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A todos mis compañeros del grupo de visión, sin vosotros todo este tiempo habŕıa
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una mención especial mi compañero de despacho de los últimos 4 años, Rubén. Después de
tantas horas y tantas conversaciones que me han hecho aprender y mejorar como persona,
me llevo un gran amigo.

Gracias a Prof. Aleix M. Mart́ınez y a Dr. Neill Campbell por supervisar mis estancias
en el extranjero y permitirme formar parte de sus grupos de investigación. Especialmente,
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siempre confiar en mi y apoyarme en todas mis decisiones. Sin vosotros, no seŕıa quien
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Abstract

This thesis is focused on face gender classification under more realistic scenarios than those
traditionally considered in the literature. In real environments, many problems can arise due
to the lack of control over the subjects and their surroundings. Moreover, the individuals’
characteristics, such as age or race, can significantly vary. At the same time, the subjects
can express their emotions by means of facial expressions as well as wear pieces of clothing
covering their faces both of which would result in face images with distortions. These are
the main problems that we tackle in this thesis together with some other complications
related to having different illumination conditions and inaccurate face detections.

Firstly, we study the possibility of classifying gender from individual face parts, such as
the eyes, the nose, the mouth and the chin. From experimental results obtained over two
datasets, we concluded that the eyes are the most reliable region and that different face
parts provide complementary information about the gender of the person.

Secondly, we propose a novel type of local features (Ranking Labels) and a new clas-
sification approach based on local neighbourhoods. The proposed features, which describe
local regions of the image, are based on contrast values and they maintain a certain amount
of the spatial information. The classification method consists in an ensemble of classifiers
where each base learner specialises in a specific region of the image. We provide a com-
prehensive analysis of the behaviour of the proposed techniques and some state-of-the-art
methods when utilising images of neutral and expressive faces and also faces covered by sun
glasses and scarves in different training and testing combinations. The empirical results
indicated that all the solutions performed similarly when the training and test images had
the same characteristics. However, when the training and test sets contained different types
of images, our methods showed a more robust behaviour than the rest.

Additionally, we perform a statistical study on the influence of the image resolution in
face gender classification using ten image resolutions going from an extremely low resolution
to the highest resolution available in the datasets. The optimal image resolutions were found
in the range 22× 18 to 90× 72 pixels. However, an image resolution as low as 3× 2 pixels
provided useful information to distinguish between genders.
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Resumen

Esta tesis se centra en la clasificación de género a partir de imágenes faciales tratando el
problema con un enfoque más realista que el tradicionalmente utilizado en la literatura. En
entornos reales, pueden surgir varios problemas debido a la falta de control sobre los sujetos
y su entorno. Además es probable que, las caracteŕısticas de los individuos, como son su
edad y raza, vaŕıen significativamente. Al mismo tiempo, los sujetos pueden manifestar sus
emociones mediante expresiones faciales aśı como llevar puestos complementos que cubran
partes de su cara, lo cual provoca que las imágenes faciales contengan ciertas distorsiones.
Estos son los principales problemas, junto con otras complicaciones como las causadas por
cambios de iluminación y detecciones imprecisas de la cara, que abordamos en este trabajo.

Comenzamos estudiando la posibilidad de clasificar el género dadas partes de la cara,
como son los ojos, la nariz, la boca y el mentón. A partir de los resultados experimentales
que se obtuvieron utilizando dos bases de datos de imágenes faciales, concluimos que los
ojos eran la región de la cara que proporcionaba resultados más robustos y que distintas
partes de la cara contienen información complementaria sobre el género de la persona.

Seguidamente, propusimos un nuevo tipo de caracteŕısticas locales y un método de cla-
sificación basado en vecindades. Las caracteŕısticas propuestas se basan en valores de con-
traste locales, aunque manteniendo información espacial. El método de clasificación consiste
en una combinación de clasificadores donde cada clasificador base se especializa en una re-
gión concreta de la cara. Ambas propuestas se compararon con las técnicas más utilizadas
en este campo mediante un completo análisis experimental utilizando imágenes de caras
neutras y expresivas y también imágenes de caras con gafas de sol y bufandas. Los resulta-
dos emṕıricos indican que todas las soluciones resuelven la tarea de forma estad́ısticamente
equivalente cuando las imágenes de entrenamiento y test tienen las mismas caracteŕısticas.
Sin embargo, cuando los conjuntos de entrenamiento y test contienen imágenes de distintos
tipos, nuestras propuestas muestran un comportamiento más robusto que el resto.

Por último, presentamos un estudio estad́ıstico de la influencia de la resolución de las
imágenes en la clasificación de género. Los resultados mostraron que las resoluciones óptimas
están entre 22×18 y 90×72 ṕıxeles. Sin embargo, imágenes de sólo 3×2 ṕıxeles proporcionan
información útil para comenzar a distinguir entre géneros.
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Sinopsis de la Tesis

This chapter fulfils a requirement of the Spanish PhD regulation
RD 99/2011, which states the criteria to obtain international doctorate cer-
tification. In particular, it specifies that part of the thesis has to be written
in one of the official languages of Universitat Jaume I, which are Spanish
and Valencian. Thus, the aim of the following sections is to summarize in
Spanish the previous chapters that have been reported in English, including
motivation and objectives, contributions, conclusions and future work lines.

Este caṕıtulo cumple con la normativa de los estudios de doctorado regulados por el
RD 99/2011, que establece los criterios necesarios para obtener la mención internacional
en el t́ıtulo de Doctor. Concretamente, ésta establece que parte de la tesis debe ser escrita
en un idioma oficial de la Universitat Jaume I. Por tanto, ya que la tesis se ha redactado
en inglés, el objetivo de este caṕıtulo es presentar una visión global de la tesis en español,
incluyendo motivación y objetivos, contribuciones, conclusiones y trabajo futuro.

Introducción

Nuestras caras proporcionan una gran cantidad de información sobre nosotros mismos.
Aparte de nuestra identidad, también indican muchos otros rasgos demográficos como son
nuestro género, edad y raza. En la actualidad, conseguir de forma automática este tipo
de información puede ser de gran utilidad en incontables tareas. En particular, el conocer
el género de las personas puede utilizarse en estudios dinámicos de mercado, en sistemas
de vigilancia y seguridad, en la interacción de máquinas y humanos y en servicios perso-
nalizados en un gran número de negocios. Por otro lado, esta información también puede
servir de filtro en sistemas de reconocimiento automático. Por ejemplo, en sistemas de re-
conocimiento biométrico el conocimiento del género del individuo podŕıa reducir el espacio
de búsqueda a la mitad. Estos son tan solo algunos ejemplos de las muchas aplicaciones
posibles de los sistemas automáticos de clasificación de género.
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Aunque reconocer el género de una persona a partir de una imagen facial puede resultar
relativamente sencillo para los humanos, puede resultar una tarea compleja en el caso de
sistemas automáticos. Estos sistemas se enfrentan a un número considerable de dificultades
que a los humanos nos pasan desapercibidas. Nosotros podemos reconocer el género de caras
que vemos tanto de cerca como de lejos, es decir de caras de distintos tamaños. Además, no
nos importa si las proporciones de la cara no son exactamente las habituales. Por ejemplo,
podemos seguir distinguiendo el género de una persona con la nariz más grande o los ojos
más pequeños de lo habitual. Nuestra habilidad tampoco se ve afectada por los cambios
de iluminación, ya que podemos distinguir hombres y mujeres tanto de d́ıa como de noche.
Incluso podemos realizar esta tarea cuando las personas muestran emociones, es decir, con
caras alegres, disgustadas, etc., o cuando partes de las caras están ocultas debido al uso de
accesorios como las gafas de sol o bufandas.

Todas las anteriores complicaciones deben ser tratadas por los sistemas automáticos de
reconocimiento de género. En esta tesis nos centramos en mejorar los principales proble-
mas que surgen al reconocer el género automáticamente a partir de imágenes faciales en
situaciones más realistas de lo habitual en este campo de investigación.

Motivación y Objetivos

El problema de reconocimiento automático de género a partir de imágenes faciales sigue sin
estar completamente resuelto en escenarios reales. La mayoŕıa de los trabajos publicados
abordan este problema dando por hecho que se cumplen una serie de condiciones que rara
vez están presentes en situationes reales. Principalmente, estos trabajos asumen que la
iluminación es similar en todas las imágenes y que la mayoŕıa de los individuos pertenecen
a los mismos grupos demográficos. Además, gran parte de estos estudios no tienen en cuenta
imágenes donde las caras pueden mostrar expresiones o estar parcialmente ocluidas, lo cual
ocurre muy comúnmente en entornos reales.

El principal objetivo de esta tesis es mejorar el reconocimiento automático de género
en escenarios donde pueden darse las complicaciones anteriores. Con este propósito, se han
revisado los pasos del proceso de clasificación y se han propuesto mejoras para cada uno de
ellos. Este fin general puede ser dividido en los siguientes objetivos más espećıficos:

• Estudiar el rol de las diferentes partes de la cara en el reconocimiento de género y la
posibilidad de abordar el problema con únicamente la información proporcionada por
algunas de esas partes.

• Definir nuevos tipos de caracteŕısticas para describir imágenes faciales que proporcio-
nen información fiable, incluso cuando la iluminación de las imágenes vaŕıa.

• Diseñar nuevos métodos de clasificación que sean robustos en presencia de impreci-
siones en la detección de las caras y de proporciones faciales variables.

• Analizar cómo influye la resolución de la imagen en los resultados de los sistemas
automáticos de reconocimiento de género.
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• Comprobar la precisión de las soluciones propuestas con imágenes faciales de personas
de muy variada demograf́ıa (es decir, personas que cubren un ampĺıo rango de edades
y razas) y además con caras expresivas y parcialmente ocluidas.

• Porporcionar conclusiones respaldadas por tests estad́ısticos.

Contribuciones

El trabajo presentado en esta tesis se centra en el reconocimiento automático de género
a partir de imágenes faciales. Con la finalidad de mejorar el rendimiento general de estos
sistemas, hemos tratado los principales problemas encontrados en cada uno de los pasos
del proceso. Para ello, hemos diseñado nuevos métodos para describir el contenido de las
imágenes y para clasificar el género de nuevas caras en condiciones realistas. Para comprobar
si las técnicas propuestas son adecuadas, se presentan estudios experimentales comparando
dichas propuestas con soluciones ampliamente utilizadas en este campo de investigación.
Seguidamente, se detallan las contribuciones de nuestro trabajo.

• Evaluamos rigurosamente el rol de ocho partes de la cara en la clasificación de género.
La capacidad discriminante de estas partes es estudiada usando varios clasificadores
y dos bases de datos para comprobar si su comportamiento es consistente.

• Proporcionamos resultados emṕıricos que muestran la existencia de información com-
plementaria entre distintas partes de la cara.

• Proponemos nuevas caracteŕısticas, llamadas Ranking Labels, que describen regiones
locales de las imágenes. Estas caracteŕısticas son robustas con respecto a cambios en
la iluminación ya que se basan en valores de contraste local. Por tanto, proporcionan
una descripción independiente de los niveles de gris de la imagen. De forma adicional,
la caracterización vectorial usando Ranking Labels retiene información espacial lo cual
permite hacer frente a imprecisiones en la detección de la cara.

• Presentamos una nueva metodoloǵıa de clasificación basada en vecindades locales que
proporciona cierto nivel de tolerancia hacia caras con distintas proporciones faciales,
caras mal alineadas e imprecisiones en la detección de la cara.

• Comparamos experimentalmente mediante el uso de test estad́ısticos varias técnicas
de clasificación de género (incluyendo las propuestas en esta tesis) utilizando imágenes
de caras sin expresión, expresivas y parcialmente ocluidas en todas las combinaciones
posibles de entrenamiento y test.

• Estudiamos exhaustivamente la influencia de la resolución de la imagen facial en
la clasificación automática de género. Se incluye en el estudio un amplio rango de
resoluciones de imagen partiendo de resoluciones extremadamente bajas hasta llegar
a las más altas posibles.
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• Mostramos resultados emṕıricos que revelan cuál es el menor tamaño de imagen que
contiene información útil para diferenciar entre géneros.

• Apoyamos las conclusiones extráıdas de nuestros estudios en tres test estad́ısticos:
el estad́ıstico de Iman-Davenport, el método de Holm y la prueba de los rangos con
signo de Wilcoxon.

• Evaluamos la robustez de las soluciones presentadas con respecto a cambios en las
condiciones de adquisición de las imágenes y de las variables demográficas de los
sujetos mediante experimentos cruzando bases de datos.

Resumen del Trabajo Desarrollado

Esta tesis ha revisado los pasos del proceso de clasificación de género a partir de imágenes
faciales y ha propuesto mejoras a cada uno de ellos teniendo en cuenta que se quiere abordar
el problema en un entorno más realista de lo que es habitual en los trabajos relacionados. En
esta sección, se resumen las soluciones presentadas aśı como los resultados de los distintos
estudios emṕıricos realizados.

El principal objetivo de esta tesis ha sido mejorar la clasificación automática de género
en escenarios razonablemente realistas. Bajo estas condiciones pueden surgir problemas
debido a la falta de control sobre el entorno y sobre las personas cuyo género se quiere
reconocer. Principalmente, nos hemos centrado en las dificultadas encontradas cuando las
imágenes faciales presentan distorsiones causada por expresar emociones o llevar accesorios
que cubren amplias zonas de la cara como son las gafas de sol y las bufandas. Para afrontar
las complicaciones indicadas, hemos presentado nuevas técnicas para realizar cada uno de
los pasos del proceso de clasificación junto con pruebas emṕıricas de la idoneidad de los
métodos propuestos. Además, hemos estudiado experimentalmente cómo varios factores
(como son la resolución de la imagen o las imprecisiones en la detección de la cara) afectan
a las tasas de reconocimiento de género.

Nuestro primer estudio se centró en detectar qué partes de la cara contienen información
más discriminante a la hora de distinguir entre géneros. Hemos estudiado el rol de ocho
partes de la cara distintas comparando el rendimiento de varios clasificadores entrenados
con partes individuales (ojos, nariz, boca y mentón). En esta comparación, también se han
inclúıdo clasificadores basados en caracteŕısticas hoĺısticas (en concreto, la zona interna de
la cara, la externa y la cara completa). Los resultados mostraron que las partes indivi-
duales proporcionan suficiente información para reconocer el género de la persona, aunque
las caracteŕısticas hoĺısticas siempre condujeron a mejores resultados. De todas las partes
individuales, los ojos fueron la región que proporcionó los resultados más robustos ya que
siempre consiguieron las tasas de reconocimiento más altas considerando dos bases de datos
distintas. El hecho de que los clasificadores basados en una única parte de la cara fueran
capaces de distinguir entre géneros hizo que nos plantearamos si distintas partes de la cara
contienen información complementaria. Para abordar esta cuestión, utilizamos combinacio-
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nes de clasificadores donde cada clasificador base aprend́ıa de una parte diferente de la cara.
Los resultados experimentales mostraron que las combinaciones de clasificadores basadas en
3 partes alcanzaban resultados similares a aquellas que utilizaban 5 partes. Estos datos su-
gieren que los problemas de clasificación de género podŕıan ser resueltos satisfactoriamente
incluso cuando no toda la cara es visible.

Seguidamente nos propusimos tratar de resolver el problema en situaciones donde la
demograf́ıa de los individuos es diversa, las caras pueden presentar distorsiones locales y
la detección de las caras puede ser imprecisa. Por un lado, diseñamos un nuevo tipo de
caracteŕısticas locales (Ranking Labels) para describir las imágenes faciales. Estas carac-
teŕısticas representan la imagen por regiones utilizando para ello valores de contraste local
y manteniendo a su vez información espacial. Las Ranking Labels se compararon con otros
métodos de caracterización ampliamente utilizados en este campo, concluyendo que eran
un tipo de caracteŕıstica adecuado para abordar tareas de reconocimiento de género. Por
otro lado, presentamos un nuevo enfoque de clasificación basado en vecindades locales. Éste
consiste en un método de combinación de clasificadores diseñado para ser usado junto con
descripciones locales de la cara. De este modo, cada miembro de la combinación se especiali-
za en una región concreta de la cara. El hecho de utilizar vecindades permite que el método
tenga un cierto nivel de flexibilidad en casos donde las caras pueden no estar alineadas o
la detección de las mismas no es precisa. Para comparar el método propuesto con otras
técnicas altamente efectivas, utilizamos un amplio conjunto de experimentos tanto cruzan-
do como sin cruzar bases de datos. Los experimentos cruzando bases de datos nos permiten
simular escenarios donde la variabilidad demográfica es considerable. Los resultados obte-
nidos mostraron que el método de clasificación propuesto junto con Ranking Labels es una
solución tan fiable como aquellas basadas en enfoques globales cuando tratamos el problema
de reconocimiento de género sobre imágenes faciales frontales con expresión neutra.

Para comprobar que las mejoras propuestas podŕıan utilizarse en situaciones razona-
blemente realistas, realizamos un estudio experimental con imágenes que presentan una
dificultad mayor a las utilizadas hasta el momento. Para ello, al conjunto de imágenes fa-
ciales frontales con expresión neutra se añadieron imágenes de caras expresivas e imágenes
de caras parcialmente ocluidas. Todas estas imágenes se combinaron en distintos conjun-
tos de entrenamiento y test en experimentos sobre una única base de datos y también
cruzando tres bases de datos distintas. Una completa comparación estad́ıstica de los resul-
tados obtenidos por nuestra propuesta aśı como por varios métodos muy extendidos en el
campo del análisis facial reveló varios datos interesantes. Si el conjunto de entrenamiento
contiene el mismo tipo de imágenes que el conjunto de test, tanto los enfoques locales co-
mo los globales obtienen resultados satisfactorios. Sin embargo, en situaciones donde uno
de los conjuntos contiene imágenes con mayor dificultad (caras expresivas o parcialmente
ocluidas) el rendimiento de las soluciones locales supera significativamente al obtenido por
métodos globales. Los resultados emṕıricos también indicaron que las caracteŕısticas pro-
puestas, Ranking Labels, proporcionaban información más discriminante que el resto de
descriptores considerados. Con respecto a los clasificadores, mientras que los SVM globa-
les alcanzaron los mejores resultados únicamente en las tareas menos complejas, la técnica
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propuesta consegúıa buenos resultados en todos los casos.

Dejando a un lado el principal objetivo de la tesis, también realizamos un estudio ex-
haustivo sobre la influencia de la resolución de la imagen en las tasas de reconocimiento de
género. En este estudio se consideraron diez tamaños de imagen distintos, partiendo de un
tamaño extremadamente pequeño (2 × 1 ṕıxeles) hasta llegar al máximo tamaño disponi-
ble en las bases de datos (329 × 264 ṕıxeles). Los resultados obtenidos indicaron que una
resolución de imagen moderada, entre 22 × 18 y 90 × 72 ṕıxeles, es óptima para abordar
tareas de clasificación de género. Además, de este estudio concluimos que una imagen de
una resolución tan baja como 3 × 2 ṕıxeles proporciona información discriminante para
distinguir entre géneros. Este último dato puede ser de un gran valor en aquellos casos en
los que no es posible adquirir una imagen de un tamaño razonable por causas ajenas al
sistema automático.

En resumen, en esta tesis se han revisado todos los pasos del proceso de clasificación
automática de género a partir de imágenes faciales, proponiendo nuevas soluciones para
cada uno de ellos. Todas estas mejoras pueden ser empleadas tanto en conjunto como de
forma independiente.

Conclusiones y Trabajo Futuro

Conclusiones

Los estudios realizados como parte de la tesis han abarcado todos los pasos del proceso de
clasificación automática de género presentando mejoras para cada uno de ellos.

Se ha estudiado la posibilidad de reconocer el género cuando tan sólo una zona de la cara
(ojos, nariz, boca o mentón) es visible, concluyendo que los ojos son la parte que contiene
más información sobre el género de la persona. Además, se obtuvieron resultados indicando
que distintas partes de la cara proporcionan información complementaria.

Para mejorar las tasas de clasificación, hemos propuesto un tipo nuevo de caracteŕısticas
(Ranking Labels) para describir imágenes de forma local aśı como un nuevo método de
clasificación basado en vecincades locales. Por un lado, las Ranking Labels permiten obtener
caracterizaciones que son razonablemente independientes de los niveles de gris de la imagen
lo que proporciona mayor robustez cuando las condiciones de iluminación son distintas entre
imágenes. Por otro lado, el nuevo método de clasificación permite una mayor tolerancia en
situaciones donde la detección de la cara no es totalmente precisa o las caras no han sido
alineadas correctamente.

Analizamos el comportamiento de distintas soluciones (entre las que se inclúıan las
mejoras propuestas) a la hora de clasificar el género de imágenes faciales que mostraban
caras expresivas y con oclusiones parciales. Para ello se utilizaron imágenes de tres ba-
ses de datos distintas con el fin de simular escenarios donde la demograf́ıa de los sujetos
vaŕıa considerablemente. Además se consideraron situaciones donde las imágenes usadas
para el entrenamiento y para el test no eran del mismo tipo (caras neutras, expresivas o
parcialmente ocluidas). Tras un estudio estad́ıstico exhaustivo de los resultados obtenidos
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se concluyó que cuando los conjuntos de entrenamiento y test contienen imágenes de simi-
lares caracteŕısticas todos las soluciones alcanzan, estad́ısticamente hablando, los mismos
resultados. En cambio, si estos conjuntos presentan distintos niveles de dificultad, nuestras
propuestas fueron las que mostraron un comportamiento mejor y más robusto que el resto.

Por último, estudiamos la influencia de la resolución de las imágenes en los resultados de
clasificación. Realizamos experimentos con diez tamaños de imagen distintos, concluyendo
que una tamaño moderado proporcionaba los mejores resultados. Sin embargo, resoluciones
tan pequeñas como 3× 2 ṕıxeles aportan información útil para distinguir entre géneros.

Trabajo Futuro

En esta tesis se han presentado importantes mejoras aplicables a sistemas automáticos
de reconocimiento de género. Sin embargo, la efectividad de dichos sistemas puede verse
limitada en ciertos escenarios reales. Por ello, aún sigue habiendo trabajo por hacer para
poder llegar a considerar que el problema está completamente resuelto. En esta sección se
describen varias ĺıneas de investigación que debeŕıan tratarse para alcanzar ese objetivo,
además de algunas ĺıneas de trabajo que se comenzaron durante la tesis y que no han sido
completadas.

Durante la tesis estuvimos trabajando simultáneamente en varias ĺıneas de investigación,
algunas de las cuales quedaron sin concluir. A continuación detallamos cuáles son las ĺıneas
de trabajo que en el momento de finalización de la tesis quedaron abiertas.

• Estamos llevando a cabo un estudio online con el objetivo de comparar la precisión de
los humanos y los sistemas automáticos a la hora de clasificar el género de distintas
personas a partir de imágenes faciales. En el estudio se pide a los participantes que in-
diquen cuál creen que es el género de la persona dada una imagen facial. Se considera
un extenso conjunto de imágenes, dentro del cual se pueden encontrar caras sin ex-
presión, expresivas y también parcialmente ocluidas. Para reproducir tanto como sea
posible las condiciones a las que se enfrentan los sistemas automáticos, las imágenes
son mostradas preprocesadas y con un tamaño reducido. Tras recopilar una cantidad
razonable de datos, nuestro siguiente paso es analizar estad́ısticamente qué carac-
teŕısticas comparten las imágenes que fueron clasificadas con mayor dificultad, tanto
en el caso de los humanos como en el de los sistemas automáticos. Adicionalmente,
hemos pedido a los participantes que proporcionen datos sobre su edad, raza y género
con el propósito de estudiar cómo influyen esos factores cuando se reconoce el género
de personas del mismo (o diferente) grupo de edad, raza y género.

• Se está implementando un prototipo funcional que muestra en tiempo real el género
de las personas que aparecen en escena. Éste consiste en una cámara que captura
imágenes en tiempo real y tan pronto como detecta una cara, ésta es enviada al
sistema automático de clasificación de género. La predicción del género se muestra en
pantalla representada mediante un cuadrado que emmarca la cara cuyo color indica el
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género predicho. Este prototipo está prácticamente terminado, únicamente necesita
pasar un proceso exhaustivo de depuración de errores.

Respecto al trabajo futuro, varias son las ĺıneas de investigación que pueden mejorar
los sistemas automáticos de clasificación de género actualmente disponibles. En particular,
nos vamos a centrar en algunas de las extensiones que podŕıan ser fácilemente aplicadas a
nuestro trabajo.

• En la tesis nos hemos centrado en bases de datos que presentan condiciones de ilu-
minación bastante controladas y en imágenes frontales de la cara. Sin embargo, un
sistema de clasificación de género que es fiable en cualquier tipo de situación debeŕıa
ser capaz de tratar con imágenes con iluminaciones muy diversas. También, debeŕıa
ser capaz de clasificar caras con diferentes ángulos respecto a la cámara. Por lo tanto,
experimentos cruzando bases de datos que contengan estos tipos de imágenes seŕıan
el siguiente paso.

• Intuitivamente, las caracteŕısticas faciales que indican el género de una persona pa-
recen variar con la edad. Un estudio emṕırico de clasificación de género separando
los individuos de acuerdo a su rango de edad podŕıa proporcionar información a este
respecto.

• Según varios estudios psicológicos, los humanos sufrimos del llamado efecto sesgo in-
terracial [43]. Éste se refiere a la tendencia de encontrar más dificultad para identificar
personas de otras razas distintas a la de uno mismo. Consecuentemente, parece que las
caracteŕısticas utilizadas para identificar a una persona pueden diferir dependiendo
de su raza. Resultaŕıa interesante comprobar si este mismo comportamiento también
se presenta en sistemas automáticos. Este efecto podŕıa estudiarse mediante la com-
paración de la precisión en el reconocimiento de un clasificador genérico (entrenado
con caras de distintas razas) y clasificadores espećıficos para cada raza.

• Los métodos propuestos no han sido diseñados exclusivamente para abordar el pro-
blema del reconocimiento de género. Por ello, podŕıan aplicarse a otros problemas
de clasificación. Las aplicaciones más directas seŕıan la clasificación de expresiones
faciales, rangos de edad o razas.

• Muchos de los autores del campo del análisis facial proponen utilizar sistemas de reco-
nocimiento de individuos para resolver problemas de clasificación de género, aunque
no ha sido probado que ambos problemas puedan solucionarse empleando el mismo
enfoque. Por esta razón, creemos que el campo podŕıa enriquecerse con un análisis
comparativo concluyente de las técnicas empleadas para abordar ambos problemas.



CHAPTER 1

Introduction

Normally, facial information is used for identification purposes. However, faces indicate
many more personal traits, among which gender is found. The knowledge of the gender of a
person plays an important role in a variety of computer based applications. In this chapter,
we introduce the problem of face gender classification and the issues that can be encountered
when automatically addressing it. We then indicate our motivation and objectives for this
work, followed by a list of the main contributions and publications. Finally, we provide a
chapter-by-chapter summary of the contents of the thesis.

1.1 Introduction to Face Gender Classification

Human faces provide a large amount of information about ourselves. Apart from our
identity, our faces indicate other demographic traits such as our gender, age and race.
Nowadays, automatically collecting these pieces of information can be useful in countless
tasks. Particularly, the knowledge of people’s gender can be applied to dynamic market
studies, surveillance and security systems, human-computer interaction, personalised ser-
vices in many businesses, among others. Besides, another application can be to serve as a
first filter for recognition tasks. For example, biometric recognition systems could reduce
the search by half if the gender of the individual was known.

In the area of face analysis, face recognition [40, 2, 68] and facial expression analy-
sis [28, 69] have been extensively studied compared to gender classification which has been
addressed less often. This could partially be due to a general belief that gender classification
is similar to a face recognition problem with only two classes. To the best of our knowledge,
there are not published studies that support this statement by exploring the performance
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2 1.1 Introduction to Face Gender Classification

differences of automatic systems when dealing with face recognition and gender classifica-
tion. However, these studies are easily found in the psychology literature [72, 53]. In [72], it
is clearly stated that, in order to identify a face, the information that makes it unique has
to be encoded. In contrast, to recognise the gender of a face the information encoded must
be shared by a group of different faces (male or female). From the point of view of data
complexity, gender classification is a two-class problem with a commonly large number of
face images from different people per class which results in sparse classes. On the contrary,
face recognition is a multi-class problem with usually very few faces per class belonging
to the same individual. Therefore, gender classification problems normally have a much
higher intra-class variance than face recognition problems.

Although identifying the gender of a person seeing his/her face is a relatively easy task
for humans, it becomes a challenging problem when it has to be solved automatically.
A considerable number of difficulties encountered by automatic face gender classification
systems go unnoticed when humans perform the task. Humans inadvertently deal with faces
of different sizes, that is, we can recognise the gender of individuals whose faces we see from
up close or in the distance. Besides, we do not mind if the proportions of the face are not how
we expect them to be. For instance, we can still tell the gender of a person even if he/she
has a larger nose or smaller eyes than the faces we usually see. Additionally, our ability
to recognise the gender of a face is barely affected by the lightning conditions. It does not
matter if it is daylight or night, we can still distinguish between males and females. These
are minor issues for humans, however automatic systems usually require specific techniques
to successfully tackle gender classification problems in such situations. An added difficulty
for automatic systems is to locate the faces that appear in the input images. This probably
seems a trivial task for humans but the available methods for automatically detecting faces
are still not entirely accurate.

Apart from the mentioned troubles, there are other factors that might complicate the
gender classification task even for humans. These complications, which are easily found in
real environments, are related to being presented with faces showing emotions or partially
occluded faces. Usually, the individual whose gender is of our interest wears clothing
accessories which are beyond our control. These accessories might cover part of the face,
as occurs with sunglasses, veils or scarves. In those cases, when the face is not completely
visible, not all the information is available which makes harder recognising the gender of the
person. In addition, people commonly express their emotions by showing facial expressions
and, depending on the emotion, the faces can tremendously vary. For example, an angry
face is markedly different from a surprised face. When expressing anger, the main face parts
tend to squeeze, whereas if the emotion is surprise the eyebrows raise and the mouth tends
to be quite opened. These are important factors that should be taken into account when
implementing a gender classification system since it is expected to function satisfactorily in
those situations.

Automatic systems can tackle the problem of face gender classification from different
perspectives. They can be set out with the aim of recognising the gender of individuals
appearing in videos or still images, which could be in 2-D or 3-D. This data could also be



Chapter 1 V Introduction 3

provided in colour or just grey levels. Besides, the system could handle only frontal faces
or also faces turned up to an acceptable degree of rotation. Additionally, the faces could
appear completely visible or with a certain level of occlusion. All these factors condition
the techniques employed for approaching the problem.

1.2 Previous Related Works

In this section, we review the most relevant papers on automatic gender classification. We
indicate how other authors address the problem which requires us to mention some of the
concepts and techniques that are explained in depth in Chapter 2.

The research on automatic face gender classification goes back to the beginning of
the 1990s. The two first attempts to automatically classify the gender of face images
were reported by Golomb et al. [30], and Cottrell and Metcalfe [24]. Golomb et al [30]
trained a two-layer neural network, which they called “SexNet”, to classify face images of
30 × 30 pixels. As input, the network received the grey level values of the face images
(previously equalised and aligned) and provided a gender label as output. “SexNet” was
tested with 90 faces (45 males and 45 females), particularly 8 tests were carried out with
different sets of 80 images for training and 10 for testing, resulting in an average of 91.90% of
correctly classified faces. In addition, they reported that 5 humans classifying the gender of
the same 90 faces achieved an average of 88.40% correct answers. On the other mentioned
work, Cottrell and Metcalfe [24] designed several neural networks to recognise identity,
gender and emotions. For the experiments, they collected a set of 160 face images from 10
male and 10 female subjects which were aligned, reduce to 64 × 64 pixels and equalised.
They reported almost perfect recognition for identity, albeit for only 20 subjects, and perfect
gender classification. However, the training and test faces were from the same subjects.

This trend towards Neural Networks continued during the entire decade with some
authors proposing new ways of using that classification method. It was also very popular
to employ geometric features to describe the faces in the images. These features usually
consist of a reasonably sized set of fiducial points or distances between them. Those fiducial
points are commonly located at strategic positions in the face, such as the centre of the eyes
or the corners of the mouth. Brunelli and Poggio [18] combined both, geometric features and
neural networks. They proposed two competing networks trained with geometric features
where each network specialised in faces of one gender. They tested these networks with 21
faces images of each gender using a leaving one out technique. As a result, 79% of the faces
were correctly classified. Other types of geometric features were also utilised to describe
face images. In a study by Wiskott et al. [67], the faces were represented by graphs. They
modified a general object recognition system with the aim of addressing face recognition
and gender classification problems. The resulting system generated graphs of new faces by
means of elastic graph matching. That technique used a face space consisting of manually
created model graphs for building new graphs to describe new faces. Given an unseen
face, a graph representing it was created and the face was classified as belonging to the
individual with the most similar graph. Although this method was mainly employed for face
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recognition, they also applied it to gender classification by building a composite of graphs
to resemble a given unseen face. Then, if most of the graphs belonged to males/females
faces they determined that the given face was male/female. A leaving one out experiment
with 112 face images (65% of them being males) resulted in a 90.20% of correct gender
classifications. However, Wiskott et al. implied that faces of the test subjects were included
in the training set.

In the 2000s, new gender classification methods were proposed, most of which were
based on the now well-known Support Vector Machines. In that decade, authors focused
most of their attention on appearance features instead of geometric ones. Appearance
features can directly consist of pixel values or some transformation applied to those values
in order to produce the descriptions. It was also at this time when authors started to
automatically detect the position of the face in the image previous to the classification.
To the best of our knowledge, the first work where automatic face detection and gender
classification were combined was presented by Mogahaddam and Yang [46]. They addressed
the gender classification problem with Support Vector Machines (SVM) and showed that
the performance of a SVM with Radial Basis Function (RBF) kernel was superior to other
pattern recognition techniques, such as, Fisher Linear Discriminant and ensembles of RBF
networks. In the experiments, 1496 face images (53% male and 47% female) were used
for training and 259 images (51% male and 49% female) for testing. After automatically
detecting the area of the image containing the face, and training the classifiers using the
pixel values of those areas, a SVM+RBF obtained the best accuracy, that was 96.60%. The
authors do not indicate if the face images used in the experiments correspond to different
individuals or if there were duplicates.

The first extensive survey on gender classification was published in 2008 by Mäkinen
and Raisamo [39] and they utilised automatically detected and aligned faces. By that time,
most of the research community considered face alignment essential for improving gender
classification. Alignment methods pretend to position faces into a canonical pose, so the
location of the most important facial features is the same relative to a fixed coordinate
system. The alignment can be performed manually or automatically, and it is done with
respect to some given fiducial points. Typically, those points are the centre of the eyes. In
Mäkinen and Raisamo’s survey, various alignment techniques are employed as well as sev-
eral gender classification methods. Regarding face alignment, they concluded that better
gender classification accuracies are achieved when the faces are not automatically aligned.
This same conclusion was drawn from other works [42, 65, 22]. Focusing on gender classifi-
cation, Mäkinen and Raisamo compared the performances of various classifiers using several
appearance-based features. Their study involved a Neural Network with image pixel values
as input, SVMs with two different inputs, pixel values and Local Binary Patterns, and a
Discrete Adaboost method based on Haar-Like features. They found that SVM with simple
pixel values achieved the best classification rate, which was 86.54%.

