gar18a]. 

Require: {𝐱𝑛}𝑛=1
𝑁 , {{𝑏𝑚(𝑡,𝚽𝑛)}𝑛=1

𝑁 }𝑚=1
𝑀 , 𝛿𝑡̂𝑐, 𝜍, 𝑁𝑙, 𝑁𝑐, 𝑊, {{𝑝𝑙,𝑑}𝑑=0

𝐷−1
}
𝑙=1

𝑁𝑙

, 𝑄, 𝐷, 𝐬, 𝑇𝛿  

Output: 𝐡̂, 𝛿𝑡̂𝑓 

  1: Initialize the minimum mean square error 𝜉𝑚𝑖𝑛 = ∞ 

  2: Estimate the intermediate clock bias 𝛿𝑡̂𝑖𝑛𝑡 based on (4.5) 

  3: Compute 𝚲̂ = [Λ̂(𝛿𝑡1)… Λ̂(𝛿𝑡𝑄)]
𝑇
 based on (4.6) to (4.9) 

  4: for  𝑙 = 1 to 𝑁𝑙 do   

  5:     for  𝑐 = 1 to 𝑁𝑐 do    

  6:        Draw the channel coefficients [𝐡𝑙,𝑐]𝑑~𝑝𝑙,𝑑 , ∀𝑑 

  7:        for  𝛽 = −𝑊 + 1 to 𝑊 − 1 do 

  8:           𝜉𝑙,𝑐,𝛽 = ‖𝚼̂(𝐡𝑙,𝑐 , 𝛽)‖
2
 , with 𝚼̂(𝐡𝑙,𝑐 , 𝛽) based on (4.11) 

  9:           if   𝜉𝑙,𝑐,𝛽 < 𝜉𝑚𝑖𝑛 then 

10:              𝜉𝑚𝑖𝑛 = 𝜉𝑙,𝑐,𝛽  

11:              𝐡̂ = 𝐡𝑙,𝑐  

12:              𝛽̂ = 𝛽 

13:          end if 

14:       end for 

15:    end for 

16: end for 

17: 𝛿𝑡̂𝑓 = 𝛿𝑡̂𝑖𝑛𝑡 − 𝛽̂𝑇𝛿  
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is normalizing the composite MIMO channel contribution to the n-th antenna, 𝜈̂𝑛 is an 

estimation of the noise floor of the composite multiple-input single-output (MISO) cross-

correlation function for the n-th antenna (which can be derived as e.g., 𝜈̂𝑛 = θ̂𝑛(𝛿𝑡̂𝑐 + 𝜗), with 

𝜗 > 2/𝑇𝑐 and 𝑇𝑐 the chip period of the GNSS signals being considered), and 𝛉̂𝑛 =

[θ̂𝑛(𝛿𝑡1)… θ̂𝑛(𝛿𝑡Q)]
𝑇
∈ ℝ𝑄×1 is the estimated composite MISO cross-correlation vector for 

the n-th antenna, which is uniformly sampling the composite cross-correlation function θ𝑛(𝛿𝑡) 

at 𝑄 clock bias values, with θ̂𝑛(𝛿𝑡) defined in (4.7). Based on the estimated multipath miss-

modeling errors 𝛆̂𝑛 we can derive a spatial covariance matrix 𝐂̂ε(𝐡, 𝛽) = 𝚬̂(𝐡, 𝛽)𝚬̂(𝐡, 𝛽)T, with 

𝚬̂(𝐡, 𝛽) = [𝜺̂1(𝐡, 𝛽)… 𝜺̂𝑁(𝐡, 𝛽)]
𝑇 ∈ ℝ𝑄×𝑁 a matrix containing the vectors with 𝜺̂𝑛 for each 

antenna. The departure from diagonal of 𝐂𝜺 gives a measure of the presence of spatially 

correlated multipath components not being modeled by the candidate composite MIMO channel 

model. Based on this, the joint estimator can be defined as the solution to the constrained 

optimization problem [Gar18a] 

 

𝐡̂𝑙, 𝛽̂𝑙 = argmin
𝐡,𝛽

𝛾(𝐡, 𝛽)

                                                 𝑠. 𝑡. [𝐡]𝑑~𝑝𝑙,𝑑 , ∀𝑑  𝑎𝑛𝑑 |𝛽| < 𝑊 ,
 

 

(4.15) 

 

where 𝛾, in charge of measuring the departure from diagonal of 𝐂̂ε, can be defined as [Clo09] 

 

𝛾 (𝐡, 𝛽) =
1

𝑁
∑ 𝜆̂𝑛(𝐡,𝛽)
𝑁
𝑛=1

(∏ 𝜆̂𝑛
𝑁
𝑛=1 (𝐡,𝛽))

1/𝑁 , 
 

(4.16) 

 

where 𝜆̂𝑛(𝐡, 𝛽) is the n-th eigenvalue associated to 𝐂̂ε(𝐡, 𝛽). Algorithm 4.2 summarizes the 

composite MIMO channel and fine clock bias estimation based on the MIMO-JTCC estimator. 

The definition of the PDFs 𝑝𝑙,𝑑 used as input is equivalent to the MIMO-JTC estimator. 

 

4.3.4  Implementation aspects of the proposed indoor timing solutions 
 

As mentioned earlier, the time estimators presented in this chapter (i.e., MIMO-MLE, MIMO-

JTC and MIMO-JTCC estimators) are well suited for their implementation at post-correlation 

level in parallel to state-of-the-art timing receivers, exploiting existing multi-correlator tracking 

architectures (note that the proposed estimators are derived based on the correlation samples 

for each satellite-antenna pair). The target of the proposed techniques is the refinement of the 
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Algorithm 4.2 MIMO-JTCC estimator [Gar18a]. 

Require: {𝐱𝑛}𝑛=1
𝑁 , {{𝑏𝑚(𝑡,𝚽𝑛)}𝑛=1

𝑁 }𝑚=1
𝑀 , 𝛿𝑡̂𝑐, 𝜍, 𝑁𝑙, 𝑁𝑐, 𝑊, {{𝑝𝑙,𝑑}𝑑=0

𝐷−1
}
𝑙=1

𝑁𝑙
, 𝑄, 𝐷, 𝐬, 𝑇𝛿  

Output: 𝐡̂, 𝛿𝑡̂𝑓 

  1: Initialize 𝛾𝑚𝑖𝑛 = ∞ 

  2: Estimate the intermediate clock bias 𝛿𝑡̂𝑖𝑛𝑡 based on (4.5) 

  3: Compute 𝛉̂𝑛 = [θ̂𝑛(𝛿𝑡1)… θ̂𝑛(𝛿𝑡Q)]
𝑇
 based on (4.7) ∀𝑛 

  4: Compute 𝚲̂ = [Λ̂(𝛿𝑡1)… Λ̂(𝛿𝑡𝑄)]
𝑇
 based on (4.6) to (4.9) 

  5: for  𝑙 = 1 to 𝑁𝑙 do   

  6:     for  𝑐 = 1 to 𝑁𝑐 do    

  7:        Draw the channel coefficients [𝐡𝑙,𝑐]𝑑~𝑝𝑙,𝑑 , ∀𝑑 

  8:        for  n= 1 to 𝑁 do 

  9:           Compute 𝜅𝑛(𝐡𝑙,𝑐) based on (4.14) 

10:        end for 

11:        for  𝛽 = −𝑊 + 1 to 𝑊 − 1 do 

12:           for  n= 1 to 𝑁 do 

13:              Compute 𝜺𝑙,𝑐,𝛽,𝑛 = 𝜺𝑛(𝐡𝑙,𝑐 , 𝛽) based on (4.13) 

14:           end for 

15:           Form 𝚬𝑙,𝑐,𝛽 = [𝜺𝑙,𝑐,𝛽,1…𝜺𝑙,𝑐,𝛽,𝑁]
𝑇
 

16:           𝐂𝑙,𝑐,𝛽 = 𝚬𝑙,𝑐,𝛽𝚬𝑙,𝑐,𝛽
𝑇 

17:           Estimate the eigenvalues  {𝜆𝑛}𝑛=1
𝑁 of 𝐂𝑙,𝑐,𝛽 

18:           Compute  𝛾𝑙,𝑐,𝛽 = 𝛾 (𝐡𝑙,𝑐 , 𝛽) based on (4.16) 

19:           if   𝛾𝑙,𝑐,𝛽 < 𝛾𝑚𝑖𝑛  then 

20:              𝛾𝑚𝑖𝑛 = 𝛾𝑙,𝑐,𝛽 

21:              𝐡̂ = 𝐡𝑙,𝑐  

22:              𝛽̂ = 𝛽 

23:           end if 

24:        end for 

25:    end for 

26: end for 

27: 𝛿𝑡̂𝑓 = 𝛿𝑡̂𝑖𝑛𝑡 − 𝛽̂𝑇𝛿  
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clock bias estimation performed by state-of-the-art receivers by mitigating the impact of the 

indoor multipath channel. The MIMO-MLE can be seen as an intermediate improved solution 

of state-of-the-art timing solutions, and can be additionally used to reduce the search space of 

the MIMO-JTC and MIMO-JTCC. Although computationally more demanding than the 

MIMO-MLE, the MIMO-JTC and MIMO-JTCC will provide the ultimate timing performance 

by considering the estimation of the composite MIMO channel. Taking advantage of the slow 

temporal decorrelation of the indoor channel for a static receiver [Sat12], the estimators can be 

applied per signal snapshot with a certain duty cycle (e.g., snapshots of tens or hundreds of ms 

processed every several seconds or even tens of seconds), allowing to limit the computational 

burden of the proposed solutions depending on the available processing resources. Additionally, 

the slow temporal decorrelation may allow as well the relaxation of the processing time 

requirements. This may enable the remote processing of the signal snapshots (e.g., in the Cloud 

[Luc16], [Gar17c]), offloading the local receiver from the processing required by the proposed 

techniques, and mitigating the impact of the indoor multipath with a certain latency.   

