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Abstract

Solutions to high-dimensional parameter-dependent problems are in great demand
in the contemporary applied science and engineering. The standard approximation
methods for parametric equations can require computational resources that are
exponential in the dimension of the parameter space, which is typically refereed
to as the curse of dimensionality. To break the curse of dimensionality one has to
appeal to nonlinear methods that exploit the structure of the solution map, such as
projection-based model order reduction methods.

This thesis proposes novel methods based on randomized linear algebra to enhance
the efficiency and stability of projection-based model order reduction methods
for solving parameter-dependent equations. Our methodology relies on random
projections (or random sketching). Instead of operating with high-dimensional
vectors we first efficiently project them into a low-dimensional space. The reduced
model is then efficiently and numerically stably constructed from the projections of
the reduced approximation space and the spaces of associated residuals.

Our approach allows drastic computational savings in basically any modern
computational architecture. For instance, it can reduce the number of flops and
memory consumption and improve the efficiency of the data flow (characterized by
scalability or communication costs). It can be employed for improving the efficiency
and numerical stability of classical Galerkin and minimal residual methods. It
can also be used for the efficient estimation of the error, and post-processing of
the solution of the reduced order model. Furthermore, random sketching makes
computationally feasible a dictionary-based approximation method, where for each
parameter value the solution is approximated in a subspace with a basis selected from
a dictionary of vectors. We also address the efficient construction (using random
sketching) of parameter-dependent preconditioners that can be used to improve the
quality of Galerkin projections or for effective error certification for problems with
ill-conditioned operators. For all proposed methods we provide precise conditions on
the random sketch to guarantee accurate and stable estimations with a user-specified
probability of success. A priori estimates to determine the sizes of the random
matrices are provided as well as a more effective adaptive procedure based on a
posteriori estimates.

Key words— model order reduction, parameter-dependent equations, random
sketching, subspace embedding, reduced basis, dictionary-based approximation,
preconditioner
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3

The past decades have seen a tremendous advance in the computational technology
that had a monumental impact on the modern science and engineering. Nowadays,
the scientists, analytics and engineers in their developments rely on machine compu-
tations, which shutter everyday throughout improvement of hardware. Along with
enhancement of the hardware, a crucial role for the contemporary industry is played
by the development of new sophisticated algorithms providing ability of finding rapid,
reliable and non-intrusive solutions to difficult tasks.

Numerical modeling has become an inherent step for practically any industrial
project. Many problems in numerical modeling, however, still remain intractable
on industrial level even with the recent vast grow of computational capabilities and
progress in the development of numerical methods. Finding solutions to complex
parametric equations is an excellent example of industrially demanded problem,
suffering from the aforementioned limitations. This manuscript makes a step forward
to enhance the effectiveness of the existing methods [23, 24, 85, 124, 125, 129] for
parametric problems by exploiting randomized linear algebra. For the introduction
of randomized linear algebra, see Section 1.2.

Parametric models arise throughout many fields of applied science and engineering.
Examples include modeling of heat transfer, diffusion, wave scattering phenomenon,
(fluid-)structure interactions, fluid flows, problems in quantum mechanics and solid
state physics, population dynamics, problems in finance and others. The models
can be formulated in terms of algebraic equations, or governed by partial differential
equations (PDEs) or integral equations. If the equations are not given in algebraic
form, they should be discretized using approximation methods (finite elements,
finite volumes, discontinuous Galerkin methods, etc.) [50, 77, 88, 148], in their turn
yielding large-scale systems of parametrized algebraic equations. This work focuses
on improving methods related to parameter-dependent systems of algebraic equations,
possibly obtained after a discretization of the original problem. We then assume that
the discrete solution may serve as a “truth” solution for the original undiscretized
problem from any practical perspective. Furthermore, we shall restrict ourselves to
linear steady models, noting that similar considerations apply also to a wide range
of non-linear or non-stationary problems.

The discrete problem of interest can be formulated as follows: find s(µ) :=
l(u(µ);µ) with u(µ) satisfying

A(µ)u(µ) = b(µ), µ ∈ P , (1.1)

where P is the parameter set, l(·;µ) : Kn→ K (with K = R or C) is a parameter-
dependent functional for extraction of the quantity of a interest, A(µ) ∈Kn×n is a
large-scale parameter-dependent matrix and b(µ) ∈ Kn is a parameter-dependent
vector.

For the typical applications we have P ⊆ Re, but the parameters may as well
be chosen as elements of infinite dimensional spaces such as function spaces. The
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parameters can describe material properties, domain geometry (for PDEs) and many
more. For applications where the parameters describing the model are unknown
and one deals with a set of linear systems, P can be taken corresponding to the
system numbering. The parametric equations can be considered in many contexts
such as optimization, control, uncertainty quantification (UQ) and inverse problems.
In the contexts of optimization and control one seeks a rapid (possibly in real-time)
prediction of an objective function (derived from the quantity of interest s(µ)). The
predictions are then used for driving the model to a configuration, which satisfies
the desired conditions or fulfills problem’s constraints. The objective of UQ is to
provide statistical analysis (typically using Monte-Carlo methods) of a problem with
random input variables. The objective for inverse problems is to determine the
value of the parameter (or its probability distribution) from partial information on
the solution. All the mentioned contexts require an (approximate) solution to a
large-scale parameter-dependent system of equations.

The standard approach for solving (1.1) proceeds with an approximation of the
solution map u : P → Kn on some subspace of functions. This can be done by
interpolation (also called stochastic collocation in UQ community) [8, 17, 122] or
(stochastic) Galerkin projection [9, 74]. Over the past years a variety of approximation
tools have been considered including polynomials, piecewise polynomials, wavelets,
etc. [9, 42, 74].

Approximation of the solution map on classical approximation spaces may lead
to solutions of prohibitively large problems with exponential complexity with respect
to the dimension of the parameter space. This is typically referred to as the curse of
dimensionality [21, 22]. A remedy can be to reduce the complexity of the problem
by exploiting the structure of the solution map. For instance, the solution u(µ)
may have certain properties such as symmetries or anisotropies, be almost constant
along some directions while having strong variations along others. Such properties
of u(µ) can be exploited by sparse approximation methods [53, 61, 112]. These
nonlinear methods consist in selecting an approximation space using a dictionary
of functions. For some problems the dictionary-based approximation can break
the curse of dimensionality [47, 112]. An alternative to the sparse approximation
methods are the so-called projection-based model order reduction methods, which is
the focus of the present thesis and is described below.

1.1 Projection-based model reduction

Model order reduction (MOR) methods [23, 24, 85, 115, 124] are developed for
the efficient output of an approximate solution for each parameter value. Unlike
methods that provide an approximation of the solution map in an explicit form,
MOR methods proceed with a reduction of the complexity of the model and its
subsequent efficient solution for each parameter value, therefore yielding an efficient
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implicit approximation of the solution map. The construction of the reduced order
model usually involves expensive computations but is performed only once in the
offline stage. Then for each parameter value the reduced model is used for rapid
approximation of the solution (typically) with a computational cost independent of
the dimension of the original system of equations.

1.1.1 Semi-discrete framework
Throughout the manuscript a general setting is considered with notations that are
standard in the context of variational methods for PDEs. We use the notions of
solution space U := Kn and dual space U ′ := Kn to specify the origin of vectors and
matrices involved in the discrete problem. In the framework of numerical methods for
PDEs, if a vector represents an element from the solution space for the PDE, then it
is said to belong to U . On the other hand, the vectors identified with functions from
the dual space are considered to lie in U ′. The canonical `2-inner product between
a vector from U and a vector from U ′ represents the duality pairing between the
solution space and the dual space.

The spaces U and U ′ are equipped with inner products 〈·, ·〉U := 〈RU ·, ·〉 and
〈·, ·〉U ′ := 〈·,R−1

U ·〉, where 〈·, ·〉 is the canonical `2-inner product and RU ∈Kn×n is
some self-adjoint (symmetric if K = R and Hermitian if K = C) positive definite
matrix. In addition, we let ‖ · ‖U and ‖ · ‖U ′ be the norms associated with 〈·, ·〉U and
〈·, ·〉U ′ . Note that in this case ‖ · ‖U ′ corresponds to the canonical (dual) norm

‖ · ‖U ′ = max
w∈U

〈·,w〉
‖w‖U

.

The inner product 〈·, ·〉U between two vectors from U is chosen as the inner product
of the corresponding elements from the solution space for the PDE. Matrix RU is
seen as a map from U to U ′. In the framework of numerical methods for PDEs,
the entries of RU can be obtained by evaluating inner products of corresponding
basis functions. For example, for a PDE defined on the Sobolev space H1

0 , RU may
be chosen as the discrete Laplacian. This (semi-)discrete algebraic formulation is
essentially equivalent to the variational formulations typically used for numerical
methods for PDEs and integral equations, but is more convenient for introduction
of randomized linear algebra techniques. The usage of the discrete formulation
rather than the variational formulation considerably simplifies the complexity of the
theory and in particular, the proofs. Yet, our methodology in principle should also
be applicable (or could be extended) to equations defined on infinite dimensional
function spaces.

If a model is simply described by algebraic equations, the notions of solution
spaces, dual spaces, etc., can be disregarded and RU can be taken as identity.

Further, we shall consider projection-based MOR methods, where for each param-
eter value the solution u(µ) is approximated by a projection ur(µ) onto (possibly
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parameter-dependent) subspace Ur(µ)⊂ U , called reduced approximation space, of
small or moderately large dimension r.

1.1.2 State-of-the-art model reduction
Model order reduction based on projections on low-dimensional spaces (for PDEs)
can be traced back to the late 1970s with broader development in 1980s and 1990s [6,
13, 16, 25, 113, 114]. It received a lot of attention at the beginning of 21th century [81,
97, 98, 121, 123, 128]. Among projection-based MOR methods the most established
are reduced basis (RB) and Proper Orthogonal Decomposition (POD) methods.
Balanced Truncation [24, 76, 109] is another popular approach for reduction of
parametric models, although it lies out of the scope of the present manuscript.
Furthermore, in some cases the recycling Krylov methods [4, 94, 120, 150] also can
be a good alternative to the RB and POD methods.

An excellent presentation of classical RB and POD methods can be found in [79].
These methods both consist of approximating the solution manifold M := {u(µ) :
µ ∈ P} with a fixed low-dimensional space obtained from solution samples, called
snapshots, at some parameter values. The difference between the two approaches is
the way the approximation space is constructed.

Proper Orthogonal Decomposition

In the POD method the approximation space Ur is defined as the one which mini-
mizes the projection error of the solution manifold in the mean-square sense. This
method proceeds with computing a training set of snapshots {u(µi) : 1≤ i≤m}, and
approximating the range of Um = [u(µ1),u(µ2), . . . ,u(µm)] with a Singular Value
Decomposition (SVD) of R1/2

U Um. In practice, the SVD of R1/2
U Um can be per-

formed by the so-called method of snapshots, which consists in solving the eigenvalue
problem

Gt = λt,

where [G]i,j = 〈u(µi),u(µj)〉U ,1≤ i, j ≤m. If {(λi,ti) : 1≤ i≤ l}, with l= rank(Um),
is the solution to the eigenvalue problem ordered such that λ1 ≥ λ2 ≥ . . .≥ λl, then
the approximation space can be taken as

Ur := span{Umti : 1≤ i≤ r}.

It can be shown that such Ur minimizes the mean-square error over all r-dimensional
subspaces of U . Moreover, the mean-square error associated with Ur is given by

1
m

m∑
i=1

min
w∈Ur

‖u(µi)−w‖2U = 1
m

l∑
i=r+1

λi.
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Greedy algorithm

The objective of RB methods is usually to minimize the maximal error of approxi-
mation over the parameter set. The RB methods typically proceed with an iterative
greedy construction of the reduced approximation space at iteration i enriching the
basis for the reduced space by a snapshot associated with the maximum of an error
indicator ∆̃i(µ) (an estimation of the projection error minw∈Ui ‖u(µ)−w‖U on Ui)
at iteration i−1. The greedy algorithm is summarized in Algorithm 1.

Algorithm 1 Classical greedy algorithm
Given: Ptrain, A(µ), b(µ), τ .
Output: Ur
1. Set i := 0, U0 = {0} and pick µ1 ∈ Ptrain.
while max

µ∈Ptrain
∆̃i(µ)≥ τ do

2. Set i := i+ 1.
3. Evaluate u(µi) and set Ui := Ui−1 + span(u(µi)).
4. Update provisional online solver.
5. Find µi+1 := argmax

µ∈Ptrain
∆̃i(µ).

end while

In Algorithm 1, Ptrain ⊆P is the training set and τ is the desired tolerance of the
algorithm. The error indicator ∆̃i(µ) should be picked according to the particular
situation. The typical choice is ∆̃i(µ) = ∆i(ui(µ);µ), which estimates the error of an
approximation ui(µ) ∈ Ui of u(µ). The quasi-optimality of the greedy selection with
such an error indicator can then be characterized by the quasi-optimality of ui(µ)
compared to the best approximation in Ui, and the effectivity of the error estimator,
which is explained bellow in details. Let us consider the i-th iteration of Algorithm 1.
Define

κi(µ) := ‖u(µ)−ui(µ)‖U
minw∈Ur ‖u(µ)−w‖U

and σi(µ) := ∆i(ui(µ);µ)
‖u(µ)−ui(µ)‖U

,

and assume that minµ∈Ptrain σi(µ)≥ σ0 where σ0 is a positive constant. Then

min
w∈Ui

‖u(µi+1)−w‖U ≥
1
γi

max
µ∈Ptrain

min
w∈Ui

‖u(µ)−w‖U , (1.2)

where γi = 1
σ0

supµ∈Ptrain κi(µ)σi(µ).
The ideal error indicator is ∆̃i(µ) = ‖u(µ)−ui(µ)‖U , where ui(µ) is the orthogonal

projection of u(µ) onto Ui. Such a choice for ∆̃i(µ), however, requires computation
and maintenance of u(µ) on the whole training set of parameter values, which
can be intractable for large training set Ptrain. This problem can be circumvented
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by considering ui(µ) as the Galerkin projection and using a residual-based error
estimator (introduced below). In this case the efficiency of Algorithm 1 is attained
thanks to a local offline/online splitting of computations. More specifically, at the
i-th iteration of the greedy algorithm a provisional online solver (obtained from a
reduced model) associated with reduced subspace Ui is constructed allowing efficient
evaluation of argmax

µ∈Ptrain
∆̃i(µ).

In [27, 34] the convergence of the greedy algorithms has been analyzed. In
these works the authors basically proved that a greedy algorithm will generate an
approximation space Ur with approximation error close to the optimal one given by
the Kolmogorov r-width

dr(M) := inf
dim(Wr)=r

sup
u∈M

min
w∈Wr

‖u−w‖U , (1.3)

with the infinitum taken over all r-dimensional spaces. More rigorously, if

dr(M)≤ crα,

for some constants c and α, then the approximation error of Ur generated with a
greedy algorithm will be at most Crα, with C being a constant independent of r,
which implies the preservation of the rates of the algebraic decay of the Kolmogorov
r-width. Furthermore, if we have an exponential decay

dr(M)≤ cear
α

for some constants c,a and α, then the greedy algorithm will converge as CeAr
α
α+1

with constants C and A independent of r.

Galerkin projection

An approximation ur(µ) of u(µ) in Ur can be obtained by Galerkin projection.
Galerkin projection is such that the residual associated with the approximate solution
is orthogonal to the approximation space:

〈r(ur(µ),µ),v〉= 0, ∀v ∈ Ur,

where r(ur(µ),µ) = b(µ)−A(µ)ur(µ). For each parameter value the computation
of the Galerkin projection requires the solution of a small r× r system of equations,
called reduced system, which can be efficiently done in the online stage for each
parameter value.

For coercive problems the quasi-optimality of the Galerkin projection can be
characterized by the Cea’s lemma, which states that (under the condition that
θ(µ)> 0)

‖u(µ)−ur(µ)‖U ≤ (1 + β(µ)
θ(µ) ) min

w∈Ur
‖u(µ)−w‖U ,
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where

θ(µ) := min
x∈U\{0}

〈A(µ)x,x〉
‖x‖2U

,

β(µ) := max
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

,

are the operator’s coercivity and continuity constants, respectively. Moreover, if the
matrix A(µ) is self-adjoint, then one has an improved quasi-optimality result,

‖u(µ)−ur(µ)‖U ≤

√√√√β(µ)
θ(µ) min

w∈Ur
‖u(µ)−w‖U .

Error estimation

When the approximate solution ur(µ) has been obtained, one can provide a certifica-
tion of its accuracy with an a posteriori upper bound of the error ‖u(µ)−ur(µ)‖U .
For this, we can proceed with a classical residual-based error estimator defined as

∆r(ur(µ),µ) = ‖r(ur(µ),µ)‖U ′
η(µ) ,

where η(µ) is a computable lower bound of the minimal singular value or the
coercivity constant of A(µ) (seen as an operator from U to U ′), which can be
obtained theoretically [79] or with Successive Constraint Method [89].

Primal-dual correction

For problems where l(·,µ) is a linear functional, i.e., l(·,µ) = 〈l(µ), ·〉 with l(µ) ∈ U ′,
we have the following error bound for the approximate output quantity l(ur(µ),µ):

|l(u(µ),µ)− l(ur(µ),µ)| ≤ ‖u(µ)−ur(µ)‖U‖l(µ)‖U ′ .

The accuracy of the reduced model’s prediction of the quantity of interest can
be improved with a primal-dual correction. This approach consists in (besides
approximation of the solution to the primal problem (1.1)) finding an approximation
to the solution of the adjoint (or dual) problem, defined as

A(µ)Hudu(µ) =−l(µ).

Having an approximate dual solution udu
r (µ), one can improve the primal output

quantity l(ur(µ),µ) with the estimate

l(ur(µ),µ)−〈udu
r (µ),r(ur(µ);µ)〉,
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so that,

|l(u(µ),µ)−
(
l(ur(µ),µ)−〈udu

r (µ),r(ur(µ);µ)〉
)
|

≤ ‖u(µ)−ur(µ)‖U‖A(µ)Hudu
r (µ) + l(µ)‖U ′ ,

in this way improving the error (bound) by a factor equal to the dual residual error
scaled by ‖l(µ)‖U ′ .

Parameter-separability

The online efficiency of the classical projection-based MOR methods is usually
based on parameter separability. We say that a parameter-dependent quantity v(µ)
with values in vector space V over a field K admits an affine representation (or is
parameter-separable) if

v(µ) =
d∑
i=1

viλi(µ) (1.4)

where λi(µ) ∈K and vi ∈ V . The offline precomputation of an affine representation
of the reduced system of equations and the quantities needed for the evaluation
of the residual error and the output quantity, allows rapid online computation of
the quantity of interest and the residual error for each parameter value with a cost
independent of the high dimension n. Such affine decompositions can be obtained
from the affine decompositions of A(µ), b(µ) and l(·,µ). For instance, if Ur is the
matrix whose columns are the basis vectors for Ur and

A(µ) =
dA∑
i=1

λ
(i)
A (µ)A(i), b(µ) =

db∑
i=1

λ
(i)
b (µ)b(i) and l(·,µ) =

dl∑
i=1

λ
(i)
l (µ)〈l(i), ·〉,

with small dA,db,dl� n, then for each parameter value the primal output l(ur(µ),µ)
associated with the Galerkin projection on Ur can be computed as

l(ur(µ),µ) = ar(µ)Hlr(µ),

with ar(µ) being the solution to the reduced system of equations

Ar(µ)ar(µ) = br(µ),

where the quantities lr(µ) =∑dl
i=1λ

(i)
l (µ)[UH

r li], Ar(µ) =∑dA
i=1λ

(i)
A (µ)[UH

r A(i)Ur] and
br(µ) =∑dA

i=1λ
(i)
b (µ)[UH

r b(i)] can be efficiently assembled online for each parameter
value by precomputing the terms UH

r l(i), UH
r A(i)Ur and UH

r b(i) in the offline stage.
Similar considerations also hold for computation of the residual norm and the
primal-dual correction.

The affine decomposition of a parameter-dependent quantity can be derived theo-
retically or approximately obtained with Empirical Interpolation Method (EIM) [15,
102].
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1.1.3 Empirical interpolation method
Let us outline the EIM method since it often plays a crucial role for making the
MOR algorithms non-intrusive and online-efficient. Since we here consider a discrete
setting we shall present a discrete version of EIM noting that similar considerations
also apply for infinite dimensional function spaces. Note that the essential ingredients
of the discrete empirical interpolation method (DEIM) described below are that of
the technique introduced in [70] for image reconstruction termed the gappy POD.

Let v(µ) ∈ V := Ks be a parameter-dependent vector for which an affine rep-
resentation (1.4) is looked for. The DEIM consists of two components. First, a
low-dimensional space V = span{vi : 1≤ i≤ d} is obtained that approximates well
the manifold {v(µ) : µ ∈ P}. This space is typically constructed with a greedy
algorithm or POD.

Further an empirical interpolation is used for online-efficient computation of the
coefficients λ1(µ), . . . ,λd(µ) in (1.4). The affine representation of v(µ) can be written
as

v(µ)≈Vdλλλ(µ),
where Vd = [v1,v2, . . . ,vd] and λλλ(µ) = [λ1(µ),λ2(µ), . . . ,λd(µ)]T. The vector of coef-
ficients λλλ(µ) is obtained by solving a sub-system, constructed from the (least linearly
dependent) d rows of Vdλλλ(µ) = v(µ), of the form

Sdv(µ) = SdVdλλλ(µ), (1.5)

where Sd is a sampling matrix whose rows are d (disjoint) rows of the identity
matrix. The equation (1.5) can be efficiently assembled and then solved for each
parameter-value in the online stage since it requires identification and operation
with only d entries of the vector v(µ) (and the vectors vi,1≤ i≤ d) rather than the
entire (high-dimensional) vector. The sampling matrix Sd is usually obtained with
a greedy algorithm, at the i-th iteration augmenting Si with the ki-th row of the
identity matrix, where ki is the index of the maximal entry of the vector

|vi+1−Vi(SiVi)−1Sivi+1|.

Note that the greedy construction of the sampling matrix Sd and the approximation
space V can be performed simultaneously. In this case vi+1 would be the snapshot at
the parameter value µ where the error of the reconstruction of v(µ) was the maximal
at the previous iteration. One may think of various improvements of the DEIM
for finding an approximate affine representation. For instance, we can select the
sampling matrix with the best points interpolation method [111] consisting in the
solution of an optimization problem, rather than the greedy algorithm. Furthermore,
the coefficients λλλ(µ) can be obtained by an orthogonal projection of v(µ) onto
Vd = span(Vd) with respect to a certain semi-inner product 〈·, ·〉V ∗ chosen depending
on the problem. Note that such an approximation is a generalization of DEIM,
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since it is reduced to DEIM if 〈·, ·〉V ∗ = 〈Sd·,Sd·〉. If V is equipped with inner
product 〈·, ·〉V = 〈RV ·, ·〉, where RV is some self-adjoint positive-definite matrix,
then choosing 〈·, ·〉V ∗ = 〈RV Dk·,Dk·〉, where Dk is a diagonal matrix with k ≥ d
nonzero entries (i.e., Dk = SH

k Sk) can provide a better accuracy and numerical
stability of approximation than the standard DEIM. For numerical methods for
PDEs such an approach is equivalent to reducing the integration domain as we have
in the so-called hyper-reduction methods [73, 133].

The DEIM can be used as a non-intrusive tool for finding approximate affine
representations of parameter-dependent vectors such as b(µ) and l(µ). It can also be
applied to parameter-dependent operators, such as A(µ), by representing them as
vectors in Kn2 (using a reshaping operation) [65, 110]. Note that in some situations
A(µ), b(µ) or l(µ) cannot be accurately approximated with an affine representation
with a small number of terms. A remedy can be to apply the DEIM (with a slight
modification) to projections (or restrictions) of the vectors and operators onto the
approximation space Ur.

1.1.4 Partitioning of the parameter domain
Classical RB approach becomes ineffective if the solution manifoldM cannot be well
approximated by a single low-dimensional subspace, i.e., if the manifold’s Kolmogorov
r-width does not have a fast decay with the dimension r. One can extend the classical
RB method by considering a reduced subspace Ur(µ) depending on a parameter
µ. One way to obtain Ur(µ) is to use a hp-refinement method as in [66, 67], which
consists in partitioning (adaptively) the parameter set P into subsets {Pi : 1≤ i≤M}
and in associating to each subset Pi a subspace U ir ⊂ U of dimension at most r,
therefore resulting in

Ur(µ) := U ir, if µ ∈ Pi, 1≤ i≤M. (1.6)

For the method to be efficient (in particular, to outperform the classical approximation
with a single approximation space), the value for M should not be very large compared
to r and is usually chosen as M =O(rν), for some small number ν, say ν = 2 or 3.

Formally speaking, the hp-refinement method aims to approximate the solution
manifold with a set, called library, of low-dimensional spaces. The associated
nonlinear width of approximation is the following [140]

dr(M;M) = inf
#Lr=M

sup
u∈M

min
Wr∈Lr

min
w∈Ur

‖u−w‖U , (1.7)

where the infimum is taken over all libraries of M r-dimensional spaces. Clearly, a
projection ur(µ) of u(µ) onto approximation space Ur(µ) defined by (1.6) satisfies

dr(M;M)≤max
µ∈P
‖u(µ)−ur(µ)‖U . (1.8)
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Therefore, for the hp-refinement method to be effective, the solution manifold is
required to be well approximable in terms of the measure dr(M;M). As was revealed
in [12] the decay of dr(M;M), where M =O(rη), of several parameter-dependent
vectors may not be preserved by their sum. This property of the approximation
width, however, can be crucial for problems where the solution is composed as
a superposition of several contributions, which is a quite typical situation. The
hp-refinement method can also be sensitive to the parametrization and require
a large number of subdomains in P for high-dimensional parameter domains. A
modification of the hp-refinement method as in [80, 105] can lead to partial reduction
of the aforementioned drawbacks. Furthermore, the dictionary-based approximation
proposed in [12, 62, 93] can be seen as a promising alternative to the partitioning of
the parameter domain. It provides an approximation of the solution manifold which
is insensitive (or only weakly sensitive) to the parametrization. Moreover, in contrast
to the partitioning methods, the decay of the dictionary-based r-width of several
vectors is preserved by their sum, as was shown in [12] (see Chapter 3).

1.1.5 Minimal residual methods
The Galerkin projection can be very inaccurate for non-coercive or ill-conditioned
problems. Indeed, for such problems choosing the test space (with respect to which
the orthogonality of the residual is prescribed) as the approximation space can lead
to dramatic instabilities. Therefore, a better choice of the test space is needed. In
the context of numerical methods for PDEs this is a particularly important topic for
convection-diffusion-reaction, wave and heterogeneous problems. Various approaches
for the selection of suitable test spaces have been proposed in the context of reduced
basis approximation methods [57, 103, 130, 156]. One of the simplest ways is to use
minimal residual methods, where the test space is chosen to minimize the residual
error ‖r(ur(µ);µ)‖U ′ . More precisely, the minres projection is a Petrov-Galerkin
projection defined by

〈r(ur(µ),µ),v〉= 0, ∀v ∈ Vr(µ), (1.9)

where Vr(µ) = {R−1
U A(µ)w : w∈Ur}. The major benefits of the minres methods over

the classical Galerkin methods are the already mentioned improved stability of the
projection for non-coercive problems and more effective residual-based error bounds
of an approximation (see e.g. [37]). Furthermore, minres methods are better suited
for combination with random sketching technique. There are few drawbacks of the
minres methods. The first drawback is the increased online computational cost, since
the reduced system of equations associated with (1.9) can contain much more terms
in its affine expansion than the one associated with Galerkin projection. In addition,
the orthogonalization of the reduced basis is not as effective for minres methods as
for Galerkin methods to guarantee the numerical stability of the reduced system
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of equations. Another drawback is the high computational cost associated with
the precomputation of the affine decomposition of the reduced system of equations
from the basis vectors. Note that all these drawbacks can be circumvented with the
random sketching technique proposed in Chapter 3 of this manuscript.

1.1.6 Parameter-dependent preconditioners for MOR
As was said, the performance of the projection-based methods for an approximate
solution of (1.1) highly depends on the properties of A(µ) such as the condition
number. These properties can be improved with preconditioning. Let P(µ) be
an approximate inverse of A(µ). Then the (approximate) solution of (1.1) can be
obtained from

B(µ)u(µ) = f(µ), µ ∈ P , (1.10)

where B(µ) := RUP(µ)A(µ) and f(µ) := RUP(µ)b(µ). If P(µ)A(µ) is close to
the identity matrix, then B(µ) should have better properties than the original
operator A(µ), which implies a better effectiveness of projection-based methods.
In particular, if P(µ) = A(µ)−1 then (1.10) is perfectly conditioned. Furthermore,
preconditioning can be used for effective error certification, which does not require
computation of expensive stability constants as in the classical methods. The
preconditioner can be taken as the inverse of A(µ)−1 computed at some parameter
value. A better choice is to construct P(µ) by an interpolation of matrix inverse as
in [156]. This approach is addressed in Chapter 4 of this manuscript. Note that for the
Galerkin projection the preconditioning can be interpreted as an improvement of the
test space. The minimal residual projection can also be viewed as a preconditioned
Galerkin projection, where P(µ) is taken as R−1

U A(µ)HR−1
U .

1.1.7 Recent advances and the limitations of model reduc-
tion

In recent years projection-based MOR methods have received a substantial devel-
opment [117]. A particular interest was dedicated to the theoretical analysis of
convergence properties of the methods [60]. The results on Kolmogorov r-widths for
parameter-dependent elliptic problems [55, 104] were extended to a wider class of
problems in [54]. The optimality of greedy algorithms for reduced basis methods
was analyzed in [27, 34, 78]. The Galerkin methods with an improved stability for
ill-conditioned and non-coercive problems were developed in [1, 141, 156]. Moreover,
new non-linear approximation methods were introduced to tackle problems with
slow decay of the Kolmogorov r-width [38, 62, 71, 93, 116, 126, 138]. Along with
the analysis, a great effort was spent on improving the efficiency of the algorithms
and enlarging the area of applicability of projection-based approximation methods.
A special attention was given to the online-efficient methods for problems with
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nonlinear operators by exploiting EIM [40, 43, 65, 152]. An important topic of
effective, numerically stable, but yet efficient, error estimation/certification of a
solution of parametric equations was addressed in [11, 41, 137, 139]. Finally, classical
MOR algorithms executed in modern computational environments were considered
in [5, 32, 86, 87, 95, 118].

Although considerably improved over the past decades, the applicability of
projection-based MOR methods still remains highly limited. The central bottleneck is
that parameter-dependent problems often do not show fast decays of the Kolmogorov
r-width of the solution manifold, which is the essential condition for most projection-
based MOR methods. In the context of PDEs this issue is particularly dramatic for
problems with (moving) discontinuities. Such problems are typically tackled with
so-called freezing (or space transformation) methods. The freezing approach [38,
116, 151] can be interpreted as preconditioning, where one first obtains a map (here
assumed to be linear) P(µ) among a certain family of mappings such that the manifold
{v(µ) := P(µ)−1u(µ) : µ∈P} shows a better convergence of the Kolmogorov r-width,
and then considers the solution of the right-preconditioned system of equations

A(µ)P(µ)v(µ) = b(µ).

The existing approaches for finding a suitable P(µ), however, are highly intrusive or
require very heavy offline computations, and are applicable only for the cases with
one-dimensional or (to some extend) two-dimensional parameter domains. They also
can involve computations in the online stage that depend on the high-dimension
n, which is prohibited by many computational architectures. The techniques based
on dictionary learning and compressed sensing have recently revealed their great
potential for dealing with parameter-dependent problems with a slow decay of
the Kolmogorov r-width [12, 62]. These techniques, however, also require further
development to tackle complex problems.

1.2 Randomized linear algebra
Randomized linear algebra (RLA) is a popular approach for reduction of the com-
putational cost of basic problems in numerical linear algebra such as products and
low-rank approximations of high-dimensional matrices, and the solution of least-
squares problems [84, 153]. It is broadly used in such fields as theoretical computer
science, data analysis, statistical learning and compressed sensing. Open source
routines for efficient RLA can be found for instance in [108, 149].

The random sketching technique is based on the dimension reduction by em-
bedding a set (or a subspace) of high-dimensional vectors into a low-dimensional
space without altering much the geometry (i.e., the inner products between vectors).
The geometry can then be efficiently analyzed in the low-dimensional space without
appealing to high-dimensional vectors. One way to perform an embedding of a set
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of vectors is the adaptive selection of the most relevant coordinates of the vectors
either with a greedy selection or a leverage scores sampling [63, 64, 106, 132]. This
approach, however, is not as efficient and robust for parameter-dependent problems
or problems where the set of vectors is unknown a priori, as oblivious embeddings,
discussed further.

The idea of oblivious sketching comes from the observation of Johnson and
Lindenstrauss in their groundbreaking paper [91] stating that any set of N points in
a Euclidean space can be randomly embedded into a Euclidean space of dimension
O(log(N)), so that all pairwise distances between the points are nearly preserved
with high probability. In [90, 99] the Johnson-Lindenstrauss type embeddings
were applied to nearest-neighbor algorithms and in [72, 119] used for numerical
linear algebra. Thereafter Achlioptas [2] showed that a similar performance as with
standard Gaussian matrices can be attained also by considering more efficient discrete
random matrices. The next breakthrough was done by Ailon and Chazelle [3] who
proposed to construct the random embeddings with structured matrices, which lead
to considerable improvements of the complexities of the previous algorithms. In the
numerical linear algebra context, the random sketching technique with structured
embeddings was firstly used by Sarlós in [135] to reduce the complexity of SVD,
least-squares problem and the computation of products of matrices. These algorithms
were then improved in [56, 83, 84, 127, 153] and recently developed even further [48,
146]. A rigorous theoretical analysis of linear random sketching can be found in [30,
84, 142, 143, 144, 146, 147, 153].

As was revealed in [14], the Johnson-Lindenstrauss type embeddings are strongly
connected to the Restricted Isometry Property (RIP) introduced by Candes and
Tao in [39] for sparse signal recovery [20]. The RIP property can be interpreted as
quasi-isometry property of a linear map when restricted to sparse vectors. The RIP
for Johnson-Lindenstrauss type embeddings can be shown to hold simply by arguing
that this property is equivalent to the (almost) preservation of inner products between
all vectors from low-dimensional subspaces. In [145] Tropp provided an empirical
argument for an exact recovery of a sparse signal from its random projection with a
greedy algorithm called Orthogonal Matching Pursuit (OMP). The theory of sparse
signal recovery can be translated into best k-term approximation framework [51, 52].
In this manuscript we adapted some ideas from compressed sensing.

Further we introduce the random sketching technique and discuss its role for
improving the efficiency and stability of projection-based MOR methods.

1.2.1 Random sketching: a least-squares problem
The introduction of the random sketching technique will be performed on a weighted
least-squares problem. Assume that the goal is to obtain a vector a∈Kd of coefficients,
which minimizes

||Va−b‖X , (1.11)
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where V ∈Kn×d is a large-scale matrix with d� n, b ∈Kn is a large-scale vector,
and ‖ ·‖X is a norm induced by a weighted Euclidean inner product 〈·, ·〉X = 〈RX ·, ·〉.
Matrix RX ∈Kn×n is self-adjoint positive definite. The least-squares problem can
be solved by considering the normal equation

VHRXVa = VHRXb, (1.12)

which is a small d× d system of equations. Assembling this system of equations,
however, requires computation of a product VHRXV of large-scale matrices, which
needs (if RX is sparse and has O(n) nonzero entries or is stored in an efficient
implicit format) O(nd2) flops and 2 passes over V. This can be very expensive or
even lead to a computational burden, e.g., if V does not fit into the RAM or its
columns are maintained on multiple workstations.

The computational cost of minimizing (1.11) can be drastically reduced if one
agrees to sacrifice a little of quality of the solution. Suppose that we seek a quasi-
optimal solution satisfying

‖Va−b‖X ≤ (1 + τ) min
x∈Kd

‖Vx−b‖X , (1.13)

for some τ . The coefficient τ has to be picked depending on the particular scenario.
For the typical applications choosing τ < 10−1 should be enough to provide a
good estimation of the solution. The solution satisfying (1.13) can be obtained
by sketching technique, which consists in constructing a suitable sketching matrix
Θ ∈Kk×n with k� n, which allows efficient precomputation of products ΘV and
Θb, and considering the solution to a small regression problem

min
x∈Kd

‖[ΘV]x− [Θb]‖. (1.14)

Matrix Θ typically has k =O(τ−2d) (up to a logarithmic factor in n or d) rows. The
dominant computations are the products ΘV and Θb, which should be efficiently
performed exploiting the specific structure of Θ. The structure for Θ has to be
chosen according to the particular computational architecture.

It is important to note that the solution of (1.11) with normal equation (1.12) can
suffer from round-off errors. Indeed, the condition number of the normal matrix is
equal to the square of the condition number of R1/2

X V, which can lead to a dramatic
numerical instability when V is ill-conditioned. On the other hand, the sketched
least-squares problem (1.14) can be efficiently solved directly with a standard routine
such as QR factorization or SVD, without forming the normal equation. The matrix
Θ is typically chosen such that the condition number of ΘV is at most (up to a
small factor) the condition number of R1/2

X V. Consequently, the factorization of
ΘV can be much less sensitive to round-off errors than the solution of the normal
equation (1.12).
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A guarantee of uniqueness and quasi-optimality of the solution in (1.14) can be
obtained by requiring Θ to satisfy a X → `2 ε-subspace embedding property for
W := range(V) + span(b), which states that for any two vectors x,y ∈W ,

|〈x,y〉X −〈Θx,Θy〉| ≤ ε‖x‖X‖y‖X .

Next, the question of the construction of ε-embeddings for the subspace of interest
W is addressed. Matrices Θ satisfying the ε-embedding property for W can be
constructed with RLA. Such probabilistic techniques have a user-specified probability
of failure δ. The computational cost (mainly associated with the size of Θ) depends
only logarithmically on the probability of failure, therefore allowing prescription of
very small values for δ (say, δ = 10−10) without considerable impact on the overall
computational costs.

Let W be a matrix whose column vectors form a basis for W . One way is to
choose Θ according to the leverage scores sampling of rows of W. The leverage
scores sampling, however, has very limited applicability to parameter-dependent
problems or other problems with varying or unknown a priori subspaces of interest
W . For these scenarios, the distribution of sketching matrices has to be chosen
such that Θ is an ε-embedding for W with high probability for any low-dimensional
subspace W . This approach is refereed to as an oblivious construction of Θ since
it does not require any a priori knowledge about W . An ε-embedding for W with
a user-specified high probability can be obtained as a realization of an oblivious
subspace embedding with sufficiently large number of rows. The number of rows for
Θ can be chosen using theoretical a priori bounds from [11] or adaptively with the
procedure from [12].

Oblivious `2→ `2 subspace embeddings (defined by taking X = `2) include the
rescaled Gaussian distribution, the rescaled Rademacher distribution, the Subsampled
Randomized Hadamard Transform (SRHT), the Subsampled Randomized Fourier
Transform (SRFT), CountSketch matrix, SRFT combined with sequences of random
Givens rotations, and others [11, 84, 127, 153]. In this manuscript we shall only rely
on the Gaussian distribution, the Rademacher distribution and SRHT.

A rescaled Gaussian matrix in Kk×n has entries that are independent Gaussian
random variables with mean 0 and variance k−1. This is the most common choice for
random sketching algorithms. The computational cost reduction with these matrices
is usually attained due to an exploitation of the computational architecture, which
can be characterized by the efficiency of the data flow or its maintenance, or by the
usage of high-level linear algebra routines. For instance the products of Gaussian
matrices with vectors are embarrassingly parallelizable.

For the rescaled Rademacher distribution over Kk×n, the entries of the random
matrix are independent random variables that are equal to k−1/2 or −k−1/2 with
probabilities 1/2. It was shown in [2] that a Rademacher matrix has same guarantees
for performance as a Gaussian matrix, yet it can be more efficiently implemented
using standard SQL primitives.
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Assuming that n is a power of 2, the SRHT distribution is defined as k−1/2RHnD,
where

• R ∈Kk×n is a sampling matrix defined as the first k rows of a random permu-
tation of rows of an identity matrix,

• Hn ∈ Rn×n is a Walsh-Hadamard matrix, which is a structured matrix defined
recursively by Hn = Hn/2⊗H2, with

H2 :=
[
1 1
1 −1

]
.

Note that a product of Hn with a vector can be computed with n log2 (n) flops
by using the fast Walsh-Hadamard transform,

• D∈Rn×n is a random diagonal matrix with random entries such that P([D]i,i =
±1) = 1/2.

The algorithms designed with random sketching using SRHT can largely outperform
the deterministic techniques in terms of the classical metric of efficiency, which is
the number of flops, and are particularly interesting from the theoretical point of
view. In practice the usage of SRHT is the most beneficial in basic computational
environments such as computations on portable devices. The partial SRHT (P-
SRHT) is used when n is not a power of 2, and is defined as the first n columns of a
SRHT matrix of size s, were s is the power of 2 such that n≤ s < 2n.

An oblivious X → `2 subspace embedding for a general inner product 〈·, ·〉X can
be constructed as

Θ = ΩQ, (1.15)
where Ω is an oblivious `2→ `2 subspace embedding and matrix Q is such that QHQ =
RX . One way to compute matrix Q is to employ (sparse) Cholesky decomposition.
As was discussed in [11], RX can have a block structure that can be exploited for
more efficient computation of Q. Typically, the multiplication of Q by a vector is
expected to have log-linear complexity, i.e., O(n log(n)ν) for some small ν ≥ 1. In this
case, if Ω is a P-SRHT matrix, the sketched matrices and vectors in the least-squares
problem (1.14) shall require only O(nr log(n)ν) flops for their computation, which
can be considerably less than the complexity O(nr2) required for assembling the
normal equation (1.13). Moreover, using a seeded random number generator allows
computation of the sketched matrices and vectors with only one pass over V and
b (compared to 2 passes required by the normal equation), which can be crucial if
these quantities may not be efficiently stored.

Form [11, 153] it follows that the oblivious X → `2 subspace embedding con-
structed with (1.15) using for Ω a Gaussian or Rademacher matrix with k =
O(ε−2(dim(W ) + log(1/δ)) rows, is an ε-subspace embedding for W with prob-
ability at least 1− δ. The P-SRHT has worse theoretical bounds, namely k =
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O(ε−2(dim(W ) + log(n/δ)) log(dim(W )/δ)), for the sufficient number of rows to
satisfy the ε-subspace embedding property for W . Yet, in our experiments it has
been revealed that Gaussian matrices, Rademacher matrices and P-SRHT show in
practice same performance.

1.2.2 Randomized linear algebra for MOR
The techniques based on RLA started to be used in the MOR community only
recently. Perhaps one of the earliest works considering RLA in the context of
MOR is [156], where the authors proposed to use RLA for interpolation of matrix
inverse for constructing parameter-dependent preconditioners. More specifically, they
constructed a preconditioner of the form

P(µ) =
d∑
i=1

λi(µ)A(µi)−1,

with the coefficients λi(µ) obtained for each parameter value by (approximate)
minimization of the Frobenius norm of the residual matrix I−P(µ)A(µ), which
requires solution of a small least-squares problem and can be efficiently performed
online. The feasibility of the heavy offline computations was attained by estimation of
‖I−P(µ)A(µ)‖F via ‖(I−P(µ)A(µ))ΩH‖F , where Ω is a small rescaled Rademacher
or P-SRHT matrix. It was then shown that the minimization of the sketched norm
over λi(µ) yields a quasi-optimal solution with high probability. This principle is
taken as the starting point of Chapter 4 of this manuscript and is improved in several
ways (see Section 1.4 for more details).

In [137] the authors developed a probabilistic error estimator based on RLA.
They proposed to estimate the error ‖u(µ)−ur(µ)‖U of the approximate solution
ur(µ) ∈ U by

‖Y(µ)Hr(ur(µ);µ)‖,

where Y(µ) = [y1(µ),y2(µ), . . . ,yk(µ)] is a matrix whose column vectors are approxi-
mate solutions to the dual problems with random right-hand-sides

A(µ)Hyi(µ) = zi, 1≤ i≤ k.

The random right-hand-side vectors can be generated as zi = Qωωωi, where Q is a
matrix such that QHQ = RU and ωωωi is a standard (rescaled) Gaussian vector. Such
an error estimation is closely related to the preconditioned residual-based error
estimation presented in Chapter 4. The difference is that in [137], the dual problems
are tackled separately (with projection-based MOR), while in Chapter 4 we obtain
the whole solution matrix Y(µ) by considering a single equation

A(µ)HY(µ) = Z,
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where Z = [z1,z2, . . . ,zk], with a solution obtained by interpolation of matrix inverse:

Y(µ)≈
p∑
i=1

λi(µ)A(µi)−HZ.

Note that our approach has several important advantages over the one from [137] as
is discussed in Chapter 4.

The RLA has also been employed for reduction of the computational cost of MOR
in [5, 87], where the authors considered random sketching only as a tool for efficient
evaluation of low-rank approximations of large matrices (using randomized versions
of SVDs), which in principle could be done with any other efficient algorithm. In [36]
a probabilistic range finder based on random sketching has been used for combining
RB method with domain decomposition. Probabilistic methods from compressed
sensing were applied to numerical approximation of partial differential equations
in [33].

Throughout the thesis we employ random sketching technique for drastic improve-
ment of the efficiency (and numerical stability) of projection-based MOR based on
Galerkin or minimal residual methods. This is done by expressing MOR methodology
in a non-conventional (semi-)discrete form well-suited for combination with random
sketching technique. The central ingredient of our approach is the approximation
of the original inner products 〈·, ·〉U and 〈·, ·〉U ′ by their efficient sketched versions,
respectively defined as

〈·, ·〉ΘU := 〈Θ·,Θ·〉, and 〈·, ·〉ΘU ′ := 〈ΘR−1
U ·,ΘR−1

U ·〉, (1.16)

where Θ is an oblivious U → `2 subspace embedding, which yields efficient and
accurate approximations of the projection, residual-based error estimation and
primal-dual correction. Instead of operating in a high-dimensional space, we embed
the model into a low-dimensional space by using the projection Θ and then construct
the reduced model there. We use the fact that the construction of the reduced model
requires operation with vectors lying only in some subspaces W ⊂ U and W ′ ⊂ U ′ of
moderate dimensions. Letting {wi} and {w′i} be bases of W and W ′, respectively,
the sketched inner products between any two vectors in W or W ′ can be efficiently
computed from small projections {Θw′i} and {ΘR−1

U w′i} that compose a sketch of a
reduced model. It follows that the reduced model can be constructed from its sketch
with a negligible computational cost, while the sketch can be efficiently computed in
any computational environment by using suitable random matrices.

As discussed in [11, 12], random sketching does not only provide efficient approx-
imation of a reduced model, but also can be used to improve numerical stability of
the estimation (or minimization for minres projection) of the residual norm. This
is attained due to direct computation of the (sketched) residual norm and not its
square as in classical methods.
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1.3 Computational architectures

Development of effective numerical algorithms requires clear characterization of the
factors which define the computational costs.

Classical computational environment

The computational cost of an algorithm can be classically measured with the number
of floating point operations (flops). This metric of efficiency is relevant for not very
large problems and is traditional for the theoretical analysis of the computational
cost. The pure sequential computational environment can be rarely found in modern
applications. Usually it is mixed with other environments implying the necessity
to consider other metrics of efficiency. For modern problems the number of flops
started to become less relevant, with memory consumption and communication costs
emerging as the central factors for efficiency.

Limited-memory and streaming computational environment

Over the years the out-of-core computations became drastically slower than the
operations on data stored in the fast memory (RAM) with the increased latency of
hard disks. Since the typical computational setup has a limited RAM, the RAM
consumption can be the major constraint for the development of numerical methods.
If the method entails operations with large data sets which do not fit into RAM, the
efficiency of an algorithm shall be mainly affected by the number of passes over the
data. In this case the pass-efficiency of an algorithm has to be of the primary concern.
In some scenarios one can work in a streaming environment where each entry of the
data can be accessed only once, that requires usage of single-pass algorithms.

Parallel computing

The Moore’s law suggests that transistor count in an integrated circuit doubles every
two years, yielding exponential improvement of the computational capabilities of
the hardware with time. In the last years keeping up the Moore’s pace required
changing to heterogeneous architectures. Nowadays, multi-core chips are used in
every computing device. Furthermore, practically every contemporary engineer and
scientist has an access to parallel computing clusters allowing performance of very
heavy computations. The introduction of heterogeneous computational environments
resulted in the need of corresponding changes in the design of numerical algorithms.
The computational cost of most modern algorithms is measured by the efficiency of
the data flow between cores.
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Distributed computing

Computations using a network of workstations (with a slow communication between
each other) is a quite standard situation. For such a scenario the overall runtime of
an algorithm shall be mainly dominated by the amount of data exchanged between
the computers, and one has to design the algorithm based on this factor.

Other computational environments

The performance of an algorithm can be characterized not only by the runtime
but also by the required computational resources. Indeed, when the algorithms are
executed on servers with limited or on a pay-as-go basis budgets, one should use
as less resources from the server as possible. This can be done by performing most
computations beyond the server and appeal to the server only when necessary. In
this situation, with the reduction of computations on the server, one also has to
avoid transfers of large data sets that can become a bottleneck.

The adaptation of classical projection-based MOR methods to modern computational
architectures was addressed in [5, 32, 86, 87, 95, 118]. In these works the authors
did not propose a new methodology but rather exploited the key opportunities for
the computational cost reduction, by direct appealing to the particular architecture
or by using modern numerical algorithms for low-rank approximation of a large-scale
matrix.

