
AN EXTENSIVE STUDY ON
ITERATIVE SOLVER RESILIENCE:

CHARACTERIZATION,
DETECTION, AND PREDICTION

Burcu O. Mutlu

Department of Computer Architecture
Universitat Politècnica de Catalunya

This dissertation is submitted for the degree of
Philosophiæ Doctor (PhD)

September 2019

http://www.upc.edu/

ii

1st Advisor: Osman Ünsal
Barcelona Supercomputing Center, Barcelona, Spain

2nd Advisor: Gökçen Kestor
Pacific Northwest National Laboratory, WA, USA

Thesis Tutor / Internal Examiner: Adrian Cristal Kestelman
Universitat Politècnica de Catalunya, Barcelona, Spain

Declaration

I herewith declare that I have produced this document without the prohibited assistance of
third parties and without making use of aids other than those specified; notions taken over
directly or indirectly from other sources have been identified as such. This document has not
previously been presented in identical or similar form to any other examination board.

The thesis work was conducted from November 2015 to March 2019 under the supervision
of Osman Ünsal (Universitat Politècnica de Catalunya, Barcelona, Spain) and Gökcen Kestor
(Pacific Northwest National Laboratory, WA, USA).

Burcu O. Mutlu
September 2019

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my thesis advisors, Osman
Unsal and Gokcen Kestor for their guidance, patience and support throughout my Ph.D.
studies. Their experience and wisdom added a lot to my graduate experience and inspired
me to be a better researcher. I would also like to thank Adrian Cristal Kestelman for his
support throughout my studies. I am particularly grateful to have a chance to work with
Sriram Krishnamoorthy, whose vision and mentorship guided my time as an intern at Pacific
Northwest National Laboratory.

I would also like to show gratitude to my committee, including Marc Casas, Leonardo
Bautista-Gomez, Ramon Canal, Ferad Zyulkyarov and Roberto Gioisa for their insightful
comments and encouragement. I would like to acknowledge Ryan Friese and Roberto Gioisa
as the readers of this thesis, and I am gratefully indebted to their very valuable comments on
this thesis.

I sincerely thank all my friends and colleagues from Barcelona Supercomputing Center,
Pacific Northwest National Laboratory, Tri-Cities, and Istanbul. You gave me strength and
energy as my studies carried me accross continents.

My special thanks are extended to my family, my parents and my sister, for their support
thorughout this journey. Last but not least, I thank Erdal Mutlu who has been a constant
source of support and encouragement during the challenges of graduate school and life. Your
love and guidance made me push through the hardships.

vi

This work is in parts supported by the following projects;

U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research under Award Number 66905, program manager Lucy Nowell. Pacific Northwest
National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830.

European Union Mont-Blanc 2 Project (www.montblanc-project.eu), grant agreement no.
610402.

European Union’s Horizon 2020 LEGaTO Project (www.legato-project.eu), grant agree-
ment no 780681.

www.montblanc-project.eu
www.legato-project.eu

Abstract

Soft errors caused by transient bit flips have the potential to significantly impact an applica-
tion’s behavior. This has motivated the design of an array of techniques to detect, isolate, and
correct soft errors using microarchitectural, architectural, compilation-based, or application-
level techniques to minimize their impact on the executing application. The first step toward
the design of good error detection/correction techniques involves an understanding of an
application’s vulnerability to soft errors. This work focuses on silent data corruption’s effects
on iterative solvers and efforts to mitigate those effects.

In this thesis, we first present the first comprehensive characterization of the impact of soft
errors on the convergence characteristics of six iterative methods using application-level fault
injection. We analyze the impact of soft errors in terms of the type of error (single- vs multi-
bit), the distribution and location of bits affected, the data structure and statement impacted,
and variation with time. We create a public access database with more than 1.5 million
fault injection results. We then analyze the performance of soft error detection mechanisms
and present the comparative results. Motivated by our observations, we evaluate a machine-
learning based detector that takes as features that are the runtime features observed by the
individual detectors to arrive at their conclusions. Our evaluation demonstrates improved
results over individual detectors. We then propose a machine learning based method to predict
a program’s error behavior to make fault injection studies more efficient. We demonstrate
this method on assessing the performance of soft error detectors. We show that our method
maintains 84% accuracy on average with up to 53% less cost. We also show, once a model is
trained further fault injection tests would cost 10% of the expected full fault injection runs.

Table of contents

List of figures xiii

List of tables xvii

1 Introduction 1
1.1 Thesis Structure . 4

2 State of the art 7
2.1 Analyzing Iterative Methods . 7
2.2 Error Injection Strategies . 8
2.3 SDC Detection and Mitigation . 9
2.4 Machine Learning and SDC Prediction . 11

3 Background 13
3.1 Iterative Solvers . 13
3.2 Datasets . 15
3.3 Detectors . 15
3.4 Machine Learning Algorithms . 17
3.5 Performance Metrics . 19

4 Solver Characterization 21
4.1 Introduction . 21
4.2 Error Injection Model . 22
4.3 Error-injection sites . 24

4.3.1 Reconstructing the error behavior under full coverage 25
4.3.2 Error-injection implementation . 26
4.3.3 Outcome classification . 28

4.4 Experiments . 29
4.5 Posterior Probability Analysis . 42

x Table of contents

4.6 Summary Of Observations . 44
4.7 Discussion: Using the Characterization Data 46
4.8 IMIC Database . 47
4.9 Conclusions . 48

5 Detector Characterization 49
5.1 Introduction . 49
5.2 Experiment Setup and Error Model . 51
5.3 Convergence Characteristics . 54
5.4 Soft Error Detection . 54

5.4.1 State-of-the-art Soft Error Detectors 54
5.4.2 Detector Accuracy . 59
5.4.3 Detection Latency and Overhead 61

5.5 Conclusions . 63

6 Machine Learning Based Error Detection 65
6.1 Introduction . 65
6.2 Supervised Learning Algorithms . 66

6.2.1 Evaluating Machine Learning-Based Detectors 68
6.3 Conclusions . 72

7 Soft Error Prediction 73
7.1 Introduction . 73
7.2 Ground Truth Prediction . 74

7.2.1 Machine-learning based Prediction 74
7.2.2 Error Injection Mechanism . 77
7.2.3 Overall Algorithm: Error Injection with Ground Truth Prediction . 78

7.3 Evaluation . 80
7.3.1 Ground Truth Predictor: Model Building and Selection 80
7.3.2 Evaluating Solver Vulnerability 82
7.3.3 Evaluation of Detector Accuracy 84
7.3.4 Right Answers for the Right Reasons 84
7.3.5 Reduction in Error Injection Campaign Costs 85
7.3.6 Overhead Analysis . 86
7.3.7 Transferability of the Models . 89
7.3.8 Alternative Training Configurations 90

7.4 Conclusion . 92

Table of contents xi

8 Conclusions and Future Work 95
8.1 Detector Composition . 95
8.2 Conclusions . 96

9 Publications and Invited Talks 99

References 101

Appendix A Algorithm Implementations 109

Appendix B Exploring Deep Learning Models for Silent Data Corruption 117
B.1 Introduction . 117
B.2 Related Work . 118
B.3 Methodology . 119

B.3.1 ML Basic Concepts . 119
B.3.2 Injection Data . 120
B.3.3 Feature Selection and Network Topology 122

B.4 Experimentation and Analysis . 125
B.4.1 Hardware and software infrastructures 125
B.4.2 Accuracy numbers for Training and testing 126
B.4.3 Runtime and Scaling . 131

B.5 Conclusions and Future Work . 131

List of figures

4.1 The conjugate gradient method for solving the symmetric positive-definite
system A · x⃗ = b⃗ . 23

4.2 Cumulative distribution of the total number of iterations 30
4.3 Overall performances of the solvers . 32
4.4 Graphs representing the behaviour of each dataset for each solver 33
4.5 Solver behavior for different error injection scenarios 35
4.6 Solver behavior when different vectors are injected with an error 36
4.7 Solver behavior when error is injected at different statements within the

algorithm . 37
4.8 Weighted solver behavior when a single bit error is injected 39
4.9 Weighted solver behavior when a single bit error is injected 40
4.10 Solver behavior when injections made at different points of the execution . 41
4.11 P(Statement|Outcome)={Anomaly-Conv or Anomaly-NotConv or Adverse} 43
4.12 P(Vector|Outcome)={Anomaly-Conv or Anomaly-NotConv or Adverse} . . 45

5.1 Representative graphs of the evolution of residual norm with iteration count.
Each graph plots residual norm evolution for one method on one data set
(highlighted by a * in the caption). The other data sets that exhibit similar
trends are listed in the caption. x-axis: iteration count; y-axis: norm of
residual vector. 53

5.2 Cumulative function for recall for uniform and normal distribution 56
5.3 Cumulative function for precision for uniform and normal distribution . . . 57
5.4 Cumulative function for detection latency for uniform and normal distribution 58
5.5 Cumulative function for false positive rates 59

6.1 Cumulative function for recall for uniform and normal distribution 69
6.2 Cumulative function for precision for uniform and normal distribution . . . 70
6.3 Cumulative function for detection latency for uniform and normal distribution 71

xiv List of figures

6.4 Cumulative function for false positive rates 72

7.1 Our overall approach to construct a ground-truth predictor using machine
learning . 75

7.2 Algorithm for an error-injection campaign based on ground truth prediction.
The algorithm is executed for a given iterative solver, data set, and ordered
list of error injection configurations. 79

7.3 Design space exploration to train the ground-truth predictor for (a) CG,
(b) BICG, and (c) CGS. The rows correspond to 100, 200, 400, 1000, and
all available error injection experiments used for training. The columns
correspond to 3, 6, 9, and 11 data sets used to build the model. In each
instance, the data sets not used to build the model are used to evaluate the
model’s effectiveness. Each cell shows the best F-score achieved among the
models generated from 20 random samples. 81

7.4 Predicted MASKED ratio plotted against actual MASKED ratio. x-axis: MASKED
ratio predicted from each candidate predictor. y-axis: MASKED ratio com-
puted using ground truth from error injection experiments. ML denotes our
approach. Each dot represents a solver-dataset pair. Trendlines for each de-
tection method is also provided, R2 values for each trendline is AID: 0.0729,
MAD:0.3428, NEWSUM: 0.0022, and ML: 0.7073. An R2 value closer to 1
denotes less error closer match between the trendline and the fitted data. . . 83

7.5 Classification of scenarios for the CG solver with the NEWSUM detector.
The labels are of the form a-b-c, where a is the prediction outcome, b is
the detector’s judgement, and c is the ground truth. Ideally, the red circles
(where we judge a detector based on the wrong prediction) will be 0. 87

7.6 Predictor accuracy is evaluating positive and negative detector outcomes.
x-axis: fraction of all cases where predictor and detector match (marking
the detector as being correct), where the ground truth also matches. y-axis:
fraction of all cases where predictor and detector differ (flagging the detector
as being incorrect), where the detector differs from the ground-truth. 87

List of figures xv

7.7 x-axis: MASKED ratio predicted from each candidate predictor. y-axis: MASKED
ratio computed using ground truth from error injection experiments. ML
denotes our approach. Each dot represents a solver-dataset pair. Trendlines
for each detection method is also provided. R2 values for each trendline in
(a) are AID: 0.0666, MAD:0.2288, NEWSUM: 0.0004, and ML: 0.7579. R2

values for each trendline in (b) are AID: 0.0147, MAD:0.3371, NEWSUM:
0.1462, and ML: 0.6064. R2 values for each trendline in (c) are AID: 0.2103,
MAD:0.3085, NEWSUM: 0.0220, and ML: 0.4852. An R2 value closer to 1
denotes less error and closer match between the trendline and the fitted data. 91

7.8 F-score performance using different train/test cutoffs for each solver. Label
X/Y shows, Y datasets used for testing, from the remaining (15-Y) datasets,
random X of them were used for training a model. For each X/Y pair, 20
different random splits were performed and their F-score box plots are shown. 93

B.1 Data collection and sampling methodology 121
B.2 Example of Runtime features selection over a solver execution. X axis

represents the iteration number and Y is the residual number across the
execution. 123

B.3 Different network topologies . 124
B.4 User Transparent Distributed Tensorflow Design 126
B.5 Scaling results for the different network topologies on two HPC clusters . . 132

List of tables

1.1 Reported and projected mean time between failure/interrupts (MTBF/I) for
high performance systems. [40, 53] . 1

3.1 Sparse matrices selected from SuiteSparse and the number of iterations
performed by solver for each dataset. -1 denotes that the solver does not
converge to achieve the norm of the residual error below 10−6. We exclude
these cases from our analysis. 16

3.2 Parameters of detectors used in our evaluation. 17

4.1 Classification of each statement-vector into alive, dead, and used sets
for the CG method described in Figure 4.1. 26

4.2 Classification of statements and vectors in each method 27
4.3 Statement numbers for matrix-vector operations in each iterative method. . 42

5.1 Mean, standard deviation, min, and max slowdown due to detectors as
compared to baseline execution. Average over 10 runs. 62

6.1 Best machine learning algorithms and their F-scores for each training set
configuration. 67

7.1 Precision and recall of estimation of masked ratio using various candidate
predictors. ML denotes our approach. An ideal detector will have precision
and recall close to 1. The best candidate for each solver is shown in bold. . 86

7.2 Detector precision and recall when calculated with actual ground truth of the
executions, and compared with predicted ground truths using our approach. 86

7.3 Precision (Prec.) and recall of estimation of masked ratio using the models
that were trained using another solver’s data. An ideal detector will have
precision and recall close to 1 for all solvers. 89

xviii List of tables

7.4 Precision and recall of estimation of masked instances (0 % tolerance) using
various candidate predictors. ML denotes our approach. An ideal detector
will have precision and recall close to 1. The best candidate for each solver
is shown in bold. 90

7.5 Precision and recall of estimation of masked instances (10 % tolerance)
using various candidate predictors. ML denotes our approach. An ideal
detector will have precision and recall close to 1. The best candidate for each
solver is shown in bold. 92

7.6 Precision and recall of estimation of masked instances (20 % tolerance)
using various candidate predictors. ML denotes our approach. An ideal
detector will have precision and recall close to 1. The best candidate for each
solver is shown in bold. 92

B.1 Data Set characteristics and description. The NNZ ratio refers to the number
of non zeroes over the size of the matrix. The Norm column is the normal
of the sparse matrix. The min(SVD) column is the minimum Single value
decomposition. Finally, the Cond column is the condition of the sparse matrix123

B.2 Accuracy for both testing and training phases of the diamond network for
different Tensorflow’s optimizers . 127

B.3 Timing per phase in seconds for the best batch / network size for each
optimizer for the diamond topology . 128

B.4 Accuracy for both testing and training phases of the rectangle network for
different Tensorflow’s optimizers . 129

B.5 Timing per phase in seconds for the best batch / network size for each
optimizer for the rectangle topology . 129

B.6 Accuracy for both testing and training phases of the Triangle network for
different Tensorflow’optimizers . 130

B.7 Timing per phase in seconds for the best batch / network size for each
optimizer for the triangle topology . 130

Chapter 1

Introduction

Exascale era is right around the corner, and with the vast capacity high performance com-
puters will provide, they are of crucial importance to many scientific fields. With high
performance computing, computations and simulations that were not possible to finish
feasibly are computed in timely manners.

Correctness of the results are as important as the speed, since fast delivered wrong
results wouldn’t be useful, besides if undetected, could be very harmful. As the number of
components multiply, HPC systems will become much more prone to faults. Mean time
between failures is expected to become less than an hour (Table 1.1). When some scientific
calculations are taking days, even weeks it is obvious that resilience is a key issue for HPC
systems, and it will be even more important with the emergence of exascale systems in the
near future. It comes as no surprise that resilience is reported as one of the top exascale
research challenges by European Technology Platform for High Performance Computing
(ETP4HPC) [30] and United States Department of Energy (DOE) [53].

System Cores MTBF/I
ASCI Q 8192 6.5 hours

ASCI White (2001) 8192 5 hours
ASCI White (2003) 8192 40 hours

PSC Lemieux 3016 9.7 hours
Google 15000 20 reboots a day

Exascale more than 106 <1hr projection
Table 1.1 Reported and projected mean time between failure/interrupts (MTBF/I) for high
performance systems. [40, 53]

When a transient bit-flip affects a hardware component, the application is said to be
impacted by a soft error. When a soft error escapes the hardware detection and impacts

2 Introduction

the application state, it can impact execution by leading to incorrect results or significantly
impacting application execution times. Architectural trends such as near-threshold voltage
operation and constrained power budgets exacerbate the frequency and impact of soft errors.
Among the two main types of failure modes, stop-failures and Silent Data Corruptions
(SDCs), SDCs are particularly hazardous and difficult to cope with since they are undetected
by the underlying hardware. They silently corrupt the application data resulting in a soft
error. When an execution takes days and hundreds of cores to finish, it is important to trust
the outcome, as it is not feasible to do multiple runs for confirmations. Consequently, it is
most important to analyze and understand the effects of SDCs in HPC applications.

Sparse matrix operations are crucial to current and future generation of high performance
computing. They are at the core kernel of engineering fields such as physics based modeling
and simulation, circuit simulation, mechanics of materials, geophysics and many other
application fields. These scientific computations calculate solutions with structured or
unstructured grid models, that leads to large sparse linear systems. Algorithms enforce the
sparsity of the systems, in doing so computational and storage efficiency of sparse systems is
leveraged.

Sparse matrix operations are so important for high performance computing that bench-
marks for HPC systems use sparse matrix calculations. Dongarra et al [26] created the High
Performance Linpack (HPL) benchmark to assess HPC system performances using floating
point operations (FLOPS), back in 1979. However, although these dense matrix calculations
are efficient to determine the speed and performance of an HPC system, by essentially
calculating number of FLOPS it can sustain for a given time, HPL is not representative of an
actual workload of high performance systems. Hence, Dongarra et al. proposed HPCG [25]
that uses conjugate gradient iterative methods as a complementary benchmark to list HPC
machines. Now, twice a year when Top500 list is announced for world’s top HPC systems,
they also announce a second list using HPCG benchmark[75].

Sparse matrices are extensively used to represent and solve linear system of equations
in HPC applications. In principle, linear systems can be solved using direct methods like
Gaussian elimination. However, direct methods require absence of round-off errors to reach
a correct solution and they are highly expensive. Gaussian elimination would require around
N3 arithmetic operations for N linear equations, this becomes unattainable where scientific
applications yield millions or billions of equations. Also usage of floating point numbers
means numeric precision is not feasible for HPC systems. These shortcomings of direct
methods encourages researchers to leverage iterative methods (iterative solvers). Iterative
methods solve the linear system of equations with convergence analysis. They generate more
refined solutions in each iteration using mainly matrix operations. Which are less costly

3

than direct methods in computation and storage. Hence analyzing the iterative solvers’ error
behavior is of high importance for HPC future as well as creating new methods of resilience
as systems progress.

Current measures to mitigate the effect of soft errors include error correcting codes (ECC),
checkpoint restart techniques and error detection mechanisms. While memory structures such
as DRAM and caches can be protected by ECC mechanisms such as SECDED or Chipkill,
memory structures in legacy GPUs and FPGAs are not protected by ECC. Even when ECC is
available, it could be turned off for performance and energy savings [19]. Processor data-path
structures are not commonly protected by ECC, and a single bit flip in the data-path may
manifest itself as a single or multiple bit flip in application state [68]. Moreover, multiple bit
flips have been observed in low-power DRAMs [5] and caches operating at close to threshold
voltage [36]. Single-bit flip errors enable systematic exploration of the space of possible
errors. As the systems keep scaling up; it is predicted that checkpoint/restart - by far the most
popular technique to minimize fault’s effects [35] - will not be able to scale. As error rates
increase, it is expected that the time between failures will be too short to have checkpoints
in time [53]. Hence, new detection and mitigation techniques are needed. For this, we
need deep understanding of the underlying mechanisms’ reaction to errors, we need new
techniques to handle errors as well as new techniques to facilitate those who are developing
mitigation techniques.

Understanding the behavior of iterative solvers in the presence of failures will shed a light
on understanding the susceptibility of solvers’ results to silent errors. It will help broaden the
error handling techniques. This knowledge will also be useful in designing new methods that
facilitates the development of mitigation techniques.

In this thesis we focused on the soft error vulnerability and behavior of iterative solvers.
Our contribution to field can be itemized as follows;

• Providing the first comprehensive characterization of the impact of soft errors on
the convergence characteristics of six iterative methods using application level fault
injection

• Creating a publicly open database with millions of fault injection results for further
analysis in the field

• Comparative evaluation of state of the art soft error detectors for iterative solvers

• Design and evaluation of a machine learning based detector trained on the features that
are used by the analyzed detectors

4 Introduction

• Developed a strategy to optimize soft error impact analysis using machine learning.
Using the trajectory analysis of a fault, this method can predict the error behavior,
get an error profile of the application and can be used to efficiently assess detector
performance.

In consequence of above studies, we observed that error-induced behavior of solvers vary
widely. Vectors in the algorithms are not equally impacted by errors, which can pave the
way for selective protection mechanisms. Interestingly, having a pre-conditioner can have
a noticeable impact on the error behavior of solvers. Given the diverse characteristics of
solvers and datasets observed, we surmise that fault injection and detection evaluations needs
to use several solvers and datasets. Secondly, we derive that even though the detectors we
studied have their strengths, none of them were flawless. Hence, we hypothesized machine
learning and combining the powers of those detectors could offer more performance, and
show improved results using features monitored by the detectors as our machine learning
model’s features. Conducting these studies showed us adequate fault injection studies are
costly and needed often by detection and error profiling studies. So we developed a method
to model the error behavior of iterative solvers to speed up this process. Our machine
learning error behavior profiling approach was able to assess detector performances with
84% accuracy on average with up to 53% less cost. We showed that, once a model is trained
further fault injection tests would cost 10% of the expected full fault injection runs.

1.1 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2: State of the Art This chapter gives an overview of the state of the art on
several aspects of this study. Sections include related works about iterative solvers, software
fault injection, fault detection and prediction, and using machine learning for fault mitigation.

Chapter 3: Background This chapter introduces the main components used in this study.
Iterative solvers, datasets used to test these solvers, and SDC detectors. We give details of the
iterative solvers used in these experiments, also we explain the setup for using the datasets.
We also explain state of the art SDC detectors we employed in this study, and detail their
setups.

Chapter 4: Solver Characterization Handling the errors in a system starts with under-
standing their nature. This chapter focuses on characterizing the soft error behavior of 6

1.1 Thesis Structure 5

iterative solvers. Results from an exhaustive injection campaign on six iterative solvers, 28
datasets, and several error manifestation strategies are reported in this chapter. Behavior of
the solvers are characterized from several angles, and discussed.

Chapter 5: Detector Characterization Next step in this study is to characterize the state
of the art error detection mechanisms for iterative solvers. This chapter shows the results
from a comparative study of four detectors. Detection performances among solvers for the
same detector and performances differences of detectors are studied. Reasons behind these
differences are also discussed in this chapter.

Chapter 6: Machine Learning Based Detection This chapter explores the room for
improvement in detection. We introduce a machine learning setup that uses features from
all the detectors discussed and leverages all features to decide on an SDC. Several machine
learning algorithms and techniques have been used and results are reported in this chapter.

Chapter 7: Soft Error Prediction This chapter proposes a trajectory analysis mechanism
to relieve the cost of testing for fault error injection studies. Error injection is monitored for a
short amount of time and using machine learning algorithms final outcome is predicted. This
chapter reports the analysis of the prediction performance as well as experimental results for
a detector performance study using the prediction.

Chapter 8: Future Work and Conclusions Final chapter of this thesis gives an outlook
on the future work. Future work includes designing a composition strategy for SDC detectors
to mitigate the fact that no one detector performs perfectly. We plan to explore the room for
improvement when we make the detectors work in harmony.

Chapter 2

State of the art

2.1 Analyzing Iterative Methods

Elliott et al. [29] characterize the GMRES iterative solver in terms of the impact of single-
bit soft errors using numerical analysis of the algorithm. Such analysis complements our
approach as it considers multiple error-injection scenarios and data-set-specific characteristics.
Another characterization section is presented in the [67] which apply “smart” sampling
techniques to the ABFT based on the matrix structure for sparse computations. This uses
preconditioned CG and IR to showcase the accuracy or “goodness” of their techniques.
Our study is broader and we can use their sampling to improve our coverage. Through
theoretical analysis, Shantharam et al. [61] observe that soft errors can significantly degrade
convergence, sometimes taking 200 times more iterations, in CG and preconditioned CG.
Bronevetsky and de Supinski [8] evaluate soft error vulnerability of iterative methods together
with recovery techniques focusing solely on single bit flips.

There are also many previous efforts using iterative solvers to evaluate soft error detection
strategies [8, 67, 76, 13, 23, 73, 52]. In their work [67], Sloan et al, focuses on matrix vector
multiplication calculations and bases the work on arithmetic errors. Tao et al, also focuses on
arithmetic erros on matrix vector calcualtions [76]. Authors of [13] use the mathematical
nature of the iterative solvers to create a detection mechanism and demonstrates on Cholesky
solver. In [54], Malkowski et al. uses cache vulnerability to analyze the soft error resilience
of solvers.

8 State of the art

2.2 Error Injection Strategies

Many resilience studies based on fault injection campaigns use random fault injection [16,
55, 49, 3, 12]. Random fault injection enables statistical coverage of a large space with a
relatively smaller number of experiments, and is employed when the user cannot or does not
make assumptions about architecture or application vulnerability. We employ random fault
injection on a subset of the application state—the vectors—to focus our efforts on the key
data structures that are modified in the iterative methods.

Cho et al. [16] observed that lower-level fault injection approaches are more accurate than
higher-level injection studies. Hsueh et al. [41] and Ziade et al. [89] survey common fault
injection tools, concluding that Register Transfer Level (RTL) fault injection [55] (examples
include VERIFY[65] and MEFISTO-C[34]) as well as injecting faults into actual hardware
using a particle accelerator are most accurate, however those methods are too low-level to
make detailed characterization of realistic applications and data sets.

Architecture-level fault injection [50, 7, 32] addresses some of these challenges but
can still be expensive to perform injection campaigns such as the one presented in this
thesis. Moreover, it is very difficult to develop specialized architecture-level fault injectors
for a particular class of algorithms such as iterative solvers. FERRARI (Fault And Error
automatic real time injection)[45] uses traps to insert faults on CPU components (branches,
registers, instructions), memory, or bus packets. They can be time or place triggered. FTAPE
(Fault Tolerance and Performance Evaluator) [78] can inject bit flips on CPU modules,
memory location, and disk subsystems using fault injection drivers attached to the OS and
are inserted based on activity levels. FIAT (Fault Injection based automated testing) [60]
is an environment that allows to develop several fault injection scenarios by allowing the
experimenters to decide where, when and how faults are injected. It can inject faults in
messages, as they can be corrupted, lost, or delayed; and on tasks, which can be delayed
or aborted, as well as on timers. DOCTOR [38] allows injections into the CPU, memory
and network messages. It is an important tool when simulating memory faults because the
subtle and non-deterministic way that a memory fault might appear. It uses three triggering
mechanisms: time-out for memory faults, traps for transient ones, and compilation based
when dealing with permanent CPU faults.

Software-based error injection can be performed using binary instrumentation [49],
compile-time transformations [63, 83, 10, 66], or operating system level injection [45].
KULFI [63] and VULFI [62] are LLVM-based fault injection tools that uses the LLVM
infrastructure to simulate transient faults in CPU state elements. Compared to other ap-
proaches, it provides fine-grained error injection control and features to control where (on
the control flow of the program) and how (register, load/store, branches, etc.) to insert the

2.3 SDC Detection and Mitigation 9

fault. PDSFIS [42] uses the PIN Intel framework to inject faults without changing the source
code or recompiling. It can target any software components that are visible to the PIN tools
(including dynamic libraries) and can be used to do pattern based fault injection into specific
software components.

Each technique stresses distinct aspects of an application’s footprint (e.g., architectural
registers vs intermediate representation, specific compiler passes, etc.). We use application-
level injection to understand application vulnerability in terms of program elements, anal-
ogous to program or data vulnerability factors [70, 85] (as compared to the architecture
vulnerability factor [57]).

An important aspect of such studies is the coverage of the error injection experiments.
Xu and Li [84] proposed statistical fault injection coverage and pruning of the testing space
to increase the performance and coverage as compared to “blind” sampling. We prune the
error injection space by studying the implementations of the iterative methods. Our approach
complements the one presented by Xu and Li, and can be used in conjunction when an
iterative method is used in the context of a larger application.

2.3 SDC Detection and Mitigation

Research on SDC detection can be categorized mainly into three different categories:
algorithm-based fault tolerance (ABFT), runtime analysis techniques, and replication of
computation techniques.

ABFT [79, 17, 67, 18] techniques are tailored solutions to specific numerical algorithms.
Consequently, they are usually efficient. However, they fundamentally lack the ability to
be applicable to algorithms other than the specific numerical or algebraic kernel they are
designed for.