 

4.4 Simulation results 
 

The joint time and composite MIMO channel estimators proposed in the previous section (i.e., 

the MIMO-JTC and MIMO-JTCC estimators) have been simulated via a semi-analytical 

approach at post-correlation level when considering BPSK(1) signals being transmitted by the 

GNSS satellites (as e.g., in GPS L1 C/A, which is commonly used as baseline signal in current 

mass-market receivers). Additionally, the intermediate timing solution based on the MIMO-

MLE and a reference solution based on a conventional WLS solution have also been assessed 

in order to understand the benefit introduced by the proposed methods. A single snapshot 

estimation is considered in all cases. The realistic wideband satellite-to-indoor channel model 

in the Recommendation ITU-R P.681 [ITU17] has been used to simulate the propagation 

conditions in two indoor scenarios: one for light-indoor conditions (in a room with windows), 

and another one for indoor conditions (in a room without windows, where only NLOS signals 

can be received). The simulated light-indoor scenario is illustrated in Fig. 4.1, where the 

location of the receiver antennas is indicated (for the indoor case, the same scenario without 

windows is simulated). It is to be noticed that the spatial correlations between the signals 

received for each antenna are considered in this model, such that the actual gain introduced by 

the exploitation of arrays of antennas in indoor propagation conditions can be assessed in a 

realistic way. In both scenarios a static receiver with 1, 4 and 8 antennas (with a common 

receiver clock) following the array configurations depicted in Fig. 4.2 are considered. No phase 

calibration is considered in the array of antennas. The reference SNR at post-correlation level 

per satellite LOS signal (when not considering yet the channel) is 35 dB for all the satellites 

(equivalent to a post-correlation C/No of 45 dB-Hz for a coherent integration period of 100 ms). 

In both light-indoor and indoor conditions the simulated channel introduces an important 
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degradation of the power of the LOS signal components, if present at all (typically attenuations 

above 20-30 dB are observed, depending on the scenario, satellite, and antenna). Additionally, 

an important number of NLOS multipath components are simulated by the channel per satellite 

and antenna (typically several tens or hundreds of NLOS components), with delay spreads of 

the order of hundreds or few hundreds of ns, depending on the propagation conditions for each 

satellite-antenna pair. Eleven satellites above the horizon are simulated in a representative 

geometric configuration resulting in an HDOP equal to one. Fig. 4.3 illustrates the indoor 

channel conditions simulated, showing an example of the discrete channel impulse response 

(CIR) per satellite for one of the receiver antennas. For each satellite, the CIR contains the 

relative power and delay of all the received multipath rays with respect to the ideal LOS signal 

that would be obtained in the absence of the channel. As can be observed, the impact of fading 

 

 
 

Fig. 4.2. Antenna array configurations considered in the simulations. 
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Fig. 4.1. Simulated scenario for the light-indoor conditions (room with windows), with the 

antenna array place in the ceiling of a corner of the room (see [ITU17], [Jos14]). For the indoor 

conditions, the same scenario without windows is considered. 
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on the LOS signal is very important (all the LOS signals are attenuated more than 25 dB in the 

example), an a very important number of multipath rays are received (which will explain the 

important impact of the channel on the clock bias estimation). It is to be noticed that the discrete 

CIR for each satellite-antenna pair obtained are exploited directly at post-correlation level in 

the simulations. Therefore, the cross-correlation function for each satellite-antenna pair is 

derived as the sum of the cross-correlation contributions of all the multipath rays (each with a 

given complex amplitude and delay). This allows the direct generation of the cross-correlation 

vectors 𝐫̂𝑥𝑛𝑏(𝛿𝑡) for each of the antennas, as defined in (4.8), used then for generating the 

composite MISO cross-correlation exploited by all the estimators proposed.   

System errors (e.g., satellites’ clock and orbit errors) and atmospheric errors (e.g., 

ionospheric and tropospheric errors) are not included in the simulations. The simulation 

parameters considered in the MIMO-JTC, MIMO-JTCC and MIMO-MLE estimators are 

summarized in Table 4.1 (same configuration used for comparison). It is to be noticed that only 

2 hypotheses are evaluated in the MIMO-JTC and MIMO-JTCC estimators (i.e., 𝑁𝑙 = 2). For 

each of the hypotheses, a different delay spread of the channel is considered: 230 ns and 460 

ns. This is defined in Table 4.1 based on the number of discrete time-delays (𝐷) and the time-

delay resolution (𝑇𝛿). The corresponding decay rate (𝜂𝑙) considered in the exponential model 

is also indicated. Note that since only 2 hypotheses are considered, the delay spreads are chosen 

based on lower and upper values typically expected for the composite MIMO channel. 10 

Monte Carlo runs are used for each of the two hypotheses (i. e. ,  𝑁𝑐 = 10) in order to limit the 

 

 
 

Fig. 4.3. Illustration of the simulated indoor propagation conditions. Example of the relative 

power and delay of the multipath components per satellite vehicle (SV) received by the 

antenna considered in the 1-antenna configuration (see Fig. 4.1) in the light-indoor scenario. 
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computational burden of the implemented solutions. Although a larger number of hypotheses 

and Monte Carlo runs may result in improved performance of the estimators, this configuration 

will show to be enough to achieve an improved estimation of the receiver clock bias (removing 

part of the bias introduced by the indoor channel in the MIMO-MLE solution). Regarding the 

values evaluated for the integer offset 𝛽, 𝑁𝑤 = 21 integer offsets are considered by the MIMO-

JTC and MIMO-JTCC estimators (i.e., the search area around the intermediate clock bias 

estimation is constrained to ±115 ns in order to limit the computational burden). In the reference 

WLS solution, the individual pseudorange measurements are derived from the estimation of the 

maximum of the cross-correlation function of the BPSK signal for each satellite (which 

corresponds to the MLE of the pseudorange) when considering a correlation span of ± 1 chip. 

For each simulated scenario 300 Monte Carlo simulation runs are considered for the derivation 

of the results presented. 

The RMSE of the clock bias estimated with the methods proposed (i.e., the intermediate 

MIMO-MLE solution, and the MIMO-JTC and MIMO-JTCC estimators) in the light-indoor 

scenario is shown in Fig. 4.4 with respect to the number of antennas considered in the solutions, 

together with the results obtained for the conventional WLS-based approach with one antenna. 

 

Parameter  Value 

Modulation BPSK(1) 

Receiver BW 5 MHz 

Number of satellites (M) 11 

Number of antennas (N) [1, 4, 8] 

Propagation conditions (light-)indoor 

Number of hypotheses (𝑁𝑙) 2 

Number of discrete time-delays (𝐷) [20, 40] 

Decay rate (𝜂𝑙) [0.29, 0.14] 

Number of Monte Carlo runs (𝑁𝑐) 10 

Number of integer offsets (𝑁𝑤) 21 

Time-delay resolution (𝑇𝛿) 11.5 ns 

Number samples of the composite cross-

correlation vector (𝑄) 

103 

 

Table 4.1. Summary of simulation parameters. 
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As can be observed, the usage of the MIMO-MLE estimator in the light-indoor scenario enables 

already an important improvement of the timing accuracy thanks to the exploitation of the 

spatial diversity introduced by the array of antennas, with an RMSE below 60 ns for the 8-

antennas configuration. The introduction of the composite MIMO channel in the MIMO-JTC 

and MIMO-JTCC estimators allows to further reduce the timing error with respect to the 

MIMO-MLE. This shows that the simplified hypotheses considered herein to constrain the 

estimated composite MIMO channel to physically plausible values are enough to improve the 

timing accuracy in indoor conditions (even with a relatively low number of Monte Carlo runs 

considered in the estimation). Looking at the results for the single-antenna configuration, it is 

observed that the MIMO-MLE solution improves the accuracy with respect to the reference 

WLS solution, and the application of the MIMO-JTC allows to get even better timing results, 

with an error around 60 ns thanks, again, to the exploitation of the composite MIMO channel. 

Indeed, it is observed that the MIMO-JTC results for the single-antenna configuration are 

approximately in line with the results for the MIMO-MLE in the 8-antennas configuration. In 

general, it is observed that the introduction of additional antennas in the receiver for all the 

proposed estimators enables an improvement of the timing accuracy per estimator, at least in 

the light-indoor scenario simulated. Indeed, the introduction of new antennas to a baseline set 

of antennas (i.e., the availability of further spatial diversity) is in general expected to be 

beneficial in the timing estimation so far the signals received through these new antennas are 

in similar or better propagation conditions than the baseline set (i.e., for clearly worse 

propagation conditions there might be no benefit). Comparing the MIMO-JTC and MIMO-

JTCC estimators, slightly better results are obtained for the first. For the 8-antennas 

configuration both estimators result in very similar performances, with an RMSE around 20 ns. 