In recent years, Local Binary Patterns (LBP) have become massively popular in the
face analysis field. Although these features were originally defined to describe image tex-
tures [52], many authors have used them to describe face images [2]. Alexandre [4] proposed



Chapter 1 V Introduction 5

an ensemble method to tackle gender classification problems using different types of fea-
tures. He considered texture features (LBPs), shape features (edge directions) and three
different image sizes. Each member of the ensemble specialised in one type of feature and
image size. He provided a comparison of the performances of the ensemble method and the
base classifiers used individually over face images from two databases. As a result, the en-
semble achieved better classification accuracies reaching to 99.07% and 91.19% depending
on the database. Other authors presented techniques for selecting the most discriminant
features, that is the case of Shan [58] and Tapia and Perez [60]. Shan [58] employed Ad-
aboost to choose which LBPs provided more discriminant information (and named them
boosted LBPs). He reported the gender classification accuracies achieved by SVMs using
pixel values, standard LBPs and boosted LBPs when applied to frontal and near frontal
faces. The best rates resulted from the use of boosted LBPs, that was 94.81% of correct
classification. Boosted LBPs provided an increase in the accuracy of 1.4% and 3.5% when
compared to standard LBPs and pixel values, respectively. Tapia and Perez [60] presented
an approach for selecting a reduced set of features based on mutual information. They
described the faces by fusing different types of features considering several image scales.
The features involved were pixel values, edge directions and LBPs. The fusion of features
was passed to the feature selection method and the chosen features were fed to the classi-
fier. The features were combined fixing one factor, either the type of feature or the image
size. They reported the highest classification rates when using the best of all the features
considered. Those best results were 99.13%, 98.01% and 94.01%, depending on the image
database. Although it is not explicitly detailed in the text, it seems that the test set was
employed to select the best features. Then, that set of images was again used to test the
classifiers based on the combination of best features.

Most of the published works on gender classification involve face images from one
database as opposed to using one database for training and another for testing. The work
by Bekios-Calfa et al. [13] is one of the very few published studies presenting cross-database
experiments to test their proposed approach. They reviewed linear discriminant techniques
using single- and cross-database experiments involving three datasets containing frontal
and completely visible face images. They reported that single-database experiments were
optimistically biased and all the considered methods achieved similar results (above 90% of
accuracy) in those cases. However, in cross-database experiments depending on the amount
of training data and the demography of the individuals, different methods achieved the best
classification rates (ranging from 71.50% to 91.03%).

1.3 Motivation and Objectives

Automatic face gender classification still remains unsolved in real scenarios. Most published
works addressing this type of problems assume many conditions which would not prevail
in most realistic situations. The main assumptions are that the illumination conditions are
similar in all images, and the demography of the individuals is quite controlled. Besides,
most of those works do not consider images of expressive or partially occluded faces which
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are extremely common in real environments. In addition, most of the related papers drew
conclusions from comparing classification accuracies without any statistical support.

The main goal of this thesis is to improve automatic face gender classification in scenarios
where the previously mentioned complications can be encounter. With that purpose, each
step of the classification process is revised and improvements are proposed. This general
goal is divided into the following specific objectives:

• To study the role of different face parts in gender classification and the suitability of
addressing the problem with only the information provided by some of those parts.

• To define a new type of features for characterising face images which provides reliable
information even considering various illumination settings.

• To design a new classification approach that is robust against inaccuracies in the face
detection and faces with different facial proportions.

• To analyse the influence of the face image resolution in the classification results.

• To test the solutions with faces from a broad demography (that is, considering a wide
range of ages and races) and also with expressive and partially occluded faces.

• To provide statistically supported conclusions.

1.4 Contributions of the Thesis

The work of this thesis is focussed on solving face gender classification problems. In order
to improve the overall performance, we deal with the main issues that arise in each step of
the process. With that purpose, new methods are designed for describing the content of
images and for classifying the gender of unseen faces in realistic conditions. To check the
suitability of the proposed techniques, experimental studies are presented comparing them
with other widely employed approaches in the field. Following, the specific contributions of
the thesis are outlined.

• A detailed evaluation of the role of eight different face parts in gender classification.
The discriminant capabilities of each of the face parts is studied using diverse classifiers
and two databases in order to check if their behaviours are consistent (Chapter 3).

• Empirical data showing the existence of complementary information among various
face parts (Chapter 3).

• New features, named Ranking Labels, which characterise local regions of the images.
These are designed to be more robust to changes in illumination by encoding infor-
mation about local contrast, making the description independent of the actual pixel
values. Additionally, the face descriptions derived from Ranking Labels maintain spa-
tial information to better cope with inaccuracies in the face detection (Chapter 4).
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• A novel classification approach based on local neighbourhoods which has a certain
level of tolerance towards faces with different proportions, misaligned faces and inac-
curacies in the face detection (Chapter 5).

• A thorough experimental comparison of gender classification techniques (including
those proposed in the thesis) when using neutral, expressive and partially occluded
faces in all possible combinations of training and testing roles (Chapter 6).

• A comprehensive statistical study on the influence of the resolution of the face images
in automatic gender classification. A wide range of image sizes is considered going
from extremely low resolutions to the highest possible resolution (Chapter 7).

• Empirical results revealing the smallest face image size that provides useful informa-
tion to distinguish between genders (Chapter 7).

• Statistically supported conclusions drawn from experimental studies. In order to
detect differences among performances of several classification models, three statistical
test are applied: Iman-Davenport’s statistic, Holm’s method and Wilcoxon’s Signed
Rank test (Chapters 5, 6 and 7).

• Reliable assessments of the robustness of the presented methods to changes in acqui-
sition conditions and demographic variables, such as age and ethnicity, by performing
cross-database experiments (Chapters 5, 6 and 7).

1.5 Publications Resulting from the Thesis

The research work developed during the thesis has been validated with several international
peer-reviewed conferences and a journal paper. A brief description of the content of each
publication is provided.

Andreu, Y., Garćıa-Sevilla, P., and Mollineda, R. A. Face gender classification:
A statistical study when neutral and distorted faces are combined for training and testing
purposes. Image and Vision Computing 32, 1 (2014), 27–36

This paper presents a thorough study of gender classification methodologies per-
forming on neutral, expressive and partially occluded faces, when they are used
in all possible arrangements of training and testing roles. A comprehensive com-
parison of two representation approaches, three types of features, three classifiers
and two performance measures is provided over single- and cross-database exper-
iments. Experiments revealed that when training and test sets contain different
types of faces, our local models using the 1-NN rule outperform global approaches.
However, with the same type of faces, even if the acquisition conditions are diverse,
statistical evidence indicated that global SVMs and local 1-NNs perform equally.
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Andreu, Y., López-Centelles, J., Mollineda, R. A., and Garćıa-Sevilla, P.

Analysis of the effect of image resolution on automatic face gender classification. In 22nd In-
ternational Conference on Pattern Recognition (2014) (to appear)

This paper presents a thorough study into the influence of the image resolution on
automatic face gender classification. The images involved range from extremely
low size (2×1 pixels) to the highest possible resolution. A comprehensive compar-
ison of the performances achieved by two classifiers using ten different image sizes
is provided by means of two performance measures. Single- and cross-database ex-
periments are designed over three well-known face databases. A detailed statistical
analysis of the results revealed that a face as small as 3×2 pixels carries some use-
ful information for distinguishing between genders. However, in situations where
higher resolution face images are available, moderately sized faces from 22× 18 to
90 × 72 pixels are optimal for this task.

Andreu, Y., Mollineda, R. A., and Garćıa-Sevilla, P. Assessing the effect of
crossing databases on global and local approaches for face gender classification. In 15th In-
ternational Conference on Computer Analysis of Images and Patterns (2013), vol. 8047 of
Lecture Notes in Computer Science, pp. 204–211

This paper presents a comprehensive statistical study of the suitability of global
and local approaches for face gender classification from frontal non-occluded faces.
A realistic scenario is simulated with cross-database experiments where acquisition
and demographic conditions considerably vary between training and test images.
The performances of three classifiers using two types of features are compared for
the two approaches. Supported by three statistical tests, the main conclusion is
that if training and test faces are acquired under different conditions from diverse
populations, no significant differences exist between global and local solutions.

Andreu, Y., Garćıa-Sevilla, P., and Mollineda, R. A. Gender classification from
neutral and expressive. In 6th International Conference on Machine Vision (2013), vol. 9067
of SPIE Proceedings, pp. 906723–26

This paper presents a statistical study of local versus global approaches for clas-
sifying gender from neutral and expressive faces. A cross-dataset evaluation is
provided by using different databases for training and testing, as well as several
well-known classifiers and widely used features for facial description. Three statis-
tical tests supported the hypothesis that local approaches are more suitable than
global ones for solving gender classification problems over expressive faces when
training with non-expressive faces. However, if a large set of expressive faces is
available for training, global solutions outperform local ones.
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Andreu, Y., Garćıa-Sevilla, P., and Mollineda, R. A. Dealing with inaccurate face
detection for automatic gender recognition with partially occluded faces. In 14th Iberoamer-
ican Congress on Pattern Recognition (2009), vol. 5856 of Lecture Notes in Computer Sci-
ence, pp. 749–757

Gender classification has not been extensively studied when the face cannot be
accurately detected and it can also be partially occluded. In this paper, we pro-
pose a new type of appearance-based features, called Ranking Labels, which are
designed to better cope with the previously mentioned circumstances by providing
spatial information. An experimental comparison of the proposed features with
two widely used characterisation techniques (Local Binary Patterns and Local
Contrast Histograms) is provided. The results of several experiments prove that
Ranking Labels description is the most reliable among those considered.

Andreu, Y., Mollineda, R. A., and Garcia-Sevilla, P. Gender recognition from a
partial view of the face using local feature vectors. In 4th Iberian Conference on Pattern
Recognition and Image Analysis (2009), vol. 5524 of Lecture Notes in Computer Science,
pp. 481–488

This paper presents an empirical assessment of the robustness of Ranking Label
descriptors to address gender classification problems with different levels of accu-
racy in the face detections. Descriptions based on Ranking Labels are employed
to characterise top half faces. Due to the fact that only the top half of the face is
used, this is a feasible approach in those situations where the bottom half is hid-
den. The experimental results indicated that Ranking Label features are robust
towards face detections with different degrees of inaccuracy.

Andreu, Y., and Mollineda, R. A. The role of face parts in gender recognition. In
International Conference on Image Analysis and Recognition (2008), vol. 5112 of Lecture
Notes in Computer Science, pp. 945–954

This paper compares the discriminant capabilities of different face parts for gender
classification purposes. It goes beyond previous works with respect to the number
of face parts and classifiers considered. The experimental results indicate that
individual face parts offer enough information to allow discrimination between
genders.

Andreu, Y., and Mollineda, R. A. On the complementarity of face parts for gender
recognition. In 13th Iberoamerican Congress on Pattern Recognition (2008), vol. 5197 of
Lecture Notes in Computer Science, pp. 252–260

This paper evaluates the expected complementarity between the most prominent
parts of the face for addressing gender classification. Several ensembles of classi-
fiers based on various single face parts are designed using different combination
strategies. The experimental results show that, as expected, ensembles perform
significantly better than plain classifiers based on single parts.
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1.6 Structure of the Thesis

This document presents a comprehensive review of the published papers resulting from the
work of the thesis in chronological order of publication. In Chapter 2, we introduce the
basic concepts necessary to understand gender classification problems and explain in detail
the classification methodology followed in all the experimental studies of the thesis. This
methodology has five main steps: 1) face detection and preprocessing, 2) face description,
3) gender classification, 4) performance evaluation and 5) statistical analysis. The rest of
the chapters are closely related to a particular step within the general framework.

In Chapter 3, we present an empirical study of the roles of different face parts. This
study goes beyond previous related works with respect to the number of parts considered
and the diversity of the classifiers employed. In addition, the complementarity of the
information provided by several face parts is tested by means of ensembles of classifiers.
The main aspects analysed in this chapter are related to the first step of the methodology,
since the division of the face in parts would take place in the preprocessing stage. This
chapter explains in detail the work published in [10] and [9].

In Chapter 4, we propose a new type of features (named Ranking Labels) for face
characterisation which are designed to provide local contrast values while keeping some
structural information. We present various experiments whose results show that Ranking
Labels are more reliable than other local features that are widely used in the field. The
work reviewed in this chapter, which was published in [5] and [11], is focused on the second
step of the general methodology, that is, face description.

In Chapter 5, we propose a classification method based on local neighbourhoods. It
could be seen as an ensemble of local classifiers, where each classifier specialises in a partic-
ular region of the image. The idea of neighbouring regions is developed to provide a certain
level of tolerance towards misaligned faces and faces with different facial proportions. We
present empirical data suggesting that our method is as suitable as global approaches in
situations where the latter are believed to be more appropriate. The main contribution of
this work, published in [12], is directly related to the third step of the methodology which
is gender classification.

In Chapter 6, we present and exhaustive comparison of the performances of a diverse
set of classification models when neutral, expressive and partially occluded face images
are considered. The classification models compared differ from one another with respect
to the approach (global or local) adopted to address the task, the type of feature chosen
to describe the face images and the classifier employed. The conclusions drawn from the
empirical comparison are supported by several statistical tests applied to two performance
measures. Therefore, this work, published in [7], could be placed within the fourth and
fifth steps of the general methodology.

In Chapter 7, we perform a detailed experimental analysis of the influence of the image
resolution on face gender classification. We consider images going from extremely low
resolutions to the highest size provided with the databases. Empirical data indicating
which is the smallest image size containing discriminant information is also provided. This
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work is related to the first step of the methodology, where the image size needs to be
decided.

In Chapter 8, we conclude the thesis by presenting the main findings of these investiga-
tions. In addition, we summarise several open lines of research and other possible lines of
future work.





CHAPTER 2

Gender Classification Methodology

One type of pattern recognition problem is classification, which attempts to assign each
input value to one of the given classes. This is exactly what automatic face gender classi-
fication aims to achieve, given a face image assign a gender label to it. In this chapter, we
present the general experimental methodology commonly followed in classification experi-
ments. In order to contextualise the explanation of the process, we introduce an example
of a realistic gender classification system.

2.1 General Methodology

In this section, we describe the general methodology which is followed by many classification
systems, including the empirical studies presented in the thesis. In order to illustrate the
explanation of this methodology, an example of a gender classification system is provided.

Imagine we are building a system for showing smart adverts on screens placed around
a shopping centre. By smart advert we mean that the advert will specifically target the
individuals looking at it. This system could be focusing in many aspects of the individuals
(such as, gender, race or age range), here we will focus on their gender. For that, we would
need to automatically identify the gender of those people looking at the screen before
selecting the advert to show. One way to address this would be installing a camera on the
screen facing the individuals, so it could capture visual information from them, for example
a photograph. Then, a gender classification system would get this image (containing one or
more faces) and would identify the gender of each person. Knowing the viewers’ gender, an
advert that is considered interesting for most of them (males or females) would be shown.

13
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Figure 2.1: Steps of the classification methodology followed in the experimental studies of the thesis.

Before the system is capable of distinguishing between genders, it has to learn how
female and male faces look like and which are the facial characteristics shared by people
of the same gender. However, this is an arduous and difficult task that we would prefer
to make automatically. In order to let the system learn by itself, we should provide it
with a big enough set of face images from both genders and a methodology for extracting
information (also known as features) from those images. Once the system has learned how
to differentiate female and male faces, we could feed into it a face image in order to obtained
a prediction of the gender of the person in the image. From what it has been explained
so far, our system has to learn how to distinguish male and female faces previously to
be operative. This process of learning is commonly referred to as training, and the face
images from which the system learns are the training images or training set. Then, given
a previously unseen face image, the system classifies it as male or female.

Normally, before installing the system in the shopping centre, we would test whether
it works as expected. For this purpose, we should use images which are not involved in
the training process, otherwise we would not know if the system has properly learned the
differences between males and females or has just memorised the faces it has seen. The
images used in this test process are referred to as test images or test set. To evaluate how
well the system works, we would need to quantify its performance; therefore, we would define
a performance measure. For instance, a straightforward measure would be the percentage
of test images whose gender label the system has correctly classified. Figure 2.1 shows all
the steps of this classification methodology and their relations.

Summing up, for building a gender classification system, we would need a set of face
images that would be divided into subsets, the training set and the test set. We would also
have to define how to extract features that describe the faces that appear in the images.
Then, a learning algorithm would create a model using the information provided by the
features extracted from the training images. Finally, we would evaluate the model by
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supplying it with the features extracted from test images and computing a performance
measure. Once the assessment is satisfactory, the system would be ready to be placed in
the shopping centre.

All those tasks can be arranged in four groups, which coincide with the four steps of
the methodology: 1) face detection and preprocessing, 2) face description, 3) gender clas-
sification, and 4) performance evaluation. In the following sections the processes involved
in each of these steps are detailed.

2.2 Face Detection and Preprocessing

Although, it has not been explicitly indicated, before describing a face, we need to know
where exactly the faces are located in the image. Once the image has been acquired from
the camera, we would use a face detector to localise the faces in it. Afterwards, each area
of the image containing a face would be extracted and preprocessed. Following, we describe
how the face detectors work and what preprocessing techniques are applied to the images.

2.2.1 Face Detector Methods

A face detector can follow many different approaches, which produce different results with
respect to the geometry of the area containing the face (mainly, shape and size). In this
section, we focus on those approaches taken in the experiments included in the thesis.

Detection based on the Proportions of the Face

This first approach, which assumes that the coordinates of the eyes are known, is based on
the expected proportions of the human face. Leonardo da Vinci proposed these proportions
which are still in use by clinicians to objectively assess facial aesthetics and correct certain
disproportions [48]. Da Vinci stated that the face can be divided into three horizontal
regions of the same size whose boundaries are the hairline, the eyebrows, the bottom of
the nose, and the chin. He also affirmed that the face could be divided into five equal
vertical spaces where the distance between the eyes is the same as the distance at the side
of the eyes. These rules of proportion are a good guide, but faces are not commonly this
perfect, neither are completely symmetrical. Therefore, taking into account these rules and
having available the coordinates of the centre of the eyes in the image, we performed an
empirical study to calculate the points which delimit the area of the image that most likely
will contain the face. Given the coordinates of the centre of the right eye, (xr, yr), and the
left eye, (xl, yl), and the distance between them, d =

√
(xl − xr)2 + (yl − yr)2, the top left

corner of the area of the image containing the face is estimated by,

(xtl, ytl) = (xr − 0.75 × d,
yr + yl

2
− 1.15× d) (2.1)
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(xtl, ytl)

(xbr , ybr)

(a) Accurate detection.

(xtl, ytl)

(xbr, ybr)

(b) Accurate detection.

(xtl, ytl)

(xbr , ybr)

(c) Inaccurate detection.

Figure 2.2: Face detections obtained with the method based on the expected proportions of the
face. The delimiting points have been calculated using Eq. 2.1 and 2.2.

and the bottom right corner is,

(xbr, ybr) = (xl + 0.75 × d,
yr + yl

2
+ 1.8× d). (2.2)

Some examples of the areas detected using Eq. 2.1 and 2.2 are shown in Figure 2.2.
Figures 2.2(a) and 2.2(b) show two sufficiently accurate face detections, as the boundaries
of the divisions match the expected facial features. Horizontally, those boundaries are the
hairline and the bottom of the chin, and, vertically, they are approximately both side of the
face. However, this face detection commits some errors with faces that have proportions
different to those of the majority. As shown in Figure 2.2(c), the bottom boundary does
not coincide with the chin in this case, since the face is smaller than the average.

In order to use this face detector, we need the coordinates of both eyes. This can be
provided along with the face images (some face databases have this information) or an eye
detector could be use. In the first case, the coordinates of the centre of each eye are almost
exact, since they tend to be manually marked. In the second case, having to detect the eyes
automatically could introduce some errors that might lead to erroneous face detections. In
the experiments where this face detector is involved, we indicate how the coordinates are
obtained.

Detection with Viola-Jones algorithm

Viola-Jones algorithm [63] is a widely-used automatic method for real-time object detection.
Since it is automatic, it has to learn how the target objects look like previously to be fully
functional. In fact, this is a classification problem: there are objects in the image and we
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(a) Two-rectangle features (b) Three-rectangle feature (c) Four-rectangle feature

Figure 2.3: Features involved in the Viola-Jones detector [63]. The sum of the pixel values within
the white rectangles are subtracted from the sum of those in the grey rectangles.

want to know if the objects of interest are present. To address this problem, the process
followed is similar to that of a general classification system. Therefore, for explaining how
this algorithm works, we use some concepts that will be explained following in the chapter.

For learning the appearance of the objects of interest, patches are considered over the
images and features describing their content are extracted. The value of these features
is the difference of the sums of the pixel values within rectangular areas. Four different
features are involved regarding the number of rectangles considered and the position with
respect to the others. Figure 2.3 shows the distribution of the rectangles in these four
features. The value of each feature is calculated by subtracting the sum of the pixel values
within the white rectangles from the sum of those in the grey rectangles. In order to
quickly calculate the value of these features, an intermediate representation of the original
image, called integral image, is employed. The value of each point (x, y) in the integral
image is computed by the sum of all the pixels above and to the left from that position
in the original image (see Figure 2.4(a)). Building the integral image from the original
image only takes a few integer operations. Using the integral image, calculating the value
of a feature takes a constant time because each rectangular area in a feature is always
adjacent to at least one other rectangle. For example, given the integral image showed in
Figure 2.4(b), the sum of the pixels within rectangle D can be seen as the sum of the pixels
in rectangles (A + B + C +D) − (A + B) − (A + C) + A. Conveniently, A + B + C +D

is the integral image’s value at point (x4, y4), A + B is the value at (x2, y2), A + C is the
value at (x3, y3), and A is the value at (x1, y1). Therefore, the sum of the pixels within D

is (x4, y4)− (x2, y2)− (x3, y3) + (x1, y1).

There are a large number of features associated with each patch, and even though
the features can be calculated efficiently, the computation of the whole set of features
is prohibitively expensive. Hence, a variant of the AdaBoost algorithm is used to select
the most discriminant features. The original AdaBoost algorithm combines a collection of
simple learners (also known as, weak classifiers) to form a stronger classifier. This can be
interpreted as a greedy feature selection process, where each weak learner is designed to
select the single rectangle feature which best separates the positive and negative samples.
For each feature, a weak learner determines a threshold, so that feature is chosen if their
value is higher than the threshold.
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(x, y)•

(a) The value of the integral image at point
(x, y) is the sum of the pixel values above
and to the left (the pixels within the grey
area).

A B

C D

•

••

•
(x1, y1) (x2, y2)

(x3, y3) (x4, y4)

(b) The sum of the pixels within rectangle D
can be computed by (x4, y4)− (x2, y2)−
(x3, y3) + (x1, y1).

Figure 2.4: Integral image definition and usage for computing features.

The face detector consists in a cascade of classifiers whose inputs are patches. A positive
response from the first classifier triggers the second classifier, and so on. Therefore, if a
patch goes through every classifier in the cascade, it is predicted as containing the object
of interest. A negative outcome at any point leads to the immediate rejection of the patch.
Each layer of the cascade is trained by AdaBoost with the features selected to reach a
target detection rate and false positive rate (both set in the learning stage). In other
words, each layer only employs those features selected by AdaBoost to decide whether the
patch contains the target object.

This detector has been broadly employed for detecting faces since it has been made
publicly available together with a very good training set of features. Therefore, using that
training set the detector learns how to accurately distinguish faces from non-faces. This
public implementation is provided in the OpenCV library [1] and a training set of frontal
face images, named “frontalface alt2”, is also provided in the mentioned open-source
library. Some examples of the face detections using such implementation of the Viola-Jones
algorithm are shown in Figure 2.5.

As can be seen comparing Figure 2.5 with Figure 2.2, the area returned by Viola-Jones
algorithm is smaller than that obtained by the previously presented detector based on the
expected proportions of the face. Viola-Jones detection excludes some parts of the face
which are included in the previous detector results. Particularly, the area detected with
Viola-Jones algorithm does not include the forehead and part of the chin.

Once we know that there is a face somewhere in the image, we could pass the whole
image to the next step or we could use just the region of the image where the face is located.
If the gender classification system would learn from full images, it could be misled by
focusing the decision on background information. For instance, if there were several different
backgrounds shared by many images, the system could learn about that information. Then,
we would have a background predictor instead of a gender classifier. In order to avoid this,
after locating the face in the image, an image is created by cropping the pixels within the
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Figure 2.5: Face detections using Viola-Jones detector.

area containing the face. The aim of detecting the face and cropping the original image is
to only keep the information provided by the face. After this, in the new image, the number
of pixels that do not belong to the face has been considerably decreased compared to the
original face image.

2.2.2 Preprocessing Techniques

In this preprocessing step, several techniques to try to avoid certain problems are applied.
An overview of those techniques and the problems they tackle is given below.

• Histogram equalisation is employed to better deal with images with different illumi-
nation conditions.

• Face Alignment methods are usually applied to situate the main facial features in the
same position within all face images. All the experimental studies of the thesis only
involve unaligned face images.

• Image resizing is utilised to make all images have the same size.

Following, we give further details about these processes and the reasons why they are
or are not utilised in the experiments of the thesis.

Histogram Equalisation

An issue that we could encounter is having different lighting conditions when the images
were captured. This could result in lighter and darker images and the system could learn
about that information. In order to minimise the effect of different illumination conditions,
the histogram of the cropped image is equalised. Histograms are usually arrays whose
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(a) Before histogram equalisation (b) After histogram equalisation

Figure 2.6: Examples of cropped images to the area of the face, (a) previous to equalising the
histogram and (b) after histogram equalisation.

elements (referred to as bins) represent the number of occurrences of a range of values.
Normally, a histogram of a grey image has one bin per each possible grey level value. As
grey levels are in the range [0, 255], the typical histogram of a grey image has 256 bins.
Histogram equalisation is a technique for enhancing contrast by evenly using every grey
level in the full range. Let H be the histogram of a grey image, then H(g) indicates the
number of occurrences of the grey level value g in the image. In order to equalise H, first
the cumulative histogram Hc is computed. Given a grey level value g, Hc(g) is,

Hc(g) =

g∑

i=0

H(i). (2.3)

Then, the bin associated to the grey level g of the equalised histogram, He, is,

He(g) =
255

Hc(255)
×Hc(g). (2.4)

In Figure 2.6, images of two individuals from different races (a Caucasian male and an
African-American woman) are shown before and after applying histogram equalisation. As
can be seen in Figure 2.6(a) some spots in the woman’s face shine (for example, the nose
and the cheeks), while the man’s face does not has those. After equalising the histograms
(see Figure 2.6(b)), both faces show lighter regions around the cheeks and nose along with
being images with higher contrast which makes details stand out.

Face Alignment

When addressing facial analysis problems, many solutions employ aligned faces. Aligned
faces are those face images where most face parts are expected to be in the same position
in all images. Mainly, alignment methods focus on the eyes and try to move them to a
given position within the image by means of different techniques, such as scaling the image
and rotating it. In the literature, there are several works studying the usefulness of this
alignment [42, 65, 22] whose results show that aligned faces do not improve the accuracy of
the classification. For this reason, the experiments of this thesis do not use aligned faces.



Chapter 2 V Gender Classification Methodology 21

Image Resizing

As was shown in Section 2.2.1, the areas of the image containing the face can vary in size.
For instance, in images taken from the distance, the faces would appear smaller than if the
camera was closer to the individuals. This would result in detected areas of different sizes.
In order to have face images of the same size, the cropped images are scaled to a common
size. The interpolation process required for resizing the image uses a three-lobed Lanczos
windowed sinc function [62] which keeps the aspect ratio of the cropped face image. Some
authors have proved that the image resolution does not affect the gender classification as
long as the images have a reasonable size [46, 39, 27]. In Chapter 7, we analyse in depth
the effects of different image resolutions in solving gender classification problems.

2.3 Face Description

Once we have a preprocessed image containing the face area, the information provided by
the face should be described so a learning algorithm can learn from it. This information
is generally encoded as a set of numerical data (commonly referred to as features). There
are many ways of describing the information contained in an image, most of which can be
classified either as appearance-based or geometric-based approaches. In appearance-based
approaches, the information extracted from the image is based on the values of the pixels
in the image. These pixel values can be directly used as features or a transformation can
be applied to them to obtain a face description in a different space. In geometric-based
approaches, the information extracted is related to geometric characteristic of the face,
that is, distances or ratios between particular face parts. For instance, geometric features
could be the distance between the eyes, the eyebrows thickness or the ratio of mouth
width to thickness of lips. Regarding the extension of the area described, we can have
global or local features. Global features are those extracted taking into account the whole
image at once, as opposed to local features which are extracted from certain regions of the
image. Consequently, global descriptions provide information about the structure of the
face (configural information) as well as information about the individual face parts (featural
information), while local descriptions only provide information about isolated regions of the
face (featural information).

As mentioned above, the description of an image consists in a set of features (numerical
data) which is generally handled in the form of an array (known as feature vector). Let
D be the number of features (elements in such array), then a face is represented in a
D−dimensional feature space. This could be the original representation space, or it could
be a transformed space where the number of dimensions is usually smaller than D.

2.3.1 Grey Levels

The values of the pixels that form the face image can be directly used as features. In that
case, the content of the image is described by means of the grey level values of its pixels. A
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1st PC

2nd PC

(a) Data represented in the original space.

1st PC

2nd PC

(b) Data represented in the PCA space.

Figure 2.7: Two-dimensional data drawn from two classes before and after applying PCA (PCA
basis vectors shown in black).

description using grey levels consists in a vector whose elements are all the pixel values of
the image read following a pre-defined order. In the experiments, the process starts from
the top left corner pixel to the right and downwards. Even though this seems a very simple
and straightforward descriptor, it has successfully been used for addressing face analysis
problems, among them gender classification [39].

2.3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a widely adopted technique for transforming the
representation space [32]. By using PCA, our goal is to obtain a new representation space
that best describes the variance of our data. Additionally, PCA can also be applied to
reduce the dimensionality of the feature space. PCA analyses the data, which possibly
consist of several correlated features, and searches for a new space whose basis vectors
correspond to those directions in the original space with maximum variance. PCA could
be thought of as a procedure for revealing the internal structure of the data in a way that
best explains its variance. Figure 2.7 shows some data represented in the original space
(Figure 2.7(a)) and the PCA space (Figure 2.7(b)) with the basis vectors of the PCA space
in black. As can be seen, the greatest variance is given by the first component and the second
component provides the greatest possible variance while being orthogonal to the previous
component. This will continue to further components in a higher dimensional data. In PCA,
lower components always carry more variance than higher ones. Consequently, selecting
those components that account for a reasonably high percentage of the variance, we would
reduce the dimensionality of the representation space without much loss of information.
In Figure 2.7(b), keeping only the first component would result in a 1-dimensional space
where it would be possible to discriminate between both classes.
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Figure 2.8: The first 20 eigenfaces, that is, the first 20 eigenvectors showed as images. The PCA
was calculated with images from FERET database.

Formally, let W be a linear transformation that maps the original D−dimensional
space onto a F−dimensional space where D ≪ F . Then, new feature vectors are defined
by yi = WTxi where xi ∈ ℜD and yi ∈ ℜF . The columns in W are the eigenvectors ei
obtained from solving λiei = Aei, where A is the covariance matrix and λi is the eigenvalue
associated to the eigenvector ei. Before obtaining the eigenvectors, we should subtract the
average of all vectors to each of the vectors to ensure that the mean of the data is zero.

In our classification system, the transformation W is computed from the training data
and then new training and test sets are obtained by applying the transformation to the
original data. Usually, only those features containing a certain percentage of the variance
of the data (typically, 95% or 99%) are kept.

In face analysis, this method has been widely used, mainly for face recognition [57, 64,
50], but also for gender classification [37], leading to very good performances in both cases.
When the original data are face images, if the eigenvectors are shown as images, we see
that they could be identified as faces (in the literature they are referred to as eigenfaces).
Some eigenfaces are shown in Figure 2.8. When calculating the PCA transformation, we
are looking for a linear combination of these eigenfaces that produces the input face image.
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Figure 2.9: Computation of LBP8,R.

2.3.3 Local Binary Patterns

Local Binary Patterns (LBPs) were originally defined to characterise image textures [51].
More recently, they have been used as face descriptors [2] which provide information about
the texture of the face.

An LBP value associated to a given pixel is a binary number which is calculated consid-
ering a neighbourhood around that pixel. To create this binary number, all neighbours are
given either value 1, if they are brighter than the central pixel, or value 0 otherwise. The
values assigned to the neighbours are read sequentially in the clockwise direction to form
the binary pattern which characterises the central pixel. An example of the computation
of LBP values is depicted in Figure 2.9. It is worth mentioning that LBPs do not provide
information about contrast since the magnitude of the grey level differences is ignored.

To deal with textures at different scales, LBP can use neighbourhoods of different radii.
A local neighbourhood is defined as a set of sampling points spaced in a circle centred at
the pixel to be labelled. Hence, the radius of the neighbourhood indicates how far from the
centre the pixels considered are. The notation LBPP,R refers to LBPs with a neighbourhood
of P sample points on a circle of radius R. Figure 2.10 shows which pixels are considered
with neighbourhoods of various radii. In case a sample point does not fall in the centre of
a pixel, a bilinear interpolation1 is used.

The LBP operator can be improved by using the so-called uniform LBP [52]. A uniform
pattern is one that has at most two one-to-zero or zero-to-one transitions in the circular
binary code. The total number of uniform LBP values (LBPu

P,R), when considering a
neighbourhood of 8 points, is 58. Although the number of patterns is significantly reduced
from 256 (all possible LBP8,R) to 58 (LBP u

8,R), this smaller set of uniform patterns provides

1In image processing, a bilinear interpolation considers the four pixels of known values surrounding the
location of the unknown point. Then, a weighted average of the known values is computed to obtain the
interpolated value. The weights are based on the distances from the unknown point to the known pixels.
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(a) Radius R = 1 (b) Radius R = 2 (c) Radius R = 3

Figure 2.10: LBP8,R neighbourhoods for different values of R.

the majority of patterns of texture, sometimes over 90% [51].

As it has been described to this point, the LBP operator provides a representation
sensitive to rotation because several different codes can be obtained depending on which
is the first neighbour considered when creating the binary code. In Figure ?? the starting
pixel is the one on top, but it could be any of them as long as they are read in a clockwise
direction. In order to obtain rotationally invariant LBPs [52], all possible binary numbers
that can be obtained by starting the sequence from all neighbours in turn are considered.
Then, the smallest of the constructed numbers is chosen. If the object (in our case, the face)
is slightly inclined in the image, the rotation invariant uniform LBP (LBP

ri,u
P,R ) is supposed

to provide a description which is not affected by that inclination.

