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The ultimate “computer,” our own brain, uses only ten watts of power
– one-tenth the energy consumed by a hundred-watt bulb.

Paul Valéry
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Resumen

Desde hace décadas, la computación de altas prestaciones ha concentrado sus esfuerzos en la
optimización de algoritmos aplicados a la resolución de problemas complejos que aparecen en un
amplio abanico de aplicaciones de casi todas las áreas cient́ıficas y tecnológicas. En este sentido el
uso de herramientas y técnicas, tales como la computación paralela y distribuida, han impulsado
la mejora de las prestaciones en este tipo de algoritmos y aplicaciones. Hoy en d́ıa, el término
optimización hace referencia a la reducción del tiempo de ejecución, aunque también a la enerǵıa
necesaria para su cómputo.

Concretamente, en el camino hacia los sistemas Exaescala (capaces de alcanzar la barrera de los
ExaFLOPS: 1018 instrucciones en coma flotante por segundo), el consumo de enerǵıa es un aspecto
fundamental al que esta rama cient́ıfica debe hacer frente [38, 55]. Algunos estudios realizados sobre
el consumo de enerǵıa revelan que una plataforma Exaescala construida con la tecnoloǵıa hardware
actual disipaŕıa 220 MW, haciéndola económicamente inviable [50, 54, 58, 65, 90]. En otras palabras,
incluso con la tasa de mejora en la eficiencia energética con la que cuentan las supercomputadoras
en los últimos años [3], el consumo de enerǵıa de 20 MW que se pretende que genere una plataforma
Exaescala a finales de esta década, se multiplicaŕıa por un factor muy significativo, convirtiéndose en
inviable. Por tanto, si se tiene que superar la barrera de la enerǵıa, se necesita un enfoque global de
potencia y enerǵıa, en particular uno que tenga como objetivo el desarrollo de hardware más eficiente
en cuanto al consumo, y utilice aplicaciones que sean conscientes de la enerǵıa disipada, tanto en
el sistema operativo como en las bibliotecas de cómputo, comunicación y aplicaciones paralelas. La
búsqueda de soluciones verdes o fuentes de enerǵıa alternativas que permitan reducir las emisiones
de CO2 a la atmósfera demuestran la creciente preocupación por el medio ambiente. En el ámbito de
las tecnoloǵıas de la información y, más concretamente, en la computación de altas prestaciones, la
comunidad cientifico-técnica muestra especial interés en el desarrollo de componentes, herramientas
y técnicas que permitan minimizar el consumo energético.

Este trabajo de investigación aborda las posibilidades de ahorro energético que pueden conse-
guirse en arquitecturas multinúcleo e h́ıbridas (CPU–GPU). Las técnicas de ahorro definidas son
aplicadas sobre el contexto de la computación de altas prestaciones, concretamente sobre aplicacio-
nes que aprovechan el paralelismo a nivel de tareas, en un ámplio abanico de problemas de álgebra
lineal densa y dispersa. Este estudio se completa con resultados experimentales obtenidos median-
te medidores de enerǵıa, que validan las ganancias conseguidas; al mismo tiempo, el uso de estas
estrategias mantiene un constante compromiso entre prestaciones y ahorro de enerǵıa.
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Objetivos

Los objetivos de esta tesis doctoral están orientados al estudio, análisis y aprovechamiento de las
técnicas de ahorro disponibles en las arquitecturas de computadores actuales con el fin de mejorar
el rendimiento energético en aplicaciones que requieren la resolución de problemas de álgebra lineal
densa y dispersa.

En concreto, los objetivos del proyecto pueden resumirse de la forma siguiente:

• Documentación de la literatura existente sobre el ahorro de enerǵıa en procesadores mul-
tinúcleo y plataformas h́ıbridas GPU. Análisis de los mecanismos de ahorro de enerǵıa dispo-
nibles a nivel hardware y software.

• Desarrollo de un entorno de experimentación y validación de pruebas: definición de las plata-
formas y arquitecturas, herramientas de perfilado, traceado y visualización, uso de dispositivos
de medición de enerǵıa y desarrollo de una biblioteca para interactuar con los mismos.

• Análisis y desarrollo de un modelo de consumo para algoritmos que explotan el paralelismo
de tareas, basado en parámetros de consumo de la arquitectura y propios de la aplicación.

• Análisis de estrategias de ahorro desde el punto de vista teórico, mediante simulación y estudio
de su impacto en las prestaciones y ahorros de enerǵıa.

• Validación de las técnicas de ahorro sobre aplicaciones y bibliotecas de álgebra lineal densa y
dispersa, mediante un estudio completo sobre el impacto en las prestaciones y las ganancias
de consumo que pueden conseguirse gracias a la utilización de estas técnicas.

El resultado de esta tesis es un conjunto de conocimientos que permiten aplicar estrategias de
reducción de enerǵıa en las aplicaciones estudiadas, que además sirvan de referencia para futuros
desarrollos. Uno de los puntos más importantes de esta metodoloǵıa es el que se refiere a la modeli-
zación y simulación de las estrategias. El modelo de consumo propuesto en la tesis permite conocer
cómo los sistemas consumen enerǵıa, facilitando aśı la labor de implementar de forma eficiente
aplicaciones optimizadas en tiempo de ejecución y consumo energético.

Metodoloǵıa y desarrollo

En el desarrollo de la tesis se ha empleado la metodoloǵıa clásica de desarrollo de sistemas, con
las siguientes etapas:

1. Revisión del estado del arte.

2. Análisis de requerimientos.

3. Estudio de distintas estrategias de gestión/reducción de enerǵıa con mı́nimo impacto en el
rendimiento.

4. Modelización del funcionamiento de dichas estrategias y simulación de las mismas.

5. Desarrollo y adaptación de las técnicas de reducción de enerǵıa en aplicaciones, mediante
módulos e interfaces flexibles.

6. Verificación y validación de los módulos e interfaces mediante diferentes tipos de aplicaciones
y sistemas.
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7. Integración, verificación y documentación.

La tesis doctoral se ha desarrollado bajo las etapas propuestas. Asimismo, incluye información
detallada sobre la documentación, planificación, desarrollo de los entornos empleados, resultados
y conclusiones. En general, se pretende dar una visión global sobre los técnicas y mecanismos a
seguir para promover y programar aplicaciones eficientes, tanto por tiempo de ejecución como por
la enerǵıa requerida para ejecutarse.

Contribuciones

Los resultados, métodos y técnicas descritos en esta tesis han sido publicados en workshops,
congresos y revistas de carácter internacional. Las contribuciones de esta tesis se pueden agrupar
en cuatro ĺıneas principales.

Medición de potencia en computadores

La primera de las contribuciones es un entorno completo para el análisis de la potencia y
prestaciones de las aplicaciones cient́ıficas de altas prestaciones. Este marco de trabajo ha sido
evaluado con diversos algoritmos clave en el campo de la álgebra lineal densa, demonstrando aśı sus
beneficios en la detección de cuellos de botella y puntos de baja eficiencia energética. El marco
presentado ofrece información de la potencia y el rendimiento para diferentes tipos de aplicaciones
paralelas, desde códigos paralelos MPI que se ejecutan en clusters de escala moderada, a aplicaciones
multihilo que corren en plataformas multinúcleo e h́ıbridas CPU–GPU. Además, se ha desarrollado
la biblioteca PMLib, que permite recopilar datos de potencia y facilita la interacción con los
dispositivos de medición de potencia conectados a las plataformas evaluadas. El diseño modular de
esta herramienta permite la sencilla integración de nuevos módulos para la recolección de nuevas
medidas.

Modelos de potencia y enerǵıa

Como contribución principal de esta parte, se presenta un modelo de potencia/enerǵıa capaz
de estimar el consumo de enerǵıa para aplicaciones que explotan el paralelismo a nivel de tarea.
Al mismo tiempo, se demuestra que es posible modelar sistemáticamente la potencia y la enerǵıa
consumida en arquiecturas paralelas multinúcleo. Dos propiedades del modelo propuesto son su
portabilidad y generalidad, ya que no requiere el acceso a contadores hardware de bajo nivel,
dependientes de la plataforma. Esta aproximación es válida, en general, para estimar la potencia
y la enerǵıa de aplicaciones que explotan el paralelismo a nivel de tarea y realizan operaciones
intensivas de aritmética entera o en coma flotante y no está necesariamente restringida al álgebra
lineal densa.

Además de proporcionar estimaciones precisas del consumo de enerǵıa, nuestro modelo tiene
como objetivo orientar y ayudar a reducir el tiempo de ejecución de aplicaciones paralelas ejecu-
tadas en entornos que explotan el paralelismo a nivel de tarea. Por ejemplo, en situaciones en las
que existen diferentes asignaciones de tareas a los recursos computacionales que pueden tener un
rendimiento casi equivalente en las plataformas h́ıbridas con aceleradores hardware, nuestro mo-
delo puede ser utilizado para estimar automáticamente la enerǵıa de diferentes configuraciones de
hardware y seleccionar la más eficiente sin que el rendimiento se vea afectado.
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Técnicas de ahorro de enerǵıa

Una de las principales aportaciones de esta parte son dos técnicas clave para el ahorro de
enerǵıa basadas en el escalado del voltaje y de la frecuencia de los procesadores. El algoritmo de
reducción de holguras, o Slack Reduction Algorithm, aprovecha las holguras existentes a causa de
las dependencias de tareas y, en la medida de lo posible, asigna una frencuencia de ejecución menor
a las tareas no cŕıticas. Al mismo tiempo, también se ofrece una estrategia adicional, el algoritmo
Race-to-Idle, que persigue un objetivo opuesto al algoritmo anterior, asignando siempre la máxima
frecuencia para la ejecución de las tareas de las aplicaciones con el objetivo de reducir su tiempo
de ejecución y generando aśı mayores tiempos de inactividad en los que poder ahorrar enerǵıa.

Además, se ha desarrollado un simulador capaz de aplicar y evaluar el impacto de estas técnicas
en algoritmos de álgebra lineal densa. En el estudio se ofrece un análisis completo de la eficiencia
energética generada por las dos técnicas. Los resultados demuestran que, en condiciones reales, es
posible una reducción en el consumo de enerǵıa bajo determinadas condiciones.

Entornos de ejecución consicientes del consumo en álgebra lineal densa y dispersa

La principal aportación de esta parte es el diseño e implementación de técnicas de ahorro de
enerǵıa que, incorporadas en runtimes de bibliotecas que explotan el paralelismo a nivel de tarea,
son capaces de generar ahorros energéticos durante la ejecución de aplicaciones y de algoritmos
paralelos. Estas técnicas reemplazan las esperas activas realizadas por hilos inactivos, por esperas
pasivas, reduciendo aśı el consumo energético durante estos periodos de tiempo. Las técnicas se han
integrado en el runtime SuperMatrix de la biblioteca de álgebra lineal densa libflame en proce-
sadores multinúcleo y plataformas h́ıbridas CPU–GPU. Una contribución crucial es la genericidad
de estas técnicas, pues pueden ser aplicadas sobre otros runtimes que presenten comportamientos
ineficientes desde el punto de vista energético. Un estudio completo de estas técnicas, empleando
la factorización de Cholesky y la factorización LU demuestra que se puede ahorrar hasta un 15 %
de la enerǵıa consumida sin comprometer las prestaciones.

Como contribución adicional en esta parte de la tesis, las técnicas de ahorro también se han
aplicado en el campo del álgebra lineal dispersa, en particular en el cálculo del precondicionador
y la resolución iterativa de ecuaciones lineales en ILUPACK. Al mismo tiempo, se ha aprovechado
el modelo de enerǵıa proporcionado para caracterizar el consumo de la resolución completa de este
algoritmo.

Una conclusión general de este estudio es que en las operaciones limitadas por el acceso a me-
moria, como el ejemplo de ILUPACK considerado, la reducción del voltage y de la frecuencia es,
en ocasiones, beneficioso y no compromete el tiempo de ejecución. Este aspecto no se observa en
operaciones limitadas por la velocidad del procesador, en las que la reducción de la frecuencia tiene
un impacto negativo en las prestaciones y el consumo. Por lo tanto, los esfuerzos de reducir el
consumo energético en operaciones limitadas por el ancho de banda de memoria deben aprovechar
cuidadosamente la reducción de la frecuencia de los procesadores con el fin de conservar las presta-
ciones y reducir la potencia. Para el caso de ILUPACK se presenta un estudio completo donde se
demuestra el uso de esta estrategia.

Finalmente, el estudio realizado empleando las técnicas que reemplazan las esperas activas por
pasivas en combinación con la reducción de la frecuencia revela un ahorro en el consumo de enerǵıa
entre un 7 y un 13 % en ILUPACK, sin afectar prácticamente al rendimiento.
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Ĺıneas abiertas de investigación

La preocupación por la eficiencia energética en el campo de la computación de altas prestaciones
es una disciplina relativamente nueva, por lo que se derivan muchas ĺıneas de investigación como
conclusión de esta tesis. Algunos de los posibles trabajos se detallan a continuación.

Uno de los objetivos a corto plazo es incorporar las técnicas de enerǵıa en runtimes de entornos
de trabajo que explotan el paralelismo a nivel de tarea y bibliotecas de álgebra lineal, como por
ejemplo SMPSs, OmpSs, MAGMA y PLASMA [118, 102, 5]. Como objetivo a medio plazo, se
pretenden diseñar y desarrollar nuevas técnicas y heuŕısticas de mapeado de tareas conscientes
del consumo energético en arquitecturas heterogéneas, donde pueda ser beneficioso ejecutar, por
ejemplo, operaciones que requieren menor carga computacional en procesadores menos potentes,
generando aśı ahorros energéticos. Finalmente, como objetivo a largo plazo se propone la generación
de un modelo de potencia para bibliotecas paralelas de alto rendimiento. Esta operación sobre
plataforma multinúcleo es un primer paso hacia un objetivo más ambicioso: hacer viable el modelo
para una gran colección de códigos numéricos basados en paso de mensajes para clusters de gran
escala equipados con procesadores multinúcleo.
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– ¡Gracias! · Gràcies! · Thanks! · Danke! –

Hamburgo, marzo de 2014.

xxiii



xxiv



CHAPTER 1

Energy-Aware High Performance Computing

Energy consumption is already recognized as the crucial factor that will limit the performance
of future microprocessors [50, 54, 58, 65, 90], leading to the design and adoption of heterogeneous
architectures and dark silicon [38, 55]. As we target the ExaFLOP barrier, this issue is becoming
a major concern. Reaching such an impressive performance rate using as-of-today most energy-
efficient technology will require more than 220 MW [3], which amounts for a significant part of the
energy produced by a modern nuclear plant to feed just a single supercomputer. At a large scale,
directors of data processing centers and supercomputing facilities are painfully aware of the cost of
the energy consumed by the computational resources and auxiliary systems deployed in these sites.
In response to this, electrical engineers and computer architects are actively pursuing the design
and development of power-friendly hardware and, consequently, current CPUs, memories, disks and
networking devices now feature low-power modes that enable a trade-off between performance and
energy. On the other hand, heterogeneous architectures that combine general-purpose multicore
technology with hardware accelerators also seem to provide the answer to the continued pressure
to further reduce power consumption [3, 38], historically exerted by the mobile and embedded
appliances, but now also in place for High Performance Computing (HPC) facilities and data
centers [50, 54].

The HPC community is currently well aware that reducing the energy drawn from compute-
intensive applications is a concern almost in equal terms with the conventional quest for high
performance. While these two factors seem in principle orthogonal to each other, our insights
shown throughout this dissertation will reveal mutual implications that addressed together may
yield relevant synergies.

1.1 The Road Towards Exascale Computing. The Power Wall

As we progress on the road to Exascale systems, the economic cost of energy consumption and
the pressure exerted by power dissipation on cooling equipment are rapidly becoming major hurdles
to the deployment of new HPC facilities. As-of-today, the most energy-efficient HPC supercom-
puters, equipped with NVIDIA graphics processors (GPUs), delivers close to 4.5 GFLOPS/W1 [3].
Simple arithmetic shows that building an ExaFLOP system based on this scalable technology would

11 GFLOPS = 109 floating-point arithmetic operations, or FLOPS, per second.
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CHAPTER 1. ENERGY-AWARE HIGH PERFORMANCE COMPUTING

require about 220 MW, yielding this approach economically unfeasible. Even if we can maintain
the considerable improvements experienced by the most energy efficient systems of the Green500
list during the last 5 years, the goal of building a 20 MW Exascale system will still be largely ex-
ceeded. This is the so-called power wall. Therefore, if we want to continue enjoying the significant
advances enabled by scientific computing and supercomputers during these past decades, a holistic
investigation is needed to improve energy-efficiency of HPC hardware and software. In this sense,
the HPC community is responding with a rising awareness of energy issues.

Significant challenges essential to developing Exascale computing need to be considered. The
summary report of the Advisory Committee Advanced Scientific Computing 2010 [25] of the U.S.
Department of Energy, identifies the following subjects as examples of complexity challenges that
can extremely transformed through Exascale computing: aerospace, astrophysics, biological and
medical systems, weather and climate, combustion, materials science and fusion energy. Exascale
computing is, therefore, an emerging technology with a special and strategic value. On the other
hand, it is clear that Exascale machines will not become real unless the power wall problem is
adequately addressed. A large potential for energy reduction can be obtained by re-engineering
facilities and hardware. Actually, computer manufacturers are already aware and focus hardware
development under these restrictions. However, there exist a large collection of software in which
considerable energy savings could be achieved via the transformation or redesign of the underlying
methods. The difficulty, and probably the reason why these improvements are not yet available, is
related to the fact that this type of strategy requires a highly interdisciplinary synergy of different
science disciplines.

The ExaFLOP challenge is not just the achievement of that scale of computing performance,
but compromises also the goal of attaining it with a reasonable power budget. Thus, the issue
concerns both performance and energy efficiency. In this sense, the Top500 [4] and the Green500 [3]
ranks account for machines with the best performance and energy efficiency, respectively. The
problem with these metrics is that they are mutually independent. For instance, in the top 20
positions of the Green500 there are systems that are near the bottom of the performance heap;
and in the upper echelons of the Top500 there are many energy-inefficient systems. In order to
visualize performance and energy efficiency trends of both lists, a new way to synthesize these
information has been designed in [112]. The exascalar graph in Figure 1.1 represents platforms of
the Top500/Green500 lists from 2011 to 2013 organized on a double-logarithmic scale of efficiency
(MFLOPS/W) and performance (MFLOPS). This representation displays the distances between
the different computers considering the Exascale goal of 1012 MFLOPS (or 1 EFLOPS) in a 20 MW
envelope (or 50,000 MFLOPS/W). Note also the iso-power lines (red diagonal dashed) and iso-
exascalar curves (green curves) in the graph. For instance, machines in the iso-exascalar curve
ε = −2, are a factor of 100 times away from the Exascale goal; in the same way, the 20 MW
iso-power line represents the so-called power wall. As can be observed, the power trends of some
supercomputers in the figure have almost reached the power wall being 100 times away of the
Exascale goal.

The growth in energy consumption in modern HPC supercomputers has been stimulated by
the increasing density of the hardware components and the decrease of the price for hardware,
as exemplified by the Top500 and the Green500 lists. However, the reduction of total energy
consumption of an HPC system develops with a slow pace. As a consequence, we notice steadily
increasing costs for energy in HPC systems due to constantly increasing power consumption. These
issues increase total costs of ownership (TCO) and change the relation between the TCO and the
acquisition costs, so that, currently a significant fraction of the TCO is due to the high energy
consumption of these installations.
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Figure 1.1: Performance-Efficiency scalar graph for the Top500 supercomputers from 2011 to 2013.

The energy consumption generated by all these supercomputing platforms results in electricity
costs of several millions of euros. This implies an energy consumption of approximately 1 GW per
ExaFLOP with modern regular hardware technology – a value that yields unacceptable electricity
and carbon footprints. One approach to reduce this value lies in the development of low energy con-
sumption hardware. Potential candidates are special accelerators hardware like GPUs or the Intel
Xeon Phi, DSPs (digital signal processors) or FPGAs (field programmable gate arrays). However,
these mechanisms are not easy to be used efficiently and most of these specific hardware solutions
need a special adaptation of the application software [50, 54, 58, 65, 90]. While there already exist
attempts to improve the energy consumption, most of them focus on acceleration of the code or
development of low-consuming devices. This is, indeed, beneficial, but not sufficient to face the
challenge of an energy-efficient Exascale computing.

1.2 Motivation and Objectives

We have argued earlier that a few abstraction layers in HPC systems (mostly in hardware)
are already subject to energy efficiency considerations. However, there is a layer in the field of
software development that is to a great extent energy-oblivious. The novelty, in this sense, is the
incorporation of power-saving mechanisms to improve energy usage. This goal comprises a wide
range of applications: from mathematical kernels to libraries and application programs.

The research of this dissertation triggers a new approach, where energy consumption is regarded
as a top priority. The HPC community has to assume that energy consumption is a major economic
and ecological concern nowadays. New HPC-based knowledge has to perform a paradigm shift from
high-sustained performance to low energy-to-solution. The motivation of this dissertation is to work
with this new paradigm in order to pave the way to efficient software. Specifically, we instantiate
this paradigm shift in the field of the matrix computations on multicore and many-core processors.
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In this dissertation we investigate energy consumption for the specific domain of dense and
sparse linear algebra field. Hardware features that leverage low-power states are used to tune
and minimize energy-to-solution of key algorithms. We also develop tools to analyze the power
consumption of scientific applications. Power models are also designed to predict energy consump-
tion of key algorithms to reduce total energy dissipation. The ultimate goal of this dissertation
is to increase awareness of the power wall in high performance computing as well as present new
techniques, methodologies and guidelines to easily design energy-efficient scientific applications.

The objectives of this work can be summarized as follows:

• Analysis of energy-saving mechanisms, methodologies and tools available in hardware and
software.

• Development of a power-performance profiling and analysis environment for parallel scientific
applications.

• Analysis and design of power and energy models for linear algebra operations.

• Design of basic energy-saving techniques for applications that exploit task-level parallelism.

• Validation of the techniques on multicore and hybrid CPU–GPU platforms.

We subsequently describe the state-of-the-art in the topics addressed in this dissertation, and
detail the advance that our research brings about.

1.3 State-of-the-Art

HPC centres are substantial consumers of energy, necessary to feed the computational resources
and auxiliary systems that have enabled the breakthrough scientific advances achieved during the
past few decades. The recent hardware developments of computer architectures, especially in mul-
ti/manycore and accelerator technologies, have allowed considerable performance gains in comput-
ing and the continuation of historical trends [4]. In consequence, this technology has been rapidly
adopted in HPC facilities. Nevertheless, further performance improvements, attained from a sub-
stantial increase in the number of cores, is constrained by the aggregated energy budget necessary
to feed these large-scale HPC systems. In particular, power consumption has a direct impact on
the operation and maintenance costs of these centres, compromising their existence and impairing
the installation of new ones. As-of-today, the electricity costs for many HPC centres will exceed
the hardware acquisition costs in just a few years. Furthermore, energy consumption results in
carbon dioxide emission, a hazard for the environment and public health; and heat, which reduces
the reliability and lifetime of hardware components. Therefore, the concerns about the rise of an
energy crisis, climate change and fault-tolerance in large-scale systems lead to a very well justified
call for energy efficiency in HPC.

At the other end of the spectrum, mobile computing devices are equipped with low-power
hardware components to maximize their battery life. This constraint from the embedded and
mobile market segments is forcing hardware manufacturers to improve their designs for better
energy efficiency. Processor, memory and hard disks nowadays feature low-power modes that allow
a trade-off between performance and power by applying energy-friendly techniques such as dynamic
voltage and frequency scaling (DVFS) [86] and idle states (e.g., spin down idle disk platters). These
tools have to be used carefully, though, since an increase in the application run time may outweigh
the power decrease such that the total energy is increased.
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In recent years, these energy-saving mechanisms from the mobile market have found their way
into server architectures and, thus, the systems installed at large HPC centres are now equipped with
power-aware hardware. However, the system software, communication libraries, and application
codes in these systems are most often insensitive to power consumption. Therefore, although the
ExaFLOP challenge will undoubtedly lead to new ground-breaking scientific discoveries, it is also
certain that it calls for greener and more efficient system software, middleware and application
algorithms than those in use today.

1.3.1 Energy-efficiency analysis and profile of applications

The development of Exascale systems made it clear that the use of current technologies, algo-
rithmic practices and performance metrics are not adequate. Existing tools in HPC mainly focus
on the monitoring and evaluation of performance metrics. In this sense, hardware has a wide range
of sensors and measurement devices related to power consumption with varying granularity and
informative value. Recently, new frameworks have been developed/adapted from other research
areas (e.g. mobile computing) in order to analyze power consumption. Most of these packages
focus only on power consumption but are oblivious to performance aspects. Therefore, it is crucial
to identify adequate sensors, hardware counters and measurement devices to gain detailed insights
about both power consumption and performance.

Optimizing the power consumption of scientific applications requires enhanced monitoring and
profiling capabilities. Monitoring power and performance metrics such as node or device power con-
sumption and performance counters is important but the correlation of these measurements with
the application itself is necessary in order to understand the mutual interactions. By analyzing
the measurements, optimization keystones can be detected and implementation alternatives can be
generated (see Figure 1.2). Therefore, it is necessary to create an adequate measurement environ-
ment which supports fine-grain measurements of power consumption at component level. Further,
visualization tools have to integrate these new metrics in order to correlate them with the appli-
cation timeline. This allows to characterize different kinds of parallel applications (MPI/OpenMP
and P-Thread) with the power consumption during execution, as well as to identify power sinks in
the software application.

Analyze dataRun application Re-Run
and profiling

Tracing
Applicationimprovement

Code

Figure 1.2: Power-performance cycle optimization of scientific applications.

Several works address the aforementioned topic and an excellent survey on hardware, software,
and hybrid tools for power profiling is given in [123]. Concretely, hardware solutions for mea-
suring power consumption include: PowerMon2 [33], an internal wattmeter (coupled between the
computer’s power supply unit and mainboard) for fine-grain measuring of computers samples the
power running through the DC lines, offering a basic software interface. PowerPack [61] employs a
commercial DC wattmeter from National Instruments connected to the lines coming out from the
power supply unit (PSU). This software also performs a number of tests with the purpose of iden-
tifying which lines feed different components such as disks, memory, network interface controllers
(NICs), processors, etc. This information can be exploited by the user to gain insights on where
and how applications consume power. PowerPack exhibits a user-friendly interface, and targets
applications running on single-node platforms, though PowerPack’s information can be “manually”
aggregated for parallel Message Passing Interface (MPI) applications. The HDTrace [83] package,
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on the other hand, offers a tracing and simulation environment for the power-performance footprint
of MPI programs on a cluster. This software supports MPICH2 and the parallel file system Parallel
Virtual File System (PVFS).

Identification of consumption per software component in HPC applications facilitates the opti-
mization of the power consumption, since interferences can be analyzed in detail. Furthermore, the
availability of information on software power consumption enables detailed decisions about software
behavior, which were not possible before. Using this information, applications, libraries and the op-
erating system can adjust their power consumption to meet performance goals (quality-of-service)
or power budgets employing already known interfaces.

1.3.2 Energy-aware metrics and power models

As infrastructure or user demands often impose restrictions on the power draft, new metrics
accounting for the key factors of runtime, power draft, and total energy consumption of a sys-
tem/application combination are essential for optimization. While the GFLOPS/W is the de facto
standard to measure the energy efficiency of a computing system [3, 4], recent work [34] provides
strong evidence that this metric tends to promote power-hungry algorithms that deliver high sus-
tained performance, when in reality the objective should be the reduction of the total energy,
preferably along with the minimization of the time-to-solution (TTS).

To avoid this effect, one can rely on the energy-delay product (EDP) [85], which combines both
factors, TTS and energy, into a single figure of merit, thus promoting algorithms that are more
energy-friendly. The metric f(TTS) · energy (FTTSE) proposed in [34], progresses further along
this line by considering the product between the energy and a function f of TTS. Different cost
functions for f thus lead to distinct cases: f(t) = 1, with t = TTS, renders FTTSE as simply
equivalent to the energy; while FTTSE is analogous to EDP when f(t) = t. More interestingly,
the linear model f(t) = α · t, with α a scalar, allows to weight (penalize) for time increases; and
the exponential case f(t) = eα(t−τ) exerts a stronger pressure when the TTS exceeds a certain
threshold τ . Hence, a progress in the current state-of-the-art in energy-aware HPC is needed to
shift from using a metric that, at best, offers a limited view of the true energy usage, to a truly
energy-aware approach that is at the same time modular and thus easily repeatable and expandable.

In this sense, HPC manufacturers are also pursuing energy models to estimate power consump-
tion in real time. For example, the Intel Sandy Bridge architecture includes the new Running
Average Power Limit (RAPL) interface [77] to account for the power consumed by the chip at
different levels under a specific design. In this architecture, internal circuitry is able to estimate
current power based on a model driven by hardware counters, temperature and leakage data. Re-
cent NVIDIA GPUs are also able to report power usage via the NVIDIA Management Library
(NVML) [100].

Many studies for new power and energy models exist. Previous work to model power con-
sumption of benchmarks as well as more general applications leverage hardware counters reflecting
processor and memory activity [80, 35, 62]. Other researchers have used processor performance
events [37], architectural parameters and parameters drawn from application’s characteristics [87].
Among these, the authors in [117] derive an analytic, workload-independent piece-wise linear power
model that maps performance counters and temperature to energy usage.

1.3.3 Energy-aware linear algebra

The development of energy-aware implementations of basic numerical linear algebra kernels is
a key problem as a significant fraction of the numerical applications running in the HPC centres in
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the Top500 list can be decomposed into a few linear algebra operations/problems like, e.g., linear
systems of equations or eigenvalue computations. The solution to these problems is currently
addressed with existing energy-oblivious libraries developed in the mid 90s, when supercomputers
with a single processor per node were the mainstream.

Current HPC libraries for linear algebra exploit the hardware concurrency of multicore pro-
cessors at the BLAS-level, employing multithreaded implementations of a few basic linear algebra
kernels (e.g., the matrix-matrix product or the triangular system solve). For many years, this ap-
proach has been successfully exploited by the scientific community, as it provided a clean interface
that allowed the development of complex numerical solvers, independent of the underlying target
architecture, with performance portable to different architectures. However, with the increase of the
number of cores in the systems (e.g., Intel Xeon Phi), this solution has rapidly become suboptimal
as exploiting concurrency at the BLAS-level forces an excessive number of thread synchronizations,
introducing a non-negligible overhead.

In the recent years, several projects have demonstrated the benefits of extracting parallelism at
a higher level, both for dense [26, 40, 110] and sparse [7] linear algebra computations, via runtimes
that decompose the operations into fine-grained tasks, and perform an out-of-order dependency-
aware scheduling of the tasks. Successful examples of this solution have been provided in projects
libflame (SuperMatrix) [128], PLASMA (Quark) [106], SMPSs [118], StarPU [119], etc., following
ideas/techniques that can be traced back to Cilk [43]. In all these projects, algorithms are statically
or dynamically decomposed into a collection of tasks (or kernel operations), identifying the data
dependencies among them. The result is a Directed Acyclic Graph (DAG) that captures the
dependency information implicit to the algorithm, and which is then passed to a scheduler in
charge of issuing tasks to the computational resources. As a result, tasks are executed in the order
dictated by data dependencies (data-flow parallelism) instead of the order they appear in the code
(control-flow parallelism), which unleashes a richer degree of concurrency.

Unfortunately, as-of-today, these execution environments pursue raw performance as the ulti-
mate value for the end-user but they are completely oblivious to the energy that is consumed to
deliver these results. Initial research has investigated the possibility of being more energy-friendly
while maintaining the iso-efficiency/iso-scalability of a parallel solver, and the benefits that such
an approach can yield. This can be achieved, e.g., by scheduling non critical tasks to slower, low-
power cores (in a heterogeneous environment) or by applying DVFS, avoiding busy-waits in the
communications, and aggressively promoting idle cores to low-consuming states.

In this context, there exist a number of related investigations to our work. In [56], the authors
model a scheduler for clusters that can map tasks and adjust node frequencies, depending on the
number of pending jobs. In [126, 91] the authors discuss scheduling of independent tasks (jobs) in a
DVFS-enabled processor, while in [66] this technology is used to schedule tasks with dependencies in
a multiprocessor setup. The authors of [92] introduce several real-time, energy-aware schedulers for
tasks with dependencies. The work in [129] describes a platform that combines real-time mapping
with DVFS to reduce energy usage of dependent tasks. The algorithm LPHM in [32] dynamically
adjusts the execution time of non critical tasks using DVFS. In [88] new heuristics are proposed
for an energy-aware task scheduler in a heterogeneous cluster. In [81] a strategy is employed to
stretch or reduce the execution time of non critical jobs. In [115], the authors perform a similar
investigation, but frequency is statically tuned at the beginning of the algorithm, and fixed for
its complete duration. The authors of [82] also follow the same strategy, with stretch/compress
stages, that are iteratively applied until the consumption of power is below a certain threshold.
The algorithm LPHEFT is presented in [32] as a means to reduce energy consumption, based
on scheduling of idle time-slots (or gaps). In general, there exist a number of works which have
analyzed the trade-off between energy and performance enabled by DVFS; see, e.g., [60]. Some
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of these tackle the execution of a DAG representing tasks and data dependencies under certain
conditions, in most cases reporting the theoretical gains which can be expected from this; see [82].

With the introduction of the CUDA [101] and OpenCL [103] programming standards, GPUs
have been increasingly adopted in HPC systems for their affordable price, favorable energy-perfor-
mance balance and, due to their vast amount of hardware concurrency, the excellent acceleration
factors demonstrated for many compute-intensive applications with ample data-parallelism [3, 4].
However, the adoption of these hardware accelerators as a path to reduce the energy-to-solution
(ETS) for certain applications has introduced an additional burden on the shoulders of these plat-
forms’ programmers.

In particular, this type of hardware accelerators has to be attached to a conventional (multi-
core) processor, and efficiently programming a heterogeneous platform consisting of one to several
multicore processors and multiple GPUs is still a considerable challenge. Furthermore, heteroge-
neous HPC clusters, with nodes consisting of several general-purpose multicore processors plus one
or more GPUs, and a high-performance node interconnect, now include more than one memory
address space per node. Inter-node communication in a parallel platform has always been regarded
as pure overhead, as it diminishes performance and increases energy consumption. The situation
is thus worse for heterogeneous CPU–GPU clusters, as they feature an additional communication
channel, a slow PCI-e bus, between the data in the main memory and the hardware accelerator.
Therefore, careful mapping/scheduling of the computations is specially needed to reduce the sources
of overheads in these platforms. The reason is that, when dealing with these parallel systems, in
addition to facing the programming difficulties intrinsic to concurrency, the developer has to cope
with multiple issues as the existence of multiple memory address spaces, the different programming
models, and now, the energy efficiency.

1.4 Structure of the Document

The manuscript is structured in seven chapters. Chapter 1 reviews the energy challenge in
the Exascale HPC era. In addition, it describes the motivation, main goals, and structure of the
document.

Chapter 2 describes the basic concepts underlying the BLAS and LAPACK specifications for
dense linear algebra problems; reviews two basic execution frameworks, libflame and SMPSs,
and the algorithms for the Cholesky, LU and QR factorizations. The chapter also offers basic
introduction to ILUPACK.