 
 

Fig. 4.4. RMSE of the clock bias estimated with the methods proposed for a receiver featuring 

1, 4 and 8 antennas in light-indoor propagation conditions. 
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This accuracy is substantially better than the almost 140 ns obtained for the reference WLS 

solution (with 1 antenna).  

Fig. 4.5 shows the RMSE results obtained for the indoor scenario. In this case, the 

degradation introduced by the channel is higher due to the absence of windows in the simulated 

indoor conditions, resulting in general in worse results for all the estimators. Additionally, the 

gain introduced by the spatial diversity seems to be lower than for the light-indoor scenario. 

The exploitation of the composite MIMO channel is shown to be advantageous. Indeed, it is 

observed that the RMSE for the MIMO-JTC estimator in the single-antenna configuration 

(around 80 ns) is lower than the one obtained by the MIMO-MLE in the 8-antennas 

configuration (around 110 ns). The performance differences between the MIMO-JTC and 

MIMO-JTCC estimators are reduced with respect to the light-indoor scenario, resulting in a 

similar RMSE slightly below 50 ns for the 8-antennas configuration.     

In order to further understand the RMSE results obtained, Fig. 4.6 shows a comparison of 

the histogram of the clock bias error obtained with the MIMO-MLE, the MIMO-JTC and the 

MIMO-JTCC estimators for the case of 4 antennas in the light-indoor scenario (equivalent 

results are shown in Fig. 4.7 for 8 antennas). As can be observed, the MIMO-JTC and MIMO-

JTCC estimators reduce the bias introduced by the channel with respect to the MIMO-MLE. 

This clearly shows the benefit introduced by the estimation of the composite MIMO channel. 

It can be also observed that the dispersion of the errors is slightly lower for the MIMO-JTC 

estimator, explaining the lower RMSE errors obtained in Fig. 4.4. A similar conclusion is 

obtained for the case of 8 antennas in Fig. 4.7, but in this case further reducing the bias thanks 

to the availability of a higher spatial diversity (since more signals received in slightly different 

 
 

 
 

Fig. 4.5. RMSE of the clock bias estimated with the methods proposed for a receiver featuring 

1, 4 and 8 antennas in indoor propagation conditions.  
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propagation conditions can be jointly exploited). Fig. 4.8 shows equivalent results for the indoor 

scenario in a room without windows. In this case, results are also improved with respect to the 

MIMO-MLE, but it can be observed that the residual bias is bigger than for the light-indoor 

scenario. This is considered to be a result of the worse propagation conditions, with only NLOS 

components received and worse SNR conditions in which the estimators need to operate.  

To explain the differences observed between the MIMO-JTC and MIMO-JTCC estimators, 

Fig. 4.9 shows the relative miss-modeling errors of the estimated composite MIMO channel 

 
Fig. 4.6. Histogram of the clock bias error obtained with the estimators proposed in the 

configuration with 4 antennas for the light-indoor scenario. 
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Fig. 4.7.  Histogram of the clock bias error obtained with the estimators proposed in the 

configuration with 8 antennas for the light-indoor scenario. 
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obtained in both cases (indicating how well we are estimating the channel). As can be observed, 

the channel estimation error is lower for the MIMO-JTC than for the MIMO-JTCC in both 

light-indoor and indoor conditions; and is lower in light-indoor conditions than in the indoor 

conditions, and when the number of antennas increases (in line with the RMSE results 

obtained). These results indicate that the contribution of NLOS multipath components spatially 

not correlated cannot be neglected in the problem. Thus, focusing only on the minimization of 

 
Fig. 4.8. Histogram of the clock bias error obtained with the estimators proposed in the 

configuration with 8 antennas for the indoor scenario. 
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Fig. 4.9. Comparison of the relative miss-modeling error of the estimated composite MIMO 

channel with the MIMO-JTC and MIMO-JTCC estimators for both light-indoor and indoor 

scenarios. 
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the impact of the correlated NLOS multipath components between antennas does not result in 

the best performance (at least for the indoor conditions simulated). Therefore, it appears to be 

more beneficial to exploit the spatial diversity for improving the equivalent SNR conditions in 

which the joint composite MIMO channel and time estimator operates, as is done in the MIMO-

JTC estimator.  

Last, but not least, Fig. 4.10 shows an estimation of the computational burden of the MIMO-

JTC and MIMO-JTCC estimators as a factor of the computational burden of the MIMO-MLE 

in a single antenna configuration (i.e., the MISO-MLE). This estimation has been derived based 

on the processing time of the simulation of each of the estimators. As can be observed, for the 

8-antennas configuration the MIMO-JTC is around three times more computationally 

demanding than the MIMO-MLE for the same number of antennas (and around 22 times with 

respect to the MISO-MLE). In the case of the MIMO-JTCC this factor is drastically increased. 

Therefore, the MIMO-JTC is not only outperforming the MIMO-JTCC in terms of timing 

performance, but also in terms of computational burden. And although the computational 

burden for the MIMO-JTC is higher than for the MIMO-MLE, the improved timing 

performance can justify its usage in certain indoor applications. 

 

 
 

 
 

Fig. 4.10. Processing factor for the proposed estimators in different antenna configurations 

with respect to the MISO-MLE (MIMO-MLE with 1 antenna). 
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4.5 Conclusions 
 

The indoor time synchronization problem based on GNSS signals has been discussed in this 

chapter. In particular, a novel joint time and composite MIMO channel estimation approach has 

been proposed in order to mitigate the important degradation introduced by blockage and 

multipath effects in the timing solution provided by state-of-the-art indoor GNSS receivers. The 

simulation results obtained with a realistic wideband satellite-to-indoor channel model show 

that the exploitation of the spatial diversity introduced by arrays of antennas, together with the 

estimation of the composite MIMO channel in the proposed estimators, allows an important 

mitigation of the indoor multipath. Timing accuracies below 50 ns are demonstrated to be 

feasible in both light-indoor and indoor conditions. Therefore, the proposed estimation 

approach is considered an appealing solution for indoor applications with tight synchronization 

requirements, as can be the case in indoor small cells for 5G.  
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5  

 

From Co-located to Distributed 

Array Solutions  
 

 

 

 

HE exploitation of GNSS signals for positioning applications in harsh propagation 

conditions like urban or indoor scenarios is still a very challenging topic due to the 

dominant impact of the propagation conditions. Indeed, the usage of GNSS indoors may result 

in positioning errors in the order of tens or even hundreds of meters. Thus, other technologies 

may be exploited together with, or as alternative to, state-of-the-art GNSS receivers to improve 

the availability and accuracy of the final positioning solution in challenging propagation 

conditions.  

This thesis proposes to exploit the MIMO-GNSS framework for positioning in harsh 

propagation conditions. First, the MIMO-MLE solution derived in Chapter 3 is exploited in 

indoor conditions. Then, a novel distributed array processing approach for collaborative GNSS-
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based snapshot positioning in harsh propagation conditions is proposed. The spatial diversity 

introduced by the distributed receivers is proposed to be exploited by jointly processing in the 

position domain all the GNSS signals received by all the receivers. This is equivalent to derive 

the collaborative position as the solution of a distributed or collaborative MIMO-GNSS (Co-

MIMO-GNSS) problem. In order to significantly reduce the computational burden of this 

approach (which otherwise would be too high), the positioning problem needs to be constrained 

by the structure of the distributed array (which defines the spatial distribution of all the 

receivers). Therefore, the distributed array needs to be first formed based on the peer-to-peer 

ranges between all the receivers (potentially also aided by the coarse position estimation of 

some of them). Based on this, taking one of the receivers as anchor (e.g., the receiver with the 

best estimated accuracy, or a receiver in a fixed known location), the collaborative positioning 

problem can be transformed into a collaborative angle estimation problem in the horizontal 

position plane (i.e., a 1D problem).  

This chapter is organized as follows. Section 5.1 presents the background and motivation. 

Section 5.2 briefly discusses the exploitation of co-located antennas for indoor positioning in 

the MIMO-GNSS framework, and presents the simulation results obtained in this case. Then, 

Section 5.3 introduces the exploitation of distributed receivers for the formation of distributed 

arrays of antennas, and simulation results are presented. Finally, Section 5.4 presents the 

conclusions. 

The material presented in this chapter has been partially published by the author in 

[Gar17b], [Gar17c], [Gar18b], [Gar18c], and [Gar19c]. 

 

5.1 Background and motivation 
 

GNSS signals are broadly used for positioning in different applications and use cases, including 

important market segments like LBS [GNS17]. Moreover, GNSS is expected to play a key role 

in IoT applications where positioning may be required only from time to time. In this context, 

elements like the energy required to derive a position fix by the receiver, and the achievable 

accuracy and availability of the position fix when required by the application, independently of 

the scenario in which the receiver is operating, are expected to be key drivers in the design of 

the positioning solutions. Indeed, current mass-market receivers may operate either in 

continuous tracking mode, or applying a certain duty-cycling in order to save power (being the 

receiver engine active only a portion of the time), targeting a certain position accuracy while 

maintaining the power consumption as low as possible. Another possible approach to meet 

some of the IoT requirements is the application of snapshot positioning, targeting the 

exploitation of limited periods of signal around the time instant in which the position fix is 

needed [Sec12]. The snapshot positioning may be performed either locally at the receiver, or 

remotely in the Cloud, offloading the receiver from the position estimation process [Luc16], 
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[Gar17c]. This latest option can be additionally of interest to exploit advanced assistance 

information (e.g., 3D or fingerprint maps) in the processing of the received signal; or for the 

exploitation of the signal snapshots in other applications (e.g., jamming and spoofing 

localization) when multiple receivers are jointly processed [Gar16b], [Gar17c]. 