Normally, a representation based on LBPs consists in a histogram where the LBP val-
ues obtained for each of the pixel in the image (or area of interest) are accumulated. In
the histogram, the bins show how many times the corresponding LBP codes have been
produced. The number of bins depends on the type of LBP employed. In the literature,
the most common number of sample points (neighbours) is P = 8. In such case, if uniform
sensitive to rotation LBPs are used, the histogram has 59 bins, that is, 58 possible LBP u

8,R

values and an extra bin for accumulating all the non-uniform LBPs obtained. When using
rotation invariant uniform LBP, the number of bins is reduced to 10 bins, since there are 9
possible LBP

ri,u
8,R codes and an extra bin for all the other codes.

2.3.4 Local Contrast Histogram

Describing an image using the grey level values of its pixels implicitly provides information
about the contrast. However, shifts in the grey scale, which could be due to changes in
illumination, strongly affect such type of features. For instance, two face images of the
same person could seem quite different just because one is much darker than the other. In
cases where illumination cannot be controlled, Local Contrast Histogram (LCH) is a more
suitable descriptor, since it provides information about the contrast while being invariant
against shifts in the grey scale. LCHs are usually combined with LBPs to overcome the
lack of contrast information of the latter.
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Figure 2.11: Computation of LCH8,R.

LCH provides information of the contrast of local areas. For this purpose, neighbour-
hoods are defined in a similar way as for LBPs. Then, the contrast value associated to
the central pixel is calculated taking into account all its neighbours. To compute the local
contrast of a pixel, the average of the grey level values of those neighbours that are brighter
than that pixel is subtracted from the average of the grey level values of the darker ones.
An example of the computation of local contrast values is depicted in Figure 2.11.

More formally, let P be the number of sample points in the neighbourhood and g(i) be
the grey level value of the ith pixel in the neighbourhood. The contrast around the central
pixel, whose grey level value is gc, is,

C =
1

Nb

P∑

i=1

b(g(i) − gc)× g(i)− 1

P −Nb

P∑

i=1

b(gc − g(i)) × g(i) (2.5)

where

Nb =

P∑

i=1

b(g(i) − gc) (2.6)

and

b(x) =

{
1 x ≥ 0
0 x < 0 .

(2.7)

Finally, the local contrast values of all neighbourhoods are accumulated in a histogram
to obtain the LCHP,R descriptor. This notation means that the neighbourhood used has
P sample points on a circle of radius R. The number of possible contrast values can be
different for each image, therefore the number of bins in the LCH should be set beforehand.
In order to make LCHs directly comparable to LBPs, two versions of LCH are considered.
In one version, the number of bins is set to 10 (for comparisons with rotation invariant
LBPs) and, in the other, it is set to 59 (for comparisons with sensitive to rotation LBPs).
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2.4 Gender Classification

Gender classification is a pattern recognition problem, specifically it is an instance of su-
pervised learning. In this type of problems, we have samples from various classes whose
class labels are known. Those samples can be divided into two sets, the training set and the
test set. The features extracted from the training set, along with the corresponding class
labels, are passed to a learning algorithm which uses this information to build a classifier.
Once the model has been trained, test features can be fed into the classifier in order to
obtain a prediction of the class label of that test sample. Unlike in other pattern recogni-
tion problems, in gender classification special care should be taken for not including images
of the same individual in the same set (training or test). The reason is that if the same
subjects appeared in both set, the classifier could learn how to recognise individuals instead
of learning about the characteristics of each gender.

Summarising, the aim of this classification step is to build a classifier (also known as
model) with the ability to predict the gender of previously unseen faces. Thismodel could be
expressed in many forms, for example, graphs, algebraic equations or probability functions.
In this section, the models involved in the thesis as well as the learning algorithms used for
creating them are introduced.

2.4.1 K-Nearest Neighbour Classifier

The k-Nearest Neighbour (k-NN) is a very straightforward classification rule which provides
good performances despite its simplicity. In this case, no model is created and therefore,
there is no learning process. Its simplest version is 1-NN (where k = 1) and it works as
follows. Given a test sample z, the classifier looks for which of the training samples is the
most similar to z, and predicts z to have the same label as that sample. In the general
case, when taking into account k nearest neighbours, the classifier works as follows:

for each test sample z do
Find the k most similar training samples
Predict z to have the most common class label among those k samples

end

In the previous algorithm there is an unspecified detail, how to quantify the similarity
between two samples. There are different ways to do that, in our experiments this quan-
tification is done by measuring distances between samples represented in a vectorial space.
In particular, the Euclidean distance and the Chi Square distance are used. Being d the
number of features, let z = (z1, z2, ..., zd) and y = (y1, y2, ..., yd) be the feature vector rep-
resenting a test sample and a training sample, respectively. Then, the Euclidean distance
between them is,

Euclidean(z,y) =

√√√√
d∑

i=1

(zi − yi)2 (2.8)
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(a) The test sample is classified as “green square”. (b) The test sample is classified as “yellow circle”.

Figure 2.12: Examples of k -NN classification with k = 3. The test sample (red triangle) should be
classified as belonging to class “yellow circle” or “green square”.

and the Chi Square distance is,

χ2(z,y) =
d∑

i=1

(zi − yi)
2

zi + yi
. (2.9)

In order to choose the k nearest neighbours, the distance from the test sample to all training
samples should be computed. Therefore, this algorithm is computationally intensive for
large training sets.

Figure 2.12 shows the k-NN classification for two different test samples. It can be seen
that it does not matter how far the k nearest neighbours are from the test sample, this
classifier always takes into account the number of neighbours indicated.

Note that depending on the number of classes and the value of k, there could be a tie
for several classes. If those cases, a rule for breaking the tie should be defined. In our
experiments, ties are not possible because there are two classes and we always choose k to
be an odd number.

2.4.2 Parzen Windows Classifier

As the previous classifier, Parzen Windows [54] does not build a model. Parzen Windows
is a non-parametric technique which attempts to estimate the underlying density functions
from the training data. Given a test sample z, the training data is used to compute the
posterior probabilities of z belonging to each of the classes. The sample z is assigned to
the class with the maximum posterior probability.

More formally, considering a region R of the feature space which is centred at z, an
estimate of the probability of the underlying distribution at point z is,

p̂(z) =
M

NV
(2.10)



Chapter 2 V Gender Classification Methodology 29

(a) The test sample is classified as “green square”. (b) The test sample is classified as “green square”.

Figure 2.13: Examples of classification with ParzenWindows. The test sample (red triangle) should
be classified as belonging to class “yellow circle” or “green square”.

where M is the number of samples that fall within region R, N is the total number of
training samples and V is the volume of R. Assuming that R is a d−dimensional hypercube
centred at z with side length h and volume V , a Parzen Window, ϕ(·), is defined so that,
for all training samples xi, ϕ

(
z−xi

h

)
is equal to 1 if xi falls inside the hypercube and is 0

otherwise. Thus, the total number of samples within the hypercube is given by,

M =
N∑

i=1

ϕ

(
z− xi

h

)
. (2.11)

By substituting Eq. 2.11 and the volume of R in Eq. 2.10, an estimate for the probability
of sample z is,

p̂(z) =
1

N

N∑

i=1

1

V
ϕ

(
z− xi

h

)
. (2.12)

In order to obtain a more general approach to density estimation, other classes of windowing
functions rather than the hypercube can be used. A popular choice for the window function
is the Gaussian. In that case an estimate for the probability of sample z is given by,

p̂(z) =
1

N

N∑

i=1

1

V
√
2π

exp

[
− 1

2h2
(z− xi)

2

]
. (2.13)

For classifying sample z, Equation 2.13 is used to separately calculate the probability
of that samples, p̂(z), to belong to each class. That is done by taking into account only the
training samples, xi, that belong to one class at a time. Finally, z is assigned to the class
with higher probability.

Figure 2.13 depicts the Parzen Windows classification of two test samples. As can
be seen, the number of training instances that are considering in the classification varies.
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w

(a) Data represented in the original space.
The LDA basis vector is indicated by w.

w

(b) One-dimensional space obtained af-
ter applying LDA.

Figure 2.14: Two-dimensional data drawn from two classes before and after applying LDA.

Unlike in the k-NN classification, using this classifier we fix the size of the region, not the
number of samples.

All training instances are taken into account when estimating the probability of a test
sample which makes Parzen Windows computationally expensive with large training sets.

2.4.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [29] is a technique that searches for a linear transfor-
mation of the data into a new representation space where the classes are better separated.
This is achieved by maximising the ratio of between-class to within-class separation which
guarantees maximal separability.

The linear transformation provided by LDA maps the original D−dimensional space
into an F−dimensional space where F = c − 1 being c the number of classes. Figure 2.14
shows an example of how LDA will transformed the space of a 2-class problem into a new
1-dimensional space.

Formally, given an original feature vector x ∈ ℜD, its projection, y ∈ ℜF , into the
new space is defined by y = wTx. The learning algorithm for LDA looks for the linear
transformation, w, that maximises,

J(w) =
wTSBw

wTSWw
(2.14)

where SB and SW are respectively the between-class and within-class scatter matrices.
LDA is optimal when the classes are normally distributed. Considering a two-class (C1 and
C2) problem and assuming that p(x|Ck) ∼ N(µk,Σ), the linear transformation w is,

w = Σ−1(µ1 − µ2) (2.15)
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where µ1 and µ2 are the means of the classes C1 and C2, respectively, and Σ is the covariance
matrix. LDA assumes the same covariance matrix for all classes, that is, Σk = Σ,∀k.

Given a test sample, z, its predicted class is,

Ĝ(z) = argmax
k

δk(z) (2.16)

The linear discriminant function, δk(z), is,

δk(z) = zT Σ̂−1µ̂k −
1

2
µ̂T
k Σ̂

−1µ̂k + log(π̂k) (2.17)

where µ̂k is the estimated mean of each class, Σ̂ is the estimated covariance matrix and
π̂k is the estimated prior probability of class Ck. All these values are estimated using the
training data.

LDA is most commonly applied to a relatively low-dimensional intermediate space in
order to avoid mathematical problems due to the fact that the number of samples per class
is usually small with respect to the dimensionality of the original feature space (for details
see [14]). Hence, in gender classification problems, LDA is usually applied after reducing
the dimensionality with PCA [13].

2.4.4 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is an extension of LDA which uses the same normal
model but allows each class to have its own covariance matrix. This leads to quadratic
decision boundaries instead of linear boundaries which could potentially fit the data better.

The classification rule is that of Equation 2.16, but using a quadratic discriminant
function instead of a linear one. The quadratic discriminant function is,

δk(z) = −
1

2
log(|Σ̂k|)−

1

2
(z − µ̂k)

T Σ̂−1
k (z − µ̂k) + log(π̂k). (2.18)

2.4.5 Support Vector Machine

Support Vector Machine (SVM) [23] is a widely used technique for binary classification.
The main idea of SVMs is to find a decision boundary (a hyperplane) which optimally
separates the D−dimensional data into its two classes. Assuming linearly separable classes,
there are an infinity number of hyperplanes which correctly separate the samples of each
class. Figure 2.15 shows a scatter plot of some data drawn from two different classes and
two possible boundaries which perfectly separate both classes. Intuitively, looking at that
figure, it seems that the best separation is achieved by the hyperplane that maximises the
margins to the closest samples of each class (that is the boundary of Figure 2.15(b)). This
is what the learning algorithm for SVMs does, it finds a linear decision boundary with the
largest margins.
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(a) Non optimal decision boundary.

a
b

(b) Optimal decision boundary with maxi-
mum margins.

Figure 2.15: Two alternative decision boundaries that perfectly separate the data in two classes.

So far we have assumed that the data is linearly separable, however we can encounter
many problems where this assumption does not hold. In order to tackle non-linearly sep-
arable problems, SVMs use the “kernel trick”. The idea is to map the data into a higher
dimensional space where a linear separating boundary can be found. Figure 2.16 shows
non-separable 2-dimensional data which can be separated by a linear boundary (a 3-D
plane) after mapping it into a 3-dimensional space.

The kernel trick refers to the use of kernel functions which are a class of mathematical
functions that allow us to operate in the new space without computing the coordinates
of the data in that space. Although there are many kernel functions which can be em-
ployed, the most commonly used kernels for addressing gender classification problems are
the Polynomial kernel and the Radial Basis Function kernel [46, 39].

2.4.6 Ensemble Methods

Ensemble methods employ multiple models whose outputs are typically combined to obtain
the final prediction [38]. The general architecture of an ensemble of classifiers is depicted
in Figure 2.17. The principle underlying ensemble methods is that a decision based on
a combination of individual predictions should be more accurate, on average, than any
individual prediction.

A key factor in the design of ensembles is the combination strategy adopted. The
members of the ensemble could predict class labels, posterior probabilities, or any other
quantity. Depending on the type of the outputs, they can be combined following different
rules. Two of the most popular rules are the voting and the linear combiners. The strategies
followed for the ensembles used in this thesis are detailed in the corresponding chapter.

When choosing the base learners of the ensemble, the aim is to find classifiers which
differ in their decisions so they complement each other. There are several ways in what
they can be different from one another:

• Different learning algorithms for building the models.
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(a) Non-linearly separable data. (b) The same data is linearly separable af-
ter mapping it into a higher dimensional
space.

Figure 2.16: Non-linearly separable problem before and after mapping the data into a higher
dimensional space.

• Same model but with different parameter values, for example different k for k-NN
classifiers.

• Different training sets.

• Different representations of the same information.

When ensembles are employed in Chapter 3, we choose to create the base learners using
different representation spaces of the same faces. In particular, those various representations
are provided by means of different face parts.

2.5 Performance Evaluation

Once we have built a model using one of the algorithms described in the previous section,
we would need to evaluate the model’s performance on some other data which has not been
involved in the learning process. To this end, the available dataset should be divided into
subsets. In other words, some data should be left out of the learning process and saved
for evaluating the classifier. Therefore, in order to assess the classifier’s performance, we
need to decide how to divide the data. Another decision that should be taken is what
performance measure is appropriate. Depending on some characteristics of the problem,
for example, how many samples of each class we have, some measures are better indicators
of the classification performance than others. In this section, we discuss the techniques
adopted for dividing the data into subsets and the performance measures utilised in the
thesis.
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Figure 2.17: Architecture of an ensemble.

2.5.1 Partitioning the Data

In previous sections we have seen a possible solution for partitioning the data, that is,
splitting the data into two sets, training and test. Randomly dividing the data into two
sets is one among several possible approaches, however this is usually not the best way to
assess how good the model performs. The parameters of the model are optimised to fit
the training data, so significantly different models could be obtained when learning from
various training sets. Unless we had available an enormous amount of data, in such case
(which is rare in real problems) the models would not differ much. In order to obtain a
more accurate estimate of how well our classifier would perform in the real world, we could
take better advantage of the data we have by using a K-fold cross validation technique for
the evaluation.

K-fold Cross-Validation

In K-fold cross-validation, the data is randomly divided into K parts, called folds. To
obtain a pair of datasets, K − 1 folds are combined to form the training set, while the
remaining fold is kept as the test set. Doing this K times, each time taking as the test
set a different fold, we get K pairs of training-test sets. Figure 2.18 shows how the data
is split for a 5-fold cross-validation. With each of the K pairs of sets, a model learns from
the corresponding training set and is evaluated with the test set. Therefore, the model has
never seen the test data which simulates the real world.

With K-fold cross-validation, we obtained K set of predicted class labels. In order to
calculate the performance measure, the predicted labels in all folds are considered. For
example, if the measure consist in the number of correctly classified samples, we would add
the successfully predicted labels of the K folds and then divided it by K.

As has been previously mentioned, in gender classification problems, all images of the
same subject should be included in the same subset. That way, we avoid contamination
effects produced by learning from the same subjects who are going to be classified.
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Figure 2.18: Splitting the data into K = 5 folds for cross validation.

Table 2.1: Confusion matrix of a two-class problem.

Predicted Class

Positive Negative

T
r
u
e

C
la
s
s Positive True Positive (TP ) False Negative (FN)

Negative False Positive (FP ) True Negative (TN)

2.5.2 Performance Measures

Considering a two-class problem, the classification model predicts one of the two classes
which are usually referred to as positive and negative class. The terms positive and negative
usually denote the minority and the majority class, respectively. Given a classifier and an
instance (face image), there are four possible outcomes. If the instance is positive and it is
classified as positive, that counts as a true positive; if it is classified as negative, it counts
as a false negative. If the instance is negative and it is classified as negative, it counts as
a true negative; if it is classified as positive, it counts as a false positive. Given a classifier
and a set of instances (the test set), the outputs yielded by the classifier can be represented
by a 2× 2 confusion matrix. Table 2.1 shows the confusion matrix for a two-class problem
where the rows indicate the actual class and the columns indicate the predicted class of a
set of test samples. The numbers along the main diagonal represent the correct decisions
made, and the number of the secondary diagonal shows the errors between the classes.

Several performance measures can be easily derived from combining the four statistics
represented in the confusion matrix. Following, we present the measures employed to
evaluate the performances of the models utilised in the thesis.

Accuracy

The accuracy is probably the most popular way of evaluating the effectiveness of a model.
It computes the percentage of correctly classified samples over the total number of samples.
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From the values of the confusion matrix (see Table 2.1), the accuracy is,

ACC =
TP + TN

TP + FN + TN + FP
. (2.19)

This measure which is only based on the correct classifications is appropriate as a
performance measure when the data set is balanced. However, it is not suitable when there
is a considerable imbalance between classes. For example, let us assume that we have a set
of face images which is imbalance, there are 90% of males and 10% of females. This set
is divided into training and test subsets keeping the ratio of male-female. Then, a model
learns from that training set and we evaluate its performance using the test set. Given
such conditions, the model probably predicts “male” many more times than “female”. If
we think about an extreme case, it might only predict “male” because it has seen a much
larger number of males than females. As a result, the accuracy could be 90%, since the test
set has that amount of males (we kept the ratio male-female of the original set). However,
this is not a good assessment because that model lacks the ability of correctly classifying
female faces. Empirical and analytical studies have shown that this measure can be biased
when the classes are imbalanced.

Geometric Mean

The geometric mean (G-mean) indicates the balance between classification performances
on the positive and negative classes. This measure takes into account the sensitivity and
the specificity of the model. Sensitivity relates to the model’s ability to correctly predict the
positive class and specificity relates to the model’s ability to correctly predict the negative
class. Given the confusion matrix, the sensitivity is defined as,

Sensitivity =
TP

TP + FN
(2.20)

and the specificity is,

Specificity =
TN

TN + FP
. (2.21)

From these statistics, the measure G-mean is calculated by,

G-mean =
√

Sensitivity × Specificity . (2.22)

The value of G-mean is low when the model is strongly biased to one of the classes. There-
fore, G-mean can be considered an unbiased evaluation measure even in problems with
imbalance classes which could result in biased classifiers.

D-prime

D-prime (d′) is a statistic widely used in Signal Detection Theory which provides infor-
mation about the bias and sensitivity of a model. The bias relates to the tendency of
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misclassifying a negative sample in favour of the positive class, while, as previously men-
tioned, the sensitivity (also known as hit rate) indicates the model’s ability to predict the
positive class correctly. The measure D-prime is,

d′ = ZH − ZFA (2.23)

where ZH and ZFA are the z-scores of the hit rate and the false alarms, respectively. The
hit rate and false alarms are two of the metrics that can be calculated from the confusion
matrix. The hit rate (or sensitivity) is given by Equation 2.20, and the false alarms are,

FA =
FP

FP + TN
. (2.24)

The z-scores are used to compare the values of the two metrics assuming that they
follow a normal distribution. The z-score of a value x is,

Zx =
x− µ

σ
(2.25)

since normality is assumed, µ = 0 and σ = 1. This z-score indicates how many standard
deviations away from the mean the sample x lies. However, for computing d′ the area under
the standard normal curve is needed, which can be obtained by looking up the value of the
z-score in a Z table (standard normal table).

The computation of D-prime is based on two indices computed separately on the two
classes, which penalises biased classifiers. As a result, D-prime is robust to skewed classes
and a suitable measure for assessing the model in those type of problems.

2.6 Statistical Analysis

For providing a statistical analysis of the performances of various classification models, we
employ statistical tests. A statistical test is a procedure to check if a hypothesis holds by
analysing the data. Therefore, all the statistical tests are based on a null hypothesis which
is assumed certain and they search for evidence in the data to reject such hypothesis. In the
next sections, we explain the statistical tests that are involved in the thesis. For performing
these tests, we employ KEEL data mining software [3].

2.6.1 Iman-Davenport’s Test

Iman-Davenport’s [34] null hypothesis states that all models are equivalent. Therefore,
a rejection of this hypothesis implicates that there are significant differences among the
performances of the classification models studied. This statistic is a derivation of Friedman’s
statistic which ranks the models for each dataset separately according to their performances.
The model with the best performance gets the rank 1, the second best gets rank 2, and so
on. In case of ties, the average rank is given to those models. Let rij be the rank of the jth
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model on the ith experiment and Rj = 1
n

∑
i r

i
j be the average rank of the jth model over

all experiments. Then, the Friedman’s test is,

χ2
F =

12n

k(k + 1)


∑

j

R2
j −

k(k + 1)2

4


 (2.26)

where k is the number of models and n the number of experiments. This statistic follows a
Chi-square distribution with k− 1 degrees of freedom. From Friedman’s test we can derive
Iman-Davenport’s test as,

FF =
(n− 1)χ2

F

n(k − 1)− χ2
F

(2.27)

which is distributed according to the F -distribution with k−1 and (k−1)(n−1) degrees of
freedom. In order to reject the null hypothesis, the FF statistic should be higher than the
corresponding value of the F -distribution. In that case, significant differences exist among
the performances of the classification models studied.

2.6.2 Holm’s Method

Holm’s method [31] is a post-doc test which is applied to find out whether a control clas-
sification model presents statistical differences with respect to the remaining models. The
control model is usually the best according to Friedman’s ranking.

Holm’s null hypothesis assumes that the performance of the control model is statistically
equivalent to the performance of the other models. It consists in an iterative process that
sequentially checks the hypothesis associated with each model (except the control model,
since it is not compared with itself). For comparing the ith and jth models, the statistic z

is calculated by,

z =
(Ri −Rj)√

k(k+1)
6n

, (2.28)

where Ri and Rj are the average rank calculated with Friedman’s test for two models,
one of which is the control model. Then, this value z is used to obtained the p-value
from the normal distribution which will be associated with the hypothesis stating that the
performance of model i is equivalent to that of model j.

All the hypotheses are ordered according to their p-values, so that p1 ≤ p2 ≤ · · · ≤ pk−1,
where pi is the p-value of the i

th hypothesis. Holm’s method checks the following condition:

p(i) <
α

k − i
(2.29)

where α indicates the confidence level that should be reached to reject the hypothesis. If
the condition is met, the ith hypothesis is rejected (i.e. the performance of the ith model is
considered statistically worse than the performance of the control model), and the process
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continues with pi+1. As soon as one hypothesis cannot be rejected, the process stops and
the remaining hypotheses are supported.

Holm’s procedure also allow us to compute the adjusted p-values. Unlike the “un-
adjusted” p-values which only take into account one hypothesis, the adjusted p-value is
calculated considering the collection of hypotheses. An adjusted p-value for a particular
hypothesis is the smallest overall (that is, “experimentwise”) significance level at which
that particular hypothesis would be rejected. The adjusted p-value for the ith hypothesis
is, min{v, 1} where v = max{(k − j) pj : 1 ≤ j ≤ i}, k is the total number of models and
pj is the unadjusted p-value of the jth hypothesis.

In the statistical analysis presented in this thesis, the results of Holm’s method are
presented as shown in Table 2.2. The first column of the table shows the models in ascending
order with respect to the adjusted p-values associated to the corresponding hypothesis, the
second column shows their adjusted p-values. At the bottom of the table, the control model
is marked in bold. The models associated to the rejected hypotheses are shown above the
double line.

Table 2.2: Example of the presentation of the results of Holm’s method. The hypothesis associated
to the models above the double line are rejected with a significance level α = 0.95.

Models PHolm

Model A adjusted p-value A
Model B adjusted p-value B

Model C adjusted p-value C
Model D adjusted p-value D

Control Model

2.6.3 Wilcoxon’s Signed Rank Test

Wilcoxon’s Signed Rank test [66] provides pairwise comparisons, so statistical differences
between each pair of classification models can be found. For each pair, Wilcoxon’s null
hypothesis assumes that both classification models perform equally. This test proceeds by
ranking the differences in performance of two models. Let di be the difference between the
performances of two classification models on the ith experiment. Then, the differences di ∀i
are ranked according to their absolute values, assigning rank 1 to the smallest difference.
Let R+ and R− be calculated as follows:

R+ =
∑

di>0

rank(di) (2.30)

R− =
∑

di<0

rank(di). (2.31)
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The ranks where di = 0 are split evenly among R+ and R−. When there is an odd
number of cases where di = 0, one of those ranks is ignored. Being Z = min(R+, R−), if
Z is less or equal than the Wilcoxon distribution for n degrees of freedom, then the null
hypothesis stating that both classification models are equivalent is rejected.

In the statistical analysis presented in this thesis, a summary of the results of Wilcoxon’s
Signed Rank test is presented as shown in Table 2.3. In the table, if the model in the row
significantly outperforms the one in the column the symbol “•” is shown, the opposite case
is indicated by the symbol “◦”. Those differences marked above the main diagonal have a
significance level α = 0.90 and, for those below it, the significance level is α = 0.95.

Table 2.3: Example of Wilcoxon’s Signed Rank test results. The symbol “•”= the model in the
row outperforms that of the column, and “◦”= the model in the column outperforms that of the
row. Above main diagonal, the significance level is α = 0.9, below the main diagonal α = 0.95.

1 2 3 4

Model A (1) - ◦ ◦

Model B (2) - ◦ ◦

Model C (3) • •

Model D (4) • •



CHAPTER 3

The Role of Face Parts and Their Complementarity

With the information provided by the whole face, automatic systems can successfully
classify the gender of a person, but what are the most useful face parts for distinguish be-
tween genders? In this chapter, we study the role of the most prominent face parts in gender
classification as well as whether different face parts contain complementary information.

3.1 Motivation and Background

Why could it be interesting to evaluate the effectiveness of using face parts for gender
discrimination? A first answer to this question could be related to classification under
partial occlusions of the face. In the real world, faces can be partially covered by accessories
such as sunglasses, hats, and scarves. Therefore, by evaluating the discriminant capabilities
of isolated face parts, we could determined whether it is feasible or not to classify the gender
in these situations. One way to proceed would be to use the effectiveness of classifying
gender given a visible part as the reliability of the prediction. An extended approach could
evaluate the efficacy of two or more visible face parts to jointly predict the gender.

In the literature, some papers studying the importance of face parts in gender classifi-
cation [36, 19] have been published. Kawano et al. [36] evaluated the differentiation capa-
bilities of the full face, the jaw, the lips/mouth, the nose and the eyes. These regions were
manually clipped, represented by an appearance-based method, and classified using Linear
Discriminant Analysis. The best classification rates were 93.7% and 89.8% by the full face
and jaw, respectively, while the worst accuracy rates were lower than 80% and correspond
to the nose and eyes. These results are certainly contrary to general intuition, according to
which the eyes or mouth seem more relevant than the jaw to discriminate between women

41
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and men. Apart from subjective judgements, the generalisation of these results is limited
when taking into account the fact that the database only contained expressionless Asian
faces.

In other related work, Buchala et al. [19] compared the roles of the full face, the eyes
region (top half of the face) and the mouth region (bottom half of the face) in gender
classification. Subimages with these face parts were extracted and their dimensionality
reduced using Principal Component Analysis, Curvilinear Component Analysis and Self
Organising Maps. Then, the classification was performed by a Support Vector Machine
with a Radial Basis Function kernel. The best gender classification rate was achieved from
a joint representation obtained from the full face, eyes and mouth. When only individual
parts were considered, the accuracies were 85.5% and 81.25% for the eyes and mouth,
respectively. In that study the role of more general face parts (with respect to [36]) was
evaluated. However, they did not include the nose and the jaw (since they only considered
the face in two halves), and the hair was not removed in full faces. They admit that the
hair had a dominating effect on the gender classification based on full faces.

Considering that the results about the discriminant capabilities of face parts obtained
in [36, 19] depend on specific components (dataset, classifier, face part description), care
should be taken when interpreting their conclusions. For example, the relation between
gender classification rates from eyes and mouth is inverted in the two studies, eyes being
more discriminant than mouth in [19], and mouth more accurate than eyes in [36].

In this chapter, we go beyond these previous related works, as regards the number of face
parts and the diversity of the experimental design. A total number of eight face parts are
considered, which are the right eye, both eyes, the nose, the mouth, the chin, the internal
face, the external face and the full face. Each one of them is accurately detected in the image
in order to not contain extra information that is not provided by the face part in question.
For each face part involved, the performances of four different classifiers are compared
to check if the discriminant capabilities of the face parts are consistent among classifiers.
Besides this comparative study, an analysis of the complementarity of the information
provided by different face parts is presented. This complementarity is evaluated by means
of ensembles of classifiers where the input to each base classifier is a different face part.
Several ensembles are defined varying the number of face parts involved and the method
chosen for combining the outputs of the base classifiers.

3.2 The Role of Face Parts

In previous related works, Kawano et al. [36] studied the role of the eyes, right eye, nose,
mouth, jaw and full face in gender classification. The face images were cropped manually
to obtain images containing only those face parts. In particular, the area considered as eyes
consisted in a rectangular region containing both eyes and the space between them, and the
nose was a squared area containing the nose and its surroundings. Although, the face parts
were produced manually to ensure a correct selection, the definition of these regions was
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not accurate enough to provide subimages containing the isolated face part and not much
extra information. A more general division of the face in parts was presented by Buchala
et al. [19] in a study of the discriminant capabilities of the top and bottom halves of the
face.

Our aim is to provide a detailed evaluation of the role of face parts in gender classifi-
cation, broadening what can be found in the literature. To this goal, eight different face
parts are selected. In the following sections, the processes for locating and describing these
face parts are explained in depth.

3.2.1 Division of the Face in Parts

In this study the discriminant capabilities of five isolated face parts and three global parts
are analysed. Particularly, the isolated face parts are: both eyes (including eyebrows), the
right eye, the nose, the mouth, and the chin; and the global parts are: the internal face
(eyes, nose, mouth, chin), the external face (hair, ears, contour), and the full face. The
process for locating and extracting these face parts from the face images is detailed next.

Given a frontal face image and the coordinates of the two eyes, the regions containing
the face parts of interest are defined according to expected proportions of an aesthetic face.
The extraction process of face parts is based on an empirical rule about the ideal balance
of a human face sketched by Leonardo da Vinci [48]. Da Vinci stated that perfect facial
harmony exists when the face can be divided into three equal horizontal sections whose
boundaries match with the hairline, the eyebrows, the bottom of the nose and the chin,
and it can also be partitioned into five vertical sections that approximate the width of one
eye. This rule about the proportions of the face was explained in Section 2.2 as a method
for detecting faces. Here, we use a modification of this technique for locating each of the
face parts of interest in the image.

A grid that helps to locate the position of each face part of interest is superimposed on
the face images. The vertical sections of this grid follow the previous rule, but the horizontal
sections are based on a different arrangement, in which some key face features are centred
in certain cells of the grid. The layout of this grid is automatically computed from the
knowledge of the coordinates of the eyes. Let (xr, yr) and (xl, yl) be the coordinates of
the centres of the right and left eye, respectively. Then, the distance between the eyes is
d =

√
(xl − xr)2 + (yl − yr)2 and the middle vertical position between them is pm = yr+yl

2 .
Given this data, all the necessary points for creating the grid are calculated using Equations
3.1 to 3.12.

x1 = xr − 0.75 × d (3.1)

x2 = xr − 0.25 × d (3.2)

x3 = xr + 0.25 × d (3.3)

x4 = xl − 0.25 × d (3.4)

x5 = xl + 0.25 × d (3.5)

x6 = xl + 0.75 × d (3.6)
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Figure 3.1: Grid based on the eye coordinates, created from the Equations 3.1 to 3.12, used to
locate the face parts in the image (the points calculated with the equations are marked in green).

y1 = pm − 1.15× d (3.7)

y2 = y1 + 0.8 × d (3.8)

y3 = y1 + 1.4 × d (3.9)

y4 = y6 − 0.5× d (3.10)

y5 = y6 − (0.33 × (y1 − y6))(3.11)

y6 = pm + 1.8 × d (3.12)

An example of the resulting grid superimposed on a face image is shown in Figure 3.1.
The regions of the grid can fully enclose the eyes, but other important parts like the mouth,
nose, and chin are delimited only in one direction. For example, the nose is enclosed in the
vertical direction, while the mouth is only enclosed horizontally. To fully describe these
features, new zones are created by joining adjacent (parts of) cells of the grid. In Figure 3.2
the cells of the grid selected for creating the subimages containing the isolated face parts
are marked in blue. Notice that the nose is extracted by joining one cell and half of another
and the mouth and chin are enclosed in three adjacent cells.

The global face parts included in our study are:

• The Full face which is the whole area enclosed by the previously defined grid.

• The Internal face consisting in the area delimited by the eyebrows and the chin
without including ears or hair.

• The External face which mainly consists of the forehead, ears and part of the hair.
This part results of subtracting the internal face from the full face.

The isolated face parts considered are:

• The eyes which only include the eyes and eyebrows but not the area in between.
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(a) Eyes (b) Nose (c) Mouth (d) Chin

Figure 3.2: Cells containing the isolated face parts (marked in blue). Notice that to extract a
subimage of the nose one cell and half of another are selected.

(a) Full face (b) Internal face (c) External face

(d) Eyes (e) Right eye (f) Nose (g) Mouth (h) Chin

Figure 3.3: The extracted subimages containing the face parts of interest.

• The right eye is the right eye contained in the part with both eyes.

• The nose which spans from the corner of the eyes to the tip of the nose.

• The mouth which is closely delimited vertically but it takes some of the area beyond
the corner of the lips (this is due to the high variability of the width of different
people’s mouth).

• The chin which includes some small parts of the neck due to its normal curvature.

Figure 3.3 shows an example of all the eight subimages containing these face parts extracted
from a face.
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3.2.2 Experimental Methodology

In order to evaluate the effectiveness of the selected face parts for classifying gender, several
experiments are performed. For conducting these experiments, the general methodology
presented in Chapter 2 is adopted. The steps 2 to 4 of the methodology are performed
independently for each of the eight face parts in which the face has been divided. Therefore,
this process can be seen as a standard pattern recognition problem. In fact, there are eight
classification tasks with the same number of instances and the same set of labels which
can be handled as individual problems. Below, the particularities of each step of the
methodology are described.

Step 1. Preprocessing

Given a face image, it is converted to grey scale format and the grid enclosing the face
parts is computed using the coordinates of the eyes. These coordinates are provided in
the face databases. Once the region containing the face is located, this area of the image
is equalised which provides better contrast in that area and avoids some problems due to
different illumination conditions among the images. Finally, one subimage per face part is
extracted as described in Section 3.2.1. An example of the resulting subimages is shown in
Figure 3.3.

Step 2. Feature Extraction

Given a subimage containing one of the face parts in which the face has been divided follow-
ing the process detailed in Section 3.2.1, it is scaled down to a low-resolution image, where
new pixels are computed by interpolating the original ones. The new reduced subimage is
then represented as a vector of the grey level values of the pixels in the image from the left
top corner to the right and downwards.

