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Abstract

Web resources have been gaining popularity as providers of relevant data,
whether those stored in datasets or those resulting from the execution of
complex functions such as the alignment of protein sequences. Although the
discovery of web resources has been largely studied, it is still a challenging
research task due to the high dependency current search engines have on
the characteristics of the available metadata. In some domains like Life
Sciences, this dependency becomes even worse due to the heterogeneity of
data.

Current web resource registries allow users to search for resources that fulfill
their information needs. The discovery in these registries is mainly based on
the use of well-defined metadata, which is usually limited and very specific,
and on the string matching of the user’s query keywords, which is hampered
by the heterogeneity of data.

The main objective of this thesis is to assist the users in the discovery of the
most appropriate resources for their information needs, specifically in the
Life Sciences domain. The achievement of this objective implies addressing
the main limitations of current web resource registries.

Firstly, web resource discovery is driven by the user’s requirements and,
therefore, the precision of its results depends on how well the user’s infor-
mation needs are described in the requirements specification. Thus, rich
requirements specifications are assumed to obtain more precise results. In
the proposed approach, the requirements specification consists of a rich
description of both the functionality and relevant features of the required
resource. Additionally, discovery parameters are customizable by the users
in order to improve the accuracy of the process.

Secondly, the discovery depends heavily on the characteristics of the re-
sources metadata. In many registries, resources are described with well-
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defined metadata, e.g., categories, and with textual descriptions, which
provide richer information but harder automatic processing. In order to al-
leviate this dependency, this thesis proposes a normalization process which
addresses the heterogeneity of data, and automatically identifies relevant
information implicitly described in the resources metadata. Then, the dis-
covery of web resources considers the normalized data, reducing words mis-
matchings, alleviating the problem of using different vocabularies, and im-
proving the characterization of resources.

Finally, whereas current registries provide the user with a list of resources
without any information about their relevance to her requirements, in the
proposed approach the user is prompted with a ranked list of resources ac-
cording to the fulfillment of her information needs, and to the accomplish-
ment of the user-defined features. In this way, the system assists the user
until the end of the discovery process, providing her information relevant
to the selection of the best suited resource.

The experimental evaluation performed on each phase of the discovery
method demonstrates that the proposed techniques obtain good results.
Moreover, the discovery method has been implemented as part of BioUSeR,
an online tool for the discovery of Life Sciences web resources. In BioUSeR,
the results of each phase of the discovery process are visualized, and the
parameters and the data involved in the process are easily customized by
the user. We have used BioUSeR to demonstrate the usefulness of our ap-
proach using real usage examples.

Keywords: Web resource discovery, requirements-driven methods, seman-
tics, information retrieval.
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Aportaciones, Conclusiones
y Trabajo Futuro

Introducción

En los últimos años, la cantidad de datos publicados en Internet ha cre-
cido a un ritmo vertiginoso. En la actualidad, instituciones, empresas y
particulares están publicando información en Internet con el propósito de
compartirla con otros usuarios. Mucha de esta información es accesible
mediante recursos web, los cuales permiten, entre otras muchas cosas, recu-
perar información de bases de datos o ejecutar complejos algoritmos sobre
la información dada. Estos recursos web están descritos con metadatos
que suelen definir caracteŕısticas importantes tanto de los recursos como
de la información que contienen o procesan. La gran cantidad de recursos
web disponibles actualmente, su heterogeneidad, y su distribución, hacen
que encontrar el recurso adecuado para un determinado requisito se haya
convertido, en muchos casos, en una ardua y reiterativa tarea.

Para facilitar la búsqueda, en Internet existen buscadores espećıficos y reg-
istros centralizados de recursos web, siendo estos últimos los más populares
actualmente. Los registros de recursos web contienen los metadatos de los
recursos inclúıdos y permiten al usuario realizar búsquedas basadas en di-
chos metadatos. En estos registros, los recursos suelen estar categorizados
y descritos con un conjunto de etiquetas y una descripción textual. Los
mecanismos de búsqueda más comunes son la navegación a través de tax-
onomı́as de categoŕıas y la búsqueda mediante palabras clave. La búsqueda
por categoŕıas normalmente limita al usuario en la especificación de sus
requisitos cuando éstos son muy espećıficos y no existen categoŕıas con tal
grado de especificación. Además de depender del grado de especificación
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de la taxonomı́a, los resultados también dependen de la calidad de las cat-
egorizaciones de los recursos, ya que en algunos registros, por ejemplo Bio-
Catalogue, muchos recursos no tienen categoŕıa asignada. Por otro lado, la
mayoŕıa de los registros permiten también la búsqueda por palabras clave,
que consiste en buscar aquellos recursos en los que aparece alguna de las
palabras proporcionadas por el usuario. Esta búsqueda suele estar limitada
por la variabilidad de las palabras y por la heterogeneidad de los vocabu-
larios utilizados.

Por tanto, en los registros de recursos web actuales, la especificación de
los requisitos de usuario suele ser poco representativa, lo que repercute
directamente en la precisión de los resultados obtenidos.

Hay que añadir que al finalizar el proceso de búsqueda, la mayoŕıa de los sis-
temas devuelven una lista de los recursos que han sido recuperados porque
tienen alguna palabra en común con la consulta que el usuario ha pro-
porcionado, o porque tienen asignadas las categoŕıas seleccionadas por el
usuario. Sin embargo, no le ofrecen al usuario ninguna información adi-
cional acerca de la relevancia de cada recurso. Por tanto, podemos decir
que los actuales sistemas de búsqueda no asisten al usuario en la búsqueda
del mejor recurso según sus necesidades. Además, si el usuario no está satis-
fecho con los resultados obtenidos, tiene pocas posibilidades de personalizar
su búsqueda, aparte de cambiar los requisitos iniciales.

Esta tesis está centrada en el dominio de las Ciencias de la Vida, en el
cual la heterogeneidad de los datos es muy elevada debido a la falta de
estándares aceptados por la comunidad. En este dominio, los investigadores
publican, en forma de recursos web, los resultados de sus investigaciones y
las aplicaciones utilizadas. En la actualidad, existen múltiples registros de
recursos relacionados con las Ciencias de la Vida, por ejemplo, BioCatalogue
y SSWAP. Sin embargo, la mayoŕıa presentan las mismas limitaciones que
los registros de ámbito general, agravadas aún más por la heterogeneidad
de los datos.
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Objetivos

El principal objetivo de esta tesis es diseñar un método de búsqueda de
recursos web que gúıe al usuario durante todo el proceso, permitiéndole
personalizar la búsqueda y proporcionándole información relevante para la
selección del recurso web más adecuado.

La búsqueda es completamente dirigida por los requisitos de usuario; por
lo tanto, la especificación de éstos es clave para el éxito de la búsqueda.
En esta tesis, los requisitos no sólo se refieren a la funcionalidad requerida,
sino también a caracteŕısticas de los recursos que son relevantes para el
usuario. Además, para conseguir una buena especificación, el usuario debe
poder modificar la información referente a sus requisitos en cada etapa del
proceso, y también debe poder personalizar los parámetros de la búsqueda
según sus necesidades.

Sin embargo, una especificación precisa de los requisitos de usuario no es su-
ficiente para garantizar la obtención de los recursos adecuados, ya que ésta
dependerá de las caracteŕısticas de los metadatos de los recursos web. Aśı
pues, tanto la especificación de los requisitos como el proceso de búsqueda
tienen que ser totalmente independientes de cómo están descritos los re-
cursos, es decir, de la estructura de sus metadatos y de los vocabularios
utilizados.

Finalmente, y al hilo de asistir al usuario durante todo el proceso, éste
debe recibir información relevante referente al proceso de búsqueda, aśı
como información de los resultados obtenidos para facilitarle la selección
del recurso más adecuado.

Metodoloǵıa

Esta tesis está basada principalmente en el uso de técnicas de normalización
semántica y técnicas de recuperación de información para la consecución de
los objetivos anteriormente descritos.

Uno de los principales problemas de los motores de búsqueda de los registros
actuales es la dependencia de las caracteŕısticas de los metadatos de los re-
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cursos. Cada vez más los recursos son descritos con descripciones textuales,
lo que dificulta su procesamiento automático, ya que además de la hetero-
geneidad, presenta otros problemas como la ambigüedad o la descripción
impĺıcita de caracteŕısticas relevantes en las descripciones textuales.

El método propuesto basa la búsqueda de recursos web en la normalización
de todos los datos involucrados en el proceso de búsqueda, con el fin de no
depender de las caracteŕısticas de los metadatos de los recursos ni de las
caracteŕısticas de la especificación de los requisitos del usuario.

Esta tesis propone un método de normalización cuyo objetivo es describir y
caracterizar los recursos web en un formato que el sistema pueda procesar
de forma automática, y que alivie los problemas relacionados con la het-
erogeneidad y las caracteŕısticas intŕınsecas del lenguaje natural, como por
ejemplo, la información descrita impĺıcitamente. La normalización prop-
uesta está basada en la anotación semántica de los datos y en la extracción
automática de información relevante acerca del recurso web.

La búsqueda de recursos web se basa en la información normalizada tanto de
los requisitos como de los recursos web. Esta búsqueda basada en semántica
permite recuperar recursos descritos con diferentes vocabularios o descritos
a diferente nivel de detalle, aśı como recursos relacionados. Además, gracias
a la normalización, la búsqueda es independiente de la técnica utilizada
para definir los requisitos del usuario, permitiendo de esta manera utilizar
diferentes tipos de especificación según el tipo de usuario, con el fin de
obtener especificaciones precisas de sus necesidades.

Por último, el modelo de recuperación propuesto en esta tesis genera una
lista ordenada de los recursos recuperados según su relevancia respecto a los
requisitos de usuario, basada en el cumplimiento tanto de la funcionalidad
requerida como de las caracteŕısticas definidas por el usuario.

Aportaciones

En primer lugar, la tesis realiza una revisión general de las diferentes ar-
quitecturas y técnicas utilizadas para la búsqueda de recursos web, y luego
se centra en el dominio de las Ciencias de la Vida, realizando una revisión
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más exhaustiva de los registros de recursos web más populares en dicho
dominio. A partir de esta revisión se extraen las principales limitaciones de
los registros actuales, como son la baja representatividad de los requisitos
de usuario, la falta de asistencia al usuario durante el proceso de búsqueda,
y la alta dependencia de las caracteŕısticas de la información involucrada.

La aportación principal de esta tesis es un método para la búsqueda de
recursos web en el dominio de las Ciencias de la Vida, siendo el usuario la
pieza fundamental durante todo el proceso. Este método consta principal-
mente de dos fases: (i) la normalización de la información y (ii) la búsqueda
y ranking de recursos web.

La fase de normalización propuesta consta de dos partes: la anotación
semántica y la extracción automática de información. La anotación semántica
es realizada de forma automática por un anotador que es capaz de utilizar de
forma simultánea múltiples recursos de conocimiento con el fin de ampliar
la cobertura de las anotaciones y tratar problemas como la ambigüedad.
Posteriormente, se aplican técnicas de extracción de conocimiento basadas
en la semántica y en modelos probabiĺısticos que permiten identificar de
forma automática caracteŕısticas relevantes del recurso, mejorando aśı su
caracterización.

Respecto a la búsqueda de los recursos web, la tesis propone un modelo
de recuperación basado en semántica que tiene en cuenta la información
normalizada, tanto de la especificación de los requisitos como de los recursos
web. Además, el modelo de recuperación define una función de similitud
utilizada para ordenar los recursos recuperados en función de su relevancia
respecto a los requisitos, teniendo en cuenta tanto la funcionalidad como
las caracteŕısticas definidas por el usuario.

Todas las técnicas propuestas han sido evaluadas y comparadas con otras
técnicas de recuperación de información. Además, para demostrar que el
método propuesto mejora las limitaciones de los registros de recursos web
actuales en el dominio de las Ciencias de la Vida, se ha comparado con
BioCatalogue, uno de los registros más populares actualmente.

Por último, el método propuesto ha sido implementado como parte de Bi-
oUSeR, una aplicación online que permite la búsqueda de recursos web
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bioinformáticos y muestra al usuario los resultados de cada fase, haciéndole
aśı part́ıcipe de todo el proceso.

Conclusiones y Trabajo Futuro

Esta tesis propone un método para la búsqueda de recursos web en el área
de las Ciencias de la Vida cuyo objetivo es guiar al usuario durante todo el
proceso de búsqueda.

El método propuesto está dirigido por los requisitos del usuario, que consis-
ten en una descripción precisa de las necesidades de información del usuario.
Esta descripción, que incluye tanto la funcionalidad requerida como las car-
acteŕısticas relevantes, debe ser independiente de los formatos y vocabu-
larios utilizados en los metadatos de los recursos, eliminando aśı cualquier
limitación para el usuario.

Para aliviar la dependencia de las caracteŕısticas de los datos, esta tesis
propone un proceso de normalización, basado en la anotación semántica y
en la extracción automática de información relevante, que reduce la hetero-
geneidad de los datos y permite obtener una caracterización precisa de los
recursos de forma automática.

La búsqueda de recursos web se basa en la normalización de los datos y,
por tanto, recupera recursos descritos con diferentes vocabularios y a difer-
entes niveles de detalle. Con el fin de asistir al usuario hasta el final, los
recursos recuperados son ordenados según su relevancia respecto a los req-
uisitos, la cual no se basa en el número de palabras en común, sino en el
cumplimiento de la funcionalidad requerida por el usuario y la presencia de
las caracteŕısticas especificadas. Además, el método propuesto permite al
usuario personalizar la búsqueda cambiando parámetros, como la relevancia
de una determinada caracteŕıstica, o modificando la información extráıda
automáticamente acerca de sus requisitos.

Como trabajo futuro, existen múltiples aspectos de las técnicas propuestas
que podŕıan ser mejoradas, aśı como futuras ĺıneas de investigación surgidas
a ráız del trabajo realizado en esta tesis.
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Una de las técnicas propuestas que podŕıa ser mejorada es la anotación
semántica, concretamente su post-procesamiento, con el fin de obtener an-
otaciones más precisas. Por ejemplo, se podŕıan utilizar técnicas de disam-
biguación para reducir la ambigüedad de los textos, y técnicas de simplifi-
cación más precisas basadas en el contexto.

Otro aspecto importante que se podŕıa mejorar es el ranking de los recursos.
En la literatura existen múltiples técnicas que permiten mejorar el ranking
de resultados como, por ejemplo, el feedback de usuario, los requisitos no
funcionales, e incluso la consideración del contexto. En nuestra opinión,
cuanta más información acerca del usuario se tenga en cuenta en el ranking,
más preciso y más personalizado será.

Además de estas posibles mejoras de las técnicas ya implementadas, a ráız
del trabajo realizado en esta tesis se han abierto nuevas ĺıneas de investi-
gación. Cabe destacar que aunque esta tesis esté centrada en el dominio de
las Ciencias de la Vida, sus técnicas se pueden aplicar en cualquier otro do-
minio. Estas técnicas permiten recuperar recursos web, independientemente
del tipo que sean y de cómo estén descritos.

Una posible ĺınea de investigación podŕıa ser la recuperación e integración
de recursos de diferentes tipos, como imágenes, documentos o audio. Por
ejemplo, nuestras técnicas podŕıan ser aplicadas en sistemas que almacenan
diferentes tipos de recursos, como por ejemplo, sistemas de almacenamiento
de recursos médicos que contienen imágenes, informes cĺınicos, etc. Toda
la información almacenada, la información de los informes y los metadatos
de las imágenes, podŕıa ser normalizada por nuestro proceso de normal-
ización, homogeneizando terminoloǵıas e incluso idiomas. A partir de estos
datos normalizados, los usuarios podŕıan recuperar diferentes tipos de re-
cursos para una misma consulta, o incluso recuperar recursos relacionados a
través de las relaciones entre conceptos definidas en las ontoloǵıas. Además,
con nuestro método también se podŕıan consultar recursos externos, como
publicaciones cient́ıficas, con el fin de proporcionar al usuario información
adicional.

Otra ĺınea de investigación interesante es la composición de workflows a par-
tir de los recursos recuperados por nuestro método. Actualmente, la com-
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posición de workflows está muy limitada por la disponibilidad de metadatos
bien definidos de los recursos web, principalmente información acerca de los
parámetros de entrada y salida. En nuestra propuesta, esta limitación seŕıa
aliviada por los mecanismos de caracterización de los recursos web. Además,
si se utiliza una técnica de especificación de requisitos que permita definir
relaciones expĺıcitas entre tareas, nuestro sistema podŕıa ser utilizado para
la composición de workflows.
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Chapter 1

Introduction

This chapter first describes the research context of this thesis. Then, the motivation,
the objectives, and the main contributions of this work are presented. The chapter
concludes with the organization of the rest of the thesis.

1.1 Research Context

In the last decade, the amount of data published on the Web has increased at an amaz-
ing rate. Data are published on the Web by individuals and institutions in order to
be consumed by other potential users. In the beginning, most searchable data were
published on web sites and were reachable by web search engines (e.g., Google, Yahoo,
etc.). However, in last years, the ever growing amount of data has made unfeasible
to publish all data on simple web pages. Nowadays, data are stored in “containers”,
accessible through the Web, and usually self-described in order to provide information
about the data they contain. The information about the “container” and about the
data it holds is known as metadata. Data containers available on the Web are called
in this work web resources. A web resource is any application, information source,
service or site that can be identified, named, addressed or handled in the Web or in
any networked information system. A web resource usually provides functional and
processable metadata describing its functionality, the data it holds and other features
relevant to its discovery and processing. Examples of web resources are: web services
providing relevant data to users, web services executing a specific programmatic func-
tion on data, databases or datasets accessible through RESTful services, and a web site
containing relevant data and metadata describing them among others.
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In the last years, web resources have become very popular in many domains. How-
ever, the huge number of resources and their decentralized distribution over the Web
hamper their discovery by potential users. In order to make the web resource discovery
easier to users, many web resource registries have been created in last years. A web
resource registry is a repository of web resources metadata which provides a search
engine to retrieve relevant resources to users’ requirements. A web resource registry
does not host the web resources, but their associated metadata and a link to the web
resource provider’s site. Some early, web resource registries performed the discovery on
a set of predefined fields, e.g., input data type or resource type, whose terms are usually
predefined in a taxonomy, e.g., BioMoby [108] and BioRegistry [30]. The use of specific
fields limits the specification of user’s requirements and, in consequence, the discovery
of the most relevant resources becomes a tedious and ambiguous process. Currently,
web resource registries consider all the web resource metadata available on the registry,
e.g., textual descriptions, tags and categories. Recently, the web has become into what
is known as the social web in which the user is the main source of information. This
tendency has also been shown in web resource registries, and many current web resource
registries allow any user to provide useful information about a registered resource with
the aim of providing as much information as possible to better characterize it. These
registries are commonly known as open registries.

In this thesis, web resource discovery is treated as an Information Retrieval [8]
problem. Nowadays, IR is being addressed by the use of semantics [5; 53]. Semantics
can be defined as the study of meaning, i.e., it studies the relation between signifiers such
as words, phrases, signs and symbols, and that they stand for. Introducing semantics
to the web leads to the Semantic Web, defined by Tim Berners-Lee as “a web of
data that can be processed directly and indirectly by machines” [14]. The Semantic
Web enables machines to interpret, combine and use data on the Web. The core
of the Semantic Web is the computer-understandable description of resources, i.e.,
resources are annotated with computer-processable metadata. Semantic annotations
enrich unstructured and semi-structured data with additional data formally described
in external knowledge resources (ontologies) and understandable by computers. In
this work, semantic annotation of resources metadata improves their discovery since
it formalizes the information about the resource, and it reduces heterogeneity and
ambiguity. So, considering the web resource discovery as a semantic-aware problem, it
can take profit from both the techniques and tools developed on the classic IR research
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field and those developed for the Semantic Web.

1.2 Motivation and Objectives

This thesis is focused on the Life Sciences domain, which involves the scientific study of
living organisms such as plants, animals and human beings, as well as related consid-
erations like bioethics. In this domain, researchers and institutions publish their data
on the Web as well as resources and tools to manage them. Research in Life Sciences
depends on the integration of large, distributed and heterogeneous web resources. The
discovery of the most appropriate web resources to solve a given research task is still a
complex research question.

In Life Sciences, open web resource registries have been gaining popularity due to the
valuable social information provided by the Life Sciences community. Examples of open
registries in Life Sciences are BioCatalogue [15] and myExperiment [38]. Unfortunately,
discovery on these open registries suffers from the same drawbacks as the general-
purpose registries, made even worse by the high level of heterogeneity of data in this
domain.

Current open registries in Life Sciences do not provide much assistance to users dur-
ing the discovery process. For the specification of users’ requirements, most registries
provide two types of search: keyword-based search and browsing through categories or
tags. In the former, the user has to determine a set of keywords that best describe
her requirements and that appear in resources metadata in order to make possible the
matching. In the latter, the user has to select categories or tags for specific filters,
limiting thus the specification of the user’s requirements. In this type of search, the
quality of the discovery results depends on the user’s domain knowledge and on the
coverage and specificity of the taxonomy of categories or tags. Then, at the end of the
discovery, in most open registries in Life Sciences, the user is provided with a set of
resources without any information about their relevance to her requirements.

Another drawback of current open registries is the high dependency of the discovery
process on the characteristics of the resources metadata, i.e., vocabularies, format or
structure, since most open registries rely on string matching techniques to perform the
resource retrieval.

So, in conclusion, the discovery of the most appropriate web resources in Life Sci-
ences given a user’s requirement is hampered in current open registries by: (i) poor
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representation of user’s requirements, (ii) low assistance to the user, and (iii) discovery
heavily dependent on the characteristics of the resources metadata.

The main goal of this thesis is to improve the discovery of the most appropriate web
resources for a specific user’s requirement by addressing the limitations of current web
resource open registries in Life Sciences. In the proposed discovery process, the user is
assisted during all the process, from the requirements specification until the selection
of the most appropriate web resources, in order to finally select the most suitable ones.
To achieve this goal, some aspects have to be considered.

First, the requirements specification is crucial in the discovery of the most suitable
web resources. Therefore, the requirements specification must represent as best as
possible the user’s information needs and, to achieve that, the user must not be limited
to specific vocabularies or to specific search fields. In contrast, the user has to be able
to provide a rich description of what she really needs.

However, a richer requirements specification is not enough if the discovery is re-
stricted to specific fields or to specific data. The discovery process must be driven by
the user’s requirements, and it must not depend on the characteristics of the available
metadata. It has to consider as much information as possible from the metadata and,
to achieve that, all the available metadata must be automatically processed.

Finally, in order to assist the user in the selection of the most appropriate web
resources, the retrieved resources have to be ranked according to their relevance to the
user’s requirement, that is, how well each web resource fulfills the user’s information
need.

Taking these requirements under consideration, in this thesis we state the following
hypothesis:

Hypothesis 1.2.1. The normalization of data using knowledge resources allows the
reconciliation between user’s information needs and the available web resources. Con-
sequently, it improves the discovery and ranking of resources, providing the user with
the ones that best fit her requirements independently of the characteristics of data.

1.3 Contributions of this Thesis

The main contributions of this dissertation are:

• Web resource discovery has been a research field for years. This thesis surveys the
main architectures and techniques proposed for the discovery of web resources.
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This thesis is focused on the Life Sciences domain, so that it also presents the
main characteristics of the web resource discovery in Life Sciences as well as a
brief description of the most popular web resource registries in this domain.

• The huge number of web resources, their distribution, and their heterogeneity
hinder their discovery to potential users. Web resource registries allow users
to discover registered resources but, unfortunately, they do not provide much
assistance to them. This thesis proposes a discovery process that assists the user
during all the process, from the requirements specification, in which the user is
not limited by the use of specific vocabularies or taxonomies, until the selection of
the most suitable resources, where the user is provided with relevant information
about the resources that helps her in the selection of the most appropriate resource
for her information needs.

• Discovery in current open registries depends heavily on the characteristics of the
metadata, which is highly heterogeneous. In order to alleviate the heterogeneity
and ambiguity in vocabularies and formats, we propose a normalization process
that semantically annotates the data involved in the discovery process with do-
main knowledge resources. In this way, the data, specifically textual descriptions,
become computer-processable and the heterogeneity and the ambiguity issues are
alleviated.

• Textual descriptions contain implicit information relevant to the resource charac-
terization that traditional search engines do not identify. We propose a knowledge
extraction process that automatically identifies relevant information about the re-
source features implicitly described in textual descriptions.

• As mentioned before, the discovery must be independent of the characteristics of
the data, and it must retrieve the resources that are supposed to be relevant for
the user’s requirements independently of how they are described. The IR model
proposed in this thesis bases the discovery of the most appropriate web resources
on their implicit semantics in order to reduce that dependency.

• Finally, in order to assist the user in the selection of the most suitable resources,
the IR model provides a similarity function that allows the system to provide the
user with a ranked list of the retrieved web resources, according to their relevance
to user’s requirements.
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• We present BioUSeR, a prototype that illustrates the usefulness of the approach
proposed in this thesis.

1.4 Organization

This thesis is organized in eight chapters (including this one). A brief summary of each
chapter is shown below.

1.4.1 Second Chapter: Web Resource Discovery

This chapter introduces web resource discovery as a challenging task for users looking
for web resources to fulfill their information needs. The chapter is divided into two dif-
ferentiated parts: first, it describes the main features of a discovery system, explaining
the different architectures and the different discovery techniques and, then, it focuses
on the web resource discovery in the Life Sciences domain. This latter part describes
the characteristics of the domain that have to be considered during the discovery, and
it presents a brief description of the characteristics of current discovery tools. Finally,
it surveys the most popular systems for the discovery of web resources in Life Sciences.