Typically, the exploitation of GNSS signals outdoors is not a problem. Nevertheless, the 

exploitation of GNSS signals in harsh propagation conditions typical of urban or indoor 

scenarios is a very challenging topic. Indeed, in these scenarios the observed C/No conditions 

may be very low, and the impact of NLOS signal propagation conditions can be dominant, 

highly degrading the position solution or making not possible the derivation of a position fix 

[Sec12], [Ste03], [Hei08]. Moreover, this may limit the application of power-save modes in 

mass-market receivers since applying a certain duty-cycling is equivalent to a reduction of the 

SNR conditions observed by the receiver.  

Different techniques and architectures have been proposed in the literature in order to try to 

improve the exploitation of GNSS signals in harsh propagation conditions. Among those, we 

can find high-sensitivity and multipath estimation and mitigation techniques operating at 

satellite signal level [Pan09], [Sah08], [Clo08], [Bro11a]; advanced techniques like vector 

tracking loops [Las09] and direct position estimators [DiE07], [Clo07], [Clo09a], [Clo09b] 

operating directly at position level; array-based techniques exploiting the spatial diversity 

provided by different co-located antennas [Sec05], [Fer09a], [Fer09b], [Fer16]; cooperative and 

collaborative techniques exploiting the GNSS observables or signals from different receivers 

in nearby locations, together with the estimated ranges (i.e., distances) between those receivers 

[Gare12a], [Gare12b], [Sol13], [And18]; or hybrid positioning techniques focusing on the 

fusion of GNSS estimations with other sensors and/or signals of opportunity in order to try to 

improve the availability and/or accuracy provided by the GNSS-only solution [Per18]. 

Among the previous techniques, the exploitation of direct position estimators and array-

based techniques may allow to overcome the limitations of high-sensitivity and multipath 

mitigation techniques working at single-satellite level. This is achieved by not only exploiting 

the time diversity (e.g., longer coherent and non-coherent integration times can be exploited to 

improve the acquisition sensitivity; and filtering in the time domain can be exploited both at 

tracking and positioning levels), but also the spatial diversity introduced by multiple GNSS 

satellites and/or receiver antennas. This can be implemented via the application of the MIMO-

MLE position solution discussed in Chapter 3. Even if computationally demanding, this 

solution may be applied remotely in the Cloud, offloading the receiver from the MIMO-GNSS 

processing. The application of the MIMO-GNSS approach in indoor conditions is discussed in 

Section 5.2 for co-located arrays of antennas, as originally presented in [Gar18b].  

Also exploiting the spatial diversity, but in this case from different receivers, cooperative 

and collaborative positioning is a promising approach to enable the ubiquitous, accurate and 

precise positioning of receivers in urban and indoor conditions [Gare12a], [Gare12b], [Sol13], 

[And18]. The basic idea of this approach consists in the exploitation of the GNSS observables 

or signals from different receivers in nearby locations (e.g., receivers separated by several 
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meters or tens of meters), together with the estimated ranges between the receivers (i.e., the 

peer-to-peer ranges). A broad application of the collaborative positioning approach may be 

feasible in the near future thanks to the fast evolution of 5G standards and V2V/V2X 

communications [3GP19], [5G16], as well as the availability of UWB-based and Wi-Fi RTT 

range estimation solutions [Guv18], [Au16]. Section 5.3 proposes a collaborative positioning 

approach in the MIMO-GNSS framework based on GNSS signal snapshots from distributed 

receivers in harsh propagation conditions, as presented in [Gar19c].  

 

5.2 The MIMO-GNSS solution indoors  
 

Let us consider the MIMO-GNSS system of Fig. 5.1, with a receiver featuring an array of 

antennas operating in indoor conditions, and the availability of a coarse position solution 𝐩̂𝒄.  
For simplicity, let us reuse the signal model exploited in Section 3.3.2 to reformulate the 

MIMO-MLE position solution indoors as the optimization problem  

 

𝐩̂0 = argmax
𝐩0

Λ(𝐩0)

                     𝑠. 𝑡. ‖𝐩0 − 𝐩̂𝒄‖ < 𝜓,
 

 

(5.1) 

 

where, equivalently to (3.30), the cost function is defined as 

 

Λ(𝐩0) = ∑ 𝐫̂𝑥𝑛𝑏
𝐻(𝐩0 − 𝚫𝐩𝑛)𝐑̂𝑏𝑏

−1
(𝐩0 − 𝚫𝐩𝑛)

𝑁

𝑛=1

𝐫̂𝑥𝑛𝑏(𝐩0 − 𝚫𝐩𝑛), 
 

(5.2) 

 

𝜓 defines the search area around the coarse position estimation (in this case, easily in the order 

of tens or even hundreds of meters), and all the other parameters are defined as in Section 

3.3.2.2. In practice, 𝐑̂𝑏𝑏(𝐩) will be approximated to an identity matrix. Moreover, and as 

discussed earlier in Section 3.3.2.3, when considering relatively short baselines between 

antennas (e.g., of the order of tens of cm), the cost function in (5.2) may be also simplified by 

approximating 𝚫𝐩𝑛 as a zero vector in the case meter-level (or above) positioning accuracies 

are expected to be achievable with the MIMO-MLE solution (as can be the case indoors). This 

simplification removes the need to know the baselines between antennas. 

Note that the indoor MIMO-MLE position solution above is analogous to the intermediate 

timing solution discussed in Chapter 4 for indoor timing. Therefore, this solution is by definition 



 

Chapter 5. From Co-located to Distributed Array Solutions 

 
 

99 
 

sub-optimum, since does not model the NLOS multipath components. Nevertheless, the 

exploitation of the spatial diversities available will enable to mitigate, to some extent, the impact 

of the NLOS multipath components. In contrast to the indoor timing problem, herein the 

estimation of the indoor channel (or the composite MIMO channel) is not considered in the 

solution as a way to further improve the MIMO-MLE solution due to the higher complexity to 

estimate the channel contribution in the position domain. Instead, a collaborative solution will 

be proposed in the next section to achieve a better positioning performance thanks to the 

availability of a richer diversity of the propagation conditions per receiver antenna (with some 

receivers in harsh conditions, while others in milder conditions).  

The proposed indoor positioning approach based on the MIMO-MLE has been assessed at 

post-correlation level for BPSK(1) signals (as e.g., in GPS L1 C/A, which is commonly used 

as baseline signal in current mass-market receivers) when received with different antenna 

configurations (1, 4 and 8 antennas distributed as in Fig. 4.2 of Section 4.4), as originally 

presented in [Gar18b]. Simulations have been performed in realistic indoor (in a room without 

windows) and light-indoor (in a room with windows) conditions based on the physical-

statistical wideband satellite-to-indoor channel model (Recommendation ITU-R P.681 

[ITU17], [Jos14]), as in Section 4.4. In all the scenarios, the processing of a single signal 

 
 

 

Fig. 5.1. Illustration of the MIMO-GNSS system in indoor conditions for an arbitrary 

distribution of the array of antennas featured by the GNSS receiver. The LOS components are 

in general expected to be highly attenuated or fully blocked, while NLOS multipath 

components can be dominant [Gar18b]. 
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snapshot is considered for a static receiver, 11 satellites are simulated with an HDOP equal to 

1, and no phase calibration is considered between the antennas. The search space of the MIMO-

MLE is limited to the horizontal 2D position in a square of 400 by 400 m around the truth 

receiver position (area selected given the important impact of the indoor channel). Other 

parameters are considered known a priori. An open-loop WLS solution has been used as 

reference for the single-antenna configuration. In this case, the maximum of the cross-

correlation function per satellite signal is used for the estimation of the pseudoranges used later 

on in the WLS solution. 200 independent Monte Carlo runs are considered per receiver 

configuration. 

Fig. 5.2 summarizes the horizontal position RMSE obtained for both light-indoor and indoor 

scenarios; and Fig. 5.3 and Fig. 5.4 show separately the horizontal position solutions obtained 

in light-indoor and indoor propagation conditions, respectively. In both cases important 

attenuations (typically above 20-30 dB) of the LOS signals are observed for all the satellites, 

with an important presence of NLOS multipath components (dominant in most of the cases). 

For the single-antenna configuration, important horizontal errors are obtained for both MISO-

MLE (equivalent to DPE) and open-loop WLS solutions (in particular for the indoor scenario, 

with errors above hundred meters, being both approaches not able to provide acceptable or 

stable solutions). As can be observed, in general the usage of larger arrays of antennas by the 

MIMO-MLE allows the improvement of the indoor position solution thanks to the spatial 

diversity introduced by the new antenna elements (going from horizontal errors of several tens 

or above hundred meters, to few tens of meters). This is in general expected to be the case when 

the signals received by the new antenna elements are in similar or better conditions than the 

original antenna elements considered in the solution. Additionally, even for the 8-antenna 

 

 
 

Fig. 5.2. Horizontal positioning RMSE for the light-indoor and indoor scenarios with 

BPSK(1) signals [Gar18b]. 
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configuration, a bias is still observed in the position solution due to the important degradation 

of the LOS signals and the dominant presence of NLOS multipath components.  

 
 

Fig. 5.3. Horizontal positioning results for a light-indoor scenario (static receiver in a room 

with windows) with BPSK(1) signals [Gar18b].  
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Fig. 5.4. Horizontal positioning results for an indoor scenario (static receiver in a room 

without windows) with BPSK(1) signals [Gar18b]. 