Chapter 3 describes the power-performance analysis framework developed within this disserta-
tion. This basically includes the profiling and tracing tools, the PMLib library, and the integration
of the suite in a general framework. To demonstrate its usage, a detailed power and performance
analysis of a representative dense linear algebra operation is offered. The chapter also provides a
brief overview of the hardware energy-saving mechanisms and describes the different platforms and
power measurement devices used in this work.

Chapter 4 introduces a series of power and energy models for linear algebra operations on mul-
tithreaded architectures. The main contribution of the chapter comprises the power and energy
models, in conjunction with the methodology to gather and assemble the necessary data. Two vari-
ants of the general model which follow a simple and a contention-aware approaches are described.
These models are completed with an additional case that handles the P-states, and two new specific
instances for multi-socket and hybrid CPU–GPU platforms.

Chapter 5 describes our theoretical DVFS-based approaches that allow to reduce energy-con-
sumption of linear algebra operations that exploit parallelism at the task-level. The Slack Reduction
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Algorithm and the Race-to-Idle Algorithm are reviewed and simulated using key dense linear algebra
algorithms on different hardware architectures in that chapter.

Chapter 6 introduces our energy-aware techniques and describe how to accommodate them into
task-parallel runtimes. It analyzes the potential savings of dense linear algebra operations using our
energy-aware SuperMatrix runtime, evaluating its practical performance and energy consumption
over a representative set of dense linear algebra operations. Furthermore, it presents results of our
energy-aware ILUPACK runtime for the solution of sparse linear algebra operations, evaluating
theoretical and experimental results and analyzing the impact of the P-/C-states on the time-
power-energy balance.

Chapter 7 presents the main conclusions from this research. In addition, it reports the major
contributions of the thesis and the publications that have been generated. A few open research
lines related to the work are discussed at the end of this chapter.
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CHAPTER 2

Linear Algebra Algorithms

The development of complex dense linear applications frequently relies on fundamental building
blocks as, for example, the Basic Linear Algebra Subprograms (BLAS [97]) and the Linear Alge-
bra PACKage (LAPACK [99]). In response to the evolution towards higher degrees of hardware
concurrency, the dense linear algebra methods in these libraries need to be parallelized to effi-
ciently exploit SMP (Symmetric Multi-Processing) processors and multicore architectures. Current
multithreaded libraries operate with tasks that are executed out-of-order with the aim of keep-
ing the computation resources fully occupied. Specifically, we introduce two basic libraries and
frameworks that use these techniques at a high level: libflame [128] and SMPSs [118]. We also
describe three canonical matrix decompositions: the Cholesky factorization, the LU factorization
with partial and incremental pivoting, and the traditional and incremental QR decompositions. All
these factorizations are implemented in libflame and SMPSs. In addition, we also review the
task-parallel implementation of ILUPACK (Incomplete LU factorization PACKage [76]), a library
for the numerical solution of large sparse linear systems via iterative Krylov-based methods.

The chapter is divided as follows. Section 2.1 describes the basic concepts and nomenclature
behind the BLAS and LAPACK specifications for dense linear algebra problems. Section 2.2
reviews two basic execution and framework environments: libflame and SMPSs. Sections 2.3,
2.4, and 2.5 describe the algorithms for the Cholesky, LU and QR factorizations, respectively. A
basic introduction to ILUPACK is offered in Section 2.6.

2.1 Dense Linear Algebra

2.1.1 BLAS: Basic Linear Algebra Subprograms

Several key dense algebra problems, such as the solution of systems of linear equations or
eigenvalue problems, arise in a wide variety of scientific and engineering applications. Chemical
simulations, automatic control or integrated circuit design are just three examples in which dense
algebra operations usually conform the computationally most expensive part.

Furthermore, a collection of basic operations frequently appear during the solution of these
problems, such as, e.g., the scalar product of two vectors, the solution of a triangular linear system,
or the product of two matrices. These basic linear algebra routines are grouped under the name
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BLAS and they were identified in a joint effort leaded by experts from diverse areas, so that the
final specification of BLAS covered the basic requirements that appear in many fields of science.

The BLAS specification was originally a trade-off between functionality and simplicity. The
number of routines and their parameters were designed to be reasonable. Simultaneously, the
functionality was intended to be as rich as possible, covering those routines that often appear in
complex problems. An illustrative example of the flexibility of the specification is the representation
of a vector: the elements of the vector do not have to be stored contiguously in memory; instead, the
corresponding routines provide a parameter to define the physical separation between two logically
consecutive elements of the vector.

Since the first definition of the specification, BLAS has been of great relevance in the solution
of linear algebra problems. The reliability, flexibility, and efficiency of the existing implementations
allowed the emergence of other libraries that made internal usage of the BLAS. In addition, there
are other advantages that yield the use of BLAS so appealing:

• Code legibility: the names of the routines reflect their internal functionality. This standard-
ization makes code simpler and more readable.

• Portability: by providing a well-defined specification, the migration of codes built upon BLAS
to other platforms is straight forward. Given a tuned implementation for the target machine,
the ported implementations will stay optimized and the resulting codes will remain highly
efficient.

• Documentation: there is a rich documentation available for each BLAS routine.

There is a generic implementation of BLAS available since its original definition [97]. This
reference (or legacy) implementation offers the full functionality of the specification, but with-
out optimizations specific to a particular hardware. However, the real value of BLAS lies on the
tuned implementations developed for different hardware architectures. Since the publication of
the specification, the development of implementations adapted to each hardware architecture has
been a task for either processor manufacturers or the programming community. Today, vendor-
specific implementations are usually employed to demonstrate the full potential of a specific proces-
sor. There exist proprietary implementations for general-purpose multicore processors from AMD
(ACML [22]), Intel (MKL [79]) and IBM (ESSL [73]), as well as for specific-purpose architectures,
such as Nvidia Cublas for the Nvidia graphics processors. In general, the code for each routine
in those implementations is designed to make optimal use of the resources of the underlying archi-
tecture. Independent third-party implementations, such as GotoBLAS [64] or ATLAS [125], also
provide optimized implementations for general-purpose processors.

The BLAS were initially implemented using Fortran thought there also exists an implementation
in C. In many cases, the use of assembly language allows fine-grained optimizations that extract
the full potential of the architecture.

BLAS levels

The development of BLAS is closely bound to the evolution of hardware. In the early 1970s the
most common HPC platforms were equipped with vector processors. With those architectures in
mind, BLAS was designed as a group of basic operations on vectors: the Level-1 BLAS, or simply
BLAS-1. The ultimate goal of the specification of BLAS was to motivate processor engineers to
develop fully optimized versions of their implementations following the standard specification.

In 1987, the BLAS specification was improved with a set of routines for matrix-vector operations,
usually known as Level-2 BLAS or BLAS-2. Both the number of floating-point arithmetic operations
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and the amount of data involved in these routines are of quadratic order, and a generic BLAS-2
implementation was published after the specification. One of the most remarkable observations of
these early implementations was the adoption of column-wise storage for data in matrices.

The increasing gap between processor and main memory speeds [122] resulted in the appearance
of architectures with multiple levels of cache memory, yielding a hierarchical organization of the
system memory. With the popularization of those architectures, it was accepted that libraries built
on top of BLAS-1 and BLAS-2 routines would never attain high performance when ported to the
new architectures, since BLAS-1 and BLAS-2 are by definition memory-bound operations. Thus,
the performance of the BLAS-1 and BLAS-2 routines is limited by the speed at which the memory
subsystem can provide data to the execution path.

The third level of BLAS (Level-3 BLAS, or BLAS-3) was defined in 1989 in response to the
aforementioned problems. The specification proposed a set of operations featuring a cubic number
of floating-point arithmetic operations on a quadratic amount of data. This difference between
the number of calculations and memory accesses allows a better exploitation of the principle of
locality in architectures with a hierarchical memory via carefully designed “blocked” algorithms. In
practice, these algorithms hide the memory latency and offer a performance close to the theoretical
peak of the processor. Blocked algorithms partition the matrix into sub-matrices (or blocks),
grouping memory accesses, and increasing the locality of reference and data reuse. By exploiting
this scheme, the possibility of finding data in a closer (and faster) level of the memory hierarchy
is greater and the memory access penalty is reduced. For this reason blocked algorithms are also
known as algorithms-by-blocks.

To sum up, BLAS is divided into three levels:

• Level 1: The number of operations and the amount of data increase linearly with the size of
the problem.

• Level 2: The number of operations and the amount of data increase quadratically with the
size of the problem.

• Level 3: The number of operations increases cubically with the size of the problem, while the
amount of data increases only quadratically.

From the perspective of performance, the main reason for this classification is the ratio between
the amount of data and the number of operations performed on them. This ratio is critical in
architectures with a hierarchical memory system, as those that are mainstream today.

With the emergence of modern shared-memory multicore and many-core architectures, the
development of parallel implementations of BLAS has received further attention, and significant
efforts have been undertaken to adapt BLAS to these architectures. The advantage of BLAS-3 is
still more dramatic in these scenarios, where the memory bandwidth becomes a more challenging
bottleneck since it is shared by multiple processors.

From the performance viewpoint of the parallel implementations, we can conclude that:

• The performance of BLAS-1 and BLAS-2 is dramatically limited by the pace at which memory
can feed the data to the processors.

• BLAS-3 is more efficient since more calculations can be performed per memory access, at-
taining performances near the peak of the processor and near-optimal speedups for many
operations. For this reason, the routines of BLAS-3 usually offer higher degrees of parallel
performance.
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Routine Operation Comments FLOPS

xgemm C := α op(A) op(B) + βC op(X) = X,XT , XH , C is m× n 2mnk

xsymm
C := αAB + βC

C is m× n, A = AT
2m2n

C := αBA+ βC 2mn2

xsyrk
C := αAAT + βC

C = CT is n× n n2k
C := αATA+ βC

xsyr2k
C := αABT + αBAT + βC

C = CT is n× n 2n2k
C := αATB + αBTA+ βC

xtrmm
C := α op(A)C op(A) = A,AT , AH , C is

m× n
nm2

C := α Cop(A) mn2

xtrsm
C := α op(A−1)C op(A) = A,AT , AH , C is

m× n
nm2

C := α Cop(A−1) mn2

Table 2.1: Functionality and number of floating-point operations of the studied BLAS routines.

Overview of the BLAS-3 operations

The BLAS-3 basically targets matrix-matrix operations and its functionality was designed to
be limited. For example, no routines for matrix factorizations are included, as they are supported
by higher-level libraries, such as LAPACK, which implements blocked algorithms for that purpose
making use of routines from BLAS-3 whenever possible. Instead, the BLAS-3 are intended to
be a set of basic matrix algebra operations from which the developer is capable of implementing
more complex routines. Specifically, BLAS-3 can operate with matrices, matrix blocks and their
transposes.

Table 2.1 summarizes the BLAS-3 routines used in this dissertation operating in real arithmetic.
The names of the routines follow the conventions of the rest of the BLAS specification, with the first
character denoting the data type of the matrix (e.g., S for single precision, D for double precision),
the second and third characters denoting the type of matrix involved (e.g., GE, SY or TR for general,
symmetric or triangular matrices, respectively) and the rest of the characters denoting the type of
operation (MM for matrix-matrix product; RK and R2K for rank-k and rank-2k updates of a symmetric
matrix, respectively; and SM for the solution of a triangular system of linear equations with multiple
right-hand sides).

2.1.2 LAPACK: Linear Algebra PACKage

The optimization of the routines in BLAS is justified as they are basic building blocks to
construct libraries that perform more complex linear algebra operations. One of the most used
libraries in this sense is LAPACK [99].

LAPACK includes routines to solve fundamental linear algebra problems and represents the
state-of-the-art in numerical methods on dense matrices. Alike BLAS, LAPACK offers support for
both dense and band matrices but, while BLAS is focused on the solution of basic linear algebra
operations, LAPACK tackles more complex problems as, for example, linear systems, linear least-
squares problems or eigenvalue and singular value problems.

LAPACK was the result of a project born at the end of the 80s. The main goal was to obtain
a library with the same functionality as LINPACK [52] and EISPACK [98] but with improved
performance. Those libraries, designed for vector processors, do not offer reasonable performance
on current high performance processors, with segmented pipelines and complex memory hierarchies.
This inefficiency is mainly due to the use of BLAS-1, which does not exploit the locality of reference,
resulting in a sub-optimal usage of the memory subsystem. As a consequence, the routines in
LINPACK and EISPACK spend most of the time in data movements from/to memory, with the
subsequent penalty on the performance [39].

14



2.2. DENSE LINEAR LIBRARIES AND TOOLS

The performance boost attained by the routines in LAPACK is mainly due to two main reasons:

• The integration into the library of new algorithms that did not previously exist.

• The redesign of existing and development of new algorithms to make an efficient use of BLAS.

The legacy implementation of LAPACK is public domain [99], and includes drivers to test
and time the routines. As with BLAS, some hardware manufacturers have implemented specific
versions of LAPACK tuned for their architectures; however, the improvements introduced in these
implementations are usually not as important as those integrated in BLAS. As the performance of
many implementations relies on the performance of the underlying BLAS implementation, high-
level modifications, such as the selection of the block size, are the most common tweaks in the
proprietary versions of LAPACK.

For multicore architectures, LAPACK extracts the parallelism by invoking a parallel (multi-
threaded) version of BLAS. In other words, the routines in LAPACK do not include any kind of
explicit parallelism in their codes, but rely on a multithreaded implementation of BLAS for this
purpose.

LAPACK and BLAS

The possibility of using BLAS-3 routines led to a redesign of many algorithms implemented by
LAPACK to work with blocks or sub-matrices [53, 51]. By leveraging these algorithms-by-blocks,
many operations can be cast in terms of the most efficient routines in BLAS, and the possibilities of
parallelization are improved in two ways: the internal parallelization of individual block operations
and the possibility of processing several blocks in parallel [44]. LAPACK contains routines based
on BLAS-3, but also scalar or unblocked codes based on BLAS-1 and BLAS-2 for some matrix
operations. For example, the Cholesky factorization of a dense symmetric positive definite matrix
is implemented both as a blocked routine (potrf) and as an unblocked routine (potf2).

The internal use of BLAS offers the advantages of portability, code legibility and concurrency,
already discussed in Section 2.1.1.

In summary, the efficiency of LAPACK depends mainly on two factors: first, the efficiency of
the underlying BLAS implementations; and second, the amount of FLOPS performed in terms of
BLAS-3 routines.

2.2 Dense Linear Libraries and Tools

In our work we have also used two basic software packages that exploit task-level parallelism
intrinsic to several dense linear algebra operations. First, we review libflame and its runtime Su-
perMatrix, used to demonstrate the capabilities of our proposed energy-aware techniques presented
in Chapter 6. Next, we revisit the SMPSs framework and runtime, that was used to explore the
energy and power models proposed in Chapter 4.

2.2.1 The libflame library

The FLAME (Formal Linear Algebra Methods Environment) project is a collaborative effort
between The University of Texas at Austin and the Universitat Jaume I de Castellón that offers
a unique methodology, notation, tools, and a set of application programming interfaces (APIs) to
easily derive dense linear algebra algorithms and transform these into code. The result of this
project is the libflame library.
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The primary purpose of libflame is to provide the scientific and numerical computing com-
munities with a modern, high-performance dense linear algebra library that is extensible, easy to
use, and is available under an open source license. Seasoned users within scientific and numerical
computing circles will quickly recognize the general set of functionality targeted by libflame. It
provides a framework for developing dense linear algebra solutions, but also a ready-made library
that is, by almost any metric, easier to use and offers competitive (and in many cases superior)
real-world performance when compared to the more traditional BLAS and LAPACK libraries.

Sequential performance via optimized BLAS. Traditional libraries like LAPACK are layered
upon the BLAS for portable performance. In its simplest mode, libflame is merely an alternative
way of programming families of algorithms for operations, such as the LU, QR, and Cholesky
factorizations, still in terms of traditional BLAS operations and linked to traditional BLAS libraries.

Traditional parallelism via multithreaded kernels. With the advent of parallel computers like
symmetric multiprocessors (SMPs) and multicore architectures, the simplest approach to parallelize
libraries such as LAPACK and libflame is to link to multithreaded BLAS kernels so that the
parallel implementations remain identical to the original sequential code.

Scheduling algorithms-by-blocks to multiple threads. The drawback of extracting parallelism
only via multithreaded BLAS are numerous: i) each call to a BLAS operation ends with a syn-
chronization of the threads (so-called fork-and-join parallelism); ii) the factorization of the current
panel represents an operation in the critical path during which there is a reduced opportunity
for parallelism; iii) scheduling the computations out-of-order to increase concurrency is difficult
without greatly complicating the code. libflame presents some abstractions that alleviate these
problems:

• The API supports storage of matrices by blocks. While traditional linear algebra libraries
enforce column-major storage to map matrices to memory, the object-based FLAME/C API
allows elements in a matrix themselves to be descriptors of matrices, thus providing a conve-
nient way of expressing matrices that are hierarchically stored by blocks.

• It supports algorithms-by-blocks, which view each element of a matrix as a block, and ex-
presses the computation to be performed in terms of operations between those blocks.

• In some cases, new algorithms had to be invented to fit the algorithms-by-blocks concept. For
example, the LU factorization with partial pivoting and QR factorization via Householder
transformations in their traditional incarnations operate with columns of blocks in order to
identify a pivot or compute a Householder reflector. The concepts of incremental pivoting in
the LU factorization and the incremental QR factorization overcome this bottleneck.

• When blocks are viewed as the units of data and operations with blocks as the units of
computation, the concurrency is exposed by expressing the algorithm as a directed acyclic
graph (DAG) of sub-operations. However, abstractions within the library allow a nearly
identical implementation to instead build a DAG as it executes, deferring computation until
the DAG is built. This provides the opportunity for sub-operations to be dispatched to threads
for parallel execution even when many dependencies exist between subproblems. Thus, the
libflame algorithms need not change as one moves from a sequential to a shared-memory
parallel environment.
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• It provides a run-time system, named SuperMatrix, to analyze and dynamically schedule
the suboperations captured in algorithms-by-blocks. This system implements in software
techniques such as out-of-order execution incorporated at the hardware level in superscalar
processors. Altogether, these abstractions enable algorithms with many dependencies to be
elegantly and efficiently scheduled in order to exploit thread-level parallelism.

Exploiting hardware accelerators. A recent development in high-performance computing has been
the arrival of hardware accelerators like the general-purpose graphics processing units (GPUs) or the
Intel Xeon Phi. As part of a prototype extension of libflame, the same mechanism used to target
shared memory parallel architectures allows to reach, almost effortlessly, stunning performance on
systems with multiple hardware accelerators [109].

2.2.2 The SuperMatrix runtime

The SuperMatrix runtime was designed from its inception for the execution of dense linear
algebra operations. This runtime follows the methodology advocated in the FLAME project [59],
which patronizes a separation of concerns between the derivation of new algorithms for dense linear
algebra operations, and their practical coding (implementation) and high-performance execution on
a platform. SuperMatrix orchestrates a seamless, task-parallel execution of the full functionality of
the libflame dense linear algebra library [128] on a range of platforms, including multicore desktop
servers [110], heterogeneous CPU–GPU systems [109], and small-scale clusters [75].

Operation. The parallel execution performed by the runtime is composed by the following phases.
After the identification of tasks and dependencies, and the constitution of a logical directed acyclic
graph (DAG), SuperMatrix proceeds to execute the computations represented by the DAG. For
that purpose, the runtime spawns a collection of worker threads that poll a queue of tasks ready
for execution. When SuperMatrix runs on a multicore processor, idle threads prompt the ready
list for work. When a thread acquires a task, it executes the corresponding kernel in the associated
processor core. Upon completion, the thread inspects the tasks in the global work queue, moving
them to the ready queue in case all their dependencies are now satisfied.

Let us expose the SuperMatrix runtime operation using an example of the LU factorization
with partial pivoting. Consider the LU factorization of a (nonsingular) matrix A ∈ Rn×n, which
computes the decomposition A = LU , where L ∈ Rn×n is unit lower triangular and U ∈ Rn×n is
upper triangular and, for simplicity, let us neglect pivoting during the presentation. Figure 2.1 (left)
presents a right-looking blocked algorithm for this factorization using the FLAME notation [36].

SuperMatrix (like many other high performance runtimes for dense linear algebra) starts from a
(sequential) blocked algorithm of the target matrix operation (see Figure 2.1), to obtain a task par-
allel data-flow execution. For this purpose, SuperMatrix first decomposes the algorithm/operation
into a number of suboperations (tasks) of a certain granularity, while simultaneously identifying all
dependencies among these. In the case of SuperMatrix and dense linear algebra operations, this
can be done, e.g., taking into account only the order in which tasks appear in the algorithm as well
as the operands that each task reads (inputs), writes (outputs), or reads/writes (inputs/outputs).

For example, consider an n× n matrix A composed of s× s = 4× 4 blocks of dimension b× b
each (i.e., n = s · b). The symbolic result from the above process is the directed acyclic graph
(DAG) of dependencies in Figure 2.2, where LU(k) stands for the factorization of the k-th panel
(column block), an trsm(k,j) and gemm(k,j) refer, respectively, to the triangular system solve
and the matrix-matrix update of the j-th panel with respect to the factorization of panel k (see
Figure 2.1). In this case, note that the factorization of the first panel, LU(0), yields a result that
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Algorithm: A := LUP blk(A)

Partition A→

(
ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(A) do

Determine block size b
Repartition

(
ATL ATR

ABL ABR

)
→


A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b

(
A11

A21

)
:= LUP unb

(
A11

A21

)
A12 := trilu(A11)−1A12 (trsm)

A22 := A22 −A21A12 (gemm)

Continue with

(
ATL ATR

ABL ABR

)
←


A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 2.1: Blocked algorithm for the LU factorization.

is necessary for tasks trsm(0,1), trsm(0,2), trsm(0,3); and also note how this is captured in the
DAG by arcs (dependencies) between the corresponding nodes (tasks). Thus, these dependencies
state that trsm(0,1)–trsm(0,3) cannot be executed till LU(0) is completed, but also that these
three triangular solves can be performed in any order.

In summary, the DAG associated with a given algorithm dictates different “orderings” in which
the tasks (suboperations) can be correctly computed, and SuperMatrix leverages this information
to produce an out-of-order, data-flow schedule of the DAG and a concurrent execution of the tasks.

SuperMatrix for multithreaded platforms

The conventional approach to execute blocked algorithms in parallel is to employ a high-quality
implementation of a numerical library, like LAPACK [24] or libflame [128], and rely on a mul-

LU(2)

G(0, 2)

G(2, 3)

G(1, 2)

G(0, 3)

T(1, 3)

LU(1)

T(0, 3)

G(0, 1)

T(0, 2)

T(1, 2)

LU(0)

G(1, 3)

T(2, 3)T(0, 1) LU(3)

Figure 2.2: DAG with the tasks/data dependencies for the LU factorization with partial pivoting
of a matrix consisting of 4 × 4 blocks. Red arrows identify the critical path of the
algorithm.
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tithreaded implementation of BLAS to exploit the hardware concurrency. Alternatively, when
applied to parallelize dense linear algebra operations on current multithreaded architectures, ex-
ploiting task-parallelism with a finer granularity has been recently reported as a superior approach
to exploit the hardware concurrency of current multithreaded architectures [26, 40, 110]. In order
to exploit the task-parallelism intrinsic to the factorization algorithms, we leverage the Super-
Matrix runtime, which conforms the layer that transparently adapts libflame to multithreaded
architectures.

The version of SuperMatrix for heterogeneous CPU–GPU platforms [109] commits one control
thread per GPU (device) of the target platform. These threads run each on a different (CPU)
core of the host, and i) update the dependence queues; ii) guide the associated accelerator by
carrying out the necessary data transfers and dispatching tasks for execution there; and iii) execute
computational work that is not suited to the GPU. For example, in the LU factorization with partial
pivoting, the panel factorizations are performed by the CPU cores, as this type of operations
requires a fine control that renders them inappropriate for the GPU. The triangular linear system
solutions (trsm) and matrix-matrix updates (gemm) of the remaining blocks, on the other hand,
are performed in the GPUs.

It is interesting to remark that, for the particular case of parallel platforms with multiple
memory address spaces, this version of the runtime [109] introduces two communication-reducing
techniques: i) the workload is partitioned statically among the computational resources following a
cyclic block data layout; ii) and the memory of each GPU is viewed as a local, fully-associative cache,
and data coherence is preserved using write-invalidate and write-back protocols [69]. The outcome
is a significant reduction of the volume of communications between CPU and GPU, diminishing
the constraint imposed by the slow PCI-e bus. More details on the operation/implementation of
the SuperMatrix runtime for multicore processors and multi-GPU platforms can be found in [110]
and [109], respectively.

To close this brief introduction, note that it is precisely the decomposition of the operation
into a discrete number of tasks and the introduction of a runtime that controls the scheduling of
tasks to the computational resources (cores or GPUs) which permits the design of an energy-aware
execution, as described later in this dissertation.

Improvements to the SuperMatrix runtime

Some extensions and techniques for the hybrid CPU–GPU SuperMatrix runtime have been
proposed in order to improve performance [16]. To illustrate the different versions of the runtime,
we use a multicore Intel platform with two quad-core Intel Xeon 5440. Attached to the platform,
via a PCI Express 2.0 bus, there is a system consisting of four Nvidia Tesla C2050 GPUs (Fermi);
hereafter we refer this platform as tesla2.

The original design of the SuperMatrix runtime for heterogeneous CPU–GPU architectures
supported two basic execution modes: multicore and multi-GPU modes, depending on the available
hardware resources. In the multicore mode, one worker thread is bound to a unique CPU core,
executing and collaborating in the management of shared lists of ready and pending tasks. In
multi-GPU mode, the runtime task devotes one control thread running on a CPU core, to instruct
each GPU during the complete parallel execution. As the computation advances, ready tasks are
executed in the GPUs using a specific implementation of the kernels for these devices. When
a kernel is not appropriate for the GPU, the computation is carried out in the associated CPU
core, and no data transfers are performed unless transfers are strictly required to maintain data
consistency.
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Figure 2.3: Performance of the LU factorization with partial pivoting on tesla2, using 8 CPU
cores (multicore mode) and 4 GPUs (multi-GPU mode).

Let us next illustrate the performance of the original modes of the SuperMatrix scheduler using
the LU factorization with partial pivoting in terms of GFLOPS (i.e., billions of FLOPS), using 8
CPU cores (multicore mode) and 4 GPUs (multi-GPU mode) of tesla2 (see Figure 2.3).

From this initial experiment it is possible to extract some conclusions. For small matrices
the multicore mode outperforms the performance of the GPU-based alternative. This is a known
result [28, 109] as GPUs need large volumes of computation in order to hide PCI-e data transfer
overheads. However, for medium-size matrices both the multicore and multi-GPU modes deliver
similar GFLOPS rates. This behavior, in which equivalent performance for different configuration
modes appears, is common to other dense linear algebra operations. When dealing with large
matrices, the multi-GPU setup clearly outperforms the multicore counterpart, basically due to the
much higher hardware concurrency of the GPUs.

Tuning the scheduler. In past work, a number of heuristics have been applied to tune the perfor-
mance of runtime task schedulers by reducing idle time and/or minimizing data movement among
memory spaces. These techniques include data affinity [109], caching [42], work-stealing [74], and
task renaming [105]. In the extension of the SuperMatrix runtime for hybrid CPU–GPU archi-
tectures, decisions taken at runtime address performance as well. From the experiment performed
above, there exists different resource combinations that report optimal results for each problem
size. To leverage this, the runtime system could modify, at execution time, the number of each
type of computational resources (CPU or GPU) that are devoted to the actual task computation.

Leveraging Full Hardware Concurrency. In the original SuperMatrix implementation, the execu-
tion of tasks was performed either by the CPU cores (multicore mode) or by the GPUs (multi-GPU
mode). As an exception, in the multi-GPU mode a few types of tasks could be executed on the
CPU cores, due to their special properties. While this occurred, though, the corresponding GPUs
remained stalled, waiting for the completion of the task. This improvement considers the GPUs
and all the CPU cores as potential workers. In this case, each task type is bound to two different
kernel instances, one for the GPU and one for the CPU. Depending on the type of thread a task is
mapped to, the corresponding kernel instance is invoked.
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Figure 2.4: Traces of the execution of the LU factorization with partial pivoting of a matrix of
dimension n = 10,240, with b = 1,024 using 4 GPUs of tesla2, without priority tasks
(top) and with priority tasks (bottom). Selected execution points: 1: End of LU(0);
2: End of Update (0,1); 3: End of Update (0,s− 1); and, 4: Start of LU(1).

Scheduling Critical Tasks. Let us analyze next in detail the task scheduling of the LU factorization
with partial pivoting for a matrix, e.g., of size n = 10,240, with block size b = 1,024, using the
multi-GPU mode on 4 GPUs. Given these dimensions, Algorithm 2 partitions the matrix into s =
10,240/1,024 = 10 panels. At each iteration k = 0, 1, . . . , s− 1, the algorithm proceeds by initially
decomposing the k-th panel of the input matrix (LU(k)); and next updating the trailing submatrix
panel-wise with respect to the factorization of this panel, which is performed as a sequence of
triangular system solves and matrix-matrix updates (tasks trsm(k,j) and gemm(k,j), respectively,
with j = k + 1, k + 2, . . . , s − 1). For simplicity, hereafter we refer to the combined application of
trsm and gemm to the j-th panel as Update(k,j).

Figure 2.4 (top) shows a trace of the execution of this LU factorization governed by the original
SuperMatrix scheduler. Note how, in the operation of the original runtime, the factorization LU(k+
1) does not commence till the update of the full trailing submatrix with respect to the factorization
of the previous panel has been completed. An inspection of the order in which tasks are executed
there (see the instants marked with numbers 1 to 4 in the trace) reveals that task LU(1) (execution
point 4) does not proceed until the complete update of the trailing submatrix Update(0,s − 1)
(execution point 3) is completed.

However, the factorization of the current panel and the update of the first panel of the trailing
submatrix both lie on the critical path of the DAG (see Figure 2.2) and, therefore, their execution
should proceed as soon as possible. Indeed, task LU(k + 1) could effectively start as soon as task
Update(k,k+1) is completed, since the dependencies determine that it is unnecessary to wait for the
update of all remaining panels in the trailing submatrix: Update(k,k + 2), . . . , Update(k,s− 1).
Thus, the goal of this optimization is to enforce a fast execution of those tasks in the critical
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path, that in practice yields an overlapped execution of LU(k + 1) with Update(k,k + 2), . . . ,
Update(k,s− 1).

To accomplish these goals, tasks in the critical path receive a different treatment in the enhanced
version of the SuperMatrix scheduler. Specifically, i) critical (or priority) tasks are executed as
soon as possible to avoid unnecessary stalls; and ii) they are mapped to the fastest computational
resource (CPU or GPU) available. Generally, tasks that lie on the critical path are, therefore,
signaled as priority tasks.

Once priority tasks are identified and marked in the DAG, the runtime remains in charge of
performing the most adequate action when a ready critical task is encountered. In principle, the
original implementation of SuperMatrix controls a single ready queue containing all tasks with
their data dependencies satisfied. In the version enhanced with priorities, the scheduler is modified
to introduce an additional priority queue (or one priority queue per thread in case data affinity is
used).

The performance impact of the improvements introduced in the new runtime is reported in Fig-
ure 2.5. There, we offer a comparison between the efficiency of the original version of SuperMatrix
and that of the new runtime using the multicore mode and the multi-GPU mode of the runtime
scheduler. The results show that the performance improvement is especially remarkable for large
matrices. For the multicore mode, the acceleration varies between 10 % and 12 %, while for the
multi-GPU mode, the speedups range from 20 % to 25 % for the largest tested matrices
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Figure 2.5: Impact of the use of priority tasks on the performance of the LU factorization with
partial pivoting on tesla2, using 8 CPU cores (multicore mode) and 4 GPUs (multi-
GPU mode).

2.2.3 The SMP Superscalar framework

The SMP Superscalar (SMPSs) framework [118] consists of a source-to-source compiler and
a runtime library. The supported programming model allows to develop sequential applications
and the framework is able to exploit the existing concurrency and to use the different cores of a
multicore or SMP performing an automatic parallelization at execution time.

SMPSs addresses the automatic exploitation of the functional parallelism in a sequential pro-
gram on multicore and SMP environments. SMPSs prioritizes the portability, simplicity and flex-
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ibility of the programming model. In particular, using a simple annotation of the source code, a
source-to-source compiler generates the necessary code in common C, and a runtime library exploits
the existing parallelism by building a task dependency graph at execution time. The runtime takes
care of scheduling the tasks and handling the associated data.

Overview. The SMPSs project focuses on multicore and SMP architectures in general. The pro-
gramming model allows programmers to write sequential applications and the framework is able to
exploit the existing concurrency. The programmer employs annotations in the form of C macros
alike those in OpenMP.

The SMPSs runtime builds a DAG where each node represents an instance of an annotated
function and the edges between nodes denote data dependencies. Using the information in this
graph, the runtime schedules independent nodes for execution in different processors. Techniques
like data dependency analysis, data renaming and data locality exploitation are applied to increase
performance of the applications. In summary SMPSs offers tools that propose a portable, flexible
and high-level programming model for multicores and SMPSs.

Task Based Programming. SMPSs is a programming environment for parallel applications based
on function-level parallelism. In this model, the programmer selects a series of functions called
tasks that will run in parallel, and these functions are treated by the runtime as the unit of parallel
computation.

Tasks are defined with pragma annotations before their function definition. The annotation
indicates that the following function is a task and specifies the directionality of each task parameter.
For example, the syntax of a task is the following:

#pragma css task input(input parameter list) \

output(output parameter list) \

inout(input and output parameter list)

function definition

Partial Synchronization Points. SMPSs can only handle inter-task related data dependencies,
but not dependencies with non-task code. For this reason, synchronization points or barriers may
be needed. After a synchronization point, inline code is guaranteed to have all dependencies with
the specified data resolved. In this sense, synchronization points are partial, since they wait for
specific values instead of waiting for all tasks to finish. The basic syntax of the synchronization
point annotation is the following:

#pragma css wait on(addresses of the variables)

Data dependency control. Tasks in a program operate on data that is generated and consumed
from task to task. These relations define a certain control flow that must be respected in order
to execute the tasks and obtain the same results as in the corresponding sequential execution.
SMPs guarantees the consistency of the results by respecting the data dependencies between tasks.
Dependency information is generated and kept in a task dependency graph at runtime.
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The runtime is structured as a main thread that runs the non-task code and populates the
graph, and a series of worker threads that consume and execute the tasks from the graph. As tasks
are executed, their output parameters become available to the tasks that are dependent on them.

Data dependency reduction. Dependencies are one of the factors that determine how much
parallelism can be extracted from of an application. SMPSs tries to reduce dependencies between
instructions by performing register renaming at runtime.

The renaming technique consists of storing temporary definitions of a program variable into
a temporary storage. That is, if a task writes to an array, renaming can replace that array by a
temporary one and redirect all the following reads of that definition to the temporary array. This
effectively eliminates all WaR1 and WaW2 dependencies.

Workload distribution. One of the goals of SMPSs is to provide good performance. In these sense,
the scheduling algorithm is designed according to three principles: first, maximize parallelism;
second, make task execution fast on the processors; and third, do not exceed the benefits of a
simpler scheduling algorithm by applying a computationally expensive one.

SMPSs incorporates advanced techniques to exploit data locality by taking advantage of the
information in the graph. Other techniques allow to advance tasks in the critical path and to
steal work from other threads when their ready lists become empty; these enhancements improve
load-balancing of the workload.