Runtime data analysis recently has gained attention in the HPC community. These
techniques can be further classified into temporal or spatial method depending on the type
of interpolation they perform. Moreover, these techniques can be also classified based on
whether the training is done online or offline. Studies [6, 23, 22] investigate and compare
different prediction methods such as linear curve fitting or autoregressive moving average
(ARMA) models, to detect SDCs. These are online and temporal techniques. They investigate
the evolution of the data over time, as a consequence these studies incorporate temporal
aspects of data evolution. The main drawbacks of temporal data analytics are the memory
overhead and the computation cost of maintaining snapshot data. In contrast, as a spatial and
online technique, SSD [73] incurs low memory cost while having low computation overhead.
On the offline side, the Sirius [77] is a neural network based offline SDC detection tool. It

10 State of the art

generates application specific invariants to be checked at runtime. Techniques such as the
Sirius are limited by the coverage of training datasets.

Replication-based schemes [33] can be deployed for mission-critical situations. In
such contexts, double or triple redundancy of computation is performed in order to detect
SDCs by comparing the results of replica computations. The inherent drawback of the
replication is its high power/energy cost; e.g., with double redundancy, the cost is 100%.
Partial replication [74] has been proposed to decrease costs while providing required level
of reliability. Although partial replication is promising, it may not be applicable for certain
HPC systems, mainly because errors may not be reproducible for some systems, such as
heterogeneous systems.

As part of our studies, we have encountered several efforts on how to characterize the (or
similar) problems that we tackled in this thesis. This is a collection of the most aligned efforts
that the community is (or had) undertaken. In [29], the authors present a characterization of
the GMRES iterative solver that is used to create detectors that bound the error introduced by
faults. It provides the general intuition on the solver behavior that tell us that if the fault is
introduced in the inner part of the solver, the solver will actually converge in all cases. This
is similar to our solver analysis with the difference that we are broader on our scope (more
solvers) but not as deep. Another characterization section is presented in [67] which apply
“smart” sampling techniques to the ABFT based method on the matrix structure for sparse
computations. This uses preconditioned CG and IR to showcase the accuracy or “goodness”
of their techniques. Again, our study is broader and we can use their sampling to improve
our coverage.

In [81], the authors present a Machine Learning approach to predict innocuous cases
(minimal or no change in convergence behavior) of certain applications in the presence of
silent data corruption. The paper uses NWChem, LULESH and SVM as their test cases. This
research explores another family of Machine Learning techniques that can be exploited in
the Iterative solver space. In the case that we need to inject faults into a program, the actual
methodology of injection is important. Although we chose a more controlled error injection
methodology, there exists a substantial set of injection methodology and tools that we can
exploit. Some examples are presented below.

FERRARI (Fault And Error automatic real time injection)[45] is an injector tool that
uses traps to insert fault on CPU components (branches, registers, instructions), memory, or
bus packets. They can be time or place triggered. FTAPE (Fault Tolerance and Performance
Evaluator) [78] can inject bit flips on CPU modules, memory location and disk subsystems
using fault injection drivers attached to the OS and are inserted based on activity levels. FIAT
(Fault Injection based automated testing) [60] is an environment to develop several fault

2.4 Machine Learning and SDC Prediction 11

injection scenarios by allowing the experimenters to decide where, when and how faults
are injected. It can inject faults in messages, as they are being corrupted, lost, or delayed,
on tasks, as they are delayed or aborted, and timers. DOCTOR [38] allows injections into
the CPU, memory and network messages. It is an important tool when simulating memory
faults because the subtle and non-deterministic way that a memory fault might appear. It
uses three triggering mechanisms: time-out for memory faults, traps for transient ones, and
compilation based when dealing with permanent CPU faults. KULFI [63] / VULFI [62] is
an LLVM based fault injection tool that uses the LLVM infrastructure to simulate transient
faults in CPU state elements. Compared to other approaches, it provides fine grained error
injection control and it provides a large set of features to control where (on the control flow
of the program) and how (register, load/store, branches, etc) to insert the fault.The PDSFIS
fault injector [42] uses the PIN Intel framework to inject faults without changing the source
code or recompiling. It can target any software components that are visible to the PIN tools
(including dynamic libraries) and can be used to do pattern based fault injection into specific
software components.

2.4 Machine Learning and SDC Prediction

Recently, there have been many efforts to utilize machine learning [3, 20, 44, 48] to address
resilience problems. IPAS [48] uses machine learning to decide on instructions that will
likely to lead to corruption and duplicates them. Desh [20] uses systems logs and neural
networks to predict node failures.

In [81], the authors present a Machine Learning approach to predict innocuous cases
(minimal or no change in convergence behavior) of certain applications in the presence of
silent data corruption. The paper uses NWChem, LULESH and SVM as their test cases.
Authors of [80] employed support vector machines to create an online soft error vulnerability
prediction mechanism for memory arrays.

Farahani et. al. leverages architecture vulnerability factor to create an online reliability
prediction mechanism for transient faults [31]. Several efforts focused on vulnerability factors
for modeling error resilience of programs. In [71], authors practice fault modeling on the
program level. They suggest the Program Vulnerability Factor for assessing the vulnerability
of a software resource. Yu et. al. proposes the Data Vulnerability Factor [86] which models
the vulnerability of individual data structures in an application relying on access patterns.
Architecture Vulnerability Factor [56] on the other hand, models the probability of an error
happening when a fault occurs in that hardware component.

Chapter 3

Background

3.1 Iterative Solvers

We consider iterative methods to solve a system of linear equations

A · x⃗ = b⃗, (3.1)

where A is a sparse matrix, b⃗ and x⃗ are vectors. At each iteration, the methods compute an
approximate value of x⃗. Execution completes when the norm |⃗r|= |⃗b−A · x⃗|, referred to as
residual norm, is lesser than the required threshold. We consider six iterative methods [37]:

• CG: Conjugate gradient with incomplete LU preconditioner

• ICCG: CG with incomplete cholesky preconditioner

• BiCG: Unpreconditioned biconjugate gradient

• BiCGSTAB: Biconjugate gradient stabilized

• CGS: Conjugate gradient squared

• QMR: Quasi-Minimal Residual method

CG and ICCG require A to be a symmetric positive-definite matrix and differ primarily
in the preconditioner used. BiCG generalizes CG and can handle non-symmetric and non-
definite systems. BiCGSTAB is more numerically stable than BiCG, but computationally
more expensive. CGS is more stable than BiCG but less expensive than BiCG. These methods
belong to the class of non-stationary iterative methods. Each method considered differs from
another method in a small yet significant way. These methods were chosen to investigate

14 Background

Listing 3.1 The implementation used for CG and ICCG (CG with preconditioner) methods
for solving the symmetric positive-definite system A · x⃗ = b⃗

for (int i = 1; i <= max_iter; i++) {
z = M.solve(r);
rho(0) = dot(r, z);

if (i == 1)
p = z;

else {
beta (0) = rho(0) / rho_1 (0);
p = z + beta (0) * p;

}
q = A*p;
alpha (0) = rho(0) / dot(p, q);
x += alpha (0) * p;
r -= alpha (0) * q;
resid = norm(r) / normb;
rho_1 (0) = rho(0);

if (resid <= tol) {
tol = resid;

max_iter = i;
return 0;

}
}
tol = resid;
return 1;

}

the impact of selected differences in a group of related algorithms. Identical behavior under
error would indicate that a study of one of these solvers is representative of others. If not,
any study of error behavior of iterative methods needs to consider multiple iterative methods.

For this characterization, we used the implementation of these methods in the Iterative
Methods Library (IML++) v1.2a [24]. In this library, the implementation of the methods is
done using high-level API similar to the algorithmic descriptions of the iterative methods.

Method Implementations

Pseudocode of all the solvers are provided to the reader in the appendices. CG solver’s
implementation is also provided here for the algorithms and how their statements are used.

3.2 Datasets 15

3.2 Datasets

The methods were evaluated using the matrices in the SuiteSparse matrix collection [21]. To
enable comparative evaluation, we selected the symmetric positive-definite matrices from the
collection, which can be evaluated on the methods considered. Of these 31 matrices, three
converged quickly (<10 iterations). Therefore, we focus on the remaining 28 matrices in this
study. Table 3.1 shows the list of the datasets used. As shown in Table 3.1, the number of
iterations performed by a solver varies from one dataset to another one. The matrices in the
library are used to initialize A in equation 3.1. The vector b⃗ is determined as A · 1⃗, where 1⃗ is
a vector of all ones, as has been done in other efforts [8]. We executed the iterative methods
until the residual norm is less than 10−6.

As execution progresses, the residual norm does not always strictly decrease. Soft
errors might also lead to non-monotonic changes in the residual norms, making it difficult
to discriminate error-induced behavior from normal behavior. This makes it difficult to
differentiate an iterative method’s execution in the presence and absence of soft errors.

3.3 Detectors

We consider four online soft error detection algorithms.

Adaptive impact-driven detection (AID) Di and Cappello [23] observed that the impact
of “influential” soft errors can be characterized by an impact error bound, defined as the
maximum ratio of the data value change between adjacent time steps to the global value
range for every data point in a snapshot. This observation is used to dynamically fit different
curves—last-state, linear, and quadratic—to the temporal evolution of data based on their
prediction error. An error is flagged if the observed value falls out of the impact error bound
range.

Orthonormality detector (Ortho) Chen et al. [13] identify an intrinsic orthogonal re-
lationship of specific vectors in several Krylov linear solvers. They construct a detector
that periodically checks this relationship and flags an error if the orthogonality condition
is violated (within a certain tolerance). Among the solvers considered, the orthogonality
relationship only exists for CG, ICCG, and BiCG.

Checksums for matrix-vector multiplication (New-Sum) Tao et al. [76] presented a
checksum encoding scheme for matrix-vector multiplication and vector linear operations. The

16 Background

Matrix Rows NZ% Number of iterations
CG ICCG BiCG BiCG CGS QMR

-STAB
af_shell3 504855 0.01 1117 572 1117 524 1214 890
af_shell4 504855 0.01 1117 572 1117 524 1214 890
af_shell7 504855 0.01 1118 571 1118 466 1327 891
af_shell8 504855 0.01 1118 571 1118 466 1327 891
bcsstk13 2003 2.1 928 330 928 462 1185 -1
bcsstk14 1806 1.95 195 101 195 108 108 6736
bcsstk15 3948 0.8 453 166 453 198 207 27371
bcsstk16 4884 1.2 148 49 148 95 94 333
bcsstk24 3562 1.3 451 727 451 711 374 -1
bcsstk27 1224 3.7 185 59 185 142 155 3844
bcsstk28 4410 1.12 4344 1309 4344 16226 7381 13763
bcsstk38 8032 0.55 426 119 426 156 1218 -1
ex3 1821 1.6 181 123 181 155 3625 790
ex9 3363 0.88 153 44 153 181 -1 5969
ex13 2568 1.15 146 34 146 101 104 11632
ex15 6867 0.21 96 33 96 72 82 -1
Kuu 7102 0.67 378 116 378 260 -1 570
msc04515 4515 0.48 2169 1176 2169 3580 -1 9394
NASA2146 2146 1.6 171 56 171 116 99 603
Pres_Poisson 14822 0.33 662 218 662 709 669 6335
sts4098 4098 0.43 244 96 244 158 219 -1
s1rmq4m1 5489 0.87 612 172 612 489 639 22828
s2rmq4m1 5489 0.87 1237 546 1237 422 -1 -1
s3rmq4m1 5489 0.87 2969 1274 2969 2096 2530 -1
s1rmt3m1 5489 0.72 695 205 695 576 683 22661
s2rmt3m1 5489 0.72 1787 657 1787 1733 2085 -1
s3rmt3m1 5489 0.72 4497 2111 4497 1937 4514 -1
s3rmt3m3 5357 0.72 8538 2487 8538 5037 12097 -1

Table 3.1 Sparse matrices selected from SuiteSparse and the number of iterations performed
by solver for each dataset. -1 denotes that the solver does not converge to achieve the norm
of the residual error below 10−6. We exclude these cases from our analysis.

3.4 Machine Learning Algorithms 17

checksums are maintained by augmenting each solver operation with an efficient checksum
operation. The separate checksum is recomputed from the current matrices periodically and
compared to the one computed at each iteration step. The detector flags an error if the two
checksums differ.

Moving average detector (MAD) Liu et al. [52] observe that the residual norms in iterative
methods might not strictly decrease at every iteration but that the norms exhibit a decreasing
trend over a longer period (multiple consecutive iterations). Rather than focusing on one
iteration at the time, the authors employ a moving average of the residual norms over a
sliding window. The detector flags an error if the moving average increases with respect to
the previous window rather than decreasing, as expected.

Each detector also requires the user to choose a parameter that acts as a threshold to flag
an error. For this study we used the default threshold values provided by the developers.
Table 3.2 lists the detectors and shows the parameters used for each detector.

Table 3.2 shows the information about the parameters used in our evaluation.

Detector Parameter Parameter value

AID Impact error bound 0.00078125
Ortho Tolerance 10−10

MAD Fixed parameter 0.1
New-Sum Tolerance 10−10

Table 3.2 Parameters of detectors used in our evaluation.

3.4 Machine Learning Algorithms

In this work, we employ machine learning to combine soft error detectors and to model the
fault behavior of iterative solvers. We leverage several well-established machine learning
techniques. In this section, we provide a brief overview of the machine learning algorithms
we employed. These are the well-established algorithms that cover different classification
techniques we used from SciKit Learn [59].

• Decision tree (DT): Decision tree is a tree-based model. The leaves represent class
labels and the branches represent conjunctions of features that lead to these class labels.

• Support vector machines (SVM): SVM is a supervised method that builds an hyper-
plane between training instances and classifies samples according to their position with

18 Background

respect to that hyperplane. This method has been proved to work well on non-linearly
separable training sets and generally shows good precision and recall.

• AdaBoost (AB): This an iterative machine learning algorithm that improves its preci-
sion by increasing the weights of mis-classified samples. The algorithm uses techniques
that combines the outputs of weak learners (arbitrary learning algorithms) and formu-
lates a weighted sum of the outputs as the final output.

• AdaBoost Regression with Decision Tree: This estimator uses Decision Trees as a
base estimator and improves its original classifier by adjusting weights.

• Stochastic gradient boosting (SGB): SGB constructs an additive model in a stage-
wise fashion. This method effectively combines boosting with gradient descent algo-
rithms.

• Random forest (RF): Over-fitting is a common issue for several machine learning
algorithms. Randomized forest addresses this issue by constructing a set of decision
tree classifiers during the training stage and averaging them.

• Extremely Randomized Trees (ET): This algorithm is a slightly different algorithm
than the random forest. As in a random forest, a random subset of candidate features is
used. However instead of searching for the most discriminative thresholds, thresholds
are drawn at random for each candidate feature.

• Bootstrap Aggregation Techniques (Bagging): Bagging is an ensemble method that
takes a set of classifiers and aggregate their predictions by voting or averaging to form
a final decision.

• Naive Bayes (NB): This machine learning algorithm is a supervised method based on
the Bayes’ theorem. The method makes the “naïve” assumption that every feature is
independent from the rest of the features.

• Multilayer Perceptrons (MLP): MLP is a feedforward neural network algorithm
which maps a set of inputs onto the set of corresponding outputs. MLPs consist of
multiple layers of nodes in some directed graph. Except for the input nodes, each node
is a neuron having a nonlinear activation function. MLPs use back-propagation for
training the network.

3.5 Performance Metrics 19

3.5 Performance Metrics

This thesis deals with demonstrating the performance of classification tasks in both analyzing
detection mechanisms, and machine learning algorithms. In a classification problem, there are
established metrics to assess the performance of the results. Following are the performance
metrics used for the classification tasks in this thesis.

True Positive (TP) An instance was correctly labeled as positive (i.e. execution was
erroneous and labeled as such).

False Positive (FP) An instance was labeled as positive but it was in fact negative (i.e.,
an execution was labeled as erroneous but the error was masked).

True Negative (TN) The instance was correctly labeled as negative (i.e. execution was
vorrect and labeled as such).

False Negative (FN) The instance was labeled as negative but it was in face positive.
(i.e. an execution was labeled as correct but the execution is corrupted.)

A classification is considered precise if it can correctly identify all the SDC cases (true
positives) and only the SDC cases (no false positives). We also define recall as the fraction
of SDCs detected over all the cases in which an SDC occurred.

More formally:

Precision =
T P

T P+FP
(3.2)

Recall =
T P

T P+FN
(3.3)

The precision of a classification defines how accurately it can identify an SDC, i.e., a
large number of false positives decreases the detector precision. Recall, instead, defines what
fraction of SDC has been detected, i.e., the number of SDC detected over all SDC that should
have been detected.

We also use F-Score which combines precision and recall:

F −Score = 2× precision · recall
precisoin+ recall

(3.4)

Precison, Recall, and F-score have values between 0 and 1, where 1 indicating a perfect
score.

Chapter 4

Solver Characterization

4.1 Introduction

A broad array of techniques has been designed to understand application behavior under
soft errors and to detect, isolate, and correct soft-error-impacted application state. The first
step toward tolerating soft errors involves understanding an application’s behavior under
soft errors. This can help understand the need for error detection/correction techniques. An
ideal error detection/correction strategy identifies all and only the errors that can materially
impact application behavior. Detecting and recovering from errors that might be eventu-
ally masked by the application can unnecessarily increase the cost of soft error resilience.
Different portions of the application state might be impacted differently by a soft error,
enabling optimizations and data-structure-specific resilience techniques. Finally, evaluating
the effectiveness of such techniques requires a systematic evaluation of their effectiveness in
protecting various portions of the application state throughout the execution.

In this chapter, we systematically characterize the behavior of six iterative methods—CG,
ILU-preconditioned CG (ICCG), BiCG, CGS, BiCGSTAB, and QMR—in the presence of
soft errors. These methods are exemplar of an important class of methods used to solve
systems of equations and constitute the core kernel in many large-scale scientific applications.
These methods employ closely related approaches to solving a system of linear equations,
enabling us to understand the impact of seemingly small, albeit significant, algorithmic
changes on soft error behavior.

We employ a deterministic error injection strategy to systematically explore the space of
possible error behaviors. We consider 1, 2, and 4 bit error injections under uniform and beta
distribution of the bit positions affected by the error. We consider all statements and vectors
in the iterative methods as candidates for error injection. To reduce fault injection overheads,
we identify and prune error injections that will lead to masked errors and those that will lead

22 Solver Characterization

to the same outcomes as other error injection configurations. In sum, we performed a total of
1,744,800 error injection runs and collected more than 2.5TB data.

4.2 Error Injection Model

To study the behavior of iterative methods in the presence of soft errors, we inject errors
during the execution of these methods. In particular, we study the impact of one error (single-
or multi-bit) on the execution of iterative methods.

Error injection can be performed at various abstraction levels, from circuit to application
level. Error injection at the circuit-level is considered the most accurate method but it
requires sophisticated infrastructures, such as radiation-exposure to processor chips [15, 15],
or processor RTL simulations [16, 55]. While bombarding real hardware certainly allows the
user to run full-size applications, these techniques are considerably expensive and generally
destroy the testbed. RTL simulations, instead, are very accurate but also quite slow. These
approaches are expensive in terms of resources and time and are only practical for small
benchmarks and limited error-injection campaigns.

Architecture-level simulators [7, 32] also have been used to study the impact of soft errors
on applications and partially mitigate the issues with RTL level error injections. However
the execution time overheads might still be too large to study multiple executions of large
applications in the high-performance computing domain.

Software-based injection techniques can perform error injection at the application level
in an accelerated fashion. Software fault-injection techniques are attractive because they
don’t require expensive hardware. Furthermore, they can be used to target applications
and operating systems, which is difficult to do with hardware fault injection. Software-
implemented error injection can be performed at different levels of abstraction: PinFI [83]
and BIFIT [49] are dynamic binary instrumentation-based injectors, wherein an error is
randomly injected into data-structures of an application. Other tools such as LLFI [83]
and KULFI [63] are compiler-level injectors, which inject errors at register level. Each
technique stresses distinct aspects of an application’s footprint (e.g., architectural registers vs
intermediate representation, specific compiler passes, etc.).

The aforementioned tools come with pros and cons: binary instrumentation based tools
enable user-defined temporal and spatial injection but they might introduce considerable
overhead that limits the number of error injection experiments that can be performed. On the
other hand, compiler-based tools significantly reduce the injection overhead but do not allow
the user to precisely explore the temporal aspect of injection. The lack of temporal aspect

4.2 Error Injection Model 23

makes it hard to study and understand the correlation between the outcome and the location
of the injected errors.

Given these limitations, we focus on a controlled application-specific error injection
methodology by instrumenting the source code. The main property of our injection method-
ology is to provide easy exploration of the temporal (when the error is injected) and spatial
(in which data-structures the error is injected) aspects of the error-injection space. We
use application-level injection to understand application vulnerability in terms of program
elements, analogous to program or data vulnerability factors [70, 85].

Exploring the entire error-injection space is time consuming but does not necessarily
bring additional knowledge. For example, injecting an error in a dead vector will result in
the error being masked and correct results, which we can assess without actually performing
the experiment. Instead, we opt for a methodology in which we perform the minimum set of
experiments that still covers the meaningful part of the error-injection space. We prune the
number of error-injection experiments to be performed by identifying live vectors at each
step of the algorithm and thus avoiding injecting into dead vectors.

Compute r0 = b−Ax0 given an inital guess x0

for i=1,2, ...
0. solve Mz(i−1) = r(i−1)

1. ρ(i−1) = r(i−1) ∗ z(i−1)

if i == 1
2. p(1) = z(0)

else
β (i−1) = ρ(i−1)/ρ(i−2)

2. p(i) = z(i−1)+β (i−1) ∗ p(i−1)

endif
3. q(i) = Ap(i)

4. α(i) = p(i−1)/p(i) ∗q(i)

5. x(i) = x(i−1)+α(i) ∗ p(i)

6. r(i) = r(i−1)−α(i) ∗q(i)

7. residual = r(i) . r(i)

Fig. 4.1 The conjugate gradient method for solving the symmetric positive-definite system
A · x⃗ = b⃗

24 Solver Characterization

4.3 Error-injection sites

In iterative methods, the primary data structures involve two-dimensional matrices, multiple
vectors, and scalars. The matrix representing the system of equations remains read-only
throughout the execution. Read-only data structures can be protected efficiently through
employing simple copy-and-compare or fingerprint techniques. Scalars represent a relatively
small fraction of the overall application state and are least likely to be affected by a soft
error. Therefore, we focus on the vectors used in iterative methods, which are modified every
iteration.

In an exhaustive error-injection strategy, a random element of every vector can be
considered as a candidate for error injection before every statement. The implementation of
the algorithm is similar to the one in Figure 4.1 with one function call (or operator-overloaded)
statement per algorithm operation. We only consider statements that involve vectors. All
iterative methods considered involve a conditional statement to initialize a subset of vectors
in the first iteration. In these statements, both branches access the same vectors. Therefore,
from the perspective of our error-injection strategy, we can treat both branches as part of
the same statement. The eight statements in the CG algorithm that are considered for error
injection are numbered in Figure 4.1. Note that both branches of the conditional statement
are labeled with line number 2.

While every vector needs to be considered for error injection before every statement to
ensure coverage, many of the cases lead to identical outcomes. We consider two pruning
steps to identify and eliminate such redundant error-injection experiments. First, an error
injected into a vector will always be masked if that vector will be overwritten before its next
use. In terms of data-flow analysis, such a vector is not considered “live”. When computing
the overall impact of an error, errors at these positions can be noted as masked.

Second, consider the injection of error into vector r at statements 2–5 in Figure 4.1.
These statements neither define nor use r. All these injections result in the same outcome:
impact on statement 6 as if the error were injected just before statement 6. Therefore the
error injection experiments conducted for vector r just before statement 6 can be reused to
characterize the impact of an error on vector r in statements 2–5.

We classify each statement-vector pair in the program according to the following rules:

• If the value in vector v will have no further uses during or after execution of statement
s, but will be overwritten with a new value, (s,v) will be classified into the Dead set. In
Figure 4.1, (0,q), (1,q), (2,q), and (3,q) belong to this set because q will be overwritten
in statement 3 before subsequent uses.

4.3 Error-injection sites 25

• If the value in vector v is used in executing statement s, (s,v) is placed in the used set
Used. (2,z) and (5,x) are examples of pairs in the injection set.

• If a vector v is live at statement s ((s,v) /∈ Dead) and v’s value is not used in s
((s,v) /∈Used), it is classified as being Alive.

Table 4.1 shows the classification of statement-vector pairs for the CG algorithm (Fig-
ure 4.1). Table 4.2 reports the effects of the pruning steps in reducing the number of
statement-vector pairs to be considered for error injection. For example, with CG the two
pruning steps reduce this candidate set from 40 to 13 injection points.

4.3.1 Reconstructing the error behavior under full coverage

Given a classification of statement-vector pairs into Dead, Used, and Alive sets, we perform
error-injection experiments only on the members of the Used set. Given the outcomes of
these error-injection experiments, we need to compute the distribution of outcomes as if we
had considered all candidates. Given a function Distribution(s,v) that returns the distribution
of outcomes from error-injections on a vector v before statement s, the overall error behavior
can be computed as;

∑s ∑v Distribution(s,v)
|s|.|v|.|FI|

where |s|, |v|, and |FI| denote the number of statements, vectors, and error injections per
statement-vector pair in the program, respectively. The distribution of outcomes Distribution(s,v)
is determined as :

• If (s,v) ∈Used, Distribution(s,v) is obtained from the error-injection experiments for
the statement pair.

• If (s,v) ∈ Dead, Distribution(s,v) = {MASKED = |FI|}.

• If (s,v) ∈ Alive, we find the statement s′ that follows s such that (s′,v) ∈ Used and
return Distribution(s′,v).

Reproducing the error-induced behavior requires us to account for the differences in the
execution times of individual statements. For example, a highly resilient and computationally
expensive statement can make an algorithm more resilient, while multiple vulnerable yet
inexpensive statements might have negligible impact. The execution times of individual
statements will depend on the actual execution times on a given platform. To avoid tying our
analysis to a specific architecture and software stack, we associate each statement with an

26 Solver Characterization

abstract cost metric. The statements in iterative methods can be classified into three groups;
(a) scalar operations, (b) vector-scalar and vector-vector operations, and (c) matrix-vector
product and preconditioners. We assume scalar operations incur zero cost. Vector-vector and
vector-scalar operations incur costs proportional to the length of the vectors N (all vectors in
a given execution of an iterative method are of the same size). The cost of a matrix-vector
product can be approximated by N2 ·nnz where N is the matrix dimension size and nnz is the
fraction of non-zeroes in the sparse matrix. Estimating the cost of a preconditioner step is
challenging as it can involve an arbitrary number of operations. We approximate it with the
cost of a matrix-vector multiply (N2 ·nnz). Introducing these statement weights, gives us the
weighted distribution of outcomes as:

∑s ws ∑v Distribution(s,v)
(∑s ws) · |v| · |FI|

We will use this weighted distribution of outcomes as our primary metric in analyzing the
error injection outcomes.

p q r x z
stmt-0
stmt-1
stmt-2
stmt-3
stmt-4
stmt-5
stmt-6
stmt-7

Table 4.1 Classification of each statement-vector into alive, dead, and used sets for the
CG method described in Figure 4.1.

4.3.2 Error-injection implementation

Our error-injection framework determines when and where to inject an error based on the
following inputs:

• iteration number,

• statement number,

4.3 Error-injection sites 27

Method #Statements #Vectors #Points #Alive #Used
CG 8 5 40 30 13
ICCG 8 5 40 30 13
CGS 12 10 120 71 19
BiCG 12 9 108 74 19
BiCGSTAB 13 9 117 83 22
QMR 22 15 330 217 32

Table 4.2 Classification of statements and vectors in each method

• vector name,

• position in the vector,

• list of bit positions to flip in the 64-bit vector element.

Since we assume no previous knowledge about what iteration and what position in vector
are more vulnerable to Silent Data Corruptions (SDCs), we randomly determine both the
iteration number and the vector position in which to inject an error. We use two independent
random sequences and consider two distinct error models: single- and multi-bit errors.
Single-bit flip errors result from alpha particle strikes that induce a transition in a bit. While
memory structures such as DRAM and caches can be protected by ECC mechanisms such
as SECDED or Chipkill, memory structures in legacy GPUs and FPGAs are not protected
by ECC. Even when ECC is available, it could be turned off for performance and energy
savings [19]. Processor datapath structures are not commonly protected by ECC, and a
single bit flip in the datapath may manifest itself as a single or multiple bit flip in application
state [68]. Moreover, multiple bit flips have been observed in low-power DRAMs [5] and
caches operating at close to threshold voltage [36]. Single-bit flip errors enable systematic
exploration of the space of possible errors. While single-bit flips are generally easier to
detect (e.g., through parity code), those that escape hardware detection and generate an SDC
are generally more difficult to detect by software detectors because they introduce a smaller
perturbation compared to multi-bit flips. The latter are more difficult to detect in hardware
but generally introduce a larger perturbation that it is easier to detect by a software detector.

In our experiments, we inject an error in a used vector in a given statement and at a given
iteration. In this work, we analyze errors that induce 1, 2 or 4 bit flips. We determine the
positions of the bit to flip based on two different probability distributions: uniform and beta
5-1. The Beta 5-1 is a distribution where the probability of error occurring increases as we
get closer to the higher bit locations. The uniform distribution, instead, assumes a equally
likely probability of errors among the bit locations.

28 Solver Characterization

We performed our experiments on a 128-node cluster equipped with two AMD Inter-
lagos [9] 16-core sockets, for a total of 32 cores per node and 4096 cores per system. We
employed the solver implementations in the Iterative Methods Library (IML++) v1.2a [24].
All solvers are compiled with GCC 4.7 with -O2 optimization. Error injection space includes
the number of statements in a method, the number of used vectors at a given statement in a
method, see Table 4.2, 28 data sets (24 for CGS, 18 for QMR), type of error distribution and
the number of bits flipped (1,2,4 bit flips for uniform and beta error distributions).