In order to reduce the dimensionality of the feature space, Principal Component Analysis
(PCA) is applied. PCA searches for a feature space which basis vectors correspond to those
with the maximum variance in the original space. For obtaining PCA features, first the PCA
basis vectors are calculated from the grey level values of the subimages in the training set.
Then, this transformation is applied to the grey level features extracted from the training
and test sets. A more detailed explanation of this technique is provided in Section 2.2.

Step 3. Classification

Due to the fact that only individual classifiers are considered in this first study, the clas-
sification process follows a standard scheme. First, a classifier learns from the features
extracted from training face parts. Then, the classification performance of that trained
classifier is estimated by using an independent test set of the same face parts that belong
to subjects which were not in the training set. In our experiments, four different classifiers
are involved:
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• Support Vector Machine (SVM),

• K-Nearest Neighbour (k-NN),

• Quadratic Discriminant Analysis Classifier (QDC), and

• Parzen Windows Classifier (Parzen).

For a further understanding of the classification process and these particular classifiers, see
Section 2.4.

Step 4. Performance Assessment

The performance of the classifiers is evaluated by means of the correct classification rate.

3.2.3 Face Image Dataset

The experiments involve two standard datasets of face images, FERET and XM2VTS, both
described in Sections A.2 and A.4, respectively. From FERET, 2,147 images of 256 × 384
pixels from 834 subjects were used. From which 1,305 were male faces and 842 were female
faces, resulting in a ratio of males to females of 1:0.6. From XM2VTS, 1,378 images of
720 × 576 pixels from 203 subjects were used. From which 646 were male faces and 732
were female faces, resulting in a ratio of 0.8:1. All these images show a frontal view of faces
without occlusions. Both of these databases provide the coordinates of the eyes for each of
the face images, which are used in the process of locating the different face parts.

3.2.4 Experimental Setup

In this study, one experiment per each combination of face part, classifier and dataset is
performed, resulting in a total of 96 experiments (8 face parts × 6 classifiers × 2 datasets).

The classification results of each of the experiments are estimated by a 5-fold cross-
validation technique. Special care is taken to have all images of the same individual in the
same partition, to avoid the contamination effects that this could produce. Additionally,
when creating these partitions, the class balance of the original datasets is maintained.

Regarding the classifiers, the SVM uses a linear-polynomial kernel and the k-Nearest
Neighbour classifier uses the Euclidean distance and k = 1, 5, 9. The implementations of
the classifiers are those available in the PRTools Matlab package [26] with their default
parameter values if not indicated otherwise.

Implementation Details

In this section, some implementation details are provide in order to ease the replication of
the experiments of this study.

For scaling down the subimages containing the face parts of interest, the method adopted
is to represent each cell of the grid with 36 (6 × 6) features. Consequently, the full face is
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(a) Original Resolution (b) Reduced Resolution

Figure 3.4: Example of scaling a chin subimage to a lower resolution image.

Table 3.1: Number of dimensions of the feature space, build from the FERET dataset, before and
after applying PCA.

eyes nose mouth chin right internal external full
eye face face face

before PCA 72 54 108 108 36 432 468 900
after PCA 38 29 48 36 21 62 59 101

reduced to 30 × 30 features (since it consists of 5 × 5 cells), the internal face to 24 × 18
features (4 × 3 cells), the eyes to 6 × 12 features (1 × 2 cells), the nose to 9 × 6 features
(1.5×1 cells), the mouth to 6×18 features (1×3 cells), and the chin to 6×18 features (1×3
cells). The external face is a special case, since it has an empty space were the internal
face should be. Then, it results in 5 cells covering the forefront, and 8 cells counting both
outer sides of the face which is a total of 13 cells (given that each cell is reduced to 36
features, it results in a total of 468 features). An example of the effect of this scale-down
process is shown in Figure 3.4, where a subimage containing a chin is shown before and
after this reduction. The dimensionality of the feature space is reduced by applying PCA
and retaining 99% of the variance of the training data.

3.2.5 Results

In this section the results obtained are presented and discussed with respect to the image
dataset involved. Following, a general discussion of all the obtained results is provided.

Results on FERET database

The number of features extracted from each face part, and the dimensionality of the final
feature space after applying PCA to the grey level representations is shown in Table 3.1.
The correct classification rates obtained in the experiments are shown in Table 3.2. These
same results are shown in Figure 3.5.

The first point to be considered is related to the high discriminant power of the five
isolated face parts, most of them led to classification rates above 80%, mainly for the SVM,
QDC, 9-NN and Parzen classifiers. With regard to the relative importance of each of them,
the nose was the most relevant part in identifying gender for all classifiers except QDC, for
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Table 3.2: Classification accuracies per face parts on FERET images.

eyes nose mouth chin right internal external full
eye face face face

SVM 85.47 86.36 81.61 81.56 81.51 92.37 87.71 95.21
1-NN 77.51 78.39 75.37 76.76 73.04 83.28 84.22 86.54
5-NN 82.07 82.49 79.79 78.53 79.65 87.48 86.17 87.89
9-NN 82.91 83.38 80.68 79.70 80.12 88.03 86.31 87.62
QDC 84.03 81.23 79.46 81.14 82.21 89.11 89.25 92.37
Parzen 80.35 81.88 79.74 78.67 76.81 85.38 85.98 87.44

which learning from eyes led to a better result. Moreover, these two parts (nose and eyes)
were more discriminant than the mouth and chin for all classifiers.

As expected, gender classifiers based on global parts of the face were more accurate
than those based on individual parts. When SVM and QDC learned from internal, external
and full faces, classification rates were very close to or higher than 90%. In particular, the
SVM with descriptions of full faces achieved accuracies above 95%. It is also interesting to
remark that the external face by itself, dominated by hair, was almost as discriminant as
the internal part of the face (see Figure 3.3 for an example of the internal and external face
parts). Bearing in mind that the full face is the integration of the internal and the external
parts, the effective contribution (in terms of new information) of each part with respect to
the other was very small (no greater than 3%).

Results on XM2VTS database

The number of features extracted from each face part, and the dimensionality of the final
feature space after applying PCA (retaining 99% of the variance of the original data) is
shown in Table 3.3. Using these reduced spaces, the gender classification rates obtained by
each classifier are numerically shown in Table 3.4 and, graphically, in Figure 3.6.

These results are clearly lower than those obtained with FERET. In these experiments
over XM2VTS images, not all individual parts turned out to be as effective for classifying
gender as in FERET. Taking into account their relative importance, the mouth and the

Table 3.3: Number of dimensions of the feature space, build from the XM2VTS dataset, before and
after applying PCA.

eyes nose mouth chin right internal external full
eye face face face

before PCA 72 54 108 108 36 432 468 900
after PCA 42 33 54 48 23 74 76 125
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Figure 3.5: Classification accuracies per face parts on FERET images.

eyes (including the single right eye) were the most discriminant parts for all classifiers.
Good results were also obtained for the chin dataset, while rates derived from the nose
were surprisingly low.

Although global parts of the face are, in general, more effective than individual parts
for gender classification, there are important singularities that can be highlighted. Firstly,
the differences between global parts and the best individual part (the mouth) is negligible
for 4 (similar) classifiers: {1,5,9}-NN and Parzen. Secondly, the internal part of the face
appears to be as discriminant as the full face, which suggests that the external part does
not contribute any new information. In fact, the external part produces lower recognition
rates than the mouth.

3.2.6 Discussion of the Results

In general, the performances achieved using FERET images are superior than the results
obtained with XM2VTS faces. The significant differences between both databases could
explain the poorer classification results in XM2VTS. Specifically, the number of subjects
in FERET is about 4 times larger than the number of individuals in XM2VTS, while the
number of images per subject is twice as much in XM2VTS than in FERET. In other
words, FERET contains more samples of different female and male faces than XM2VTS
which contains more duplicates (images of the same person). Therefore, FERET provides a
more varied group of faces than XM2VTS which allows the classifier to learn more general
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Table 3.4: Classification accuracies per face parts on XM2VTS images.

eyes nose mouth chin right internal external full
eye face face face

SVM 82.52 60.38 84.04 76.35 80.34 90.79 84.26 90.64
1-NN 77.58 59.87 83.24 68.44 76.06 83.97 79.18 83.75
5-NN 79.98 63.36 83.10 73.95 78.38 84.62 80.34 84.40
9-NN 79.98 63.65 83.53 73.81 79.25 84.91 80.41 84.55
QDC 80.99 64.52 83.39 76.56 80.12 90.43 83.02 83.39
Parzen 79.10 62.49 83.89 73.15 77.07 84.47 80.19 85.71

differences between genders.

Analysing only the results achieved when using isolated face parts, the eyes resulted in
good classifications in both databases, while mouth and chin were also effective. The nose,
in spite of being the best individual part in FERET, produced very poor results in XM2VTS.
This could be explained by the different illumination conditions between databases. Due
to the fact that the nose is usually the most salient part of the face, it is highly exposed to
changes in illumination which might produce more unstable descriptions when compared
to other face parts.

Due to the fact that global face parts contain much more information about the face
than isolated parts, they led to better classification accuracies. As expected, the full face
was the most successful global description, closely followed by the internal face. It is worth
noting that the external part of the face (composed of part of the hair, the forehead, the
ears and the contour) provided valuable discriminant information for predicting gender,
since there is a high correlation between gender and traditional cultural patterns such as
the length of hair and the use of earrings. However, for this same reason, this external part
could lead to misclassification depending on the scenario of the problem, for instance, if the
person was in disguise.

As regards the influence of classifiers on the relevance of face parts, the results show
a high correlation among the behaviours of the different classifiers which allows to draw
robust conclusions about the discriminant capabilities of each face part.

3.3 Complementarity of Face Parts

In the previous section, it was proved the capability of individual face parts to successfully
distinguish between genders. The use of these isolated face parts is useful for classifying
gender in the presence of partial occlusions of the face. The fact that a subject’s face is
simultaneously described in different feature spaces, coming from different face parts, has
triggered research into the possibility of creating ensembles based on such diversity.

The goals of this section are to analyse whether a potential complementarity among face
parts exists and which combinations of those parts provide more discriminant information
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Figure 3.6: Classification accuracies per face parts on XM2VTS images.

for solving gender classification problems. Assuming that not all face parts might be avail-
able, ensembles of classifiers based on the visible parts could model the joint contribution
of the involved parts to predict the gender. To this end, ensembles of classifiers based on
several face parts are designed. These ensembles are then compared with plain classifiers
which are trained with isolated face parts.

A First Evidence of Complementary Information between Face Parts

A preliminary study on the potential complementarity among face parts is carried out
using the results of the experiments presented in Section 3.2. The disagreements of the
SVM classifier (which results were shown in Table 3.2) when learning from each pair of
face parts on FERET instances is shown in Table 3.5 (the right eye is excluded from
this study for simplicity since it is included in the eyes part). Each number in the table
represents the percentage of samples which are successfully classified by the row classifier
and erroneously predicted by the column classifier. In other words, each percentage is
the potential improvement of the classification (with respect to the column classifier) if
both classifiers were used in conjunction. Obviously, the performances of classifiers with
lower rates of success have a stronger chance of being enhanced than others with higher
accuracies. For example, those classifiers based on mouth and chin could improve their
accuracies about 12-13%, while the classifier based on the full face is expected to improve
just about 1-2%.
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Table 3.5: Percentage of disagreements between SVM classifiers based on different face parts from
FERET images. Each number represents the percentage of instances which are successful cases for
the row classifier and error cases for the column classifier.

Eyes Nose Mouth Chin
Internal External Full
face face face

Eyes - 8.80 13.97 14.01 3.35 8.01 2.46
Nose 9.68 - 11.73 12.90 3.07 7.49 1.63
Mouth 10.10 6.98 - 8.57 2.65 6.28 1.76
Chin 10.10 8.10 8.52 - 3.16 6.42 1.95
Internal face 10.24 9.08 13.41 13.97 - 9.08 2.14
External face 10.24 8.84 12.38 12.57 4.42 - 1.02
Full face 12.20 10.47 15.37 15.60 4.98 8.52 -

After looking at the percentage of disagreements, it seems that there is a high potential
for defining robust mixtures of classifiers to improve the performance of individual classi-
fication models. The possibility of creating ensembles which make use of the diversity of
different representations (face parts) of a same face image is studied in depth next.

3.3.1 Combining Information from Different Face Parts

Several ensembles of classifiers are used to prove that the joint contribution of separate face
parts has more discriminant capabilities than classifications based on individual parts. In
particular, ensembles of predictors based on three and five parts are designed, whose deci-
sions are combined using simple and weighted voting, and a SVM classifier. Additionally,
the results of these ensembles are compared with those obtained by individual classifiers
based on single face parts.

The face parts involved in this complementarity study are two global parts (internal
face and full face) and five isolated parts (right eye, left eye, nose, mouth, chin). The
eyes participate as two separate entities to find out if one of them is more useful than the
other for classifying gender. Unlike in the previous analysis of the role of face parts, the
external face is not used in the experiments, since it could lead to erroneous classifications if
the subjects were in disguise (for instance, wearing a wig). Figure 3.7 shows an example of
these seven face parts extracted from a face image. For extracting the subimages containing
each face part, the same method as in the previous study is adopted (for more details see
Section 3.2.1).

Ensembles of Classifiers based on Different Face Parts

In order to check whether the information provided by a face part complements that ex-
tracted from a different part, several ensembles of classifiers are designed. These ensembles
consist of several base predictors where each of them specialises in a particular face part.
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(a) Full face (b) Internal Face

(c) Right eye (d) Left eye (e) Nose

(f) Mouth (g) Chin

Figure 3.7: Example of the subimages containing the face parts of interest.

In other words, each base classifier learns from a specific face part and predicts the gender
of a test subject given that face part. Then, those base predictions are combined to obtain
the final prediction. In our study, SVM is selected as the base model and three combina-
tion strategies are tested. Here, the explanation is focused on the approaches adopted for
combining the outputs of the base SVM classifiers.

As mentioned previously, three combination strategies are involved in the experiments.
Specifically, two of these strategies are based on voting, simple and weighted voting, while
the third one uses a classifier whose inputs are the outputs of the base predictors.

Simple voting (Esvot)
It is the simplest way of combining the output of the base predictors. This combina-
tion rule is a majority vote over the predictions of the members of the ensemble.

Let us denote by dj(x) the prediction of the base classifier Mj given input x. In
a C-class problem, let us assume L base classifiers which produce C outputs each,
so a prediction would be referred to as dji(x) where i = 1, . . . , C and j = 1, . . . , L.
Considering crisp base classifiers which provide binary outputs, dji(x) = 1 if the class
predicted for x byMj is Ci, and dji(x) = 0 otherwise. Combining those predictions by,

fi(x) =

L∑

j=1

dji(x) (3.13)

where i = 1, . . . , C, we generate C values. Then, we choose the class Ci if fi = max
k

fk.

In our experiments, we cannot encounter a tie vote because the number of base clas-
sifiers is always odd (the proposed ensembles have three or five members) and the
decision is made between two classes (male and female).

Weighted voting (Ewvot)
It is a simple combination strategy consisting in a weighted summation of the outputs
of the base predictors per class. In our case, the base predictors (SVM classifiers)
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supply additional information about how much they vote for each class (that is, the
posterior probabilities) which are used as weights.

Let wji(x) be the posterior probability of class Ci given the base learner Mj and
the input x, that is, P (Ci|x,Mj). The combination of these posterior probabilities is
given by,

fi(x) =
1

L

L∑

j=1

wji(x). (3.14)

The final prediction for x would be the class Ci with the maximum value of fi(x).

A classifier (Esvm)
It is a combination scheme based on a new input space which is defined by the
posterior probabilities of the base classifiers. The idea is that an external classifier
(trained with this new space) performs the combination of the base predictor outputs.
In order to get a first idea of how this combination strategy works, Figure 3.8 shows
the architecture of an ensemble which uses it.

Given a set of training images, the way to proceed to train the combination classifier
is collecting the a posteriori probabilities of each member of the ensemble. Provided
these posterior probabilities, a new training set is created with them (this can be seen
as a projection of the original training samples into a new input space). In other
words, the input of the combination classifier are the probabilities of each part to
be from a female and from a male face. Therefore, the dimensionality of this new
space is twice the number of base predictors. The posterior probabilities are obtained
by means of a 5-fold cross-validation technique which uses the training images for
training and validating the base classifiers. Once the combination classifier has been
trained, the base learners are trained with the complete training set.

Given a test face image divided into face parts, each face part goes through the
corresponding base learner. The outputs of each base learner (the two probabilities of
that part being from a female and a male face) are passed to the trained combination
classifier. Finally, a prediction of the gender of that face is obtained.

Several ensembles are designed based on five and three isolated face parts. In particular,
all the above combination methods are used in mixtures of classifiers based on five different
parts. However, the ensembles using three face parts combine the output of individual
classifiers only by using another classifiers (excluding the simple and weighted voting from
this part of the study).

3.3.2 Experimental Methodology

The methodology followed to carry out the experiments has the same four steps as the
general approach extensively detailed in Chapter 2. Below, some specific details of those
steps which are different from the general methodology.
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Figure 3.8: Architecture of an ensemble of classifiers with a classifier as a combination strategy.

Step 1. Preprocessing

In this experimental study, the face parts that intervene are the full face and the internal
face as holistic face parts, and the right and left eyes separately, the nose, the mouth and
the chin as isolated face parts. Figure 3.7 shows an example of each of these seven face
parts involved in the experiments.

Step 3. Classification

The classification process is performed by two types of classification models: ensembles
of classifiers and individual classifiers. As described in Section 3.3.1, the ensembles of
classifiers used in this study have SVMs as base learners whose outputs are combined by
three different methods (simple and weighted voting and another classifier). Specifically,
these ensembles are evaluated when using the five isolated face parts extracted (right eye,
left eye, nose, mouth, chin). Additionally, four extra ensembles are designed using groups
of three face parts. In Section 3.3.4, specific details about which face parts are used by each
ensemble are provided.

With the purpose of checking if ensembles improve the results achieved by individual
classifiers, the ensemble performances are compared to those obtained by seven individual
classifiers each based on a different face part.

3.3.3 Face Image Dataset

The experiments are based on the FERET [55] database. The images used are the same
images selected from this database in the previous study (see Section 3.2.3).
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Table 3.6: Summary of the face parts involved in the ensemble of classifiers.

Face Parts

left eye right eye nose mouth chin

E∗

svot × × × × ×

E∗

wvot × × × × ×

E∗

svm × × × × ×

Eenm
svm × × ×

Eenc
svm × × ×

Eemc
svm × × ×

Enmc
svm × × ×

3.3.4 Experimental Setup

This section describes the experiments performed which involved ensembles of classifiers
based on five or three face parts. A summary of which face parts are used per each of the
ensembles is shown in Table 3.6. Those ensembles based on five face parts, which correspond
precisely to all the isolated face parts extracted (right eye, left eye, nose, mouth, chin), are
denoted by E∗

svot, E
∗

wvot, and E∗

svm. In this notation, the subscripts refer to the combination
strategies for the base predictions, which are simple voting, weighted voting and a SVM
classifier, respectively. For the ensembles based on three face parts, only the strategy
of combining the base outputs using a SVM classifier is employed. These ensembles are
based on all possible combinations of the left eye, nose, mouth and chin. Only one of the
eyes is included in this experiments, because it is expected that both eyes provide similar
discriminant information. Specifically, the ensembles of three face parts used are: Eenm

svm

based on the eye, nose and mouth; Eenc
svm based on the eye, nose and chin; Eemc

svm based on
the eye, mouth and chin; and Enmc

svm based on the nose, mouth and chin.

A SVM with linear-polynomial kernel was chosen for the base predictor of the ensembles
due to its proved effectiveness in solving gender classification problems as it was shown in
Section 3.2. The implementation of these SVM classifiers used is the one available in the
PRTools Matlab package [26]. These two groups of experiments are designed to compare
the performance of individual classifiers and ensembles under the same circumstances. The
objective of this comparison is to prove that integrating several face parts provides more
discriminant information than single face parts.

The experimental results are computed by averaging five independent runs of a 5-fold
cross-validation technique (which gives a total of 25 runs). In each of these runs, the
face images of the same individual are only used for training or testing purposes to avoid
contamination effects.
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Table 3.7: Classification accuracies [and their 95% confidence intervals] on FERET database using
individual classifiers and ensembles.

Individual Classifiers

left eye right eye nose mouth chin internal face full face

82.0 81.5 86.4 81.6 81.6 92.4 95.2
[80.6, 83.4] [80.1, 82.9] [85.1, 87.64] [80.2, 83.0] [80.1, 82.9] [91.4, 93.3] [94.4, 96.0]

Ensembles of Classifiers

E∗

svot E∗

wvot E∗

svm Eenm
svm Eenc

svm Eemc
svm Enmc

svm

88.4 88.9 90.5 89.7 90.6 88.5 87.6
[87.2, 89.5] [87.7, 90.0] [89.4, 91.6] [88.5, 90.7] [89.4, 91.6 ] [87.3, 89.7] [86.4, 88.8]

3.3.5 Results and Discussion

The correct classification rates obtained by the ensembles based on five or three face parts
are shown in Table 3.7. For comparison, that table also shows the results of the SVM
classifier presented in the previous study using FERET database (see Section 3.2) with the
addition of two new results using the left and right eyes, separately. Graphically, these
results are shown in Figure 3.9.

Most ensembles significantly outperform the plain gender classification of the individ-
ual parts with 95% confidence intervals for their average classification rates. These results
obtained over the FERET database show the existence of complementary information be-
tween face parts, since the performances of the ensembles were better than those achieved
by individual classifiers. The only exception is the plain classification based on the nose
whose confidence interval slightly overlaps with those of E∗

svot, E
emc
svm and Enmc

svm . A com-
parison between ensembles shows a better behaviour of E∗

svm with respect to the other two
aggregations of the five parts (E∗

svot and E∗

wvot).

The ensembles based on three parts, which use a SVM as the combiner, appear to be
as discriminant as the combinations of five parts. Particularly, those in which eye and nose
coincide (Eenm

svm and Eenc
svm) perform better than the ensembles based on the five isolated

parts combined by voting (E∗

svot and E∗

wvot). This is a very good result considering that
these ensembles are meant to be useful for gender classification under partial occlusion of
the face. In this scenario, no more than 2 or 3 prominent parts are likely to be visible. It
is worth noting that the use of a SVM as the combiner was more effective than voting. It
is possible that a classifier works as an error-correcting combiner by learning how the base
classifiers make errors and how to associate their combinations with correct outputs.

Nevertheless, the ensembles were unable to achieve the rates of plain classifiers based on
holistic descriptions of the face (those are the internal and the full face). While the best en-
semble is about 2% less accurate than the classifier based on the internal face, the difference
between that ensemble and the classifier trained with the full face rises to 5%. There are
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Figure 3.9: Classification accuracies [and their 95% confidence intervals] on FERET database using
individual classifiers and ensembles.

two major causes that seem to explain why individual classifiers based on global parts out-
perform ensembles based on several isolated face parts. Firstly, the holistic representations
of the internal and full faces include configural information of the face. It means that the
relative position of each face part with respect to the other parts is known, since the whole
face is described in those representations. This configural information provides a valuable
source of differences between genders (as shown by psychological studies [17, 20]). Sec-
ondly, full faces contain other prominent features of the face that have not been considered
in this work, like ears, hair and face contour, which have been proved to be discriminant
by themselves.

3.4 Conclusions

In this chapter, the relevance of face parts in gender classification as well as the extent to
which the most prominent face parts can provide complementary information to distinguish
between genders was evaluated. The face parts included in the study are, specifically, both
eyes, a single eye, the nose, the mouth, the chin, the internal face, the external face, and
the full face. The detection of these parts in the face images was based on an empirical
rule about the proportions of the face proposed by Leonardo da Vinci. Two well-known
databases of face images and five different classifiers were involved in the experiments.
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Empirical evidence showed that individual face parts include enough information to
be able to discriminate between genders with success rates above 80%. When their joint
contribution is considered (by means of the full face or by just its internal part), the
classification rates improved to above 95%. This result is similar to those reported in
previous works on gender classification. Our experiments were also designed to evaluate
the dependence of the results on the database and the classifier used. A high correlation
among classifiers on measuring the relevance of face parts was obtained, however results
were strongly dependent on the database. It seems that the significant differences between
the two databases were transferred to the results.

A pairwise comparison of the disagreements between SVMs trained with different face
parts showed that, as expected, different parts provide diverse discriminant information.
This finding led to a study of the complementarity of the information provided by various
face parts. In order to detect this potential complementarity, ensembles of classifiers based
on several parts were designed. These combined schemes would be suitable solutions to gen-
der classification problems when faces are partially occluded and holistic representations are
not possible. The experiments involved ensembles of base classifiers trained with separate
descriptions of the left and right eyes, nose, mouth and chin, whose collective decisions were
made by simple and weighted voting and by a classifier based on a posteriori probabilities.
The classification results of these ensembles were compared to those of individual classifiers
which used isolated and global parts of the face.

Experiments carried out using images from FERET database showed that the joint
contribution of separate parts is more effective for gender classification than isolated parts,
but less discriminant than holistic descriptions of faces. Unlike the simple aggregation
of parts, the holistic representation includes configural information, whose usefulness at
discriminating between genders has been proved by psychological experiments [17, 20].

For addressing gender classification problems, a solution combining only the visible parts
of the face seems to be suitable for situations where the face appears partially occluded.



CHAPTER 4

Ranking Labels: A New Type of Local Features

In the literature, many types of features have been proposed for describing face images,
which are useful in certain situations. With the main objective of the thesis in mind, a
local face characterisation seems appropriate to better deal with the problems that are
commonly found in real environments. In this chapter, a new type of features for face
characterisation, called Ranking Labels, is presented together with empirical evidence of its
suitability to describe faces for gender classification purposes.

4.1 Motivation and Background

For automatic face analysis purposes, still face images have been usually characterised using
either appearance-based or geometric-based features. Appearance-based features use the
value of the pixels in the face image, more commonly after some transformation, to represent
the face. Whereas geometric-based approaches are focused on geometric characteristics of
the face, such as dimensions of some relevant facial features or distances between them.
Besides, face descriptions can also be broadly classified as global or local solutions. Global
solutions are those that describe the face as a whole which is usually achieved by means of
appearance-based features. On the other hand, local solutions separately describe different
regions of the face or isolated facial features. In this last case, appearance-based as well as
geometric-based features are possible approaches for locally represent faces.

In recent years, researchers have focused their efforts on solving gender classification
problems using different approaches. Some works advocated for appearance-based features,
either following a global approach [46, 39, 13] or a local solution [4, 58, 60]. Alternative
studies promote geometric-based methods [61], whereas other authors proposed to fuse

61
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both appearance- and geometric-based representations [47]. Which is the best approach to
deal with gender classification problems? It all depends on the specific requirements of the
problem.

When the face is completely visible, global appearance-based methods report high classi-
fication rates [39, 13]. These global representations provide information about the structural
relation of the various facial features along with a description covering the whole face. How-
ever, in real scenarios, faces could be occluded by clothing or accessories, such as, scarves
or sunglasses. In those situations, global approaches may not be the best choice, since they
are poorly suited for coping with local variations and occlusions [61]. In such cases, local
face descriptions seem more appropriate, although it would be advantageous to additionally
have some structural information. It should also be considered that face detectors are not
perfect in all situations, albeit they are impressively accurate [63, 33], so it is desirable that
the approach taken is able to cope with a certain degree of inaccuracy in the detection. Ide-
ally, a face representation should provide enough discriminant information for successfully
addressing gender classification problems when only a partial view of the face is available
and the faces are inaccurately detected.

In this chapter, we propose a novel face representation, named Ranking Labels, which
characterises local areas of the face by means of appearance-based features while keeping
some structural information. This representation attempts to provide a more robust char-
acterisation, since it encodes the local contrast while makes it independent from the local
intensity values. Two experimental studies are carried out to compare Ranking Labels with
other local face descriptors and to test its characteristics. In the first study, Ranking Labels
are compared to several local representations to prove whether they provide more discrimi-
nant information for gender classification. In a second study, the experiments are designed
to test the robustness of the proposed face characterisation is with respect to the precision
of the face detectors.

4.2 Ranking Labels Representation

4.2.1 Characteristics of Ranking Labels

The idea behind Ranking Labels representation is to describe the information of the face
image by how much the pixel values differ. This description is done by patches, then only
the differences among the pixels within an area of the face image are represented. For
instance, a Ranking Labels description could be interpreted as all the pixels at the top part
of the patch are lighter than the ones at the bottom, or, in other patch, all the pixel values
are very similar.

A Ranking Labels description can be roughly defined as a vector of ranking positions
with respect to the lowest grey level value within a patch. Representing the information
contained in each patch by means of ranking positions instead of the actual grey level values
makes this representation more robust against variations in illumination. The Ranking
Labels are relative to the grey levels found within a moderate-sized region. Therefore,
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Ranking Labels representations are hardly affected by shifts in the grey scale. For instance,
imagine we have an image taken in very low light and another taken outside in the sunlight.
The first image will have fairly dark grey levels and the second will contain lighter greys.
By describing their content with Ranking Labels, since the labels are assigned with respect
to the grey levels of the region, the shift in the grey scale between both images will be
almost imperceptible. This characterisation in terms of how different the pixel values are
(within a patch) is expected to provide a description substantially independent to the given
illumination conditions.

For describing the information provided by a face image, not all the differences among
pixel values are needed. It is reasonable to consider those values that are significantly
close to each other as equals. This way, the information is summarised and the description
becomes more general. After summarising the information provided by pixels with similar
values, it is possible to obtain vectors with just a few different Ranking Labels. This is
highly likely when the patches correspond to uniform areas of the face, such as the cheeks
or forehead, that usually do not provide much discriminant information. That being the
case, those Ranking Labels vectors could be discarded. Consequently, the complexity of
the final face characterisation would be reduced to the vectors with more information. The
method for reducing the complexity of the representation, which is an optional step of the
face characterisation proposed, is presented in Section 4.2.3.

Unlike other local descriptions, the feature vectors derived from Ranking Labels provide
spatial information about the pixels within the patch since each pixel is represented by
a Ranking Label . At the end of the characterisation process, which is explained in detail
in Section 4.2.2, several Ranking Labels vectors are extracted from a single face image.
The final face description could consist of various feature vectors or could be formed by
concatenating all of them. This last option could be considered a semi-global representation.
While, Ranking Labels supply information about the local contrast of the pixels within a
region, the fact of concatenating these features provides details about their location with
respect to the other features.

4.2.2 Extraction of Ranking Labels

The extraction of Ranking Labels features from a given face image begins with the process
of scanning the face with a squared window (the area of the image delimited by the scanning
window is referred to as a patch). A vector containing the pixel values within each patch
is created, the elements of which correspond to the grey level values of the pixels from the
top left corner of the patch to the right and downwards. In order to convert those pixel
values to Ranking Labels, the grey level values are substituted by their ranking position
with respect to the other values in the vector. The process of transforming grey level values
into Ranking Labels is graphically shown in Figure 4.1. First, a vector is created with the
grey level values within the patch. Second, the pixel values are sorted in ascending order.
Third, a ranking position is assigned to each value, giving to those values that differ in less
than G units the same label. Finally, the Ranking Labels are sorted in the same order as
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79 64 51 60 78 70 75 52 97 102100 72 108107 92 94
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421 2 33 31 5 653 665 5
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Given patch

Vectorising Ascending sort

Grey Levels to Ranking Labels

Back to original order

Figure 4.1: Process of transforming grey level values into Ranking Labels (G = 8).

the original vector of grey levels.
More formally, let x = (x1, x2, ..., xN×N ) be a vector of the grey level values within a

given patch of N × N pixels and G a threshold that represents the maximum difference
between two grey levels to consider them equal. Then, the process continues as follows.

1. Compute the ordered version of x, x′ = (xi1 , xi2 , ..., xiN×N
) where xij ≤ xij+1

and
ij = 1 . . . N ×N is the position of xij in the original vector x.

2. Build a vector r′ = (ri1 , ri2 , ..., riN×N
) with the ranking positions of the components

of x′, according to the algorithm:

Data: x′, G
Result: r′ = (ri1 , ri2 , ..., riN×N

)
k ← 1
rank← 1
for j = 1 : N ×N do

if xij − xik > G then

k ← j

rank ← rank + 1
end

rij ← rank

end

3. Sort the elements in vector r′ to build r = (r1, r2, ..., rN×N ) where rj = rij .

The definition of Ranking Labels needs two parameters, one of them indicating the
size of the patches which will be characterised and the other to indicate the maximum
difference between pixel values to considered them as the same value (that is, parameter
G). Additionally, the arrangement of patches on the images should be defined. The patches
can be overlapped up to a certain extent. This overlapping could go from non-overlapping
at all to the maximum overlapping which occurs when the shift from one patch to the
next is one pixel. Figure 4.2 shows those two degrees of overlapping exemplified with nine
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(a) Non-overlapped patches. (b) Maximum overlapping. From
one patch to the next, there is
a 1-pixel shift.

Figure 4.2: Layout of the same nine patches with different overlapping degrees.

patches over an image. As can be seen in Figure 4.2(b), when there is overlapping, the shift
from one patch to the next is the same in all directions with respect to a central patch.

4.2.3 Complexity Reduction

Being Ranking Labels a representation of local differences in pixel contrast within a medium-
sized region, it is possible to obtain a feature vector of very few different Ranking Labels
if all the pixel values are very similar. These cases would probably correspond to uniform
areas in the face, such as the cheeks. The goal of reducing the complexity is to discard
those feature vectors that do not provide much relevant information.

The selection of the vectors with less amount of information is performed by comparing
their number of different Ranking Labels with a given threshold T . Those vectors with less
than T different Ranking Labels correspond to the regions of the image with the lowest con-
trast. These parts of the face do not provide too much discriminant information, therefore,
the face representation could not include them. This reduction process is an optional step
of the face characterisation proposed.

4.3 Comparison with other Local Face Representations

This section presents a comparison between Ranking Labels and two well-known local char-
acterisation techniques, Local Binary Patterns and Local Contrast Histograms, to find out
which face representation obtains higher performances in different situations.

For this comparison, Local Binary Patterns (LBP) have been chosen because of their
proven ability to successfully address facial analysis problems. In the last decade, LBPs
have been applied to describe faces in face recognition [2] and gender classification [58]
problems achieving noteworthy results. Additionally, we considered that the efficacy of
Ranking Labels should also be compared with another face characterisation technique based
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on the contrast of the pixel values, that is Local Contrast Histograms (LCH). Moreover,
we combined the information provided by LBP and LCH as another face characterisation.
All these face descriptors are compared when dealing with gender classification problems
under different experimental configurations (specific details are given in the next sections).

For checking if these face descriptions provide enough discriminant information when
only a partial view of the face is available, only the top half of the face is used in the
experiments. This situation could occur when the individuals wear a scarf or other type of
clothing that covers the bottom area of the face.

4.3.1 Experimental Methodology

The present study is based on the methodology described in Chapter 2, although with
certain particularities which are detailed below.