1.4.2 Third Chapter: Semantic Discovery of Web Resources in the

Life Sciences

This chapter presents a framework for the discovery of the most appropriate web re-
sources given a user’s requirement in the Life Sciences domain. It describes the main
characteristics of the proposed approach and how the main limitations of current ap-
proaches have been addressed.

1.4.3 Fourth Chapter: Normalization

This chapter addresses the dependency on the characteristics of the metadata and pro-
poses a normalization process based on the semantic annotation of data and knowledge
extraction techniques. First, it describes the state of the art of semantic annotation
and, then, the semantic annotation process as well as the resources used in the annota-
tion process are explained. Then, it describes knowledge extraction techniques in order
to automatically identify relevant information about the resources that improve their
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characterization and, consequently, improve their discovery. Finally, it describes how
this normalization process is applied to the data involved in the discovery process.

1.4.4 Fifth Chapter: An IR Model for Web Resource Discovery

This chapter presents the IR model proposed in this thesis for the discovery of the
most suitable web resources given a user’s requirement. Firstly, the most common
IR models in the literature are briefly described. Afterwards, the proposed IR model
is presented describing its main elements. First, it explains the representation of the
data considered in the discovery process. Then, it describes the relevance function
proposed to estimate the suitability of a resource for a specific requirement. Finally, it
describes the discovery method based on the normalization of data and that considers
the relevance of the resources to rank them.

1.4.5 Sixth Chapter: Experiments

This chapter shows the results of the experiments carried out to validate and justify
the discovery process presented in this thesis. First, it presents the results of the
experiments performed to validate some specific parts of the discovery process. Then,
it presents global experiments to validate the quality of the whole discovery process.
Moreover, for a further evaluation, we compare our approach with other retrieval models
and with other popular discovery tools.

1.4.6 Seventh Chapter: The Prototype

This chapter presents BioUSeR, a prototype for the semantic discovery of web resources
driven by user’s requirements in Life Sciences. It shows two example use cases, which
visualize the whole process done by a researcher using BioUSeR to discover the most
suitable resources for her requirements.

1.4.7 Eighth Chapter: Conclusions

The last chapter recapitulates the main contributions and results, discusses the limita-
tions of our proposed techniques, and suggests possible extensions and open research
lines. Moreover, a list of papers published as the result of this thesis work is included.
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Chapter 2

Web Resource Discovery

In recent years, the number of web resources available over the Web has increased
considerably. Due to the large amount and the heterogeneity of web resources, finding
a suitable resource with respect to user’s requirements is a challenging task, which is
called web resource discovery.

Web resource discovery is a general-purpose problem that varies depending on the
intrinsic characteristics of the domain in which discovery is performed. This thesis is
focused on the Life Sciences domain, in which resource requesters are researchers that
have information needs during their research which may be fulfilled with existing web
resources. Therefore, discovering the most suitable web resources for their require-
ments is crucial in their research activity. Discovery in Life Sciences presents the same
challenges than in other domains, but the discovery tool has to take into account its
particular domain characteristics, such as the data heterogeneity or the complexity of
some Life Sciences tasks.

This chapter presents the state of art of web resource discovery systems. Specifi-
cally, Section 2.1 defines the process of web resource discovery and surveys the different
architectures and techniques proposed in the literature. Section 2.2 addresses the dis-
covery in a specific domain, Life Sciences. Finally, Section 2.3 provides some conclusions
about the research done in web resource discovery.

2.1 Web Resource Discovery

Web resource discovery is the act of locating a machine-processable description of a web
resource that may have been previously unknown and that meets certain functional

9



Chapter 2. Web Resource Discovery

criteria. The objective of the discovery is to provide the user with the most suitable
resources for her information needs.

The web resource discovery can be considered as a particular case of an Information
Retrieval (IR) system [8], more specifically a Recommendation System [75], which is
based on metadata rather than on document content analysis. Therefore, as any IR
system, the web resource discovery depends on: (i) the user’s requirements and how
they are represented, for example through keywords, requirements specification models
(like i∗, UML or MAP) or specific query languages (SPARQL, SQL), (ii) the description
of web resources and its representation, which can be as simple as a few words, a URI,
or more complex metadata descriptors, such as a tModel (in UDDI), RDF, DAML-S
and OWL-S statements, and (iii) the mapping function on which the discovery is based.

In the literature, most of the research done on web resource discovery has been
mainly focused on the discovery of web services, since in last years there has been
an explosion of this kind of technology. For this reason, in this section many of the
presented systems are focused on web services.

Next, Section 2.1.1 reviews the different architectures for discovery tools, and Sec-
tion 2.1.2 describes the mapping techniques used to perform the discovery of resources.

2.1.1 Discovery Architectures

In the literature, different architectures have been proposed for the discovery of web
resources, which can be broadly classified as: centralized and distributed architectures.

2.1.1.1 Centralized Architectures

In a centralized architecture, the descriptions of web resources are stored in a central
registry. A web resource registry is a repository of metadata describing the registered
web resources (e.g., the data on datasets or the functionality of network-addressable
services such as web services). A registry offers a standards-based mechanism to classify,
catalog and manage web resources, so that they can be discovered and consumed by
other applications. Moreover, the registry must describe the information provided by
the resource, e.g., what a dataset contains or what a web service does. As depicted in
Figure 2.1, providers publish their resources in a registry in order to make them visible
to requesters. Then, requesters submit a query to the registry in order to retrieve
suitable resources for their information needs. In these systems, a requester can be a
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person or even a software application looking for resources to fulfill automatically an
information need.

Figure 2.1: Discovery in a centralized architecture

UDDI (Universal Description, Discovery and Integration) 1 was proposed in 2000 as
a standard method for publishing and discovering network-based software components
(web resources and specifically web services) of a service-oriented architecture (SOA).
UDDI provides a registry of web services and programmatic interfaces for publishing,
discovering and managing information about the web services described therein. Web
services in a UDDI based architecture are accessed for binding through UDDI Applica-
tion Programming Interfaces (API). However, UDDI has not had the expected relevance
and it has not become the universal registry of web services as it was expected to be.
In fact, most UDDI providers have closed their UDDI registries in the last years, e.g.,
IBM, Microsoft and SAP in 2006 and Microsoft in 2010. Therefore, other solutions
have been proposed.

Current registries contain the descriptions and the URL of web resources, and the
web resources are kept in the providers’ site. These registries behave as web resources
catalogues, since providers publish the description of their resources and the catalogue
make them visible to other users through its discovery capability. For example, Web-
ServiceList2, RemoteMethods3, and WSIndex4 are registries that allow the discovery
of web services about general domains.

It is worth noting that, in the last years, registries of datasets are emerging in order
to make visible data or data sources that are not reachable by the typical discovery
methods. For example, Datahub5 performs the discovery of a huge variety of datasets,
ReStore6 is a registry of educational resources, and the World Bank7 gives access to data

1http://www.uddi.org
2http://www.webservicelist.com
3http://www.remotemethods.com
4http://www.wsindex.org
5http://thedatahub.org/
6http://www.restore.ac.uk/
7http://data.worldbank.org/
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services about social topics such as education, finances, gender among others. Another
type of registry is Wikipedia1, which provides access to data that are described with
well-defined metadata and which has its machine-processable version in DBpedia2. All
these systems provide users with sources that are assumed to contain the data that
fulfill their information needs.

However, centralized architectures present some drawbacks. First, registration of
resources is voluntary and, therefore, if the providers do not publish their web resources,
requesters will not be able to find them. Then, the central registry usually becomes
a bottleneck of processing, presenting problems of performance and scalability. There
have been proposals to build distributed (replicated) UDDI to overcome this bottleneck
[33; 102].

2.1.1.2 Distributed Architectures

In distributed or decentralized architectures, web resources descriptions are usually
stored at the provider’s site and they are gathered by a web crawler or search engine.

A web crawler is a program that browses the World Wide Web in a methodical,
automatic manner. Search engines use web crawling as a means of providing up-to-date
data and, in this case, as a means of retrieving web resources descriptions.

Figure 2.2: Discovery in a decentralized architecture

However, most crawlers of current search engines have been developed for web pages
and not for web resource descriptions. For example, discovering web pages and web
services presents significant differences that affect the final results. First, web services
are usually described with a WSDL file that does not contain much textual information
about what a service offers. Instead it contains complex technical information repre-
sented by non-standard structures in XML format. In contrast, web pages are built

1http://en.wikipedia.org/wiki/Main Page
2http://dbpedia.org/About
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with standard HTML files that contain a lot of textual information and links to exter-
nal documents that enrich the services information. Therefore, current general-purpose
search engines crawl web services descriptions assuming that they contain textual in-
formation that can be indexed or treated in the same manner as web pages, but most
web services descriptions do not contain an adequate level of information. Moreover,
some search engines, such as Google, rank results using the link structure, and special
properties of HTML documents not applicable to WSDL files.

With respect to datasets, general-purpose search engines cannot distinguish database
interface pages from documents mentioning them, and consequently they reveal them-
selves rather inefficient for discovering databases. Thus, these search engines return a
mixture of scientific articles, web sites, tools, departments and people in a manner that
makes extracting useful information very difficult. Moreover, many datasets are in the
deep Web (web content not indexed by search engines and not linked to other pages),
so if they are not explicitly published in any registry, they cannot be discovered by
researchers.

Therefore, neither the identification of suitable resources through pure keyword
extraction nor the relevance ranking based on HTML characteristics, such as hyperlinks
and title tags, provides much of a use in a web resource scenario.

To overcome these limitations some new formats have been proposed to enrich the
web pages information, e.g., microdata1 and RDFa2. These specifications add semantics
to the content of web pages by using machine-readable tags.

With respect to web resources, there are some approaches that enrich WSDL de-
scriptions with information gathered from external resources [1] in order to provide
more useful information about the service in the WSDL file. Others try to complement
each architecture’s strengths by combining search in centralized registries with search
engines [3].

2.1.2 Discovery Techniques

Independently of the architecture that determines the location of web resources meta-
data, the discovery techniques can also be classified according to the adopted mapping
function as either functional or non-functional based methods.

The functional methods base the discovery on the functionality provided by the web

1http://www.w3.org/TR/microdata/
2http://www.w3.org/TR/rdfa-core/
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resource, which can consist of simple tasks such as data retrieval, a transformation of
data, more complex tasks such as prediction methods, or domain specific algorithms
(e.g., complex mathematical calculations). The functionality, which is usually described
in web resources metadata, plays a decisive role in the discovery of web resources driven
by users requirements. On the other hand, non-functional methods consider other
features of the resources that are related to how the resource is supposed to be, e.g.,
quality and performance.

Next, two types of functional methods and the most popular non-functional methods
are described.

2.1.2.1 Syntactic-based Functional Methods

Syntactic-based methods rely on the matching, either strict or partial matching, of the
words in the user’s requirements specification (i.e., query) and the words in the web
resources metadata.

In the registries that use syntactic methods, the requirements specification usually
consists of either a set of keywords or a set of categories taken from a concept hierarchy,
which describes specific metadata of resources such as the functionality or data types
of the resources.

In keywords-based discovery, many registries adapt the Vector Space Model (VSM)
[97] for representing both user’s requirements and web resources metadata. In VSM,
descriptions having similar content are represented as vectors located near in the space.
Then, the discovery of web resources is a one-to-many matching technique to find the
nearest neighbors in a vector space. Therefore, the similarity between requirements and
web resources can be estimated with measures that calculate the similarity between
vectors. The most popular similarity measure for SVM is the cosine coefficient [96].
The main drawback of keyword-based search is that it might not discover relevant
resources described with a different vocabulary from the query (e.g., synonyms).

With respect to category-based search, the user selects the category that best de-
scribes her requirements, usually after navigating through a hierarchy of well-defined
categories; then, all resources annotated with that category are retrieved. The quality
of the results depends on the correct assignment of categories to the resources and
also on how well the category describes the user’s requirements. The assignment of an
irrelevant category to a resource might hide it in a category-based discovery.

Apart from keyword-based and category-based discovery, more sophisticated ap-
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proaches have been proposed in the literature which apply syntactic matching on spe-
cific data. For example, there are approaches that use the Query-by-example (QBE)
method, in which the query consists of either an example of the data processed by
the service [15] or of a description of the service skeleton, which involves keywords,
operation and parameter names [26]. Other approaches consider the structure of the
service in order to do the matching, for example, approaches that calculate the sim-
ilarity taking into account the service interface [106]. However, this method requires
that the providers assign meaningful names to input/output parameters of web ser-
vices operations. Moreover, it has to deal with ambiguity problems such as operations
of a specific functionality with different signatures, which makes signature matching
difficult, or multiple data types assigned for the same parameter.

2.1.2.2 Semantic-based Functional Methods

In the last years, semantics have been gaining importance in the discovery of web re-
sources, since they facilitate the automation of resource related tasks such as discovery,
interoperability, execution or composition.

Semantic matching is a technique used to identify information which is semantically
related, that is, to search correspondences by mapping semantic descriptions (concepts),
stored in knowledge resources, not by mapping words as in syntactic matching.

Semantic discovery relies on: (i) the semantic annotation model and (ii) the applied
discovery method.

Semantic annotation models. The World Wide Web Consortium (W3C)1 rec-
ommends three languages of different expressivity for the semantic representation of
data. RDF2 is the least expressive and it represents data in the form of triples
<subject, predicate, object>. Then, RDF Schema3 (RDF-S) extends RDF with mecha-
nisms for describing groups of related resources (classes) and the relationships between
them (properties). Finally, OWL4 (Web Ontology Language) facilitates greater ma-
chine interpretability of web content than that supported by XML, RDF and RDF-S
by providing additional vocabulary along with formal semantics based on description
logics [7].

1http://www.w3.org
2http://www.w3.org/RDF/
3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/TR/owl-features/
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Microdata1 and RDFa2 have been proposed for the annotation of the content in
web pages. Microdata is a simple specification that allows to describe the content in
the HTML document by annotating HTML elements with a supporting vocabulary
using name-value pairs. RDFa enriches HTML, XHTML and XML documents with
rich metadata by using RDF triples.

There are also formats to annotate semantically web resources descriptions. Some
of them have their own semantic models and formal languages to describe web services
semantically, e.g., OWL-S3 and WSMO4. OWL-S is based on OWL and it allows to
describe what a service does and how a client can use and interact with it. WSMO
provides a conceptual framework and a formal language for semantically describing all
relevant aspects related to semantic web services. Other approaches add semantics
directly on the description files of web resources. For example, SAWSDL5 provides
mechanisms by which concepts from the semantic models can be referenced from within
WSDL components as annotations.

With respect to the annotation process, in the last years several attempts have
been made to semantically annotate texts. Depending on the human intervention, the
tools can be classified as: manual, semi-automatic or automatic. Manual tools assist
the user in the annotation process, and rely on the knowledge and will of the users to
annotate entities in text. Examples of manual tools are Annotea [50], NOMOS [70]
or CREAM [43]. Other tools automate some of the stages of the SA process using,
for example, user-defined rules such as Melita [24] and [10], or using a bootstrapped
information extraction process based on the redundancy of the Web as KnowItAll [32].
Although results of supervised SA approaches are usually satisfactory, the intervention
of a curator in the annotation process supposes a huge cost of time and resources.
Therefore, automatic and unsupervised systems are the most desirable ones, though
their performance is usually worse than manual systems. Examples of automatic and
unsupervised systems are: SemTag [31], which performs automated semantic tagging
from large corpora based on the Seeker platform for text analysis, and Pankow [23],
which uses syntactic patterns to mark-up candidate phrases in web pages without
having to manually produce an initial set of marked-up web pages.

1http://www.w3.org/TR/microdata/
2http://www.w3.org/TR/rdfa-core/
3http://www.w3.org/Submission/OWL-S/
4http://www.w3.org/Submission/WSMO/
5http://www.w3.org/2002/ws/sawsdl/
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Discovery methods. Semantic discovery methods depend on the available web re-
sources semantic metadata. The most simple methods are those that estimate semantic
similarity between functional description of resources and user’s requirements, using the
information in lexical resources such as WordNet, and considering simple relationships
between terms such as the synonymy. More sophisticated methods consider the un-
derlying relationships between concepts in an ontology. Techniques such as ontology
linking or Latent Semantic Indexing [28] calculate the similarity between the seman-
tics of the resource metadata and the semantics of the users’ requirements, taking into
account the relationships between ontological concepts.

Depending on the information taken into account, semantic discovery methods can
be classified as: (i) functional semantics methods and (ii) context-based methods.

In functional semantics methods, the degree of matching between web resources
and users’ requirements is computed based on the matching between concepts and
functional constraints describing the functionality. Even though functional semantics
provides a unified way to semantically describe a functionality by the resource provider
and requesters, there is a lack of capability in expressing functionality. WSMO is one
of the few frameworks that promotes a goal-based approach for semantic web resources,
and [111] proposes a unified way to describe the web resource functionality and resource
requests using functional semantics.

On the other hand, context-based methods take into account additional informa-
tion about the context of the description (both in web resource metadata and users’
requirements) apart from the functionality of the resource. The information about the
context helps to enrich the specification of users’ needs and the characteristics provided
by a resource.

2.1.2.3 Non-functional Methods

Non-functional properties of a resource describe other aspects apart from its functional-
ity, e.g., execution or usage qualities. These properties are rarely used in the discovery
of web resources, since discovery is usually driven by the functionality that must be
fulfilled, but they are often used in the ranking of the results, since they help to dis-
tinguish resources with similar functionality but with different qualities that may be
relevant for users’ requirements.

[90] provides a list of QoS (Quality of Service) parameters that can be classified
as: (i) runtime related QoS such as scalability, availability, performance and so on,
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(ii) transactional-related QoS such as integrity, (iii) configuration management and
cost related QoS, such as cost, stability or completeness, and (iv) security related QoS
such as authentication or data encryption. In recent years, non-functional properties
about popularity and usage of the resources are gaining importance due to the success
of social information on the web. The reputation of a web resource may determine the
final selection since opinions of other users are highly valuable. [29; 110] consider QoS
during the discovery, and others such as [4] take QoS also into account in the ranking
of the discovered results.

2.2 Web Resource Discovery in Life Sciences

In recent years, the research activity of Life Sciences community has produced a huge
amount of data as well as many resources and tools, most of them now available on the
Web, to process those data.

A web resource in Life Sciences is anything that can be unequivocally identified
and that provides a specific functionality required by researchers in which biological
data are involved. A web resource can be a web page that visualizes relevant biological
information and metadata describing it, databases containing biological data or web
services that perform algorithms that process and transform biological data, e.g., a web
service that aligns two DNA sequences.

In Life Sciences, researchers use discovery tools in order to find the web resources
that are the most appropriate for their information needs. A researcher initiates the
discovery by describing the information she needs, either data stored in a dataset or
the result of processing some data. The discovery must provide the researcher with a
resource or a set of interconnected resources in case required data are provided by the
execution of several resources (workflows).

However, the discovery of the web resources is a challenge for Life Sciences re-
searchers due to the huge amount of available web resources and to their heterogeneity
and decentralized distribution. Moreover, there is not any widely-accepted standard
to represent data and, therefore, each resource provider represents the data with dif-
ferent vocabularies which makes the discovery and the integration of web resources a
complex task. In last years, the issues of web resource discovery in Life Sciences have
been addressed by many systems with the common goal of assisting researchers in the
selection of the most appropriate resources.
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Most of the discovery systems are based on centralized architectures. Most resources
are available on registries or catalogues in which providers publish their resources with
useful metadata about the functionality the resource provides, the data involved, and
additional features such as parameters or constraints. In Life Sciences, there are systems
focused only on the discovery of datasets (e.g., DAS [88], MIRIAM [49], and BioRegistry
[30]), others only deal with web services (e.g., BioMoby [108], SADI [109], BioCatalogue
[15], and myExperiment [38]), and a few consider any type of web resources (e.g.,
SSWAP [36], Bioinformatics Link Directory [18], and ExPASy [74]).

Regarding the use of general-purpose search engines, apart from the limitations
pointed out in Section 2.1.1, search engines are quite sensitive to the domain specific
data and to their heterogeneity. Some domain specific crawlers have been developed for
discovering biological databases. For example, BioSpider [54] and ACHE [9] implement
strategies for filtering web forms in order to retrieve database interface forms. However,
the resulting collections of links are poorly indexed, and do not allow efficient discovery.

Apart from the type of resource, registries can also be distinguished by: (i) their
discovery method and (ii) the metadata considered during the discovery.

Considering the discovery method, many registries base the discovery on syntactic
methods (see Section 2.1). In these registries, results heavily depend on the specification
of the user’s requirements due to the high heterogeneity of data [62]. As [37] claimed,
standardization of data in Life Sciences is unlikely to happen soon and, therefore, other
normalization techniques such as the use of semantics have to be considered.

In the last years, semantics have been gaining relevance in the web resource discov-
ery in Life Sciences with the aim of addressing the previous issue. Nowadays, there is a
large number of KRs for annotation (e.g., BioPortal [72]). However, providing semantic
annotations manually is a tedious and time-consuming process that requires providers
to know the adopted knowledge resources. Currently, there are automatic tools that
semantically annotate biomedical texts, e.g., BioPortal, EAGL [93], MetaMap [6] and
Whatizit [91]; however, they are not suitable for the annotation of web resources meta-
data since they do not cover all the terminologies used in the Bioinformatics domain.

Recently, there have been several efforts to publish the semantic representation of
biomedical information available on databases or on other resources such as scientific
articles. For example, Bio2RDF [11] and Linked Life Data1 represent the content
of biomedical sources in RDF with the aim of helping the process of bioinformatics

1http://linkedlifedata.com/
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knowledge integration. With respect to scientific articles, AO [22] provides a common
model for document metadata derived from text mining and manual annotation of
biomedical scientific papers and that can be published as Open Linked Data on the
Web. Moreover, in the last years, there have been many efforts with the aim of making
the use of semantics easier for users. For example, BioPortal and [67] provide semantic
functionalities that can be used, among other applications, for the annotation of web
resources metadata. Others aim to help researchers to consume and integrate the data
from those databases available in RDF. For example, BioQueries [34] is a wiki-based
portal to encourage users to share their experiences with Biological Linked Data by
publishing their SPARQL queries in the portal.

Regarding the semantics in current web resource registries in Life Sciences, few reg-
istries provide semantic representation of resources metadata. Some registries support
a very limited use of semantics by allowing providers and requesters to use terms from
an ontology as tags of a resource. For example, BioCatalogue has the myGrid ontology
as the reference vocabulary to provide tags but, unfortunately, users hardly ever use
terms conforming to that ontology. Others use BioMoby as the reference vocabulary,
but they present similar drawbacks. Lately, some registries have incorporated seman-
tics allowing to store the resources metadata in RDF and to specify semantic queries.
There are registries that combine syntactic and semantic (SPARQL queries and query
graphs) search, like myExperiment [38] and SSWAP [36], whereas others are based
mainly on semantics, e.g., SADI [109]. In these semantic web resources registries, the
discovery and composition are easier than in the other registries due to the benefits
of semantics. However, they require the users to provide the appropriate semantics
when publishing the resource, and when looking for a suitable one, which supposes an
extra effort for them since they have to know the knowledge resources and semantic-
aware technologies such as SPARQL. Moreover, the semantics are usually still related
to specific metadata, and rich free-text descriptions remain unannotated.

With respect to the metadata considered during the discovery, web resources meta-
data usually consist of well-defined fields, like categories and tags usually describing
specific features of the resources, and rich textual descriptions. Searching through
browsing only considers well-defined metadata, whereas keyword-based search usually
considers all the available metadata in the string matching process.

Recently, due to the relevance that social information has gained in almost all do-
mains, some registries allow their users to provide metadata about the resources, for
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example: descriptions, tags, categories, additional information such as publications,
comments, data examples or even information about the resource popularity with rat-
ings or counters of the times the resources have been viewed or downloaded. These
registries are commonly known as open registries.

Here, next in this section, the most popular discovery tools in Life Sciences are
briefly described considering the features described in this chapter. Firstly, registries of
data services are presented, then, registries of web services and, finally, registries that
allow the discovery of different types of resources.

2.2.1 Data Services Registries in Life Sciences

Data services registries aim to identify and annotate biological data in order to make
data integration easier. Table 2.1 shows the main characteristics of each one of the
surveyed data services registries.

• DAS [88]. Distributed Annotation System is a widely-accepted communication
protocol used in the exchange and integration of biological data. DAS is used to
annotate many different kinds of biological entities, e.g., genome sequence, protein
sequence, molecular structure and so on. DAS was designed as a lightweight
system for integrating data from a number of heterogeneous distributed databases,
and it allows the discovery of available DAS sources via a web page, or as a
machine-readable XML that can be used directly by DAS client programs. The
sources in DAS registry are described by a title, a short free-text description and
machine-readable metadata describing the capabilities, the type of the resource
and the data types. The discovery is based on a textual description and on the
filters defined on the specific metadata such as the capabilities, the type or the
organism. As of March 2013, the DAS registry contains 1579 sources provided by
53 groups in 17 countries.

• BioRegistry [30] is a registry of biological databases, in which metadata are
attached to biological databases organized in a flexible and structured manner,
enabling knowledge modeling about biological databases and advanced discovery
capabilities. The registry is automatically generated from a publicly available list
of biological databases, the Molecular Biology Database Collection1 published in
Nucleic Acid Research (NAR). It associates metadata, automatically extracted

1http://www.oxfordjournals.org/nar/database/c/
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from NAR, to the databases, e.g., description, input and output options, MeSH
terms and categories. The repository allows browsing with MeSH terms and
categories, and searching by specifying the name or id of the required resource,
in case the user knows it, or with a set of keywords matching the databases
description using the boolean operators AND and OR. As of March 2013, it has
1221 registered databases.