The algorithms designed with RLA are often universal and can be easily adapted
to practically any computational architecture [31, 49, 84, 149, 153, 155]. The
methodology proposed in the present thesis is not an exception. The (offline)
computations involved in our algorithms mainly consist in evaluating random matrix-
vector products and solving systems of equations. The former operation is known to
be cheap in any computational environment (with a good choice of random matrices),
while the latter one is very well-studied and can be efficiently performed with state-
of-the-art routines. Furthermore, the exceptional feature of our methodology is no
maintenance and operation with large-scale vectors but only with their small sketches.
Since our algorithms do not require transfers of large data sets, they are particularly
well-suited for computations with a network of workstations or a server with limited
budget.

1.4 Contributions and overview of the manuscript
In this section we summarize the main contributions of the thesis and present an
overview of the manuscript.
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Galerkin methods and error estimation

Chapter 2 presents a methodology based on random sketching technique for drastic
reduction of the computational cost of classical projection-based MOR methods.
We introduce the concept of a sketch of a model and propose new and efficient
randomized sketched versions of Galerkin projection, residual-based error estimation,
and primal-dual correction, with the precise conditions on the dimension of the
random sketch for the resulting reduced order model to be quasi-optimal with high
probability. We then present and discuss randomized sketched greedy algorithm and
POD for the efficient generation of reduced approximation spaces. The methodology
is experimentally validated on two benchmarks.

The proposed approach can be beneficial in basically any classical or modern
computational environment. It can reduce both complexity and memory requirements.
Furthermore, the reduced order model can be constructed under extreme memory
constraints. All major operations in our algorithms, except solving linear systems
of equations, are embarrassingly parallel. Our version of POD can be computed on
multiple computational devices with the total communication cost independent of
the dimension of the full order model.

Minimal residual methods and dictionary-based approxima-
tion

In Chapter 3 we introduce a sketched version of the minimal residual projection as
well as a novel nonlinear approximation method, where for each parameter value,
the solution is approximated by minimal residual projection onto a low-dimensional
space with a basis (adaptively) selected from a dictionary of vectors. It is shown
that in addition to enhancement of efficiency, random sketching technique can also
offer improvement of numerical stability. We provide the conditions on the random
sketch to obtain a given accuracy. These conditions may be ensured a priori with
high probability by considering for the sketching matrix an oblivious embedding
of sufficiently large size. In contrast to Galerkin methods, with minimal residual
methods the quality of the sketching matrix can be characterized regardless operator’s
properties. Furthermore, a simple and reliable way for a posteriori verification of
the quality of the sketch is provided. This approach can be used for certification of
the approximation or for adaptive selection of an optimal size of random sketching
matrices. We also propose a randomized procedure for an efficient approximation of
an inner product between parameter-dependent vectors having affine decompositions
with many (expensive to operate with) terms. This procedure can be used for efficient
extraction of the quantity of interest and the primal-dual correction from the reduced
model’s solution.
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Parameter-dependent preconditioners for model order reduc-
tion
In Chapter 4 we develop an effective methodology for the construction of a parameter-
dependent preconditioner. The starting point of our approach is [156], which is
improved in several ways mainly thanks to the framework from Chapter 2. In
addition, we here propose some fundamentally novel ideas.

The preconditioner can be constructed by interpolation of matrix inverse based
on minimization of an error indicator measuring a discrepancy between the precondi-
tioned operator and the identity. In [156] the authors considered a single general
error indicator for any context. However, obtaining a good quality of a preconditioner
in terms of this error indicator may be an intractable task. Consequently we propose
three different strategies for choosing the error indicator. The most pertinent strategy
should be chosen depending on the particular scenario: multi-query context, when
one is interested in minimizing the condition number; residual-based error estimation
and certification; and Petrov-Galerkin projection onto a given approximation space.

For the multi-query context, the quality of the preconditioner is characterized
with respect to a general norm represented by a self-adjoint positive define matrix
instead of the `2-norm as in [156]. This is important, for instance, in the context of
numerical methods for PDEs to control the quality of an approximation regardless
the used discretization.

All proposed error indicators are online-efficient. For feasibility of the offline stage
a (semi-)norm of a large-scale matrix is approximated by the `2-norm of its random
sketch. The computational cost is considerably improved compared to the algorithms
in [156] by using a three-phase sketching scheme instead of a sketching with a single
random matrix. Thanks to the framework introduced in Chapter 2 we derive better
theoretical bounds for the size of a sketch for the quasi-optimality of minimization of
an error indicator, compared to the bounds derived in [156]. Moreover, we provide
rigorous conditions for the quasi-optimality of the preconditioned Galerkin projection
and residual-based error estimation based on the error indicators.
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Chapter 2

Random sketching for Galerkin meth-
ods and error estimation

This chapter is based on the article [11], where we propose a probabilistic way for
reducing the cost of classical projection-based model order reduction methods for
parameter-dependent linear equations. A reduced order model is here approximated
from its random sketch, which is a set of low-dimensional random projections of
the reduced approximation space and the spaces of associated residuals. This
approach exploits the fact that the residuals associated with approximations in
low-dimensional spaces are also contained in low-dimensional spaces. We provide
conditions on the dimension of the random sketch for the resulting reduced order
model to be quasi-optimal with high probability. Our approach can be used for
reducing both complexity and memory requirements. The provided algorithms are
well suited for any modern computational environment. Major operations, except
solving linear systems of equations, are embarrassingly parallel. Our version of
proper orthogonal decomposition can be computed on multiple workstations with
a communication cost independent of the dimension of the full order model. The
reduced order model can even be constructed in a so-called streaming environment,
i.e., under extreme memory constraints. In addition, we provide an efficient way for
estimating the error of the reduced order model, which is not only more efficient
than the classical approach but is also less sensitive to round-off errors. Finally, the
methodology is validated on benchmark problems.
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2.1 Introduction

Projection-based model order reduction (MOR) methods, including the reduced basis
(RB) method or proper orthogonal decomposition (POD), are popular approaches
for approximating large-scale parameter-dependent equations (see the recent surveys
and monographs [23, 24, 85, 124]). They can be considered in the contexts of
optimization, uncertainty quantification, inverse problems, real-time simulations, etc.
An essential feature of MOR methods is offline/online splitting of the computations.
The construction of the reduced order (or surrogate) model, which is usually the
most computationally demanding task, is performed during the offline stage. This
stage consists of (i) the generation of a reduced approximation space with a greedy
algorithm for RB method or a principal component analysis of a set of samples of
the solution for POD and (ii) the efficient representation of the reduced system of
equations, usually obtained through (Petrov-)Galerkin projection, and of all the
quantities needed for evaluating output quantities of interest and error estimators. In
the online stage, the reduced order model is evaluated for each value of the parameter
and provides prediction of the output quantity of interest with a small computational
cost, which is independent of the dimension of the initial system of equations.

In this chapter, we address the reduction of computational costs for both offline
and online stages of projection-based model order reduction methods by adapting
random sketching methods [2, 135] to the context of RB and POD. These methods
were proven capable of significant complexity reduction for basic problems in nu-
merical linear algebra such as computing products or factorizations of matrices [84,
153]. We show how a reduced order model can be approximated from a small set,
called a sketch, of efficiently computable random projections of the reduced basis
vectors and the vectors involved in the affine expansion1 of the residual, which is
assumed to contain a small number of terms. Standard algebraic operations are
performed on the sketch, which avoids heavy operations on large-scale matrices and
vectors. Sufficient conditions on the dimension of the sketch for quasi-optimality of
approximation of the reduced order model can be obtained by exploiting the fact
that the residuals associated with reduced approximation spaces are contained in
low-dimensional spaces. Clearly, the randomization inevitably implies a probability
of failure. This probability, however, is a user-specified parameter that can be chosen
extremely small without affecting considerably the computational costs. Even though
this chapter is concerned only with linear equations, similar considerations should
also apply to a wide range of nonlinear problems.

Note that deterministic techniques have also been proposed for adapting POD

1A parameter-dependent quantity v(µ) with values in vector space V over a field K is said to
admit an affine representation (or be parameter-separable) if v(µ) =

∑d
i=1 viλi(µ) with λi(µ) ∈K

and vi ∈ V . Note that for V of finite dimension, v(µ) always admits an affine representation with
a finite number of terms.
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methods to modern (e.g., multi-core or limited-memory) computational architec-
tures [32, 86, 118]. Compared to the aforementioned deterministic approaches, our
randomized version of POD (see Section 2.5.2) has the advantage of not requiring
the computation of the full reduced basis vectors, but only of their small random
sketches. In fact, maintaining and operating with large vectors can be completely
avoided. This remarkable feature makes our algorithms particularly well suited for
distributed computing and streaming context.

Randomized linear algebra have been employed for reducing the computational
cost of MOR in [5, 87], where the authors considered random sketching only as a tool
for efficient evaluation of low-rank approximations of large matrices (using randomized
versions of SVDs). They, however, did not adapt the MOR methodology itself and
therefore did not fully exploit randomization techniques. In [36] a probabilistic
range finder based on random sketching has been used for combining RB method
with domain decomposition. Randomized linear algebra was also used for building
parameter-dependent preconditioners for projection-based MOR in [156].

The rest of the chapter is organized as follows. Section 2.1.1 presents the
main contributions and discusses the benefits of the proposed methodology. In
Section 2.2 we introduce the problem of interest and present the ingredients of
standard projection-based model order reduction methods. In Section 2.3, we extend
the classical sketching technique in Euclidean spaces to a more general framework.
In Section 2.4, we introduce the concept of a sketch of a model and propose new and
efficient randomized versions of Galerkin projection, residual-based error estimation,
and primal-dual correction. In Section 2.5, we present and discuss randomized
greedy algorithm and POD for the efficient generation of reduced approximation
spaces. In Section 2.6, the methodology is validated on two benchmarks. Finally,
in Section 2.7, we provide conclusions and perspectives.

Proofs of propositions and theorems are provided in the Appendix.

2.1.1 Main contributions
Our methodology can be used for the efficient construction of a reduced order model.
In classical projection-based methods, the cost of evaluating samples (or snapshots)
of the solution for a training set of parameters values can be much smaller than the
cost of other computations. This is the case when the samples are computed using
a sophisticated method for solving linear systems of equations requiring log-linear
complexity, or beyond the main routine, e.g., using a highly optimized commercial
solver or a server with limited budget, and possibly obtained using multiple worksta-
tions. This is also the case when, due to memory constraints, the computational time
of algorithms for constructing the reduced order model are greatly affected by the
number of passes taken over the data. In all these cases the cost of the offline stage
is dominated by the post-processing of samples but not their computation. We here
assume that the cost of solving high-dimensional systems is irreducible and focus on
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the reduction of other computational costs. The metric for efficiency depends on the
computational environment and how data is presented to us. Our algorithms can be
beneficial in basically all computational environments.

Complexity reduction

Consider a parameter-dependent linear system of equations A(µ)u(µ) = b(µ) of
dimension n and assume that the parameter-dependent matrix A(µ) and vector b(µ)
are parameter-separable with mA and mb terms, respectively (see Section 2.2 for more
details). Let r� n be the dimension of the reduced approximation space. Given a
basis of this space, the classical construction of a reduced order model requires the
evaluation of inner products between high-dimensional vectors. More precisely, it
consists in multiplying each of the rmA+mb vectors in the affine expansion of the
residual by r vectors for constructing the reduced systems and by rmA+mb other
vectors for estimating the error. These two operations result in O(nr2mA+nrmb)
and O(nr2m2

A+nm2
b) flops respectively. It can be argued that the aforementioned

complexities can dominate the total complexity of the offline stage (see Section 2.4.4).
With the methodology presented in this work the complexities can be reduced to
O(nrmA logk+nmb logk), where r ≤ k� n.

Let m be the number of samples in the training set. The computation of the POD
basis using a direct eigenvalue solver requires multiplication of two n×m matrices,
i.e., O(nmmin(n,m)) flops, while using a Krylov solver it requires multiplications
of a n×m matrix by O(r) adaptively chosen vectors, i.e., O(nmr) flops. In the
prior work [5] on randomized algorithms for MOR, the authors proposed to use a
randomized version of SVD introduced in [84] for the computation of the POD basis.
More precisely, the SVD can be performed by applying Algorithms 4.5 and 5.1 in [84]
with complexities O(nm logk+nk2) and O(nmk), respectively. However, the authors
in [5] did not take any further advantage of random sketching methods, besides the
SVD, and did not provide any theoretical analysis. In addition, they considered the
Euclidean norm for the basis construction, which can be far from optimal. Here we
reformulate the classical POD and obtain an algebraic form (see Proposition 2.2.5)
well suited for the application of efficient low-rank approximation algorithms, e.g.,
randomized or incremental SVDs [10]. We consider a general inner product associated
with a self-adjoint positive definite matrix. More importantly, we provide a new ver-
sion of POD (see Section 2.5.2) which does not require evaluation of high-dimensional
basis vectors. In this way, the complexity of POD can be reduced to only O(nm logk).
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Restricted memory and streaming environments

Consider an environment where the memory consumption is the primary constraint.
Classical offline stage involves evaluations of inner products of high-dimensional
vectors. These operations require many passes over large data sets, e.g., a set of
samples of the solution or the reduced basis, and can result in a computational
burden. We show how to build the reduced order model with only one pass over the
data. In extreme cases our algorithms may be employed in a streaming environment,
where samples of the solution are provided as data-streams and storage of only a few
large vectors is allowed. Moreover, with our methodology one can build a reduced
order model without storing any high-dimensional vector.

Distributed computing

The computations involved in our version of POD can be efficiently distributed
among multiple workstations. Each sample of the solution can be evaluated and
processed on a different machine with absolutely no communication. Thereafter,
small sketches of the samples can be sent to the master workstation for building the
reduced order model. The total amount of communication required by our algorithm
is proportional to k (the dimension of the sketch) and is independent of the dimension
of the initial full order model.

Parallel computing

Recently, parallelization was considered as a workaround to address large-scale com-
putations [95]. The authors did not propose a new methodology but rather exploited
the key opportunities for parallelization in a standard approach. We, on the other
hand, propose a new methodology which can be better suited for parallelization than
the classical one. The computations involved in our algorithms mainly consist in
evaluating random matrix-vector products and solving high-dimensional systems of
equations. The former operation is embarrassingly parallel (with a good choice of
random matrices), while the latter one can be efficiently parallelized with state-of-
the-art algorithms.

Online-efficient and robust error estimation

In addition, we provide a new way for estimating the error associated with a solution
of the reduced order model, the error being defined as some norm of the residual.
It does not require any assumption on the way to obtain the approximate solution
and can be employed separately from the rest of the methodology. For example,
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it could be used for the efficient estimation of the error associated with a classical
Galerkin projection. Our approach yields cost reduction for the offline stage but it
is also online-efficient. Given the solution of the reduced order model, it requires
only O(rmA +mb) flops for estimating the residual-based error while a classical
procedure takes O(r2m2

A+m2
b) flops. Moreover, compared to the classical approach,

our method is less sensitive to round-off errors.

2.2 Projection-based model order reduction meth-
ods

In this section, we introduce the problem of interest and present the basic ingredients
of classical MOR algorithms in a form well suited for random sketching methods. We
consider a discrete setting, e.g, a problem arising after discretization of a parameter-
dependent PDE or integral equation. We use notations that are standard in the
context of variational methods for PDEs. However, for models simply described
by algebraic equations, the notions of solution spaces, dual spaces, etc., can be
disregarded.

Let U := Kn (with K = R or C) denote the solution space equipped with inner
product 〈·, ·〉U := 〈RU ·, ·〉, where 〈·, ·〉 is the canonical inner product on Kn and
RU ∈ Kn×n is some self-adjoint (symmetric if K = R and Hermitian if K = C)
positive definite matrix. The dual space of U is identified with U ′ := Kn, which is
endowed with inner product 〈·, ·〉U ′ := 〈·,R−1

U ·〉. For a matrix M ∈Kn×n we denote
by MH its adjoint (transpose if K = R and Hermitian transpose if K = C).

Remark 2.2.1. Matrix RU is seen as a map from U to U ′. In the framework of
numerical methods for PDEs, the entries of RU can be obtained by evaluating inner
products of corresponding basis functions. For example, if the PDE is defined on
a space equipped with H1 inner product, then RU is equal to the stiffness (discrete
Laplacian) matrix. For algebraic parameter-dependent equations, RU can be taken
as identity.

Let µ denote parameters taking values in a set P (which is typically a subset of Kp,
but could also be a subset of function spaces, etc.). Let parameter-dependent linear
forms b(µ) ∈ U ′ and l(µ) ∈ U ′ represent the right-hand side and the extractor of a
quantity of interest, respectively, and let A(µ) : U → U ′ represent the parameter-
dependent operator. The problem of interest can be formulated as follows: for each
given µ ∈ P find the quantity of interest s(µ) := 〈l(µ),u(µ)〉, where u(µ) ∈ U is such
that

A(µ)u(µ) = b(µ). (2.1)
Further, we suppose that the solution manifold {u(µ) : µ ∈ P} can be well

approximated by some low dimensional subspace of U . Let Ur ⊆ U be such a
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subspace and Ur ∈ Kn×r be a matrix whose column vectors form a basis for Ur.
The question of finding a good Ur is addressed in Sections 2.2.4 and 2.2.4. In
projection-based MOR methods, u(µ) is approximated by a projection ur(µ) ∈ Ur.

2.2.1 Galerkin projection
Usually, a Galerkin projection ur(µ) is obtained by imposing the following orthogo-
nality condition to the residual [124]:

〈r(ur(µ);µ),w〉= 0, ∀w ∈ Ur, (2.2)
where r(x;µ) := b(µ)−A(µ)x, x ∈ U . This condition can be expressed in a different
form that will be particularly handy in further sections. For this we define the
following semi-norm over U ′:

‖y‖U ′r := max
w∈Ur\{0}

|〈y,w〉|
‖w‖U

, y ∈ U ′. (2.3)

Note that replacing Ur by U in definition (2.3) yields a norm consistent with the one
induced by 〈·, ·〉U ′ . The relation (2.2) can now be rewritten as

‖r(ur(µ);µ)‖U ′r = 0. (2.4)
Let us define the following parameter-dependent constants characterizing quasi-

optimality of Galerkin projection:

αr(µ) := min
x∈Ur\{0}

‖A(µ)x‖U ′r
‖x‖U

, (2.5a)

βr(µ) := max
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖U ′r
‖x‖U

. (2.5b)

It has to be mentioned that αr(µ) and βr(µ) can be bounded by the coercivity
constant θ(µ) and the continuity constant (the maximal singular value) β(µ) of A(µ),
respectively defined by

θ(µ) := min
x∈U\{0}

〈A(µ)x,x〉
‖x‖2U

≤ αr(µ), (2.6a)

β(µ) := max
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

≥ βr(µ). (2.6b)

For some problems it is possible to provide lower and upper bounds for θ(µ) and
β(µ) [79].

If αr(µ) is positive, then the reduced problem (2.2) is well-posed. For given
V ⊆ U , let PV : U → V denote the orthogonal projection on V with respect to ‖ ·‖U ,
i.e.,

∀x ∈ U, PV x = arg min
w∈V
‖x−w‖U . (2.7)

We now provide a quasi-optimality characterization for the projection ur(µ).
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Proposition 2.2.2 (modified Cea’s lemma). If αr(µ)> 0, then the solution ur(µ)
of (2.2) is such that

‖u(µ)−ur(µ)‖U ≤ (1 + βr(µ)
αr(µ))‖u(µ)−PUru(µ)‖U . (2.8)

Proof. See appendix.

Note that Proposition 2.2.2 is a slightly modified version of the classical Cea’s lemma
with the continuity constant β(µ) replaced by βr(µ).

The coordinates of ur(µ) in the basis Ur, i.e., ar(µ) ∈ Kr such that ur(µ) =
Urar(µ), can be found by solving the following system of equations

Ar(µ)ar(µ) = br(µ), (2.9)

where Ar(µ) = UH
r A(µ)Ur ∈Kr×r and br(µ) = UH

r b(µ) ∈Kr. The numerical sta-
bility of (2.9) is usually obtained by orthogonalization of Ur.

Proposition 2.2.3. If Ur is orthogonal with respect to 〈·, ·〉U , then the condition
number of Ar(µ) is bounded by βr(µ)

αr(µ) .

Proof. See appendix.

2.2.2 Error estimation
When an approximation ur(µ) ∈ Ur of the exact solution u(µ) has been evaluated, it
is important to be able to certify how close they are. The error ‖u(µ)−ur(µ)‖U can
be bounded by the following error indicator

∆(ur(µ);µ) := ‖r(ur(µ);µ)‖U ′
η(µ) , (2.10)

where η(µ) is such that

η(µ)≤ min
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

. (2.11)

In its turn, the certification of the output quantity of interest sr(µ) := 〈l(µ),ur(µ)〉
is provided by

|s(µ)− sr(µ)| ≤ ‖l(µ)‖U ′‖u(µ)−ur(µ)‖U ≤ ‖l(µ)‖U ′∆(ur(µ);µ). (2.12)
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2.2.3 Primal-dual correction
The accuracy of the output quantity obtained by the aforementioned methodology
can be improved by goal-oriented correction [128] explained below. A dual problem
can be formulated as follows: for each µ ∈ P , find udu(µ) ∈ U such that

A(µ)Hudu(µ) =−l(µ). (2.13)

The dual problem can be tackled in the same manner as the primal problem. For this
we can use a Galerkin projection onto a certain rdu-dimensional subspace Udu

r ⊆ U .
Now suppose that besides approximation ur(µ) of u(µ), we also have obtained

an approximation of udu(µ) denoted by udu
r (µ) ∈ Udu

r . The quantity of interest can
be estimated by

spd
r (µ) := sr(µ)−〈udu

r (µ),r(ur(µ);µ)〉. (2.14)

Proposition 2.2.4. The estimation spd
r (µ) of s(µ) is such that

|s(µ)− spd
r (µ)| ≤ ‖rdu(udu

r (µ);µ)‖U ′∆(ur(µ);µ), (2.15)

where rdu(udu
r (µ);µ) :=−l(µ)−A(µ)Hudu

r (µ).

Proof. See appendix.

We observe that the error bound (2.15) of the quantity of interest is now quadratic
in the residual norm in contrast to (2.12).

2.2.4 Reduced basis generation

Until now we have assumed that the reduced subspaces Ur and Udu
r were given.

Let us briefly outline the standard procedure for the reduced basis generation with
greedy algorithm and POD. The POD is here presented in a general algebraic form,
which allows a non-intrusive use of any low-rank approximation algorithm. Below
we consider only the primal problem noting that similar algorithms can be used for
the dual one. We also assume that a training set Ptrain ⊆ P with finite cardinality
m is provided.

Greedy algorithm

The approximation subspace Ur can be constructed recursively with a (weak) greedy
algorithm. At iteration i, the basis of Ui is enriched by snapshot u(µi+1), i.e.,

Ui+1 := Ui+ span(u(µi+1)),

evaluated at a parameter value µi+1 that maximizes a certain error indicator ∆̃(Ui;µ)
over the training set. Note that for efficient evaluation of argmaxµ∈Ptrain ∆̃(Ui;µ) a
provisional online solver associated with Ui has to be provided.
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The error indicator ∆̃(Ui;µ) for the greedy selection is typically chosen as an
upper bound or estimator of ‖u(µ)−PUiu(µ)‖U . One can readily take ∆̃(Ui;µ) :=
∆(ui(µ);µ), where ui(µ) is the Galerkin projection defined by (2.4). The quasi-
optimality of such ∆̃(Ui,µ) can then be characterized by using Proposition 2.2.2 and
definitions (2.6b) and (2.10).

Proper Orthogonal Decomposition

In the context of POD we assume that the samples (snapshots) of u(µ), associated
with the training set, are available. Let them be denoted as {u(µi)}mi=1, where
µi ∈Ptrain, 1≤ i≤m. Further, let us define Um :=

[
u(µ1),u(µ2), ...,u(µm)

]
∈Kn×m

and Um := range(Um). POD aims at finding a low dimensional subspace Ur ⊆ Um
for the approximation of the set of vectors {u(µi)}mi=1.

For each r ≤ dim(Um) we define

PODr(Um,‖ · ‖U ) := arg min
Wr⊆Um

dim(Wr)=r

m∑
i=1
‖u(µi)−PWru(µi)‖2U . (2.16)

The standard POD consists in choosing Ur as PODr(Um,‖ · ‖U ) and using the
method of snapshots [136], or SVD of matrix R1/2

U Um, for computing the basis
vectors. For large-scale problems, however, performing the method of snapshots or
the SVD can become a computational burden. In such a case the standard eigenvalue
decomposition and SVD have to be replaced by other low-rank approximations, e.g.,
incremental SVD, randomized SVD, hierarchical SVD, etc. For each of them it can
be important to characterize quasi-optimality of the approximate POD basis. Below
we provide a generalized algebraic version of POD well suited for a combination
with low-rank approximation algorithms as well as state-of-the-art SVD. Note that
obtaining (e.g., using a spectral decomposition) and operating with R1/2

U can be
expensive and should be avoided for large-scale problems. The usage of this matrix
for constructing the POD basis can be easily circumvented (see Remark 2.2.7).

Proposition 2.2.5. Let Q ∈Ks×n be such that QHQ = RU . Let B∗r ∈Ks×m be a
best rank-r approximation of QUm with respect to the Frobenius norm ‖ · ‖F . Then
for any rank-r matrix Br ∈Ks×m, it holds

1
m
‖QUm−B∗r‖2F ≤

1
m

m∑
i=1
‖u(µi)−PUru(µi)‖2U ≤

1
m
‖QUm−Br‖2F , (2.17)

where Ur := {R−1
U QHb : b ∈ span(Br)}.

Proof. See appendix.
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Corollary 2.2.6. Let Q ∈Ks×n be such that QHQ = RU . Let B∗r ∈Ks×m be a best
rank-r approximation of QUm with respect to the Frobenius norm ‖ · ‖F . Then

PODr(Um,‖ · ‖U ) = {R−1
U QHb : b ∈ range(B∗r)}. (2.18)

It follows that the approximation subspace Ur for {u(µi)}mi=1 can be obtained by
computing a low-rank approximation of QUm. According to Proposition 2.2.5, for
given r, quasi-optimality of Ur can be guaranteed by quasi-optimality of Br.
Remark 2.2.7. Matrix Q in Proposition 2.2.5 and Corollary 2.2.6 can be seen as
a map from U to Ks. Clearly, it can be computed with a Cholesky (or spectral)
decomposition of RU . For large-scale problems, however, it might be a burden to
obtain, store or operate with such a matrix. We would like to underline that Q
does not have to be a square matrix. It can be easily obtained in the framework of
numerical methods for PDEs (e.g., finite elements, finite volumes, etc.). Suppose
that RU can be expressed as an assembly of smaller self-adjoint positive semi-definite
matrices R(i)

U each corresponding to the contribution, for example, of a finite element
or subdomain. In other words,

RU =
l∑

i=1
E(i)R(i)

U [E(i)]T,

where E(i) is an extension operator mapping a local vector to the global one (usually
a boolean matrix). Since R(i)

U are small matrices, their Cholesky (or spectral) decom-
positions are easy to compute. Let Q(i) denote the adjoint of the Cholesky factor of
R(i)
U . It can be easily verified that

Q :=


Q(1)[E(1)]T
Q(2)[E(2)]T

...

Q(l)[E(l)]T


satisfies QHQ = RU .

The POD procedure using low-rank approximations is depicted in Algorithm 2.

2.3 Random Sketching
In this section, we adapt the classical sketching theory in Euclidean spaces [153] to a
slightly more general framework. The sketching technique is seen as a modification
of inner product for a given subspace. The modified inner product is approximately
equal to the original one but it is much easier to operate with. Thanks to such
interpretation of the methodology, integration of the sketching technique to the
context of projection-based MOR will become straightforward.
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Algorithm 2 Approximate Proper Orthogonal Decomposition
Given: Ptrain, A(µ), b(µ), RU

Output: Ur and ∆POD

1. Compute the snapshot matrix Um.
2. Determine Q such that QHQ = RU .
3. Compute rank-r approximation, Br, of QUm.
4. Compute an upper bound, ∆POD, of 1

m‖QUm−Br‖2F .
5. Find a matrix, Cr whose column space is span(Br).
6. Evaluate Ur := R−1

U QHCr.

2.3.1 `2-embeddings
Let X := Kn be endowed with inner product 〈·, ·〉X := 〈RX ·, ·〉 for some self-adjoint
positive definite matrix RX ∈ Kn×n, and let Y be a subspace of X of moderate
dimension. The dual of X is identified with X ′ := Kn and the dual of Y is identified
with Y ′ := {RXy : y ∈ Y }. X ′ and Y ′ are both equipped with inner product
〈·, ·〉X ′ := 〈·,R−1

X ·〉. The inner products 〈·, ·〉X and 〈·, ·〉X ′ can be very expensive to
evaluate. The computational cost can be reduced drastically if we are interested
solely in operating with vectors lying in subspaces Y or Y ′. For this we introduce
the concept of X → `2 subspace embeddings.

Let Θ ∈Kk×n with k ≤ n. Further, Θ is seen as an embedding for subspaces of
X. It maps vectors from the subspaces of X to vectors from Kk equipped with the
canonical inner product 〈·, ·〉, so Θ is referred to as an X → `2 subspace embedding.
Let us now introduce the following semi-inner products on X:

〈·, ·〉ΘX := 〈Θ·,Θ·〉, and 〈·, ·〉ΘX ′ := 〈ΘR−1
X ·,ΘR−1

X ·〉. (2.19)

Let ‖ · ‖ΘX and ‖ · ‖ΘX ′ denote the associated semi-norms. In general, Θ is chosen so
that 〈·, ·〉ΘX approximates well 〈·, ·〉X for all vectors in Y or, in other words, Θ is
X → `2 ε-subspace embedding for Y , as defined below.

Definition 2.3.1. If Θ satisfies

∀x,y ∈ Y,
∣∣∣〈x,y〉X −〈x,y〉ΘX ∣∣∣≤ ε‖x‖X‖y‖X , (2.20)

for some ε ∈ [0,1), then it is called a X → `2 ε-subspace embedding (or simply,
ε-embedding) for Y .

Corollary 2.3.2. If Θ is a X → `2 ε-subspace embedding for Y , then

∀x′,y′ ∈ Y ′,
∣∣∣〈x′,y′〉X ′−〈x′,y′〉ΘX ′ ∣∣∣≤ ε‖x′‖X ′‖y′‖X ′ .

Proposition 2.3.3. If Θ is a X → `2 ε-subspace embedding for Y , then 〈·, ·〉ΘX and
〈·, ·〉ΘX ′ are inner products on Y and Y ′, respectively.
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Proof. See appendix.

Let Z ⊆ Y be a subspace of Y . A semi-norm ‖ · ‖Z′ over Y ′ can be defined by

‖y′‖Z′ := max
x∈Z\{0}

|〈y′,x〉|
‖x‖X

= max
x∈Z\{0}

|〈R−1
X y′,x〉X |
‖x‖X

, y′ ∈ Y ′. (2.21)

We propose to approximate ‖ · ‖Z′ by the semi norm ‖ · ‖ΘZ′ given by

‖y′‖ΘZ′ := max
x∈Z\{0}

|〈R−1
X y′,x〉ΘX |
‖x‖ΘX

, y′ ∈ Y ′. (2.22)

Observe that letting Z = Y in Equations (2.21) and (2.22) leads to norms on Y ′

which are induced by 〈·, ·〉X ′ and 〈·, ·〉ΘX ′ .

Proposition 2.3.4. If Θ is a X → `2 ε-subspace embedding for Y , then for all
y′ ∈ Y ′,

1√
1 + ε

(‖y′‖Z′− ε‖y′‖X ′)≤ ‖y′‖ΘZ′ ≤
1√

1− ε
(‖y′‖Z′+ ε‖y′‖X ′). (2.23)

Proof. See appendix.

2.3.2 Data-oblivious embeddings
Here we show how to build a X → `2 ε-subspace embedding Θ as a realization of a
carefully chosen probability distribution over matrices. A reduction of the complexity
of an algorithm can be obtained when Θ is a structured matrix (e.g., sparse or
hierarchical) [153] so that it can be efficiently multiplied by a vector. In such a case
Θ has to be operated implicitly with matrix-vector multiplications performed in a
black-box manner. For environments where the memory consumption or the cost of
communication between cores is the primary constraint, unstructured Θ can still
provide drastic reductions and be more expedient [84].

Definition 2.3.5. Θ is called a (ε,δ,d) oblivious X → `2 subspace embedding if for
any d-dimensional subspace V of X it holds

P(Θ is a X → `2 subspace embedding for V )≥ 1− δ. (2.24)

Corollary 2.3.6. If Θ is a (ε,δ,d) oblivious X → `2 subspace embedding, then
ΘR−1

X is a (ε,δ,d) oblivious X ′→ `2 subspace embedding.
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The advantage of oblivious embeddings is that they do not require any a priori
knowledge of the embedded subspace. In this work we shall consider three well-
known oblivious `2→ `2 subspace embeddings: the rescaled Gaussian distribution,
the rescaled Rademacher distribution, and the partial Subsampled Randomized
Hadamard Transform (P-SRHT). The rescaled Gaussian distribution is such that the
entries of Θ are independent normal random variables with mean 0 and variance k−1.
For the rescaled Rademacher distribution, the entries of Θ are independent random
variables satisfying P

(
[Θ]i,j =±k−1/2

)
= 1/2. Next we recall a standard result that

states that the rescaled Gaussian and Rademacher distributions with sufficiently large
k are (ε,δ,d) oblivious `2→ `2 subspace embeddings. This can be found in [135, 153].
The authors, however, provided the bounds for k in O (asymptotic) notation with no
concern about the constants. These bounds can be impractical for certification (both
a priori and a posteriori) of the solution. Below we provide explicit bounds for k.

Proposition 2.3.7. Let ε and δ be such that 0 < ε < 0.572 and 0 < δ < 1. The
rescaled Gaussian and the rescaled Rademacher distributions over Rk×n with k ≥
7.87ε−2(6.9d+ log(1/δ)) for K = R and k ≥ 7.87ε−2(13.8d+ log(1/δ)) for K = C are
(ε,δ,d) oblivious `2→ `2 subspace embeddings.

Proof. See appendix.

Remark 2.3.8. For K = C, an embedding with a better theoretical bound for k than
the one in Proposition 2.3.7 can be obtained by taking Θ := 1√

2(ΘRe + jΘIm), where
j =
√
−1 and ΘRe,ΘIm ∈Rk×n are rescaled Gaussian matrices. It can be shown that

such Θ is an (ε,δ,d) oblivious `2→ `2 subspace embedding for k ≥ 3.94ε−2(13.8d+
log(1/δ)). A detailed proof of this fact is provided in the supplementary material. In
this work, however, we shall consider only real-valued embeddings.

For the P-SRHT distribution, Θ is taken to be the first n columns of the matrix
k−1/2(RHsD) ∈Rk×s, where s is the power of 2 such that n≤ s < 2n, R ∈Rk×s are
the first k rows of a random permutation of rows of the identity matrix, Hs ∈ Rs×s
is a Walsh-Hadamard matrix2, and D ∈ Rs×s is a random diagonal matrix with
random entries such that P([D]i,i =±1) = 1/2.

Proposition 2.3.9. Let ε and δ be such that 0< ε < 1 and 0< δ < 1. The P-SRHT
distribution over Rk×n with k ≥ 2(ε2− ε3/3)−1

[√
d+

√
8log(6n/δ)

]2
log(3d/δ) is a

(ε,δ,d) oblivious `2→ `2 subspace embedding.

Proof. See appendix.
2The Walsh-Hadamard matrix Hs of dimension s, with s being a power of 2, is a structured

matrix defined recursively by Hs = Hs/2⊗H2, with H2 :=
[
1 1
1 −1

]
. A product of Hs with a

vector can be computed with s log2 (s) flops by using the fast Walsh-Hadamard transform.
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Remark 2.3.10. A product of P-SRHT and Gaussian (or Rademacher) matrices
can lead to oblivious `2→ `2 subspace embeddings that have better theoretical bounds
for k than P-SRHT but still have low complexity of multiplication by a vector.

We observe that the lower bounds in Propositions 2.3.7 and 2.3.9 are independent
or only weakly (logarithmically) dependent on the dimension n and the probability
of failure δ. In other words, Θ with a moderate k can be guaranteed to satisfy (2.24)
even for extremely large n and small δ. Note that the theoretical bounds for k shall
be useful only for problems with rather high initial dimension, say with n/r > 104.
Furthermore, in our experiments we revealed that the presented theoretical bounds
are pessimistic. Another way for selecting the size for random sketching matrix Θ
such that it is an ε-embedding for a given subspace V is the adaptive procedure
proposed in Chapter 3 of this manuscript.

The rescaled Rademacher distribution and P-SRHT provide database-friendly
matrices, which are easy to operate with. The rescaled Rademacher distribution is
attractive from the data structure point of view and it can be efficiently implemented
using standard SQL primitives [2]. The P-SRHT has a hierarchical structure allowing
multiplications by vectors with only s log2 (s) flops, where s is a power of 2 and n≤
s < 2n, using the fast Walsh-Hadamard transform or even 2s log2(k+1) flops using a
more sophisticated procedure proposed in [3]. In the algorithms P-SRHT distribution
shall be preferred. However for multi-core computing, where the hierarchical structure
of P-SRHT cannot be fully exploited, Gaussian or Rademacher matrices can be more
expedient. Finally, we would like to point out that a random sequence needed for
constructing a realization of Gaussian, Rademacher or P-SRHT distribution can be
generated using a seeded random number generator. In this way, an embedding can
be efficiently maintained with negligible communication (for parallel and distributed
computing) and storage costs.

The following proposition can be used for constructing oblivious X → `2 sub-
space embeddings for general inner product 〈RX ·, ·〉 from classical `2→ `2 subspace
embeddings.

Proposition 2.3.11. Let Q ∈ Ks×n be any matrix such that QHQ = RX . If Ω ∈
Kk×s is a (ε,δ,d) oblivious `2→ `2 subspace embedding, then Θ = ΩQ is a (ε,δ,d)
oblivious X → `2 subspace embedding.

Proof. See appendix.

Note that matrix Q in Proposition 2.3.11 can be efficiently obtained block-wise (see
Remark 2.2.7). In addition, there is no need to evaluate Θ = ΩQ explicitly.
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2.4 `2-embeddings for projection-based MOR
In this section we integrate the sketching technique in the context of model order
reduction methods from Section 2.2. Let us define the following subspace of U :

Yr(µ) := Ur + span{R−1
U r(x;µ) : x ∈ Ur}, (2.25)

where r(x;µ) = b(µ)−A(µ)x, and identify its dual space with Yr(µ)′ := span{RUx :
x ∈ Yr(µ)}. Furthermore, let Θ ∈ Kk×n be a certain sketching matrix seen as an
U → `2 subspace embedding.

2.4.1 Galerkin projection
We propose to use random sketching for estimating the Galerkin projection. For
any x ∈ Ur the residual r(x;µ) belongs to Yr(µ)′. Consequently, taking into account
Proposition 2.3.4, if Θ is a U → `2 ε-subspace embedding for Yr(µ), then for all
x ∈ Ur the semi-norm ‖r(x;µ)‖U ′r in (2.4) can be well approximated by ‖r(x;µ)‖ΘU ′r .
This leads to the sketched version of the Galerkin orthogonality condition:

‖r(ur(µ);µ)‖ΘU ′r = 0. (2.26)

The quality of projection ur(µ) satisfying (2.26) can be characterized by the following
coefficients:

αΘ
r (µ) := min

x∈Ur\{0}

‖A(µ)x‖ΘU ′r
‖x‖U

, (2.27a)

βΘ
r (µ) := max

x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖ΘU ′r
‖x‖U

. (2.27b)

Proposition 2.4.1 (Cea’s lemma for sketched Galerkin projection). Let ur(µ)
satisfy (2.26). If αΘ

r (µ)> 0, then the following relation holds

‖u(µ)−ur(µ)‖U ≤ (1 + βΘ
r (µ)
αΘ
r (µ))‖u(µ)−PUru(µ)‖U . (2.28)

Proof. See appendix.

Proposition 2.4.2. Let

ar(µ) := max
w∈Ur\{0}

‖A(µ)w‖U ′
‖A(µ)w‖U ′r

.
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If Θ is a U → `2 ε-embedding for Yr(µ), then

αΘ
r (µ)≥ 1√

1 + ε
(1− εar(µ))αr(µ), (2.29a)

βΘ
r (µ)≤ 1√

1− ε
(βr(µ) + εβ(µ)). (2.29b)

Proof. See appendix.

There are two ways to select a random distribution for Θ such that it is guaranteed
to be a U → `2 ε-embedding for Yr(µ) for all µ ∈ P , simultaneously, with probability
at least 1− δ. A first way applies when P is of finite cardinality. We can choose
Θ such that it is a (ε,δ#P−1,d) oblivious U → `2 subspace embedding, where
d := maxµ∈P dim(Yr(µ)) and apply a union bound for the probability of success.
Since d≤ 2r+ 1, Θ can be selected of moderate size. When P is infinite, we make
a standard assumption that A(µ) and b(µ) admit affine representations. It then
follows directly from the definition of Yr(µ) that ⋃µ∈P Yr(µ) is contained in a low-
dimensional space Y ∗r . Let d∗ be the dimension of this space. By definition, if Θ is a
(ε,δ,d∗) oblivious U → `2 subspace embedding, then it is a U → `2 ε-embedding for
Y ∗r , and hence for every Yr(µ), simultaneously, with probability at least 1− δ.

The lower bound for αΘ
r (µ) in Proposition 2.4.2 depends on the product εar(µ).

In particular, to guarantee positivity of αΘ
r (µ) and ensure well-posedness of (2.26),

condition εar(µ)< 1 has to be satisfied. The coefficient ar(µ) is bounded from above
by β(µ)

αr(µ) . Consequently, ar(µ) for coercive well-conditioned operators is expected
to be lower than for non-coercive ill-conditioned A(µ). The condition number and
coercivity of A(µ), however, do not fully characterize ar(µ). This coefficient rather
reflects how well Ur corresponds to its image {A(µ)x : x ∈ Ur} through the map
A(µ). For example, if the basis for Ur is formed from eigenvectors of A(µ) then
ar(µ) = 1. We also would like to note that the performance of the random sketching
technique depends on the operator, only when it is employed for estimating the
Galerkin projection. The accuracy of estimation of the residual error and the goal-
oriented correction depends on the quality of sketching matrix Θ but not on A(µ).
In addition, to make the performance of random sketching completely insensitive to
the operator’s properties, one can consider another type of projection (randomized
minimal residual projection) for ur(µ) as is discussed in Chapter 3.

The coordinates of the solution ur(µ) of (2.26) can be found by solving

Ar(µ)ar(µ) = br(µ), (2.30)

where Ar(µ) := UH
r ΘHΘR−1

U A(µ)Ur ∈Kr×r and br(µ) := UH
r ΘHΘR−1

U b(µ) ∈Kr.
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Proposition 2.4.3. Let Θ be a U→ `2 ε-embedding for Ur, and let Ur be orthogonal
with respect to 〈·, ·〉ΘU . Then the condition number of Ar(µ) in (2.30) is bounded by√

1+ε
1−ε

βΘ
r (µ)
αΘ
r (µ) .

Proof. See appendix.

2.4.2 Error Estimation
Let ur(µ) ∈ Ur be an approximation of u(µ). Consider the following error estimator:

∆Θ(ur(µ);µ) := ‖r(ur(µ);µ)‖ΘU ′
η(µ) , (2.31)

where η(µ) is defined by (2.11). Below we show that under certain conditions,
∆Θ(ur(µ);µ) is guaranteed to be close to the classical error indicator ∆(ur(µ);µ).

Proposition 2.4.4. If Θ is a U → `2 ε-embedding for span{R−1
U r(ur(µ);µ)}, then

√
1− ε∆(ur(µ);µ)≤∆Θ(ur(µ);µ)≤

√
1 + ε∆(ur(µ);µ). (2.32)

Proof. See appendix.

Corollary 2.4.5. If Θ is a U → `2 ε-embedding for Yr(µ), then relation (2.32)
holds.

2.4.3 Primal-dual correction
The sketching technique can be applied to the dual problem in exactly the same
manner as to the primal problem.

Let ur(µ) ∈ Ur and udu
r (µ) ∈ Udu

r be approximations of u(µ) and udu(µ), respec-
tively. The sketched version of the primal-dual correction (2.14) can be expressed as
follows

sspd
r (µ) := sr(µ)−〈udu

r (µ),R−1
U r(ur(µ);µ)〉ΘU . (2.33)

Proposition 2.4.6. If Θ is U → `2 ε-embedding for span{udu
r (µ),R−1

U r(ur(µ);µ)},
then

|s(µ)− sspd
r (µ)| ≤ ‖r(ur(µ);µ)‖U ′

η(µ) ((1 + ε)‖rdu(udu
r (µ);µ)‖U ′+ ε‖l(µ)‖U ′). (2.34)

Proof. See appendix.
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Remark 2.4.7. We observe that the new version of primal-dual correction (2.33)
and its error bound (2.34) are no longer symmetric in terms of the primal and dual
solutions. When the residual error of udu

r (µ) is smaller than the residual error of
ur(µ), it can be more beneficial to consider the dual problem as the primal one and
vice versa.

Remark 2.4.8. Consider the so called “compliant case”, i.e., A(µ) is self-adjoint,
and b(µ) is equal to l(µ) up to a scaling factor. In such a case the same solution (up
to a scaling factor) should be used for both the primal and the dual problems. If the
approximation ur(µ) of u(µ) is obtained with the classical Galerkin projection then
the primal-dual correction is automatically included to the primal output quantity, i.e.,
sr(µ) = spd

r (µ). Similar scenario can be observed for the sketched Galerkin projection.
If ur(µ) satisfies (2.26) and the same Θ is considered for both the projection and the
inner product in (2.33), then sr(µ) = sspd

r (µ).

It follows that if ε is of the order of ‖rdu(udu
r (µ);µ)‖U ′/‖l(µ)‖U ′ , then the

quadratic dependence in residual norm of the error bound is preserved. For relatively
large ε, however, the error is expected to be proportional to ε‖r(ur(µ);µ)‖U ′ . Note
that ε can decrease slowly with k (typically ε = O(k−1/2), see Propositions 2.3.7
and 2.3.9). Consequently, preserving high precision of the primal-dual correction can
require large sketching matrices.

More accurate but yet efficient estimation of spd(µ) can be obtained by introducing
an approximation wdu

r (µ) of udu
r (µ) such that the inner products with wdu

r (µ) are
efficiently computable. Such approximation does not have to be very precise. As it
will become clear later, it is sufficient to have wdu

r (µ) such that ‖udu
r (µ)−wdu

r (µ)‖U
is of the order of ε−1‖udu

r (µ)−udu(µ)‖U . A possible choice is to let wdu
r (µ) be

the orthogonal projection of udu
r (µ) on a certain subspace W du

r ⊂ U , where W du
r is

such that it approximates well {udu
r (µ) : µ ∈ P} but is much cheaper to operate

with than Udu
r , e.g., if it has a smaller dimension. One can simply take W du

r = Udu
i

(the subspace spanned by the first idu basis vectors obtained during the generation
of Udu

r ), for some small idu < rdu. A better approach consists in using a greedy
algorithm or the POD method with a training set {udu

r (µ) : µ ∈ Ptrain}. We could
also choose W du

r as the subspace associated with a coarse-grid interpolation of the
solution. In this case, even if W du

r has a high dimension, it can be operated with
efficiently because its basis vectors are sparse. Strategies for the efficient construction
of approximation spaces for udu

r (µ) (or ur(µ)) are provided in Chapter 3. Now, let
us assume that wdu

r (µ) is given and consider the following estimation of spd
r (µ):

sspd+
r (µ) := sr(µ)−〈wdu

r (µ),r(ur(µ);µ)〉−〈udu
r (µ)−wdu

r (µ),R−1
U r(ur(µ);µ)〉ΘU .

(2.35)
We notice that sspd+

r (µ) can be evaluated efficiently but, at the same time, it has
better accuracy than sspd

r (µ) in (2.34). By similar consideration as in Proposition 2.4.6
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it can be shown that for preserving quadratic dependence in the error for sspd+
r (µ),

it is sufficient to have ε of the order of ‖udu
r (µ)−udu(µ)‖U ′/‖udu

r (µ)−wdu
r (µ)‖U ′ .

Further, we assume that the accuracy of sspd
r (µ) is sufficiently good so that

there is no need to consider a corrected estimation sspd+
r (µ). For other cases the

methodology can be applied similarly.

2.4.4 Computing the sketch
In this section we introduce the concept of a sketch of the reduced order model.
A sketch contains all the information needed for estimating the output quantity
and certifying this estimation. It can be efficiently computed in basically any
computational environment.

We restrict ourselves to solving the primal problem. Similar considerations also
apply for the dual problem and primal-dual correction. The Θ-sketch of a reduced
model associated with a subspace Ur is defined as{{

Θx,ΘR−1
U r(x;µ),〈l(µ),x〉

}
: x ∈ Ur

}
(2.36)

In practice, each element of (2.36) can be represented by the coordinates of x
associated with Ur, i.e., a vector ar ∈Kr such that x = Urar, the sketched reduced
basis matrix UΘ

r := ΘUr and the following small parameter-dependent matrices and
vectors:

VΘ
r (µ) := ΘR−1

U A(µ)Ur, bΘ(µ) := ΘR−1
U b(µ), lr(µ)H := l(µ)HUr. (2.37)

Throughout the chapter, matrix UΘ
r and the affine expansions of VΘ

r (µ), bΘ(µ) and
lr(µ) shall be referred to as the Θ-sketch of Ur. This object should not be confused
with the Θ-sketch associated with a subspace Ur defined by (2.36). The Θ-sketch of
Ur shall be used for characterizing the elements of the Θ-sketch associated with Ur
similarly as Ur is used for characterizing the vectors in Ur.