Step 1. Preprocessing

In this step, the face is detected using the Viola-Jones algorithm. The system does not
align the face images or correct the inclination that the face might have. After detecting
the face, the top half of the area of the image where the face was detected is extracted,
equalised and resized to a pre-established smaller size.

Step 2. Feature Extraction

All the face representations involved in the experiments are based on local features which
separately characterised several patches considered over the face image. These patches could
have a certain degree of overlapping. In that case, it will be indicated in the description of
the experiments. Specifically, the three local descriptors used are:

• Local Binary Patters (LBP),

• Local Contrast Histograms (LCH),

• Ranking Labels (RL).

The several feature vectors produced by these methods can be considered individually or
can be concatenated to form a single vector. Which of these two approaches is taken will
be indicated in the description of the experiments (Section 4.3.3).

Step 3. Classification

The classifier employed is k -Nearest Neighbour (k -NN). Depending on whether several
feature vectors or just one vector describe the top half of the face, the classification process
is different. If the face description consists of a single vector, the classifier works as a
standard k -NN. In case various feature vectors describe the face, its gender is predicted by
majority voting of all the predicted labels assigned to those vectors. Two distance metrics,



Chapter 4 V Ranking Labels: A New Type of Local Features 67

the Euclidean distance and the Chi square distance, are used in all experiments in order to
compare which one is more suitable for addressing our task.

Step 4. Performance Assessment

The classification models are evaluated by their accuracy.

4.3.2 Face Image Dataset

The face images involved in the experiments are from the FERET database (for a detailed
description of this database, see Section A.2 in Appendix A). Particularly, only faces in a
frontal pose without glasses are used, because glasses could strongly distort the effectiveness
of the face for gender classification which might produce misleading conclusions. The ex-
periments are performed over 2,147 images of 256× 384 pixels from 834 subjects separated
into 842 female faces and 1,305 male faces. Therefore, the ratio of males to females is 1:0.6.
These face images are divided into two sets, training and test, consisting of 60% and 40% of
the total number of images, respectively. When dividing the images into training and test
images, the ratio of male-female faces of the original dataset is maintained. Additionally,
as there are several images per subject, this division is carefully implemented in order to
assign all the images of the same subject to the same set.

4.3.3 Experimental Setup

This section describes four experiments which have been designed to compare the local face
representations previously detailed in Section 4.3.1. The aims of these experiments are to
find out which face description provides more information to discriminate between genders
and which of them is more suitable for situations where the face is not accurately detected.
The details about the four experiments are presented below.

• Experiment 1: The patches considered over the top half faces are not overlapped,
consequently the pixels that belong to a patch are never considered in another one.
Then, the face description is formed by concatenating all the feature vectors extracted
from those non-overlapping patches. Hence, in the classification process, when looking
for the nearest neighbour of a test face among the training faces, the test features are
compared to those training features that were extracted from the same positions in
the images.

• Experiment 2: The patches are overlapped over the image in order to extract more
detailed descriptions of the top half faces. As a result, one pixel will belong to
several patches and its value will be used to obtain the descriptions of all of them.
Although keeping the same size of the face images and of the patches as in the previous
experiment, the number of feature vectors is larger due to the overlapping. At the
end, the face description consists in the concatenation of all the vectors extracted.
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• Experiment 3: Overlapped patches are considered over the face images, as in exper-
iment 2. However, in this case, a face description consists of all the feature vectors
extracted from the image. This results in several feature vectors representing a single
face. For classifying the gender of the face, first each test vector is assigned the class
label of its nearest neighbour found among all the training feature vectors. Then,
the predicted gender of the face is obtained by majority voting over all the classes
assigned to its vectors.

Unlike in experiments 1 and 2, each vector is classified by comparing it with the vectors
extracted from all training patches independently of the patch’s position. Hence, it is
expected that inaccuracies in the face detection will not affect as much in this case.
This tolerance comes at the expense of having a larger number of vectors which leads
to a higher computational cost.

• Experiment 4: Inaccurately detected faces are simulated by shifting the area of the
image where the face was detected. The configuration of this experiment is the same
as in experiment 3 with the exception that after automatically detecting the face in the
image, a random shifting is applied to the area containing the face. The displacement
could be at most 10% of the width for the horizontal movement and 10% of the height
for the vertical one (considering the dimensions of the area containing the face).

This experiment allows us to test the face descriptions and the classification methods
in a more challenging scenario. Consequently, it could provide more reliable results
about which approach would be more suitable for situations where the face detection
could not be accurate.

As has been previously indicated, all the face representations involved provide local
descriptions. The level of detail of this descriptions is given by several parameters, such
as the size of the region from which the local features are extracted, or the number of
sample points considered (for LBP and LCH features). The specific parameters of each
face description are detailed as follows:

• Uniform LBP with a neighbourhood of 8 sample points and radii 1 (LBPu
8,1) or

2 (LBPu
8,2).

• Local contrast histograms with a neighbourhood of 8 sample points and radii 1
(LCH8,1) or 2 (LCH8,2).

• Ranking Labels with G = 8 and no complexity reduction.

Several combinations of this LBP and LCH descriptions are also considered, all of which
consist of the concatenation of the feature vectors corresponding to each of the descriptions.
Particularly, the combinations used are defined in terms of:

• The type of feature: LBPu
8,1 + LBPu

8,2 and LCH8,1 + LCH8,2.

• The radius of the neighbourhoods: LBPu
8,1 + LCH8,1 and LBPu

8,2 + LCH8,2.
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• The maximum degree of detail (combining all of the above): LBPu
8,1 + LCH8,1 +

LBPu
8,2 + LCH8,2.

For the face descriptions based on histograms (LBPs and LCHs), the number of bins
per histogram defines the number of features. In the case of LBPs, each bin corresponds
to one of the possible LBP values. For the rotationally invariant version (RI), there are 10
possible LBP values, resulting in vectors of 10 features. For the sensitive to rotation version
(no RI), there are 59 possible LBP values, which will produce vectors of 59 features. In
the case of LCHs, there is not a predefined set of possible contrast values, therefore how
many bins there are per histogram should be decided. In this study, two versions of LCHs
are defined to be comparable to the two versions of LBPs. One version accumulates the
contrast values in 10-bin histograms, while the other uses 59-bin histograms.

The size of the patches is 7×7 pixels for all face representations. This indicates that the
number of Ranking Labels is 49, so each patch is represented by a 49-dimensional vector. For
the other two representations, this implies that the 49 (LBP or contrast) values calculated
over each pixel within a patch are represented by a 10- or 59-dimensional feature vector.

Implementation Details

Following, specific details needed to replicate the experiments are summarised. The output
of the face detector is horizontally split in two halves (only the top half is used in the
experiments). Then, the top half of that image is resized to 45 × 18 pixels. As it has
already been mentioned, patches of 7×7 pixels are considered over the top half face image.
In the case of non-overlapping patches (experiment 1), there is a total of 12 patches per
image. In the overlapped cases (experiment 2, 3 and 4), there is a one pixel shift from
one patch to its neighbours. As a result, the number of patches rises up to 468. To test if
the classification can benefit from a representation with overlapping patches, the maximum
degree of overlapping is chosen as it is the opposite to the non-overlapped scenario.

4.3.4 Results and Discussion

The correct classification rates shown in Table 4.1 correspond to those obtained in each of
the experiments presented in Section 4.3.3.

Taking a general look at these results, it can be seen that the Chi square distance
succeeded in classifying the gender in more cases than the Euclidean distance. Particularly,
in 58 out of 76 experiment the Chi square distance led to higher classification rates than the
Euclidean distance (in 9 of those experiments both distances achieved the same accuracies).

As is shown by the results, when only LBP features are involved, the sensitive to rotation
descriptions (59 bins) achieved better results than the rotationally invariant versions (10
bins). However, the use of LCH with 59-dimensional vectors resulted in worse accuracies
in experiments 1 and 2. This could be explained by the higher dispersion of the data in
these cases which leads to a poorer characterisation. When LBP and LCH are combined,
the representation is still affected causing lower classification rates.
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Table 4.1: Classification accuracies obtained by each of the face representations for the experiments
presented in Section 4.3.3. For LBP features, the 10-bin histogram column corresponds to the RI
version and the 59-bin column to the no RI version. Marked in bold the best accuracy obtained per
experiment.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

10-bin 59-bin 10-bin 59-bin 10-bin 59-bin 10-bin 59-bin

LBPu
8,1

χ2 70.88 76.61 74.27 78.48 61.66 71.75 61.08 61.08
Euclidean 68.30 76.02 73.33 76.37 61.08 70.57 61.08 61.08

LBPu
8,2

χ2 68.42 79.06 81.17 78.95 61.43 75.26 61.08 61.08
Euclidean 68.42 76.73 77.89 75.56 62.02 72.92 62.14 62.14

LBPu
8,1 + LBPu

8,2

χ2 73.92 80.47 78.13 80.23 62.84 78.55 62.49 62.49
Euclidean 72.51 78.25 77.43 77.31 62.49 76.32 62.14 62.14

LCH8,1

χ2 75.44 69.36 79.65 74.97 61.08 62.95 61.08 64.36
Euclidean 73.57 70.64 78.95 72.87 61.08 64.36 61.08 65.06

LCH8,2

χ2 77.89 71.81 79.77 75.79 61.08 63.42 61.08 63.19
Euclidean 74.27 72.05 76.96 74.50 61.08 63.42 61.08 64.13

LCH8,1 + LCH8,2

χ2 77.89 72.98 79.30 76.26 65.06 64.48 64.83 65.30
Euclidean 75.44 73.80 77.54 76.73 66.00 63.07 64.48 63.66

LBPu
8,1 + LCH8,1

χ2 75.79 79.53 80.23 81.17 66.47 79.95 64.83 79.01
Euclidean 77.19 77.43 79.65 77.89 67.87 75.15 65.77 73.51

LBPu
8,2 + LCH8,2

χ2 80.47 79.88 82.46 81.40 69.05 82.65 69.17 81.71
Euclidean 77.43 77.66 81.17 77.08 69.40 77.61 69.64 76.08

LBPu
8,1 + LCH8,1 + LBPu

8,2 + LCH8,2

χ2 82.69 81.64 82.81 80.82 74.44 85.11 71.16 83.59
Euclidean 80.70 79.88 81.40 77.19 71.28 78.55 70.81 78.55

Ranking Labels

χ2 78.95 80.12 88.54 89.12
Euclidean 78.60 79.30 88.54 89.94

Concerning the radius of the neighbourhood in histogram based features, radius 2 per-
forms the classification task better than radius 1 in a vast majority of the experiments.
Nevertheless, the combination of the same face description using both radii achieves higher
rates, but using twice as many features.

Focusing on experiments 1 and 2, LCH features have been proved to be suitable for
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discriminating between genders since the classification rates by them are very similar to
those achieved by LBP descriptions. LCHs perform better using vectors of 10 features,
whereas LBPs obtained slightly higher accuracies with their rotation dependent version
(59 features). As expected, using the combination of all LBPs and LCHs configurations
increased the classification rates up until 82.69% (experiment 1) and 82.81% (experiment 2),
which are the best rates obtained in these experiments. When only LBPs are employed,
the accuracies are around 80%, while with just LCH features, the classification rates do not
surpass 80%. The Ranking Labels description achieved the best results when comparing
only individual features (without considering combinations of several types of features).
Therefore, Ranking Labels representations provide slightly more discriminant information
than the other simple characterisations, although less than the combination of LBPs and
LCHs. To summarize, experiments 1 and 2 have proved that all the face descriptions
are reasonably good to discriminate between genders, since no significant differences were
observed in the classification accuracies. As a general rule, the larger the number of features
used to describe the faces, the better the classification rates obtained.

Focusing on experiments 3 and 4, Ranking Labels reached the highest classification
rates, which were close to 90% for both experiments. These results were even better than
those obtained in experiments 1 and 2 using this face representation. It should be noted
that experiments 1 and 2 relied on totally accurate face detections, since the classification
compared patches according to their position in the image. Whereas, in experiments 3 and
4, the classification was tolerant to errors in the face location by searching for a patch’s
nearest neighbour among all the training patches, independently of their position in the
image. However, this substantial improvement only occurs when using Ranking Labels. The
features based on histograms performed worse in these cases than in experiments 1 and 2.
This is probably because Ranking Labels keep spatial information about the position of the
pixels within the patch, unlike the methods based on histograms.

4.4 Dealing with Inaccurate Face Detections

This section presents a set of experiments designed to prove that the Ranking Labels repre-
sentation is robust to inaccuracies in the face detection and is suitable for situations where
the whole face is not visible.

In order to determine the ability of the proposed face characterisation to cope with
inaccurately located faces, two different face detection algorithms are employed. The first
one needs the coordinates of the eyes as input, whereas the second method is completely
automatic. Particularly, different combinations of these two algorithms are applied to the
training and test images leading to several experiments.

As in the previous study, only the top half of the detected face is used in order to
simulate situations where only a partial view of the face is available.
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(a) Detection based on the coordinates of the eyes.

(b) Detection using Viola and Jones algorithm [63].

Figure 4.3: Faces detected by each of the two detectors and the top halves used in the experiments.

4.4.1 Experimental Methodology

This experimental study follows the methodology described in Chapter 2. Below, those
details of each step which are specific to the experiments of this section are explained.

Step 1. Preprocessing

Two different face detection algorithms are utilised for testing the performance of the pro-
posed representation with different detection accuracies. The first method defines the area
of the face with respect to the separation of the eyes. Let (xr, yr) and (xl, yl) be the co-
ordinates of the centre of the right and left eyes respectively, and d the distance between
them. Then, the top left corner of the area containing the face is given by the coordinates
(xr−0.75×d, yr+yl

2 −1.15×d) and the bottom right corner is (xl+0.75×d, yr+yl
2 +1.8×d).

The second face detector is the well-known Viola-Jones detector. Examples of the full and
the top half face areas resulting from applying each of these algorithms to the same image
are shown in Figure 4.3. These both face detectors are explained with more details in
Section 2.2.

Once the area containing the face has been detected, the top half part of that area is
extracted, equalised and scaled to a smaller size. The experiments involve only the top half
part of the face.

Step 2. Feature Extraction

From the top half of the image resulting from the previous step, Ranking Label features are
extracted following the process detailed in Section 4.2.2.
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Step 3. Classification

The classifier utilised is a k -Nearest Neighbour with Euclidean distance. The patches are
classified independently, and only those training patches extracted from the same position
as the test patch are considered. The gender of the face is predicted by majority voting of
the classes assigned to its patches.

Step 4. Performance Assessment

The evaluation of the performance is done based on the accuracies obtained in each exper-
iment.

4.4.2 Face Image Dataset

The face images involved in the experiments and the division into training and test sets are
the same as in the previous study (see Section 4.3.2).

4.4.3 Experimental Setup

As has been previously mentioned, two detection algorithms are used for testing the suitabil-
ity of the proposed representation under various degrees of accuracy in the face detection.
Different combinations of these face detectors are applied to the training and test images
leading to the following experiments:

• Experiment 1: The faces in both training and test images are detected using the
coordinates of the eyes.

• Experiment 2: The training faces are detected using the coordinates of the eyes and
the test faces are automatically detected.

• Experiment 3: The faces in both training and test images are automatically detected.

• Experiment 4: In this case, an inaccurate face detection is simulated. After detecting
the faces using the coordinates of the eyes, the area containing the face is shifted. The
displacement is a randomly selected value within the range 0 to 15 pixels. A different
value is computed for each of the four possible directions (up, down, left, right).

Two series of these four experiments are carried out. In the first series, all the feature
vectors extracted from the images are used while, in the second series, the number of feature
vectors is reduced before the classification process takes place.
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Table 4.2: Classification accuracies obtained using different combinations of the two face detection
methods with and without reducing the complexity of the Ranking Labels representation. Marked
in bold the best result per experiment.

Tra and Tst Tra coordinates Tra and Tst Shifting the area
coordinates Tst auto detection auto detection of the face
(Exp. 1) (Exp. 2) (Exp. 3) (Exp. 4)

All RL vectors 79.55 83.16 82.57 79.21
Selected RL vectors 81.07 82.30 88.51 83.06

Implementation Details

To replicate the experiments of this study, specific details are given in this section. The
top halves of the detected faces are scaled down to a resolution of 30 × 12 pixels. The
face areas resulting from the automatic detector have the same aspect ratio (which is kept
when rescaling them). However, this is not always the case for the faces detected using the
coordinates of the eyes, since the detection is based on the distance between the eyes. In
this case, the scaled images are forced to have the mentioned size. The size of the patches
is 9×9 pixels and they are not overlapped. As a result, given the size of the scaled top half
face images, 110 feature vectors of 81 components are extracted.

For transforming pixel values into Ranking Labels, the parameter which determines the
maximum difference between two grey levels to considered them equal is set to G = 8.
Consequently, a total of 32 Ranking Labels are possible given the 256 grey level values.
For the process of reducing the complexity of the data (for details about this process see
Section 4.2.3), a threshold T = 16 is chosen to discard those local feature vectors with poor
information for discriminating between genders. It is worth noting that due to the fact that
there are 32 possible Ranking Labels, by setting T = 16, the discarded vectors are those
whose number of different Ranking Labels is at most half of the total number of labels.

4.4.4 Results and Discussion

The correct classification rates obtained in each of the four experiments detailed in Sec-
tion 4.4.3 are shown in Table 4.2. The first row of this table shows the results when all the
Ranking Label vectors are used and the second row shows the results using only the selected
Ranking Label vectors obtained after applying the reduction process. As can be seen, all
the results obtained are very close to or higher than 80% despite the fact that there were
no restrictions on how accurate the detection of the face should be.

When keeping all the feature vectors (first row of Table 4.2), the best classification rates
were achieved when the automatic face detector was involved either on both sets, or just in
the test set (experiments 2 and 3). However, the face detection based on eyes coordinates
led to slightly lower performances (experiment 1). This could be due to the differences
between the size of the face areas detected (see Figure 4.3). The automatic method selects
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(a) Males classified as females. (b) Females classified as males.

Figure 4.4: Examples of misclassified subjects.

a wider area than the algorithm using the eyes coordinates, so it provides more information.
This fact together with the classification by patches that provides a certain level of tolerance
towards inaccuracies in the detection, contributed to reach better performances.

The classification accuracies achieved when reducing the complexity of the feature space
are, in most cases, higher than those obtained with the complete space. Taking into ac-
count that a lower number of vectors (those which contained more information) were used
to describe the faces, it is possible that the discarded vectors provided information that
confused the classifier.

When intentionally shifting the face area (experiment 4), the results obtained are re-
markably similar to those achieved in the other experiments. This demonstrates that Rank-
ing Label descriptions are robust to variations in the accuracy of face detection.

As a further benchmark to evaluate the results of this work, the experiments presented
in Chapter 3 are considered. There, different face parts were globally described using grey
level features after accurately detecting the faces using the eyes coordinates. Under such
controlled conditions, the best classification rates were 95.21%, 92.37% and 85.47% achieved
by a Support Vector Machine trained with the full face, the internal face (which excludes
hair, ears and facial contour) and the eyes, respectively. These face parts do not contain the
same information as the top half of the face, the full and internal face include a much bigger
area of the face and the eyes only consisted of the eyes region. With the Ranking Labels
representation, the best classification rate was 88.51% which was obtained using about half
of the information contained in the internal face. Unlike the results in Chapter 3, the
present study was based on a completely automatic extraction of the top half of the face.
Therefore, this methodology seems more suitable for being used in real situations.

Regarding missclassified face images, Figure 4.4 shows some examples. In our opinion,
these faces are somehow confusing even for human beings, so it can be acceptable that the
gender classifier gives erroneous predictions.

4.5 Conclusions

In this chapter, we presented a new type of features which provides face representations
fairly independent to illumination variations. This features were proved to contain enough
discriminant information to classify the gender from a partial view of the face.

The proposed descriptor, Ranking Labels, represents a face by locally characterising the
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contrast of the pixel values while keeping the spatial information of the pixels within the
given area. In all the experiments only the top half of the face was involved, proving this
representation suitable for face gender classification in situations where the bottom half of
the face is not available due to occlusions possibly caused by clothing accessories. An exper-
iment simulating inaccurate face detections showed that Ranking Labels characterisations
are robust to errors in the location of the face.

The classification performance achieved by Ranking Labels was compared with those ob-
tained when characterising the faces by means of other types of local features. Particularly,
Local Binary Patterns (LBP) and Local Contrast Histograms (LCH). In this comparison,
the experiments were presented under various scenarios. In the first two experiments, it
was assumed that the face detection was sufficiently accurate and the classification was
conducted taking into account the position of each patch. In the other two experiments,
the classification was performed by patches independently of their position in the image
which provided a certain tolerance to errors in the face detection. These experiments
showed that LBPs and LCHs correctly address the problem with reasonably good detected
faces. However, these face representations were less reliable in situations with inaccurate
face detections, since there is an important loss of spatial information. In an inaccurate
environment, Ranking Labels achieved classification accuracies of about 90%. Whereas the
other face characterisations (LBPs, LCHs and their combinations) did not reach an 86% of
correct classification rate.

Summarising, Ranking Labels have been proved a reliable face representation as it per-
forms similarly in all the situations considered in this experimental study. Although, LBPs
and LCHs successfully address the gender classification task, they were more dependent on
the accuracy of the face detections.



CHAPTER 5

Classification based on Local Neighbourhoods

Most authors are inclined to choose global solutions when addressing gender classifica-
tion problems from completely visible faces. Those approaches may seem more appropriate
than local solutions since all facial information is available. In this chapter, we propose a
new classification method based on local neighbourhoods and provide a statistical compar-
ison of the proposed approach with some widely employed global solutions.

5.1 Motivation and Background

Faces can be described by global or local representations. In the literature we can find
many works following either of those approaches. Intuitively, when the whole face is visible,
holistic solutions seem to be more likely to achieve higher classification rates. This is based
on the fact that global characterisations provide configural information (i.e. relations among
face parts) as well as featural (i.e. characteristics of face parts), whereas local descriptors
mostly provide featural information. However, this has only been tested using standard
classification techniques. By standard classification, we mean that one face is represented
by one feature vector and the classifier is trained with those face descriptions. Those single
feature vectors can contain global or local features. In the local case, the features would
be concatenated to form one feature vector [4, 58, 60]. This standard approach expects
faces to be perfectly detected and aligned, having all facial features in the same position
within all images. In other words, it is based on the assumption that regions at the same
location have the same content in all face images. However, this is certainly an ideal
scenario because faces do not always have the same exact proportions. For instance, the
separation between the eyes usually varies from one face to another and the nose length
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is not always the same. Therefore, a technique for aligning the faces should be applied in
order to have as many face parts as possible in the same position within all images. These
automatic alignment methods, as well as the face detectors, are likely to commit mistakes.
With this in mind, the usual local approach does not seem to exploit all the potential of
local features. Instead of classifying all regions at once (concatenating the local features
into a single vector), we could classify each of them independently. For that, we could learn
about their content considering only those regions extracted from the same position, or
taking into account a wider area, that is, considering also neighbouring regions. These two
alternatives were used in the experiments presented in Section 4.3. Particularly, the second
option was taken to the extreme case, where all the patches in the image were considered
as neighbours. The improvement in the classification accuracies reported in those previous
experiments raised questions about whether a local classification based on a more restrictive
definition of neighbourhood would perform better than global solutions. Considering a less
extreme neighbourhood seems a more realistic approach, since the facial features tend to
be in the same areas of the face, even in misaligned faces. Generally, the right eye will
always be in the top right area of the face, the nose in the centre, and so on. In addition, if
neighbourhoods cover a smaller area, some mistakes could be avoided. For example, right
eyes cannot be confused with left eyes, if the patches containing them are not in the same
neighbourhood.

To the best of our knowledge, the superiority of global versus local approaches has only
been proved on single-database experiments [19, 70, 71], which are not representative of
real world settings. More realistic scenarios can be simulated by using different databases
for training and testing. When crossing databases, the acquisition conditions and demo-
graphic characteristics of the training images vary notably with respect to the test images.
Therefore, the generalisation capabilities of the classifiers can be evaluated.

In this chapter, we propose a local classification technique based on neighbourhoods of
regions. The knowledge of the position of a region in the image is utilised to create one
classifier specialised in each region’s neighbourhood. This method has been designed to
compensate for the lack of configural information with some tolerance towards misaligned
faces. Thus, even in situations where faces are fully available, our local classification can
be competitive. In order to prove its suitability, we present an experimental study where
the performances obtained by global approaches are compared with those achieved by the
proposed local technique. This comparison is accomplished using three well-known classi-
fiers (k -Nearest Neighbour, Linear Discriminant Analysis and Support Vector Machine) and
three different types of features (grey levels, Principal Components Analysis and Ranking
Labels). In addition to the common single-database experiments, more realistic conditions
are simulated by cross-database experiments involving three different face databases. Sup-
porting the discussion of the results, three statistical tests provide information about the
existence of significantly relevant differences among performances.
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5.2 Classification based on Neighbourhoods

The aim of this classification based on neighbourhoods is to use the spatial information of
local characterisations to gain a certain level of tolerance towards misaligned faces, inac-
curacies in the face detection and faces presenting different facial proportions. The idea is
to learn about the appearance of neighbouring regions (or patches) as opposed to learning
from only those patches that are located at the exact same position within the image.

An essential requirement of this method is that the face representation must be local,
that is, the description must consider a set of local regions (patches). If this condition is
fulfilled, the classification is carried out in two stages. First, each patch is individually
classified as belonging to a male or female and, second, the local predictions are combined
to obtain the final class label. The individual classification per patches is performed taking
into account the neighbourhood to which the patch belongs. This is achieved by having
local classifiers which specialise in some particular patches (those included in the same
neighbourhood). Concretely, there is one classifier per patch which learns from the patches
pertaining to the same neighbourhood as its associated patch. Then, the outputs of those
local classifiers are combined by majority voting to predict the gender of the given face.
Following, these concepts are defined more formally.

Let Bi,j be the neighbourhood associated to position (i, j) in an image. For a given patch
pk,l, centred at position (k, l), pk,l ∈ Bi,j iff |i − k| ≤ T and |j − l| ≤ T , where T defines
the size of the neighbourhood. Now, let Ci,j be the local classifier trained with Btra

i,j , which
denotes the set of patches within the neighbourhood Bi,j from all of the training images.
Given the S patches extracted from a test image, a class label for patch pi,j is predicted
by Ci,j ∀i, j, resulting in S predicted classes. Finally, the predicted gender of the face is
obtained by a majority vote of the S local predictions.

As it was introduced in the previous chapter, the patches can be overlapped up to
a maximum level of overlapping, that is, when there is a one-pixel shift from one patch
to the next (in all directions). Independently of the overlapping degree of the patches,
the classification process is exactly the same. The overlapping only affects the size of the
area covered by the patches of the same neighbourhood. Figure 5.1 shows in blue all the
patches belonging to the neighbourhood associated to the patch in white (with T = 2 and
maximum overlapping). For classifying that white patch, the classifier will be trained with
the coloured patches (including the white patch) extracted from the training images.

5.3 Experimental Study

5.3.1 Experimental Methodology

The experiments are designed following the general methodology presented in Chapter 2.
Next, only the details which are specific to this study are indicated.
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Figure 5.1: Patches belonging to the white patch’s neighbourhood which spans T = 2 patches in
all directions (the patches have maximum overlapping).

Step 1. Preprocessing

The faces are automatically detected by the Viola-Jones algorithm, equalised and scaled
to a given size. It should be noted that no aligning techniques are applied, so in the end
unaligned face images are classified. Therefore, the whole face area returned by the detector
is used in the experiments.

Step 2. Feature Extraction

Given a preprocessed face image, both global and local approaches are taken to charac-
terise the face. From the area of the image where the face is detected, one feature vector is
extracted. In the local case, only featural information is supplied by describing overlapping
patches of L × L pixels considered over the face image. We choose to utilise overlapping
patches because they provide an exhaustive description of the face. Additionally, over-
lapping patches reported the best classification results in the experiments presented in
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Section 4.3. A feature vector is extracted from each one of these patches, consequently a
face is described by a set of feature vectors. Three different types of features are considered,
in both global and local approaches:

• Grey levels,

• PCA, and

• Ranking Labels.

For information about extracting these features go to Section 2.3.

Step 3. Classification

The proposed local classification is compared to standard classifications. The standard (also
referred to as global) versions of the classifiers employed are those explained in Section 2.4.
Three classifiers are included in the experiments:

• k-Nearest Neighbour classifier (k-NN),

• Linear Discriminant Analysis (LDA), and

• Support Vector Machine (SVM).

For more details about these classifiers see Section 2.4.

Step 4. Performance Assessment

The measure utilised to evaluate the performance of the classification models is the classi-
fication accuracy (for more details see Section 2.5).

Step 5. Statistical Analysis

Due to the large number of experiments, a detailed comparison of the performances is
difficult to provide. In order to ease the comparison task, several tests have been applied
to show whether statistical differences exist among the performances of the classifiers. For
further details about these tests see Section 2.6.

5.3.2 Face Image Dataset

The experiments involve non-occluded frontal faces from three well-known databases, FERET,
PAL and AR (for specifics about them see Appendix A). From FERET database, 2,014
frontal face images are selected. Specifically, there are 1,173 male and 841 female faces
corresponding to 787 different subjects (427 males and 360 females). From PAL database,
all the images are used, that is, 575 face images. Concretely, there is one image per subject
of a total of 224 males and 351 females. From AR database, 130 occlusion-free frontal
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Global Local

(1) 1NN-grey-G (6) 1NN-grey-L
(2) 1NN-pca-G (7) 1NN-pca-L
(3) LDA-pca-G (8) 1NN-rank-L
(4) SVM-grey-G (9) LDA-pca-L
(5) SVM-pca-G

Table 5.1: Classification models considered in the experiments (classifier-feature-G/L).

face images with neutral expressions are chosen, which correspond to 74 males and 56 fe-
males. The ratio of males to females in each dataset is 1:0.7 for FERET, 0.6:1 for PAL and
1:0.8 for AR.

5.3.3 Experimental Setup

A number of experiments are designed to assess how robust global and local approaches are
when training and test faces are acquired under different conditions. In order to evaluate
the independence of each approach to the type of feature or classifier used, several experi-
ments with different combinations of those factors are performed. From now on, the term
classification model refers to a combination of:

• an approach (global or local),

• a type of feature (grey levels, PCA or Ranking Labels), and

• a classifier (k -NN, LDA or SVM).

A particular classification model is referred to as classifier-feature-G/L. A summary of these
classification models is provided in Table 5.1. It should be noted that Ranking Labels are
only defined as local features (for such definition see Chapter 4), therefore they cannot
be considered in a global version. The SVM classifier is not used with a local approach
because building a SVM per each neighbourhood has been proved an impractical solution.
After conducting an empirical study, we concluded that local SVMs were computationally
unaffordable due to the large amount of time required for training purposes. With regard to
models based on LDA classifier, only PCA features are used. The reason is that this classifier
is most commonly employed after applying PCA (further information in Section 2.4).

Each of those classification models is tested using all possible combinations for training
and test of the three datasets indicated in Section 5.3.2. Consequently, 81 experiments (9
classification models × 9 training-test datasets) are performed. When the same database
is used for training and testing, 5 repetitions of a 5-fold cross validation technique are
implemented (that is, 25 runs of the experiment). The partition of the database is made
by subjects, not by images. Therefore, one subject can only be in the training or test set,
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Table 5.2: Number of global and local features involved in the experiments. In the local case, the
number of features passed to each local classifier is given (there are a total of 1170 local classifiers).
For local PCA, the average number of features per neighbourhood is provided.

Grey levels PCA Ranking Labels

GLOBAL 1620
FERET: 236

–PAL: 184
AR neutral: 49

LOCAL 49
FERET: 14

49PAL: 17
AR neutral: 15

but never in both. In cross-database experiments, only one simulation is executed, training
with one dataset and testing with the other.

In order to gain more insight about how certain degree of similarity of the face im-
ages affects the classification models, three statistical tests are applied to two groups of
experiments. The first statistical study considers all the experiments which will give us
information about which models are more suitable for the task. The second study only
considers the experiments crossing databases which will provide further details about the
performance of the models in more realistic scenarios.

Implementation Details

In this section, some implementation details needed for replicating the experiments are
given. After detecting the face in the image, the face area is reduced to 45 × 36 pixels.
When following a global approach, the features are extracted from the mentioned face area.
In the local approach, the parameters involved are the size of the square patches, which is
set to L = 7 and the number of patches that every neighbourhood spans in each direction,
which is T = 2. As a result, each neighbourhood consists of 25 patches of size 7× 7 pixels.
The overlapping degree of the patches is maximum. From one patch to the next (in all
directions), there is a one pixel shift.

For extracting the different types of features, the value of some parameters have to be
decided. For PCA, we keep those components which account for 95% of the total variance of
the training data. For Ranking Labels, the threshold that indicates the maximum difference
to give two grey levels the same label is set to G = 8. For each type, the exact number of
features passed to the global and local classifiers is given in Table 5.2.

With respect to the classifiers, the k-NN classifier searches only for the nearest neigh-
bour, that is, k = 1. The LDA classifier is implemented using the numerical analysis library,
ALGLIB [16]. The kernel of the SVM is a third degree polynomial. Particularly, we use
the SVM implementation provided with LIBSVM [21].
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Table 5.3: Classification accuracies (%) obtained in all experiments (marked in bold the best result
per experiment).

Global Classification Local Classification

1-NN LDA SVM 1-NN LDA

Training Test Grey
PCA PCA

Grey
PCA

Grey
PCA

Ranking
PCA

Dataset Dataset Levels Levels Levels Labels

FERET
FERET 85.31 85.57 91.86 93.66 92.83 92.35 91.29 94.54 85.07
PAL 66.03 64.98 71.25 66.72 62.55 66.03 62.19 67.60 60.80
AR Neutral 79.17 82.31 77.69 81.54 84.62 86.15 86.92 90.77 83.08

PAL
FERET 66.53 65.56 75.22 72.99 70.66 63.16 62.07 52.98 77.11

PAL 77.42 77.35 82.72 85.23 85.61 83.73 83.52 80.17 73.69
AR Neutral 81.25 82.31 89.23 92.31 91.54 90.00 90.00 86.15 87.69

AR Neutral
FERET 76.02 76.86 80.09 80.83 77.21 78.90 78.90 75.42 78.20
PAL 73.35 72.30 71.43 75.09 70.38 74.39 73.17 80.31 65.51
AR Neutral 83.99 82.46 87.54 90.42 98.15 88.92 89.08 95.54 86.31

5.3.4 Results and Discussion

The classification accuracies obtained in each one of the experiments are shown in Ta-
ble 5.3. Looking at those results, the first impression is that the classification models using
a global SVM or a local classifier obtain higher accuracies than the rest. In order to check
whether these performance differences are statistically relevant or not, we applied three
statistical tests. Two different statistical analyses are presented, the first one includes all
the experiments, whereas the second one only includes cross-database experiments.

Study considering all the experiments

The results of this first study are shown in Tables 5.4(a-c).

Iman-Davenport’s statistic (see Table 5.4(a)) finds significant differences among the per-
formances of all classification models (that is, FF > F (8, 64)) with a 95% confidence
level, which is corroborated by the results of the other two tests.