• MIRIAM [49]. Minimum Information Required in the Annotation of Models
(MIRIAM) registry is a catalogue of biological data collections, for each of which
extensive metadata are recorded. Its aim is to assign Uniform Resource Identifiers
(URIs) to uniquely identify any record in a collection. Discovery can be made by
exploring the list of databases, a list of tags, or by strict string matching search.
As of March 2013, it has 414 data collections and 506 resources providing access
to these collections.

Registry Resources Metadata Discovery Semantics Number of
Browsing Searching Resources

DAS DAS Description, Filters on String Controlled 1579
services status, metadata on matching vocabulary

capabilities, free-text
types, description
data types

BioRegistry NAR Name, MeSH terms, Keywords, 1221
databases description, categories name,

citations, id
categories,
MeSH terms

MIRIAM Data Description, Names, tags Sentence 414 data
collections namespace, collections,

website, 506 resources
categories,
usage examples

Table 2.1: Most popular data service discovery tools in Life Sciences

These registries contain well-defined metadata of services that provide access to
biological datasets and databases. The discovery can be made by: (i) keyword-based
search and (ii) browsing through categories (BioRegistry), tags or names (MIRIAM)
or filters on specific fields (DAS). None of them uses semantics to formalize the services
metadata, nor provides the user with a ranked list of results.
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2.2.2 Web Services Registries in Life Sciences

Web services registries provide a common interface to discover Life Sciences web services
independently of their functionality. Table 2.2 shows the main characteristics of the
surveyed web services registries.

• EMBRACE Service Registry [85] is a Life Sciences web service registry with
built-in service testing developed in the EMBRACE (European Model for Bioin-
formatics Research and Community Education) project, together with EDAM
[86] (an ontology for describing Life Sciences web services) and BioXSD [51] (a
schema for exchanging data between services). Each registered web service is
described with tags, a WSDL file, a textual description, and its status. One im-
portant and useful characteristic of this system is that each entry includes live test
data. Although efforts at semantics have been done in the EMBRACE project,
the registry provides a syntactic discovery method based on the string matching
of query keywords. This registry is considered as the prelude to BioCatalogue,
and all its services have been also registered in BioCatalogue. Currently, it has
822 web services but the last updates were done in 2010.

• BioMoby [108] is an open-source research project whose aim is to produce a
simple, extensible registry to enable discovery, representation, integration and
retrieval of biological data from widely disparate data hosts and analysis services.
The components of BioMoby are: MOBY Services (bioinformatics software tools),
MOBY Objects (input and output data for the services) and MOBY Central (a
register holding the input/object types of all registered resources, their URL and
their service types). The discovery of BioMoby services in MOBY Central is
based on their input, output, service type or authority by using the object and
service ontologies. The use of these ontologies facilitates the matching of web
services consumers, who have in-hand BioMoby data, with service providers, who
claim to consume that data-type (or some compatible ontological data-type) or
to perform a particular operation on it.

Currently, there are several BioMOBY central repositories providing BioMoby
services. Moby 2.0/CardioSHARE [104] is a RDF-based system whose goal is to
provide a higher level of functionality and reasoning capabilities. In this approach,
data is interchanged in RDF and queries are expressed in SPARQL. This project
expects web services to be able to consume and produce RDF. Nowadays, it is
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based on the use of Bio2RDF [11], that aims to enable the use of standard OWL
reasoning techniques to improve service discovery. CardioSHARE can access to
SADI services in response to SPARQL queries. It has more than 1500 web services
(as of March 2013).

• Magallanes [68] is a library of algorithms aimed at discovering Bioinformatics
web services. The search is based on a GoogleTM -like approach, in which the user
keywords are matched to metadata descriptions improved by the Did you mean...?
algorithm, which helps the user to build the query. Search can be performed
on data type, service type, service and operation fields, and it supports boolean
operators. Moreover, Magallanes provides a way of composing compatible services
into workflows.

Magallanes provides the user with a ranked list of retrieved services based on the
similarity between the keywords and the web service metadata.

Currently, Magallanes is used as a discovery engine in other integration tools
such jORCA [60] and MOWServ [89], in which it has access to more than 700
web services registered in the INB repository.

• MOWServ [89] is a bioinformatic platform developed by the Spanish National
Institute of BioInformatics (INB) that provides integrated access to the services
in the INB repository. It provides two types of web service discovery: (i) browsing
through the BioMoby taxonomies for services and data types , and (ii) discovery
based on the input data. For more advanced searches, it uses the Magallanes
system. Currently, it has access to more than 700 web services registered in the
INB repository (as of March 2013).

• SADI [109] is a framework that uses standard-compliant Semantic Web Service
design patterns that simplify the publication of services and their subsequent
discovery in domains such as Bioinformatics. Providers have to follow SADI
conventions to publish their services, e.g., all services consume and produce RDF
instances of OWL classes, and users have to use semantic discovery tools to query
the semantic metadata, for example, through SPARQL queries. SADI can be
used as framework in other web services registries, e.g., SADI is currently used in
CardioSHARE as platform to solve SPARQL queries. Currently, in its own SADI
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registry1, there are 688 web services registered (as of March 2013).

• BioCatalogue [15] is a Life Sciences registry that provides a common interface
for registering, browsing and annotating Life Sciences web services. Curation of
information about web services is open to any user in the Life Sciences community
and uses a combination of free text, tags, ontology terms and examples values to
describe the service functionality, the type of biological data and data formats
that the service accepts or returns among other additional features. These annota-
tions are manually provided not only by the resources providers, but also by users.
Moreover, some information is gathered by some monitoring and usage analysis
data obtained automatically by BioCatalogue servers. However, most of these
annotations are expressed as free text without following any controlled vocabu-
lary. The service discovery is mainly based on the keyword search and browsing
over different aspects. The keyword-based search consists of the string matching
between user’s keywords and services metadata. Browsing can be performed over:
service type (SOAP/REST), provider, submitter, country and category, which is
the most useful filter since it is based on a taxonomy about services functionality.
To enhance its accessibility and usability, BioCatalogue is indexed by search en-
gines such as GoogleTM . It also provides a programmable API which is used by
third-party applications such as Taverna. Currently, BioCatalogue contains 2332
registered web services from 165 providers from 31 different countries.

• myExperiment [38] is a Life Sciences repository, developed in the same project
as BioCatalogue, whose main resources are workflows but other research objects
can also be registered in it. The workflows are annotated with tags, a textual
description, object types and information about the provider. Moreover, my-
Experiment provides additional information about non-functional features of the
resources such as the number of times the resource has been viewed or down-
loaded, the number of users that have defined the resource as their favorite, and
a rating scale that reports the opinion of users about the quality of the resource.
This information is highly valuable for the user when selecting the most suitable
web resource.

The discovery is based on filters over well-defined fields, e.g., type, tags, user,
license and so on, and on a keyword-based search that considers all the metadata

1http://sadiframework.org/registry/services/
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available about the resource. Currently, myExperiment publishes all its public
data on RDF, which can be queried with SPARQL. As of March 2013, myEx-
periment provides access to 2729 workflows, to 300 packs, and there are 8947
registered members.

• Taverna [73] is a workflow construction environment and execution engine de-
signed to support in silico experiments developed by the European Bioinformatics
Institute (EBI) and the University of Manchester. Taverna is part of the myGrid
project, so it is aligned to BioCatalogue and myExperiment. It is able to build
complex workflows, to execute them, and to display the different types of results.
To build the workflows, the user has to search the appropriate web services, which
can be available in Taverna or can be imported by their URL, which requires that
the user knows the service or has performed a previous discovery with another
discovery tool. Taverna performs web service discovery using string matching
between the user’s keywords and the web services metadata. Moreover, the user
can also search services by the input/output data types on BioMoby services.
Taverna, as of March 2013, provides access to more than 3500 resources.

Some registries restrict the registration to specific service architectures, e.g., SADI,
whereas others accept different types of architectures, such as SOAP and REST, and
the discovery is transparent to the service type. Current web services registries facili-
tate well-structured metadata about the registered web services that can be described
by: (i) predefined values defined in taxonomies (e.g., the categories in BioCatalogue),
(ii) values conforming to an ontology (e.g., the service type or data types in BioMoby
and SADI), or (iii) free labels (e.g., the tags of EMBRACE, BioCatalogue and myEx-
periment). Moreover, most of these registries also contain textual descriptions of the
services which are used for keyword searches.

With respect to semantics, there are registries that have their own ontologies to
define the metadata, e.g., BioMoby and myExperiment, and others use third-party on-
tologies, e.g., SADI. Moreover, there are registries that represent the services metadata
using RDF, which allows the use of SPARQL and semantic query graphs for resource
discovery.
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Registry Resources Metadata Discovery Semantics Number of
Browsing Searching Resources

EMBRACE SOAP, Tags, Name, Keyword 822
REST, WSDL, tags matching
DAS, description,
BioMoby status

BioMoby BioMoby Service type, Virtual Service type, BioMoby 1500+
(CardioSHARE) services I/O types, graph Object type, ontology,

description SPARQL RDF
Magallanes Textual Keyword 700+

description, matching
service type,
data type

MOWServ BioMoby, Service type, Service type, Keyword BioMoby, 700+
INB services I/O types, data type matching own ontology

description (Magallanes)
SADI SADI I/O types SPARQL, Third-party 688

services with Virtual graph ontologies,
properties RDF

BioCatalogue SOAP, Categories, Categories, Keyword 2409
REST tags, tags, matching

description, providers, on all
data examples, submitters, metadata
publication, countries
citations,
monitoring

myExperiment Workflows Tags, Type, Keyword RDF, 2729
description, tags, matching, own ontology
rating, user, SPARQL
version, licence,
viewed, group,
downloaded, wsdl,
reviews, curation
comments,

Taverna Workflows, I/O BioMoby BioMoby Keywords BioMoby 3500+
BioMoby, types matching data types
WSDL,
BioMart,
SoapLab

Table 2.2: Most popular web service discovery tools in Life Sciences

2.2.3 Web Resources Registries in Life Sciences

Web resources registries allow the discovery of different types of web resources by
providing a common discovery interface for all of them. Table 2.3 shows the main
characteristics of the surveyed web resources registries.

• SSWAP [36]. Simple Semantic Web Architecture and Protocol (SSWAP) pro-
poses an architecture, a protocol and a platform to semantically discover and
integrate heterogeneous disparate resources on the Web. SSWAP proposes a
unique canonical structure for all actors and activities; the same canonical struc-
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ture that allows providers to describe their resources is the same structure for
expressing queries, which is in turn the same canonical structure for phrasing
service invocation, which is the same structure for representing results.

SSWAP architecture is based on five basic concepts: Provider, Resource, Graph,
Subject and Object. Providers correspond to organizations that own and publish
resources. Resources can be arbitrary resources like web pages, ontologies, and
datasets; but they are primarily used to describe web services. The transformation
performed by the service is described by the Graph concept, which defined a
mapping from a SSWAP Subject (input) to a SSWAP Object (output). All this
information is stored in RDF.

Resources are described by a Resource Description Graph (RDG) accessible by
anyone via a simple HTTP GET. Users’ requirements can be specified in three
ways: using a keyword-based search through the web front-end (http://sswap.info)
or programmatically engaging the SSWAP query service with a Resource Query
Graph (RQG) or with a Resource Response Graph (RRG). The discovery using
the RQG is based on the partial matching between a RQG and a RDG, considering
specifications and generalization of concepts. The RRG is the graph returned by
a previous service, facilitating in this way the interoperability between resources.

[36] stated that SSWAP had, as of 2009, more than 2400 web resources.

• Bioinformatics Link Directory [18] contains more than 2100 curated links
to Bioinformatics resources, databases and tools, including all the databases and
web services listed in NAR (Nucleic Acids Research) special issues, organized
into 11 main categories. Each link is described by: a name, a textual description,
categories, tags, publications (PubMed links), user feedback (rating), and the
options to access or download it. It provides two ways of discovering resources: (i)
browsing through categories and subcategories, and (ii) searching with keywords-
based queries performing string matching within the title, the description and the
tags of the link. As of March 2013, it has 163 resources, 620 databases and 1376
tools.

• ExPASy [74] is an extensible and integrative portal accessing many scientific
resources, databases and software tools in different areas of Life Sciences, most
of them provided by SIB (Swiss Institute of Bioinformatics). Resources are de-
scribed by a name, a textual description (usually very short), scientific categories,
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keywords from a controlled vocabulary, an URL and the status. ExPASy pro-
vides two types of discovery: (i) Find resources discovers databases and software
tools using string matching on name, keywords, category and descriptions, or by
browsing through the hierarchy of categories, and (ii) Query databases (cross-
resource search) in which a text-based query is sent in parallel to a set of selected
resources returning the number of hits and the link to the query results. As of
March 2013, ExPASy registered 267 resources.

Registry Resources Metadata Discovery Semantics Number of
Browsing Searching Resources

SSWAP Web services, Name, RRG, RDF 2400
data description, RQG, (year 2009)
resources I/O types keywords

matching
Bioinformatics Resources, Categories, Category Keywords 163 resources,
Link databases, description, matching 620 databases,
Directory tools MeSH terms, filtered on: 1376 tools

tags, titles,
rating, description
PubMed links or tags

ExPASy Resources, Categories, Keyword 267
databases, keywords, matching,
software software types, cross-resource
tools status, database

description search

Table 2.3: Most popular web resource discovery tools in Life Sciences

To sum up, apart from the common discovery interface, some registries also provide
specific discovery functionality for specific types of resource. For example, ExPASy
describes all resources in the same manner, but it provides a specific search to query
databases directly, apart from the general search.

In some registries, resources are described with external resources. Some of them
formally describe the metadata through knowledge resources, like SSWAP, whereas oth-
ers describe resources providing additional information about them, like Bioinformatics
Link Directory links the resources to PubMed articles.

2.2.4 Discussion

The surveyed web resource registries present similar characteristics and, therefore, sim-
ilar limitations that hinder the discovery of the most adequate web resources for specific
user’s requirements.
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Firstly, current registries in Life Sciences limit the user in the specification of what
she needs and, in consequence, the discovered resources may not be those expected by
the user. The most popular way to specify user requirements is through keywords-based
query, with which the search engines perform string matching over resources metadata.
In the keyword-based search, the user has to summarize her information needs into a set
of keywords that are supposed to be the best fittered for representing them. Moreover,
these words must explicitly appear in the resources metadata, since most registries
use string matching techniques, which hardly ever consider variants of words, neither
synonyms nor related words such as hypernyms. Due to the heterogeneity of meta-
data descriptions that come from different providers, the recall of the discovery can
be very low. Many registries also support browsing through categories, which are usu-
ally related to either the research task or to facet values. Browsing through categories
also limits the user in the specification of her requirements, since she has to choose
categories from a hierarchy, or values from a controlled vocabulary related to specific
metadata. Both categories and filter-value pairs hardly ever describe accurately the
user’s information needs. So, in current registries the user is limited when describing
her requirements since she has to make a double effort: (i) to know the vocabulary used
to describe resources, and (ii) to summarize her information needs into a set of key-
words or categories of that vocabulary. These limitations affect directly the discovery
process since the discovered resources may not be as relevant or as precise as required
and, therefore, may not achieve completely the user’s requirements. Other registries
(e.g., SSWAP, SADI) base the discovery on semantics and allow the users to provide
a more formal specification of their requirements using semantic query languages such
as SPARQL and graphs. However, although these languages provide a more precise
description of the user information needs, the specification is more complex than in
other querying techniques, and users have to be experts on the query language, which
requires also an extra effort.

Another limitation of current registries is related to the characteristics of the avail-
able metadata and their role in the discovery process. The amount and the character-
istics of web resources metadata depend on the facilities provided to the users by the
registry to publish metadata and, also, to the users’ will. In some registries, resources
are described with well-defined metadata, i.e., structured metadata with values from a
controlled vocabulary, which facilitate the automatic discovery when the discovery is
based on the same specific metadata. However, web resources described only with well-
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defined metadata are usually poorly described since these metadata are normally very
specific and related to few specific aspects of the resource. For example, BioMoby allows
describing the resources with their type and their input/output parameters. However,
the search is based only on these specific fields, limiting the requirements specification.
In most recent registries, the resources are described with well-defined metadata and
with textual descriptions with richer information. These registries combine the search
on the specific metadata with that based on the textual descriptions. However, textual
descriptions are processed with string matching techniques, which do not identify rele-
vant information implicitly described in the text such as the resource functionality and
its features. Though current registries usually provide specific fields to specify those
relevant features, evidence shows that most of this information is implicitly described in
textual descriptions and, therefore, it is not taken into account in the discovery process,
e.g., BioCatalogue and myExperiment. Therefore, the discovery in current registries
depends heavily on the way resources are described, both structural (where the infor-
mation is described) and lexical (the vocabulary used to describe the resources and the
user’s requirements). Semantic-based registries, like SSWAP and SADI, alleviates this
dependency thanks to the formal description of metadata. However, the metadata are
limited to specific fields and the semantics must be specified by the resource provider,
which can be a hard and non-trivial task for providers.

Finally, as a result of the discovery process, the user is prompted with a set of
resources that are supposed to fulfill her information needs, but they are hardly ever
ranked on base to their relevance to the user’s requirements. Few registries, e.g., Ma-
gallanes, rank the results according to the similarity between the resource description
and the requirements specification, but they just count the number of matched words,
without considering further relevance criteria. To the best of our knowledge, no registry
considers the relevance of keywords during the ranking.

To conclude, the main limitations of current open registries in Life Sciences can be
summarized as follows:

1. Low representation of user’s requirements by current requirements specification
techniques.

2. Dependency on the properties of the available web resources metadata.

3. Lack of identification of relevant information implicitly mentioned in textual de-
scriptions which would be useful to characterize the discovery and, in consequence,
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improve the results.

4. Low assistance to the user once provided the set of discovered results.

All these limitations turn the discovery of the most appropriate web resources into
an imprecise and complex task. As a consequence, users end up searching for familiar
resources since they know the names or how they are described, but which are not
always the best suited for their requirements.

2.3 Conclusions

The discovery of the most suitable web resources given a user’s requirement has become
a challenge for users due to the increasing number of web resources over the Web and
to their distribution. Moreover, the challenge of the discovery of web resources in Life
Sciences is intensified due to the heterogeneity of data.

Current web resource registries in Life Sciences present some limitations that hinder
the discovery of the most suitable resources given a specific user’s requirement: (i) poor
representation of user’s information needs, (ii) high dependency on the characteristics
of the available resources metadata, and (iii) low assistance to the user during the
discovery process.

These limitations make that search engines of current registries do not always pro-
vide the user with the resources that best fit her requirements, maybe because the
user has not described precisely what she really needs, or maybe because there is not
any matching between the specification provided by the user and the metadata, even
though when there is an implicit correspondence.

Considering that the discovery of adequate resources is a crucial task in the re-
search activity in Life Sciences, it must be improved in order to make it easier for the
researchers.
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Semantic Discovery of Web

Resources in the Life Sciences

This chapter proposes a semi-automatic discovery approach that overcomes the main
limitations presented by current approaches. The main goal of this discovery approach
is to assist researchers in the discovery of the web resources that best fulfill their
information needs, from the initial requirements specification until the final selection
of the most appropriate resources, allowing the customization of the requirements and
results.

First, in Section 3.1, we describe how the user’s requirements are specified. Then, in
Section 3.2, we present the main characteristics of the discovery process and, in Section
3.3, we give some conclusions about the proposed approach.

3.1 User’s Requirements Specification

The requirements specification must provide a precise description of the user’s infor-
mation needs. In our approach, the requirements specification describes the tasks that
have to be performed to achieve the user’s goals as well as additional features the re-
quired resource must have, from now on facets, such as the input/output data types,
the species involved in the resource and the method performed.

As discussed in Section 2.2.4, in current registries users are limited when describing
their information needs and, sometimes, they do not get the expected resources due
to a vague requirements specification. There are different types of users depending
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on the way they express their information needs. For example, there are researchers
who prefer describing their information needs with textual descriptions, whereas others
prefer browsing through categories or more formal semantics.

Currently, different techniques to describe the users’ requirements have been pro-
posed to account for this diversity of users. Here, we propose a list of them that can
be supported in our approach:

1. Keywords-based queries, consisting of a set of words, usually very specific,
selected by the user to represent her information needs.

2. Textual descriptions. A textual description is an expression written in nat-
ural language in which the user describes her information needs, without any
restriction of size nor vocabulary.

3. Navigational search. Registries with navigational search provide a hierarchy
of categories describing different aspects of the resources. The user selects the
category or categories that best describe her requirements and, then, all resources
annotated with those categories are retrieved. Afterwards, the user has to man-
ually analyze the retrieved resources and, if there is not any resource that fulfills
her requirements, she has to refine the search by selecting other categories.

4. Filtered search. Filtered search is based on well-structured resource metadata.
The registry provides filters on specific metadata whose values come from con-
trolled vocabularies. To specify her information needs, the user has to select a
value for each filter relevant to her requirement. Then, all resources that have
that value in the specific field of metadata are retrieved.

5. SPARQL1. SPARQL Protocol and RDF Query Language is a syntactically-SQL-
like language for querying RDF graphs via pattern matching. The language
features include basic conjunctive patterns, value filters, optional patterns, and
pattern disjunction. To use SPARQL as language of requirements specification,
resources metadata must be represented in RDF. For example, using SADI re-
sources, to retrieve all the names for UniProt “P15923”, we can use the following
SPARQL query:

PREFIX sadi: <http://sadiframework.org/ontologies/properties.owl#>

1http://www.w3.org/TR/rdf-sparql-query/
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PREFIX ss: <http://semanticscience.org/resource/>

PREFIX uniprot: <http://lsrn.org/UniProt:>

SELECT ?nameString

WHERE { uniprot:P15923 sadi:hasName ?name .

?name ss:SIO_000300 ?nameString . }

6. Graphs. They have been largely used as technique to represent data and, there-
fore, they have also been used to represent users requirements. A graph consists
of nodes, which represent entities, and edges, which represent relationships be-
tween those entities. In the specification of the user’s requirements, the nodes
can represent the task to be performed or the values of the resources properties.
Then, the graph is matched to the semantic representation of the web resources.
SSWAP and SADI allow users to describe their requirements with graphs. Then,
each graph is matched to the semantic representation of the web resources. Fig-
ure 3.1 shows a SSWAP RQG (Resource Query Graph), extracted from [36], that
describes the query Retrieve all resources that map anything to a taxa:Taxa.

Figure 3.1: Requirements specification using a RQG

7. i∗ framework. i∗ formalism [115; 116], which is a goal-oriented and agent-
oriented language, allows users to express their requirements by means of goals
and tasks in a formal specification without taking into account the characteristics
of the system. The i∗ Strategic Rationale (SR) model describes user’s interests
and concerns and how they might be addressed. They are represented by means
of goal and task elements described in natural language. For example, Figure
3.2 shows the i∗ model that describes the user’s information needs which consist
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in comparing specific genes in different organisms. This information need is the
user’s goal, and it is fulfilled by executing a set of tasks: retrieve protein sequences,
predict gene structure and so on. These tasks have to be performed by resources
and, therefore, their descriptions are the input of the discovery process.

Figure 3.2: Requirements specification using the i∗ model

Specific languages such SPARQL or i∗ allow users to formally provide more infor-
mation about their requirements that can be used to improve the discovery process,
e.g., dependencies between resources can be extracted from the relations between ele-
ments in an i∗ model. However, it supposes a huge cost for researchers, who are not
experts on these technologies, to learn how to express their needs using these specific
languages. In fact, there are already approaches, like BioQueries [34], that aim to help
users to exploit the full potential of SPARQL to query biomedical databases. Unlike
these languages, textual queries are the easiest and most intuitive way for users to
describe their information needs, since they do not have to choose a limited set of
keywords conforming to a specific vocabulary nor any specific query language.

To be widely adopted by users, the proposed approach is not restricted to a single re-
quirements specification technique, but rather it can provide several techniques in order
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to address different types of users. In order to make the discovery process independent
from the technique used to specify the requirements, for each supported technique an
extraction module must be defined to extract the information about the user require-
ment, as shown in Figure 3.3. In the most precise techniques such as SPARQL or i∗,
the extraction module extracts information from the relationships and properties de-
fined in the specification, e.g., the properties mentioned in a SPARQL query can define
the value of a facet, and the dependency between two tasks in an i∗ model relates the
output of a task with the input of the subsequent task. The canonical model used for
integrating these representations is introduced in the following sections.

Figure 3.3: Architecture of the requirements specification module.

3.2 Semantic Web Resource Discovery

In this section, we describe the main characteristics of the web resource discovery
approach proposed in this thesis, which assists the user in the discovery and selection
of the most suitable resources for her information needs. The discovery is driven by
a (rich) user’s requirements specification and it is based on the normalization of data.
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It consists of two phases, as depicted in Figure 3.4: (i) data normalization and (ii)
discovery and ranking of resources.

Next sections describe the main characteristics of these two phases, which are further
described in Chapter 4 and Chapter 5.

Figure 3.4: Overview of the proposed discovery process

3.2.1 Data Normalization

All data involved in the discovery process are semantically normalized. The normaliza-
tion process represents the data (both user’s requirements specification and resources
metadata) in a machine-readable format and automatically identifies relevant informa-
tion. It consists of two phases: (i) semantic annotation and (ii) knowledge extraction.

Firstly, the data is semantically annotated with widely accepted knowledge re-
sources that formally describe the language used in Life Sciences web resource reg-
istries. The semantic annotation abstracts words to concepts well-described in external
knowledge resources, reducing the heterogeneity and the ambiguity present in data
and, more specifically, in textual descriptions. In contrast to other approaches, e.g.,
BioMoby and SADI, the semantic annotation is completely automatic, and it can an-
notate huge quantities of text with a minimal cost, which would be unfeasible with
manual curation.

