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Resum 

Per tal de satisfer les necessitats alimentàries d’una població mundial creixent, és 

necessari optimitzar la producció agrícola, incrementant la productivitat i la 

sostenibilitat de les explotacions. Per aconseguir-ho, es preveu que els sistemes 

automàtics de detecció i localització de fruits seran una eina essencial en la gestió de les 

plantacions fructícoles, amb aplicacions directes a la predicció de la collita, el mapat de 

la producció i la recol·lecció automatitzada. Malgrat els avenços aconseguits en àmbits 

com la robòtica o la visió per computador, la localització 3D de fruits continua essent 

un repte que ha de fer front a problemes com la identificació de fruits oclosos per altres 

òrgans vegetatius, o la possibilitat de treballar en diferents condicions d’il·luminació. La 

present tesi pretén contribuir en el desenvolupament de noves metodologies de detecció 

i localització de fruits mitjançant la combinació de sensors de base fotònica i 

d’algoritmes de visió artificial. Per tal de minimitzar els efectes produïts per unes 

condicions d’il·luminació variable, es proposa l’ús de sensors actius que treballen en 

l’espectre de llum infraroja. En concret, s’han testejat sensors LiDAR (light detection 

and ranging) i càmeres de profunditat (RGB-D) basades en el principi de temps de vol 

(time-of-flight), els quals proporcionen els valors d’intensitat de llum reflectida pels 

diferents elements mesurats. D’altra banda, per minimitzar el número d’oclusions s’han 

estudiat dues estratègies: (1) l’aplicació forçada d’aire; (2) la utilització de tècniques 

d’escaneig des de diferents punts de vista, com ara Structure-from-Motion (SfM). Els 

resultats obtinguts demostren que les dades d’intensitat proporcionades pels sensors 

actius LiDAR i RGB-D són de gran utilitat per la detecció de fruits, el que suposa un 

avanç en l’estat de l’art, ja que aquesta capacitat radiomètrica no havia estat estudiada 

anteriorment. D’altra banda, les dues estratègies testejades per minimitzar el número de 

fruits oclosos han demostrat incrementar el percentatge de fruits detectats. De totes les 

metodologies estudiades, la combinació de xarxes neuronals profundes amb tècniques 

de SfM és la que presenta més bons resultats, amb percentatges de detecció superiors al 

90% i menys d’un 4% de falsos positius. 

 

 





   

 

Resumen 

Para satisfacer las necesidades alimentarias de una población mundial creciente, es 

necesario optimizar la producción agrícola, incrementando la productividad y la 

sostenibilidad de las explotaciones. Para conseguirlo, se prevé que los sistemas 

automáticos de detección y localización de frutos serán una herramienta esencial en la 

gestión de las plantaciones frutícolas, con aplicaciones directas a la predicción de 

cosecha, al mapeado de la producción y a la recolección automatizada. A pesar de los 

avances conseguidos en ámbitos como la robótica o la visión artificial, la localización 

3D de frutos continua siendo un reto que debe de hacer frente a problemas como la 

identificación de frutos ocluidos por otros órganos vegetativos, o la posibilidad de 

trabajar en distintas condiciones de iluminación. La presente tesis pretende contribuir en 

el desarrollo de nuevas metodologías de detección y localizacion de frutos mediante la 

combinación de sensores de base fotónica y de algoritmos de visión artificial. A fin de 

minimizar los efectos producidos por unas condiciones de iluminación variable, se 

propone el uso de sensores activos que trabajan en espectros de luz infrarroja. En 

concreto, se han testeado sensores LiDAR (light detection and ranging) y cámaras de 

profundidad (RGB-D) basadas en el principio de tiempo de vuelo (time-of-flight), los 

cuales proporcionan valores de intensidad de la luz reflejada por los objetos escaneados. 

Por otra parte, para minimizar el número de oclusiones se han estudiado dos estrategias: 

(1) la aplicación forzada de aire; (2) la utilización de técnicas de escaneo desde distintas 

perspectivas, tales como Structure-from-Motion (SfM). Los resultados obtenidos 

demuestran que los datos de intensidad proporcionados por los sensores LiDAR y RGB-

D son de gran utilidad para la detección de frutos, lo que supone un avance en el estado 

del arte, ya que esta capacidad radiométrica no había estado estudiada anteriormente. 

Por otra parte, las dos estrategias testeadas para minimizar el número de oclusiones han 

demostrado incrementar el porcentaje de detección. De todas las metodologías 

estudiadas, la combinación de redes neuronales profundas con técnicas de SfM es la que 

presenta mejores resultados, con porcentajes de detección superiores al 90% y con 

menos de un 4% de falsos positivos. 

 

 





   

 Summary 

To meet the food demands of an increasing world population, farmers are required to 

optimize agriculture production by increasing crop productivity and sustainability. To 

do so, fruit detection and 3D location systems are expected to be an essential tool in the 

agricultural management of fruit orchards, with applications in fruit prediction, yield 

mapping, and automated harvesting. Despite the latest advances in robotics and 

computer vision, the development of a reliable system for 3D fruit location remains a 

pending issue to deal with problems such as the identification of occluded fruits and the 

variable lighting conditions of agricultural environments. The present thesis aims to 

contribute to the development of new methodologies for fruit detection and location by 

combining optical sensors and artificial intelligence algorithms. In order to minimize 

variable lighting effects, it is proposed the use of active sensors that work in the infrared 

light spectrum. In particular, light detection and ranging sensors (LiDAR) and depth 

cameras (RGB-D) based on the time-of-flight principle were evaluated. These sensors 

provide the amount of backscattered infrared light reflected by the measured objects. 

With respect to minimizing the number of fruit occlusions, two different approaches 

were tested: (1) the application of forced air flow; and (2) the use of multi-view 

scanning techniques, such as structure-from-motion (SfM) photogrammetry. The results 

have demonstrated the usefulness of the backscattered intensity provided by LiDAR and 

RGB-D sensors for fruit detection. This supposes an advance in the state-of-the-art, 

since this feature has not previously been exploited. Both of the strategies tested to 

minimize fruit occlusions showed an increase in the fruit detection rate. Of all the tested 

methodologies, the combination of instance segmentation neural networks and SfM 

photogrammetry gave the best results, reporting detection rates higher than 90% and 

false positive rates under 4%.  

 

 

  

 

 



 

Nomenclature 

NOTE: Abreviations used in Chapters III to VII (data and research articles) are defined in the 

corresponding chapters section and are not included in the following list.  

B/W  Black and white 

CCD  Charged Coupled Device 

CMOS Complementary Metal-Oxid-Semiconductor 

D.Tree Decision tree  

GTfield  Number of fruits manually counted in the field 

GTMTLS Fruits manually annotated in the MTLS point cloud. 

GTSfM  Fruits manually annotated in the SfM point cloud 

HD  High Definition 

IR  Infra-red 

MTLS  Mobile Terrestrial Laser Scanner 

PA  Precision agriculture 

RGB  Read-green-blue 

RGB-D Red-green-blue-depth sensor 

RMSE  Root mean square error 

SfM  Structure-from-motion 

SRS  Simple random sampling 

Th  Threshold 

ToF  Time-of-flight 
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CHAPTER I 

Introduction 

Chapter I. Introduction 

1. Background 

To meet the food demands of a growing world population, farmers are required to 

optimize agronomic management and increase fruit production (Siegel et al., 2014). 

Additionally, rising farming costs, the lack of skilled labour and the need to reduce the 

environmental impact make it essential to find new strategies to increase the efficiency, 

quality and sustainability of agricultural activities (Tilman et al., 2011). To confront 

these challenges, precision agriculture (PA) is establishing itself as a cornerstone 

approach due to its capacity for gathering, processing and analysing temporal, spatial 

and individual data and combining them with other information to support management 

decisions based on the estimated variability (ISPA, 2019). 