Holm’s method results with a 95% confidence level are presented in Table 5.4(b). All
models above the double line performed significantly worse than the most significant
model (marked in bold at the bottom of the table). These results indicate that
the global models based on SVMs (both, with grey levels and PCA features) and
LDA, together with local 1-NN classifiers using grey levels and Ranking Labels are
statistically superior to the rest.

Wilcoxon’s Signed Ranked test provides a pairwise comparison among all classification mod-
els which is summarised in Table 5.4(c). The symbol “•” indicates that the classifi-
cation model in the row significantly outperforms the model in the column, and the
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Table 5.4: Statistical tests applied to the classification accuracies obtained in all experiments and in
only cross-database experiments. (a) Iman-Davenport’s statistic. It is marked in bold if differences
were detected. (b) Holm’s results with a 95% significance level. Models above the double line
performed significantly worse than the most significant model (marked in bold at the bottom). (c)
Wilcoxon’s Signed Ranked test summary. Above the main diagonal with a 90% significance level,
and below it with a 95%. Symbol “•”: model in row outperforms model in column, and “◦”: model
in column outperforms model in row.

Statistical tests applied to all experiments

(a) Iman-Davenport’s

FF = 3.48

F (8, 64)0.95 = 2.09

(b) Holm’s

Model PHolm

1NN-pca-G 0.006313
1NN-grey-G 0.008742
LDA-pca-L 0.011675
1NN-pca-L 0.425958

LDA-pca-G 0.485341
1NN-rank-L 0.684693
1NN-grey-L 0.684693
SVM-pca-G 0.684693

SVM-grey-G

(c) Wilcoxon’s

1 2 3 4 5 6 7 8 9
1NN-grey-G (1) - ◦ ◦ ◦ ◦ ◦

1NN-pca-G (2) - ◦ ◦ ◦ ◦ ◦

LDA-pca-G (3) • • -
SVM-grey-G (4) • • - • • •

SVM-pca-G (5) • - •

1NN-grey-L (6) • • -
1NN-pca-L (7) -
1NN-rank-L (8) -
LDA-pca-L (9) ◦ -

Statistical tests applied to cross-database experiments

(d) Iman-Davenport’s

FF = 1.12
F (8, 40)0.95 = 2.18

(e) Holm’s

Model PHolm

1NN-pca-G 0.163159

1NN-grey-G 0.164032
LDA-pca-L 0.346677
SVM-pca-G 0.700083
1NN-pca-L 0.700083
1NN-rank-L 0.700083
LDA-pca-G 0.700083
1NN-grey-L 0.700083

SVM-grey-G

(f) Wilcoxon’s

1 2 3 4 5 6 7 8 9
1NN-grey-G (1) - ◦

1NN-pca-G (2) - ◦

LDA-pca-G (3) -
SVM-grey-G (4) • -
SVM-pca-G (5) -
1NN-grey-L (6) -
1NN-pca-L (7) -
1NN-rank-L (8) -
LDA-pca-L (9) -
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symbol “◦” indicates that the model in the column significantly surpasses the model
in the row (above the main diagonal with a 90% confidence level, and below it with
a 95%). Wilcoxon’s results reveal that a global SVM model using grey levels out-
performs the global 1-NN classifiers and all local models with the exception of 1-NN
with Ranking Labels. This test also shows that a global 1-NN with grey level features
achieves statistically worse performances than its local version and that most of the
global models (except global 1-NN using PCA features).

Considering the findings of this first analysis, a straightforward conclusion would be
that global methods are more suitable for dealing with a gender classification problem than
local models. Particularly, a global SVM with simple grey level features appears to be the
best choice. However, we would like to check whether these results hold if we apply the
statistical tests only to the accuracies obtained in cross-database experiments.

Study considering only cross-database experiments

The results of the statistical tests omitting three experiments that were carried out using
the same database for training and testing are shown in Tables 5.4(d-f).

Iman-Davenport’s statistic (see Table 5.4(d)) does not find significant differences among
classification models (FF ≯ F (8, 40)).

Holm’s method (see Table 5.4(e)) only rejects global 1-NN with PCA, meaning that all the
other models obtained statistically equal performances which were superior to the
performance achieved by the mentioned model.

Wilcoxon’s Signed Ranked test (see Table 5.4(f)) results supports the findings of Holm’s
test, since only a couple of statistical differences are found where global SVM with
grey levels outperforms both global 1-NN models with a 90% confidence level. When
increasing the confidence level to 95%, such SVM is statistically superior to only one
of those models, global 1-NN with grey levels.

Summary of the Discussion

After the two statistical studies of the performances of all experiments and of a subset of
them, an interesting fact was discovered: differences among the classification accuracies
of the implemented models only exist when single-database experiments are taken into
account. When training and test images do not share the same acquisition conditions
nor the demography of subjects (that occurs in the cross-database experiments presented),
no significant differences are found in the performances of the models. This leads to the
conclusion that in real scenarios, where the characteristics of the training and test images
are more likely to differ, due to the multiple uncontrollable factors, global solutions are as
suitable as the proposed local approach to address gender classification tasks.
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It is interesting to mention that the proposed classification based on local neighbour-
hoods outperformed the classification presented in the previous chapter where the neigh-
bourhood considered included all the patches of the image.

5.4 Conclusions

In this chapter, we proposed a new classification method based on local neighbourhoods. In
addition, we provided a comprehensive statistical study of the suitability of the proposed
local classification for gender classification when compared to global approaches. Real-
istic conditions were simulated by cross-database experiments involving three face image
databases with a wide range of ages and races, and different acquisition conditions. The
comparison included three popular classifiers using three different types of features.

The main conclusion drawn from the results is that when addressing gender classifi-
cation problems from neutral non-occluded faces, global methods and the proposed local
approach achieve statistically equal accuracies. However, if we can ensure similar acqui-
sition condition (i.e., similar to the experiments using the same database for training and
testing), global features are generally more suitable for addressing the task.

As regards the classifiers and features, when the training and test images share the same
characteristics, a global SVM is more likely to obtain the highest classification accuracies.
Although the mentioned classifier was proved superior to many of the others, no statistical
differences were found when compared to a local 1-NN using Ranking Labels or to a global
LDA. In other cases, no significant differences were found among the three classifiers studied
nor the different types of features considered.

The studies have provided statistical support to refute the generally accepted assump-
tion that global techniques provide more useful information for discriminating between
genders than local solutions. There are certain situations where the training and test im-
ages do not share the same characteristics and, in those cases, global solutions and the
proposed classification based on local neighbourhoods perform in a similar manner.





CHAPTER 6

Gender Classification including

Partially Occluded and Expressive Faces

Fairly often, the solutions presented for addressing gender classification problems are
only tested using completely visible faces. That is a good practice, if those systems are
going to be set in controlled environments. However, if we aim for a solution that can be
employed in quite realistic scenarios, it is wise to check its performance using images of
expressive and partially occluded faces. In this chapter, we analyse the performance of the
solutions presented in previous chapters including the mentioned types of face images.

6.1 Motivation and Background

Most of the areas where automatic gender classification has interesting applications are
usually set in real environments. In those scenarios, the accessories and clothes worn by
the individuals are beyond our control. Furthermore, people do not normally show neutral
faces, instead they express their feelings through facial expressions. These are the main
reasons why automatic gender classification systems should be able to properly classify
expressive and partially occluded faces. Many studies have been published proposing several
methodologies for recognizing faces in the presence of occlusions [40, 64, 68], as opposed to
the very few published studies on gender classification of occluded faces [61]. In that work,
Toews and Arbel [61] propose a methodology for classifying visual traits using the Object
Class Invariant (OCI) model. Faces are described by an OCI consisting of a segment line
from the bottom of the nose to the forehead and a set of model features denoted by scale-
invariant geometric and appearance image information. Using images from the FERET

89
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database, the best classification rate is 88.10% obtained using a Bayesian classifier. In
addition, the authors test their OCI model for classifying gender from simulated occluded
faces. That is, images from the FERET database with a resolution of 256 × 384 pixels
were artificially obscured by a black circle of different radii. With an occlusion of radius
40 pixels, the classification rate is 75%, however when the occluding radius goes up to 80
pixels, the classification rate drops to 60% which is roughly the percentage of male faces in
the dataset.

In the current literature, most of the automatic gender classification systems use the
same face database for obtaining the training and test sets [35, 58, 49]. In those cases, the
acquisition conditions of training and test images are practically the same which is far from
a realistic scenario. Bekios-Calfa et al. [13] presented a single- and cross-database study on
gender classification and proved that single-database experiments are optimistically biased.
In cross-database experiments with a reasonable amount of training samples, a SVM with
Radial Basis function kernel roughly achieved 80% of success. However, when there was
less training data and a broad demography, all the compared classifiers achieved lower
classification rates of around 70-75%. All three face databases used in that work contained
non-occluded faces.

To the best of our knowledge, the problem of assessing the consequences of including
expressive and occluded faces in the training and the evaluation of classifiers has not been
extensively addressed in previous works. Therefore, the main aim of this chapter is to
study the performance of the solutions presented in previous chapters in a more realistic
scenario where there could be expressive and partially occluded faces. To that end, we
present a comprehensive experimental study of gender classification techniques using face
images showing different facial expressions and partially occluded faces. We compare global
and local representation approaches, four types of features and three classifiers using two
performance measures. In addition, the experiments are carried out on single databases
and crossing databases to explore more realistic scenarios. Furthermore, the conclusions
extracted from the experimental results are supported by three statistical tests applied to
both performance measures.

6.2 Face Images with Distortions

In order to check the suitability of the proposed techniques for gender classification in more
real conditions, we use images showing three different facial expressions and two types of
occlusions. Apart from neutral and completely visible faces, the study includes the following
types of images:

• Images of happy faces.

• Images of angry faces.

• Images of faces screaming.
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(a) Happy face. (b) Angry face. (c) Screaming face.

(d) Top occluded face. (e) Bottom occluded face.

Figure 6.1: Example of expressive and partially occluded faces.

• Images of faces wearing sunglasses (top occlusion).

• Images of faces wearing a scarf (bottom occlusion).

An example of each type of expression and occlusion is shown in Figure 6.1. The figure
presents the images as provided with the database, they have not been preprocessed. It
should be noted that the expressive faces correspond to fake emotions, not real ones. Due
to the fact that the individuals were asked to pretend to be happy, angry and screaming.

We consider partially occluded or expressive faces as faces with distortions, while faces
without distortions would be those which are not occluded and show a neutral expression.
Based on this definition of distortion, we analyse the behaviour of several classification
models in different scenarios. Those scenarios vary depending on the presence or absence
of distortions in the training and test images. There are nine scenarios each one consisting
of several experiments which share the same characteristics. A summary of the nine groups
is provided in Table 6.1.

Some of these nine scenarios represent classification problems with dataset shifts [56].
Dataset shift refers to those situations where the training and testing data do not follow
the same distribution. This often occurs in real-world applications, that is probably why
the machine learning community has shown a growing interest in this topic. In our case,
dataset shifts occur when the types of distortion present in the training set do not appear in
the test set, or vice versa. Hence, we could interpret the scenarios with respect to whether



92 6.3 Experimental Study

Table 6.1: Nine different scenarios (G1-G9) are considered with respect to the involvement of
distorted and non-distorted faces in the training and test sets.

Training Set

With and Without With Without
Distortions Distortions Distortions

T
es
t
S
et With and Without Distortions G1 G2 G3

With Distortions G4 G5 G6

Without Distortions G7 G8 G9

there is dataset shift or not. We could say that the training set is representative of the test
set in those scenarios where there is no dataset shift. That is the case of G1, G5 and G9.
On the contrary, in the remaining cases, the training set can be considered unrepresentative
of the test set due to the fact that both sets do not contain the same type of distortions
(that is, there exists a dataset shift).

6.3 Experimental Study

6.3.1 Experimental Methodology

In this section, apart from giving the specifics of the experiments, we go into further details
with respect to the groups introduced in the previous section.

Step 1. Preprocessing

The faces are automatically detected by Viola-Jones algorithm, equalised and resized. All
these preprocessing techniques applied to the images are described in Section 2.2.

Step 2. Feature Extraction

Global as well as local representations are included in the present experimental compari-
son. For the local approach, the method for describing images based on patches introduced
in Chapter 4 is employed. Specifically, the four types of features involved in the experi-
ments are:

• Grey Levels

• Principal Components Analysis (PCA)

• Local Binary Patterns (LBP)

• Ranking Labels
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For details about how to represent face images using the first three types of features see
Section 2.3, and for information about Ranking Labels see Section 4.2.2. It is important to
note that Ranking Label features were defined as a local descriptor, hence a global version
of these features is not considered.

Step 3. Classification

This study also involves global and local classification methods. Particularly, the three
classifiers included in the comparison are the following:

• k -Nearest Neighbour (k -NN)

• Support Vector Machine (SVM)

• Linear Discriminant Analysis (LDA)

The global versions of these classifiers were explained in depth in Section 2.4, whereas the
local versions employ the classification based on neighbourhoods proposed in Chapter 5.
It is worth mentioning that SVM is not considered with a local approach, due to the high
computational cost of training the local SVMs.

Step 4. Performance Assessment

The performance of the classifiers is evaluated by means of two performance measures,
accuracy and D-prime. Both measures were detailed in Section 2.5.

Step 5. Statistical Tests

In order to support the conclusions drawn from the experimental results, three statistical
tests are applied over the two performance measures computed. Those tests are: Iman-
Davenport’s test, Holm’s method and Wilcoxon’s Signed Rank test (for further details
about them see Section 2.6).

6.3.2 Face Image Dataset

Three face databases are used in the experiments, two of them containing only neutral faces
(FERET and PAL databases), and a third database containing neutral, expressive, and
realistically occluded faces (AR database). From FERET database, we use 2,014 frontal
face images of 1,173 male and 841 female faces corresponding to 787 different subjects
(427 males and 360 females). All the images included in PAL database are used, which
correspond to one face image per subject of a total of 575 individuals (224 males and 351
females). From AR database, we use images corresponding to neutral, happy, angry and
“screaming” faces, and faces presenting top occlusions caused by sunglasses and bottom
occlusions caused by wearing a scarf. Concretely, we use images of 130 individuals (74
males and 56 females) per each facial expression, images of 129 individuals (74 males and
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Table 6.2: Datasets involved in the experiments simulating scenarios with different distortions in
the face images.

(a) Combinations of training and test datasets. A: Both, training and test without dis-
tortions. B: Training with distortions and test without them. C: Training without
distortions and test with them. D: Both, training and test with distortions. Class
balance ratios of male to female faces are shown below each training dataset.

Training datasets

FERET PAL
AR AR light AR heavy

neutral distortions1 distortions2

1:0.7 0.6:1 1:0.8 1:0.8 1:0.8

T
es
t

d
a
ta
se
ts

FERET A A A B B
PAL A A A B B
AR Neutral A A A B B
AR light distortions1 C C C D D
AR heavy distortions2 C C C D D

1The dataset AR light distortions contains neutral and expressive faces.
2The dataset AR heavy distortions contains neutral, expressive and occluded faces.

(b) Dataset combinations included in each group of experiments from G1 to G9.

Training datasets

With and Without With Without
Distortions Distortions Distortions

T
es
t

d
a
ta
se
ts With and Without Distortions G1: A∪B∪C∪D G2: B∪D G3: A∪C

With Distortions G4: C∪D G5: D G6: C
Without Distortions G7: A∪B G8: B G9: A

55 females) wearing sunglasses and images of 125 individuals (72 males and 53 females)
wearing a scarf.

All those face images are divided into several groups for having sets of images with or
without distortions, and sets with both types of images. The exact class balance ratios of
each set of images involved in the experiments are indicated in the next section.

6.3.3 Experimental Setup

As introduced in Section 6.2, face images of different characteristics (with respect to facial
expression and occlusions) are included in the experiments. In addition, to recreate realistic
conditions, those images are from different databases so they have different demography
and acquisition conditions. All the combinations of training-test datasets are shown in
Table 6.2(a). In that table, the letters A, B, C and D indicate if the dataset contains
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Table 6.3: Classification models considered in the experiments (classifier-Feature-G/L).

Global Local

(1) 1NN-grey-G (8) 1NN-grey-L
(2) 1NN-pca-G (9) 1NN-pca-L
(3) 1NN-lbp-G (10) 1NN-lbp-L
(4) LDA-pca-G (11) 1NN-rank-L
(5) SVM-grey-G (12) LDA-pca-L
(6) SVM-pca-G
(7) SVM-lbp-G

(or not) distortions in the training/test sets. The class balance ratio for each dataset is
also provided in the table. The face images from the AR database are divided into three
datasets with an increasing level of difficulty: AR neutral contains only neutral faces, AR
light distortions contains neutral and expressive faces, and AR heavy distortions contains
the images of the previous dataset and also occluded faces.

The statistical study of the results is performed over the nine groups of experiments
introduced in Section 6.2 which are built regarding some distortion criteria to assess specific
experimental scenarios. The experiments included in each group are shown in Table 6.2(b).

As was indicated in Section 6.3.1, four types of features and three classifiers are used
in the experiments. All possible combinations of classifiers and features, with three ex-
ceptions, are considered following both global and local approaches. A combination of
classifier, feature and approach is referred to as classification model. Table 6.3 shows all
the classification models. In order to name one particular model, we use the nomenclature
classifier-feature-G/L. As can be seen on the table, the first exception is that the classifiers
based on LDA are just combined with PCA features, because this classifier is commonly
employed with those features (for further information see Section 2.4). The second excep-
tion relates to the local versions of SVM which are not included in the experiments due to
the fact that the time needed to train all the local SVMs is computationally unaffordable.
The third exception is based on the fact that the Ranking Label representation was defined
for describing local regions, hence they are not considered with a global approach.

To assess classifier performances in single-database experiments, that is, experiments
where the training and test sets are extracted from the same database, 5 repetitions of a
5-fold cross validation technique are executed (25 runs in total). The partitions needed for
conducting these experiments are based on subjects instead of images. Therefore, images
of the same individual could only be found in the training or the test set, but never in
both. In cross-database experiments, only one simulation is performed, training with one
database and testing with the other.
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Table 6.4: Number of global and local features involved in the experiments. In the local case, the
number of features passed to each local classifier is given (there are a total of 1170 local classifiers).
For local PCA, the average number of features per neighbourhood is provided.

Grey levels LBP PCA Ranking Labels

GLOBAL 1620 1180
FERET: 236 AR light: 142

–PAL: 184 AR heavy: 165
AR neutral: 49

LOCAL 49 59
FERET: 14 AR light: 16

49PAL: 17 AR heavy: 14
AR neutral: 15

Implementation Details

In this section we give all the details that are necessary for replicating the experiments. The
images are resized to 45× 36 pixels and described using several types of features. Table 6.4
shows the number of features passed to the global and local classifiers in each case. The
specifics regarding the parameters and its values for extracting each type of features are
given next. In the case of global approaches the parameters are the following:

• Global grey level features consist of the pixel values. Therefore, the number of pixels
(which is 1620) and the number of features coincide.

• Global LBP characterisations are based on LBP u
8,2 sensitive to rotation, that means

that each patch is represented by a histogram of 59 bins. The size of the patches
is 9 × 9 pixels which has been chosen for being a reasonable size considering the
resolution of the face images. For covering the whole image with patches of that size,
a total of 20 patches with no overlapping are used. After concatenating the 59 bins
extracted from the 20 patches, 1180 features are obtained.

• Global PCA features account for 95% of the variance of the training data. Hence,
depending on the training data the number of features varies. In Table 6.4, the
number of features resulting from each training dataset is indicated.

In local approaches, patches of 7×7 pixels are considered over the image with maximum
overlapping (from one patch to the next there is a one-pixel shift). The local neighbour-
hoods span T = 2 positions in each direction from its center, resulting in neighbourhoods
that cover 25 patches. Given the image size and the previous details, there is a total of
1170 patches per image. As a reminder, the classification based on local neighbourhoods
considered one neighbourhood per patch and there is a local classifier which specialises in
each neighbourhood. Following, we indicate the parameters of each type of local features:

• Local grey level features correspond to the pixel values within the patch, since the
patch’s size is 7× 7, there are 49 grey level features.
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• Local LBP features, as the global version, are based on LBP u
8,2 sensitive to rotation.

Hence, from each patch 59 features are extracted. Local LBP features were also
extracted from patches larger than 7×7 pixels to test if the size of the patch influenced
the classification task. We concluded that the performance was not strongly affected.
Therefore, the size of patches is kept the same as for the other local features (that is,
7× 7 pixels) to make possible a direct comparison with them.

• Local PCA features, as in the global case, account for 95% of the variance of the
training data. As has been explained, each local classifier is trained with the patches
belonging to the same neighbourhood. Hence, the training data depends on the
neighbourhood being considered. In Table 6.4, we provide the average number of the
PCA features selected per neighbourhood for each dataset.

• Local Ranking Label descriptions assign a label to each pixel within a patch. Hence,
being the size of the patch 7× 7, a total of 49 features are extracted.

As regards the classifiers, we use 1-NN, SVM with a third degree polynomial (the
implementation provided with LIBSVM 3.0 [21]), and the LDA classifier is implemented
using the numerical analysis library ALGLIB [16].

6.3.4 Results and Discussion

In this section, we present a wide comparison of the performance of all the classification
models involved in the study. In order to provide a comprehensive analysis, we applied
the statistical tests to the nine groups of experiments detailed in Table 6.2(b) for both
performance measures, classification accuracy (ACC ) and D-prime (the result of each ex-
periment can be seen in Tables 6.7 and 6.8). Therefore, eighteen groups of experiments are
considered for each statistical test.

Iman-Davenport’s Statistic

According to Iman-Davenport’s statistic (see Table 6.5), significant differences exist among
the performance of all classification models using both measures. In other words, the value
of the statistic (FF ) is always higher than the corresponding value of the F-distribution.

Holm’s Method

Holm’s method results for ACC and D-prime are shown in Figure 6.2 and Figure 6.3,
respectively. Holm’s null hypothesis assumes statistical equality to the control model (shown
in bold at the bottom of each table). Those hypotheses associated to the models above the
double line were rejected with a 95% significance level.

Taking into account Holm’s results over both measures, there are various models which
are always rejected. Those are the three global 1-NNs and the local LDA. This indicates
that those models are not the most suitable for addressing gender classification problems.



98 6.3 Experimental Study

Table 6.5: Iman-Davenport’s statistic applied to ACC and D-prime values (marked in bold when
statistical differences are found).

ACC D-prime F-distribution

G1 FF = 20.17 FF = 43.44 F (11, 264)0.95 = 1.83

G2 FF = 22.41 FF = 26.95 F (11, 99)0.95 = 1.87

G3 FF = 7.75 FF = 23.92 F (1, 154)0.95 = 1.85

G4 FF = 15.76 FF = 32.11 F (11, 99)0.95 = 1.87

G5 FF = 70.41 FF = 26.02 F (11, 33)0.95 = 2.09

G6 FF = 6.75 FF = 37.37 F (11, 55)0.95 = 1.97

G7 FF = 8.68 FF = 19.76 F (1, 154)0.95 = 1.85

G8 FF = 8.92 FF = 11.88 F (11, 55)0.95 = 1.97

G9 FF = 3.88 FF = 11.20 F (11, 88)0.95 = 1.90

Besides, the hypothesis associated to the global version of LDA is only supported for groups
G5 and G9 (in this last group just when considering accuracy results). In those two groups
of experiments the training set is fully representative of the test set which leads us to
think that the mentioned classification model (global LDA) is mainly appropriate in that
particular situation.

If we focus the analysis on the classification accuracy results (Figure 6.2), global SVMs
and local 1-NNs perform statistically better than the rest. However, if we consider the
D-prime measure, global SVMs are not always among the models achieving statistically
superior performances. That leaves local 1-NNs as the only models that are always among
the statistically best for both measures. It is worth reminding at this point, that D-prime
measure is less influenced by skewed classes than the classification accuracy.

Wilcoxon’s Signed Rank Test

A summary of the results of Wilcoxon’s signed rank test applied to the ACC and D-prime
values of the different groups of experiments is depicted in Figure 6.4 and Figure 6.5, re-
spectively. Remember that, in these figures, the symbol “•” indicates that the classification
model in the row significantly outperforms the model in the column, and the symbol “◦”
indicates that the classification model in the column significantly surpasses the model in the
row. Above the main diagonal, the confidence level is 90% and, below it, it is 95%. In those
tables the classification models are represented by a number from 1 to 12, see Table 6.3 for
matching each number with the corresponding classification model.

Groups G1, G2, G3, G4, and G7: Images of both types (with and withouth distortions)
were used either for training or for testing. Wilcoxon’s results show that global SVMs
and local 1-NNs statistically outperform the rest of the classification models. However,
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G1

1NN-lbp-G 0
LDA-pca-L 0
1NN-pca-G 0.000003
1NN-grey-G 0.000008
1NN-lbp-L 0.000344
LDA-pca-G 0.000526
SVM-lbp-G 0.216919

1NN-pca-L 0.957266
SVM-pca-G 1.668895
SVM-grey-G 1.668895
1NN-rank-L 1.668895

1NN-grey-L

G2

1NN-lbp-G 0.000001
LDA-pca-L 0.000005
1NN-grey-G 0.000383
1NN-pca-G 0.000506
LDA-pca-G 0.004043
SVM-lbp-G 0.021354
1NN-lbp-L 0.054998

1NN-pca-L 0.689789
SVM-pca-G 1.370251
SVM-grey-G 1.370251
1NN-grey-L 1.370251

1NN-rank-L

G3

1NN-lbp-G 0.000164
LDA-pca-L 0.001616
1NN-pca-G 0.002398
1NN-lbp-L 0.003462
1NN-grey-G 0.005822
LDA-pca-G 0.054675

1NN-rank-L 2.16264
1NN-pca-L 2.16264
SVM-lbp-G 2.16264
SVM-pca-G 2.16264
SVM-grey-G 2.16264

1NN-grey-L

G4

1NN-lbp-G 0.000027
LDA-pca-L 0.000027
1NN-pca-G 0.002279
LDA-pca-G 0.002279
1NN-lbp-L 0.004532
1NN-grey-G 0.005441
SVM-lbp-G 0.768765

SVM-grey-G 1.004995
1NN-pca-L 1.314634
1NN-rank-L 1.314634
SVM-pca-G 1.314634

1NN-grey-L

G5

LDA-pca-L 0.000273
1NN-lbp-G 0.001312
1NN-pca-G 0.012943
1NN-grey-G 0.016076
1NN-lbp-L 0.075512

LDA-pca-G 0.111618
SVM-lbp-G 0.197366
1NN-pca-L 0.565304
1NN-grey-L 0.980399
SVM-grey-G 1.247857
1NN-rank-L 1.247857

SVM-pca-G

G6

1NN-lbp-G 0.001847
LDA-pca-G 0.003147
LDA-pca-L 0.005182
1NN-lbp-L 0.014346
1NN-pca-G 0.024319
1NN-grey-G 0.062434

SVM-grey-G 0.299516
1NN-rank-L 0.919065
SVM-lbp-G 1.010005
SVM-pca-G 1.010005
1NN-pca-L 1.010005

1NN-grey-L

G7

1NN-lbp-G 0.00001
LDA-pca-L 0.00051
1NN-grey-G 0.000569
1NN-pca-G 0.000626
1NN-lbp-L 0.032011
LDA-pca-G 0.084321

SVM-lbp-G 0.341569
1NN-pca-L 0.822161
SVM-pca-G 0.862834
1NN-grey-L 1.408222
1NN-rank-L 1.408222

SVM-grey-G

G8

1NN-lbp-G 0.000242
LDA-pca-L 0.005758
1NN-grey-G 0.014076
1NN-pca-G 0.024422
LDA-pca-G 0.024422
SVM-lbp-G 0.078391

1NN-lbp-L 0.546573
SVM-pca-G 0.693942
1NN-pca-L 1.010005
SVM-grey-G 1.010005
1NN-grey-L 1.010005

1NN-rank-L

G9

1NN-lbp-G 0.005839
1NN-pca-G 0.010808
1NN-grey-G 0.013694
LDA-pca-L 0.021099
1NN-lbp-L 0.022846
1NN-pca-L 0.902289

LDA-pca-G 0.902289
1NN-rank-L 1.307198
1NN-grey-L 1.307198
SVM-lbp-G 1.307198
SVM-pca-G 1.307198

SVM-grey-G
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Figure 6.2: Holm’s method results for measure accuracy (ACC ) of all classification models compared
with the most significant in each case (showed in bold at the bottom of each table) with a 95%
significance level. All the models above the double line performed significantly worse than the
model in bold. Refer to Table 6.2 for the description of the groups (G1 to G9) of experiments.
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G1

1NN-lbp-G 0
1NN-grey-G 0
1NN-pca-G 0
LDA-pca-L 0
LDA-pca-G 0
SVM-lbp-G 0.000162
SVM-pca-G 0.000372
SVM-grey-G 0.013055
1NN-lbp-L 0.024322
1NN-pca-L 0.215604

1NN-grey-L 0.216633

1NN-rank-L

G2

1NN-lbp-G 0.000001
LDA-pca-L 0.000006
1NN-grey-G 0.000293
1NN-pca-G 0.001587
LDA-pca-G 0.002855
SVM-lbp-G 0.006077
SVM-pca-G 0.219228

SVM-grey-G 1.111148
1NN-lbp-L 1.111148
1NN-pca-L 1.196182
1NN-rank-L 1.196182

1NN-grey-L

G3

1NN-lbp-G 0
1NN-pca-G 0
1NN-grey-G 0
LDA-pca-G 0
LDA-pca-L 0.000003
SVM-pca-G 0.003139
SVM-grey-G 0.017978
SVM-lbp-G 0.024998
1NN-lbp-L 0.031659
1NN-pca-L 0.19965

1NN-grey-L 0.19965

1NN-rank-L

G4

1NN-lbp-G 0
LDA-pca-G 0.000004
1NN-pca-G 0.000014
1NN-grey-G 0.000031
LDA-pca-L 0.000199
SVM-lbp-G 0.034705
SVM-pca-G 0.034705
SVM-grey-G 0.13992

1NN-lbp-L 0.753747
1NN-pca-L 0.753747
1NN-grey-L 0.753747

1NN-rank-L

G5

LDA-pca-L 0.00314
1NN-lbp-G 0.004154
1NN-grey-G 0.063047
1NN-pca-G 0.063047

LDA-pca-G 0.130221
SVM-lbp-G 0.374686
SVM-pca-G 1.515966
1NN-pca-L 1.848297
1NN-lbp-L 1.848297
1NN-rank-L 1.848297
SVM-grey-G 1.848297

1NN-grey-L

G6

1NN-lbp-G 0.000008
LDA-pca-G 0.000016
1NN-pca-G 0.000237
1NN-grey-G 0.000592
SVM-pca-G 0.027634
SVM-grey-G 0.027634
LDA-pca-L 0.041195
SVM-lbp-G 0.099899

1NN-lbp-L 0.643825
1NN-pca-L 0.643825
1NN-grey-L 0.643825

1NN-rank-L

G7

1NN-lbp-G 0
1NN-grey-G 0
LDA-pca-L 0
1NN-pca-G 0
LDA-pca-G 0.000105
SVM-lbp-G 0.009311
SVM-pca-G 0.01949
1NN-lbp-L 0.052375

SVM-grey-G 0.11365
1NN-pca-L 0.468117
1NN-grey-L 0.468117

1NN-rank-L

G8

1NN-lbp-G 0.000202
LDA-pca-L 0.002306
1NN-grey-G 0.006947
SVM-lbp-G 0.027793
LDA-pca-G 0.031355
1NN-pca-G 0.031355
SVM-pca-G 0.249063

SVM-grey-G 0.512821
1NN-lbp-L 0.786995
1NN-pca-L 1.558611
1NN-grey-L 1.558611

1NN-rank-L

G9

1NN-pca-G 0.000017
1NN-grey-G 0.000025
1NN-lbp-G 0.000092
LDA-pca-L 0.000092
LDA-pca-G 0.007566
1NN-lbp-L 0.132818

SVM-pca-G 0.168104
SVM-lbp-G 0.35677
SVM-grey-G 0.451145
1NN-grey-L 0.451145
1NN-pca-L 0.451145

1NN-rank-L
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Figure 6.3: Holm’s method results for measure D-prime of all classification models compared with
the most significant in each case (showed in bold at the bottom of each table) with a 95% significance
level. All the models above the double line performed significantly worse than the model in bold.
Refer to Table 6.2 for the description of the groups (G1 to G9) of experiments.



Chapter 6 V Gender Classification including Partially Occluded and Expressive Faces 101

if we focus on the results obtained with D-prime, most of the times local 1-NNs are
significantly better than global SVMs, supporting the conclusion extracted from Holm’s
method. Specially, local 1-NN using Ranking Label features are statistically superior
to all the classification models with only three exception in group G2 (local 1-NNs
using grey levels and PCA features, and global SVMs using grey leves).

Group G5: Only distorted faces were used both for training and testing. Wilcoxon’s test
cannot find differences among the performances of the classification models due to
insufficient data; to approximate a normal distribution, six or more experiments are
needed [15] and this group only has four experiments (see Table 6.2). Note that, in
this group of experiments, Holm’s method finds reasonable statistical differences since
having a small number of experiments can only cause the non rejection of false null
hypotheses [25].

Group G6: Non-distorted faces were used for training and distorted faces for testing. Look-
ing at the results obtained when considering the accuracy measure, three classification
models stand out for significantly outperforming all global 1-NNs and also global LDA.
Those three models are: the global SVM using grey levels and the local 1-NNs based
on grey levels and PCA features. However, focusing on the D-prime results, all lo-
cal 1-NNs are statistically superior to all global models. The local 1-NN using LBP
features is the only one that just outperforms global 1-NNs and global LDA, but not
global SVMs. It is worth highlighting, that the local 1-NN using Ranking Labels also
outperforms the remaining local models which does not occur for any of the other local
models.

Group G8: Distorted faces were used for training and non-distorted faces for testing. In
this group, the global SVMs do not perform as well as they do with other experiment
settings. All global SVMs only statistically outperform global 1-NN with LBP features
with a 95% confidence level. However, local 1-NNs are found to be significantly superior
to all global 1-NNs and some global SVMs (particularly, when taking into account D-
prime results). This shows that in some circumstances when the training set is not
representative of the test set, global SVMs might not be as suitable as local 1-NNs for
dealing with gender classification problems.