 

 

 
 
 

 
  

-300 -200 -100 0 100 200 300
-300

-200

-100

0

100

200

300

X [m]

Y
 [

m
]

 

 

Ref. WLS (1 ant.)

MISO-MLE (1 ant.)

MIMO-MLE (4 ant.)

MIMO-MLE (8 ant.)



 

Chapter 5. From Co-located to Distributed Array Solutions 

 
 

102 
 

In summary, the simulation results show that there is still room for improvement in the 

MIMO-GNSS framework, in particular for the reduction of residual biases introduced in the 

position solution by the dominant NLOS propagation conditions. Based on this, a collaborative 

solution in the MIMO-GNSS framework enabling a further exploitation of the spatial reception 

diversity is proposed in Section 5.3. Finally, it is to be noticed that when considering high-order 

BOC signals in the same indoor conditions, better positioning accuracies are achieved thanks 

to the better code accuracy of these signals with respect to BPSK(1) signals, as shown the 

simulation results presented in Section 3.3.3. 

 

5.3 A collaborative solution in the MIMO-GNSS 

framework (Co-MIMO-GNSS) 
 

5.3.1 System and signal model 
 

Let us consider a distributed system consisting of 𝑁 independent receivers (with 𝑁 ≥ 1), each 

of them featuring a GNSS antenna and receiving 𝑀 navigation signals (with 𝑀 ≥ 1) from a 

certain GNSS constellation and frequency band. Each of the receivers is potentially able to 

perform an initial coarse estimation of its state vector (containing, among others, the receiver’s 

position, velocity and clock bias and drift). Additionally, a dedicated RF link between each of 

the receivers is available to estimate the peer-to-peer ranges between any pair of receivers. A 

subset of the 𝑁 receivers is expected to be operating in harsh propagation conditions, such that 

the independent state vector estimations performed by the corresponding receivers may be 

highly degraded, or even not available. Out of the 𝑁 receivers, at least one of them is considered 

to operate in mild propagation conditions (i.e., a relatively good estimation of the position, 

velocity and clock bias and drift can be performed without a dominant impact of the propagation 

channel), such that it can be used as anchor receiver in the collaborative position solution. It is 

to be noticed that the joint exploitation of all the GNSS signals received by all the receivers is 

highly dependent on the proper synchronization of the receivers to a common system time (e.g., 

the GNSS system time). This is going to be an important factor in collaborative positioning 

since, in practice, the time and frequency synchronization of each receiver will be achieved 

only with a certain accuracy (with potential important degradations in the harsh conditions 

where collaborative processing is actually expected to provide benefits). Therefore, time and 

frequency synchronization will in practice play an important role in the final performance of 

the collaborative processing [Gar17c]. 

In the following, the collaborative positioning problem discussed herein focuses on the 

derivation of an improved horizontal 2D position estimation for all the receivers (except the 
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one used as anchor), being the position of the n-th receiver at a certain time instant denoted as 

𝐩𝑛 ≜ 𝐩𝑛(𝑡) ∈ ℝ2×1 (for simplicity, the dependence with time will be omitted in the following 

unless necessary). Therefore, the receivers are assummed to be operating at the same altitude 

(or the altitude for each receiver can be estimated and compensated by other means, e.g., based 

on barometric estimations [Li13]). Multipath is not considered in the signal model exploited by 

the proposed collaborative estimator. The reason is threefold. First, including the NLOS 

multipath components in the signal model would drastically increase the complexity of the 

resulting estimator. Second, diffuse multipath is expected in indoor conditions, being the 

components unresolvable and completely buried in noise, thus making very difficult their 

practical estimation and separation from the LOS contributions (if available at all) [Sec12], 

[Hei08], [Jos14]. And, last but not least, it is proposed to deal with the NLOS multipath 

components by jointly exploiting all the available received signals from spatially distributed 

receivers in different propagation conditions. Based on this, the complex baseband signal 

received by the n-th receiver from the potentially attenuated (or even missing) LOS 

contributions of the M GNSS satellites above the horizon are modeled in the following as 

 

  𝑥𝑛(𝑡) = ∑ 𝑎𝑚,𝑛(𝑡)𝑔𝑚 (𝑡 − 𝜏𝑚,𝑛(𝑡)) exp{𝑗2𝜋𝑓𝑚,𝑛(𝑡)𝑡}

𝑀

𝑚=1

+ 𝑒𝑛(𝑡), 
 

(5.3) 

 

where the complex amplitude, time-delay and frequency-shift of the modeled LOS signals are 

denoted as 𝑎𝑚,𝑛, 𝜏𝑚,𝑛 and 𝑓𝑚,𝑛, respectively. Taking now advantage of the DPE approach, as 

done in the previous chapters, we can define the time-delay and frequency shift for the LOS 

signal of each satellite-receiver pair as 𝜏𝑚,𝑛(𝑡) ≜ 𝜏𝑚,𝑛(𝑡, 𝐩𝑛) and 𝑓𝑚,𝑛(𝑡) ≜ 𝑓𝑚,𝑛(𝑡, 𝐩𝑛), where 

the dependence with the 2D position vector 𝐩𝑛 ≜ 𝐩𝑛(𝑡) for the n-th receiver is defined. Note 

that the dependence with other parameters of the receiver’s state vector is omitted for simplicity. 

Exploiting the dependence with 𝐩𝑛, we can now define a basis function 𝑏𝑚,𝑛 for the modeled 

LOS signal of each satellite-receiver pair as [Gar19a] 

 

             𝑏𝑚,𝑛(𝑡, 𝐩𝑛) = 𝑔𝑚 (𝑡 − 𝜏𝑚,𝑛(𝑡, 𝐩𝑛)) exp{𝑗2𝜋𝑓𝑚,𝑛(𝑡, 𝐩𝑛)𝑡}. (5.4) 

 

Note that (5.4) does not rely on the narrowband signal assumption since 𝐩𝑛 ≜ 𝐩𝑛(𝑡). Using the 

basis function in (5.4), and considering only a snapshot of 𝐾 samples of 𝑥𝑛(𝑡) for which 𝑎𝑚,𝑛, 

𝜏𝑚,𝑛 and 𝑓𝑚,𝑛 are approximately constant during the observation time (or for which the 

variations of 𝜏𝑚,𝑛 and 𝑓𝑚,𝑛 can be compensated), the vector 𝐱𝑛 = [𝑥𝑛(𝑡0)… 𝑥𝑛(𝑡𝐾−1)]
𝑇 ∈

ℂ𝐾×1 gathering these samples can be modeled as  
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𝐱𝑛 ≈ 𝐁(𝐩𝑛)𝐚𝑛 + 𝐞𝑛, (5.5) 

 

where 𝐁(𝐩𝑛) = [𝐛1,𝑛(𝐩𝑛)…𝐛𝑀,𝑛(𝐩𝑛)] ∈ ℂ𝐾×𝑀 is the basis function matrix for the n-th 

receiver, composed by the basis function vectors for each satellite 𝐛𝑚,𝑛, defined based on (5.4) 

as 𝐛𝑚,𝑛 = [𝑏𝑚,𝑛(𝑡0, 𝐩𝑛)…𝑏𝑚,𝑛(𝑡𝐾−1, 𝐩𝑛)]
𝑇 ∈ ℂ𝐾×1; 𝐚𝑛 = [𝑎1,𝑛… 𝑎𝑀,𝑛]

𝑇
∈ ℂ𝑀×1 is the 

complex amplitudes vector; and 𝐞𝑛 ∈ ℂ𝐾×1 is the complex noise vector, with 𝐞𝑛~𝐶𝑁(𝟎, σ
2𝐈).  

 

5.3.2 Formation of the distributed array rigid body 
 

In order to define the distributed array signal model based on the signal snapshots of all the 

receivers at a given time instant, the formation of a distributed array “rigid body” defining the 

relative spatial distribution between all the receivers for that time instant needs to be performed. 

As illustrated in Fig. 5.5, the orientation and position of the distributed array rigid body in the 

horizontal 2D plane is defined by two parameters: its angle 𝛼𝑅𝐵 ≜ 𝛼𝑅𝐵(𝑡) with respect to the 

local 2D reference coordinates, and the position of one of the receivers (used as anchor). This 

basically means that by estimating 𝛼𝑅𝐵 we obtain a collaborative 2D position of all the receivers 

(except the anchor). Without loss of generality, in the following the receiver 1 (with position 

𝐩1) is considered to be the anchor; and 𝛼𝑅𝐵 is defined as the angle of the vector 𝐩2 − 𝐩1 in the 

local 2D coordinates system used (with the receiver 2 any of the remaining receivers). 