We performed 100 experiments for each instance in error-injection space. Those injections
were uniformly random with respect of iteration space and position in the vector. We
performed a total of 1,744,800 error-injection experiments to study the impact of soft errors
on six iterative methods, generating over 2.5TB of data.

4.3.3 Outcome classification

A soft error can result in a variety of outcomes. In this study, total number of iterations was
used to classify the outcomes of the injection experiments;

• MASKED: The execution is masked if the error injection does not change the number
of iterations taken by an iterative method to converge to the correct solution.

• FAST: The execution exits the convergence loop (with or without the correct solution)
in fewer iterations than the corresponding error-free run.

• SAME: The execution exits the convergence loop after the same number of iterations
as error-free execution. This does not necessarily mean it outputs the correct solution.

• ANOMALY: The execution is anomalous, i.e., the number of iterations to converge in
the presence of errors differs from the one without errors. However, the impact is not
severe, defined as being less than 2× the number of iterations in the error-free run.

• ADVERSE: The execution suffers from severe slowdown, i.e., the execution with an
error takes at least twice as long (in terms of number of iterations) to converge as the
one without errors.

In our categorization, we also use two categories to further classify FAST, SAME, and
ANOMALY outcomes. We use the execution with the convergence checkers as the baseline
for defining the outcomes. In other words, when a method exits the convergence loop,
the solution is checked. If the residual error is less than a given threshold (10−6 in our
experiments), this execution is marked as CONVERGED to the correct solution; otherwise

4.4 Experiments 29

as NOT-CONVERGED. Note that SAME and CONVERGED together is equivalent to
MASKED.

4.4 Experiments

We present the key characteristics of the solvers as inferred from the error-injection ex-
periments. We identify factors that can potentially influence the impact of soft errors to
understand the distinguishing features of the behavior of each iterative method under soft
error.

Impact of error on number of iterations executed

Figure 4.2 shows the impact of errors on the number of iterations executed. This is plotted
as a ratio of the number of iterations executed in the presence of errors and the number in
an error-free run. The figure is a cumulative distribution of the percentage of runs that led
to a given ratio of iterations. A number less than 1 indicates a speedup while a number of
greater than 1 indicates slowdown. A value close to 1 indicates no change. As the masked
outcomes would have drowned out the other features of the graph, we do not include them in
this figure. In general, we observe that a significant fraction of the non-masked outcomes
result in a small change in the number of iterations, often making it faster. In the extreme,
errors can result in a reduction in the number of iterations by more than 50%. Note that this
could either be due to convergence or erroneously exiting the iterative loop. For all solvers,
a small, but significant, fraction (up to 20% for CGS) of the non-masked errors lead to a
more than 2.5× increase in the number of iterations. This shows that, in absence of timely
detection, errors can have a significant impact on the overall application performance. In the
rest of the discussion, we focus on the outcomes rather than the number of iterations.

Overall behavior

Figure 4.3 summarizes all the error-injection experiments for each solver. Figure 4.3a
summarizes the data from the error-injection experiments without taking into account pruning
as discussed in Section 4.3 We observe that different solvers result in different frequencies
of masked outcomes. A small but significant fractions of runs resulted in adverse outcomes
(i.e., > 2× slowdown). Interestingly, BiCGSTAB exhibited a large number of runs in which
an error resulted in faster convergence. Also, CGS and QMR exhibit the largest fraction of
adverse outcomes.

30 Solver Characterization

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

(a) CG

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

(b) ICCG

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

(c) CGS

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

(d) BICG

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

(e) BICGSTAB

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

(f) QMR

Fig. 4.2 Cumulative distribution of the total number of iterations with error injection as
compared to baseline iterations. Masked experiments not included in this histogram. x-axis:
Ratio of the number of iterations with and without errors. y-axis: Cumulative distribution.
For plotting clarity, all cases with more than three times baseline is associated 3× slowdown.

4.4 Experiments 31

Figure 4.3c reconstructs and weighs this data as explained in Section 4.3 to reconstruct
the behavior anticipated in a more exhaustive error-injection experiment. Figure 4.3c is
strikingly different from the one without weights, Figure 4.3a. The fraction of errors that
are masked grows while the fraction of adverse outcomes shrinks. Importantly, the trends
between solvers in terms of anomalous runs is not preserved when weights are applied.

In summary, a large fraction of soft errors are masked by all six iterative methods.
Therefore, detecting and recovering from all soft errors can be overly pessimistic. In addition,
we find that soft errors have a non-trivial probability of leading to faster convergence, lending
potential optimization opportunities.

Evaluation of soft error detection techniques needs to account for the differences due to
weights associated with each statement. Even when a detection technique protects only a
specific statement of a data structure, error injection with sufficient coverage is required to
understand runtime behavior. We have employed an approximate weighting strategy. A more
accurate weighting strategy, based on execution time analysis on a specific platform, can
be combined with the presented error-injection data to derive a more precise distribution of
outcomes.

Soft error behavior for different data sets.

Figure 4.4 shows the error-induced behavior of the solvers for each data set. Blank spaces
depict cases where an iterative method does not converge for a data set. We observe significant
differences in the behavior of solvers between data sets. For example, CG incurs far greater
masked outcomes with the ex15 data set than with other data sets considered. Also, QMR
shows clear differences in number of adverse outcomes between data sets. All solvers incur
significant adverse outcomes with the ex3 data set. A data set that is more vulnerable to soft
errors when using one solver is not also vulnerable with a different solver. However, for some
data sets, different solvers behave differently. Examples include CGS with the s3rmt3m3
and CG with the bcsstk24 data sets.

The relative behavior of the solvers can be markedly different depending on the data sets
used. Therefore, choosing workloads representative of the application context of interest
is crucial to meaningfully analyze the behavior of iterative methods in the presence of soft
errors. Workload-independent analysis should consider as large a collection of data sets as
feasible.

32 Solver Characterization

cg

iccg

cgs

bicg

bicgstab

qmr

0 20 40 60 80 100

(a) Injection Results

cg

iccg

cgs

bicg

bicgstab

qmr

0 20 40 60 80 100

(b) Weighted Injection Results

cg

iccg

cgs

bicg

bicgstab

qmr

0 20 40 60 80 100

(c) Weighted & Reconstructed Results

Fig. 4.3 Overall performances of the solvers among all vectors, statements, iterations and
error injections. For reconstructed graphs, expected population mean for each outcome are
within (0.2%, 1.1%, 0.6%, 0.3%, 1.4%, 0.8%) of our sample mean at the maximum point
with a confidence level of 95%.

4.4 Experiments 33

0
2

0
4

0
6

0
8

0
1

0
0

(a
)C

G
0

2
0

4
0

6
0

8
0

1
0

0

(b
)I

C
C

G
0

2
0

4
0

6
0

8
0

1
0

0

(c
)C

G
S

0
2

0
4

0
6

0
8

0
1

0
0

(d
)B

IC
G

0
2

0
4

0
6

0
8

0
1

0
0

(e
)B

IC
G

ST
A

B
0

2
0

4
0

6
0

8
0

1
0

0

(f
)Q

M
R

Fi
g.

4.
4

G
ra

ph
s

re
pr

es
en

tin
g

th
e

be
ha

vi
ou

ro
fe

ac
h

da
ta

se
tf

or
ea

ch
so

lv
er

.E
xp

ec
te

d
po

pu
la

tio
n

m
ea

n
fo

re
ac

h
ou

tc
om

e
ar

e
w

ith
in

(2
.9

%
,2

02
.0

%
,6

7.
1%

,2
8.

7%
,6

8.
7%

,7
.6

%
)o

fo
ur

sa
m

pl
e

m
ea

n
at

th
e

m
ax

im
um

po
in

tw
ith

a
co

nfi
de

nc
e

le
ve

lo
f9

5%
.

34 Solver Characterization

Impact of error-injection strategy.

Figure 4.5 expands the summary presented in Figure 4.3c into 1, 2, and 4 bits flipped using
uniform or beta distribution. In general, we observe that uniform distribution leads to a
smaller fraction of adverse outcomes. In general, corrupting more bits increases the likelihood
of an anomalous or adverse outcome. In the case of CGS and BiCGSTAB, the number of
masked outcomes is less influenced by the error injection strategy. Interestingly, for CGS,
with increase in number of bits corrupted, the fraction of adverse outcomes increases with a
proportional decrease in the anomalous outcomes. In this case, the fraction of masked and
fast outcomes stays the same. In summary, understanding the soft error behavior of solvers
requires an understanding of the types of errors expected to affect the target environment.

Influence of the vector in which an error is injected.

Figure 4.6 presents the distribution of outcomes in terms of the vector impacted by an error.
We observe that behavior can be grouped into three broad classes. For all solvers considered
(except BiCGSTAB), a significant fraction of errors in the solution vector (x) (almost 80%)
can lead to incorrect early termination of the execution. This behavior is unique for the x
vector for all solvers. Errors in the second group lead to significant fraction of non-masked
outcomes. This group is exemplified by vectors p and r in all solvers, with additional vectors
in some solvers. These are vectors that are live for a large fraction of the execution duration.
In these categories, we observe that a significant fraction of errors in CG and BiCG lead to
faster convergence. In the third class are the short-lived vectors, which are less vulnerable to
soft errors. A resilience strategy can selectively focus on the solution vector and the vectors
in the second category to maximize coverage at a given cost.

Influence of the statement in which an error is injected.

Figure 4.7 shows the influence of the statement in which an error in injected. In CG and
ICCG, we observe a non-uniform distribution of anomalous not converged outcomes. Other
than that, we see that solver behavior is not very sensitive to the exact statement being
affected by a fault. In particular, CGS and QMR show almost no difference due to the choice
of statement.

Impact of bit positions in which an error is injected.

Figure 4.8 plots the weighted outcomes of the error-injection experiments in terms of the
location of the error within the double-precision number: sign-bit, exponent, or mantissa.

4.4 Experiments 35

0 20 40 60 80 100

(a) CG

0 20 40 60 80 100

(b) ICCG

0 20 40 60 80 100

(c) CGS

0 20 40 60 80 100

(d) BICG

0 20 40 60 80 100

(e) BICGSTAB

0 20 40 60 80 100

(f) QMR

Fig. 4.5 Solver behavior for different error injection scenarios. Expected population mean
for each outcome are within (0.9%, 18.3%, 3.0%, 1.9%, 8.3%, 3.6%) of our sample mean at
the maximum point with a confidence level of 95%.

36 Solver Characterization

p

q

r

x

z

0 20 40 60 80 100

(a) CG

p

q

r

x

z

0 20 40 60 80 100

(b) ICCG

p
phat

q
qhat

r
rtilde

u
uhat
vhat

x

0 20 40 60 80 100

(c) CGS

p
ptilde

q
qtilde

r
rtilde

x
z

ztilde

0 20 40 60 80 100

(d) BICG

p
phat

r
rtilde

s
shat

t
v
x

0 20 40 60 80 100

(e) BICGSTAB

d
p

p-tld
q
r
s
v

v-tld
w

w-tld
x
y

y-tld
z

z-tld

0 20 40 60 80 100

(f) QMR

Fig. 4.6 Solver behavior when different vectors are injected with an error. Expected popula-
tion mean for each outcome are within (2.0%, 14.8%, 64.0%, 3.7%, 112.3%, 29.8%) of our
sample mean at the maximum point with a confidence level of 95%.

4.4 Experiments 37

0

1

2

3

4

5

6

7

0 20 40 60 80 100

(a) CG

0

1

2

3

4

5

6

7

0 20 40 60 80 100

(b) ICCG

0

1

2

3

4

5

6

7

8

9

10

11

0 20 40 60 80 100

(c) CGS

0

1

2

3

4

5

6

7

8

9

10

11

0 20 40 60 80 100

(d) BICG

0

1

2

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100

(e) BICGSTAB

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0 20 40 60 80 100

(f) QMR

Fig. 4.7 Solver behavior when error is injected at different statements within the algorithm.
Expected population mean for each outcome are within (1.3%, 11.0%, 3.8%, 2.2%, 14.7%,
2.7%) of our sample mean at the maximum point with a confidence level of 95%.

38 Solver Characterization

Because multi-bit errors can affect more than one location, we plot only the outcomes of
single-bit error injections.

For all solvers considered, adverse outcomes are mostly restricted to errors affecting the
exponent. Across all solvers considered, single-bit errors affecting the mantissa do not lead
to any observable fraction of outcomes being adverse. A small but noticeable fraction of sign
errors results in adverse outcomes. This suggests that protecting the exponent and, possibly,
the sign, are more important than protecting the mantissa. Given that the mantissa covers the
largest fraction of a double-precision number’s storage, selective protection for the sign and
exponent location might catch the most impactful soft errors.

To further analyze the significance of bit position within the double-precision number, we
also plot the behavior for when each bit within the exponent is hit with an error. Figure 4.9
plots the weighted outcomes of the error-injection experiments in terms of the location of the
error within the exponent of the double precision number. We observe that, 62th bit, being
the most significant bit, is always important. An error hitting the 62th bit is highly likely to
lead to adverse outcomes. Another observation we gather is generally, higher bits (56 - 62)
are more important and the possibility of leading to SDCs multiplies after the 56th bit. This
behavior is also observed in literature [51].

We see that BiCG and BiCGSTAB are less precise and less sensitive to the errors in the
exponent. CGS and QMR solvers again show higher bits in the exponent are more important
for the calculations, with QMR having around 3% - 4% variations between adverse outcomes
at the higher bits, whereas CGS showing a more regular distribution of the adverse outcomes
on higher bits. We also observe CG and ICCG showing a higher sensitivity on 56th bit. It
shows that these solvers could benefit from stronger software based protection.

Error-injection at different points in the execution

Figure 4.10 shows the distribution of outcomes depending on the iteration in which errors are
injected. The number of iterations executed in a run depends on the data set and the solver.
As with analysis of the impact of vector position, we normalize the number of iterations
across runs. In particular, for each injection run with solver s and data set d, we compute the
ratio of the iteration in which the error was injected and the number of iterations executed
by solver s on data set d in the absence of errors. Just as in the case of vector position, this
ratio is binned into 20 bins (0–5%, 5–10%, etc.). We see that the iteration point affected has
a greater influence that the vector position, with greater probability that an error later in the
execution will be masked. Except towards the end of execution, CGS and BiCGSTAB seem
least influenced by the iteration in which the error is injected.

4.4 Experiments 39

0 20 40 60 80 100

(a) CG
0 20 40 60 80 100

(b) ICCG

0 20 40 60 80 100

(c) CGS
0 20 40 60 80 100

(d) BICG

0 20 40 60 80 100

(e) BICGSTAB
0 20 40 60 80 100

(f) QMR

Fig. 4.8 Weighted solver behavior when a single bit error is injected at different points of the
variable, results are combined from uniform and beta error distributions. Expected population
mean for each outcome are within (9.1%, 21.3%, 8.7%, 9.9%, 14.0%, 13.1%) of our sample
mean at the maximum point with a confidence level of 95%.

40 Solver Characterization

0 20 40 60 80 100

52

53

54

55

56

57

58

59

60

61

62

(a) CG
0 20 40 60 80 100

52

53

54

55

56

57

58

59

60

61

62

(b) ICCG

0 20 40 60 80 100

52

53

54

55

56

57

58

59

60

61

62

(c) CGS
0 20 40 60 80 100

52

53

54

55

56

57

58

59

60

61

62

(d) BICG

0 20 40 60 80 100

52

53

54

55

56

57

58

59

60

61

62

(e) BICGSTAB
0 20 40 60 80 100

52

53

54

55

56

57

58

59

60

61

62

(f) QMR

Fig. 4.9 Weighted solver behavior when a single bit error is injected at different points of the
exponent, results are combined from uniform and beta error distributions.

4.4 Experiments 41

0-5

20-25

40-45

60-65

80-85

100

0 20 40 60 80 100

(a) CG

0-5

20-25

40-45

60-65

80-85

100

0 20 40 60 80 100

(b) ICCG

0-5

20-25

40-45

60-65

80-85

100

0 20 40 60 80 100

(c) CGS

0-5

20-25

40-45

60-65

80-85

100

0 20 40 60 80 100

(d) BICG

0-5

20-25

40-45

60-65

80-85

100

0 20 40 60 80 100

(e) BICGSTAB

0-5

20-25

40-45

60-65

80-85

100

0 20 40 60 80 100

(f) QMR

Fig. 4.10 Solver behavior when injections made at different points of the execution in terms
of iteration. Expected population mean for each outcome are within (2.4%, 10.9%, 4.7%,
3.4%, 9.2%, 3.8%) of our sample mean at the maximum point with a confidence level of
95%.

42 Solver Characterization

Iterative method Statements involving matrix-vector operations

CG 0, 3
ICCG 0, 3
CGS 3, 4, 7, 9
BiCG 0, 1, 5, 6
BiCGSTAB 2, 3, 7, 8
QMR 5, 6, 9, 12, 14, 15

Table 4.3 Statement numbers for matrix-vector operations in each iterative method.

4.5 Posterior Probability Analysis

We analyze the outcome distributions obtained from the error injection experiments to
understand the relative susceptibility of different statements and vectors in iterative methods.
Specifically, we apply the Bayes’ theorem to compute the probability of an error being in a
particular statement or vector, given an anomalous or adverse outcome:

P(S|O) =
P(O|S)∗P(S)

P(O)

where P(S|O) is the posterior probability of a statement being affected by an error
(hypothesis) given a specific outcome (evidence or observation); P(O|S) is the likelihood or
probability of observing an outcome O given an error affects statement S; P(S) is the prior or
probability of an error affecting statement S; and P(O) is the marginal likelihood of a given
outcome O. Similarly, we compute P(A|O), where A is the vector impacted by an error.

Figures 4.11 present P(S|O) information for each iterative method. These graphs plot
statement probabilities given there is anomalous (both converged and not converged), or
adverse outcomes. We observe that statements performing matrix-vector operations consume
a significantly larger fraction of the total time than other operations. Table 4.3 lists the
statement numbers corresponding to matrix-vector operations for each iterative method. In
general, we observe that matrix-vector operations are the most likely to be affected by an
error, given anomalous or adverse outcomes. Intuitively, this implies that any protection
scheme should focus on these operations. Interestingly, BiCGSTAB does not exhibit this
behavior. In the case of BiCGSTAB, given an anomalous or adverse outcome, matrix-vector
operations are no more likely than other operations to be affected by error. Therefore, for
BiCGSTAB, protection schemes need to consider many more statements.

Figures 4.12 give us the posterior probabilities of error happening in a certain vector given
the outcome is anomalous and adverse. In general, the specific vector being affected, with an
anomalous or adverse outcome, depends on the solver. However, in many cases, vectors p

4.5 Posterior Probability Analysis 43

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

(a) CG

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

(b) ICCG

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11

(c) CGS

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11

(d) BICG

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

(e) BICGSTAB

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

(f) QMR

Fig. 4.11 Probability of an error affecting a statement given the outcome is anomalous or
adverse, P(Statement|Outcome)={Anomaly-Conv or Anomaly-NotConv or Adverse}

44 Solver Characterization

and r are more susceptible than others. Especially if we focus on anomaly not-converged and
adverse outcomes, which are the most harmful of all 7 outcome categories being considered,
vector r (residual) is the most susceptible in all solvers (with the exception of QMR). Thus,
it is the best candidate to be protected against silent data corruption. In the case of QMR,
around 80% of the anomalous non-converging outcomes stem from an error occurring at the
vector p, whereas adverse outcomes are more or less balanced among the different vectors.
In all cases, we observe that vector x (from A ·x = b) is the most resilient, and errors affecting
x do not yield harmful outcomes as much as errors affecting other vectors.

4.6 Summary Of Observations

To the best of our knowledge, this is the first comprehensive characterization of the behavior
of iterative methods in the presence of soft errors. In addition to enabling a concrete
understanding of soft error behavior for an important application class, this analysis has
the potential to aid the design of soft error detectors and realistic evaluation strategies.
Summarizing the data presented in the chapter, we observe the following:

• Error-induced solver behavior varies widely. In particular, CGS behaves differently
from the other solvers considered.

• The comparative behavior of the solvers varies widely with the selection of data sets.
Therefore, a large number of data sets should be chosen for meaningful analysis.

• As shown by CG versus ICCG, a change in the preconditioner can have a noticeable
impact on the error behavior.

• Not all vectors are equally impacted by soft errors. In many cases, the solution vector
x behaves noticeably differently.

• All solvers except CGS are more resilient to errors in the mantissa than other portions
of the floating-point number.

Given the diverse characteristics of iterative solvers, soft error detection mechanisms
need to be evaluated with multiple solvers. In addition, all potential injection sites must be
accounted for in evaluating the usefulness of a soft error detection mechanism, not just a
chosen subset of interest. In addition, due to the wide variations in error-induced behavior of
solvers with changes in data sets, the effectiveness of any error detection strategy should be
evaluated in the context of the application of interest.

4.6 Summary Of Observations 45

 0

 0.2

 0.4

 0.6

 0.8

 1

p q r x z

(a) CG

 0

 0.2

 0.4

 0.6

 0.8

 1

p q r x z

(b) ICCG

 0

 0.2

 0.4

 0.6

 0.8

 1

p p̂ q q̂ r r
~ u û v̂ x

(c) CGS

 0

 0.2

 0.4

 0.6

 0.8

 1

p p
~ q q

~ r r
~ x z z

~

(d) BICG

 0

 0.2

 0.4

 0.6

 0.8

 1

p p̂ r r
~ s ŝ t v x

(e) BiCGSTAB

 0

 0.2

 0.4

 0.6

 0.8

 1

d p p
~ q r s v v

~ w w
~ x y y

~ z z
~

(f) QMR

Fig. 4.12 Probability of an error affecting a certain vector given the outcome is anomalous or
adverse, P(Vector|Outcome)={Anomaly-Conv or Anomaly-NotConv or Adverse}

46 Solver Characterization

4.7 Discussion: Using the Characterization Data

In this chapter, we have focused on detailing our extensive fault-injection experiments and
summarizing our observations. Developing strategies to exploit this data to build resilience
solutions is not this chapter’s focus. In this section, we summarize some ways in which the
presented data might be used.

Soft-error detector design An ideal soft-error detection strategy will detect and report all
types of errors (high coverage), the moment the error impacts the application (low detection
latency), with no performance penalty (low performance overhead). But for the most-trivial
applications, such detectors do not exist. The best detector depends on the use case. This
has motivated the design of multiple types of detectors for different classes of programs.
Considering iterative solvers, the data in this chapter was used to comparatively evaluate
four detection strategies: adaptive impact-driven detection (AID) [23], Orthonormality based
detection [13], checksum-based detection [76], and moving average detector [52]. In addition,
the characterization data was used to train machine-learning based detector that combined
the features of these individual detectors [46] (Chapters 5 & 6).

Comparative solver evaluation The numerical characteristics of solvers have been exten-
sively studied. In particular, choosing the right solver and preconditioner for a given problem
can have a dramatic impact on the time to solution. However, the relative resilience behavior
of solvers is not well understood or characterized. The overall resilience of a solver depends
on the time it takes to solve a system of equations and its vulnerability to errors. While a fast
invulnerable solver is desired, the relative performance and vulnerability of different solvers
needs to be quantified to evaluate their overall performance in the presence of errors.

Selective resilience strategies With a detailed understanding of the impact of errors on
a solver’s runtime behavior, one can design tailored resilience solutions. For example, we
observe that sign and exponent are most responsible for the adverse outcomes (Figure 4.10).
Strategies to detect the most egregious changes in these parts of a floating point number might
incur less overhead than techniques that detect errors affecting the mantissa. As another
use case, we observe that vectors p and r are responsible for the most adverse outcomes in
the CG solver (Figure 4.6). Studying the CG algorithm (Figure 4.1), we observe that both
vectors are updated using vector operations, which are much cheaper than matrix-vector
multiplication. Going further, no reads or writes to r involve matrix-vector multiplication.
Therefore, r can be cheaply protected while almost halving the number of adverse outcomes
for CG.

4.8 IMIC Database 47

Design-space exploration for energy efficiency In trying to improve energy efficiency,
various forms of less-than-exact execution have been considered. One such option is the use
of unreliable memory (e.g., [11]). Data structures which, when affected by an error, have a
lower impact on the application might be beneficially placed on such less reliable memory. In
Figure 4.6, we clearly see that some vectors have negligible impact on application correctness
with respect to soft errors (e.g., z and q for CG/ICCG, qhat and vhat for CGS, and qtilde
and ztilde for BiCG). In addition to performing such static mapping of vectors to memory
regions, the temporal information in the characterization data can be used to query for change
in vulnerability as the execution progress. This can be used to device dynamic remapping
strategies.

In general, we believe the data is a useful resource to quickly test hypothesis relating to
the runtime behavior of iterative solvers, develop new solutions that exploit the observed
behavior, and comparatively evaluate different strategies.

4.8 IMIC Database

As discussed in the previous section, the data can be leveraged for further anaylsis and can
facilitate future studies. Therefore, at the end of this study, we created a publicly available
database called Iterative Method Injection Collection at https://github.com/pnnl/IMIC [58].
This database has all 1.75 million injection results with traces collected during this study. By
doing this, our aim was to make this vast data available for other scientists to apply their own
analysis without having to run exhaustive injection campaigns.

We collected about 2.5TB of data from the fault-injection experiments. This data included
the injection characteristics (location, time, number of bits, etc.), convergence result (Masked,
Anomaly, etc.), as well as other monitored values such as the norm of the residual vector over
the course of the execution. To ease public access, we extracted the injection and convergence
information from all the fault injection experiments and made it available in a table-like
format.

What’s more, to enable reproducibility of our experiments, we also provided an installer
for the experimental setup. We provided links to the libraries used and explained the
modifications applied to generate the data.

Some approaches that can be applied using this database can be listed as follows;

• For the purpose of this study, we employed simplified weights, especially for precondi-
tioners, to the statement costs. This can be tuned for specific architecture and software
stack through trial executions to obtain exact statement execution costs.

https://github.com/pnnl/IMIC

48 Solver Characterization

• The analysis presented averages (arithmetic mean) of the error-injection experiments
from different datasets by taking into account the statement execution costs. Depending
on the target workload, the analysis across the data sets can be performed in different
ways.

In general, we believe the data is a useful resource to quickly test hypothesis relating to
the runtime behavior of iterative solvers, develop new solutions that exploit the observed
behavior, and comparatively evaluate different strategies. This database is available to add to
the knowledge and improve the field by facilitating further research by scientists around the
world.

4.9 Conclusions

In this chapter, we presented a comprehensive characterization of the iterative method
behavior under soft errors. We considered 6 solvers, 28 datasets, and multiple fault injection
scenarios. We believe this data is a useful resource that can aid in testing runtime behavior
of iterative solvers, comparative solver evaluation, error detection studies, and design space
exploration. As an exemplar case study for using this data, we provided a joint work with
another group at Pacific Northwest National Laboratory in the Appendix B. Results from this
study is in the process of being submitted.

We employ a deterministic error injection strategy to systematically explore the space of
possible error behaviors. We consider 1, 2, and 4 bit error injections under uniform and beta
distribution of the bit positions affected by the error. We consider all statements and vectors
in the iterative methods as candidates for error injection. To reduce fault injection overheads,
we identify and prune error injections that will lead to masked errors and those that will lead
to the same outcomes as other error injection configurations.

We analyzed the data to identify differences in soft-error-induced behavior stemming
from the choice of data sets, choice of position and number of bits affected, the statement
and vector affected, and the point in an execution time when an error is injected. In sum, we
performed a total of 1,744,800 error injection runs and collected more than 2.5TB data which
is made into the IMIC database, which is publicly available at https://github.com/pnnl/IMIC.

https://github.com/pnnl/IMIC

Chapter 5

Detector Characterization

5.1 Introduction

The challenges that stem from soft errors on iterative solvers motivate the design of soft
error detectors that can detect the adverse impact of soft errors in a timely fashion. To
mitigate the adverse impact of soft errors, techniques have been designed to efficiently and
accurately detect the presence of soft errors and recover from them. These detectors employ
a variety of techniques (curve fitting, machine learning, algorithm analysis, etc.) to flag
observed behavior that deviates from predicted correct behavior as a potential error. These
detectors have been developed and evaluated in diverse contexts, making a comparative
analysis of their effectiveness difficult. In this chapter, we present a comparative evaluation
of four state-of-the-art online soft error detectors in the context of iterative methods through
extensive single-bit and multi-bit fault injection experiments. We track the evolution of the
residual vector for fault-free method execution, fault injection experiments, and detector
characterizations experiments, totaling several million runs. This should enable systematic
design and evaluation of new detectors for iterative methods.

We performed extensive fault injection experiments involving 28 data sets, five iterative
methods, single- and multi-bit errors, and uniform and normal error distributions, totaling
over 1.4 million fault-injection experiments. All the detectors were evaluated using identical
fault-injection configuration, enabling a direct and unbiased comparison of their behavior.