Group G9: Only non-distorted faces were used both for training and testing. Wilcoxon’s
test findings differ depending on the measure employed. In ACC based tests, global
SVM with grey levels statistically outperform most of the other models. However, in
D-prime based tests, global SVMs and local 1-NNs show a statistical superiority to the
rest of global models (with the exception of local 1-NNs using LBP features). The fact
that local 1-NNs are among the best models only considering the D-prime measure
suggests that local 1-NNs lead to more balanced performance rates between classes.
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G1

1 2 3 4 5 6 7 8 9 10 11 12
1NN-grey-G 1 - • ◦ ◦ ◦ ◦ ◦ ◦ •

1NN-pca-G 2 - • ◦ ◦ ◦ ◦ ◦ ◦ •

1NN-lbp-G 3 ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦

LDA-pca-G 4 • - ◦ ◦ ◦ ◦ ◦ ◦ •

SVM-grey-G 5 • • • • - • •

SVM-pca-G 6 • • • • - • • •

SVM-lbp-G 7 • • • • - ◦ ◦ •

1NN-grey-L 8 • • • • - • • •

1NN-pca-L 9 • • • • ◦ - • •

1NN-lbp-L 10 ◦ ◦ ◦ ◦ - ◦

1NN-rank-L 11 • • • • • - •

LDA-pca-L 12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

G2

1 2 3 4 5 6 7 8 9 10 11 12
1 - • ◦ ◦ ◦ ◦ ◦ ◦

2 - • ◦ ◦ ◦ ◦ ◦ ◦

3 ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 • - ◦ ◦ ◦ ◦ ◦ ◦ •

5 • • • • - • • •

6 • • • • - • • •

7 • ◦ ◦ - ◦ ◦ ◦

8 • • • • • - • •

9 • • • • • - • •

10 • • • ◦ ◦ ◦ ◦ - ◦ •

11 • • • • • • - •

12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

G3

1 2 3 4 5 6 7 8 9 10 11 12
1 - ◦ ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦ ◦

3 - ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 • - ◦ ◦ ◦ ◦ •

5 • • • • - • •

6 • • • - • •

7 • • • - • •

8 • • • - • • •

9 • • • ◦ - • •

10 ◦ ◦ ◦ ◦ ◦ - ◦

11 • • • • - •

12 ◦ ◦ ◦ ◦ ◦ ◦ -

G4

1 2 3 4 5 6 7 8 9 10 11 12
1NN-grey-G 1 - • • ◦ ◦ ◦ ◦ ◦ ◦ •

1NN-grey-G 2 ◦ - • ◦ ◦ ◦ ◦ ◦ ◦ •

1NN-grey-G 3 ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦

LDA-pca-G 4 • - ◦ ◦ ◦ ◦ ◦ ◦

SVM-grey-G 5 • • • • - ◦ • •

SVM-pca-G 6 • • • • • - • • •

SVM-lbp-G 7 • • • • - ◦ ◦ • •

1NN-grey-L 8 • • • • • - • • •

1NN-pca-L 9 • • • • • ◦ - • •

1NN-lbp-L 10 ◦ ◦ ◦ ◦ ◦ - ◦

1NN-rank-L 11 • • • • - •

LDA-pca-L 12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

G5

1 2 3 4 5 6 7 8 9 10 11 12
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -

G6

1 2 3 4 5 6 7 8 9 10 11 12
1 - • • ◦ ◦ ◦ ◦

2 - • ◦ ◦ ◦ ◦

3 - ◦ ◦ ◦ ◦ ◦

4 - ◦ ◦ ◦ ◦ ◦

5 • • - ◦ ◦

6 • - • •

7 • • • • - ◦ • •

8 • • • • • - • • •

9 • • • • ◦ - • •

10 ◦ ◦ ◦ -
11 - •

12 ◦ ◦ ◦ ◦ -

G7

1 2 3 4 5 6 7 8 9 10 11 12
1NN-grey-G 1 - ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-pca-G 2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-lbp-G 3 - ◦ ◦ ◦ ◦ ◦ ◦ ◦

LDA-pca-G 4 • • • - ◦ •

SVM-grey-G 5 • • • • - • •

SVM-pca-G 6 • • • - • •

SVM-lbp-G 7 • • -
1NN-grey-L 8 • • • - • • •

1NN-pca-L 9 • • • - • •

1NN-lbp-L 10 ◦ ◦ ◦ ◦ - ◦

1NN-rank-L 11 • • • • - •

LDA-pca-L 12 ◦ ◦ ◦ ◦ ◦ ◦ -

G8

1 2 3 4 5 6 7 8 9 10 11 12
1 - • ◦ ◦ ◦ ◦ ◦ ◦

2 - • ◦ ◦ ◦ ◦ ◦

3 ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 • - ◦ ◦ ◦ ◦ ◦

5 • • - • • ◦ •

6 • -
7 • ◦ - ◦ ◦

8 • • • • • - • •

9 • • - •

10 • • • - ◦

11 • • • • • • - •

12 ◦ ◦ ◦ -

G9

1 2 3 4 5 6 7 8 9 10 11 12
1 - ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦

3 - ◦ ◦ ◦ ◦ ◦ ◦

4 • • • - •

5 • • • - • • • •

6 • • - • •

7 • -
8 • • - •

9 - •

10 ◦ ◦ ◦ ◦ - ◦

11 -
12 ◦ -
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Figure 6.4: Summary of the Wilcoxon’s Signed Rank test applied to the ACC values of all groups
of experiments. The symbol “•” indicates that the classification model in the row significantly
outperforms the model in the column, and the symbol “◦” indicates that the model in the column
significantly outperforms the model in the row (above the main diagonal with 90% confidence level,
and below it with 95%). Refer to Table 6.3 for the description of the classification models numbered
from 1 to 12 and to Table 6.2 for the description of the groups of experiments (G1 to G9). In
group G5, Wilcoxon’s cannot find differences due to insufficient data.
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G1

1 2 3 4 5 6 7 8 9 10 11 12
1NN-grey-G 1 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-pca-G 2 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-lbp-G 3 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

LCA-pca-G 4 • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

SVM-grey-G 5 • • • • - • ◦ ◦ ◦ •

SVM-pca-G 6 • • • • ◦ - ◦ ◦ ◦ ◦ •

SVM-lbp-G 7 • • • • - ◦ ◦ ◦ ◦ •

1NN-grey-L 8 • • • • • • • - ◦ •

1NN-pca-L 9 • • • • • • • - ◦ •

1NN-lbp-L 10 • • • • • - ◦ •

1NN-rank-L 11 • • • • • • • • • • - •

LDA-pca-L 12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

G2

1 2 3 4 5 6 7 8 9 10 11 12
1 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

2 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

3 ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 • - ◦ ◦ ◦ ◦ ◦ ◦ •

5 • • • • - • • ◦ ◦ •

6 • • • • ◦ - • ◦ ◦ ◦ •

7 • ◦ ◦ - ◦ ◦ ◦ ◦ •

8 • • • • • • - • •

9 • • • • • • - •

10 • • • • • - ◦ •

11 • • • • • • • - •

12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

G3

1 2 3 4 5 6 7 8 9 10 11 12
1 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

5 • • • • - ◦ ◦ ◦ •

6 • • • • - ◦ ◦ ◦ ◦ •

7 • • • • - ◦ •

8 • • • • • • - ◦ •

9 • • • • • • - ◦ •

10 • • • • - ◦ •

11 • • • • • • • • • • - •

12 ◦ ◦ ◦ ◦ ◦ ◦ -

G4

1 2 3 4 5 6 7 8 9 10 11 12
1NN-grey-L 1 - • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-pca-L 2 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-lbp-L 3 ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

LDA-pca-G 4 • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

SVM-grey-G 5 • • • • - • ◦ ◦ ◦

SVM-pca-G 6 • • • • - ◦ ◦ ◦ ◦

SVM-lbp-G 7 • • • • - ◦ ◦ ◦ ◦ •

1NN-grey-L 8 • • • • • • • - ◦ •

1NN-pca-L 9 • • • • • • • - ◦ •

1NN-lbp-L 10 • • • • • • - ◦ •

1NN-rank-L 11 • • • • • • • • • • - •

LDA-pca-L 12 ◦ ◦ ◦ ◦ ◦ -

G5

1 2 3 4 5 6 7 8 9 10 11 12
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -

G6

1 2 3 4 5 6 7 8 9 10 11 12
1 - • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 - • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

5 • • - ◦ ◦ ◦ ◦

6 • • • • - ◦ ◦ ◦ ◦ ◦

7 • • • • - ◦ ◦ ◦

8 • • • • • • • - ◦ •

9 • • • • • • • - ◦ •

10 • • • • - ◦ •

11 • • • • • • • • • • - •

12 • • ◦ ◦ ◦ -

G7

1 2 3 4 5 6 7 8 9 10 11 12
1NN-grey-G 1 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-pca-G 2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

1NN-lbp-G 3 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

LDA-pca-G 4 • • • - ◦ ◦ ◦ ◦ ◦ ◦ •

SVM-grey-G 5 • • • • - • ◦ •

SVM-pca-G 6 • • • • - ◦ ◦ ◦ •

SVM-lbp-G 7 • • • - ◦ ◦ ◦ •

1NN-grey-L 8 • • • • • - ◦ •

1NN-pca-L 9 • • • • • - ◦ •

1NN-lbp-L 10 • • • - ◦ •

1NN-rank-L 11 • • • • • • • • • • - •

LDA-pca-L 12 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ -

G8

1 2 3 4 5 6 7 8 9 10 11 12
1 - ◦ • ◦ ◦ ◦ ◦ ◦ ◦

2 • - • ◦ ◦ ◦ ◦ ◦ ◦

3 ◦ ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 - ◦ ◦ ◦ ◦ ◦

5 • - • ◦ ◦ •

6 • - ◦ ◦ ◦ •

7 - ◦ ◦ ◦ ◦

8 • • • • • - •

9 • • • • • - •

10 • • • • - ◦

11 • • • • • • • - •

12 ◦ ◦ ◦ ◦ -

G9

1 2 3 4 5 6 7 8 9 10 11 12
1 - ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 - ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 • • - ◦ ◦ ◦ ◦ ◦ •

5 • • • • - ◦ •

6 • • • - ◦ •

7 • • • - ◦ •

8 • • • • - ◦ •

9 • • • • - ◦ •

10 - ◦

11 • • • • • • • • • - •

12 ◦ ◦ ◦ ◦ ◦ ◦ -
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Figure 6.5: Summary of the Wilcoxon’s Signed Rank test applied to the D-prime values of all groups
of experiments. The symbol “•” indicates that the classification model in the row significantly
outperforms the model in the column, and the symbol “◦” indicates that the model in the column
significantly outperforms the model in the row (above the main diagonal with 90% confidence level,
and below it with 95%). Refer to Table 6.3 for the description of the classification models numbered
from 1 to 12 and to Table 6.2 for the description of the groups of experiments (G1 to G9). In
group G5, Wilcoxon’s cannot find differences due to insufficient data.
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Summary of the Discussion

In general, looking at the results, there are two differentiated sets of classification models,
global SVMs together with the proposed local approach using 1-NNs, and the rest. The
former set undoubtedly obtains better performances than the latter in most groups of
experiments. In cases where the training set is unrepresentative of the test set (training
faces present distortions and test faces do not or vice versa), local 1-NNs tend to be superior
to the rest in statistical terms. However, when the training set is representative of the test
set (the same type of faces are found in training and test sets), global SVMs and local
1-NNs behave similarly.

The statistical results showed that there is a tendency for local models to be superior
to global solutions. This conclusion was strongly supported by D-prime based tests where
local 1-NNs perform statistically better than most of the models. In particular, local 1-NN
using Ranking Label features was superior to all global models with a 95% confidence level
in most groups. The only exception occured in groups G2 and G9, where that model did
not outperform global SVM with grey levels.

A clear advantage of one type of feature over the rest was detected, that is the case of
the proposed Ranking Label features. Considering D-prime measure, this type of feature
shows an obvious superiority over the other features. In terms of ACC values, these features
are among the best in most groups of experiments.

Analysing the results (provided in Tables 6.7 and 6.8), the performances of the different
models did not seem to be strongly affected by the datasets employed with the exception
of FERET and PAL. When using those databases (in both combinations of training with
one and testing with the other) lower performances were obtained. This is probably due to
the different acquisition conditions of the face images in each database.

Comparison with other works

There is a considerable variability among the actual classification accuracies (see Table 6.7)
which is due to the different levels of difficulty of each experiment. Considering only the
best accuracy per experiment, the lowest and highest ACC values are 71.60% and 99.07%,
respectively. However, this does not provide information about how good or bad the pro-
posed solutions are with respect to what has been already published.

Although not all our results can be directly compared to those in the literature, Table 6.6
shows the accuracies obtained in similar published studies. As can be seen, our results are
at the same level of the state of the art in face gender classification. It should be taken into
account that the configurations of the experiments are different (for example, the partitions
of the data into training and test sets probably differ).
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Table 6.6: Comparison of different gender classification studies.

(a) Single-database experiments.

Database Study Classifier Features ACC

FERET

Our results Local 1-NN Ranking Labels 94.47
Tapia et al. [60] Feature selection (CMIFS) + SVM LBP (various spatial scales) 97.53
Moghaddam et al. [46] SVM RBF kernel PCA 96.62
El-Din [27] Bayesian Mixture of Experts Haar-like + geometric 95.10
Bekios-Calfa et al. [13] SVM RBF kernel Grey levels 93.95
Alexandre [4] SVM linear kernel LBP 93.46
Toews and Arbel [61] Bayesian Classifier Geometric and appearance 88.10
Mäkinen et al. [39] SVM RBF kernel Grey levels 86.54

PAL
Our results Global SVM LBP 88.57
Bekios-Calfa et al. [13] SVM RBF kernel Grey levels 89.81

AR
Neutral

Our results Global SVM PCA 98.15
Mozaffari et al. [47] 1-NN LBP + DCT + geometric 96.00

(b) Cross-database experiments.

Databases
Study Classifier Features ACC

(training/test)

FERET/PAL
Our results SVM LBP 71.60
Bekios-Calfa et al. [13] LDA PCA modified 71.50

PAL/FERET
Our results LDA PCA 77.11
Bekios-Calfa et al. [13] SVM RBF kernel Grey levels 78.65

6.4 Conclusions

In this chapter, we presented a comprehensive experimental study on gender classification
techniques using expressive, partially occluded and completely visible neutral faces. An ex-
tensive comparison of two approaches (global and local), four types of features (grey levels,
PCA, LBP and Ranking Labels) and three classifiers (1-NN, SVM and LDA) was provided
by means of three statistical tests applied to two performance measures (classification ac-
curacy and D-prime).

The findings of these statistical tests indicated that global as well as our local approach
can successfully solve gender classification problems when the training set is representative
of the test set. However, in the case of training and test sets with different face distortions,
the proposed local approach significantly outperformed global solutions according to the
results of both performance measures. This superiority is due to the fact that the classi-
fication based on local neighbourhoods was designed to better deal with distortions in the
images and an expressive/occluded face can be seen as a distorted face.

As regards the type of feature, models based on grey levels, PCA or Ranking Labels
provided the best classification performances. In general, Ranking Label features showed
to be the best choice. It should also be noted that LBP features, which are widely used in
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facial analysis problems, were in many cases outperformed by models using other features.
They are particularly not good when using a local approach which is probably caused by
the complete lack of spatial information (it is a descriptor based on histograms).

Summarising, global SVMs together with local 1-NNs are the best models to address
gender classification problems among those considered in this work. However, when the
training set is unrepresentative of the test set, local 1-NNs surpass global solutions.

6.A Numerical Results

This sections shows the classification accuracies (Table 6.7) and D-prime values (Table 6.8)
of each of the experiments carried out for the present study.
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Table 6.7: Classification accuracies obtained in each of the experiments. Class balance ratios of males to females are shown below
each training dataset. The best result for each training-test combination is marked in bold.

Global Local

1-NN LDA SVM 1-NN LDA

Training Test Grey
PCA LBP PCA

Grey
PCA LBP

Grey
PCA LBP

Ranking
PCADataset Dataset Levels Levels Levels Labels

FERET

1:0.7

FERET 85.31 85.57 86.40 91.86 93.66 92.83 94.06 92.35 91.29 85.58 94.47 85.07
PAL 66.03 64.98 58.19 71.25 66.72 62.55 71.60 66.03 62.19 43.03 67.77 60.80
AR Neutral 79.17 82.31 75.37 77.69 81.54 84.62 84.69 86.15 86.92 61.20 89.55 83.08
AR Light Dis. 82.79 82.60 70.21 78.39 81.07 82.60 83.80 86.99 86.62 64.71 89.37 79.73
AR Heavy Dis. 76.06 74.90 67.43 72.84 74.00 76.71 78.74 83.66 83.14 63.12 86.06 76.32

PAL

0.6:1

FERET 66.53 65.56 71.49 75.22 72.99 70.66 69.62 63.16 62.07 56.50 52.88 77.11

PAL 77.42 77.35 79.23 82.72 85.23 85.61 88.57 83.73 83.52 79.06 80.24 73.69
AR Neutral 81.25 82.31 85.07 89.23 92.31 91.54 88.63 90.00 90.00 88.81 85.82 87.69
AR Light Dis. 80.88 80.69 80.27 82.03 85.66 84.32 85.14 86.99 85.66 81.21 79.32 67.88
AR Heavy Dis. 75.68 75.80 76.30 74.00 77.48 75.93 79.73 78.12 76.96 75.92 69.84 65.51

AR Neutral

1:0.8

FERET 76.02 76.86 65.23 80.09 80.83 77.21 65.29 78.90 78.90 69.86 74.96 78.20
PAL 73.35 72.30 68.12 71.43 75.09 70.38 72.13 74.39 73.17 74.56 76.92 65.51
AR Neutral 83.99 82.46 88.81 87.54 90.42 98.15 91.96 88.92 89.08 92.24 95.22 86.31
AR Light Dis. 88.18 87.76 85.28 85.66 88.30 94.65 88.96 89.79 89.45 87.29 91.92 85.32
AR Heavy Dis. 82.47 82.34 82.10 80.46 82.52 92.66 83.27 85.95 85.69 84.36 89.02 83.53

AR Light
Distortions

1:0.8

FERET 72.59 72.94 69.20 76.56 77.66 75.22 74.52 80.59 81.23 75.72 77.56 77.41
PAL 72.47 72.65 69.51 72.64 76.48 73.52 73.39 73.69 73.34 74.74 81.36 65.85
AR Neutral 91.23 91.38 90.00 91.08 95.93 96.92 93.13 95.54 94.62 92.84 95.97 86.15
AR Light Dis. 91.24 91.24 87.70 92.82 95.66 99.07 92.17 94.22 93.69 91.20 94.83 86.42
AR Heavy Dis. 85.15 85.22 83.80 85.28 88.89 92.79 86.61 89.32 88.65 87.48 91.03 83.14

AR Heavy
Distortions

1:0.8

FERET 71.50 72.10 68.65 73.58 75.77 75.22 69.22 82.17 82.97 74.53 77.81 77.56
PAL 72.82 72.82 69.34 70.56 72.82 70.38 72.69 74.91 71.43 73.87 81.18 66.03
AR Neutral 90.46 90.31 90.45 90.46 94.78 98.46 92.66 96.00 94.92 92.39 95.22 85.69
AR Light Dis. 91.05 90.90 88.31 91.43 95.73 95.41 91.48 94.23 93.46 91.46 94.99 85.85
AR Heavy Dis. 87.57 87.28 85.83 89.21 91.85 98.06 89.72 91.02 90.60 89.02 92.55 83.14
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Table 6.8: D-prime values of each experiment. Class balance ratios of males to females are shown below each training dataset. The
best result for each training-test combination is marked in bold.

Global Local

1-NN LDA SVM 1-NN LDA

Training Test Grey
PCA LBP PCA

Grey
PCA LBP

Grey
PCA LBP

Ranking
PCADataset Dataset Levels Levels Levels Labels

FERET

1:0.7

FERET 2.08 2.11 2.23 2.78 3.04 2.92 3.12 3.13 3.18 2.69 3.25 2.16
PAL 1.14 1.11 1.19 1.44 1.66 1.38 1.53 1.77 1.67 1.13 1.90 1.01
AR Neutral 1.96 1.88 2.11 1.97 2.19 2.39 2.44 2.36 2.55 1.25 2.99 2.29
AR Light Dis. 1.89 1.88 1.27 1.74 1.98 1.99 2.24 2.42 2.45 1.98 2.96 2.13
AR Heavy Dis. 1.39 1.32 0.98 1.18 1.26 1.43 1.71 2.04 2.08 1.79 2.29 1.78

PAL

0.6:1

FERET 1.26 1.22 1.16 1.51 1.82 2.05 1.39 2.13 1.86 1.94 2.17 1.47
PAL 1.46 1.46 1.74 1.86 2.05 2.08 2.37 2.21 2.19 2.27 2.76 1.19
AR Neutral 1.89 1.83 2.44 2.39 2.89 2.74 2.88 2.55 2.58 3.28 3.10 2.35
AR Light Dis. 1.76 1.74 1.73 1.82 2.12 2.05 2.32 2.42 2.36 3.07 3.24 1.98
AR Heavy Dis. 1.41 1.42 1.46 1.28 1.51 1.48 1.92 2.03 2.01 2.58 2.94 1.68

AR Neutral

1:0.8

FERET 1.52 1.55 1.05 1.76 1.77 1.57 1.21 1.57 1.57 1.07 1.30 1.52
PAL 1.07 1.12 0.83 1.06 1.33 1.08 1.29 1.27 1.22 1.58 1.60 0.84
AR Neutral 1.98 1.86 2.46 2.34 2.63 2.46 2.84 2.52 2.53 3.31 3.50 2.37
AR Light Dis. 2.37 2.34 2.09 2.18 2.49 2.47 2.46 2.66 2.64 2.63 2.83 2.22
AR Heavy Dis. 1.88 1.88 1.82 1.74 1.95 1.89 1.93 2.30 2.30 2.50 2.53 2.02

AR Light
Distortions

1:0.8

FERET 1.32 1.34 1.21 1.44 1.51 1.53 1.36 1.69 1.75 1.43 1.63 1.48
PAL 1.13 1.15 0.92 1.39 1.40 1.19 1.19 1.24 1.24 1.67 1.82 0.83
AR Neutral 2.82 2.99 2.57 2.71 3.44 3.21 3.01 3.59 3.50 3.42 3.62 2.29
AR Light Dis. 2.74 2.76 2.33 2.84 3.48 3.31 2.84 3.35 3.28 3.08 3.25 2.36
AR Heavy Dis. 2.18 2.19 1.96 2.08 2.49 2.47 2.21 2.76 2.72 2.86 2.74 1.96

AR Heavy
Distortions

1:0.8

FERET 1.27 1.29 1.16 1.25 1.39 1.53 1.09 1.81 1.89 1.34 1.63 1.49
PAL 1.15 1.16 0.91 1.15 1.13 0.98 1.15 1.36 1.17 1.54 1.79 0.89
AR Neutral 2.66 2.71 2.64 2.64 3.21 3.06 2.91 3.73 3.59 3.38 3.36 2.31
AR Light Dis. 2.71 2.69 2.39 2.72 3.44 3.17 2.74 3.37 3.26 3.05 3.29 2.29
AR Heavy Dis. 2.29 2.26 2.14 2.46 2.77 2.68 2.53 2.77 2.73 2.89 2.90 1.99



CHAPTER 7

The Effect of Image Resolution on

Face Gender Classification

Rationally, it would seem that the higher the resolution of the face images, the easier
the gender classification task. In this chapter, we search for empirical evidence suggesting
whether the mentioned assumption based on common sense is true. With that purpose,
we statistically study if the classification results are affected by the resolution of the face
images considering extremely low to fairly high image resolutions.

7.1 Motivation and Background

In the last two decades, automatic gender classification has received a broad research in-
terest due to its wide range of applications. Studies on automatic face gender classification
have been reported using many different learning algorithms. However, most of them focus
on selecting the best classification technique and face representation using a fixed image
resolution. Only a few works analyse the influence of the image size on the performance
achieved by face gender classification systems. Tamura et al. [59] studied which of three
resolutions (8 × 8, 16 × 16 and 32 × 32 pixels) reported better performances using Neural
Networks, concluding that the best accuracy, which was 90%, was obtained with images of
32 × 32 pixels. However, using the lowest resolution the performance was only decreased
by 3%. Moghaddam and Yang [46] investigated the performance of Support Vector Ma-
chines (SVMs) with Radial Basis Function and cubic polynomial kernels using two face
image resolutions (21×12 and 84×48 pixels). They claimed that SVMs performed equally
well (reaching about 95% accuracy) with both image sizes, reporting a difference of only
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1%. Mäkinen and Raisamo [39] evaluated several classification models (Neutral Networks,
SVMs and Adaboost) using three image resolutions (24 × 24, 36× 36 and 48 × 48 pixels).
They found that SVM with face images of 36 × 36 pixels achieved the best classification
accuracy (which was, 86.54%). Although, that same classifier with 48× 48 size images ob-
tained similar results, images of 24 × 24 pixels provided not as good results. Additionally,
they tested SVMs using grey level features and Local Binary Patterns, concluding that grey
levels are more suitable for addressing gender classification problems. El-Din et al. [27] con-
ducted a brief study for selecting the most suitable image size for their experiments. They
tested two classifiers, SVM and Adaboost, with image resolutions starting from 8 × 8 to
40 × 40 with steps of 8 pixels. The resolution of 16 × 16 pixels was chosen as it provided
the best results with a reasonable computational time. Those best accuracies were 92.91%
with SVM and 93.71% with Adaboost, in both cases using FERET database. However,
they claimed that increasing the image resolution can significantly degrade the classifiers
performance (particularly, in the case of SVM using grey level features).

Although these works have addressed face gender classification problems comparing the
performances obtained with different image resolutions, most of them were only carried
out using a small set of image sizes. Besides, they were focused on finding the best image
resolution for a specific combination of type of features and classifier. The experiments
designed with that purpose always used images from the same databases for training and
testing. This is very common practice in the field and it assumes that the characteristics of
the training images coincide with those of the test images. This condition is rarely satisfied
in real scenarios where many factors cannot be fully under control.

As far as we know, none of the published studies have explored the lower limit of
meaningful resolutions of face images. The knowledge of a lower boundary could provide
guidance on the design of vision systems when the circumstances do not make possible the
acquisition of images of a reasonable size. In those situations, it is fundamental to know
which is the smallest image resolution that carries discriminant information and, hence, it
is useful for our purposes.

In this chapter, we present a detailed experimental study on the influence of the resolu-
tion of face images for automatic gender classification. The face images considered go from
extremely low resolution images to the highest resolution available. For providing more
realistic conditions, three different face databases are involved in both single- and cross-
database experiments. With cross-database experiments, we simulate scenarios where the
training and test images do not share the same characteristics, since face images from differ-
ent databases have various acquisition conditions and diverse demography (age range, races,
etc.). Additionally, the performances of two well-known and frequently utilised classifiers
are employed, Support Vector Machine and k -Nearest Neighbour. In order to rigorously
compare the classification performances, three statistical tests are applied over two perfor-
mance measures.
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7.2 Image Resolutions

In most of the previous related works, no more than three image resolutions have been
tested [59, 46, 39]. Moreover, in those studies where more image sizes (up to five) were
compared [27], the aim was to find out which resolution was more suitable for a particular
classification methodology. Our goal is to design an experimental study using a broad range
of image resolutions, together with two different classifiers, to answer several questions:

• Which image sizes provide useful information to distinguish between genders?

• Which resolution provides enough discriminant information to achieve the best clas-
sification performance?

• Which is the smallest image size that improves the performance of a random classifier?

For this study, we consider ten different image sizes ranging from extremely low resolu-
tions to the highest available resolution. Specifically, those ten image resolutions are: 2×1,
3 × 2, 6 × 5, 8 × 6, 11 × 9, 16 × 13, 22 × 18, 45 × 36, 90 × 72, and 329 × 264 pixels. For
selecting the highest resolution, we consider the images with the lowest resolution among
the highest image resolutions provided with the face databases. When using those images,
the face detector returns areas of the same proportions but different sizes. Among those
areas, the size that appears more often is 329 × 264 pixels. That is why we choose that
particular highest resolution. The second highest resolution (90 × 72 pixels) is selected for
making possible to appreciate the facial details while the computation time is reasonable
for a realistic gender classification system. From that size on, the resolutions are chosen by
dividing the width of the images by two. There are three exceptions which are the sizes
16 × 13, 8 × 6 and 2 × 1 pixels. The first two sizes are included in the study for gaining
more insight around the resolutions where the classification performances are not stable.
The lowest resolution is set to 2 × 1 pixels to keep the rectangular shape of the image.
Figure 7.1 depicts an example of each image resolution. For each resolution two images are
shown, the images on the left are the actual resized images while the images on the right
are all scaled to the same size to better see the details.

In addition to the previous resolutions, the expected performance of a random classifier
based on the a priori probabilities of classes in the training set is compared to those ob-
tained with the different image sizes. From such comparative analysis, we draw conclusions
about which resolution provides enough information to be more useful than a random clas-
sifier. This would be of valuable help in real systems for knowing whether an automatically
captured face image could provide any useful discriminant information.
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(a) 2× 1 (b) 3× 2 (c) 6× 5

(d) 8× 6 (e) 11× 9 (f) 16× 13

(g) 22× 18 (h) 45× 36

(i) 90× 72

(j) 329× 264

Figure 7.1: Example of each of the image resolutions involved in the study. For each resolution,
the image on the left is shown at the actual image size (in the case of (j) the image is shown at half
its size), while the image on the right is scaled to a common size to better see the details.



Chapter 7 V The Effect of Image Resolution on Face Gender Classification 113

7.3 Experimental Study

7.3.1 Experimental Methodology

The experiments follow the general methodology presented in Chapter 2. Below, the specific
details of each step are described.

Step 1. Preprocessing

The faces are detected using Viola-Jones algorithm and, afterwards, the area containing
the face is scaled down to each one of the resolutions involved in the experiments. For
the resizing process, a three-lobed Lanczos windowed sinc function [62] is utilised which
keeps the original image aspect ratio. It is worth noting that the image sizes considered are
rectangular due to the fact that the area of the image resulting from the face detector has
that shape. Only one of the image sizes does not maintain the same aspect ratio, that is
the case of 2× 1 pixel images. The rest of the tasks applied to the images in this step are
those introduced in Section 2.2.

Step 2. Feature Extraction

After rescaling, each face image is described by the grey level values of its pixels. An
explanation of how to represent images with grey level features is provided in Section 2.3.
These features are chosen for having been proved suitable for describing faces with gender
classification purposes [39]. We also verified this fact as was shown in Section 5.3.4.

Step 3. Classification

The classifiers used in the experiments are the k -Nearest Neighbour and Support Vector
Machine (SVM), both of them are very popular in the field. For further details about these
models see Section 2.4.

Step 4. Performance Assessment

The performance of the classifiers is evaluated using two measures: classification accuracy
(ACC ) and geometric mean (G-mean), both described in Section 2.5.

Step 5. Statistical Analysis

This study consists in a considerable number of experiments, therefore in order to provide
a rigorous comparison, three statistical tests are applied over the performances of the clas-
sification models. The tests are Iman-Davenport’s statistic, Holm’s method and Wilcoxon’s
Signed Rank test. All of them are explained in depth in Section 2.6.



114 7.3 Experimental Study

7.3.2 Face Image Dataset

In the experiments, three different databases are used, FERET, PAL and AR (for a detailed
description see Appendix A. From FERET database, we use 2,014 frontal view images of
1,173 male and 841 female faces corresponding to 787 different subjects (427 males and
360 females). The class imbalance ratio is 1:0.8. From PAL database all images are used,
that is, 575 face images (225 males and 350 females). The class imbalance ratio is 0.6:1.
From AR database, we use images of neutral faces (showing no facial expressions) of 130
subjects, resulting in 74 males and 56 females. The class imbalance ratio is 1:0.8.

7.3.3 Experimental Setup

For evaluating the influence of the resolution of the images when addressing face gender
classification problems, we have designed single-database and cross-database experiments
using the three databases described in Section 7.3.2. Specifically, all possible combinations
of these three databases have been used for training and test, that is, three single-database
experiments and six cross-database ones. As two different classifiers are evaluated (k -NN
and SVM) per each of the ten image resolutions (see Section 7.2), a total of 180 experiments
are carried out (9 training-test dataset combinations × 2 classifiers × 10 image resolutions).

In single-database experiments, the classification performances are estimated by two
repetitions of a 5-fold cross-validation technique (that is, 10 runs of each experiment), where
all face images of the same person are included in the same subset to avoid contamination
effects between training and test partitions. These partitions keep the same ratio between
female and male faces as the original database. In cross-database experiments, only one
simulation is performed, training with one database and testing with the other.

Implementation Details

With respect to the classifiers, the k-NN classifier searches for the nearest neighbour, that
is, k = 1. The kernel of the SVM is a third degree polynomial, particularly we use the SVM
implementation provided with LIBSVM [21].

7.3.4 Results and Discussion

Due to the large number of experiments, it is difficult to directly draw conclusions from
the numerical results (which are presented in Section 7.A). Hence, we study these results
graphically. The classification accuracies achieved in all experiments are depicted in Fig-
ure 7.2 while the geometric mean values are presented in Figure 7.3. Each figure shows
four graphs, where (a) and (b) depict the performances over single-database experiments
whereas, (c) and (d) show the performances over cross-database experiments. In both fig-
ures, (a) and (c) depict the results of 1-NN classifiers, and (c) and (d) show the results of
SVM classifiers. In the graphs, the X axis presents the total number of pixels using a log-
arithmic scale and the Y axis corresponds to the value of the performance measure. From
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a first analysis of these graphs, it can be seen that, for both measures, the performances
achieved by SVMs are always higher than those obtained with 1-NN classifiers. Besides, the
resolution at which the performances reach a stable state (where increasing the image size
does not significantly improve the classification accuracy) is a bit higher for SVM than for
1-NN. Additionally, in cross-database experiments, the stability of performances is achieved
with bigger image sizes than in single-database experiments. It seems reasonable that for
dealing with more challenging classification problems (where training and test faces come
from varied demographic populations, have different illumination conditions, etc.) more
information is needed to distinguish between genders.
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(a) ACC of single-DB with 1-NN
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(b) ACC of single-DB with SVM
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(c) ACC of cross-DB with 1-NN
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(d) ACC of Cross-DB with SVM

Figure 7.2: Classification accuracies obtained in all experiments, separated in four plots depending
on the classifier and the combination of training-test datasets.

Next, we discuss the results of the statistical tests (see Section 7.3.1) applied over
the results of the experiments considering both measures. These tests have been applied
to all experiments and also to four subgroups of them. This allow us to take a closer
look to specific experiments to see if changes in the image resolution affect more to a
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(a) G-mean of single-DB with 1-NN
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(b) G-mean of single-DB with SVM
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(c) G-mean of cross-DB with 1-NN
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(d) G-mean of Cross-DB with SVM

Figure 7.3: Geometric mean values obtained in all experiments, separated in four plots depending
on the classifier and the combination of training-test datasets.

particular classifier or to certain combinations of training-test datasets. Particularly, those
four subgroups of experiments are: 1) experiments with 1-NN classifiers, 2) experiments
with SVMs, 3) single-database experiments using both classifiers and 4) cross-database
experiments using both classifiers. In the results of the statistical tests showed in this
section, the performance of a random classifier based on the a priory probabilities of each
class (considering only the training set) is labelled as “Baseline”.