Tracing. Measuring is key to improve the performance. For this reason, SMPSs incorporates
an integrated tracing facility. Applications compiled with the “tracing enabled” option record a
series of events during their execution. These events are dumped into a trace file at the end of the
execution for analysis. The file is formatted so that it can be processed with Paraver tool [104].

SMPSs in linear algebra

Since the SMPSs runtime can be used for any kind of parallel applications that exploit par-
allelism at the task-level, it can also be applied in the linear algebra domain. In this case, the
framework for the semi-automatic detection of dependencies and seamless parallelization on multi-
core architectures proceeds internally using the same principles as the SuperMatrix runtime. As an
example, the code in Listing 2.1 displays a simplified C code that computes the Cholesky factoriza-
tion of an n×n matrix A, stored in column-major order, and with column leading dimension Alda.
The code invokes high performance implementations of the kernels dpotrf (Cholesky factorization),
dtrsm (triangular solve), dgemm (matrix-matrix product), and dsyrk (symmetric rank−b update)
from LAPACK and BLAS. The lines starting with “#pragma css task” are the annotations the
programmer needs to add to exploit task-parallelism using SMPSs.

2.3 The Cholesky Factorization

One of the most common strategies to solve a linear system of equations commences with the
factorization of the coefficient matrix as the product of two triangular matrices. These factors are
used in a subsequent stage to obtain the solution of the original system by solving the resulting

1Write-after-Read.
2Write-after-Write.
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#define A_ref(i,j) A[((j) -1)*Alda +((i) -1)]

void dpotrf_smpss( int n, int b, double *A, int Alda , int *info )

{

// Declaration of variables
// . . .
for (k=1; k<=n; k+=b) {

// Cholesky factorization
dpotrf_u( b, &A_ref(k,k), Alda , info );

// Triangular system solve
for( j=k+b; k<=n; k+=b )

dtrsm_lutn( b, &A_ref( k, k ), &A_ref( k, j ), Alda );

// Update tra i l ing submatrix : matrix−matrix products and
// symmetric rank−b updates
for( i=k+b; i<=n; i+=b ) {

for( j=i+b; j<=n; j+=b )

dgemm_tn( b, &A_ref( k, i ), &A_ref( k, j ),

&A_ref( i, j ), Alda );

dsyrk_ut( b, &A_ref( k, i ), &A_ref( i, i ), Alda );

}

}

}

#pragma css task input( b, ldm ) inout( A[b*b], info [1] )

void dpotrf_u( int b, double A[], int ldm , int *info )

{

dpotrf( "Upper", &b, A, &ldm , info );

}

#pragma css task input( b, A[b*b], ldm ) inout( B[b*b] )

void dtrsm_lutn( int b, double A[], double B[], int ldm )

{

double done = 1.0;

dtrsm( "Left", "Upper", "Transpose", "Non unit",

&b, &b, &done , A, &ldm , B, &ldm );

}

#pragma css task input( b, A[b*b], B[b*b], ldm ) inout( C[b*b] )

void dgemm_tn( int b, double A[], double B[], double C[], int ldm )

{

double dmone = -1.0, done = 1.0;

dgemm( "Transpose", "No transpose", &b, &b, &b, &dmone ,

A, &ldm , B, &ldm , &done , C, &ldm );

}

#pragma css task input( b, A[b*b], ldm ) inout( C[b*b] )

void dsyrk_ut( int b, double A[], double C[], int ldm )

{

double dmone = -1.0, done = 1.0;

dsyrk( "Upper", "Transpose", &b, &b, &dmone , A, &ldm , &done , C, &ldm );

}

Listing 2.1: Blocked routine for the Cholesky factorization annotated with SMPSs parallelization
directives.

triangular systems. The LU and the Cholesky factorizations are strategies of this type, with the
latter being used when the coefficient matrix is symmetric positive definite.

Definition A symmetric matrix A ∈ Rn×n is positive definite if xTAx > 0 for all nonzero x ∈ Rn.

The following theorem defines the Cholesky factorization of a symmetric positive definite matrix.
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Theorem 2.3.1 If A ∈ Rn×n is symmetric positive definite, then there exists a unique lower
triangular matrix L ∈ Rn×n with positive diagonal entries such that A = LLT .

The proof of this theorem can be found in classic literature [63]. The decomposition A = LLT

is known as the Cholesky factorization, and L is usually referred to as the Cholesky factor or the
Cholesky triangle of A. Alternatively, A can be decomposed so that A = UTU , with U ∈ Rn×n
upper triangular.

The Cholesky factorization is the first step towards the solution of a system of linear equations
Ax = b with A symmetric positive definite. The system can be tackled by first computing the
Cholesky factorization A = LLT , then solving the lower triangular system Ly = b, and finally
solving the upper triangular system LTx = y. The factorization of the coefficient matrix involves
the major part of the arithmetic operations (O(n3) FLOPS for the factorization compared with
O(n2) for the triangular system solutions), and thus its optimization can yield higher benefits in
terms of performance gains.

The largest entries in a positive definite matrix A are on the diagonal (commonly referred to
as a weighty diagonal). Thus, these matrices do not need pivoting during their factorization [63].
Linear systems with a positive definite coefficient matrix A constitute one of the most important
and common cases of linear systems.

The Cholesky factor of a symmetric positive definite matrix is unique. Although the Cholesky
factorization can only be computed for symmetric positive definite matrices, it presents some ap-
pealing features, basically with respect to computational cost and storage requirements. These
advantages make the Cholesky decomposition of special interest compared with other decomposi-
tions such as the LU or QR factorizations.

Algorithm 1 presents a blocked (right-looking) procedure to compute the Cholesky factorization
of A that overwrites the upper triangular part of the matrix with the contents of the upper triangular
factor U . In the following algorithms, we consider a partitioning of this matrix into blocks of size
b × b and A → (Ai,j) denotes the (i,j) block in this partitioning. Each kernel in the algorithm is
annotated to the right with its theoretical cost in FLOPS. The global cost of this factorization is
n3/3 FLOPS. (Hereafter we neglect lower order terms in the cost expressions.)

Algorithm 1 Right-looking blocked algorithm for the Cholesky factorization.

1: for k = 1,2, . . . ,s do

2: Akk = UTkkUkk Cholesky factorization b3/3 FLOPS

3: for j = k + 1,k + 2, . . . ,s do

4: Akj ← U−Tkk Akj Triangular solve b3 FLOPS
5: end for
6: for i = k + 1,k + 2, . . . ,s do
7: for j = i+ 1,i+ 2, . . . ,s do

8: Aij ← Aij −ATkiAkj Matrix-matrix product 2b3 FLOPS
9: end for

10: Aii ← Aii −ATkiAki Symmetric rank-b update b3 FLOPS
11: end for
12: end for

Figure 2.6 shows the dependency graph (DAG) corresponding to the computation of the Cholesky
factorization of a matrix consisting of 3 × 3 blocks using Algorithm 1. (We will assume hereafter
that n is an integer multiple of b for simplicity.) In the graph, nodes stand for tasks and edges
identify dependencies. Each task A→ (Ai,j), each of dimension b× b, is labeled with a first letter
representing its type (Chol for Cholesky, T for triangular system solve, G for general matrix-matrix
product, and S for symmetric rank-b update).
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Figure 2.6: DAG with the tasks/data dependencies for the Cholesky factorization of a matrix
consisting of 3× 3 blocks using Algorithm 1.

2.4 The LU Factorization

The LU factorization, combined with a pivoting strategy (usually partial row pivoting), is the
most common method to solve linear systems when the coefficient matrix A does not present any
particular structure nor property. As for the Cholesky factorization, a necessary property of the
coefficient matrix A is to be invertible.

The LU factorization of a matrix A ∈ Rn×n involves the application of a sequence of (n − 1)
Gauss transformations [124], that ultimately decompose the matrix into the product A = LU ,
where L ∈ Rn×n is unit lower triangular and U ∈ Rn×n is upper triangular.

Once the coefficient matrix is decomposed into the corresponding triangular factors, it is possible
to obtain the solution of the linear system Ax = b by solving two triangular systems: first, the
solution of the system Ly = b is obtained using progressive elimination; and then the system Ux = y
is solved by regressive substitution. As for the Cholesky factorization, these two stages involve lower
computational cost, and thus the optimization effort is usually focused on the factorization stage.

Theorem 2.4.1 A matrix A ∈ Rn×n has an LU factorization if its n − 1 leading principal sub-
matrices of A are invertible. Moreover, if the LU factorization exists and A is invertible, then the
factorization is unique.

The proof for this theorem can be found in the literature [63].

2.4.1 The LU factorization with partial pivoting

As noted before, the solution of a linear system of the form Ax = b exists and is unique if the
coefficient matrix A is invertible. However, this is not the only requisite for the existence of the
LU factorization. For example, if A is invertible, but any of the elements in the diagonal is zero,
the factorization is not feasible, as a division by zero appears during the algorithm.

Row pivoting is a strategy that can be applied to solve this issue: if the row with the zero
diagonal element is swapped with a different row below that in the matrix (without a zero element
in the corresponding entry), the factorization can continue normally. These exchanges must be
applied as well to vector b before solving the linear system. This problem can occur even with non
zero diagonal entries, but with its absolute value being of small magnitude compared with the rest
of the elements in its column. This situation involves a growth in the magnitude of the elements
of U with the consequent rounding errors in the presence of limited precision arithmetic, and a
catastrophic impact on the accuracy of the result to the linear system [124].

The row pivoting strategy thus consists of swapping the diagonal element with that of largest
absolute magnitude from those in and below the diagonal in the current column. This method
guarantees that every element in L is equal or smaller than 1 in magnitude, and handles properly
the growth of the elements in U limiting the impact of the round-off errors. This technique is
known as partial row pivoting.
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Figure 2.7: DAG with the tasks/data dependencies for the LU factorization with partial pivoting
of a matrix consisting of 3× 3 blocks using Algorithm 2.

Algorithm 2 shows a right-looking blocked algorithm for the LU factorization which overwrites
the strictly lower/upper triangular parts of the matrix A→ (Ai,j) with the contents of the strictly
lower/upper triangular factors L/U . For simplicity, partial pivoting is not included there. Each
operation (i.e., task) in the algorithm is annotated to the right with its theoretical cost in FLOPS.
This cost depends on the block size b and the number of blocks s = n/b. Note that

Lk:s,k =

(
Lk,k

Lk+1:s,k

)
,

with Lk,k unit lower triangular and Lk+1:s,k rectangular. The factorization of the current panel
Ak:s,k (kernel LU) can be obtained by calling an unblocked version of the algorithm (b = 1).
Provided 1 � b � n, the blocked algorithm in the figure performs 2n3/3 FLOPS, mostly cast in
terms of the matrix-matrix product (gemm) Ak+1:s,j ← Ak+1:s,j −Ak+1:s,k ·Akj .

Algorithm 2 Right-looking blocked algorithm for the LU factorization.

1: for k = 1 : s do

2: Ak:s,k = Lk:s,k · Ukk LU factorization (s− k + 2
3

)b3 FLOPS

3: for j = k + 1 : s do

4: Akj ← L−1
kk ·Akj Triangular solve b3 FLOPS

5: Ak+1:s,j ← Ak+1:s,j −Ak+1:s,k ·Akj Matrix-matrix product 2(s− k)b3 FLOPS

6: end for
7: end for

Figure 2.7 captures the tasks and dependencies that appear during the computation of the LU
factorization with partial pivoting of a blocked 3×3 matrix using Algorithm 2. In the graph, nodes
stand for tasks and edges identify dependencies. The label of each task represents its type: “LU”
denotes the LU factorization via Gauss transforms, “T” the triangular system solve, and “G” the
matrix-matrix product. The number after the letter uniquely identifies each task (and it can be
derived from the loop indices k and j of the algorithm).

In practice, the introduction of pivoting slightly modifies the DAG in the figure, so that each pair
of tasks/dependence T(k,j)→ G(k,j) would become LU(k)→T(k,j)→ G(k,j), with T(k,j) including
the application of permutations to the block Ak:s,j . Given that these additional dependencies do
not inhibit further the degree of parallelism in the algorithm and that the cost of applying the
permutations LU(k) can be added to that of the triangular system solve T(k,j), we can safely avoid
the explicit inclusion of these tasks.

2.4.2 The LU factorization with incremental pivoting

In [70] it is shown how the insights gained from studying the update an existing LU factorization
yields the algorithm-by-blocks for the LU factorization with incremental pivoting. The key that
allows the computational expense to be roughly the same as the standard LU factorization with
partial pivoting is a careful orchestration of computation and pivoting so that the matrix on the
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diagonal, after being factored itself, does not incur into significant fill-in as it is being used to zero
elements in the blocks below it.

The algorithm-by-blocks for the LU factorization with incremental pivoting carries out a se-
quence of row permutations (corresponding to the application of pivots) which are different from
those that would be performed in an LU factorization with partial pivoting. Therefore, the numer-
ical stability of this algorithm is also different [70].

Algorithm 3 presents the blocked variant of the LU factorization with incremental pivoting [108].
Specifically, the algorithm overwrites the upper triangular part of the matrix A → (Ai,j) with U ,
while the Gauss transforms that yield L are implicitly stored in the strictly lower triangle of A
plus an additional workspace of small dimension. Although the LU factorization with incremental
pivoting does not compute a clean unit lower triangular factor L, it still yields a decomposition
that allows a high-performance BLAS-3-based solution of a linear system. The total number of
FLOPS performed by the algorithm-by-blocks is approximately 2n3/3. Notice that there is some
flexibility in the order in which the loops are arranged. Actually, in task-parallel implementations
the runtime system rearranges the operations and therefore the exact order of the loops is not
important.

Algorithm 3 Right-looking blocked algorithm for the LU factorization with incremental pivoting.

1: for k = 1,2, . . . ,s do

2: Akk = Lkk · Ukk LU factorization 2b3/3 FLOPS

3: for j = k + 1,k + 2, . . . ,s do

4: Akj ← L−1
kk ·Akj Triangular solve b3 FLOPS

5: end for
6: for i = k + 1,k + 2, . . . ,s do

7:
(

Akk
Aik

)
=

(
Lkk
Lik

)
· Uik 2× 1 LU factorization b3 FLOPS

8: for j = k + 1,k + 2, . . . ,s do

9:
(

Akj
Aij

)
←

(
Lkk 0
Lik I

)−1

·
(

Akj
Aij

)
2× 1 Triangular solve b3/2 FLOPS

10: end for
11: end for
12: end for

Figure 2.8 illustrates the DAG corresponding to the computation of the LU factorization with
incremental pivoting of a matrix consisting of 3× 3 blocks using Algorithm 3. In the task names,
LU stands for LU factorization, T for triangular system solve, G2 for 2 × 1 LU factorization, and
T2 for 2 × 1 triangular system solve; this is followed by a number that uniquely identifies the
task in the graph. The permutations required for stability can be easily merged with the other
tasks, simplifying the presentation of the DAG without restricting the degree of concurrency of the
algorithm.

2.5 The QR Factorization

The QR factorization is given by A = QR, where A ∈ Rm×n is a real-valued matrix, Q ∈ Rm×m
is an orthogonal matrix (that is, QTQ = QQT = I the identity matrix), and R ∈ Rm×n is an upper
triangular matrix. There are many different methods for computing the QR factorization, including
those based on Givens rotations, orthogonalization via Gram-Schmidt and modified Gram-Schmidt,
and Householder transformations [63]. To introduce this factorization we use the last one.

For dense matrices, the method of choice largely depends on how the factorization is subse-
quently used, the stability of the system, and the dimensions of the matrix. For problems where
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Figure 2.8: DAG with the tasks/data dependencies for the LU factorization with incremental piv-
oting of a matrix consisting of 3× 3 blocks using Algorithm 3.

m � n, the method based on Householder transformations is typically the algorithm of choice,
especially when Q does not need to be explicitly computed.

Householder transformations. Given a real-valued vector x of length m, partition x =

(
χ0

x1

)
,

where χ0 equals the first element of x. The Householder vector associated with x is defined as

the vector u =

(
1

x1/ν0

)
, where ν0 = χ0 + sign(χ0)‖x‖2. If β = 2

uTu
then (I − βuuT )x = ηe0,

annihilating all but the first element of x, which becomes η = −sign(χ0)‖x‖2. The transformation
I − βuuT is referred to as a Householder transformation or reflector.

Let us introduce the notation [u, η, β]← h(x) as the computation of the above mentioned η, u,
and β from vector x and the notation H(x) for the corresponding transformation (I − βuuT ). An
important feature of H(x) is that it is orthogonal and symmetric (H(x)T = H(x)).

The idea is that Householder transformations are computed to successively annihilate all the
subdiagonal elements of matrix A. The Householder vectors are stored by overwriting those el-
ements that have been previously annihilated. Upon completion, matrix R overwrites the upper
triangular part of the matrix while the Householder vectors are stored in the strictly lower trape-
zoidal part of the matrix. The scalars β discussed above are stored in a vector of length n.

If the matrix Q is explicitly desired, it can be formed by carefully accumulating the product
H0 · H1 · · ·Hn−1 = Q, where Hk equals the (k + 1)-th Householder transformation computed as
part of the factorization described above. Frequently, Q does not need to be explicitly formed, and
thus we will not discuss the issue further

Implementations of the QR factorization, whether unblocked or blocked, typically are written so
that the bulk of the computation is performed by the BLAS, which export a standardized interface
to common operations such as matrix-vector (BLAS-2) and matrix-matrix multiplication (BLAS-3).

2.5.1 The traditional QR factorization

The traditional slab-based QR factorization of a matrix A → (Ai,j) proceeds in panels of b
columns (slabs), as illustrated by Algorithm 4. Each operation in the algorithm is annotated to
the right with its theoretical cost, which depends on the loop index k. The cost of this algorithm
is 2n2(m− n/3) FLOPS, or 4n3/3 FLOPS when m = n.

Figure 2.9 shows the DAG obtained when this algorithm is applied to a blocked 3 × 3 matrix
A using Algorithm 4. There, QR represents the QR factorization and O the application of the
orthogonal transformations.
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Algorithm 4 Right-looking blocked algorithm for the traditional QR factorization.

1: for k = 1 : s do

2: Ak:s,k = Qk:s,k:s ·Rkk QR fact. 2(s− k − 1
3

)b3 FLOPS

3: for j = k + 1 : s do

4: Ak:s,j ← QTk:s,k:sAk:s,j Apply orth. transf. 4(s− k − 1
2

)b3 FLOPS

5: end for
6: end for

QR(3)

QR(2)

O(2, 3)QR(1)

O(1, 2)

O(1, 3)

Figure 2.9: DAG with the tasks/data dependencies for the QR factorization of a matrix consisting
of 3× 3 blocks using Algorithm 4.

In this decomposition, the factorization of the current panel is an inherently sequential opera-
tion. Therefore, for this operation it is desirable to use a sequential blocked algorithm with a small
block size and cast the computation in terms of BLAS-3. The fundamental question now becomes
how to create as much parallelism as possible without the factorization of the current panel becom-
ing a bottleneck because of dependencies. This problem is normally addressed by applying updates
to future panels as early as possible so that the factorization of those panels can proceed in parallel
with updates of later panels.

2.5.2 The incremental QR factorization

The blocked procedure for the incremental QR factorization is illustrated in Algorithm 5. In this
case, the upper triangular part of the matrix A→ (Ai,j) is overwritten with the entries of R, while
Q is not explicitly built but stored implicitly using the annihilated of A and a small workspace. A
careful implementation of the building blocks for this factorization yields a global computational
cost of 4n3/3 FLOPS [67], equivalent to that of the (unblocked) QR factorization via Householder
transforms.

Algorithm 5 Right-looking blocked algorithm for the incremental QR factorization.

1: for k = 1,2, . . . ,s do

2: Akk = QkkR
T
kk QR factorization 4b3/3 FLOPS

3: for j = k + 1,k + 2, . . . ,s do

4: Akj ← QTkkAkj Apply orth. transf. 2b3 FLOPS
5: end for
6: for i = k + 1,k + 2, . . . ,s do

7:
(

Akk
Aik

)
=

(
Qkk
Qik

)
Rik 2× 1 QR factorization 2b3 FLOPS

8: for j = k + 1,k + 2, . . . ,s do

9:
(

Akj
Aij

)
←

(
Qkk 0
Qik I

)T (
Akj
Aij

)
2× 1 Apply orth. transf. 4b3 FLOPS

10: end for
11: end for
12: end for

Figure 5.1 illustrates the tasks and dependencies obtained for the QR factorization of a blocked
3 × 3 matrix using Algorithm 5. There, G denotes the QR factorization, O the application of
(orthogonal) transformations, G2 the 2 × 1 QR factorization, and O2 the 2 × 1 application of
(orthogonal) transformations.
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Figure 2.10: DAG with the tasks/data dependencies for the incremental QR factorization of a
matrix consisting of 3× 3 blocks using Algorithm 5.

The level of parallelism realized from the incremental QR factorization depends on block size b
relative to the problem dimension, with smaller values of b unleashing a higher level of concurrency.
Unfortunately, decreasing b may negatively affect the performance of the algorithmic subproblems
since b must be reduced correspondingly if overhead is to be kept low. For these small block size
situations BLAS-3 performance is less likely to be achieved due to the smaller matrix operands.

2.6 Sparse Linear Algebra

Large sparse linear systems arise in many application areas such as partial differential equations,
quantum physics or problems from circuit and device simulations. These problems share the same
central task, which consists in efficiently solving a large sparse linear system of equations. For
a vast class of application problems, sparse direct solvers have proven to be extremely efficient.
However, the enormous size of the applications arising in 3D PDEs or the large number of devices
in integrated circuits currently requires fast and efficient iterative solution techniques, and this
need will be exacerbated as the dimension of these systems increases. This in turn demands for
alternative approaches and, often, approximate factorization techniques, combined with iterative
methods mainly based on Krylov subspaces, which reflect an attractive alternative for these kind
of application problems.

2.6.1 ILUPACK: Incomplete LU factorization PACKage

The Incomplete LU factorization PACKage (ILUPACK) [76] is mainly built on incomplete
factorization methods (ILUs) applied to the system matrix in conjunction with Krylov subspace
methods. The main drivers can be called from C, C++ and FORTRAN. The ILUPACK hallmark is
the so-called inverse-based approach. The package implements a multilevel incomplete factorization
approach (multilevel ILU) based on a special permutation strategy called “inverse-based pivoting”
combined with Krylov subspace iteration methods. Its main use consists of application problems
such as linear systems arising from partial differential equations (PDEs). ILUPACK supports single
and double precision arithmetic for real and complex numbers. Among the structured matrix classes
that are supported by individual drivers are symmetric and/or Hermitian matrices, which may or
may not be positive definite, and general square matrices.

The approach connects the ILUs and their approximate inverse factors. These relations are
important since, in order to solve linear systems, the inverse triangular factors resulting from the
factorization are applied rather than the original incomplete factors themselves. Thus, information

32



2.6. SPARSE LINEAR ALGEBRA

���
���
���
���

��
��
��

��
��
��

�
�
�

�
�
�

��

�
�
�

�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

���� ������

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
�����
���
���
���

First ND level finds separator (1,1)

(1,1)

(2,1) (2,2)

Second ND level finds separators (2,1) and (2,2)

(1,1)

(3,1)
(3,2)

A

G(2,1)

GA

G(3,1)

G(3,3)

A→ P TAP

G(3,4)

G(3,2)

(2,1)

(3,3) (3,4)

(2,2)

Task dependency Tree

Nested Dissection

G(2,2)

(1,1)

Figure 2.11: Nested dissection applied to the adjacency graph associated with a sparse matrix and
the corresponding task dependency tree.

extracted from the inverse factors will in turn help to improve the robustness for the incomplete
factorization process. While this idea has been successfully used to improve robustness, its down-
side was initially that the norm of the inverse factors could become large such that small entries
could hardly be dropped during Gaussian elimination. To overcome this shortcoming, a multilevel
strategy is supported to limit the growth of the inverse factors. This has led to the inverse-based
approach and hence the incomplete factorization process that has eventually been implemented in
ILUPACK benefits from the information of bound inverse factors to being efficient in turn.

The approach to multilevel preconditioning in ILUPACK relies on the so-called inverse-based
ILU factorizations. Unlike other classical threshold-based ILUs, this approach directly bounds the
size of the preconditioned error and results in increased robustness and scalability, especially for
applications governed by PDEs, due to its close connection with algebraic multilevel methods [7].
Specifically, for efficient preconditioning, only a small amount of fill-in is allowed during the factor-
ization, resulting in a modest number of floating-point arithmetic operations per non-zero entry of
the sparse coefficient matrix.

Parallelization. Concurrency in the computation of ILUPACK preconditioners is exposed by
means of nested dissection applied to the adjacency graph representing the non-zero connectiv-
ity of the sparse coefficient matrix. Nested dissection is a partitioning heuristic which relies on the
recursive separation of graphs. The graph is first split by a vertex separator into a pair of inde-
pendent subgraphs and the same process is next recursively applied to each independent subgraph.
The resulting hierarchy of independent subgraphs is highly amenable to parallelization. In partic-
ular, the inverse-based preconditioning approach is applied in parallel to the blocks corresponding
to the independent subgraphs while those corresponding to the separators are updated. When
the bulk of the former blocks has been eliminated, the updates computed in parallel within each
independent subgraph are merged together, and the algorithm enters the next level in the nested
dissection hierarchy. The same process is recursively applied to the separators in the next level
and the algorithm proceeds bottom-up in the hierarchy until the root finally completes the parallel
computation of the preconditioner; see Figure 2.11.
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The type of parallelism described above can be expressed by a binary task dependency tree,
where nodes represent concurrent tasks and arcs specify dependencies among them. The parallel
execution of this tree on multicore processors is orchestrated by a runtime which dynamically maps
tasks to threads (cores) in order to improve load balance requirements during the computation of
the ILU preconditioner. This runtime keeps a shared queue of ready tasks (i.e., tasks with their
dependencies fulfilled) which are executed by the threads in FIFO order. This queue is initialized
with the tasks corresponding to the independent subgraphs. Idle threads have to wait for new ready
tasks. When a given thread completes the execution of a task, its parent task is enqueued provided
the sibling of the former task has been already completed. Further details on the mathematical
foundations of the parallel algorithms and the runtime operation can be found in [7].

The most expensive operation involved in the preconditioned iterative solution of the linear sys-
tem is the application of the multilevel preconditioner, which is in turn decomposed into two steps:
the multilevel Forward Substitutions (FS) and Backward Substitutions (BS). The aforementioned
task dependency tree also describes the parallelism available within both computations. However,
while the FS proceeds bottom-up towards the root of the tree, the BS proceeds in the opposite
direction. In order to maximize data locality during the parallel multithreaded execution of both
operations, the mapping of threads to tasks resulting from the (dynamic load-balancing) computa-
tion of the preconditioner is re-used, so that each thread knows in advance the tasks it is in charge
of (i.e., static mapping). The runtime uses a different task queue for each thread and substitution
algorithm. For the FS, the queue of each thread is initialized with the leaves it is in charge of,
and new (ready) tasks are enqueued on the corresponding queues as soon as their dependencies
are fulfilled (i.e., as soon as their children tasks are completed). For the BS, only the root task is
initially included in the corresponding queue. As soon as the root task is completed, its children are
then enqueued on the corresponding queues, and the parallel execution (managed by the runtime)
proceeds top-bottom while taking care of task dependencies until the computation of the leaves is
completed. The other operations involved in the preconditioned iterative solution stage (i.e., sparse
matrix-vector product and vector operations) are split and mapped conformally with the FS and
BS steps in order to maximize data locality. Moreover, a careful management of shared data, by
maintaining consistent or inconsistent copies of the vectors, avoids synchronization steps, except
those reductions required in order to compute inner products. Further details on the mathematical
foundations of the parallel algorithms, their implementation, and the runtime operation can be
found in [7].
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CHAPTER 3

Performance and Energy Measurement Framework

The development of Exascale systems exposed that current technologies, programming practices
and performance metrics are not adequate. Existing tools for HPC mainly focus on monitoring and
evaluation of performance metrics. Newer hardware has a wide range of sensors and measurement
devices related to power consumption with varying granularity and informative value. Recently, new
tools have been developed or have been adapted from other research areas (e.g. mobile computing)
for analyzing power consumption. Most of these tools focus only on power consumption and
disregard the performance aspects. Therefore, it is crucial to identify adequate sensors, hardware
counters and measurement devices to gain detailed insights about the power consumption and the
performance of the hardware.

In order to optimize energy consumption of scientific applications, enhanced profiling and trac-
ing frameworks combining both power and performance metrics are needed. Moreover, to gain
a better understanding of energy usage, performance metrics, such as performance counters or
routine events, should be correlated with the power traces. Only analyzing these measurements,
energy inefficiencies in the code can be localized and optimized. In this chapter, we propose an
integrated framework with modular design to study power and energy profiles/traces of HPC scien-
tific applications. This power-performance analysis framework supports different types of parallel
applications: MPI/OpenMP and P-Thread.

This chapter is organized as follows. In Section 3.1, we provide a brief overview of the hardware
energy-saving mechanisms and describe the different platforms and power measurement devices used
in this work. Section 3.2 introduces the software leveraged as well as developed for performance-
power analysis of applications. This basically includes the profiling and tracing tools, the PMLib
library, and the integration of the suite in our framework. In Section 3.3 we illustrate the informa-
tion provided by the framework with a detailed power and performance analysis of a representative
dense linear algebra operation. Finally, some concluding remarks and future work are provided in
Section 3.4.

3.1 Hardware

The efficient use of the energy-aware mechanisms available in current architectures is a key point
that needs to be considered and explored by the scientific community in order to attain relevant
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energy savings. These mechanisms can be encountered in different hardware components: CPUs,
memory, HDDs, graphic accelerators, etc. For this reason, a preliminary step is the evaluation of
these mechanisms from the performance and energy consumption point of view. In this section we
revisit basic hardware techniques and introduce the architectures and power measurements devices
leveraged along this work.

3.1.1 Architectures

To adjust the device performance and power consumption, most hardware devices in a high
performance computing systems incorporate different power saving modes. An overview of these
mechanisms along with CPU and memory levels is provided in this section.

The CPU

The CPU usually consumes a large portion of energy, around 50 % of the total of a high per-
formance computing system [107]. Therefore, hardware manufacturers have special interest in the
development of energy-saving mechanisms to reduce the power consumption of this component. In
this sense, recent research efforts focus on exploring low consumption modes of the CPU. Before
studying the energy saving techniques in detail, let us introduce the different sources of power
consumption of the CPU.

In general, current CPUs and most digital circuits are constructed using CMOS circuits [71].
Therefore the analysis of power dissipation in CMOS circuits is essential to find out the relation
between power, supply voltage, and clock frequency. The total power dissipation for CPUs is the
summation of dynamic power, static power, and short circuit power. These ingredients of power
dissipation are described as follows:

Pdynamic is the power dissipation due to charging and discharging capacitors, composed of gate
and interconnect capacitances. This dynamic flow switching allows charging and discharging
thus enabling a better circuit performance.

Pstatic is the power dissipation due to reverse biased diodes. Normally it is due to the gradual loss
of energy from charged capacitors or current leaks of the circuit. This component can be
considered as constant and can be disregarded for dynamic power-saving modes.

Pshortcircuit is the power dissipation due to switching direct path between V CC-GND; i.e., the power
which flows from the supply ground during a transition of period of input signals. This occurs
during the signal transitions and is negligible for the total chip consumption.

These three factors are related by the formula:

Ptotal = Pdynamic + Pstatic + Pshortcircuit .

The dynamic power is the main portion of the CMOS power dissipation and can be expressed
as

Pdynamic = α · C · V CC
2 · f , (3.1)

where f is the frequency, V CC the voltage, α the level of chip activity, and C a factor dependent on
the capacitance of the chip. The weight of the dynamic power varies depending on the usage of the
CPU. In recent multicore processors, the variation of the dynamic power depends on the number
of cores in use.
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In order to meet size, performance and power constraints, recent generations of multicore pro-
cessors have miniaturized and integrated more and more components into the same die. This trend
unleashed a variety of advantages: latency reduction because of the integration of the memory
controller, power efficiency, and better performance/scalability using multiple cores. In this sense,
the uncore area has been enlarged to accommodate more elements. Normally, this uncore part
of the die includes the memory-controller, the Last Level Cache (LLC) and interconnection links.
Depending on the architecture and, more specifically, on the number of cores, the uncore area may
consume an important percentage of the total power consumption generated by the chipset.

An approach to reduce Pdynamic is to reduce voltage and thus, the frequency. The relation
between voltage and frequency is direct: high frequencies require high voltages. According to
(3.1), voltage increases quadratically, so its value plays an important role in the equation. A
given voltage for a particular frequency depends on several factors related to the chip design and
operation temperature. A reduced operating voltage close to the minimum threshold yields Near-
Threshold Computing (NTC). Currently, hardware devices come with the ability of working under
different power and performance configurations, a feature which can be exploited to improve energy
efficiency. One mechanism is to dynamically select an operating frequency among an existing set
of frequencies under which a processor can operate. Each frequency is assigned to a state named
performance state or P-state. The goal of P-state management is to reduce the power loss due
to leakage. On the processor side, the mechanism that controls the actual P-state is known as
Dynamic Voltage and Frequency Scaling (DVFS) [86]. A complementary mechanism that can be
leveraged to save energy is based on the processor states or C-states. With this technique it is
possible disable the clock (clock gating) or interrupt the power consumption (power gating) to
induce certain parts of the processor into a sleep state which results in energy savings.

Performance states

The P-states come originally from the mobile devices, in which the processing workload varies
and requires low consumption hardware. Nowadays, DVFS is implemented in almost all desktop and
server processors. Since the lower frequency also decreases performance, these frequency states are
named as performance states (P-states) in the Advanced Configuration and Power Interface (ACPI)
specification [72]. The performance states are enumerated as P0, . . ., Pn, where P0 and Pn stand for
the maximum and minimum allowable frequencies, respectively. Intel’s DVFS mechanism is called
Enhanced Intel SpeedStep Technology (EIST) [2] and AMD refers to DVFS as PowerNow! [1].
According to Intel, the primary goal of this technology is to provide multiple voltage and frequency
operating points for optimal performance at the lowest power.

The voltage and frequency is controlled by software that writes into processor model-specific
registers (MSR). If the target frequency is higher than the current frequency, the voltage is ramped
up in steps, and the Phase Lock Loop (PLL) locks to the new frequency. If the target frequency is
lower than the current frequency, the PLL locks to the new frequency and the voltage is changed.
Software transitions are accepted at any time. The processor controls voltage ramp rates internally
to ensure smooth transitions. The low transition latency leads to a large number of possible tran-
sitions per second. The processor core and the shared cache are unavailable for a few microseconds
until the frequency transition is completed.

Apart from the reduction of the nominal frequency, it is also possible to increase the frequency
above this threshold. This technology, identified as Turbo Boost by Intel [78] or Turbo Core by
AMD, boosts the performance of the processor by increasing the working frequency when some
specific conditions are met. For instance, when only one core is used, the mechanism may yield
higher performance. This is also possible for a subgroup of cores providing higher performance
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for one group and reducing performance for the rest, resulting in performance benefits for some
workloads.

Recent developments in processor technology have resulted in the saturation of processor clock
frequencies, larger static power consumption, smaller dynamic power range and better idle/sleep
modes. Each of these developments limits the potential energy savings resulting from DVFS. While
DVFS is effective on old platforms, it actually increases energy usage on the most recent platforms,
even for memory-bound workloads [86].