Given the extent of the fault-injection analysis involved and the burden on computing time,
we performed this study on sequential implementations of the iterative methods. We verified
that these methods are implemented using an abstraction (matrices, vectors, and operations
on them) similar to PETSc [4]. For example, our implementation of New-Sum [76], one of
the detectors considered, is operation-for-operation same as the one by New-Sum’s authors
in PETSc. The primary difference between sequential and parallel runs is the potential

50 Detector Characterization

differences in ordering of floating-point arithmetic. While rigorous analysis of the inter-play
between soft errors and finite-precision arithmetic on realistic data sets is beyond the scope
of this work, the lessons from the comparative analysis presented in this chapter is applicable
to parallel execution of these methods.

The primary contributions of this chapter include:

• Extensive fault-injection evaluation of iterative solvers,

• Use of the fault-injection experiments to comparatively evaluate the four state-of-the-art
soft-error detectors,

A soft error detector periodically observes the execution of an application to identify
whether it is in a soft-error induced incorrect state. Not all soft errors lead to an adverse
outcome. In particular, iterative methods can inherently mask some errors. Detecting such
errors can lead to unnecessary re-execution. Therefore, we classify the impact of a given
fault injection as leading to an adverse or benign outcome by executing the error-impacted
run to completion.

Based on this classification of a fault-injection run, a detector’s decision is characterized
as:

True Positive (TP) The detector correctly labels an execution as erroneous.

False Positive (FP) The detector labels an execution as erroneous but the error was
masked, i.e., execution completed with the correct results in the same number of
iterations as an execution without error injection.

True Negative (TN) The detector correctly labels an execution as correct.

False Negative (FN) The detector labels an execution as correct but the execution is
corrupted.

A detector is considered precise if it can correctly identify all the SDC cases (true
positives) and only the SDC cases (no false positives). We also define recall as the fraction
of SDC detected over all the cases in which an SDC occurred.

More formally:

Precision =
T P

T P+FP
(5.1)

Recall =
T P

T P+FN
(5.2)

5.2 Experiment Setup and Error Model 51

The precision of a detector defines how accurately a detector can identify an SDC, i.e.,
a large number of false positives decreases the detector precision. Recall, instead, defines
what fraction of SDC has been detected, i.e., the number of SDC detected over all SDC that
should have been detected.

When designing a fault tolerant or resilient solution, it is important to minimize the
number of false negatives, i.e., SDC that should have been detected but that pass unnoticed.
False negatives, in fact, may hide incorrect results and lead scientists in the wrong direction,
delay the execution of the application (longer time to converge), or induce application crashes.
We thus consider recall as the primary metric when evaluating a detector for a certain solver.
If two detectors present similar recall, we then consider their precision. A high precision
implies that the number of unnecessary rollbacks is low (few false positives), thus there is no
waste of energy or additional overhead when executing the solver. We remark that rolling
back an application because of an incorrect labeling of an iteration (false positive) increases
the execution overhead of the application but does not impact the application correctness. On
the other hand, not detecting an SDC (false negative) might severely impact the correctness
of the application.

Until the iteration at which an error is injected, the execution is considered fault-free. We
distinguish these iterations from iterations past the fault-injection. In particular, we employ
False Positive Rate (FP∗) [23, 73], which evaluates the number of false positive iterations
when running a detector on fault-free execution of each solver. Ideally, a detector should not
report any errors for these iterations. Note that this metric is distinct from, and reports on a
disjoint set of iterations/executions than, the false positives due to a detector reporting errors
that are masked. Separating these out helps us distinguish detector behavior for error-free
versus masked runs.

5.2 Experiment Setup and Error Model

As we discussed in previous chapters, iterative methods solve a system of linear equations
A · x⃗ = b⃗, where A is a sparse matrix, b⃗ and x⃗ are vectors by iteratively computing increasingly
accurate approximations to the exact solution. At each iteration, the methods maintain a
residual corresponding to the computation r⃗ = b⃗−A · x⃗. Iterations complete when the norm
of the residual vector is below a user-specified threshold. Here is a list of iterative methods
we target in this work.

• CG: Symmetric positive-definite, Conjugate gradient with incomplete LU precondi-
tioner

52 Detector Characterization

• ICCG: Symmetric positive-definite, CG with incomplete cholesky preconditioner

• BiCG: Need not be self-adjoint, Unpreconditioned biconjugate gradient

• BiCGSTAB: Non-symmetric input, Biconjugate gradient stabilized

• CGS: Non-symmetric input, Conjugate gradient squared

Related methods were chosen to evaluate the variations in their behavior to across similar
methods. CG and ICCG differ in the preconditioner used. They require their input to be
a positive definite symmetric matrix. BiCG is a generalization of CG and can handle non-
symmetric and non-definite systems. However, it requires a multiplication of A with its
conjugate transpose which makes BiCG numerically less stable. The BiCGSTAB is a more
stable version of BiCG but involves greater computational cost per iteration. CGS has the
same computational cost as BiCG but does not require the transpose of A.

The dataset matrices are used to initialize A. The vector b⃗, given as input to the method, is
computed by initializing the solution vector to all ones and computing b⃗ = A · x⃗. This ensures
that the system of equations has a valid solution. All computation is performed in double
precision. We used the solver implementations in the Iterative Methods Library (IML++)
v1.2a [24], compiled using GCC 4.7 with -O2 optimization.

We select 28 symmetric positive definite matrices, which can be handled by all the
methods considered, from the University of Florida Sparse Matrix database [21]. List of
datasets and their properties are listed in Table 3.1.

While some of the data sets are relatively small, they represent realistic data sets from
diverse application domains. The number of iterations performed by iterative methods ranges
from 33 to 16226, depending on the solver and the dataset.

Application detectors attempt to identify anomalies during the execution of a solver that
could be due to soft errors. Many of such detectors observe specific values and track their
evolution during the execution. The observed trends are then compared to expected correct
behavior and an error is flagged whenever the observed behavior differ from the expected
one. In the case of the iterative methods, the residual error is often used as the observed value.
In general, detection approaches perform better when the evolution has a discernible trend
and gradually evolves. Effective design of this class of detectors can be aided by information
on the convergence characteristics of iterative methods.

5.3 Convergence Characteristics 53

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01

3.50e-01

4.00e-01

 0

 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

 1
0
0
0

(a) BiCG: 5*,6,7,8,9,10,11,12,
18,21,23,26,24,27,28

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01

3.50e-01

4.00e-01

4.50e-01

 0

 2
0

 4
0

 6
0

 8
0

 1
0
0

 1
2
0

 1
4
0

 1
6
0

(b) BiCG: 15*,17,20,16,13,
19,22,25

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01

3.50e-01

4.00e-01

4.50e-01

5.00e-01

 0

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

(c) BiCG: 2*,1,3,4,14 (d) BiCG: None

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01

3.50e-01

 0

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

(e) BiCGSTAB: 17*,1,2,3,4,5,
6,8,9,14,15,23,24,26,27

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01
 0

 2
0

 4
0

 6
0

 8
0

 1
0
0

 1
2
0

 1
4
0

 1
6
0

(f) BiCGSTAB: 10*,16,19,21,22

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01

 0

 2
0

 4
0

 6
0

 8
0

 1
0
0

 1
2
0

 1
4
0

 1
6
0

(g) BiCGSTAB: 13*,7,12,25,28

0.00e+00

2.00e-01

4.00e-01

6.00e-01

8.00e-01

1.00e+00

1.20e+00

1.40e+00

1.60e+00

 0

 2
0
0
0

 4
0
0
0

 6
0
0
0

 8
0
0
0

 1
0
0
0
0

 1
2
0
0
0

 1
4
0
0
0

 1
6
0
0
0

 1
8
0
0
0

(h) BiCGSTAB: 11*,20

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01

3.50e-01

4.00e-01

4.50e-01

5.00e-01

 0

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

(i) CG: 21*,5,6,7,8,9,10,11,
12,15,18,23,24,26,27,28

0.00e+00

1.00e-01

2.00e-01

3.00e-01

4.00e-01

5.00e-01

6.00e-01

 0

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

(j) CG: 17*,20,16,13,22,25

0.00e+00

5.00e-02

1.00e-01

1.50e-01

2.00e-01

2.50e-01

3.00e-01

3.50e-01

4.00e-01

4.50e-01

5.00e-01

 0

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

(k) CG: 1*,2,3,4,14,19 (l) CG: None

(m) CGS: None

0.00e+00

1.00e-01

2.00e-01

3.00e-01

4.00e-01

5.00e-01

6.00e-01

7.00e-01

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
0
0

(n) CGS: 19*,6

0.00e+00

2.00e+05

4.00e+05

6.00e+05

8.00e+05

1.00e+06

1.20e+06

1.40e+06

1.60e+06

1.80e+06

2.00e+06

 0

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

(o) CGS: 1*,2,8,16,25,27

0.00e+00

2.00e+05

4.00e+05

6.00e+05

8.00e+05

1.00e+06

1.20e+06

1.40e+06

1.60e+06

1.80e+06

2.00e+06

 0

 5
0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

 3
5
0
0

 4
0
0
0

(p) CGS: 13*,3,4,5,7,9,10,11,
12,13,14,17,18,20,21,

22,23,24,26,28

0.00e+00

5.00e-01

1.00e+00

1.50e+00

2.00e+00

2.50e+00

3.00e+00

3.50e+00

 0

 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

(q) ICCG: 4*,1,2,3,5,6,7,9,11,12,
16,18,23,24,26,27,28

0.00e+00

2.00e-02

4.00e-02

6.00e-02

8.00e-02

1.00e-01

1.20e-01

1.40e-01

1.60e-01

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

(r) ICCG: 15*,8,10,13,14,17,
19,20,21,22,25

(s) ICCG: None (t) ICCG: None

Fig. 5.1 Representative graphs of the evolution of residual norm with iteration count. Each
graph plots residual norm evolution for one method on one data set (highlighted by a * in
the caption). The other data sets that exhibit similar trends are listed in the caption. x-axis:
iteration count; y-axis: norm of residual vector.

54 Detector Characterization

5.3 Convergence Characteristics

While the general convergence characteristics of methods are known, their behavior on
specific data sets cannot be easily determined. Therefore, we evaluated the convergence
characteristics of the five methods on the 28 data sets in terms of the evolution of the residual
norm as the iterations progress. An execution converges when the residual error falls below
10−6. Figure 5.1 groups the data sets based on their convergence trends, showing one
representative graph for each group. Note that the grouping is presented for brevity and
visual clarity to identify the key distinguishing features. Where possible, we have tried to
group data sets within similar trends across methods in the same column. In general, while
the residual error might monotonically decrease over a window of iterations, the trends
show significant diversity. In the first group (first column in the figure), we observe a quick
and sharp reduction in the residual errors, followed by steady reduction in residual error
over several iterations. In the second group, the residual error decreases more gradually but
exhibits similar trends as the first group. The third group shows scenarios with an occasional
spike in the residual error. ICCG did not exhibit this trend. The final column shows trends
with multiple spikes in the residual error evolution.

In summary, we observe that the evolution of residual errors shows significant variation
even for the same method. Not all the solver-dataset pairs exhibit monotonic trends in the
residual, which may lead to SDCs passing unnoticed. Identifying data set characteristics that
lead to different convergence trends can aid the design of accurate detectors.

5.4 Soft Error Detection

In this section, we describe and evaluate the effectiveness of state-of-the-art error detectors
while running the solvers and data sets described in the previous section.

5.4.1 State-of-the-art Soft Error Detectors

Adaptive impact-driven detection (AID) Di and Cappello [23] observed that the impact
of “influential” soft errors can be characterized by an impact error bound, defined as the
maximum ratio of the data value change between adjacent time steps to the global value
range for every data point in a snapshot. This observation is used to dynamically fit different
curves—last-state, linear, and quadratic—to the temporal evolution of data based on their
prediction error. An error is flagged if the observed value falls out of the impact error bound
range.

5.4 Soft Error Detection 55

Orthonormality detector (Ortho) Chen et al. [13] identify an intrinsic orthogonal re-
lationship of specific vectors in several Krylov linear solvers. They construct a detector
that periodically checks this relationship and flags an error if the orthogonality condition
is violated (within a certain tolerance). Among the solvers considered, the orthogonality
relationship only exists for CG, ICCG, and BiCG.

Checksums for matrix-vector multiplication (New-Sum) Tao et al. [76] presented a
checksum encoding scheme for matrix-vector multiplication and vector linear operations. The
checksums are maintained by augmenting each solver operation with an efficient checksum
operation. The separate checksum is recomputed from the current matrices periodically and
compared to the one computed at each iteration step. The detector flags an error if the two
checksum differ.

Moving average detector (MAD) Liu et al. [52] observe that the residual norms in iterative
methods might not strictly decrease at every iteration but that the norms exhibit a decreasing
trend over a longer period (multiple consecutive iterations). Rather than focusing on one
iteration at the time, the authors employ a moving average of the residual norms over a
sliding window. The detector flags an error if the moving average increases with respect to
the previous window rather than decreasing, as expected.

To avoid over-reacting to minor perturbations, detectors also require the usage of a
threshold before flagging an error. In this work, we use the default threshold values for each
detector: 0.00078125 for AID, 10−10 for Ortho and New-Sum, and 0.1 for MAD.

It is important to remark that an error occurring during the execution might not necessarily
affect the application’s final results nor the convergence time. In fact, errors might be masked,
for example because they impact a bit in a floating point value with low significance (thus,
they are absorbed by the natural errors in floating point computation). Labeling an application
run as incorrect because of an error detected in one iteration might be overly pessimistic and
induce a high number of false positives, hence trigger unnecessarily recovery actions. To
reduce the number of false positives, a more focused detector may flag an error only after
it has observed a consistent trend (i.e., residual norm increasing over several consecutive
iterations). We define an adverse outcome as an execution in which the number of iterations
required to converge in the presence of errors is different from the number of iterations
necessary to converge in an error-free execution.

Quantifying the effectiveness of a detector is not easy, as several non-functional parame-
ters are involved. In this work we consider :

• accuracy in detecting adverse outcomes,

56 Detector Characterization

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

o
r
t
h

a
i
d

n
e
w
s
u
m

m
a
d

m
l
-
8

m
l
-
2
8(a)

U
niform

1

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(b)
U

niform
2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(c)
U

niform
4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(d)
N

orm
al2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(e)
N

orm
al4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(f)
U

niform
1

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(g)
U

niform
2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(h)
U

niform
4

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(i)
N

orm
al2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(j)
N

orm
al4

W
16

Fig.5.2
C

um
ulative

function
for

recallfor
uniform

and
norm

aldistribution
w

ith
1-bit,2-bit,and

4-biterrors
(denoted

“U
niform

1”,etc.)
w

ith
im

m
ediate

detection
and

w
ith

a
detection

w
indow

of
16

iterations
(denoted

W
16).

T
he

x-axis
represents

the
recall

percentage,w
hile

the
y-axis

represents
the

percentage
ofthe

solver-datasetpairs.Foran
idealdetector,w

e
expectrecallvalues

of1,
w

hich
corresponds

to
curves

thatare
flat(value

zero)forx<
100%

and
then

jum
ps

to
100%

forx=100%
.

5.4 Soft Error Detection 57

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

o
r
t
h

a
i
d

n
e
w
s
u
m

m
a
d

m
l
-
8

m
l
-
2
8

(a
)U

ni
fo

rm
1

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(b
)U

ni
fo

rm
2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(c
)U

ni
fo

rm
4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(d
)N

or
m

2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(e
)N

or
m

4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(f
)U

ni
fo

rm
1

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(g
)U

ni
fo

rm
2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(h
)U

ni
fo

rm
4

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(i
)N

or
m

2
W

16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(j
)N

or
m

4
W

16

Fi
g.

5.
3

C
um

ul
at

iv
e

fu
nc

tio
n

fo
rp

re
ci

si
on

fo
ru

ni
fo

rm
an

d
no

rm
al

di
st

ri
bu

tio
n

w
ith

1-
bi

t,
2-

bi
t,

an
d

4-
bi

te
rr

or
s

(d
en

ot
ed

“U
ni

fo
rm

1”
,e

tc
.)

w
ith

im
m

ed
ia

te
de

te
ct

io
n

an
d

w
ith

a
de

te
ct

io
n

w
in

do
w

of
16

ite
ra

tio
ns

(d
en

ot
ed

W
16

).
T

he
x-

ax
is

re
pr

es
en

ts
th

e
pr

ec
is

io
n

pe
rc

en
ta

ge
,w

hi
le

th
e

y-
ax

is
re

pr
es

en
ts

th
e

pe
rc

en
ta

ge
of

th
e

so
lv

er
-d

at
as

et
pa

ir
s.

Fo
ra

n
id

ea
ld

et
ec

to
r,

w
e

ex
pe

ct
pr

ec
is

io
n

va
lu

es
of

1,
w

hi
ch

co
rr

es
po

nd
s

to
cu

rv
es

th
at

ar
e

fla
t(

va
lu

e
ze

ro
)f

or
x<

10
0%

an
d

th
en

ju
m

ps
to

10
0%

fo
rx

=1
00

%
.

58 Detector Characterization

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

o
r
t
h

a
i
d

n
e
w
s
u
m

m
a
d

m
l
-
8

m
l
-
2
8

(a)
U

niform
1

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(b)
U

niform
2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(c)
U

niform
4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(d)
N

orm
2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(e)
N

orm
4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(f)
U

niform
1

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(g)
U

niform
2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(h)
U

niform
4

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(i)
N

orm
2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(j)
N

orm
4

W
16

Fig.5.4
C

um
ulative

function
for

detection
latency

for
uniform

and
norm

aldistribution
w

ith
1-bit,2-bit,and

4-biterrors
(denoted

“U
niform

1”,etc.)
w

ith
im

m
ediate

detection
and

w
ith

a
detection

w
indow

of16
iterations

(denoted
W

16).T
he

x-axis
represents

the
detection

latency
as

a
percentage

ofnum
berofiterations

in
an

error-free
execution,w

hile
the

y-axis
represents

the
percentage

ofthe
solver-datasetpairs.Foran

idealdetector,w
e

expectthe
latency

to
be

close
to

0,corresponding
to

a
flatline

aty=100%
from

x
=

0
tillx=100.N

ote
that,in

the
presence

oferrors,the
num

berofiterations
executed

and
thus

the
detection

latency
can

be
greaterthan

iterations
executed

w
ithouterrors.W

hile
w

e
only

show
the

graphs
w

ith
detection

latencies
of≤

100%
forbrevity,w

e
do

observe
such

long
detection

latencies
(especially

in
the

W
16

case).

5.4 Soft Error Detection 59

0

20

40

60

80

100

0 20 40 60 80 100

orth

aid

newsum

mad

ml-8

ml-28

(a) Window 1

0

20

40

60

80

100

0 20 40 60 80 100

(b) Window 16

Fig. 5.5 Cumulative function for false positive rates. The x-axis represents the percentage of
FP rates, while the y-axis represents the percentage of the solver-dataset pairs examined. An
ideal detector will show a straight line at y=100% for all values of x>0.

• timeliness of detection,

• detection overhead and its impact on performance,

• generality across solvers and data sets.

An ideal detector is one that, for all solvers and data sets, detects all and only adverse
outcomes (high precision and recall), detects an error immediately after it appears, and does
not increase overall execution time. We provide a detailed analysis of the tested detectors in
the next sections.

5.4.2 Detector Accuracy

Ortho detector exploits mathematical properties of the solvers and can, in principle, detect
every injected error. Barring the handling of the preconditioner, this same property holds
for New-Sum. However, this guarantee is provided in the context of solvers operating on
real numbers. The use of finite-precision arithmetic leads to dramatic deviations from this
anticipated behavior. This motivates the need for detector analysis using realistic data sets in
the application domain of interest. We evaluate each detector in terms of precision, recall,
and false positive rate, as defined in Section 5.1.

Our deterministic error injection strategy allows us to repeat any experiment X multiple
times, every time injecting an error in the same iteration, residual vector location, and bits.
Using this methodology we can perform an apple-to-apple comparison among all the detectors
and compare their decisions (i.e., prediction of the final outcome) to the final result of the

60 Detector Characterization

application. Consider an experiment X∗ in which we do not run any detector and inject an
error in a certain residual vector element at a given iteration. We can deterministically inject
the same error(s) in an equivalent experiment Xd , with d ∈ {AID,NewSum,MAD,Ortho},
where we run detector d. We then analyze whether the decision taken by detector d in
the experiment Xd is consistent with the outcome of experiment X∗. We label the detector
decision as true positive if d identifies an error in Xd and predict an adverse outcome that
is observed in X∗. A false positive occurs when d detects an error and predicts an adverse
outcome in Xd but we do not observe the adverse outcome in X∗. A true negative is a case in
which neither Xd nor X∗ show an adverse outcome. Finally, a false negative occur when d
misses an adverse outcome that is observed in X∗.

Additionally, we investigate the false positive rate (FP-rate). We compare the detectors’
decisions to the error-free executions of the solvers. In this scenario, we expect that the
detectors will not identify any errors and report false positives in case they predict an adverse
outcome. The FP-rate is computed as the number of false positives over the total number of
iterations.

As discussed above, flagging an execution as incorrect when an error is detected might be
overly pessimistic. An error detected in one iteration might be masked in later iterations and
still result in a final correct outcome. To mitigate the impact of false positives we adopted
two strategies for evaluating the detector decisions.

Point detection (W1): This is the basic detection method. If a detector observes
an error at iteration i, we stop the execution and label the experiment as producing
an adverse outcome, regardless of whether or not the error will be masked in later
iterations.

Sliding window detection (W16): In this method, we label an experiment as produc-
ing an adverse outcome if a detector observes an error for n consecutive iterations. The
reasoning behind this methodology is that if an error has not been masked and has
been observed for n consecutive iterations, there is a high probability that it will never
be masked and will result in an adverse outcome. Conversely, if the error observed at
iteration i is masked at iteration i+1, the detector will not flag an error, hence reducing
the number of false positives and increasing the confidence in the results. For this
study we analyzed windows of size 2, 8 and 16 but, due to space limitations, we report
the results for size 16, which has the lowest false positive rates.

Figure 5.2, 5.3 and 5.5 plot the cumulative distribution functions for the recall, precision,
and false positive rates for the tested detectors, respectively. Each sub figure presents a single
metric, window size, and error distribution tuple. The y-axis at each graph represents the

5.4 Soft Error Detection 61

percentage of the solver-dataset pairs examined. The x-axis represent the percentage of recall,
precision, and false positive rate.

Each point (x,y) on a plot line represents the percentage of the data points (y) that has
a lower or equal performance value than (x). For an ideal detector, we expect recall and
precision values of 1, which corresponds to curves that are flat at the value zero for x<100
and then jumps to 100 for x=100. For FP-rate on the other hand, an ideal detector will show
a straight line at y=100 for all values of x. For example, Figure 5.5 shows that Ortho detector
has a perfect 0 false positive rate, which means it never flags an error for error-free execution.

The graphs in Figure 5.2 and 5.3 show that each detector has its own pros and cons.
We observe that New-Sum has the highest recall value and that MAD with W16 and Ortho
have good false positive rates (close to zero for all of the data points). However, their recall
plots show that they miss a considerable number of errors. AID shows low false positive
rates with the sliding window detection method (W16), though its recall values are also low.
Point detection method for New-Sum and MAD have promising performance values, though
New-Sum shows the worst false positive rates among all the experiments.

5.4.3 Detection Latency and Overhead

Detecting adverse outcomes early is almost as important as detecting them correctly. For
the cases in which the detectors correctly flag an error, Figure 5.4 shows the latency values
for each detector, window size, and injection method. Latency values are computed as the
distance (in terms of number of iterations) between the injection of the error and its detection.
To get a latency percentage we divide this distance by the number of iterations executed in
error-free runs.

We plot the cumulative distribution for latency values, where y axis represents the
percentage of solver-dataset pairs and x axis shows the latency percentage. Similar to false
positive rate, a perfect latency plot would be the line jumping to y=100 at x=1 and goes
a straight line at the y=100 line. Some detectors never reached to 100%. These detectors
identify the error after the total error-free iterations. For example, for point prediction and
with 1 bit flip uniformly distributed, AID shows more than 100% latency for about 10% of
the solver-dataset pairs on average. These detectors present a “long tail” latency distribution
with a non-trivial fraction of errors detected thousands of iterations after the error is injected.

We observe that, irrespective of the error schemes and window sizes, MAD and AID have
high latency values compared to the other detectors. New-Sum has slightly better latency
performance than the rest, which are performing in a similar fashion to each other. With a
window size 16, we observe that all detectors other than AID and MAD have similar latencies.

62 Detector Characterization

M
ean

Stdev
m

in
m

ax

A
ID

N
SM

M
A

D
O

RTH
A

ID
N

SM
M

A
D

O
RTH

A
ID

N
SM

M
A

D
O

RTH
A

ID
N

SM
M

A
D

O
RTH

C
G

1.4
3.1

1.0
2.7

0.5
1.7

0.0
0.3

1.0
1.1

0.9
2.3

3.2
5.4

1.1
2.8

IC
C

G
1.1

1.8
1.0

1.8
0.2

0.8
0.0

0.0
1.0

1.0
1.0

1.7
1.8

2.9
1.1

1.9
B

iC
G

1.1
1.6

1.0
1.5

0.1
0.5

0.0
0.0

1.0
1.0

1.0
1.4

1.5
2.3

1.0
1.5

B
iC

G
ST

1.1
1.8

1.0
N

A
0.1

0.9
0.0

N
A

1.0
1.1

1.0
N

A
1.4

3.1
1.2

N
A

C
G

S
1.3

2.1
1.2

N
A

0.2
0.9

0.1
N

A
1.0

1.1
0.9

N
A

1.9
3.2

1.3
N

A
Table

5.1
M

ean,standard
deviation,m

in,and
m

ax
slow

dow
n

due
to

detectors
as

com
pared

to
baseline

execution.A
verage

over10
runs.

5.5 Conclusions 63

Table 5.1 shows the detector overhead (geometric mean, minimum, and maximum) as
the ratio of the execution time with and without detector instrumentation. AID and MAD
present the lowest overheads. Among the solvers, CG has the lowest cost per iteration, thus
the relative impact of the detectors is higher. Note that, in our evaluation, the detectors are
used every iteration, presenting a worst-case usage pattern in terms of overheads. In practice,
detector overhead is amortized by checking only every several iterations.

The runtime overhead can be divided in two phases: the first part is the extraction of
the data to be used in the detection. AID and MAD use already available variables from
the execution and have negligible extraction costs. Ortho and New-Sum extracts orthogonal
relationship of specific vectors and checksum of matrices, respectively, which lead to the
larger portion of their overhead. The second part of the overhead comes from the analysis.
AID and MAD have higher analysis costs. Ortho and New-Sum, on the other hand, only
requires a conditional check to decide on the error.

5.5 Conclusions

In this chapter, a comprehensive evaluation of the behavior of soft error detectors were
presented. We consider five iterative methods, 28 data sets, and multiple fault-injection
scenarios. We evaluated flagging an error based on detector behavior at a single iteration
or over a sliding window of iterations. While each detector considered has been shown
to be effective in a distinct context, extensive analysis of various configurations evaluated
demonstrates that, in the context of iterative methods, they do not achieve perfect detection
accuracy. Given the high false positive rates, which can lead to a large re-execution overhead,
existing detection techniques might better serve as a component of a larger detection system.
In addition, the detection latencies, in many cases, can be a substantial fraction of the total
execution time.

We observe that each detector achieves a desirable performance, however none of them
were perfect or close to. We theorized there is room to improve and explored a machine
learning feature combination avenue to analyze this potential (Chapter 6).

Another observation from Chapter 4 and Chapter 5 is that fault injection experiments for
error behavior profiling and detector performance analysis is costly. We devised a machine
learning based prediction approach to tackle this problem, which we discussed at Chapter 7.

Chapter 6

Machine Learning Based Error
Detection

6.1 Introduction

While individual detectors achieve high detection rates, none of the detectors considered in
Chapter 5 achieve perfect detection. To understand the potential for improved detectors, we
design an online detector based on offline machine learning methodology.

We present a machine learning based detector using the features of individual detectors to
identify the potential for an improved accuracy based on these features. As discussed in the
previous chapter, no detector satisfies all the requirements of an ideal detector (Section 5.4),
but each detector has its own pros and cons. A natural approach towards an ideal detector
consists of coalescing the information used by the four detectors into a new error detector.
We explored this avenue but quickly realized that the space resulting from the fault injection
campaign was too large to be analyzed manually. Instead, we opted for using machine learn-
ing approaches. We extracted application-independent features from the data collected during
the fault injection campaign, namely, residual norm (all detectors, one feature), checksum
values computed from the current matrices (New-Sum, three features), and orthogonality
relationships (Ortho, two features). We then train the network using different machine learn-
ing algorithms and build models that predict the occurrence of adverse outcomes based on
observations during the execution. Finally, we evaluate the resulting machine learning-based
error detector on a disjoint testing set and compare it to state-of-the-art detectors.

While generating the dataset sets for the machine learning algorithms, we follow the
following steps:

66 Machine Learning Based Error Detection

1) We randomly select 8, 16, and 28 (all) data sets and only collect features from the
experiments belonging to those selected datasets using the normal error distribution.

2) We shuffle the resulting training set to remove any bias due to the ordering of fault
injection experiments.

3) For the cases in which we use only a subset of the solver’s data sets (8 and 16), we
use the remaining data sets to build the testing set. For the case in which we use all
solver’s data set as training set, we split the shuffled data by randomly selecting 90%
of the samples for training and 10% for testing sets.

4) Then, we further prune the training set to select equal number of innocuous and
erroneous samples.