The affine expansions of VΘ
r (µ), bΘ(µ) and lr(µ) can be obtained either by

considering the affine expansions of A(µ), b(µ), and l(µ)3 or with empirical interpo-
lation method (EIM) [102]. Given the sketch, the affine expansions of the quantities
(e.g., Ar(µ) in (2.30)) needed for efficient evaluation of the output can be computed
with negligible cost. Computation of the Θ-sketch determines the cost of the offline
stage and it has to be performed depending on the computational environment. We
assume that the affine factors of lr(µ) are cheap to evaluate. Then the remaining
computational cost is mainly associated with the following three operations: comput-
ing the samples (snapshots) of the solution (i.e., solving the full order problem for
several µ ∈ P), performing matrix-vector products with R−1

U and the affine factors
3For instance, if A(µ) =

∑mA
i=1φi(µ)Ai, then VΘ

r (µ) =
∑mA
i=1φi(µ)

(
ΘR−1

U AiUr

)
. Similar rela-

tions can also be derived for bΘ(µ) and lr(µ).
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of A(µ) (or A(µ) evaluated at the interpolation points for EIM), and evaluating
matrix-vector products with Θ.

The cost of obtaining the snapshots is assumed to be low compared to the cost of
other offline computations such as evaluations of high dimensional inner and matrix-
vector products. This is the case when the snapshots are computed beyond the main
routine using highly optimised linear solver or a powerful server with limited budget.
This is also the case when the snapshots are obtained on distributed machines with
expensive communication costs. Solutions of linear systems of equations should
have only a minor impact on the overall cost of an algorithm even when the basic
metrics of efficiency, such as the complexity (number of floating point operations) and
memory consumption, are considered. For large-scale problems solved in sequential
or limited memory environments the computation of each snapshot should have
log-linear (i.e., O(n(logn)d), for some small d) complexity and memory requirements.
Higher complexity or memory requirements are usually not acceptable with standard
architectures. In fact, in recent years there was an extensive development of methods
for solving large-scale linear systems of equations [18, 68, 82] allowing computation of
the snapshots with log-linear number of flops and bytes of memory (see for instance
[28, 69, 101, 107, 154]). On the other hand, for classical model reduction, the
evaluation of multiple inner products for the affine terms of reduced systems (2.9)
and the quantities for error estimation (see Section 2.4.5) require O(nr2m2

A+nm2
b)

flops, with mA and mb being the numbers of terms in affine expansions of A(µ) and
b(µ), respectively, and O(nr) bytes of memory. We see that indeed the complexity
and memory consumption of the offline stage can be highly dominated by the
postprocessing of the snapshots but not their computation.

Matrices RU and A(µ) should be sparse or maintained in a hierarchical format [82],
so that they can be multiplied by a vector using (log-)linear complexity and storage
consumption. Multiplication of R−1

U by a vector should also be an inexpensive
operation with the cost comparable to the cost of computing matrix-vector products
with RU . For many problems it can be beneficial to precompute a factorization of
RU and to use it for efficient multiplication of R−1

U by multiple vectors. Note that
for the typical RU (such as stiffness and mass matrices) originating from standard
discretizations of partial differential equations in two spatial dimensions, a sparse
Cholesky decomposition can be precomputed using O(n3/2) flops and then used
for multiplying R−1

U by vectors with O(n logn) flops. For discretized PDEs in
higher spatial dimensions, or problems where RU is dense, the classical Cholesky
decomposition can be more burdensome to obtain and use. For better efficiency, the
matrix RU can be approximated by Q̃HQ̃ (with log-linear number of flops) using
incomplete or hierarchical [19] Cholesky factorizations. Iterative Krylov methods
with good preconditioning is an alternative way for computing products of R−1

U with
vectors with log-linear complexity [28]. Note that although multiplication of R−1

U by a
vector and computation of a snapshot both require solving high-dimensional systems
of equations, the cost of the former operation should be considerably less than the cost
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of the later one due to good properties of RU (such as positive-definiteness, symmetry,
and parameter-independence providing ability of precomputing a decomposition). In
a streaming environment, where the snapshots are provided as data-streams, a special
care has to be payed to the memory constraints. It can be important to maintain
RU and the affine factors (or evaluations at EIM interpolation points) of A(µ) with
a reduced storage consumption. For discretized PDEs, for example, the entries of
these matrices (if they are sparse) can be generated subdomain-by-subdomain on the
fly. In such a case the conjugate gradient method can be a good choice for evaluating
products of R−1

U with vectors. In very extreme cases, e.g., where storage of even
a single large vector is forbidden, RU can be approximated by a block matrix and
inverted block-by-block on the fly.

Next we discuss an efficient implementation of Θ. We assume that

Θ = ΩQ,

where Ω ∈Kk×s is a classical oblivious `2→ `2 subspace embedding and Q ∈Ks×n

is such that QHQ = RU (see Propositions 2.3.7, 2.3.9 and 2.3.11).
Matrix Q can be expected to have a cost of multiplication by a vector comparable

to RU . If needed, this matrix can be generated block-wise (see Remark 2.2.7) on the
fly similarly to RU .

For environments where the measure of efficiency is the number of flops, a sketching
matrix Ω with fast matrix-vector multiplications such as P-SRHT is preferable. The
complexity of matrix-vector product for P-SRHT is only 2s log2(k+ 1), with s being
the power of 2 such that n≤ s < 2n [3, 30]4. Consequently, assuming that A(µ) is
sparse, that multiplications of Q and R−1

U by a vector take O(n(logn)d) flops, and
that A(µ) and b(µ) admit affine expansions with mA and mb terms respectively, the
overall complexity of computation of a Θ-sketch of Ur, using P-SRHT matrix as Ω,
from the snapshots is only

O(n[rmA logk+mb logk+ rmA(logn)d]).

This complexity can be much less than the complexity of construction of the clas-
sical reduced model (including the precomputation of quantities needed for online
evaluation of the residual error) from Ur, which is O(n[r2m2

A+m2
b + rmA(logn)d]).

The efficiency of an algorithm can be also measured in terms of the number of
passes taken over the data. Such a situation may arise when there is a restriction
on the accessible amount of fast memory. In this scenario, both structured and
unstructured matrices may provide drastic reductions of the computational cost.
Due to robustness and simplicity of implementation, we suggest using Gaussian or
Rademacher matrices over the others. For these matrices a seeded random number

4The straightforward implementation of P-SRHT using the fast Walsh-Hadamard transform
results in s log2 (s) complexity of multiplication by a vector, which yields similar computational
costs as the procedure from [3].
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generator has to be utilized. It allows accessing the entries of Ω on the fly with
negligible storage costs [84]. In a streaming environment, multiplication of Gaussian
or Rademacher matrices by a vector can be performed block-wise.

Note that all aforementioned operations are well suited for parallelization. Re-
garding distributed computing, a sketch of each snapshot can be obtained on a
separate machine with absolutely no communication. The cost of transferring the
sketches to the master machine will depend on the number of rows of Θ but not the
size of the full order problem.

Finally, let us comment on orthogonalization of Ur with respect to 〈·, ·〉ΘU . This
procedure is particularly important for numerical stability of the reduced system of
equations (see Proposition 2.4.3). In our applications we are interested in obtaining
a sketch of the orthogonal matrix but not the matrix itself. In such a case, operating
with large-scale matrices and vectors is not necessary. Let us assume to be given a
sketch of Ur associated with Θ. Let Tr ∈Kr×r be such that UΘ

r Tr is orthogonal
with respect to 〈·, ·〉. Such a matrix can be obtained with a standard algorithm,
e.g., QR factorization. It can be easily verified that U∗r := UrTr is orthogonal with
respect to 〈·, ·〉ΘU . We have,

ΘU∗r = UΘ
r Tr, ΘR−1

U A(µ)U∗r = VΘ
r (µ)Tr, and l(µ)HU∗r = lr(µ)HTr.

Therefore, the sketch of U∗r can be computed, simply, by multiplying UΘ
r and the

affine factors of VΘ
r (µ), and lr(µ)H, by Tr.

2.4.5 Efficient evaluation of the residual norm
Until now we discussed how random sketching can be used for reducing the offline
cost of precomputing factors of affine decompositions of the reduced operator and
the reduced right-hand side. Let us now focus on the cost of the online stage.
Often, the most expensive part of the online stage is the evaluation of the quantities
needed for computing the residual norms for a posteriori error estimation due to
many summands in their affine expansions. In addition, as was indicated in [35, 41],
the classical procedure for the evaluation of the residual norms can be sensitive to
round-off errors. Here we provide a less expensive way of computing the residual
norms, which simultaneously offers a better numerical stability.

Let ur(µ) ∈ Ur be an approximation of u(µ), and ar(µ) ∈Kr be the coordinates
of ur(µ) associated with Ur, i.e., ur(µ) = Urar(µ). The classical algorithm for
evaluating the residual norm ‖r(ur(µ);µ)‖U ′ for a large finite set of parameters
Ptest ⊆ P proceeds with expressing ‖r(ur(µ);µ)‖2U ′ in the following form [79]

‖r(ur(µ);µ)‖2U ′ = 〈ar(µ),M(µ)ar(µ)〉+ 2Re(〈ar(µ),m(µ)〉) +m(µ), (2.38)

where affine expansions of M(µ) := UH
r A(µ)HR−1

U A(µ)Ur, m(µ) := UH
r A(µ)HR−1

U b(µ)
and m(µ) := b(µ)HR−1

U b(µ) can be precomputed during the offline stage and used
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for efficient online evaluation of these quantities for each µ ∈ Ptest. If A(µ) and b(µ)
admit affine representations with mA and mb terms, respectively, then the associated
affine expansions of M(µ), m(µ) and m(µ) contain O(m2

A),O(mAmb),O(m2
b) terms

respectively, therefore requiring O(r2m2
A+m2

b) flops for their online evaluations.
An approximation of the residual norm can be obtained in a more efficient

and numerically stable way with random sketching technique. Let us assume that
Θ ∈ Kk×n is a U → `2 embedding such that ‖r(ur(µ);µ)‖ΘU ′ approximates well
‖r(ur(µ);µ)‖U ′ (see Proposition 2.4.4). Let us also assume that the factors of affine
decompositions of VΘ

r (µ) and bΘ(µ) have been precomputed and are available. For
each µ ∈ Ptest an estimation of the residual norm can be provided by

‖r(ur(µ);µ)‖U ′ ≈ ‖r(ur(µ);µ)‖ΘU ′ = ‖VΘ
r (µ)ar(µ)−bΘ(µ)‖. (2.39)

We notice that VΘ
r (µ) and bΘ(µ) have less terms in their affine expansions than the

quantities in (2.38). The sizes of VΘ
r (µ) and bΘ(µ), however, can be too large to

provide any online cost reduction. In order to improve the efficiency, we introduce an
additional (ε,δ,1) oblivious `2→ `2 subspace embedding Γ ∈Kk′×k. The theoretical
bounds for the number of rows of Gaussian, Rademacher and P-SRHT matrices
sufficient to satisfy the (ε,δ,1) oblivious `2→ `2 subspace embedding property can
be obtained from [2, Lemmas 4.1 and 5.1] and Proposition 2.3.9. They are presented
in Table 2.1. Values are shown for ε= 0.5 and varying probabilities of failure δ. We
note that in order to account for the case K = C we have to employ [2, Lemmas 4.1
and 5.1] for the real part and the imaginary part of a vector, separately, with a union
bound for the probability of success.

Table 2.1: The number of rows of Gaussian (or Rademacher) and P-SRHT matrices
sufficient to satisfy (1/2, δ,1) oblivious `2→ `2 ε-subspace embedding property.

δ = 10−3 δ = 10−6 δ = 10−12 δ = 10−18

Gaussian 200 365 697 1029
P-SRHT 96.4(8 logk+ 69.6) 170(8 logk+ 125) 313(8 logk+ 236) 454(8 logk+ 346)

Remark 2.4.9. In practice the bounds provided in Table 2.1 are pessimistic (espe-
cially for P-SRHT) and much smaller k′ (say, k′ = 100) may provide desirable results.
In addition, in our experiments any significant difference in performance between
Gaussian matrices, Rademacher matrices and P-SRHT has not been revealed.

We observe that the number of rows of Γ can be chosen independent (or weakly
dependent) of the number of rows of Θ. Let Φ := ΓΘ. By definition, for each
µ ∈ Ptest

P
(
|‖r(ur(µ);µ)‖ΘV ′−‖r(ur(µ);µ)‖ΦV ′| ≤ ε‖r(ur(µ);µ)‖ΘV ′

)
≥ 1− δ; (2.40)
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which means that ‖r(ur(µ);µ)‖ΦV ′ is anO(ε)-accurate approximation of ‖r(ur(µ);µ)‖V ′
with high probability. The probability of success for all µ ∈ Ptest simultaneously can
be guaranteed with a union bound. In its turn, ‖r(ur(µ);µ)‖ΦV ′ can be computed
from

‖r(ur(µ);µ)‖ΦV ′ = ‖VΦ
r (µ)ar(µ)−bΦ(µ)‖, (2.41)

where VΦ
r (µ) := ΓVΘ

r (µ) and bΦ(µ) := ΓbΘ(µ). The efficient way of computing
‖r(ur(µ);µ)‖ΦV ′ for every µ ∈ Ptest consists in two stages. Firstly, we generate Γ
and precompute affine expansions of VΦ

r (µ) and bΦ(µ) by multiplying each affine
factor of VΘ

r (µ) and bΘ(µ) by Γ. The cost of this stage is independent of #Ptest
(and n, of course) and becomes negligible for Ptest of moderate size. In the second
stage, for each parameter µ ∈ Ptest, ‖r(ur(µ);µ)‖ΦV ′ is evaluated from (2.41) using
precomputed affine expansions. The quantities VΦ

r (µ) and bΦ(µ) contain at most
the same number of terms as A(µ) and b(µ) in their affine expansion. Consequently,
if A(µ) and b(µ) are parameter-separable with mA and mb terms, respectively, then
each evaluation of ‖r(ur(µ);µ)‖ΦV ′ from ar(µ) requires only O(k′rmA+k′mb) flops,
which can be much less than the O(r2m2

A+m2
b) flops required for evaluating (2.38).

Note that the classical computation of the residual norm by taking the square root of
‖r(ur(µ);µ)‖2U ′ evaluated using (2.38) can suffer from round-off errors. On the other
hand, the evaluation of ‖r(ur(µ);µ)‖ΦV ′ using (2.41) is less sensitive to round-off
errors since here we proceed with direct evaluation of the (sketched) residual norm
but not its square.

Remark 2.4.10. Multiplication of affine factors of VΘ
r (µ) and bΘ(µ) by Γ can be

performed during the offline stage.

Remark 2.4.11. For algorithms where Ptest or Ur are selected adaptively based on a
criterion depending on the residual norm (e.g., the classical greedy algorithm outlined
in Section 2.2.4), a new realization of Γ has to be generated at each iteration. If the
same realization of Γ is used for several iterations of the adaptive algorithm, care
must be taken when characterizing the probability of success. This probability can
decrease exponentially with the number of iterations, which requires to use considerably
larger Γ. Such option can be justified only for the cases when the cost of multiplying
affine factors by Γ greatly dominates the cost of the second stage, i.e., evaluating
‖r(ur(µ);µ)‖ΦV ′ for all µ ∈ Ptest.

2.5 Efficient reduced basis generation

In this section we show how the sketching technique can be used for improving the
generation of reduced approximation spaces with greedy algorithm for RB, or a POD.
Let Θ ∈Kk×n be a U → `2 subspace embedding.
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2.5.1 Greedy algorithm
Recall that at each iteration of the greedy algorithm (see Section 2.2.4) the basis is
enriched with a new sample (snapshot) u(µi+1), selected based on error indicator
∆̃(Ui;µ). The standard choice is ∆̃(Ui;µ) := ∆(ui(µ);µ) where ui(µ) ∈ Ui satis-
fies (2.2). Such error indicator, however, can lead to very expensive computations.
The error indicator can be modified to ∆̃(Ui;µ) := ∆Θ(ui(µ);µ), where ui(µ) ∈ Ui
is an approximation of u(µ) which does not necessarily satisfy (2.2). Further, we
restrict ourselves to the case when ui(µ) is the sketched Galerkin projection (2.26).
If there is no interest in reducing the cost of evaluating inner products but only
reducing the cost of evaluating residual norms, it can be more relevant to consider
the classical Galerkin projection (2.2) instead of (2.26).

A quasi-optimality guarantee for the greedy selection with ∆̃(Ui;µ) := ∆Θ(ui(µ);µ)
can be derived from Propositions 2.4.1 and 2.4.2 and Corollary 2.4.5. At iteration
i of the greedy algorithm, we need Θ to be a U → `2 ε-subspace embedding for
Yi(µ) defined in (2.25) for all µ ∈ Ptrain. One way to achieve this is to generate a
new realization of an oblivious U → `2 subspace embedding Θ at each iteration of
the greedy algorithm. Such approach, however, will lead to extra complexities and
storage costs compared to the case where the same realization is employed for the
entire procedure. In this work, we shall consider algorithms where Θ is generated
only once. When it is known that the set ⋃µ∈Ptrain Yr(µ) belongs to a subspace Y ∗m of
moderate dimension (e.g., when we operate on a small training set), then Θ can be
chosen such that it is a U → `2 ε-subspace embedding for Y ∗m with high probability.
Otherwise, care must be taken when characterizing the probability of success because
of the adaptive nature of the greedy algorithm. In such cases, all possible outcomes
for Ur should be considered by using a union bound for the probability of success.

Proposition 2.5.1. Let Ur ⊆U be a subspace obtained with r iterations of the greedy
algorithm with error indicator depending on Θ. If Θ is a (ε,m−1

(
m
r

)−1
δ,2r+ 1)

oblivious U → `2 subspace embedding, then it is a U → `2 ε-subspace embedding for
Yr(µ) defined in (2.25), for all µ ∈ Ptrain, with probability at least 1− δ.

Proof. See appendix.

Remark 2.5.2. Theoretical bounds for the number of rows needed to construct
(ε,m−1

(
m
r

)−1
δ,2r+1) oblivious U→ `2 subspace embeddings using Gaussian, Rademacher

or P-SRHT distributions can be obtained from Propositions 2.3.7, 2.3.9 and 2.3.11.
For Gaussian or Rademacher matrices they are proportional to r, while for P-SRHT
they are proportional to r2. In practice, however, embeddings built with P-SRHT,
Gaussian or Rademacher distributions perform equally well.

Evaluating ‖r(ur(µ);µ)‖ΘV ′ for very large training sets can be much more expensive
than other costs. The complexity of this step can be reduced using the procedure
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explained in Section 2.4.5. The efficient sketched greedy algorithm is summarized
in Algorithm 3. From Propositions 2.4.1 and 2.4.2, Corollary 2.4.5 and (2.40), we

Algorithm 3 Efficient sketched greedy algorithm
Given: Ptrain, A(µ), b(µ), l(µ), Θ, τ .
Output: Ur
1. Set i := 0, U0 = {0}, and pick µ1 ∈ Ptrain.
while max

µ∈Ptrain
∆̃(Ui;µ)≥ τ do

2. Set i := i+ 1.
3. Evaluate u(µi) and set Ui := Ui−1 + span(u(µi)).
4. Update affine factors of Ai(µ), bi(µ), VΘ

i (µ) and bΘ(µ).
5. Generate Γ and evaluate affine factors of VΦ

i (µ) and bΦ(µ).
6. Set ∆̃(Ui;µ) := ∆Φ(ui(µ);µ).
7. Use (2.41) to find µi+1 := argmax

µ∈Ptrain
∆̃(Ui;µ).

end while

can prove the quasi-optimality of the greedy selection in Algorithm 3 with high
probability.

2.5.2 Proper Orthogonal Decomposition
Now we introduce the sketched version of POD. We first note that random sketching
is a popular technique for obtaining low-rank approximations of large matrices [153].
It can be easily combined with Proposition 2.2.5 and Algorithm 2 for finding POD
vectors. For large-scale problems, however, evaluating and storing POD vectors can
be too expensive or even unfeasible, e.g., in a streaming or a distributed environment.
We here propose a POD where evaluation of the full vectors is not necessary. We
give a special attention to distributed computing. The computations involved in our
version of POD can be distributed among separate machines with a communication
cost independent of the dimension of the full order problem.

We observe that a complete reduced order model can be constructed from a sketch
(see Section 2.4). Assume that we are given the sketch of a matrix Um containing m
solutions samples associated with Θ, i.e.,

UΘ
m := ΘUm, VΘ

m(µ) := ΘR−1
U A(µ)Um, lm(µ)H := l(µ)HUm, bΘ(µ) := ΘR−1

U b(µ).

Recall that sketching a set of vectors can be efficiently performed basically in any
modern computational environment, e.g., a distributed environment with expensive
communication cost (see Section 2.4.4). Instead of computing a full matrix of
reduced basis vectors, Ur ∈Kn×r, as in classical methods, we look for a small matrix
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Tr ∈ Km×r such that Ur = UmTr. Given Tr, the sketch of Ur can be computed
without operating with the whole Um but only with its sketch:

ΘUr = UΘ
mTr, ΘR−1

U A(µ)Ur = VΘ
m(µ)Tr, and l(µ)HUr = lm(µ)HTr.

Further we propose an efficient way for obtaining Tr such that the quality of
Ur := span(Ur) is close to optimal.

For each r ≤ rank(UΘ
m), let Ur be an r-dimensional subspace obtained with the

method of snapshots associated with norm ‖ · ‖ΘU , presented below.

Definition 2.5.3 (Sketched method of snapshots). Consider the following eigen-
value problem

Gt = λt (2.42)
where G := (UΘ

m)HUΘ
m. Let l = rank(UΘ

m)≥ r and let {(λi,ti)}li=1 be the solutions
to (2.42) ordered such that λ1 ≥ . . .≥ λl. Define

Ur := range(UmTr), (2.43)

where Tr := [t1, ...,tr].

For given V ⊆ Um, let PΘ
V : Um→ V denote an orthogonal projection on V with

respect to ‖ · ‖ΘU , i.e.,

∀x ∈ Um, PΘ
V x = arg min

w∈V
‖x−w‖ΘU , (2.44)

and define the following error indicator:

∆POD(V ) := 1
m

m∑
i=1

(
‖u(µi)−PΘ

V u(µi)‖ΘU
)2
. (2.45)

Proposition 2.5.4. Let {λi}li=1 be the set of eigenvalues from Definition 2.5.3.
Then

∆POD(Ur) := 1
m

l∑
i=r+1

λi. (2.46)

Moreover, for all Vr ⊆ Um with dim(Vr)≤ r,

∆POD(Ur)≤∆POD(Vr). (2.47)

Proof. See appendix.

Observe that matrix Tr (characterizing Ur) can be much cheaper to obtain than
the basis vectors for U∗r = PODr(Um,‖ · ‖U ). For this, we need to operate only with
the sketched matrix UΘ

m but not with the full snapshot matrix Um. Nevertheless,
the quality of Ur can be guaranteed to be close to the quality of U∗r .
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Theorem 2.5.5. Let Y ⊆ Um be a subspace of Um with dim(Y )≥ r, and let

∆Y = 1
m

m∑
i=1
‖u(µi)−PY u(µi)‖2U .

If Θ is a U→ `2 ε-subspace embedding for Y and every subspace in
{

span(u(µi)−PY u(µi))
}m
i=1

and
{

span(u(µi)−PUru(µi))
}m
i=1

, then

1
m

m∑
i=1
‖u(µi)−PUru(µi)‖2U ≤

2
1− ε∆POD(Ur) + (2(1 + ε)

1− ε + 1)∆Y

≤ 2(1 + ε)
1− ε

1
m

m∑
i=1
‖u(µi)−PU∗r u(µi)‖2U + (2(1 + ε)

1− ε + 1)∆Y .

(2.48)

Moreover, if Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖u(µi)−PUru(µi)‖2U ≤

1
1− ε∆POD(Ur)≤

1 + ε

1− ε
1
m

m∑
i=1
‖u(µi)−PU∗r u(µi)‖2U .

(2.49)

Proof. See appendix.

The hypothesis in the first part of Theorem 2.5.5 can be satisfied with high probability
using an oblivious embedding of moderate size. A subspace Y can be taken as U∗r ,
or a larger subspace making ∆Y as small as possible. It is important to note that
even if Ur is quasi-optimal, there is no guarantee that Θ is a U → `2 ε-subspace
embedding for Ur unless it is a U → `2 ε-subspace embedding for the whole Um.
Such guarantee can be unfeasible to achieve for large training sets. One possible
solution is to maintain two sketches of Um: one for the method of snapshots, and one
for Galerkin projections and residual norms. Another way (following considerations
similar to [84]) is to replace Um by its low-rank approximation Ũm = PΘ

WUm, with
W = span(UmΩ∗), where Ω∗ is a small random matrix (e.g., Gaussian matrix). The
latter procedure can be also used for improving the efficiency of the algorithm when
m is large. Finally, if Θ is a U → `2 ε-subspace embedding for every subspace in
{span(ui−PΘ

Urui)}
m
i=1 then the error indicator ∆POD(Ur) is quasi-optimal. However,

if only the first hypothesis of Theorem 2.5.5 is satisfied then the quality of ∆POD(Ur)
will depend on ∆Y . In such a case the error can be certified using ∆POD(·) defined
with a new realization of Θ.
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2.6 Numerical examples
In this section the approach is validated numerically and compared against classical
methods. For simplicity in all our experiments, we chose a coefficient η(µ) = 1
in Equations (2.10) and (2.31) for the error estimation. The experiments revealed
that the theoretical bounds for k in Propositions 2.3.7 and 2.3.9 and Table 2.1
are pessimistic. In practice, much smaller random matrices still provide good
estimation of the output. In addition, we did not detect any significant difference in
performance between Rademacher matrices, Gaussian matrices and P-SRHT, even
though the theoretical bounds for P-SRHT are worse. Finally, the results obtained
with Rademacher matrices are not presented. They are similar to those for Gaussian
matrices and P-SRHT.

2.6.1 3D thermal block
We use a 3D version of the thermal block benchmark from [79]. This problem
describes a heat transfer phenomenon through a domain Ω := [0,1]3 made of an
assembly of blocks, each composed of a different material. The boundary value
problem for modeling the thermal block is as follows

−∇ · (κ∇T ) = 0, in Ω
T = 0, on ΓD

n · (κ∇T ) = 0, on ΓN,1
n · (κ∇T ) = 1, on ΓN,2,

(2.50)

where T is the temperature field, n is the outward normal vector to the boundary, κ
is the thermal conductivity, and ΓD, ΓN,1, ΓN,2 are parts of the boundary defined by
ΓD := {(x,y,z) ∈ ∂Ω : y = 1}, ΓN,2 := {(x,y,z) ∈ ∂Ω : y = 0} and ΓN,1 := ∂Ω\(ΓD ∪
ΓN,2). Ω is partitioned into 2×2×2 subblocks Ωi of equal size. A different thermal
conductivity κi is assigned to each Ωi, i.e., κ(x) = κi, x ∈ Ωi. We are interested in
estimating the mean temperature in Ω1 := [0, 1

2 ]3 for each µ := (κ1, ...,κ8) ∈ P :=
[ 1
10 ,10]8. The κi are independent random variables with log-uniform distribution

over [ 1
10 ,10].

Problem (2.50) was discretized using the classical finite element method with
approximately n = 120000 degrees of freedom. A function w in the finite element
approximation space is identified with a vector w ∈ U . The space U is equipped with
an inner product compatible with the H1

0 inner product, i.e., ‖w‖U := ‖∇w‖L2 . The
training set Ptrain and the test set Ptest were taken as 10000 and 1000 independent
samples respectively. The factorization of RU was precomputed only once and used
for efficient multiplication of R−1

U by multiple vectors. The sketching matrix Θ was
constructed with Proposition 2.3.11, i.e., Θ := ΩQ, where Ω ∈ Rk×s is a classical
oblivious `2 → `2 subspace embedding and Q ∈ Rs×n is such that QTQ = RU .
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Furthermore, Q was taken as the transposed Cholesky factor of RU . Different
distributions and sizes of matrix Ω were considered. The same realizations of Ω
were used for all parameters and greedy iterations within each experiment. A seeded
random number generator was used for memory-efficient operations on random
matrices. For P-SRHT, a fast implementation of the fast Walsh-Hadamard transform
was employed for multiplying the Walsh-Hadamard matrix by a vector in s log2 (s)
time. In Algorithm 3, we used Φ := ΓΘ, where Γ ∈ Rk

′×k is a Gaussian matrix and
k′ = 100. The same realizations of Γ were used for all the parameters but it was
regenerated at each greedy iteration.

Galerkin projection and primal-dual correction. Let us investigate how the qual-
ity of the solution depends on the distribution and size of Ω. We first generated
sufficiently accurate reduced subspaces Ur and Udu

r for the primal and the dual
problems. The subspaces were spanned by snapshots evaluated at some points in
Ptrain. The interpolation points were obtained by r = 100 iterations of the effi-
cient sketched greedy algorithm (Algorithm 3) with P-SRHT and k = 1000 rows.
Thereafter, u(µ) was approximated by a projection ur(µ) ∈ Ur. The classical
Galerkin projection (2.2) and its sketched version (2.26) with different distribu-
tions and sizes of Ω were considered. The quality of a parameter-dependent pro-
jection is measured by eP := maxµ∈Ptest ‖u(µ)−ur(µ)‖U/maxµ∈Ptest ‖u(µ)‖U and
∆P := maxµ∈Ptest ‖r(ur(µ);µ)‖U ′/maxµ∈Ptest ‖b(µ)‖U ′ . For each random projection
20 samples of eP and ∆P were evaluated. Figure 2.1 describes how eP and ∆P
depend on the number of rows k5. We observe that the error associated with the
sketched Galerkin projection is large when k is close to r, but as k increases, it
asymptotically approaches the error of the classical Galerkin projection. The residual
errors of the classical and the sketched projections become almost identical already
for k = 500 while the exact errors become close for k = 1000. We also observe that
for the aforementioned k there is practically no deviation of ∆P and only a little
deviation of eP .

Note that the theoretical bounds for k to preserve the quasi-optimality constants
of the classical Galerkin projection can be derived using Propositions 2.3.7 and 2.3.9
combined with Proposition 2.4.1 and a union bound for the probability of success. As
was noted in Section 2.3.2, however, the theoretical bounds for k in Propositions 2.3.7
and 2.3.9 shall be useful only for large problems with, say n/r > 104, which means
they should not be applicable here. Indeed, we see that for ensuring that

P(∀µ ∈ Ptest : εar(µ)< 1)> 1−10−6,

using the theoretical bounds, we need impractical values k ≥ 39280 for Gaussian
matrices and k = n ≈ 100000 for P-SRHT. In practice, the value for k can be
determined using the adaptive procedure proposed in Chapter 3.

5The p-quantile of a random variable X is defined as inf{t : P(X ≤ t)≥ p} and can be estimated
by replacing the cumulative distribution function P(X ≤ t) by its empirical estimation. Here we
use 20 samples for this estimation.
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Figure 2.1: Errors eP and ∆P of the classical Galerkin projection and quantiles of
probabilities p= 1,0.9,0.5 and 0.1 over 20 samples of eP and ∆P of the randomized
Galerkin projection versus the number of rows of Ω. (a) The exact error eP with
rescaled Gaussian distribution as Ω. (b) The exact error eP with P-SRHT matrix
as Ω. (c) The residual error ∆P with rescaled Gaussian distribution as Ω. (d) The
residual error ∆P with P-SRHT matrix as Ω.

Thereafter, we let ur(µ) ∈ Ur and udu
r (µ) ∈ Udu

r be the sketched Galerkin pro-
jections, where Ω was taken as P-SRHT with k = 500 rows. For the fixed ur(µ)
and udu

r (µ) the classical primal-dual correction spd
r (µ) (2.14), and the sketched

primal-dual correction sspd
r (µ) (2.33) were evaluated using different sizes and distri-

butions of Ω. In addition, the approach introduced in Section 2.4.3 for improving
the accuracy of the sketched correction was employed. For wdu

r (µ) we chose the
orthogonal projection of udu

r (µ) on W du
r := Udu

i with idu = 30 (the subspace spanned
by the first idu = 30 basis vectors obtained during the generation of Udu

r ). With
such wdu

r (µ) the improved correction sspd+
r (µ) defined by (2.35) was computed. It
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has to be mentioned that sspd+
r (µ) yielded additional computations. They, how-

ever, are cheaper than the computations required for constructing the classical
reduced systems and evaluating the classical output quantities in about 10 times
in terms of complexity and 6.67 times in terms of memory. We define the error
by dP := maxµ∈Ptest |s(µ)− s̃r(µ)|/maxµ∈Ptest |s(µ)|, where s̃r(µ) = spd

r (µ), sspd
r (µ) or

sspd+
r (µ). For each random correction we computed 20 samples of dP . The errors on

the output quantities versus the numbers of rows of Θ are presented in Figure 2.2.
We see that the error of sspd

r (µ) is proportional to k−1/2. It can be explained by the
fact that for considered sizes of random matrices, ε is large compared to the residual
error of the dual solution. As was noted in Section 2.4.3 in such a case the error
bound for sspd

r (µ) is equal to O(ε‖r(ur(µ);µ)‖U ′). By Propositions 2.3.7 and 2.3.9
it follows that ε=O(k−1/2), which explains the behavior of the error in Figure 2.2.
Note that the convergence of sspd

r (µ) is not expected to be reached even for k close
to the dimension of the discrete problem. For large enough problems, however, the
quality of the classical output will be always attained with k� n. In general, the
error of the sketched primal-dual correction does not depend (or weakly depends for
P-SRHT) on the dimension of the full order problem, but only on the accuracies
of the approximate solutions ur(µ) and udu

r (µ). On the other hand, we see that
sspd+
r (µ) reaches the accuracy of the classical primal-dual correction for moderate k.

Further we focus only on the primal problem noting that similar results were
observed also for the dual one.

Error estimation. We let Ur and ur(µ) be the subspace and the approximate
solution from the previous experiment. The classical error indicator ∆(ur(µ);µ)
and the sketched error indicator ∆Θ(ur(µ);µ) were evaluated for every µ ∈ Ptest.
For ∆Θ(ur(µ);µ) different distributions and sizes of Ω were considered. The qual-
ity of ∆Θ(ur(µ);µ) as estimator for ∆(ur(µ);µ) can be characterized by eind

P :=
maxµ∈Ptest |∆(ur(µ);µ)−∆Θ(ur(µ);µ)|/maxµ∈Ptest ∆(ur(µ);µ). For each Ω, 20 sam-
ples of eind

P were evaluated. Figure 2.3b shows how eind
P depends on k. The convergence

of the error is proportional to k−1/2, similarly as for the primal-dual correction. In
practice, however, ∆Θ(ur(µ);µ) does not have to be so accurate as the approximation
of the quantity of interest. For many problems, estimating ∆(ur(µ);µ) with relative
error less than one is already good enough. Consequently, ∆Θ(ur(µ);µ) employing
Ω with k = 100 or even k = 10 rows can be readily used as a reliable error estimator.
Note that Ptest and Ur were formed independently of Ω. Otherwise, a larger Ω
should be considered with an additional embedding Γ as explained in Section 2.4.5.

To validate the claim that our approach (see Section 2.4.5) for error estimation
provides more numerical stability than the classical one, we performed the following
experiment. For fixed µ ∈P such that u(µ) ∈ Ur we picked several vectors u∗i ∈ Ur at
different distances of u(µ). For each such u∗i we evaluated ∆(u∗i ;µ) and ∆Θ(u∗i ;µ).
The classical error indicator ∆(u∗i ;µ) was evaluated using the traditional procedure,
i.e., expressing ‖r(u∗i ;µ)‖2U ′ in the form (2.38), while ∆Θ(u∗i ;µ) was evaluated with
relation (2.39). The sketching matrix Ω was generated from the P-SRHT or the



Numerical examples 61

10 1 10 2 10 3 10 4
10 -5

10 -4

10 -3

10 -2

10 -1

Classical
p=1
p=0.9
p=0.5
p=0.1

k

qu
an

til
e(
d
P
,p

)

(a)

10 1 10 2 10 3 10 4
10 -5

10 -4

10 -3

10 -2

10 -1

Classical
p=1
p=0.9
p=0.5
p=0.1

k

qu
an

til
e(

d
P
,p

)
(b)

10 1 10 2 10 3 10 4
10 -5

10 -4

10 -3

Classical
p=1
p=0.9
p=0.5
p=0.1

k

qu
an

til
e(
d
P
,p

)

(c)

10 1 10 2 10 3 10 4
10 -5

10 -4

10 -3

Classical
p=1
p=0.9
p=0.5
p=0.1

k

qu
an

til
e(

d
P
,p

)

(d)

Figure 2.2: The error dP of the classical primal-dual correction and quantiles of
probabilities p= 1,0.9,0.5 and 0.1 over 20 samples of dP of the randomized primal-
dual corrections with fixed ur(µ) and udu

r (µ) versus the number of rows of Ω. (a)
The errors of spd

r (µ) and sspd
r (µ) with Gaussian matrix as Ω. (b) The errors of spd

r (µ)
and sspd

r (µ) with P-SRHT distribution as Ω. (c) The errors of spd
r (µ) and sspd+

r (µ)
with Gaussian matrix as Ω and W du

r := Udu
i , idu = 30. (d) The errors of spd

r (µ) and
sspd+
r (µ) with P-SRHT distribution as Ω and W du

r := Udu
i , idu = 30.

rescaled Gaussian distribution with k = 100 rows. Note that µ and u∗i were chosen
independently of Ω so there is no point to use larger Ω with additional embedding
Γ (see Section 2.4.5). Figure 2.4 clearly reveals the failure of the classical error
indicator at ∆(u∗i ;µ)/‖b(µ)‖U ′ ≈ 10−7. On the contrary, the indicators computed
with random sketching technique remain reliable even for ∆(u∗i ;µ)/‖b(µ)‖U ′ close
to the machine precision.

Efficient sketched greedy algorithm. Further, we validate the performance of
the efficient sketched greedy algorithm (Algorithm 3). For this we generated
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Figure 2.3: Quantiles of probabilities p= 1,0.9,0.5 and 0.1 over 20 samples of the
error eind

P of ∆Θ(ur(µ);µ) as estimator of ∆(ur(µ);µ). (a) The error of ∆Θ(ur(µ);µ)
with Gaussian distribution. (b) The error of ∆Θ(ur(µ);µ) with P-SRHT distribution.
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Figure 2.4: Error indicator ∆(u∗i ;µ) (rescaled by ‖b(µ)‖U ′) computed with the
classical procedure and its estimator ∆Θ(u∗i ;µ) computed with relation (2.39) em-
ploying P-SRHT or Gaussian distribution with k = 100 rows versus the exact value
of ∆(u∗i ;µ) (rescaled by ‖b(µ)‖U ′).

a subspace Ur of dimension r = 100 using the classical greedy algorithm (de-
picted in Section 2.2.4) and its randomized version (Algorithm 3) employing Ω
of different types and sizes. In Algorithm 3, Γ was generated from a Gaussian
distribution with k′ = 100 rows. The error at i-th iteration is identified with
∆P := maxµ∈Ptrain ‖r(ui(µ);µ)‖U ′/maxµ∈Ptrain ‖b(µ)‖U ′ . The convergences are de-
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picted in Figure 2.5. For the efficient sketched greedy algorithm with k = 250 and
k = 500 a slight difference in performance is detected compared to the classical algo-
rithm. The difference is more evident for k = 250 at higher iterations. The behaviors
of the classical algorithm and Algorithm 3 with k = 1000 are almost identical.
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Figure 2.5: Convergences of the classical greedy algorithm (depicted in Sec-
tion 2.2.4)) and its efficient randomized version (Algorithm 3) using Ω drawn from
(a) Gaussian distribution or (b) P-SRHT distribution.

Efficient Proper Orthogonal Decomposition. We finish with validation of the
efficient randomized version of POD. For this experiment only m= 1000 points from
Ptrain were considered as the training set. The POD bases were obtained with the
classical method of snapshots, i.e., Algorithm 2 where Br was computed from SVD
of QUm, or the randomized version of POD introduced in Section 2.5.2. The same
Ω was used for both the basis generation and the error estimation with ∆POD(Ur),
defined in (2.45). From Figure 2.6a we observe that for large enough k the quality of
POD basis formed with the new efficient algorithm is close to the quality of the the
basis obtained with the classical method. Construction of r = 100 basis vectors using
Ω with only k = 500 rows provides almost optimal error. As expected, the error
indicator ∆POD(Ur) is close to the exact error for large enough k, but it represents
the error poorly for small k. Furthermore, ∆POD(Ur) is always smaller than the true
error and is increasing monotonically with k. Figure 2.6b depicts how the errors of
the classical and randomized (with k = 500) POD bases depend on the dimension
of Ur. We see that the qualities of the basis and the error indicator obtained with
the new version of POD remain close to the optimal ones up to dimension r = 150.
However, as r becomes larger the quasi-optimality of the randomized POD degrades.
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Figure 2.6: Error e = 1
m

∑m
i=1 ‖u(µi)−PUru(µi)‖2U/( 1

m

∑m
i=1 ‖u(µi)‖2U ) and error

indicator e= ∆POD(Ur)/( 1
m

∑m
i=1 ‖u(µi)‖2U ) associated with Ur computed with tra-

ditional POD and its efficient randomized version introduced in Section 2.5.2. (a)
Errors and indicators versus the number of rows of Ω for r = 100. (b) Errors and
indicators versus the dimension of Ur for k = 500.

2.6.2 Multi-layered acoustic cloak
In the previous numerical example we considered a problem with strongly coercive
well-conditioned operator. But as was discussed in Section 2.4.1, random sketching
with a fixed number of rows is expected to perform worse for approximating the
Galerkin projection with non-coercive ill-conditioned A(µ). Further, we would like to
validate the methodology on such a problem. The benchmark consists in a scattering
problem of a 2D wave with perfect scatterer covered in a multi-layered cloak. For
this experiment we solve the following Helmholtz equation with first order absorbing
boundary conditions 

∆u+κ2u = 0, in Ω
iκu+ ∂u

∂n = 0, on Γout
iκu+ ∂u

∂n = 2iκ, on Γin
∂u
∂n = 0, on Γs,

(2.51)

where u is the solution field (primal unknown), κ is the wave number and the
geometry of the problem is defined in Figure 2.7a. The background has a fixed wave
number κ= κ0 := 50. The cloak consists of 10 layers of equal thicknesses enumerated
in the order corresponding to the distance to the scatterer. The i-th layer is composed
of a material with wave number κ= κi. The quantity of interest is the average of
the solution field on Γin. The aim is to estimate the quantity of interest for each
parameter µ := (κ1, ...,κ10)∈ [κ0,

√
2κ0]10 :=P . The κi are considered as independent

random variables with log-uniform distribution over [κ0,
√

2κ0]. The solution for a
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randomly chosen µ ∈ P is illustrated in Figure 2.7b.

1

0.5

0

-0.5

-1

(a) Geometry (b) Solution at random µ

Figure 2.7: (a) Geometry of acoustic cloak benchmark. (b) The real component of
u for randomly picked parameter µ= (66.86,54.21,61.56,64.45,66.15,58.42,54.90,
63.79,58.44,63.09).

The problem has a symmetry with respect to the vertical axis x = 0.5. Con-
sequently, only half of the domain has to be considered for discretization. The
discretization was performed using quadratic triangular finite elements with approxi-
mately 17 complex degrees of freedom per wavelength, i.e., around 200000 complex
degrees of freedom in total. A function w in the approximation space is identified
with a vector w ∈ U . The solution space U is equipped with an inner product
compatible with the H1 inner product, i.e.,

‖w‖2U := ‖∇w‖2L2 +κ2
0‖w‖2L2 .

Further, 20000 and 1000 independent samples were considered as the training set
Ptrain and the test set Ptest, respectively. Sketching matrix Θ was constructed as in
the thermal block benchmark, i.e., Θ := ΩQ, where Ω ∈ Rk×s is either a Gaussian
matrix or P-SRHT and Q ∈ Rs×n is the transposed Cholesky factor of RU . In
addition, we used Φ := ΓΘ, where Γ ∈ Rk

′×k is a Gaussian matrix and k′ = 200.
Below we present validation of the Galerkin projection and the greedy algorithm

only. The performance of our methodology for error estimation and POD does not
depend on the operator and is similar to the performance observed in the previous
numerical example.

Galerkin projection. A subspace Ur was generated with r = 150 iterations of
the randomized greedy algorithm (Algorithm 3) with a Ω drawn from the P-SRHT
distribution with k = 20000 rows. Such Ur was then used for validation of the
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Galerkin projection. We evaluated multiple approximations of u(µ) using either
the classical projection (2.2) or its randomized version (2.26). Different Ω were
considered for (2.26). As before, the approximation and residual errors are re-
spectively defined by eP := maxµ∈Ptest ‖u(µ)− ur(µ)‖U/maxµ∈Ptest ‖u(µ)‖U and
∆P := maxµ∈Ptest ‖r(ur(µ);µ)‖U ′/maxµ∈Ptest ‖b(µ)‖U ′ . For each type and size of
Ω, 20 samples of eP and ∆P were evaluated. The errors are presented in Figure 2.8.
This experiment reveals that indeed the performance of random sketching is worse
than in the thermal block benchmark (see Figure 2.1). For k = 1000 the error of
the randomized version of Galerkin projection is much larger than the error of the
classical projection. Whereas for the same value of k in the thermal block benchmark
practically no difference between the qualities of the classical projection and its
sketched version was observed. It can be explained by the fact that the quality of
randomized Galerkin projection depends on the coefficient ar(µ) defined in Proposi-
tion 2.4.2, which in its turn depends on the operator. In both numerical examples the
coefficient ar(µ) was measured over Ptest. We observed that maxµ∈Ptest ar(µ) = 28.3,
while in the thermal block benchmark maxµ∈Ptest ar(µ) = 2.65. In addition, here
we work on the complex field instead of the real field and consider slightly larger
reduced subspaces, which could also have an impact on the accuracy of random
sketching. Reduction of performance, however, is not that severe and already starting
from k = 15000 the sketched version of Galerkin projection has an error close to the
classical one. Such size of Ω is still very small compared to the dimension of the
discrete problem and provides drastic reduction of the computational cost. Let us
also note that one could obtain a good approximation of u(µ) from the sketch with
k� 15000 by considering another type of projection (a randomized minimal residual
projection) proposed in Chapter 3.

Let us further note that we are in the so called “compliant case” (see Remark 2.4.8).
Thus, for the classical Galerkin projection we have sr(µ) = spd

r (µ) and for the
sketched Galerkin projection, sr(µ) = sspd

r (µ). The output quantity sr(µ) was
computed with the classical Galerkin projection and with the randomized Galerkin
projection employing different Ω. For each Ω we also computed the improved
sketched correction sspd+

r (µ) (see Section 2.4.3) using W du
r := Udu

i with idu = 30. It
required inexpensive additional computations which are in about 5 times cheaper
(in terms of both complexity and memory) than the computations involved in
the classical method. The error on the output quantity is measured by dP :=
maxµ∈Ptest |s(µ)− s̃r(µ)|/maxµ∈Ptest |s(µ)|, where s̃r(µ) = sr(µ) or sspd+

r (µ). For each
random distribution type 20 samples of dP were evaluated. Figure 2.9 describes how
the error of the output quantity depends on k. For small k the error is large because of
the poor quality of the projection and lack of precision when approximating the inner
product for spd

r (µ) in (2.14) by the one in (2.33). But starting from k = 15000 we
see that the quality of sr(µ) obtained with the random sketching technique becomes
close to the quality of the output computed with the classical Galerkin projection.
For k ≥ 15000 the randomized Galerkin projection has practically the same accuracy
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Figure 2.8: Error eP and residual error ∆P of the classical Galerkin projection and
quantiles of probabilities p= 1,0.9,0.5 and 0.1 over 20 samples of eP and ∆P of the
randomized Galerkin projection versus the number of rows of Ω. (a) Exact error eP ,
with rescaled Gaussian distribution as Ω. (b) Exact error eP , with P-SRHT matrix
as Ω. (c) Residual error ∆P , with rescaled Gaussian distribution as Ω. (d) Residual
error ∆P , with P-SRHT matrix as Ω.

as the classical one. Therefore, for such values of k the error depends mainly on the
precision of the approximate inner product for spd

r (µ). Unlike in the thermal block
problem (see Figure 2.2), in this experiment the quality of the classical method is
attained by sr(µ) = sspd

r (µ) with k� n. Consequently, the benefit of employing the
improved correction sspd+

r (µ) here is not as evident as in the previous numerical
example. This experiment only proves that the error associated with approximation
of the inner product for spd

r (µ) does not depend on the condition number and the
dimension of the operator.