The final step of the normalization process is the automatic identification of relevant
information implicitly described in the metadata. Textual descriptions usually contain
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information about specific features of the resources which improve their characterization
and which are relevant to the users. In this work, we refer to these features as facets.

As a result of the normalization, the data are enriched with formal knowledge, which
alleviates the discovery dependency on data characteristics such the use of specific
vocabularies or the lack of adequate metadata.

The normalization process is applied to the all data involved in the discovery pro-
cess, i.e., the resources metadata and the user’s requirements specification.

3.2.2 Discovery and Ranking

The discovery process is based on the semantic mapping between the normalized web
resources metadata and the normalized user’s requirements specification. The use of
semantics allows retrieving resources described with different vocabularies but referring
to the same concepts. Therefore, as stated in the thesis hypothesis, the normalization of
data allows us to reconcile the user’s information needs with the available web resources.

Finally, in order to assist the user in the selection of the most suitable resources,
discovered resources are ranked according to their relevance to the user’s requirement.
The relevance is estimated on base to the similarity between the requirements spec-
ification and the resource characterization that also considers the accomplishment of
facets. Additionally, each resource in the ranked list is attached with a summary of all
its available metadata to help the user in the selection of the most suitable resource.

At the end, if the discovered resources are not those expected by the user, she can
modify the initial requirement specification, the automatic identified facets values, or
even discovery parameters, so that alternative resources can be explored.

3.3 Conclusions

In this chapter we have proposed a discovery approach for assisting users in the discov-
ery of the most suitable resources for their requirements, addressing the main limitations
of current registries.

Regarding the user’s requirements specification, the proposed approach allows the
user to provide a rich specification of her information needs describing the functionality
and relevant features of the required resource. With the aim of being adopted by
different types of users, the proposed approach is not restricted to a unique requirements
specification format.
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To alleviate the dependency of the discovery on the characteristics of the data,
all the data involved in the discovery process, i.e., the requirements specification and
the web resources metadata, are normalized. First, the data are semantically anno-
tated and, then, relevant information is automatically identified by using knowledge
extraction techniques.

Finally, the discovery of web resources is based on the semantic mapping between
the normalized requirement specification and the normalized resources metadata. The
use of semantics relaxes the mapping between resources and requirements, and allows
retrieving resources described with different styles and vocabularies. At the end, unlike
most current registries, the user is provided with a ranked list of resources in which the
most relevant resources to the user’s requirements are top-ranked. The resources are
ranked on base to the fulfillment of the functionality and the features required by the
user.

In conclusion, the discovery approach overcomes the main limitations presented by
current registries thanks to: (i) a rich user’s requirements specification not restricted by
vocabularies nor formats, (ii) the use of semantics and knowledge extraction techniques
to alleviate heterogeneity, ambiguity and implicitness issues, (iii) retrieval and ranking
of resources driven by the functional task and the set of user-defined facets described
in the requirements specification.
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Data in Life Sciences are highly heterogeneous due to the lack of widely accepted stan-
dards. Moreover, the common use of natural language in the resources metadata and
in the specification of the users’ requirements makes even more difficult their automatic
processing. Therefore, to not lose the expressivity of users but also to not limit the au-
tomatic processing carried out by computers, normalization techniques are required to
represent the natural language information in a format that computers can understand
and process.

Normalization is a process by which a textual description is transformed into a
machine-processable representation. Some of the most simple and common normal-
ization techniques are: removing punctuation, expanding abbreviations, converting all
letters to lower and upper case, removing stopwords or word normalization. However,
these techniques are too simple and do not represent the information properly.

In this chapter, we propose a normalization process, shown in Figure 4.1, that
consists of two phases: (i) semantic annotation and (ii) knowledge extraction. Firstly,
the text to be normalized is semantically annotated with knowledge resources in order
to represent the data in a machine-processable format. In the second phase, relevant
information about the resource described implicitly in the metadata is automatically
extracted with knowledge extraction (KE) techniques.

First, in Section 4.1, we make a brief description of the knowledge resources used in
the normalization process. Afterwards, Section 4.2 describes the proposed normaliza-
tion process based on semantic annotations, and Section 4.3 describes the knowledge
extraction method. Finally, Section 4.4 explains the characteristics of the normalization
of the data involved in the discovery process, and Section 4.5 gives some conclusions
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Figure 4.1: Overview of the normalization process
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about the proposed normalization process.

4.1 Knowledge Resources Formalization

In this section we formalize the concept of knowledge resource (KR) and which are
the minimal elements it must provide in order to be useful in semantic annotation and
resource discovery.

Definition 4.1.1. A knowledge resource (KR) is a formalization of the semantics of
a domain by means of a set of concepts C = {c1, ..., cn}.

A concept c ∈ C represents the semantic definition of a meaningful entity in a
specific domain. A concept c consists of a semantic description of an entity and a set
of lexical strings that represent the concept. The function lex : C→ 2strings returns the
lexical strings associated to a concept.

Two concepts c, c′ ∈ C can be taxonomical related by either subsumption (is-a) or by
‘broader-than’ relationships. The taxonomical relationship between two concepts c and
c′ is represented as c � c′. Let be ancestors(c) = {c′ ∈ C|c � c′}.

Usually, the domain covered by a KR is divided into a set of subdomains that have
specific characteristics. Then, the concepts in the KR can be classified according to
these specific subdomains using semantic types1.

Definition 4.1.2. A semantic type st represents a subdomain described in a KR. Let
ST = {st1, ..., stm} be the set of semantic types describing the domain in a KR. Semantic
types can be partially ordered by the subsumption relationships denoted as sti � stj.

A concept c ∈ C has associated a set of semantic types. The function semtype :
C→ 2T returns the semantic types of a concept.

Knowledge resources can also be related on base to their level of specification in the
description of a target domain.

Definition 4.1.3. Let KRi � KRj be the relationship ‘more specific than’, in which
KRi provides a more specific representation of a domain than KRj.

1http://www.nlm.nih.gov/research/umls/META3 current semantic types.html
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4.1.1 Knowledge Resources in Life Sciences

In Life Sciences registries, web resources descriptions mix terminologies of Computer
Science, Biomedicine and Bioinformatics. Unfortunately, although there are efforts to
build a unique vocabulary for Bioinformatics, e.g., [2], a single comprehensive ontology
covering all these terminologies does not exist yet. Therefore, several existing knowledge
resources need to be combined to cover the domain vocabulary. For this purpose,
we have selected several ontologies that cover different terminologies of this domain,
namely:

• UMLS Meta-thesaurus (version 2010AA)1 covers concepts about proce-
dures, anatomy, diseases, proteomics and genomics. This metathesaurus is an
integrated resource that includes a great variety of thesauri and ontologies such
as the Gene Ontology (GO)2, the HUGO database3, and many other related to
the biomedical domain.

• EDAM [86] (EMBRACE Data and Methods) ontology includes concepts strictly
in the domain of bioinformatics such as bioinformatics operations, topics, types
of data and formats. General computer science or biological concepts are not
included in the ontology.

• myGrid ontology4 is the reference ontology of myGrid project ( e.g., BioCat-
alogue and myExperiment), and it has been developed for semantic service dis-
covery. It is divided in two distinct components: the service ontology, which
describes physical and operational features of resources such as input and output
data types, and the domain ontology, which describes core bioinformatics data
types and their relationships to one another.

• Bioinformatics in Wikipedia. In order to provide broad coverage for the
names of the algorithms and methods involved in bioinformatics, we have included
the entries of the Wikipedia related to any subcategory of the Bioinformatics
category. A tailored lexicon with Wikipedia entries related to Bioinformatics has
been built using the tool presented in [55], which automatically builds tailored
lexicons for domains that are not well covered by rich KRs.

1http://www.nlm.nih.gov/research/umls/
2http://www.geneontology.org
3http:/www.genenames.org
4http://www.mygrid.org.uk/tools/service-management/mygrid-ontology
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• Named entities. This lexicon covers named entities that are not described
in the other KRs and that are relevant in our corpus. It includes the name of
popular formats (e.g., PDF, PS, and so on), names of algorithms (e.g., Smith
& Waterman, Myers and Millers), names of popular resources (e.g., Clustalw,
MUSCLE), acronyms (e.g., mol, seq) and other relevant named entities.

These knowledge resources are partially related to each other on base to their level
of specificity as follows:

Named Entities � myGrid � EDAM � UMLS

Bioinformatics in Wikipedia � UMLS

For tagging purposes, all these KRs are loosely integrated into a concept repository,
i.e., a lexicon, which consists of an inventory of concepts, their taxonomical relation-
ships (i.e., � relationship), and the lexical variants associated to each concept (e.g.,
alternative labels, synonyms, and so on) [47]. In order to provide a common repre-
sentation of the integrated KRs, all the concepts are represented with the following
notation:

KRreference ::= KR : concept(: ST )?

Table 4.1 shows the concept representation of each one of the KR described above.
This notation is inspired in the competitions CALBC for annotating large corpora.

KR Concept reference Comment
format

UMLS UMLS:C<number>:STypes STypes are the semantic types associated
to UMLS concepts (e.g. Disease, Protein, etc.)

EDAM EDAM:E<number> Concepts extracted from the EDAM ontology.
myGRID myGR:D<number> Concepts extracted from the myGrid ontologies.
Wikipedia Wiki:W<number>:Categs Categs are the categories associated to

the page entry of the referred concept.
Named OTHR:KR<number>:STypes STypes are the semantic types associated
Entities to UMLS concepts

Table 4.1: Concept reference formats used for the different knowledge resources.
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4.2 Semantic Annotation

The semantic annotation (SA) is the process of linking the entities in a text to their
semantic descriptions, which are stored in KRs such as thesauri and domain ontologies.

In this thesis, we have adopted an automatic and unsupervised annotation method
[13]. This method is based on concept retrieval, that is, it finds the most relevant con-
cepts w.r.t. the text words and, then, selects those that best cover the underlying text
semantics. This annotation tool was tested within CALBC competition over a collec-
tion of 150.000 PubMed abstracts about immunology [92] using UMLS as KR. We have
chosen this tool against other annotation tools, like MetaMap or BioPortal, because of
its easy parametrization, its high recall, and the possibility of including several lexicons.
In this thesis, the semantic annotator considers several KRs simultaneously in order to
cover the different terminologies used in Life Sciences.

Using this annotator, the semantic annotation of a textual description consists of a
set of concepts, defined in a KR, linked to the words in the text that represent entities
described by these concepts.

Definition 4.2.1. A semantic annotation of an entity E is a pair <E,{ci}>, where
ci ∈ C are the concepts that semantically describe E.

The annotation process is divided into three phases: (i) selection of target text
chunks that likely contain an entity, (ii) concept retrieval through the mapping between
each text chunk and the lexical variants of each KR concept in order to retrieve the list
of concepts that are potentially associated, and (iii) a post-processing of the resulting
annotation to make it more accurate and precise. Next, each one of these phases are
described with more details.

4.2.1 Target Text Chunks Selection

A textual description consists of a set of meaningless words, such as prepositions or
conjunctions, that do not provide relevant information and a set of words that provides
the information described in the text. The meaningful words represent entities that
are potentially contained in a KR. In the literature, there are several works about
Biomedical Named Entity Recognition (NER) using natural language processing (NLP)
[87; 117]. However, they are focused only on specific biomedical entities such as protein,
DNA, and so on. In this work, in order to identify all the meaningful entities described
in a textual description, this is splitted up into chunks.
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Definition 4.2.2. A chunk is a minimum text segment that likely contain an entity
that is formally described in a knowledge resource.

Entities are usually represented by noun phrases; thus the chunks to be considered
as relevant are restricted to be noun phrases. There are several methods to extract
chunks from a textual description, from ad-hoc regular expressions representing fre-
quent chunks patterns to NLP tools such as OpenNLP1 or GeniaTagger2. The selected
semantic annotator is not affected by the size or the characteristics of the extracted
chunks whenever it respects the boundaries of the intended entities.

4.2.2 Concept Retrieval

The objective of the semantic annotation is to select the set of concepts that best
describes a text chunk. The best concepts are those that are less ambiguous, more
compact and match the maximum number of words of the text chunk.

Definition 4.2.3. Given a text chunk T, let candidates(T ) = {c ∈ C|∃w ∈ T ∧ ∃s ∈
lex(c)∧w ∈ s} be the set of concepts that match one or several words in the text chunk
T and, therefore, are candidates to describe T. Let matched words(c) = {w ∈ T |∃s ∈
lex(c) ∧ w ∈ s} be the set of words in T covered by the concept c.

Each concept ci ∈ candidates(T ) is evaluated according to an information-theoretic
function, which is inspired by the matching function defined in [66] and the word content
evidence defined in [25].

Definition 4.2.4. Let sim(c,T) be the function that measures the information coverage
of T with respect to each lexical variant of the concept c. It is calculated by:

sim(c, T ) = maxS∈lex(c)

[
info(S ∩ T )− info(S − T )

info(S)

]
(4.1)

Information is measured with an estimation of the string words entropy in a back-
ground corpus G:

info(S) = −
∑
w∈S

log(P (w|G)) (4.2)

1http://opennlp.apache.org/
2http://www.nactem.ac.uk/GENIA/tagger/
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The relevance of a word is measured by means of its estimated probability within
a background corpus G. In this way, highly frequent terms in the background corpus
contribute little to the final score of the strings containing them. In this work we use
the whole Wikipedia (snapshot 2008) as background corpus G.

All concepts with the same score and matched words are grouped together. A
minimum threshold is defined over the score of concepts in order to reduce the number
of concept groups to seek and evaluate. Then, each group with a score greater than the
threshold is evaluated according to the following criteria: the ambiguity of the group
(i.e., number of different concepts), the maximum gap between the matched words
in the chunk and the number of matched words. The concepts less ambiguous, more
compact and with larger matches are top-ranked. A more detailed description of the
annotation process is provided in [13].

This process is executed in parallel for each one of the KRs and, as a result, a
ranked list of concepts LC(T ) of each KR is obtained for the text chunk T .

Finally, given the ranked lists of concepts LC(T ) for the text chunk T , the parts
of T associated to each concept have to be identified. The tagging process is based on
the Algorithm 1. As result of this tagging process, the semantic annotation of a chunk
T is a set of concepts of different KRs that describe the entity in T .

Algorithm 1 Text Tagger

Require: A text T and the ranked retrieved concepts LC(T )
Ensure: The text tagged with a covering of concepts form LC(T ).

Initialize CoveredW = φ
while CoveredW 6= T and LC(T ) 6= φ do

pop ci from LC(T )
record the positions of ci’s words in T
append to CoveredW the ci’s matched words

end while

Example 4.2.1. Given the chunk nucleotides, its semantic annotation is:
<nucleotides, {E0001207.8, E0000022.8, C0028630.8}>.

Definition 4.2.5. Given the semantic annotation of the chunk T, the function anno-
tation(w) returns the set of concepts covering the word w in T.

Example 4.2.2. In the last example, the function annotation(nucleotides) returns
{E0001207, E0000022, C0028630}.
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Annotations can be ambiguous when there is more than one concept from the same
KR with different semantic types referring to the same entity.

Definition 4.2.6. A semantic annotation a is ambiguous when there are at least two
concepts c, c′ ∈ a from the same KR such that matched words(c) = matched words(c′)
and semtype(c) 6= semtype(c′).

Finally, the semantic annotation of a textual description is represented by a semantic
vector containing all concepts in the annotation.

Definition 4.2.7. Let
−→
d = {c1 : p1, ..., cn : pn} be the semantic vector representation

of a text description d in which ci is a concept in the annotation of d, and pi is its
associated weight defined by its tf ∗idf value, where tf(c) is the frequency of the concept
c in the description and idf(c) is defined as follows:

idf(c) = maxS∈lex(c)info(S) (4.3)

With concepts(
−→
d ) we denote the set of concepts that appear in the semantic vector

−→
d .

Example 4.2.3. Given the textual description “BLAST finds regions of similarity”,
its semantic annotation is:
{<BLAST, {C0523113.8, W363695.10, E0000646.6}>, <regions, {C0017446.5, C1514562.5}>,

<similarity,{C2348205.8}>}.
Its associated semantic vector is:
−→
d = {C0523113:8, W363695:10, E0000646:6, C0017446:5, C1514562:5, C2348205:8}

The function concepts(
−→
d ) returns: {C0523113, W363695, E0000646, C0017446, C1514562,

C2348205}.

Complexity. The estimation of the information coverage of the lexical strings (For-
mula 4.2) has a cost of O(W ), being W the number of words in the vocabulary. It is
calculated only once, thus it does not affect the semantic annotation process.

The cost of the semantic annotation of a textual description is proportional to
O(Nc), being Nc the number of concepts in the KR. However, this cost is usually
lower since the KR lexicons are stored in inverted files, which make the retrieval of the
candidate concepts more efficient.

49



Chapter 4. Normalization

4.2.3 Semantic Annotation Post-Processing

The use of several KRs in the mapping function produces annotations with a high
number of concepts which usually differ on their specificity degree. Moreover, many of
these concepts introduce ambiguity to these annotations. Ambiguous concepts usually
come from broad KRs, in which the definitions of some concepts are not precise and, in
consequence, the degree of specificity of these concepts is usually very low. Therefore,
in a semantic annotation with multiple concepts, the concepts with a higher degree of
specificity are assumed to be the ones that best describe the matched entity. Thus, in
order to obtain more precise annotations, only the most specific concepts must be kept
to describe the matched entity.

The specificity of a concept can be estimated by its idf score (Formula 4.3). General
concepts appear more frequently than specific concepts and, therefore, a general concept
has a lower idf value than a specific concept. So, concepts with very low idf scores can
be candidates to be removed from the original annotation.

In this thesis, we propose two post-processing techniques to simplify the semantic
annotations that take into account the idf score of the concepts: (i) simplification of
multi-word entities annotations, and (ii) simplification of multiple annotations of single
word entities. Next, each proposed simplification technique is described.

4.2.3.1 Simplification of Multi-Word Entities Annotations

The semantic annotator is able to annotate multi-word entities, like “multiple align-
ments”. In this kind of annotations, apart from the concepts matching all words, the
annotator may also select concepts that match subsets of words of the text chunk.
However, the relevant meaning of an annotation is usually represented by the longest
matching concepts, which are more specific than those matching subsets of words.
Moreover, as frequent concepts subsumed by more specific ones are meaningless and
usually introduce noise in the annotations, the concepts annotating subsets of words
must not be kept in the annotation.

The first simplification consists in selecting the concepts with non-overlapped longest
matches covering the whole annotation. Moreover, from the concepts with the same
match, those whose idf score is lower than a threshold are rejected.

Example 4.2.4. The semantic annotation of the chunk protein domain is:
{<protein, {E0000065.10, E0001468.10}>, <domain, {E0000065.10, E0001468.10, C1883221.4,
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C1883204.4, D9000300.15, C1514562.4, C9000023.6}>
As it can be noticed, apart from the concepts matching both words, there are concepts
matching the single word domain. In the simplification, the concepts matching single
words are rejected, and only those matching both words remain (E0000065, E0001468).
In this case, the two concepts matching the two words remain because they have an
idf score (Formula 4.3) higher than a threshold (set to 8 in these examples). Then, the
simplified annotation is:
{<protein, {E0000065.10, E0001468.10}>, <domain,{E0000065.10, E0001468.10}>}.

However, in case that there is a word in the annotated chunk that is not matched by
any of the selected concepts, all the concepts with an idf score higher than a threshold
are kept in the annotation in order to not lose information.

Example 4.2.5. The semantic annotation of the chunk nucleotide query sequence is:
{<nucleotide, {E0001207.8, E0000022.8, C0004793.13, D9000378.13}>, <query, {C1522634.8}>,

<sequence, {C0004793.13, D9000378.13, E0000080.5, E0002044.5}>}
As it can be noticed, there are concepts matching nucleotide sequence (C0004793,
C0004793, D9000378), but there is no concept matching query sequence or nucleotide
query or nucleotide query sequence. So, if we only select the concepts with longest
matches, the word query is not covered. Therefore, the concepts matching single words
are not rejected.

Finally, only the concepts with an idf score lower than 8 are rejected. In this case,
the concepts E0000080 and E0002044 (sequence) are removed from the original anno-
tation since their idf score is 5.
{<nucleotide, {E0001207.8, E0000022.8, C0004793.13, D9000378.13}>, <query, {C1522634.8}>,

<sequence, {C0004793.13, D9000378.13}>}.

One additional effect of this post-processing technique is to smooth the frequency
of some single-word concepts that can bias the search in the discovery process.

4.2.3.2 Simplification of Multiple Annotations of Single Word Entities

A single word chunk can be annotated with one or more concepts from a single KR
or from several KRs. In the annotations with multiple concepts, the concepts usually
represent different degrees of specificity. There are concepts that are very ambiguous in
the broader KRs as they cover more topics. Specific KRs are focused on the collection
at hand and, therefore, can provide a more appropriate semantics to the identified
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entities. So, in order to provide a more precise representation, the annotation can be
simplified keeping only the most specific concepts of the most specific KRs.

Therefore, to determine the specificity of a concept, apart from its idf score, we
consider the specificity of its KR and the relationship between concepts in the KRs.

So, the simplification of the annotation of a single word entity with multiple concepts
is divided into three phases:

1. Selection of the concepts with a high idf score. All the concepts whose idf
score is higher than a threshold remain in the semantic annotation because they
are consider specific concepts.

2. Selection of the most specific KRs. From those concepts whose idf value
is lower than a threshold, if they come from different KRs, the most specific are
those from the most specific KR. The most specific KR is determined on base to
the KRs relationship KRi � KRj .

3. Selection of the most specific concepts. Finally, from those concepts of the
most specific KR, the most specific concepts among them are selected on base to
the concepts taxonomical relationship ci � cj .

So, after executing these three steps, the concepts with an idf score higher than
a threshold and the most specific concepts from the most specific KRs remain in the
semantic annotation.

Example 4.2.6. The word sequence is annotated with concepts from UMLS, (C1547787,
C1610719, C0004793), and with concepts from EDAM ontology, (E0000080, E0002044).
In this case, the UMLS concepts are rejected because their idf scores are lower than 8,
and because there are concepts from a more specific KR, EDAM � UMLS . Then,
from the two EDAM concepts, E0000080 is selected since E0000080� E0002044. There-
fore, the resulting annotation is: <sequence, {E0000080.5}>.

4.3 Knowledge Extraction

In current open registries search engines, all words in a textual description are treated in
the same way independently of their semantics and relevance. In a textual description,
there are words more relevant than others since they represent the relevant informa-
tion in the text. Moreover, there are words in the textual descriptions that implicitly

52



4.3. Knowledge Extraction

represent some aspects of the described resource. Neither relevance nor semantics are
taken into account by current open registries since most of them only rely on string
matching techniques. However, this information can improve considerably the charac-
terization of a resource and, consequently, related tasks such as their discovery and the
interoperability.

In order to extract this relevant information, we use knowledge extraction tech-
niques. First, the relevance of each concept in a semantically annotated description is
estimated using a topic-based model. Then, the concepts that may describe features
are identified using semantic and probabilistic techniques.

4.3.1 Resource Characterization

In a textual description not all words have the same relevance due to their semantics
and the context in which they appear. For example, in “define structurally and func-
tionally important domains of the membrane”, “predict gene functions” and “compare
functional relationships”, the concept function does not have the same relevance. In
the first sentence, functionally describes only a characteristic of the domain, in the
second one, function is the key concept in the query, since it is the object that must
be predicted and, finally in the third one, functional specifies the type of relationship
that must be compared. Therefore, the relevance of a word in a specific text needs to
be estimated.

Language modeling techniques consider each document as a language model that
determines the probability of emitting each word from the document. This probability
is calculated by maximum likelihood estimation (MLE) as follows:

p(w|d) =
n(w, d)∑

wi∈d n(wi, d)
(4.4)

where n(w, d) returns the number of times the word w appears in the document d.

For retrieval tasks, this probability should be smoothed, so that non-zero probabil-
ities can be assigned to query terms that do not appear in a given document. One of
the simplest smoothing method consists in using a linear interpolation (Jelinek-Mercer
[46]) with a background collection model p(w,G):

pλ(w|d) = λ · p(w|d) + (1− λ) · p(w|G) (4.5)

[63] views this smoothed model as coming from a simple 2-state hidden Markov
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model, and trains the parameter λ using MLE. However, this formula does not consider
the word as a part of a bag of words, and do not take into account the context in which
the word appears. [56] proposes a smoothed version that takes into account the context
of the document to create a tailored language model.

However, the relevance of a word in a text depends on the context in which it
appears and on its semantics. In the description of web resources, the context is related
to the resource functionality, so the relevance of a word will depend on the described
functionality.

Text categorization [98] aims to classify documents according to their content and
characteristics. Traditional text categorization relies on either classification rules manu-
ally defined by domain experts or large sets of labeled examples, which in some domains
are difficult to find. Currently, there are approaches such as [42; 61] that use unlabeled
examples to improve the categorization. Nevertheless, text categorization is not suffi-
cient to characterize resources, since web resources metadata usually describe a mixture
of topics, each one with a different distribution.

Topic-based models [101] are able to identify the topic or the mixture of topics
a text is about, by considering the distribution of words in a text. These models
consider topics as distributions of words and documents as a distributions of topics.
In our scenario, resource metadata mainly describe the functionality, that can be seen
as a topic since in Life Sciences, the resources functionality is mostly classified [103].
Therefore, topic-based models can be used to identify the functionality described in the
resource metadata and, therefore, calculate the relevance of each concept with respect
to this functionality.