Assuming that the correct rigid body solution is available, the position of the n-th receiver 𝐩𝑛 

can be defined as a function of 𝛼𝑅𝐵 based on the position of the anchor receiver 𝐩1 as [Gar19c] 

 

𝐩̂𝑛(𝛼𝑅𝐵) = 𝐩1 + 𝚫𝐩𝑛(𝛼𝑅𝐵), (5.6) 

 

where the offset vector 𝚫𝐩𝑛(𝛼𝑅𝐵) is defined as [Gar19c] 

 

  𝚫𝐩𝑛(𝛼𝑅𝐵) = [𝜌̂𝑛,1 cos(𝛼𝑅𝐵 + ∆𝛼̂𝑛) , 𝜌̂𝑛,1 sin(𝛼𝑅𝐵 + ∆𝛼̂𝑛)]
𝑇, (5.7) 

 

with ∆𝛼̂𝑛 the offset angle between the vectors 𝐩̂𝑛(𝛼𝑅𝐵 = 0) − 𝐩1 and 𝐩̂2(𝛼𝑅𝐵 = 0) − 𝐩1 (note 

that ∆𝛼̂𝑛 is easily estimated once the array rigid body is formed). The derivation of the array 

rigid body is possible thanks to the available estimated peer-to-peer ranges 𝜌̂𝑎,𝑏 ≜ 𝜌̂𝑎,𝑏(𝑡) =

𝜌̂𝑏,𝑎(𝑡) between all the receivers. Different estimation approaches exploited in standard 

cooperative positioning may be applied to form the rigid body, from LS based solutions to other 

more advanced approaches [Gare12a], [Gare12b], [Sol13], [Mon14]. It is to be noticed that a 

detailed discussion of this topic is considered out of the scope of this thesis.  
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A sequential LS based solution will be considered in the following to form the rigid body. 

The basic idea of this sequential approach is to build, step by step, the rigid body by adding in 

each step a new receiver. In each step, an LS position estimator is used to derive the position of 

the next receiver based on the previously derived receiver positions and the estimated ranges 

between these receivers and the next receiver. In general, to ensure the convergence of the LS 

estimator, this should be initialised with a coarse 2D position (since linearization may be an 

issue for short peer-to-peer ranges). A coarse 2D position 𝐩̂𝑐 can be derived based on a grid-

search approach as the solution to the minimization problem 

 

𝐩̂𝑐 = argmin
𝐩
‖𝐯 − 𝐝(𝐩)‖2, (5.8) 

  

where the vector 𝐯 contains the peer-to-peer ranges from the receivers previously derived and 

the next receiver, and the vector 𝐝(𝐩) contains the ranges between the evaluated position and 

the previous receivers. Note that the search-space applied in (5.8) should be constrained to the 

area of interest, with an accuracy just enough to ensure the later convergence of the LS 

estimator. Given the position 𝐩1 of the anchor receiver and the range 𝜌̂1,2 between receivers 1 

and 2, we can define 𝐩2(𝛼𝑅𝐵 = 0) as any arbitrary position satisfying ‖𝐩2 − 𝐩1‖ = 𝜌̂1,2 (i.e., 

any point in the circle with radius 𝜌̂1,2 centered in 𝐩1). Note that the selection of 𝐩2(𝛼𝑅𝐵 = 0) 

defines the local 2D coordinates system of the array rigid body. Based on 𝐩1, 𝐩2(𝛼𝑅𝐵 = 0), 
𝜌̂1,3, and 𝜌̂2,3, we can now derive two possible 2D position solutions for receiver 3 by applying 

 
 

Fig. 5.5. Illustration of the distributed array rigid body [Gar19c]. 
  
 

Rx 1

Rx 4

Rx 2

Rx 3

   
𝜌1,2

𝜌1,4

𝜌2,3

𝜌1,3

𝜌3,4

𝜌2,4

 

 

∆  ̂ ∆  ̂



 

Chapter 5. From Co-located to Distributed Array Solutions 

 
 

106 
 

an LS estimator initialised based on (5.8). For each of the two solutions derived for receiver 3, 

we can repeat the process to derive in each new iteration the position of a new receiver (from 

then on, a single position solution is obtained for each of the two solutions for receiver 3), until 

the positions of all the receivers are obtained. Under the assumption of decimeter-level peer-to-

peer range estimation accuracies and peer-to-peer ranges of the order of several meters or tens 

of meters, the application of this approach (with the LS estimator being initialized based on the 

optimization problem in (5.8), or equivalent approaches) should converge to a plausible 

formation of the rigid body (within a certain error). It is to be noticed that two possible 

symmetric solutions for the array rigid body will be derived out of this process unless the 

individual estimation of the receivers’ positions or previous collaborative estimations are used 

to discard the non-correct rigid body solution (in particular, in the derivation of the position for 

receiver 3). Otherwise, both rigid body solutions should be evaluated in the collaborative 

solution. 

 

5.3.3 Distributed array signal model 
 

Based on the formation of the distributed array rigid body and the signal model for each of 

the receivers in (5.5), a generalist unstructured array signal model (i.e., not relying on the 

narrowband array assumption) is considered in the following. Let us define a distributed basis 

function matrix 𝚿 modeling the relation between the signals gathered by all the receivers and 

the anchor receiver; based on the basis function matrices {𝐁(𝐩𝑛(𝛼𝑅𝐵))}𝑛=2
𝑁  , 𝚿 can be defined 

as a function of 𝛼𝑅𝐵 as [Gar19c] 

 

𝚿(𝛼𝑅𝐵) =

[
 
 
 
 
𝐁(𝐩2(𝛼𝑅𝐵)) 𝟎

    𝟎 𝐁(𝐩3(𝛼𝑅𝐵))

… 𝟎
… 𝟎

⋮                 ⋮
𝟎                 𝟎

⋱ ⋮
… 𝐁(𝐩𝑁(𝛼𝑅𝐵))

 

]
 
 
 
 

. 

 

(5.9) 

 

Based on (5.9), the signal vector 𝐲 gathering the signals from 𝑁 − 1 receivers of the distributed 

array (all except the anchor receiver) can be modeled as [Gar19c] 

 

𝐲 = 𝚿(𝛼𝑅𝐵)𝐜 + 𝐢, (5.10) 

 

where 𝐲 = [𝐱2
𝑇… 𝐱𝑁

𝑇]𝑇 ∈ ℂ(𝑁−1)𝐾×1, 𝐜 = [𝐚2
𝑇… 𝐚𝑁

𝑇]𝑇 ∈ ℂ𝑀(𝑁−1)×1 contains the complex 

amplitudes for the 𝑀(𝑁 − 1) paths, and 𝐢 = [𝐞2
𝑇… 𝐞𝑁

𝑇] ∈ ℂ(𝑁−1)𝐾×1 gathers the 

corresponding noise components (with 𝐢~𝐶𝑁(𝟎, σ2𝐈), such that the noise components of the 

different receivers are considered to be normalized between them).  
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5.3.4 MLE of the angle of the distributed array rigid body 
 

Based on the signal model in (5.10), and following a similar approach as in [Gar19a] for the 

case of the direct position estimation, the maximum likelihood estimation of the angle 𝛼𝑅𝐵 of 

the distributed array rigid body can be found as the maximization problem [Gar19c] 

 

𝛼̂𝑅𝐵 = argmax
𝛼𝑅𝐵

{𝐫̂𝑦𝜓
𝐻(𝛼𝑅𝐵)𝐑̂𝜓𝜓

−1
(𝛼𝑅𝐵)𝐫̂𝑦𝜓(𝛼𝑅𝐵)}, 

(5.11) 

 

with the estimated correlation vectors defined as [Gar19c] 

 

𝐫̂𝑦𝜓(𝛼𝑅𝐵) = 𝚿𝐻(𝛼𝑅𝐵)𝐲, and (5.12) 

𝐑̂𝜓𝜓(𝛼𝑅𝐵) = 𝚿𝐻(𝛼𝑅𝐵)𝚿(𝛼𝑅𝐵). (5.13) 

 

The direct application of a 1D grid search approach [Kay13] may be considered to solve (5.11), 

with tens or hundreds of grid points expected to be enough for achieving reasonable accuracies. 

The collaborative 2D position solution for all the receivers (except the anchor) can then be 

derived based on 𝛼̂𝑅𝐵 as [Gar19c] 

 

{𝐩̂𝑛}𝑛=2
𝑁 = 𝐩1 + {𝚫𝐩𝑛(𝛼̂𝑅𝐵)}𝑛=2

𝑁 . (5.14) 

 

The reduction of the collaborative position problem to an angle estimation problem (i.e., to a 

1D estimation problem) based on (5.11) and (5.14) allows an important reduction of the 

computational burden with respect to the direct 2D position estimation. The computational 

burden may be further reduced by approximating 𝐑̂𝜓𝜓 by an identity matrix (assuming good 

cross-correlation properties of the GNSS signals exploited), such that only the generation of the 

correlation vectors in (5.12) is required. This simplification is exploited in the simulations 

presented in Section 5.3.7. 

 

5.3.5 Hybrid position solution 
 

A hybrid DPE (H-DPE) solution (equivalent to a hybrid MISO-MLE solution) can be obtained 

as an intermediate solution to the collaborative position by exploiting the signal snapshot for 
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each receiver together with the estimated range to the anchor (this is equivalent to the DPE or 

MISO-MLE solution constrained by a circle around the anchor in the horizontal position 

domain). The H-DPE solution can be defined as  

 

𝐩̂𝑛
ℎ𝑦𝑏 = argmax

𝐩
{𝐫̂𝑥𝑛𝑏

𝐻(𝐩)𝐫̂𝑥𝑛𝑏(𝐩)}

𝑠. 𝑡. ‖𝐩 − 𝐩𝟏‖ = 𝜌̂1,𝑛.
 

 

(5.15) 

 

where the correlation vectors 𝐫̂𝑥𝑛𝑏(𝐩) for each receiver are defined as in Section 3.3.2.2. 