Advances in technological fields such as robotics and computer science have provided 

an opportunity to better understand orchard health and variability. New technologies 

have been used in PA to obtain a precise characterization of trees at different growth 

stages by non-destructive methods. This characterization can include phenology 

monitoring, plant geometric characterization and yield monitoring, among others. 

Remote fruit detection and 3D location is an active research field that combines sensing 

technologies and computer vision to characterize the distribution of fruits –within a 

specific tree or/and at plot level–. This detection and quantification of fruits distribution 

provides a valuable information to the farmers for the optimization of agricultural 

processes such as water irrigation, agrochemical applications, fertilization, pruning and 

thinning (Auat Cheein and Carelli, 2013; Bargoti and Underwood, 2017b). Despite the 

advances achieved in sensing and computer vision fields during the last decades, the 

development of high performance fruit detection and accurate 3D location systems is 

still a pending issue to deal with problems such as occlusions with other vegetative 

organs and variable lighting conditions. 
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2. State of the art 

2.1 Sensors for fruit detection 

Over the years, different sensors and systems have been used for fruit detection (Table 

1). The earliest studies used black and white (B/W) cameras (Whittaker et al., 1987), 

but, since the emergence of colour cameras, RGB sensors based on Charged Coupled 

Devices (CCD) or Complementary Metal-Oxide-Semiconductors (CMOS) have been 

the most commonly used sensors for fruit detection (Linker, 2017; Maldonado and 

Barbosa, 2016; Zhao et al., 2016). These are affordable sensors, which allow the 

detection of fruits by using colour (Linker et al., 2012; Liu et al., 2016), geometric 

(Barnea et al., 2016; Lak et al., 2010) and texture (Chaivivatrakul and Dailey, 2014; 

Qureshi et al., 2017) features. The main disadvantages of RGB cameras are their 

sensitivity to lighting conditions and the fact that they only provide 2D information. 

Other 2D sensors, such as multispectral, hyperspectral and thermal cameras, have 

allowed the exploration of non-visible wavelengths. Multi and hyperspectral cameras 

add spectral information beyond the RGB bands, allowing the use of a rich set of 

features and vegetation indexes for fruit detection (Okamoto and Lee, 2009; Safren et 

al., 2007; Zhang et al., 2015). Thermal cameras have been used to distinguish fruits 

from background based on their different thermal inertia. Their performance depends on 

the thermal evolution of the environment along the day, resulting in a narrow temporal 

range of operation (Bulanon et al., 2008; Stajnko et al., 2004). The main drawbacks of 

these sensors are their higher cost, the lack of 3D information and the higher level of 

training required for their operation (Linker, 2018). 

The evolution in photonics has led to the introduction of 3D sensors, allowing the 

detection and subsequent 3D location of the fruit. The most commonly used 3D sensors 

are RGB-D (depth) cameras, which combine a colour and a depth sensor. Depending on 

the principle on which they are based, RGB-D cameras can be classified as stereovision, 

structured light, or time-of-flight (ToF) (Gongal et al., 2015; Vázquez-Arellano et al., 

2016). Stereovision sensors (RGB-DStereo) incorporate two calibrated cameras and 

derive the depth of each pixel by applying triangulation (Figure 1a) (Font et al., 2014; 

Wang et al., 2017). Most of the RGB-DStereo are passive sensors and, in consequence, 
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present some issues in terms of finding pixel correspondence between images with low 

illuminated and/or low texture objects. Structured-light based sensors (RGB-DStruct.Light) 

work on similar principles, but are not influenced by low illumination levels because the 

triangulation is carried out with an infra-red (IR) light pattern projected onto the scene 

and the image is acquired with an IR camera (Figure 1b) (Nguyen et al., 2016). Finally, 

depth cameras based on the ToF principle (RGB-DToF) measure distances to the objects 

by computing the time required by an IR light pulse to complete the round trip between 

the sensor and the scene (Figure 1c) (Barnea et al., 2016; Gongal et al., 2018; Li, 2014). 

The main disadvantage of all these sensors is that their performance decreases in high 

illuminated environments, such as direct sunlight. 

Table 1. Photon-based sensors used for fruit detection. 
Sensors Features Advantages Limitations 

2D 

B/W -2D shape -Low sensitivity to 
lighting conditions 

-Lack of colour 

RGB -Colour 
-2D shape 

-Affordable -High sensitivity to 
lighting conditions 

Thermal -Temperature -Independent of fruit 
colour 

-Higher cost 
-Requires higher level 
of training 

Multispectral -Colour 
-Spectral info. 
-2D shape 

-Other spectral 
information beyond 
colour 

-Higher cost 
-Requires higher level 
of training 

Hyperspectral -Colour 
-Spectral info. 
-2D shape 

-Spectral information 
in a wide range of 
bands 

-Higher cost 
-Requires higher level 
of training 

3D 

RGB-DStereo -Colour 
-3D shape 

-3D + colour data 
-Affordable 

-Dependence on scene 
illumination and 
texture 
-Computationally 
expensive 

RGB-DStruct.Light -Colour 
-3D shape 

-3D + colour data 
-Fast data acquisition 
-Suitable for dark/low 
illumination conditions 

-Susceptible to direct 
sunlight 

RGB-DToF -Colour 
-3D shape 
-IR backscattering 

-3D + colour + IR data 
-Suitable for dark/low 
illumination conditions 

-Susceptible to direct 
sunlight 

LiDAR -3D shape 
-IR backscattering 

-3D + IR data 
-No dependence on 
illumination conditions 

-High cost 
-Lack of colour 
-Requires higher level 
of training 
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Figure 1. Schematic representation of the basic principles of 3D sensors: (a) stereo vision; (b) 
structured light; (c) time-of-flight.  

Another technology based on the ToF principle is the one used in laser range finders 

and Light Detection and Ranging (LiDAR) systems. These are more expensive sensors 

which, since they operate with higher illumination energy sources (laser emitters), can 

measure longer distances than RGB-D sensors and are much less affected by sunlight. 

LiDAR sensors have been widely used for the geometric characterization of orchards 

(Rosell and Sanz, 2012; Vázquez-Arellano et al., 2016), but their use is marginal for 

fruit detection, probably because of the lack of colour data. Besides providing 3D data, 

one of the advantages of using ToF sensors is that they provide the amount of IR light 

backscattered by the scene, which is related to target reflectance after range correction 

and sensor calibration (Rodríguez-Gonzálvez et al., 2016). To the best of the author’s 

knowledge, this capability of ToF sensors has not previously been exploited in fruit 

detection.  

2.2 Algorithms and methods for fruit detection 

Most of the data processing algorithms developed for fruit detection are based on 

handcrafted features (e.g. colour, texture, shape, intensity) that encode row data 

acquired with different sensors and use them to differentiate fruits from background by 

applying classification and clustering methods. 

Colour features have been widely used, either in the RGB colour space or in other 

colour spaces less affected by the illuminance such as YCbCr or HSV (Maldonado and 

Barbosa, 2016; Teixidó et al., 2012). The main disadvantage of using colour features is 
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that they present a high sensitivity to the illumination conditions and are not effective in 

the detection of green fruit varieties, where the colour of the fruit is similar to the 

background. Texture features have also been applied for fruit detection. For instance, 

Rakun et al. (2011) used a spatial-frequency representation of images to differentiate 

fruits based on their texture in the image. Finally, shape features include edges, corners 

and blobs. The well-known Canny edge detector (Heath et al., 1998) has been used for 

edge detection and to subsequently find circles by applying the circular Hough 

Transform (Gongal et al., 2016). Harris, SIFT and SURF algorithms have also been 

used to extract corner and blob features and subsequently classify image regions as fruit 

or background (Chaivivatrakul and Dailey, 2014). 