LDA (Latent Dirichlet Allocation) [17; 40] is a statistical model of document col-
lections that aims to discover the topics that are hidden in the documents. LDA is
mostly described by its generative process by which the model assumes the documents
arose. Each document exhibits the topics in different proportion, and each word in
each document is drawn from one of the topics. However, it assumes that topics are
hidden and they must be estimated. Unfortunately, LDA topics bias to frequent co-
occurrences of terms and, consequently, topics are dominated by frequent tasks, e.g.,
sequence analysis tasks such as the alignment of sequences or the comparison.

In this thesis, we propose a topic-based model to identify the topics described in
the web resources metadata, and to calculate the relevance of each concept in the web
resource characterization. In our work, topics are about the biomedical tasks underlying
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both web resources and user’s requirements. Existing annotations of the resources, e.g.,
tags, allow us to automatically estimate the corresponding topics models. Next, the
proposed topic-based model is formally described.

4.3.1.1 Topic-based Model

The purpose of the topic-based model is to calculate the probability of all concepts
c ∈ KR for each defined topic.

Definition 4.3.1. Let T = {tk}1≤k≤n be the set of base tasks, i.e., topics, represented
in the textual descriptions of a domain. Let RTk be a set of semantically annotated
descriptions deemed relevant for the base task tk. The probability of a concept c ∈ KR
for a base task tk is estimated as:

p(c|tk) ∝
∑

−→
d j∈RTk

p(c|
−→
d j) · p(

−→
d j |tk) (4.6)

It is worth mentioning that, to calculate the distribution p(c|
−→
d j), not only the

concepts in
−→
d j are considered, but also the common ancestors of these concepts in the

KR.

Definition 4.3.2. Let define common ancestors(
−→
d ) = {c ∈ C|∃c1, c2 ∈ concepts(

−→
d )∧

c1 � c∧c2 � c} as the concepts that are the common ancestors in the KR of the concepts
in
−→
d .

For each concept c ∈ concepts(
−→
d ) ∪ common ancestors(

−→
d ), its probability is es-

timated from its frequency in
−→
d , and it is smoothed by propagating it through its

ancestors using random walks [99]. This smoothed probability is calculated as follows:

p(c|
−→
d ) ∝

∑
ci∈concepts(

−→
d )

p∗(c|ci) · p1(ci|
−→
d ) (4.7)

where p∗(c|ci) is the weight of the edge between c and ci in the random walk matrix,
and p1(ci|

−→
d ) is estimated from the concept frequency in the description and smoothed

with Jelinek-Mercer as follows:

p1(ci|
−→
d ) = λ · tf(ci,

−→
d )∑

ck∈concepts(
−→
d )
tf(ck,

−→
d )

+ (1− λ) · p(ci|G) (4.8)
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where p(ci|G) is the probability of the concept ci in a background corpus G.
The second probability in Formula 4.6, p(

−→
d |tk), represents the chance of retrieving

−→
d as a relevant description in the context of tk. This probability is estimated by
sampling instances of tk and counting how many times each description

−→
d is discovered.

Thus, the probability is calculated with MLE as follows:

p(
−→
d |tk) =

n(
−→
d , tk)∑

−→
d i∈RTk

n(
−→
d i, tk)

(4.9)

where n(
−→
d , tk) returns the number of times

−→
d is retrieved with tk’s instances. We

consider that an instance of a task is an example description of the base task.
Table 4.2 shows the top-5 ranked concepts for a set of Life Sciences topics that

correspond to research base tasks.

Complexity. With this topic-based model, all the concepts c ∈ KR have a different
probability for each base task, being in this way more significant for some topics than
for others. The creation of this topic-based model has a cost proportional to O(N2

c ),
and it requires O(Nc · N) storage, being Nc the number of concepts in the KR and
N the number of textual descriptions. Although the cost of this topic-based model is
high, it is created only once, and therefore it does not affect the discovery process.

4.3.2 Facets Extraction

Textual descriptions may contain information related to specific features of the item
being described. These features are described implicitly, and the words describing them
are hardly ever considered as feature values. For example, web services descriptions
usually contain information about the input and output data types of the service.
Therefore, techniques to extract relevant information about the resources features from
textual descriptions are required. These features are called facets in IR systems.

Definition 4.3.3. A facet represents a characteristic of a resource that is relevant for
its characterization and retrieval. A facet takes the form of an attribute-value pair.

Faceted search systems [94] enable the classification of the information in multi-
ple dimensions corresponding to the different facets. This contrasts with traditional
taxonomies in which the hierarchy of categories is fixed and unchanging, e.g., [39].
Most faceted search systems are based on well-defined metadata, usually represented
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Topic Top-5 concepts
Sequence similarity search D9000518 (sequence similarity)

E0001413 (similarity sequence)
D9000419 (protein sequence)
E0002976 (protein sequence)
C2348205 (similarity)

Phylogeny E0000080 (sequence)
D9000370 (molecular structure)
D9000400 (phylogenetic tree)
E0000872 (tree)
E0000191 (phylogeny)

Sequence alignment E0000083 (alignment)
C1706765 (alignment)
E0000504 (multiple alignment)
E0002976 (protein sequence)
E0000159 (sequence comparison)

Find genes with E0000198 (pathway)
functional relationships E0000581 (database)

E0001208 (protein)
D9000418 (protein interaction record)
M9000027 (location, interface)

Analyze transgenic E0000200 (microarrays)
model organism M9000027 (location, interface)

C1709016 (microarray)
E0000197 (gene regulation expression)
D9000322 (gene report expression)

Proteins with a C9000023 (domain)
functional domain E0001208 (protein)

E0000581 (database)
E0000170 (motifs)
E0002976 (protein sequence)

Predict structure D9000423 (protein structure)
D9000507 (secondary structure prediction)
E0002814 (protein structure)
E0001208 (protein)
E0001213 (RNA)

Table 4.2: Top-5 ranked concepts for Life Sciences topics

as facet-values pairs. However, in open registries, facets are usually described in tex-
tual descriptions. In the literature, there are some approaches that identify facets from
texts. [20] proposes a faceted topic retrieval system and compare LDA [17] and rele-
vance modeling [58] as methods to automatically extract facets from documents. They
consider facets as any information need, e.g., topics, while we consider facets as addi-
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tional features of the resources that are independent of topics. Therefore, neither LDA
nor relevance modeling can be applied in our approach as proposed in the literature.
[27] proposes an unsupervised technique that fully automates the extraction of useful
facets from free-text, expanding it with terms that appear in the context of the iden-
tified relevant terms in external resources such as Wikipedia. However, they assume
that facets are mutually exclusive and, therefore, a term corresponds to only one facet.
This for example cannot be applied to the facets “input” and “output” of web services.

Our facets extraction method extracts relevant information for each user-defined
facet independently of the topics. We distinguish two types of facets: (i) facets whose
values are identified by a specific semantic type, and (ii) facets whose values can be
of different semantic types. Therefore, we use two different techniques to retrieve both
types of facets: one based on semantics and another based on a probabilistic model.
Both techniques calculate the probability of a concept representing a facet in a textual
description, which is used to characterize the resource being described. Next, both
facets extraction methods are further explained.

4.3.2.1 Semantic Facets Extraction

There are facets whose values are represented by concepts of specific semantic types in
a KR. We refer to these facets as semantic facets.

Definition 4.3.4. A semantic facet is a facet whose values can be identified by the
semantic type of their associated concepts. A semantic facet sf is defined by a set of
semantic types {stj}stj∈ST. The function semtypefacet(f) returns the semantic types
of the facet f.

Example 4.3.1. Textual descriptions of web resources in Life Sciences may mention
which species or which diseases the information provided by the resource is related to.
Both can be considered as facets that are identified by semantic types. The values of
the facet species conform to semantic types like Bacteria, Virus, and so on, whereas the
values of the facet referred to the disease are associated to semantic types like Diseases
and Syndromes.

So, given a semantically annotated text, the concepts that have the semantic types
associated to a facet are automatically selected as candidate values for that facet.

Definition 4.3.5. Let candidates(sf) be the set of concepts whose semantic types are
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those associated to the semantic facet sf and, therefore, they are candidates to represent
values of such a facet.

To calculate the probabilities of the candidate concepts, all available textual de-
scriptions are considered. From now on, let us consider D = {

−→
d 1, ...,

−→
d n} be the set

of all available textual descriptions in the catalogue.

Definition 4.3.6. Let define
−→
d [sf ] = {c : p|c : p ∈

−→
d ∧ c ∈ candidates(sf)} as the

semantic vector that contains the candidate concepts in
−→
d representing values of the

semantic facet sf .

The probability of a concept c ∈ candidates(sf) describing a value of sf is calcu-
lated as follows:

psf (c) =
p(c|sf) · p(sf)

p(c)
(4.10)

The probability p(c|sf) is estimated by its relative frequency as facet value in the
whole catalogue:

p(c|sf) =

∑
−→
d s∈D

tf(c,
−→
d s[sf ])∑

−→
d s∈D

∑
ck∈sf tf(ck,

−→
d s[sf ])

(4.11)

where tf(c,
−→
d [sf ]) returns the frequency of the concept c in the semantic vector

−→
d [sf ].

Finally, the probability that the concept c represents the semantic facet sf in a
textual description

−→
d is estimated as follows:

p(c, sf |
−→
d ) = psf (c) · p(c|sf,

−→
d ) (4.12)

p(c|sf,
−→
d ) =

tf(c,
−→
d [sf ])∑

ck∈
−→
d [sf ]

tf(ck,
−→
d [sf ])

(4.13)

Complexity. The estimation of the probabilities psf (c) (Formula 4.10 ) and p(c|sf)
(Formula 4.11 ) of nsf concepts (those having the semantic types associated to sf) has
a cost O(nsf ·N) (being N the size of D) and requires O(nsf ) storage, since the number
of the semantic facets is constant w.r.t. nsf . Both psf (c) and p(c|sf) are calculated
only once, and they are stored in inverted files. The cost of calculating the probability
of a concept to represent a specific semantic facet in a specific textual description is

59



Chapter 4. Normalization

proportional to the number of concepts in the description with the semantic types
semtypesfacet(sf).

4.3.2.2 Probabilistic Facet Extraction

There are some facets whose values cannot be identified only by their semantic types,
but also by the context in which the concept is expressed. We propose a probabilistic
model to determine if a concept represents a value of a specific facet in a textual
description based on its co-occurrence with facet keywords.

Definition 4.3.7. A probabilistic facet f is defined by Kf = {c1, ..., ck}, a set of
concepts associated to keywords defined by the user as relevant to identify f , and by
Vf = {c1, ..., cn}, a set of concepts that are known to be values of facet f . Let define
F = {fi}1≤i≤f the set of user-defined probabilistic facets.

Example 4.3.2. The words results and returns are keywords of the facet output and
implements and performs are keywords of the facet method, while report is a known
value of the facet output and Smith-Waterman is a known value of the facet method.

For each user-defined probabilistic facet, the user defines an initial set of keywords
Kf . Then, the set Vf is built automatically using a translation model; which is also
used to refine the initial set of keywords Kf .

Let V = {c1, ..., cn} be the whole set of concepts used in the textual descriptions.
The probability of a concept c to represent a value of the facet f can be calculated as:

pf (c) =
∑
cj∈V

p(c|cj) · p∗(cj |f) (4.14)

where p∗(cj |f) represents the probability of cj in the initial set of keywords of the
facet f , which can be estimated as follows:

p∗(cj |f) =

{
1
|Kf | if cj ∈ Kf

0 otherwise
(4.15)

To estimate the entailment of concepts p(c|cj)c,cj∈V , we rely on a translation model
[52]. To build the translation model, all the available textual descriptions are previously
divided into text segments of variable size. First, each textual description is pos-tagged
and, then, text segments with the structure (VP, NP+) are extracted, where VP is a
verb phrase and NP is a noun phrase.
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Definition 4.3.8. Let define a c-chunk as the set of concepts associated to the words
in each extracted text segment with the syntactic structure (VP, NP+). The function
f chunks(d) returns all c-chunks associated to a textual description d. Let consider W
as the set of all possible c-chunks of all the textual descriptions in D.

Example 4.3.3. The textual description “Blast calculates protein sequence similarity”
is pos-tagged as:

[NP Blast_NN] [VP calculates_VBZ] [NP protein_NN sequence_NN similarity_NN]

The considered text segment is calculates protein sequence similarity, since it conforms
to the structure (VP, NP+), and its corresponding c-chunk is: {W1107659, E0002979,
D9000419, C0002518, D9000518, C1710052, E0001413, C1441506}.

Let us describe the estimation of the proposed translation model. Firstly, an ini-
tial concept posterior probability conditioned on the vocabulary concepts is calculated
following the method proposed in [35]:

p(ci|cj) =
p1(ci, cj)
p1(cj)

(4.16)

p1(ci, cj) ∝
∑
v∈W

p(ci|v) · p(cj |v) · p(v), (4.17)

p1(cj) =
∑
ci∈V

p1(cj , ci) (4.18)

p(c|v)c∈V,v∈W are entailment probabilities that are estimated as follows:

p(c|v) =
tf(c, v)
|v|

(4.19)

where tf(c, v) is the number of times c occurs in window v and |v| is the length of v.

Finally, p(v) is the probability of the window v, which is estimated as the inverse
of the cardinal of W .

p(v) = |W |−1 (4.20)

So, the probability p1(ci|cj) ∀ci, cj ∈ V can be seen as the probability of translating
cj into ci in one translation step. Then, p(ci, cj) is defined as the smoothed version of
p1(ci, cj) obtained by generating random Markov chains between words. It is defined

61



Chapter 4. Normalization

as follows [71]:

p(ci, cj) = ((1− α) · (I − α · P1)−1)i,j (4.21)

I is the n × n identity matrix, P1 is a n × n matrix whose element Pi,j is defined as
p1(ci, cj), and α is a probability value that allows the generation of arbitrary Markov
chains between words.

Finally, to complete and rank the set of keywords of facet f , we use the Bayes
formula on pf (c)c∈V . That is,

p(f |c) ∝
pf (c)
p(c)

(4.22)

where p(c) is estimated from the linear equation system given by the n variables
p(ci)ci∈V , and n+ 1 equations:

p(ci) =
∑
cj∈V

p(ci|cj) · p(cj) (i ∈ 1, · · · , n) (4.23)

∑
ci∈V

p(ci) = 1 (4.24)

Once Kf and Vf have been defined for each facet f , both sets are used to extract
relevant information about the facets from textual descriptions.

Table 4.3 shows the initial keywords and the top-ranked values for the input, output
and method facets in the Life Sciences domain. As it can be shown, facets are not
mutually exclusive, since a same concept can represent a value of several facets. In a
textual description, the facet to which the concept refers can be determined on base to
the context in which it appears.

Facet Initial keywords Top-ranked values
Input Input, take, giving, parameter, argument, collection, maps, job, min

import, receive ID, message, status job, form, ...
Output Output, search, predict, output, job, id reference, xref, information, request,

return, extract, retrieve sequence, datatype, parameter, format, ...
Method Method, implement, method, algorithm, bioinformatics algorithm, signalp,

apply, run, method, association, technique, centric method construction,
perform application, filter, physical process, ...

Table 4.3: Initial keywords and top-ranked values for the input, output and method
facets.
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Given a textual description d, the probability that a concept c ∈ concepts(
−→
d )

represents the probabilistic facet f is estimated from its c-chunks as follows:

p(c, f |d) =
∑

Tc∈c chunks(d)

p(c, f |Tc) · p(Tc|
−→
d ) (4.25)

The probability of Tc, p(Tc|
−→
d ), is estimated with the product of its members:

p(Tc|
−→
d ) =

∏
ci∈Tc

p(ci|
−→
d ) (4.26)

where p(ci|
−→
d ) is the relative frequency of the concept ci in the semantic vector

−→
d .

The probability p(c, f |Tc) is calculated as:

p(c, f |Tc) =
p(c, f, T c)
p(Tc)

(4.27)

where
p(c, f, T c) ∝ p(f |c, T c) · p(c|Tc) · p(Tc) (4.28)

Therefore,
p(c, f |Tc) ∝ p(f |c, T c) · p(c|Tc) (4.29)

We could estimate P (f |c, T c) directly from the c-chunk but due to their small size,
we should also take into account the global statistics about the feature. Therefore, the
probability p(f |c, T c) in the chunk represented by Tc is calculated as:

p(f |c, T c) = α · p′(f |c) + (1− α) · p′′(f |c, T c) (4.30)

where p′(f |c) is the probability that the concept c describes the facet f independently
of the context in which it appears, and p′′(f |c, T c) is the probability that the concept
c describes the facet f taking into account its context in Tc, (i.e., the concepts that
appear in Tc).

The probability p′(f |c), which is independent of the context, is defined as:

p′(f |c) =
pf (c) · p(f)

p(c)
(4.31)
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The probability p′′(f |c, T c) is estimated as:

p′′(f |c, T c) =
pf (c, T c) · p(f)

p(c, T c)
(4.32)

where pf (c, T c) is the probability that the facet f is described by Tc and, p(c, T c) is
the total probability of Tc. These probabilities are calculated as follows:

pf (c, T c) =
∏
cj∈Tc

pf (cj) (4.33)

p(c, T c) =
∑
fi∈F

pfi
(c, T c) (4.34)

Finally, replacing the previous expressions in Formula 4.25, the approximation of
the probability p(c, f |d) results in:

p(c, f |d) ∝
∑

Tc∈c chunks(d)

p(f |c, T c) · p(c|Tc) · p(Tc|
−→
d ) (4.35)

Complexity. Regarding the complexity of creating these probabilistic models, the
models pf (c) (Formula 4.14) and p(c|f) (Formula 4.22) are calculated for all the con-
cepts in the reference KRs, and they require O(Nc) storage, considering that the num-
ber of facets is constant w.r.t. to Nc. The time complexity of pf (c) is O(N2

c ), whereas
p(c|f) is O(Nc) since it is calculated applying Bayes on pf (c). Both models rely on
a translation model (Formula 4.16) in which the co-occurrences of the concepts have
been estimated considering all the metadata of the resources registered in BioCata-
logue, myExperiment and SSWAP. This translation model is in O(N2

c ). However, due
to the high sparseness of the translation matrix, it requires much less space than N2

c .
Although creating these models has a high computational cost, they are created only
once, thus they do not affect the process of identifying facets values given a specific
textual description. In order to make their access more efficient, the translation model
is stored in a dictionary, and pf (c) and p(c|f) are stored in inverted files.

With respect to the identification of concepts as facets values given a textual de-
scription, it is made by estimating the probability of each concept in the description to
be a facet value (Formula 4.35), which consists in local calculations, which are mainly
counting, and accessions to global values, like pf (c), which are stored in inverted files.
Therefore, the cost of calculating the probability of a concept to represent a facet value
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is constant w.r.t. N and Nc.

4.4 Normalization of Data

The normalization process proposed in this chapter is applied to all the data involved
in the discovery process, that is, the user’s requirements specification and the resources
metadata. Next sections briefly describe how the normalization is applied to these
data.

4.4.1 Normalization of User Requirements

The user’s requirements specification can be represented in different formats, as ex-
plained in Section 3.1, and the information must be extracted in order to make the
discovery independent of the characteristics of the technique used to specify them.

Table 4.4 shows the results of the extraction module of each requirements specifica-
tion technique and the corresponding normalization process. In the simplest formats,
the information is just a brief description of the user’s needs, but in more complex
formats such as SPARQL, i∗ or graphs, the information has to be extracted also from
the syntaxis of the specification (e.g., SPARQL) and from the underlying structure of
the specification (e.g., i∗ models, query graphs). In SPARQL, the subject and the ob-
ject of the triples are entities than can be represented by concepts from KRs, and the
predicate, which relates the subject and the object, can describe the functionality or
relationships such as a facet-value. In a graph-based specification, the nodes represent
entities that can be annotated with concepts, and the edges represent relationships that
can describe either the functionality or relationships such as the facet-value relation-
ships. For example, in the i∗ model, the text of the task elements is the description of
the tasks that must be performed by web resources. The relationship between these
tasks can implicitly define facets values. For example, the output of a task is the input
of the following task with which is related.

Independently of the format in which requirements are specified, the extracted in-
formation is normalized. First, the extracted information is semantically annotated
with concepts from external knowledge resources. Then, it is characterized using topic-
based models determining the relevance of the concepts. Finally, the information is
analyzed to automatically identify relevant information about the facets, which is com-
bined with the facets information explicitly described in the requirements specification,
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Specification Extracted Information Normalization Process
Format
Keyword-based search Set of keywords N1, N2, N3
Textual description Textual description N1, N2, N3
Navigational search Selected categories N1, N2
Filtered search Pairs filter-value, N1, N2

explicit facet values
SPARQL Entities, Ontology alignment

property-value,
explicit facet values

Graphs Entities, N1, N2, N3
relations,
explicit facet values

i∗ framework Tasks, N1, N2, N3
explicit facet values

Table 4.4: Normalization process of different user requirements specification techniques.
(N1: Semantic annotation, N2: Characterization, N3: Implicit facets)

e.g., the facet-value pairs described by properties or predicates, or those defined by
the pairs filter-value in the filtered search. As a result of the normalization process,
the requirements specification is represented by a semantic vector with the concepts
describing the whole requirement and a set of semantic vectors representing the user-
defined facets. The cost of normalizing the user’s requirement specification is constant
w.r.t. Nc, due to the use of inverted files in the semantic annotation and knowledge
extraction processes.

Currently, our discovery approach supports the following requirements specification
formats: keyword-based, textual descriptions and i∗ models.

4.4.2 Normalization of Resources Metadata

The resource metadata are normalized to make the discovery independent of their
characteristics. Independently of the format in which metadata are stored, they are
semantically annotated with concepts from KRs and, then, knowledge extraction tech-
niques are applied to better characterize the resource. The cost of the normalization of
a resource metadata is constant w.r.t. Nc.

In our approach, web resource metadata consist of textual descriptions, tags and
categories. However, other formats could be supported, like RDF. To normalize meta-
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data stored in RDF, the extraction module has to identify the information about the
resource, that is, the triples (<subject-predicate-object>) relevant for discovery. For
each RDF triple, the subject and the object should be aligned to concepts of the
reference KRs, and the predicate should define relationships such as facet-value and
functionality. All this information would be represented with concepts and, in the case
of the facet-value relationships, the value can be automatically assigned to the facet.
Notice that as both the RDF specification and the KR are semantically expressed, the
normalization process just consists in aligning both vocabularies, and interpreting the
predicates of the RDF specification. Table 4.5 shows the process of normalization of
each metadata format.

Metadata Extracted Information Normalization Process
Format
Textual description Textual description N1, N2, N3
Tags Set of tags N1, N2, N3
Facets Pairs facet-value N1, N2
Categories Set of categories N1, N2
RDF Entities, Ontology alignment

properties,
explicit facet values

Table 4.5: Normalization process of different resources metadata formats. (N1: Seman-
tic annotation, N2: Characterization, N3: Implicit facets)

4.5 Conclusions

Data in Life Sciences present a high level of heterogeneity that hinders the matching
of information. This problem is even worse in textual descriptions, which present
ambiguity and implicitness issues.

In order to reconcile requirements and resources, independently of how the informa-
tion is represented, we have proposed a normalization process to alleviate the problems
of heterogeneity, ambiguity, and implicit information. The normalization process con-
sists of two phases: (i) semantic annotation and (ii) knowledge extraction.

The semantic annotation of textual descriptions addresses the problem of hetero-
geneity and ambiguity of data, and improves the reconcilement between resources meta-
data and user’s requirements. The annotation is carried out by an automatic and un-

67



Chapter 4. Normalization

supervised semantic annotator that is capable of using several KRs to cover as much as
possible the different terminologies used in the descriptions, and also to address other
problems such the ambiguity.

Then, knowledge extraction techniques are proposed to automatically identify rel-
evant information implicitly described in the textual descriptions. First, we have pro-
posed a topic-based model to estimate the relevance of concepts in the descriptions,
determining which concepts best describe the resource. Then, information about some
user-defined features is automatically identified using semantics and a probabilistic
model.

As a result of the normalization process, the data are enriched with formal knowl-
edge, characterized by means of facets and relevant concepts, and represented in a
machine-readable format.
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Chapter 5

An IR Model for Web Resource

Discovery

This chapter proposes an Information Retrieval (IR) model to discover the web re-
sources that provide the functionality required by the user, and to rank them on base
to their relevance to the user’s requirement. To address the limitations of current open
registries, the presented IR model is based on both probabilistic models and semantics.

This chapter is organized as follows. Section 5.1 reviews some of the most common
IR models in the literature. Section 5.2 proposes the retrieval model used to discover
the resources that are supposed to fulfill the user’s requirements. Finally, in Section
5.3, some conclusions about the proposed IR model are given.

5.1 IR Models

IR can be generally defined as the activity of obtaining documents relevant to an
information need from a collection of documents. In IR, the user supplies a query
which describes her information needs. The system prompts to her a list of documents
ordered by their relevance to the query, that is, how well each result satisfies the user’s
information needs. In order to retrieve and rank the documents, IR systems define a
retrieval model.

The definition of a retrieval model comprises three elements: (i) the representa-
tion of the documents, (ii) the representation of the queries, and (iii) a function that
measures the relevance of the documents with respect to a query.
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Different frameworks have been proposed in the literature to formalize these three
elements, leading to different retrieval models.

In this section, some existing models to perform IR tasks are briefly described.

5.1.1 Boolean Model

The boolean model is based on the set theory and the Boolean algebra. Documents
are represented as binary weighted vectors, i.e,

−→
d = (w1,j , w2,j , ....), where wi,j ∈ 0, 1.