The Linux CPU governors. The Linux cpufreq subsystem allows to dynamically scale the CPU
frequency. Several cpufreq system governors may be used to manage the frequency of each CPU:

ondemand. The ondemand governor is the default governor and dynamically sets the frequency based
on the current workload. During idle phases, the CPU will rest in the lowest frequency. When
the current load surpasses a specified threshold (by default 95 %) the ondemand governor will
switch the CPU to the highest frequency available. Once the load falls below that threshold,
the ondemand governor will switch to the next lowest frequency and continue to do so until
the lowest frequency is reached (if the load stays below the threshold). The default sampling
frequency of core activity is 10 ms.

conservative. The conservative governor operates like the ondemand governor, based on the
current workload, but it increases/decreases the frequency gradually. Once the load is higher
than a threshold, the conservative governor only switches to the next highest frequency and
not to the highest one. The frequency will be continually increased as long as the load stays
above the threshold until the higher frequency is reached. For this case, the default sampling
frequency is also 10 ms.

powersave. The powersave governor keeps the CPU always at the lowest frequency.

performance. The performance governor keeps the CPU at the highest frequency.

userspace. The userspace governor allows the user to take the control over the CPU frequencies.

Frequencies and governors can be set via cpufreq-set command and the libcpufreq library.

Processor states

The ACPI specification defines the power state of system processors as being either active
(executing) or inactive (not executing). The processor states (C-states) are encoded as C0, C1,
. . ., Cm. The C0 power state is the active power state, i.e., the processor is executing instructions.
The power consumption decreases with a higher C-state, however the latency increases to reach
again the active power state C0. The C1-state is entered when all threads within a core execute a
HLT (halt) instruction. The processor transits to C0 if an interrupt occurs. In C1 the clock of the
core is gated and is thus able to maintain the context of the system caches. Based on the current
implementation of the processor architecture, specific processor power states interfere also the cache
behavior. If the state is deeper than C2, it is possible that the level 3 cache memory is turned off or
flushed, and level 1 and 2 may be invalidated as well. Invalidation results in performance decrease
since caches have to be repopulated again. Table 3.1 summarizes the C-states. Depending on the
architecture and the power state, these states can be applied at the core or socket level.
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State Short name Description

C0 Operating state CPU fully turned on.
C1 Halt Stops CPU main internal clocks via software; bus interface unit and APIC are kept

running at full speed.
C1E Enhanced halt Stops CPU main internal clocks via software and reduces CPU voltage; bus interface

unit and APIC are kept running at full speed. Depending on the model it may stop
all CPU internal clocks only.

C2 Stop grant Stops CPU main internal clocks via hardware; bus interface and APC are kept
running at full speed.

C2 Stop clock Stops CPU internal and external clocks via hardware
C2E Extended stop grant Stops CPU main internal clocks via hardware and reduces CPU voltage; bus inter-

face unit and APIC are kept running at full speed.
C3 Sleep Stops all CPU internal clocks.
C3 Deep sleep Stops all CPU internal and external clocks.
C3 AltVID Stops all CPU internal clocks and reduces CPU voltage.
C4 Deeper sleep Reduces CPU voltage.
C4E/C5 Enhanced deeper sleep Reduces CPU voltage even more and turns off memory cache.
C6 Deep power down Reduces the CPU internal voltage to any value, including 0 V.

Table 3.1: Processor power states overview.

. . .C1 Cn
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Working state

THT EN=0

DTY=value
THT EN=1

C2

Throttling

HLT

P LVL2

Performance
State Px

P LVLX

Interrupt

Interrupt

Interrupt

Figure 3.1: Transitions between P-/C-/T-states.

Throttling states

In addition to the aforementioned states, the CPU also supports the processor throttling states
(T-states). The processor switches to lower frequencies in order to reduce thermal effects. This
means that the CPU is forced to be idle a fixed percentage of its cycles per second. Throttling
states range from T1 to Tp. In T1 the processor does not introduce idle cycles, meanwhile the
percentage of idle cycles is increased with p. Throttling does not reduce voltage and, since the
CPU is forced to be idle part of the time, processes will take longer to finish. Furthermore, working
longer may consume more energy instead of saving it. T-states are only useful if the primary goal
is to reduce thermal effects. Since the T-states can interfere with the C-states (preventing the CPU
from entering a deeper C-state), they can even increase energy consumption in a modern CPU.
Figure 3.1 depicts transitions between P-/C-/T-states.

Main memory

Memory power consumption is also critical in today’s HPC platforms, mainly due to the system
architecture and the amount of memory in current systems. In this sense, memory has also adopted
DVFS, so that its frequency and voltage can be regulated to reduce power consumption. Supported
operating points of frequency and voltage can only be selected before the system startup, via BIOS
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settings. However, in some architectures, memory bandwidth is directly related to the processor
frequency, thus the operating frequency and the power consumption can be adjusted at runtime.
In these architectures, the memory controller frequency is reduced when the processor decreases
its frequency. This fact is observed, for instance, in some AMD processors. Consequently, this
reduces also the performance (in terms of memory bandwidth) and power consumption of the
main memory. In general, the server memory modules, usually Registered Dual In-line Memory
Modules (RDIMMs), support multiple electrical current levels for different operations of the module.
Multiplying this current with the voltage yields the DIMM power consumption. These levels can
be exploited by the memory controller that can keep only a subset of the memory ranks in a ready
state, while the rest enters a sleep mode. Disabling the refreshing of main memory (Partial Array
Self Refresh) is only possible for mobile DRAM which is used in power sensitive environments, e.g.
mobile devices. In these environments, the utilization is usually much lower and thus high power
savings can be attained.

3.1.2 Description of the target platforms

Three different systems have been used in the dissertation. Those systems are representative
of different multicore architectures present nowadays. We will term them as wt amd, wt itl and
tesla2 throughout the rest of the thesis.

wt amd is a shared-memory multiprocessor equipped with two 8-core AMD Opteron 6128 proces-
sors, running at 2.00 GHz, with 48 GB of DDR3 RAM memory under Linux Ubuntu (kernel
2.6.32-220.4.1.el6.x86 64). These AMD processors feature 5 performance states or P-states,
P0 to P4, corresponding to frequencies {2.00, 1.50, 1.20, 1.00, 0.80}GHz, and 3 power states
or C-states: C0, C1 and C1E.

wt itl is a shared-memory multiprocessor equipped with Intel Xeon technology. It is composed
of two quad-core Intel Xeon 5504 processors running at 2.00 GHz, with 32 GB of DDR3 RAM
memory under Linux Ubuntu (kernel 2.6.32-220.4.1.el6.x86 64). There are 4 performance
states or P-states, P0 to P3, in the Intel processor which correspond to frequencies {2.00,
1.87, 1.73, 1.60}GHz; and 4 power states or C-states: C0, C1, C3 and C6.

tesla2 is a shared-memory multiprocessor also equipped with the Intel Xeon technology. It
consists of two quad-core Intel Xeon 5440 (Harpertown) processors running at 2.83 GHz, with
16 GB of DDR2 RAM memory. Attached to the platform, via a PCI Express 2.0 bus, there
is a system consisting of four Nvidia Tesla C2050 GPUs (Fermi).

The processors in wt amd and wt itl are fair representants of current multicore technology,
and adhere to the ACPI standard [72] for the CPU power-saving modes. Information on the voltage–
frequency pairs (V CCi − fi) associated with each P-state (Pi) is collected in Table 3.2. From the
practical point of view, the wt amd and wt itl platforms differ in two important aspects:

• The frequency of the AMD cores can be adjusted independently while, on the wt itl plat-
form, all cores in the same processor run at the same frequency. In particular, if the cores of
a processor from wt itl operate at frequency fi, and we instruct one of these cores to run at
fj > fi (using the Linux cpufreq utility), the remaining three cores in the same socket will
also transition to operate at fj . On the other hand, if the cores of a processor from wt itl
run at frequency fi, and we instruct one core to run at frequency fj < fi, there will be no
change.
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wt amd

P-state, Pi V CCi fi BWi

P0 1.23 2.00 30.29
P1 1.17 1.50 24.63
P2 1.12 1.20 20.46
P3 1.09 1.00 17.48
P4 1.06 0.80 14.00

wt itl

P-state, Pi V CCi fi BWi

P0 1.04 2.00 12.72
P1 1.01 1.87 12.58
P2 0.98 1.73 12.61
P3 0.95 1.60 12.55

Table 3.2: P-states, associated voltage–frequency pairs (V CCi in Volts and fi in GHz), and core
to memory bandwidth (BWi, in GB/sec.) measured with the stream benchmark.

• On the wt amd platform, the bandwidth between the cores and the main memory varies
with the processor frequency while, on the wt itl platform, this bandwidth is independent
of the processor frequency. To illustrate this behavior, column BWi of Table 3.2 reports the
bandwidth to the main memory experienced by a single core running the stream microbench-
mark [121] at different frequencies.

We note that the bandwidth-frequency dependence is a design decision specific of each pro-
cessor type: more recent processors as, e.g., the Intel Xeon E52670 “Sandy Bridge” follow
AMD 6128’s strategy and reduce the bandwidth with the processor frequency [68]; on the
other hand, some other processors like the AMD 6274 “Interlagos” apparently abandon this
approach [113].

3.1.3 Power measurement devices

Several power sampling devices have been used in the evaluation of the experiments of this
work. They include two external commercial wattmeters, AP8653 Power Distribution Unit (PDU)
and WattsUp? Pro .NET, which are directly attached to the wires that connect the electric socket
to the computer Power Supply Unit (PSU), and thus measure the external AC for the full platform.
A different power sampling device is our own internal DC wattmeter, which is roughly based on a
choice of current transducers that produce data for a commercial data acquisition system (DAS)
from National Instruments (NI) or, alternatively, for an alternative ad-hoc design that uses a
microcontroller to sample transducer data. Table 3.3 presents in detail the specifications of these
wattmeters.

External AC wattmeters. The AP8653 PDU has 24 outlets and operates at a sampling rate
of 1 Hz, employing the Simple Network Management Protocol (SNMP) to send data via
Ethernet. The WattsUp? Pro .NET, hereafter WattsUp, also works at 1 Hz and returns
samples to the server through an Universal Serial Bus (USB) 2.0 line.

Wattmeters using NI DAS. These measurement tools were developed bearing in mind that
they had to measure currents ranging from 1 to 15 A, without introducing significant voltage
drops. The selected transducer was the LEM HXS 20-NP Hall effect current sensor. The
device exhibits high accuracy and linearity, and a very low internal resistance, while being
able to measure current in the required ranges.

A number of these ad-hoc designs include several channels with each one comprising a trans-
ducer that is connected to one of the power lines leaving from the PSU. The final system is
a modular design, based on stackable 8-channel components that share power and reference
voltage, for a total of 32 current channels.
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The DAS is composed of the NI9205 module and the NIcDAQ-9178 chassis (NI hereafter).
The module features 32 16-bit resolution analog-to-digital (AD) channels which can sample
data at 7 kHz. The NI LabView software runs in the tracing server reading the data captured
by the DAS from a USB 2.0 port in the chassis. Due to the amount of generated data, we
limit the sampling frequency to 1 kHz in the experiments that use this wattmeter.

Microntroller-based wattmeters. These designs [10] feature 10 and 25 channels and a Pe-
ripheral Interface Controller (PIC) 18 microcontroller from Microchip to perform AD con-
version. Each channel consists of the aforementioned LEM HXS 20-NP transducer and a
10-bit resolution AD channel in the microcontroller. All the channels share a reference volt-
age of 2.5 V generated by the transducers. Data are sent to the host computer through an
asynchronous RS232 port. The sampling rate is therefore limited by the speed of the com-
munication link (115,200 bauds in the selected microcontroller). For the DCM device, the
sampling rate is fixed to 28 Hz, and for the DC2M it is 1 kHz (depending on the number of
selected lines).

External AC Internal DC

Wattmeter AP8653 WattsUp NI DCM DC2M
Manufactured
by

APC WattsUp? Pro
.NET

National
Instruments

Universitat
Jaume I

Universitat
Jaume I

# Channels 24 1 32 12 24
Channel type Metered-by-

Outlet Rack
PDU

Standard power
PC cord

12 V
ATX-related

lines

12 V
ATX-related

lines

12 V
ATX-related

lines
Power nature Average Average Instantaneous Instantaneous Instantaneous
Microcontroller - - NI9205

NIcDAQ-9178
Microchip PIC

18
Microchip
Atmel 16

Power sensors - - LEM
HXS 20-NP
transducers

LEM
HXS 20-NP
transducers

LEM
HXS 20-NP
transducers

Sampling rate
(Hz) per chan-
nel

1 1 7000 28 1000

Accuracy < ±1.5 % < ±1.5 % ±1 % ±1 % ±1 %
Interface Ethernet USB/Ethernet USB RS232 USB
Price 1200e 200e 2700e Not

commercialized
Not

commercialized

Table 3.3: Specifications of the wattmeters.

3.2 Framework Environment

In this section we describe the software of the built-in framework for performance and energy
profiling and tracing of applications developed as part of this work. This approach is based in post-
mortem offline analysis, since the recorded data is accessed after the application execution. The
main advantage of this methodology is that the data can be analyzed many times and compared
with other data.

Due to the vast amount of data generated, sophisticated tools are required to localize perfor-
mance and power issues of the system and to correlate them with the application behavior and the
finally source code. The tools can operate either manually, i.e. the user must inspect the data by
himself, or automatically, i.e. the tools try to analyze the data. The tools could also give hints
to the user about where abnormalities or inefficiencies are (semi-automatic tools). Tool environ-
ments that localize and tune code automatically without user interaction are good options for all
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programmers. However, due to the system and application complexities, automatic tools are only
applicable for a reduced set of problems.

The tracing mechanism normally proceeds out by collecting and analyzing data in order to
characterize the application execution and the system behavior. The approach to perform this
analysis is realized in terms of statistics storage, comprising, e.g., absolute values for the number
of invoked routines, the execution time of routines and the hardware counters. Profiling tools that
output these statistics are very useful to analyze the application behavior. Tracing tools are, as
well, important to analyze the different phases and the behavior of the application over time. Its
extension to the power analysis also drives us to include data from the power measurement devices
with the aim at correlating them with the application traces. We use a combination of all these
methods.

  

Trace visualization tool

Power
trace file

server

Perfomance tracing tool

trace file

Power tracing tool

Power
tracing

Target platform

Scientific application

Performance

(instrumented with Extrae and PMLib)

devices

270, 120, 270, ...

Wattmeter

Figure 3.2: Collecting traces at runtime and visualization of power-performance data.

The framework for performance and energy/power analysis of applications developed in this
work is composed of several components. Figure 3.2 depicts a representation of the framework for
power-performance tracing and analysis. The starting point is a concurrent scientific application,
instrumented with our power measurement (PMLib) software, that runs on a parallel target plat-
form (e.g., a cluster, a multicore architecture, or a hybrid computer equipped with one or more
GPUs) and gives rise to a certain power consumption. Attached to the target platform there is a
wattmeter device (or more) —either internal DC or external AC— that steadily samples power and
sends the output to a tracing server. Calls to routines of the power measurement library, from the
application which is running on the target platform, allow to perform different and complementary
tasks: instruct the tracing server to start/stop collecting data captured by the wattmeters; dump
the samples into a disk file (power trace) in a particular format; query different properties of the
wattmeters; etc. Upon completion of the application execution, the power trace can be inspected,
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optionally hand by hand with a performance trace, using some visualization tool. Our current set-
ting allows a smooth integration of the framework power-related traces and the performance traces
obtained with Extrae. The combined traces can be visualized with Paraver. Nevertheless, the
modular design of the framework and the PMLib library can easily accommodate other tracing
tools like TAU [116], VampirTrace [95], etc.

3.2.1 Profiling, tracing and visualization tools

Extrae

The Extrae library is a dynamic instrumentation software, developed at Barcelona Supercom-
puting Center (BSC), to trace programs compiled and run with the shared memory model (like
OpenMP and Pthreads), the message passing (MPI) programming model or both programming
models (different MPI processes using OpenMP or Pthreads within each MPI process) [57].

This package intercepts calls to MPI, OpenMP and Pthreads and records the information
(events) into several tracing files that are later merged to produce a final file that can be visu-
alized with Paraver.

Interposition mechanisms. Extrae takes advantage of multiple interposition mechanisms to add
monitors into the application and collect performance metrics to provide the performance analyst
a correlation between performance and the application execution. The first one, DynInst, is an
instrumentation library that allows modification of the application by injecting code at specific
code locations. The second method uses linker preload to inject a shared library into an application
that provides the same symbols or routines as those contained in the libraries used to inject code
in these calls, basically acting as a wrapper.

As a third method, Extrae provides other instrumentation mechanisms. They basically take
advantage of some parallel programming runtimes that have their own instrumentation (or profile)
mechanisms available for performance tools. The most widely known example is the Message
Passing Interface (MPI), which provides the Profile-MPI (PMPI) layer. Another example is the
programming model OmpSs (successor of SMPSs) which provides an instrumentation version of its
compiled binaries. The result is that Paraver tracing files do not only contain information regarding
the application evolution but also more specific information regarding the parallel programming
model. Finally, Extrae offers the possibility of manually instrumenting the application to emit its
own events in case the previous mechanisms do not fulfill the user’s needs.

Sampling mechanisms. Extrae can be used to instrument the application code. It also offers
sampling mechanisms to gather performance data. While adding monitors into specific locations
of the application yields information that can be easily correlated with source code, the resolution
of such data is directly related with the application control flow. By adding sampling capabilities
into Extrae the tool allows to obtain performance information from specific regions of the code
that have not been explicitly instrumented.

Performance data gathered. The monitors added by Extrae gather different types of information.
Each monitor can be taught to collect specific information. The most common information gathered
are timestamps, as well as performance and hardware counters numbers (like the PAPI [94] inter-
face) that account for the microprocessor performance at specific sampling points of the application
under test.
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Paraver

Paraver is a flexible performance visualization and analysis tool developed at BSC that can be
used to graphically display and examine a variety of parallel applications based on frequently used
parallel tools (OpenMP, MPI, OpenMP+MPI, etc.) [104]. It provides a powerful environment to
inspect the parallelism and scalability of an application as well as to obtain a number of metrics
that characterize the program and its performance.

Paraver was developed responding to the basic need of having a qualitative global perception of
the application behavior by visual inspection, and to be able to focus on the detailed quantitative
analysis of the problem. It gathers and provides a large amount of information regarding different
aspects of the behavior of the application under study. This information directly improves the
decisions on whether and where to invest the programming effort to optimize the application. The
result is a reduction of the development time as well as a minimization of the hardware resources
required for it.

Some Paraver features are the support for:

• Detailed quantitative analysis of program performance.

• Concurrent comparative analysis of multiple traces.

• Fast analysis of very large traces.

• Mixed support for message passing and shared memory (networks of SMPs).

• Easy personalization of the semantics of the visualized information.

One of the main features of Paraver is the flexibility to represent traces coming from different
environments. Traces are composed of states transitions, events and communications with an
associated timestamp. These three elements can be used to build traces that capture the behavior
over time of very different types of systems. The Paraver distribution includes, either in its own
distribution or as an additional package, the following instrumentation tools:

• Sequential application tracing: it is included in the Paraver distribution and can be used to
trace the value of certain variables, procedure invocations, etc., in a sequential program.

• Parallel application tracing: a set of modules that capture the activity of parallel applications
using shared-memory (OpenMP directives), message-passing (MPI library), or a combination
of them.

• System activity tracing in a multiprogrammed environment: an application to trace processor
allocations.

Paraver allows users to develop their own tracing facilities according to their own interests and
requirements. The visualization, semantic and quantitative modules are powerful enough to allow
users to analyze and understand the behavior of the traced systems.

3.2.2 The power measurement library: PMLib

The power measurement library (PMLib) software package is developed and maintained at the
Universitat Jaume I to investigate power usage of HPC applications. The current implementation
of this package provides an interface to utilize the wattmeters described in Section 3.1.3 and a

45



CHAPTER 3. PERFORMANCE AND ENERGY MEASUREMENT FRAMEWORK

devices

daemon

External

Internal

APC 8653 PDU

External
wattmeter

wattmeter
Microcontroller-based

wattmeter

wattmeter
Internal

Module-based National Instruments
DASdevices

Computer

Power
supply
unit

WattsUp? Pro .NET

Application node

Mainboard

Ethernet

server
Power tracing

Power tracing

Figure 3.3: Single-node application system and sampling points for external and internal
wattmeters.

number of tracing tools. The system and sampling points for external and internal wattmeters are
illustrated in Figure 3.3.

Next we portray the interface of PMLib using a practical example (user’s view), offer a few
key implementation details (developer’s view), and describe the functionality of a module to gather
information about power-related states of the processor cores. We close this section by illustrating
the type of information provided by the framework using a simple parallel application.

User’s view

Power measurement is controlled from the application using a collection of routines that allows
the user to query information on the power measurement units, create counters associated to a
device where power data is stored, start/interrupt/continue/terminate power sampling, etc. All
this information is managed by the PMLib server, which is in charge of obtaining these data from
the devices as well as returning the appropriate answers, via the interface of the PMLib routines,
to the invoking application (client). The basic routines from the PMLib API are summarized in
Table 3.4. The global client-server interaction is exposed in Figure 3.4.

Listings 3.1 displays a detailed example that illustrates the use of PMLib. The code first de-
clares the most important variables. Next, two server structures are initialized with their respective
Internet Protocol (IP) addresses and the port that will be used for the communication with both
servers. Here, the first server, located in a separated machine to avoid interfering with the par-
allel application, returns power samples. C-states are recorded using the second server, which is
placed in the same machine where the parallel application runs, so that it can query the files of this
machine containing the requested data on C-states. The invocation to function pm get devices

establishes a communication with the server to obtain a list with the names of the wattmeters
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int pm_set_server( char *svrip, int port, server_t *svr )

Purpose: Initializes the server’s IP address and port to be used for the communication with PM server.
svrip: IP address of PM server.
port: Communication port with PM server.
svr: Server address specification as return parameter.

int pm_get_devices( server_t *svr, char** ldev, int *ndev )

Purpose: Queries for the current connected measurement devices.
svr: Server address specification as return parameter.
ldev: List of current connected devices.
ndev: Number of devices.

int pm_get_device_info( server_t *svr, char* devn, device_t * dev )

Purpose: Returns the maximum sampling frequency and number of lines of device.
svr: Server address specification as return parameter.
ndev: Number of devices.
dev: Device structure with frequency and avail. lines.

int pm_create_counter( char *devn, mask_t lin, int aggr, int freq, server_t svr, counter_t *pm_ctr)

Purpose: Sends a request to the PMLib server (PS) in order to create a new power counter. PS creates a
counter.

devn: String which identifies the selected wattmeter.
lin: Mask which selects the lines of wattmeter to be measured.
aggr: Boolean which tells to PS if return an aggregate power for selected lines or not.
freq: Integer with the desired working frequency.
svr: Server address specification.
pm ctr: Counter structure as return parameter.

int pm_start_counter( counter_t *pm_ctr )

Purpose: Starts the power measurement.
pm ctr: Counter structure.

int pm_continue_counter( counter_t *pm_ctr )

Purpose: Continues the power measurement preserving previous power data of counter.
pm ctr: Counter structure.

int pm_stop_counter( counter_t *pm_ctr )

Purpose: Stops the power measurement.
pm ctr: Counter structure.

int pm_get_counter_data( counter_t *pm_ctr )

Purpose: Dumps power data onto memory.
pm ctr: Counter structure.

int pm_print_data_stdout( counter_t *pm_ctr )

Purpose: Dumps power data into stdout.
pm ctr: Counter structure.

int pm_print_data_paraver( char *file, counter_t *pm_ctr, char *unit )

Purpose: Dumps power data into Paraver-like trace file format.
file: Output filename.
pm ctr: Counter structure.
unit: Time unit.

int pm_finalize_counter( counter_t *pm_ctr )

Purpose: Finalizes the counter.
pm ctr: Counter structure.

Table 3.4: Basic routines of the PMLib API.
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Figure 3.4: Diagram of the communication between client (running a scientific application) and
the (PMLib) server.

connected. A call to pm get device info returns more specific information on a given device from
the set of wattmeters detected.

With the next two calls to pm set lines, we select the lines to measure since distinct wattmeters
may have different numbers of lines. Next, we also call function pm create counter twice, to create
one counter associated with the DCMeter1 wattmeter and a second one that is bound to the C-states.
The measurement is initiated and terminated from the application via routines pm start counter

and pm stop counter, respectively. In this case we measure the power and record the C-states
during the execution of kernel dgemm. The sampling process is momentarily interrupted then, by
invoking pm stop counter, and continued later, with pm continue counter, to record only power
samples for kernel dsyrk. Finally, routine pm get counter data saves the collected data onto the
corresponding counter structure; this information is printed in one of the available formats (in the
example, Paraver format); and the counters are destroyed using routine pm finalize counter.

Developer’s view

The PMLib software is written in Python and consists of two modules: the settings file and
the server. Figure 3.5 depicts how the server operates. The daemon starts by initially reading the
settings file, which contains configuration information on the wattmeters available in the system.
After that, a new thread is created per wattmeter in order to manage and receive data from these
devices. The server then creates the number of counters (i.e., new thread instances) required by
the clients.
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int main ( int argc , char *argv[] ) {

server_t server1 , server2;

counter_t counter1 , counter2;

line_t lines1 , lines2;

device_t disp; char **list;

int i, num_devices , freq1=0, freq2=0, aggr1=1, aggr2 =1;

// . . . Some other variables . . .

// In i t i a l i z e s the servers ’ structures
pm_set_server("150.128.82.30", 6526, &server1);

pm_set_server("127.0.0.1", 6526, &server2);

// Query on #devices connected to server1 , and obtain handles .
// Then, output information , e . g . , for device [0 ]
pm_get_devices(server1 , &list , &num_devices);

pm_get_device_info(server1 , list[0], &disp);

printf("Name: %s\nMax freq: %d\nNumber of lines: %d\n",

disp.name ,disp.max_frecuency ,disp.n_lines);

// Selects the l ines to measure
pm_set_lines("0-11", &lines1);

pm_set_lines("0-31", &lines2);

// Creates a counter for wattmeter DCMeter1
pm_create_counter("DCMeter1", lines1 , !aggr1 , freq1 , server1 , &counter1);

// Creates a counter for C−states
pm_create_counter("Cstates", lines2 , !aggr2 , freq2 , server2 , &counter2);

// Starts to col lect samples : power, C−states
pm_start_counter (& counter1);

pm_start_counter (& counter2);

// Sampled application code fragment
dgemm( &transa , &transb , &m, &n, &k, &alpha , &A[k*lda+i], &lda ,

&B[j*ldb+k], &ldb , &beta , &C[j*ldc+i], &ldc );

// Stops to col lect samples
pm_stop_counter (& counter1);

pm_stop_counter (& counter2);

// . . . Some other nonsampled . . .
// . . . aplication code fragment . . .

// Continue to col lect samples : only power
pm_continue_counter (& counter1);

// Sampled application code fragment
dsyrk(&transa , &transb , &m, &n, &alpha , &A[k*lda+i], &lda , &beta , &C[i*ldc+i], &ldc);

//Stops to col lect samples
pm_stop_counter (& counter1);

// Dumps collected data onto memory
pm_get_counter_data (& counter1);

pm_get_counter_data (& counter2);

// Prints power data in Paraver format
pm_print_data_paraver("out.prv", counter1 , lines1 , 0, "us");

// Prints c−states data in Paraver format
pm_print_data_paraver_cstates("cstates.prv", counter2 , lines2 , 0, "us");

//Finalizes the counters
pm_finalize_counter (& counter1);

pm_finalize_counter (& counter2);

return 0;

}

Listing 3.1: Example of use of PMLib.
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Figure 3.5: Internal workings of the PMLib server.

The main threaded classes implemented by the server are:

Device. This class reads data from a specific wattmeter and stores a list of object-pointers into all
the active counters.

Counter. This class manages all the operations performed on a counter. It is stored in the Device

object it is associated with. The class contains data acquired while the counter is running.

Info. This class comprises information about the devices and their configuration.

As shown in Figure 3.5, the server can receive two types of requests, either a query on information
about a device or an operation on a counter. In the first case, the server creates an Info object to
obtain the required data from the settings file and sends them back to the client.

If the operation is a request to create a counter, the server allocates a Counter object, which
will manage all subsequent operations on it as well as store the structure in the appropriate Device

object. After creation of a counter, the client should invoke pm start counter to instruct the
server to start recording samples and pm stop counter to stop counting. The client can also use
pm continue counter to restart the recording process and force the server to record samples from
other fragments of the application code in the same counter, generating different sets of data.
Finally, all collected data can be retrieved by invoking pm get counter data.

3.2.3 Power-related states module

Our power framework obtains a trace of the C- and P-states for each core. For example, in order
to obtain information on the C-states, a daemon integrated into the power framework accesses the
model-specific registers (MSR) of the cores, with a user-configured frequency. The daemon reads
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Figure 3.6: Example of performance and power traces captured by Extrae and the proposed power
framework, visualized with Paraver.

values from these registers corresponding to the total time spent in a certain state. This value is
then subtracted from the previous read, normalized, and stored together with a timestamp in a file
with a user-selected format.

Note that the state-recording daemon necessarily has to run on the target application and, thus,
it introduces a certain overhead (in terms of execution time as well as power consumption) that,
depending on the software that is being monitored, can become non-negligible. To avoid this effect,
the user is advised to adjust experimentally the sampling frequency of this daemon carefully.

Figure 3.6 shows a graphical example of the type of the information that can be collected with
our power-tracing framework when combined with the performance tracer Extrae and the visu-
alization tool Paraver. The view depicted corresponds to the execution of a synthetic parallel
benchmark that randomly issues three types of computational kernels: dgemm (matrix-matrix prod-
uct), dtrsm (triangular system solve), and sleep. The test was run using 8 threads on wt itl. The
performance trace in the top plot displays task activity per core; the second plot corresponds to
the aggregated power dissipated by the mainboard of the machine, captured with the NI wattmeter
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operating at 1 kHz; the C-states trace in the third plot represents the variations that cores experi-
ence between processor states C0, C1, C3 and C6 (with a sampling frequency of 10 Hz). The final
part reports the same information contained in the performance and C-states traces in numerical
format.

3.2.4 Example of use

Listing 3.2 displays a simplified version of a C routine for the computation of the LU factorization
with partial pivoting of a matrix A. The blocked routine loops over variable j processing b columns
of the matrix at each iteration. The code invokes the numerical kernels dgetf2, dlaswp (twice),
dtrsm, and dgemm. Routines Extrae init and Extrae fini, from the Extrae API, initialize and
finalize the tracing tool. Routine Extrae event records an event into the trace file and a reference
to the point in the source code. If the second argument is not 0, it marks the beginning of the
event; otherwise, it marks the end. The first argument indicates the event type and it is simply
set to 500000001 in our example. For the second argument we used values 1, 2, . . . , 4 to uniquely
identify the different numerical kernels invoked from the code. The measurement is initiated and
terminated from the application via routines pm start counter and pm stop counter, respectively.
The results are retrieved using pm get counter data, and printed in Paraver format afterwards.
Finally, performance and power traces are merged in only one Paraver-format trace file.

3.3 Experimental Results

In this section we provide a detailed power and performance analysis of a dense linear algebra
code to demonstrate the use of our performance-power framework on a multicore technology plat-
form. This study offers a vision of the power drawn by the system during the execution of a few
high-quality implementations the LU factorization [63]. This factorization is the key to the solution
of dense linear systems.

In order to collect and illustrate this information, we bind a trace of the algorithm execution
obtained by using the proposed framework Extrae+Paraver with our own power evaluation setup
and using our power measurement library PMLib and the internal DCM wattmeter.

3.3.1 Environment setup

The following experiments were carried out using IEEE double-precision arithmetic on platform
wt amd. The implementation of BLAS was that provided in Intel MKL (v10.3.4). Tracing and
visualization were obtained with Extrae (v2.2.0) and Paraver (v4.1.0).

In our evaluation, power measurements are collected using the internal DCM wattmeter. To
obtain the nodal power, the internal wattmeter is directly attached to the 12 V lines connecting the
PSU with the motherboard (chipset plus processors) of the test platform. Therefore, the results
are not affected by inefficiencies of the PSU, or the “noise” due to the operation of other hardware
components like fans, disks, network interfaces, etc.

Three implementations were evaluated for the LU factorization:

• LAPACK: The legacy code available at netlib [84] for the LU factorization with partial piv-
oting (dgetrf). In this case parallelism is exploited within the invocations to multithreaded
MKL BLAS. Except where otherwise stated, the block size was b = 128; for the problem
sizes, architecture and BLAS employed in our experiments, b was always close to the optimal.
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#define Aref(i,j) A[((j) -1)*Alda +((i) -1)]

void dgetrf( int m, int n, int b, double *A, int Alda , int *ipiv , int *info ) {

// Declaration of variables (omitted)

pm_start_counter (&c);

Extrae_init ();

for (j= 1; j<= min(m, n); j+= b) {

Extrae_event (500000001 ,1);

// Factor current panel
dgetf2( m-j+1, b, &Aref(j,j), Alda , &ipiv[j-1], info );

Extrae_event (500000001 ,0);

Extrae_event (500000001 ,2);

// Apply permutations to l e f t and right of panel
dlaswp( j-1, A, Alda , j, j+b-1, ipiv , 1 );

dlaswp( n-j-b+1, &Aref( 1, j+b ), Alda , j, j+b-1, ipiv , 1 );

Extrae_event (500000001 ,0);

Extrae_event (500000001 ,3);

// Triangular solve
dtrsm( "L", "L", "N", "U", b, n-j-b+1, done , &Aref(j, j), Alda , &Aref(j, j+b), Alda );

Extrae_event (500000001 ,0);

Extrae_event (500000001 ,4);

// Update tra i l ing submatrix
dgemm( "N", "N", m-j-b+1, n-j-b+1, b, -done , &Aref(j+b, j), Alda ,

&Aref(j, j+b), Alda , done , &Aref(j+b, j+b), Alda );

Extrae_event (500000001 ,0);

}

Extrae_fini ();

pm_stop_counter (&c);

}

Listing 3.2: Blocked routine for the LU factorization annotated with the Extrae and the PMLib
libraries.

• MKL: The code from the Intel library for the LU factorization with partial pivoting (using
the same naming convention as in the LAPACK case).

• SMPSs: C code for the LU factorization with incremental pivoting linked to the sequential
MKL BLAS, with task-level parallelism extracted by the SMPSs runtime system [26]. In this
routine, the data matrix is partitioned into square t × t blocks (tiles), with t = 256 and the
inner block size b is set to 64.

3.3.2 The LU factorization

In the experiments with the LU factorization we set m = n = 10,240 and used 12 threads from
a single socket of wt amd. We neglect lower order terms in the cost expressions, through in order
to cast the operation in terms of high performance kernels, the LU factorization with incremental
pivoting requires a certain amount of additional operations (under mild conditions) of minor order.
Similar results were obtained with other problem dimensions and different number of cores.