 

5.3.6 Implementation aspects of the collaborative solution 
 

The collaborative position solution proposed herein requires the joint processing of signal 

snapshots from the multiple receivers considered (together with the estimated ranges between 

them, and the individual estimations of the receivers’ state vectors). Therefore, the application 

of the concept requires a centralized processing. This may be performed by one of the receivers 

(e.g., the anchor receiver). Alternatively, and taking advantage of the high data rates and very 

low latencies expected to be provided by 5G [3GP19], it may be performed in the Cloud 

[Luc16], [Gar17c]. This second approach allows to offload the receivers from the processing 

required by the proposed collaborative solution.   

Depending on the target application, the collaborative processing of the signal snapshots 

may need to be performed with a higher or lower duty cycle. In some cases the collaborative 

solution could be used as a back-up to verify or correct the individual position solution of the 

receivers, such that low duty cycles may be applicable. In other cases, a continuous 

collaborative position may be of interest. In any case, the exploitation of information from 

previous epochs and assistance data is considered of high interest in the collaborative 

positioning process to reduce the computational burden and improve the positioning 

performance. 

 

5.3.7 Simulation results 
 



 

Chapter 5. From Co-located to Distributed Array Solutions 

 
 

109 
 

The collaborative position estimator proposed in this chapter has been simulated via a semi-

analytical approach at post-correlation level. A grid search approach with a resolution of 1 

degree is used. A scenario with 5 receivers in which all the peer-to-peer ranges are available 

with an accuracy of 0.1 m (1-sigma) is considered. “Rx 1” is the anchor receiver, whose position 

is considered to be known, and the rest of receivers are operating in different (light-)indoor 

conditions, as shown in Fig. 5.6. In order to simulate the indoor conditions, the realistic 

wideband satellite-to-indoor channel model in Recommendation ITU-R P.681 [ITU17], [Jos14] 

has been used. A sequential LS-based solution is exploited for the formation of the distributed 

array rigid body, accounting in this way for the impact of peer-to-peer range errors in the 

collaborative estimation. Synchronization errors between the receivers are simulated, being 

dependent on the simulated channel conditions. Eleven satellites are simulated in a geometric 

configuration with an HDOP equal to one. System and atmospheric errors are not included in 

the simulations. Assistance data is considered to be available. BPSK(1) signals (as e.g., in GPS 

L1 C/A) are transmitted by the simulated GNSS satellites. A single signal snapshot is 

considered and the reference SNR at post-correlation level per satellite LOS signal (when not 

considering yet the channel) is 35 dB for all the satellites (equivalent to a post-correlation C/No 

of 45 dB-Hz for a coherent integration period of 100 ms; note that C/No values below 15-25 

dB-Hz are observed in the simulated indoor conditions). A conventional snapshot-based WLS 

solution has been used as reference for each of the receivers in order to assess the benefit 

introduced by the collaborative approach (note this is considered a representative processing 

approach when a single snapshot is available, e.g., in the case of Cloud-GNSS processing 

[Luc16], [Gar17c]). Additionally, the H-DPE solution is also used in the comparison. In order 

to show the benefit introduced when an additional receiver in better propagation conditions 

(i.e., considering AWGN conditions) is exploited in the collaborative solution (on top of the 

 
 

 
 

Fig. 5.6. Illustration of the simulated scenario for collaborative positioning [Gar19c]. 
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anchor), “Rx 6” is included in the simulations. 300 Monte Carlo simulation runs are used in the 

results presented. 

The RMSE of the horizontal 2D position obtained for each of the receivers (and the 

aggregate statistics) based on the WLS, H-DPE and collaborative solutions are shown in Fig. 

5.7 (Rx 1, used as anchor, not included since not impacted by the collaborative solution). Note 

that the x-axis in Fig. 5.7 indicates the processing approach used. As can be observed for the 

WLS results, the impact of the propagation channel varies from receiver to receiver (as expected 

in reality), with a RMSE between around 30 and 80 m (and aggregate RMSE of around 50 m). 

These errors may be considered not acceptable in some applications. The positioning results 

are substantially improved when exploiting the peer-to-peer ranges between each of the 

receivers and the anchor receiver in the H-DPE solution, resulting in an aggregate RMSE of 

around 25 m. This improvement is introduced by the exploitation of the signals in the position 

domain and by constraining the solution to the positions at a certain distance from the anchor.  

The situation is further improved when the collaborative solution is taking advantage of the 

spatial reception diversity by jointly exploiting all the received signals from Rx2 to Rx5, 

resulting in an aggregate RMSE of around 16 m. It is to be noticed that Rx2 to Rx5 are highly 

degraded by the indoor propagation conditions, explaining the limited improvement introduced 

by the spatial diversity in this case. Indeed, when Rx6 (operating in mild conditions) is included 

in the scenario, the collaborative position solution is drastically improved, resulting in an 

aggregate RMSE of around 2 m. Therefore, the proposed collaborative solution allows to 

improve the positioning accuracy even if all the receivers, except the anchor, are operating in 

 
 

 
 

Fig. 5.7. RMSE of the horizontal position estimated in indoor propagation conditions [Gar19c]. 
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harsh conditions, while enables a drastic improvement of the positioning accuracy when some 

of the receivers are operating in milder conditions. This is of particular interest in indoor-

outdoor scenarios with some receivers operating indoors (with highly degraded or even not 

available position solution) and others operating outdoors (potentially impacted by a milder 

channel). 

 

5.3.8 Trusted distributed array rigid body 
 

As has been shown in the previous section, the collaborative solution relies on the availability 

of a subset of receivers in good enough propagation conditions such that the rest of the receivers 

in degraded or highly degraded propagation conditions can obtain a position solution with 

improved performance (even when a position fix was not possible). The ML-based solution 

derived in (5.11) is weighting the contribution of each of the signals received from the different 

receivers based on the observed SNR conditions. This may be enough in many situations since, 

in general, better SNR (or C/No) conditions are expected for signals (and receivers) in better 

propagation conditions. Nevertheless, there might be certain situations in which signals (and 

receivers) with apparently good SNR conditions may introduce a degradation in the 

collaborative position solution (e.g., in the form of a bias). This can be the case in the presence 

of strong multipath reflections in open-sky like conditions (for very specific situations) or under 

a spoofing attack.  

In order to be able to deal with this potential problem in collaborative positioning, the 

concept of “trusted” distributed array rigid body is introduced in the following. The concept is 

rather simple, and is based on the definition of the rigid body based on the subset of receivers 

expected to have a positive contribution to the collaborative position solution. Thus, the 

estimation of 𝛼̂𝑅𝐵 in (5.11) is to be derived considering only the subset of receivers that form 

by the trusted rigid body. Based on the estimated 𝛼̂𝑅𝐵 in this case, the position of all the 

receivers can then be derived based on (5.14). This will allow not only to ensure that the 

collaborative position solution is robust to the impact of position biases introduced by one or 

some of the receivers, but also to solve the position bias of those receivers.  

The definition of the subset of receivers that form the trusted rigid body can be considered a 

binary classification problem. There are definitely different ways in which this classification 

problem can be tackled, so the detailed assessment of this research line is considered out of the 

scope of this thesis. Nevertheless, an initial discussion on this topic is presented in the next 

paragraphs. In the following, we will consider as basic measurements the individual position 

solutions obtained by each receiver, 𝐩̂𝑛
𝑖𝑛𝑑

 (e.g., obtained based on a WLS solution or any other 

GNSS-based solution), and the H-DPE solution of each receiver, 𝐩̂𝑛
ℎ𝑦𝑏

 (exploiting the position 



 

Chapter 5. From Co-located to Distributed Array Solutions 

 
 

112 
 

of the anchor receiver and the peer-to-peer range estimation). Note that receivers for which an 

individual position solution is not available can be already discarded from the trusted rigid 

body. These are in general not expected to have a positive contribution to the collaborative 

solution, since will make in practice difficult the time and frequency synchronization of the 

signals from those receivers (although estimations from previous fixes may be exploited). 

Based on this, for each receiver for which a position fix is available we can generate the residual  

 

𝜀𝑛̂ = ‖𝐩̂𝑛
𝑖𝑛𝑑 − 𝐩̂𝑛

ℎ𝑦𝑏‖. (5.16) 

 

This residual provides information about the consistency between the individual and hybrid 

solutions. It is to be noticed that the H-DPE solution in the horizontal 2D plane is constrained 

to a circle around the anchor (which position is considered to be known with a good accuracy). 

Therefore, in general this residual can be used to understand how much we can rely on the 

GNSS signals from this receiver. Additionally to the residual, we may also want to exploit the 

information regarding the relative SNR conditions for each for the receivers. For doing so, we 

can define the factor  

 

𝜂̂𝑛 =
𝐫̂𝑥𝑛𝑏

𝐻(𝐩̂𝑛
ℎ𝑦𝑏)𝐫̂𝑥𝑛𝑏(𝐩̂𝑛

ℎ𝑦𝑏)

∑ 𝐫̂𝑥𝑛𝑏
𝐻(𝐩̂𝑛

ℎ𝑦𝑏)𝑁
𝑛=2 𝐫̂𝑥𝑛𝑏(𝐩̂𝑛

ℎ𝑦𝑏)
 , 

 

(5.17) 

 

where the correlation vectors 𝐫̂𝑥𝑛𝑏(𝐩̂𝑛
ℎ𝑦𝑏) for each receiver are obtained for the hybrid position 

estimation, and are defined as in Section 3.3.2.2 (note that the noise components of the different 

receivers are considered to be normalized between them). Note that (5.17) assumes a position 

fix is available for all the receivers.  