We use several supervised learning algorithms to create a model per iterative solver.
Supervised learning methodology uses a training set with a label for each sample, either
innocuous or erroneous. Each label presents the ground truth determined based on the
comparison to the fault-free execution. Our training sets with ground truth are the collection
of the fault-injected experiments performed while evaluating the selected state-of-the-art
online soft error detectors.

6.2 Supervised Learning Algorithms

We used the following machine learning algorithms to build our error detector. These are the
well-established algorithms that cover different classification techniques.
Decision tree (DT): Decision tree is a tree-based model. The leaves represent class labels
and the branches represent conjunctions of features that lead to these class labels.
Support vector machines (SVM): SVM is a supervised method that builds a hyperplane
between training instances and classifies samples according to their position with respect
to that hyperplane. This method has been proved to work well on non-linearly separable
training sets and generally shows good precision and recall.
AdaBoost (AB): This an iterative machine learning algorithm that improves its precision
by increasing the weights of mis-classified samples. The algorithm uses techniques that
combines the outputs of weak learners (arbitrary learning algorithms) and formulates a
weighted sum of the outputs as the final output.
Stochastic gradient boosting (SGB): SGB constructs an additive model in a stage-wise
fashion. This method effectively combines boosting with gradient descent algorithms.

6.2 Supervised Learning Algorithms 67

Random forest (RF): Over-fitting is a common issue for several machine learning algorithms.
Randomized forest addresses this issue by constructing a set of decision tree classifiers during
the training stage and averaging them.
Extremely Randomized Trees (ET): This algorithm is a slightly different algorithm than
the random forest. As in a random forest, a random subset of candidate features is used.
However instead of searching for the most discriminative thresholds, thresholds are drawn at
random for each candidate feature.
Bootstrap Aggregation Techniques (Bagging): Bagging is an ensemble method that takes
a set of classifiers and aggregate their predictions by voting or averaging to form a final
decision.
Naive Bayes (NB): This machine learning algorithm is a supervised method based on the
Bayes’ theorem. The method makes the “naïve” assumption that every feature is independent
from the rest of the features.
Multilayer Perceptrons (MLP): MLP is a feedforward neural network algorithm which
maps a set of inputs onto the set of corresponding outputs. MLPs consist of multiple layers
of nodes in some directed graph. Except for the input nodes, each node is a neuron having a
nonlinear activation function. MLPs use back-propagation for training the network.

8/28 16/28 28/28

Solver Alg. F-Score Alg. F-Score Alg. F-Score

CG ET 84.7 Bagging 85.5 ET 90.9
CGS ET 78.9 ET 77.9 ET 79.8
ICCG RF 78.3 NB 77.8 ET 80.9
BICG ET 82.9 Bagging 86.6 ET 87.2
BICGSTA Bagging 78.5 ET 79.9 ET 85.4

Table 6.1 Best machine learning algorithms and their F-scores for each training set configura-
tion.

Table 6.1 shows the best machine algorithm for each pair solver-training set (8/28, 16/28,
and 28/28) and the corresponding F-Score for the relative testing sets. ExtraTrees is generally
the best machine learning algorithm across all the solver/training set configurations, especially
for the 28/28 case. The F-Score values range from 77.809 to 90.877. We observe that using
the training set configuration 28/28 generally produce better models (higher F-Score) while
there is not much difference between the 8/28 and the 16/28. Thus, for brevity, we omit the
case 16/28 and focus on two approaches: ML-8 and ML-28.

68 Machine Learning Based Error Detection

6.2.1 Evaluating Machine Learning-Based Detectors

To evaluate our machine learning-based error detector we follow the same methodology
used for the evaluation of the other detectors. The plots in Figure 6.1, 6.2, 6.3, and 6.4
show the recall, precision, latency, and false positive rate for our machine learning detector,
respectively. We report results for detectors generated with training set configurations that
use 8 and 28 datasets out of the 28 datasets available (yellow and purple line, respectively).

The plots show that the recall values for the machine learning detectors are generally the
best among all the detectors. Only New-Sum performs similarly with a window of size 16
(W16). The machine learning detectors outperform MAD and are significantly better than
Ortho and AID.

In terms of precision (Figure 6.2), the machine learning detectors behave similarly to
New-Sum and slightly worse than Ortho. MAD and AID show higher precision but might
miss some errors (low recall values). These two detectors are more “optimistic” than the
others and tend not to flag errors unless they observe strong evidences. This means that the
machine learning detectors may trigger some unnecessary recoveries but still the correctness
of the applications are not affected. In fact, the high recall values indicate that almost all
errors are detected (low false negatives).

The machine learning detectors are also capable of detecting faults very quickly, as the
results in Figure 6.3 show. Only New-Sum is faster than the machine learning-based detectors,
while Ortho is generally comparable and AID and MAD are slower. The overhead costs of
the machine learning-based detectors (Table 5.1) consists of extraction of the features used
by other detectors and analysis. Because the machine learning approaches use all the features
extracted by the other detectors, including New-Sum and Ortho’s high extraction costs, it
is not surprising to see that the extraction cost is relatively high. The analysis cost, instead,
introduces only negligible overhead. On average, the machine learning detector presents
overhead close to the sum of New-Sum and Ortho.

Finally, Figure 6.4 shows false positive rates (FP∗). The graphs show that the false
positive rates are not as good as Ortho, AID, or MAD, but better than New-Sum.

Overall, we conclude that our machine learning detectors are not ideal detectors because
they still show a large number of false positives. However, they generally outperform the
other individual detectors. The machine learning detectors show better recall values than
Ortho, AID, and MAD (in the case of AID and MAD, the recall values are significantly higher),
which indicates that the machine learning approaches do not miss errors. Also, error detection
is much faster than AID, MAD, and Ortho. Compared to New-Sum, the machine learning
detectors show similar recall values and error detection latencies, hence both approaches

6.2 Supervised Learning Algorithms 69

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

o
r
t
h

a
i
d

n
e
w
s
u
m

m
a
d

m
l
-
8

m
l
-
2
8 (a

)U
ni

fo
rm

1

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(b
)U

ni
fo

rm
2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(c
)U

ni
fo

rm
4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(d
)N

or
m

al
2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(e
)N

or
m

al
4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(f
)U

ni
fo

rm
1

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(g
)U

ni
fo

rm
2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(h
)U

ni
fo

rm
4

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(i
)N

or
m

al
2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(j
)N

or
m

al
4

W
16

Fi
g.

6.
1

C
um

ul
at

iv
e

fu
nc

tio
n

fo
r

re
ca

ll
fo

r
un

if
or

m
an

d
no

rm
al

di
st

ri
bu

tio
n

w
ith

1-
bi

t,
2-

bi
t,

an
d

4-
bi

te
rr

or
s

(d
en

ot
ed

“U
ni

fo
rm

1”
,e

tc
.)

w
ith

im
m

ed
ia

te
de

te
ct

io
n

an
d

w
ith

a
de

te
ct

io
n

w
in

do
w

of
16

ite
ra

tio
ns

(d
en

ot
ed

W
16

).
T

he
x-

ax
is

re
pr

es
en

ts
th

e
re

ca
ll

pe
rc

en
ta

ge
,w

hi
le

th
e

y-
ax

is
re

pr
es

en
ts

th
e

pe
rc

en
ta

ge
of

th
e

so
lv

er
-d

at
as

et
pa

ir
s.

Fo
ra

n
id

ea
ld

et
ec

to
r,

w
e

ex
pe

ct
re

ca
ll

va
lu

es
of

1,
w

hi
ch

co
rr

es
po

nd
s

to
cu

rv
es

th
at

ar
e

fla
t(

va
lu

e
ze

ro
)f

or
x<

10
0%

an
d

th
en

ju
m

ps
to

10
0%

fo
rx

=1
00

%
.

70 Machine Learning Based Error Detection

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

o
r
t
h

a
i
d

n
e
w
s
u
m

m
a
d

m
l
-
8

m
l
-
2
8(a)U

niform
1

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(b)U
niform

2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(c)U
niform

4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(d)N
orm

2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(e)N
orm

4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(f)U
niform

1
W

16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(g)U
niform

2
W

16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(h)U
niform

4
W

16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(i)N
orm

2
W

16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(j)N
orm

4
W

16

Fig.6.2
C

um
ulative

function
forprecision

foruniform
and

norm
aldistribution

w
ith

1-bit,2-bit,and
4-biterrors

(denoted
“U

niform
1”,etc.)

w
ith

im
m

ediate
detection

and
w

ith
a

detection
w

indow
of16

iterations
(denoted

W
16).T

he
x-axis

represents
the

precision
percentage,w

hile
the

y-axis
represents

the
percentage

ofthe
solver-datasetpairs.Foran

idealdetector,w
e

expectprecision
values

of
1,w

hich
corresponds

to
curves

thatare
flat(value

zero)forx<
100%

and
then

jum
ps

to
100%

forx=100%
.

6.2 Supervised Learning Algorithms 71

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

o
r
t
h

a
i
d

n
e
w
s
u
m

m
a
d

m
l
-
8

m
l
-
2
8

(a
)U

ni
fo

rm
1

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(b
)U

ni
fo

rm
2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(c
)U

ni
fo

rm
4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(d
)N

or
m

2

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(e
)N

or
m

4

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(f
)U

ni
fo

rm
1

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(g
)U

ni
fo

rm
2

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(h
)U

ni
fo

rm
4

W
16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(i
)N

or
m

2
W

16

0

2
0

4
0

6
0

8
0

1
0
0

0
2
0

4
0

6
0

8
0

1
0
0

(j
)N

or
m

4
W

16

Fi
g.

6.
3

C
um

ul
at

iv
e

fu
nc

tio
n

fo
r

de
te

ct
io

n
la

te
nc

y
fo

r
un

if
or

m
an

d
no

rm
al

di
st

ri
bu

tio
n

w
ith

1-
bi

t,
2-

bi
t,

an
d

4-
bi

te
rr

or
s

(d
en

ot
ed

“U
ni

fo
rm

1”
,e

tc
.)

w
ith

im
m

ed
ia

te
de

te
ct

io
n

an
d

w
ith

a
de

te
ct

io
n

w
in

do
w

of
16

ite
ra

tio
ns

(d
en

ot
ed

W
16

).
T

he
x-

ax
is

re
pr

es
en

ts
th

e
de

te
ct

io
n

la
te

nc
y

as
a

pe
rc

en
ta

ge
of

nu
m

be
ro

fi
te

ra
tio

ns
in

an
er

ro
r-

fr
ee

ex
ec

ut
io

n,
w

hi
le

th
e

y-
ax

is
re

pr
es

en
ts

th
e

pe
rc

en
ta

ge
of

th
e

so
lv

er
-d

at
as

et
pa

ir
s.

Fo
ra

n
id

ea
ld

et
ec

to
r,

w
e

ex
pe

ct
th

e
la

te
nc

y
to

be
cl

os
e

to
0,

co
rr

es
po

nd
in

g
to

a
fla

tl
in

e
at

y=
10

0%
fr

om
x
=

0
til

lx
=1

00
.N

ot
e

th
at

,i
n

th
e

pr
es

en
ce

of
er

ro
rs

,t
he

nu
m

be
ro

fi
te

ra
tio

ns
ex

ec
ut

ed
an

d
th

us
th

e
de

te
ct

io
n

la
te

nc
y

ca
n

be
gr

ea
te

rt
ha

n
ite

ra
tio

ns
ex

ec
ut

ed
w

ith
ou

te
rr

or
s.

W
hi

le
w

e
on

ly
sh

ow
th

e
gr

ap
hs

w
ith

de
te

ct
io

n
la

te
nc

ie
s

of
≤

10
0%

fo
rb

re
vi

ty
,w

e
do

ob
se

rv
e

su
ch

lo
ng

de
te

ct
io

n
la

te
nc

ie
s

(e
sp

ec
ia

lly
in

th
e

W
16

ca
se

).

72 Machine Learning Based Error Detection

0

20

40

60

80

100

0 20 40 60 80 100

orth

aid

newsum

mad

ml-8

ml-28

(a) Window 1

0

20

40

60

80

100

0 20 40 60 80 100

(b) Window 16

Fig. 6.4 Cumulative function for false positive rates. The x-axis represents the percentage of
FP rates, while the y-axis represents the percentage of the solver-dataset pairs examined. An
ideal detector will show a straight line at y=100% for all values of x>0.

effectively detect most of the errors. However, the number of false positives is lower for the
machine learning approaches, thus they trigger fewer unnecessary recoveries than New-Sum.

6.3 Conclusions

In this chapter, to identify the potential for an improved accuracy based on the features
used by the detectors evaluated, we presented a machine learning based detector using these
features. While improved, the machine learning based detector is still far from perfect in
terms of its accuracy. We believe, in addition to new methods, additional features need to be
incorporated to improve detection accuracy.

We observe after this experiment, using machine learning and combining the powers of
the detectors is an area that can offer more performance. First, we can get the decisions of
the detectors for the same execution and train another model with the actual effect of the soft
error. This model would work with the decisions of the individual detectors and decide on a
final outcome.

On the other hand, for this study, we haven’t considered spatial or temporal aspects of the
error. We can analyze the injections and see if one detector works comparatively better on the
earlier executions versus later ones, or if a detector has comparatively superior performance
while checking some data structures but not as good working for others. Analyzing the
injections and detector performance deeper will give more insight on the detectors success
and will open new avenues for having detectors work together. Exploration of these ideas are
discussed on Chapter 8.

Chapter 7

Soft Error Prediction

7.1 Introduction

Understanding the impact of soft errors on applications can be costly. Often, it requires an
extensive error injection campaign involving numerous runs of the full application in the
presence of errors.

In this chapter, we present a novel approach to reduce the cost of such error injection
campaigns, without sacrificing their benefits. We present a machine learning based approach
to observe a small window of execution past the point at which an error is injected to predict
the ground truth–impact of the error on the output at the end of the application’s execution.
While being inherently less precise as compared to actual execution, we demonstrate that the
machine learning based predictor is sufficiently accurate to enable meaningful analysis of
application vulnerability and detection strategies.

We design our soft error impact strategy in the context of iterative methods used to solve
systems of linear equations. These methods can mathematically converge to the correct result
from an arbitrary initial guess, lending themselves to significantly application-level error
tolerance. However, soft error impact analysis has demonstrated that errors can have a wide
variety of outcomes (See Chapter 4). This has motivated the continued development of novel
strategies that observe the execution progress of iterative methods to identify anomalies in
their execution (Chapters 5 & 6).

Error detection strategies need to identify the absence of soft errors and the impact
of soft errors. The need to correctly identify the more common scenario–the absence of
errors or errors that are masked at a lower-level–biases existing strategies to focus more
on this scenario. We observe that vulnerability analysis, unlike error detection, involves
understanding application behavior in the presence of errors. We empirically demonstrate
that common soft error detection strategies for iterative methods are not equally adept at

74 Soft Error Prediction

predicting the ground truth. We develop a prediction strategy that exploits the knowledge
of the presence of the error injection (and its magnitude) to produce improved ground truth
predictors.

We develop and empirically evaluate our approach in the context of three iterative
methods (CG, BiCG, and CGS) and 15 datasets from the University of Florida Sparse Matrix
Collection [21]. The primary contributions of this chapter are:

• The observation that the error injection information and the execution deviation in a
small window of iterations can be used to predict the ground truth for iterative solvers

• A novel machine learning based ground-truth predictor for iterative methods

• Empirical demonstration that the novel ground-truth predictor outperforms alternative
strategies, including those based on existing soft error detection strategies

• Analysis of the feature selection and training set requirements for the ground-truth
predictor

• An analysis of the cost savings for error injection campaigns in terms of number of
iterations of the iterative methods

7.2 Ground Truth Prediction

In this section, we describe our approach to ground truth prediction. The approach involves
comparing the values encountered in variables used in the iterative solvers (specific vectors)
between error-injected and error-free runs. Detectors based on redundant execution involve
duplicated executions that can be compared for deviations. These approaches typically
identify errors that escape a particular architecture or abstraction level (e.g., errors that
escape micro-architecture state or registers) rather the final application output. We employ a
strategy similar, in spirit, to redundant execution where an execution with no error injection
is compared with one with error injections to predict outcomes. However, only one error-free
execution is used to check numerous error-injected executions. In addition, we focus on
predicting ground truth rather than just errors escaping architecture state.

7.2.1 Machine-learning based Prediction

Figure 7.1 illustrates our approach to construct the machine learning based predictor. The
training data is constructed using a small number of error injection experiments. For each

7.2 Ground Truth Prediction 75

Fi
g.

7.
1

O
ur

ov
er

al
la

pp
ro

ac
h

to
co

ns
tr

uc
ta

gr
ou

nd
-t

ru
th

pr
ed

ic
to

ru
si

ng
m

ac
hi

ne
le

ar
ni

ng

76 Soft Error Prediction

error injection, we monitor the execution for a small number of iterations. In this work,
we limited ourselves to 20 iterations past the error injection to observe the error propagate
and manifest itself in the variables monitored. During these 20 iterations after injection, we
extract our feature data from the execution. We use x⃗, p⃗, and r⃗ vectors’ value at the 5th, 10th,
and 20th iterations after the injections. We also observe the magnitude of introduced error
and the injection point relative to the execution duration (calculated as injection iteration
over the expected number of iterations). So the features we collect from the execution are:

• x⃗, p⃗, and r⃗ vectors’ value at the 5th iteration after injection

• x⃗, p⃗, and r⃗ vectors’ value at the 10th iteration after injection

• x⃗, p⃗, and r⃗ vectors’ value at the 20th iteration after injection

• Iteration percentage, calculated as

Injected Iteration
Expected # of Iterations

(7.1)

• Magnitude of introduced error, calculated as the ℓ1 norm between the injected v⃗′ and
the original v⃗ at the moment of injection

Features Once the features are extracted, the error-injected run is allowed to proceed
to completion unimpeded to determine the outcome. We classify the outcome into two
categories. We label each error injection run MASKED or NON-MASKED:

• MASKED: When the solver returns a correct value for x⃗, and the number of iterations it
takes to find a solution is within 5% of the expected number of iterations (i.e., number
of iterations it takes when no error was introduced).

• NON-MASKED: When the solver either converges to a wrong solution, or takes unex-
pected amount of iterations to find the solution.

To learn the deviations from error-free execution that result in a non-masked outcome,
we evaluated various machine learning (ML) techniques available in the SciKit Learn pack-
age [59]. Specifically, we explored decision tree, support-vector machine, AdaBoost, Random
Forest, Naive Bayes, and AdaBoost regression with Decision Trees. Preliminary analysis
demonstrated that AdaBoost regression achieved the best results for the methods considered.
Therefore, we build our predictor and present results with this ML technique.

7.2 Ground Truth Prediction 77

For each vector value observed from a fault injected execution, we compare it to the error-
free execution to understand how much the injected execution diverged from the expected
values. For each iteration, we compare the observed value to a range of iteration values of
the correct execution. That is, for the nth iteration, we compare the injected vector value
with the vectors at the {n-20 .. n+20} iterations. We compare the injected vector with the
corresponding healthy vector’s values over the course of iteration window, as any change
introduced by the error can hinder the convergence, but also, by chance, it can help moving
the execution to the right direction [58]. We calculated ℓ1 norms between each vector and
the correct execution’s corresponding vector range. We used the minimum ℓ1 value as the
difference of the vector at the given iteration.

Figure 7.1 depicts our overall workflow to construct the ground truth prediction model
using machine learning. We train separate models for each solver. For each model, 20% of
the datasets are randomly selected to be used as a test set, and the rest of the datasets form the
training set. Rather than build a model on the entire training set, we randomly select subsets
of datasets to build models. These models are tested on the remaining datasets (ones not used
to build the model). We build 20 models for each configuration—number of datasets used to
build the model and number of samples. Among the many models built, we pick the model
that best generalizes to handling datasets not used in building them. This way, we train the
model using the most representative subset of datasets and test the final model on previously
unseen data.

7.2.2 Error Injection Mechanism

There are several injection methods that can be considered for an error injection study, from
low circuit level to high software level injections. Each error injection has its shortcomings
and strengths. Lower level injection campaigns can provide low overhead injections with
precision, but provide less control over temporal aspects of the error. On the other end of
the spectrum, higher level injection mechanisms provide the user with more control over
the error manifestation being less accurate in emulating the natural occurrence of the error
(hardware bit flip.)

To understand and model the soft error behavior of iterative solvers, we lean on the
side of increased control over the injection procedure. We follow an application-level error
injection methodology that enables us control the temporal and spatial aspect of the error.
We instrument the iterative method implementation so that errors can be injected during the
execution to any of the vectors, at any statement of the algorithm, during any of the iterations.

Iterative methods use vectors, two-dimensional matrices, and scalars for their calculations.
Matrices in the algorithm are read-only and can be protected from soft errors with ease using

78 Soft Error Prediction

established techniques [1, 2]. Scalars in the algorithm are relatively small compared to other
data structures in the algorithm. Hence they are less likely to be impacted by an error and
less likely to impact the program state even if they are hit. Therefore we focus our injection
strategy on the vectors in the algorithm.

As all these iterative solvers solve the same equation, and as they are part of the same
class of algorithms, they share some vectors in their algorithms. We selected 3 vectors (⃗x, p⃗,⃗r)
crucial to all three solvers. Other vectors in the algorithms are either temporary variables or
they are calculated using these three vectors. Therefore, we can limit our injections to these
vectors and still accomplish a meaningful coverage of the error behavior for the iterative
solver.

Our error injection framework instruments the source code to simulate an error. The
framework decides in where to inject the error based on the inputs provided by the user
(similar to our previous works [46, 58]). These inputs are: iteration number, statement
number, vector name, position in the vector, list of bit positions to flip in the vector element.
We don’t assume any previous knowledge on different vulnerabilities of the iterations and
vectors. Therefore, we select the iteration number and vector position in which we inject an
error uniformly at random.

We run random injections for each vector-statement pair, for our selected vectors, on the
statements that use them. This way, we make sure our injection won’t be overwritten and
can have a chance to affect the program state. Error behavior including such overwriting can
be calculated mathematically from this set of experiments without additional experiments
as shown in prior work [58]. We inject uniform random 1-bit, 2-bit, and 4-bit errors. We
collected more than 450 data points for each solver-dataset pair, a total of more than 32500
runs.

7.2.3 Overall Algorithm: Error Injection with Ground Truth Predic-
tion

Figure 7.2 shows the overall algorithm for error injection campaigns based on the ground
predictor built as described in the preceding sections. The algorithm takes as input a list of
error injection points (configs) ordered in time. Until an injection point, execution proceeds
without any error injection (denoted by solver.iteration_no_error()). Before an error is
injected, the solver state is checkpointed (line 14). This is followed by an iteration in which
the error is injected (lined 15). The details of the actual error injection—bit flips in vectors at
specific statements—are not shown for simplicity. After the error-injected iteration, execution
proceeds for 20 more iterations (or termination if it happens sooner) without further errors

7.2 Ground Truth Prediction 79

1 struct ErrorConfing {
int eiteration;

3 ErrorInfo einfo;
};

5 auto ErrorCampaign(Solver solver , vector <ErrorConfing > configs) {
int it=0;

7 solver.init();
vector <Outcome > outcomes; // masked or non -masked outcomes

9 for(auto ec: configs){
while(! converged and it++ < ec.eiteration) {

11 solver.iteration_no_error ();
}

13 if (converged) break;
auto ckpt = solver.checkpoint ();

15 solver.iteration_with_error(ec.einfo);
vector <Feature > features;

17 for(int i=0; i<20 and !terminated; i++) {
solver.iteration_no_error ();

19 features.push_back(solver.get_features ());
}

21 auto pred_ground_truth = classify(features);
outcomes.push_back(pred_ground_truth);

23 solver.restore(ckpt);
}

25 return outcomes;
}

Fig. 7.2 Algorithm for an error-injection campaign based on ground truth prediction. The
algorithm is executed for a given iterative solver, data set, and ordered list of error injection
configurations.

(line 18). During these iterations, the key features described in the preceding section are
captured (line 19). These features are used to predict ground truth using the ML model and
the outcome is saved. Once predicted, execution is rolled back to the last saved checkpoint.
The execution proceeds error-free until the next iteration in which an error is to be injected.

Note that even though multiple errors are injected into the single execution of the iterative
method, the checkpoint-restart enables us to treat each error injection in isolation. In other
words, each error injection scenario only analyzes the impact of one single-bit or multi-bit
error impacting the execution. Depending on the number of error injection samples and
their desired distribution, an initial error-free execution might be performed to compute the
number of iterations in the absence of errors. This procedure is repeated for every pair of
iterative method and data set of interest in the error injection campaign.

80 Soft Error Prediction

7.3 Evaluation

In this section, we explain our experimental setup and evaluate our proposed method. We
first evaluate the accuracy of the model in predicting a soft error profile for a subject program.
Later we demonstrate the usage of the prediction model by leveraging the prediction to
accelerate SDC detector analysis. We also show the method is cost effective compared to
exhaustive fault injection studies.

We evaluate the performance of the method using precision, recall, F-score, and masked
instance ratio. To recap, precision is the number of MASKED instances correctly labeled,
divided by the total number of instances labeled MASKED. precision gives us a measure
of the fraction of instances MASKED labels that are indeed MASKED. recall is calculated
as the number of MASKED instances correctly labeled, divided by the number of instances
that are in fact MASKED. This metric gives us the sensitivity of the prediction in maximally
capturing the MASKED instances. F-score combines precision and recall as:

F-score = 2× precision · recall
precision+ recall

(7.2)

7.3.1 Ground Truth Predictor: Model Building and Selection

In building the predictor, we use 80% of the datasets (12) for training and use the remaining
(3) for testing. We are interested in building a model that can effectively generalize to the test
dataset. To this end, we perform our training in two stages. We observe that some data sets
might better capture features from a larger data set than others. Also, to avoid just fitting the
model to the training set, we build models using different subsets of the training data. The
models are then used to predict the ground truth for the rest of the data sets. We illustrate the
approach using an example.

Illustration Consider the building of a model based on three data sets and 100 error
injection experiments among a training data from five data sets. We randomly select 3 of the
12 datasets. Two samples from this selection are {1,3,5} and {1,5,6}. For the first sample,
among all error injections involving data sets 1, 3, and 5, 100 are chosen. A model is built
using these error injections, and is tested using error injections involving datasets 2 and 4
to compute its F-score. This process is repeated for the second sample {1,5,6} and other
samples. The sample and model that gives the best F-score is selected as the final model for
the configuration involving three datasets and 100 error injections.

7.3 Evaluation 81

(a) CG

(b) BICG

(c) CGS

Fig. 7.3 Design space exploration to train the ground-truth predictor for (a) CG, (b) BICG,
and (c) CGS. The rows correspond to 100, 200, 400, 1000, and all available error injection
experiments used for training. The columns correspond to 3, 6, 9, and 11 data sets used
to build the model. In each instance, the data sets not used to build the model are used to
evaluate the model’s effectiveness. Each cell shows the best F-score achieved among the
models generated from 20 random samples.

82 Soft Error Prediction

This procedure is repeated for different numbers of data sets used for model building and
total number of error injections used for training. Figure 7.3 shows the results of our model
building analysis. We build model using 3, 6, 9, and 11 of the training datasets. Total number
of error injections used to build the model are varied between 100, 200, 400, 1000, and all
samples involved the dataset. This procedure is repeated for each solver. For all three solvers
considered, we observe that the best model constructed using 400 error injection experiments
chosen from 3 data sets achieves among the greatest F-scores with a relatively small number
of error injection experiments. We use these models for the subsequent evaluation using the
test set.

7.3.2 Evaluating Solver Vulnerability

We use the ground truth predictor model described above for each solver (best model
involving 3 data and 400 points) in terms of its ability to predict application vulnerability.
Vulnerability is measured as the average fraction of error injections that result in a non-
masked outcome. To be consistent in the rest of the section, we equivalently looked at the
masked ratio, which is the fraction of error injections that result in a masked outcome. Note
that these are complementary and one can directly derive one from the other1.

Figure 7.4 plots the masked ratio computed using ground truth (y-axis) versus the masked
ratio computed using various prediction strategies. We present one data point for each
combination of solver and data set, for a total of 9 data points for each prediction method.
For each predictor we also present a linear fit trendline to the data points and associated R2

values. An ideal predictor would result in a fitted trendline from (0,0) to (1,1), indicating
exact match between vulnerabilities from actual and predicted ground truths.

We consider several candidates. The approach based on predicted ground truths is labeled
ML. We also consider three detectors as potential predictors:

• Adaptive Impact-driven Detection (AID) [23] introduces an “impact error bound” that
is used to pinpoint influential soft errors. They use dynamic curve fitting to detect an
influential soft error.

• Checksums for matrix-vector multiplication (NEWSUM) Tao et al. [76] proposes a
checksum encoding approach to detect soft errors in matrix-vector and vector-linear
operations.

• Moving Average Detector (MAD) observes that residual norms in an iterative method
shows a decreasing trend over time. They proposed a moving average schema to detect

1Computing vulnerability from our injection data involves injecting at all candidate sites. However, this can
be directly derived from the injection on “live” sites we consider as shown in prior work [58]

7.3 Evaluation 83

Fig. 7.4 Predicted MASKED ratio plotted against actual MASKED ratio. x-axis: MASKED ratio
predicted from each candidate predictor. y-axis: MASKED ratio computed using ground truth
from error injection experiments. ML denotes our approach. Each dot represents a solver-
dataset pair. Trendlines for each detection method is also provided, R2 values for each
trendline is AID: 0.0729, MAD:0.3428, NEWSUM: 0.0022, and ML: 0.7073. An R2 value
closer to 1 denotes less error closer match between the trendline and the fitted data.

irregular increases in consecutive time periods, which points to an unexpected behavior,
hence detection of an soft error [52].