Figure 3.7 reports the kernel invocation/core activity and power consumption obtained with
the LAPACK routine dgetrf for the LU factorization with partial pivoting. The different col-
ors identify events (kernels) invoked from the routine: dgetf2 (factorization the current panel),
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Figure 3.7: Trace of LAPACK dgetrf. Top: full. Bottom: first two iterations.

dlaswp (application of permutations), dtrsm (triangular system solve), dgemm (update the trailing
submatrix via a matrix-matrix product) —see the code in Listing 3.2—, as well as idle time and
other system activity (e.g., thread synchronization). The top half of the figure (first two plots)
offers the complete trace while the bottom one (third and fourth plots) zooms into the first two
iterations of the routine. These results illustrate that the LAPACK routine, combined with the
multithreaded MKL BLAS, interleaves the execution of sequential and concurrent phases in this
platform. The sequential ones correspond to the execution of kernels dgetf2 and dlaswp, while
dtrsm and dgemm proceed in parallel and involve all the cores. The performance traces also reveal
that kernels dgetf2 and dgemm dominate the execution time of the routine. The bottom half of
the figure indicates that a synchronization occurs at each iteration after the execution of kernel
dgemm due to an unbalanced distribution of the workload among the cores during this operation.
From the power consumption perspective, the interlaced sequential and concurrent activity leads
to periods of low and high power, respectively, which vary between 301 and 390 W.

Figure 3.8 evaluates the implementation of the MKL routine dgetrf for the LU factorization
with partial pivoting. In this case we have no access to the source code, only to the binary included
in the library. Therefore we could not identify the kernels being invoked from within. In order
to face this fact, we apply reverse-engineering to learn more about what is brewing inside the
MKL routine by sampling the hardware counters for the L2 cache misses and the MFLOPS rate
(PAPI L2 DCM and PAPI FP INS, respectively). Then, we confront these data with some known
properties of the four kernels potentially involved in the factorization. In particular, kernel dgetf2
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Figure 3.8: Trace of MKL dgetrf.

is composed of BLAS-1 and BLAS-2 operations and, thus, it can be expected to deliver a low
MFLOPS (or a high L2 cache miss) rate; dlaswp performs no FLOPS at all; on the contrary,
dgemm and dtrsm are both BLAS-3 operations that should deliver high values for the MFLOPS
counter. From the performance trace in the bottom of the figure, we can deduce that, in the MKL
routine, the factorization of the current panel performed by one single core via kernel dgetf2 is
overlapped with the updates to the rest of the matrix. (In sophisticated implementations, this is
usually attained via the application of look-ahead to some depth [120].) Besides, the time required
by this factorization is much smaller than that of the LAPACK code, which implies the use of a
narrower panel width (b) and/or a more efficient implementation. Furthermore, the core in charge of
this factorization rotates during the execution of the routine, while in the LAPACK implementation
this operation was always performed by the same core. The trace also identifies a synchronization
point towards 3/4 of the execution time.

Figure 3.9 shows the activity and power consumption of the SMPSs task-parallel C implemen-
tation of the LU factorization with incremental pivoting. This algorithm is composed of four basic
kernels: dgetrf (LU factorization with partial pivoting of a tile); dtrsm (triangular system solve
involving two tiles: the coefficient triangular matrix and the right-hand side); dgetrf2x1 (LU
factorization of a matrix consisting of 2 × 1 tiles, with the top one being upper triangular); and
dgemm2x1 (application of the Gauss transforms resulting from the previous kernel to a matrix of
2 × 1 tiles); see [108, 26] as well as Section 2.4.2 for details. The last kernel dominates the the-
oretical cost and, as the figure clearly exposes, the execution time of the implementation. There
are very little synchronization points, due to the higher concurrency of this particular algorithm,
which is leveraged by SMPSs to maintain all cores/threads executing tasks (kernels) most of the
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Figure 3.9: Trace of the C implementation of the LU factorization with incremental pivoting par-
allelized with SMPSs.

LAPACK MKL SMPSs

T (s) 18.37 10.99 13.25
GFLOPS 38.96 65.13 54.02
Pmax (W) 390.70 385.78 392.81
Pmin (W) 301.64 294.37 328.12
Pavg (W) 359.72 377.94 385.56
Pwrk (W) 112.22 130.44 138.06
Etot (J) 6,608.60 4,155.61 5,109.44
Ewrk (J) 2,061.48 1,433.54 1,829.30

Table 3.5: Performance, power and energy of the different implementations of the LU factorization.

time. The power line of the SMPSs routine is quite homogeneous, corresponding to the dominance
of a BLAS-3 kernel like dgemm2x1 and the lack of significant idle periods during the execution.

Table 3.5 compares the three factorization algorithms using several parameters: Time (T , in
seconds); GFLOPS (109 FLOPS); minimum, maximum and average power (Pmin, Pmax, Pavg,
respectively, in Watts); the average workload power (Pwrk, in Watts) obtained by subtracting the
power consumed by the platform when idle (247.50 W) from Pavg; total energy and workload energy
(Etot and Ewrk, in Joules), with Etot = Pavg · T and Ewrk = Pwrk · T . In principle, this last variable
captures the energy cost of running the application, because it eliminates the fixed power that has
to be paid to keep the machine active doing nothing. This alternative to bridge system power yields
more accurate figures to compare the energy efficiency of the different algorithms.

Overall, the higher concurrency of the MKL routine and the lack of synchronization points lead
to its superior performance in terms of execution time over the LAPACK implementation. On
average, the power usage of the MKL routine is close to 380 W which, combined with its shorter
execution time, dictates the superiority of the MKL routine from the viewpoint of total energy
consumption. For this particular problem size, number of threads, and platform the execution time
of the SMPSs algorithm is longer than that of the MKL routine, basically because of the higher
number of FLOPS that are required by the LU factorization with incremental pivoting (which can
be regarded as overhead, if compared with the LU factorization with partial pivoting) and the
inferior performance (GFLOPS rate) of some of the kernels involved.
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3.4 Concluding Remarks

In this chapter we have reviewed the existing power-aware mechanisms in the CPU and the
memory and we have described the platforms that will be used in the experiments performed in
this dissertation. We have also presented a power-tracing framework composed of internal/external
wattmeters, a power tracing modular package, power-related modules, etc., that is easily integrable
with standard performance tracing and visualization tools. The framework offers highly useful
information on power usage of scientific workloads running on a variety of parallel platforms, from
MPI applications operating on a moderate-scale cluster to multithreaded codes that execute on a
multicore+GPU platform.

Finally, we have performed a study of the computational performance, power profile and en-
ergy consumption of a few efficient implementations of the LU factorization (with partial pivoting,
dgetrf, and with incremental pivoting). The LAPACK implementation of dgetrf exhibits inter-
laced sequential and concurrent phases, which yield low and high peaks in the power profile. The
analysis of the equivalent routine from MKL is more difficult, due to the black-box nature of this
library. Nevertheless, the use of a hardware counter for the MFLOPS (or the L2 cache misses) rate
offers partial information on the internal structure of the implementation which can then be used to
bind this information to the power profile. Specifically, during most of the time, the implementation
of dgetrf of MKL maintains a high level of occupancy (i.e., MFLOPS) in all but one core, and thus
reduces the execution time while maintaining the power rate. The SMPSs parallel implementation
of the LU factorization with incremental pivoting delivers levels of concurrency similar to those of
MKL. By keeping the hardware resources doing useful work most of the time, the SMPSs codes
reduce the execution time and maintain a stable power usage.

The final conclusion of this analysis ties execution time and energy. The MKL/SMPSs routines
present a higher average power than their LAPACK counterpart, but also a more reduced execution
time which determines their superior energy efficiency. In other words, by keeping the cores busy
most of the time, the algorithms in MKL/SMPSs benefit from “race-to-idle”. Given the high energy
cost of keeping the machine “active” when there is no workload to run, this approach clearly pays
off for such computationally-intensive algorithms.
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CHAPTER 4

Modeling Power and Energy Consumption

In this chapter we introduce simple yet accurate models for the power dissipation and energy
consumption during the execution task-parallel linear algebra algorithms on multicore and multi-
threaded platforms. The kernels of these algorithms operate with one or more blocks of the data
matrix, and can be executed in a certain order dictated by data dependencies among them. In
order to exploit the data parallelism existing in the matrix factorizations transparently, the Su-
perMatrix and SMPSs runtimes execute task-parallel implementations of the corresponding dense
linear algebra algorithms (see Section 2.2.3).

While there is a collection of previous work [37, 80, 35, 62] that also introduce reliable models of
power consumption for general benchmarks, in general these approaches employ hardware counters
to do so. Our methodology departs from these other work in that we leverage the particular
properties of dense linear algebra operations to estimate power and energy only from the execution
time and theoretical cost of the kernels that compose the operation, thus eliminating the need for
cumbersome, platform-dependent hardware counters. Our models are shown to cover a significant
part of the functionality offered by current dense linear algebra libraries like LAPACK or libflame,
in general delivering power/energy estimates within a small factor of the real consumption. Several
models for different architectures are proposed in this chapter. The simple model is able to capture
power and energy consumed by dense linear algebra algorithms, and it is further refined with
a contention-aware instance. We also introduce three more models that address platforms with
DVFS, multi-socket and hybrid CPU–GPU platforms.

The chapter is structured as follows. In Section 4.1 we introduce the power and energy models,
and describe the methodology to gather and assemble the necessary data. Sections 4.2 and 4.3
present two variants which correspond to the simple and contention-aware approaches. In Sec-
tion 4.4 we provide an additional power model that can handle the P-states. Next, Section 4.5
introduces two new instances of the model for multi-socket and hybrid CPU–GPU platforms. Fi-
nally, we offer some concluding remarks in Section 4.6.

4.1 Formulation of the Power Model

Consider a task-parallel algorithm for a linear algebra operation, say Op(eration), that can
be decomposed into r different types of tasks (kernels) that operate on (square) blocks of size b.
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Assume the algorithm runs concurrently on a parallel system consisting of c cores with one thread
per core. In order to predict the power dissipated by the execution of the proposed linear algebra
operation, at a given instant of time t, we will adopt the following aggregate model [23]:

POp(t) = PY + PC(t)

= PY + P S + PD
Op(t)

= PY + P S +
∑c

k=1

∑r
j=1 P

D
j,b ·Nk,j(t) ,

(4.1)

where the terms of the model are defined as follows:

– PC is the power dissipated by the CPU;

– PY is the power dissipated by the remaining components (system power corresponding, e.g,
to RAM, mainboard, etc.);

– P S and PD
Op(t) are, respectively, the static power (mainly due to leakage) and dynamic power

for the CPU;

– PD
j,b is the dynamic power of a task of type j that operates with blocks of size b; and

– Nk,j(t) = 1 if the k-th thread/core is executing a task of type j at time t or equals 0 otherwise.

Furthermore, we will make the following considerations:

• Linear algebra operations (e.g., Cholesky, LU or QR factorizations) mainly exercise the
floating-point arithmetic units of the processors and the main memory. Therefore, we can
focus on the power dissipated by the components integrated in the mainboard (e.g., CPU and
RAM chips), discarding other power sinks due, e.g., to network interface, disk, inefficiencies
of the power supply unit, etc.

• PY and P S remain constant during the execution of the algorithm. In practice, starting from
an idle (cold) platform, P S grows with the system temperature till it reaches a plateau [23].
To avoid this effect, we consider there is a continuous compute-bound workload to run in the
platform and, in order to mimic this situation, all our tests are performed on a “hot” system,
with this state reached by initially warming the cores with a compute-intensive benchmark.

• PD
j,b depends on “static” properties of the corresponding kernel such as computational cost,

type of arithmetic operations and memory access pattern, as well as the algorithmic block
size b chosen for the operation.

• The energy consumption of the algorithm is obtained by integrating its power dissipation over
its execution time T ; i.e.

EOp =
∫ T
t=0 POp(t) dt

= (PY + P S) · T +
∫ T
t=0 P

D
Op(t) dt .

(4.2)

4.2 The Simple Power Model

We first consider the derivation of a simple power model designed for a system equipped with
a single multicore socket. To guide the formulation of the model we use the wt itl platform,
considering only a single socket, and the NI internal wattmeter. In our experiments we set the
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Figure 4.1: Power dissipated as a function of number of active cores on wt itl.

sampling frequency to 1 kHz, which was judged to be sufficient to attain reliable measures for the
model. We next employ the kernels of the Cholesky factorization to obtain static estimations of
the dynamic power. Finally, we consider the SMPSs runtime to exploit task parallelism in this
factorization.

4.2.1 System and static power

Let us first estimate the system and static parameters of the proposed power model. In order to
derive PY for (4.1), we directly measure the power with the platform completely idle. This yields
a power dissipation of 42.61 W, which can be taken as an approximation for PY

In order to obtain the P S component we apply the following methodology. We first obtain the
power consumption of wt itl with c cores executing each an instance of the kernel dgemm (real,
double-precision parallel matrix-matrix product from Intel MKL) using square operands (matrices)
of order 512. In order to obtain a sample with already warm components, the tests were run
during 750 s. before the power was measured. We next apply linear regression to adjust the power
samples to the linear model PT

dgemm(c) = α + β · c. The linear model for wt itl platform leads

to PT
dgemm(c) = 63.93 + 11.12 · cW, as depicted in Figure 4.1. In the linear model, β captures

the power dissipated per core invoking the matrix-matrix product, and α accounts for the power
needed to maintain the different components in the socket in a power-active mode. (Analogous
tests with a variety of kernels showed negligible differences for α.) We therefore approximate
P S ≈ α− PY = 30.50 W; see Table 4.1. Note that PY and P S are directly related to the platform,
and thus they are independent of the modeled operation.

Platform PY α β PS

wt itl 33.43 63.93 11.12 30.50

Table 4.1: Parameters for the simple power model of wt itl.
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4.2.2 Simplistic estimate of the task dynamic power

Let us start noting that the dynamic power is directly related to the nature of the kernel,
thus different dynamic powers per kernel will be obtained for a linear algebra operation with
different kinds of kernels. To guide our methodology we approximate the dissipated power during
the execution of each one of the four kernels (building blocks) of the Cholesky factorization (see
Section 2.3), —dpotrf (PD

C ), dtrsm (PD
T ), dsyrk (PD

S ), and dgemm (PD
G )— on the wt itl platform.

For that purpose, we perform an experiment where one single thread continuously invokes one of
these kernels, e.g. dgemm, till the power stabilizes and then sample this value, say PT

dgemm; we then set

PD
G = PT

dgemm−P S−PY = PT
dgemm−63.93 W. Table 4.2 collects the average power determined from this

experiment for the four task types and different values of the block size b (kernel/task granularity).
Note that there is one additional line in the table, labeled as “PD

B (busy)”. This reflects the average
power dissipated by one thread polling for work in a busy-wait in the SMPSs runtime. Our practical
experiments determined that this query process also dissipates a considerable amount of power and,
therefore, must be taken into account. A separate experiment determined the value in the table,
which is independent of the task granularity.

Block size, b

Task 128 192 256 512

PD
P (dpotrf) 10.26 10.35 10.45 11.28

PD
T (dtrsm) 10.12 10.31 10.32 10.80

PD
S (dsyrk) 11.22 11.47 11.67 12.60

PD
G (dgemm) 11.98 12.54 12.72 13.30

PD
B (busy) 7.62 7.62 7.62 7.62

Table 4.2: Dynamic power (in Watts) of the Cholesky factorization kernels and busy-wait on
wt itl.

4.2.3 Formulation of the simple power model

Consider e.g. the task-parallel execution of the Cholesky factorization, with the algorithm
decomposed into s different types of tasks or building blocks (see Table 4.2), using c threads/cores.
The total power dissipation of the algorithm, at an instant of time t, is given by the composition
of the system power, the static power, and the dynamic power of all tasks being executed at that
instant:

POp(t) = PY + P S +
∑c

k=1

∑r
j=1 P

D
j,b ·Nk,j(t)

= 33.43 + 30.50 +
∑c

k=1

∑r
j=1 P

D
j,b ·Nk,j(t) ;

(4.3)

see Tables 4.1 and 4.2.
The energy consumption of the algorithm for the Cholesky factorization can be written as a

function of the time spent by the threads on each type of task as follows:

EOp =
∫ T
t=0(PY + P S + PD

Op(t)) dt

= (PY + P S) · T +
∫ T
t=0 P

D(t) dt

= (PY + P S) · T +
∑c

k=1

∑r
j=1 P

D
j,b

(∫ T
t=0Nk,j(t) dt

)
= (33.43 + 30.50) · T +

∑c
k=1

∑r
j=1 P

D
j,bTk,j ,

(4.4)

where Tk,j(t) is the time that the k-th thread spends running tasks of type j. Thus, in order
to obtain the total energy, we only need a profile of the task activity that informs on the total
execution time per task type.
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4.3 The Contention-Aware Power Model

We present next the derivation of our contention-aware power model for the particular case of
multicore platforms that contain only one socket. To guide the explanations we use a single socket
of wt itl measured with the NI internal wattmeter. Alike the previous section, we continue with
the SMPSs runtime, but now consider the three major dense matrix factorizations (Cholesky, LU
and QR) to illustrate this version of the power model.

4.3.1 System and static power

We leverage the same methodology described in Section 4.2.1 to estimate system and static
parameters of wt itl, which appear summarized in Table 4.1.

4.3.2 Contention-aware estimation of the task dynamic power

In the simple model we used “static” values for the dynamic power which depended on the
kernel type and block size (see Table 4.2). The problem with this strategy is that, in a concurrent
execution of a task-parallel dense linear algebra operation on a multicore processor, the power drawn
by a particular kernel/thread/core is not constant (static) but greatly depends on the memory
contention, which cannot be estimated a priori. In other words, at a given instant of time during
the concurrent execution of a dense linear algebra operation, there will be a number of active threads
executing tasks/kernels (note that one or more threads may be blocked, waiting for “work”, if the
number of ready tasks is limited). The active threads will compete to access the data in memory
so that, even if several threads are working on the same type and dimension of kernel, the dynamic
power they draw will be different, depending on the physical core they are mapped to and where
are the data being accessed. This results in the use of static estimations to dynamic power being
oversimplistic for a practical, concurrent execution of task-parallel dense linear algebra algorithms
on current multicore architectures.

The rationale is as follows. At a certain instant of time, the dynamic power drawn by a core is
mostly due to the execution of instructions on the arithmetic units, the branch logic, or simply the
core having to wait for data that are in the memory. This is leveraged by hardware counter-based
models, which select a reduced, platform-dependent number of counters that capture activity (of
these three types) in the core. Now, consider the kernels that are involved in the particular case
of a dense linear algebra operation. Given a fixed block dimension, the number of FLOPS that
need to be executed is known a priori. Furthermore, provided highly-tuned implementations of the
kernels are employed (like, e.g., those in Intel MKL), we can assume that the power consumption
of the branch logic is negligible. The reason is that, in general, dense linear algebra codes consist
of simple, floating-point intensive loops that are aggressively unrolled for high performance, and
contain no branches other than a minor number due to loop completion tests (which, besides, can
be accurately predicted). Thus, we can expect that the power drawn during the execution of a dense
linear algebra kernel will be mainly due to the floating-point arithmetic and memory contention.
Therefore, given that the number of FLOPS of a kernel is known in advance, and that we can
measure its execution time, it is easy to estimate the memory contention experienced by the kernel
at run time from the difference between its theoretical execution time and the actual one.

Let us now formally expose our refined approach to model the dynamic power of a particular
task as a function of its execution time and theoretical cost. Specifically, consider the algorithmic
block size is b, and assume t{i:j} denotes a concrete task instance i, of type j. Given the theoretical
number of FLOPS of this task type and the processor frequency, we can easily estimate the the-
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oretical shortest execution time of this task, Tj(b), by considering that the floating-point units of
a conventional core can deliver floating-point 4 (double-precision) FLOPS/cycle. (This is the case
for many general-purpose cores, from Intel and AMD.) Hence, for instance, in the matrix-matrix
product this time is given by Tdgemm(b) = 2b3/(4 · f), where f is the processor frequency.

Assume next that task t{i:j} has experienced a real execution time R{i:j}. The (relative) differ-
ence

δ{i:j} =
R{i:j} − Tj(b)

R{i:j}
(≤ 1) , (4.5)

provides an estimate of the delay that this task has suffered due to memory contention. We then
relate this deviation with the dynamic power dissipated by this task t{i:j} as:

PD
{i:j} = δ{i:j} · PM

j + (1− δ{i:j}) · PF
j , (4.6)

where PM
j is the power dissipated when the processor is waiting for data from memory and PF

j

is the power dissipated when the processor is doing useful work (FLOPS). Therefore, this model
considers that the average dynamic power of a particular task (instance) is a function of the ratio of
time that the core is stalled versus performing FLOPS (δ{i:j}), as well as the power rates dissipated

in these two states (PM
j and PF

j , respectively); and that these power rates depend on the type of

task. One could argue that PM
j and PF

j should not depend on the task type, being instead constant
for any type of kernel. Our justification is that the kernel types differ in the ratio of FLOPS to
memory operations, composition of arithmetic operations, memory access patterns, etc., which may
well account for the different power rates.

The question thus becomes how to obtain reliable estimates for PM
j and PF

j . For this purpose,
we execute repeatedly (say mj times) a kernel of type j on a single core, for a given block size b,
obtaining a sequence of execution times R1:j ,R2:j , . . . ,Rmj :j . We then obtain average experimental
values of the execution time, deviation and dynamic power for this specific block size, R̄j,b, δ̄j,b and
P̄D
j,b, respectively, with R̄j,b =

∑mj
i=1R{i:j}/mj . With these data, we then apply linear regression,

solving the overdetermined system:

Ax = b ≡


δ̄j,128 (1− δ̄j,128)
δ̄j,160 (1− δ̄j,160)

...
...

δ̄j,1024 (1− δ̄j,1024)

( PM
j

PF
j

)
=


P̄D
j,128

P̄D
j,160

...

P̄D
j,1024

 , (4.7)

for the sought-after values of PM
j and PF

j .
Figure 4.2 illustrates the difference between average measured dynamic power and modeled

(predicted) dynamic power for a variety of block sizes of the four building kernels arising in the
Cholesky factorization, with the model constructed from (4.5)–(4.7). In all cases, the relative error
is below 6 %, demonstrating the reliability of this approach to estimate the dynamic power of an
isolated task instance.

Table 4.3 summarizes the FLOP and contention powers (in Watts) for the building kernels that
appear in the Cholesky, LU and QR factorizations. The table also displays the range of variability
observed for the deviations. These results demonstrate that, as could be expected, the power rate
while performing FLOPS is higher than that dissipated when the core is issuing stall cycles waiting
for data located in memory.

4.3.3 Formulation of the contention-aware power model

Consider a task-parallel algorithm for a linear algebra operation Op, decomposed into r different
types of tasks (kernels), with nj tasks of type j, all of them operating on blocks of size b. Assume
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Figure 4.2: Measured and modeled power for building kernels dpotrf, dtrsm, dsyrk and dgemm of
the Cholesky factorization on wt itl.

the algorithm runs concurrently on a parallel system consisting of c cores with one thread per core.
The contention-aware model for power dissipation is then given by:

POp(t) = PY + PC(t)

= PY + PS + PD
Op(t)

= PY + PS +
∑c
k=1

∑r
j=1

∑nj

i=1 P
D
{i:j} ·Mk,{i:j}(t)

= PY + PS +
∑c
k=1

∑r
j=1

∑nj

i=1

(
δ{i:j} · PM

j + (1− δ{i:j}) · PF
j

)
·Mk,{i:j}(t) .

(4.8)

Thus, this model aggregates the system and static components of the power with those dissipated
by each task instance t{i:j} on the system, taking into account the specific memory contention
experienced by this particular task at execution time, δ{i:j}, and the power rates of memory con-

tention and FLOPS of the corresponding kernel type, PM
j and PF

j , respectively. Mk,{i:j}(t) is just
the binary function that equals 1 if core k is running task t{i:j} at instant t or 0 otherwise.
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Task PM
j PF

j minb δ̄j,b–maxb δ̄j,b

Cholesky factorization 13.32 18.72 45–86

Triangular solve 7.47 15.66 14–28

Symmetric rank-b update 12.83 16.00 15–38

Matrix-matrix product 14.67 15.70 7–15

LU factorization 12.83 17.75 75–95

Triangular solve 12.12 19.40 55–80

2x1 LU factorization 12.54 16.54 33–76

2x1 triangular solve 12.53 19.55 81–86

QR factorization 15.30 16.88 62–85

Apply orth. transf. 12.10 26.98 76–86

2x1 QR Factorization 13.91 19.18 65–82

2x1 Apply orth. transf. 6.84 16.72 16–32

Busy wait 0 9.21 –

Table 4.3: Parameters used to obtain contention-aware estimations of the task dynamic power.

Furthermore, the energy consumption of the algorithm can be obtained by integrating the power
model (4.8) over the total execution time, T , resulting in:

EOp =
∫ T
t=0

(PY + PS + PD
Op(t)) dt

= (PY + PS) · T +
∫ T
t=0

PD
Op(t) dt

= (PY + PS) · T +
∑c
k=1

∑r
j=1

∑nj

i=1

(
PD
{i:j} ·

∫ T
t=0

Mk,{i:j}(t) dt
)

= (PY + PS) · T +
∑r
j=1

∑nj

i=1

((
δ{i:j} · PM

j + (1− δ{i:j}) · PF
j

)
·R{i:j}

)
= (PY + PS) · T +

∑r
j=1

∑nj

i=1

(
(R{i:j} − Tj(b)) · PM

j + Tj(b) · PF
j

)
,

(4.9)

where R{i:j} refers to the actual execution time of task t{i:j}. Note how, from the point of view of
energy, the dynamic component of the model depends on the energy spent waiting for data (memory
contention), (R{i:j} − Tj(b)) · PM

j , which is specific to each task, and the energy corresponding to

actual computations, Tj(b) · PF
j , which is general for the task type.

4.3.4 Experimental evaluation

We next evaluate the accuracy of the contention-aware power and energy model using high-
performance implementations for three operations dense linear algebra: the Cholesky factorization,
the LU factorization with incremental pivoting, and the incremental QR factorization, on matrices
of dimension n = 4096, 8192, . . . , 32768, with block sizes b = 256 and 512, and c = 1, 2, 3 and 4
threads/cores executed on wt itl. Implementations from Intel MKL 10.3.9 for the kernels and
other basic suboperations appearing in the matrix factorizations were used. Concurrency was
leveraged using SMPSs (v2.5). For the measurement of power we used the NI internal wattmeter
combined with our framework and the PMLib library.

In order to obtain the estimated energy consumption from the model (4.9), we employ the
values of PY and P S calculated in Section 4.2.1 (see Table 4.1), and the dynamic power estimates
for memory contention and floating-point arithmetic for each kernel type in Table 4.3. Furthermore,
the execution times of each task, R{i:j}, and total execution time, T , are measured using the Extrae
tracing framework, which is fully integrated with SMPSs and provides highly accurate data.

Figures 4.3, 4.4 and 4.5 contain the results of this evaluation for the Cholesky, LU and QR fac-
torizations, respectively. In all cases, the left-hand side plots report the relative error between the
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Figure 4.3: Relative error in the estimated dynamic (left) and total (right) energy consumption for
the execution of the SMPSs-based task-parallel Cholesky factorization on 1–4 thread-
s/cores of wt itl.

estimated dynamic energy consumptions given by the energy model (4.9) and the actual measure-
ments. Note that, as the dynamic component of the real total energy is unknown, we assume that
PY and P S are those given by our experiments and subtract them to obtain the “real” dynamic
energy. The right-hand side plots report the relative error for the total energy consumption.

This experimental evaluation demonstrates the high accuracy of the estimated total energy
model, which is within ±5 % of the real energy consumption, for most problem dimensions, block
sizes, and number of threads/cores. If we subtract the constant estimations of the system and static
energy from both the total real and estimated energy consumptions we obtain an approximation of
the error of the estimation for the dynamic component of the total energy. As could be expected,
the relative error is now larger, but still remains within a bound of ±20 % of the real dynamic
energy, being much lower in most cases.

4.4 Power Modeling and P-states

Many past studies have analyzed the effect of DVFS on the performance-power trade-off; see,
e.g., [60]. In order to perform a similar study for the specific case of linear algebra operations on
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Figure 4.4: Relative error in the estimated dynamic (left) and total (right) energy consumption
for the execution of the SMPSs-based task-parallel LU factorization with incremental
pivoting on 1–4 threads/cores of wt itl.

current multicore processors, we employ the simple model (4.1) for the total (aggregate) power
dissipated and extend it to handle the effect of the P-states.

Let us start by noting that all considerations described in Section 4.1 are also taken into account
in this variant of the model. Also, we will assume that P S

i , where the subscript i denotes the specific
P-state, is independent of the application that runs in the platform. In practice, this is not the
case, but our results will show that the errors introduced by this simplification are small, and
can be easily accommodated into the model. We will further assume that the variations in the
consumption of DDR RAM are small compared with those experienced by the CPU cores. In our
experiments we consider both the wt itl and wt amd platforms, measured using the NI internal
wattmeter in combination with our framework and the PMLib library.

To obtain practical values for the power model (4.1), we proceed as follows. For simplicity,
let us assume that all c active cores of the platform run the same type of task (kernel) k, in the
same state Pi, during all the execution time, as then we can easily consider that the total power
at instant t equals the average power. For PY

i , we thus simply set all the cores of the platform
to each P-state using cpufreq, and then measure the power with the platform idle for 30 seconds
and average the results: between 71.86 and 84.83 W, depending on the state Pi, for wt amd; and
33.43 W for all P-states in wt itl; see column PY

i in Table 4.4.
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Figure 4.5: Relative error in the estimated dynamic (left) and total (right) energy consumption for
the execution of the SMPSs-based task-parallel incremental QR factorization on 1–4
threads/cores of wt itl.

The estimation of P S
i and PC

i is more elaborated, as it is difficult to separate these two compo-
nents, and the second depends also on the application that is being run. Refining (4.1), the total
power for the execution of c copies of task k, with the active cores in state Pi, becomes

PT
k,i(c) = PY

i + P S
i + PC

k,i(c) ≈ PY
i + P S

i + PC1
k,i · c , (4.10)

where PC1
k,i denotes the power dissipated by a single core in state Pi running task k.

To estimate the missing parameters in (4.10), P S
i and PC1

k,i , we will leverage three compute-

intensive kernels: the cpuburn microbenchmark1, a simple busy-wait test consisting of a “while (1);”
loop, and the general dense matrix-matrix product (dgemm) with double-precision data from Intel
MKL. Specifically, we execute these tests for 60 seconds and average the power draft, for an in-
creasing number of cores c (all in the same P-state) of the machines (8 cores of both wt amd and
wt itl), while the remaining cores remain idle in an inactive C-state.

Applying linear regression to the data obtained from this experimental evaluation, we obtain
linear models for the total power of the form

PT
k,i(c) = αk,i + βk,i · c, (4.11)

1http://manpages.ubuntu.com/manpages/precise/man1/cpuburn.1.html.
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Platform P-state, Pi PY
i αi βburn,i βbusy,i βdgemm,i PS

i

wt amd

P0 84.83 140.94 14.70 13.50 13.82 56.11

P1 77.85 137.47 7.71 6.10 10.01 59.62

P2 73.83 131.35 5.48 4.58 7.40 57.52

P3 71.86 127.87 4.12 3.33 5.46 56.01

P4 72.46 124.89 3.10 2.28 4.27 52.43

wt itl

P0

33.43

63.93 9.48 7.10 11.12 30.50

P1 63.38 8.19 6.16 9.84 29.95

P2 64.10 7.33 5.43 9.03 30.67

P3 64.72 6.34 4.64 7.81 31.29

Table 4.4: Parameters for the simple power model for the cpuburn, busy and dgemm benchmarks
(kernels) on wt amd and wt itl. Note that P S

i = αi−PY and PC
k,i(c) = PC1

k,i ·c = βk,i·c,
with i, k and c denoting the kernel type, P-state and number of cores, respectively.

with the values for αk,i and βk,i in the corresponding columns of Table 4.4, and the relation between
the models and the experimental data graphically captured in Figure 4.6.

These regression models show an almost perfect fit to the experimental data, offering the same
(rough) value αk,i for all three kernel types (the largest variation between the three was 2.11 % and
the average difference 0.61 %.) Therefore, in the following we will use αi − PY

i as an estimation
for P S

i (see Table 4.4), the system power dissipated by a socket in state Pi (which agrees with our
assumption that the system power is independent of the kernel type); and we will set PC

k,i(c) = βk,i ·c
so that PC1

k,i = βk,i.

4.5 Other Target Platforms

In this section we present two other extensions for our simple power model (4.1). The first
one has been designed for multicore platforms that have more than one socket. The second one
models the power and energy consumed by the CPUs of a hybrid platform with graphic hardware
accelerators (GPUs) attached.

4.5.1 Power model for multi-socket platforms

This extension of the simple power model supports multicore platforms with multiple sockets.
In particular the model controls if there are kernels executing in different sockets. In that case,
it applies a different dynamic power that is, in general, higher than that of the case where there
is work performed on a single socket only. This is due to the promotion of the idle socket to a
hardware-controlled, energy-saving PC-state.

To guide the explanation we use the tesla2 platform considering its two sockets (but discarding
the GPU attached to it, which will remain idle). We employ the kernels of the LU factorization with
partial pivoting to obtain the static estimations of the dynamic power. For the power measurements
we used the AP8653 external wattmeter.

System and static power

The basic methodology to estimate the system and static parameters on a multi-socket platform
is closely similar to that described in Section 4.2.1. First, we estimate the system and static
parameters of the power model (4.1). A direct measurement using our external AP8653 with
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Figure 4.6: Power dissipated as a function of the number of active cores for kernels cpuburn,
busy and dgemm (top, middle and bottom, respectively) on wt amd (left) and wt itl
(right).
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the platform completely idle revealed a power dissipation of 290.47 W, which can be taken as an
approximation for PY.

For multi-socket platforms, multiple linear regression models per socket may be required. For
example, tesla2 is equipped with 2 quad-core sockets which required two models in order to
attain higher accuracy, and thus two different values for the static powers. Figure 4.7 reports the
power consumption obtained by the AP8653 wattmeter, when executing a matrix-matrix product
(routine dgemm from Intel MKL) with square operands of size 1,024. We vary the number of CPU
threads/cores of tesla2 from 1 to 4 when operating with a single socket, and from 5 to 8 when
running on the two sockets. Applying a linear regression to adjust the total power, two linear
models are obtained: PT

dgemm(c) = α + β · c = 297.16 + 26.78 · cW for the case of 1–4 threads; and

P̃T
dgemm(c) = α̃+ β̃ · c = 329.02+19.69 · cW for the case of 5–8 threads. Therefore, the static power

dissipated by the system can be approximated as P S1 ≈ α − PY = 6.68 W when there is only one
socket active; and P S2 ≈ α̃− PY = 38.55 W otherwise. The basic methodology to estimate system
and static parameters on a multi-socket platform differs from the mono-socket in that it needs one
linear model per socket. The results of applying the linear regressions to the tesla2 platform are
summarized in Table 4.5.
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Figure 4.7: Power dissipated as a function of number of active cores on tesla2.

Platform Sockets PY α β PS

tesla2
1

290.47
297.16 26.78 6.68

2 329.02 19.69 38.55

Table 4.5: Parameters for the multi-socket power model of tesla2.

Dynamic power

To illustrate this case, we estimate the power dissipated during the execution of each one of
the three kernel types of the LU factorization with partial pivoting —dgetrf, dtrsm and dgemm—.
The previous experiment in Section 4.5.1 revealed that the dynamic power increases linearly with
the number of threads mapped to a single socket that execute a certain task (the matrix-matrix
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product in that case). Besides, there we could also observe that the use of cores from two sockets
changes the arguments which define this linear function.