Randomized greedy algorithm. Finally, we performed r = 150 iterations of the
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Figure 2.9: The error dP of the classical output quantity and quantiles of probabil-
ities p= 1,0.9,0.5 and 0.1 over 20 samples of dP of the output quantities computed
with random sketching versus the number of rows of Ω. (a) The errors of the classical
sr(µ) and the randomized sr(µ) with Gaussian matrix as Ω. (b) The errors of the
classical sr(µ) and the randomized sr(µ) with P-SRHT distribution as Ω. (c) The
errors of the classical sr(µ) and sspd+

r (µ) with Gaussian matrix as Ω and W du
r :=Udu

i ,
idu = 30. (d) The errors of the classical sr(µ) and sspd+

r (µ) with P-SRHT distribution
as Ω and W du

r := Udu
i , idu = 30.

classical greedy algorithm (see Section 2.2.4) and its randomized version (Algorithm 3)
using different distributions and sizes for Ω, and a Gaussian random matrix with
k′ = 200 rows for Γ. As in the thermal block benchmark, the error at i-th iteration is
measured by ∆P := maxµ∈Ptrain ‖r(ui(µ);µ)‖U ′/maxµ∈Ptrain ‖b(µ)‖U ′ . For k = 1000
we reveal poor performance of Algorithm 3 (see Figure 2.10). It can be explained by
the fact that for such size of Ω the randomized Galerkin projection has low accuracy.
For k = 20000, however, the convergence of the classical greedy algorithm is fully
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Figure 2.10: Convergences of the classical greedy algorithm (see Section 2.2.4) and
its efficient randomized version (Algorithm 3) using Ω drawn from (a) Gaussian
distribution or (b) P-SRHT distribution.

Comparison of computational costs. Even though the size of Ω has to be
considered larger than for the thermal block problem, our methodology still yields
considerable reduction of the computational costs compared to the classical approach.
The implementation was carried out in Matlab R© R2015a with an external C++
function for the fast Walsh-Hadamard transform. Our codes were not designed for a
specific problem but rather for a generic multi-query MOR. The algorithms were
executed on an Intel R© CoreTM i7-7700HQ 2.8GHz CPU, with 16.0GB RAM memory.

Let us start with validation of the computational cost reduction of the greedy
algorithm. In Table 2.2 we provide the runtimes of the classical greedy algorithm
and Algorithm 3 employing Ω drawn from P-SRHT distribution with k = 20000 rows.
In Table 2.2 the computations are divided into three basic categories: computing the
snapshots (samples of the solution), precomputing the affine expansions for the online
solver, and finding µi+1 ∈Ptrain which maximizes the error indicator with a provisional
online solver. The first category includes evaluation of A(µ) and b(µ) using their affine
expansions and solving the systems with a built in Matlab R© linear solver. The second
category consists of evaluating the random sketch in Algorithm 3; evaluating high-
dimensional matrix-vector products and inner products for the Galerkin projection;
evaluating high-dimensional matrix-vector products and inner products for the error
estimation; and the remaining computations, such as precomputing a decomposition
of RU , memory allocations, orthogonalization of the basis, etc. In its turn, the
third category of computations includes generating Γ and evaluating the affine
factors of VΦ

i (µ) and bΦ(µ) from the affine factors of VΘ
i (µ) and bΘ(µ) at each

iteration of Algorithm 3; evaluating the reduced systems from the precomputed affine
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expansions and solving them with a built in Matlab R© linear solver, for all µ ∈ Ptrain,
at each iteration; evaluating the residual terms from the affine expansions and using
them to evaluate the residual errors of the Galerkin projections, for all µ ∈ Ptrain, at
each iteration.

We observe that evaluating the snapshots occupied only 6% of the overall runtime
of the classical greedy algorithm. The other 94% could be subject to reduction with
random sketching technique. Due to operating on a large training set, the cost of
solving (including estimation of the error) reduced order models on Ptrain has a
considerable impact on the runtimes of both classical and randomized algorithms.
This cost, however, is independent of the dimension of the full system of equations
and will become negligible for larger problems. Nevertheless, for r = 150 the ran-
domized procedure for error estimation (see Section 2.4.5) yielded reduction of the
aforementioned cost in about 2 times. As expected, in the classical method the most
expensive computations are numerous evaluations of high-dimensional matrix-vector
and inner products. For large problems these computations can become a bottleneck
of an algorithm. Their cost reduction by random sketching is drastic. We observe
that for the classical algorithm the corresponding runtime grows quadratically with
r while for the randomized algorithm it grows only linearly. The cost of this step
for r = 150 iterations of the greedy algorithm was divided 15. In addition, random
sketching helped to reduce memory consumption. The memory required by r = 150
iterations of the greedy algorithm has been reduced from 6.1GB (including storage
of affine factors of R−1

U A(µ)Ui) to only 1GB, from which 0.4GB is meant for the
initialization, i.e., defining the discrete problem, precomputing the decomposition of
RU , etc.

Table 2.2: The CPU times in seconds taken by each type of computations in the
classical greedy algorithm (see Section 2.2.4) and the randomized greedy algorithm
(Algorithm 3).

Category Computations Classical Randomized
r = 50 r = 100 r = 150 r = 50 r = 100 r = 150

snapshots 143 286 430 143 287 430

high-dimensional
matrix-vector &
inner products

sketch − − − 54 113 177
Galerkin 59 234 525 3 14 31
error 405 1560 3444 − − −
remaining 27 196 236 7 28 67
total 491 1899 4205 64 154 275

provisional
online solver

sketch − − − 56 127 216
Galerkin 46 268 779 50 272 783
error 45 522 2022 43 146 407
total 91 790 2801 149 545 1406

The improvement of the efficiency of the online stage can be validated by com-
paring the CPU times of the provisional online solver in the greedy algorithms.
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Table 2.2 presents the CPU times taken by the provisional online solver at i-th
iteration of the classical and the sketched greedy algorithms, where the solver is
used for efficient computation of the reduced models associated with i-dimensional
approximation space Ui for all parameter’s values from the training set. These
computations consist of evaluating the reduced systems from the affine expansions
and their solutions with the Matlab R© linear solver, and computing residual-based
error estimates using (2.38) for the classical method or (2.41) for the estimation with
random sketching. Moreover, the sketched online stage also involves generation of Γ
and computing VΦ

i (µ) and bΦ(µ) from the affine factors of VΘ
i (µ) and bΘ(µ). Note

that random sketching can reduce the online complexity (and improve the stability)
associated with residual-based error estimation. The online cost of computation
of a solution, however, remains the same for both the classical and the sketched
methods. Table 2.3 reveals that for this benchmark the speedups in the online stage
are achieved for i≥ 50. The computational cost of the error estimation using the
classical approach grows quadratically with i, while using the randomized procedure,
it grows only linearly. For i = 150 we report a reduction of the runtime for error
estimation by a factor 5 and a reduction of the total runtime by a factor 2.6.

Table 2.3: The CPU times in seconds taken by each type of computations of the
classical and the efficient sketched provisional online solvers during the i-th iteration
of the greedy algorithms.

Computations Classical Randomized
i= 50 i= 100 i= 150 i= 50 i= 100 i= 150

sketch − − − 1.3 1.5 2
Galerkin 2 7 13.5 2.3 7 14

error 2.8 18 45.2 1.3 3.1 7
total 4.8 24.9 58.7 4.8 11.6 22.8

The benefit of using random sketching methods for POD is validated in the
context of distributed or limited-memory environments, where the snapshots are
computed on distributed workstations or when the storage of snapshots requires
too much RAM. For these scenarios the efficiency is characterized by the amount of
communication or storage needed for constructing a reduced model. Let us recall that
the classical POD requires maintaining and operating with the full basis matrix Um,
while the sketched POD requires the precomputation of a Θ-sketch of Um and then
constructs a reduced model from the sketch. In particular, for distributed computing
a random sketch of each snapshot should be computed on a separate machine and
then efficiently transfered to the master workstation for post-processing. For this
experiment, Gaussian matrices of different sizes were tested for Ω. A seeded random
number generator was used for maintaining Ω with negligible computational costs.
In Table 2.4 we provide the amount of storage needed to maintain a sketch of a single
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snapshot, which also reflects the required communication for its transfer to the master
workstation in the distributed computational environment. We observe that random
sketching methods yielded computational costs reductions when k ≤ 17000. It follows
that for k = 10000 a Θ-sketch of a snapshot consumes 1.7 times less memory than
the full snapshot. Yet, for m= #Ptrain ≤ 10000 and r ≤ 150, the sketched method of
snapshots (see Definition 2.5.3) using Ω of size k = 10000 provides almost optimal
approximation of the training set of snapshots with an error which is only at most
1.1 times higher than the error associated with the classical POD approximation.
A Gaussian matrix of size k = 10000, for r ≤ 150, also yields with high probability
very accurate estimation (up to a factor of 1.1) of the residual error and sufficiently
accurate estimation of the Galerkin projection (increasing the residual error by at
most a factor of 1.66). For coercive and well-conditioned problems such as the
thermal-block benchmark, it can be sufficient to use much smaller sketching matrices
than in the present benchmark, say with k = 2500 rows. Moreover, this value for
k should be pertinent also for ill-conditioned problems, including the considered
acoustic cloak benchmark, when the minimal residual methods are used alternatively
to the Galerkin methods (see Chapter 3). From Table 2.4 it follows that a random
sketch of dimension k = 2500 is 6.8 times cheaper to maintain than a full snapshot
vector. It has to be mentioned that when the sketch is computed from the affine
expansion of A(µ) with mA terms (here mA = 11), its maintenance/transfer costs
are proportional to kmA and are independent of the dimension of the initial system
of equations. Consequently, for problems with larger n/mA a better cost reduction
is expected.

Table 2.4: The amount of data in megabytes required to maintain/transfer a single
snapshot or its Θ-sketch for post-processing.

full snapshot k = 2500 k = 5000 k = 10000 k = 15000 k = 17000 k = 20000
1.64 0.24 0.48 0.96 1.44 1.63 1.92

2.7 Conclusions and perspectives
In this chapter we proposed a methodology for reducing the cost of classical projection-
based MOR methods such as RB method and POD. The computational cost of
constructing a reduced order model is essentially reduced to evaluating the samples
(snapshots) of the solution on the training set, which in its turn can be efficiently
performed with state-of-the-art routine on a powerful server or distributed machines.
Our approach can be beneficial in any computational environment. It improves
efficiency of classical MOR methods in terms of complexity (number of flops), memory
consumption, scalability, communication cost between distributed machines, etc.
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Unlike classical methods, our method does not require maintaining and operating
with high-dimensional vectors. Instead, the reduced order model is constructed from
a random sketch (a set of random projections), with a negligible computational cost.
A new framework was introduced in order to adapt random sketching technique
to the context of MOR. We interpret random sketching as a random estimation of
inner products between high-dimensional vectors. The projections are obtained with
random matrices (called oblivious subspace embeddings), which are efficient to store
and to multiply by. We introduced oblivious subspace embeddings for a general inner
product defined by a self-adjoint positive definite matrix. Thereafter, we introduced
randomized versions of Galerkin projection, residual-based error estimation, and
primal-dual correction. The conditions for preserving the quality of the output of the
classical method were provided. In addition, we discussed computational aspects for
an efficient evaluation of a random sketch in different computational environments,
and introduced a new procedure for estimating the residual norm. This procedure
is not only efficient but also is less sensitive to round-off errors than the classical
approach. Finally, we proposed randomized versions of POD and greedy algorithm
for RB. Again, in both algorithms, standard operations are performed only on the
sketch but not on high-dimensional vectors.

The methodology has been validated in a series of numerical experiments. We
observed that indeed random sketching can provide a drastic reduction of the
computational cost. The experiments revealed that the theoretical bounds for the
sizes of random matrices are pessimistic. In practice, it can be pertinent to use much
smaller matrices. In such a case it is important to provide a posteriori certification
of the solution. In addition, it can be helpful to have an indicator of the accuracy of
random sketching, which can be used for an adaptive selection of random matrices
sizes. The aforementioned issues are addressed in Chapter 3 of this manuscript. It was
also observed that the performance of random sketching for estimating the Galerkin
projection depends on the operator’s properties (more precisely on the constant ar(µ)
defined in Proposition 2.4.2). Consequently, the accuracy of the output can degrade
considerably for problems with ill-conditioned operators. A remedy is to replace
Galerkin projection by another type of projection for the approximation of u(µ)
(and udu(µ)). The randomized minimal residual projection proposed in Chapter 3
preserves the quality of the classical minimal residual projection regardless of the
operator’s properties. Another remedy would be to improve the condition number of
A(µ) with affine parameter-dependent preconditioner constructed with an approach
from Chapter 4. We also have seen that preserving a high precision for the sketched
primal-dual correction (2.33) can require large sketching matrices. A way to overcome
this issue was proposed. It consists in obtaining an efficient approximation wdu

r (µ)
of the solution udu

r (µ) (or ur(µ)). Such wdu
r (µ) can be also used for reducing the

cost of extracting the quantity of interest from ur(µ), i.e., computing lr(µ), which in
general can be expensive (but was assumed to have a negligible cost). In addition,
this approach can be used for problems with nonlinear quantities of interest. An
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approximation wdu
r (µ) can be taken as a projection of udu

r (µ) (or ur(µ)) on a subspace
W du
r . In the experiments W du

r was constructed from the first several basis vectors of
the approximation space Udu

r . A better subspace can be obtained by approximating
the manifold {udu

r (µ) : µ ∈ Ptrain} with a greedy algorithm or POD. Here, random
sketching can be again employed for improving the efficiency. The strategies for
obtaining both accurate and efficient W du

r with random sketching are discussed in
details in Chapter 3.
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2.8 Appendix
Here we list the proofs of propositions and theorems from the chapter.
Proof of Proposition 2.2.2 (modified Cea’s lemma). For all x ∈ Ur, it holds
αr(µ)‖ur(µ)−x‖U ≤ ‖r(ur(µ);µ)− r(x;µ)‖U ′r ≤ ‖r(ur(µ);µ)‖U ′r +‖r(x;µ)‖U ′r

= ‖r(x;µ)‖U ′r ≤ βr(µ)‖u(µ)−x‖U ,
where the first and last inequalities directly follow from the definitions of αr(µ) and
βr(µ), respectively. Now,

‖u(µ)−ur(µ)‖U ≤ ‖u(µ)−x‖U +‖ur(µ)−x‖U ≤ ‖u(µ)−x‖U + βr(µ)
αr(µ)‖u(µ)−x‖U ,

which completes the proof.
Proof of Proposition 2.2.3. For all a ∈Kr and x := Ura, it holds

‖Ar(µ)a‖
‖a‖

= max
z∈Kr\{0}

|〈z,Ar(µ)a〉|
‖z‖‖a‖

= max
z∈Kr\{0}

|zHUH
r A(µ)Ura|
‖z‖‖a‖

= max
y∈Ur\{0}

|yHA(µ)x|
‖y‖U‖x‖U

=
‖A(µ)x‖U ′r
‖x‖U

.

Then the proposition follows directly from definitions of αr(µ) and βr(µ).
Proof of Proposition 2.2.4. We have

|s(µ)− spd
r (µ)|= |s(µ)− sr(µ) + 〈udu

r (µ),r(ur(µ);µ)〉|
= |〈l(µ),u(µ)−ur(µ)〉+ 〈A(µ)Hudu

r (µ),u(µ)−ur(µ)〉|
= |〈rdu(udu

r (µ);µ),u(µ)−ur(µ)〉|
≤ ‖rdu(udu

r (µ);µ)‖U ′‖u(µ)−ur(µ)‖U ,
and the result follows from definition (2.10).
Proof of Proposition 2.2.5. To prove the first inequality we notice that QPUrUm

has rank at most r. Consequently,

‖QUm−B∗r‖2F ≤ ‖QUm−QPUrUm‖2F =
m∑
i=1
‖u(µi)−PUru(µi)‖2U .

For the second inequality let us denote the i-th column vector of Br by bi. Since
QR−1

U QH = QQ†, with Q† the pseudo-inverse of Q, is the orthogonal projection
onto range(Q), we have

‖QUm−Br‖2F ≥ ‖QR−1
U QH(QUm−Br)‖2F =

m∑
i=1
‖u(µi)−R−1

U QHbi‖2U

≥
m∑
i=1
‖u(µi)−PUru(µi)‖2U .
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Proof of Proposition 2.3.3. It is clear that 〈·, ·〉ΘX and 〈·, ·〉ΘX ′ satisfy (conjugate) sym-
metry, linearity and positive semi-definiteness properties. The definitenesses of 〈·, ·〉ΘX
and 〈·, ·〉ΘX ′ on Y and Y ′, respectively, follow directly from Definition 2.3.1 and
Corollary 2.3.2.

Proof of Proposition 2.3.4. Using Definition 2.3.1, we have

‖y′‖ΘZ′ = max
x∈Z\{0}

|〈R−1
X y′,x〉ΘX |
‖x‖ΘX

≤ max
x∈Z\{0}

|〈R−1
X y′,x〉X |+ ε‖y′‖X ′‖x‖X

‖x‖ΘX

≤ max
x∈Z\{0}

|〈R−1
X y′,x〉X |+ ε‖y′‖X ′‖x‖X√

1− ε‖x‖X

≤ 1√
1− ε

(
max

x∈Z\{0}

|〈y′,x〉|
‖x‖X

+ ε‖y′‖X ′
)
,

which yields the right inequality. To prove the left inequality we assume that
‖y′‖Z′ − ε‖y′‖X ′ ≥ 0. Otherwise the relation is obvious because ‖y′‖ΘZ′ ≥ 0. By
Definition 2.3.1,

‖y′‖ΘZ′ = max
x∈Z\{0}

|〈R−1
X y′,x〉ΘX |
‖x‖ΘX

≥ max
x∈Z\{0}

|〈R−1
X y′,x〉X |− ε‖y′‖X ′‖x‖X

‖x‖ΘX

≥ max
x∈Z\{0}

|〈R−1
X y′,x〉X |− ε‖y′‖X ′‖x‖X√

1 + ε‖x‖X

≥ 1√
1 + ε

(
max

x∈Z\{0}

|〈y′,x〉|
‖x‖X

− ε‖y′‖X ′
)
,

which completes the proof.

Proof of Proposition 2.3.7. Let us start with the case K = R. For the proof we shall
follow standard steps (see, e.g., [153, Section 2.1]). Given a d-dimensional subspace
V ⊆ Rn, let S = {x ∈ V : ‖x‖ = 1} be the unit sphere of V . According to [29,
Lemma 2.4], for any γ > 0 there exists a γ-net N of S6 satisfying #N ≤ (1 + 2/γ)d.
For η such that 0 < η < 1/2, let Θ ∈ Rk×n be a rescaled Gaussian or Rademacher
matrix with k ≥ 6η−2(2d log(1 +2/γ) + log(1/δ)). By [2, Lemmas 4.1 and 5.1] and
an union bound argument we obtain for a fixed x ∈ V

P(|‖x‖2−‖Θx‖2| ≤ η‖x‖2)≥ 1−2exp(−kη2/6).

Consequently, using a union bound for the probability of success, we have that{
|‖x +y‖2−‖Θ(x +y)‖2| ≤ η‖x +y‖2, ∀x,y ∈N

}
,

6We have ∀x ∈ S,∃y ∈N such that ‖x−y‖ ≤ γ.
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holds with probability at least 1− δ. Then we deduce that

{ |〈x,y〉−〈Θx,Θy〉| ≤ η, ∀x,y ∈N} (2.52)

holds with probability at least 1−δ. Now, let n be some vector in S. Assuming γ < 1,
it can be proven by induction that n =∑

i≥0αini, where ni ∈ N and 0≤ αi ≤ γi7.
If (2.52) is satisfied, then

‖Θn‖2 =
∑
i,j≥0
〈Θni,Θnj〉αiαj

≤
∑
i,j≥0

(〈ni,nj〉αiαj +ηαiαj) = 1 +η(
∑
i≥0

αi)2 ≤ 1 + η

(1−γ)2 ,

and similarly ‖Θn‖2 ≥ 1− η
(1−γ)2 . Therefore, if (2.52) is satisfied, we have

|1−‖Θn‖2| ≤ η/(1−γ)2. (2.53)

For a given ε ≤ 0.5/(1−γ)2, let η = (1−γ)2ε. Since (2.53) holds for an arbitrary
vector n ∈ S, using the parallelogram identity, we easily obtain that

|〈x,y〉−〈Θx,Θy〉| ≤ ε‖x‖‖y‖ (2.54)

holds for all x,y ∈ V if (2.52) is satisfied. We conclude that if k ≥ 6ε−2(1−
γ)−4(2d log(1 + 2/γ) + log(1/δ)) then Θ is a `2→ `2 ε-subspace embedding for V
with probability at least 1− δ. The lower bound for the number of rows of Θ is
obtained by taking γ = argminx∈(0,1)(log(1 + 2/x)/(1−x)4)≈ 0.0656.

The statement of the proposition for the case K = C can be deduced from the
fact that if Θ is (ε,δ,2d) oblivious `2→ `2 subspace embedding for K = R, then
it is (ε,δ,d) oblivious `2→ `2 subspace embedding for K = C. A detailed proof of
this fact is provided in the supplementary material. To show this we first note that
the real part and the imaginary part of any vector from a d-dimensional subspace
V ∗ ⊆ Cn belong to a certain subspace W ⊆ Rn with dim(W )≤ 2d. Further, one can
show that if Θ is `2→ `2 ε-subspace embedding for W , then it is `2→ `2 ε-subspace
embedding for V ∗.

Proof of Proposition 2.3.9. Let Θ∈Rk×n be a P-SRHT matrix, let V be an arbitrary
d-dimensional subspace of Kn, and let V ∈Kn×d be a matrix whose columns form
an orthonormal basis of V . Recall, Θ is equal to the first n columns of matrix Θ∗ =
k−1/2(RHsD) ∈ Rk×s. Next we shall use the fact that for any orthonormal matrix
V∗ ∈Ks×d, all singular values of a matrix Θ∗V∗ belong to interval [

√
1− ε,

√
1 + ε]

7Indeed, ∃n0 ∈ N such that ‖n−n0‖ := α1 ≤ γ. Let α0 = 1. Then assuming that ‖n−∑m
i=0αini‖ := αm+1 ≤ γm+1, ∃nm+1 ∈ N such that ‖ 1

αm+1
(n−

∑m
i=0αini)−nm+1‖ ≤ γ =⇒

‖n−
∑m+1
i=0 αini‖ ≤ αm+1γ ≤ γm+2.
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with probability at least 1− δ. This result is basically a restatement of [30, Lemma
4.1] and [142, Theorem 3.1] including the complex case and with improved constants.
It can be shown to hold by mimicking the proof in [142] with a few additional
algebraic operations. For a detailed proof of the statement, see supplementary
material.

By taking V∗ with the first n×d block equal to V and zeros elsewhere, and using
the fact that ΘV and Θ∗V∗ have the same singular values, we obtain that

|‖Vz‖2−‖ΘVz‖2|= |zH(I−VHΘHΘV)z| ≤ ε‖z‖2 = ε‖Vz‖2, ∀z ∈Kd (2.55)

holds with probability at least 1− δ. Using parallelogram identity, it can be easily
proven that relation (2.55) implies

|〈x,y〉−〈Θx,Θy〉| ≤ ε‖x‖‖y‖, ∀x,y ∈ V.

We conclude that Θ is a (ε,δ,d) oblivious `2→ `2 subspace embedding.

Proof of Proposition 2.3.11. Let V be any d-dimensional subspace of X and let
V ∗ := {Qx : x ∈ V }. Since the following relations hold 〈·, ·〉U = 〈Q·,Q·〉 and 〈·, ·〉ΘU =
〈Q·,Q·〉Ω2 , we have that sketching matrix Θ is an ε-embedding for V if and only if
Ω is an ε-embedding for V ∗. It follows from the definition of Ω that this matrix is
an ε-embedding for V ∗ with probability at least 1− δ, which completes the proof.

Proof of Proposition 2.4.1 (sketched Cea’s lemma). The proof exactly follows the
one of Proposition 2.2.2 with ‖ · ‖U ′r replaced by ‖ · ‖ΘU ′r .

Proof of Proposition 2.4.2. According to Proposition 2.3.4, and by definition of ar(µ),
we have

αΘ
r (µ) = min

x∈Ur\{0}

‖A(µ)x‖ΘU ′r
‖x‖U

≥ 1√
1 + ε

min
x∈Ur\{0}

(‖A(µ)x‖U ′r − ε‖A(µ)x‖U ′)
‖x‖U

≥ 1√
1 + ε

(1− εar(µ)) min
x∈Ur\{0}

‖A(µ)x‖U ′r
‖x‖U

.

Similarly,

βΘ
r (µ) = max

x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖ΘU ′r
‖x‖U

≤ 1√
1− ε

max
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖U ′r + ε‖A(µ)x‖U ′
‖x‖U

≤ 1√
1− ε

(
max

x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖U ′r
‖x‖U

+ ε max
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

)
.
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Proof of Proposition 2.4.3. Let a ∈Kr and x := Ura. Then

‖Ar(µ)a‖
‖a‖

= max
z∈Kr\{0}

|〈z,Ar(µ)a〉|
‖z‖‖a‖

= max
z∈Kr\{0}

|zHUH
r ΘHΘR−1

U A(µ)Ura|
‖z‖‖a‖

= max
y∈Ur\{0}

|yHΘHΘR−1
U A(µ)x|

‖y‖ΘU ‖x‖ΘU
= max

y∈Ur\{0}

|〈y,R−1
U A(µ)x〉ΘU |
‖y‖ΘU ‖x‖ΘU

=
‖A(µ)x‖ΘU ′r
‖x‖ΘU

.

(2.56)

By definition, √
1− ε‖x‖U ≤ ‖x‖ΘU ≤

√
1 + ε‖x‖U . (2.57)

Combining (2.56) and (2.57) we conclude that

1√
1 + ε

‖A(µ)x‖ΘU ′r
‖x‖U

≤ ‖Ar(µ)a‖
‖a‖

≤ 1√
1− ε

‖A(µ)x‖ΘU ′r
‖x‖U

.

The statement of the proposition follows immediately from definitions of αΘ
r (µ) and

βΘ
r (µ).

Proof of Proposition 2.4.4. The proposition directly follows from relations (2.10),
(2.19), (2.20) and (2.31).

Proof of Proposition 2.4.6. We have

|spd(µ)− sspd
r (µ)|= |〈udu

r (µ),R−1
U r(ur(µ);µ)〉U −〈udu

r (µ),R−1
U r(ur(µ);µ)〉ΘU |

≤ ε‖r(ur(µ);µ)||U ′‖udu
r (µ)‖U

≤ ε‖r(ur(µ);µ)||U ′
‖A(µ)Hudu

r (µ)‖U ′
η(µ)

≤ ε‖r(ur(µ);µ)||U ′
‖rdu(udu

r (µ);µ)‖U ′+‖l(µ)‖U ′
η(µ) ,

(2.58)

and (2.34) follows by combining (2.58) with (2.15).

Proof of Proposition 2.5.1. In total, there are at most
(
m
r

)
r-dimensional subspaces

that could be spanned from m snapshots. Therefore, by using the definition of Θ,
the fact that dim(Yr(µ))≤ 2r+ 1 and a union bound for the probability of success,
we deduce that Θ is a U → `2 ε-subspace embedding for Yr(µ), for fixed µ ∈ Ptrain,
with probability at least 1−m−1δ. The proposition then follows from another union
bound.
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Proof of Proposition 2.5.4. We have,

∆POD(V ) = 1
m
‖UΘ

m−ΘPΘ
V Um‖F .

Moreover, matrix ΘPΘ
UrUm is the rank-r truncated SVD approximation of UΘ

m. The
statements of the proposition can be then derived from the standard properties of
SVD.

Proof of Theorem 2.5.5. Clearly, if Θ is a U → `2 ε-subspace embedding for Y ,
then rank(UΘ

m)≥ r. Therefore Ur is well-defined. Let {(λi,ti)}li=1 and Tr be given
by Definition 2.5.3. In general, PΘ

Ur defined by (2.44) may not be unique. Let us
further assume that PΘ

Ur is provided for x ∈ Um by PΘ
Urx := UrUH

r ΘHΘx, where
Ur = Um[ 1√

λ1
t1, ...,

1√
λr

tr]. Observe that PΘ
UrUm = UmTrTH

r . For the first part of
the theorem, we establish the following inequalities. Let Q ∈Kn×n denote adjoint of
a Cholesky factor of RU , then

1
m

m∑
i=1
‖(I−PY )(u(µi)−PΘ

Uru(µi))‖2U = 1
m
‖Q(I−PY )Um(I−TrTH

r )‖2F

≤ 1
m
‖Q(I−PY )Um‖2F‖I−TrTH

r ‖2 = ∆Y ‖I−TrTH
r ‖2 ≤∆Y ,

and
1
m

m∑
i=1

(
‖(I−PY )(u(µi)−PΘ

Uru(µi))‖ΘU
)2

= 1
m
‖Θ(I−PY )Um(I−TrTH

r )‖2F

≤ 1
m
‖Θ(I−PY )Um‖2F‖I−TrTH

r ‖2 ≤ (1 + ε)∆Y ‖I−TrTH
r ‖2 ≤ (1 + ε)∆Y .

Now, we have

1
m

m∑
i=1
‖u(µi)−PUru(µi)‖2U ≤

1
m

m∑
i=1
‖u(µi)−PΘ

Uru(µi)‖2U

= 1
m

m∑
i=1

(
‖PY (u(µi)−PΘ

Uru(µi))‖2U +‖(I−PY )(u(µi)−PΘ
Uru(µi))‖2U

)

≤ 1
m

m∑
i=1
‖PY (u(µi)−PΘ

Uru(µi))‖2U + ∆Y ≤
1
m

1
1− ε

m∑
i=1

(
‖PY (u(µi)−PΘ

Uru(µi))‖ΘU
)2

+ ∆Y

≤ 1
1− ε

1
m

m∑
i=1

2
((
‖u(µi)−PΘ

Uru(µi)‖ΘU
)2

+
(
‖(I−PY )(u(µi)−PΘ

Uru(µi))‖ΘU
)2)

+ ∆Y

≤ 1
1− ε

1
m

m∑
i=1

2
(
‖u(µi)−PU∗r u(µi)‖ΘU

)2
+ (2(1 + ε)

1− ε + 1)∆Y

≤ 2(1 + ε)
1− ε

1
m

m∑
i=1
‖u(µi)−PU∗r u(µi)‖2U + (2(1 + ε)

1− ε + 1)∆Y ,
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which is equivalent to (2.48).
The second part of the theorem can be proved as follows. Assume that Θ is

U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖u(µi)−PUru(µi)‖2U ≤

1
m

m∑
i=1
‖u(µi)−PΘ

Uru(µi)‖2U

≤ 1
m

1
1− ε

m∑
i=1

(
‖u(µi)−PΘ

Uru(µi)‖ΘU
)2
≤ 1
m

1
1− ε

m∑
i=1

(
‖u(µi)−PU∗r u(µi)‖ΘU

)2

≤ 1
m

1 + ε

1− ε

m∑
i=1
‖u(µi)−PU∗r u(µi)‖2U ,

which completes the proof.
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2.9 Supplementary material

Here we provide detailed proofs of Remark 2.3.8 and of some statements used in the
proofs of Propositions 2.3.7 and 2.3.9.

Supplementary material for the proof of Proposition 2.3.7

In the proof of Proposition 2.3.7 for the complex case (i.e., K = C) we used the
following result.

Proposition 2.9.1. Let Θ be a real random matrix. If Θ is (ε,δ,2d) oblivious
`2→ `2 subspace embedding for subspaces of vectors in Rn, then it is (ε,δ,d) oblivious
`2→ `2 subspace embedding for subspaces of vectors in Cn.

Proof of Proposition 2.9.1. Let V ⊂ Cn be a d-dimensional subspace with a basis
{vi}di=1. Let us introduce a real subspaceW = span({Re(vi)}di=1)+span({Im(vi)}di=1).
Observe that

Re(v) and Im(v) ∈W, ∀v ∈ V.

Consequently if Θ is an ε-embedding for W , then

|‖Re(v)‖2−‖ΘRe(v)‖2| ≤ ε‖Re(v)‖2, ∀v ∈ V, (2.59a)
|‖Im(v)‖2−‖ΘIm(v)‖2| ≤ ε‖Im(v)‖2, ∀v ∈ V. (2.59b)

Since Θ is a real matrix, relations (2.59) imply

|‖v‖2−‖Θv‖2| ≤ ε‖v‖2, ∀v ∈ V. (2.60)

By definition of Θ and the fact that dim(W )≤ 2d, it follows that Θ is an ε-embedding
for W with probability at least 1− δ. From this we deduce that (2.60) holds with
probability at least 1− δ. It remains to show that (2.60) implies

|〈x,y〉−〈Θx,Θy〉| ≤ ε‖x‖‖y‖, ∀x,y ∈ V. (2.61)

Let x,y ∈ V be any two vectors from V . Define x∗ := x/‖x‖, y∗ := y/‖y‖ and

ω := 〈x∗,y∗〉−〈Θx∗,Θy∗〉
|〈x∗,y∗〉−〈Θx∗,Θy∗〉|

.

Observe that |ω| = 1 and 〈x∗,ωy∗〉− 〈Θx∗,ωΘy∗〉 is a real number. Then, (2.60)
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and the parallelogram identity yield

4|〈x∗,y∗〉−〈Θx∗,Θy∗〉|= |4〈x∗,ωy∗〉−4〈Θx∗,ωΘy∗〉|
= |‖x∗+ωy∗‖2−‖x∗−ωy∗‖2 + 4Im(〈x∗,ωy∗〉)
−
(
‖Θ(x∗+ωy∗)‖2−‖Θ(x∗−ωy∗)‖2 + 4Im(〈Θx∗,ωΘy∗〉)

)
|

= |‖x∗+ωy∗‖2−‖Θ(x∗+ωy∗)‖2−
(
‖x∗−ωy∗‖2− (‖Θ(x∗−ωy∗)‖2

)
+ 4Im(〈x∗,ωy∗〉−〈Θx∗,ωΘy∗〉)|
≤ ε‖x∗+ωy∗‖2 + ε‖x∗−ωy∗‖2 = 4ε.

The relation (2.61) follows immediately.

Supplementary material for Remark 2.3.8

Recall that Θ ∈ Ck×n is called a rescaled complex Gaussian matrix if

Θ := 1√
2

(ΘRe + jΘIm), (2.62)

where ΘRe, ΘIm are two independent rescaled real Gaussian matrices (that have i.i.d.
entries with mean 0 and variance k−1). Let us now give a proof of the statement
in Remark 2.3.8 (see proposition below).

Proposition 2.9.2. A distribution of rescaled complex Gaussian matrices (defined
by (2.62)) with k ≥ 3.94ε−2(13.8d+ log(1/δ)) rows satisfies (ε,δ,d) oblivious `2→ `2
subspace embedding property.

The proof of this statement shall be obtained by following the proof of Proposi-
tion 2.3.7 updating the constants in some places. First, let us establish the following
result.

Lemma 2.9.3. A rescaled complex Gaussian matrix Θ (defined by (2.62)) with
k ≥ (ε2/2− ε3/3)−1 log(2/δ) is (ε,δ,1) oblivious `2→ `2 subspace embedding.

Proof of Lemma 2.9.3. Let z∈Cn be an arbitrary unit vector. Define x :=
[

Re(z)
−Im(z)

]
,

y :=
[
Im(z)
Re(z)

]
and Θ∗ := [ΘRe,ΘIm]. Observe that Θ∗ is a rescaled real Gaussian

matrix, x and y are orthogonal unit vectors, and

‖Θz‖2 = 1
2‖Θ

∗x‖2 + 1
2‖Θ

∗y‖2.

Since products of a Gaussian matrix with orthogonal unit vectors are independent
Gaussian vectors, consequently, kΘ∗x and kΘ∗y are independent k-dimensional
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standard Gaussian vectors. We conclude that 2k‖Θz‖2 has a chi-squared distribution
with 2k degrees of freedom. Finally, the standard tail-bounds for chi-squared
distribution ensure that

|‖Θz‖2−1|> ε,

holds with probability less than δ = 2exp(−k(ε2/2− ε3/3)), which completes the
proof.

Proof of Proposition 2.9.2. We can use a similar proof as the one of Proposition 2.3.7
for the real case. Let V ⊂ Cn be a d-dimensional subspace and let S = {x ∈W :
‖x‖= 1} be the unit sphere of V . By the volume argument it follows that for any
γ > 0 there exists a γ-net N of S satisfying #N ≤ (1 + 2/γ)2d. For η such that
0< η < 1/2, let Θ ∈Ck×n be a rescaled complex Gaussian matrix (defined by (2.62))
with k ≥ 3η−2(4d log(1 + 2/γ) + log(1/δ)) rows. By Lemma 2.9.3 and a union bound
argument, we have that{

|‖x +y‖2−‖Θ(x +y)‖2| ≤ η‖x +y‖2, ∀x,y ∈N
}

holds with probability at least 1− δ. This implies that

{ |〈x,y〉−〈Θx,Θy〉| ≤ η, ∀x,y ∈N} (2.63)

holds with probability at least 1− δ.
Assume that γ < 1. It can be shown that any vector n∈S can be expressed as n =∑

i≥0αini, where ni ∈N and αi are real coefficients such that 0≤ αi ≤ γi. The proof
of this fact directly follows the one for the real case in the proof of Proposition 2.3.7.
Then (2.63) implies that for all n ∈ S,

‖Θn‖2 =
∑
i,j≥0
〈Θni,Θnj〉αiαj

≤
∑
i,j≥0

(〈ni,nj〉αiαj +ηαiαj) = 1 +η(
∑
i≥0

αi)2 ≤ 1 + η

(1−γ)2 ,

and, similarly, ‖Θn‖2 ≥ 1− η
(1−γ)2 . Therefore, (2.63) implies

|1−‖Θn‖2| ≤ η/(1−γ)2, ∀n ∈ S. (2.64)

For any ε≤ 0.5/(1−γ)2 let us choose η = (1−γ)2ε. Now we use the argument from
the proof of Proposition 2.9.1, which states that (2.60) yields (2.61). This result
implies that, if (2.64) is satisfied, then Θ is a `2→ `2 ε-subspace embedding for V .
We have that if k ≥ 3ε−2(1−γ)−4(4d log(1 + 2/γ) + log(1/δ)), then (2.63) (and as
a consequence (2.64)) holds with probability at least 1− δ, which means that Θ is
(ε,δ,d) oblivious `2→ `2 subspace embedding. As in Proposition 2.3.7 the lower
bound for k is attained with γ = 0.0656.
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Supplementary material for the proof of Proposition 2.3.9
Let us now present a proof of [30, Lemma 4.3] and [142, Theorem 3.1] for the complex
case and with improved constants (see Proposition 2.9.4), which is used in the proof
of Proposition 2.3.9. Consider a SRHT matrix Θ of size k×n, with n being a power
of 2. Recall that

Θ = k−1/2(RHnD), (2.65)
where R are the first k rows of a random permutation of rows of the identity matrix,
Hn is a Hadamard matrix, and D is a random diagonal matrix with i.i.d. entries
with Rademacher distribution (i.e., taking values ±1 with equal probabilities). To be
consistent with the notations from [30, 142] let us also define a rescaled Hadamard
matrix H := 1√

n
Hn with orthonormal columns.

Proposition 2.9.4 (Complex version of Lemma 4.3 in [30], Theorem 3.1 in [142]).
Let V ∈ Cn×d be a matrix with orthonormal columns. Let 0< ε < 1 and 0< δ < 1.
Draw at random a matrix Θ defined in (2.65) with

k ≥ 2(ε2− ε3/3)−1[
√
d+

√
8log(n/δ)]2 log(d/δ).

Then with probability at least 1−3δ, the singular values of ΘV belong to the interval
[
√

1− ε,
√

1 + ε].

Proposition 2.9.4 can be derived from complex extensions of [142, Lemmas 3.3 and
3.4] presented below.

Lemma 2.9.5 (Lemma 3.3 in [142]). Let V ∈ Cn×d be a matrix with orthonor-
mal columns. Draw at random a diagonal matrix D in (2.65). The rows wT

j of
HDV satisfy

P( max
j=1,...,n

‖wj‖ ≤
√
d

n
+
√

8log(n/δ)
n

)≥ 1− δ.

Proof of Lemma 2.9.5. This lemma can be proven with exactly the same steps as
in the proof of [142, Lemma 3.3]. We have wj = VTdiag(i)Hej where ej is the
jth column of the identity matrix and i is a Rademacher vector. Define functions
fj(x) := ‖VTdiag(x)Hej‖. Observe that fj(x) = ‖VTEjx‖, with Ej := diag(Hej)
being a matrix with 2-norm ‖Ej‖= 1√

n
. We have,

∀x,y, |fj(x)−fj(y)| ≤ ‖VTEj(x−y)‖ ≤ ‖V‖‖Ej‖‖x−y‖= 1√
n
‖x−y‖.

Moreover, the functions fj(x) are convex, which allows to apply the Rademacher
tail bound [142, Proposition 2.1]

P(fj(i)≥ Efj(i) + 1√
n
t)≤ exp(−t2/8), ∀t≥ 0, (2.66)
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with i being a Rademacher vector. Observe that Efj(i)≤ (E(fj(i))2)1/2 = ‖EjV‖F ≤
‖Ej‖‖V‖F =

√
d
n . The statement of the proposition follows by combining this relation

with (2.66) with t=
√

8log(n/δ), and by using the union bound argument.

Lemma 2.9.6 (Lemma 3.4 in [142]). Let W ∈ Cn×d have orthonormal columns.
Let 0<ε< 1 and 0<δ < 1. Let wT

j denote the rows of W and let M :=nmaxj=1,...,n ‖wj‖2.
Draw at random a permutation matrix R in (2.65) with

k ≥ 2(ε2− ε3/3)−1M log(d/δ).

Then with probability at least 1−2δ, all the singular values of
√
n
kRW belong to the

interval [
√

1− ε,
√

1 + ε].

To prove Lemma 2.9.6 we shall use the matrix Chernoff tail bounds from [142]. For
any Hermitian matrix X, let λmin(X) and λmax(X) denote the minimal and the
maximal eigenvalues of X.

Theorem 2.9.7 (Theorem 2.2 in [142]). Consider a finite set X ⊆Cd×d of Her-
mitian positive semi-definite matrices. Define constant L := maxXj∈X λmax(Xj). Let
{Xi}ki=1 ⊆X be a uniformly sampled, without replacement, random subset of X and
X :=∑k

i=1 Xi. Then

P(λmin(X)≤ (1− ε)µmin)≤ d
(

e−ε

(1− ε)1−ε

)µmin/L

,

P(λmax(X)≥ (1 + ε)µmax)≤ d
(

eε

(1 + ε)1+ε

)µmax/L

,

where µmin = k λmin(EX1) and µmax = k λmax(EX1).

Proof of Theorem 2.9.7. The proof directly follows the one in [142], since all the
ingredients used in the proof of [142, Theorem 2.2] (which are [143, Proposition
3.1, Lemma 3.4, Lemma 5.8] and the result of [75]) are formulated for (Hermitian)
positive semi-definite matrices.

Proof of Lemma 2.9.6. Define X := {wjwH
j }nj=1. Consider the matrix

X := (RW)HRW =
∑
j∈T

wjwH
j ,

where T is a set, with #T = k, of elements of {1,2, . . . ,n} drawn uniformly and
without replacement. Matrix X can be written as

X =
k∑
i=1

Xi,
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where {Xi}ki=1 is a uniformly drawn, without replacement, random subset of X. We
have E(X1) = 1

nWHW = 1
nI. Furthermore,

λmax(wjwH
j ) = ‖wj‖2 ≤

M

n
, 1≤ j ≤ n.

By applying Theorem 2.9.7 and some algebraic operations, we obtain

P(λmin(X)≤ (1− ε)k/n)≤ d
(

e−ε

(1− ε)1−ε

)k/M
≤ d e−(ε2/2−ε3/6)k/M ≤ δ,

P(λmax(X)≥ (1 + ε)k/n)≤ d
(

eε

(1 + ε)1+ε

)k/M
≤ d e−(ε2/2−ε3/6)k/M ≤ δ.

The statement of the lemma follows by a union bound argument.

Proof of Proposition 2.9.4. Let W = HDV. Observe that W has orthonormal
columns. The statement of the proposition follows from Lemma 2.9.5 with the
tail bound from Lemma 2.9.6 and a union bound argument.
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Chapter 3

Random sketching for minimal resid-
ual methods and dictionary-based
approximation

This chapter essentially constitutes the article [12] that will be shortly submitted for
a publication. Following the framework from Chapter 2, we here construct a reduced
model from a small, efficiently computable random object called a sketch of a reduced
model, using minimal residual methods. We introduce a sketched version of the
minimal residual based projection as well as a novel nonlinear approximation method,
where for each parameter value, the solution is approximated by minimal residual
projection onto a subspace spanned by several vectors picked from a dictionary of
candidate basis vectors. It is shown that random sketching technique can improve
not only efficiency but also numerical stability. A rigorous analysis of the conditions
on the random sketch required to obtain a given accuracy is presented. These
conditions may be ensured a priori with high probability by considering for the
sketching matrix an oblivious embedding of sufficiently large size. Unlike with
Galerkin methods, with minimal residual methods the quality of the sketching matrix
can be characterized regardless operator’s properties. Furthermore, a simple and
reliable procedure for a posteriori verification of the quality of the sketch is provided.
This approach can be used for certification of the approximation as well as for
adaptive selection of the optimal size of the random sketching matrix. We also
propose a two-steps procedure for an efficient and stable estimation of an inner
product between parameter-dependent vectors having affine decompositions with
many (possibly expensive to maintain) terms. This procedure can be used for
extraction of a quantity of interest (linear or quadratic functional of the solution),
estimation of the primal-dual correction, etc.
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3.1 Introduction
We consider large parameter-dependent systems of equations

A(µ)u(µ) = b(µ), µ ∈ P , (3.1)

where u(µ) is a solution vector, A(µ) is a parameter-dependent matrix, b(µ) is a
parameter-dependent right hand side and P is a parameter set. Parameter-dependent
problems are considered for many purposes such as design, control, optimization,
uncertainty quantification or inverse problems.

Solving (3.1) for many parameter values can be computationally unfeasible.
Moreover, for real-time applications, a quantity of interest (u(µ) or a function
of u(µ)) has to be estimated on the fly in highly limited computational time for
a certain value of µ. Model order reduction (MOR) methods are developed for
efficient approximation of the quantity of interest for each parameter value. They
typically consist of two stages. In the first so-called offline stage a reduced model
is constructed from the full order model. This stage usually involves expensive
computations such as evaluations of u(µ) for several parameter values, computing
multiple high-dimensional matrix-vector and inner products, etc., but this stage
is performed only once. Then, for each given parameter value, the precomputed
reduced model is used for efficient approximation of the solution or an output quantity
with a computational cost independent of the dimension of the initial system of
equations (3.1). For a detailed presentation of the classical MOR methods such
as Reduced Basis (RB) method and Proper Orthogonal Decomposition (POD) the
reader can refer to [23]. In the present work the approximation of the solution shall
be obtained with a minimal residual (minres) projection on a reduced (possibly
parameter-dependent) subspace. The minres projection can be interpreted as a
Petrov-Galerkin projection where the test space is chosen to minimize some norm of
the residual [7, 37]. Major benefits over the classical Galerkin projection include an
improved stability (quasi-optimality) for non-coercive problems and more effective
residual-based error bounds of an approximation (see e.g. [37]). In addition, minres
methods are better suited to random sketching as will be seen in the present chapter.

In recent years randomized linear algebra (RLA) became a popular approach
in the fields such as data analysis, machine learning, signal processing, etc. [106,
145, 153]. This probabilistic approach for numerical linear algebra can yield a
drastic computational cost reduction in terms of classical metrics of efficiency such as
complexity (number of flops) and memory consumption. Moreover, it can be highly
beneficial in extreme computational environments that are typical in contemporary
scientific computing. For instance, RLA can be essential when data has to be
analyzed only in one pass (e.g., when it is streamed from a server) or when it is
distributed on multiple workstations with expensive communication costs.

Despite their indisputable success in fields closely related to MOR, the aforemen-
tioned techniques only recently started to be used for model order reduction. One of
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the earliest works considering RLA in the context of MOR is [156], where the authors
proposed to use RLA for interpolation of (implicit) inverse of a parameter-dependent
matrix. In [36] the RLA was used for approximating the range of a transfer operator
and for computing a probabilistic bound for approximation error. In [137] the authors
developed a probabilistic error estimator, which can also be reformulated in the RLA
framework.

As already shown in Chapter 2, random sketching can lead to drastic reduction
of the computational costs of classical MOR methods. A random sketch of a reduced
model is defined as a set of small random projections of the reduced basis vectors
and the associated residuals. Its representation (i.e, affine decomposition1) can be
efficiently precomputed in basically any computational architecture. The random
projections should be chosen according to the metric of efficiency, e.g., number of flops,
memory consumption, communication cost between distributed machines, scalability,
etc. A rigorous analysis of the cost of obtaining a random sketch in different
computational environments can be found in Section 2.4.4. When a sketch has
been computed, the reduced model can be approximated without operating on large
vectors but only on their small sketches typically requiring negligible computational
costs. The approximation can be guaranteed to almost preserve the quality of the
original reduced model with user-specified probability. The computational cost
depends only logarithmically on the probability of failure, which can therefore be
chosen very small, say 10−10. In Chapter 2 it was shown how random sketching can
be employed for an efficient estimation of the Galerkin projection, the computation
of the norm of the residual for error estimation, and the computation of primal-dual
correction. Furthermore, new efficient sketched versions of greedy algorithm and
Proper Orthogonal Decomposition were introduced for generation of reduced bases.