Exploiting now (5.16) and (5.17) together, Fig. 5.8 illustrates the classification of the subset 

of receivers with positive (and negative) contribution to the collaborative solution. In general, 

“desired” receivers are expected to show a relatively low 𝜀𝑛̂ and a relatively high 𝜂̂𝑛. Based on 

this, two subsets containing the desired and undesired receivers can be defined, targeting to 

filter out receivers with negative contribution, or just not useful. This is the case in particulat 

for receivers with relatively high 𝜀𝑛̂ and 𝜂̂𝑛, since their potentially negative contribution won’t 

be properly weighted down by the ML-based collaborative position solution proposed in 

Section 5.3.4.  
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Fig. 5.9 and 5.10 illustrate and example of collaborative positioning with one of the receivers 

(Rx4) under a spoofing attack (resulting in a biased position obtained by the individual GNSS-

based solution). In particular, for this example 𝜂̂4 is relatively high with respect to 𝜂̂1, 𝜂̂2 and 

𝜂̂3 (such that the collaborative position with all the receivers is impacted, not being able to deal 

by itself with the spoofing attack). In Fig. 5.9, all the receivers are exploited in the collaborative 

solution, showing the bias introduced in the collaborative position solution. The estimated angle 

of the distributed rigid body is biased due to the impact of Rx4. Note that for the non-spoofed 

receivers (Rx1, Rx2, and Rx3) the H-DPE solutions are aligned with the truth positions, while 

for Rx4 the H-DPE and collaborative solution are biased, and aligned between them (due to the 

high 𝜂̂4). In Fig. 5.10, Rx4 is filtered out, being the collaborative position solution based only 

on the trusted rigid body (with Rx1, Rx2 and Rx3). This allows the derivation of an unbiased 

collaborative position solutions for all the receivers.   

 

5.4 Conclusions 
 

 
 

Fig. 5.8. Illustration of the classification of receivers as desired receivers (to be used in the 

trusted rigid body for deriving the collaborative solution) and undesired receivers. On the left, 

typical expected distribution, with lower 𝜂̂𝑛 for higher 𝜀𝑛̂, and possible definition of the 

hyperplane used in the classification. On the right, a receiver with a relative high 𝜂̂𝑛 and 𝜀𝑛̂ is 

additionally introduced.  
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The positioning in harsh propagation conditions with multiple antennas, from co-located to 

distributed array solutions, has been discussed in this chapter. In the case of co-located antennas 

in indoor conditions, simulation results have shown that achieving accurate positioning results 

 
 

 
 

Fig. 5.9. Illustration of the H-DPE and collaborative position solution under the presence of a 

spoofing attack (for Rx4) and a relatively high 𝜂̂4. The concept of trusted rigid body is not 

applied.  
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Fig. 5.10. Illustration of the H-DPE and collaborative position solution under the presence of a 

spoofing attack (for Rx4) and a relatively high 𝜂̂4. The concept of trusted rigid body is applied. 
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remains a challenging problem. In order to overcome this limitation, a novel distributed array 

processing approach jointly exploiting the GNSS signals from multiple receivers in the position 

domain as an angle estimation problem has been proposed. The proposed solution, which relies 

on the usage of one receiver as anchor and the formation of a distributed array rigid body, allows 

an important reduction of the computational burden. The simulation results in realistic indoor 

propagation conditions show that the exploitation of the spatial diversity introduced by the 

usage of multiple receivers enables the derivation of an improved position solution for receivers 

in degraded propagation conditions, taking in particular advantage of those in better 

propagation conditions. Moreover, the proposed approach allows to derive a position solution 

for receivers that originally may not be able to fix their position. Finally, the concept of trusted 

rigid body has been introduced as a way to deal in the collaborative solution with receivers 

impacted by strong multipath reflections or spoofing attacks.    
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Conclusions and Future Research 
 

 

 

 

HIS thesis has dealt with the processing of GNSS signals for positioning and timing in 

harsh propagation conditions, focusing on the exploitation of the spatial diversities present 

when multiple GNSS satellites are in view by multiple receiver antennas. In particular, position 

and time estimators in the MIMO-GNSS framework have been proposed to deal with the impact 

introduced by realistic fading and multipath conditions in which it is very challenging to achieve 

accurate and precise solutions. This is the case in environments in which LOS signals are highly 

attenuated (or not present) and NLOS multipath components are dominant, as happens in indoor 

scenarios. The availability of spatial diversity allows in general to improve the equivalent SNR 

conditions of the proposed estimators, in particular when both transmission and reception 

diversities are jointly exploited in the position or time domain. Moreover, exploiting the spatial 

diversity allows to take advantage of the GNSS signals received in better channel conditions to 

improve the derived solution. 
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The robust unambiguous positioning with high-order BOC signals in harsh propagation 

conditions has been tackled in Chapter 3. First, the DOME approach has been presented to 

deal with the ambiguity problem at single-satellite level. The results obtained show that the 

DOME approach fully exploits the BOC signal accuracy while being robust at low C/No 

conditions and in the presence of fading and multipath. The exploitation of several integration 

periods is considered by the DOME approach in order to improve the observed SNR conditions 

in which the estimations are performed. Nevertheless, since the integration periods that can be 

applied in practice are limited by receiver, user and environment constraints, for very low C/No 

conditions the equivalent SNR observed by the estimator remains also low and the probability 

of false lock is still important. In order to overcome this limitation, the unambiguous estimation 

has been proposed to be tackled in the position domain, enabling the joint exploitation of all the 

BOC signals received by the GNSS receiver. For this purpose, the ML-based estimators in the 

MISO- and MIMO-GNSS systems resulting from the exploitation of one or multiple antennas, 

respectively, have been derived. The processing gain introduced in the unambiguous estimation 

problem by the spatial transmission and reception diversities allows to improve the equivalent 

SNR conditions in which the estimator operates and, thus, a reduction of the impact of false 

locks. Simulation results with BOCcos(15, 2.5) signals show the robustness introduced with 

respect to solutions operating at single-satellite level. Moreover, when several receiver antennas 

are available, the proposed estimator allows the exploitation of high-order BOC signals even in 

indoor conditions, achieving accuracies of few meters (which is far better than what can be 

achieved with BPSK(1) signals in the same conditions). Therefore, the proposed estimators in 

the MIMO-GNSS framework are a promising approach to enable the unambiguous positioning 

with high-order BOC signals in harsh propagation conditions, while being implementable based 

on state-of-the-art multi-correlator receiver architectures. 

As potential future research, the estimators proposed for high-order BOC signals may be 

also exploited with the so-called meta-signals, as preliminary discussed in [Gar19b]. In this 

case, a pair of signals are jointly exploited to create a meta-signal, showing similar advantages 

(narrower main peak) and drawbacks (multiple correlation peaks) than high-order BOC signals. 

Therefore, the exploitation of meta-signals in the MIMO-GNSS framework is a research area 

that might be worth exploring. Indeed, this may allow to achieve meter-level accuracies in 

indoor conditions based on the joint exploitation of multiple BPSK signals.  

Chapter 4 has dealt with indoor timing based on GNSS signals, introducing the concept of 

composite MIMO channel for mitigating the impact of the propagation channel. Two estimators 

operating in the time domain, each following a different approach to exploit the spatial 

diversity, have been proposed. Simulation results with a realistic wideband satellite-to-indoor 

channel model have shown that the exploitation of the spatial diversity introduced by arrays of 

antennas, together with the estimation of the composite MIMO channel, allows an important 

mitigation of the indoor multipath. Indeed, timing accuracies below 50 ns are demonstrated to 

be feasible in both light-indoor and indoor conditions. Therefore, the proposed estimation 

approach is considered an appealing solution for indoor applications with tight synchronization 

requirements, as can be the case in indoor small cells for 5G. 
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As potential future research work in the timing area, it may be worth investigating the 

definition of the PDFs assessed for each of the coefficients of the composite MIMO channel 

based on the composite MIMO channel estimated in previous epochs, as introduced in 

[Gar18a]. This may allow to enhance the achieved performance and to reduce to computational 

burden of the joint time and composite MIMO channel estimator.   

Chapter 5 has dealt with positioning in harsh propagation conditions with multiple antennas, 

from co-located to distributed array solutions. In the case of co-located antennas in indoor 

conditions, simulation results have shown that achieving accurate positioning results remains a 

challenging problem. In order to overcome this limitation, a distributed array processing 

approach jointly exploiting the GNSS signals from multiple receivers in the position domain as 

an angle estimation problem has been proposed. Simulation results with a realistic wideband 

satellite-to-indoor channel model show that the exploitation of the spatial diversity introduced 

by the usage of multiple receivers enables the derivation of an improved position solution for 

receivers in degraded propagation conditions, taking in particular advantage of those in better 

propagation conditions. Moreover, the proposed approach allows to derive a position solution 

for receivers that originally may not be able to fix their position.      

As potential future research work in the collaborative positioning area, it may be worth 

further investigating the concept of trusted distributed array rigid body presented in this thesis 

to deal with the exclusion of receivers impacted by the propagation channel or spoofing attacks. 

Last, but not least, as potential additional future research work in the MIMO-GNSS 

framework, the positioning and timing estimators discussed in this thesis may be extended to 

the case of multi-constellation and multi-frequency receivers, with different signal modulations 

in different frequencies being jointly exploited. This is expected to allow a further improvement 

of positioning and timing accuracies in harsh propagation conditions.  
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