To account for this difference during the estimation of each one of the kernels, we performed an
experiment where one single thread continuously invokes dgemm, till the total power stabilizes; we
then sampled this value, say PT

dgemm, and set PD1
dgemm = PT

dgemm−P S−PY = PT
dgemm−297.16 W. We next

repeated the experiment with two concurrent CPU threads invoking the same kernel on different

sockets of the target platform and, when the power stabilized, we sampled the value, ˜PT
dgemm, and

set PD2
dgemm = ( ˜PT

dgemm− 329.02)/2 W. The estimations of the dynamic power for each kernel type and
number of active sockets are collected in Table 4.6. These values were obtained employing operands
of square dimension 1,024 in all cases.

Task dgetrf dtrsm dgemm

PD1 27.92 36.32 26.03

PD2 14.53 16.03 19.43

Table 4.6: Dynamic power (in Watts) of the task types involved in the LU factorization with
partial pivoting, estimated when placing 1 and 2 threads in different sockets of tesla2.

Formulation of the power model for multi-socket platforms

Consider finally the task-parallel execution of a dense linear operation Op, with the algorithm
decomposed into r different types of tasks j. The total power dissipation of the algorithm, at
an instant of time t, is given by the composition of the system power, the static power, and the
dynamic power of all tasks being executed at that instant:

POp(t) = PY + P S(t) + PD(t)

= PY + P S1M(t) + P S2M̃(t)

+
∑c

k=1

∑r
j=1

(
PD1
j M(t) + PD2

j (1−M(t))
)
Nk,j(t) .

(4.12)

Here, M(t) is a function that, at time t, returns 1 in case there are active threads running in a
single socket only or equals 0 otherwise; and Nk,j(t) = 1 if k-th thread is running a task of type j
at time t.

The energy consumption of the algorithm is a function of the time spent in each type of task:

EOp =
∫ T
t=0 P

T(t) dt

= PY T + P S1 S + P S2 (T − S)
+

∑r
j=1

∑rj
i=1 P

D1
j Tj γi,j + PD2

j Tj (1− γi,j)
(4.13)

where S is the period of time when there is a single socket active; Tj is the aggregated execution
time of tasks of type j; PD1

j , PD2
j are the dynamic powers given in Table 4.6, with j referring to

the different types of tasks (columns of the table); and γi,j is the ratio of time that there is one
socket active during the execution of task (i,j).

4.5.2 Power model for hybrid platforms

In this section we extend the our simple power model (4.1) to tackle hybrid CPU–GPU plat-
forms. We use the tesla2 platform measured with the AP8653 external wattmeter to illustrate
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this case. Note that the wattmeter does not measure the power consumption of Tesla C2050 module
attached to tesla2. The main contribution of this extension thus consists in that we integrate the
dynamic power related to the transfer operations.

System and static power

The methodology followed to estimate system and static parameters is the same described in
Section 4.5.1. Parameters for the tesla2 platform are summarized in Table 4.5.

Dynamic power

The characterization of the dynamic power dissipated by a task-parallel dense linear operation
on an hybrid platform is more challenging. This extension of the model for hybrid CPU–GPU
platforms only contemplates the power consumed by the CPUs, but takes into account the energy
consumption required for data transfers between the host (CPU) and the device (GPU). These
transfers appear each time a kernel is off-loaded to the accelerator. Specifically before starting the
kernel, the CPU has to transfer some data into the GPU. Once the execution has finished, the CPU
has to transfer back the results from the GPU.

In order to estimate static values for the dynamic power of the transfers, we performed an
experiment where a single thread continuously invokes kernels to transfer data till the total power
stabilizes; we then sampled this value, say PT

CPU→GPU , and set PD
CPU→GPU = PT

CPU→GPU − P S −
PY = PT

CPU→GPU − 297.16 W. The results are offered in Table 4.7.

Task CPU→GPU GPU→CPU

PD 50.33 49.63

Table 4.7: Dynamic power (in Watts) of the CPU–GPU transfer tasks on tesla2.

Formulation of the power model for hybrid CPU–GPU platforms

The power and energy models, (4.3) and (4.4), respectively, can be applied as well to hybrid
CPU–GPU platforms.

4.6 Concluding Remarks

In this chapter we have introduced several models to estimate the energy consumption of lin-
ear algebra operations that can be applied to task-level parallel dense or sparse linear algebra
algorithms. First, we introduced a simple (static) power model that can be applied in multicore
architectures. Next, we refined this initial version to employ dynamic measures that take into
account memory contention during the actual execution, yielding more accurate global results. We
also designed an additional power model that accounts for the total (aggregate) power dissipated by
an application that can handle the P-states. The last two extended models deal with multi-socket
and hybrid CPU–GPU platforms.

We have performed an experimental validation using the contention-aware model on the wt itl
platform and the NI power measurement device. The experiments confirm the reliability of the
energy models for the SMPSs-parallel Cholesky, LU and QR factorizations on this platform, which
offer estimates for the total energy consumption that are, in general, within 5 % of the actual values,
comparable with those obtained with elaborate models that rely on hardware counters.
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Two key properties of the proposed models are portability and, to some extent, generality.
Specifically, we believe that our contention-aware model can be applied to integer or floating-
point intensive task-parallel applications, not necessarily related to dense linear algebra, when the
following three conditions are met: i) there exist fairly good estimations of the theoretical cost of
each type of task; ii) the target platform is instrumented with some sort of power measurement
device; and iii) accurate measures of task execution time can be obtained, e.g., with Extrae or any
other instrumentation tool (TAU, VampirTrace, Score-P, etc.). On the other hand, the models do
not require access to low-level, platform-dependent hardware counters.

The ultimate goal of the models is to guide the operation of a runtime, as e.g. SuperMatrix or
SMPSs, in order to unleash a more energy efficient execution of task-parallel algorithms. For exam-
ple, there exists different mappings of tasks to computational resources that may result in equivalent
or nearly equivalent performance on hybrid/heterogeneous platforms equipped with multicore pro-
cessors and hardware accelerators (graphic accelerators, Intel Xeon Phi, etc.). In these situations,
an energy-aware runtime can leverage the prediction provided by our models to automatically select
the most energy-efficient configuration without a negative impact on performance.
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CHAPTER 5

Theoretical Analysis of Slack Reduction and Race-to-Idle

In this chapter we investigate how to leverage DVFS and energy-friendly processor states dur-
ing the execution of dense linear algebra algorithms on state-of-the-art multicore processors. In
particular, we consider a DAG that represents a collection of tasks and data dependencies among
these, corresponding to the computation of a dense linear algebra operation. The goal of our Slack
Reduction Algorithm (SRA) is to detect which tasks lie in non-critical paths and reduce the fre-
quency/voltage (DVFS) of the processor cores in charge of their execution, and thus save energy.
We also present an alternative approach, the Race-to-Idle Algorithm (RIA), which pursues the
power-conservation goal but from a totally opposite approach: it executes all tasks at the highest
frequency and relies on the power savings attained via a reduction of the operating frequency during
idle periods.

We consider here the analysis of the four algorithms: the LU factorization with partial and
incremental pivoting, and the traditional and incremental QR decompositions, described in Sec-
tions 2.4 and 2.5, respectively. These algorithms are challenging from the point of view of slack
control, as their tasks exhibit varying sizes and costs during the execution. We target the wt amd
and wt itl platforms, in which the DVFS is applied at the core and socket level, respectively.
Our simulations will show the impact of this strategy on the attainable theoretical gains. For
the experimentation we use real experimental data for performance and energy consumption of the
computational tasks appearing in these algorithms on these two architectures. Thus, we can expect
that the results reflect the trade-off between performance and energy accurately.

The chapter is organized as follows. Section 5.1 reviews the Critical Path Method and its appli-
cation to identify tasks which can be delayed without negatively affecting the total execution time.
The Slack Reduction and Race-to-Idle energy-saving algorithms, introduced in Section 5.2 and 5.3,
respectively, are followed by a brief discussion of the energy-aware simulator, in Section 5.4. Exper-
iments are reported in Section 5.5 and a few concluding remarks close the chapter in Section 5.6.

5.1 The Critical Path Method

The Critical Path Method (CPM) is commonly used in management and project planning [114]
to control the duration of a project by carefully scheduling so-called “critical” tasks (that is, those
tasks which are likely to delay the project execution time in case of a late start/finish). We next
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discuss how to apply CPM to detect slacks in a DAG that captures the dependencies existing in
one of the algorithms for the QR factorization.

5.1.1 Demonstration example

We illustrate the CPM using the incremental QR factorization (see Section 2.5.2) and base our
explanation using Algorithm 5 which presents the blocked procedure of this algorithm. Remember
that each operation (i.e., task) in the algorithm is annotated to the right with its theoretical cost
in floating-point arithmetic operations, or FLOPS.

Figure 5.1 illustrates the tasks and dependencies that appear in the incremental QR factorization
of a blocked 3× 3 matrix using Algorithm 5. The name of each task is followed, inside parenthesis,
by parameters that uniquely identify the task in the graph from the loop indices k, i and j of the
algorithm. Inside brackets, we include the execution time of the corresponding task (in milliseconds,
ms) for a block size b = 256 on wt amd running at 2.00 GHz (the maximum available frequency).

We define the slack of a task as the amount of time that it can be delayed without increasing
the total execution time of the algorithm.

O(2, 3)
[1.214]

O2(1, 2, 2)
[1.597]

O2(1, 3, 2)
[1.597]

QR2(1, 2)
[1.495]

QR(2)
[1.495]

O(1, 2)
[1.214]

O(1, 3)
[1.214]

QR2(2, 3)
[1.495]

QR2(1, 3)
[1.495]

O2(2, 3, 3)
[1.597]

QR(1)
[1.256]

QR(3)
[1.256]

O2(1, 2, 3)
[1.597]

O2(1, 3, 3)
[1.597]

Figure 5.1: DAG with the tasks/data dependencies for the incremental QR factorization of a ma-
trix consisting of 3× 3 blocks using Algorithm 5. Red arrows identify the critical path
of the algorithm.

Task C ES LF S

QR(1) 1.256 0.000 1.256 0
O(1, 3) 1.215 1.256 4.290 1.819
O(1, 2) 1.215 1.256 2.752 0.281
QR2(1, 3) 1.496 1.256 4.008 1.256
QR2(1, 2) 1.496 1.256 2.752 0
O2(1, 3, 3) 1.597 2.752 7.102 2.752
O2(2, 3, 3) 1.597 7.102 8.699 0
QR(3) 1.256 8.699 9.955 0
O2(1, 2, 3) 1.597 2.752 5.606 1.256
QR2(2, 3) 1.496 5.606 7.102 0
O2(1, 2, 2) 1.597 2.752 4.350 0
QR(2) 1.256 4.350 5.606 0
O(2, 3) 1.215 5.606 7.102 0.281
O2(1, 3, 2) 1.597 2.752 5.887 1.538

Table 5.1: Application of CPM to the DAG capturing the data dependencies in the computation of
the incremental QR factorization of a matrix consisting of 3×3 blocks using Algorithm 5.

CPM can now be applied to the task-node graph in order to detect slacks, which yields the
profile in Table 5.1. The application of this method obtains the following values for each task Ti:
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• Its cost Ci (execution time).

• The earliest time at which the task can start its execution,

ESi = max
k

(ESk + Ck) (5.1)

for all task (node) k connected to task (node) i by an edge from task k to task i.

• The latest time at which the task can finish its execution without increasing the total time of
the algorithm, given by

LFi = min
k

(LFk − Ck) (5.2)

for all task k connected to task i by an edge from i to k.

• Its slack, obtained as
Si = LFi − ESi − Ci . (5.3)

CPM identifies slack times, but does not provide an explicit strategy (procedure) to exploit
them. In the following section, we introduce an algorithm that conveniently tailors the operating
frequency of the processor cores, to tune the slack of those tasks with Si > 0, yielding a lower
power usage. In an ideal case where the cores can operate in any of an infinite (continuous) range
of frequencies and the transition time (overhead) between any two frequencies is zero, the slack
could be adjusted very accurately. In a real case, processor cores run at a limited (discrete) number
of frequencies, and switching between any two given frequencies is not immediate, so that the slack
can only be adjusted sub-optimally. Furthermore, in some architectures (e.g., those from Intel),
changes can only be made at the socket level instead of at the CPU core level.

5.2 The Slack Reduction Algorithm

The Slack Reduction Algorithm (SRA) [17, 12] assigns a tentative operating frequency to each
task, among a discrete number of these, at which it will be executed. The algorithm is preceded by
an initialization stage that decomposes a given dense linear algebra operation into a collection of
tasks, and identifies the dependencies among these, resulting in a DAG (alike that in Figure 5.1).

The SRA is composed of three stages, with the second and third stages being iterative proce-
dures. To illustrate the algorithm, in the following discussion we will refer to the DAG in Figure 5.1.
We will also consider the discrete collection of frequencies FR={2.00, 1.50, 1.20, 1.00, 0.80} (in GHz,
according to the values of wt amd).

Frequency assignment. Initially, all tasks are assigned to be run at the maximum frequency.

Critical subpath extraction. In this step the graph is decomposed into a number of critical sub-
paths. First, the critical path is identified. Next, the graph edges that belong to the critical path
(as well as the nodes, if they have no other edge arising at or leaving from them) are eliminated from
the graph. A new critical subpath is then extracted for this subgraph; and the process is repeated
until the graph is empty. Figure 5.2 details the application of the procedure to the DAG contained
in Figure 5.1. For each iteration of the extraction procedure, we indicate the sequence of nodes
in the critical path/subpaths (CP0/CP1, CP2, CP3) and the execution time in the bottom right
corner. Note that this decomposition automatically sorts critical subpaths according to descending
execution time.
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Figure 5.2: Critical subpath decomposition of the DAG capturing the data dependencies in the
computation of the incremental QR factorization of a blocked 3 × 3 matrix using
Algorithm 5.

80



5.3. THE RACE-TO-IDLE ALGORITHM

O(2, 3)
[1.214]

O2(1, 2, 2)
[1.597]

O2(1, 3, 2)
[1.597]

QR2(1, 2)
[1.495]

QR(2)
[1.495]

O(1, 2)
[1.214]

O(1, 3)
[1.214]

QR2(2, 3)
[1.495]

QR2(1, 3)
[1.495]

O2(2, 3, 3)
[1.597]

QR(1)
[1.256]

QR(3)
[1.256]

O2(1, 2, 3)
[1.597]

O2(1, 3, 3)
[1.597]

f=2.00

f=2.00

f=1.50

f=2.00

f=2.00

f=2.00

f=1.50

f=2.00
f=1.50

f=2.00

f=2.00

f=2.00

f=2.00

f=1.00

Figure 5.3: Frequency assignment and time of the DAG with the tasks/data dependencies for the
incremental QR factorization of a blocked 3×3 matrix using Algorithm 5. Red arrows
identify the critical path of the algorithm.

Frequency tuning. This stage calculates the (recommended) operating frequency and, therefore,
dictates the execution time of the tasks and the overall execution time of the algorithm. The
procedure starts by processing the first critical subpath, CP1={O(1, 3), O2(1, 3, 2), O(2, 3)}, trying
to annihilate the slack of the tasks embedded in this subpath (see Table 5.1). For this purpose,
the procedure initially computes the lengths of the longest paths (LF ) from task QR(1) to the
first and the last task in the subpath, O(1, 3) and O(2, 3), respectively. These values are 1.256 and
7.102 ms, respectively, and their difference, 5.846 ms, provides a bound on the maximum duration
of the execution of the tasks in CP1. Given that the execution time of the tasks in this subpath
is 1.214 + 1.597 + 1.214 = 4.026 ms (column C in Table 5.1), this implies that there is a slack of
5.846 − 4.026 = 1.820 ms, which can be distributed among O(1, 3), O2(1, 3, 2) and O(2, 3). How
the slack is shared among these tasks is completely arbitrary, provided the individual slacks for
these tasks (column S in Table 5.1) are not exceeded. In our specific implementation, the ratio
5.846/4.026 = 1.452 recommends a rough increase of 45 % to the execution time of the tasks in the
subpath.

The procedure is then repeated for CP2, CP3 and so on, yielding a recommended execution
time for each one of the tasks of the DAG; see Figure 5.3.

Under mild conditions, a user can be interested in trading execution time for energy con-
sumption. To accommodate this, the SRA utilizes a user-defined excess ratio which specifies the
maximum increase in execution time that is acceptable. This makes the previous algorithm slightly
more complicated, but the basic structure remains the same. For simplicity, we skip the exposition
of the modified algorithm, and refer to the experimental evaluation for a practical demonstration
of its effects.

5.3 The Race-to-Idle Algorithm

The following alternative strategy to save energy consumption, the Race-to-Idle Algorithm
(RIA), leverages the fact that current processors are quite efficient at reducing power when idle.
Therefore, it may be more convenient to complete the execution of tasks as soon as possible, so as
to “enjoy” longer periods of inactivity. In other words, RIA executes the tasks of the algorithm at
the highest possible frequency, while reducing frequency to the lowest possible during idle periods.
This strategy can be combined with the use of energy-friendly processors states.
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This strategy requires no processing of the DAG that reflects the tasks and dependencies of a
blocked algorithm, as all tasks are executed at the highest frequency, while during the idle periods,
the CPU frequency is reduced to the lowest value. Whether this is advantageous or not depends on
the specific trade-off between performance and energy of the computational kernels, the existence
and the length of idle periods in the dense linear algebra algorithms, and the overhead incurred to
change the operating frequency, which is basically dictated by the target hardware platform.

5.4 Simulator

In order to evaluate the performance of the strategies, we employ a flexible, energy-aware sim-
ulator [17, 12] which uses the information obtained with SRA and RIA to produce a schedule, for
a particular target architecture. It also records all frequency variations occurred during the execu-
tion, and displays statistics on energy savings in terms of percentage of time that each computing
resource has operated at a given frequency. Therefore, this tool can help to analyze the theoretical
performance and energy savings produced by the application of SRA and RIA in different scenar-
ios: DAGs associated with different task-based algorithms, platform setups, excess ratios, frequency
ranges, etc. In general, the static (a priori) schedule produced by the simulator is not applicable in
practice, as even tiny variations during task execution may render it useless. However, it serves as
a demonstrator of the effect that a technique like an energy-aware DVFS-based strategy can yield
for the execution of dense linear algebra kernels.

In the following, we describe the possibilities and properties of the simulator in more detail.

5.4.1 Input parameters

The simulator receives the following inputs:

• A DAG reflecting the tasks and dependencies implicit in the blocked algorithm as well as the
frequencies recommended by SRA/RIA to execute the tasks (in case of SRA, the frequencies
are precisely those obtained from the application of that procedure; in RIA, all tasks are run
at the highest frequency).

• A simple description of the target architecture that specifies the number of sockets (or physical
processors) and the number of cores per socket. To mimic technologies like AMD PowerNow!
and Intel SpeedStep, the simulator can adjust the frequency at core/socket level, respectively.
Furthermore, core frequency cannot be changed if there is a task running on it at the moment.

• A discrete range of core frequencies, FR.

• A collection of real power consumption for each combination of frequency, {idle/busy} state
per core. To obtain these values in our simulations, we executed a benchmark that varied the
frequency/load of the cores, testing all the combinations.

• The cost (overhead) incurred to perform a frequency variation.

5.4.2 Scheduler

As starting point, we chose a static priority list scheduler [89, 93]. The reason for this is twofold.
First, the approximate duration of the tasks is known in advance (as, in general, is the case for
dense linear algebra operations). Second, the execution of tasks that lie on the critical path must
be prioritized. Thus, tasks to be executed at higher frequency are assigned raised priority. Among
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the tasks which have to be run at the same frequency, those which belong to a critical subpath
(CPj) with smaller index (j) are sorted first.

Consider the execution of a task Ti with recommended frequency fi (set either by the SRA-
or RIA-based strategies). The scheduling algorithm maps the execution of Ti to the first idle core
that satisfies one of the following conditions, checking them in the order they appear next:

1. The core socket is operating at frequency fi.

2. The core socket is varying its operating frequency to fo = fi. (The task will commence
execution when the change is completed.)

3. The core socket is operating at a frequency fo > fi.

4. The core socket is varying its operating frequency to fo > fi.

5. All cores in the same socket are idle. If the socket is operating at a frequency fo 6= fi, a
change of frequency to fi is requested. The socket is reserved so that Ti will be the first task
that will run on it when the change is completed.

If none of the above conditions is satisfied, the task remains in the pending queue, waiting for
subsequent frequency variations in the system. This strategy will ensure that the execution time of
a task does not take longer than dictated by SRA. For that purpose, the schedule guarantees that
the task is executed in a core running at the desired frequency or, if not possible, at a higher one.
For RIA all tasks are run at the highest frequency.

5.5 Simulation Results

We next evaluate the performance of SRA and RIA combined with the energy-aware simula-
tor/scheduler using several blocked algorithms for the LU and the QR factorizations.

5.5.1 Benchmark algorithms

In our experiments, we employ the right-looking blocked algorithmic variants for the incremental
and traditional QR factorizations (Algorithm 5 and 4, respectively). We also use the blocked
algorithms for the LU factorization with incremental and partial pivoting (Algorithm 3 and 2,
respectively).

5.5.2 Environment setup

We emulate wt amd and wt itl as target platforms in our experiments. Details about avail-
able frequencies and voltage/frequency pairs for these architectures are introduced in Section 3.1.2.
Table 5.2 reports the latencies incurred to change between any two frequencies in these two plat-
forms, determined experimentally.

Our experiments consider a variety of (square) matrix dimensions ranging from 384 to 2,944
with the block size b = 128. This size was experimentally determined to be close to the optimal
for most kernels involved in these factorizations. For the incremental QR and LU with incremental
pivoting we measured the execution time of their four different types of tasks running on a single
core of wt amd and wt itl (using only a single socket for wt itl); i.e., an AMD Opteron 6128
and an Intel Xeon E5504, respectively, at each possible frequency. For the traditional QR and
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wt amd

Destination freq.
2.00 1.50 1.20 1.00 0.80

S
o
u

rc
e

fr
eq

. 2.00 – 40.36 43.18 43.77 49.85
1.50 302.5 – 50.98 54.00 58.19
1.20 301.7 302.7 – 61.60 66.05
1.00 297.4 302.3 306.0 – 74.70
0.80 291.6 292.7 294.0 295.80 –

wt itl

Destination freq.
2.00 1.87 1.73 1.60

S
o
u

rc
e

fr
eq

.

2.00 – 125.6 122.0 46.18
1.87 143.6 – 120.9 45.98
1.73 144.7 143.3 – 48.23
1.60 167.3 156.9 167.7 –

Table 5.2: Frequency change latency between each available frequency (in µsec.) on wt amd and
wt itl platforms.

LU with partial pivoting factorizations, the execution time of tasks QR/O, and LU/T, respectively,
depends on the iteration.

To estimate the execution time in this case, we evaluated the time of 1 FLOP for each type
of task involved in the algorithm, and then we determined the execution time of a given task by
replacing the FLOP time in its theoretical cost formula. Using this data, we apply SRA to adjust
the execution frequency of the tasks.

To obtain an approximation of the power required by the computational tasks, we evaluated
the dgemm kernel (from Intel MKL 11.0) executed at all possible combinations of frequencies on 1,
2, 3, . . ., p cores, with p = 16 on the AMD and p = 8 on the Intel. Thus, we measure the power
using p cores, simultaneously running p copies of the kernel at frequencies f1, f2, . . . , fp, possibly
different, while all remaining cores are idle, at the lowest frequency if SRA/RIA are in place, or at
the highest frequency when no energy-saving strategy is applied. Power measures were obtained
using the internal DCM wattmeter.

5.5.3 Metrics

In order to assess the benefits of the proposed solution we employ the following metrics:

• The Impact of SRA/RIA on time (ITSRA/RIA) measures the ratio between the execution time
of the algorithm operating at the frequencies dictated by SRA/RIA and that obtained when
all tasks are run at the highest frequency. This ratio is obtained by dividing the execution
time of both variants:

ITSRA/RIA =
T execSRA/RIA

T exec

Ideally, this ratio should be 1. In RIA, the overhead due to the frequency changes may render
a ratio higher than 1. In SRA, there may appear a certain overhead due to frequency changes
as well, but when this occurs, it is mostly due to the algorithm being oblivious to the real
number of available resources (cores). A resource-aware implementation of SRA would solve
this issue.

• The Impact of SRA/RIA on consumption (ICSRA/RIA) measures the ratio between the energy
consumption of the algorithm operating at the frequencies dictated by SRA/RIA and that
obtained when running all tasks at the highest frequency. This ratio is obtained by dividing
the energy consumption of both variants:

ICSRA/RIA =
CexecSRA/RIA

Cexec

Ideally, this ratio should be close to 0. A longer execution time and the overhead introduced
by frequency changes may yield an energy ratio higher than 1.
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5.5.4 The traditional QR factorization

Figures 5.4 and 5.5 report the results for the traditional QR factorization on the two platforms.
The usage of SRA produces an increase in the execution time for the largest problem sizes (from n =
2,304 on wt amd and n = 1,536 on wt itl) due to the resource-oblivious current implementation.
On the other hand, RIA maintains the execution time for all problem dimensions on both platforms,
demonstrating that the overhead due to frequency changes is negligible compared with the cost (i.e.,
time) of the individual tasks (at least, for such block size). From the point of view of energy, SRA
outperforms RIA as long as there is no increase in the execution time (small to moderate problem
sizes). Comparing both architectures, it is important to emphasize the benefits that the flexibility
of operating the frequency per core in wt amd yields. While the energy savings estimated for this
platform reaches up to 20 % (SRA for n = 1,792), the reduction for the Intel platform are much
more modest, with a peak around 5 % (SRA for n = 640).
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Figure 5.4: Impact of SRA and RIA on the execution time and energy of the blocked algorithm
for the traditional QR factorization on wt amd.
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Figure 5.5: Impact of SRA and RIA on the execution time and energy of the blocked algorithm
for the traditional QR factorization on wt itl.
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5.5.5 The incremental QR factorization

Due to the cost of the simulation and the higher complexity of the DAG associated with the
algorithm for the incremental QR factorization, in this case we could only evaluate the impact
of SRA for problems of dimension n up to 1,408. Figures 5.6 and 5.7 report the results on both
platforms. In general, the behavior of the execution time for SRA is similar to that already observed
in the previous algorithm. The benefits of SRA on energy consumption are evident for the AMD
platform, especially for the smallest problem sizes, while this strategy only yields low energy savings
for the two smallest problem sizes on the Intel architecture. With the exception of one particular
case (n = 896, wt amd), RIA keeps the ratio of execution time close to 1. The energy savings
yielded by RIA are always competitive or superior to SRA on AMD, as well as on Intel when
n ≥ 896. In general, the poor results obtained on the Intel platform with any of the two energy-
saving strategies are due to the granularity of DVFS which limits frequency changes to occur at
the socket-level.
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Figure 5.6: Impact of SRA and RIA on the execution time and energy of the blocked algorithm
for the incremental QR factorization on wt amd.
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Figure 5.7: Impact of SRA and RIA on the execution time and energy of the blocked algorithm
for the incremental QR factorization on wt itl.
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5.5.6 The LU factorization with partial pivoting

Figure 5.8 reports the results for the LU factorization with partial pivoting on wt amd. The
first aspect to notice is the increase of execution time that the usage of SRA produces for the
largest problem sizes. RIA, on the other hand, maintains the execution time for all problem
dimensions, demonstrating that the overhead of frequency changes is negligible compared with the
cost (i.e., time) of the individual tasks (at least, for such block size). If we focus on the energy, the
higher execution times required by SRA yield an increase of consumption as well, and this is not
compensated by the reduction that, in principle, an execution at a slower pace (frequency) should
entail. A deeper investigation revealed that the increase in execution time of SRA that appears for
n ≥ 2,560 is actually due to the algorithm being oblivious to the real number of available resources
(cores), and this could be solved by a resource-aware implementation of SRA.
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Figure 5.8: Impact of SRA and RIA on the execution time and energy of the blocked algorithm
for the LU factorization with partial pivoting on wt amd.

5.5.7 The LU factorization with incremental pivoting

Due to the cost of the simulation and the higher complexity of the DAG associated with this
algorithm, in this case we could only evaluate the impact of SRA for problems of dimension n
up to 2,816. Figure 5.9 reports the results for the LU factorization with incremental pivoting on
wt amd. In general, both strategies render an important increase of the execution time, especially
for small problem sizes. This is due to the frequency changes that these strategies require during
their operation. The energy in this case also increases since the time needed to execute is higher,
around 10 %.

5.6 Concluding Remarks

In this chapter, we provide evidence that it is possible to improve energy consumption dur-
ing the execution of dense linear algebra algorithms while, in some cases, maintaining their per-
formance. Following the current trend for multicore parallelization (adopted, e.g., in libraries
libflame, PLASMA, SMPSs, etc.), our algorithms exploit task-level parallelism, considering dense
linear algebra operations that are partitioned into a number of tasks with dependencies among
them. Our energy-conservation strategies, SRA and RIA, start from the DAG representing the
operation and are based on two key observations. First, if all the tasks run at full speed (highest
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Figure 5.9: Impact of SRA and RIA on the execution time and energy of the blocked algorithm
for the LU factorization with incremental pivoting on wt amd.

frequency), idle times appear during their execution. Second, present processors include efficient
mechanisms to dynamically adjust frequency/voltage (DVFS) and hence the power consumed.

We have evaluated two alternative strategies that leverage DVFS to save energy during the
execution of dense linear algebra algorithms on multicore architectures: SRA and RIA. The SRA
is inspired by concepts and methods of project planning theory. In fact, we first apply CPM to
determine the individual slack of each task, and then employ SRA to conveniently slow down the
execution frequency of the appropriate tasks, while potentially maintaining the global execution
time. On the other hand, RIA pursues energy-conservation from a totally opposite approach; specif-
ically, this strategy generates periods of inactivity during the execution of the DAG by executing
all tasks at the highest frequency, and relies on the energy savings attained via a reduction of the
operating frequency during these idle periods. In the end, both alternatives leverage the trade-off
between energy and performance. In the chapter, the results from these techniques are fed to a
simulator, which is used to produce a feasible schedule of the tasks as well as tune their execution
frequencies to a particular target architecture, assessing the benefits that can be obtained for a
given operation.

We have evaluated these two energy-control policies using two algorithms of the QR and LU
factorizations which are representative of many other high-performance BLAS-3-based dense linear
algebra operations. The results of this experimental analysis under realistic conditions show a
reduction in energy consumption under certain conditions, and some interesting insights. First, they
show the superior performance of the RIA strategy over SRA from the point of view of execution
time for problems of large dimension. Second, SRA, which is a more elaborate strategy than RIA,
can potentially deliver higher energy savings than RIA under certain circumstances. Third, the
study illustrates the importance of selecting the appropriate energy-saving policy, depending on the
algorithm, problem dimension and target architecture. Finally, the results demonstrate the impact
that a flexible hardware which allows operating with DVFS frequencies at the core level (instead
of the socket level) has on energy savings.
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CHAPTER 6

Energy-Aware Techniques for Dense and Sparse Linear Algebra

In Chapter 5 we presented the Slack Reduction (SRA) and the Race-to-Idle (RIA) policies
for the execution of dense matrix factorizations on multithreaded architectures. In that study we
observed that RIA generally offers larger energy savings than SRA for large problems, preserving
the execution time of the tested algorithms. For this reason, in this chapter we move one step
forward and incorporate the RIA approach into a production runtime for the domain of dense linear
algebra, which allows us to provide experimental evidence of the impact of this policy on energy
consumption. Specifically, we address the energy-aware execution of dense linear algebra operations
on platforms equipped with general-purpose multicore processors and, sometimes, one or more
GPUs. (For simplicity, we will refer to both types of systems as multithreaded architectures.) Our
solution features a new design of the SuperMatrix runtime that controls the task-parallel execution
of the operations, eliminating busy-waits (polling) when the general-purpose cores remain idle,
with a minimal impact on the execution time. The current underlying hardware has the necessary
mechanisms to switch to low-energy states. Our methodology is based on a redesign of the software
so that it can provide the necessary conditions for the hardware to switch to low-energy states and,
thus, to leverage the processor power states or C-states.

In addition, our methodology is also leveraged and applied in combination with others that
employ DVFS in the sparse linear algebra domain. In this sense, we extend the methodology
applied to dense linear algebra operations, in order to demonstrate performance benefits for the
task-parallel solution of sparse linear systems on multicore processors in ILUPACK (see Section 2.6).
Unfortunately, current implementations are energy-oblivious, in spite of the significant assets that
energy-aware software can yield. Therefore, the aim of the second part of the chapter is to analyze
how to seize the CPU power-saving mechanisms in the execution of ILUPACK. Specifically, we
provide a new version of this runtime that is designed to leverage the P-/C-states in order to yield
energy-aware executions for the solution of sparse systems of linear equations.

The chapter is organized as follows. Section 6.1 introduces our energy-aware techniques and
describe how to accommodate them into a task-parallel runtime. In Section 6.2, we analyze the
potential savings of dense linear algebra operations using our energy-aware SuperMatrix runtime,
evaluating its practical performance and energy consumption over a representative set of dense
linear algebra operations. In Section 6.3, we present results of our energy-aware runtime for the
solution of sparse linear algebra systems using ILUPACK, providing theoretical and experimental
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results and analyzing the impact of the P-/C-states on the time-power-energy balance. Finally, the
chapter is closed with a discussion of the results for both linear algebra domains in Section 6.4.

6.1 Energy-Aware Techniques

Modern Linux distributions harness DVFS by providing different governors (ondemand, power-
save, etc.) which set idle threads into power-hungry/power-save modes by increasing/reducing
their operating frequency and voltage scaling. Operations as those in the BLAS-3 (e.g., gemm)
are CPU-bound so that, in most architectures, reducing the operating frequency/voltage incurs
an increase of the execution time and, therefore, yields higher energy consumption, blurring all
benefits of a lower-paced execution [41]. Despite being a BLAS-3-based operation, the picture is
different, in example, for the LU factorization with partial pivoting. Due to the existence of task
dependencies, idle periods may appear during the computation of this operation. While this can
be exploited by setting a fixed governor for the entire application, a more effective approach in our
case can be applied instead by integrating this mechanism in the runtime system.

Let us first illustrate the benefits of introducing energy-saving strategies into a task-parallel
execution of a dense linear algebra operation. Although we use the Cholesky factorization as a
guiding example, the ideas and techniques described here also apply to other dense linear algebra
algorithms. Actually, we report experimental results for the LU factorization with partial pivoting
as well.

The results reported in this chapter were obtained using IEEE double-precision arithmetic on
wt amd and tesla2. Highly tuned implementations of BLAS and LAPACK were provided by
MKL 10.0.1, and the SuperMatrix runtime in libflame release 5.0–r6719 was employed in the
evaluation.

Figure 6.1 shows a fragment of a trace (obtained using TAU and Jumpshot [116, 127]) corre-
sponding to the execution of the routine for the Cholesky factorization in libflame (FLASH Chol),
parallelized with SuperMatrix, on tesla2. The four (general-purpose) cores and four GPUs of
the platform collaborate in the factorization. Due to their complexity, kernels of type chol are
executed only by the CPU cores; the remaining three types of kernels, trsm, gemm and syrk, run
on the GPUs. Idle time (in white color) corresponds to periods within which the cores are doing
no useful work and are waiting for an event instead. They occur mainly for two reasons. First, at
a given moment, there may be no tasks ready to be executed (because of dependencies). Second,
when a task is derived to the GPU, the associated core remains idle, waiting for the completion of
the job.