3.1.1 Contributions
The present work is a continuation of Chapter 2, where we adapt the random sketching
technique to minimal residual methods, propose a dictionary-based approximation
method and additionally discuss the questions of a posteriori certification of the
sketch and efficient extraction of the quantity of interest from a solution of the
reduced model. A detailed discussion on the major contributions of the chapter is
provided below.

First a sketched version of minres projection is proposed in Section 3.3, which
is more efficient (in both offline and online stages) and numerically stable than
the classical approach. The construction of the reduced order model with minres
projection involves the evaluation of multiple inner products, which can become a
burden for high-dimensional problems. Furthermore, the classical procedure (through

1Recall that a parameter-dependent quantity v(µ) with values in a vector space V over K is
said to admit an affine representation if v(µ) =

∑
viλi(µ) with λi(µ) ∈K and vi ∈ V .
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orthogonalization of the basis) for ensuring stability of the reduced system of equations
only guarantees that the condition number is bounded by the square of the generalized
condition number of A(µ). Such a bound can be insufficient for applications with
very or even moderately ill-conditioned operators. In addition, the online evaluation
of the reduced system of equations from the precomputed affine expansions can
also be very expensive and suffer from round-off errors. The random sketching
technique can offer more efficient (in both offline and online stages) and numerically
stable procedures for estimating solutions to the minimal residual problem. Here
the reduced model is approximated from its efficiently computable random sketch
with a negligible computational cost. The precomputation of a random sketch can
require much lower complexity, memory consumption and communication cost than
the computations involved in the classical offline stage. As shown in Section 3.3.2,
with random sketching the online solution can be found by solving a small O(r) by r
least-squares problem. The construction of this problem takes only O(r2mA+ rmb)
flops (compared to O(r2m2

A+ rm2
b) flops required for forming the classical minres

reduced system of equations), where mA and mb are the numbers of terms in the
affine expansions of A(µ) and b(µ). Moreover, when the basis is orthogonalized one
can guarantee a better stability of the reduced least-squares matrix (the condition
number is bounded by the generalized condition number of A(µ)). In addition, the
parameter-dependent reduced matrix can have an affine expansion with considerably
less terms and therefore its evaluation is less sensitive to round-off errors. It is
also shown that the size of the sketching matrix which is sufficient to preserve the
quasi-optimality constants of minres projection can be characterized regardless the
properties of the operator (e.g., the condition number). This feature proves the
sketched minres projection to be more robust than the sketched Galerkin projection
for which the preservation of the approximation’s quality can degrade dramatically
for ill-conditioned or non-coercive problems as was revealed in Chapter 2.

In Section 3.4 we introduce a novel nonlinear method for approximating the
solution to (3.1), where for each value of the parameter, the solution is approximated
by a minimal residual projection onto a subspace spanned by several vectors from a
dictionary. From an algebraic point of view, this approach can be formulated as a
parameter-dependent sparse least-squares problem. It is shown that the solution can
be accurately estimated (with high probability) from a random sketch associated
with the dictionary, which allows drastic reduction of the computational costs. A
condition on the dimension of the random sketch required to obtain a given accuracy
is provided. Again, the construction of a reduced model does not require operations
on high-dimensional vectors but only on their sketches. In particular, in the offline
stage we only need to maintain a sketch of the dictionary. In Section 3.4.4 we propose
an efficient greedy-like procedure for the dictionary construction based on snapshots.

The dictionary-based approach is more natural than the classical hp-refinement
method [66, 67] and it should always provide a better approximation (see Sec-
tion 3.4.1). The potential of approximation with dictionaries for problems with a
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slow decay of the Kolmogorov r-widths of the solution manifold was revealed in [62,
93]. Although they improved classical approaches, the algorithms proposed in [62,
93] still involve in general heavy computations in both offline and online stages, and
can suffer from round-off errors. If n and r are the dimensions of the full solution
space and the (parameter-dependent) reduced approximation space, respectively, and
K is the cardinality of the dictionary, then the offline complexity and the memory
consumption associated with post-processing of the snapshots in [62, 93] are at
least O(n(K2m2

A+m2
b)) and O(nK+K2m2

A+m2
b), respectively. Furthermore, the

online stage in [93] requires O((r3 +m2
Ar)K+m2

b) flops and O(m2
AK

2 +m2
b) bytes

of memory. The high offline cost and the high cost of maintenance of the reduced
model (which are proportional to K2) limits the effectiveness of the method in many
computational environments. Moreover, we see that the online complexity of the
approach in [93] is proportional to Kr3, which leads to high computational costs for
moderate r. Random sketching can drastically improve efficiency and stability of the
dictionary-based approximation. The offline complexity and memory requirements
of the construction of a reduced model with random sketching (see Section 3.4.4)
are O(n(KmA+mb)(logr+ log logK)) and O(n+ (KmA+mb)r logK), respectively.
We observe reduction (compared to [62, 93]) of the complexity and memory con-
sumption of the offline stage by at least a factor of O(K). In its turn, the online
stage with random sketching needs O((mAK +mb)r logK + r2K logK) flops and
O((mAK+mb)r logK) bytes of memory, which are in O((r+mA+mb)/ logK) and
O((mAK +mb)/(r logK)) times less than the requirements in [93]. Note that in
some places logarithmic terms were neglected. A more detailed analysis of the
computational costs can be found in Sections 3.4.3 and 3.4.4.

The online stage usually proceeds with computation of the coordinates of an
approximation ur(µ) of u(µ) in a certain basis. Then the coordinates are used for the
efficient evaluation of an estimation sr(µ) := l(ur(µ);µ) of a quantity of interest from
an affine decomposition of l(·,µ). When the affine decomposition of l(·,µ) is expensive
to maintain and to operate with, precomputation of the affine decomposition of sr(µ)
can become too cumbersome. This is the case when l(·,µ) contains numerous terms
in its affine decomposition or when one considers too large, possibly distributed,
basis for ur(µ). In Section 3.5 we provide a way to efficiently estimate sr(µ). Our
procedure is two-phased. First the solution ur(µ) is approximated by a projection
wp(µ) on a new basis, which is cheap to operate with. The affine decomposition of
an approximation sr(µ)≈ l(wp(µ);µ) can now be efficiently precomputed. Then in
the second step, the accuracy of l(wp(µ);µ) is improved with a random correction
computable from the sketches of the two bases with a negligible computational
cost. Note that our approach can be employed for the efficient computation of the
affine decomposition of primal-dual corrections and quadratic quantities of interest
(see Remark 3.5.1).

As shown in Chapter 2 for Galerkin methods and in Sections 3.3.2 and 3.4.3 of
the present chapter for minres methods, a sketch of a reduced model almost preserves
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the quality of approximation when the sketching matrix satisfies an ε-embedding
property. Such a matrix may be generated randomly by considering an oblivious
subspace embedding of sufficiently large size. The number of rows for the oblivious
embedding may be selected with the theoretical bounds provided in Chapter 2.
However, it was revealed that these bounds are pessimistic or even impractical (e.g.,
for adaptive algorithms or POD). In practice, one can consider embeddings of much
smaller sizes and still obtain accurate reduced order models. Moreover, for some
random matrices, theoretical bounds may not be available although there might exist
strong empirical evidence that these matrices should yield outstanding performances
(e.g., matrices constructed with random Givens rotations as in [127]). When no a
priori guaranty on the accuracy of the given sketching matrix is available or when
conditions on the size of the sketch based on a priori analysis are too pessimistic,
one can provide a posteriori guaranty. An easy and robust procedure for a posteriori
verification of the quality of a sketch of a reduced model is provided in Section 3.6.
The methodology can also be used for deriving a criteria for adaptive selection of the
size of the random sketching matrix to yield an accurate estimation of the reduced
model with high probability.

The outline of the chapter is as follows. In Section 3.2 we introduce the problem
setting and recall the main ingredients of the framework developed in Chapter 2.
The minimal residual method considering a projection on a single low-dimensional
subspace is presented in Section 3.3. We present a standard minres projection
in a discrete form followed by its efficient approximation with random sketching.
Section 3.4 presents a novel dictionary-based minimal residual method using random
sketching. A two-phased procedure for efficient and stable extraction of the output
quantity of interest from the reduced model’s solution is proposed in Section 3.5.
A posteriori verification of the quality of a sketch and few scenarios where such a
procedure can be used are provided in Section 3.6. The methodology is validated
numerically on two benchmark problems in Section 3.7.

3.2 Preliminaries

Let K = R or C and let U := Kn and U ′ := Kn represent the solution space and its
dual, respectively. The solution u(µ) is an element from U , A(µ) is a linear operator
from U to U ′, the right hand side b(µ) and the extractor of the quantity of interest
l(µ) are elements of U ′.

Spaces U and U ′ are equipped with inner products 〈·, ·〉U := 〈RU ·, ·〉 and 〈·, ·〉U ′ :=
〈·,R−1

U ·〉, where 〈·, ·〉 is the canonical inner product on Kn and RU : U → U ′ is some
symmetric (for K = R), or Hermitian (for K = C), positive definite operator. We
denote by ‖ ·‖ the canonical norm on Kn. Finally, for a matrix M we denote by MH

its (Hermitian) transpose.
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3.2.1 Random sketching
A framework for using random sketching (see [84, 153]) in the context of MOR
was introduced in Chapter 2. The sketching technique is seen as a modification of
inner product in a given subspace (or a collection of subspaces). The modified inner
product is an estimation of the original one and is much easier and more efficient to
operate with. Next, we briefly recall the basic preliminaries from Chapter 2.

Let V be a subspace of U . The dual of V is identified with a subspace V ′ :=
{RUy : y ∈ V } of U ′. For a matrix Θ ∈ Kk×n with k ≤ n we define the following
semi-inner products on U :

〈·, ·〉ΘU := 〈Θ·,Θ·〉, and 〈·, ·〉ΘU ′ := 〈ΘR−1
U ·,R

−1
U ·〉, (3.2)

and we let ‖ · ‖ΘU and ‖ · ‖ΘU ′ denote the associated semi-norms.

Remark 3.2.1. The extension of the methodology to the case where 〈·, ·〉U is not
definite, i.e., RU is positive semi-definite, is straightforward. Let us assume that
〈·, ·〉U is an inner product on a subspace W ⊆ U of interest. Then, it follows that
W ′ := {RUx : x ∈W} can be equipped with 〈·, ·〉U ′ := 〈·,R†U ·〉, where R†U is a pseudo-
inverse of RU . Such products 〈·, ·〉U and 〈·, ·〉U ′ can be approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉, and 〈·, ·〉ΘU ′ := 〈ΘR†U ·,ΘR†U ·〉. (3.3)

This will be useful for the estimation of a (semi-)inner product between parameter-
dependent vectors in Section 3.5 (see Remark 3.5.2).

Definition 3.2.2. A matrix Θ is called a U → `2 ε-subspace embedding (or simply
an ε-embedding) for V , if it satisfies

∀x,y ∈ V,
∣∣∣〈x,y〉U −〈x,y〉ΘU ∣∣∣≤ ε‖x‖U‖y‖U . (3.4)

Here ε-embeddings shall be constructed as realizations of random matrices that
are built in an oblivious way without any a priori knowledge of V .

Definition 3.2.3. A random matrix Θ is called a (ε,δ,d) oblivious U → `2 subspace
embedding if it is an ε-embedding for an arbitrary d-dimensional subspace V ⊂ U
with probability at least 1− δ.

Oblivious `2→ `2 subspace embeddings (defined by Definition 3.2.2 with 〈·, ·〉U :=
〈·, ·〉2) include the rescaled Gaussian distribution, the rescaled Rademacher distribu-
tion, the Subsampled Randomized Hadamard Transform (SRHT), the Subsampled
Randomized Fourier Transform (SRFT), CountSketch matrix, SRFT combined with
sequences of random Givens rotations, and others [11, 84, 127, 153]. In this work we
shall rely on the rescaled Gaussian distribution and SRHT.
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An oblivious U → `2 subspace embedding for a general inner product 〈·, ·〉U can
be constructed as

Θ = ΩQ, (3.5)

where Ω is a `2→ `2 subspace embedding and Q ∈ Ks×n is an easily computable
(possibly rectangular) matrix such that QHQ = RU (see Remark 2.2.7).

It follows that an U → `2 ε-subspace embedding for V can be obtained with high
probability as a realization of an oblivious subspace embedding of sufficiently large
size.

The a priori estimates for the required size of Θ are usually pessimistic for practical
use. Moreover, a good performance of certain random embeddings (e.g., matrices
with sequences of random Givens rotations) was validated only empirically [84].
Therefore, in Section 3.6 we provide a simple and reliable a posteriori procedure for
characterizing the quality of an embedding for each given subspace. Such a procedure
can be used for the adaptive selection of the number of rows for Θ or for certifying
the quality of the sketched reduced order model.

3.2.2 A sketch of a reduced model
Here the output of a reduced order model is efficiently estimated from its random
sketch. The Θ-sketch of a reduced model associated with a subspace Ur is defined
as {{

Θx,ΘR−1
U r(x;µ)

}
: x ∈ Ur

}
, (3.6)

where r(x;µ) := b(µ)−A(µ)x. Let Ur ∈Kn×r be a matrix whose columns form a
basis of Ur. Then each element of (3.6) can be characterized from the coordinates of
x associated with Ur, i.e., a vector ar ∈Kr such that x = Urar, and the following
quantities

UΘ
r := ΘUr, VΘ

r (µ) := ΘR−1
U A(µ)Ur and bΘ(µ) := ΘR−1

U b(µ). (3.7)

Clearly VΘ
r (µ) and bΘ(µ) have affine expansions containing at most as many terms

as the ones of A(µ) and b(µ), respectively. Matrix UΘ
r and the affine expansions

of VΘ
r (µ) and bΘ(µ) are referred to as the Θ-sketch of Ur (a representation of the

Θ-sketch of a reduced model associated with Ur). With a good choice of an oblivious
embedding, a Θ-sketch of Ur can be efficiently precomputed in any computational
environment (see Section 2.4.4). Thereafter, an approximation of a reduced order
model can be obtained with a negligible computational cost. Note that in Chapter 2
the affine expansion of lr(µ)H := UH

r l(µ), where l(µ) ∈ U ′ is an extractor of the linear
quantity of interest, are also considered as a part of the Θ-sketch of Ur. In the
present chapter, however, we consider a more general scenario where the computation
of the affine expansion of lr(µ) or its online evaluation can be too expensive (e.g.,
when lr(µ) has too many terms in the affine expansion) and has to be avoided.
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Therefore, instead of computing the output quantity associated with the solution of
the reduced model, we shall approximate it using

lΘ(µ) := ΘR−1
U l(µ)

along with a few additional efficiently computable quantities (see Section 3.5 for
more details). This procedure can also allow an efficient approximation of quadratic
quantities of interest and primal-dual corrections.

3.3 Minimal residual projection
In this section we first present the standard minimal residual projection in a form that
allows an easy introduction of random sketching. Then we introduce the sketched
version of the minimal residual projection and provide conditions to guarantee its
quality.

3.3.1 Standard minimal residual projection
Let Ur ⊂ U be a subspace of U (typically obtained with a greedy algorithm or
approximate POD). The minres approximation ur(µ) of u(µ) ∈ U can be defined by

ur(µ) = arg min
w∈Ur

‖r(w;µ)‖U ′ . (3.8)

For linear problems it is equivalently characterized by the following (Petrov-)Galerkin
orthogonality condition:

〈r(ur(µ);µ),w〉= 0, ∀w ∈ Vr(µ), (3.9)

where Vr(µ) := {R−1
U A(µ)x : x ∈ Ur}.

If the operator A(µ) is invertible then (3.8) is well-posed. In order to characterize
the quality of the projection ur(µ) we define the following parameter-dependent
constants

ζr(µ) := min
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖U ′
‖x‖U

, (3.10a)

ιr(µ) := max
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖U ′
‖x‖U

. (3.10b)

Let PW : U →W denote the orthogonal projection from U on a subspace W ⊂ U ,
defined for x ∈ U by

PWx = arg min
w∈W

‖x−w‖U .
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Proposition 3.3.1. If ur(µ) satisfies (3.8) and ζr(µ)> 0, then

‖u(µ)−ur(µ)‖U ≤
ιr(µ)
ζr(µ)‖u(µ)−PUru(µ)‖U . (3.11)

Proof. See appendix.

The constants ζr(µ) and ιr(µ) can be bounded by the minimal and maximal
singular values of A(µ):

α(µ) := min
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

≤ ζr(µ), (3.12a)

β(µ) := max
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

≥ ιr(µ). (3.12b)

Bounds of α(µ) and β(µ) can be obtained theoretically [79] or numerically with the
successive constraint method [89].

For each µ, the vector ar(µ) ∈Kr such that ur(µ) = Urar(µ) satisfies (3.9) can
be obtained by solving the following reduced system of equations:

Ar(µ)ar(µ) = br(µ), (3.13)

where Ar(µ) = UH
r A(µ)HR−1

U A(µ)Ur ∈Kr×r and br(µ) = UH
r A(µ)HR−1

U b(µ) ∈Kr.
The numerical stability of (3.13) can be ensured through orthogonalization of Ur

similarly as for the classical Galerkin projection. Such orthogonalization yields the
following bound for the condition number of Ar(µ):

κ(Ar(µ)) := ‖Ar(µ)‖‖Ar(µ)−1‖ ≤
(
ιr(µ)
ζr(µ)

)2
≤
(
β(µ)
α(µ)

)2
. (3.14)

This bound can be insufficient for problems with matrix A(µ) having a high or even
moderate condition number.

The random sketching technique can be used to improve the efficiency and
numerical stability of the minimal residual projection, as shown below.

3.3.2 Sketched minimal residual projection

Let Θ ∈ Kk×n be a certain U → `2 subspace embedding. The sketched minres
projection can be defined by (3.8) with the dual norm ‖·‖U ′ replaced by its estimation
‖ · ‖ΘU ′ , which results in an approximation

ur(µ) = arg min
w∈Ur

‖r(w;µ)‖ΘU ′ . (3.15)
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The quasi-optimality of such a projection can be controlled in exactly the same
manner as the quasi-optimality of the original minres projection. By defining the
constants

ζΘ
r (µ) := min

x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

, (3.16a)

ιΘr (µ) := max
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

, (3.16b)

we obtain the following result.

Proposition 3.3.2. If ur(µ) satisfies (3.15) and ζΘ
r (µ)> 0, then

‖u(µ)−ur(µ)‖U ≤
ιΘr (µ)
ζΘ
r (µ)‖u(µ)−PUru(µ)‖U . (3.17)

Proof. See appendix.

It follows that if ζΘ
r (µ) & ζr(µ) and ιΘr (µ) . ιr(µ), then the quasi-optimality of

the original minres projection (3.8) shall be preserved by its sketched version (3.15).
These properties of ιΘr (µ) and ζΘ

r (µ) can be guaranteed under some conditions on Θ
(see Proposition 3.3.3).

Proposition 3.3.3. Define the subspace

Rr(Ur;µ) := span{R−1
U r(x;µ) : x ∈ Ur}. (3.18)

If Θ is a U → `2 ε-subspace embedding for Rr(Ur;µ), then
√

1− ε ζr(µ)≤ ζΘ
r (µ)≤

√
1 + ε ζr(µ), and

√
1− ε ιr(µ)≤ ιΘr (µ)≤

√
1 + ε ιr(µ).

(3.19)

Proof. See appendix.

An embedding Θ satisfying an U → `2 ε-subspace embedding property for the sub-
space Rr(Ur;µ) defined in (3.18), for all µ ∈ P simultaneously, with high probability,
may be generated from an oblivious embedding of sufficiently large size. Note that
dim(Rr(Ur;µ)) ≤ r+ 1. The number of rows k of the oblivious embedding may
be selected a priori using the bounds provided in Chapter 2, along with a union
bound for the probability of success or the fact that ⋃µ∈PRr(Ur;µ) is contained in
a low-dimensional space. Alternatively, a better value for k can be chosen with a
posteriori procedure explained in Section 3.6. Note that if (3.19) is satisfied then the
quasi-optimality constants of the minres projection are guaranteed to be preserved
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up to a small factor depending only on the value of ε. Since Θ is here constructed
in an oblivious way, the accuracy of random sketching for minres projection can be
controlled regardless of the properties of A(µ) (e.g., coercivity, condition number,
etc.). Recall that in Chapter 2 it was revealed that the preservation of the quasi-
optimality constants of the classical Galerkin projection by its sketched version is
sensitive to operator’s properties. More specifically, random sketching can worsen
quasi-optimality constants dramatically for non-coercive or ill-conditioned problems.
Therefore, due to its remarkable advantages, the sketched minres projection should
be preferred to the sketched Galerkin projection.

Remark 3.3.4. Random sketching is not the only way to construct Θ which satisfies
the condition in Proposition 3.3.3 for all µ ∈ P. Such a sketching matrix can also
be obtained deterministically through approximation of the manifold R∗r(Ur) = {x ∈
Rr(Ur,µ) : ‖x‖U = 1, µ ∈ Ξ}. This approximation can be performed using POD
or greedy algorithms. There are two main advantages of random sketching over
the deterministic approaches. First, random sketching allows drastic reduction of
the computational costs in the offline stage. The second advantage is the oblivious
construction of Θ without the knowledge of Ur, which can be particularly important
when Ur is constructed adaptively (e.g., with a greedy algorithm). Note that the
condition in Proposition 3.3.3 can be satisfied (for not too small ε, say ε= 0.1) with
high probability by using an oblivious embedding with O(r) rows, which is close to
the minimal possible value k = r. Therefore, the construction of Θ with random
sketching in general should be preferred over the deterministic construction.

The vector of coordinates ar(µ) ∈Kr in the basis Ur of the sketched projection
ur(µ) defined by (3.15) may be obtained in a classical way, i.e., by considering
a parameter-dependent reduced system of equations similar to (3.13). As for the
classical approach, this may lead to numerical instabilities during either the online
evaluation of the reduced system from the affine expansions or its solution. A remedy
is to directly consider

ar(µ) = arg min
x∈Kr

‖A(µ)Urx−b(µ)‖ΘU ′ = arg min
x∈Kr

‖VΘ
r (µ)x−bΘ(µ)‖2. (3.20)

Since the sketched matrix VΘ
r (µ) and vector bΘ(µ) are of rather small sizes, the

minimization problem (3.20) may be efficiently formed (from the precomputed affine
expansions) and then solved (e.g., using QR factorization or SVD) in the online
stage.

Proposition 3.3.5. If Θ is an ε-embedding for Ur, and Ur is orthogonal with
respect 〈·, ·〉ΘU then the condition number of VΘ

r (µ) is bounded by
√

1+ε
1−ε

ιΘr
ζΘ
r

.

Proof. See appendix.
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It follows from Proposition 3.3.5 (along with Proposition 3.3.3) that considering (3.20)
can provide better numerical stability than solving reduced systems of equations
with standard methods. Furthermore, since affine expansions of VΘ

r (µ) and bΘ(µ)
have less terms than affine expansions of Ar(µ) and br(µ) in (3.13), their online
assembling should also be much more stable.

The online efficiency can be further improved with a procedure similar to the
one depicted in Section 2.4.3. Consider the following oblivious U → `2 subspace
embedding

Φ = ΓΘ,

where Γ∈Kk′×n, k′ <k, is a small (ε′, δ′, r+1) oblivious `2→ `2 subspace embedding.
For a given value of the parameter, the solution to (3.20) can be accurately estimated
by

ur(µ)≈ arg min
w∈Ur

‖r(w;µ)‖ΦU ′ , (3.21)

with a probability at least 1− δ′. Note that by Section 2.3.1, k′ =O(r) (in practice,
with a small constant, say k′ = 3r) is enough to provide an accurate estimation
of (3.15) with high probability. For online efficiency, we can use a fixed Θ such
that (3.15) is guaranteed to provide an accurate approximation (see Proposition 3.3.3)
for all µ ∈ P simultaneously, but consider different realizations of a smaller matrix Γ
for each particular test set Ptest composed of several parameter values. In this way,
in the offline stage a Θ-sketch of Ur can be precomputed and maintained for the
online computations. Thereafter, for the given test set Ptest (with the corresponding
new realization of Γ) the affine expansions of small matrices VΦ(µ) := ΓVΘ(µ)
and bΦ(µ) := ΓbΘ(µ) can be efficiently precomputed from the Θ-sketch in the
“intermediate” online stage. And finally, for each µ ∈ Ptest, the vector of coordinates
of ur(µ) can be obtained by evaluating VΦ(µ) and bΦ(µ) from just precomputed
affine expansions, and solving

ar(µ) = arg min
x∈Kr

‖VΦ
r (µ)x−bΦ(µ)‖2 (3.22)

with standard method such as QR factorization or SVD.

3.4 Dictionary-based minimal residual method
Classical RB method becomes ineffective for parameter-dependent problems for
which the solution manifold M := {u(µ) : µ ∈ P} cannot be well approximated by a
single low-dimensional subspace, i.e., its Kolmogorov r-width does not decay rapidly.
One can extend the classical RB method by considering a reduced subspace Ur(µ)
depending on a parameter µ. One way to obtain Ur(µ) is to use a hp-refinement
method as in [66, 67], which consists in partitioning the parameter set P into subsets
{Pi}Mi=1 and in associating to each subset Pi a subspace U ir ⊂ U of dimension at
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most r, therefore resulting in Ur(µ) = U ir if µ ∈ Pi, 1≤ i≤M . More formally, the
hp-refinement method aims to approximateM with a library Lr := {U ir : 1≤ i≤M}
of low-dimensional subspaces. For efficiency, the number of subspaces in Lr has to
be moderate (no more than O(rν) for some small ν, say ν = 2 or 3, which should
be dictated by the particular computational architecture). A nonlinear Kolmogorov
r-width of M with a library of M subspaces can be defined as in [140] by

dr(M;M) = inf
#Lr=M

sup
u∈M

min
Wr∈Lr

‖u−PWru‖U , (3.23)

where the infimum is taken over all libraries of M subspaces. Clearly, the approxi-
mation PUr(µ)u(µ) over a parameter-dependent subspace Ur(µ) associated with a
partitioning of P into M subdomains satisfies

dr(M;M)≤max
µ∈P
‖u(µ)−PUr(µ)u(µ)‖U . (3.24)

Therefore, for the hp-refinement method to be effective, the solution manifold is
required to be well approximable in terms of the measure dr(M;M).

The hp-refinement method may present serious drawbacks: it can be highly
sensitive to the parametrization, it can require a large number of subdomains in P
(especially for high-dimensional parameter domains) and it can require computing
too many solution samples. These drawbacks can be partially reduced by various
modifications of the hp-refinement method [105], but not circumvented.

We here propose a dictionary-based method, which can be seen as an alternative
to a partitioning of P for defining Ur(µ), and argue why this method is more natural
and can be applied to a larger class of problems.

3.4.1 Dictionary-based approximation
For each value µ of the parameter, the basis vectors for Ur(µ) are selected from a
certain dictionary DK of K candidate vectors in U , K ≥ r. For efficiency of the
algorithms in the particular computational environment, the value for K has to be
chosen as O(rν) with a small ν similarly as the number of subdomains M for the
hp-refinement method. Let Lr(DK) denote the library of all subspaces spanned by r
vectors from DK . A dictionary-based r-width is defined as

σr(M;K) = inf
#DK=K

sup
u∈M

min
Wr∈Lr(DK)

‖u−PWru‖U , (3.25)

where the infimum is taken over all subsets DK of U with cardinality #DK =K. A
dictionary DK can be efficiently constructed offline with an adaptive greedy procedure
(see Section 3.4.4).

In general, the performance of the method can be characterized through the
approximability of the solution manifold M in terms of the r-width, and quasi-
optimality of the considered Ur(µ) compared to the best approximation. The
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dictionary-based approximation can be beneficial over the refinement methods in
either of these aspects, which is explained below.

It can be easily shown that

σr(M;K)≤ dr(M;M), for K ≥ rM.

Therefore if a solution manifold can be well approximated with a partitioning of the
parameter domain into M subdomains each associated with a subspace of dimension
r, then it should also be well approximated with a dictionary of size K = rM , which
implies a similar computational cost. The converse statement, however, is not true.
A dictionary with K vectors can generate a library with up to

(
K
r

)
subspaces so that

dr(M;
(
K
r

)
)≤ σr(M;K).

Consequently, to obtain a decay of dr(M;M) with r similar to the decay of σr(M;rν),
we can be required to use M which depends exponentially on r.

The great potential of the dictionary-based approximation can be justified by
important properties of the dictionary-based r-width given in Proposition 3.4.1
and Corollary 3.4.2.

Proposition 3.4.1. Let M be obtained by the superposition of parameter-dependent
vectors:

M= {
l∑

i=1
u(i)(µ) : µ ∈ P}, (3.26)

where u(i)(µ) ∈ U, i= 1, . . . , l. Then, we have

σr(M;K)≤
l∑

i=1
σri(M(i);Ki), (3.27)

with r =∑l
i=1 ri, K =∑l

i=1Ki and

M(i) = {u(i)(µ) : µ ∈ P}. (3.28)

Proof. See appendix.

Corollary 3.4.2 (Approximability of a superposition of solutions). Consider
several solution manifolds M(i) defined by (3.28), 1≤ i≤ l, and the resulting mani-
fold M defined by (3.26). Let c, C, α, β and γ be some constants. The following
properties hold.

(i) If σr(M(i);crν)≤ Cr−α, then σr(M;cl1−νrν)≤ Cl1+αr−α,
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(ii) If σr(M(i);crν)≤ Ce−γrβ , then σr(M;cl1−νrν)≤ Cle−γl−βrβ .

From Proposition 3.4.1 and Corollary 3.4.2 it follows that the approximability of
the solution manifold in terms of the dictionary-based r-width is preserved under
the superposition operation. In other words, if the dictionary-based r-widths of
manifolds M(i) have a certain decay with r (e.g., exponential or algebraic), by using
dictionaries containing K =O(rν) vectors, then the type of decay is preserved by
their superposition (with the same rate for the algebraic decay). This property can
be crucial for problems where the solution is a superposition of several contributions
(possibly unknown), which is a quite typical situation. A similar property as (3.27)
also holds for the classical linear Kolmogorov r-width dr(M). Namely, we have

dr(M)≤
l∑

i=1
dri(M(i)), (3.29)

with r =∑l
i=1 ri. This relation follows immediately from Proposition 3.4.1 and the

fact that dr(M) = σr(M;1). For the nonlinear Kolmogorov r-width (3.24), however,
the relation

dr(M,M)≤
l∑

i=1
dri(M(i),M (i)), (3.30)

where r =∑l
i=1 ri, holds under the condition that M ≥∏li=1M

(i). In general, the
preservation of the type of decay with r of dr(M,M), by using libraries with
M =O(rν) terms, may not be guaranteed. It can require libraries with much larger
numbers of r-dimensional subspaces than O(rν), namely M =O(rlν) subspaces.

Another advantage of the dictionary-based method is its weak sensitivity to the
parametrization of the manifold M, in contrast to the hp-refinement method, for
which a bad choice of parametrization can result in approximations with too many
local reduced subspaces. Indeed, the solution map µ→ u(µ) is often expected to
have certain properties (e.g., symmetries or anisotropies) that yield the existence of
a better parametrization of M than the one proposed by the user. Finding a good
parametrization of the solution manifold may require a deep intrusive analysis of
the problem, and is therefore usually an unfeasible task. On the other hand, our
dictionary-based methodology provides a reduced approximation subspace for each
vector from M regardless of the chosen parametrization.

3.4.2 Sparse minimal residual approximation
Here we assume to be given a dictionary DK of K vectors in U . Ideally, for each µ,
u(µ) should be approximated by orthogonal projection onto a subspace Wr(µ) that
minimizes

‖u(µ)−PWr(µ)u(µ)‖U (3.31)
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over the library Lr(DK). The selection of the optimal subspace requires operating
with the exact solution u(µ) which is prohibited. Therefore, the reduced approxima-
tion space Ur(µ) and the associated approximate solution ur(µ) ∈ Ur(µ) are defined
such that

Ur(µ) ∈ arg min
Wr∈Lr(DK)

min
w∈Wr

‖r(w;µ)‖U ′ , ur(µ) = arg min
w∈Ur(µ)

‖r(w;µ)‖U ′ . (3.32)

The solution ur(µ) from (3.32) shall be referred to as sparse minres approximation
(relatively to dictionary DK). The quasi-optimality of this approximation can be
characterized with the following parameter-dependent constants:

ζr,K(µ) := min
Wr∈Lr(DK)

min
x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖U ′
‖x‖U

, (3.33a)

ιr,K(µ) := max
Wr∈Lr(DK)

max
x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖U ′
‖x‖U

. (3.33b)

In general, one can bound ζr,K(µ) and ιr,K(µ) by the minimal and the maximal
singular values α(µ) and β(µ) of A(µ). Observe also that for K = r (i.e., when
the library Lr(DK) = {Ur} has a single subspace) we have ζr,K(µ) = ζr(µ) and
ιr,K(µ) = ιr(µ).

Proposition 3.4.3. Let ur(µ) be the solution of (3.32) and ζr,K(µ)> 0, then

‖u(µ)−ur(µ)‖U ≤
ιr,K(µ)
ζr,K(µ) min

Wr∈Lr(DK)
‖u(µ)−PWru(µ)‖U . (3.34)

Proof. See appendix.

Let UK ∈Kn×K be a matrix whose columns are the vectors in the dictionary DK and
ar,K(µ) ∈KK , with ‖ar,K(µ)‖0 ≤ r, be the r-sparse vector of coordinates of ur(µ) in
the dictionary, i.e., ur(µ) = UKar,K(µ). The vector of coordinates associated with
the solution ur(µ) of (3.32) is the solution to the following parameter-dependent
sparse least-squares problem:

min
z∈KK

‖A(µ)UKz−b(µ)‖U ′ , subject to ‖z‖0 ≤ r. (3.35)

For each µ ∈ P an approximate solution to problem (3.35) can be obtained with a
standard greedy algorithm depicted in Algorithm 4. It selects the nonzero entries of
ar,K(µ) one by one to minimize the residual. The algorithm corresponds to either
the orthogonal greedy (also called Orthogonal Matching Pursuit in signal processing
community [145]) or stepwise projection algorithm (see [59]) depending on whether the
(optional) Step 8 (which is the orthogonalization of {vj(µ)}Kj=1 with respect to Vi(µ))
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is considered. It should be noted that performing Step 8 can be of great importance
due to possible high mutual coherence of the dictionary {vj(µ)}Kj=1. Algorithm 4
is provided in a conceptual form. A more sophisticated procedure can be derived
to improve the online efficiency (e.g., considering precomputed affine expansions of
AK(µ) := UH

KA(µ)HR−1
U A(µ)UK ∈KK×K and bK(µ) = UH

KA(µ)HR−1
U b(µ) ∈KK ,

updating the residual using a Gram-Schmidt procedure, etc). Algorithm 4, even
when efficiently implemented, can still require heavy computations in both the offline
and online stages, and be numerically unstable. One of the contributions of this
chapter is a drastic improvement of its efficiency and stability by random sketching,
thus making the use of dictionary-based model reduction feasible in practice.

Algorithm 4 Orthogonal greedy algorithm
Given: UK = [wj ]Kj=1, A(µ), b(µ), τ , r.
Output: index set Λr(µ), the coordinates ar(µ) of ur(µ) on the basis {wj}j∈Λr(µ).
1. Set i := 0, U0(µ) = {0}, u0(µ) = 0, Λ0(µ) = ∅, ∆̃0(µ) =∞.
2. Set [v1(µ), ...,vK(µ)] := A(µ)UK and normalize the vectors vj(µ), 1≤ j ≤K.
while ∆̃i(µ)≥ τ and i < r do

3. Set i := i+ 1.
4. Find the index pi ∈ {1, . . . ,K} which maximizes |〈vpi(µ),r(ui−1(µ);µ)〉U ′|.
5. Set Λi(µ) := Λi−1(µ)∪{pi}.
6. Solve (3.13) with a reduced matrix Ui(µ) = [wj ]j∈Λi(µ) and obtain

the coordinates ai(µ).
7. Compute error bound ∆̃i(µ) of ui(µ) = Ui(µ)ai(µ).
8. (Optional) Set vj(µ) := vj(µ)−PVi(µ)vj(µ), where PVi(µ) is the orthogonal

projector on Vi(µ) := span({vp(µ)}p∈Λi(µ)), and normalize vj(µ), 1≤ j ≤K.
end while

3.4.3 Sketched sparse minimal residual approximation

Let Θ ∈Kk×n be a certain U → `2 subspace embedding. The sparse minres approxi-
mation defined by (3.32), associated with dictionary DK , can be estimated by the
solution ur(µ) of the following minimization problem

Ur(µ) ∈ arg min
Wr∈Lr(DK)

min
w∈Wr

‖r(w;µ)‖ΘU ′ , ur(µ) = arg min
w∈Ur(µ)

‖r(w;µ)‖ΘU ′ . (3.36)

In order to characterize the quasi-optimality of the sketched sparse minres approx-
imation defined by (3.36) we introduce the following parameter-dependent values
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ζΘ
r,K(µ) := min

Wr∈Lr(DK)
min

x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

, (3.37a)

ιΘr,K(µ) := max
Wr∈Lr(DK)

max
x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

. (3.37b)

Observe that choosing K = r yields ζΘ
r,K(µ) = ζΘ

r (µ) and ιΘr,K(µ) = ιΘr (µ).

Proposition 3.4.4. If ur(µ) satisfies (3.36) and ζΘ
r,K(µ)> 0, then

‖u(µ)−ur(µ)‖U ≤
ιΘr,K(µ)
ζΘ
r,K(µ)

min
Wr∈Lr(DK)

‖u(µ)−PWru(µ)‖U , (3.38)

Proof. See appendix.

It follows from Proposition 3.4.4 that the quasi-optimality of the sketched sparse
minres approximation can be controlled by bounding the constants ζΘ

r,K(µ) and
ιΘr,K(µ).

Proposition 3.4.5. If Θ is a U → `2 ε-embedding for every subspace Rr(Wr;µ),
defined by (3.18), with Wr ∈ Lr(DK), then

√
1− εζr,K(µ)≤ ζΘ

r,K(µ)≤
√

1 + εζr,K(µ), (3.39a)

and
√

1− ειr,K(µ)≤ ιΘr,K(µ)≤
√

1 + ειr,K(µ). (3.39b)

Proof. See appendix.

By Definition 3.2.3 and the union bound for the probability of success, if Θ is
a (ε,

(
K
r

)−1
δ,r+ 1) oblivious U → `2 subspace embedding, then Θ satisfies the

assumption of Proposition 3.4.5 with probability at least 1−δ. The sufficient number
of rows for Θ may be chosen a priori with the bounds provided in Chapter 2 or
adaptively with a procedure from Section 3.6. For the Gaussian embeddings the a
priori bounds are logarithmic in K and n, and proportional to r. For P-SRHT they
are also logarithmic in K and n, but proportional to r2 (although in practice P-SRHT
performs equally well as the Gaussian distribution). Moreover, if P is a finite set,
an oblivious embedding Θ which satisfies the hypothesis of Proposition 3.4.5 for all
µ ∈ P, simultaneously, may be chosen using the above considerations and a union
bound for the probability of success. Alternatively, for an infinite set P, Θ can
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be chosen as an ε-embedding for a collection of low-dimensional subspaces R∗r(Wr)
(which can be obtained from the affine expansions of A(µ) and b(µ)) each containing⋃
µ∈PRr(µ;Wr) and associated with a subspace Wr of Lr(DK). Such an embedding

can be again generated in an oblivious way by considering Definition 3.2.3 and a
union bound for the probability of success.

From an algebraic point of view, the optimization problem (3.36) can be formu-
lated as the following sparse least-squares problem:

min
z∈KK
‖z‖0≤r

‖A(µ)UKz−b(µ)‖ΘU ′ = min
z∈KK
‖z‖0≤r

‖VΘ
K(µ)z−bΘ(µ)‖2, (3.40)

where VΘ
K(µ) and bΘ(µ) are the components (3.7) of the Θ-sketch of UK (a matrix

whose columns are the vectors in DK). The solution ar,K(µ) of (3.40) is the r-sparse
vector of the coordinates of ur(µ). We observe that (3.40) is simply an approximation
of a small vector bΘ(µ) with a dictionary composed from column vectors of VΘ

K(µ).
Therefore, unlike the original sparse least-squares problem (3.35), the solution to
its sketched version (3.40) can be efficiently approximated with standard tools in
the online stage. For instance, we can use Algorithm 4 replacing 〈·, ·〉U ′ with 〈·, ·〉ΘU ′ .
Clearly, in Algorithm 4 the inner products 〈·, ·〉ΘU ′ should be efficiently evaluated from
VΘ
K(µ) and bΘ(µ). For this a Θ-sketch of UK can be precomputed in the offline

stage and then used for online evaluation of VΘ
K(µ) and bΘ(µ) for each value of the

parameter.
Let us now characterize the algebraic stability (i.e., sensitivity to round-off errors)

of the (approximate) solution of (3.40). The solution of (3.40) is essentially obtained
from the following least-squares problem

min
x∈Kr

‖VΘ
r (µ)x−bΘ(µ)‖2, (3.41)

where VΘ
r (µ) is a matrix whose column vectors are (adaptively) selected from the

columns of VΘ
K(µ). The algebraic stability of this problem can be measured by the

condition number of VΘ
r (µ). The minimal and the maximal singular values of VΘ

r (µ)
can be bounded using the parameter-dependent coefficients ιΘr,K(µ), ζΘ

r,K(µ) and the
so-called restricted isometry property (RIP) constants associated with the dictionary
DK , which are defined by

Σmin
r,K := min

z∈KK
‖z‖0≤r

‖UKz‖U
‖z‖

, Σmax
r,K := max

z∈KK
‖z‖0≤r

‖UKz‖U
‖z‖

. (3.42)

Proposition 3.4.6. The minimal singular value of VΘ
r (µ) in (3.41) is bounded

below by ζΘ
r,K(µ)Σmin

r,K , while the maximal singular value of VΘ
r (µ) is bounded above

by ιΘr,K(µ)Σmax
r,K .
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Proof. See appendix.

The RIP constants quantify the linear dependency of the dictionary vectors. For
instance, it is easy to see that for a dictionary composed of orthogonal unit vectors
we have Σmin

r,K = Σmax
r,K = 1. From Proposition 3.4.6, one can deduce the maximal

level of degeneracy of DK for which the sparse optimization problem (3.40) remains
sufficiently stable.

Remark 3.4.7. In general, our approach is more stable than the algorithms from [62,
93]. These algorithms basically proceed with the solution of the reduced system of
equations Ar(µ)ar(µ) = br(µ), where Ar(µ) = Ur(µ)HA(µ)Ur(µ), with Ur(µ) being
a matrix whose column vectors are selected from the column vectors of UK . In
this case, the bounds for the minimal and the maximal singular values of Ar(µ) are
proportional to the squares of the minimal and the maximal singular values of Ur(µ),
which implies a quadratic dependency on the RIP constants Σmin

r,K and Σmax
r,K . On the

other hand, with (sketched) minres methods the dependency of the singular values of
the reduced matrix VΘ(µ) on Σmin

r,K and Σmax
r,K is only linear (see Proposition 3.4.6).

Consequently, our methodology provides an improvement of not only efficiency but
also numerical stability for problems with high linear dependency of dictionary vectors.

Similarly to the sketched minres projection, a better online efficiency can be
obtained by introducing

Φ = ΓΘ,

where Γ ∈ Kk′×n, k′ < k, is a small (ε′,
(
K
r

)−1
δ′, r+ 1) oblivious `2→ `2 subspace

embedding, and approximating the solution to (3.36) by

Ur(µ) ∈ arg min
Wr∈Lr(DK)

min
w∈Wr

‖r(w;µ)‖ΦU ′ , ur(µ) = arg min
w∈Ur(µ)

‖r(w;µ)‖ΦU ′ . (3.43)

It follows that the accuracy (and the stability) of the solution of (3.43) is almost the
same as the one of (3.36) with probability at least 1−δ′. In an algebraic setting, (3.43)
can be expressed as

min
z∈KK
‖z‖0≤r

‖VΦ
K(µ)z−bΦ(µ)‖2, (3.44)

whose solution ar(µ) is a r-sparse vector of coordinates of ur(µ). An approximate
solution to such a problem can be computed with Algorithm 4 by replacing 〈·, ·〉U ′
with 〈·, ·〉ΦU ′ . An efficient procedure for evaluating the coordinates of a sketched
dictionary-based approximation on a test set Ptest from the Θ-sketch of UK is
provided in Algorithm 5. Algorithm 5 uses a residual-based sketched error estimator
from Chapter 2 defined by

∆̃i(µ) = ∆Φ(ui(µ);µ) = ‖r(ui(µ);µ)‖ΦU ′
η(µ) , (3.45)
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where η(µ) is a computable lower bound of the minimal singular value of A(µ). Let
us underline the importance of performing Step 8 (orthogonalization of the dictionary
vectors with respect to the previously selected basis vectors), for problems with
“degenerate” dictionaries (with high mutual coherence). It should be noted that
at Steps 7 and 8 we use a Gram-Schmidt procedure for orthogonalization because
of its simplicity and efficiency, whereas a modified Gram-Schmidt algorithm could
provide better accuracy. It is also important to note that Algorithm 5 satisfies a
basic consistency property in the sense that it exactly recovers the vectors from the
dictionary with high probability.

If P is a finite set, then the theoretical bounds for Gaussian matrices and
the empirical experience for P-SRHT state that choosing k = O(r logK + logδ+
log(#P)) and k′ = O(r logK + logδ+ log(#Ptest)) in Algorithm 5 yield a quasi-
optimal solution to (3.31) for all µ∈Ptest with probability at least 1−δ. Let us neglect
the logarithmic summands. Assuming A(µ) and b(µ) admit affine representations
with mA and mb terms, it follows that the online complexity and memory consumption
of Algorithm 5 is only O((mAK +mb)r logK + r2K logK)#Ptest and O((mAK +
mb)r logK), respectively. The quasi-optimality for infinite P can be ensured with
high probability by increasing k to O(r∗ logK + logδ), where r∗ is the maximal
dimension of subspaces R∗r(Wr) containing ⋃µ∈PRr(µ;Wr) with Wr ∈ Lr(DK). This
shall increase the memory consumption by a factor of r∗/r but should have a negligible
effect (especially for large Ptest) on the complexity, which is mainly characterized by
the size of Φ. Note that for parameter-separable problems we have r∗ ≤mAr+mb.

3.4.4 Dictionary generation
The simplest way is to choose the dictionary as a set of solution samples (snapshots)
associated with a training set Ptrain, i.e.,

DK = {u(µ) : µ ∈ Ptrain}. (3.46)

Let us recall that we are interested in computing a Θ-sketch of UK (matrix whose
columns formDK) rather than the full matrix. In certain computational environments,
a Θ-sketch of UK can be computed very efficiently. For instance, each snapshot
may be computed and sketched on a separate distributed machine. Thereafter small
sketches can be efficiently transfered to the master workstation for constructing the
reduced order model.

A better dictionary may be computed with the greedy procedure presented
in Algorithm 6, recursively enriching the dictionary with a snapshot at the parameter
value associated with the maximal error at the previous iteration. The value for r
(the dimension of the parameter-dependent reduced subspace Ur(µ)) should be chosen
according to the particular computational architecture. Since the provisional online
solver (identified with Algorithm 5) guarantees exact recovery of snapshots belonging
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Algorithm 5 Efficient/stable sketched orthogonal greedy algorithm
Given: Θ-sketch of UK = [wj ]Kj=1, Ptest, τ .
Output: index set Λr(µ), the coordinates ar(µ) of ur(µ) on basis {wj}j∈Λr(µ),

and the error indicator ∆Φ(ur(µ);µ) for each µ ∈ Ptest.
1. Generate Γ and evaluate the affine factors of VΦ

K(µ) := ΓVΘ
K(µ)

and bΦ(µ) := ΓbΘ(µ).
for µ ∈ Ptest do

2. Evaluate [vΦ
1 (µ), . . . ,vΦ

K(µ)] := VΦ
K(µ) and bΦ(µ) from the affine expansions

and normalize vΦ
j (µ),1≤ j ≤K.

3. Set i= 0, obtain η(µ) in (3.45), set Λ0(µ) = ∅, rΦ
0 (µ) := bΦ(µ) and

∆Φ(µ) := ‖bΦ(µ)‖/η(µ).
while ∆Φ(ui(µ);µ)≥ τ and i≤ r do

4. Set i := i+ 1.
5. Find the index pi which maximizes |vΦ

pi(µ)HrΦ
i−1(µ)|.

Set Λi(µ) := Λi−1(µ)∪{pi}.
6. Set vΦ

pi(µ) := vΦ
pi(µ)−∑i−1

j=1 vΦ
pj (µ)[vΦ

pj (µ)HvΦ
pi(µ)] and normalize it.

7. Compute rΦ
i (µ) := rΦ

i−1(µ)−vpi(µ)[vΦ
pi(µ)HrΦ

i−1(µ)] and
∆Φ(ui(µ);µ) = ‖rΦ

i (µ)‖/η(µ).
8. (Optional) Set vΦ

j (µ) = vΦ
j (µ)−vΦ

pi(µ)[vΦ
pi(µ)HvΦ

j (µ)]
and normalize it, 1≤ j ≤K.

end while
9. Solve (3.22) choosing r := i, and the columns p1,p2, . . . ,pi of VΦ

K(µ) as
the columns for VΦ

r (µ) and obtain solution ar(µ).
end for
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to Di, Algorithm 6 is consistent. It has to be noted that the first r iterations of the
proposed greedy algorithm for the dictionary generation coincide with the first r
iterations of the standard greedy algorithm for the reduced basis generation.