A query is a boolean expression of index terms, e.g., Q = ka∧(kb∨¬kc). Let gi return
the weight associated with the index ki in any vector (i.e., gi(

−→
d j = wi,j)). Queries are

represented as a disjunction of conjunctive vectors (i.e., in disjunctive normal form
-DNF). For instance, the query Q represented by Qdnf = (1, 1, 1) ∨ (1, 1, 0) ∨ (1, 0, 0),
where each component is a binary weighted vector associated with the tuple of terms
(ka, kb, kc). These binary weighted vectors are called the conjunctive components (−→q )
of Qdnf .

The similarity between a document
−→
d j to a query Q is defined as:

sim(
−→
d j , Q) =

{
1 if ∃−→q cc in Qdnf |∀ki, gi(

−→
d j) = gi(−→q cc)

0 otherwise
(5.1)

The Boolean model predicts that a document
−→
d j is relevant when sim(

−→
d j , Q) = 1.

Only documents that strictly satisfy the boolean expression are deemed to be relevant.
Otherwise, the document is considered to be non-relevant. This represents the major
drawback of the model, since there is no partial matching nor relevance ranking. This
approach frequently returns either too few or too many documents in response to a
user query. Nowadays, it is well known that (non-binary) index term weighting leads
to substantial improvements in retrieval performance.

5.1.2 Vector Model

The vector model [95] represents both documents and queries as vectors in a high
dimensional space, i.e.

−→
d j = (w1,j , w2,j , ...., wt,j) and

−→
Q = (w1,q, w2,q, ..., wt,q), where

t is the total number of different index terms in the collection. Now, the weights are
considered positive and non-binary, i.e., wi,j ≥ 0. To compute the similarity degree
between the query and document vectors, different measures have been proposed in the
literature. The most widely used measure is the cosine of the angle formed by these
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vectors:

sim(
−→
d j ,
−→
Q) =

−→
d j ·
−→
Q

|
−→
d j | × |

−→
Q |

(5.2)

In this formula, sim(
−→
d j ,
−→
Q) varies from 0 to 1. So, instead of predicting whether

a document is relevant or not to a query, the vector model returns a list of documents
sorted by their degree of similarity to the query. A document might be retrieved even
if it matches the query only partially. A threshold value can be established to discard
the documents with a degree of similarity under that threshold.

Index terms weights can be estimated in many different ways [96]. The most popular
method is the tf ∗ idf weighting. The tf ∗ idf method assigns a high weight to those
index terms that occur frequently in the document, but do not appear in many other
documents of the collection. The intuition is that frequent terms within a document
are good representatives for the document. In contrast, the terms that occur in many
documents are not useful for distinguishing relevant from non-relevant documents.

Formally, let N be the total number of documents in the collection and ni be the
number of documents in which the index term ki appears. Let freqi,j be the frequency
of the term ki in the document dj , The term frequency factor, tf , is the normalized
frequency fi,j of the term ki in the document dj :

fi,j =
freqi,j

maxlfreql,j
(5.3)

where l represents any index term mentioned in the document dj . The inverse
document frequency factor, idf is given by:

idfi = log
N

ni
(5.4)

Finally, the tf ∗ idf weighting scheme assigns the following weight to the term ki in
the document dj :

wi,j = fi,j × idfi (5.5)

The tf ∗ idf weighting approach of the vector model improves retrieval performance
of the boolean model. The partial matching and ranking strategy allow the retrieval of
documents that approximate the query conditions. The main disadvantage of the vector
model is that no formal framework is provided to calculate the index term weights.
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5.1.3 Language Modeling

Language modeling considers each document as a language model dj . The documents
are ranked according to P (Q|dj), that is the probability of obtaining the query Q when
randomly sampling from the respective language model.

The calculation of P (Q|dj) differs from model to model. In the simplest case, each
query term Q = (q1, q2, ..., qm) is assumed to be independent of the other query terms,
so that the probability can be estimated by:

p(Q|dj) =
∏
qi∈Q

p(qi|dj) (5.6)

After the specification of a document prior p(d), the a posteriori probability of a
document is used to rank the documents in the collection and it is given by:

p(dj |Q) ∝ p(Q|dj) · P (dj) (5.7)

The probability p(qi|dj) can be smoothed to discard non-zero values as explained
in Section 4.3.1 or to incorporate a semantic smoothing into the language model. [12]
estimates translation models t(Q|w) for mapping a document term w to a query term
qi. Using translation models, the document-to-query model becomes:

P (Q|dj) =
∏
qi∈Q

∑
w

t(qi|w) · P (w|dj) (5.8)

[56] proposes a language model method that takes into account information about
the context and about user’s feedback.

5.1.4 Topic-based Models

In topic-based models [101], explained in Section 4.3.1, relevant documents are re-
trieved by calculating the similarity between the topic distributions T corresponding
to the query Q and to each candidate document dj using a distributional similarity
function. [19] models Information Retrieval as a probabilistic query to the topic model,
i.e. the most relevant documents are those that maximize the conditional probability
of the query. Given the candidate document dj , the conditional probability p(Q|dj) is
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calculated by:

p(Q|dj) =
∏
wi∈Q

p(wi|dj) =
∏
wi∈Q

T∑
t=1

p(wi|z = t) · p(z = t|dj) (5.9)

This model emphasizes similarity through topics, with relevant documents having
topic distributions that are likely to have generated the set of words associated with
the query.

In the literature several topic-based models have been proposed, e.g., probabilistic
Latent Semantic Indexing (pLSI) [44], Latent Semantic Analysis (LSA) [57] and Latent
Dirichlet Allocation (LDA) [17]. Next section describes the most popular applications
of LDA as topic-based model.

5.1.4.1 LDA-based Document Model

LDA has been largely used in the literature as topic-based model for many tasks, e.g.,
documents categorization [16; 118], tagging [113], document retrieval [107], displaying
of search results [41] and faceted search [20; 64; 114] among others. Document modeling
and faceted search are the two applications that are of interest to our approach.

With respect to document modeling, LDA can be used as the representation model
of the documents content but, as [107] claimed, it is not recommendable to use LDA
as the only representation model since it is hardly limited to a predefined number of
topics and, therefore, it may not cover all information aspects. [107] proposes different
combinations of LDA with other representation models to not depend on the LDA
topics. The combination that presents better results for their experiments is:

p(w|d) = λ(
Nd

Nd + µ
· pML(w|d) + (1− Nd

Nd + µ
) · pML(w|G)) + (1− λ) · plda(w|d) (5.10)

where pML(w|d) is the maximum likelihood estimate of word w in document d, and
pML(w|G) is the maximum likelihood estimate of word w in a background collection G.
Then, plda is estimated as:

plda(w|d, θ
′
, φ

′
) =

K∑
z=1

p(w|z, φ′
) · p(z|θ′

, d) (5.11)

where K is the set of topics, θ
′

and φ
′

are the posterior estimates of θ, the multinomial

73



Chapter 5. An IR Model for Web Resource Discovery

distribution over topics for each document, and φ, the multinomial distribution for each
topic, respectively.

However, LDA requires to specify the number of latent topics, which is usually
hard to know a priori. In addition, some learned topics can be less coherent, less
interpretable and less useful than other learned topics, which hampers the quality of
the learned topics and, consequently, the trust of users on them. Currently, there
are many efforts to measure topics quality, (e.g., [65; 69; 100; 105]), with the aim of
improving the topic learning process.

With respect to the faceted search, LDA is used to extract and model the topics
described in documents and use them for the faceted search, e.g., [20; 64; 114]. All
these approaches consider the topics as facets, while facets in our approach correspond
to user-defined relevant features such as input/output parameters which cannot be
identified by using LDA.

5.1.5 IR and Life Sciences

In the Life Sciences, IR is usually based on the boolean model. For example, in biomed-
ical literature discovery, PubMed performs a search based on a strict boolean model
that does not provide any ranking. This strict search depends heavily on the termi-
nologies used, and moreover it does not consider the relevance of each keyword when
retrieving. Lately, several attempts have been done to improve this literature search by
means of semantics, e.g., defining ontology query models [112] and expanding queries
with new concepts [21; 45] among others.

With respect to web resource registries in Life Sciences, these are also usually based
on the boolean model. They represent the resources metadata and the user’s require-
ments as bags of words and perform a boolean search. There are some registries (e.g.,
Magallanes, myExperiment and BioRegistry) that even allow users to use different
boolean operators (AND, OR) in the requirements specification. The limitations of
this search have been alleviated by the use of semantics in the web resource registries.
The semantic-based registries (e.g., SADI, SSWAP, myExperiment, and BioMoby Car-
dioshare) store the resources metadata in RDF format, and support semantic require-
ments specifications, like SPARQL and semantic query graphs, which provide a more
specific representation of the requirements. In these registries, the discovery consists in
the semantic alignment between the SPARQL query or the semantic query graph and
the metadata stored in RDF.
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Regarding the final result prompted to the user, no registry provides a ranked list of
the retrieved resources with information about their relevance to the user’s requirement.
However, some registries provide additional information about the resources in order to
help the user in the selection. For example, the Bioinformatics Link Directory visualizes
information about the strength and the popularity of each resource, as well as “related
citations”. Other registries provide recommendations apart from the list of discovered
resources. For example, in BioCatalogue and myExperiment, once the user has selected
a resource, the system visualizes resources that are similar to that selected on base to
their categories.

In conclusion, syntactic-based IR in the Life Sciences is based on the boolean model,
which is heavily dependent on the characteristics of data, which does not provide a
ranked list of the results, and in which all keywords have the same relevance. Next
section presents our proposal to address all these issues.

5.2 Web Resource Discovery Model

In this section, we propose an IR model for the discovery of web resources, which is
independent of the characteristics of data, i.e., the structure, vocabularies and formats,
and which ranks the resources on base to their suitability to the user’s requirements.
First, we describe the representation of both user’s requirements and web resources
metadata. Afterwards, we describe how the relevance of a resource to a specific re-
quirement is estimated. Finally, we develop the proposed discovery method.

5.2.1 Data Representation

The representation of the data involved in the discovery is one of the main character-
istics that define an IR model. In the proposed model, both the user’s requirements
specification and the resources metadata are normalized and represented with a set of
semantic vectors: one semantic vector representing all the normalized data and one
semantic vector per each user-defined facet.

Given a user’s requirements specification, the result of its normalization is repre-
sented as follows:

Definition 5.2.1. Let
−→
Q be the semantic vector representing the normalization of the

user’s requirements specification Q. Let define
−→
fqi = {c1 : p1, ..., cn : pn} as the semantic

vector associated to the facet fi in which c represents a concept and p is the probability
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that c represents a value of the facet fi in the user’s requirement specification. Let
FQ = {

−→
fqi}1≤i≤k be the set of semantic vectors representing the facets values defined

by the user in her requirement specification.

The semantic vector
−→
Q is generated from the semantic annotation of the user’s

requirement specification as described in Section 4.2. Then, the semantic vectors
−→
fqi

associated to the user-defined facets contain the facets values and their probabilities
automatically identified by the facets extraction techniques explained in Section 4.3.2.

On the other hand, web resources metadata are also normalized and represented by
a set of semantic vectors as follows:

Definition 5.2.2. Let −→r be the semantic vector representing the metadata of the re-
source r. Let define

−→
fri = {c1 : p1, ..., cn : pn} as the semantic vector associated to the

facet fi in which c is a concept and p is the probability that c represents a value of the
facet fi in the resource metadata. Let define FR = {

−→
fri}1≤i≤k as the set of semantic

vectors representing the facets values described in the web resource metadata.

Definition 5.2.3. Let define WR as the set of all web resources available for discovery.
Let R = {(−→rj , FRj)}1≤j≤n be the set that contains the semantic vectors of all web
resources in WR.

These semantic vectors are generated in the same way as the vectors representing
the user’s requirements specification.

5.2.2 Web Resource Relevance Calculation

The relevance of a resource to a specific user’s requirement must not be estimated by
the number of words the requirement specification and the web resource metadata have
in common, because it would depend on the variability of words, the used vocabularies,
the characteristics of the text such as the length, verbosity and so on. The relevance
of a resource can be considered as how well the resource fulfills the requirement of the
user, considering the functionality of the resource and its features.

The vector model determines the relevance of a resource on base to the similarity
of the corresponding semantic vectors. However, although the proposed web resource
discovery is based on the vector model, its relevance model is not appropriate since
not all concepts have the same relevance when describing the resource and, therefore,
they cannot be considered equally when calculating the similarity. For example, in
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the keywords-based query protein sequence alignment, resources that contain protein
or sequence or alignment or a combination of them are discovered. The relevance
of a resource is usually estimated on base to the number of matching words, that
is, the resources that contain the three words will have the highest relevance score,
followed by the resources matching two words. However, the resources that match
protein sequence should have a lower score than those matching protein alignment,
since alignment represents the information need of the researcher. So, in order to
consider the relevance of concepts in the resource characterization when determining
the suitability of a resource to the user’s requirement, we use the topic-based model
described in Section 4.3.1.

Moreover, apart from the importance of the matched concepts, the suitability of a
resource also depends on the fulfillment of the facets defined by the user and, therefore,
the relevance function must also consider how well the resource fulfills the user-defined
facets.

We propose a relevance function that estimates the suitability of a resource by
measuring the degree of semantic mapping between the requirements specification and
the resource characterization, taking into account the relevance of concepts and the
resource features.

Definition 5.2.4. The function relevance(Q, r) determines the relevance of a retrieved
resource r to the user’s requirements Q, represented by

−→
Q and FQ. The relevance

function is defined by the linear combination described with the formula:

relevance(Q, r) = α · sim(
−→
Q,−→r ) + (1− α) · sim facets(FQ,FR) (5.12)

where α determines the weight of the facets fulfillment in the estimation of the
resource suitability.

Definition 5.2.5. Let sim(
−→
Q,−→r ) be the similarity between the semantic vector of the

user’s requirement specification,
−→
Q , and the semantic vector of the resource r, −→r . The

similarity is given by the mixture of topic models :

sim(
−→
Q,−→r ) =

∏
ci∈
−→
Q

∑
tk∈T

p(ci|tk) · p(tk|−→r ) (5.13)
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Usually, the probability p(tk|−→r ) is unknown since the resource r does not appear
in the set of relevant resources descriptions RTk of the base task tk. Applying Bayes,
p(tk|−→r ) is estimated as:

p(tk|−→r ) =
p(tk,−→r )
p(−→r )

(5.14)

Assuming that all web resources in WR have the same chance to be retrieved, then,
p(−→r ) is an unknown constant for all web resources. Thus, we can rewrite the formula
above as:

p(tk|−→r ) ∝ p(tk,−→r ) (5.15)

Thus, the joint probability of resources and base tasks can be estimated as:

p(tk,−→r ) ∝
∑

ci∈tk
T−→r p(ci|tk) · p(ci|

−→r ) (5.16)

where ci ∈ tk
⋂−→r are the key concepts of the topic tk that appear in the semantic

vector −→r .

The second function of formula 5.12, sim facets(FQ,FR), estimates the relevance
of a resource r on base to the fulfillment of the user-defined facets.

Definition 5.2.6. Let consider sim facets(FQ,FR) as the similarity between the
facets defined in the user’s requirement specification, FQ, and the facets of the resource
R, FR. This similarity is estimated with the formula:

sim facets(FQ,FR) =
∑
−→
fqi∈FQ

(βi ·
∏

ck∈
−→
fqi

p(ck|
−→
fri)) (5.17)

where βi is the weight of the facet fi in the relevance estimation and
∑
βi = 1. The

probability p(ck|
−→
fri) corresponds to the value of the concept ck in the semantic vector

−→
fri.

This function allows the system to rank the discovered resources on base to the
fulfillment of the required functionality and the user-defined facets.

Complexity. The relevance function consists in accessions to values that have been
previously calculated and that are stored in inverted files and dictionaries. Therefore,
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its cost is O(n) (being n the number of concepts in the user’s requirements specification)
that can be considered constant w.r.t. Nc.

5.2.3 Web Resource Discovery Method

The proposed discovery approach relies on the semantic mapping of the normalized
representation of both user’s requirements specification and web resources metadata.
The resources are retrieved by the matching of the concepts of the normalized require-
ments specification. In case there is a concept that does not match any resource, maybe
because it is too specific, the matching is repeated with an ancestor of such concept
in order to retrieve resources that are described with a lower degree of specificity. In
order to make the semantic mapping faster, we use an inverted file that for each concept
stores a list of resources that are annotated with that concept. This inverted file requires
O(Nc ·N) storage. Finally, the matched resources are ranked on base to their relevance
to the user’s requirement, estimated with the Formula 5.12. Next, Algorithm 2 states
the steps performed for the discovery of the most suitable web resources.

Algorithm 2 Web Resource Discovery
Require: Q: User’s requirements specification

results=[]
relevance={}
for c in concepts(

−→
Q) do

resources={−→r ∈ R|c ∈ concepts(−→r )}
while resources = {} do

c’=ancestor(c)
resources={−→r ∈ R|c′ ∈ concepts(−→r )}
c=c’

end while
Append resources to results

end for
for r in results do

relevance[r]=relevance(Q, r) (Formula 5.12)
end for
Sort relevance
return relevance

Complexity. With respect to the complexity of the discovery process, considering
a query with n concepts, the cost of the web resource discovery is O(n). Then, the
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ranking of the r retrieved resources has a cost of O(n · r), since all the probabilities
used in the relevance estimation were calculated previously and stored in dictionaries.
Therefore, the overall discovery process has a cost proportional to O(n · r), which can
be considered constant w.r.t. Nc and N.

5.3 Conclusions

The discovery in web resource open registries in Life Sciences heavily depends on the
requirements specification format as well as on the characteristics of the resources
metadata. Moreover, these registries do not provide information about the relevance
of the retrieved resources.

In this chapter we have proposed an IR model to discover and rank the web resources
that are suitable for user’s requirements, independently of the characteristics of data
(both the requirements specification and resources metadata). This independence is
achieved by using normalized data. The normalization of data, more specifically the
semantic annotation, alleviates the problem of heterogeneity and ambiguity of data
and, moreover, it allows matching related information described with different level of
specificity. Moreover, the information extracted by the knowledge extraction techniques
is used as facets to better characterize the resources and, therefore, to fulfill the user-
defined resource features.

The web resource discovery is based on the semantic mapping between the normal-
ized representation of the user’s requirement and the web resources metadata. Then,
the discovered resources are ranked on base to their suitability to the user’s require-
ment taking into account their characterization and the fulfillment of the user-defined
facets. In the end, the user gets a ranked list of web resources, in which the top-ranked
resources are the most appropriate for her requirements.
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Experiments

This section presents a set of experiments carried out to validate the discovery process
proposed in this thesis. Before presenting the results of these experiments, in Section
6.1, we describe the resources and datasets used. In the rest of the chapter, we describe
the experiments performed to evaluate each phase of the process and their results.
First, in Section 6.2, we evaluate the normalization process, checking first the semantic
annotation and, then, the knowledge extraction techniques. After, in Section 6.3, we
evaluate the discovery and ranking of resources with a pool of queries that validate the
whole discovery process. In Section 6.4, we compare the results with other retrieval
models such as LDA and keyword-based retrieval and, in Section 6.5, we compare our
approach with the discovery functionality provided by one of the most popular open
registries in Life Sciences, BioCatalogue. Finally, in Section 6.6 some conclusions about
the experiments are given.

6.1 Experiments Setup

In this section, we describe the two main sets of resources that have been used in the
experiments presented in this chapter: the knowledge resources and the web resources
metadata.

With respect to the knowledge resources, we have used several KRs in order to
cover as best as possible the different terminologies that appear in the web resources
metadata. In contrast to other semantic annotation applications, e.g., the annotation of
research articles, in which the target data are related to a specific domain, web resources
metadata contain terms from different terminologies (mainly Biology, Bioinformatics,
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and Computer Science) which are not well covered by a single KR. Moreover, we have
realized that even using several of the existing KRs, there are terms that are relevant
in our corpus that are still not covered. To cover these terms, we have created an
ad hoc lexicon that includes named entities not defined in current KRs, e.g., popular
data formats (e.g., PDF, SOAP, REST), the name of resources usually mentioned in
resources metadata (e.g., MUSCLE, Clustal), the name of algorithms (e.g., Smith &
Waterman, Huang and Millers), and widely used abbreviations (e.g., mol, seq) among
others.

To cover the different terminologies, in these experiments we have used five different
KRs (described in Section 4.1.1): UMLS (2,268,460 concepts), EDAM (1699 concepts),
myGrid (369 concepts in the domain ontology and 66 concepts in the service ontology), a
fragment of Wikipedia related to Bioinformatics (566 concepts), and our named entities
lexicon (5174 concepts). All these KRs are stored as inverted files to optimize queries
during the normalization process.

With regard to the web resources metadata, we have downloaded (through the
registries APIs) and stored all the available metadata of the resources registered in
three popular registries in the Life Sciences domain (all of them described in Section
2.2): BioCatalogue (more than 2200 web resources), myExperiment (more than 2000
workflows), and SSWAP (more than 2700 web resources). These registries have been
selected to carry out the experiments presented in this thesis, but any other web re-
source registry could be considered to get the available metadata of the registered web
resources.

6.2 Normalization Evaluation

The normalization of data is crucial in the discovery of the most suitable web resources,
since the proposed discovery and ranking processes are based on the normalization of
the involved data. There are two key aspects to be considered in the normalization of
data: (i) the normalized data must represent as accurate as possible the information
described, and (ii) the normalized data must describe as most information as possible
trying to reduce the lose of information, including that implicitly described.

In this section, we evaluate the normalization process to ensure the quality of the
normalized data, which is the input data of the discovery process. The evaluation
is performed in two phases. First, we analyze the semantic annotation process to
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determine the quality of the semantic annotations and, then, we evaluate the knowledge
extraction techniques.

6.2.1 Semantic Annotation Evaluation

The evaluation of the semantic annotation process is carried out by analyzing the an-
notated resources metadata obtained from BioCatalogue, SSWAP, and myExperiment.
The web resources metadata have been annotated with a total of 187,996 semantic
annotations (43.6% in BioCatalogue, 39.7 % in SSWAP, and 16.7% in myExperiment).
In these annotations, 13,808 different entities are semantically annotated with 14,355
different concepts (15,332 before applying the simplification techniques). Figure 6.1
shows the number of concepts in the original annotation and the number of concepts
after applying the simplification techniques. As it can be noticed, the reduction in the
number of concepts is related to the specificity of the KR, that is, it is lower as the KR
more specific is.

With respect to the distribution of concepts in the registries, Figure 6.2 shows
the number of concepts of each KR in the semantic annotation of the metadata of
the resources in each registry. The most used KR is UMLS, with 66% of concepts in
BioCatalogue, 58.9% of concepts in SSWAP, and 61% in myExperiment. EDAM is more
used in the annotations of SSWAP resources metadata than in other registries, since the
vocabulary used in SSWAP is more related to Bioinformatics (the domain covered by
EDAM ontology). Obviously, the least used KR is the fragment of Wikipedia according
to its size.

Regarding the types of annotations on base to the number of words that compose
the annotated entities, Figure 6.3 shows the proportion of the different semantic an-
notations in each registry. Considering the 14,355 different concepts that appear in
the normalized metadata of the three registries, the 77.17% of these concepts match
single word entities, 19.71% match two words entities, 2.73% match three words enti-
ties, 0.37% match four words, and 0.02% match five. Unfortunately, the annotations
of single word entities sometimes introduce ambiguity because a single word can have
different senses and, depending on the context in which it appears, it has a different
sense. The semantic annotator does not differentiate between senses, and selects all
the concepts matching the term. In contrast, when the concepts match more than one
word, the ambiguity is reduced since an entity described by a combination of words
hardly ever has different senses. In order to demonstrate this fact, we have manu-
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Figure 6.1: Number of concepts of the different KRs in the original semantic annotations
and in the simplified annotations.

ally analyzed a sample of two-words entities annotations and a sample of three-words
entities annotations to determine how well these multi-word annotations describe the
correct sense of the entity. As a result, the 94% of the two-words entities annotations
and the 96% of the three-words entities annotations are correct. Therefore, we can say
that the ambiguity is mainly present in the annotations of one-word entities, which
might introduce noise in the discovery process.

In order to analyze the impact ambiguous annotations have on the discovery process,
we have carried out a set of experiments to determine if the matched concepts, those
remaining after the simplification, represent the correct sense of the term in the specific
context in which it appears and, therefore, determine the precision of the semantic
annotations.
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Figure 6.2: Distribution of concepts in the annotations of the metadata registered in
BioCatalogue, SSWAP, and myExperiment.

In order to perform this evaluation, we have considered the semantic annotations
that match single-word entities and that have concepts of different semantic types, that
is, concepts assumed to be describing different senses. Then, we have manually created
with them a gold standard (GS) determining the validity of each annotation, taking
into account the context in which it appears. To build this GS, we have considered
only UMLS concepts since they have well-defined semantic types. For each one of the
considered ambiguous semantic annotations, we have stored an entry for each concept
in the annotation that consists of: the name of the resource in which the terms appears,
the ambiguous term, and the concept. For each entry, we have assigned to it a “1”
if the concept describes the correct sense of the term in the resource, or “0” if not.
We have manually evaluated 3716 semantic annotations annotating 717 different terms
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Figure 6.3: Types of annotations depending on the number of matched words.

with a total of 1033 different concepts. There are cases in which the correct sense is
not described by any of the matched concepts, that means that there is a hidden sense
that may be described by a concept from another KR. In our GS, there are 258 terms
for which any of its UMLS matched concepts describe the correct sense.