We used these detectors with their suggested threshold values, AID was run with
0.00078125, NEWSUM with 10−10 and MAD with 0.1.

We observe that using detectors as ground truth predictors does not result in a consistent
match with the masked ratio computed using the ground truth. All three detectors suffers
from both over-estimation and under-estimation of the masked ratio. We observe a strong
linear relationship (with a high R2 fit) between the masked ratio computed using the ground
truth and our approach. This shows that the actual masked ratio can be easily determined
from the predicted masked ratio using our approach.

84 Soft Error Prediction

A predictor might miss out on matching the actual ground truth on a large number of
samples but accidentally predict the overall masked ratio. This might be a challenge when
only a subset of the scenarios considered are of interest (say to design a detector for a
subset of the error injection points). Table 7.1 evaluates this per-prediction accuracy in
terms of precision and recall of candidate prediction strategies. This includes three soft error
detectors from prior work (AID, MAD, NEWSUM) and our approach (ML). In addition,
we consider two random detectors to ensure that the candidate predictors do not succeed by
chance. The FAIR COIN detector predicts the outcome to be masked or non-masked with
equal probability at every prediction. The BIASED COIN predictor makes the same decisions
in ration proportional to the masked ratio in the training data used by our approach.

We observe that our approach achieves the best or near-best precision and recall. Unlike
the alternatives, it is always significantly better the two random predictors. While NEWSUM
achieves the best precision and recall for BICG, our approach is not far behind. Also,
NEWSUM exhibits significantly lower accuracy for the other two solvers.

7.3.3 Evaluation of Detector Accuracy

Another important use of error injection experiments and their outcomes is to evaluate the
design and evaluation of soft error detection strategies. Here, we evaluate the effectiveness
of our approach to aid in such evaluation. Table 7.2 shows the precision and recall evaluated
for the three detectors described earlier (AID, MAS, and NEWSUM) using actual ground
truths, ground truth predicted by our model, and two random (coin-toss) baseline strategies
explained above. We observe that precision and recall determined for the detectors using
our approach closely matches those computed using the actual ground truth from error
injection experiments. The largest deviation between the two is 0.04, clearly demonstrating
the usefulness of our approach in evaluating soft error detectors for iterative solves.

In some of the scenarios considered, the random solutions seem to perform quite well as
compared to the ground truth. This is just an artifact of the actual ground truth matching the
metrics resulting from the random strategies, which are usually around 0.5.

7.3.4 Right Answers for the Right Reasons

Detectors often attempt to identify specific portions of an application state or computation
space that can be efficiently protected. Depending on the detection strategy being explored,
different portions of the error injection space might be of interest. Figure 7.5 shows the
classification of the outcomes into cases where a detector and the predictor agree and where
they don’t. The decisions made in these cases will only be valid if the predictor matches the

7.3 Evaluation 85

actual ground truth. Without such a match, the classification might be correct, but it will
not be for the right reasons. We observe that, in this specific case, the predictor is nearly
equally effective in identifying, for the right reasons, when the NEWSUM detector performs
a correct versus incorrect determination.

Figure 7.6 shows a scatter plot depicting the fraction of the scenarios in which our
approach correctly labels the detector behavior across solver-dataset pairs. x-axis denotes
fraction represented by the left green node out of its parent node in the binary tree in
Figure 7.5, across solver-dataset pairs. In this scenario, using our predictor results in the
correct decision. Along the y-axis, we depict the fraction represented by the right green
node out of its parent node in the binary tree in Figure 7.5, across solver-dataset pairs. Here
the detector is flagged as being in error, and correctly so. With an ideal predictor, all data
points plotted will be at (1,1), denoting perfect match between prediction and actual ground
truth for both positive and negative evaluation of the detector. In general, we observe good
clustering of the data of the data points around (1,1). We observe a bias in the positive versus
negative detector evaluation, with correct detector behavior identified more accurately than
incorrect detector behavior.

7.3.5 Reduction in Error Injection Campaign Costs

To assess the gain our model will provide against a traditional fault injection campaign for
detection performance, we calculated the number of iterations our approach would save
the user. In a traditional approach, one will let the execution run to the end, or will stop
it when the expected number of iterations / time exceeded deciding there is an anomalous
effect of the injection and labels the run accordingly. For our calculations, we assumed user
decides on an anomalous run after 105% of the expected iterations (5% flexibility on the
number of iterations of an error-less run). On the other hand, our approach can stop the
execution whenever a detection flag is raised by a detector (after a minimum of 20 iterations
from injection). We injected errors uniform randomly on the iteration space and counted the
number of iterations we avoided for the experiments.

For the detection results reported, we saved 240 iterations per CG run, 653 iterations on
average per BICG run and 697 iterations on average per CGS run. This corresponds to 21%
of the average expected execution for CG, 25% of the average expected execution for BICG
and 53% for CGS. The changes in the amount we saved can be explained by the number of
masked instances and false positives. As in our method, a detection is awaited to halt the
execution, when there is no detection, both prediction method and traditional method waits
for the end of execution. So when a detector (correctly or not) does not detect any anomalies,

86 Soft Error Prediction

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.50 0.50 0.64 0.54 0.41 0.49
MAD 0.47 0.47 0.68 0.62 0.29 0.50
NEWSUM 0.69 0.66 0.82 0.81 0.29 0.50
ML 0.90 0.89 0.81 0.78 0.80 0.80
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

Table 7.1 Precision and recall of estimation of masked ratio using various candidate predictors.
ML denotes our approach. An ideal detector will have precision and recall close to 1. The
best candidate for each solver is shown in bold.

AID MAD NEWSUM
Against Precision Recall Precision Recall Precision Recall

GT 0.50 0.50 0.47 0.47 0.69 0.66
CG Prediction 0.54 0.51 0.49 0.49 0.67 0.65

Fair Coin 0.56 0.51 0.50 0.50 0.52 0.52
Biased Coin 0.52 0.50 0.52 0.52 0.52 0.51

GT 0.41 0.49 0.29 0.50 0.29 0.50
BICG Prediction 0.39 0.49 0.25 0.50 0.25 0.50

Fair Coin 0.51 0.50 0.58 0.50 0.41 0.50
Biased Coin 0.52 0.50 0.44 0.50 0.77 0.50

GT 0.64 0.54 0.68 0.62 0.82 0.81
CGS Prediction 0.64 0.54 0.66 0.60 0.85 0.83

Fair Coin 0.48 0.50 0.50 0.50 0.52 0.52
Biased Coin 0.48 0.49 0.50 0.50 0.51 0.51

Table 7.2 Detector precision and recall when calculated with actual ground truth of the
executions, and compared with predicted ground truths using our approach.

our provided gain is on the smaller side. However, when detectors have many detection flags
raised, the benefit of our approach magnifies.

7.3.6 Overhead Analysis

The cost of the method can be broken down to storing 9 vectors, calculating the ℓ1 norms
for each vector, and calling the model to get the prediction. This method cuts the cost of the
injection study by stopping the execution 20 iterations after the injection, not waiting until
the end of the execution.

7.3 Evaluation 87

Fig. 7.5 Classification of scenarios for the CG solver with the NEWSUM detector. The labels
are of the form a-b-c, where a is the prediction outcome, b is the detector’s judgement, and c
is the ground truth. Ideally, the red circles (where we judge a detector based on the wrong
prediction) will be 0.

Fig. 7.6 Predictor accuracy is evaluating positive and negative detector outcomes. x-axis:
fraction of all cases where predictor and detector match (marking the detector as being
correct), where the ground truth also matches. y-axis: fraction of all cases where predictor
and detector differ (flagging the detector as being incorrect), where the detector differs from
the ground-truth.

88 Soft Error Prediction

When solvers are run with our method, with the predictor running, the total time is
around 160% of a normal run time. As we leveraged Python libraries and C++ to Python
connections in our tests, the majority of the time is consumed during the Python connection,
which is known to be slower when handling files. This is not by any means a crucial part
of our method. One can easily substitute Python with C++ machine learning approaches to
bypass this cost easily.

Even with Python costs, there is still an argument to be made for the effectiveness of this
method. When an injection is introduced to the solver, the majority of the time, the effect is
longer execution times (more iterations). We calculated average total iterations after an error
injection from Iterative Method Injection Collection (IMIC) [58], and saw for CG 13.9 times
the expected iterations, for BICG 25, and for CGS 16.9 times the expected iterations were
performed on average when under the effect of a soft error. These numbers possibly can go
higher as in that work, executions are stopped after 35000 iterations, and labeled as 35000.

So, once a model is trained for a solver; for a fault injection study where

• N : Number of fault injections

• I : Number of iterations in normal application run

• I′: Number of iterations in fault injected application run

• IP: Average iteration before injection in proposed method

• Imntr: Number of monitoring iterations after the injection

• P : Overhead cost for the proposed technique

COSTproposed

COSTtraditional
=

N × (IP + Imntr)+P
N × I′

(7.3)

We set our monitoring iteration to 20 which corresponds to 1% of the average iteration
count:

Imntr ≈ 0.01× I. (7.4)

We set I′ as 15 times I–based on the average iteration times from the IMIC database:

I′ = 15× I (7.5)

(they in fact range from 13.9× I to 25× I for our set of solvers). With uniform random
distribution of injections, we can say on average half of the iterations will be performed

7.3 Evaluation 89

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

CG Model 0.90 0.89 0.74 0.65 0.78 0.73
BICG Model 0.69 0.71 0.81 0.78 0.63 0.62
CGS Model 0.76 0.80 0.75 0.75 0.80 0.80

Table 7.3 Precision (Prec.) and recall of estimation of masked ratio using the models that
were trained using another solver’s data. An ideal detector will have precision and recall
close to 1 for all solvers.

before an injection, so the proposed iteration cost is:

COSTproposed = (N × (I/2+(0.01× I))) (7.6)

Therefore our approach’s iteration cost is around 3.5% of the traditional cost of iterations:

N × (I/2+(0.01× I))
N ×15× I

(7.7)

Assuming, we collect all the data and call the model/prediction once in the end for efficiency;
when the constant model call and prediction costs are added, the overall COSTproposed would
be around 10% of COSTtraditional; provided P is 1× I (around 60% for one run and more
than 95% of that cost comes from model load).

7.3.7 Transferability of the Models

While developing ground truth prediction models trained on the error injections from each
solver will give us the most accurate predictions, quick evaluation of a novel scenario (e.g.,
another iterative method) using pre-built models can help identify promising strategies and
generate hypothesis before detailing analysis and evaluation. To determine the potential for
such a transferability of the models we build in a new context, we determine the effectiveness
of the model built using data from one solver in determining the error-impacted behavior
of other two solvers. Table 7.3 shows the results from this evaluation. We observe that,
while predicting outcomes for an iterative method using the model developed for that method
performs best, models developed for other solvers are still useful in practice and perform
better than alternatives evaluated in Table 7.1.

90 Soft Error Prediction

7.3.8 Alternative Training Configurations

In our analysis and evaluation, we considered an injection MASKED when the solver returns a
correct value for x⃗, and the number of iterations it takes to find a solution is within 5% of
the expected number of iterations. In Figure 7.7 and Tables 7.4, 7.5, and 7.6 we analyzed
how the results would change when we change this tolerance amount. We demonstrated the
performance where no tolerance (0%), 10% tolerance, and 20% tolerance is applied to the
injection experiments.

Figure 7.7 shows slight differences compared to Figure 7.4 but in all tolerance config-
urations we can still observe the machine learning approach showing the strongest linear
relationship (R2 closest to 1) between the masked ratio computed using the ground truth and
our approach.

We also evaluated the per-prediction accuracy in terms of precision and recall of candidate
prediction strategies when our definition of MASKED changed using different tolerance levels
for number of iterations taken. Tables 7.4, 7.5, and 7.6 shows that adjusting the MASKED has
slightly affected the performance, nevertheless the machine learning approach shows best
precision and recall. In some cases even better than our selected configuration.

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.46 0.49 0.54 0.53 0.51 0.50
MAD 0.50 0.51 0.69 0.82 0.44 0.50
NEWSUM 0.70 0.68 0.61 0.80 0.44 0.50
ML 0.82 0.82 0.71 0.84 0.81 0.83
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

Table 7.4 Precision and recall of estimation of masked instances (0 % tolerance) using
various candidate predictors. ML denotes our approach. An ideal detector will have precision
and recall close to 1. The best candidate for each solver is shown in bold.

We also demonstrated the affect of splitting the data differently. For our main strategy we
considered a traditional 80%-20% split of the datasets (12 datasets - 3 datasets) into training
and testing. Then we used a subset of the 80% (12 dataset) to find a representative subset to
train a model. To further analyze the affects of configuration deviations, we also evaluated
different train-test splitting methods for our approach. Figure 7.8 gives F-score distribution
box-plots for each configuration considered for each solver. The first box in each figure is our
selected approach. The variations we observe tells us there is not one golden train-test split
that will work for every solver. Our selected configuration worked best for some settings,

7.3 Evaluation 91

(a) Tolerance: 0% (b) Tolerance: 10%

(c) Tolerance: 20%

Fig. 7.7 x-axis: MASKED ratio predicted from each candidate predictor. y-axis: MASKED ratio
computed using ground truth from error injection experiments. ML denotes our approach.
Each dot represents a solver-dataset pair. Trendlines for each detection method is also
provided. R2 values for each trendline in (a) are AID: 0.0666, MAD:0.2288, NEWSUM:
0.0004, and ML: 0.7579. R2 values for each trendline in (b) are AID: 0.0147, MAD:0.3371,
NEWSUM: 0.1462, and ML: 0.6064. R2 values for each trendline in (c) are AID: 0.2103,
MAD:0.3085, NEWSUM: 0.0220, and ML: 0.4852. An R2 value closer to 1 denotes less
error and closer match between the trendline and the fitted data.

92 Soft Error Prediction

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.46 0.49 0.54 0.54 0.51 0.50
MAD 0.51 0.51 0.68 0.83 0.44 0.50
NEWSUM 0.70 0.69 0.61 0.80 0.44 0.50
ML 0.86 0.88 0.81 0.81 0.78 0.78
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

Table 7.5 Precision and recall of estimation of masked instances (10 % tolerance) using
various candidate predictors. ML denotes our approach. An ideal detector will have precision
and recall close to 1. The best candidate for each solver is shown in bold.

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.46 0.49 0.54 0.53 0.51 0.50
MAD 0.51 0.51 0.68 0.83 0.44 0.50
NEWSUM 0.70 0.68 0.61 0.80 0.44 0.50
ML 0.85 0.87 0.79 0.80 0.81 0.81
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

Table 7.6 Precision and recall of estimation of masked instances (20 % tolerance) using
various candidate predictors. ML denotes our approach. An ideal detector will have precision
and recall close to 1. The best candidate for each solver is shown in bold.

whereas it was outperformed for some. We deduce that even though most split methods show
good performance, achieving optimal split for best performance requires a comprehensive
study of several configurations.

7.4 Conclusion

In this chapter, we proposed a method to predict a program’s resiliency against soft errors.
We evaluated our method on iterative solvers and showed by monitoring only a portion of the
execution we can have an acceptable fault profile of the subject program.

We show that not running the execution to completion gives us efficiency in fault injection
tests. We demonstrate the use of the method by using it to assess SDC detectors’ performances.
Our tests reveal that this trained model is successful in assessing detector performance and
cuts costs by 21% - 53% depending on the solver and detector characteristics. We also

7.4 Conclusion 93

3/3 4/3 4/5 4/7 4/9 6/3 6/5 6/7 8/3 8/5 10/3
0.5

0.6

0.7

0.8

0.9

1

(a) CG

3/3 4/3 4/5 4/7 4/9 6/3 6/5 6/7 8/3 8/5 10/3
0.5

0.6

0.7

0.8

0.9

1

(b) BiCG

3/3 4/3 4/5 4/7 4/9 6/3 6/5 6/7 8/3 8/5 10/3
0.5

0.6

0.7

0.8

0.9

1

(c) CGS

Fig. 7.8 F-score performance using different train/test cutoffs for each solver. Label X/Y
shows, Y datasets used for testing, from the remaining (15-Y) datasets, random X of them
were used for training a model. For each X/Y pair, 20 different random splits were performed
and their F-score box plots are shown.

94 Soft Error Prediction

analyze that, once we have a model trained, this method can provide acceptable results with
10% of the cost of exhaustive injection experiments.

Chapter 8

Conclusions and Future Work

8.1 Detector Composition

As discussed in Chapters 5 and 6; we observed that, even though each detector has their
strengths, none of them performed perfectly. Our hypothesis for Chapter 6 was that there
is room for improvement that we possibly can explore using the features of the detectors.
This study showed us, while using machine learning nudged the detection performance in
the right direction, it wasn’t enough improvement, and more work needed to be put into the
premise.

We can achieve having these detection methods work together in two ways;

• Feature Composition; monitor the features used by the detectors and make a decision
using all of the info, as we explored in Chapter 6

• Detector Composition; as in having more than one detector work at the same time and
decide on a final flag using these individual flags.

This work will focus on the second method. There are several avenues we plan to explore in
this study.

First, we will run all the detectors together and trace the flags of each detection mechanism.
We will get a set of flags for each injection run and use Machine Learning to have a viable
model that can flag the actual behavior.

Then, we can use detectors according to their strengths. We will analyze the execution
data we have for detectors temporally and spatially. We hope to find differences in detector
performance for different times of the execution or different components of the algorithm.
As shown in Figure 5.1, convergence characteristics of the algorithms are not linear, and
beginnings of the executions are significantly different from the final part. Therefore, it is not

96 Conclusions and Future Work

unreasonable to expect some detection methods perform differently at the initial iterations
compared to later iterations. Hence, we can use the detector(s) that are stronger in the initial
iterations first and then switch to the ones that work better on later iterations.

Spatially, we will see if some detectors are better on detecting the anomalies in certain
data structures or during certain procedures in the algorithm (statements in the code), using
this knowledge we can use detectors side by side each detecting an anomaly in different parts
of the execution.

What’s more, for this study we activated the detectors after every iteration in the execution.
As the developers of the detectors suggest, we can find a frequency for the detectors to work
in every n iteration. We can heuristically find an optimal period for the detectors and have
them work in different intervals together. Then as before, we can use this string of flags in a
window to decide on a final flag for the execution.

8.2 Conclusions

Architectural trends such as technology scaling and near-threshold voltage operation are
expected to make soft error resilience an important consideration in performance-oriented and
power-constrained environments. Soft errors –transient bit flips– impacting an application
state, can lead to application crashes, slow down in execution, or silent data corruption.

A broad array of techniques has been designed to understand application behavior under
soft errors and to detect, isolate, and correct soft-error-impacted application state. The first
step toward tolerating soft errors involves understanding an application’s behavior under
soft errors. This can help understand the need for error detection/correction techniques. An
ideal error detection/correction strategy identifies all and only the errors that can materially
impact application behavior. Detecting and recovering from errors that might be eventually
masked by the application can unnecessary increase the cost of soft error resilience. Different
portions of the application state might be impacted differently by a soft error, enabling
optimizations and data-structure-specific resilience techniques. Evaluating the effectiveness
of such techniques requires a systematic evaluation of their effectiveness in protecting various
portions of the application state throughout the execution. As systems keep scaling, new
methods will be needed for detection/correction of these errors, new methods to optimize the
process of testing is a compelling step towards resiliency.

In this thesis we contributed in this field in following ways;

• We presented a comprehensive characterization of the iterative method behavior under
soft errors. We considered 6 solvers, 28 datasets, and multiple fault injection scenarios.

8.2 Conclusions 97

We believe this data is a useful resource that can aid in testing runtime behavior of
iterative solvers, comparative solver evaluation, error detection studies, and design
space exploration.

• To enable such analysis, we have publicly released the data from the error injection
experiments at IMIC database (https://github.com/pnnl/IMIC).

• We presented a comprehensive evaluation of the behavior of soft error detectors. We
consider five iterative methods, 28 data sets, and multiple fault-injection scenarios. We
evaluated flagging an error based on detector behavior at a single iteration or over a
sliding window of iterations. While each detector considered has been shown to be
effective in a distinct context, extensive analysis of various configurations evaluated
demonstrates that, in the context of iterative methods, they do not achieve perfect
detection accuracy. Given the high false positive rates, which can lead to a large
re-execution overhead, existing detection techniques might better serve as a component
of a larger detection system.

• To identify the potential for an improved accuracy based on the features used by
the detectors evaluated, we presented a machine learning based detector using these
features. While improved, the machine learning based detector is still far from perfect
in terms of its accuracy. We believe, in addition to new methods, additional features
need to be incorporated to improve detection accuracy.

• We proposed a method to predict a program’s resiliency against soft errors. We
evaluated our method on iterative solvers and showed by monitoring only a portion of
the execution we can have an acceptable fault profile of the subject program. We show
that not running the execution to completion gives us efficiency in fault injection tests.

This work can be beneficial for different areas in the field.
Domain scientists developers can benefit from the provided data and tools. Using this
knowledge can help developers to design selective resilience strategies to only protect the
most vulnerable components of the algorithms when resources are limited. For example, one
can opt to protect certain parts of a floating point, or they can protect certain data structures
(some vectors rather than all, etc.). Besides, in pursuit of energy efficiency, the components
that are more resilient or that have a lower impact on the application state can be placed on
less reliable memory. Additionally, detailed understanding of the vulnerabilities of iterative
solvers will yield more resilient algorithm designs.
When focusing on making robust systems / algorithms against errors; software scientists
can choose the right detection mechanism for their needs using the knowledge provided. We

https://github.com/pnnl/IMIC

98 Conclusions and Future Work

showed there is room for improvement combining the detectors’ knowledge and machine
learning. Future detectors can be built keeping these in mind. When developing a new
detection mechanism or getting the error profile of a software system, the proposed prediction
mechanism will facilitate and speed up the process.
This study is also useful for hardware scientists. With the new developments of hardware,
new error mitigation strategies need to be established. Novel techniques need a deep under-
standing of the vulnerabilities of expected workloads of the systems, so that they can protect
the system efficiently. This study sheds light on the types of errors that iterative solvers are
more prone to be affected by. This knowledge and the prediction techniques will facilitate
new hardware component design and testing.
What’s more, as the data from vast fault injection experiments is publicly available, data
scientists can utilize this database for machine learning algorithm design and testing, or
parameter fine-tuning studies. The data provided at the IMIC database can be a useful dataset
for data scientists, as it has many dimensions (solvers, datasets, vectors, error distributions,
outcome classes).

Chapter 9

Publications and Invited Talks

The work of the thesis has resulted in the following peer-reviewed publications.

• Mutlu, B. O., Kestor, G., Manzano, J. B., Unsal, O. S., Chatterjee, S., and Krish-
namoorthy, S. (2018). Characterization of the Impact of Soft Errors on Iterative
Methods. In The 14th Workshop on Silicon Errors in Logic- System Effects, SELSE
2018, Boston, USA, April 3-4, 2018.

• Kestor, G., Mutlu, B. O., Manzano, J. B., Subasi, O., Unsal, O. S., and Krishnamoor-
thy,S. (2018). Comparative analysis of soft-error detection strategies: a case study
with iterative methods. In Proceedings of the 15th ACM International Conference on
Computing Frontiers, CF 2018, Ischia, Italy, May 08-10, 2018, pages 173–182.

• Mutlu, B. O., Kestor, G., Manzano, J. B., Unsal, O. S., Chatterjee, S., and Krish-
namoorthy, S. (2018). Characterization of the impact of soft errors on iterative methods.
In 25th IEEE International Conference on High Performance Computing, HiPC 2018,
Bengaluru, India, December 17-20, 2018, pages 203–214.

• Mutlu B. O., Kestor, G., and Krishnamoorthy, S. (2018). IMIC Iterative Methods
Injection Collection. 2018. url: http://https://github.com/pnnl/ IMIC (visited on
12/20/2018).

• Mutlu B. O., Kestor, G., Cristal, A., Unsal, O. S., and Krishnamoorthy, S. (2019)
Ground-Truth Prediction to Accelerate Soft-Error Impact Analysis for Iterative Meth-
ods. Submitted to 26th IEEE International Conference on High Performance Comput-
ing, HiPC 2019, Hyderabad, India, December 17-20, 2019.

100 Publications and Invited Talks

• Manzano, J. B., Mutlu B. O., Kestor, G., Li, A., and Krishnamoorthy, S. Exploring
Deep Learning Models for Silent Data Corruption in Scientific Kernels: A Case Study.
In process of submission.

This work also resulted in following invited talks.

• Mutlu, B. O., Kestor, G., Manzano, J. B., Chatterjee, S., Unsal, O. S., and Krish-
namoorthy, S. (2018) Impact Of Soft Errors On Iterative Methods And Analysis Of
Detection Methods. Presented at TechFest Computing at PNNL 2018 event. url:
techfest2018.pnl.gov. TechFest 2018, Richland, WA, USA, June 7, 2018.

• Mutlu, B. O., Kestor, G., Unsal, O. S., and Krishnamoorthy, S. (2018). Characteri-
zation of the impact of soft errors on iterative methods. Presented at Women in HPC:
Diversifying the HPC Workforce workshop in conjunction with SC18, Dallas, TX,
USA, November 11, 2018.

References

[1] Ali, N., Krishnamoorthy, S., Halappanavar, M., and Daily, J. (2011). Tolerating correlated
failures for generalized cartesian distributions via bipartite matching. In Proceedings of
the 8th ACM International Conference on Computing Frontiers, CF ’11, pages 36:1–36:10,
New York, NY, USA. ACM.

[2] Ali, N., Krishnamoorthy, S., Halappanavar, M., and Daily, J. (2013). Multi-fault tolerance
for cartesian data distributions. International Journal of Parallel Programming, 41(3):469–
493.

[3] Ashraf, R. A., Gioiosa, R., Kestor, G., DeMara, R. F., Cher, C., and Bose, P. (2015).
Understanding the propagation of transient errors in hpc applications. In SC ’15: Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12.

[4] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin,
L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C.,
Rupp, K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H. (2017). PETSc Web page.
http://www.mcs.anl.gov/petsc.

[5] Bautista-Gomez, L., Zyulkyarov, F., Unsal, O. S., and McIntosh-Smith, S. (2016). Un-
protected computing: a large-scale study of DRAM raw error rate on a supercomputer.
In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November 13-18, 2016,
pages 645–655.

[6] Berrocal, E., Bautista-Gomez, L. A., Di, S., Lan, Z., and Cappello, F. (2015). Lightweight
silent data corruption detection based on runtime data analysis for HPC applications. In
Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2015, Portland, OR, USA, June 15-19, 2015, pages 275–
278.

[7] Böhm, S. and Engelmann, C. (2011). xSim: The extreme-scale simulator. In 2011
International Conference on High Performance Computing & Simulation, HPCS
2012, Istanbul, Turkey, July 4-8, 2011, pages 280–286.

[8] Bronevetsky, G. and de Supinski, B. R. (2008). Soft error vulnerability of iterative
linear algebra methods. In Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS 2008, Island of Kos, Greece, June 7-12, 2008, pages 155–164.

[9] Butler, M., Barnes, L., Sarma, D. D., and Gelinas, B. (2011). Bulldozer: An approach to
multithreaded compute performance. IEEE Micro, 31(2):6–15.

http://www.mcs.anl.gov/petsc

102 References

[10] Calhoun, J., Olson, L., and Snir, M. (2014). Flipit: An LLVM based fault injector for
HPC. In Euro-Par 2014: Parallel Processing Workshops - Euro-Par 2014 International
Workshops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part I, pages
547–558.

[11] Carbin, M., Misailovic, S., and Rinard, M. C. (2013). Verifying quantitative reliability
for programs that execute on unreliable hardware. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA ’13, pages 33–52, New York, NY, USA. ACM.

[12] Casas-Guix, M., de Supinski, B. R., Bronevetsky, G., and Schulz, M. (2012). Fault re-
silience of the algebraic multi-grid solver. In International Conference on Supercomputing,
ICS’12, Venice, Italy, June 25-29, 2012, pages 91–100.

[13] Chen, Z. (2013a). Online-ABFT: An online algorithm based fault tolerance scheme
for soft error detection in iterative methods. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, pages
167–176, New York, NY, USA. ACM.

[14] Chen, Z. (2013b). Online-abft: An online algorithm based fault tolerance scheme for
soft error detection in iterative methods. In PPoPP, pages 167–176.

[15] Cher, C., Muller, K. P., Haring, R. A., Satterfield, D. L., Musta, T. E., Gooding, T., Davis,
K. D., Dombrowa, M. B., Kopcsay, G. V., Senger, R. M., Sugawara, Y., and Sugavanam, K.
(2014). Soft error resiliency characterization on IBM bluegene/q processor. In 19th Asia
and South Pacific Design Automation Conference, ASP-DAC 2014, Singapore, January
20-23, 2014, pages 385–387.

[16] Cho, H., Mirkhani, S., Cher, C., Abraham, J. A., and Mitra, S. (2013). Quantitative
evaluation of soft error injection techniques for robust system design. In The 50th Annual
Design Automation Conference 2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013,
pages 101:1–101:10.