Algorithm 6 Greedy algorithm for dictionary generation
Given: Ptrain, A(µ), b(µ), l(µ), Θ, τ , r.
Output: Θ-sketch of UK .
1. Set i= 0, D0 = ∅, obtain η(µ) in (3.45), set ∆Φ(µ) = ‖b(µ)‖ΦU ′/η(µ)

and pick µ1 ∈ Ptrain.
while maxµ∈Ptrain ∆Φ(ur(µ);µ)> τ do

2. Set i= i+ 1.
3. Evaluate u(µi) and set Di :=Di−1∪{u(µi)}
4. Update the Θ-sketch of Ui (matrix composed from the vectors in Di).
5. Use Algorithm 5 (if i < r, choosing r := i) with Ptest replaced by Ptrain to

solve (3.43) for all µ ∈ Ptrain.
6. Find µi+1 := argmaxµ∈Ptrain ∆Φ(ur(µ);µ).

end while

By Proposition 3.4.5, a good quality of Θ-sketch for the sketched sparse minres
approximation associated with dictionary DK on Ptrain can be guaranteed if Θ is
an ε-embedding for every subspace Rr(Wr;µ), defined by (3.18), with Wr ∈ Lr(DK)
and µ ∈ Ptrain. This condition can be enforced a priori for all possible outcomes
of Algorithm 6 by choosing Θ such that it is an ε-embedding for every subspace
Rr(Wr;µ) with Wr ∈ Lr({u(µ) : µ ∈ Ptrain}) and µ ∈ Ptrain. An embedding Θ
satisfying this property with probability at least 1−δ can be obtained as a realization
of a (ε,(#Ptrain)−1

(
#Ptrain

r

)−1
δ,r+ 1) oblivious U → `2 subspace embedding. The

computational cost of Algorithm 6 is dominated by the calculation of the snapshots
u(µi) and their Θ-sketches. As was argued in Chapter 2, the computation of the
snapshots can have only a minor impact on the overall cost of an algorithm. For the
classical sequential or limited-memory computational architectures, each snapshot
should require a log-linear complexity and memory consumption, while for parallel
and distributed computing the routines for computing the snapshots should be
well-parallelizable and require low communication between cores. Moreover, for the
computation of the snapshots one may use a highly-optimized commercial solver or a
powerful server. The Θ-sketch of the snapshots may be computed extremely efficiently
in basically any computational architecture Section 2.4.4. With P-SRHT, sketching
of K snapshots requires only O(n(KmA+mb) logk) flops, and the maintenance of
the sketch requires O((KmA+mb)k) bytes of memory. By using similar arguments
as in Section 3.4.3 it can be shown that k = O(r logK) (or k = O(r∗ logK)) is
enough to yield with high probability an accurate approximation of the dictionary-
based reduced model. With this value of k, the required number of flops for the
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computation and the amount of memory for the storage of a Θ-sketch becomes
O(n(KmA+mb)(logr+ log logK)), and O((KmA+mb)r logK), respectively.

3.5 Post-processing the reduced model’s solution
So far we presented a methodology for efficient computation of an approximate
solution ur(µ), or to be more precise, its coordinates in a certain basis, which can be
the classical reduced basis for a fixed approximation space, or the dictionary vectors
for dictionary-based approximation presented in Section 3.4. The approximate
solution ur(µ), however, is usually not what one should consider as the output. In
fact, the amount of allowed online computations is highly limited and should be
independent of the dimension of the full order model. Therefore outputting O(n)
bytes of data as ur(µ) should be avoided when u(µ) is not the quantity of interest.

Further, we shall consider an approximation with a single subspace Ur noting
that the presented approach can also be used for post-processing the dictionary-
based approximation from Section 3.4 (by taking Ur as the subspace spanned by
the dictionary vectors). Let Ur be a matrix whose column vectors form a basis
for Ur and let ar(µ) be the coordinates of ur(µ) in this basis. A general quantity
of interest s(µ) := l(u(µ);µ) can be approximated by sr(µ) := l(ur(µ);µ). Further,
let us assume a linear case where l(u(µ);µ) := 〈l(µ),u(µ)〉 with l(µ) ∈ U ′ being the
extractor of the quantity of interest. Then

sr(µ) = 〈l(µ),ur(µ)〉= lr(µ)Har(µ), (3.47)

where lr(µ) := UH
r l(µ).

Remark 3.5.1. In general, our approach can be used for estimating an inner product
between arbitrary parameter-dependent vectors. The possible applications include
efficient estimation of the primal-dual correction and an extension to quadratic
quantities of interest. In particular, the estimation of the primal-dual correction can be
obtained by replacing l(µ) by r(ur(µ);µ) and ur(µ) by vr(µ) in (3.47), where vr(µ) ∈
U is a reduced basis (or dictionary-based) approximate solution to the adjoint problem.
A quadratic output quantity of interest has the form l(ur(µ);µ) := 〈L(µ)ur(µ) +
l(µ),ur(µ)〉, where L(µ) : U → U ′ and l(µ) ∈ U ′. Such l(ur(µ);µ) can be readily
derived from (3.47) by replacing l(µ) with L(µ)ur(µ) + l(µ).

The affine factors of lr(µ) should be first precomputed in the offline stage and then
used for online evaluation of lr(µ) for each parameter value with a computational
cost independent of the dimension of the original problem. The offline computations
required for evaluating the affine factors of lr(µ), however, can still be too expensive or
even unfeasible to perform. Such a scenario may arise when using a high-dimensional
approximation space (or a dictionary), when the extractor l(µ) has many (possibly
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expensive to maintain) affine terms, or when working in an extreme computational
environment, e.g., with data streamed or distributed among multiple workstations. In
addition, evaluating lr(µ) from the affine expansion as well as evaluating lr(µ)Har(µ)
itself can be subject to round-off errors (especially when Ur is ill-conditioned and may
not be orthogonalized). Further, we shall provide a (probabilistic) way for estimating
sr(µ) with a reduced computational cost and better numerical stability. As the core
we take the idea from Section 2.4.3 proposed as a workaround to expensive offline
computations for the evaluation of the primal-dual correction.

Remark 3.5.2. The spaces U and U ′ are equipped with inner products 〈·, ·〉U and
〈·, ·〉U ′ (defined by matrix RU ), which are used for controlling the accuracy of the
approximate solution ur(µ). In general, RU is chosen according to both the operator
A(µ) and the extractor l(µ) of the quantity of interest. The goal of this section,
however, is only the estimation of the quantity of interest from the given ur(µ).
Consequently, for many problems it can be more pertinent to use here a different
RU than the one employed for obtaining and characterizing ur(µ). The choice for
RU should be done according to l(µ) (independently of A(µ)). For instance, for
discretized parametric PDEs, if l(µ) represents an integral of the solution field over
the spatial domain then it is natural to choose 〈·, ·〉U corresponding to L2 inner
product. Moreover, 〈·, ·〉U is required to be an inner product only on a certain
subspace of interest, which means that RU may be a positive semi-definite matrix.
This consideration can be particularly helpful when the quantity of interest depends
only on the restriction of the solution field to a certain subdomain. In such a case,
〈·, ·〉U can be chosen to correspond with an inner product between restrictions of
functions to this subdomain. The extension of random sketching for estimation of
semi-inner products is straightforward (see Remark 3.2.1).

3.5.1 Approximation of the quantity of interest
An efficiently computable and accurate estimation of sr(µ) can be obtained in
two phases. In the first phase, the manifold Mr := {ur(µ) : µ ∈ P} is (accurately
enough) approximated with a subspace Wp := span(Wp)⊂ U , which is spanned by
an efficient to multiply (i.e., sparse or low-dimensional) matrix Wp. This matrix can
be selected a priori or obtained depending on Mr. In Section 3.5.2 we shall provide
some strategies for choosing or computing the columns for Wp. The appropriate
strategy should be selected depending on the particular problem and computational
architecture. Further, the solution vector ur(µ) is approximated by its orthogonal
projection wp(µ) := Wpcp(µ) on Wp. The coordinates cp(µ) can be obtained from
ar(µ) by

cp(µ) = Hpar(µ), (3.48)
where Hp := [WH

p RUWp]−1WH
p RUUr. Note that since Wp is efficient to multiply

by, the matrix Hp can be efficiently precomputed in the offline stage. We arrive to
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the following estimation of sr(µ):
sr(µ)≈ 〈l(µ),wp(µ)〉= l?r(µ)Har(µ), (3.49)

where l?r(µ)H := l(µ)HWpHp. Unlike lr(µ), the affine factors of l?r(µ) can now be
efficiently precomputed thanks to the structure of Wp.

In the second phase of the algorithm, the precision of (3.49) is improved with a
sketched (random) correction associated with an U → `2 subspace embedding Θ:

sr(µ) = 〈l(µ),wp(µ)〉+ 〈l(µ),ur(µ)−wp(µ)〉
≈ 〈l(µ),wp(µ)〉+ 〈R−1

U l(µ),ur(µ)−wp(µ)〉ΘU =: s?r(µ).
(3.50)

In practice, s?r(µ) can be efficiently evaluated using the following relation:
s?r(µ) = [l?K(µ)H + ∆l?K(µ)H]ar(µ), (3.51)

where the affine terms of ∆l?r(µ)H := lΘ(µ)H(UΘ
r −WΘ

p Hp) can be precomputed
from the Θ-sketch of Ur, a sketched matrix WΘ

p := ΘWp and the matrix Hp with
a negligible computational cost.
Proposition 3.5.3. If Θ is an (ε,δ,1) oblivious U → `2 subspace embedding,

|sr(µ)− s?r(µ)| ≤ ε‖l(µ)‖U ′‖ur(µ)−wp(µ)‖U (3.52)
holds for a fixed parameter µ ∈ P with probability at least 1−2δ.
Proof. See appendix.
Proposition 3.5.4. Let L⊂U denote a subspace containing {R−1

U l(µ) : µ∈P}. Let
Y := {Yr +L+Wp : Yr ∈ Lr(DK)}.

If Θ is an ε-embedding for every subspace in Y, then (3.52) holds for all µ ∈ P.
Proof. See appendix.

It follows that the accuracy of s?r(µ) can be controlled through the quality of
Wp for approximating Mr, the quality of Θ as an U → `2 ε-embedding, or both.
Note that choosing Θ as a null matrix (i.e., an ε-embedding for U with ε= 1) leads
to a single first-phase approximation (3.49), while letting Wp := {0} corresponds
to a single sketched (second-phase) approximation. Such particular choices for Θ
or Wp can be pertinent when the subspace Wp is highly accurate so that there
is practically no benefit to use a sketched correction or, the other way around,
when the computational environment or the problem does not permit a sufficiently
accurate approximation of Mr with Wp, therefore making the use of a non-zero
wp(µ) unjustified.
Remark 3.5.5. When interpreting random sketching as a Monte Carlo method
for the estimation of the inner product 〈l(µ),ur(µ)〉, the proposed approach can be
interpreted as a control variate method where wp(µ) plays the role of the control
variate. A multileveled Monte Carlo method with different control variates should
further improve the efficiency of post-processing.
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3.5.2 Construction of reduced subspaces
Further we address the problem of computing the basis vectors for Wp. In general,
the strategy for obtaining Wp has to be chosen according to the problem’s structure
and the constraints due to the computational environment.

A simple way, used in Chapter 2, is to choose Wp as the span of samples of u(µ)
either chosen randomly or during the first few iterations of the reduced basis (or
dictionary) generation with a greedy algorithm. Such Wp, however, may be too
costly to operate with. Then we propose more sophisticated constructions of Wp.

Approximate Proper Orthogonal Decomposition

A subspace Wp can be obtained by an (approximate) POD of the reduced vectors
evaluated on a training set Ptrain ⊆P . Here, randomized linear algebra can be again
employed for improving efficiency. The computational cost of the proposed POD
procedure shall mainly consist of the solution of m= #Ptrain reduced problems and
the multiplication of Ur by p = dim(Wp)� r small vectors. Unlike the classical
POD, our methodology does not require computation or maintenance of the full
solution’s samples and therefore allows large training sets.

Let Lm = {ar(µi)}mi=1 be a training sample of the coordinates of ur(µ) in a basis
Ur. We look for a POD subspace Wr associated with the snapshot matrix

Wm := [ur(µ1),ur(µ2), . . . ,ur(µm)] = UrLm,

where Lm is a matrix whose columns are the elements from Lm.
An accurate estimation of POD can be efficiently computed via the sketched

method of snapshots introduced in Section 2.5.2. More specifically, a quasi-optimal
(with high probability) POD basis can be calculated as

Wp := UrT∗p, (3.53)

where
T∗p := Lm[t1, . . . ,tp],

with t1, . . . ,tp being the p dominant singular vectors of UΘ
r Lm. Note that matrix T∗p

can be efficiently obtained with a computational cost independent of the dimension of
the full order model. The dominant cost is the multiplication of Ur by T∗p, which is
also expected to be inexpensive since T∗p has a small number of columns. Guarantees
for the quasi-optimality of Wp can be readily derived from Theorem 2.5.5.

Sketched greedy algorithm

A greedy search over the training set {ur(µ) : µ ∈ Ptrain} of approximate solutions
is another way to construct Wp. At the ith iteration, Wi is enriched with a vector
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ur(µi+1) with the largest distance to Wi over the training set. Note that in this case
the resulting matrix Wp has the form (3.53), where T∗p = [ar(µ1), . . . ,ar(µp)]. The
efficiency of the greedy selection can be improved by employing random sketching
technique. At each iteration, the distance to Wi can be measured with the sketched
norm ‖ ·‖ΘU , which can be computed from sketches Θur(µ) = UΘ

r ar(µ) of the approx-
imate solutions with no need to operate with large matrix Ur but only its sketch.
This allows efficient computation of the quasi-optimal interpolation points µ1, . . . ,µp

and the associated matrix T∗p. Note that for numerical stability an orthogonalization
of Wi with respect to 〈·, ·〉ΘU can be performed, that can be done by modifying T∗i
so that UΘ

r T∗i is an orthogonal matrix. Such T∗i can be obtained with standard
QR factorization. When T∗p has been computed, the matrix Wp can be calculated
by multiplying Ur with T∗p. The quasi-optimality of µ1, . . . ,µp and approximate
orthogonality of Wp is guaranteed if Θ is an ε-embedding for all subspaces from
the set {Wp+ span(ur(µi))}mi=1. This property of Θ can be guaranteed a priori by
considering (ε,

(
m
p

)−1
δ,p+ 1) oblivious U → `2 subspace embeddings, or certified a

posteriori with the procedure explained in Section 3.6.

Coarse approximation

Let us notice that the online cost of evaluating s?r(µ) does not depend on the
dimension p of Wp. Consequently, if Wp is spanned by structured (e.g., sparse) basis
vectors then a rather high dimension is allowed (possibly larger than r).

For classical numerical methods for PDEs, the resolution of the mesh (or grid)
is usually chosen to guarantee both an approximability of the solution manifold by
the approximation space and the stability. For many problems the latter factor
is dominant and one choses the mesh primary to it. This is a typical situation
for wave problems, advection-diffusion-reaction problems and many others. For
these problems, the resolution of the mesh can be much higher than needed for the
estimation of the quantity of interest from the given solution field. In these cases, the
quantity of interest can be efficiently yet accurately approximated using a coarse-grid
interpolation of the solution.

Suppose that each vector u ∈ U represents a function u : Ω→ K in a finite-
dimensional approximation space spanned by basis functions {ψi(x)}ni=1 associated
with a fine mesh of Ω. The function u(x) can be approximated by a projection
on a coarse-grid approximation space spanned by basis functions {φi(x)}pi=1. For
simplicity assume that each φi(x) ∈ span{ψj(x)}nj=1. Then the ith basis vector
for Wp can be obtained simply by evaluating the coordinates of φi(x) in the basis
{ψj(x)}nj=1. Note that for the classical finite element approximation, each basis
function has a local support and the resulting matrix Wp is sparse.
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3.6 A posteriori certification of the sketch and so-
lution

Here we provide a simple, yet efficient procedure for a posteriori verification of the
quality of a sketching matrix and describe few scenarios where such a procedure can
be employed. The proposed a posteriori certification of the sketched reduced model
and its solution is probabilistic. It does not require operating with high-dimensional
vectors but only with their small sketches. The quality of a certificate shall be
characterized by two user specified parameters: 0 < δ∗ < 1 for the probability of
success and 0< ε∗ < 1 for the tightness of the computed error bounds.

3.6.1 Verification of an ε-embedding for a given subspace
Let Θ be a U → `2 subspace embedding and V ⊂ U be a subspace of U (chosen
depending on the reduced model, e.g., V :=Rr(Ur;µ) in (3.18)).

We propose to verify the accuracy of 〈·, ·〉ΘU simply by comparing it to an inner
product 〈·, ·〉Θ∗U associated with a new random embedding Θ∗ ∈Kk∗×n, where Θ∗ is
chosen such that the concentration inequality

P
(∣∣∣‖x‖2U − (‖x‖Θ

∗
U )2

∣∣∣≤ ε∗‖x‖2U)≥ 1− δ∗ (3.54)

is satisfied for all vectors x ∈ V . One way to ensure (3.54) is to choose Θ∗ as an
(ε∗, δ∗,1) oblivious U → `2 subspace embedding. A condition on the number of rows
for the oblivious embedding can be either obtained theoretically (see Chapter 2)
or chosen from the practical experience, which should be the case for embeddings
constructed with P-SRHT matrices (recall that they have worse theoretical guarantees
than the Gaussian matrices but perform equally well in practice). Alternatively, Θ∗
can be built by random sampling of the rows of a larger ε-embedding for V . This
approach can be far more efficient than generating Θ∗ as an oblivious embedding
(see Remark 3.6.1) or even essential for some computational architectures. Another
requirement for Θ∗ is that it is generated independently from Θ. Therefore, in the
algorithms we suggest to consider Θ∗ only for the certification of the solution and
nothing else.

Remark 3.6.1. In some scenarios it can be beneficial to construct Θ and Θ∗ by
sampling their rows from a fixed realization of a larger oblivious embedding Θ̂, which
is guaranteed a priori to be an ε-embedding for V with high probability. More precisely,
Θ and Θ∗ can be defined as

Θ := ΓΘ̂, Θ∗ := Γ∗Θ̂, (3.55)

where Γ and Γ∗ are random independent sampling (or Gaussian, or P-SRHT)
matrices. In this way, a Θ̂-sketch of a reduced order model can be first precomputed
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and then used for efficient evaluation/update of the sketches associated with Θ and
Θ∗. This approach can be essential for the adaptive selection of the optimal size
for Θ in a limited-memory environment where only one pass (or a few passes) over
the reduced basis vectors is allowed and therefore there is no chance to recompute a
sketch associated with an oblivious embedding at each iteration. It may also reduce
the complexity (number of flops) of an algorithm (especially when Θ is constructed
with P-SRHT matrices) by not requiring to recompute high-dimensional matrix-vector
products multiple times.

Let V denote a matrix whose columns form a basis of V . Define the sketches
VΘ := ΘV and VΘ∗ := Θ∗V. Note that VΘ and VΘ∗ contain as columns low-
dimensional vectors and therefore are cheap to maintain and to operate with (unlike
the matrix V).

We start with the certification of the inner product between two fixed vectors
from V (see Proposition 3.6.2).

Proposition 3.6.2. For any two vectors x,y ∈ V , we have that

|〈x,y〉Θ
∗

U −〈x,y〉ΘU |−
ε∗

1− ε∗‖x‖
Θ∗
U ‖y‖Θ

∗
U ≤ |〈x,y〉U −〈x,y〉ΘU |

≤ |〈x,y〉Θ
∗

U −〈x,y〉ΘU |+
ε∗

1− ε∗‖x‖
Θ∗
U ‖y‖Θ

∗
U

(3.56)

holds with probability at least 1−4δ∗.

Proof. See appendix.

The error bounds in Proposition 3.6.2 can be computed from the sketches of x and y,
which may be efficiently evaluated from VΘ and VΘ∗ and the coordinates of x and
y associated with V, with no operations on high-dimensional vectors. A certification
for several pairs of vectors should be obtained using a union bound for the probability
of success. By replacing x by R−1

U x′ and y by R−1
U y′ in Proposition 3.6.2 and using

definition (3.2) one can derive a certification of the dual inner product 〈·, ·〉ΘU ′ for
vectors x′ and y′ in V ′ := {RUx : x ∈ V }.

In general, the quality of an approximation with a Θ-sketch of a reduced model
should be characterized by the accuracy of 〈·, ·〉ΘU for the whole subspace V . Let ω be
the minimal value for ε such that Θ satisfies an ε-embedding property for V . Now,
we address the problem of computing an a posteriori upper bound ω̄ for ω from the
sketches VΘ and VΘ∗ and we provide conditions to ensure quasi-optimality of ω̄.

Proposition 3.6.3. For a fixed realization of Θ∗, let us define

ω̄ := max

1− (1− ε∗) min
x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2
,(1 + ε∗) max

x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2
−1

 . (3.57)
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If ω̄ < 1, then Θ is guaranteed to be a U → `2 ω̄-subspace embedding for V with
probability at least 1− δ∗.

Proof. See appendix.

It follows that if ω̄ < 1 then it is an upper bound for ω with high probability. Assume
that VΘ and VΘ∗ have full ranks. Let T∗ be the matrix such that VΘ∗T∗ is
orthogonal (with respect to `2-inner product). Such a matrix can be computed
with QR factorization. Then ω̄ defined in (3.57) can be obtained from the following
relation

ω̄ = max
{

1− (1− ε∗)σ2
min,(1 + ε∗)σ2

max−1
}
, (3.58)

where σmin and σmax are the minimal and the maximal singular values of the small
matrix VΘT∗.

We have that ω̄ ≥ ε∗. The value for ε∗ may be selected an order of magnitude less
than ω with no considerable impact on the computational cost, therefore in practice
the effect of ε∗ on ω̄ can be considered negligible. Proposition 3.6.3 implies that ω̄
is an upper bound of ω with high probability. A guaranty of effectivity of ω̄ (i.e.,
its closeness to ω), however, has not been yet provided. To do so we shall need a
stronger assumption on Θ∗ than (3.54).

Proposition 3.6.4. If the realization of Θ∗ is a U → `2 ω∗-subspace embedding for
V , then ω̄ (defined by (3.57)) satisfies

ω̄ ≤ 1 + ε∗

1−ω∗ (1 +ω)−1. (3.59)

Proof. See appendix.

If Θ∗ is a (ω∗,γ∗,dim(V )) oblivious U → `2 subspace embedding, then the
condition on Θ∗ in Proposition 3.6.4 is satisfied with probability at least 1−γ∗ (for
some user-specified value γ∗). Therefore, a matrix Θ∗ of moderate size should yield
a very good upper bound ω̄ of ω. Moreover, if Θ and Θ∗ are drawn from the same
distribution, then Θ∗ can be expected to be an ω∗-embedding for V with ω∗ =O(ω)
with high probability. Combining this consideration with Proposition 3.6.4 we deduce
that a sharp upper bound should be obtained for some k∗ ≤ k. Therefore, in the
algorithms one may readily consider k∗ := k. If pertinent, a better value for k∗ can
be selected adaptively, at each iteration increasing k∗ by a constant factor until the
desired tolerance or a stagnation of ω̄ is reached.
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3.6.2 Certification of a sketch of a reduced model and its
solution

The results of Propositions 3.6.2 and 3.6.3 can be employed for certification of a sketch
of a reduced model and its solution. They can also be used for adaptive selection of
the number of rows of a random sketching matrix to yield an accurate approximation
of the reduced model. Thereafter we discuss several practical applications of the
methodology described above.

Approximate solution

Let ur(µ) ∈ U be an approximation of u(µ). The accuracy of ur(µ) can be measured
with the residual error ‖r(ur(µ);µ)‖U ′ , which can be efficiently estimated by

‖r(ur(µ);µ)‖U ′ ≈ ‖r(ur(µ);µ)‖ΘU ′ .

The certification of such estimation can be derived from Proposition 3.6.2 choosing
x = y := R−1

U r(ur(µ);µ) and using definition (3.2) of ‖ · ‖ΘU ′ .
For applications, which involve computation of snapshots over the training set

(e.g., approximate POD or greedy algorithm with the exact error indicator), one
should be able to efficiently precompute the sketches of u(µ). Then the error
‖u(µ)−ur(µ)‖U can be efficiently estimated by

‖u(µ)−ur(µ)‖U ≈ ‖u(µ)−ur(µ)‖ΘU .

Such an estimation can be certified with Proposition 3.6.2 choosing x = y := u(µ)−
ur(µ).

Output quantity

In Section 3.5 we provided a way for estimating the output quantity sr(µ) =
〈l(µ),ur(µ)〉. More specifically sr(µ) can be efficiently estimated by s?r(µ) defined
in (3.51). We have

|sr(µ)− s?r(µ)|= |〈R−1
U l(µ),ur(µ)−wp(µ)〉U −〈R−1

U l(µ),ur(µ)−wp(µ)〉ΘU |,

therefore the quality of s?r(µ) may be certified by Proposition 3.6.2 with x = R−1
U l(µ),

y = ur(µ)−wp(µ).

Minimal residual projection

By Proposition 3.3.3, the quality of the Θ-sketch of a subspace Ur for approximating
the minres projection for a given parameter value can be characterized by the
lowest value ω for ε such that Θ satisfies the ε-embedding property for subspace
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V := Rr(Ur;µ), defined in (3.18). The upper bound ω̄ of such ω can be efficiently
computed using (3.57). The verification of Θ-sketch for all parameter values in
P, simultaneously, can be performed by considering a subspace V in (3.57), which
contains ⋃µ∈PRr(Ur;µ).

Dictionary-based approximation

For each parameter value, the quality of Θ for dictionary-based approximation
defined in (3.43) can be characterized by the quality of the sketched minres projection
associated with a subspace Ur(µ), which can be verified by computing ω̄ in (3.57)
associated with V :=Rr(Ur(µ);µ).

Adaptive selection of the size for a random sketching matrix

When no a priori bound for the size of Θ sufficient to yield an accurate sketch of a
reduced model is available, or when the bounds are pessimistic, the sketching matrix
should be selected adaptively. At each iteration, if the certificate indicates a poor
quality of a Θ-sketch for approximating the solution (or the error) on Ptrain ⊆ P,
one can improve the accuracy of the sketch by adding extra rows to Θ. In the
analysis, the embedding Θ∗ used for certification was assumed to be independent of
Θ, consequently a new realization of Θ∗ should be sampled after each decision to
improve Θ has been made. To save computational costs, the previous realizations of
Θ∗ and the associated Θ∗-sketches can be readily reused as parts of the updates for
Θ and the Θ-sketch.

We finish with a practical application of Propositions 3.6.3 and 3.6.4. Consider a
situation where one is given a class of random embeddings (e.g., oblivious subspace
embeddings mentioned in Section 3.2.1 or the embeddings constructed with random
sampling of rows of an ε-embedding as in Remark 3.6.1) and one is interested in
generating an ε-embedding Θ (or rather computing the associated sketch), with a
user-specified accuracy ε≤ τ , for V (e.g., a subspace containing ∪µ∈PRr(Ur;µ)) with
nearly optimal number of rows. Moreover, we consider that no bound of the size of
matrices to yield an ε-embedding is available or that the bound is pessimistic. It
is only known that matrices with more than k0 rows satisfy (3.54). This condition
could be derived theoretically (as for Gaussian matrices) or deduced from practical
experience (for P-SRHT). Matrix Θ can be readily generated adaptively using ω̄
defined by (3.57) as an error indicator (see Algorithm 7). It directly follows by a
union bound argument that Θ generated in Algorithm 7 is an ε-embedding for V ,
with ε≤ τ , with probability at least 1− tδ∗, where t is the number of iterations taken
by the algorithm.

To improve the efficiency, at each iteration of Algorithm 7 we could select the
number of rows for Θ∗ adaptively instead of choosing it equal to k. In addition,
the embeddings from previous iterations can be considered as parts of Θ at further
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Algorithm 7 Adaptive selection of the number of rows for Θ
Given: k0, V, τ > ε∗.
Output: VΘ, VΘ∗

1. Set k = k0 and ω̄ =∞.
while ω̄ > τ do

2. Generate Θ and Θ∗ with k rows and evaluate VΘ := ΘV and VΘ∗ := Θ∗V.
3. Use (3.58) to compute ω̄.
4. Increase k by a constant factor.

end while

iterations.

3.7 Numerical experiments
This section is devoted to experimental validation of the methodology as well as
realization of its great practical potential. The numerical tests were carried out on two
benchmark problems that are difficult to tackle with the standard projection-based
MOR methods due to a high computational cost and issues with numerical stability
of the computation (or minimization) of the residual norm, or bad approximability
of the solution manifold with a low-dimensional space.

In all the experiments we used oblivious U → `2 embeddings of the form

Θ := ΩQ,

where Q was taken as the (sparse) transposed Cholesky factor of RU (or another
metric matrix as in Remark 3.5.2) and Ω as a P-SRHT matrix. The random
embedding Γ used for the online efficiency was also taken as P-SRHT. Moreover, for
simplicity in all the experiments the coefficient η(µ) for the error estimation was
chosen as 1.

The experiments were executed on an Intel R© CoreTM i7-7700HQ 2.8GHz CPU,
with 16.0GB RAM memory using Matlab R© R2017b.

3.7.1 Acoustic invisibility cloak
The first numerical example is inspired by the development of invisibility cloaking [44,
46]. It consists in an acoustic wave scattering in 2D with a perfect scatterer covered
in an invisibility cloak composed of layers of homogeneous isotropic materials. The
geometry of the problem is depicted in Figure 3.1a. The cloak consists of 32 layers
of equal thickness 1.5625 cm each constructed with 4 sublayers of equal thickness
of alternating materials: mercury (a heavy liquid) followed by a light liquid. The
properties (density and bulk modulus) of the light liquids are chosen to minimize
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the visibility of the scatterer for the frequency band [7.5,8.5] kHz. The associated
boundary value problem with the first order absorbing boundary conditions is the
following 

∇· (ρ−1∇u) +ρ−1κ2u = 0, in Ω
(iκ− 1

2RΩ
)u+ ∂u

∂n = (iκ− 1
2RΩ

)uin+ ∂uin

∂n , on Γ
∂u
∂n = 0, on Γs,

(3.60)

where u = uin+usc is the total pressure, with uin = exp(−iκ(y− 4)) Pa ·m being
the pressure of the incident plane wave and usc being the pressure of the scattered
wave, ρ is the material’s density, κ= 2πf

c is the wave number, c=
√
b
ρ is the speed of

sound and b is the bulk modulus. The background material is chosen as water having
density ρ= ρ0 = 997 kg/m3 and bulk modulus b= b0 = 2.23 GPa. For the frequency
f = 8 kHz the associated wave number of the background is κ= κ0 = 33.6 m−1. The
i-th layer of the cloak (enumerated starting from the outermost layer) is composed
of 4 alternating layers of mercury with density ρ = ρm = 13500 kg/m3 and bulk
modulus b= bm = 28 GPa and a light liquid with density ρ= ρi and bulk modulus
b= bi given in Table 3.1. The light liquids from Table 3.1 can in practice be obtained,
for instance, with the pentamode mechanical metamaterials [26, 92].

Table 3.1: The properties, density in kg/m3 and bulk modulus in GPa, of the light
liquids in the cloak.

i ρi bi i ρi bi i ρi bi i ρi bi
1 231 0.483 9 179 0.73 17 56.1 0.65 25 9 1.34
2 121 0.328 10 166 0.78 18 59.6 0.687 26 9 2.49
3 162 0.454 11 150 0.745 19 40.8 0.597 27 9 2.5
4 253 0.736 12 140 0.802 20 32.1 0.682 28 9 2.5
5 259 0.767 13 135 0.786 21 22.5 0.521 29 9 0.58
6 189 0.707 14 111 0.798 22 15.3 0.6 30 9.5 1.91
7 246 0.796 15 107 0.8 23 10 0.552 31 9.31 0.709
8 178 0.739 16 78 0.656 24 9 1.076 32 9 2.44

The last 10 layers contain liquids with small densities that can be subject to
imperfections during the manufacturing process. Moreover, the external conditions
(such as temperature and pressure) may also affect the material’s properties. We
then consider a characterization of the impact of small perturbations of the density
and the bulk modulus of the light liquids in the last 10 layers on the quality of the
cloak in the frequency regime [7.8,8.2] kHz. Assuming that the density and the bulk
modulus may vary by 2.5%, the corresponding parameter set is

P = ×
23≤i≤32

[0.975ρi,1.025ρi] ×
23≤i≤32

[0.975bi,1.025bi] × [7.8 kHz,8.2 kHz].

Note that in this case P ⊂ R21.
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(a) Geometry (b) Unperturbed cloak

(c) Random snapshot (d) Random snapshot

Figure 3.1: (a) Geometry of the invisibility cloak benchmark. (b) The real compo-
nent of u in Pa ·m for the parameter value µ ∈ P corresponding to Table 3.1 and
frequency f = 8 kHz. (c)-(d) The real component of u in Pa ·m for two random
samples from P with f = 7.8 kHz.

The quantity of interest is chosen to be the following

s(u(µ)) = ‖u(µ)−uin(µ)‖2L2(Ω1)/b0 = ‖usc(µ)‖2L2(Ω1)/b0,

which represents the (rescaled, time-averaged) acoustic energy of the scattered wave
concealed in the region Ω1 (see Figure 3.1a). For the considered parameter set s(u(µ))
is ranging from 0.0225As to 0.095As, where As = ‖uin‖2L2(Ω1)/b0 = 7.2J ·Pa/b0 at
frequency 8 kHz.

The problem is symmetric with respect to x = 0 axis, therefore only half of
the domain has to be considered for discretization. For the discretization, we used
piecewise quadratic approximation on a mesh of triangular (finite) elements. The
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mesh was chosen such that there were at least 20 degrees of freedom per wavelength,
which is a standard choice for Helmholtz problems with a moderate wave number.
It yielded approximately 400000 complex degrees of freedom for the discretization.
Figures 3.1b to 3.1d depict the solutions u(µ) for different parameter values with
quantities of interest s(u(µ)) = 0.033As,0.044As and 0.065As, respectively.

It is revealed that for this problem, considering the classical L2 or H1 inner
product for the solution space leads to dramatic instabilities of the projection-based
MOR methods. To improve the stability, the inner product is chosen corresponding
to the specific structure of the operator in (3.60). The solution space U is here
equipped with the following inner product

〈v,w〉U := 〈ρ−1
s κ2

sv,w〉L2 + 〈ρ−1
s ∇v,∇w〉L2 , v,w ∈ U, (3.61)

where v and w are the functions identified with v and w, respectively, and ρs and
κs are the density and the wave number associated with the unperturbed cloak (i.
e., with properties from Table 3.1) at frequency 8 kHz.

The operator for this benchmark is directly given in an affine form with 23 terms.
Furthermore, for online efficiency we used EIM to obtain an approximate affine
representation of uin(µ) (or rather a vector uin(µ) from U representing a discrete
approximation of uin(µ)) and the right hand side vector with 50 affine terms (with
error close to machine precision). The approximation space Ur of dimension r = 150
was constructed with a greedy algorithm (based on sketched minres projection)
performed on a training set of 50000 uniform random samples in P. The test set
Ptest ⊂ P was taken as 1000 uniform random samples in P .

Minimal residual projection. Let us first address the validation of the sketched
minres projection from Section 3.3.2. For this we computed sketched (and standard)
minres projections ur(µ) of u(µ) onto Ur for each µ ∈ Ptest with sketching matrix
Θ of varying sizes. The error of approximation is here characterized by ∆P :=
maxµ∈Ptest ‖r(ur(µ);µ)‖U ′/‖b(µs)‖U ′ and eP := maxµ∈Ptest ‖u(µ)−ur(µ)‖U/‖uin‖U ,
where b(µs) is the right hand side vector associated with the unperturbed cloak and
the frequency f = 8 kHz (see Figures 3.2a and 3.2c). Furthermore, in Figure 3.2e
we provide the characterization of the maximal error in the quantity of interest
esP := maxµ∈Ptest |s(µ)− sr(µ)|/As. For each size of Θ, 20 samples of the sketching
matrix were considered to analyze the statistical properties of eP , ∆P and esP .

For comparison, along with the minimal residual projections we also computed the
sketched (and classical) Galerkin projection introduced in Chapter 2. Figures 3.2b,
3.2d and 3.2f depict the errors ∆P , eP , es

P of a sketched (and classical) Galerkin
projection using Θ of different sizes. Again, for each k we used 20 samples of Θ to
characterize the statistical properties of the error. We see that the classical Galerkin
projection is more accurate in the exact norm and the quantity of interest than
the standard minres projection. On the other hand, it is revealed that the minres
projection is far better suited to random sketching.
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From Figure 3.2 one can clearly report the (essential) preservation of the quality
of the classical minres projection for k ≥ 500. Note that for the minres projection a
small deviation of eP and esP is observed. These errors are higher or lower than the
standard values with (roughly) equal probability (for k ≥ 500). In contrast to the
minres projection, the quality of the Galerkin projection is not preserved even for
large k up to 10000. This can be explained by the fact that the approximation of the
Galerkin projection with random sketching is highly sensitive to the properties of
the operator, which here is non-coercive and has a high condition number (for some
parameter values), while the (essential) preservation of the accuracy of the standard
minres projection by its sketched version is guaranteed regardless of the operator’s
properties. One can clearly see that the sketched minres projection using Θ with
just k = 500 rows yields better approximation (in terms of the maximal observed
error) of the solution than the sketched Galerkin projection with k = 5000, even
though the standard minres projection is less accurate than the Galerkin one.

As was discussed, random sketching improves not only efficiency but also has an
advantage of making the reduced model less sensitive to round-off errors thanks to
direct minimization of the (sketched) residual norm and not its square. Figure 3.3
depicts the maximal condition number κP over Ptest of the reduced matrix VΘ

r (µ) :=
ΘR−1

U A(µ)Ur associated with the sketched minres projection using reduced basis
matrix Ur with (approximately) unit-orthogonal columns with respect to 〈·, ·〉U , for
varying sizes of Θ. We also provide the maximal condition number of the reduced
system of equations associated with the classical minres projection. It is observed
that indeed random sketching yields an improvement of numerical stability by a
square root.

Approximation of the output quantity. Next experiment was performed for a fixed
approximation ur(µ) obtained with sketched minres projection using Θ with 1000
rows. For such ur(µ), the approximate extraction of the quantity sr(µ) = s(ur(µ);µ)
from ur(µ) (represented by coordinates in reduced basis) was considered with the
efficient procedure from Section 3.5.

The post-processing procedure was performed by choosing l(µ) = ur(µ) := ur(µ)−
uin(µ) in (3.47). Furthermore, for better accuracy the solution space was here
equipped with (semi-)inner product 〈·, ·〉U := 〈·, ·〉L2(Ω1) that is different from the
inner product (3.61) considered for ensuring quasi-optimality of the minres projection
and error estimation (see Remark 3.5.2). For such choices of l(µ),ur(µ) and 〈·, ·〉U ,
we employed a greedy search with error indicator ‖ur(µ)−wp(µ)‖ΘU over training set
of 50000 uniform samples in P to find Wp. Then sr(µ) was efficiently approximated
by s?r(µ) given in (3.51). In this experiment, the error is characterized by es

P =
maxµ∈Ptest |s(µ)− s̃r(µ)|/As, where s̃r(µ) = sr(µ) or s?r(µ). The statistical properties
of es
P for each value of k and dim(Wp) were obtained with 20 samples of Θ. Figure 3.4a

exhibits the dependence of es
P on the size of Θ with Wp of dimension dim(Wp) = 15.

Furthermore, in Figure 3.4b we provide the maximum value es
P from the computed

samples for different sizes of Θ and Wp. The accuracy of s?r(µ) can be controlled
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Figure 3.2: The errors of the classical minres and Galerkin projections and quantiles
of probabilities p= 1,0.9,0.5 and 0.1 over 20 samples of the errors of the sketched
minres and Galerkin projections, versus the number of rows of Θ. (a) Residual
error ∆P of standard and sketched minres projection. (b) Residual error ∆P of
standard and sketched Galerkin projection. (c) Exact error eP (in ‖ ·‖U ) of standard
and sketched minres projection. (d) Exact error eP (in ‖ · ‖U ) of standard and
sketched Galerkin projection. (e) Quantity error esP of standard and sketched minres
projection. (f) Quantity error esP of standard and sketched Galerkin projection.
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Figure 3.3: The maximal condition number over Ptest of the reduced system
associated with the classical minres projection and quantiles of probabilities p =
1,0.9,0.5 and 0.1 over 20 samples of the maximal condition number of the sketched
reduced matrix VΘ

r (µ), versus the size of Θ.

by the quality of Wp for approximation of ur(µ) and the quality of ‖ · ‖ΘU for
approximation of ‖ · ‖U . When Wp approximates well ur(µ), one can use a random
correction with Θ of rather small size, while in the alternative scenario the usage
of a large random sketch is required. In this experiment we see that the quality of
the output is nearly preserved with high probability when using Wp of dimension
dim(Wp) = 20 and a sketch of size k = 1000, or Wp of dimension dim(Wp) = 15 and a
sketch of size k = 10000. For less accurate Wp, with dim(Wp)≤ 10, the preservation
of the quality of the output requires larger sketches of sizes k ≥ 30000. For most
efficiency the dimension for Wp and the size for Θ should be picked depending on
the dimensions r and n of Ur and U , respectively, and the particular computational
architecture. The increase of the considered dimension of Wp entails storage and
operation with more high-dimensional vectors, while the increase of the sketch entails
higher computational cost associated with storage and operation with the sketched
matrix UΘ

r = ΘUr. Let us finally note that for this benchmark the approximate
extraction of the quantity of interest with the procedure from Section 3.5 using
dim(Wp) = 15 and a sketch of size k = 10000, required in about 10 times less amount
of storage and complexity than the classical exact extraction.

Certification of the sketch. Next the experimental validation of the procedure for
a posteriori certification of the Θ-sketch or the sketched solution (see Section 3.6)
is addressed. For this, we generated several Θ of different sizes k and for each of
them computed the sketched minres projections ur(µ) ∈ Ur for all µ ∈ P. There-
after Propositions 3.6.2 and 3.6.3, with V (µ) := Rr(Ur;µ) defined by (3.18), were
considered for certification of the residual error estimates ‖r(ur(µ);µ)‖ΘU ′ or the
quasi-optimality of ur(µ) in the residual error. Oblivious embeddings of varying sizes
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Figure 3.4: The error es
P of sr(µ) or its efficient approximation s?r(µ) using Wp and

Θ of varying sizes. (a) The error of sr(µ) and quantiles of probabilities p= 1,0.9,0.5
and 0.1 over 20 samples of es

P associated with s?r(µ) using Wp with dim(Wp) = 10,
versus sketch’s size k. (b) The error of sr(µ) and maximum over 20 samples of es

P
associated with s?r(µ), versus sketch’s size k for Wp of varying dimension.

were tested as Θ∗. For simplicity it was assumed that all considered Θ∗ satisfy (3.54)
with ε∗ = 0.05 and small probability of failure δ∗.

By Proposition 3.6.2 the certification of the sketched residual error estimator
‖r(ur(µ);µ)‖ΘU ′ can be performed by comparing it to ‖r(ur(µ);µ)‖Θ∗U ′ . More specifi-
cally, by (3.56) we have that with probability at least 1− δ∗,

|‖r(ur(µ);µ)‖2U ′− (‖r(ur(µ);µ)‖ΘU ′)2|

≤ |‖(‖r(ur(µ);µ)‖Θ
∗

U ′ )2− (‖r(ur(µ);µ)‖ΘU ′)2|+ ε∗

1− ε∗ (‖r(ur(µ);µ)‖Θ
∗

U ′ )2.

Figure 3.5 depicts the error indicator ∆P = maxµ∈Ptest r(ur(µ);µ)/‖b(µs)‖U ′ , where
r(ur(µ);µ) is the exact error ‖r(ur(µ);µ)‖U ′ , its estimator ‖r(ur(µ);µ)‖ΘU ′ or the
certified estimator ‖r(ur(µ);µ)‖Θ∗U ′ . For each Θ and k∗, 20 samples of ∆P were
computed for statistical analysis. We see that ‖r(ur(µ);µ)‖Θ∗U ′ provides accurate
estimates of ‖r(ur(µ);µ)‖U ′ already when k∗ ≥ 100, which is in particular several
times smaller than the size of Θ required for quasi-optimality of ur(µ). This implies
that the certification of the effectivity of the error estimator ‖r(ur(µ);µ)‖ΘU ′ by
‖r(ur(µ);µ)‖Θ∗U ′ should require negligible computational costs compared to the cost
of obtaining the solution (or estimating the error in adaptive algorithms such as
greedy algorithms).

By Proposition 3.3.3, the quasi-optimality of ur(µ) can be guaranteed if Θ
is an ε-embedding for V (µ). The ε-embedding property of each Θ was verified
with Proposition 3.6.3. In Figure 3.6 we provide ωP := maxµ∈Ptest ω̃(µ) where
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ω̃(µ) = ω(µ), which is the minimal value for ε such that Θ is an ε-embedding for
V (µ), or ω̃(µ) = ω̄(µ), which is the upper bound of ω(µ) computed with (3.58)
using Θ∗ of varying sizes. For illustration purposes we here allow the coefficient
ε in Definition 3.2.2 to be larger than 1. The statistical properties of ωP were
obtained with 20 samples for each Θ and value of k∗. Figure 3.6a depicts the
statistical characterization of ωP for Θ of size k = 5000. The maximal value of ωP
observed for each k∗ and Θ is presented in Figure 3.6b. It is observed that with
a posteriori estimates from Proposition 3.6.3 using Θ∗ of size k∗ = 6000, we here
can guarantee with high probability that Θ with k = 5000 satisfies an ε-embedding
property for ε≈ 0.6. Whereas the theoretical bounds from Chapter 2 for Θ to be an
ε-embedding for V (µ) with ε= 0.6 yield much larger sizes, namely, for the probability
of failure δ ≤ 10−6, they require more than k = 45700 rows for Gaussian matrices and
k = 102900 rows for P-SRHT. This proves Proposition 3.6.3 to be very useful for the
adaptive selection of sizes of random matrices or for the certification of the sketch.
Note that the adaptive selection of the size of Θ can also be performed without
requiring Θ to be an ε-embeddings for V (µ) with ε < 1, based on the observation
that oblivious embeddings yield preservation of the quality of the minres projection
when they are ε-embeddings for V (µ) with small ε, which is possibly larger than 1.
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Figure 3.5: The exact residual error of ur(µ), the error estimator with ‖ · ‖ΘU ′ , and
the (probabilistic) certified estimator with ‖ · ‖Θ∗U ′ using Θ∗ with k∗ rows. (a) The
exact and the estimated errors for Θ with k= 5000 rows and quantiles of probabilities
p= 1,0.9,0.5 and 0.1 over 20 samples of the certified estimator, versus the size of Θ∗.
(b) The exact and estimated errors, and the maximum of 20 samples of the certified
estimator, versus the number of rows of Θ∗ for varying sizes of Θ.
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Figure 3.6: The minimal value for ε such that Θ is an ε-embedding for Vr(µ) for
all µ ∈ Ptest, and a posteriori random estimator of this value obtained with the
procedure from Section 3.6 using Θ∗ with k∗ rows. (a) The minimal value for ε for
Θ with k = 5000 rows and quantiles of probabilities p = 1,0.9,0.5 and 0.1 over 20
samples of the estimator, versus the size of Θ∗. (b) The minimal value for ε and
the maximum of 20 samples of the estimator, versus the number of rows of Θ∗ for
varying sizes of Θ.

Remark 3.7.1. The ε-embedding property can be used as an easy and reliable char-
acteristics of the quality of Θ for approximation of minres projection. However, it
is revealed that in this experiment the sufficient size for Θ to be an ε-embedding
for V (µ) is in several times larger than the one yielding an accurate approximation
of the minres projection. In particular, Θ with k = 500 rows with high probability
provides an approximation with residual error very close to the minimal one, but it
does not satisfy an ε-embedding property (with ε < 1), which is required for guaran-
teeing the quasi-optimality of ur(µ) with Proposition 3.3.3. A more accurate way for
certification of the quality of Θ for approximation of the minres projection onto Ur
can be derived by taking into account that Θ was generated from a distribution of
oblivious embeddings. In such a case it is enough to only certify that ‖ · ‖ΘU provides
an approximate upper bound of ‖ · ‖U for all vectors in V (µ) without the need to
guarantee that ‖ ·‖ΘU is an approximate lower bound. This approach is outlined below.

We first observe that Θ was generated from a distribution of random matrices
such that for all x ∈ V (µ), we have

P
(∣∣∣‖x‖2U − (‖x‖ΘU )2

∣∣∣≤ ε0‖x‖2U
)
≥ 1− δ0.

The values ε0 and δ0 can be obtained from the theoretical bounds from Chapter 2
or from practical experience. Then a characterization of the quasi-optimality of the
sketched minres projection with Θ can be obtained with computed a posteriori upper
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bound of the minimal value ω(µ) for ε such that for all x ∈ V (µ), it holds

(1− ε)‖x‖2U ≤ (‖x‖ΘU )2.

Note that since Θ is an oblivious subspace embedding, the coefficients ε0 and δ0 do
not depend on the dimension of V (µ), which implies that the considered value for
ε0 should be orders of magnitude less than ω(µ). Therefore, it can be a good way to
choose ε0 as ω(µ) (or rather its upper bound) multiplied by a small factor, say 0.1.