The question that naturally arises is how to leverage these idle periods to reduce energy con-
sumption. We describe in the following the modifications introduced in the SuperMatrix runtime
to replace, whenever possible, busy-waits by more power-friendly states during the execution of the
dense linear algebra codes in libflame.

6.1.1 EA1: Reduce the operating frequency when there are no ready tasks

Our first energy-saving technique works as follows: when a thread samples whether there is work
in an empty ready list, the runtime immediately sets the operating frequency of the associated core
to the lowest possible (using routine cpufreq set frequency from the cpufreq Linux library).
Later, when the poll receives a positive answer, the frequency is raised back to the highest, in
preparation for the execution of the corresponding job. This operational mode implies a reduction
in the polling rate which is profitable (polling in itself can be viewed as a waste of energy). Figure 6.2
illustrates the difference in power consumption between a thread that performs polling at 2.00 GHz
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chol (CPU) trsm (GPU) Set matrix (CPU–GPU)

syrk (GPU) gemm (GPU) Get matrix (CPU–GPU)

Figure 6.1: Execution trace of routine FLASH Chol for the Cholesky factorization of a 7,680×7,680
matrix, using the SuperMatrix runtime, on tesla2 (4 cores and 4 GPUs). The “white
space” in the trace corresponds to idle time. The remaining colors identify kernels
following the same pattern used in Algorithm 1 (page 26).

40

50

60

70

80

90

100

110

120

5

1
0

1
5

2
0

2
5

3
0

P
o
w

e
r

(W
)

Time (s)

Power for different thread activities

MKL dgemm at 2.0 GHz
Polling at 2.0 GHz

Polling at 800 MHz
Blocking at 800 MHz

Figure 6.2: Power consumption of different actions performed by threads on wt amd.

and one that does the same at 800 MHz on wt amd (when all remaining cores are idle): from
around 95 W to less than 90 W. Note also that the power demand of a thread performing polling at
the highest frequency is only slightly lower than that of a thread performing useful work like, e.g.,
a matrix-matrix product (MKL dgemm). The results in that plot also point in the direction of a
complementary/alternative strategy. In particular, observe that a thread performing the busy-wait
corresponding to polling, even at 800 MHz, still requires a considerable amount of power. However,
when the same thread is blocked, the consumption is decreased significantly, to 50–55 W.
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6.1.2 EA2: Remove polling when there are no ready tasks

Our second energy-saving technique replaces the polling state of “inactive” threads by an energy-
friendly, blocking one, thus promoting the associated core to a C-state. Note that setting the
necessary conditions for the operating system to promote the cores into a power-saving C-state is
as much as we can do, since we cannot explicitly enforce the transition from the application code.
Whether these theoretical savings yield an actual gain or not will depend, however, on the existence
of idle long periods during the execution of the algorithm, and the overhead of blocking/activating
a thread. In SuperMatrix, upon completion of the execution of a kernel, a thread queries the
list of ready tasks for new work. When there are no ready tasks, this query results in an active
polling by the thread that produces a waste of energy. Our second energy-aware technique avoids
this situation using POSIX semaphores to control the activity of “idle” threads. Now, when a
thread that polls the ready list for a new job receives a negative answer (there is no task ready for
execution at the moment), it blocks itself (with the system call sem wait()). On the other hand,
when a thread completes the execution of a task, it updates the dependencies of the tasks in the
pending list. In case this implies moving k tasks from the pending list to the ready list, this thread
will also enforce that there exist k active threads, including itself. (Using system call sem post()

to activate other threads, if necessary.) This mechanism ensures that there is basically one active
thread per task in the ready list (to avoid introducing delays in the execution of tasks as well as
deadlock) and that no continuous polling is being done on an empty list (to economize energy).

Although current architectures incorporate DVFS that can be used to reduce power during these
idle periods, Figure 6.3 illustrates that we can do better using our technique which, in addition,
is also useful for hardware where DVFS technology is not available. In particular, the figure
reports the power usage of one/four cores on tesla2 platform when repeatedly running kernel
chol (lines labeled as “FLA Chol”), performing a busy-wait (“Polling”) and blocked (“Blocking”).
Thus, depending on the number of active cores, approximately 10–80 W can be saved by avoiding
polling, provided this does not affect the execution time. On more recent processors, the difference
is also large, up to 30 W or 40 % for a single core (see Figure 6.2).
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6.1.3 EA3: Remove polling when the GPU is running

Our third saving-energy technique replaces the polling state of the busy-waits performed when
a thread waits until the completion of a GPU task. Therefore it is only suitable for multi-GPU
platforms. When a thread encounters a task that has to be executed on the bound GPU, it invokes
the corresponding CUBLAS kernel. The calling thread does not block and, thus, queries the ready
list for more work. In this moment, if the thread obtains a second task to be run in the GPU, it
tries to execute it, invoking the corresponding CUBLAS kernel. As a result and because the thread
associated to the GPU can only serve one kernel at a time, it remains in a busy-wait until the first
kernel completes its execution on the GPU.

To solve this problem our modified energy-aware runtime i) invokes cudaSetDeviceFlags with
the cudaDeviceBlockingSync parameter, which blocks the CPU thread on a synchronization prim-
itive when waiting for the device to finish work; and ii) adds the corresponding synchronization
primitive after the CUBLAS routine performed by libflame. Routine cudaSetDeviceFlags allows
to specify the behavior of the active host thread when it executes device code. To achieve this, each
thread calls this routine before the CUDA runtime is initialized. After that, all synchronizations
using cudaThreadSynchronize will suspend the execution of the calling thread until the device
finalizes its work, thus “sleeping” the core to avoid the potential energy-consuming state.

To evaluate the impact of this option, we have invoked the CUBLAS kernel for gemm 100
times, doing a polling and a blocking wait (setting accordingly the cudaSetDeviceFlags) with the
cudaThreadSynchronize. The results showed that, on average, the blocking synchronization only
increases the total execution time around 2 %.

6.2 Dense Linear Algebra

In this section we report the performance/energy impact when leveraging the techniques pre-
sented in the previous section to the SuperMatrix runtime using a representative set of dense linear
operations executed on multicore and hybrid CPU–GPU platforms.

6.2.1 Multicore architectures

The experiments reported in this section were obtained using IEEE double-precision arithmetic
on wt amd. A modified version of the SuperMatrix runtime in libflame version 5.0–r5587 was de-
signed to leverage the three energy-saving techniques described in the previous section. Execution
times/power measurements were obtained for routine FLASH LU piv (for the blocked right-looking
variant of the LU factorization with partial pivoting) from libflame, linked to the original and
energy-aware implementations of the runtime. Matrices were generated with random entries uni-
formly distributed in [0,1], so that pivoting actually occurs during the computation of the triangular
factors. Our evaluation includes a variety of square matrices whose dimensions range from 2,048
to 12,288 and the block size is set to b = 512. This block dimension was close to optimal for most
kernels involved in this factorization. Power was measured using our internal DCM wattmeter (see
Table 3.3).

Our first experiment evaluates the existence and length of idle periods during the computation
of the LU factorization with partial pivoting on an 8 cores of the AMD processor of wt amd; see
Figure 6.4. Let us examine the two extreme cases: when the problem size is n = 2,048, 53 % of
the time there is a single active thread and only during 9 % of the time all threads are performing
work. On the contrary, if the problem size is much larger, e.g. n = 10,240, about 26 % of the time
there is one active and most of the remaining period all the 8 threads are running. The conclusion
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Figure 6.4: Thread activity during the execution of the LU factorization with partial pivoting.

from this experiment is that, indeed, there exists the opportunity of saving energy by carefully
controlling the level of activity of idle threads.

The second experiment measures the actual gains that can be attained by our energy-aware
approaches, evaluating the real savings introduced by techniques EA1 and EA2. To evaluate the
impact of these techniques, we compare the original SuperMatrix runtime with three modified
variants: the first one reduces the operating frequency during polling periods via DVFS (EA1);
the second one blocks idle threads to avoid polling (EA2); finally, the third variant combines both
techniques (EA1+EA2). While the original SuperMatrix uses the performance Linux governor to
control frequency for maximum performance, we manually control the operating frequency in the
experiments when using EA1 with the userspace Linux governor. The EA2 technique leaves the
operation of DVFS in the hands of the OS with the ondemand1 governor. The combination of both
techniques removes polling intervals and delegates the control of DVFS to SuperMatrix.

Figure 6.5 illustrates the effect of the energy-saving strategies on the execution time, the energy
consumption and the “application energy consumption”. The graphs on the left-hand side report
absolute values, while the ones on the right-hand side correspond to relative results with respect to
the original runtime. The data (sequence of power samples) for the application energy consumption
are obtained from those of the total energy consumption, subtracting the power when the machine
is idle (51.13 W). The results demonstrate that these techniques introduce a minimal overhead (in
terms of longer execution time, due e.g. to the period required to “wake-up” blocked threads) in
the execution time. Concretely, there is an increase of 2.5 % at most for the smallest problem sizes
while, for others, there is no appreciable difference between the results obtained with the original
runtime and those of the different energy-saving variants. On the other hand, the effect on energy
efficiency is much more relevant. For the smallest problem sizes, the number of tasks is relatively
low compared with the number of threads, which results in gaps (idle periods) during the execution
of the algorithm, and this translates into significant energy savings. Specifically, EA1 potentially
leads to savings of 2 % in energy for largest problem sizes, while for EA2 the gain is higher (5 %).
In combination, the use of both techniques produces a similar energy-savings than using only EA2.

1Although we evaluated several other governors (powersave, conservative, etc.), they all offered a significant
increase in the execution time which resulted in a higher energy consumption.
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Figure 6.5: Impact on time and energy of the E1/EA2 energy-aware techniques of the LU factor-
ization with partial pivoting.

6.2.2 Hybrid CPU–GPU architectures

We evaluate the original implementation of the SuperMatrix runtime for multi-GPU platforms
in libflame and the modified versions that incorporate the EA2 and EA3 energy-aware techniques
described in the previous section. Execution times and power measurements are obtained in tesla2,
and they correspond to those of routines FLASH Chol (blocked right-looking variant of the Cholesky
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Figure 6.6: Thread activity on CPU during the execution of the Cholesky factorization.

factorization) and FLASH LU piv (right-looking version of the LU factorization with partial pivoting)
from the libflame library, linked to the original and energy-aware versions of the runtime. Our
experimental study includes a variety of matrix dimensions, ranging from n = 6,144 to 30,720, with
block size b = 1,536. (This block dimension was close to optimal for most GPU kernels involved in
these factorizations.) Power was measured using the WattsUp wattmeter. The case reported in
the figures corresponds to the average from the point of view of execution time.

The Cholesky factorization

Our first experiment determines the periods during which there exist idle cores, because there
are no tasks in the ready list or the linked GPU is performing work. (In this experiment, a core
is performing “useful” work when it is executing a kernel of type chol, handling the structures
that control the dependencies, or transferring data to/from the GPU memory address space.) The
results in Figure 6.6 show that, for the smallest problem dimension n = 12,288, the percentage of
time that 1–3 threads are used is above 70 % of the total. (In other words, the four cores of the
platform are being used simultaneously only 30 % of the time.) When the problem size grows up to
n = 30,720, this ratio sightly decreases to 25 %. These numbers clearly identify the energy-saving
potential in the task-parallel execution of the algorithm.

The second experiment analyzes the theoretical and actual gains that are attained with the
energy-aware techniques, contrasting them with the potential and real savings introduced by tech-
niques EA2 and EA3. In order to do this, we compare the original SuperMatrix runtime with three
modified variants: the first one employs semaphores to block threads when there are no CPU tasks
(EA2); the second one integrates the idle-wait cudaThreadSynchronize calls in order to suspend
thread activity during execution of GPU kernels (EA3); finally, the third variant combines both
techniques (EA2+EA3). In our experiments, we do not modify the operating frequency of socket-
s/cores via DVFS (related to EA1) because the version of Linux kernel of the platform –CentOS
5.3– does not feature this capability.

Figure 6.7 illustrates the impact of the energy-aware techniques on the execution time, the
total energy consumption and the “application energy consumption”. The graphs on the left-hand
side report absolute values, while the ones on the right-hand side correspond to relative results
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Figure 6.7: Impact on time and energy of the EA2/EA3 energy-aware techniques of the Cholesky
factorization.

with respect to the original runtime. The data (sequence of power samples) for the application
energy consumption are obtained from those of the total energy consumption, subtracting the
power when the machine is idle (292 W). The results demonstrate that these techniques introduce
a minimal overhead (in terms of delays, due to the time required to “wake-up” blocked threads)
in the execution time. Concretely, there is an increase of around 2–4 % for all problem sizes when
using EA3 while, for EA2, no difference can be appreciated between the results obtained with the
original runtime and those of the different energy-saving version. On the other hand, from the
energy-consumption perspective, the graphs in the middle row of the figure show that, on average,
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Figure 6.8: Thread activity on CPU during the execution of the LU factorization with partial
pivoting.

EA2 potentially leads to an energy-saving of 1 %, while EA2 could provide slightly higher gains,
around 3 %. In combination, the use of both techniques yields a practical saving around 4 %. The
graphs in the last row only consider consumption due to the application and show that, on average,
EA2 does not provide any practical energy saving for this factorization. However, EA3 provide
significant gains, around 18 %, and the combination of both techniques renders energy savings
that, on average, are close to 20%.

The LU factorization with partial pivoting

We next repeat the experiment to illustrate the energy-saving potential in the hybrid GPU–
GPU task-parallel execution of the algorithm for the LU factorization with partial pivoting. For
this purpose, we determine the periods during which cores are idle (there are no tasks in the ready
list or the bound GPU is performing work). The results in Figure 6.8 show that, for the smallest
problem dimension, n = 6,144, the percentage of time that 1–3 threads are used is above 92 % of
the total while the four cores are being used only 8 % of the time. When the problem size grows
up to n = 24,576, these ratios change to 45–55 %.

Figure 6.9 shows the benefits of the energy-aware techniques on the energy consumption as well
as the impact on the execution time. In this case, EA3 yields a minor increase of the execution
time (1 %), while EA3 and the combination of both techniques does not affect the time. On the
other hand, from the energy-consumption perspective, the graphs in the middle row of the figure
show that, on average, EA3 leads to 4 % savings of the total energy in some matrix sizes, while EA3
attains slightly higher gains, around 7–9 %. In combination, the use of both techniques deliver an
energy saving around 9 %. Finally, the graphs in the last row show that, on average, EA3 does not
provide significant savings in the application energy, while EA2 provide remarkable gains, around
35 %. The combination of both techniques shows energy savings reaching 38 %.
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Figure 6.9: Impact on time and energy of the EA2/EA3 energy-aware techniques of the LU fac-
torization with partial pivoting.

Improved multi-GPU SuperMatrix runtime

In this section we first present the energy-saving techniques introduced in the runtime, and their
practical outcome on the execution of the LU and the Cholesky factorization using the improved
version of SuperMatrix runtime that allows to advance critical tasks introduced in Section 2.2.2.

Let us first evaluate the gains of the EA2 and EA3 energy-saving techniques (presented in
Section 6.1) for the task-parallel execution of libflame routines on hybrid CPU–GPU platforms
using the tuned SuperMatrix runtime that advances critical tasks.
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Figure 6.10: Impact on time and energy of the energy-aware techniques of the LU factorization
with partial pivoting without (top plots) and with priority tasks (bottom plots).

Figure 6.10 reports the impact on the execution time and on the energy consumption when the
energy-aware version of SuperMatrix with and without priority tasks is employed to execute the
LU factorization with partial pivoting. Figure 6.11 reports the same information for the Cholesky
decomposition using both versions with and without priority tasks of SuperMatrix. In all cases,
we employed the multi-GPU mode with 4 GPUs. The combination of both techniques is referred
to as “EA2+EA3”. These results show a variety of energy gains, from close to 10 % in some cases
to even a waste of energy in a couple of cases, depending on the dense linear algebra operation,
matrix dimension, and technique. In the following section we relate these results with the actual
consumption of dynamic power and the length of idle periods.

It is of special interest the behavior of the power-aware runtime for the LU factorization with
and without task priorities. The reduction in execution time when task priorities are used yields
an important reduction in energy consumption (compare right plots in Figure 6.10); however, this
improvement in execution time is mainly due to a reduction in the amount of idle periods in the
parallel execution. As our power-aware techniques exploit idle periods, the expected improvements
from the application of these mechanisms are less significant as idle time decreases. That is the
main reason why the percentage of reduction in energy consumption is smaller when priorities are
applied (less than 6 %) than when priorities are not used (up to 9 %).
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Figure 6.11: Impact on time and energy of the energy-aware techniques of the Cholesky factoriza-
tion with partial pivoting without (top plots) and with priority tasks (bottom plots).

6.2.3 Leveraging power models in SuperMatrix

We next employ a combination of the power/energy models for hybrid and multi-socket plat-
forms presented in Sections 4.5.1 and 4.5.2, respectively, to assess the quality of the energy-savings
observed in the previous experiments in the context of the hybrid CPU–GPU platforms addressed
in this work. Given that the energy savings due to EA2 and EA3 techniques are produced in the
CPU cores, we only take into account the power consumption in the host. The proposed model
can eventually be incorporated into the runtime to dynamically determine the optimal number of
computational resources to employ for the execution of a dense linear algebra operation. Since
there exist different configurations of resources that result in equivalent or nearly equivalent per-
formance, the hybrid SuperMatrix runtime can make use of the model to automatically select the
most energy-efficient configuration.

Consider, e.g. the execution of the LU factorization with partial pivoting, for a matrix of di-
mension n = 20,480 with block size b = 1,024, using the multi-GPU mode and 4 GPUs. The total
execution time employing the runtime enhanced with priorities is 39 seconds, of which CPU cores
are inactive during 50.9 %. On the other hand, the total energy consumption is 3.88 Wh, with about
82.9 % corresponding to the sum of system and static power dissipation. Thus, the highest savings
that we could expect by exploiting those periods during which CPU cores are idle is approximately
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0.509 · (1 − 0.829) ≈ 7.6 %, which is consistent with the savings reported in Figure 6.10 for that
particular problem size.

6.3 Sparse Linear Algebra

The solution of sparse systems of linear equations is an ubiquitous problem in scientific and
engineering applications which has been tackled in many projects during the past decades [111].
One ongoing effort has resulted in ILUPACK (Incomplete LU decomposition PACKage) [76], a
package that combines ILU factorizations with iterative Krylov subspace methods. Compared with
sparse direct solvers, this class of methods have proven to be quite competitive for a wide range of
applications (specially those arising from 3D PDEs) because of their moderate computational and
memory requirements [111].

Due to the scale of the linear systems appearing in many applications, and the computational
cost of the numerical methods, most solvers target parallel architectures. Following this trend,
the performance benefits of exploiting task-parallelism within ILUPACK for the solution of sparse
linear systems on multicore processors have been demonstrated in [7] and [8] which present two
concurrent versions of ILUPACK, for multicore architectures and distributed-memory (message-
passing) platforms respectively. More details of ILUPACK can be found in Section 2.6.1.

One of the goals of this section is to analyze the effect that the exploitation of our energy-
aware techniques provide on an energy-aware version of the runtime for the complete precondi-
tioner+iterative solve process in ILUPACK. Afterwards, we explain the energy gains of the new
runtime and its effects when the different P-states are applied.

6.3.1 Environment setup

In all our experiments, we employ a scalable symmetric positive definite sparse linear system
of dimension n = N3, resulting from a partial differential equation −∆u = f in a 3D unit cube
Ω = [0,1]3 with Dirichlet boundary conditions u = g on δΩ, discretized using a uniform mesh of size
h = 1

N+1 . We set N = 252, which yields a linear system with about 16 ·106 unknowns and 111 ·106

nonzero entries in the coefficient matrix. All tests were performed using IEEE double-precision
arithmetic.

We employ two target servers in our experiments, wt amd and wt itl. Details on the voltage–
frequency pairs (V CCi − fi) associated with each P-state (Pi) are collected in Table 3.2. In our
experiments, power samples were obtained using the NI internal wattmeter.

The multithreaded implementation of ILUPACK is built on top of the OpenMP interface avail-
able with Intel icc (version 12.1.3) on both platforms. Performance (core activity) traces were
captured using our power-performance framework introduced in Section 3.2. Traces of CPU power
modes were recorded using our PMLib plug-in described in Section 3.2.3.

6.3.2 Leveraging the C-states in ILUPACK

We first investigate the exploitation of the C-states by the introduction of the EA2 technique
in the runtime underlying ILUPACK, and relate its effect with the power model presented in
Section 4.4. In the experiments in this section, we employ all the cores of the target platforms; and
we set the Linux governor to ondemand, operating all the active cores in the same state P0 during
all the execution (i.e., we do not allow voltage-frequency changes).

In Section 2.6.1 we exposed that the task-parallel calculation of the preconditioner in ILU-
PACK is organized as a directed task graph, with the structure of a binary tree and bottom-up
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Figure 6.12: Traces of core activity, power and C-states (top, middle and bottom, respectively)
during the computation of the ILU preconditioner using the performance-oriented,
power-oblivious runtime, with all cores of wt itl in state P0.

dependencies, from the nodes (tasks) at each level to those in the level immediately above it. The
subsequent iterative process basically requires the solution of (lower and upper) triangular linear
systems per iteration, with tasks that are also organized as binary task-trees, but with bottom-up
(lower triangular system) or top-down (upper triangular system) dependencies. In any case, when
the tasks in these trees are dynamically mapped to a multicore platform by the runtime, the execu-
tion should result in periods of time during which certain cores are idle, depending on the number
of tasks of the tree, their computational complexity, the number of cores of the system, etc. It is
basically these idle periods that we could expect that the operating system leverages, by promoting
the corresponding cores into a power-saving C-state employing our EA2 energy-aware technique.

Figure 6.12 presents the execution trace, power consumption, and C-states observed during the
computation of the ILUPACK preconditioner, using the original (power-oblivious) runtime, with
all cores of wt itl in state P0. Surprisingly, the results are quite different from what we could
expect: Idle periods do not show a transition of the corresponding core to a power-saving C-state
and the associated reduction of the power rate. Figure 6.13 reports an analogous behavior for
the (preconditioned) iterative solution stage on wt itl (and similar results were also obtained for
both stages on wt amd). A closer inspection of the runtime that leverages the task-parallelism
in ILUPACK reveals the reason for these results. Concretely, in the original implementation of
ILUPACK runtime, upon encountering no tasks ready to be executed, “idle” threads simply perform
a “busy-wait” (polling) on a condition variable, till a new task is available. This strategy thus
prevents the operating system from promoting the cores into a power-saving C-state because the
threads are not actually idle (but doing useless work).

As an alternative to the previous power-hungry strategy, we integrate the principles of our
EA2 technique into the runtime underlying ILUPACK. Thus, the energy-aware version applies an
“idle-wait” (blocking) whenever a thread does not encounter a task ready for execution and, thus,
becomes inactive. As in the original version of the runtime, upon completing the execution of a task,
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Figure 6.13: Traces of core activity, power and C-states (top, middle and bottom, respectively)
during (part of) the iterative solution stage using the performance-oriented, power-
oblivious runtime, with all cores of wt itl in state P0.

a thread updates the corresponding dependencies identifying those tasks, if any, that have become
ready for execution. However, in the power-aware runtime, the thread also ensures that the number
of active (non-blocked threads) is, at least, equal to the number of ready tasks, releasing blocked
threads if needed. The effect of idle-wait on the power trace and use of the C-states of wt itl is
illustrated in Figure 6.14, for the calculation of the preconditioner, and Figure 6.15, for the iterative
solution stage. Compared with the performance-oriented (but power-hungry) implementation of
the runtime (see Figures 6.12 and 6.13), the new runtime effectively allows inactive cores to enter
a power-saving C-state, thus yielding the sought-after power reduction.

The pending question, however, is whether the adoption of the power-aware runtime comes
with a performance penalty which may blur the energy benefits, as in most cases the key factor
is energy instead of power. Table 6.1 compares the execution time, average power, and energy
consumption of the two runtimes, showing that fortunately this is not the case for the computation
of the preconditioner and iterative solution, on any of the two target platforms when operating in
state P0. For example, consider platform wt amd: for a minimal increase in the total execution
time, from 286.28 s to 287.91 s, we observe reductions in the (average) power from 240.17 W to
227.16 W for the preconditioner; and from 269.27 W to 230.80 W for the solver. The outcome is
a decrease of the total energy from 75,163.74 J to 67,758.84 J (−10.88 %). The power reductions
attained by the power-aware implementation with respect to the power-oblivious case are given
in form of ratios (in %) in the columns labeled as “Experimental” of Table 6.2 (averaged for 10
repeated executions). Combined with the negligible impact of the runtime on the execution time,
these power figures also justify similar energy savings.

Let us now relate the power-energy reductions attained by the reimplementation of the run-
time with the EA2 technique that leverages the CPU C-states to the power model presented in
Section 4.4. For this purpose, we need to i) to account for the periods of “idle” time during the
execution of ILUPACK, with both the original and energy-aware variants; as well as ii) to assess
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Figure 6.14: Traces of core activity, power and C-states (top, middle and bottom, respectively)
during the computation of the ILU preconditioner using the power-aware runtime,
with all cores of wt itl in state P0.
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Figure 6.15: Traces of core activity, power and C-states (top, middle and bottom, respectively)
during (part of) the iterative solution stage using the power-aware runtime, with all
cores of wt itl in state P0.

the impact of the EA2 technique, i.e., replacing a busy-wait (polling) for an idle-wait (blocking). In
order to tackle i), we follow a pragmatic approach, and simply execute the codes and measure the
actual idle and computation times in our case, e.g. using our power-performance tracing framework.
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Platform
Runtime Preconditioner Iterative solver Total

type Time Power Energy Time Power Energy Time Energy

wt amd
Oblivious 66.11 240.17 15,878.82 220.17 269.27 59,284.92 286.28 75,163.74

Aware 66.52 227.16 15,112.06 221.39 237.80 52,646.41 287.91 67,758.84

wt itl
Oblivious 54.01 137.58 7,431.67 146.67 162.34 23,809.87 200.68 31,241.69

Aware 54.47 125.70 6,847.47 148.15 150.17 22,247.93 202.62 29,095.40

Table 6.1: Execution time, average power and energy of the power-oblivious and power-aware
implementations of the runtime (top and bottom, respectively) with all cores operating
in state P0.

Platform
Preconditioner Iterative solver

Theoretical Experimental Theoretical Experimental

wt amd 89.58 93.88 91.47 87.36

wt itl 90.11 90.64 93.65 92.05

Table 6.2: Expected and observed (theoretical and experimental, respectively) power ratios (%)
between the power-aware implementation of the runtime and the power-oblivious one,
with all cores running in state P0.

For ii), we use the data in Table 4.4 for PY
0 , P S

0 ; and estimate PC1
ilu,0 = βilu,0 using a procedure

for ILUPACK analogous to that exposed for the three benchmark kernels combined with linear
regression. Finally, we assume that a core promoted to a sleep state does not dissipate any core
power.

Consider PT
pilu,0(c) and PT

bilu,0(c) denote, respectively, the total power dissipated during the

execution of ILUPACK, using the power-oblivious (polling pilu) and power-aware runtimes (block-
ing bilu), with c cores in state P0. Since now some cores may be inactive during a certain part of
the execution, we need the power model (4.10) of Section 4.4: which now becomes

PT
pilu,0(c) = fpilu,0 · (P

Y
i + P S

i + PC1
ilu,0 · c) + (1− fpilu,0) · (PY

i + P S
i + PC1

polling,0 · c) . (6.1)

The first term of the addition captures the cost of the cores performing useful work during the
computation of ILUPACK (alike (4.10)), and appears multiplied by fpilu,0 , which corresponds to
the ratio of the total time that this computation occupies. Thus, the second part of the addition
represents the remaining fraction of the total time, (1−fpilu,0), and captures the power dissipation

of the cores performing polling. In our evaluation, we set PC1
polling,0 = PC1

busy,0, as the underlying

procedures are similar.

On the other hand, for PT
bilu,0(c), we have

PT
bilu,0(c) = fbilu,0 · (P

Y
i + P S

i + PC1
ilu,0 · c) + (1− fpilu,0) · (PY

i + P S
i ) , (6.2)

as we assumed that a core in blocking mode wastes no power (i.e, PC1
blocking,0 = 0).

Table 6.2 compares the theoretical ratios PT
bilu,0(c)/PT

pilu,0(c) with the experimental data (aver-

aged for 10 different executions), showing a close matching between the two, below 2 % for wt itl
and slightly larger, about 4 % for wt amd. These results illustrate the benefits of the power-aware
runtime, but also the accuracy of the power model. For all other frequencies, as we will see next,
the model always predict the power-ratio with an error below 2 %.

106



6.3. SPARSE LINEAR ALGEBRA

Platform
P-state, Preconditioner Iterative solver

Pi Time Power Energy Time Power Energy

wt amd

P0 66.52 227.17 15,112.06 221.39 237.80 52,656.41

P1 81.56 197.77 16,131.31 252.54 207.98 52,525.50

P2 97.16 172.68 16,778.25 288.31 187.14 53,954.38

P3 113.25 160.16 18,138.44 326.11 176.10 57,426.43

P4 137.62 151.52 20,852.36 284.34 167.36 64,321.79

wt itl

P0 54.47 125.70 6,847.47 148.15 150.17 22,247.94

P1 57.31 119.23 6,833.73 147.16 145.37 21,392.83

P2 60.65 114.16 6,924.03 151.35 140.75 21,302.70

P3 65.29 108.95 7,114.07 164.85 132.35 21,819.16

Table 6.3: Execution time, power and energy of the power-aware implementation of the runtime,
with all cores in state Pi.

Platform Pi/P0 ∆fi ∆BWi
Preconditioner Iterative solver

∆Time ∆Power ∆Energy ∆Time ∆Power ∆Energy

wt amd

P1/P0 −25.00 −18.68 22.60 −12.94 6.74 14.07 −12.54 −0.22

P2/P0 −40.00 −32.45 46.06 −23.99 11.02 30.23 −21.30 2.48

P3/P0 −50.00 −42.29 70.24 −29.50 20.02 47.30 −25.94 9.07

P4/P0 −60.00 −53.78 106.88 −33.30 37.98 73.60 −29.62 22.17

wt itl

P1/P0 −6.50 −1.10 5.21 −5.15 −0.20 −0.67 −3.20 −3.84

P2/P0 −13.50 −0.86 11.35 −9.18 1.12 2.16 −6.27 −4.25

P3/P0 −20.00 −1.33 19.86 −13.33 3.89 11.27 −11.86 −1.93

Table 6.4: Variations of frequency, bandwidth, execution time, power and energy ratios (%), of
the power-aware implementation of the runtime, between state Pi and state P0.

6.3.3 Impact of the P-states on ILUPACK

In this section we evaluate the effect of the different frequencies or P-states available for each
processor on the performance-power-energy trade-off of ILUPACK. For that purpose, we set the
Linux governor mode to userspace, and operate all the cores of the platforms in the same P-
state. In the following, we always employ the power-aware version of the runtime. Therefore, we
assume that, when idle, a core will remain in one of the deep power-saving C-states (C1 or higher),
consuming a negligible amount of power.

The general consensus is that, for a memory-bound computation, some benefit may result from
operating the system cores at low frequencies. The reason is that, although there exists a linear
dependence between the core performance and the frequency, the effect on the execution time of
a memory-bound algorithm should be minor because the key for this type of computation is not
core performance but memory bandwidth. On the other hand, for current multicore technology, a
reduction of frequency is associated with a decrease of voltage (see Table 3.2) and, because of the
relation between static power to V CC2 and dynamic power to V CC2 · f , in principle we can expect
a significant reduction of the power draw. However, the balance between these two factors, time
and power, on the energy efficiency is delicate, and other elements also play a role. Whether these
variations of time and power yield a loss or a gain in energy for ILUPACK is thus the question to
investigate in this section.

Table 6.3 reports the impact of the P-states on the time, (average) power consumption and
energy efficiency of the two stages of ILUPACK, calculation of the preconditioner and iterative
solution, on both platforms. To help with the analysis of these results, Table 6.4 offers the variation
of bandwidth and results that are experienced when moving from state P0 to state Pi, calculated as
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100·(Mi−M0)/M0, where M0 and Mi denote, respectively, the values of the magnitudes (parameters
or results) in states P0 and Pi.

The first aspect to notice is that the presumed independence between execution time and core
frequency does not hold on wt amd. This should not be a surprise as our experiment in Table 3.2
already revealed that there is a strong connection between the core frequency and the memory
bandwidth in this platform (see also column ∆BWi in Table 6.4). The combined decreases of
frequency and memory bandwidth when moving from P0 to a higher P-state (between −25 %
and −60 % for the former and from −18.68 % to −53.78 % for the latter) explain the increases of
execution time for both the preconditioning stage (22.60–106.88 %) and the iterative solver (12.54–
73.60 %) in this platform. The behavior of wt itl is quite different, which is partially explained
because now the reduction of frequency does not bring a decrease of memory bandwidth. Still, for
the preconditioner, the reduction of frequency when moving from P0 to a higher P-state (−6.50 %
for P1, −13.50 % for P2 and −20.00 % for P3) basically matches the increase of execution time
for this stage (5.21, 11.35 and 19.86 %, respectively). We can take this as an indicator that the
computation of the preconditioner (or, at least, parts of it) is not such a memory-bound computation
as one could, in principle, presume. The results are different for the iterative solver. In this case,
there is no significant difference in the execution time when running the computations in states P0
or P1, but the time increase when moving from P0 to P2/P3 is 2.16/11.27 %, which is still lower
than what could be explained by the reduction of frequency alone.

From the performance point of view, the major conclusion of this analysis is that the best
solution is to always run ILUPACK with all the cores operating at the highest frequency (i.e., in
state P0), though in some cases —in particular, the iterative solver executed in frequencies P0, P1
and P2—, the differences are small on wt itl.

Performance is crucial and, under some circumstances, energy efficiency is also vital. From that
point of view, a reduction of power is beneficial only if it does not yield an increase of execution
time that blurs the positive effects on energy consumption. For the particular case of ILUPACK,
the results in Table 6.3 show that, on wt amd, the most energy efficient solution is to execute the
preconditioner with all cores in state P0 but the iterative solver in state P1. For wt itl, however,
using states P1, P2 or P3 for the iterative solver results in small significant energy savings, from
−1.93 % to −4.25 %.

Let us connect again the power variations attained with the different P-states and the models
for total power. For this purpose, we relate PT

bilu,i(c) and PT
bilu,0(c), using

PT
bilu,i(c) = fbilu,i · (P

Y
i + P S

i + PC1
ilu,i · c) + (1− fbilu,i) · (P

Y
i + P S

i ) , (6.3)

and the experimental data. Table 6.5 reports the accuracy of our model to capture the experimental
behavior due to the variations of the P-state on ILUPACK, with an error of at most 3.08 % for
wt amd and even smaller for wt itl.