Clustering and classification algorithms allow the identification of regions of interest 

and the determination of their class. The simplest classification/segmentation method is 

thresholding (Zhou et al., 2012). However, this method presents some weakness when 

using sensors that are influenced by the acquisition conditions because the threshold 

values cannot be generalized with datasets acquired under different conditions. Other 

more robust and efficient algorithms used for fruit detection are K-means clustering, 

KNN clustering, Bayesian classifiers and Support Vector Machines (SVM) (Gongal et 

al., 2015).  

More recently, remarkable progress has been achieved through the introduction of deep 

learning (Koirala et al., 2019). The deep neural networks used for fruit detection are 

Convolutional Neural Networks (CNN), which consist of a neural network where the 

neurons of each layer are organized in 3D matrices and the operation that connects two 

consecutive layers is based on convolutions. The use of CNNs has meant a 

breakthrough in computer vision, reporting similar performances to that of the human 

eye in tasks such as image classification, object detection and segmentation 

(Voulodimos et al., 2018). When using CNNs, there is no need to extract handcrafted 

features since they are automatically selected and extracted in the first convolutional 

layers. The main disadvantages of deep learning are the high amount of annotated data 

required and the computational intensive operations required to train training the 

networks, while the advantages are the high performance, the high inference speed and 

the fact that the features are automatically learned. The commonly used CNN 
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architectures for fruit detection are Faster R-CNN (Bargoti and Underwood, 2017a; Ren 

et al., 2017; Sa et al., 2016) and YOLO (Redmon and Farhadi, 2018; Tian et al., 2019).  

2.3 Applications of fruit detection  

Fruit detection systems have been applied in agriculture for yield prediction, yield 

mapping and automated harvesting. Yield prediction provides valuable information 

which enables the farmer to better plan the harvest campaign, fruit storage and 

marketing strategies (Bargoti and Underwood, 2017b; Nuske et al., 2014). Often, yield 

is predicted by manual counting of a few randomly selected samples. Although simple 

random sampling (SRS) is widely used for yield estimation, it may lead to inaccurate 

predictions if the number of selected samples is not large enough, which may be 

unfeasible by manual counting. This limitation can be overcome by using a fruit 

detection system that automatically counts the number of fruits in large sample sets. 

Yield mapping also provides valuable information to the farmer (Kurtulmus et al., 

2014). The in-field spatial variability can be influenced by the agricultural management 

strategies, such as irrigation, fertilization and pruning, as well as the soil composition, 

the topographic characteristics or the impact of pests and diseases. The analysis of yield 

maps can help to find the less productive areas, figure out the reasons for this 

variability, and propose solutions. Finally, fruit detection and 3D location systems are 

important elements of harvesting robots. Hand harvesting is a hard and human-resource-

intensive task that exposes farmers to dangerous conditions, working on ladders and 

platforms with heavy loads and under high temperatures (De-An et al., 2011; Gongal et 

al., 2015). The detection and location of fruits are key aspects in the development of 

efficient automated harvesting robots (Bac et al., 2014).  

3. Objectives and hypothesis 

The main objective of the present thesis is to contribute to the development of new 

methodologies for fruit detection and 3D location based on optical sensors and 

computer vision. To do so, this thesis aims to explore the capabilities of RGB, RGB-D 

and LiDAR sensors that have not been exploited before for fruit detection, and to 

develop new methodologies to take advantage of these capabilities, enhancing the 

potential of these sensors in fruit detection. 
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The research was based on the following hypotheses: 

H1.  Fruits have higher reflectance than background elements such as leaves and 

trunks. 

H2.  The number of fruits occluded by leaves can be reduced by applying forced air 

flow. 

H3.  The combination of multimodal data from RGB-D (colour, backscattered 

intensity, and depth) enhances the fruit detection rates.  

H4.  Fruits detected in 2D RGB images can be located in 3D by using structure-

from-motion (SfM) photogrammetry. 

These hypotheses were contrasted in order to fulfil the following specific objectives: 

O1.  Develop and test a methodology to detect and 3D locate fruits using LiDAR 

sensors. 

O2.  Develop and test a methodology to mitigate fruit occlusions. 

O3.  Study and analyse the potential of combining colour, IR backscattered and 

depth images provided by RGB-DToF sensors. 

O4.  Develop and test a methodology to detect and 3D locate fruits using RGB 

cameras and SfM photogrammetry. 

4. Thesis structure 

This PhD thesis includes seven papers: three data papers (Chapter III, papers P1, P2 and 

P3) and four research papers (Chapters IV-VII, papers P4, P5, P6, P7). Papers P2, P4, 

P5, P6, and P7 have already been published in SCI journals, while the other two have 

been submitted. 

After this Introduction chapter, the rest of the thesis is structured as follows (Figure 2): 

• Chapter II briefly sets out the methodology, explaining where the experimental 

tests were conducted, the sensors that were used, and how the data was 

processed. 

• Chapter III includes the three data articles: P1 presents a dataset acquired with 

a Mobile Terrestrial Laser Scanner, which was used to test the methodologies 

described in the P4 and P5 research papers; P2 presents a dataset acquired with 

an RGB-D sensor and includes the annotated multi-modal images used in P6 for 
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fruit detection; finally, P3 presents a dataset acquired with RGB cameras, 

containing two sets of images used in P7, one for instance segmentation training 

and the other for 3D reconstruction using SfM photogrammetry. 

• Chapter IV includes the research paper P4, which consists of a proof of concept 

of using LiDAR in detecting Fuji apples. This research was based on hypothesis 

H1 and fulfils the specific objective O1. 

• Chapter V presents the research paper P5, which aims to tackle the problem of 

fruit occlusions by applying forced air flow. This research contrasts hypotheses 

H1 and H2, and meets the specific objectives O1 and O2. 

• Chapter VI includes the research paper P6, which studies the usefulness of 

fusing RGB-D and range-corrected backscattered IR intensity for fruit detection. 

This research is based on hypotheses H1 and H3, and satisfies the objective O3.  

• Chapter VII presents the research paper P7, which presents a new methodology 

for fruit detection and 3D location based on the combination of instance 

segmentation neural networks and SfM photogrammetry. 

• Chapter VIII includes a general discussion of all the tested methods. 

• Chapter IX presents the conclusions obtained from this research.  

• Finally, Chapter X lists the PhD author contributions, including the refereed 

scientific papers, as well as other journal and conference contributions. 
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Figure 2. Thesis structure 
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Chapter II. Methodology  

All data used in this thesis was acquired in a commercial Fuji apple orchard (Malus 

domestica Borkh. cv. Fuji), located in Agramunt, Catalonia, Spain (E: 336,297 m; N: 

4,623,494 m; 312 m a.s.l., UTM 31T - ETRS89). Trials were carried out in September 

2017, three weeks before harvesting, corresponding to the BBCH growth stage 85 –

advanced ripening, increase in intensity of cultivar-specific colour– (Meier, 2001). 

Trees grown in the studied orchard were 8 years old, trained in a tall spindle system, 

with a plantation frame of 4 x 0.9 m and a maximum canopy height and width of 

approximately 3.5 m and 1.5 m, respectively.  

The equipment used for data acquisition were: a Mobile Terrestrial Laser Scanner 

(MTLS) (used in P1, P4 and P5) (Figure 1a); a mobile platform equipped with two 

Microsoft Kinect V2 sensors (Microsoft, Redmond, WA, USA) (used in P2 and P6) 

(Figure 1b); and a Canon colour camera with a CMOS APS-C sensor (Canon Inc. 

Tokyo, Japan) (used in P3 and P7).  