Then, to evaluate the ambiguity degree in the semantic annotations, we have se-
lected the ambiguous semantic annotations and we have evaluated them by calculating
two measures: error and precision. We define error as the probability that the sense
of a term in a specific context is not described by any of its matched concepts. We
consider precision as the probability that the semantic annotation describes the correct
sense of a term in a specific context. To calculate these measures, we assume that the
concepts of KRs different from UMLS describe the correct sense of a term, since those
KRs are more specific than UMLS.

Apart from calculating the error and precision measures of the ambiguous anno-
tations using all KRs, we have also analyzed the impact of each KR in the quality of
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KRs Error Precision
All KRs 0.19 0.56
Without named entities lexicon 0.22 0.54
Without Wikipedia 0.2 0.55
Without named entities lexicon and Wikipedia 0.23 0.53
Without myGrid 0.2 0.56
Without EDAM 0.27 0.43
Without EDAM and myGrid 0.28 0.43
Only UMLS 0.31 0.42

Table 6.1: Error and precision measures of the semantic annotations using different
combinations of KRs in the semantic annotation process.

the annotations by calculating the error and precision using different combinations of
KRs in the semantic annotation process. Table 6.1 shows the error and precision of the
semantic annotations using different combinations of KRs.

The overall error is around 0.19, which means that the 19% of the ambiguous
annotations do not represent the correct sense of the term in the context in which it
appears. On the other hand, 56% of the matched concepts in ambiguous annotations
represent the correct sense of the term. As it can be noticed in Table 6.1, when using
only UMLS as KR, the 31% of the ambiguous annotations do not represent the correct
sense of the term. Using EDAM improves the precision, since the semantic annotations
without EDAM present a higher error and a lower precision. It is also worth noting
that our lexicon of named entities has also an impact on the annotations, higher than
other KRs such as Wikipedia or myGrid.

These results show that using several KRs with different level of specificity alleviates
the problem of ambiguity. Moreover, the use of several KRs also addresses the lack of
coverage of the different terminologies used in the resources metadata, as we have
demonstrated, for example, with the lexicon of named entities.

6.2.2 Knowledge Extraction Evaluation

This section presents the evaluation of the proposed knowledge extraction techniques.
First, we describe the topic-based model built for the discovery of resources in the
Life Sciences domain. Then, we present the validation of the methods used to extract
relevant information implicitly described in textual descriptions.
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Topic
T1 Search proteins with a functional domain
T2 Localize protein expression
T3 Search similar sequences
T4 Identify and characterize genes linked to a phenotype
T5 Analyze transgenic model organism
T6 Find genes with functional relationships
T7 Find common motifs in genes
T8 Predict structure
T9 Identify putative function of gene
T10 Gene prediction
T11 Analyze phylogeny
T12 Align sequences
T13 Protein identification and characterization

Table 6.2: Bioinformatics base tasks defined as topics

6.2.2.1 Resource Characterization Evaluation

The evaluation of the resource characterization consists in validating the topic-based
model created to determine automatically the relevance of each concept in the resource
characterization.

In Bioinformatics, there are some tasks that are very common, and most taxonomies
describing categories of resources are based on these tasks, e.g., BioCatalogue categories
or OBRC categories. Regarding these reference tasks and those defined by [103] as
relevant bioinformatics tasks, we have defined 13 bioinformatics base tasks as topics,
shown in Table 6.2, to build the topic-based model. However, the model can be modified
and extended with new tasks.

To build the topic-based model, for each base task tk we have specified a set of
key concepts to retrieve web resources that are relevant to tk. These concepts can
be automatically gathered either from existing documents, such as Wikipedia pages
related to each topic, or from well-defined taxonomies of categories. For example, for
the topic “search similar sequences”, some examples of key concepts are: KR0000204
and W363695 (Blast), E0001413 (Sequence similarity), and C0162774 (homologous
sequences). For each one of the key concepts of each topic, we have automatically
retrieved the resources that contain such key concept, and we have selected the top-10
resources ranked by using the cosine measure over their tf×idf semantic vectors. Once
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the sets of relevant resources, called RTk, have been created, the topic-based model has
been built for all concepts in the KRs as explained in Section 4.3.1.1. Figure 6.4 shows
the cardinality of each RTk and the source of the selected resources. As Figure 6.4
shows, there are some topics that are not well-represented in these registries, e.g., T2,
T4, T10 and T13, and, in consequence, their RTk is very small. We have not evaluated
these topics since we consider that their models are not representative enough, due to
the low representation. We can also notice that there are some topics that are more
frequent in some registries than in others. For example, T1, T6 and T8 are more frequent
in SSWAP, while T3, T11 and T12 are more frequent in BioCatalogue.

Figure 6.4: Cardinality of the RTk of the topics.

In Table 6.3, we show the most frequent BioCatalogue categories of the resources
in each RTk, which reflect the correspondency between categories and topics.

89



Chapter 6. Experiments

The results of the evaluation of the topic-based model are shown in the evaluation
of the discovery and ranking process in Section 6.3.

6.2.2.2 Facets Extraction Evaluation

In this section, we show the results of the evaluation of the techniques proposed for
the extraction of relevant information about the resources facets that are implicitly
described in textual descriptions. First, we present the results of the evaluation of the
probabilistic techniques and, then, the results of the semantic-based facets.

Probabilistic facets. In these experiments, we have considered as probabilistic facets
the input, the output and the method facets. To carry out this evaluation, we have
set up a GS data set with the explicit information about the facets of the resources
registered in BioCatalogue. We have selected BioCatalogue as reference source to build
the GS since it allows users to assign tags to resources in order to describe features such
as the input and the output data types. Currently, 59 resources in BioCatalogue have
at least one tag describing its input or its output (48 resources have at least one tag de-
scribing its input, and 48 resources have at least one tag describing its output). There
are 162 tags (47 different annotated with 88 concepts) describing the input, and 95 tags
(46 different annotated with 100 concepts) describing the output of the resources. The
most frequent tags for the input are: fasta format, protein sequence and DDBJ record,
and the most frequent tags for the output are: DDBJ record, gene prediction report
and BIND record.

To build the GS, we have differentiated between those facets that have explicit tags
describing them, i.e., input and output, and those that are not explicitly mentioned,
i.e., method. For input/output facets, we have automatically selected the tags assigned
to the input/output descriptions. For the method, we have manually classified the
tags. Table 6.4 shows the number of different concepts annotating the tags and the
number of involved resources for each facet. It is worth noting that few resources
are tagged with input/output descriptions in BioCatalogue, which confirms the lack
of processable metadata in this kind of registries. This table also shows the results of
our facet extraction technique: the number of initial keywords specified to build the
probabilistic model, the number of concepts identified automatically as facets values,
and the number of resources that have been tagged with concepts identified as facets
values (number of BioCatalogue resources and total number of resources independently
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Topic Top BioCatalogue categories
T1 Search proteins with a Domains

functional domain
T2 Localize protein expression N/A
T3 Search similar sequences Protein sequence similarity

Nucleotide sequence similarity
T4 Identify and characterize genes N/A

linked to a phenotype
T5 Analyze transgenic model organism Microarrays, Biostatistics

Data retrieval
T6 Find genes with functional Pathways, protein interaction

relationships
T7 Find common motifs in genes Function prediction, motifs
T8 Predict structure Protein secondary structure

Protein tertiary structure
Protein structure prediction

T9 Identify putative function of gene Functional genomics
Function prediction
Domains

T10 Gene prediction Genomics
Sequence analysis
Gene Prediction

T11 Analyze phylogeny Phylogeny
T12 Align sequences Protein sequence alignment

Nucleotide multiple alignment
Protein multiple alignment
Nucleotide sequence alignment...

T13 Protein identification and Chemoinformatics
characterization

Table 6.3: The most frequent BioCatalogue categories in the RTk of each topic.
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GS Target Resources
Facets Concepts BioCatalogue Initial Facet BioCatalogue Resources

Resources keywords concepts Resources
Input 88 48 9 1696 1404 4875

Output 100 48 19 2151 1612 5169
Method 295 1316 16 3377 2102 5814

Table 6.4: For each facet, (i) characteristics of its GS (number of different concepts
annotating the tags and number of BioCatalogue resources tagged), and (ii) the re-
sults of our facet extraction method: initial keywords for the probabilistic model and
the number of concepts and tagged resources identified by our method (BioCatalogue
resources and resources from the three registries).

of their source). As it can be observed, the number of identified concepts is higher
than those in the GS, and the number of tagged resources is also considerably higher
than those identified in the GS, since our approach identifies facet values in all the
available metadata, that is, not only in the specific fields for the facet, but also in
textual descriptions.

To evaluate the quality of the extracted facets values, we have calculated the pre-
cision, recall and F-measure of the results as it is next explained.

For a given facet fi, we denote with tags(fi) the BioCatalogue tags in the GS
assigned to fi, and with concepts(fi) the automatically extracted concepts for facet fi.
Each tag t ∈ tags(fi) has associated the set of resources annotated with it for the facet
fi, which is denoted with servicesfi

(t).

Similarly, each concept c ∈ concepts(fi) has associated the set of resources having
c as value of the facet fi, denoted as above.

We calculate precision, recall and F-measure for each pair (t, c), t ∈ tags(fi) and
c ∈ concepts(fi), as follows:

Pfi
=
servicesfi

(t) ∩ servicesfi
(c)

servicesfi
(c)

(6.1)

Rfi
=
servicesfi

(t) ∩ servicesfi
(c)

servicesfi
(t)

(6.2)

Ffi
= 2 ·

Pfi
(t, c) ·Rfi

(t, c)
Pfi

(t, c) +Rfi
(t, c)

(6.3)
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Facet Precision Recall F-measure
Input 0.74 0.91 0.77

Output 0.65 0.96 0.72
Method 0.93 0.51 0.62

Table 6.5: Precision, recall and F-measure of the probabilistic facets considering the
GS.

The global precision and recall is calculated as a macro-average over the best (t, c)
mappings, which is defined as:

Pfi
=

∑
t∈tags(fi)

P (t, argmaxc∈conceptsfi
(Ffi

(t, c))) · 1
|tags(fi)|

(6.4)

Rfi
=

∑
t∈tags(fi)

R(t, argmaxc∈conceptsfi
(Ffi

(t, c))) · 1
|tags(fi)|

(6.5)

Table 6.5 presents the values of these measures for the facets extracted with the
probabilistic technique, i.e., input, output and method. The results reveal that this
technique obtains, in general, good effectiveness for the facets input, output and method.
For input and output facets, whose GS is based on well-defined metadata, the high re-
call states that almost all facets values explicitly specified as facets in the resources
metadata are also identified by our method. On the other hand, the precision of the
method facet shows that our method identifies correctly the values of such facet.

Semantic facets. In these experiments, we have considered as facets the species and
the diseases the information provided by the resource is related to. For each facet, we
have selected all concepts whose semantic type is associated to the facet, and we have
validated manually each concept. We have considered only UMLS concepts since, as
mentioned before, UMLS is the only KR, from those used in these experiments, with
well-defined semantic types. Table 6.6 shows the number of concepts considered as
facets values, the number of resources that have been tagged with these facets values,
and their precision. The precision of both facets is good, although the precision of
the facet disease reflects that further studies about the semantic types assigned to this
facet must be done in the semantic annotator, since many concepts are not correctly
assigned. In this experiment we have not calculated the recall since it would require
to analyze which concepts are related to these facets, but whose semantic types do
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Facet Concepts Resources Precision
Disease 137 178 0.74
Species 292 809 0.82

Table 6.6: Number of concepts, number of tagged resources, and precision of the se-
mantic facets.

not describe them correctly. In this case, instead of evaluating our method, we would
evaluate the quality of the concepts categorization in UMLS, which is out of the scope
of this thesis.

6.3 Discovery and Ranking Evaluation

The evaluation of the discovery and ranking process is, in some way, the evaluation of
the whole proposed approach, since both discovery and ranking depend on the previ-
ous steps. Therefore, we can consider this evaluation as the evaluation of the whole
proposed discovery system.

The experiments carried out to perform this evaluation consist in the execution of
a set of heterogeneous queries (i.e., task description examples) that capture different
ways to describe bioinformatics tasks, thus reflecting the variability in the users’ in-
formation needs. The query pool, available on the web site1, was created by selecting
more than 250 short descriptions related to the defined topics and extracted from other
Life Sciences resource catalogues such as OBRC2 (Online Bioinformatics Resource Col-
lection) and ExPaSy3 (SIB Bioinformatics Resource Portal). Both catalogues define
a taxonomy of categories that can be related to the topics defined in our topic-based
model. So, we have selected as queries short descriptions of resources registered on
these catalogues and annotated with the related categories. From this pool of queries,
we consider only for evaluation those corresponding to the topics that can be unam-
biguously described and whose RTk are representative enough in order to perform an
accurate evaluation. Table 6.7 shows the number of selected queries associated to each
topic.

To evaluate the results of these queries, we have built a GS, since it is not feasible to

1http://krono.act.uji.es/KAIS/pool queries.xml
2http://www.hsls.pitt.edu/obrc/
3http://expasy.org
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determine the whole set of relevant results for each query. The GS1 has been built for
seven topics that can be unambiguously described, and we have revised it manually in
order to ensure the quality of the final set. Figure 6.5 shows the proportion of resources
from the different registries that form the GS of each evaluated topic. As shown in
Figure 6.5, the GS is mostly composed of SSWAP and BioCatalogue resources, and
their proportion is related to the representation of the topic on each registry.

With this GS, we have evaluated the results obtained for each one of the queries
from the query pool with the traditional precision, recall and F-measure, shown in Table
6.7. The results show that the top-ranked resources are, in most cases, appropriate for
the user’s requirement and, moreover, the high recall indicates that usually most of the
relevant resources are provided to the user.

Figure 6.5: Composition of the GS to evaluate the discovery process.

1http://krono.act.uji.es/KAIS/gold standard.xml
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Topic N. of P@5 P@10 P@20 P R F
queries

T1 Search proteins with 14 0.94 0.96 0.94 0.51 0.81 0.63
a functional domain

T3 Search similar sequences 16 0.81 0.79 0.76 0.19 0.47 0.27
T5 Analyze transgenic 31 0.92 0.92 0.91 0.6 0.85 0.7

model organism
T6 Find genes with 42 0.88 0.84 0.82 0.42 0.43 0.43

functional relationships
T8 Predict structure 30 0.84 0.84 0.81 0.56 0.41 0.47
T11 Analyze phylogeny 14 0.8 0.81 0.83 0.46 0.89 0.61
T12 Align sequences 24 0.92 0.92 0.88 0.43 0.62 0.5

Average 24.42 0.87 0.87 0.85 0.45 0.55 0.52

Table 6.7: Precision (P), recall (R), and F-measure (F), including the precision for the
top-5, top-10, and top-20 results.

Table 6.8 shows the top-10 resources for the query “Calculate maximum likelihood
phylogenies given nucleotide sequences”, and it can be shown that most of them are
not categorized in their registries. The five top-ranked resources perform phylogeny
using maximum-likelihood.

6.4 Comparison with other Retrieval Models

Two of the main characteristics of our discovery process are the normalization of data
and the semantic-based mapping. In this section, we compare our discovery process
with other techniques used broadly in the literature for similar purposes. Section 6.4.1
presents a comparison between the results obtained in the discovery when using our
topic-based model and when using LDA to characterize the resources metadata. In
Section 6.4.2, we demonstrate that using semantics in the discovery process improves
considerably the results by comparing the semantic-based results with those using a
keyword-based discovery.

6.4.1 LDA to Characterize Data

As we have said in Section 5.1.4, LDA can be used as a model to represent the infor-
mation described in a text. Here, we demonstrate that LDA does not get good results
in the discovery of the most suitable resources in the Life Sciences, since it does not
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Resource Registry Categories
runPhylipDnaml BioCatalogue N/A
INB:inb.bsc.es:runPhylipDnamlk BioCatalogue N/A
INB:inb.bsc.es:runPhylipDnamlk BioCatalogue N/A
TREE-PUZZLE SSWAP Phylogeny reconstruction, DNA,

protein
runPhylipDnamlk BioCatalogue N/A
rociImplementationService BioCatalogue Phylogeny
INB:inb.bsc.es:runPhylipProtpars BioCatalogue N/A
INB:inb.bsc.es:runPhylipDnapars BioCatalogue N/A
fconsense BioCatalogue N/A
ftreedistpair BioCatalogue N/A

Table 6.8: Top-10 results for the query “Calculate maximum likelihood phylogenies
given nucleotide sequences”.

model correctly the topics that appear in the resources metadata.

In this experiment, we have used LDA instead of our topic-based model to char-
acterize the resources metadata, and we have compared its results with the results
obtained using our topic-based model. We have carried out the experiment setting the
number of LDA topics to 13 (the number of topics in our topic-based model) and to 7
topics, with the aim of analyzing the impact of low quality topics (more frequent when
the number of topics is higher). In both experiments, the number of iterations has been
set to 1000.

Table 6.9 shows the top-10 terms of the topics identified by LDA with 13 topics. As
it can be observed, only two topics describe accurately a Bioinformatics task, e.g., topic
1 describes the tasks of phylogeny and sequence alignment (our T11 and T12), and topic
2 corresponds to sequence similarity tasks (our T3). Other topics combine terms from
different tasks, e.g., topic 6 mixes terms of microarrays (our T5) with protein domains
(our T1) and interactions (our T6), and there are others that are not coherent, e.g.,
topic 11. In contrast, our topic-based model does not suffer from this problem since
the topics are related to well-known bioinformatics tasks, and they are built on base to
an initial set of known key concepts relevant for each topic, which are usually related
to resources categories.

To compare LDA with our topic-based model, we have executed the pool of queries
considering both LDA models, that with 13 topics and that with 7 topics. We have
calculated the precision, recall and F-measure for both models. Figure 6.6 compares
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Topic 1 Topic 2 Topic 3 Topic 4
sequence alignment protein sequence p53 PubMed
tree blast id gene extraction
clustalw sequence similarity knowledge repository data
sequence analysis nucleotide sequence gene mutation phenotype
phylogenetic analysis sequence analysis codon recognition
FASTA DDBJ exon user
phylogenetic FASTA ids protein person
protein sequence EBI line runs
phylogenetic tree protein sequence analysis distribution corpus
t-Coffee Fasta format SPS genome
Topic 5 Topic 6 Topic 7 Topic 8
SOAP retrieval sequence analysis protein domain
Biomart data genome EBI
data KEGG sequence analysis gene ontology
human interactions vectors poll
id gene ligand contents protein
OMIM protein domain genome genomics
SBML ids gene output protein
Ensembl Ensembl similarity bioinformatics
KEGG enzymes excel PDB
Homo sapiens ENZYME operation protein structure
microarray database microarray database data ORF
Topic 9 Topic 10 Topic 11 Topic 12
remove data operator gene express
aida biogrid parameters molecule
genomics microarray database user SMILE
character literature repository filtered user
MEDLINE experiment apply API
remove max country trident
genome weather city sample
tags sources learning atoms
filter physics-based applied split
concepts repository values PUG
Topic 13
Ensembl
R processor
DDBJ
Swissprot
molecule
sequence cluster
cluster analysis
disk
id protein
sequence

Table 6.9: Top-10 terms of the LDA topics (k=13)
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the results obtained by the two LDA models with the results obtained by our topic-
based model. Notice that our approach obtains better results than LDA, with a higher
precision in the top-k resources and a higher recall in almost all topics. With respect
to the two models of LDA, there is not much difference between their results.

Figure 6.6: Precision of top-5, top-10, top-20, and the overall precision, recall, and
F-measure of the results of our topic-based model, LDA with 13 topics, and LDA with
7 topics.

6.4.2 Keyword-based Discovery

Most current open registries base the discovery on the string matching of query key-
words on the resources metadata, which hardly consider lexical variants nor even syn-
onyms and hypernyms. To address these limitations, we base the discovery on the
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semantic mapping of concepts.

Here, we demonstrate that the semantic-based discovery presents better results than
the discovery based only on keywords. We defined two experiments: (i) discovery based
only on keywords, and (ii) discovery based on keywords using a topic-based model.

In the first experiment, the discovery consists in the string matching between the
words in the user’s requirements specification and the words in the resources metadata,
without any type of normalization. We have executed the queries from the query pool,
and the precision of the discovered resources is in average 32% and the recall is 38%.
Therefore, this kind of discovery, the one used by most current open registries, presents
a low precision and a low recall, which means that most of the resources provided to
the user are non-relevant for her requirement, and not all the relevant resources are
discovered. The main reason is that this type of matching requires that the user’s
requirements specification is expressed with the same words as the resources metadata,
and this is almost always unfeasible since users do not know the vocabulary used to
describe the resources and, moreover, the resources metadata present a high level of
heterogeneity. Therefore, the performance of this type of discovery is usually very poor.

In the second experiment, we have built a topic-based model based on words instead
of concepts with which the data are characterized. In this experiment, the discovery is
based on this model, and it retrieves relevant resources performing a keyword mapping
instead of a concept mapping. To validate this keyword-based approach, we have
executed the queries from the query pool using the keyword-based discovery, and we
have calculated the precision, recall and F-measure of the results. Figure 6.7 shows
the comparison of the precision, recall and F-measure of the results obtained by this
lexical discovery and the results obtained by our approach. As shown in the graphs,
our semantic-based approach obtains better precision in the top-k results and a higher
recall.

6.5 Comparison with other Web Resource Registries

Finally, in order to compare our approach with the search engines of current web
resource registries in Life Sciences, we compare it with the BioCatalogue search engine.
We have selected BioCatalogue because nowadays it is one of the most popular open
registries in Life Sciences, and because BioCatalogue provides an API that allows users
to query it programmatically. BioCatalogue provides two types of search: (i) keyword-
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Figure 6.7: Precision of top-5, top-10, top-20, and the overall precision, recall, and
F-measure of the results of the discovery using our semantic-based topic model and the
results of using the keywords-based topic model.

based search and (ii) navigational-based search using categories. Each type of search
has been evaluated separately using the GS described in Section 6.3. Next, we describe
with more details each evaluation.

Keywords-based search in BioCatalogue is based on string matching techniques that
consider all the available metadata of the resources. This type of search supposes an
extra effort to the user, since she has to summarize her informational needs in a set
of words, and these words have to make a complete matching with the words in the
resource information. For instance, in BioCatalogue, the query metabolic pathways
does not retrieve any resource, whereas its singular form metabolic pathway retrieves
one resource. Table 6.10 shows the precision, recall, and F-measure of the results
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Topic P@5 P@10 P@20 P R F Edition Keywords
cost

Search proteins with 0.4 0.41 0.41 0.41 0.02 0.04 2.45 2.4
a functional domain
Search similar 0.4 0.4 0.4 0.36 0.07 0.12 2.87 3.8
sequences
Analyze transgenic 0.74 0.71 0.71 0.71 0.17 0.27 3.25 2.94
model organism
Find genes with 0.27 0.26 0.27 0.26 0.04 0.07 3.15 2.13
functional
relationships
Predict structure 0.67 0.66 0.65 0.64 0.04 0.07 3.27 2.93
Analyze phylogeny 0.18 0.2 0.2 0.18 0.01 0.02 2.8 2.56
Align sequences 0.72 0.72 0.75 0.69 0.07 0.13 2.48 4.16

Table 6.10: BioCatalogue keyword search evaluation

obtained by manually building keyword queries that try to express the informational
needs described in the description tasks in the query pool. This table also shows the
cost of edition, that is, the average number of failed queries we have executed before
getting some results, which is in average 2.89, and the number of keywords per query,
which is in average 2.94. Considering the precision and the recall, keyword queries do
not provide good results considering user’s requirements. Our approach presents better
precision and recall without the cost of transforming the original requirements.

Navigational search allows the user to navigate through the BioCatalogue taxon-
omy of categories, which represent the most common bioinformatics tasks. When the
user selects a category, BioCatalogue filters the resources that are tagged with that
category. BioCatalogue allows to select several categories, but it does not allow to
combine navigational search with keyword-based search. An important limitation of
this search is that it does not retrieve uncategorized resources, even when the selected
category appears in their textual description. Another limitation is the broadness of
the categories, which does not allow the user to express specific tasks. To evaluate the
navigational search, we have selected manually the most suitable categories for each
query in the query pool. Table 6.11 shows the precision, recall and the F-measure of
the results, and the cost of edition of the queries. In this type of search, the cost of
edition is represented by the depth of the category in the taxonomy and the number
of siblings of the selected category, describing in this way the steps required to select
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Topic P@5 P@10 P@20 P R F Edition
Cost

Search proteins with 0.92 0.92 0.82 0.75 0.15 0.25 2.67/3.3
a functional domain
Search similar sequences 1.0 1.0 1.0 1.0 0.3 0.46 2.0/4.25
Analyze transgenic 0.8 0.9 0.95 0.94 0.4 0.56 0.03/10.77
model organism
Find genes with 0.91 0.95 0.89 0.89 0.26 0.4 1.0/3.0
functional relationships
Predict structure 0.87 0.93 0.96 0.9 0.1 0.18 2.29/3.42
Analyze phylogeny 0.8 0.88 0.88 0.88 0.03 0.06 0.0/11.0
Align sequences 0.98 0.99 0.99 0.99 0.06 0.11 2.94/2.1

Table 6.11: BioCatalogue navigational search evaluation

the most appropriate category. The higher the depth, the more specific the category
is. As it can be noticed, the navigational search works quite well, since it also relies on
semantic classification of resources, but manual. On average, the precision is high, but
it is not possible to know if the retrieved results perform the specific task described
in the requirement. Our approach presents a lower precision but a higher recall, that
is, it retrieves relevant resources that the navigational search does not retrieve, e.g.,
those that are not categorized. Moreover, our approach retrieves resources that perform
the specific tasks described in the requirements, which is not always possible with the
navigational search due to the low specificity degree of the categories.