One can show that if ω(µ)< 1, then

‖r(ur(µ);µ)‖U ′ ≤
√

1 + ε0
1−ω(µ) min

x∈Ur
‖r(x;µ)‖U ′ , (3.62)

holds with probability at least 1−δ0. The quasi-optimality of ur(µ) in the norm ‖ ·‖U
rather than the residual norm can be readily derived from relation (3.62) by using the
equivalence between the residual error and the error in ‖·‖U . The (probabilistic) upper
bound ω̄(µ) for ω(µ) can be obtained a posteriori by following a similar procedure
as the one from Proposition 3.6.3 described for certification of ε-embeddings. More
specifically, we can use similar arguments as in Proposition 3.6.3 to show that

ω̄(µ) := 1− (1− ε∗) min
x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2

is an upper bound for ω(µ) with probability at least 1− δ∗.
Let us now provide experimental validation of the proposed approach. For each

given Θ we computed ωP := maxµ∈Ptest ω̃(µ), where ω̃(µ) = ω(µ) or its upper bound
ω̄(µ) using Θ∗ of different sizes. Again 20 samples of ωP were considered for the
statistical characterization of ωP for each Θ and size of Θ∗. One can clearly see that
this approach provides better estimation of the quasi-optimality constants than the
one with the ε-embedding property. In particular, the quasi-optimality guarantee for
Θ with k = 500 rows is experimentally verified. Furthermore, we see that in all the
experiments the a posteriori estimates are lower than 1 even for Θ∗ of small sizes,
yet they are larger than the exact values, which implies efficiency and robustnesses
of the method. From Figure 3.7, a good accuracy of a posteriori estimates is with
high probability attained for k∗ ≥ k/2.

Computational costs. For this benchmark, random sketching yielded drastic
computational savings in the offline stage and considerably improved online efficiency.
To verify the gains for the offline stage, we executed two greedy algorithms for the
generation of the reduced approximation space of dimension r = 150 based on the
minres projection and the sketched minres projection, respectively. The standard
algorithm resulted in a computational burden after reaching 96-th iteration due to
exceeding the limit of RAM (16GB). Note that performing r = 150 iterations in this
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Figure 3.7: The minimal value for ε such that (1− ε)‖x‖U ≤ ‖x‖ΘU holds for all
x ∈ Vr(µ) and µ ∈ Ptest, and a posteriori random estimator of this value using Θ∗
with k∗ rows. (a) The minimal value for ε for Θ with k = 5000 rows and quantiles of
probabilities p= 1,0.9,0.5 and 0.1 over 20 samples of the estimator, versus the size
of Θ∗. (b) The minimal value for ε and the maximum of 20 samples of the estimator
versus the number of rows of Θ∗, for varying sizes of Θ.

case would require around 25GB of RAM (mainly utilized for storage of the affine
factors of R−1

U A(µ)Ur). In contrast to the standard method, conducting r = 150
iterations of a greedy algorithm with random sketching using Θ of size k = 2500
(and Γ of size k′ = 500) for the sketched minres projection and Θ∗ of size k∗ = 250
for the error certification, took only 0.65GB of RAM. Moreover, the sketch required
only a minor part (0.2GB) of the aforementioned amount of memory, while the
major part was consumed by the initialization of the full order model. The sketched
greedy algorithm had a total runtime of 1.9 hours, from which 0.8 hours was spent
on the computation of 150 snapshots, 0.2 hours on the provisional online solutions
and 0.9 hours on random projections. Note that a drastic reduction of the offline
runtime would as well be observed even in a computational environment with higher
RAM (than 25GB), since random sketching in addition to reducing the memory
consumption, also greatly improves the efficiency in terms of complexity and other
metrics.

Next the improvement of online computational cost of minres projection is
addressed. For this, we computed the reduced solutions on the test set with standard
method, which consists in assembling the reduced system of equations (representing
the normal equation) from its affine decomposition (precomputed in the offline stage)
and its subsequent solution with built in Matlab R© R2017b linear solver. The online
solutions on the test set were additionally computed with the sketched method for
comparison of runtimes and storage requirements. For this, for each parameter
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value, the reduced least-squares problem was assembled from the precomputed affine
decompositions of VΦ

r (µ) and bΦ(µ) and solved with the normal equation using
built in Matlab R© R2017b linear solver. Note that both methods proceeded with the
normal equation. The difference was in the way how this equation was obtained. For
the standard method it was directly assembled from the affine representation, while
for the sketched method it was computed from the sketched matrices VΦ

r (µ) and
bΦ(µ).

Table 3.2 depicts the runtimes and memory consumption taken by the standard
and sketched online stages for varying sizes of the reduced space and Φ (for the
sketched method). The sketch’s sizes were picked such that the associated reduced
solutions with high probability had almost (higher by at most a factor of 1.2) optimal
residual error. Our approach nearly halved the online runtime for all values of r
from Table 3.2. Furthermore, the improvement of memory requirements was even
greater. For instance, for r = 150 the online memory consumption was divided 6.8.

Table 3.2: CPU times in seconds and amount of memory in MB taken by the
standard and the efficient sketched online solvers for the solutions on the test set.

Standard Sketched

r = 50 r = 100 r = 150 r = 50
k′ = 300

r = 100
k′ = 400

r = 150
k′ = 500

CPU 1.6 5.5 12 0.9 2.8 5.3
Storage 22 87 193 5.8 15 28

3.7.2 Advection-diffusion problem
The dictionary-based approximation method proposed in Section 3.4 is validated on
a 2D advection dominated advection-diffusion problem defined on a complex flow.
This problem is governed by the following equations

−ε∆u+βββ ·∇u = f, in Ω
u = 0, on Γout
∂u
∂n = 0, on Γn.

(3.63)

where u is the unknown (temperature) field, ε := 0.0001 is the diffusion (heat
conduction) coefficient and βββ is the advection field. The geometry of the problem
is as follows. First we have 5 circular pores of radius 0.01 located at points xj =
0.5(cos(2πj/5),sin(2πj/5)), 1≤ j ≤ 5. The domain of interest is then defined as the
square [−10,10]2 without the pores, i.e, Ω := [−10,10]2/Ωn, with Ωn := ∪1≤j≤5{x ∈
[−10,10]2 : ‖x−xj‖2 ≤ 0.01}. The boundaries Γn and Γout are taken as ∂Ωn and
∂Ω/∂Ωn, respectively. Furthermore, Ω is (notationally) divided into the main region
inside [−1,1]2, and the outer domain playing a role of a boundary layer. Finally,
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the force term f is nonzero in the disc Ωs := {x ∈ Ω : ‖x‖2 ≤ 0.025}. The geometric
setup of the problem is presented in Figure 3.8a.
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Figure 3.8: (a) Geometry of the advection-diffusion problem. (b) The solution field
u for parameter value µs := (0,0,0.308,0.308,0.308,0.308,0.308,0.616,0.616,
0.616,0.616,0.616). (c)-(d) The solution field u for two random samples from P .

The advection field is taken as a potential (divergence-free and curl-free) field
consisting of a linear combination of 12 components,

βββ(x) = µ2 cos(µ1)êx+µ2 sin(µ1)êy +
10∑
i=1

µiβββi(x), x ∈ Ω,
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where

βββi(x) =


−êr(xi)
‖x−xi‖ for 1≤ i≤ 5

−êθ(xi−5)
‖x−xi−5‖ for 6≤ i≤ 10.

(3.64)

The vectors êx and êy are the basis vectors of the Cartesian system of coordinates.
The vectors êr(xj) and êθ(xj) are the basis vectors of the polar coordinate system with
the origin at point xj , 1≤ j ≤ 5. Physically speaking, we have here a superposition of
two uniform flows and five hurricane flows (each consisting of a sink and a rotational
flow) centered at different locations. The source term is

f(x) =
{ 1

π0.0252 for x ∈ Ωs,
0 for x ∈ Ω/Ωs.

We consider a multi-objective scenario, where one aims to approximate the average
solution field sj(u), 1≤ j ≤ 15, inside sensor Ωj having a form of a disc of radius 0.025
located as in Figure 3.8a. The objective is to obtain sensor outputs for the parameter
values µ := (µ1, · · · ,µ12) ∈P := {[0, 2π]× [0, 0.028]× [0.308, 0.37]5× [0.616, 0.678]5}.
Figures 3.8a to 3.8c present solutions u(µ) for few samples from P .

The discretization of the problem was performed with the classical finite element
method. A nonuniform mesh was considered with finer elements near the pores of
the hurricanes, and larger ones far from the pores such that each element’s Peclet
number inside [−1,1]2 was larger than 1 for any parameter value in P . Moreover, it
was revealed that for this benchmark the solution field outside the region [−1,1]2
was practically equal to zero for all µ ∈ P . Therefore the outer region was discretized
with coarse elements. For the discretization we used about 380000 and 20000 degrees
of freedom in the main region and the outside boundary layer, respectively, which
yielded approximately 400000 degrees of freedom in total.

The solution space is equipped with inner product

‖w‖2U := ‖∇w‖2L2 , w ∈ U,

which is compatible with the H1
0 inner product.

For this problem, approximation of the solution with a fixed low-dimensional
space is ineffective. The problem has to be approached with non-linear approximation
methods with parameter-dependent approximation spaces. For this, the classical
hp-refinement method is computationally intractable due to high dimensionality of
the parameter domain, which makes the dictionary-based approximation to be the
most pertinent choice.

The training and test sets Ptrain and Ptest were respectively chosen as 20000 and
1000 uniform random samples from P . Then, Algorithm 6 was employed to generate
dictionaries of sizes K = 1500, K = 2000 and K = 2500 for the dictionary-based
approximation with r = 100, r = 75 and r = 50 vectors, respectively. For comparison,
we also performed a greedy reduced basis algorithm (based on sketched minres
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projection) to generate a fixed reduced approximation space, which in particular
coincides with Algorithm 6 with large enough r (here r = 750). Moreover, for more
efficiency (to reduce the number of online solutions) at i-th iteration of Algorithm 6
and reduced basis algorithm instead of taking µi+1 as a maximizer of ∆Φ(ur(µ);µ)
over Ptrain, we relaxed the problem to finding any parameter-value such that

∆Φ(ur(µi+1);µi+1)≥ max
µ∈Ptrain

min
1≤j≤i

∆Φ(ujr(µ);µ), (3.65)

where ujr(µ) denotes the solution obtained at the j-th iteration. Note that (3.65)
improved the efficiency, yet yielding at least as accurate maximizer of the dictionary-
based width (defined in (3.25)) as considering µi+1 := argmaxµ∈Ptrain ∆Φ(ur(µ);µ).
For the error certification purposes, each 250 iterations the solution was computed on
the whole training set and µi+1 was taken as argmaxµ∈Ptrain ∆Φ(ur(µ);µ). Figure 3.9
depicts the observed convergences of the greedy algorithms.
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Figure 3.9: Convergences of Algorithm 6 for the dictionary generation for varying
values of r, and the reduced basis greedy algorithm based on (sketched) minres
projection. (a) The residual-based error indicator ∆̃(µi+1) := ‖ur(µi+1)‖U ′/‖b‖U ′ .
(b) The minimal value of the error indicator at parameter value µi+1 at the first i
iterations.

We see that at the first r iterations, the error decay for the dictionary generation
practically coincides with the error decay of the reduced basis algorithm, which can
be explained by the fact that the first r iterations of the two algorithms essentially
coincide. The slope of the decay is then preserved for the reduced basis algorithm
(even at high iterations), while it slowly subsequently degrades for dictionary-based
approximation. The later method should still highly outperform the former one,
since its online computational cost scales only linearly with the number of iterations.
Furthermore, for the dictionary-based approximation the convergence of the error
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is moderately noisy. The noise is primarily due to approximating the solutions of
online sparse least-squares problems with the orthogonal greedy algorithm, for which
the accuracy can be sensitive to the enrichment of the dictionary with new vectors.
The quality of online solutions can be improved by the usage of more sophisticated
methods for sparse least-squares problems.

As it is clear from Figure 3.9, the obtained dictionaries provide approximations
at least as accurate (on the training set) as the minres approximation with a fixed
reduced space of dimension r = 750. Yet, the dictionary-based approximations are
much more online-efficient. Table 3.3 provides the online complexity and storage
requirements for obtaining the dictionary-based solutions for all µ ∈ Ptest (recall,
#Ptest = 1000) with the orthogonal greedy algorithm (Algorithm 5) from a sketch of
size k= 8r, and the sketched minres solutions with QR factorization with Householder
transformations of the sketched reduced matrix in (3.21) from a sketch of size k = 4r.
In particular, we see that the dictionary-based approximation with r = 75 and
K = 2000 yields a gain in complexity by a factor of 15 and memory consumption by
a factor of 1.9. In Table 3.3 we also provide the associated runtimes and required
RAM. It is revealed that the dictionary-based approximation with K = 2000 and
r = 75 had an about 4 times speedup. The difference between the gains in terms
of complexity and runtime can be explained by superb efficiency of the Matlab R©

R2017b least-squares solver. It is important to note that even more considerable
boost of efficiency could be obtained by better exploitation of the structure of the
dictionary-based reduced model, in particular, by representing the sketched matrix
VΘ
K(µ) in a format well suited for the orthogonal greedy algorithm (e.g., a product

of a dense matrix by several sparse matrices similarly as in [100, 131]).

Table 3.3: Computational cost of obtaining online solutions for all parameter values
from the test set with the reduced basis method (based on sketched minres projection)
and the dictionary-based approximations.

RB, r = 750 K = 1500, r = 100 K = 2000, r = 75 K = 2500, r = 50
Complexity in flops 3.1×109 0.27×109 0.2×109 0.12×109

Storage in flns 2.9×108 1.6×108 1.6×108 1.3×109

CPU in s 400 124 113 100
Storage in MB 234 124 124 104

Further we provide statistical analysis of the dictionary-based approximation
with K = 2000 and r = 75. For this we computed the associated dictionary-based
solutions ur(µ) for all parameter values in the test set, considering Θ of varying
sizes. The accuracy of an approximation is characterized by the quantities ∆P :=
maxµ∈Ptest ‖r(ur(µ);µ)‖U ′/‖b‖U ′ , eP := maxµ∈Ptest ‖u(µ)−ur(µ)‖U/maxµ∈Ptest ‖u(µ)‖U
and eiP = maxµ∈Ptest |si(u(µ))− si(ur(µ))|, 1 ≤ i ≤ 15. Figure 3.10 depicts the de-
pendence of ∆P , eP and eiP (for few selected values of i) on the size k of Θ. For
each value of k, the statistical properties of ∆P , eP and eiP were characterized with
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20 samples of ∆P , eP and eiP . It is observed that for k = 600, the errors ∆P and eP
are concentrated around 0.03 and 0.06, respectively. Moreover, for all tested k ≥ 600
we obtained nearly the same errors, which suggests preservation of the quality of the
dictionary-based approximation by its sketched version at k = 600. A (moderate)
deviation of the errors in the quantities of interest (even for very large k) can be
explained by (moderately) low effectivity of representation of these errors with the
error in ‖ · ‖U , which we considered to control.

3.8 Summary
In this chapter we have extended the methodology from Chapter 2 to minres methods
and proposed a novel nonlinear approximation method to tackle problems with a
slow decay of Kolmogorov r-width. Furthermore, we additionally proposed efficient
randomized ways for extraction of the quantity of interest and a posteriori certification
of the reduced model’s sketch. The results from this chapter can be used as a remedy
of the drawbacks revealed in Chapter 2.

First, a method to approximate minres projection via random sketching was
introduced. For each parameter value, the approximation is obtained by minimization
of the `2-norm of a random projection of the residual. The associated minimization
problem can be assembled from a sketch of a low-dimensional space containing the
residual vectors and then solved with a standard routine such as QR factorization
or (less stable) normal equation. This procedure enables drastic reduction of the
computational cost in any modern computational architecture and improvement of
numerical stability of the standard method. Precise conditions on the sketch to yield
the (essential) preservation of the accuracy of the standard minres projection were
provided. The conditions do not depend on the operator’s properties, which implies
robustness for ill-conditioned and non-coercive problems.

Then we proposed a dictionary-based approximation, where the solution is
approximated by a minres projection onto a parameter-dependent reduced space with
basis vectors (adaptively) selected from a dictionary. The characterization of the
quasi-optimality of the proposed dictionary-based minres projection was provided.
For each parameter value the solution can be efficiently approximated by the online
solution of a small sparse least-squares problem assembled from random sketches of
the dictionary vectors, which entails practical feasibility of the method. It was further
shown that the preservation of the quasi-optimality constants of the sparse minres
projection by its sketched version can be guaranteed if the random projection satisfies
an ε-embedding property for a collection of low-dimensional spaces containing the
set of residuals associated with a dictionary-based approximation. In particular, this
condition can be ensured by using random projections constructed with SRHT or
Gaussian matrices of sufficiently large sizes depending only logarithmically on the
cardinality of the dictionary and the probability of failure.
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Figure 3.10: Quantiles of probabilities p = 1,0.9,0.5 and 0.1 over 20 samples of
the errors ∆P , eP , ei

P of the dictionary-based approximation with K = 2000 and
r = 75, versus the number of rows of Θ. (a) Residual error ∆P . (b) Exact error eP .
(c) Error eiP in the quantity of interest associated with sensor i= 13. (d) Error eiP in
the quantity of interest associated with sensor i= 8. (e) Error eiP in the quantity of
interest associated with sensor i= 1.
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This chapter has also addressed the efficient post-processing of the approximate
solution from its coordinates associated with the given reduced basis (or dictionary).
The extraction of the output quantity from an approximate solution can be done
by a (sufficiently accurate) projection onto a low-dimensional space with a random
sketching correction. This approach can be particularly important for the approxi-
mation of the linear output with an expensive extractor of the quantity of interest,
as well as quadratic output and primal-dual correction.

Finally, we provided a probabilistic approach for a posteriori certification of the
quality of the (random) embedding (and the associated sketch). This procedure is
online-efficient and does not require operations on high dimensional vectors but only
on their small sketches. It can be particularly useful for an adaptive selection of the
size of a random sketching matrix since a priori bounds were revealed to be highly
pessimistic.

The great applicability of the proposed methodology was realized on two bench-
mark problems difficult to tackle with standard methods. The experiments on
invisibility cloak benchmark proved that random sketching indeed provides high
computational savings in both offline and online stages compared to the standard
minres method while preserving the quality of the output. In particular, we could
not even execute the classical greedy algorithm based on minres projection due to
exceeding the RAM. Moreover, the improvement of numerical stability of compu-
tation (or minimization) of the residual error was also validated. It was verified
experimentally that random sketching is much better suited to minres methods than
to Galerkin methods. Furthermore, the procedure for a posteriori certification of
the sketch was also validated in a series of experiments. It was revealed that this
procedure can be used for (adaptive) selection of an (almost) optimal size of random
sketching matrices in particular less by an order of magnitude than the theoretical
bounds from Chapter 2.

Finally we considered an advection-diffusion benchmark defined on a complex
flow. For this problem a slow-decay of the Kolmogorov r-width was revealed, which
implied the necessity to use the dictionary-based approximation. It was verified
that for this problem the dictionary-based approximation provided a boost of the
online stage in more than an order of magnitude in complexity, in about 2 times in
terms of memory, and in about 4 times in terms of runtime. Moreover, even higher
computational savings could be obtained by representing the sketch of the dictionary
in a more favorable format (e.g., as in [100, 131]), which we leave for the future
research.
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3.9 Appendix
Here we list the proofs of propositions from the chapter.
Proof of Proposition 3.3.1. The statement of the proposition follows directly from
the definitions of the constants ζr(µ) and ιr(µ), that imply

ζr(µ)‖u(µ)−ur(µ)‖U ≤‖r(ur(µ);µ)‖U ′ ≤‖r(PUru(µ);µ)‖U ′ ≤ ιr(µ)‖u(µ)−PUru(µ)‖U .

Proof of Proposition 3.3.2. The proof follows the one of Proposition 3.3.1.

Proof of Proposition 3.3.3. By the assumption on Θ, we have that
√

1− ε‖A(µ)x‖U ′ ≤ ‖A(µ)x‖ΘU ′ ≤
√

1 + ε‖A(µ)x‖U ′

holds for all x ∈ span{u(µ)}+Ur. Then (3.19) follows immediately.

Proof of Proposition 3.3.5. Let a ∈Kr and x := Ura. Then
‖VΘ

r (µ)a‖
‖a‖

= ‖ΘR−1
U A(µ)Ura‖
‖a‖

= ‖A(µ)x‖ΘU ′
‖x‖ΘU

.

Since Θ is an ε-embedding for Ur, we have
√

1− ε‖x‖U ≤ ‖x‖ΘU ≤
√

1 + ε‖x‖U .

The statement of the proposition follows immediately.

Proof of Proposition 3.4.1. Define

D(i)
K = arg min

#DK=Ki
sup

u∈M(i)
min

Wri∈Lri(DK)
‖u−PWri

u‖U ,

and

D∗K =
l⋃

i=1
D(i)
K .

The following relations hold:
l∑

i=1
σri(M(i);Ki) =

l∑
i=1

sup
u∈M(i)

min
Wri∈Lri(D

(i)
K )
‖u−PWri

u‖U

≥ sup
µ∈P

l∑
i=1

min
Wri∈Lri(D

(i)
K )
‖u(i)(µ)−PWri

u(i)(µ)‖U

≥ sup
µ∈P

min
Wr∈Lr(D∗K)

l∑
i=1
‖u(i)(µ)−PWru(i)(µ)‖U

≥ sup
µ∈P

min
Wr∈Lr(D∗K)

‖
l∑

i=1
u(i)(µ)−PWr

l∑
i=1

u(i)(µ)‖U ≥ σr(M;K).
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Proof of Proposition 3.4.3. Let U∗r (µ) := argminWr∈Lr(DK) ‖u(µ)−PWru(µ)‖U . By
definition of ur(µ) and constants ζr,K(µ) and ιr,K(µ),

ζr,K(µ)‖u(µ)−ur(µ)‖U ≤ ‖r(ur(µ);µ)‖U ′ ≤ ‖r(PU∗r (µ)u(µ);µ)‖U ′
≤ ιr,K(µ)‖u(µ)−PU∗r (µ)u(µ)‖U ,

which ends the proof.

Proof of Proposition 3.4.4. The proof exactly follows the one of Proposition 3.4.3 by
replacing ‖ · ‖U ′ with ‖ · ‖ΘU ′ .

Proof of Proposition 3.4.5. We have that
√

1− ε‖A(µ)x‖U ′ ≤ ‖A(µ)x‖ΘU ′ ≤
√

1 + ε‖A(µ)x‖U ′

holds for all x ∈ span{u(µ)}+Wr with Wr ∈ Lr(DK). The statement of the proposi-
tion then follows directly from the definitions of ζr,K(µ), ιr,K(µ), ζΘ

r,K(µ) and ιΘr,K(µ).

Proof of Proposition 3.4.6. Let Ur(µ) ∈Kn×r be a matrix whose column vectors are
selected from the dictionary DK . Let x ∈ Kr be an arbitrary vector and w(µ) :=
Ur(µ)x. Let z(µ)∈KK with ‖z(µ)‖0≤ r be a sparse vector such that UKz(µ) = w(µ).
Then

‖VΘ
r (µ)x‖
‖x‖

= ‖ΘR−1
U A(µ)Urx‖
‖x‖

= ‖A(µ)w(µ)‖ΘU ′
‖x‖

= ‖A(µ)w(µ)‖ΘU ′
‖w(µ)‖U

‖w(µ)‖U
‖x‖

≥ ζΘ
r,K(µ)‖Ur(µ)x‖U

‖x‖
= ζΘ

r,K(µ)‖UKz(µ)‖U
‖z(µ)‖ ≥ ζΘ

r,K(µ)Σmin
r,K .

Similarly,

‖VΘ
r (µ)x‖
‖x‖

≤ ιΘr,K(µ)‖Ur(µ)x‖U
‖x‖

≤ ιΘr,K(µ)Σmax
r,K .

The statement of the proposition follows immediately.

Proof of Proposition 3.5.3. Denote x := R−1
U l(µ)/‖l(µ)‖U ′ and y := (ur(µ)−wp(µ))/‖ur(µ)−

wp(µ)‖U . Let us consider K = C, which also accounts for the real case, K = R. Let

ω := 〈x,y〉U −〈x,y〉ΘU
|〈x,y〉U −〈x,y〉ΘU |

.

Observe that |ω|= 1 and 〈x,ωy〉U −〈x,ωy〉ΘU is a real number.
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By a union bound for the probability of success, Θ is an ε-embedding for
span(x +ωy) and span(x−ωy) with probability at least 1− 2δ. Then, using the
parallelogram identity we obtain

4|〈x,y〉U −〈x,y〉ΘU |= |4〈x,ωy〉U −4〈x,ωy〉ΘU |
= |‖x +ωy‖2U −‖x−ωy‖2U + 4Im(〈x,ωy〉U )
−
(
(‖x +ωy‖ΘU )2− (‖x−ωy‖ΘU )2 + 4Im(〈x,ωy〉ΘU )

)
|

= |‖x +ωy‖2U − (‖x +ωy‖ΘU )2−
(
‖x−ωy‖2U − (‖x−ωy‖ΘU )2

)
−4Im(〈x,ωy〉U −〈x,ωy〉ΘU )|
≤ ε‖x +ωy‖2U + ε‖x−ωy‖2U = 4ε.

We conclude that relation (3.52) holds with probability at least 1−2δ.

Proof of Proposition 3.5.4. We can use a similar proof as in Proposition 3.5.3 using
the fact that if Θ is an ε-embedding for every subspace in Y, then it satisfies the
ε-embedding property for span(x +ωy) and span(x−ωy).

Proof of Proposition 3.6.2. Using Proposition 3.5.3 with l(µ) := RUx, ur(µ) := y,
wp(µ) := 0, Θ := Θ∗, ε := ε∗ and δ := δ∗, we have

P(|〈x,y〉U −〈x,y〉Θ
∗

U | ≤ ε∗‖x‖U‖y‖U )≥ 1−2δ∗, (3.66)

from which we deduce that

|〈x,y〉Θ
∗

U −〈x,y〉ΘU |− ε∗‖x‖U‖y‖U ≤ |〈x,y〉U −〈x,y〉ΘU |
≤ |〈x,y〉Θ

∗
U −〈x,y〉ΘU |+ ε∗‖x‖U‖y‖U

(3.67)

holds with probability at least 1−2δ∗. In addition,

P(‖‖x‖2U − (‖x‖ΘU )2| ≤ ε∗‖x‖2U )≥ 1− δ∗ (3.68)

and
P(‖‖y‖2U − (‖y‖ΘU )2| ≤ ε∗‖y‖2U )≥ 1− δ∗. (3.69)

The statement of the proposition can be now derived by combining (3.67) to (3.69)
and using a union bound argument.

Proof of Proposition 3.6.3. Observe that

ω = max

1− min
x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2
, max
x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2
−1

 .
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Let us make the following assumption:

1− min
x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2
≥ max

x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2
−1.

For the alternative case the proof is similar.
Next, we show that ω̄ is an upper bound for ω with probability at least 1− δ∗.

Define x∗ := argminx∈V/{0},‖x‖U=1 ‖x‖ΘU . By definition of Θ∗,

1− ε∗ ≤
(
‖x∗‖Θ

∗
U

)2
(3.70)

holds with probability at least 1− δ∗. If (3.70) is satisfied, we have

ω̄ ≥ 1− (1− ε∗) min
x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2
≥ 1− (1− ε∗)

(
‖x∗‖ΘU
‖x∗‖Θ∗U

)2
≥ 1− (‖x∗‖ΘU )2 = ω.

Proof of Proposition 3.6.4. By definition of ω and the assumption on Θ∗, for all
x ∈ V , it holds

|‖x‖2U − (‖x‖Θ
∗

U )2| ≤ ω∗‖x‖2U , and |‖x‖2U − (‖x‖ΘU )2| ≤ ω‖x‖2U .

The above relations and the definition (3.57) of ω̄ yield

ω̄ ≤max
{

1− (1− ε∗) 1−ω
1 +ω∗

,(1 + ε∗) 1 +ω

1−ω∗ −1
}

= (1 + ε∗) 1 +ω

1−ω∗ −1,

which ends the proof.
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Chapter 4

Parameter-dependent precondition-
ers for model order reduction

The performance of projection-based model order reduction methods for solving
parameter-dependent linear systems of equations highly depends on the properties of
the operator, which can be improved by preconditioning. This chapter presents an
online-efficient procedure to estimate the condition number of a large-scale parameter-
dependent (preconditioned) matrix. We also provide an effective way to estimate the
quasi-optimality constants of the Petrov-Galerkin projection on a given approximation
space of moderately large dimension and the residual-based error estimation. All
the estimates are defined by error indicators measuring a discrepancy between the
(preconditioned) matrix and the identity (or some positive-definite matrix defining
the metric of interest). An effective parameter-dependent preconditioner can be
constructed by interpolation of matrix inverse based on minimization of an error
indicator. The minimization of the proposed error indicators requires the solution
of small least-squares problems which can be efficiently performed online for each
parameter value. The obtained preconditioner can be readily used for improving the
quality of Petrov-Galerkin projection or for effective error certification without the
need to estimate stability constants.

The heavy offline computations are circumvented by using random sketching
technique, which consists in estimating the norms of high-dimensional matrices and
vectors by `2-norms of their random projections in low-dimensional spaces. For
this we extend the framework from Chapter 2. Random sketching allows drastic
reduction of the computational cost of the offline stage in terms of number of flops,
memory consumption, scalability, etc. Moreover, it improves numerical stability. The
random projections are obtained using random sketching matrices which are `2→ `2
oblivious subspace embeddings such as rescaled Gaussian matrices and Subsampled
Randomized Hadamard Transform. We provide sufficient conditions on the sizes of
random sketching matrices to control the accuracy of estimation with a user-specified
probability of success.
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4.1 Introduction
We consider a large-scale parameter-dependent system of equations

A(µ)u(µ) = b(µ), µ ∈ P , (4.1)

where P is the parameter set. Such a system may result from the discretization of a
parameter-dependent PDE. We assume that the solution manifold {u(µ) : µ∈P} can
be well approximated by a projection onto a space of moderately large dimension. The
linear system of equations (4.1) can then be approximately solved using projection-
based model order reduction (MOR) methods such as Reduced Basis (RB) method,
Proper Orthogonal Decomposition (POD) and (recycling) Krylov methods (see [23,
24, 85, 120, 124] and the references therein). The performance of projection-based
methods highly depends on the properties of the matrix A(µ), which can be improved
by preconditioning.

Let the solution space be characterized by a weighted Euclidean (or Hermitian)
inner product 〈·, ·〉U := 〈RU ·, ·〉2, where RU is some self-adjoint positive definite
matrix. More details regarding the problem’s setting can be found in Section 4.1.2. Let
the preconditioner P(µ) be an approximate inverse of A(µ). Then the (approximate)
solution of (4.1) can be obtained from

B(µ)u(µ) = f(µ), µ ∈ P , (4.2)

where B(µ) := RUP(µ)A(µ) and f(µ) := RUP(µ)b(µ). If P(µ)A(µ) is close to
the identity matrix, then B(µ) should have better properties than the original
operator A(µ), which implies better performances of projection-based methods. In
particular, if P(µ) = A(µ)−1 then (4.2) is perfectly conditioned (relatively to the
metric induced by RU ). It is important to note that in the context of projection-based
MOR, the invertibility of P(µ) is not required for obtaining an approximate solution
to (4.1). Since we operate only on a subset of vectors it is sufficient to ensure that
P(µ)A(µ) is close to the identity on this subset. Note also that the computation of
the explicit form of B(µ) can be extremely expensive and has to be avoided. Instead,
this matrix should be operated as an implicit map outputting products with vectors.

In the present chapter we provide efficiently computable estimators of the quality
of B(µ) for the solution of (4.2) with projection-based methods or for residual-based
error estimation. Each estimator basically measures a discrepancy between B(µ)
and RU (with respect to a certain semi-norm), and is seen as an error indicator on
P(µ) as an approximation of the inverse of A(µ). The proposed error indicators can
be readily employed to efficiently estimate the quasi-optimality constants associated
with the given preconditioner or to construct P(µ) by interpolation of the inverse
of A(µ). Unlike the minimization of the condition number of B(µ) or the quasi-
optimality constants, the minimization of each error indicator over a low-dimensional
space of matrices is a small least-squares problem, which can be efficiently solved
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online. The heavy offline computations are here circumvented with randomized linear
algebra. More specifically, a drastic reduction of the computational cost is attained
by the usage of the framework from Chapter 2 and its extension to the context
of approximation of inner products between matrices. The `2-embeddings are no
longer seen as matrices, but rather as linear maps from a space of matrices to a low-
dimensional Euclidean (or Hermitian) space. In Section 4.3 we propose a probabilistic
way for the construction of `2-embeddings for matrices, and in Section 4.4 provide
its theoretical characterization.

The construction of an efficient parameter-dependent preconditioner has been
addressed in [45, 58, 96, 134, 156]. In particular, in [156] the authors proposed to
use randomized linear algebra for the efficient construction of a preconditioner by
interpolation of matrix inverse. This principle is taken as the starting point for the
present chapter. Randomized linear algebra has also been employed for improving
MOR methods in [11, 36, 137].

4.1.1 Contributions
We here consider preconditioners in three different contexts. Besides the multi-query
context as in [156], where one is interested in estimation (or minimization) of the
condition number, we also consider Galerkin projections onto fixed approximation
spaces, and residual-based error certification. A detailed presentation of the major
contributions is given below.

Preconditioner for multi-query context
This work presents a generalization and improvement of the methodology introduced
in [156]. First of all, the quality of the preconditioner is characterized with respect to
a general norm represented by a self-adjoint positive define matrix instead of the `2-
norm. This is important, for instance, in the context of numerical methods for PDEs
to control the quality of an approximation regardless the used discretization. Secondly,
the theoretical bounds from [156] for the size of sketching matrices are considerably
improved. For instance our bound for SRHT is linear in the dimension m of the low-
dimensional space of operators, and not quadratic as in [156]. Furthermore, thanks to
the (extended) framework presented in Chapter 2, we here obtain a great improvement
of the efficiency (both offline and online) and numerical stability of the algorithms.
More specifically, if A(µ) is a n×n sparse matrix and admits an affine expansion with
mA terms1, if P(µ) is a linear combination of p basis matrices, each requiring O(nkP )
(for some small kP ) complexity and amount of storage for multiplication by a vector,
and if k is the dimension of the sketch, then the precomputation of our error indicator

1A parameter-dependent quantity v(µ) with values in vector space V over a field K is said to
admit an affine representation if v(µ) =

∑d
i=1 viλi(µ) with λi(µ) ∈K and vi ∈ V .
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(using SRHT) takes only O(kn(mAp log (k) +kP )) flops and O(n(kmA log (k) +kP ))
bytes of memory, while the approach from [156] takes O(kn(m2

Ap+kP )) flops and
O(n(km2

Ap+kP )) bytes of memory. Moreover, we also improve the efficiency and
numerical stability of the online stage. The online assembling of the reduced matrix
for the computation (or minimization) of the indicator in [156] takes O(m2

Ap
2) flops,

while our approach essentially consumes only O(k′mAp) flops, where k′ =O(1) for
the approximation of the indicator or k′ =O(p) for its minimization. Our approach
is also less sensitive to round-off errors since we proceed with direct computation
(or minimization) of a (sketched) norm and not its square. We also derive a quasi-
optimality result for the preconditioned Galerkin projection and error estimation
with the proposed error indicator.

Preconditioner for Galerkin projection
The estimation of the operator norm by a Hilbert-Schmidt norm (as used in the
multi-query context) can be very ineffective. In general a very high overestimation
is possible. For numerical methods for PDEs, this may result in a high sensitivity
to discretization. We show how to overcome this issue, if the preconditioner is used
for a Galerkin projection onto a moderately large approximation space. In such a
case the effective error indicators can be obtained by ignoring the component of the
residual which is orthogonal to the approximation space (see Section 4.2.2).

Preconditioner for error certification
The error ‖u(µ)−ur(µ)‖U of an approximation ur(µ) of the solution u(µ) can be
estimated by a sketched norm (see Chapter 2 for details) of the preconditioned
residual f(µ)−B(µ)ur(µ). This approach can be linked to the one from [137], which
consists in approximating the error by projections of the (unpreconditioned) residual
onto approximate solutions of the dual problems A(µ)Hyi(µ) = zi with random
right-hand sides. The difference is that in [137] the authors proposed to tackle
the random dual problems separately with RB methods, while we here consider a
monolithic approach, approximating solutions by yi(µ)≈P(µ)Hzi, where P(µ) is a
preconditioner constructed, for instance, by an interpolation of the operator’s inverse
based on minimization of an error indicator. Our method has several important
advantages over the one in [137]. First, our efficient error certification procedure
with the multi-query error indicator does not rely on the assumption that the error
of the solution(s) of the random dual problem(s) is uniformly small on P as in [137].
Furthermore, we propose an alternative, more robust approach for error estimation
and certification without requiring yi(µ) (or A(µ)−1) to be well-approximated by
low-dimensional spaces. This approach relies on the introduction of an efficiently
computable upper bound of a norm of (B(µ)−RU )(u(µ)−ur(µ)). A preconditioner
for sharp error estimation can be constructed by minimization of this upper bound,
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without the requirement that B(µ) has a small condition number. And finally, in
contrast to [137] our methodology yields guarantees of success not only for finite
parameter sets P , which can be of particular interest for adaptive algorithms.

4.1.2 Preliminaries
Let K=R or C. The solution space is identified with U :=Kn. This space is equipped
with inner product

〈·, ·〉U := 〈RU ·, ·〉2,

where 〈·, ·〉2 is the Euclidean (or Hermitian) inner product on Kn and RU ∈Kn×n

is some self-adjoint (symmetric if K = R and Hermitian if K = C) positive definite
matrix. The dual of U is identified with U ′ := Kn and is endowed with the canonical
(dual) norm

‖ · ‖U ′ = max
w∈U

〈·,w〉2
‖w‖U

.

This norm is associated with the inner product 〈·, ·〉U ′ := 〈·,RU
−1·〉2. The solution

vector u(µ) is seen as an element from U , the matrices A(µ) and RU are seen as
operators from U to U ′, and b(µ) is seen as an element from U ′. The parameter
set P can be a subset of Ke or a subset of an infinite dimensional space such as a
function space. See Chapter 1 for more details on the meaning of this semi-discrete
setting for numerical methods for PDEs. For problems described simply by algebraic
equations the notions of solution spaces and dual spaces can be disregarded.

For finite-dimensional (Hilbert) spaces V and W identified with an Euclidean
or a Hermitian space, we denote by HS(V,W ) the space of matrices representing
operators from V to W . Assuming that V and W are equipped with inner products
〈·, ·〉V and 〈·, ·〉W , respectively, we endow HS(V,W ) with the Hilbert-Schmidt inner
product

〈X,Y〉HS(V,W ) :=
dimV∑
i=1
〈Xvi,Yvi〉W ,

where X,Y : V →W and {vi : 1≤ i≤ dimV } with orthonormal basis for V . Below
we particularize the above setting to specific choices of V and W .

For V = `2(Kr) and W = `2(Kk), HS(V,W ) is identified with the space of matrices
Kk×r equipped with the Frobenius inner product 〈·, ·〉HS(`2,`2) = 〈·, ·〉F .

For V = `2(Kr) and W = U or W = U ′, HS(V,W ) is identified with the space of
matrices Kn×r equipped with the inner products

〈·, ·〉HS(`2,U) =
r∑
i=1
〈RU ·, ·〉F , or 〈·, ·〉HS(`2,U ′) =

r∑
i=1
〈·,R−1

U ·〉F ,

respectively.
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Furthermore, HS(U ′,U) and HS(U,U ′) are identified with Kn×n. These spaces
are seen as spaces of linear operators from U ′ to U and from U to U ′, respectively,
and are endowed with inner products

〈·, ·〉HS(U,U ′) := 〈·,R−1
U ·R

−1
U 〉F and 〈·, ·〉HS(U ′,U) := 〈RU ·RU , ·〉F . (4.3)

We also let ‖ · ‖HS(`2,U),‖ · ‖HS(`2,U ′),‖ · ‖HS(U,U ′) and ‖ · ‖HS(U ′,U) be the associ-
ated norms.

4.2 Characterization of the quality of a precondi-
tioner

In this section we derive efficiently computable estimates that characterize the quality
of a preconditioner. They essentially represent some discrepancy between P(µ) and
A(µ)−1. Different error indicators shall be considered depending on the objectives.
We also discuss a construction of a preconditioner as a linear combination of some
basis matrices.

Further, all considerations are for a fixed parameter value µ ∈ P , unless specified
otherwise. For clarity of the presentation, the dependencies on µ are dropped out
from the equations.

4.2.1 Multi-query context
Here we consider the preconditioned system of equations (4.2) and provide an error
indicator that characterizes the performance of the preconditioner for projection-
based methods such as (possibly adaptive) Galerkin methods, Krylov methods (with
or without recycling), RB methods, etc.

The matrix B := RUPA in (4.2) can be seen as a linear operator from U to U ′.
The minimal and the maximal singular values (or inf-sup constant and operator
norm) of B can be defined as follows

α(B) := min
v∈U\{0}

‖Bv‖U ′
‖v‖U

, (4.4a)

β(B) := max
v∈U\{0}

‖Bv‖U ′
‖v‖U

, (4.4b)

and the condition number κ(B) := β(B)
α(B) . The performance of a projection-based

method and a residual-based error estimator usually depends on the condition number.
A smaller condition number yields better quasi-optimality constants.

The condition number of B can be characterized by the distance between B
and RU measured with the operator norm, i.e., by β(RU −B). More specifically, it
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directly follows from the definitions of the minimal and maximal singular values that

1−β(RU −B)≤ α(B)≤ β(B)≤ 1 +β(RU −B). (4.5)
The computation (and minimization) of β(B−RU ) for multiple operators B can

be an unfeasible task. Therefore the condition number of B shall be approximated
with a computable upper bound of β(B−RU ).
Proposition 4.2.1. For an operator C : U → U ′ and a vector v ∈ U , it holds

‖Cv‖U ′ ≤ ‖C‖HS(U,U ′)‖v‖U . (4.6)

Proof. See appendix.
From Proposition 4.2.1 it follows that ‖RU −B‖HS(U,U ′) is an upper bound of
β(B−RU ), which implies the first main result of this chapter.
Define the following error indicator

∆U,U = ‖RU −B‖HS(U,U ′). (4.7)

If ∆U,U < 1, then

κ(B)≤ 1 + ∆U,U

1−∆U,U
. (4.8)

Therefore a good performance of a projection-based method can be guaranteed if ∆U,U

is sufficiently small.

In practice, the condition ∆U,U < 1, which is required for the bound (4.8) to hold,
is very hard to reach. Our empirical studies, however, suggest that the operators
which come from real applications have a small condition number also when ∆U,U is
small but larger than one.

In general, a good effectivity of ‖ · ‖HS(U,U ′) as an estimator of the operator
norm β(·) may not be guaranteed. In some situations, a large overestimation (up
to a factor of n1/2) happens. This issue can be particularly dramatic for numerical
methods for PDEs, where each discrete operator C (e.g., C = RU −B) represents
a finite-dimensional approximation of some differential operator C. The operator
norm of C is an upper bound of β(C) regardless of the chosen discretization. The
norm ‖C‖HS(U,U ′) is an approximation of the Hilbert-Schmidt norm of C, which
can be infinite (if C is not a Hilbert-Schmidt operator). Therefore, even if C has a
small operator norm (implying that β(C) is also small), ‖C‖HS(U,U ′) can be highly
sensitive to the discretization and go to infinity with the number of degrees of
freedom. This implies a possible failure of ∆U,U for characterizing the quality of the
preconditioned operator. This problem can be circumvented for the projection-based
MOR context, where the solution is approximated with a moderately large space, or
for the residual-based error estimation.
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4.2.2 Galerkin projection
Further, we consider the projection-based MOR context where the solution u in (4.2)
is approximated by the Galerkin projection ur onto a subspace Ur. The subspace Ur
can be constructed with a greedy algorithm for RB method or low-rank approximation
of the matrix of solution samples (snapshots) for POD. The basis vectors for Ur can
also be chosen a priori by exploiting the structure of the problem. In the context of
numerical methods for PDEs, such basis vectors can be obtained by computing the
coordinates of the basis functions (associated, for instance, with an approximation
on a coarse grid) on the space of functions identified with U .

For given W ⊆ U , let PW : U →W denote the orthogonal projection on W with
respect to ‖ · ‖U , i.e.,

∀x ∈ U, PWx = arg min
w∈W

‖x−w‖U . (4.9)

The Galerkin orthogonality condition can be stated as follows

〈B(u−ur),w〉2 = 0, ∀w ∈ Ur, (4.10)

or, equivalently [11],
‖B(u−ur)‖U ′r = 0, (4.11)

where ‖ · ‖U ′r := ‖PUrR−1
U · ‖U .

Next we use the following lemma to provide conditions for controlling the accuracy
of ur summarized in Proposition 4.2.3.

Lemma 4.2.2. Let ur satisfy (4.11). Then

‖ur−PUru‖U ≤ ‖[RU −B](u−PUru)‖U ′r +‖[RU −B](ur−PUru)‖U ′r . (4.12)

Proof. See appendix.

Proposition 4.2.3. Define

βr(RU −B) := max
v∈Ur\{0}

‖[RU −B]v‖U ′r
‖v‖U

(4.13a)

β̄r(RU −B) := max
v∈U\{0}

‖[RU −B]v‖U ′r
‖v‖U

, (4.13b)

If βr(RU −B)< 1, then the solution ur to (4.11) is unique and

‖u−ur‖U ≤
(

1 + β̄r(RU −B)
1−βr(RU −B)

)
‖u−PUru‖U . (4.14)
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Proof. See appendix.

According to Proposition 4.2.3, the quasi-optimality of ur can be guaranteed by
making sure that the coefficients βr(RU −B) and β̄r(RU −B) are small enough. We
observe that

βr(RU −B)≤ β̄r(RU −B)≤ β(RU −B)≤∆U,U . (4.15)

Moreover, for Ur = U we clearly have βr(RU −B) = β̄r(RU −B) = β(RU −B).
The relation (4.15) and Proposition 4.2.3 imply a characterization of the Galerkin
projection with the multi-query indicator ∆U,U :

‖u−ur‖U ≤ 1 + ∆U,U

1−∆U,U
‖u−PUru‖U . (4.16)

However, the quality of the preconditioner can be better characterized by taking into
account that the coefficients βr(RU −B) and β̄r(RU −B) represent a discrepancy
between B and RU measured with the semi-norm ‖ · ‖U ′r , which is the restriction
of ‖ · ‖U ′ onto a low-dimensional space. Consequently, the multi-query criteria for
characterizing the quality of the Galerkin projection can be improved by restriction
of B to Ur. Such considerations lead to error indicators ∆Ur,Ur and ∆Ur,U defined
below.

Proposition 4.2.4. Define

∆Ur,Ur := ‖UH
r [RU −B]Ur‖F (4.17a)

and

∆Ur,U := ‖[RU −B]HUr‖HS(`2,U ′), (4.17b)

where Ur : Kr→ U is a matrix whose columns form a basis for Ur. The following
relations hold:

1
σ2

1
√
r

∆Ur,Ur ≤ βr(RU −B)≤ 1
σ2
r

∆Ur,Ur (4.18a)

1
σ1
√
r

∆Ur,U ≤ β̄r(RU −B)≤ 1
σr

∆Ur,U , (4.18b)

where
σr := min

a∈Kr/{0}

‖Ura‖U
‖a‖2

and σ1 := max
a∈Kr/{0}

‖Ura‖U
‖a‖2

are the minimal and the maximal singular values of Ur with respect to ‖ ·‖U -norm.

Proof. See appendix.



Characterization of the quality of a preconditioner 159

Clearly, the bounds in Proposition 4.2.4 are tighter when the columns of Ur are
unit-orthogonal vectors with respect to 〈·, ·〉U .

Corollary 4.2.5. Let ∆Ur,Ur and ∆Ur,U be the error indicators from Proposition 4.2.4.
If the columns of Ur are unit-orthogonal vectors with respect to 〈·, ·〉U , then

1√
r

∆Ur,Ur ≤ βr(RU −B)≤∆Ur,Ur , (4.19)

1√
r

∆Ur,U ≤ β̄r(RU −B)≤∆Ur,U . (4.20)

Furthermore, it is easy to see that if Ur has unit-orthonormal columns with respect
to 〈·, ·〉U , then

∆Ur,Ur ≤∆Ur,U ≤∆U,U .

This fact implies that in this case the quasi-optimality constants obtained with
∆Ur,Ur and ∆Ur,U shall always be better than the ones obtained with ∆U,U . Note
that if Ur = U then ∆Ur,Ur = ∆Ur,U = ∆U,U . Unlike the multi-query context, here
the effectiveness of ∆Ur,Ur and ∆Ur,U as estimators of βr(RU −B) and β̄r(RU −B)
is guaranteed. For PDEs this implies a robust characterization of the quality of the
preconditioned operator regardless the discretization.

For some problems and computational architectures (e.g., when the basis vectors
may not be efficiently maintained) the orthogonalization of the basis with respect
to 〈·, ·〉U can be very expensive. In these cases one should use Ur with columns
which are only approximately orthogonal. For PDEs such a matrix can be obtained
with domain decomposition (i.e., by local orthogonalization). Another possibility
(for not too large r) is the approximate orthogonalization of the columns of Ur

with random sketching technique (see Section 4.3 for details). Note that ∆Ur,Ur is
more sensitive to the condition number of Ur than ∆Ur,U . Consequently, for Ur

with moderate or high condition number it can be more pertinent to characterize
the Galerkin projection with the error indicator ∆Ur,U only, and use the fact that
βr(RU −B)≤ β̄r(RU −B).