 
Figure 1. Equipment used for data acquisition. a) Mobile Terrestrial Laser Scanner mounted on 
an air-assisted sprayer. The LiDAR sensor used is illustrated in the bottom-right corner. b) 
Mobile platform equipped with two RGB-D sensors. The RGB-D sensor used is illustrated in 
the bottom-right corner. 
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The 2D data presented in data article P2 (and used in research article P6) include images 

of different randomly selected trees, while the 3D data provided in data articles P1 and 

P3 (and used in research articles P4, P5 and P7) contain information from 11 

consecutive trees. A total of five scanning passes were carried out on each side of the 

3D measured trees: One pass using SfM photogrammetry and four passes with an 

MTLS. Each MTLS measurement corresponded to a different sensor height (two 

heights tested) and to a different wind condition (with and without applying forced air 

flow). The number of apples produced by this set of 11 trees was manually counted in 

the field (ground truth field - GTfield). Additionally, the 3D point clouds acquired with 

the MTLS and with SfM photogrammetry were manually annotated (GTMTLS and GTSfM, 

respectively), placing 3D rectangular bounding boxes around each apple. As shown in 

Table 1, the number of apples manually counted in the orchard GTfield differs from the 

number of GTMTLS and GTSfM annotations. These differences can be attributed to human 

error during fruit counting or to fruits that were not visible in the 3D point clouds. The 

reader is referred to Chapter III for a more extensive explanation of data acquisition and 

dataset generation. 

Table 1. Fruit counting ground truth. Comparison between the number of fruits manually 
counted in the orchard (GTfield), the number of fruits annotated in the MTLS point cloud 
(GTMTLS) and the number of fruits annotated in the SfM point cloud (GTSfM). 

 
GTfield GTMTLS GTSfM 

Tree 01 139 138 147 
Tree 02 106 100 105 
Tree 03 139 131 135 
Tree 04 137 129 137 
Tree 05 94 85 92 
Tree 06 131 119 133 
Tree 07 119 114 122 
Tree 08 145 137 151 
Tree 09 139 131 143 
Tree 10 136 122 128 
Tree 11 159 147 162 
Total 1444 1353 1455 

 

Regarding the data processing, the algorithms tested for fruit detection in LiDAR point 

clouds (Chapters IV and V) were based on a reflectance threshold followed by other 

classification and clustering methods such as K-means (Jain, 2010) and SVM (Burges, 
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1998), while the algorithms tested for fruit detection in RGB-D and RGB images 

(Chapters VI and VII) were based on the deep neural networks Faster R-CNN (Ren et 

al., 2017) and Mask R-CNN (He et al., 2017), respectively. A further description of the 

fruit detection methodologies tested in this thesis is included in the corresponding 

research papers (Chapters IV to VII).  
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Chapter III. Data articles 

Chapter III.A. P1: LFuji-air dataset 

Section submitted for publication in Data in Brief 

 

LFuji-air dataset: annotated 3D LiDAR point clouds of Fuji apple 
trees for fruit detection scanned under different forced air flow 
conditions. 

Jordi Gené-Mola1, Eduard Gregorio1, Fernando Auat Cheein2, Javier Guevara2, Jordi Llorens1, 
Ricardo Sanz-Cortiella1, Alexandre Escolà1, Joan R. Rosell-Polo1 

1. Research Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest 
Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, Spain. 
2. Department of Electronic Engineering, Universidad Técnica Federico Santa María, 
Valparaíso, Chile. 

Abstract 
This article presents the LFuji-air dataset, which contains LiDAR based point clouds of 

11 Fuji apples trees and the corresponding apples location ground truth. A mobile 

terrestrial laser scanner (MTLS) comprised of a LiDAR sensor and a real-time 

kinematics global navigation satellite system was used to acquire the data. The MTLS 

was mounted on an air-assisted sprayer used to generate different air flow conditions. A 

total of 8 scans per tree were performed, including scans from different LiDAR sensor 

positions (multi-view approach) and under different air flow conditions. These 

variability of the scanning conditions allows to use the LFuji-air dataset not only for 

training and testing new fruit detection algorithms, but also to study the usefullness of 

the multi-view approach and the application of forced air flow to reduce the number of 

fruit oclusions. The data provided in this article is related to the research article entitled 

“Fruit detection, yield prediction and canopy geometric characterization using LiDAR 

with forced air flow” (Gené-Mola et al., 2019a).  

Keywords: Fruit detection; Fruit location; Yield prediction; LiDAR; MTLS; Fruit 

reflectance; Forced air flow 
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Specifications Table 

Subject Agronomy and Crop Science, Horticulture, Computer Vision and 
Pattern Recognition 

Specific subject area Precision Agriculture, Fruit Detection 

Type of data LiDAR based point clouds 
Fruit location annotations 

How data were 
acquired 

Data was acquired with a Mobile Terrestrial Laser Scanner (MTLS) 
comprised of a LiDAR Sensor and a real-time kinematics global 
navigation satellite system (RTK-GNSS). 

Data format Raw LiDAR data: PCAP 
Raw RTK-GNSS data: TXT 
3D point clouds: MAT 
Annotations: TXT 

Parameters for data 
collection 

The MTLS forward speed was set to 0.125 m/s. The LiDAR sensor 
acquired data at a frequency of 10 Hz, while the RTK-GNSS sensor 
provided positioning measurements with a precision of ± 0.01/0.02 m 
(horizontal / vertical) at 20 Hz frequency rate. The system was 
mounted on an air-assisted sprayer which generated an air flow speed 
of 5.5 ± 2.3 m s-1 (measured at 2.4 m from the sprayer fan). 

Description of data 
collection 

A MTLS was used to scan 11 Fuji apple trees containing a total of 
1444 apples. The MTLS was mounted on an air-assisted sprayer used 
to generate different air flow conditions. A total of 8 different 
scanning conditions were tested, corresponding to the following 
combinations: two different sensor positions (1.8m and 2.5m height); 
two different air flow conditions (sprayer fan switched on and off) ; 
scans from the two sides of the row of trees (East and West). The 
ground truth of the apples locations was manually generated by 
placing 3D rectangular bounding boxes around each apple position. 

Data source location City/Town/Region: Agramunt, Catalonia 
Country: Spain 
GPS coordinates for collected data: E: 336297 m, N: 4623494 m, 312 
m a.s.l., UTM 31T - ETRS89 

Data accessibility Repository name: GRAP datasets / Lfuji-air dataset 
Data identification: Lfuji-air dataset 
Direct URL to data: 
http://www.grap.udl.cat/en/publications/datasets.html  

Related research article Gené-Mola J, Gregorio E, Auat Cheein F, Guevara J, Llorens J, Sanz-
Cortiella R, Escolà A, Rosell-Polo JR. Fruit detection, yield prediction 
and canopy geometric characterization using LiDAR with forced air 
flow Computers and Electronics in Agriculture (In press). 
https://doi.org/10.1016/j.compag.2019.105121 
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Value of the data 

• First dataset for fruit detection containing annotated LiDAR based 3D data 
acquired from different sensor positions and under different air flow conditions. 

• The dataset allows testing fruit detection algorithms based on LiDAR based 3D 
data. 

• Precision horticulture community can benefit from these data to test 
methodologies with applications in yield prediction, yield mapping and canopy 
geometric characterization. 

• Presented data can be used for analysing the effect of applying forced air flow 
and multi-view sensing for reducing the number of occlusions in fruit detection. 

1. Data description 
1.1. Data repository 

The repository Lfuji-air dataset (http://www.grap.udl.cat/en/publications/LFuji_air_dataset.html) 

includes 3D LiDAR point clouds of 11 Fuji apple trees (Malus domestica Borkh. Cv. 

Fuji) containing 1444 apples (Figure 1).  A total of 8 point clouds are provided for each 

tree, corresponding to the combinations of the following scanning conditions: 

• H1: LiDAR sensor positioned at the height of 1.8 m from the floor. This LiDAR 

position corresponds (approximately) to the half of the tree heights. 

• H2: LiDAR sensor positioned at the height of 2.5 m from the floor. 

• n: Trees scanned without forced air flow application. 

• af: Trees scanned under forced air flow conditions. 

• E: Data acquired from the East side of the row of trees. 