The Iman-Davenport’s statistics over both ACC and G-mean values are shown in Ta-
ble 7.1, respectively. If the value of the statistic (FF ) is larger than the corresponding value
of the F-distribution, it means that there are significant differences among the performances
included in the study. Looking at those results, we could see that this test strongly sup-
ports the existence of statistical differences among the classification results achieved using
the image resolutions considered in all five groups of experiments. In order to gain some
insight into these differences, we applied Holm’s method.
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Table 7.1: Iman-Davenport’s statistic (FF ) applied to the results obtained in different groups of
experiments (statistic marked in bold if differences were detected).

ACC G-mean F-distribution

All experiments FF = 67.13 FF = 69.71 F (10, 170)0.95 = 1.89
Only 1-NN exp. FF = 28.51 FF = 36.23 F (10, 80)0.95 = 1.95
Only SVM exp. FF = 42.57 FF = 33.07 F (10, 80)0.95 = 1.95
Single-DB exp. FF = 40.46 FF = 33.37 F (10, 50)0.95 = 2.03
Cross-DB exp. FF = 34.95 FF = 39.38 F (10, 110)0.95 = 1.92

Table 7.2: Holm’s method applied to the results of all experiments. The image sizes above the double
line achieved statistically worse performances than those below it with a significance level α = 0.95.

(a) ACC values

resolution PHolm

Baseline 0
2x1 0
3x2 0.000013
6x5 0.000038
8x6 0.000431
11x9 0.044863

16x13 1.119829
22x18 1.119829

329x264 1.603227
90x72 1.603227

45x36

(b) G-mean values

resolution PHolm

2x1 0
Baseline 0

6x5 0.000019
3x2 0.000034
8x6 0.00059

11x9 0.079307
16x13 2.054317
22x18 2.054317

329x264 2.054317
90x72 2.054317

45x36

Holm’s method applied over the ACC values with a confidence level α = 0.95 (see
Table 7.2(a)) revealed that a set of five image resolutions are always selected for achieving
the best classification rates without statistical differences among them. These resolutions
are the five highest ones: 16×13, 22×18, 45×36, 90×72 and 329×264. For most subgroups
of experiments (see Table 7.3(a-d)), with the exception of the group using a SVM classifier,
Holm’s selected 45 × 36 pixels as the most discriminant image size. These results are
consistent with the ones obtained when applying Holm’s method to G-mean values which
are shown in Table 7.2(b) and Table 7.3(e-h). It can be seen that the classifications based
on the same five resolutions along with an extra one (11 × 9 pixels) provide statistically
better results than the rest. Regarding the most significant resolution, it varies depending
on the group of experiments. When using a 1-NN classifier (Table 7.3(e)), images of 45×36
pixels provide the best performances. For solutions based on a SVM classifier (Table 7.3(f)),
the 90× 72 pixel resolution is considered the most significant and the same happens when
training and test images come from different databases (Table 7.3(h)). However, when
only images from one database are used (Table 7.3(g)), the size 22 × 18 pixels is the most
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Table 7.3: Holm’s method applied to the results of the four subgroups of experiments. The image
resolutions above the double line achieved statistically worse performances than those below it with
a significance level α = 0.95.

ACC values

(a) Only 1-NN exp.

resolution PHolm

2x1 0.000002
Baseline 0.000002
3x2 0.001148
6x5 0.01095
8x6 0.015149

11x9 0.214128
16x13 1.497439
90x72 1.497439
329x264 1.497439
22x18 1.497439

45x36

(b) Only SVM exp.

resolution PHolm

Baseline 0
2x1 0.000001
6x5 0.000552
3x2 0.001536
8x6 0.005706

11x9 0.086389
22x18 0.542372
16x13 0.542372
45x36 0.954579
329x264 0.954579

90x72

(c) Single-DB exp.

resolution PHolm

Baseline 0.000294
2x1 0.000561
3x2 0.024665
6x5 0.0488
8x6 0.0488

11x9 0.490904
16x13 2.055564
22x18 2.382008
329x264 2.382008
90x72 2.382008

45x36

(d) Cross-DB exp.

resolution PHolm

2x1 0
Baseline 0
3x2 0.001229
6x5 0.001752
8x6 0.018809

11x9 0.21127
22x18 1.125831
16x13 1.166656
329x264 1.563628
90x72 1.563628

45x36

G-mean values

(e) Only 1-NN exp.

resolution PHolm

2x1 0.000001
Baseline 0.000006
3x2 0.001756
6x5 0.004527
8x6 0.015149

11x9 0.165031
16x13 1.575075
329x264 1.575075
90x72 1.575075
22x18 1.575075

45x36

(f) Only SVM exp.

resolution PHolm

2x1 0.000001
Baseline 0.000025
6x5 0.001324
3x2 0.007553
8x6 0.017025

11x9 0.378111
22x18 1.497439
16x13 1.709015
45x36 1.709015
329x264 1.709015

90x72

(g) Single-DB exp.

resolution PHolm

2x1 0.0002
Baseline 0.000808
3x2 0.032602
6x5 0.0488
8x6 0.0488

11x9 0.490904
16x13 2.653686
90x72 2.653686
329x264 2.653686
45x36 2.653686

22x18

(h) Cross-DB exp.

resolution PHolm

2x1 0
Baseline 0.000001
6x5 0.000389
3x2 0.001217
8x6 0.013891

11x9 0.244499
22x18 1.624194
16x13 1.624194
329x264 1.624194
45x36 1.624194

90x72
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Table 7.4: Summary of the Wilcoxon’s Signed Rank test applied to the results of all experiments.
“•”= the resolution in the row improves that of the column, and “◦”= the resolution in the column
improves that of the row. Above main diagonal, significance level α = 0.90, below main diagonal
α = 0.95.

(a) ACC Values

1 2 3 4 5 6 7 8 9 10 11

Baseline (1) - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2x1 (2) - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3x2 (3) • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

6x5 (4) • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

8x6 (5) • • • • - ◦ ◦ ◦ ◦ ◦ ◦

11x9 (6) • • • • • - ◦ ◦ ◦ ◦ ◦

16x13 (7) • • • • • • - ◦ ◦ ◦

22x18 (8) • • • • • • - ◦ ◦ ◦

45x36 (9) • • • • • • • • -
90x72 (10) • • • • • • • • -

329x264 (11) • • • • • • • -

(b) G-mean Values

1 2 3 4 5 6 7 8 9 10 11

Baseline (1) - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2x1 (2) ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3x2 (3) • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

6x5 (4) • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

8x6 (5) • • • • - ◦ ◦ ◦ ◦ ◦ ◦

11x9 (6) • • • • • - ◦ ◦ ◦ ◦ ◦

16x13 (7) • • • • • • - ◦

22x18 (8) • • • • • • - ◦

45x36 (9) • • • • • • -
90x72 (10) • • • • • • - •

329x264 (11) • • • • • • -

significant. These findings lead to the conclusions that SVM classifiers (which are based on
a global model) take advantage of higher resolutions while simpler classifiers, such as the 1-
NN which is based on local comparisons, do not. Moreover, when addressing more complex
problems (for example, those presented with cross-database experiments), an increase in
the information provided by moderately high resolution images is useful for better dealing
with gender classification problems.

Holm’s results show that the gender classification performance reaches certain stability
when using medium and high image resolutions. However, this performance is significantly,
and always negatively, affected when using images smaller than 11× 9 pixels.

To deepen our understanding of the differences among image resolutions, a pairwise
comparison is provided by applying Wilcoxon’s Signed Rank test. The results of Wilcoxon’s
test are summarised in the form of tables. In such tables, the symbol “•” indicates that the
resolution in the row achieves significantly better results than the one in the column, and the
symbol “◦” indicates that the resolution in the column obtains a significant improvement
over the one in the row. The level of significance for those differences marked above the
main diagonal is α = 0.90 and below it, α = 0.95.

Wilcoxon’s results over the ACC and G-mean values of all experiments are shown in
Table 7.4. Focusing on the ACC measure (Table 7.4(a)), the higher the resolution, the
statistically better the results (up to 45 × 36 pixels). However, with the G-mean measure
(Table 7.4(b)), the performances achieved with resolutions of 16 × 13 pixels and higher
show no statistical differences. According to Wilcoxon’s test findings with respect to the
random classifier (labelled “Baseline” on the tables), face images of size 3 × 2 pixels and
higher provide a certain amount of useful information for distinguishing between genders.
Although, extremely low-resolution face images, such as 3 × 2 pixels, may provide some
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Table 7.5: Summary of the Wilcoxon’s Signed Rank test applied to the results of the four subgroups
of experiments. “•”= the resolution in the row improves that of the column. “◦”= the resolution in
the column improves that of the row. Above the main diagonal, the significance level is α = 0.90,
below it, it is α = 0.95.

ACC values

(a) Only 1-NN exp.

1 2 3 4 5 6 7 8 9 10 11

Baseline (1) - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2x1 (2) - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3x2 (3) • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

6x5 (4) • • - ◦ ◦ ◦ ◦ ◦ ◦

8x6 (5) • • - ◦ ◦ ◦ ◦ ◦ ◦

11x9 (6) • • • - ◦ ◦ ◦ ◦ ◦

16x13 (7) • • • • • -
22x18 (8) • • • • • • -
45x36 (9) • • • • • • -

90x72 (10) • • • • • • -
329x264 (11) • • • • • • -

(b) Only SVM exp.

1 2 3 4 5 6 7 8 9 10 11

1 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 • • - ◦ ◦ ◦ ◦ ◦ ◦

4 • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

5 • • • - ◦ ◦ ◦ ◦ ◦ ◦

6 • • • • • - ◦ ◦ ◦

7 • • • • • - ◦ ◦ ◦

8 • • • • • - ◦ ◦ ◦

9 • • • • • • • • - ◦

10 • • • • • • • • • -
11 • • • • • • • • -

(c) Single-DB exp.

1 2 3 4 5 6 7 8 9 10 11

1 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 • • - ◦ ◦ ◦ ◦ ◦ ◦

4 • • - ◦ ◦ ◦ ◦ ◦ ◦

5 • • - ◦ ◦ ◦ ◦ ◦ ◦

6 • • • • • - ◦ ◦ ◦ ◦ ◦

7 • • • • • • - ◦

8 • • • • • -
9 • • • • • • -

10 • • • • • • -
11 • • • • • • -

(d) Cross-DB exp.

1 2 3 4 5 6 7 8 9 10 11

1 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 • • - ◦ ◦ ◦ ◦ ◦ ◦

4 • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

5 • • - ◦ ◦ ◦ ◦ ◦ ◦

6 • • • • • - ◦ ◦ ◦ ◦

7 • • • • • - ◦

8 • • • • • - ◦ ◦

9 • • • • • • • -
10 • • • • • • • -
11 • • • • • • -

G-mean values

(e) Only 1-NN exp.

1 2 3 4 5 6 7 8 9 10 11

Baseline (1) - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2x1 (2) ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3x2 (3) • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

6x5 (4) • • - ◦ ◦ ◦ ◦ ◦ ◦

8x6 (5) • • - ◦ ◦ ◦ ◦ ◦ ◦

11x9 (6) • • • • - ◦ ◦ ◦ ◦ ◦

16x13 (7) • • • • • -
22x18 (8) • • • • • • -
45x36 (9) • • • • • • -

90x72 (10) • • • • • • - •

329x264 (11) • • • • • • -

(f) Only SVM exp.

1 2 3 4 5 6 7 8 9 10 11

1 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 • • - ◦ ◦ ◦ ◦ ◦ ◦

4 • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

5 • • • - ◦ ◦ ◦ ◦ ◦ ◦

6 • • • • • - ◦ ◦ ◦ ◦ ◦

7 • • • • • -
8 • • • • • -
9 • • • • • • -

10 • • • • • • -
11 • • • • • • -

(g) Single-DB exp.

1 2 3 4 5 6 7 8 9 10 11

1 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 • • - ◦ ◦ ◦ ◦ ◦ ◦

4 • • - ◦ ◦ ◦ ◦ ◦ ◦

5 • • - ◦ ◦ ◦ ◦ ◦ ◦

6 • • • • - ◦ ◦ ◦ ◦ ◦

7 • • • • • • -
8 • • • • • • -
9 • • • • • • -

10 • • • • • -
11 • • • • • -

(h) Cross-DB exp.

1 2 3 4 5 6 7 8 9 10 11

1 - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

2 ◦ - ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

3 • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

4 • • - ◦ ◦ ◦ ◦ ◦ ◦ ◦

5 • • - ◦ ◦ ◦ ◦ ◦ ◦

6 • • • • • - ◦ ◦ ◦ ◦ ◦

7 • • • • • -
8 • • • • • • - ◦ ◦

9 • • • • • • • -
10 • • • • • • - •

11 • • • • • • -
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useful information, this information is clearly insufficient when compared to moderate image
sizes, such as 11× 9 pixels.

The results obtained applying Wilcoxon’s test on the subgroups of experiments are
shown in Table 7.5. In all cases, higher resolutions appear to be more useful for achieving
statistically better performances than lower ones. This occurs up to images of 16 × 13
pixels. From that resolution on, an increase in the size of the image does not result in
statistically superior classification rates. Focusing on Wilcoxon’s results over ACC values
(Table 7.5(a-d)), we find an exception to this behaviour: the experiments using a SVM
classifier (Table 7.5(b)). SVM solutions using higher resolutions obtain statistically better
performances than using smaller sizes.

7.4 Conclusions

In this chapter, we presented a detailed statistical study on the influence of image resolution
for addressing automatic face gender classification problems. In our experimental study,
two classifiers (SVM and 1-NN), three face image databases and ten image resolutions
were tested. Single-database and cross-database experiments simulated different degrees
of difficulty in the classification task. The classification performances were assessed with
two measures (classification accuracy and geometric mean) and then analysed by means of
three statistical tests.

After comprehensively comparing the performances of the experiments, the questions
raised at the beginning of the chapter can now be answered.

Which image sizes provide useful information to distinguish between gen-

ders? In general, a moderate image size of 45 × 36 pixels provides enough information to
discriminate between genders with the statistically best performances for both ACC and
G-mean measures. Those performances remain consistent independently of the classifier
and the training-test datasets used.

Which resolution provides enough discriminant information to achieve the

best classification performance? In order to obtain the statistically best accuracies an
image size between 22 × 18 and 90 × 72 pixels is recommended. For selecting a resolution
within this range the classifier to be used should be taken into consideration. SVMs take
advantage of higher resolutions than 1-NN classifiers, although the performances achieved
by 1-NN classifiers were always lower than those obtained by SVMs. From a reasonable
image size, both classifiers showed robustness with respect to scale and degree of facial
details.

Which is the smallest image size that improves the performance of a random

classifier? From the results, we can conclude that an extremely low resolution image of
3 × 2 pixels is enough to provide some discriminant information, since the classification
results using images of that size were significantly better than a random classifier.

Summarising, in situations where different resolution face images are available, moder-
ately sized faces from 22 × 18 to 90 × 72 pixels are optimal for gender classification tasks.
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Besides, the performance of the classifiers was robust towards changes in the image resolu-
tion (using medium to the highest tested sizes). Only when the image resolution was 8× 6
pixels or smaller, the classification results were significantly affected.

7.A Numerical Results

This sections shows the classification accuracies (Tables 7.6 and 7.7) and geometric means
(Tables 7.8 and 7.9) of each one of the 180 experiments carried out for the present study.
The columns labelled as “Baseline” in the tables show the ACC and G-mean values of a
random classifier based on a priori probabilities.

Table 7.6: Classification accuracies achieved by 1-NN classifiers over all training-test datasets using
ten image resolutions. The result of a random classifier is labelled as “Baseline”. Marked in bold
the best result per experiment.

Image Resolutions

Training Test
Baseline 2× 1 3× 2 6× 5 8× 6 11× 9 16× 13 22 × 18 45 × 36 90× 72 329× 264

Dataset Dataset

FERET
FERET 51.28 53.17 73.78 81.55 82.49 84.63 85.20 85.45 85.30 85.03 85.20
PAL 48.24 48.25 59.58 58.71 59.58 62.54 61.48 63.76 65.85 65.85 64.98
AR 51.12 47.76 77.61 76.86 68.65 77.61 79.85 82.83 82.83 82.83 81.34

PAL
FERET 48.24 53.57 59.68 64.84 65.14 66.13 69.86 66.33 66.53 66.23 65.73
PAL 52.42 45.99 59.68 72.64 72.47 74.82 76.56 76.82 77.61 76.65 76.74
AR 48.56 47.76 68.65 82.38 83.58 81.34 81.34 80.59 82.83 82.32 83.58

AR
FERET 51.12 42.45 63.80 71.74 73.23 75.17 75.47 75.07 74.92 74.18 74.28
PAL 48.56 59.58 64.45 67.94 66.37 66.72 71.95 71.08 71.77 71.60 71.60
AR 50.98 44.77 83.58 82.83 82.08 83.95 84.70 85.70 85.44 87.31 86.94

Table 7.7: Classification accuracies achieved by SVMs over all training-test datasets using ten image
resolutions. The result of a random classifier is labelled as “Baseline”. Marked in bold the best
result per experiment.

Image Resolutions

Training Test
Baseline 2× 1 3× 2 6× 5 8× 6 11× 9 16× 13 22 × 18 45 × 36 90× 72 329× 264

Dataset Dataset

FERET
FERET 51.28 58.21 80.56 82.87 86.92 91.77 92.57 92.79 93.44 93.79 93.74
PAL 48.24 39.02 57.66 58.53 60.97 60.97 61.49 62.19 67.07 67.42 67.07
AR 51.12 55.97 82.83 70.14 73.88 79.85 80.59 81.34 80.59 81.34 79.85

PAL
FERET 48.24 41.75 67.72 59.63 70.15 71.84 70.30 71.84 72.79 73.58 73.38
PAL 52.42 60.98 64.91 72.04 77.27 82.41 83.28 81.97 85.63 85.45 85.80

AR 48.56 44.02 80.59 82.83 87.31 90.29 89.55 88.05 91.79 92.53 92.53

AR
FERET 51.12 58.24 64.99 65.29 71.25 75.12 77.11 79.79 80.58 80.78 81.13

PAL 48.56 39.02 61.32 64.98 68.81 68.46 75.95 74.21 75.78 75.60 75.95

AR 50.98 55.96 81.35 80.71 78.73 86.97 89.89 89.47 89.44 89.48 89.11
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Table 7.8: G-mean values obtained by 1-NN classifiers over all training-test datasets using ten
image resolutions. The result of a random classifier is labelled as “Baseline”. Marked in bold the
best result per experiment.

Image Resolutions

Training Test
Baseline 2× 1 3× 2 6× 5 8× 6 11 × 9 16 × 13 22× 18 45× 36 90× 72 329 × 264

Dataset Dataset

FERET
FERET 49.34 52.92 72.87 80.23 81.13 83.19 83.80 84.00 84.04 83.75 84.12

PAL 48.14 48.00 59.54 59.77 60.52 63.73 62.88 65.29 67.50 67.49 66.60
AR 49.51 44.59 78.11 74.29 67.15 76.06 77.42 80.93 80.93 80.93 79.75

PAL
FERET 48.95 53.25 60.35 65.55 65.82 66.83 70.09 66.97 66.94 66.57 65.98
PAL 48.77 43.38 57.99 71.94 71.42 73.13 74.28 76.67 75.82 75.64 75.66
AR 49.53 44.59 69.09 72.81 82.83 79.38 79.75 79.48 81.93 83.73 82.83

AR
FERET 49.36 19.22 64.57 72.50 73.84 75.52 75.90 75.89 75.82 75.11 75.21
PAL 48.77 14.66 54.15 64.58 63.21 65.12 69.94 68.82 68.93 68.54 68.40
AR 49.59 8.16 83.44 82.20 81.55 83.27 84.04 84.61 84.67 86.64 86.19

Table 7.9: G-mean values obtained by SVMs over all training-test datasets using ten image reso-
lutions. The result of a random classifier is labelled as “Baseline”. Marked in bold the best result
per experiment.

Image Resolutions

Training Test
Baseline 2× 1 3× 2 6× 5 8× 6 11× 9 16 × 13 22× 18 45× 36 90× 72 329 × 264

Dataset Dataset

FERET
FERET 49.34 0.00 77.10 82.56 86.49 91.39 92.29 92.53 93.06 93.46 93.45
PAL 48.14 0.00 59.07 58.83 61.38 61.31 61.89 62.81 68.32 68.76 68.36
AR 49.51 0.00 81.62 69.04 72.72 75.46 77.53 76.51 75.40 76.51 74.89

PAL
FERET 48.95 0.00 68.65 60.29 71.00 72.77 71.02 72.69 73.56 74.38 74.17
PAL 48.77 0.00 60.78 73.37 76.89 85.31 87.63 87.42 87.34 84.52 84.80
AR 49.53 0.00 81.18 82.67 86.51 90.05 88.94 87.66 91.34 91.98 91.98

AR
FERET 49.36 0.00 65.89 64.05 69.86 70.45 73.32 76.18 76.85 77.49 77.95

PAL 48.77 0.00 46.96 59.20 61.14 69.87 75.86 74.35 75.29 74.87 75.15
AR 49.59 0.00 80.80 80.27 78.39 86.44 89.37 89.17 88.93 89.05 88.61





CHAPTER 8

Conclusions and Future Work

Every step of the automatic gender classification process has been revised and several
improvements have been proposed to address the problem under more realistic circum-
stances. In this chapter, we revisit the proposed improvements as well as the conclusions
drawn from the various empirical studies performed. We then indicate some lines of work
that remain open and other interesting extensions of our work.

8.1 Conclusions

The primary goal of the thesis was to improve face gender classification in fairly realistic
scenarios. Under those conditions, many problems can arise due to the lack of control over
the individuals and their surroundings. The main issues we have focussed on are related
to the distortions present on the faces caused by expressing emotions or wearing pieces
of clothing. In order to tackle the mentioned problems among others, we have presented
new approaches for addressing several of the tasks involved in the classification process
together with empirical proof of the suitability of the proposed methods. Additionally, we
have experimentally studied how different factors (such as image size or inaccurate face
detections) affect the gender classification rates.

Our first attempt on face gender classification was focused on understanding what parts
of the face contain more discriminant information. We studied the role of different face parts
by comparing the performances of several classifiers trained with individual parts (the eyes,
the nose, the mouth and the chin). In the comparison, we also included classifiers based on
holistic parts of the face (particularly, the internal face, the external face and the full face).
As a result, the individual parts were proved to provide enough discriminant information to
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deal with gender classification, although holistic parts were always superior. From all the
individual parts involved, the eyes were the most robust part since they always achieved one
of the highest classification accuracies in experiments over two face image databases. The
fact that classifiers based on just one individual part were capable of reasonably solve the
classification problem raised the question of whether different face parts provided comple-
mentary information. Hence, we evaluated that complementarity using various ensembles
of classifiers where each base learner was trained with a different part. The experimental
comparison showed that ensembles based on three face parts reached similar classification
rates to those based on five parts. This data indicated that gender classification problems
could be satisfactorily resolved even when the face is not completely visible.

The next step we took was towards handling situations where the demography of the
individuals is diverse, the faces can present local distortions and the detection of the faces
may be inaccurate. On one hand, we designed new local features (Ranking Labels) to char-
acterise face images. Those features separately describe regions of the images by means of
local contrast values whereas spatial information is maintained. The suitability of Ranking
Labels to address gender classification problems was confirmed by an experimental compar-
ison with other widely used methods (Grey Levels, PCA, Local Binary Patterns and Local
Contrast Histograms). On the other hand, we introduced a new classification approach
based on local neighbourhoods. It consists of an ensemble method designed to be used in
combination with a local face description. Thus, each member of the ensemble specialises
in a specific area of the face. The use of local neighbourhoods provides a certain level of
flexibility in case of unaligned or misaligned faces and inaccurate face detections. To test
the adequacy of the proposed method when compared to other highly effective techniques,
we employed a complete set of single-database and cross-database experiments (including
only neutral non-occluded faces). The latter type of experiment simulates scenarios with
considerable variability of the demography. The results showed that the proposed classi-
fication technique in conjunction with Ranking Label features is an approach as suitable
as global solutions for addressing gender classification. In addition, several tests provided
statistical evidence to refute the assumption that global approaches achieve better perfor-
mances than local procedures. The situations where global classifications outperformed the
proposed local approach were reduced to those in which training and test images shared
the same characteristics. However, this is unlikely to occur in real environments since we
have no control whatsoever.

Following, we analysed the performance of gender classification techniques when are
presented with more challenging face images. Now, the image set contained neutral, ex-
pressive and partially occluded faces. These face images were combined for different training
and testing purposes in single and cross-database experiments. The experiments were ad-
dressed by the proposed classification method as well as various extensively employed global
approaches. A comprehensive statistical comparison of the results produced several inter-
esting findings. If the training set is representative of the test set, global as well as local
approaches successfully deal with gender classification. However, in situation where the
training/test set contains expressive or occluded images and the other one does not, the
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performance of local approaches clearly surpasses those obtained by global models. This
empirical data also suggested that Ranking Label features provide more discriminant in-
formation than the other descriptions tested (which were based on grey levels, PCA, and
LBP). As regards the classifiers, whereas global SVMs are among the best models only in
situations where the training set is representative of the test set, local 1-NNs achieve good
classification rates in all cases.

Aside from the main objective, we also performed a detailed experimental study to gain
insight into the influence of the image resolution in face gender classification tasks. We
went beyond previously published works with respect to the number of different image sizes
involved and the diversity of classifiers. Empirical data indicated that a moderate image size
between 22×18 and 90×72 pixels is optimal for addressing gender classification. Besides, the
experimental results statistically supported that an image as small as 3× 2 pixels provides
discriminant information to distinguish between males and females. This knowledge can be
crucial for those systems where it is not always possible to acquire reasonably sized images.

Summarising, we have revised all the steps in the gender classification process from
face images, proposing improvements in each one of them. These improvements can be all
applied or just a selection of them can be independently employed.

8.2 Future Work

In the thesis, we have presented substantial improvements applicable to face gender clas-
sification systems. However, the effectiveness of the systems can be limited in certain real
scenarios. Therefore, there is still some work to do until the problem can be considered fully
resolved. Various interesting research lines towards reaching that objective are described
next, as well as some open lines of work that we commenced during the thesis but that
have not yet been completed.

Open Lines of Work of the Thesis

Following, we list several lines of work which remain under development after the conclusion
of the thesis.

• We are conducting an online study with the aim of comparing the performance of
humans and machines in face gender classification tasks. It consists of a large set of
preprocessed face images that the participants have to label as belonging to a male
or female person. The set of images contains neutral and expressive faces as well as
faces wearing sunglasses and scarves. In order to replicate as much as possible the
same conditions of automatic systems, the images are showed with the same reduced
size. After collecting a reasonable amount of data, we plan to statistically analyse
which personal traits make difficult the task for humans and for automatic systems.
In addition, we have asked the participants to indicate their age, race and gender in



128 8.2 Future Work

order to study the influence of those factors when recognising the gender of faces of
the same (or different) age group, race and gender.

• A functional prototype which shows, in real time, the gender of the people appearing
on camera is being implemented. It consists of a camera capturing images in real
time, and as soon as a face is detected, it is passed to the classification system. The
gender prediction is shown on the screen represented by a square of a specific colour
surrounding the person’s face. This prototype is almost fully functional, it just needs
to pass an exhaustive debugging process.

Future Research Lines

Several research lines that could improve the currently available automatic face gender
classification systems are described next. We focus on some extension that could be easily
applied to our work.

• We paid attention to databases with fairly controlled illumination conditions and only
frontal faces. However, a gender classification system which is reliable in all kinds of
situations should be able to cope with extremely different illumination conditions, such
as intensive light coming from one side. In addition, it should provide accurate gender
classifications of faces at different angles. Hence, experiments crossing databases
containing those types of face images are an interesting extension of our work.

• Intuitively, the facial features which show the gender of a person seem to vary with
the age of the person. An empirical study of face gender classification separating the
individuals depending on their age range would shed light on this topic.

• According to psychological studies, humans suffer from cross-race identification bias
effects [43]. It refers to the tendency of having more difficulty to identify people
of different races to our own. Consequently, it seems that the characteristics for
identifying people may differ depending on their race. It would be interesting to
study whether automatic systems show that behaviour too. This could be done by
comparing the performances of a generic classifier trained with faces from different
races and specific classifiers trained with faces of a particular race.

• The proposed methods have not been exclusively designed for addressing gender clas-
sification problems. Therefore, they could be applied to other classification problems.
The most direct applications could be facial expression, age or race recognition.

• As mentioned in the introduction, many authors propose to employ face recognition
systems to solve gender classification problems. Hence, we think that the field could
gain from a conclusive empirical analysis of the solutions for addressing both problems.



APPENDIX A

Face Image Databases

Each of the face image databases involved in the experiments of the thesis is publicly
available to the scientific community and researchers have been utilising them for face
analysis tasks since their publication. Specifically, we have used four databases which are
the AR database, the Facial Recognition Technology database (FERET), the Productive
Aging Laboratory (PAL) and the extended M2VTS database (XM2VTS). In this appendix,
we give general information about each database and the particular characteristics of the
face images provided with them.

A.1 AR

The AR database [41] was created in the Computer Vision Centre at the Universitat
Autònoma de Barcelona in 1998. It consists of over 4,000 colour images of 768 × 576
pixels corresponding to 136 people’s faces (76 males and 60 females). Consequently, the
ratio of males to females is 1:0.8. The images feature frontal views of faces with different
illumination conditions, facial expressions, and occlusions. Although the illumination con-
ditions were controlled, in order to achieve different lightning conditions an intense source
of light was placed to the right, left and both sides of the subject. As regards the facial
expression, each person was asked to pose with a happy face, an angry face and screaming.
These emotions were faked, hence the face images show facial expression which cannot be
considered completely real. In the case of occlusions, this were produced by real clothing
accessories being worn by the subjects. Particularly, sunglasses and a scarf. As a result,
there are images with partial occlusions on the top half of the faces and others on the
bottom half.
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Each person participated in two sessions (separated by 2 weeks) where the same set
of images was taken. Hence, the database has two samples per person of each of the
different images. No restrictions with respect to clothes, accessories (glasses, jewellery,
etc.) or hairstyle were imposed to participants. No information is provided with the
database regarding the age and race of the individuals. However, after majority sampling
the database it can be said that most individuals are young Caucasian adults.

In the thesis, we employ only images of the first session. In particular, 130 images of
each expression (neutral, happy, angry and screaming) corresponding to 74 males and 56
females, 129 images of individuals wearing sunglasses (74 males and 55 females) and 125
images of individuals wearing a scarf (72 males and 53 females). Not all the 136 images of
each type were used due to errors in the face detection process. Figure A.1 shows all the
images involved in the experiments of the thesis taken from the same subject.

(a) Neutral face.

(b) Happy face. (c) Angry face. (d) Screaming face.

(e) Wearing sunglasses. (f) Wearing scarf.

Figure A.1: Example of the images of the same provided with AR database involved in the experi-
ments of the thesis.
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A.2 FERET

The Facial Recognition Technology Database (FERET) [55] was a project of the U.S De-
partment of Defence. The images were collected in 15 sessions between August 1993 and
July 1996 from 1,199 individuals. For some individuals, over two years had elapsed between
their first and last sittings, with some subjects being photographed multiple times. This
time lapse enables researchers to study the robustness of their algorithms with respect to
changes in the subjects’ appearance that occur over a year. The illumination conditions
were controlled in every session, and there are individuals from different races and age
groups. The database provides colour images of size 512×768 pixels which feature different
poses. The angle of the head with respect to the camera varies in each pose going from
frontal to profile faces. All the different poses considered are detailed in Table A.1. The
database does not contain images from all poses of all subjects, in the table is indicated
the number of images and subjects of each pose.

In the thesis, we only use frontal images from the regular and alternative image sets.
Figure A.2 shows some examples of images of those sets acquired in different sessions.

Table A.1: Total number of people in FERET database for each of the images taken (the angle of
the head for each pose is indicated in degrees).

Description Pose
Number of Number of
Images Subjects

Regular frontal image 0 1762 1010
Alternative frontal image 0 1518 1009

Quarter left −22.5 763 508
Quarter right +22.5 763 508

Half left −67.5 1246 904
Half right +67.5 1298 939

Profile left −90 1318 974
Profile right +90 1342 980
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Figure A.2: Example of the regular and alternative frontal images from different sessions of several
individuals provided with FERET database. The first two columns correspond to images of one
session and the last two columns to images of another sessions.
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A.3 PAL

The Productive Aging Laboratory (PAL) [45] face database was created at the University
of Michigan in 2004. The database contains colour images of 575 individuals (219 males
and 356 females) ranging from ages 18 to 93 and various races. One to three pictures were
taken from each person. From all participants a frontal neutral face image was acquired.
Table A.2 details the number of frontal images broken down by age group, race and gender.
Additionally, some individuals were asked to show a happy face and to pose for a profile
picture. The images were acquired in different locations such as college students unions,
shopping centres and senior citizen festivals. In those places, the illumination conditions
could not be controlled. Hence, it was decided that all images were taken under natural
lightning. The images are provided with a resolution of 640 × 480 pixels. Some examples
of face images from different age groups, races and gender are depicted in Figure A.3.

It is worth highlighting that this database has an unusually large variation in the demo-
graphic characteristics of the participants. It specially includes a high number of mature
adults. In addition, it differs from most of the databases available in the field in the ratio
of male to female faces (which is 0.6:1), containing more females than males.

Table A.2: Total number of frontal images in PAL database broken down by age group, race and
gender.

Race Age Males Females

African-American

18-29 14 29
30-49 7 9
50-69 3 12
70-93 2 13

Caucasian

18-29 62 65
30-49 22 38
50-69 23 81
70-93 46 97

Other

18-29 38 11
30-49 0 0
50-69 2 1
70-93 0 0
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(a) Images of faces from people of different races whose ages range from 18 to 29.

(b) Images of faces from people of different races whose ages range from 30 to 49.

(c) Images of faces from people of different races whose ages range from 50 to 69.

(d) Images of faces from people of different races whose ages range from 70 to 93.

Figure A.3: Example of the images provided with PAL database. The first two columns of each
row are females and the last two males.
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A.4 XM2VTS

The extended M2VTS Database (XM2VTS) [44] is a large multi-modal database collected
in the Centre for Vision, Speech and Signal Processing at the University of Surrey in
1999. It consists of several datasets containing diverse types of data, such as audio, im-
ages and videos. The description is focused on the dataset of face image which is named
“CDS001+CDS006”. This dataset contains frontal views of faces corresponding to 295
subjects. The images, which have a resolution of 720 × 576 pixels, were extracted from a
high quality digital video. The recording was repeated in four sessions within a four-month
time frame. Concretely, two images were taken at the beginning of a head rotation shot
and in the middle of it. As a result, eight images per person were taken considering that
two images were taken in each of the four sessions, which makes a total of 2,360 images.
Figure A.4 shows some examples of male and female faces from the four different sessions.

Figure A.4: Example of the images provided with XM2VTS database. The first two rows show
female faces and the two last male faces. Each column depicts an image taken in a different session.
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[7] Andreu, Y., Garćıa-Sevilla, P., and Mollineda, R. A. Face gender classifica-
tion: A statistical study when neutral and distorted faces are combined for training
and testing purposes. Image and Vision Computing 32, 1 (2014), 27–36.

137



138 BIBLIOGRAPHY
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