Let us now summarize the results of Propositions 4.2.3 and 4.2.4 in a practical
form.

Consider error indicators ∆Ur,Ur ,∆Ur,U defined in (4.17) and ∆U,U defined in (4.7).
If min{∆U,U ,σ

−1
r ∆Ur,U ,σ

−2
r ∆Ur,Ur}< 1, then the solution ur to (4.11) is such that

‖u−ur‖U ≤
(

1 + min{∆U,U ,σ
−1
r ∆Ur,U}

1−min{∆U,U ,σ−1
r ∆Ur,U ,σ

−2
r ∆Ur,U}

)
‖u−PUru‖U , (4.21)

where σr is the minimal singular value of Ur with respect to ‖ · ‖U -norm. Therefore
to ensure high quality of the Galerkin projection one can seek a preconditioner that
minimizes (

γ1∆2
U,U +γ2∆2

Ur,U +γ3∆2
Ur,Ur

)1/2
(4.22)
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with (possibly zero) weights γ1,γ2 and γ3 picked depending on the problem.

Again, the condition ∆Ur,Ur < σ2
r (or ∆Ur,U < σr) can require too expensive

preconditioners and may not be attained for some problems. Without it we do not
have any a priori guaranty of high quality of the Galerkin projection. On the other
hand, our experimental observations revealed that, in practice, minimizing ∆Ur,Ur

and ∆Ur,U yields reliable preconditioners even when ∆Ur,Ur ≥ σ2
r .

4.2.3 Error certification
Let ur be an approximation of u obtained, for example, by projecting u on an
approximation space. Next we address the question of estimating and bounding the
error ‖u−ur‖U . The standard way is the certification of the error with the residual
norm:

‖u−ur‖U ≤
1
η
‖r(ur)‖U ′ , (4.23)

where r(ur) = b−Aur and η is a computable lower bound of the smallest singular
value of A (the operator norm of A−1). For ill-conditioned operators A, the accuracy
of such error estimator is very poor. A straightforward approach to overcome this
issue is to replace A in (4.23) by the preconditioned operator B:

‖u−ur‖U ≤
1
η∗
‖r∗(ur)‖U ′ , (4.24)

with r∗(ur) = f−Bur and η∗ being a lower bound of the smallest singular value of B.
The coefficients η and η∗ can be obtained theoretically or with the Successive Con-
straint Method [89]. The above approach can be intractable, since the computation
of η∗ with classical procedures can be much more expensive than the computation
of η. A more efficient certification of the error can be obtained with a multi-query
error indicator ∆U,U , as proposed in Proposition 4.2.6.

Proposition 4.2.6. If ∆U,U < 1, then

1
1 + ∆U,U

‖r∗(ur)‖U ′ ≤ ‖u−ur‖U ≤
1

1−∆U,U
‖r∗(ur)‖U ′ . (4.25)

Proof. See appendix.

The advantage of certification with ∆U,U is that it does not require the usage
of expensive methods to estimate the operator’s minimal singular value. However,
the effectivenesses of the certification with ∆U,U can be poor (for instance, for
PDEs context with non Hilbert-Schmidt operators). Furthermore, both certifications
with (4.24) and (4.25) require B to have a moderate minimal singular value. However,
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the residual associated with B can provide a good estimation of the exact error even
when the minimal singular value of B is very small and, possibly, equal to zero (when
B is singular). For instance, imagine a situation when we are able to construct a
preconditioner such that B is close to RU when restricted to a specific set of vectors
including u−ur, but that can highly deviate from RU when applied to other vectors.
In this case a failure of error certification with (4.24) can be detected. Below, we
provide a more robust error certification.

The accuracy of ‖r∗(ur)‖U ′ as an error estimator can be certified by the quantity
‖(RU −B)(u−ur)‖U ′ , which can be efficiently bounded above by a norm of (RU −
B)(u−ur) mapped through AR−1

U . These considerations lead to Proposition 4.2.7.

Proposition 4.2.7. Define the following error indicator

∆e := ‖d(ur)‖U ′ , (4.26)

where d(ur) := [I−AP]r(ur). Then, we have

‖r∗(ur)‖U ′−∆e/η ≤ ‖u−ur‖U ≤ ‖r∗(ur)‖U ′+ ∆e/η. (4.27)

Proof. See appendix.

A great advantage of certification of the error with Proposition 4.2.7 is that such
a certification no longer requires B to have a moderate minimal singular value as
in (4.24) and (4.25). The only requirement is that the preconditioner is such that B
is close to RU when applied to the vector u−ur.

Propositions 4.2.6 and 4.2.7 constitute the main result of this section, which is
concluded below.

The error of the approximate solution ur can be estimated by a norm of the precondi-
tioned residual ‖r∗(ur)‖U ′. The quality of such an estimation can either be certified
using a general error indicator ∆U,U with relation (provided ∆U,U < 1)

1
1 + ∆U,U

‖r∗(ur)‖U ′ ≤ ‖u−ur‖U ≤
1

1−∆U,U
‖r∗(ur)‖U ′ ,

or using the error indicator ∆e defined by (4.26) with relation

‖r∗(ur)‖U ′−∆e/η ≤ ‖u−ur‖U ≤ ‖r∗(ur)‖U ′+ ∆e/η,

where η is a computable lower bound of the minimal singular value of A. It follows
that if ∆U,U or ∆e is small, then ‖r∗(ur)‖U ′ provides sharp estimation of the exact
error ‖u−ur‖U . The certification with ∆e is more robust than with ∆U,U but is less
efficient since it requires computation of η. Yet, it can be enough to consider for η a
rough estimation of the minimal singular value since this coefficient is scaled by ∆e,
which may be orders of magnitude less than the error.
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4.2.4 Construction of a preconditioner
A parameter-dependent preconditioner P(µ) can be obtained by a projection of
A(µ)−1 onto a linear span of some basis matrices {Yi}pi=1, i.e.,

P(µ) =
p∑
i=1

λi(µ)Yi, (4.28)

with coefficients λi(µ) computed online by solving a small least-squares problem
for a minimization of one of the above error indicators (or rather their efficient
approximations given in Section 4.3).

The basis matrices Yi can be taken as A(µi)−1 at some interpolation points
µi ∈P . The set of interpolation points can be obtained simply by random sampling in
P . Another way is an iterative greedy selection, at each iteration enriching the set of
interpolation points by the parameter value where the error indicator was the largest.
For methods where the approximation space Ur is constructed from snapshots u(µ̂j)
such as the RB method or POD, the interpolation points can be selected among
the parameters µ̂j , providing recycling of the computations, since each snapshot
(typically) requires computation of the implicit inverse (e.g., factorization) of the
operator. Finally, for the reduced basis methods where Ur is constructed with a
greedy algorithm based on Petrov-Galerkin projection, it can be useful to consider
the same interpolation points for the construction of Ur and {Yi}pi=1. In this case
the error indicator for the greedy selection of an interpolation point should be defined
as a (weighted) average of the error indicator characterizing the quality of Ur (e.g.,
an upper bound of the error of the Galerkin projection) and the error indicator
characterizing the quality of {Yi}pi=1 (e.g., one of the error indicators from above).
Other strategies for finding the parameter values µi can be found in [156].

4.3 Randomized error indicators
In this section we propose a probabilistic approach for drastic reduction of the
computational cost and improvement of the numerical stability associated with the
computation (or minimization) of the error indicators from Section 4.2. For this we
adapt the framework from Chapter 2.

Recall that every error indicator from Section 4.2 is given as a norm of a certain
residual matrix (or vector). These norms can be estimated with `2-norms of the images
(so-called sketches) of the residual matrices (or vectors) through a carefully chosen
random linear map to a small Euclidean (or Hermitian) space. Such random maps
are here constructed using random sketching matrices, so-called `2→ `2 oblivious
subspace embeddings (see [11, 153]). They include the rescaled Gaussian matrices,
the rescaled Rademacher matrices, Subsampled Randomized Hadamard Transform
(SRHT), the Subsampled Randomized Fourier Transform (SRFT) and others.
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Let Γ, Ω and Σ be `2→ `2 oblivious subspace embeddings with sufficiently large
numbers of rows, which will be used for the estimation of the error indicators. A
detailed analysis of the sizes of random matrices needed to guarantee the given
accuracy with probability of failure less than δ is presented in Section 4.4.

Multi-query
The error indicator ∆U,U (µ) defined by (4.7) can be approximated by

∆sk
U,U (µ) := ‖Θ(R−1

U [RU −B(µ)]R−1
U )‖2, (4.29)

where Θ(·) is a linear map from the space HS(U ′,U) (i.e., the space of matrices
which are seen as operators from U ′ to U) to Kk, with k� n, equipped with `2-
inner product. The map Θ(·) can be seen as an oblivious HS(U ′,U)→ `2 subspace
embedding.

The map Θ(·) is chosen such that 〈Θ(·),Θ(·)〉2 with probability at least 1− δ
approximates well 〈·, ·〉HS(U ′,U) over an arbitrary subspace of HS(U ′,U) of small or
moderate dimension m. Note that for a fixed parameter value, B(µ) belongs to a
d-dimensional space, if P(µ) has form (4.28). As is indicated in Section 4.4, in this
case (if we use m ≥ d+ 1) the minimization of ∆sk

U,U (µ) over λ1(µ), . . . ,λp(µ) will
provide a quasi-optimal minimizer of ∆U,U (µ) with high probability.

Let Q be a matrix such that QHQ = RU . 2 This matrix can be obtained with a
Cholesky factorization or a more efficient approach proposed in Remark 2.2.7. The
map Θ(·) is obtained by taking

Θ(X) := Γ vec(ΩQXQHΣH), X : U ′→ U (4.30)

where the operation vec(·) reshapes (say, column-wise) a matrix to a vector. From Sec-
tion 4.4 it follows that in (4.30), the random matrices Γ, Ω and Σ can be chosen
as rescaled Gaussian matrices with O(m+ log(n) + log(1/δ)) rows. The theoretical
bounds for the sizes of SRHT matrices can be higher by logarithmic factors in n,m
and 1/δ, although in practice SRHT and Gaussian matrices show similar perfor-
mances. Note that this fact holds not only for the multi-query context but also for
the Galerkin projection and the error estimation contexts.

Galerkin projection
Let us first comment the approximate orthogonalization of the basis vectors for
Ur, which is necessary for Proposition 4.2.4. This can be efficiently done with
random sketching technique (for not too large r). It follows (see Section 4.4) that
the orthogonalization of Ur with respect to the sketched inner product 〈ΩQ·,ΩQ·〉2

2Matrix Q (respectively QH) is interpreted as a map from U to `2 (respectively from `2 to U ′).
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with probability at least 1− δ yields a matrix with singular values close to 1, if Ω is
a Gaussian matrix (or SRHT, in practice) with O(r+ log(1/δ)) rows.

The approximation of the error indicators ∆Ur,Ur(µ) and ∆Ur,U (µ) defined
by (4.17) are given by

∆sk
Ur,Ur(µ) := ‖Σvec(Ur

H[RU −B(µ)]Ur)‖2 (4.31a)

and

∆sk
Ur,U (µ) := ‖Θ(R−1

U [RU −B(µ)]HUr)‖2, (4.31b)

where
Θ(X) = Γvec(ΩQX), X : Kr→ U,

is an oblivious HS(`2,U)→ `2 embedding of subspaces of matrices. Similarly to the
multi-query context, the random matrices Γ, Ω and Σ with sufficiently large numbers
of rows are used so that, with probability of failure less than δ, 〈Σvec(·),Σvec(·)〉2
approximates well 〈·, ·〉F over an arbitrary m-dimensional subspace of Kr×r and
〈Θ(·),Θ(·)〉2 approximates well 〈·, ·〉HS(`2,U) over an arbitrary m-dimensional sub-
space of matrices with r column vectors interpreted as elements from U . To guarantee
this property, it is sufficient to consider rescaled Gaussian matrices (or SRHT, in
practice) with O(m+ log(r) + log(1/δ)) rows (see Section 4.4 for more details).

Remark 4.3.1. The offline computations required by the error indicators in (4.31)
should have only a minor impact on the overall computational costs when the ap-
proximation space has a small dimension. In some situations, however, it can be
useful to consider larger approximation spaces. Then the computational cost can be
further reduced by replacing Ur with its sketch UrΩ̃H, where Ω̃ is a small `2→ `2
oblivious subspace embedding. Furthermore, the offline precomputation of ∆sk

Ur,Ur(µ)
requires two passes over Ur (or UrΩ̃H) and can be too costly when Ur (or UrΩ̃H)
is distributed among multiple workstations or when it may not be efficiently stored.
In such cases the characterization of the Galerkin projection can be performed with
only one error indicator ∆sk

Ur,U (µ) and using (4.21).

Error estimation
For the approximation of ∆e(µ) we can use exactly the same procedure as the one
in Chapter 2 for the estimation of the residual norm by choosing d(ur(µ);µ) as the
residual vector. It follows that a good estimation of ∆e(µ) can be efficiently obtained
by

∆sk
e (µ) := ‖ΘR−1

U d(ur(µ);µ)‖2, (4.32)
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where Θ = ΩQ is an oblivious U → `2 subspace embedding. Moreover, for efficiency
the preconditioned residual norm ‖r∗(ur(µ);µ)‖U ′ in Proposition 4.2.7 should also
be approximated with random sketching, by

‖ΘR−1
U r∗(ur(µ);µ)‖2. (4.33)

We consider the matrix Ω with a sufficient number of rows so that 〈Θ·,Θ·〉2 approx-
imates well 〈·, ·〉U over an arbitrary m-dimensional subspace of U with probability at
least 1− δ. This property can be guaranteed to hold with probability at least 1− δ,
if considering for Ω a Gaussian matrix (or SRHT, in practice) with O(m+ log(1/δ))
rows (see Section 4.4). Note that if P(µ) is of the form (4.28), then for a fixed param-
eter value, the residual d(ur(µ);µ) (and r∗(ur(µ);µ)) belongs to a d+ 1-dimensional
space, which particularly implies (if m≥ d+ 1) that the minimizer of ∆sk

e (µ) over
λ1(µ), . . . ,λp(µ) is a quasi-optimal minimizer of ∆e(µ).

Below, we summarize the main results of this section from the practical point of
view.

The error indicators ∆Ur,Ur(µ), ∆Ur,U (µ), ∆U,U (µ) and the residual error estimator
‖r∗(ur(µ);µ)‖U ′ used in Section 4.2 can be respectively estimated by efficiently com-
putable random estimators ∆sk

Ur,Ur(µ), ∆sk
Ur,U (µ), ∆sk

U,U (µ) and ‖ΘR−1
U r∗(ur(µ);µ)‖2

which essentially are the `2-norms of the residual matrices or vectors randomly em-
bedded in a small low-dimensional space. A detailed analysis of the sizes of random
sketching matrices Γ, Ω and Σ needed to guarantee the given accuracy with high
probability is presented in Section 4.4. For P(µ) defined in (4.28), the sketched error
indicators from above (or their quadratic weighted average) can be written in the
following form

‖Wp(µ)ap(µ)−h(µ)‖2, (4.34)
where [ap(µ)]i = λi(µ), 1 ≤ i ≤ p. The k× p matrix Wp(µ) = [w1(µ), . . . ,wp(µ)]
and the vector h(µ) represent the sketches of the corresponding large matrices (or
vectors). For instance, for the multi-query context wi(µ) = Θ(YiA(µ)R−1

U ), 1≤ i≤ p,
and h(µ) = Θ(R−1

U ). The minimization of (4.34) over ap(µ) can be efficiently
and numerically stably performed online for each parameter value with a standard
routine such as QR factorization. For this, the affine decompositions of Wp(µ) and
h(µ) have to be precomputed in the offline stage and then used for the efficient
assembling of (4.34) for each µ, with a cost independent (or weakly dependent) of
the full dimension n. The affine decompositions can be obtained from (given) affine
decompositions of A(µ) and b(µ) or with empirical interpolation method.

The computational cost of the offline stage is dominated by two operations: the
products of Yi (and R−1

U , Q) with multiple vectors and the computation of random
projections of explicit matrices and vectors.

With a good choice of random projections Γ, Ω and Σ, the offline computational
cost associated with multiplications of these matrices by explicit matrices and vectors
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should have only a minor impact on the overall cost. Indeed, SRHT matrices have
a specific structure allowing products with a low number of flops, while Gaussian
matrices are very efficient in terms of scalability of computations for parallel archi-
tectures. Moreover, the random matrices can be generated, maintained or transfered
(for the computations on multiple computational devices) with a negligible compu-
tational cost by using a seeded random number generator. For more details please
see Chapters 1 and 2.

As was indicated in [156] the maintenance of the basis matrices for the precon-
ditioner in explicit form can be intractable. In general, one should maintain and
operate with Yi (and R−1

U ) in an efficient implicit form (e.g, obtained with LU
or H-factorization), which can be once precomputed and then used for efficient
products of Yi (and R−1

U ) with multiple vectors. Furthermore, for the Galerkin
projection and error estimation contexts the (possibly expensive) maintenance and
operation with Yi can be avoided thanks to the methodology from Chapter 2. As was
indicated in Chapter 2, a reduced model can be accurately (with high probability)
approximated from small random projections of the approximation space and the
associated residuals:

{Θ∗x : x ∈ Ur} and {Θ∗R−1
U r∗(x;µ) = Θ∗R−1

U (f(µ)−B(µ)x) : x ∈ Ur},

where Ur is a low-dimensional approximation space and Θ∗ is a small random matrix.
Firstly, we see that rather than maintaining and operating with a basis matrix
Yi in the offline stage, we can precompute its random sketch Θ∗Yi (along with
wi(µ)) and operate with the sketch, which can be far more efficient. Furthermore,
if Ur is a matrix whose columns form a basis for Ur, a reduced model and the
terms needed for estimation of the preconditioned residual norm can be efficiently
evaluated from affine decompositions of small projections VΘ∗

i (µ) = Θ∗YiA(µ)Ur,
fΘ∗
i (µ) = Θ∗Yib(µ) and Θ∗Ur. For each 1≤ i≤ p the precomputation of the affine

decompositions of VΘ∗
i (µ), fΘ∗

i (µ) and wi(µ) requires operations only with Yi and
no other basis matrices, which implies efficiency in terms of storage and distribution
of computations.

Similarly as in Section 3.3.2, the online efficiency of the minimization of (4.34)
for a finite test set Ptest of parameter values can be improved by using an extra
oblivious `2→ `2 subspace embedding Φ (statistically) independent of Ptest, Wp(µ)
and h(µ). The minimizer of (4.34) over ap(µ) can be approximated by the minimizer
of

‖Φ(Wp(µ)ap(µ)−h(µ))‖2. (4.35)
If Φ is an (ε,δ(#Ptest)−1,d+1) oblivious `2→ `2 subspace embedding (see Section 4.4
for the definition), then the minimizer of (4.35) over ap(µ) is close to optimal with
probability at least 1− δ. The Gaussian matrices and P-SRHT (in practice) satisfy
this property if they have O(d+ log(#Ptest) + log(1/δ)) rows. The size of Φ should
be in several times smaller than the size of Θ required to guarantee the accuracy of
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the sketched error indicators for the whole parameter set P or for adaptively chosen
parameters in the algorithms for the construction of the preconditioner’s basis. In the
online stage, ΦWp(µ) and Φh(µ) can be evaluated from their affine decompositions,
which can be efficiently precomputed beforehand (in the intermediate online stage)
by applying the map Φ to the affine terms of Wp(µ) and h(µ).

4.4 Analysis of random sketching
In this section we provide a theoretical analysis of the sizes of the random sketch-
ing matrices to guarantee the quasi-optimality of the randomized error indicators
from Section 4.3 with probability at least 1− δ. For this we first introduce a gen-
eral framework and then particularize it to each error indicator from Section 4.3
individually.

4.4.1 `2-embeddings for vectors and matrices
Let X be a space of vectors or matrices equipped with an inner product 〈·, ·〉X . We will
consider different cases: the space of vectors X :=U equipped with 〈·, ·〉X = 〈·, ·〉U , the
space of matrices X =HS(`2,U) equipped with 〈·, ·〉X = 〈·, ·〉HS(`2,U) = 〈RU ·, ·〉F , or
the space of matrices HS(U ′,U) equipped with 〈·, ·〉X = 〈·, ·〉HS(U ′,U) = 〈RU ·RU , ·〉F .
See Section 4.1.2 for details.

Let V be a subspace of X. Let Θ be a linear map from X to `2(Kk) with
k ≤ dim(X), which is seen as an X → `2 subspace embedding.

Definition 4.4.1. If Θ satisfies

∀X,Y ∈ V, |〈X,Y〉X −〈Θ(X),Θ(Y)〉2| ≤ ε‖X‖X‖Y‖X , (4.36)

for some ε ∈ [0,1), then it is called a X → `2 ε-subspace embedding for V .

An ε-embedding can be efficiently constructed with a probabilistic approach.
Consider Θ to be drawn from a certain random distribution of linear maps.

Definition 4.4.2. The map Θ is called a (ε,δ,m) oblivious X → `2 subspace em-
bedding if for any m-dimensional subspace Vm of X it holds

P(Θ is a X → `2 ε-subspace embedding for Vm)≥ 1− δ. (4.37)

A random matrix which is a (ε,δ,m) oblivious X→ `2 subspace embedding, with
X = Kn and 〈·, ·〉X = 〈·, ·〉2, is refereed to as a (ε,δ,m) oblivious `2→ `2 subspace
embedding. Some distributions of matrices are known to be (ε,δ,m) oblivious `2→ `2
subspace embeddings. In this work, from the oblivious `2→ `2 subspace embeddings,
we shall only explore the rescaled Gaussian and the SRHT distributions. A k×n
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rescaled Gaussian matrix has i.i.d. entries with mean 0 and variance k−1. Assuming
that n is the power of 2, a k×n SRHT matrix is defined as k−1/2(RHnD) ∈ Rk×n,
where R ∈ Rk×n are the first k rows of an uniform random permutation of rows of
the identity matrix, Hn ∈ Rn×n is a Walsh-Hadamard matrix and D ∈ Rn×n is a
random diagonal matrix with random entries such that P([D]i,i =±1) = 1/2. The
partial-SRHT (P-SRHT) is used when n is not necessarily a power of 2, and is
defined as the first n columns of a SRHT matrix of size s, were s is the power of 2
and n≤ s < 2n.

From Section 2.3.1 it follows that the rescaled Gaussian distribution with
k ≥ 7.87ε−2(C6.9m+ log(1/δ)), (4.38a)

where C = 1 for K = R or C = 2 for K = C, and the P-SRHT distribution with

k ≥ 2(ε2− ε3/3)−1
[√

m+
√

8log(6n/δ)
]2

log(3m/δ), (4.38b)

respectively, are (ε,δ,m) oblivious `2 → `2 subspace embeddings. These random
matrices can be used for the construction of (ε,δ,m) oblivious X → `2 subspace
embeddings proposed in the next propositions and corollary. Let Q be a matrix such
that QHQ = RU . Note that Q and QH are seen as operators from U to `2 and from
`2 to U ′, respectively.
Corollary 4.4.3 (Proposition 2.3.11). Let Ω be a (ε,δ,m) oblivious `2→ `2 sub-
space embedding. The random matrix

Θ := ΩQ
is a (ε,δ,m) oblivious U → `2 subspace embedding of subspaces of U .
Proposition 4.4.4. The random map

Θ(X) := Γ vec(ΩQX), X : Kr→ U,

where Γ and Ω are (εΓ, δΓ,m) and (εΩ, δΩ,m) oblivious `2→ `2 subspace embeddings,
is a (ε,δ,m) oblivious HS(`2,U)→ `2 subspace embedding of subspaces of matrices
with r columns representing the vectors in U with ε = (1 + εΩ)(1 + εΓ)− 1 and
δ = rδΩ + δΓ.
Proof. See appendix.
Proposition 4.4.5. The random map

Θ(X) := Γ vec(ΩQXQHΣH), X : U ′→ U,

where Γ, Ω and Σ are (εΓ, δΓ,m), (εΩ, δΩ,m) and (εΣ, δΣ,m) oblivious `2 → `2
subspace embeddings, is a (ε,δ,m) oblivious HS(U ′,U)→ `2 subspace embedding of
matrices representing operators from U ′ to U with ε= (1 + εΓ)(1 + εΣ)(1 + εΩ)−1
and δ = min(kΣδΩ +nδΣ, kΩδΣ +nδΩ)+ δΓ, where kΩ and kΣ are the numbers of
rows of Ω and Σ, respectively.
Proof. See appendix.
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4.4.2 Analysis of randomized error indicators
Let us now apply the above setting to the randomized error indicators from Sec-
tion 4.3.

Multi-query
We consider a situation where the preconditioned operators B(µ) lie in a space V
of operators from U to U ′ and V has a low dimension m. This is the case when
the preconditioner has the form (4.28) and is obtained by minimization of an error
indicator. Then for a fixed parameter value one may choose V = span{RUYiA(µ) :
1 ≤ i ≤ d} with m = d. This is also the case when the preconditioner is provided
(and therefore belongs to a one-dimensional space) with the objective to estimate
the condition number (and quasi-optimality constants).

Corollary 4.4.6. If Θ is an (ε,δ,m+ 1) oblivious HS(U ′,U)→ `2 subspace embed-
ding, then we have

P
(
∀B ∈ V, |∆U,U

2−∆sk
U,U

2| ≤ ε∆U,U
2
)
≥ 1− δ. (4.39)

Proof. This is an immediate corollary of Definitions 4.4.1 and 4.4.2 and the fact that
‖RU −B‖HS(U,U ′) = ‖R−1

U [RU −B]R−1
U ‖HS(U ′,U).

Observe that (4.39) implies with high probability the quasi-optimality of the
minimizer of ∆sk

U,U over V (or a subspace of V ) as a minimizer of ∆U,U . A random
map Θ, which is a (ε,δ,m+ 1) oblivious HS(U ′,U)→ `2 subspace embedding, can
be constructed using Proposition 4.4.5 with Gaussian matrices or P-SRHT as `2→ `2
subspace embeddings. The conditions (4.38) can be used for a priori selection of the
sizes of random sketching matrices.

Galerkin projection
As was discussed in Section 4.3, when the orthogonalization of the basis for Ur with
respect to 〈·, ·〉U is expensive, the basis should be orthogonalized approximately,
which can be done with random sketching technique.

Corollary 4.4.7. If the columns of Ur are unit-orthogonal vectors with respect to
〈ΩQ·,ΩQ·〉2, where Ω is (ε,δ,r) oblivious `2→ `2 embedding, then with probability
at least 1− δ, all singular values of Ur are bounded below by

√
1− ε and are bounded

above by
√

1 + ε.

Proof. This is an immediate corollary of Definitions 4.4.1 and 4.4.2 and Corol-
lary 4.4.3.
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It follows that orthogonalization of Ur with respect to 〈ΩQ·,ΩQ·〉2 will with high
probability provide constants ∆Ur,Ur(µ) and ∆Ur,U (µ) that yield accurate estimation
of the quasi-optimality constants of the Galerkin projection onto Ur.

Next we address the estimation of ∆Ur,Ur(µ) and ∆Ur,U (µ). As for the multi-
query context, we consider a scenario where the operators B(µ) of interest lie in a
certain fixed m-dimensional space V of operators from U to U ′.

Corollary 4.4.8. If Σ is (ε,δ,m+ 1) oblivious `2→ `2 subspace embedding and Θ
is (ε,δ,m+ 1) oblivious HS(`2,U)→ `2 subspace embedding, then

P
(
∀B ∈ V, |∆Ur,Ur

2−∆sk
Ur,Ur

2| ≤ ε∆Ur,Ur
2
)
≥ 1− δ (4.40a)

and

P
(
∀B ∈ V, |∆Ur,U

2−∆sk
Ur,U

2| ≤ ε∆Ur,U
2
)
≥ 1− δ. (4.40b)

Proof. This is an immediate corollary of Definitions 4.4.1 and 4.4.2 and the fact that
‖[RU −B]HUr‖HS(`2,U ′) = ‖R−1

U [RU −B]HUr‖HS(`2,U).

Relations (4.39) and (4.40) imply the quasi-optimality of the minimizer of (for
some given weights γ1,γ2,γ3)

(
γ1∆sk

U,U
2 +γ2∆sk

Ur,U
2 +γ3∆sk

Ur,Ur

2
)1/2

as a minimizer of (
γ1∆U,U

2 +γ2∆Ur,U
2 +γ3∆Ur,Ur

2
)1/2

over V (or a subspace of V ) with high probability. The random map Θ can be
constructed using Proposition 4.4.4. The oblivious `2→ `2 subspace embeddings (Γ
and Ω) used for the construction of Θ, and the random matrix Σ can be readily
taken as Gaussian or P-SRHT matrices with sufficiently large numbers of rows chosen
according to (4.38).

There are two ways to guarantee a success of the sketched estimation of an
error indicator (or a weighted average of error indicators) with probability at least
1− δ∗ for all parameter values in P, simultaneously. If P is finite then one can
simply consider success for each parameter value, separately, and then use a union
bound argument, therefore using δ = δ∗/#P and m= d for the selection of sizes of
random matrices. A second way is to exploit the fact that the set ⋃µ∈PB(µ) is a
subset of some low-dimensional space. For instance, if A(µ) has affine expansion
with mA terms and P(µ) is of the form (4.28) then there exists such a space with
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dimension m ≤mAd+ 1. This space can be readily chosen as the space V in the
above considerations.

Let us underline that the two characterizations of the probability of success only
hold if {Yi}pi=1 is (statistically) independent of Γ, Ω and Σ, which is not the case in
the greedy algorithm for the selection of the parameter values for the interpolation
of matrix inverse in Section 4.2.4. For the adaptive algorithms, one has to consider
all possible outcomes with another union bound for the probability of success. In
particular, if the training set has cardinality M , then there can exist up to

(
M
d

)
possible outcomes of the greedy selection of d basis matrices and a success has to be
guaranteed for each of them. In practice, this implies an increase of the probability
of failure by a factor of

(
M
d

)
. Luckily the required sizes of random matrices depend

only logarithmically on the probability of failure, therefore the replacement of δ by
δ
(
M
d

)
shall not catastrophically affect the computational costs.

Error estimation
Consider error estimation with Proposition 4.2.7. Assume that the residual vectors
r∗(ur(µ);µ) and d(ur(µ);µ) are contained in some fixed subspaces R∗ ⊆ U ′ and
D ⊆ U ′ of low dimensions mr and md, respectively. This situation appears for a
fixed parameter value with mr =md = d+ 1, if P(µ) is of the form (4.28).

Corollary 4.4.9. If Θ is a (ε,δ,mr) oblivious U → `2 subspace embedding, then we
have

P
(
∀r∗ ∈R∗, |‖r∗‖2U ′−‖ΘR−1

U r∗‖22| ≤ ε‖r∗‖2U ′
)
≥ 1− δ.

Furthermore, if Θ is a (ε,δ,md) oblivious U → `2 subspace embedding,

P
(
∀d ∈D, |∆e

2−∆sk
e

2| ≤ ε∆e
2
)
≥ 1− δ.

Proof. These two statements follow immediately from Definitions 4.4.1 and 4.4.2
and the fact that

‖r∗‖U ′ = ‖R−1
U r∗‖U and ‖d‖U ′ = ‖R−1

U d‖U .

The above relations imply with high probability the (essential) preservation of the
quality of the error certification with Proposition 4.2.7, when ‖r∗(ur(µ);µ)‖U ′ and
∆e(µ) are substituted by their efficient sketched estimations ‖ΘR−1

U r∗(ur(µ);µ)‖2
and ∆sk

e (µ). Furthermore, for the projection-based construction of the preconditioner
proposed in Section 4.2.4, a quasi-optimal minimizer of ∆e(µ) over λ1(µ), . . . ,λp(µ)
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can with high probability be obtained by minimization of ∆sk
e (µ). The random

matrix Θ can here be constructed with Corollary 4.4.3.
If the approximation ur(µ) of u(µ) is provided and P is finite, then the success

of error estimation (or certification) for all {ur(µ) : µ ∈ P}, simultaneously, can be
guaranteed by considering error estimation for each ur(µ) separately and using a
union bound argument. It follows that for having a probability of success of at least
1− δ∗, we can choose δ = δ∗/#P and mr =md = d+ 1 for the selection of sizes of
random matrices, if P(µ) is of the form (4.28).

In some cases one may want to obtain an effective upper bound of the error
‖ur−u(µ)‖U for all vectors ur from a r-dimensional approximation space Ur. For
each parameter value, the success of estimation for all ur ∈ Ur can be guaranteed
by exploiting the fact that r∗(ur;µ) and d(ur;µ) lie in low-dimensional spaces R∗
and D of dimensions at most mr =md = rd+ 1 (if P(µ) has the form (4.28)). To
guarantee the success for all parameter values in P , we can again use a union bound
argument by choosing δ = δ∗/#P .

Alternatively, for infinite P we can choose R∗ and D as low-dimensional spaces
which contain ⋃

µ∈P r∗(ur(µ);µ) and ⋃
µ∈P d(ur(µ);µ) for the estimation for the

given ur(µ), or ⋃µ∈P ⋃ur∈Ur r∗(ur;µ) and ⋃
µ∈P

⋃
ur∈Ur d(ur;µ) for the estimation

for all ur ∈ Ur. Note that such low-dimensional spaces exist if A(µ) and b(µ) have
affine representations with a small number of terms and P(µ) is of the form (4.28).
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4.5 Appendix
This section provides the proofs of propositions from the chapter.

Proof of Proposition 4.2.1. We have,

‖Cv‖U ′ = ‖(R
−1/2
U CR−1/2

U )(R1/2
U v)‖2≤‖R−1/2

U CR−1/2
U ‖F‖R

1/2
U v‖2 = ‖C‖HS(U,U ′)‖v‖U ,

which ends the proof.

Proof of Lemma 4.2.2. We have,

‖ur−PUru‖U = ‖PUr(ur−PUru)‖U
≤ ‖PUrR−1

U B(ur−PUru)‖U +‖PUrR−1
U [RU −B](ur−PUru)‖U

= ‖B(ur−PUru)‖U ′r +‖[RU −B](ur−PUru)‖U ′r
≤ ‖B(u−PUru)‖U ′r +‖[RU −B](ur−PUru)‖U ′r
≤ ‖[RU −B](u−PUru)‖U ′r +‖[RU −B](ur−PUru)‖U ′r ,

which completes the proof.

Proof of Proposition 4.2.3. The relation (4.14) and the uniqueness of ur directly
follow from Lemma 4.2.2 and the definitions of constants βr(RU−B) and β̄r(RU−B).
More specifically, Lemma 4.2.2 implies that

‖ur−PUru‖U ≤ ‖[RU −B](u−PUru)‖U ′r +‖[RU −B](ur−PUru)‖U ′r
≤ β̄r(RU −B)‖u−PUru‖U +βr(RU −B)‖ur−PUru‖U ,

which combined with the inequality

‖ur−PUru‖U ≥ ‖u−ur‖U −‖u−PUru‖U

yields (4.14). The uniqueness of ur classically follows from the argument that if
ur ∈ Ur and vr ∈ Ur satisfy the Galerkin orthogonality condition, then

0 = ‖B(u−ur)||U ′r +‖B(u−vr)||U ′r ≥ ‖B(vr−ur)||U ′r
≥ ‖RU (vr−ur)||U ′r −‖(RU −B)(vr−ur)||U ′r
≥ (1−βr(RU −B))‖vr−ur‖U ,

which implies that vr = ur.

Proof of Proposition 4.2.4. Let T be such that U∗r := UrT has unit-orthogonal
columns with respect to 〈·, ·〉U . The identity PUr = U∗rU∗r

HRU implies that

‖ · ‖U ′r = ‖PUrR−1
U · ‖U = ‖U∗rU∗r

H · ‖U = ‖U∗r
H · ‖2 = ‖THUr

H · ‖2.
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From this fact we obtain the following expressions for βr(RU −B) and β̄r(RU −B):

βr(RU −B) = max
v∈Ur\{0}

‖THUr
H[RU −B]v‖2
‖v‖U

= ‖THUr
H[RU −B]UrT‖2 (4.41a)

and

β̄r(RU −B) := max
v∈U\{0}

‖THUr
H[RU −B]v‖2
‖v‖U

= ‖THUr
H[RU −B]R−1/2

U ‖2.

(4.41b)

It can be shown that the minimal and the maximal singular values of T are equal
to σ−1

1 and σ−1
r , respectively. Then for any matrices X and X∗ with X∗ = XT or

THX, it holds

σ−1
1 ‖X‖2 ≤ ‖X∗‖2 ≤ σ−1

r ‖X‖2. (4.42)

By choosing in (4.42), first X = THUr
H[RU −B]Ur with X∗ = XT, and then

X = Ur
H[RU −B]Ur with X∗ = THX, and using (4.41a) we obtain

σ−2
1 ‖Ur

H[RU −B]Ur‖2 ≤ βr(RU −B)≤ σ−2
r ‖Ur

H[RU −B]Ur‖2.

At the same time, by choosing X = Ur
H[RU −B]R−1/2

U with X∗ = THX in (4.42),
and using (4.41b) we get

σ−1
1 ‖Ur

H[RU −B]R−1/2
U ‖2 ≤ β̄r(RU −B)≤ σ−1

r ‖Ur
H[RU −B]R−1/2

U ‖2.

These two relations combined with the fact that for a matrix X with r rows,

r−1/2‖X‖F ≤ ‖X‖2 ≤ ‖X‖F ,

result in (4.18).

Proof of Proposition 4.2.6. By definition of α(B) and β(B), we have

β(B)−1‖r∗(ur)‖U ′ ≤ ‖u−ur‖ ≤ α(B)−1‖r∗(ur)‖U ′ . (4.43)

Moreover, since ∆U,U is an upper bound of β(RU −B), the following inequalities
hold

1−∆U,U ≤ 1−β(B−RU )≤ α(B)≤ β(B)≤ 1 +β(B−RU )≤ 1 + ∆U,U . (4.44)

The result of the proposition follows immediately from (4.43) and (4.44).
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Proof of Proposition 4.2.7. We have,

‖u−ur‖U = ‖RU (u−ur)‖U ′
≤ ‖B(u−ur)‖U ′+‖[RU −B](u−ur)‖U ′
= ‖r∗(ur)‖U ′+‖[I−PA](u−ur)‖U

≤ ‖r∗(ur)‖U ′+
1
η
‖A[I−PA](u−ur)‖U ′

= ‖r∗(ur)‖U ′+
1
η
‖[I−AP]r(ur)‖U ′ .

The lower bound in (4.27) is derived similarly.

Proof of Proposition 4.4.4. Let Vm ⊂HS(`2,U) be any m-dimensional space of ma-
trices with r columns representing vectors in U . Let V i

m ⊂ U denote the subspace
spanned by the i-th column vectors of matrices from Vm, i.e.,

V i
m := {Vmei : Vm ∈ Vm},

where ei denotes the i-th column of the identity matrix.
By Corollary 4.4.3, ΩQ is a εΩ-embedding for each V i

m with probability at least
1− δΩ. This fact combined with a union bound argument imply that

|‖Vmei‖2U −‖ΩQVmei‖22| ≤ εΩ‖Vmei‖2U

holds with probability at least 1− rδΩ for all Vm ∈ Vm and 1 ≤ i ≤ r. From the
above relation and identities

‖Vm‖2HS(`2,U) =
r∑
i=1
‖Vmei‖2U and ‖vec(ΩQVm)‖22 = ‖ΩQVm‖2F =

r∑
i=1
‖ΩQVmei‖22,

we obtain that

P(∀Vm ∈ Vm, |‖Vm‖2HS(`2,U)−‖vec(ΩQVm)‖22| ≤ εΩ‖Vm‖2HS(`2,U))≥ 1− rδΩ.
(4.45)

Moreover, by definition of Γ,

P(∀Vm ∈ Vm, |‖vec(ΩQVm)‖22−‖Γvec(ΩQVm)‖22| ≤ εΓ‖vec(ΩQVm)‖22)≥ 1−δΓ.
(4.46)

By (4.45) and (4.46) and a union bound for the probability of success,

|‖Vm‖2HS(`2,U)−‖Γvec(ΩQVm)‖22|
≤ |‖Vm‖2HS(`2,U)−‖vec(ΩQVm)‖22|+ |‖vec(ΩQVm)‖22−‖Γvec(ΩQVm)‖22|
≤ εΩ‖Vm‖2HS(`2,U) + εΓ‖vec(ΩQVm)‖22 ≤ εΩ‖Vm‖2HS(`2,U) + εΓ(1 + εΩ)‖Vm‖2HS(`2,U)

= ε‖Vm‖2U
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holds with probability at least 1−δ for all Vm ∈ Vm. It can be easily shown by using
the parallelogram identity that the above statement is equivalent to

P(∀X,Y∈Vm,
∣∣∣〈X,Y〉HS(`2,U)−〈Θ(X),Θ(Y)〉2

∣∣∣≤ ε‖X‖HS(`2,U)‖Y‖HS(`2,U))≥ 1−δ,

which implies the statement of the proposition.

Proof of Proposition 4.4.5. Let us first assume that

kΣδΩ +nδΣ ≤ kΩδΣ +nδΩ.

Let Vm be a m-dimensional space of operators from U ′ to U . Define

W i
m = {VH

mR1/2
U ei : Vm ∈ Vm} ⊂ U,

where ei denotes the i-th column of the identity matrix. By Corollary 4.4.3 and a
union bound argument, we have that ΣQ is an ε-embedding for all W i

m, 1≤ i≤ n,
with probability at least 1−nδΣ. This implies that

|‖VH
mR1/2

U ei‖2U −‖ΣQ[VH
mR1/2

U ei]‖22| ≤ εΣ‖VH
mR1/2

U ei‖2U (4.47)

holds with probability at least 1−nδΣ for all Vm ∈ Vm and 1≤ i≤ n. By (4.47) and
the following identities

‖Vm‖2HS(U ′,U) = ‖VH
m‖2HS(U ′,U) =

n∑
i=1
‖VH

mR1/2
U ei‖2U

and

‖VmQHΣH‖2HS(`2,U) = ‖R1/2
U VmQHΣH‖2F =

n∑
i=1
‖ΣQ[VH

mR1/2
U ei]‖22,

we deduce that

P(∀Vm ∈Vm, |‖Vm‖2HS(U ′,U)−‖VmQHΣH‖2HS(`2,U)| ≤ εΣ‖Vm‖2HS(U ′,U))≥ 1−nδΣ.
(4.48)

Furthermore, by Proposition 4.2.7, the linear map

Γvec(ΩQX), X : KkΣ → U

is a (ε∗, δ∗,m) oblivious HS(`2,U)→ `2 subspace embedding of subspaces of matrices
with kΣ columns with ε∗ = (1 + εΩ)(1 + εΓ)−1 and δ∗ = kΣδΩ + δΓ. Consequently,
with probability at least 1− δ∗, for all Vm ∈ Vm, it holds

|‖VmQHΣH‖2HS(`2,U)−‖Γvec(ΩQVmQHΣH)‖22| ≤ ε∗‖VmQHΣH‖2HS(`2,U).

(4.49)
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From (4.48) and (4.49) and a union bound for the probability of success, we obtain
that

|‖Vm‖2HS(U ′,U)−‖Γvec(ΩQVmQHΣH)‖22|
≤ |‖Vm‖2HS(U ′,U)−‖VmQHΣH‖2HS(`2,U)|+ |‖VmQHΣH‖2HS(`2,U)−‖Γvec(ΩQVmQHΣH)‖22|
≤ εΣ‖Vm‖2HS(U ′,U) + ε∗‖VmQHΣH‖2HS(`2,U)

≤ εΣ‖Vm‖2HS(U ′,U) + ε∗(1 + εΣ)‖Vm‖2HS(U ′,U)

= ε‖Vm‖2HS(U ′,U)

holds with probability at least 1− (δ∗+ nδΣ) for all Vm ∈ Vm. This statement
with the parallelogram identity imply that, with probability at least 1− δ, for all
X,Y ∈ Vm∣∣∣〈X,Y〉HS(U ′,U)−〈Θ(X),Θ(Y)〉HS(U ′,U)

∣∣∣≤ ε‖X‖HS(U ′,U)‖Y‖HS(U ′,U),

which completes the proof for the case

kΣδΩ +nδΣ ≤ kΩδΣ +nδΩ.

For the alternative case, we can apply the proof of the first case by interchanging
Ω with Σ and considering a reshaping operator vec∗(·) := vec(·H) instead of the
operator vec(·) to show that the linear map

Γvec∗(ΣQXQHΩH), X : U ′→ U,

is a (ε,δ,m) oblivious HS(U ′,U)→ `2 subspace embedding. Since the Frobenius
inner product (and 〈·, ·〉HS(U ′,U)) of two matrices is equal to the Frobenius inner
product (and 〈·, ·〉HS(U ′,U)) of the (Hermitian-)transposed matrices, the linear map

Γvec∗(ΣQXHQHΩH), X : U ′→ U,

is also a (ε,δ,m) oblivious HS(U ′,U)→ `2 subspace embedding. The proof is
completed by noticing that

Γvec∗(ΣQXHQHΩH) = Γvec((ΣQXHQHΩH)H) = Γvec(ΩQXQHΣH).
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Titre : Algèbre linéaire randomisée pour la réduction de l’ordre des modèles

Mot clés : model order reduction, parameter-dependent equations, random sketching, sub-

space embedding, reduced basis, dictionary-based approximation, preconditioner

Résumé : Cette thèse introduit des nouvelles
approches basées sur l’algèbre linéaire aléa-
toire pour améliorer l’efficacité et la stabilité
des méthodes de réduction de modèles ba-
sées sur des projections pour la résolution
d’équations dépendant de paramètres.

Notre méthodologie repose sur des tech-
niques de projections aléatoires ("random
sketching") qui consistent à projeter des vec-
teurs de grande dimension dans un espace de
faible dimension. Un modèle réduit est ainsi
construit de manière efficace et numérique-
ment stable à partir de projections aléatoires
de l’espace d’approximation réduit et des es-
paces des résidus associés.

Notre approche permet de réaliser des
économies de calcul considérables dans pra-
tiquement toutes les architectures de calcul
modernes. Par exemple, elle peut réduire le
nombre de flops et la consommation de mé-
moire et améliorer l’efficacité du flux de don-
nées (caractérisé par l’extensibilité ou le coût
de communication). Elle peut être utilisée pour
améliorer l’efficacité et la stabilité des mé-
thodes de projection de Galerkin ou par mini-

misation de résidu. Elle peut également être
utilisée pour estimer efficacement l’erreur et
post-traiter la solution du modèle réduit.

De plus, l’approche par projection aléa-
toire rend viable numériquement une méthode
d’approximation basée sur un dictionnaire, où
pour chaque valeur de paramètre, la solution
est approchée dans un sous-espace avec une
base sélectionnée dans le dictionnaire.

Nous abordons également la construction
efficace (par projections aléatoires) de pré-
conditionneurs dépendant de paramètres, qui
peuvent être utilisés pour améliorer la qua-
lité des projections de Galerkin ou des esti-
mateurs d’erreur pour des problèmes à opé-
rateurs mal conditionnés.

Pour toutes les méthodes proposées, nous
fournissons des conditions précises sur les
projections aléatoires pour garantir des esti-
mations précises et stables avec une probabi-
lité de succès spécifiée par l’utilisateur. Pour
déterminer la taille des matrices aléatoires,
nous fournissons des bornes a priori ainsi
qu’une procédure adaptative plus efficace ba-
sée sur des estimations a posteriori.



Title: Randomized linear algebra for model order reduction

Keywords: model order reduction, parameter-dependent equations, random sketching, sub-

space embedding, reduced basis, dictionary-based approximation, preconditioner

Abstract: Solutions to high-dimensional
parameter-dependent problems are in great
demand in the contemporary applied science
and engineering. The standard approximation
methods for parametric equations can require
computational resources that are exponen-
tial in the dimension of the parameter space,
which is typically refereed to as the curse of
dimensionality. To break the curse of dimen-
sionality one has to appeal to nonlinear meth-
ods that exploit the structure of the solution
map, such as projection-based model order
reduction methods.

This thesis proposes novel methods based
on randomized linear algebra to enhance
the efficiency and stability of projection-based
model order reduction methods for solving
parameter-dependent equations. Our method-
ology relies on random projections (or ran-
dom sketching). Instead of operating with high-
dimensional vectors we first efficiently project
them into a low-dimensional space. The re-
duced model is then efficiently and numerically
stably constructed from the projections of the
reduced approximation space and the spaces
of associated residuals.

Our approach allows drastic computational
savings in basically any modern computational

architecture. For instance, it can reduce the
number of flops and memory consumption
and improve the efficiency of the data flow
(characterized by scalability or communication
costs). It can be employed for improving the
efficiency and numerical stability of classical
Galerkin and minimal residual methods. It can
also be used for the efficient estimation of the
error, and post-processing of the solution of
the reduced order model. Furthermore, ran-
dom sketching makes computationally feasi-
ble a dictionary-based approximation method,
where for each parameter value the solution is
approximated in a subspace with a basis se-
lected from a dictionary of vectors. We also ad-
dress the efficient construction (using random
sketching) of parameter-dependent precondi-
tioners that can be used to improve the qual-
ity of Galerkin projections or for effective error
certification for problems with ill-conditioned
operators. For all proposed methods we pro-
vide precise conditions on the random sketch
to guarantee accurate and stable estimations
with a user-specified probability of success. A
priori estimates to determine the sizes of the
random matrices are provided as well as a
more effective adaptive procedure based on a
posteriori estimates.
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