• W: Data acquired from the West side of the row of trees.  

Point clouds were saved in MAT format. Each MAT file contains the data from one tree 

#T# (01-11), scanned with the LiDAR sensor at height #H# (H1 or H2), under air flow 

conditions #F# (n or af), and from the side #S# (E or W). From that, the point clouds 

files are named as “Tree#T#_#H#_#F#_#S#.mat”. For instance, the file 

“Tree07_H2_af_E.mat” contains the point cloud of Tree 7, obtained with the LiDAR 

sensor at height 2.5m (H2), by applying forced air flow (af), and scanned from the east 

(E) side. Data inside the MAT files is organized in an m*4 matrix, where the three first 

columns give the position of the points in global world coordinates ([X, Y, Z]<Global>), 

and last column corresponds to each point reflectance (R). 
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Figure 1. 3D point cloud of all trees included in the dataset (11 trees). a) Front elevation view. 
b) Left side elevation view. The color scale illustrates the points reflectance, ranging from 0 % 
(blue) to 100% (red). X, Y, and Z indicate the direction of the global axis, while N, S, E, and W 
represent the cardinal directions.  

The dataset includes a total of 1353 apple annotations (out of 1444 apples manually 

counted in the field). The remaining 6.3% apples could not be identified in the point 

cloud because they were not visible (from a human/visual inspection). Annotations are 

provided in TXT format, where the first row indicates the position of the apple centre, 

while the following eight rows correspond to the positions of the bounding box corners. 

Raw data used to generate the 3D point clouds is also provided in the dataset. This 

includes LiDAR data in PCAP format, and the positions of the real-time kinematics 

global navigation satellite system (RTK-GNSS) system in TXT format. Section 2 

describes how data was acquired and processed to generate the described point clouds.  

1.2. Code repository 

The code used to process the row data and generate the georeferenced point clouds has 

been made publicly available at https://github.com/GRAP-UdL-

AT/MTLS_point_cloud_generation. This Matlab code combines the LiDAR and RTK-

GNSS raw data to obtain the 3D model of the measured trees. Section 2.3 describes the 

transformation matrices implemented in this code.  

Additionally, the code used in [1] for fruit detection using the present dataset has also 

been made publicly available at https://github.com/GRAP-UdL-

AT/fruit_detection_in_LiDAR_pointClouds. This code was developed to train and test 

the fruit detection algorithm as well as studying different sensor heights and air flow 

conditions to reduce the number of fruit occlusions. Both processing codes presented in 
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this section were implemented using MATLAB® (R2018a, Math Works Inc., Natick, 

Massachusetts, USA). 

2. Materials and Methods  
2.1. Experimental Design 

Data was collected in a commercial Fuji apple orchard (Malus domestica Borkh. cv. 

Fuji). A total of 11 consecutive trees containing 1444 apples were scanned 3 weeks 

before harvesting, at 85 BBCH growth stage (Meier, 2001). The experimental setup 

used for data acquisition was a mobile terrestrial laser scanner (MTLS) comprised of a 

LiDAR sensor and a real-time kinematics global navigation satellite system (RTK-

GNSS) (Figure 2). Both sensors were connected to a rugged laptop used to acquire and 

synchronise the data by means of the acquisition time. 

The LiDAR sensor used was a Puck VLP-16 (Velodyne LIDAR Inc., San José, CA, 
USA), which generates a 3D point cloud of the scanned scene in the <LiDAR> 
coordinate system (Figure 2) with an accuracy of ±0.03 m (typical) at a frequency of 10 
Hz (manually set). Additionally, this sensor provides the calibrated reflectance of each 
point (R) (Velodyne, 2016), which is a valuable information for fruit detection due to 
the different reflectance of apples and background (Gené-Mola et al., 2019c). The RTK-
GNSS system used was a GPS1200+ (Leida Geosystems AG, Heerbrugg, Swizeland), 
which provides position measurements of the MTLS in <Global> world coordinates 
(Figure 2) at a frequency of 20 Hz with an absolute error of 0.01/0.02 m (horizontal / 
vertical). Further specifications of the LiDAR and RTK-GNSS sensors used are detailed 
in Table 1.  

Table 1. Mobile terrestrial laser scanner set up specifications 
LiDAR sensor Manufacturer and model Velodyne Puck VLP-16 
 Number of laser beams 16 
 Measurement Range 100 m 
 Measurement accuracy ±30 mm 
 Field of View (Horizontal // Vertical) 30º // 150º (manually set) 
 Angular Resolution (Horizontal // Vertical) 2.0º // 0.2º 
 Scan Rate 10 Hz (manually set) 
 Wavelength 903 nm 
RTK-GNSS Manufacturer and model Leica GPS1200+ 
 Measurement accuracy 20 mm 
 Measurement Rate 20 Hz 
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The MTLS system was mounted on an air-assisted sprayer, next to the sprayer fan, 

which was used to generate forced air flow and move the tree foliage. The GNSS 

antenna was installed at a height of 3.5 m. The LiDAR sensor was mounted vertically, 

with the Z<LiDAR> axis pointing to the forward direction (Figure 2), and placed at heights 

of 1.8 m (H1) and 2.5 m (H2). The experimental setup was pulled by a tractor at 0.125 

m s-1 forward speed and following a linear trajectory parallel to the row of trees.  

 
Figure 2. Global scheme of the experimental setup used for data acquisition. The orientation of 
<LiDAR>, <GNSS>, and <Global> coordinate systems used for point cloud generation are 
represented. 

2.2. Sprayer fan characterization 

In order to generate forced air flow, the air-assisted sprayer operated at 18π rad s-1 (540 

rpm of PTO, power take-off angular speed). At these conditions, the air flow speed at 

different heights and widths was characterized using an AIRMAR 200WX weather 

station (AIRMAR Technology Corporation, Milford, NH, USA), which measures the 

wind speed with an accuracy of ±0.5 m s-1. A total of 35 measurements from a distance 

of 2.4 m (distance between sprayer fan and scanned trees) were performed, 

corresponding to the measurement of 7 height and 5 width intervals (Figure 3). The 7 

height intervals were equally distributed from 0 m to 3.5 m height, corresponding to the 

maximum trees height. On the other hand, the 5 width intervals were equally distributed 
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along 1.4 m width, which corresponds to the field-of-view of the LiDAR sensor. The 

speed values shown in Figure 3 are the result of averaging 10 measurements in each 

position.  

 
Figure 3. Air flow speed in m s-1 at different heights and widths (z) measured at a distance of 
2.4 m from the sprayer fan.  

2.3. Point cloud generation 

The LiDAR row data consist on a set of frames acquired from different positions, where 
each frame 𝑃𝑃<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿> is a point cloud in the <LiDAR> coordinate system: 

𝑃𝑃<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿> = �

𝑥𝑥1
𝑦𝑦1
𝑧𝑧1
1

𝑥𝑥2
𝑦𝑦2
𝑧𝑧2
1

…
……
…

𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛
𝑧𝑧𝑛𝑛
1
� , (1) 

where 𝑛𝑛 denotes the number of points in the LiDAR frame. 

For the generation of the 3D point cloud of all trees (Figure 1), each frame 𝑃𝑃<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿> 
was transformed into <Global> coordinates as follows: 

𝑃𝑃<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> = 𝑇𝑇<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> × 𝑃𝑃<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿>., (2) 

where the transformation matrix 𝑇𝑇<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> can be expanded as: 

𝑇𝑇<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> = 𝑇𝑇<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> × 𝑇𝑇<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> (3) 

Because the LiDAR and the GNSS antenna were assembled in a rigid structure, the 
rigid transformation matrix 𝑇𝑇<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> only has a translational offset:  
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𝑇𝑇<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> = 𝐼𝐼|∆𝑥𝑥𝑦𝑦𝑧𝑧𝐻𝐻1<𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿><𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> = �
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1

� , (4) 

where 𝜏𝜏 = [∆x<LiDAR><GNSS>,∆y<LiDAR><GNSS>,∆z<LiDAR><GNSS>]′  denotes the offset 
between each axis of the GNSS and the LiDAR sensor. Considering the distribution of 
the sensors in the experimental setup, the translation offsets for the H1 and H2 trials 
were 𝜏𝜏 = [0 , 1.768, 0.058]′ 𝑚𝑚 and 𝜏𝜏 = [0 , 1.07, 0.058]′ 𝑚𝑚, respectively. 