[17] Ciocca, E., Koren, I., Koren, Z., Krishna, C. M., and Katz, D. S. (2004). Application-
level fault tolerance in the orbital thermal imaging spectrometer. In 10th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC 2004), 3-5 March 2004,
Papeete, Tahiti, pages 43–48.

[18] Cools, S., Vanroose, W., Yetkin, E. F., Agullo, E., and Giraud, L. (2016). On rounding
error resilience, maximal attainable accuracy and parallel performance of the pipelined
conjugate gradients method for large-scale linear systems in petsc. In Proceedings of the
Exascale Applications and Software Conference 2016, Stockholm, Sweden, April 26-29,
2016, pages 3:1–3:10.

[19] Coplin, J. and Burtscher, M. (2015). Effects of source-code optimizations on GPU
performance and energy consumption. In Proceedings of the 8th Workshop on General
Purpose Processing using GPUs, GPGPU@PPoPP 2015, San Francisco, CA, USA,
February 7, 2015, pages 48–58.

References 103

[20] Das, A., Mueller, F., Siegel, C., and Vishnu, A. (2018). Desh: Deep learning for system
health prediction of lead times to failure in hpc. In Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’18, pages
40–51, New York, NY, USA. ACM.

[21] Davis, T. A. and Hu, Y. (2011). The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25.

[22] Di, S., Berrocal, E., and Cappello, F. (2015). An efficient silent data corruption detection
method with error-feedback control and even sampling for HPC applications. In 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid
2015, Shenzhen, China, May 4-7, 2015, pages 271–280.

[23] Di, S. and Cappello, F. (2016). Adaptive impact-driven detection of silent data cor-
ruption for HPC applications. IEEE Transactions on Parallel and Distributed Systems,
27(10):2809–2823.

[24] Dongarra, J., Lumsdaine, A., Pozo, R., and Remington, K. (1995). Iml++ v. 1.2 iterative
methods library reference guide. Technical Report CS-95-303, University of Tennessee.

[25] Dongarra, J. J., Heroux, M. A., and Luszczek, P. (2016). High-performance conjugate-
gradient benchmark: A new metric for ranking high-performance computing systems. The
International Journal of High Performance Computing Applications IJHPCA, 30(1):3–10.

[26] Dongarra, J. J., Luszczek, P., and Petitet, A. (2003). The LINPACK benchmark: past,
present and future. Concurrency and Computation: Practice and Experience, 15(9):803–
820.

[27] Dozat, T. (2015). Incorporating nesterov momentum into adam.

[28] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159.

[29] Elliott, J., Hoemmen, M., and Mueller, F. (2014). Evaluating the impact of SDC on
the GMRES iterative solver. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, pages 1193–1202.

[30] European Technology Platform for High Performance Computing (2017). Strategic
research agenda (sra 3). Technical report.

[31] Farahani, B. and Safari, S. (2015). A cross-layer approach to online adaptive reliability
prediction of transient faults. In 2015 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFTS), pages 215–220.

[32] Feng, S., Gupta, S., Ansari, A., and Mahlke, S. A. (2010). Shoestring: probabilistic
soft error reliability on the cheap. In Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2010, Pittsburgh, Pennsylvania, USA, March 13-17, 2010, pages 385–396.

[33] Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K. B., and Brightwell, R.
(2012). Detection and correction of silent data corruption for large-scale high-performance
computing. In SC Conference on High Performance Computing Networking, Storage and
Analysis, SC ’12, Salt Lake City, UT, USA - November 11 - 15, 2012, page 78.

104 References

[34] Folkesson, P., Svensson, S., and Karlsson, J. (1998). A comparison of simulation
based and scan chain implemented fault injection. In Digest of Papers: FTCS-28, The
Twenty-Eigth Annual International Symposium on Fault-Tolerant Computing, Munich,
Germany, June 23-25, 1998, pages 284–293.

[35] Gainaru, A., Cappello, F., Snir, M., and Kramer, W. (2013). Failure prediction for HPC
systems and applications: Current situation and open issues. The International Journal of
High Performance Computing Applications, 27(3):273–282.

[36] Ganapathy, S., Kalamatianos, J., Kasprak, K., and Raasch, S. (2017). On characterizing
near-threshold SRAM failures in finfet technology. In Proceedings of the 54th Annual
Design Automation Conference, DAC 2017, Austin, TX, USA, June 18-22, 2017, pages
53:1–53:6.

[37] Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations (3rd Ed.). Johns
Hopkins University Press, Baltimore, MD, USA.

[38] Han, S., Shin, K. G., and Rosenberg, H. A. (1995). DOCTOR: an integrated software
fault injection environment for distributed real-time systems. In IEEE International
Computer Performance and Dependability Symposium, pages 204–213.

[39] Hinton, G. et al. (2014). Neural networks for machine learning: Lecture 6a overview of
mini-batch gradient descent.

[40] Hsu, C. and Feng, W. (2005). A power-aware run-time system for high-performance
computing. In Proceedings of the ACM/IEEE SC2005 Conference on High Performance
Networking and Computing, November 12-18, 2005, Seattle, WA, USA, CD-Rom, page 1.

[41] Hsueh, M., Tsai, T. K., and Iyer, R. K. (1997). Fault injection techniques and tools.
IEEE Computer, 30(4):75–82.

[42] Jin, A., Jiang, J., Hu, J., and Lou, J. (2008). A pin-based dynamic software fault
injection system. In Proceedings of the 9th International Conference for Young Computer
Scientists, ICYCS 2008, Zhang Jia Jie, Hunan, China, November 18-21, 2008, pages
2160–2167.

[43] Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285.

[44] Kalra, C., Previlon, F., Li, X., Rubin, N., and Kaeli, D. R. (2018). PRISM: predicting
resilience of GPU applications using statistical methods. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage, and Analysis,
SC 2018, Dallas, TX, USA, November 11-16, 2018, pages 69:1–69:14.

[45] Kanawati, G. A., Kanawati, N. A., and Abraham, J. A. (1995). FERRARI: A flexible
software-based fault and error injection system. IEEE Trans. Computers, 44(2):248–260.

[46] Kestor, G., Mutlu, B. O., Manzano, J. B., Subasi, O., Unsal, O. S., and Krishnamoorthy,
S. (2018). Comparative analysis of soft-error detection strategies: a case study with
iterative methods. In Proceedings of the 15th ACM International Conference on Computing
Frontiers, CF 2018, Ischia, Italy, May 08-10, 2018, pages 173–182.

References 105

[47] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

[48] Laguna, I., Schulz, M., Richards, D. F., Calhoun, J., and Olson, L. N. (2016). IPAS:
intelligent protection against silent output corruption in scientific applications. In Pro-
ceedings of the 2016 International Symposium on Code Generation and Optimization,
CGO 2016, Barcelona, Spain, March 12-18, 2016, pages 227–238.

[49] Li, D., Vetter, J. S., and Yu, W. (2012). Classifying soft error vulnerabilities in extreme-
scale scientific applications using a binary instrumentation tool. In SC Conference on
High Performance Computing Networking, Storage and Analysis, SC ’12, Salt Lake City,
UT, USA - November 11 - 15, 2012, page 57.

[50] Li, M., Ramachandran, P., Karpuzcu, U. R., Hari, S. K. S., and Adve, S. V. (2009).
Accurate microarchitecture-level fault modeling for studying hardware faults. In 15th
International Conference on High-Performance Computer Architecture (HPCA-15 2009),
14-18 February 2009, Raleigh, North Carolina, USA, pages 105–116.

[51] Liu, J. and Agrawal, G. (2016). Soft error detection for iterative applications using
offline training. In 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pages 2–11.

[52] Liu, J., Kurt, M. C., and Agrawal, G. (2015). A practical approach for handling
soft errors in iterative applications. In 2015 IEEE International Conference on Cluster
Computing, CLUSTER 2015, Chicago, IL, USA, September 8-11, 2015, pages 158–161.

[53] Lucas, R., Ang, J., Bergman, K., Borkar, S., Carlson, W., Carrington, L., Chiu, G.,
Colwell, R., Dally, W., Dongarra, J., Geist, A., Haring, R., Hittinger, J., Hoisie, A., Klein,
D. M., Kogge, P., Lethin, R., Sarkar, V., Schreiber, R., Shalf, J., Sterling, T., Stevens, R.,
Bashor, J., Brightwell, R., Coteus, P., Debenedictus, E., Hiller, J., Kim, K. H., Langston,
H., Murphy, R. M., Webster, C., Wild, S., Grider, G., Ross, R., Leyffer, S., and Laros III, J.
(2014). DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) report:
Top ten exascale research challenges.

[54] Malkowski, K., Raghavan, P., and Kandemir, M. T. (2010). Analyzing the soft error
resilience of linear solvers on multicore multiprocessors. In 24th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA,
19-23 April 2010 - Conference Proceedings, pages 1–12.

[55] Maniatakos, M., Karimi, N., Tirumurti, C., Jas, A., and Makris, Y. (2011). Instruction-
level impact analysis of low-level faults in a modern microprocessor controller. IEEE
Trans. Computers, 60(9):1260–1273.

[56] Mukherjee, S. S., Weaver, C. T., Emer, J., Reinhardt, S. K., and Austin, T. (2003).
Measuring architectural vulnerability factors. IEEE Micro, 23(6):70–75.

[57] Mukherjee, S. S., Weaver, C. T., Emer, J. S., Reinhardt, S. K., and Austin, T. M. (2003).
A systematic methodology to compute the architectural vulnerability factors for a high-
performance microprocessor. In Proceedings of the 36th Annual International Symposium
on Microarchitecture, San Diego, CA, USA, December 3-5, 2003, pages 29–42.

106 References

[58] Mutlu, B. O., Kestor, G., Manzano, J. B., Unsal, O. S., Chatterjee, S., and Krishnamoor-
thy, S. (2018). Characterization of the impact of soft errors on iterative methods. In 25th
IEEE International Conference on High Performance Computing, HiPC 2018, Bengaluru,
India, December 17-20, 2018, pages 203–214.

[59] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830.

[60] Segall, Z., Vrsalovic, D. F., Siewiorek, D. P., Yaskin, D. A., Kownacki, J., Barton, J. H.,
Dancey, R., Robinson, A., and Lin, T. (1988). Fiat-fault injection based automated testing
environment. In Proceedings of the Eighteenth International Symposium on Fault-Tolerant
Computing, FTCS 1988, Tokyo, Japan, 27-30 June, 1988, pages 102–107.

[61] Shantharam, M., Srinivasmurthy, S., and Raghavan, P. (2011). Characterizing the
impact of soft errors on iterative methods in scientific computing. In Proceedings of the
International Conference on Supercomputing, ICS ’11, pages 152–161, New York, NY,
USA. ACM.

[62] Sharma, V. C., Gopalakrishnan, G., and Krishnamoorthy, S. (2016). Towards resiliency
evaluation of vector programs. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May
23-27, 2016, pages 1319–1328.

[63] Sharma, V. C., Haran, A., Rakamaric, Z., and Gopalakrishnan, G. (2013). Towards
formal approaches to system resilience. In IEEE 19th Pacific Rim International Symposium
on Dependable Computing, PRDC 2013, Vancouver, BC, Canada, December 2-4, 2013,
pages 41–50.

[64] Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the
agonizing pain. Technical report, Pittsburgh, PA, USA.

[65] Sieh, V., Tschäche, O., and Balbach, F. (1997). VERIFY: evaluation of reliability
using vhdl-models with embedded fault descriptions. In Digest of Papers: FTCS-27, The
Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing, Seattle,
Washington, USA, June 24-27, 1997, pages 32–36.

[66] Skarin, D., Barbosa, R., and Karlsson, J. (2010). GOOFI-2: A tool for experimental
dependability assessment. In Proceedings of the 2010 IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2010, Chicago, IL, USA, June 28 - July 1
2010, pages 557–562.

[67] Sloan, J., Kumar, R., and Bronevetsky, G. (2012). Algorithmic approaches to low
overhead fault detection for sparse linear algebra. In IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2012, Boston, MA, USA, June 25-28, 2012,
pages 1–12.

[68] Smolens, J. (2007). Fingerprinting: Hash-based error detection in microprocessors.
PhD Thesis, ECE/CMU.

References 107

[69] Song, K., Liu, Y., Wang, R., Zhao, M., Hao, Z., and Qian, D. (2016). Restricted
boltzmann machines and deep belief networks on sunway cluster. In 2016 IEEE 18th
International Conference on High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pages 245–252.

[70] Sridharan, V. and Kaeli, D. R. (2008a). Quantifying software vulnerability. In Pro-
ceedings of the 2008 Workshop on Radiation Effects and Fault Tolerance in Nanometer
Technologies, WREFT ’08, pages 323–328, New York, NY, USA. ACM.

[71] Sridharan, V. and Kaeli, D. R. (2008b). Quantifying software vulnerability. In Pro-
ceedings of the 2008 Workshop on Radiation Effects and Fault Tolerance in Nanometer
Technologies, WREFT ’08, pages 323–328, New York, NY, USA. ACM.

[72] Subasi, O., Di, S., Balaprakash, P., Unsal, O., Labarta, J., Cristal, A., Krishnamoorthy,
S., and Cappello, F. (2017). Macord: Online adaptive machine learning framework for
silent error detection. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pages 717–724.

[73] Subasi, O., Di, S., Bautista-Gomez, L., Balaprakash, P., Ünsal, O. S., Labarta, J., Cristal,
A., and Cappello, F. (2016). Spatial support vector regression to detect silent errors in the
exascale era. In IEEE/ACM 16th International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2016, Cartagena, Colombia, May 16-19, 2016, pages 413–424.

[74] Subasi, O., Moreno, J. A., Unsal, O. S., Labarta, J., and Cristal, A. (2015). Programmer-
directed partial redundancy for resilient HPC. In Proceedings of the 12th ACM Interna-
tional Conference on Computing Frontiers, CF’15, Ischia, Italy, May 18-21, 2015, pages
47:1–47:2.

[75] Supercomputers, T. (2018). Top 500 Supercomputers using HPCG.

[76] Tao, D., Song, S. L., Krishnamoorthy, S., Wu, P., Liang, X., Zhang, E. Z., Kerbyson,
D., and Chen, Z. (2016). New-Sum: A novel online ABFT scheme for general iterative
methods. In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’16, pages 43–55, New York, NY, USA.
ACM.

[77] Thomas, T. E., Bhattad, A. J., Mitra, S., and Bagchi, S. (2016). Sirius: Neural network
based probabilistic assertions for detecting silent data corruption in parallel programs. In
35th IEEE Symposium on Reliable Distributed Systems, SRDS 2016, Budapest, Hungary,
September 26-29, 2016, pages 41–50.

[78] Tsai, T. K. and Iyer, R. K. (1995). Measuring fault tolerance with the FTAPE fault
injection tool. In Quantitative Evaluation of Computing and Communication Systems, 8th
International Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, Performance Tools ’95, 8th GI/ITG Conference on Measuring, Modeling and
Evaluating Computing and Communication Systems, MMB ’95, Heidelberg, Germany,
September 20-22, 1995, Proceedings, pages 26–40.

[79] Turmon, M., Granat, R., Katz, D. S., and Z. Lou, J. (2003). Tests and tolerances for
high-performance software-implemehted fault detection. Computers, IEEE Transactions
on, 52:579 – 591.

108 References

[80] Vijayan, A., Koneru, A., Ebrahimit, M., Chakrabarty, K., and Tahoori, M. B. (2016).
Online soft-error vulnerability estimation for memory arrays. In 2016 IEEE 34th VLSI
Test Symposium (VTS), pages 1–6.

[81] Vishnu, A., Dam, H. V., Tallent, N. R., Kerbyson, D. J., and Hoisie, A. (2016). Fault
modeling of extreme scale applications using machine learning. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA,
May 23-27, 2016, pages 222–231.

[82] Vishnu, A., Manzano, J. B., Siegel, C., and Daily, J. (2017). User-transparent distributed
tensorflow. CoRR, abs/1704.04560.

[83] Wei, J., Thomas, A., Li, G., and Pattabiraman, K. (2014). Quantifying the accuracy
of high-level fault injection techniques for hardware faults. In 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2014, Atlanta, GA,
USA, June 23-26, 2014, pages 375–382.

[84] Xu, X. and Li, M. (2012). Understanding soft error propagation using efficient
vulnerability-driven fault injection. In IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN 2012, Boston, MA, USA, June 25-28, 2012, pages
1–12.

[85] Yu, L., Li, D., Mittal, S., and Vetter, J. S. (2014). Quantitatively modeling application
resilience with the data vulnerability factor. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA,
November 16-21, 2014, pages 695–706.

[86] Yu, L., Li, D., Mittal, S., and Vetter, J. S. (2014). Quantitatively modeling application
resilience with the data vulnerability factor. In SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages
695–706.

[87] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701.

[88] Zekany, S., Rings, D., Harada, N., Laurenzano, M. A., Tang, L., and Mars, J. (2016).
Crystalball: Statically analyzing runtime behavior via deep sequence learning. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–12.

[89] Ziade, H., Ayoubi, R. A., and Velazco, R. (2004). A survey on fault injection techniques.
Int. Arab J. Inf. Technol., 1(2):171–186.

Appendix A

Algorithm Implementations

In this appendix, pseudocode of the implementations of the solvers are provided to the
reader for understanding the algorithms and how their statements used. In our experiments,
following implementations of CG, ICCG, CGS, BICG, BICGSTAB and QMR solvers are
used.

110 Algorithm Implementations

for (int i = 1; i <= max_iter; i++) {
2 z = M.solve(r);

rho (0) = dot(r, z);
4

if (i == 1)
6 p = z;

else {
8 beta (0) = rho(0) / rho_1 (0);

p = z + beta (0) * p;
10 }

q = A * p;
12 alpha (0) = rho(0) / dot(p, q);

x += alpha (0) * p;
14 r -= alpha (0) * q;

resid = norm(r) / normb;
16 rho_1 (0) = rho(0);

18 if (resid <= tol) {
tol = resid;

20 max_iter = i;
return 0;

22 }

24 tol = resid;
return 1;

26 }

Listing A.1 The implementation used for CG and ICCG (CG with preconditioner) methods
for solving the symmetric positive-definite system A · x⃗ = b⃗

111

for (int i = 1; i <= max_iter; i++) {
2 z = M.solve(r);

rho (0) = dot(r, z);
4

if (i == 1)
6 p = z;

else {
8 beta (0) = rho (0) / rho_1 (0);

p = z + beta (0) * p;
10 }

q = A * p;
12 alpha (0) = rho(0) / dot(p, q);

x += alpha (0) * p;
14 r -= alpha (0) * q;

resid = norm(r) / normb;
16 rho_1 (0) = rho(0);

18 if (resid <= tol) {
tol = resid;

20 max_iter = i;
return 0;

22 }

24 tol = resid;
return 1;

26 }

Listing A.2 The implementation used for CG and ICCG (CG with preconditioner) methods
for solving the symmetric positive-definite system A · x⃗ = b⃗

112 Algorithm Implementations

for (int i = 1; i <= max_iter; i++) {
2 rho_1 (0) = dot(rtilde , r);

4 if (i == 1) {
u = r;

6 p = u;
} else {

8 beta (0) = rho_1 (0) / rho_2 (0);
u = r + beta (0) * q;

10 p = u + beta (0) * (q + beta (0) * p);
}

12
phat = M.solve(p);

14 vhat = A * phat;
alpha (0) = rho_1 (0) / dot(rtilde , vhat);

16 q = u - alpha (0) * vhat;
uhat = M.solve(u + q);

18 x += alpha (0) * uhat;
qhat = A * uhat;

20 r -= alpha (0) * qhat;
rho_2 (0) = rho_1 (0);

22
resid = norm(r) / normb;

24 if (resid <= tol) {
tol = resid;

26 return 0;
}

28
tol = resid;

30 return 1;
}

Listing A.3 The CGS method for solving the symmetric positive-definite system A · x⃗ = b⃗

113

1 for (int i = 1; i <= max_iter; i++) {
z = M.solve(r);

3 ztilde = M.trans_solve(rtilde);
rho_1 (0) = dot(z, rtilde);

5 if (rho_1 (0) == 0) {
tol = norm(r) / normb;

7 max_iter = i;
return 2;

9 }
if (i == 1) {

11 p = z;
ptilde = ztilde;

13 } else {
beta (0) = rho_1 (0) / rho_2 (0);

15 p = z + beta (0) * p;
ptilde = ztilde + beta (0) * ptilde;

17 }
q = A * p;

19 qtilde = A.trans_mult(ptilde);
alpha (0) = rho_1 (0) / dot(ptilde , q);

21 x += alpha (0) * p;
r -= alpha (0) * q;

23 rtilde -= alpha (0) * qtilde;
rho_2 (0) = rho_1 (0);

25 resid = norm(r) / normb;
if (resid <= tol) {

27 tol = resid;
return 0;

29 }

31 tol = resid;
return 1;

33 }

Listing A.4 The BICG method for solving the symmetric positive-definite system A · x⃗ = b⃗

114 Algorithm Implementations

1 for (int i = 1; i <= max_iter; i++) {
rho_1 (0) = dot(rtilde , r);

3 if (i == 1)
p = r;

5 else {
beta (0) = (rho_1 (0) / rho_2 (0)) * (alpha (0) / omega (0));

7 p = r + beta (0) * (p - omega (0) * v);
}

9 phat = M.solve(p);
v = A * phat;

11 alpha (0) = rho_1 (0) / dot(rtilde , v);
s = r - alpha (0) * v;

13 if ((resid = norm(s) / normb) < tol) {
x += alpha (0) * phat;

15 tol = resid;
return 0;

17 }
shat = M.solve(s);

19 t = A * shat;
omega = dot(t, s) / dot(t, t);

21 x += alpha (0) * phat + omega (0) * shat;
r = s - omega (0) * t;

23 rho_2 (0) = rho_1 (0);
resid = norm(r) / normb;

25 if (resid <= tol) {
tol = resid;

27 return 0;
}

29 if (omega (0) == 0) {
tol = norm(r) / normb;

31 return 3;
}

33 tol = resid;
return 1;

35 }

Listing A.5 The BICGSTAB method for solving the symmetric positive-definite system
A · x⃗ = b⃗

115

1 for (int i = 1; i <= max_iter; i++) {
if (rho(0) == 0.0)

3 return 2;
if (xi(0) == 0.0)

5 return 7;

7 v = (1. / rho(0)) * v_tld;
y = (1. / rho(0)) * y;

9 w = (1. / xi(0)) * w_tld;
z = (1. / xi(0)) * z;

11
delta (0) = dot(z, y);

13 if (delta (0) == 0.0)
return 5;

15
y_tld = M2.solve(y);

17 z_tld = M1.trans_solve(z);

19 if (i > 1) {
p = y_tld - (xi(0) * delta (0) / ep(0)) * p;

21 q = z_tld - (rho(0) * delta (0) / ep(0)) * q;
} else {

23 p = y_tld;
q = z_tld;

25 }

27 p_tld = A * p;
ep(0) = dot(q, p_tld);

29 if (ep(0) == 0.0)
return 6;

31
beta (0) = ep(0) / delta (0);

33 if (beta (0) == 0.0)
return 3;

35
v_tld = p_tld - beta (0) * v;

37 y = M1.solve(v_tld);
rho_1 (0) = rho(0);

39 rho (0) = norm(y);
w_tld = A.trans_mult(q) - beta (0) * w;

41 z = M2.trans_solve(w_tld);
xi(0) = norm(z);

43

116 Algorithm Implementations

gamma_1 (0) = gamma (0);
45 theta_1 (0) = theta (0);

theta (0) = rho(0) / (gamma_1 (0) * beta (0));
47 gamma (0) = 1.0 / sqrt (1.0 + theta (0) * theta (0));

49 if (gamma (0) == 0.0)
return 4;

51
eta (0) = -eta(0) * rho_1 (0) * gamma (0) * gamma (0) /

53 (beta (0) * gamma_1 (0) * gamma_1 (0));

55 if (i > 1) {
d = eta (0) * p + (theta_1 (0) * theta_1 (0) * gamma (0) * gamma
(0)) * d;

57 s = eta (0) * p_tld + (theta_1 (0) * theta_1 (0) * gamma (0) *
gamma (0)) * s;

} else {
59 d = eta (0) * p;

s = eta (0) * p_tld;
61 }

x += d;
63 r -= s;

if ((resid = norm(r) / normb) <= tol) {
65 tol = resid;

return 0;
67 }

69 tol = resid;
return 1;

71 }

Listing A.6 The QMR method for solving the symmetric positive-definite system A · x⃗ = b⃗

Appendix B

Exploring Deep Learning Models for
Silent Data Corruption in Scientific
Kernels: A Case Study

This study was conducted as a joint work with another colleague from Pacific Northwest
National Laboratory. This work is provided as an example usage of the data collected in this
thesis being used in other studies.

As exascale computing takes off, the probability of soft/silent errors inside scientific
kernels also increases. To help with this problem, several efforts in detecting and correcting
such errors in scientific workloads have taken place. However, because of the size and
complexity of the workloads, errors might have different effects on the computation which
can be positive (earlier termination) or negative (incorrect results). Collecting and processing
all this data is a herculean task since the error data is vast and multi dimensional. Due to
its ability to handle such data, machine learning is a promising technique for this type of
application. This paper presents a study of using soft error data to build a deep neural net
model and predicting the behavior of the application (as anomalous or un-affected) for an
iterative solver kernel: Conjugate Gradient.

B.1 Introduction

Supercomputers are vast collections of distinct components that efficiently interact with each
other in order to gain scientific insight. However, with such vast number of components,
the probability that a undetected error might creep into the computation increases. Such
errors are known as soft errors (named because they are transient and do not represent a

118 Exploring Deep Learning Models for Silent Data Corruption

permanent failure on the computational system). Due to this, there have been a Renaissance
on research on how to detect and to correct these spurious errors. Several routes have been
attempted on solving these problems. Applications might select more hardy computational
kernels to mitigate the errors impact on their simulations; Runtime systems might incorporate
sophisticated detection mechanisms to detect and to correct these faults; and hardware might
protect key components (like caches and memory) with error correcting codes (ECC). As
of late, some of the major techniques used to predict these types of faults come from the
machine learning (ML) field, including support vector machines, random forests and deep
neural networks [72].

However creating network topologies for machine learning is a fuzzy process. Currently,
it is considered an art in which in-depth knowledge of the problem and data characteristics are
necessary or a design space exploration is required to find the correct combination of features
and network characteristics. Although new techniques such as reinforcement learning [43],
deep belief [69] networks and other semi supervised and unsupervised ML techniques can
help in this process, they can be a bit cumbersome to understand and use effectively with
certain data types. Nevertheless, current ML frameworks offer rapid prototyping features
that allow this exploration to take place seamlessly.

This paper presents a study on how to build a neural network for a soft error dataset.
We acquire this dataset and extracted relevant features such data specific characteristics and
runtime behaviors that enhances the learning ability of the neural net. We tested different
batch sizes, topologies, network sizes and gradient updates optimizers and found out that
with minimal tweaking we can achieve up to 90% accuracy in our testing set using a Multi
Layer Perceptron (MLP) deep neural network.

B.2 Related Work

Because of the importance of machine learning and fault detection, there have been several
efforts that aim to married them. Below, there are a few examples of how ML techniques are
being used in the field of fault detection and in High Performance Computing in general.

The MAchine-learning-based silent data CORruption Detection framework (MACORD) [72]
is a dynamic framework for detecting silent data corruption in High Performance Computing
kernels. It uses a “zoo” of machine learning techniques and select adaptively the best fit at
runtime. Based on their experiments, they show impressive recall and precision numbers for
real-world scientific applications. This framework lacks a deep neural network component
and our research could fit into it as part of the zoo of applications.

B.3 Methodology 119

The IPAS framework [48] is an instruction duplication framework implemented in the
LLVM compiler infrastructure. It starts with the premise that some of the soft / silent errors
are naturally masked by the algorithms and architectures. Thus, only the subset with visible
effects in the outcome of the scientific kernel need to be considered. This framework uses
machine learning and compiler analysis to learn / predict about possible non-benign errors
and how to identify vulnerable regions. They used a support vector machine formulation.
Because of the way that the framework is structured, a deep neural net can be used as an
engine to the framework to increase its accuracy.

The CrystalBall framework [88] is another compiler based framework that uses Long
Short Term Memory networks (LSTM) to statically identify hot paths (the most likely visited
paths) on the logic structure of the program (expressed as chains of basic blocks). Although
the metric in this case is performance, the same concepts can be applied to silent data
corruption detection and vulnerability region selection.

B.3 Methodology

To create our experimental setup, we acquire soft error data from a scientific kernel: a Krylov
space iterative solver. This data is separated into training and testing sets with training
being a small fraction (around 5%) of the total data set randomly selected. we decided for
this setup since larger fractions will results in longer training times with very little gain
on training/testing accuracy. We created a special case in which 80% of data was used for
training and 20% for testing and we achieved similar accuracy but the execution time blow
up to 10x times. The collection of the data and the network design will be discussed in this
section. However, we should revisit some general basic concepts beforehand.