6.4 Concluding Remarks

Performance-oriented decisions, like busy-waiting (polling) till new work is available, are far from
uncommon, being adopted in runtimes like OmpSs (SMPSs) [118] or SuperMatrix and libflame [59]
as well. Furthermore, the same performance-oriented but power-oblivious behavior appears, for
example, when a synchronous GPU kernel is invoked with the default operation mode of CUDA [101]
(the CPU remains in an active polling, waiting for the GPU to finish), or with the polling mode
of certain MPI implementations (e.g., MVAPICH [96]). In all these cases, these energy-oblivious
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Platform Pi/P0
Preconditioner Iterative solver

Theoretical Experimental Theoretical Experimental

wt amd

P1/P0 88.05 85.48 84.17 87.64

P2/P0 78.96 76.38 76.56 79.65

P3/P0 73.50 70.78 71.60 74.85

P4/P0 69.73 66.65 68.77 70.80

wt itl

P1/P0 95.62 95.54 96.47 96.47

P2/P0 90.84 90.80 91.25 91.84

P3/P0 87.21 86.94 85.96 87.77

Table 6.5: Expected and observed (theoretical and experimental, respectively) power ratios (%),
of the power-aware implementation of the runtime, between state Pi and state P0.

strategies prevent the operating system from promoting the hardware into a power-saving C-states
because the application is not idle but doing useless work. In this sense, solutions are needed to
minimize the energy impact of the previous power-hungry strategies.

In this chapter we have introduced three energy-aware software techniques that aim at promot-
ing hardware to low-consumption states and illustrate them through a series of examples using the
SuperMatrix runtime. Furthermore, we integrate these techniques into the SuperMatrix runtime
for the parallel execution of dense linear algebra operations on multicore and hybrid CPU–GPU
platforms, in order to demonstrate the trade-off between energy consumption and execution time
of both energy-oblivious/-aware runtime versions. The experimental results on platforms wt amd
and tesla2 demonstrate that, by avoiding active polling (busy-waits) in the runtime, it is possible
to leverage periods when the general-purpose cores are performing no useful work, with a minor
impact on the execution time. One crucial aspect is that, because of the clear separation between
the linear algebra codes in libflame and the SuperMatrix runtime in charge of their task-parallel
execution, our energy-aware techniques can be automatically applied to all routines of libflame.
Also, we expect that the same energy-aware techniques are valid for other runtimes, in particular
those of the OmpSs, PLASMA and MAGMA projects [118, 5], yielding similar benefits.

We have also implemented an energy-aware runtime for the complete preconditioner+iterative
solve process in ILUPACK using the techniques developed throughout the chapter. In the second
part of the chapter, we explain/justify the variations observed for the new energy-aware runtime and
the effect of the different P-states for this particular application. We provide experimental results
in two different multicore architectures and relate these to the model presented in Section 4.4.
The introduction of the energy-aware runtime results from the experimental observation that, in
an energy-oblivious execution of the original runtime for ILUPACK, idle threads with no useful
task to execute, simply poll till new work is available. As a result, these threads dissipate a
significant amount of power in current processors, for no practical performance benefit for the
particular case of ILUPACK. Our energy-aware implementation replaces this behavior with a more
power-friendly implementation, that blocks idle threads till new work is available. This requires a
careful reorganization of the underlying runtime, to avoid deadlocks and ensure a rapid response
that does not impair performance. As a result, we observed experimental savings in the energy
usage between 7 and 13 %, at practically no cost from the performance point of view, which are
clearly connected to the impact of the C-states by our power models. In theory, there exists a
linear relation between performance and frequency, which could be expected to be even sublinear
(at least on the Intel processor) for a presumably memory-bound computation like ILUPACK, and
a quadratic/cubic relation between energy and voltage-frequency. However, the analysis of the
time-power-energy trade-off when the cores operate in a certain P-states, with the energy-aware
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version of the runtime, reveals the high impact of idle and, to a minor degree, uncore power which
clearly favor shorter execution time over lower power dissipation rates. This is also contrasted to
and accurately captured by our power model.
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CHAPTER 7

Conclusions

7.1 Conclusions and Main Contributions

The main goal of the dissertation was the design, development and evaluation of strategies and
techniques to improve the energy consumption of existing linear algebra libraries.

At the conclusion of this work, the main contributions of this dissertation are the following:

• A review of the state-of-art techniques, methods and algorithms related to energy efficiency
that can be applied on multicore and hybrid platforms.

• The development of an integrated framework for power-performance analysis of applications
on multicore and hybrid platforms, consisting of profiling/tracing tools in combination with
power measurement devices.

• The introduction of a power model in applications that exploit parallelism at the task-level
based on a series of consumption parameters that are directly related to the architecture and
the modeled application.

• The analysis of power-aware techniques from the theoretical point of view and their simulation
via linear algebra codes on a variety of hardware configurations to assess their impact on
performance and energy consumption.

• The integration and validation of the energy-aware techniques into a set of dense and sparse
linear algebra libraries and runtimes.

A main contribution of this dissertation is the integrated power-performance analysis framework.
Due to the lack of environments that provide both energy/power and performance metrics, we
developed a full framework which has been the base for all the experiments performed in this
dissertation. This suite is the combination of an already existing performance profiling/tracing
tool with a new library to interact with a series of internal and external devices. This allowed us
to account energy usage and relate these data with performance parameters for the execution of
state-of-the-art linear algebra codes.

An additional contribution is the development of models in order to predict the power/energy
usage of parallel applications. Our contribution is different from already existing models in that it
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does not rely on the hardware counters. Starting from estimations of the theoretical costs and real
execution times involved in the tasks of the linear algebra codes, our memory-contention approach
predicts the energy consumption with very high resolution.

Thirdly, we propose and evaluate two key energy-saving techniques. This theoretical study
determined the best approach for current architectures, the Race-to-Idle Algorithm, which has
been incorporated into two state-of-the-art linear algebra runtimes: SuperMatrix as part of the
libflame library for dense linear algebra; and the ad-hoc runtime for ILUPACK, that implements
a complete preconditioner+iterative solver for sparse linear algebra. As a major contribution, we
provide two new energy-aware versions of these runtimes that yield, in average, savings between
7–9 % without a negligible impact on the performance. We also demonstrate that our model can be
easily incorporated into these runtimes to provide better scheduling of the tasks on multithreaded
architectures.

The following sections further detail those specific contributions and summarize the correspond-
ing conclusions.

7.1.1 Power-performance profiling/tracing tools

A full environment for power-performance analysis of scientific applications in the HPC field was
developed and evaluated using several dense and sparse linear algebra algorithms. The framework
offers useful information on power and performance for different kinds of parallel workloads, from
MPI codes that operate on moderate-scale clusters, to multithreaded applications that exploit the
benefits of multicore+GPU platforms. In addition, we also developed a complementary package,
PMLib, that allows to gather power data and eases the interaction with the power measurement
devices attached to the target platforms. Its integration into the framework contributes to the
detailed analysis of parallel applications.

We also presented new modules for the PMLib library, in particular, a new appliance which
collects informations on processors energy states, like the P-/C-states.

To demonstrate the capabilities of our framework we provided a detailed power and performance
analysis of the LU factorization on a platform equipped with multicore technology. Different imple-
mentations of this algorithm have been analyzed, in particular the LAPACK and MKL implemen-
tations of the LU factorization with partial pivoting, and the SMPSs task-parallel implementation
which computes the same factorization with incremental pivoting.

The conclusion from this study is that the routines that present less idle time, and thus perform
a better usage of the hardware resources, significantly reduce the execution time and energy con-
sumption. In other words, by keeping the cores busy most of the time, compute-intensive algorithms
that apply a “race-to-idle” strategy provide always lower execution times and energy consumption.
Given the high energy cost of keeping the machine active when there is no workload to run, the
“race-to-idle” approach clearly pays off for such algorithms.

7.1.2 Power and energy models

An accurate model to estimate the energy consumption for task-parallel implementations of
dense matrix factorizations was provided as a key contribution of this dissertation. With this result,
we demonstrate that it is possible to systematically model the power and energy consumed by these
kind of operations in multicore architectures. Modeling the power dissipated by a high performance
parallel implementation of this operation on a multicore platform is an initial step towards the more
ambitious goal of modeling power for a large collection of message-passing numerical codes on large-
scale clusters equipped with multicore processors.
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In order to deliver accurate estimations, we accommodate memory contention in the prediction
of dynamic power dissipation, based on the execution time variability during the actual the global
execution of the algorithm.

After a careful experimental validation using a fine grain power measurement device, we con-
firmed the reliability of the model using a variety of task-parallel dense linear algebra algorithms:
the Cholesky, LU and the QR factorizations. Our total energy estimations are, in average, within
5 % of the real values, and are thus comparable with those obtained from more elaborated models
that rely on hardware counters [35].

Two properties of the proposed model are portability and generality, since it does not require
access to low-level, platform-dependent hardware counters. Our approach can be applied to model
power/energy consumption of integer- or floating-point intensive task-parallel applications, not
necessarily related to dense linear algebra, when the following three conditions are met: i) there
exist fairly good estimations of the theoretical cost of each type of task; ii) the target platform is
instrumented with some sort of power measurement device; and iii) there exist accurate measures
of task execution time of the tasks.

In addition to provide accurate estimations of energy consumption, our model aims at guiding
and helping the operation of a runtime to unleash a more energy efficient execution of task-parallel
algorithms. For instance, in situations where there exist different mappings of tasks to computa-
tional resources that may result in equivalent or nearly equivalent performance on multithreaded
platforms, our model can be used by a runtime to automatically predict the energy of different
hardware configurations and select the most efficient one from this point of view.

7.1.3 Energy-aware techniques

A contribution of this dissertation consisted in the analysis of two key energy-aware techniques
that handle DVFS and aim at reducing energy consumption in linear algebra operations. The Slack
Reduction Algorithm (SRA) is designed and implemented to exploit slacks (idle periods) existing in
the DAG that represents a dense linear algebra operation by carefully tuning frequency execution
of certain tasks. We also study an alternative approach, the Race-to-Idle Algorithm (RIA), which
pursues the power-conservation goal but from a totally opposite approach; specifically, this strategy
generates inactive times during the execution of the DAG by executing all tasks at the highest
frequency, and relies on the power savings attained via a reduction of the operating frequency
during idle periods.

To validate the theoretical energy gains that can be attained with SRA and RIA, we developed
a simulator to emulate different types of architectures. The simulator calculates a schedule of the
tasks for both strategies, taking into account practical constraints like actual number of resources
(processor cores), the cost of varying processor frequency, the discrete range of frequencies, the
granularity of DVFS operation (core- or socket-level), etc.

Thanks to this simulator, we provide a complete energy performance analysis of both strategies
using current blocked dense linear algebra algorithms for the LU and QR factorizations. The
results demonstrate that, under realistic environments and certain conditions, a reduction in energy
consumption is possible. In general, superior performance of the RIA policy over the SRA one from
the point of view of execution time for problems of large dimension is observed. However, SRA,
which is a more elaborate strategy than RIA, can potentially deliver higher energy savings than
RIA for small problems. Finally, we demonstrate the impact on the energy savings of hardware
that operates with DVFS at the core level (instead of the socket level).
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7.1.4 Dense linear algebra

A contribution was the design and implementation of energy-aware techniques that, integrated
into the SuperMatrix runtime, report consistent reductions of the total energy consumption. Ad-
ditionally, we leverage DVFS to further enhance the energy-efficient execution of the Cholesky
factorization and LU decomposition with partial pivoting, where idle threads are set into a block-
ing state and the corresponding cores are promoted into a low-power mode, without compromising
the computational performance of the execution.

Experimental results with state-of-the-art multicore and multithreaded platforms demonstrate
that, by avoiding active polling (busy-waits) in the runtime, it is possible to leverage periods where
the general-purpose cores are performing no useful work, with a minor impact on the time-to-
solution. One key observation is that, because of the clear separation between the linear algebra
codes in libflame and the SuperMatrix runtime in charge of their task-parallel execution, the
proposed energy-aware techniques can be automatically applied to all routines of libflame. We
expect that the same energy-aware techniques are valid for other runtimes, in particular those of
the StarSs [118], PLASMA [5] and MAGMA [5] projects, yielding similar benefits.

During the experimental evaluation of certain dense matrix decompositions on heterogeneous
CPU–GPU platforms, it was observed that the panel factorization that lies in the critical path of the
algorithm is a major obstacle to attain high performance. To deal with this problem, we leverage
task priorities of a new version of the runtime, that advances the computation of critical operations.
The experimental results show a significant reduction of idle time in this type of platforms, thus
reducing the energy consumption. Furthermore, in this particular setup, we can leverage the power
model to pass valuable information to the scheduler, so that at run time it can make decisions on
the best configuration from the energy perspective.

Finally, we analyze the actual impact of the performance and energy-saving enhancements using
the improved version of the SuperMatrix runtime that advances critical tasks using two key dense
linear algebra operations, namely the LU factorization with partial pivoting and the Cholesky
decomposition, that are representative of many other dense BLAS-3-based matrix operations.

7.1.5 Sparse linear algebra

Two main contributions in the domain of sparse linear algebra were: i) the implementation of
energy-aware strategies for the complete preconditioner+iterative solve process in ILUPACK; and
ii) the characterization of the power consumption in the complete solution of symmetric positive
definite sparse linear systems.

A general conclusion from this study is that, for a mildly memory-bound operation, the re-
duction of power attained by lowering the voltage/frequency does not necessarily result in en-
ergy savings due to the increase of execution time. The computation of the complete precondi-
tioner+iterative solve process in ILUPACK is just an example where a reduction of voltage/fre-
quency renders an increase in energy consumption. This is partly due to the large fraction of power
dissipation that corresponds to the system and static components, which do not benefit or do little
benefit from a reduction of the frequency.

Therefore, any effort at reducing the energy consumption of these computations must carefully
leverage the processor performance (or P-) states so as to avoid increasing the execution time.
Fortunately, in the case of our parallel code, the operation is already divided into well-defined tasks,
which allows us to avoid busy-waits and exploit the presence of inactive periods by promoting cores
executing vacant threads into a power-friendly state.
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A contribution is the development of an energy-aware runtime. The experimental observations
demonstrate that the original runtime for ILUPACK is energy-oblivious in that idle threads, with
no useful task to execute, simply poll till new work is available. As a consequence, these threads
dissipate a significant amount of power in current processors, for no practical performance benefit in
the particular case of ILUPACK. The introduction of energy-aware techniques replace this behavior
with a power-friendly implementation, which blocks idle threads till new work is available. These
techniques require a careful reorganization of the underlying runtime, in order to avoid deadlocks
and ensure a rapid response that does not impair performance. A complete study reveals savings
in the energy usage between 7 and 13 %, at practically no cost from the performance point of view,
which are clearly connected to the impact of the C-states by our power model.

In this study we demonstrate that, for a presumedly memory-bound computation like ILU-
PACK, the power savings yielded by the higher P-states are mostly blurred by the increase of
execution time. However, the analysis of the time-power-energy trade-off when the cores operate
in a certain P-state, with the energy-aware version of the runtime, reveals the high impact of idle
and, to a minor degree, uncore power, which clearly favors shorter execution time over lower power
dissipation rates. This is also contrasted to and accurately captured by our power model.

7.2 Related Publications

The scientific contributions of this thesis have been validated with several peer-reviewed pub-
lications in national and international conferences, as well as international journals. Each one of
these contributions is supported by, at least, one international publication.

The following sections list the main publications derived from the thesis. We divide them into
papers directly and indirectly related to the thesis topics, and unrelated topics with a certain
connection to energy efficiency. For the first group of publications, we provide a brief abstract of
the main contents of the paper. Only international conferences and journals are listed.

7.2.1 Directly related publications

Chapter 3. Performance and Energy Measurement Framework

The first approach towards the development of a performance and power measurement frame-
work was introduced in [10]. The framework presented in this paper includes support for wattmeters
to measure internal DC power consumption in combination with the Extrae and Paraver instru-
mentation/visualization tools. In [27] we extended this framework with support for new measure-
ment devices, including an internal device to monitor DC power consumption at a high frequency.
We also defined the interface of PMLib and included a module to record information on processor
states related to power consumption. To demonstrate the use of our framework in [31, 30] we an-
alyzed different dense linear algebra algorithm implementations from the performance and power
consumption point of views.

The following is a detailed list of the main publications related to this topic:

Conference

Proceedings
[10]

Alonso, P., Badia, R., Labarta, J., Barreda, M., Dolz, M., Mayo, R., Quintana-
Ort́ı, E., and Reyes, R. Tools for power-energy modeling and analysis of parallel scientific
applications. In 41st International Conference on Parallel Processing (ICPP) (2012), pp. 420–429.

Understanding power usage in parallel workloads is crucial to develop the energy-aware
software that will run in future Exascale systems. Workloads contribute towards this
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goal by introducing an integrated framework to profile, monitor and analyze power
dissipation in parallel MPI and multithreaded scientific applications. The framework
includes an own-designed device to measure internal DC power consumption and a
package offering a simple interface to interact with this design as well as commercial
wattmeters. Combined with the instrumentation package Extrae and the graphical
analysis tool Paraver, the result is a useful environment to identify sources of power
inefficiency directly in the source application code. For task-parallel codes, we also
offer a statistical software module that inspects the execution trace of the application
to calculate the parameters of an accurate model for the global energy consumption,
which can be then decomposed into the average power usage per task or the nodal power
dissipated per core.

Conference

Proceedings
[27]

Barrachina, S., Barreda, M., Catalán, S., Dolz, M. F., Fabregat, G., Mayo, R.,
and Quintana-Ort́ı, E. S. An integrated framework for power-performance analysis of parallel
scientific workloads. In 3rd International Conference on Smart Grids, Green Communications and
IT Energy-aware Technologies (ENERGY) (2013), 114–119.

The path towards Exascale systems will require to energetically address power con-
sumption of future high performance computing (HPC) workloads which, in turn, urges
for a better understanding of power usage. We present an evolved framework to trace
and analyze the power and energy consumption made by parallel scientific applications.
The framework includes i) a flexible and extensible design that enables easy integra-
tion of different types of power measurement devices and addition of new functionality;
ii) a new module that records information on processor states related to power con-
sumption; and iii) an improved power measurement device to monitor internal direct
current (DC) power consumption. This environment is thus revealed as a powerful yet
easy-to-use tool to investigate and progress on the development of energy-efficient HPC
applications.

Conference

Proceedings
[31]

Barreda, M., Dolz, M. F., Mayo, R., Quintana-Ort́ı, E. S., and Reyes, R. Binding
performance and power of dense linear algebra operations. In 10th IEEE International Symposium
on Parallel and Distributed Processing with Applications (ISPA) (2012), pp. 63–70.

We combine a powerful tracing framework with a power measurement setup to perform
a visual analysis of the computational performance and the power consumption of tuned
implementations for three key dense linear algebra operations: the LU factorization, the
Cholesky factorization, and the reduction to tridiagonal form. Our results using 6 and
12 cores of an AMD Opteron-based platform reveal the serial/concurrent phases of the
algorithms, and their connection to periods of low/high power consumption, as well as
the linear dependency between execution time and energy for this class of operations.

Conference

Proceedings
[30]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Tracing
the power and energy consumption of the QR factorization on multicore processors. In 12th
International Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE) (2012), pp. 134–142.

We analyze the interaction between computational performance, power dissipation and
energy consumption of several high-performance implementations of the QR factoriza-
tion, a crucial matrix operation for the solution of linear systems of equations and linear
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least squares problems. Our experimental results on a multiprocessor platform equipped
with recent multicore technology from AMD show the interaction between these three
factors.

Chapter 4. Modeling Power and Energy Consumption

In [18], we introduced the first results to model the energy consumption of the Cholesky fac-
torization for multicore processors. We assumed a task-parallel execution of the factorization
process, with concurrency exploited via a run-time. Experimental results validated the precision
of the model and reported estimations of the power and energy dissipation of the global algorithm.
In [20] we introduced a contention-aware model that accommodates for the variability of power
consumption due to memory contention. The model showed the reliability for the Cholesky, LU
and QR factorizations.

The following is a detailed list of the main publications related to this topic:

Journal

[18]

Alonso, P., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Modeling power and
energy of the task-parallel Cholesky factorization on multicore processors. Computer Science -
Research and Development (2012), pp. 1–8.

We introduce a model for the total energy consumption of the Cholesky factorization on
a multicore processor. Our model assumes a task-parallel execution of the factorization
process, with concurrency leveraged via a run-time as those recently proposed in projects
like SMPSs, PLASMA or libflame, and decomposes the power usage into its system,
static and dynamic components. A few simple experiments provide experimental data
(parameters) with enough accuracy to assemble the model, which can then be used to
estimate the actual power dissipation and energy consumption of the global algorithm.
Experimental results on an 8-core platform equipped with Intel Xeon processors reveal
the precision of the model.

Journal

[20]

Alonso, P., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Modeling power and
energy consumption of dense matrix factorizations on multicore processors. Concurrency and
Computation: Practice and Experience (2013). To appear.

We propose a model for the energy consumption of the concurrent execution of three
key dense matrix factorizations, with task-parallelism leveraged via the SMPSs runtime,
on a multicore processor. Our model decomposes the power dissipation into the system,
static and dynamic components, with the former two being estimated from basic, off-line
experiments. The dynamic power, on the other hand, requires significantly more care,
and we introduce a contention-aware model that accommodates for the variability of
power consumption due to memory contention. Experimental results on an Intel Xeon
E5504 processor with four cores, using an internal wattmeter that samples the power
drawn by the mainboard with a frequency of 1 kHz, show the reliability of the energy
model for the Cholesky, LU and QR factorizations on this platform.

Chapter 5. Theoretical Analysis of Slack Reduction and Race-to-idle

The work in [17] was the first contribution in which we introduced our Slack Reduction Al-
gorithm to optimize the execution frequency of a collection of tasks (in which many dense linear
algebra algorithms can be decomposed) on multicore architectures. In [12, 19] we analyzed the
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impact on power consumption of two DVFS-control strategies: the Slack Reduction Algorithm
(SRA) and the Race-to-Idle Algorithm (RIA) from the theoretical and experimental point of views.
A power-aware simulator, in charge of scheduling the execution of tasks to processor cores, and
the real execution of the algorithms was employed to evaluate the performance benefits of these
power-control policies for different dense linear algebra algorithms.

The following is a detailed list of the main publications related to this topic:

Conference

Proceedings
[17]

Alonso, P., Dolz, M., Mayo, R., and Quintana-Ort́ı, E. S. Improving power efficiency
of dense linear algebra algorithms on multicore processors via slack control. In International
Conference on High Performance Computing and Simulation (HPCS) (2011), pp. 463–470.

We address the efficient exploitation of task-level parallelism, present in many dense
linear algebra operations, from the point of view of both computational performance
and energy consumption. In particular, we consider a procedure, the Slack Reduction
Algorithm (SRA), to optimize the execution frequency of a collection of tasks (in which
many dense linear algebra algorithms can be decomposed) on multicore architectures.
The results from this procedure are modulated by an energy-aware simulator, which is
in charge of scheduling/mapping the execution of these tasks to the cores, leveraging
dynamic frequency voltage scaling featured by current technology. Simultaneously, the
simulator evaluates the performance benefits of the solution. Experiments with these
tools show significant energy gains for two key dense linear algebra operations: the
Cholesky and QR factorizations.

Journal

[12]

Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. DVFS-
control techniques for dense linear algebra operations on multicore processors. Computer Science
- Research and Development (2011), pp. 1–10.

This paper analyzes the impact on power consumption of two DVFS-control strategies
when applied to the execution of dense linear algebra operations on multicore processors.
The strategies considered here, prototyped as the Slack Reduction Algorithm (SRA) and
the Race-to-Idle Algorithm (RIA), adjust the operating frequency of the cores during
execution of a collection of tasks (in which many dense linear algebra algorithms can be
decomposed) with a very different approach to save energy. A power-aware simulator,
in charge of scheduling the execution of tasks to processor cores, is employed to evaluate
the performance benefits of these power-control policies for two reference algorithms for
the LU factorization, a key operation for the solution of linear systems of equations.

Journal

[19]

Alonso, P., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Energy-efficient execution
of dense linear algebra algorithms on multicore processors. Cluster Computing 16, 3 (2013), pp. 497–
509.

We address the efficient exploitation of task-level parallelism, present in many dense
linear algebra operations, from the point of view of both computational performance
and energy consumption. The strategies considered here, referred to as the Slack Re-
duction Algorithm (SRA) and the Race-to-Idle Algorithm (RIA), adjust the operating
frequency of the cores during the execution of a collection of tasks (in which many
dense linear algebra algorithms can be decomposed) with very different approaches to
save energy. The procedures are evaluated using an energy-aware simulator, which is
in charge of scheduling/mapping the execution of these tasks to the cores, leveraging
dynamic frequency voltage scaling featured by current technology. Experiments with
these tools show significant energy gains for two versions of the QR factorization.
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Chapter 6. Energy-Aware Techniques for Dense and Sparse Linear Algebra

In [11], we introduced our research on the application of power-control techniques to the exe-
cution of dense linear algebra operations on modern multicore processors and hybrid CPU–GPU
architectures, based on the SuperMatrix runtime system. In [14, 13] we analyzed the data-parallel
execution of different dense linear algebra factorizations in multicore and multi-GPU platforms us-
ing different energy-aware versions of the SuperMatrix runtime. These techniques leverage DVFS by
activating/blocking idle threads and enable the transition to a more energy-friendly state. Further-
more, in [16] we extended the runtime scheduler by accommodating hybrid CPU–GPU executions
and managing task priorities for dense linear algebra operations in combination with the afore-
mentioned energy-saving techniques. In [15] we also proposed a power consumption model that
can be leveraged by runtime to make decisions on energy considerations. In [9], we analyzed the
energy performance of a task-parallel computation of an ILU-based preconditioner for the solution
of sparse linear systems on multicore processors. In this work we introduced two energy-saving
mechanisms incorporated into the runtime. We also employed a theoretical model that allows to
explore the effect of the power states. We extended this work in [6] to use the energy-saving tech-
niques not only in the preconditioner but also in the resolution phase of the iterative solver. The
results were evaluated on different architectures to explore the impact of the P-/C-states.

The following is a detailed list of the main publications related to this topic:

Conference

Proceedings
[11]

Alonso, P., Dolz, M. F., Igual, F. D., Marker, B., Mayo, R., Quintana-Ort́ı, E. S.,
and van de Geijn, R. Power-aware dense linear algebra implementations on multicore and many-
core processors. In MARC Symposium (2011), KIT Scientific Publishing, Karlsruhe, pp. 103–106.

This paper outlines our research on the application of power-control techniques to the
execution of dense linear algebra operations on modern multicore processors and hybrid
CPU–GPU architectures. The framework is based on the SuperMatrix runtime system
which exploits the inherent task-parallelism present in most blocked dense linear algebra
algorithms. As part of the on-going work, we analyze the possibility of extending
the power-aware techniques to novel many-core architectures, such as the Intel SCC
processor.

Conference

Proceedings
[14]

Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. Saving
energy in the LU factorization with partial pivoting on multicore processors. In 20th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP) (2012),
pp. 353–358.

We analyze the trade-off between energy and performance for a data-parallel execution
of the LU factorization with partial pivoting on a multicore processor. To improve
energy efficiency, we adapt the runtime in charge of controlling the concurrent execution
of the algorithm so as to leverage DVFS by activating/blocking idle threads. For a CPU-
bound operation like the LU factorization, experiments on an AMD 8-core processor
report an average reduction around 5 % in energy consumption in exchange for a minor,
in some cases negligible, increase in the execution time.

Conference

Proceedings
[13]

Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. Reducing
energy consumption of dense linear algebra operations on hybrid CPU–GPU platforms. In 10th
IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA)
(2012), pp. 56–62.
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We investigate the balance between the time-to-solution and the energy consumption of
a task-parallel execution of the Cholesky and LU factorizations on a hybrid platform,
equipped with a multicore processor and several GPUs. To improve energy efficiency,
we incorporate two energy-saving techniques in the runtime in charge of scheduling the
computations, to block idle threads and enable the transition to a more energy-friendly
state of the general-purpose cores. Experiments on an Intel Xeon-based platform con-
nected to an NVIDIA Tesla server report an average reduction of the energy consump-
tion close to 9 % (38 % when only the consumption associated with the application is
considered), for a minor increase in the execution time of the algorithm.

Conference

Proceedings
[16]

Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. Runtime
scheduling of the LU factorization: Performance and energy. In Energy Efficiency in Large Scale
Distributed Systems (EE-LSDS), Lecture Notes in Computer Science, Vol. 8046. Springer-Verlag
(2013), pp. 153–167.

We enhance the SuperMatrix runtime scheduler from the libflame library for dense lin-
ear algebra in two different directions that address high performance and energy. First,
we extend the runtime scheduler by accommodating hybrid CPU–GPU executions and
managing task priorities for dense linear algebra operations, with remarkable perfor-
mance improvements. Second, we introduce techniques to reduce energy consumption
during idle times inherent to parallel executions, attaining fair energy savings. While
our techniques are applicable to the complete libflame library, in this paper we use the
LU factorization with partial pivoting to illustrate the actual impact on performance
and energy consumption of the adopted techniques.

Journal

[15]

Alonso, P., Dolz, M. F., Igual, F. D., Mayo, R., and Quintana-Ort́ı, E. S. Enhancing
performance and energy consumption of runtime schedulers for dense linear algebra. Concurrency
and Computation: Practice and Experience (2013). In revision.

The road towards Exascale Computing requires a holistic effort to address three different
challenges simultaneously: high performance, energy efficiency, and programmability.
The use of runtime task schedulers to orchestrate parallel executions with minimal de-
veloper intervention has been introduced in the past years to tackle the programmability
issue while maintaining, or even improving, performance. We enhance the SuperMatrix
runtime task scheduler integrated in the libflame library in two different directions
that address high performance and energy efficiency. First, we extend the runtime by
accommodating hybrid parallel executions and managing task priorities for dense linear
algebra operations, with remarkable performance improvements. Second, we introduce
techniques to reduce energy consumption during idle times inherent to parallel execu-
tions, attaining important energy savings. In addition, we propose a power consumption
model that can be leveraged by runtime task schedulers to make decisions based not
only on performance, but also on energy considerations.

Conference

Proceedings
[9]

Aliaga, J. I., Dolz, M. F., Mart́ın, A. F., Mayo, R., and Quintana-Ort́ı, E. S.
Leveraging task-parallelism in energy-efficient ILU preconditioners. In ICT as Key Technology
against Global Warming, Lecture Notes in Computer Science, Vol. 7453. Springer-Verlag, (2012),
pp. 55–63.

We analyze the energy-performance balance of a task-parallel computation of an ILU-
based preconditioner for the solution of sparse linear systems on multicore processors.
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In particular, we elaborate a theoretical model for the power dissipation, and employ it
to explore the effect of the processor power states on the time-power-energy interaction
for this calculation. Armed with the insights gained from this study, we then introduce
two energy-saving mechanisms which, incorporated into the runtime in charge of the
parallel execution of the algorithm, improve energy efficiency by 6.9 %, with a negligible
impact on performance.

Journal

[6]

Aliaga, J. I., Barreda, M., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. As-
sessing the impact of the CPU power-saving modes on the task-parallel solution of sparse linear
systems. Concurrency and Computation: Practice and Experience (2013). In revision.

For the solution of sparse linear systems, we investigate the benefits that an energy-
aware implementation of the runtime in charge of the concurrent execution of ILUPACK,
an iterative solver with a sophisticated and effective preconditioner, produces on the
time-power-energy balance of the application. Furthermore, to connect the experimental
results with the theory, we propose several simple yet accurate power models that
capture the variations of average power that result from the introduction of the energy-
aware strategies as well as the impact of the P-states into ILUPACK’s runtime, at high
accuracy, on two distinct platforms based on multicore technology from AMD and Intel.

7.2.2 Indirectly related publications

A parallel research was performed into the energy-efficient to explore the capabilities of power
measurement devices and new modules for the PMLib library. In [16, 45] we explored first some
power monitoring approaches for energy and power analysis of computers. In [29] we presented
an extension of our PMLib framework for power-performance analysis that permits a rapid and
automatic detection of power sinks during the execution of concurrent scientific workloads.

The following is a detailed list of the main publications related to that topic:

Conference

Proceedings
[16]

Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S.,
Mayo, R., and S. Quintana-Ort́ı, E. S. Solving some mysteries in power monitoring of servers:
Take care of your wattmeters! In Energy Efficiency in Large Scale Distributed Systems (EE-LSDS),
Lecture Notes in Computer Science, Vol. 8046. Springer-Verlag, 2013, pp. 3–18.

Journal

[45]

Diouri, M. E. M., Dolz, M. F., Glück, O., Lefèvre, L., Alonso, P., Catalán, S.,
Mayo, R., and S. Quintana-Ort́ı, E. S. Assessing power monitoring approaches for energy
and power analysis of computers. Journal of Sustainable Computing (2013). In revision.

Journal

[29]

Barreda, M., Catalán, S., Dolz, M. F., Mayo, R., and Quintana-Ort́ı, E. S. Au-
tomatic Detection of Power Bottlenecks in Parallel Scientific Applications. Computer Science -
Research and Development (2013), pp. 1–9.

7.2.3 Other publications

As an orthogonal research line, several publications in this field were obtained during the de-
velopment of this thesis. These publications are focused on an energy-saving module for HPC
clusters that implement energy-aware policies which, taking into account past and future users’
request, allows to switch on and shutdown the system nodes. This software was presented in [49]
and evaluated in [48]. In [46, 47] we extended this work by presenting a simulator for this tool that
allows the evaluation and analysis of the benefits under realistic workloads.
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The following is a detailed list of the main publications related to that topic:

Conference

Proceedings
[49]

Dolz, M. F., Fernández, J. C., Mayo, R., and Quintana-Ort́ı, E. S. EnergySaving
Cluster Roll: Power saving system for clusters. In Architecture of Computing Systems - ARCS 2010,
Lecture Notes in Computer Science, Vol. 5974. Springer Berlin Heidelberg, (2010), pp. 162–173.

Conference

Proceedings
[48]

Dolz, M. F., Fernández, J. C., Iserte, S., Mayo, R., Quintana-Ort́ı, E. S., Cotallo,
M. E. and D́ıaz, G. EnergySaving Cluster experience in CETA-CIEMAT. In 5th Iberian Grid
Infrastructure Conference (IBERGRID), (2011), pp. 39–50.

Conference

Proceedings
[46]

Dolz, M. F., Fernández, J. C., Iserte, S., Mayo, R., and Quintana-Ort́ı, E. S.
A flexible simulator to evaluate a power saving system for HPC clusters. In 2nd International
Workshop on Green Computing Middleware (GCM), (2011), pp. 2:1–2:6.

Journal

[47]

Dolz, M. F., Fernández, J. C., Iserte, S., Mayo, R., and Quintana-Ort́ı, E. S. A
simulator to assess energy saving strategies and policies in HPC workloads. SIGOPS Operating
Systems Review 46, 2 (2012), pp. 2–9.

In a different research line we worked on developing efficient parallel algorithms for Toeplitz
matrices that produced the following contribution:

Journal

[21]

Alonso, P., Dolz, M. F., and Vidal, A. M. Block pivoting implementation of a symmetric
Toeplitz solver. Journal of Parallel and Distributed Computing, (2014), To appear.

7.3 Open Research Lines

Energy-efficiency is a relatively novel discipline in computer science, and thus many research
questions remain open after the conclusion of this thesis. The following list details some of the
research lines related to this thesis that deserve further investigation:

• Integration of energy-aware techniques into runtimes that exploit task-level parallelism and/or
linear alebra libraries, such as SMPSs [118], OmpSs [102], PLASMA [5] and MAGMA [5].

• Development of new energy-aware mapping techniques and scheduling heuristics, integrated
into a number of practical runtimes, that can improve the parallel performance as well as
reduce the energy consumption of current as well as future numerical HPC libraries, for a
wide variety of architectures.

• New scheduling heuristics with tasks dependencies in environments with limited number of
resources.

• Redesign of the Slack Reduction Algorithm to incorporate a dynamic policy, which operates
at run-time, dynamically adapting to variations on the conditions.
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