Meanwhile, the rigid transformation matrix 𝑇𝑇<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> includes a rotational, 
𝑅𝑅<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>, and a translational, 𝑇𝑇<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>, component. As depicted in Figure 2, the forward 
direction is 𝑧𝑧′<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>. Being 𝜃𝜃 and 𝜑𝜑 the orientation angles of the vehicle around the 
𝑦𝑦′<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>(Yaw) and 𝑥𝑥′<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> (Pitch) axes, respectively, the transformation matrix 
𝑇𝑇<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> is obtained according to:  

𝑇𝑇<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> = 𝑅𝑅<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>|𝑇𝑇<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> 

𝑇𝑇<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>→<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> = �
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where 𝑋𝑋<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺>,𝑌𝑌<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> and 𝑍𝑍<𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺> denote the position of the GNSS antenna in each 
axis of the global coordinate system. It is worth to mention that the experimental setup 
did not include an inertial measurement unit (IMU); therefore, the orientation angles 𝜃𝜃 y 
𝜑𝜑 were obtained by using the forward direction computed from the measurements of the 
RTK-GNSS receiver. Since trials were conducted in short rectilinear trajectories, the 
orientation of the system was assumed to be constant along the path.  

The resulting point clouds were manually split into a single point cloud per tree. Then 
each tree was manually annotated by placing 3D rectangular bounding boxes around 
each apple position. This process was carried out using the software CloudCompare 
(Cloud Compare [GPL software] v.9 Omnia) and supported by additional RGB images 
of the tested trees.  
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Chapter III.B. P2: KFuji RGB-DS database 

This section was published in Data in Brief 25 (2019) 104289, 
https://doi.org/10.1016/j.compag.2019.05.016:  

 

Abstract 
This article contains data related to the research article entitle “Multi-modal Deep 
Learning for Fruit Detection Using RGB-D Cameras and their Radiometric 
Capabilities” (Gené-Mola et al., 2019c). The development of reliable fruit detection and 
localization systems is essential for future sustainable agronomic management of high-
value crops. RGB-D sensors have shown potential for fruit detection and localization 
since they provide 3D information with color data. However, the lack of substantial 
datasets is a barrier for exploiting the use of these sensors. This article presents the 
KFuji RGB-DS database which is composed by 967 multi-modal images of Fuji apples 
on trees captured using Microsoft Kinect v2 (Microsoft, Redmond, WA, USA). Each 
image contains information from 3 different modalities: color (RGB), depth (D) and 
range corrected IR intensity (S). Ground truth fruit locations were manually annotated, 
labeling a total of 12,839 apples in all the dataset. The current dataset is publicly 
available at http://www.grap.udl.cat/publicacions/datasets.html.  

Keywords: Multi-modal dataset; Fruit detection; Depth cameras; RGB-D; Fruit 

reflectance; Fuji apple 
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Specifications Table 

Subject Machine learning, computer vision, deep learning, agronomy 

Specific subject area Image fusion, Precision agriculture. 

Type of data Multi-modal images with colour (RGB), depth (D), and range-
corrected IR intensity (S). 

How data were 
acquired 

The images were acquired using Microsoft Kinect v2. 

Data format Raw images: JPG 
Raw point clouds: MAT 
Pre-processed images: JPG (colour channels) and MAT (depth and 
range-corrected IR channels) 
Annotations: CSV and XLM. 

Experimental factors Different image modalities have been registered to have pixel-wise 
correspondence between image channels. 

Experimental features All captures were carried out during the night, using artificial lighting. 

Data source location Data were acquired in Tarassó Farm, a commercial apple field located 
in Agramunt, Catalonia, Spain (E: 336297 m N: 4623494 m 31N 312 
m a.s.l., UTM31T - ETRS89). 

Data accessibility http://www.grap.udl.cat/en/publications/datasets.html  

Related research article Gené-Mola J, Vilaplana V, Rosell-Polo J.R, Morros J.R, Ruiz-
Hidalgo J, Gregorio E. Multi-modal Deep Learning for Fruit 
Detections Using RGB-D Cameras and their Radiometric Capabilites. 
Computers and Electronics in Agriculture (2018) 162, 689-698. DOI: 
10.1016/j.compag.2019.05.016 

 

Value of the data 

• First dataset for fruit detection that contains 3 different modalities: color, depth 
and range corrected IR intensity. 

• The presented dataset could be used in the development and training of fruit 
detection systems with applications in yield prediction, yield mapping and 
automated harvesting.  

• Compilation of this database allows fusing RGB-D and radiometric information 
obtained with Kinect v2 for fruit detection.  
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1. Data 
The KFuji RGB-DS database contains a total of 967 multi-modal images of Fuji apples 

on trees and the corresponding ground truth fruit location annotations. Each image 

contains data from three different modalities: color (RGB), depth (D), and range-

corrected IR intensity (S). Figure 1 illustrates three selected images from de dataset, 

showing ground truth annotations and the modalities that composes each image.  

 
Figure 1. Selection of 3 multi-modal images and the corresponding ground truth fruit locations 
(red bounding boxes). Each image column corresponds to a different image modality: RGB, S 
and D, respectively.  

This dataset was built to be used for training, validation and benchmarking of fruit 

detection algorithms using RGB-D sensors. For instance, in Gené-Mola et al. (2019), 

the deep convolutional neural network Faster R-CNN (Ren et al., 2017) was used to 

detect and localize fruits from the presented dataset.  

Images are 548x373px and were saved in three different files:  

• RGBhr (high resolution color image): Raw color image. These images are saved 

in 8-bit JPG files.  
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• RGBp (projected color image): Projection of the color 3D point cloud onto the 

camera focal plane. The RGBp and the D-S modalities are obtained following 

the same procedure, allowing the comparison between these modalities for fruit 

detection. These images are saved in 8-bit JPG files. 

• DS (depth and range-corrected IR image): Projection of the range-corrected IR 

3D point cloud onto the camera focal plane. The D channel corresponds to the 

depth values, while the S channel corresponds to the range-corrected IR 

intensity values. These modalities are saved in a unique 64-bit MAT file. 

S and D data were normalized between 0 and 255 –like RGB images- to achieve similar 

mean and variance between channels. This normalization allows a faster learning 

convergence of machine learning algorithms (such as deep convolutional neural 

networks). 

All images were manually annotated with rectangular bounding boxes, labelling a total 

of 12,839 apples in all the dataset. Annotations are provided in XLM and CSV formats, 

where each row corresponds to an apple annotation, giving the following information: 

item, topleft-x, topleft-y, width, height, label id.  

2. Experimental Design, Materials, and Methods 
The data acquisition was carried out in a commercial Fuji apple orchard (Malus 

domestica Borkh. cv. Fuji), three weeks before harvesting -85 BBCH growth stage 

(Meier, 2001)-. The RGB-D sensors used were two Microsoft Kinect v2 (Microsoft, 

Redmond, WA, USA), which are composed by an RGB camera and a time-of-flight 

(ToF) depth sensor. For each capture, the sensor provides a 3D point cloud with RGB 

and backscattered IR intensity data, and a raw RGB image. Due to the performance of 

the depth sensor drops under direct sunlight exposure (Rosell-Polo et al., 2015), data 

was acquired at night using artificial lighting. 