Table 6.8 shows a comparison between the results of the two evaluations of BioCat-
alogue and our approach. It can be noticed that our approach and the navigational
search present similar precision, but our approach presents a higher recall.

Another important limitation of both types of search is that they do not provide a
ranked list, so the user has to manually check all the results. Nevertheless, our approach
provides the user with a ranked list of resources depending on their suitability to the
requirement.

Regarding facets, BioCatalogue allows the user to search by introducing input or
output data examples, retrieving those resources that require or produce the introduced
data. However, they do not combine this search with the other types of search and,
therefore, the user cannot specify which task she wants to perform over those data.
In contrast, in our approach, the user can describe the required functionality together
with information about the facets in the same query.
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Figure 6.8: Precision of top-5, top-10, top-20, and the overall precision, recall, and
F-measure of the results of our topic-based model and BioCatalogue results.

We can conclude that our approach improves the BioCatalogue search by using
richer queries, which describe the task and the features of the resources, and avoiding
the selection of keywords or categories that might not cover specific tasks. Moreover,
the use of semantics addresses the problem of using different vocabularies or string
mismatchings.

6.6 Conclusions

The results shown in this chapter have shown that the discovery approach proposed in
this thesis obtains good results in the Life Sciences domain. These results demonstrate
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the validity of our hypothesis stated in Section 1.2, i.e., the normalization of data
overcomes the main limitations of current registries.

First, the semantic annotation of data alleviates the problem of data heterogeneity
and ambiguity, and it allows to process the data automatically. The experiments reflect
that the discovery based on semantics obtains much better precision, mainly in the top
ranked resources, than the discovery based on the keywords. Moreover, they also show
that the use of several KRs in the annotation process provides a high coverage of the
different vocabularies used in Life Sciences.

Then, to characterize a resource independently of its metadata characteristics, we
use a topic-based model and knowledge extraction techniques. The experiments have
shown that using a topic-based model to characterize the resources metadata obtains
better results than using other models, like LDA, or than not using any characterization
model. On the other hand, the proposed knowledge extraction techniques identify quite
well the information about five relevant features that current approaches do not consider
(input, output, method, disease, and species).

The overall system obtains good results with a high precision on the top ranked re-
sources and a high recall in average. Moreover, the proposed discovery system provides
an easier and more precise way of specifying the requirements than other registries such
as BioCatalogue, as demonstrated in the experiments. We think that the richer the
specification of user’s requirements is, the faster and the more precise the discovery of
the most suitable resources is.

In conclusion, our proposed discovery system achieves a high reconcilement between
user’s requirements and web resources, even though when they are not described with
the same vocabulary or at the same level of specificity, thanks to the normalization
of data. Moreover, the system makes the discovery easier for the user, assisting her
from the specification of her requirements until the selection of the most adequate web
resource from a ranked list.

105



Chapter 6. Experiments

106



Chapter 7

The Prototype

The proposed web resource discovery process described in previous chapters has been
implemented as part of BioUSeR, a tool for the discovery of web resources in the Life
Sciences domain. The main goal of BioUSeR is to assist the user during the whole
discovery process, allowing her to modify parameters in each one of the phases in order
to perform a more accurate discovery.

To show the usefulness of BioUSeR, we present two example use cases that differ in
the technique used to specify the user’s requirements. The first example shows a case
in which the requirements specification consists of a textual description, whereas in
the second example the requirements are formally described with an i* model created
with the BioUSeR i* editor. Both use cases are described by means of a sequence of
BioUSeR screenshots.

Section 7.1 briefly explains the architecture of BioUSeR, and Section 7.2 shows the
usefulness of the prototype by means of the two mentioned.

7.1 BioUSeR

BioUSeR is a tool for the discovery of web resources in Life Sciences whose main goal
is to make the discovery of relevant resources easier for users. BioUSeR visualizes the
results of the three phases of the proposed discovery process: (i) the user’s requirements
specification, (ii) the normalization of data, and (iii) the web resource discovery and
ranking. Moreover, in order to gather a rich specification of the user’s information
needs, BioUSeR allows the user to modify the results of the normalization process and
some relevant search parameters, such as the weights of the facets in the relevance
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function. The simplicity of the interface, the visualization of relevant information
during the whole process, and the possibility of customizing relevant parameters make
the discovery of web resources easier, more intuitive, and less error-prone than in current
Life Sciences registries.

BioUSeR architecture is shown in Figure 7.1. Its components are organized in three
levels: (i) the user interface level, which provides a graphical interface of the discovery
system for the end-user, (ii) the discovery level, which contains the core components
that implement the algorithms presented in the preceding chapters, and (iii) the storage
level, which stores the data sources involved in the discovery process. Next, each one
of these levels is further described.

• User interface level. It consists of a graphical interface, implemented using
GWT1, that visualizes each one of the phases of the discovery process in three
different tabs:

1. Requirements Specification. This tab allows the user to provide the
specification of her requirements. Currently, BioUSeR provides two ways to
specify the user’s requirements: a GoogleTM -like search, in which the user
can specify her requirements with a textual description, and an i* model
editor, which allows the user to create an i* model describing the goals and
tasks required to achieve her information needs.

2. Normalized Requirements. This tab shows the results of the normal-
ization of the requirements specification. It is divided into two parts: (i)
the semantic annotation and (ii) the automatically identified facets values.
The semantic annotation of the requirements specification is represented by
pairs concept-word, and for each pair the user can select the ancestor of the
concept to consider it in the semantic mapping performed in the discovery.
The second part of the tab shows the values of the facets, which have been
automatically identified in the normalization process, and their weights in
the relevance function. Each facet has a default weight that can be mod-
ified by the user in order to determine the relevance of each facet in her
requirements.

3. Resources. This tab shows a list of the retrieved resources ranked according
to their relevance to the user’s requirements. Additionally, it visualizes a

1https://developers.google.com/web-toolkit/
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summary of the metadata of each resource.

Once the user has specified her requirements in the Requirements Specification
tab, the discovery process starts automatically and its results are shown in the
Normalized Requirements and Resources tabs.

• Discovery level. It contains the core functionality of BioUSeR. It implements
the process of normalization of data and the discovery of web resources in a set
of Python modules. The main components are:

– The Normalization component, which contains the semantic annotator and
the knowledge extraction module that characterizes the data, both explained
in Chapter 4.

– The Discovery engine, which implements the IR model proposed in Chapter
5. It implements the discovery of web resources and their ranking according
to their relevance to the user’s requirements.

• Storage level. This level provides support for storing the resources involved in
the discovery process: the knowledge resources used by the semantic annotator,
and a repository of normalized metadata. In order to optimize queries during the
discovery process, inverted file indexes have been used to store the information. To
optimize further the discovery process, the normalization of the web resources was
carried out offline. Currently, BioUSeR contains normalized metadata for 2260
resources from BioCatalogue, 2725 resources from SSWAP, and 1241 resources
from myExperiment.

7.2 Example Use Cases

The current version of BioUSeR allows the user to specify her requirements by using
either a GoogleTM -like search or the i* editor. The former allows the user to specify
her requirements with a rich textual description and, from this description, BioUSeR
identifies automatically relevant information about the features of the resource, which
can be later modified by the user. The latter allows the user to create an i* model
describing her information needs by means of goals and tasks to achieve them. Unlike
the GoogleTM -like search, this model allows defining more than one task, and also de-
pendencies between them (e.g., the output of a task can be the input of the following
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Figure 7.1: Architecture of BioUSeR

task). Although currently BioUSeR only supports these two techniques, other require-
ments specification techniques could be supported by implementing their own extractor
module, as explained in Section 3.1.

In this section, we present two example use cases. Section 7.2.1 presents a case in
which the user’s requirement is described with a single textual description, and Section
7.2.2 shows a case in which the user’s requirement is specified by an i* model.

7.2.1 Discovery driven by a Textual Description

In current registries, the input of the discovery is specified in a text box in which
the user writes the keywords that best represent her requirements. BioUSeR also
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provides this type of search, but without the restriction of using specific vocabularies
or specific formats. Therefore, the user can describe her information needs with a
textual description that describes not only the required functionality, but also relevant
features of the resources. In this section, we present an example of this type of search
to show how discovery driven by a single textual description is performed in BioUSeR.

The use case is about a user that needs to align sequences given in Fasta format and
using the Smith-Waterman algorithm. Figure 7.2 shows a screenshot of the requirement
specification Align sequences using Smith-Waterman given Fasta.

Figure 7.2: Requirement specification using a textual description.

Once the user has specified the textual description of her requirement, the results
of the normalization process are automatically shown in the Normalized Requirements
tab, as shown in Figure 7.3. In the part of the semantic annotation, BioUSeR shows
the concepts associated to each entity in the requirements specification, e.g., the word
Fasta has been annotated with the concepts W1009996, D9000079, and C1708003. In
case the user wants to use a more general concept, she can select an ancestor concept
in order to be considered in the discovery. For example, in Figure 7.3 it can be shown
that the ancestor of the concept C1708003(fasta) is C1301627 (format). In the part
of the facets, BioUSeR shows the facets values that have been automatically identified
and their corresponding weights in the relevance function. In this example usage case,
BioUSeR has identified Fasta as input value, and Align multiple sequences using Smith-
Waterman as method.

Finally, Figure 7.4 shows the Discovered resources tab that presents the user the
top-10 resources that are supposed to be the ones that best fulfill the user’s requirement.
In addition, a summary of the metadata of each resource is shown.

If the user does not get the expected resources, she can refine the discovery by
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Figure 7.3: Normalization of the user’s requirement specification.

modifying the textual description, selecting more general concepts with the ancestors
or modifying the facets values or their weights in the relevance function. For example,
if the user wants to give more relevance to the facet method, the user can modify the
weight of that facet. Figure 7.5 shows that the weight of the facet method has been
increased from 0.3 to 0.5. Figure 7.6 shows the new ranked list of resources in which
the resources performing Smith-Waterman as alignment method are now top-ranked.

7.2.2 Discovery driven by an i∗ Model

This section presents an example use case in which the user’s requirement is described
by means of an i∗ model, composed by goals and tasks that must be performed by web
resources in order to achieve them.
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Figure 7.4: Results of the web resource discovery process.

In this use case, extracted from [59], the user needs to compare specific genes in dif-
ferent organisms. Figure 7.7 shows the i∗ model that describes the user’s requirement,
in which the tasks that must be performed by web resources are: Search similar se-
quences given a protein sequence, Predict gene structure, Align protein sequences, Build
phylogenetic trees, and Analyze domains given protein sequences.

Then, the semantic annotation and the automatically identified facets values of each
task in the i∗ model are shown in the Normalized Requirements tab, as shown in Figure
7.8. Figure 7.9 shows the normalization of the tasks Search similar sequences given a
protein sequence and Predict gene structure. As shown in the figure, the output of the
first task is the input of the second task, due to the dependencies between tasks in the
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Figure 7.5: Modification of the weight of the facet method.

i∗ model.

Finally, the discovered resources for each of the user-defined tasks are visualized in
the Resources tab. Figure 7.10 shows the discovered resources for the task Predict gene
structure.

7.3 Conclusions

The tool presented in this chapter demonstrates the usefulness of the techniques pro-
posed in this thesis. Its aim is to make the discovery of web resources easier for
researchers who are looking for resources that fulfill their information needs. BioUSeR
allows providing a rich description of the user’s information needs, not only by the
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Figure 7.6: New results after modifying the weight of the facet method.

initial requirements specification, but also by the possibility of customizing search pa-
rameters. Moreover, with the aim of being widely adopted by different types of users,
BioUSeR supports different techniques to specify the user’s requirements.

The visualization of relevant information involved in the discovery process and the
possibility of customizing this information help users find the most relevant resources
faster, and with less effort, than in current Life Sciences registries.
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Figure 7.7: Requirements specification using an i∗ model.
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Figure 7.8: Normalization of the user’s requirements specification.
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Figure 7.9: Normalization of the tasks Search similar sequences given a protein sequence
and Predict gene structure.
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Figure 7.10: Results of the web resource discovery process for the task Predict gene
structure.
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Chapter 8

Conclusions

This last chapter summarizes the main results of the thesis and outlines possible future
research lines. The chapter concludes by listing the publications resulted from this
thesis work. Section 8.1 surveys the results of the thesis. Section 8.2 discusses the
future work. Finally, Section 8.3 lists the main published contributions of the thesis.

8.1 Summary of Results

In last years, the number of web resources available on the Web has increased at a
vertiginous rate. In Life Sciences, researchers are publishing their research results (e.g.,
data sets and processing tools) on the Web with the aim of collaborating with other
researchers. However, the discovery of web resources relevant to a specific requirement is
a challenge task for Life Sciences researchers, due to the huge amount of web resources,
their high heterogeneity, and the lack of adequate metadata describing them.

This thesis has reviewed the discovery of web resources in the Life Science domain.
Currently, there are web resource registries on the Web that allow users to discover web
resources that are supposed to be relevant to their requirements. However, most of them
present some limitations that hinder the web resource discovery: (i) poor representation
of user’s requirements, (ii) high discovery dependency on the characteristics of the
resources metadata, and (iii) low assistance to the user during the whole discovery
process, specifically in the selection of the most appropriate resource.

The goal of this thesis is to assist the user in the discovery of the resources that
are the most appropriate for her requirements, by addressing the main limitations of
current registries. The main characteristic of the proposed approach is that the whole
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discovery process is driven by the user, who is assumed to provide a rich specification of
her requirements, and who can modify the discovery parameters in order to customize
the process.

In the proposed approach, the specification of the user’s requirements is a rich de-
scription of what the user needs, which includes not only the functionality, but also
relevant features of the required resource, such as the input/output parameters, the
species, and the diseases involved by the resource. With the aim of being widely
adopted by users, our approach is not restricted to a specific requirement specification
technique. A priori, any technique can be supported by developing a specific infor-
mation extraction module. Currently, the implemented prototype, BioUSeR, supports
textual descriptions and i* models as requirements specification techniques.

One of the most important limitations of current registries is their high depen-
dency on the characteristics of metadata, both structural and lexical. With respect
to the structural dependency, many registries define specific fields to describe specific
features of the resources. However, evidence shows that most of the resources features
are implicitly described in the textual descriptions and, in consequence, they are not
identified as feature values by the search engines. On the other hand, regarding the
lexical dependency, the lack of widely accepted standards increases the heterogeneity
of data describing the resources and, therefore, users have to know which vocabulary
has been used in the metadata in order to specify their requirements with the same
vocabulary. The discovery process proposed in this thesis alleviates this dependency
by using normalization techniques. First, to address the heterogeneity and ambigu-
ity of data, all data involved in the discovery process are semantically annotated with
domain knowledge resources. Afterwards, knowledge extraction techniques are used
to automatically identify relevant information about the resources features, which im-
prove their characterization. Then, the discovery is based on the semantic mapping
of the normalized requirements specification and the normalized resources metadata,
retrieving in this way resources described with different styles and vocabularies. There-
fore, we can conclude that the dependency on the characteristics of the metadata is
considerably reduced by the use of normalized data.

With the aim of assisting the user until the end of the discovery process, the discov-
ered resources are ranked according to their relevance to the user’s requirement. The
relevance of a resource is estimated considering how well the resource fulfils not only
the functionality, but also the features required by the user. At the end, the user gets a
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ranked list in which the most appropriate resources for her requirements are in the top
positions. Finally, if the resources are not those expected by the user, she can mod-
ify the discovery process by modifying the requirements specification, the information
about the facets automatically identified, and other discovery parameters.

Therefore, we can conclude that the main limitations of current registries in Life
Sciences have been alleviated in our approach by: (i) allowing the user to provide a
rich specification of her information needs and to modify discovery parameters and
information that have been automatically identified (e.g., facets values), (ii) using nor-
malization techniques in order to alleviate the dependency on the data characteristics,
and (iii) providing relevant information to the user, such as the automatically ex-
tracted facets values, the semantic annotation of her requirements specification, and
the ranking of resources.

The discovery approach has been validated by evaluating each one of its phases.
Moreover, we have further validated it by comparing it with other IR techniques, and
with one of the most popular web resource registries in Life Sciences, BioCatalogue.
This later experiment has demonstrated that our approach obtains more precise results
with less iterations and fewer effort than current registries.

Finally, the proposed discovery process has been implemented as part of a prototype
called BioUSeR. BioUSeR visualizes each phase of the discovery process, and allows
the user to modify some parameters during the whole process. Its simplicity and the
visualization of relevant information make the discovery of relevant web resources less
hard and less error-prone.

8.2 Future Work

A number of directions for further research have been pointed out throughout the
thesis, which we summarize here. First, we point out to specific limitations of the
current developed methods and suggest further improvements. Then, we refer to more
general research lines that have emerged from this thesis.

With respect to the normalization of data, the coverage and precision of the seman-
tic annotation of data can be improved in several aspects. Currently, the knowledge
resources are considered independent of each other, when they actually share some
concepts. To reduce redundancy in the semantic annotations, the knowledge resources
should be aligned in order to associate equivalent concepts. Therefore, the knowledge
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resources alignment would reduce the number of concepts in the semantic annotations
and their ambiguity. Moreover, new subsumption relationships between concepts of
different KRs could be automatically identified from these alignments.

Another aspect that could be improved in the semantic annotation process is the
post-processing of the annotations. Currently, the simplification of annotations is made
based on the specificity of the knowledge resources and the specificity of the concepts,
given by their idf score. However, ambiguous annotations are not completely dis-
ambiguated with these simplification techniques. We think that the disambiguation
techniques that consider the context of the annotation could select the concepts that
give the correct sense of the annotation. Recently, we have made some preliminary
work on context-aware disambiguation techniques, presented in [48], whose results are
encouraging.

Regarding the IR model, it can be improved by having more information under
consideration in the ranking process of the discovered resources. There are several
types of information which can be relevant to get a more precise ranking, in which the
top-ranked resources are the most adequate for the user’s requirement.

Firstly, user’s feedback and results of similar cases provide relevant information
about the accuracy of the discovery method. We believe that considering feedback in
the process of ranking of the discovered resources may obtain more precise results in
the top-ranked positions.

A second way to improve the ranking of resources is the consideration of non-
functional requirements (NFRs). The most popular NFRs describe features about the
resource performance and users’ opinions. Currently, few registries show information
about the performance of the resources (e.g., EMBRACE), whereas the most recent
registries show information about users’ opinion by means of comments and ratings
(e.g., BioCatalogue and myExperiment). Although NFRs are not relevant during the
discovery process, they can improve the ranking of resources when the user considers
them an important criterion in the selection of a resource. In our approach we do not
consider NFRs, but we think that it could be interesting to support them, specifically
social NFRs, in order to provide further information to the user. These NFRs could
be considered in the ranking of resources and visualized together with the resources
metadata.

Finally, the ranking of resources could also be more accurate by considering the
context of the requirement, when available. For example, BioUSeR allows users to
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create i* models in which the user can specify dependencies between tasks. Now, the
only processing of these dependencies consists in assigning as input of a task the output
of the previous task. It would be very interesting to reorder the ranking of resources
considering the resource selected for the previous task, with the aim of improving the
interoperability between resources. So, when a user selects a resource for a specific
task, the ranked list of resources of the next task would be re-ranked accordingly.
This technique could be applied to any requirements specification format in which
dependencies between tasks are explicitly defined (e.g., graphs).

With a wider perspective, the techniques proposed in this thesis can be used in
any application that retrieves, integrates or compares resources. Although this thesis
is focused on the Life Sciences domain, the proposed approach could be easily adapted
to other domains, by selecting adequate KRs, and creating the corresponding models.
In general, these techniques are aimed to retrieve resources that are annotated with
few well-defined metadata, but with rich textual descriptions.

For example, the proposed techniques could be applied on storage systems that
contain different types of resources (e.g., images and reports) with different character-
istics and different metadata. Given a specific user’s requirement, our approach would
discover different types of resources, however they are described, but relevant to the
user’s requirement. Moreover, similarity search could be also possible given a specific
resource thanks to the use of semantics. Therefore, our approach would make the dis-
covery and integration of information coming from different types of resources easier
for the users.

Another application example are current catalogues of applications such as App
Store, which base the discovery on well-defined features and the string matching in the
resources descriptions. We believe that our techniques would improve the discovery of
the resources in those catalogues, by allowing the users to define their requirements
with richer textual descriptions, without worrying about which vocabulary to use and
in which field to search.

Another interesting research line is workflow composition. Currently, the composi-
tion of workflows is limited by the availability of well-defined metadata of web resources,
in concrete, the input/output data types. Our normalization techniques would be very
useful to identify such features, even when they are explicitly described. Moreover, us-
ing requirements specification formats which allow users to define dependencies between
tasks would make the composition of workflows possible in our approach.
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In conclusion, the techniques proposed in this thesis can be used to discover web
resources, whatever their type and how they are described, and to facilitate the inte-
gration of data.

8.3 List of Publications

This section enumerates the publications derived from this thesis, grouped by topics
and pointed out the chapters that mainly influenced them.

The rich specification of user’s requirements was first addressed in [80], in which
i* framework was used to design similarity measures. This requirements specification
technique has been later used in the rest of publications.

• [80] Maŕıa Pérez, Sven Casteleyn, Ismael Sanz and Maŕıa José Aramburu. Re-
quirements gathering in a model-based approach for the design of multi-similarity
systems. In Proceedings of MoSE+DQS’09 Workshop in Conference on Infor-
mation and Knowledge Management (CIKM’09) .

The work done about the normalization of data has been presented in several con-
ferences. The work in [83] and [76] describes briefly the discovery of resources based
on semantic annotations.

• [83] Maŕıa Pérez, Ismael Sanz, Rafael Berlanga and Maŕıa José Aramburu. Adding
Semantics to the Discovery of Web Services. In Proceedings of 9th International
Conference on Practical Applications of Agents and Multi-Agent Systems, volume
90, pages 145-152, 2011.

• [76] Maŕıa Pérez, Rafael Berlanga and Ismael Sanz. A semantic approach for the
requirement-driven discovery of web services in the Life Sciences. In Proceedings
of 3rd International Workshop on Semantic Web Applications and Tools for Life
Sciences (SWAT4LS 2010).

With respect to the characterization of resources, the early work in [77] presents
a faceted search in which resources facets are extracted using patterns. This paper
demonstrates that the faceted search improves the specification of user’s requirements
and, consequently, the discovery results. To not depend on a set of specific patterns,
which implies a dependency on the vocabulary used in the resources metadata, [81]
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describes the extraction of facets using a translation model, which is the foundation of
the techniques developed in Chapter 4.

• [77] Maŕıa Pérez, Rafael Berlanga, Ismael Sanz and Maŕıa José Aramburu. Ex-
ploiting text-rich descriptions for faceted discovery of web resources. In Proceed-
ings of 4th International Workshop on Semantic Web Applications and Tools for
Life Sciences (SWAT4LS 2011).

• [81] Maŕıa Pérez, Lisette Garćıa-Moya and Rafael Berlanga. A translation model
for facet-based retrieval in open registries. In Proceedings of II Congreso Español
de Recuperación de Información (CERI 2012) .

As future work, we have mentioned in last section that we aim to improve the post-
processing of semantic annotations by using context-aware techniques to disambiguate
semantic annotations. Some work has been already done on this line. [48] presents
a disambiguation method based on the similarity between concept profiles, generated
from Medline, and the contexts in which the concepts appear.

• [48] Antonio Jimeno-Yepes, Maŕıa Pérez and Rafael Berlanga. Disambiguating
automatically-generated semantic annotations for Life Sciences open registries. In
Proceedings of the 2nd International Workshop on Exploiting Large Knowledge
Repositories (E-LKR’12). Castellón (Spain), September 2012.

With respect to the discovery process, the main idea was first presented in [84]. The
most important publications about the whole discovery process are the journal articles
[79] and [78], in which the whole discovery process is described with detail.

• [84] Maŕıa Pérez, Ismael Sanz, Rafael Berlanga, Maŕıa José Aramburu. Semi-
automatic discovery of web services driven by user requirements. In Proceedings
of 21st International Conference on Databases and Expert Systems Applications
(DEXA 2010), volume 6261, pages 62-75, 2010.

• [78] Maŕıa Pérez, Rafael Berlanga, Ismael Sanz and Maŕıa José Aramburu. A
semantic approach for the requirement-driven discovery of web resources in the
Life Sciences. In Knowledge and Information Systems, 34:671-690, 2013.

• [79] Maŕıa Pérez, Rafael Berlanga, Ismael Sanz and Maŕıa José Aramburu. Bi-
oUSeR: A semantic-based tool for retrieving Life Sciences resources driven by
text-rich user requirements. In Journal of Biomedical Semantics, 4:12, 2013.
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Also as a future research line, we aim to provide further information to the user
in order to assist her in the selection of the most appropriate resource. As a possible
technique for giving assistance to the user, [82] describes a biclustering-based technique
to find similarities between the discovered resources. The aim of this technique is to
provide the user with groups of resources that present similar features and, therefore,
they can be considered equivalent.

• [82] Maŕıa Pérez, Ismael Sanz and Rafael Berlanga. A biclustering-based tech-
nique for requirement-driven Web Service selection. In Proceedings of XV Jor-
nadas de Ingenieŕıa del Software y Bases de Datos (JISBD 2010)
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Oswaldo Trelles. jORCA: easily integrating bioinformatics Web Services. BioIn-
formatics, 26(4):553–559, 2010. 24

[61] Seeger Matthias. Learning with labeled and unlabeled data. Technical report,
University of Edinburgh, 2000. 54
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