B.3.1 ML Basic Concepts

During the progression of this paper, we use certain terms that should be familiar to the
machine learning crowd. We collected these terms in this section for easy reference and
clarification. The neural network is composed of one input and one output layers and one
or more hidden layers. The output layer usually ends up spitting up a “guess” to a series
of bins or categories. If the guess is correct, it counts to a positive accuracy metric. If it is
not, it decreases it. There exists many types of hidden layers with different purposes like
convolutions for extracting information from images with locality, pooling layers that reduces
the information from layer to layer or fully connected layers that have all connections are
active. The main operation inside the neural network involve weights and bias and a linear

120 Exploring Deep Learning Models for Silent Data Corruption

algebra operation (usually matrix vector multiply). Each layer can have different number of
neurons (the basic unit of the network in which the weights and bias vectors live) and we
refer to this as the height of the layer. The topology of the network is composed of the type
of layers, the height of the layers and the number of them across the length of the network.
A network learns when it is exposed to data, followed by a comparison with ground truth
and then any corrections or updates are propagated through the network (in a process called
backpropagation). The update rules are controlled by optimizers that implement a version of
the gradient descent algorithm to find minima on an optimization problem. There are many
enhancements to the usually gradient descent algorithm and the optimizers take advantages
of this, like momentum which is the mathematical equivalent of accelerating the gradients
based on gradient history, or using the data geometry and the gradient’s statistical properties
across its history. The phase during which a network is learning is called training and it is
usually accomplished using a relevant dataset that is representative of data yet to come. If a
network has a pathological behavior, such as having a very high miss predicting rate when
new data is presented, we said that the network over fitted and it requires more data to train.
During the testing phase, never-before-seen data is presented to the network and metrics such
as accuracy are calculated to see the effectiveness of the network.

Finally, a deep neural network can be parallelized (distributed) in two fashions. Under
data parallelism, the network model is replicated across the computational resources and the
batches and total problem are divided across the available resources. This allow fast distri-
bution and easy parallelization but it limits the size of the networks that can be parallelized.
On the other hand, under model parallelism, parts of the model are distributed across the
computational resource. Due to how the model is partitioned, the time and/or accuracy might
require adjustment to achieve the given constrains.

B.3.2 Injection Data

Using a sequential implementation of the Conjugate Gradient algorithm [64] and its pseu-
docode is shown in Algorithm 1, we do a source level error injection in selected vectors
using a predefined probability density function (i.e. Beta distribution for these experiments).
We selected four data sets from the University of Florida Sparse Matrix Collection [21].
Using these matrices, we collected the entire trace execution for the CG kernel with the
following metadata: current residual error, status of key data structures, and iteration number.
An entry is marked as anomalous if the execution would result in a different convergence
behavior than a previous calculated golden value. A full description of the creation of the
error data can be found in [46] and a pictorial description is shown in Figure B.1.

B.3 Methodology 121

Algorithm 1 Preconditioned Conjugate Gradient
1: procedure CG(A, x, b, M, maxIter, tol)
2: normb = ∥b∥
3: r = b−A∗ x
4: if normb == 0.0 then
5: normb = 1
6: if (resid = ∥r∥)/(normb)<= tol then
7: tol = resid
8: maxIter = 0
9: return 0

10: for i = 1 .. maxIter do
11: z = solve(M,z)
12: ρ = r • z
13: if i == 1 then
14: p = z
15: else
16: β = ρ/ρ1
17: p = z+β ∗ p
18: q = A∗ p
19: α = ρ/(p•q)
20: x+= α ∗ p
21: r−= α ∗q
22: if (resid = ∥r∥/normb)<= tol then
23: tol = resid
24: maxIter = i
25: return 0
26: ρ1 = ρ

27: tol = resid
28: return 1

Fig. B.1 Data collection and sampling methodology

122 Exploring Deep Learning Models for Silent Data Corruption

After the entire set is collected, the traces are randomized and sampled and selected a
11 million points set for our network tests which we divide into training (5%) and testing
sets (the rest). The sets are created from the error data by analyzing the trace’s behavior
and extracting the set of features to be used by our neural net. We divide these features into
roughly three categories that will be explored next.

B.3.3 Feature Selection and Network Topology

We have identified 15 distinct features to be used in our deep neural network methodology.
Roughly they can be divided into three categories: application based, dataset based and
runtime based features. The application-based set has been used in the literature to compare
other machine learning detector methods [46]. Under this category, we use the norm of the
residual vector [52], the checksum values that encode matrix-vector multiplication and vector
linear operations [76], and the orthogonality relationships between certain computational
vectors [14]. In the case of the orthogonality relationship, this metric is inherent only to the
type of iterative solver that is used and might not be true in other types of solver such as
Biconjugate Gradient, Biconjugate gradient stabilized, Quasi Minimal Residual methods,
etc.

In the case of runtime based features, we see an experiment’s trace as a sequence of
iterations and consider the rate of change or other second order characteristics of important
application’s variables across a pre-selected iteration window. For a visual representation,
please refer to Figure B.2 which presents the residual values of a solver execution over the
loop iterations. For our experiments, we used the residual minimum (Min) and maximum
(Max) over the window, the rate of change over such interval (δ r/δ i) and the difference
between current residual and the target residual (Diff) (i.e. convergence condition). These
values describe the application state over a time window during its execution. In this fashion,
we give the network a poor man’s version of recent events memory in the interval. The
selected interval for our current experiments is four running iterations of the current run.

Finally, in the case of data set characteristics, we use the dataset properties such as
workload id, number of non zeroes entries in the matrix, minimum eigen value and the matrix
norm. These properties and the matrices comes from the University of Florida Sparse Matrix
Collection [21] and are listed in Table B.1.

The collected data represents a high dimensional set since each entry has around 15 asso-
ciated data points that are used by the neural net to guide its learning. Previous experiments
[46] with a reduced set of features showcases an accuracy in the higher 70% for a similar
type of network. In this paper, we showcase that the addition of the new features increases

B.3 Methodology 123

Fig. B.2 Example of Runtime features selection over a solver execution. X axis represents
the iteration number and Y is the residual number across the execution.

Table B.1 Data Set characteristics and description. The NNZ ratio refers to the number of non
zeroes over the size of the matrix. The Norm column is the normal of the sparse matrix. The
min(SVD) column is the minimum Single value decomposition. Finally, the Cond column is
the condition of the sparse matrix

ID Name Description NNZ
Ra-
tio

Norm Min
(SVD)

Cond

0 BCSSTK15 Stiffness Matrix. Module of an
offshore platform

0.008 6.5e9 1 6.5e9

1 Kuu The MathWorks Inc.: Symmet-
ric positive definitive matrix

0.007 54.1 0.003 15758

2 Press_Poison ACUSIM, Inc: computational
fluid dynamics problem

0.003 26.02 1.3e-
5

2.04e6

3 STS4096 Structural Engineering matrix
(finite-element), Fabio Can-
nizzo

0.004 3.1e8 1.42 2.17e8

124 Exploring Deep Learning Models for Silent Data Corruption

this number and the selection of the optimizer also has an impact on the speed and accuracy
of the net.

We chose a Multi Layer Perceptron (MLP) with an input and an output layers and 3
hidden layers with different configurations in the number of neurons. The output layer is a
binary classifier and the activation function is ReLu based. Among the configurations, we
have one network with fully connected layers with the same number of neurons per layer.
This network is called the “rectangular” topology. Another network has half the neurons in
the first and third hidden layers and we called it the “diamond” topology. In the final selected
network, each layer has its number of neurons halved as it goes. We called this topology the
“triangle” topology. Figure B.3 illustrates these networks.

The rationale behind these designs is that for these networks, information might be
systematically reduced over the length of the network so it might require less neurons (hence
the triangle). On the other hand, more details or features might emerge during the length of
the network and collapse again (hence the diamond). The rectangle topology is the baseline
network with full layers. Each topology has an impact on the actual size of the network and
its variables (hence its memory footprint). For example, in the case that the network is using
256 neurons as its largest layer, the rectangle topology has 135,891 trainable variables, the
diamond one has 68,179 trainable variables and the triangle has 45,267 trainable variables
(based on models implemented using the Keras API). Finally, we did not consider convolution
layers since the data that we are using is text and lack the temporal characteristics that would
be advantageous for such layers.

As extra steps in our scripts, we call a normalization function to make sure that all the
input data is scaled to the unit norm, we added extra functions to adaptively reduce learning
rate and invoke early termination to the models to reduce the training time.

(a) Diamond (b) Rectangle (c) Triangle

Fig. B.3 Different network topologies

B.4 Experimentation and Analysis 125

B.4 Experimentation and Analysis

Using the parsed data, we conducted several sets of experiments using high performance
clusters. Machine learning frameworks are notoriously data intensive and good candidates
for parallel execution. However, the complexity of the data might not be adequate to scale
up in large clusters. Our data sets have relative high dimensions. However, the current sets
are not large enough to justify hundreds of computer nodes. For this reason, we selected
two small High Performance clusters to showcase their promise for scalability. We start by
exploring several combinations of batch sizes, number of neurons and optimizers. Then we
select the best testing accuracy candidates and parallelize these cases using a data parallel
model. We describe our software and hardware tested in this section and then we showcase
our results for testing and training accuracies, together with the timing per epoch for the
selected networks. Finally, we present the scalability of the selected networks using the user
transparent Tensorflow included in the MaTEx [82] framework.

B.4.1 Hardware and software infrastructures

For our hardware platform, we use two HPC clusters. The first one, named PUMA, consists
of 8 Pascal GPUs (P100) with Intel Xeon E5 2680 cpus as their hosts (one GPU per CPU
host). The Intel CPUs have two sockets with 10 physical cores per sockets. This cluster’s
memory hierarchy consists of 32 KiB for L1 cache, 256 KiB for L2 cache and 25 MiB of L3
cache with 720 GiB of main memory per node. The second cluster, named MARIANAS,
consists of 25 nodes each with 2 P100 GPUs. However, we use 4 nodes with 2 GPUs each
for our experiments for comparison. The GPUs in these clusters are identical to the ones in
the PUMA testbed, but the hosts differ quite a bit. There are two sockets with only 8 cores
each with a single hardware thread for the Intel CPU host. In the case of the caches, the first
two levels are identical but the third one is only 20 MiB. Finally, the main memory in each
of the Marianas nodes is only 64 GiB. Both clusters uses Infiniband as their network fabric.

As our software testbed, we used the MaTEx Tensorflow version 1.5 with the Keras
package version 1.2.2 [82]. This current version uses CUDA 9.0 and CUDNN version 7
that are optimized to take advantage of the Pascal GPUs. This version of Tensorflow has
a user transparent MPI layer that is optimized for HPC clusters. This framework uses the
data parallel model of neural network execution in which copies of the model are replicated
across the computing resources and the data batches are divided and distributed across these
resources. The underlying framework takes care of the distribution and communication of
data and results across the cluster and ensures that the final model is the same as if it was

126 Exploring Deep Learning Models for Silent Data Corruption

run on a single node. A graphical representation of how a net would run under the MaTEx
framework is illustrated in figure B.4.

TensorFlow Variable

TensorFlow Initializer Graph

TF MPI Broadcast Operator

Gradients

TF MPI Allreduce Operator

TensorFlow Backend
Computational Graphs

Replica Model Creation

Replica Model Creation

Replica Model Creation

Replica Model Creation

Replica Model Training BatchRank 0

Rank 1

Rank 2

Rank 3

Inter Node Sync Points

Control Dependency

Replica Model Training Batch Replica Model Training Batch

Replica Model Training Batch Replica Model Training Batch Replica Model Training Batch

Replica Model Training Batch Replica Model Training Batch Replica Model Training Batch

Replica Model Training Batch Replica Model Training Batch Replica Model Training Batch

Fig. B.4 User Transparent Distributed Tensorflow Design

B.4.2 Accuracy numbers for Training and testing

For this set of experiments, we explored different sets of batches (16, 32, 128 and 256) and
network sizes (128, 256 and 512) to find the best accuracy numbers for both testing and
training. Moreover, the experiments show that in some of the exploration space the optimizer
have a great impact on the final accuracy. However, before we jump into the results, we need
to have a word about optimizers.

Selected Optimizers

We are going to be testing all the default optimizers on the Tensorflow framework with their
default values. In this subsection, we will briefly touch on each of the optimizers and how
they build upon each other.

The Stochastic Gradient Descent (SGD) optimizer is used to minimize an objective func-
tion on an optimization problem using an approximation of the Gradient Descent algorithm. It
is an iterative method which tries to find local maxima or minima at each iteration. In practice,
the optimizer is sensitive to its initial condition (such as learning rate) and requires careful
tuning. The ADADELTA (DELT) optimizer [87] builds on top of the vanilla stochastic
gradient descent method and it dynamically adapts using only first order statistical informa-
tion. The ADAGRAD (GRAD) optimizer [28] incorporates the knowledge of data geometry
gained from previous iterations and adapts it to gradient based learning process through

B.4 Experimentation and Analysis 127

proximal functions. In the case of the Adaptive Moment Estimator (ADAM) optimizer [47],
it calculates the learning rates for distinct parameters using estimates of first (mean) and
second (variance) moments of the gradients. The ADAMAX (MAX) optimizer [47] is an
extension to ADAM in which the update rule uses the infinite norm instead of the L2 norm.
Advantages includes a simpler bound for the magnitude of parameter updates and there is
no need to correct for the initialization bias. The NADAM (NADA) optimizer [27] is just
ADAM with a Nesterov Momentum which accelerates convergence behavior in case of local
minima. Under the RMSProp (RMS) optimizer [39], the weight’s learning rate are divided
by a running average of the recent historical gradients.

Accuracy for Testing and Training

As described in Section B.3.2, we use a small training set with a large testing set to test the
optimizers provided by Tensorflow. On our tables, the BS title corresponds to Batch Size,
NS is the size of the largest layer, TS is the testing accuracy and TR is the training accuracy.

As shown in Table B.2, the best optimizer for the diamond topology is the ADAM one
with similar accuracies in both training and testing (with 83.9% and 89.9% respectively) and
with a batch size of 16 with a network size of 256. However, in the case of other optimizers,
they ranges in the 70s and 80s with the exception of the Stochastic Gradient Descent one that
stay around 50% due to ill-chosen learning rate.

Table B.2 Accuracy for both testing and training phases of the diamond network for different
Tensorflow’s optimizers

DELT GRAD ADAM MAX NADA RMS SGD
BS NS TS TR TS TR TS TR TS TR TS TR TS TR TS TR
16 256 64.3 83.8 58.3 83.9 89.9 83.9 60.3 83.9 88.8 83.8 50.2 56.9 50.0 58.3
16 512 58.4 83.7 75.3 83.9 88.8 83.9 89.5 83.9 80.6 83.9 50.2 56.9 50.0 56.8
32 256 63.8 83.8 56.7 83.6 79.7 83.9 89.9 83.9 68.8 83.8 50.2 73.3 50.0 56.7
32 512 58.4 83.8 68.1 83.9 84.3 83.8 88.3 83.9 71.6 83.9 50.2 56.9 50.0 56.7
64 256 63.0 83.8 57.9 83.8 57.7 83.7 89.6 83.9 63.5 83.8 63.2 83.8 50.0 56.8
64 512 70.5 83.8 64.9 83.9 70.7 83.7 75.3 83.9 71.3 83.7 50.2 56.9 50.0 56.8
128 256 58.4 83.7 56.0 83.5 56.4 83.4 64.1 83.9 58.4 83.8 50.2 56.9 50.0 56.8
128 512 73.0 83.7 68.3 83.9 66.4 83.9 83.6 83.9 61.0 83.8 55.1 83.7 50.0 56.8
256 256 56.7 83.6 55.2 83.4 55.7 83.5 61.0 83.7 54.9 83.3 57.1 82.9 50.0 56.8
256 512 79.6 83.6 67.6 83.7 69.3 83.8 59.4 83.8 59.7 83.5 63.8 82.7 50.0 56.8

For the diamond network, as the batch size increases, the testing accuracy decreases
across all optimizers, with the exception of ADADELTA. As shown in Table B.3, the network
size has small impact on the runtime, but the batch size does have a significant impact

128 Exploring Deep Learning Models for Silent Data Corruption

since doubling the batch size decreases the runtime almost by half (on a single node). This
showcases the impact that locality has on the execution time, the cost of memory transfers
and how the framework overhead affects the runtime. However, at least for this topology,
smaller batch size are beneficial for training with our data set so we should take the hit on
runtime.

Table B.3 Timing per phase in seconds for the best batch / network size for each optimizer
for the diamond topology

BS NS DELT GRAD ADAM MAX NADA RMS SGD
16 256 174.1 133.6 166.1 151.6 178.5 105.3 124.6
16 512 178.6 145.2 174 150.2 186.7 83.5 121
32 256 87.6 66.9 84.6 75 89.7 70.7 61.6
32 512 90.4 69.7 85.1 76.9 92.2 65.8 62.5
64 256 43.6 35.5 45 37.3 46.9 35.5 30.4
64 512 44.5 35.5 42.1 39.1 45.4 34.8 31
128 256 22.0 16.6 24.9 19.3 22.9 18.2 15.7
128 512 22.8 17.5 25.4 20.1 23.8 18.5 15.7
256 256 11.2 8.5 10.7 9.4 11.2 9.3 7.6
256 512 11.2 9.3 12.6 10.2 12.1 9.4 8.2

In the case of the rectangle topology, Table B.4 showcase ADAM as the clear winner in
terms of testing accuracy (with 89.83%) with ADAMAX and ADAGRAD being second and
third. In the case of the RMSProp, over fitting might seem to be an issue since the training
provide promising results but the testing accuracy is abysmal (around 57%). As seen in the
diamond topology, the SGD optimizer remains last.

As in the case of diamond network, the rectangle network showcases (c.f. Table B.5) the
same timing per epoch behavior in which doubling the size of batch results in a reduction in
timing per set (due to better use of resources and low framework overhead).

Finally, the triangle topology exhibits the best testing accuracy with 90% but it showcases
losses in optimizers like ADADELTA (67.7%) and RMSProp (73.5%). As expected, SGD
showcases the same behavior as in the other topologies. In accordance with previous tables,
Table B.7 shows the same behavior as the other two in which doubling the batch size reduces
the runtime.

Across the board we see that the ADAM and its enhancements provide a better accuracy
than the SGD and RMSProp based ones. However, these numbers might be a bit misleading
since the SGD optimizer is very sensitive to initial conditions and it will require a tunning
process to find the optimal learning rate (if one exists). Even then, the selected optimizer
do a good job in predicting the behavior of the application in the presence of faults with our
data set.

B.4 Experimentation and Analysis 129

Table B.4 Accuracy for both testing and training phases of the rectangle network for different
Tensorflow’s optimizers

DELT GRAD ADAM MAX NADA RMS SGD
BS NS TS TR TS TR TS TR TS TR TS TR TS TR TS TR
16 256 58.0 83.8 84.2 83.9 80.5 83.9 75.6 83.9 58.7 83.7 50.2 56.9 50.0 57.1
16 512 80.8 83.7 83.7 83.8 79.4 83.8 56.5 83.9 75.5 83.8 50.2 56.9 50.0 56.8
32 256 59.4 83.8 66.8 83.9 84.4 83.8 87.0 83.9 77.2 83.8 50.0 56.9 50.0 56.7
32 512 59.7 83.8 79.2 83.9 68.3 83.8 89.7 83.9 59.7 83.8 50.2 56.9 50.2 56.7
64 256 71.0 83.8 58.5 83.9 89.8 83.9 87.3 83.9 76.3 83.8 50.2 56.9 50.0 56.8
64 512 78.8 83.8 78.4 83.9 86.6 83.8 89.7 83.9 57.8 83.7 50.2 56.9 50.0 56.8
128 256 62.1 83.8 58.2 83.8 57.7 83.6 88.8 83.9 58.4 83.6 50.0 56.9 50.0 56.8
128 512 74.8 83.7 76.8 83.9 83.5 83.8 88.4 83.8 55.0 83.6 50.2 56.9 50.0 56.8
256 256 77.9 83.7 56.3 83.4 63.6 83.7 66.8 83.8 57.0 83.6 57.1 82.8 50.0 56.8
256 512 63.03 83.5 76.1 83.9 63.7 83.3 59.5 83.7 59.1 83.5 56.6 82.9 50.0 56.8

Table B.5 Timing per phase in seconds for the best batch / network size for each optimizer
for the rectangle topology

BS NS DELT GRAD ADAM MAX NADA RMS SGD
16 256 173.3 133.6 162 150.9 181.8 106 121.3
16 512 187.4 146.3 175.2 165.1 193.9 131.5 136.3
32 256 86.8 70.6 84.5 75.3 89.5 69 59.8
32 512 90.7 75.1 88.1 80.5 96.7 44 67.9
64 256 43.7 34.6 42.2 39.1 46.3 32.6 31.9
64 512 46.2 37.5 45 41.7 48.2 33 32.9
128 256 22 17.5 20.6 20.2 22.9 17.17 15.7
128 512 22.9 18.4 22.4 20.2 24.7 18.17 16.6
256 256 11.2 8.5 10.7 10.3 12.1 9.4 7.6
256 512 12.1 9.4 11.5 10.3 12.1 10.1 8.5

130 Exploring Deep Learning Models for Silent Data Corruption

Table B.6 Accuracy for both testing and training phases of the Triangle network for different
Tensorflow’optimizers

DELT GRAD ADAM MAX NADA RMS SGD
BS NS TS TR TS TR TS TR TS TR TS TR TS TR TS TR
16 256 58.5 83.8 58.7 83.9 72.3 83.9 61.7 83.9 79.7 83.8 59.5 83.9 50.0 56.8
16 512 62.2 83.9 83.4 83.9 86.0 83.8 88.6 83.9 88.8 83.9 50.2 56.9 50.0 58.6
32 256 67.7 83.8 56.9 83.5 82.5 83.8 86.7 83.9 89.7 83.8 50.0 56.9 50.0 56.5
32 512 58.0 83.8 65.1 83.9 88.8 83.9 90.0 83.9 58.7 83.7 50.2 56.9 50.0 56.5
64 256 58.2 83.8 55.8 83.6 66.7 83.8 89.8 83.9 69.2 83.8 50.0 56.8 N/A N/A
64 512 62.1 83.8 64.0 83.9 60.1 83.7 87.3 83.9 58.3 83.7 50.2 56.9 50.0 56.8
128 256 56.4 83.7 55.2 83.5 60.9 83.6 73.7 83.8 59.5 83.3 73.5 83.7 50.0 56.8
128 512 56.5 83.7 63.6 83.8 57.0 83.5 60.1 83.9 57.3 83.8 54.6 83.5 50.0 56.8
256 256 65.4 83.7 55.1 83.4 62.8 83.7 68.8 83.8 83.4 82.8 55.5 83.2 50.0 56.8
256 512 57.4 83.7 57.0 83.5 66.2 83.5 58.0 83.7 58.3 83.4 54.9 83.3 50.0 56.8

Table B.7 Timing per phase in seconds for the best batch / network size for each optimizer
for the triangle topology

BS NS DELT GRAD ADAM MAX NADA RMS SGD
16 256 169.7 137.4 161.5 148.2 176.8 141.1 120.1
16 512 175.8 135.4 165.3 148.9 186.8 107.3 122.1
32 256 85.9 66 81.9 74.7 89.5 63.2 60
32 512 88.6 68.1 83.6 76.1 93.1 60 61.6
64 256 43.1 32.8 42.1 37.3 35 30.1 N/A
64 512 44.5 34 42.8 38.2 46.3 35.5 31.6
128 256 21.7 17.4 20.6 19.2 22.9 17.5 15.6
128 512 22 17.5 21.4 19.3 23.8 18.4 15.7
256 256 11.1 8.4 10.6 9.5 11.2 9.3 7.6
256 512 11.2 8.5 21.1 9.4 12.1 9.4 7.6

B.5 Conclusions and Future Work 131

B.4.3 Runtime and Scaling

Since running smaller batches seem to be beneficial for our problem, we need find a way to
accelerate our computation since the smaller batches results in the slowest time per epochs.
Thus, using the batch sizes, network sizes and optimizer obtained from the last step, we
take advantage of the distributed capabilities of MaTEx to accelerate our computation. To
showcase this, we ran a strong scalability study over the HPC clusters. Figure B.5 shows the
time per phase/epoch for each execution running on 1, 2, 4 and 8 GPUs in both clusters. In
the Marianas cluster, we see that the Diamond topology has a good relative speedup on 2
nodes with 1.4x, on 4 nodes with 3.5x and on 8 nodes with 5.7x. In the case of the rectangle
topology, the speedup is not as good but still shows some gains with 1.2x, 2.8x and 3.2x for
2, 4, and 8 GPUs, respectively. Under this network, it seems that communication costs are
overtaking the gains of the parallelization. Finally, for the triangle topology, we still do not
have as good as speedup as in the diamond case but still shows improvement and room to
grow, i.e. 1.3x, 2.5x and 4.1x, respectively.

In the PUMA cluster case, an interesting behavior is evident. The single node performance
is abysmal, but when we introduce new nodes the speedup grow super-linearly thanks to
the increased resources in both host memory and host compute power. As before, diamond
produces the best scalability behavior with 1.6x on 2 GPUs, 8x on 4 GPUs and 13x in 8
GPUs. The rectangle topology do not show any scalability after 4 GPUs, topping up at 7x on
4. Finally, triangle showcases a small increase in speedup between 4 and 8 (7.3x to 9.3x).
Thus, in PUMA with these batch sizes, there seems not be a reason to increase the nodes.
However, by introducing the new resources in the 2, 4 and 8 cases, we match the performance
of the Marianas cluster due to the extra resources.

Using these data, we can infer that the diamond based topology is the best one to conduct
scalability studies with our dataset while still providing a high degree of accuracy for both
testing and training regimes.

B.5 Conclusions and Future Work

As showcased in this experiments, the network topology does have an impact on the model
result but the actual main aspect is the selection and tuning of the batch size and the selected
optimizer. As is well known, ADAM and its ilk are very well suited for start-fast prototyping
which it seems that it is not a characteristic of the SGD optimizer. As future work, we can
collect a much bigger dataset. We have access to larger dataset containing more iterative
solvers, error distribution and data structures that rounds up to tera bytes of data. Thus, the
need for parallel and distributed execution. The MLP topology might not be an ideal one for

132 Exploring Deep Learning Models for Silent Data Corruption

(a) MARIANAS (b) PUMA

Fig. B.5 Scaling results for the different network topologies on two HPC clusters

distributed computation due to its large communication versus computation ratio; although
it has some scalability opportunities, it is easily overwhelmed by communication costs as
more nodes are added. Further investigation in new types of layers and how the data can be
transformed to better suit their needs is also planned to take place in the near future. This
paper presented a small study on using a MLP network to predict a HPC kernel behavior in
the presence of faults. We ran several scenarios between batch sizes, network topologies
and layer sizes to hone in a suitable configuration. Moreover, due to its extensive data and
computing needs, we briefly explore of this specific network would make a good candidate
for parallelization. We ended up with a configuration that gives us around 90% accuracy in
our test set. However, this is just the first step of a larger exploration study with larger data
sets and more computational needs.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Thesis Structure

	2 State of the art
	2.1 Analyzing Iterative Methods
	2.2 Error Injection Strategies
	2.3 SDC Detection and Mitigation
	2.4 Machine Learning and SDC Prediction

	3 Background
	3.1 Iterative Solvers
	3.2 Datasets
	3.3 Detectors
	3.4 Machine Learning Algorithms
	3.5 Performance Metrics

	4 Solver Characterization
	4.1 Introduction
	4.2 Error Injection Model
	4.3 Error-injection sites
	4.3.1 Reconstructing the error behavior under full coverage
	4.3.2 Error-injection implementation
	4.3.3 Outcome classification

	4.4 Experiments
	4.5 Posterior Probability Analysis
	4.6 Summary Of Observations
	4.7 Discussion: Using the Characterization Data
	4.8 IMIC Database
	4.9 Conclusions

	5 Detector Characterization
	5.1 Introduction
	5.2 Experiment Setup and Error Model
	5.3 Convergence Characteristics
	5.4 Soft Error Detection
	5.4.1 State-of-the-art Soft Error Detectors
	5.4.2 Detector Accuracy
	5.4.3 Detection Latency and Overhead

	5.5 Conclusions

	6 Machine Learning Based Error Detection
	6.1 Introduction
	6.2 Supervised Learning Algorithms
	6.2.1 Evaluating Machine Learning-Based Detectors

	6.3 Conclusions

	7 Soft Error Prediction
	7.1 Introduction
	7.2 Ground Truth Prediction
	7.2.1 Machine-learning based Prediction
	7.2.2 Error Injection Mechanism
	7.2.3 Overall Algorithm: Error Injection with Ground Truth Prediction

	7.3 Evaluation
	7.3.1 Ground Truth Predictor: Model Building and Selection
	7.3.2 Evaluating Solver Vulnerability
	7.3.3 Evaluation of Detector Accuracy
	7.3.4 Right Answers for the Right Reasons
	7.3.5 Reduction in Error Injection Campaign Costs
	7.3.6 Overhead Analysis
	7.3.7 Transferability of the Models
	7.3.8 Alternative Training Configurations

	7.4 Conclusion

	8 Conclusions and Future Work
	8.1 Detector Composition
	8.2 Conclusions

	9 Publications and Invited Talks
	References
	Appendix A Algorithm Implementations
	Appendix B Exploring Deep Learning Models for Silent Data Corruption
	B.1 Introduction
	B.2 Related Work
	B.3 Methodology
	B.3.1 ML Basic Concepts
	B.3.2 Injection Data
	B.3.3 Feature Selection and Network Topology

	B.4 Experimentation and Analysis
	B.4.1 Hardware and software infrastructures
	B.4.2 Accuracy numbers for Training and testing
	B.4.3 Runtime and Scaling

	B.5 Conclusions and Future Work