Pre-processing of data was carried out to build the multi-modal images with pixel-wise 

correspondence between channels. Figure 2 shows an outline of the data preparation 

steps. To overcome the IR signal attenuation, the IR intensity data was range-corrected 

(Figure 2a) following the methodology described in Gené-Mola et al. (2019). Then the 
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acquired 3D point clouds were projected onto the camera focal plane (Figure 2b), 

generating the RGB, range-corrected IR and depth projected images. These images were 

geometrically wrapped and registered Figure 2c) with RGBhr so that different image 

modalities have pixel-wise correspondence. Finally, to reduce the number of fruits per 

image, and considering that fruit size is small compared with the image size, each 

capture was split into 9 images of 548 x 373 px (Figure 2d). 

 
Figure 2. Data preparation outline.  
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Chapter III.C. P3: Fuji-SfM dataset 

Section submitted for publication in Data in Brief: 

Fuji-SfM dataset: a collection of annotated images and point 
clouds for Fuji apple detection and location using structure-from-
motion photogrammetry.  

Jordi Gené-Mola1,*, Ricardo Sanz-Cortiella1, Joan R. Rosell-Polo1, Josep-Ramon Morros2, 
Javier Ruiz-Hidalgo2, Verónica Vilaplana2, Eduard Gregorio1 

1 Research Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest 
Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, Spain. 
2 Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, 
Barcelona, Catalonia, Spain.  

Abstract 
The present dataset contains colour images acquired in a commercial Fuji apple orchard 

(Malus domestica Borkh. cv. Fuji) to reconstruct the 3D model of 11 trees by using 

structure-from-motion (SfM) photogrammetry. The data provided in this article is 

related to the research article entitled “Fruit detection and 3D location using instance 

segmentation neural networks and structure-from-motion photogrammetry” (Gené-Mola 

et al., n.d.). The Fuji-SfM dataset includes: (1) a set of 288 colour images and the 

corresponding annotations (apples segmentation masks) for training instance 

segmentation neural networks such as Mask-RCNN; (2) a set of 582 images used to 

generate the 3D model of 11 Fuji apple trees containing 1455 apples by using SfM; (3) 

the 3D point cloud of the scanned scene with the corresponding apple positions ground 

truth in global coordinates. This data allows the development, training, and test of fruit 

detection algorithms either based on RGB images, on coloured point clouds or on the 

combination of both types of data. 

Keywords: Structure-from-motion; SfM; Fruit detection; Fruit location; Mask R-CNN; 

Photogrammetry; Terrestrial remote sensing 
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Specifications Table 

Subject Agronomy and Crop Science, Horticulture, Computer Vision and 
Pattern Recognition 

Specific subject area Precision Agriculture, Fruit Detection, Remote sensing 

Type of data Images 
Instance segmentation masks 
Coloured point clouds 
Fruit location annotations 

How data were 
acquired 

Images were taken freehand, using an EOS 60D DSLR Canon camera 
with an 18 MP (5184 x 3456 px) CMOS APS-C sensor (22.3 x 
14.8mm), and a Canon EF-S 24mm f/2.8 STM lens. 

Data format Raw images: JPG 
Instance segmentation masks: CSV and JSON 
Point clouds: TXT 
Fruit location annotations: TXT 

Parameters for data 
collection 

The camera focal length was 35 mm (38mm film equivalent focal 
length), which corresponded to a field of view of [59° 10’, 50° 35’] 
(horizontal, vertical). Images were taken from a distance of 3m 
between the camera and the middle plane of the row. The vertical and 
horizontal overlapping between neighbouring images was higher than 
30% and 90%, respectively. 

Description of data 
collection 

A total of 11 Fuji apple trees containing 1455 apples were 
photographed from 53 position (per side) distributed along the row of 
trees, having a separation of approximately 22 cm between two 
consecutive positions. In each position, a vertical sweep of 5-6 images 
was practiced, obtaining images of all tree heights -from the soil/trunk 
to the upper part of the trees-. The East side of the row of trees was 
photographed in the morning, while the West face in the afternoon, 
obtaining a similar illumination conditions in both faces. 

Data source location City/Town/Region: Agramunt, Catalonia 
Country: Spain 
GPS coordinates for collected data: E: 336297 m, N: 4623494 m, 312 
m a.s.l., UTM 31T - ETRS89 

Data accessibility Repository name: GRAP datasets / Lfuji-air dataset 
Data identification: Lfuji-air dataset 
Direct URL to data: 
http://www.grap.udl.cat/en/publications/datasets.html  

Related research article Gené-Mola J, Sanz-Cortiella R, Rosell-Polo JR, Morros J-R, Ruiz-
Hidalgo J, Vilaplana V, Gregorio E. 2019.  
Fruit detection and 3D location using instance segmentation neural 
networks and structure-from-motion photogrammetry. (Submitted) 
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Value of the data 

• First dataset for fruit detection with 3D coloured point clouds generated by 
applying structure-from-motion photogrammetry. 

• Computer vision community can benefit from these data to test new object 
detection and segmentation algorithms either based on 2D or on 3D data. 

• Annotations provided can be used for training machine learning systems used in 
agriculture with applications such as yield prediction or yield mapping. 

• This dataset can be used for benchmarking fruit detection and structure-from-
motion algorithms. 

1. Data 
The Fuji-SfM dataset includes annotated data for 2D and 3D fruit detection. Raw data 

consist of 582 images (291 per row of trees side) of 11 consecutive Fuji apple trees 

(SfM-set), and 12 additional images (Mask-set) used in (Gené-Mola et al., n.d.) to train 

and validate the Mask-RCNN. All raw images are 5184 x 3456 pixels (px) size and 

were saved in 8-bit JPG format. Since the performance of object detection and 

segmentation neural networks decreases when detecting small objects in the images 

(Gené-Mola et al., 2019b), each Mask-set image was divided into 24 sub-images of 

1024 x 1024 px (Figure 1a and Figure 1b). The resulting 288 sub-images were manually 

annotated generating the apples segmentation masks ground truth (Figure 1c). Image 

annotations were saved in CSV and JSON file formats, where each mask is a set of 

polygon points enclosing the pixels of an apple.  

The SfM-set images were used to generate the 3D model of the scanned scene by 

applying structure-from-motion photogrammetry. The obtained 3D model was 

georeferenced in global world coordinates and saved as a point cloud in TXT format. 

Each row of the point cloud file correspond to a single 3D point, giving the information 

of [x, y, z, R, G, B], where, [x, y, z] is the point position in global coordinates, and 

[R,G,B] is the point colour with 8-bit precision values ranging from 0 to 255. The point 

cloud was manually labelled by placing 3D rectangular bounding boxes around each 

apple position (blue bounding boxes illustrated in Figure 2). A total of 1455 apples were 

annotated. Each fruit location annotation was saved in a TXT file where the first row 

corresponds to the position [x, y, z] of the apple centre, while the following eight rows 

indicate the positions of the bounding box corners. 

  37 



   

CHAPTER III 
Data articles 

P3: Fuji-SfM dataset 

 
Figure 1. Illustration of an image from the Mask-set. a) Image cropping borders. b) Example of 
two sub-images. c) Ground truth segmentation masks.  

2. Experimental Design, Materials, and Methods 
Images provided in Fuji-SfM dataset were acquired on September 2017 in a commercial 

Fuji apple orchard located in Agramunt, Catalonia, Spain (E: 336,297 m; N: 4,623,494 

m; 312 m a.s.l., UTM 31T - ETRS89). The scanned trees were trained in a tall spindle 

system, with a maximum canopy height of 3.5m and width of 1.5 m, approximately. 

Mask-set images were taken from different randomly selected zones of the orchard, 

while SfM-set images were acquired from both sides of 11 consecutive trees containing 

a total of 1455 apples. All data was acquired three weeks before harvesting, at BBCH 

phenological growth stage 85 (Meier, 2001). 

The camera used for data acquisition was an EOS 60D DSLR Canon camera (Canon 

Inc. Tokyo, Japan), with an 18 MP (5184 x 3456 px) CMOS APS-C sensor (22.3x14.9 

mm), and a Canon EF-S 24mm f/2.8 STM lens (35 mm film equivalent focal length of 

38 mm). All images were taken freehand from a distance of approximately 3 m from the 

trees centre, and at a height of 1.7 m (Figure 2). Images from the east side of the row of 

trees were photographed in the morning (11:53 – 12:26h), while the west side was 

photographed in the afternoon (15:27 – 16:05h) under natural illumination conditions.  

Figure 2 illustrates the data acquisition process followed for the SfM-set. Yellow circles 

represent the camera centre of different photographic positions. The separation between 

two consecutive positions was 0.2 m, corresponding to a total of 53 photographic 

positions per row of trees side. From each camera position, a vertical sweep of 5-6 
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photographs was taken (black lines). With this configuration, a total of 291 images were 

taken per side, with a vertical/horizontal overlapping between neighbouring images 

higher than a 30/90 %, respectively (as shown in (Gené-Mola et al., n.d.), figure 2).  

 
Figure 2. Isometric view of five scanned trees and illustration of the photographic process 
layout. Yellow circles show the photographic position. Blue 3D rectangular bounding boxes 
illustrate the apple position ground truth annotations. 

SfM-set images were used to reconstruct the 3D model of the 11 scanned trees. A multi-

view structure-from-motion photogrammetry based on bundle adjustment (Triggs et al., 

2000) was applied to generate the 3D point cloud of each side of the row of trees. This 

3D model generation was carried out using Agisoft Professional Photoscan software 

(v1.4, Agisoft LLC, St. Petersburg, Russia). A set of known markers (depicted in 

Chapter VII, Figure 5d) in the scene was used to scale and georeferencing the obtained 

point clouds. Then, point clouds from both sides of the row of trees were merged, 

obtaining a complete representation of the scanned trees in a single point cloud.  
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Mask-set images were manually labelled with apple segmentation masks, allowing the 

use of this set of images to train and test 2D instance segmentation algorithms. This 

annotation was performed using the VIA annotation software (Dutta and Zisserman, 

2019), enclosing individual apples with polygon region shapes. The point cloud of the 

11 scanned trees was also manually labelled. Similarly than in (Gené-Mola et al., 

2019a), the 3D annotation was carried out using the software CloudCompare (Cloud 

Compare [GPL software] v2.9 Omnia), placing 3D rectangular bounding boxes around 

each apple, as can be seen in the zoomed-in region of Figure 2.  
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Chapter IV. P4: Fruit detection in an apple orchard using 

a mobile terrestrial laser scanner 

This chapter was published in Biosystems Engineering 187 (2019) 171-184, 
https://doi.org/10.1016/j.biosystemseng.2019.08.017:  

 

Abstract 
The development of reliable fruit detection and localization systems provides an 
opportunity to improve the crop value and management by limiting fruit spoilage and 
optimized harvesting practices. Most proposed systems for fruit detection are based on 
RGB cameras and thus are affected by intrinsic constraints, such as variable lighting 
conditions and camera calibration. This work presents a new technique that uses a 
mobile terrestrial laser scanner (MTLS) to detect and localise Fuji apples. An 
experimental test focused on Fuji apple trees (Malus domestica Borkh. cv. Fuji) was 
carried out. A 3D point cloud of the scene was generated using an MTLS composed of a 
Velodyne VLP-16 LiDAR sensor synchronized with an RTK-GNSS satellite navigation 
receiver. A reflectance analysis of tree elements was performed, obtaining mean 
apparent reflectance values of 28.9%, 29.1%, and 44.3% for leaves, branches and 
trunks, and apples, respectively. These results suggest that the apparent reflectance 
parameter (at 905 nm wavelength) can be useful to detect apples in the tree. For that 
purpose, a four-step fruit detection algorithm was developed. By applying this 
algorithm, a localization success of 87.5%, an identification success of 82.4%, and an 
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F1-score of 0.858 were obtained in relation to the total amount of fruits. These detection 
rates are similar to those obtained by RGB-based systems, but with the additional 
advantages of providing direct 3D fruit location information, which is not affected by 
sunlight variations. From the experimental results, it can be concluded that LiDAR-
based technology and, particularly, its reflectance information, has potential for remote 
apple detection and 3D location.  

Keywords: LiDAR; Mobile Terrestrial Laser Scanning; Fruit detection; Agricultural 

robotics; Fruit reflectance. 

Nomenclature 

FDRID  False detection rate identification 
FDRL  False detection rate localization 
FoV  Field of View [º] 
FPID  False positive identification 
FPL  False positive localization 
GTfield  Number of fruits manually-counted in field 
GTlabels  Number of fruits labelled 
IoDi   Intersection over detection 
K  Number of fruits in a cluster 
MTLS  Mobile Terrestrial Laser Scanner 
n   Number of clusters that detect the same fruit 
Nm  Fruit multi-detections (n-1) 
P   Number of points of a cluster 
Pkj  Number of points threshold used to find clusters with j apples 
R   Apparent reflectance [%] 
Rth  Reflectance threshold [%] 
RTK-GNSS Real-Time Kinematics Global Navigation Satellite System 
𝑅𝑅�  Mean apparent reflectance of the points of a cluster [%] 
𝑅𝑅�FP  Mean apparent reflectance threshold used to find false positive clusters [%] 
𝑅𝑅�kj  Mean apparent reflectance threshold used to find clusters with j apples [%] 
SuccessID Identification success (recall) 
SuccessL  Localization success 
SVD  Singular Value Decomposition 
TOF  Time of flight  
TPID  True positive identification 
TPL  True positive localization 
V    Volume of a cluster [m3] 
VFP  Volume threshold used to find false positive clusters [m3] 
Vkj  Volume threshold used to find clusters with j apples [m3] 
[x, y, z]  3D point with UTM coordinates [m] 
α  Sparse outlier removal tuning parameter 
λin  Normalized principal value i 
λi  Principal value i of a cluster  
Ψ  Geometric parameter  
𝛹𝛹FP  Geometric parameter value used to find false positive clusters 
𝛹𝛹kj  Geometric parameter value used to find clusters with j apples 
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1. Introduction 

Fruticulture is under constant pressure to increase fruit production and quality, as 

demanded by a growing world population. To this end, farmers need to find new ways 

to improve fruit productivity and, at the same time, reduce economic and environmental 

costs (Siegel et al., 2014). Agricultural robotics takes advantage of new technologies to 

respond to this challenge (Bac et al., 2014; Bechar and Vigneault, 2017, 2016; Gongal 

et al., 2015; Y. Zhao et al., 2016). The use of robotics in agricultural fields and orchards 

is increasing, particularly in tasks related to guidance (seeding or harvesting), detection 

(weed monitoring and control, extraction of biological features), and mapping (Auat 

Cheein et al., 2017; Auat Cheein and Carelli, 2013; Foglia and Reina, 2006). In general, 

the development of intelligent robots interacting with agricultural fields increases the 

accuracy of tasks and reduces the consumption of resources without decreasing yield, 

making it a reasonable option for repeatable tasks (Cariou et al., 2009; Foglia and 

Reina, 2006; Zhang and Pierce, 2016). 

Fruit detection and localization are complex tasks that can be handled by agricultural 

robotics, with applications related to yield prediction, yield mapping, and automated 

harvesting. Nowadays, yield prediction is done by manual counting of selected sample 

trees, leading to inaccurate predictions due to the high variability in orchards (Payne et 

al., 2014; Stein et al., 2016). Crop monitoring using new technologies could provide 

more accurate and efficient predictions (Bechar and Vigneault, 2017, 2016). Another 

application of fruit detection is yield mapping. The fruit load of an orchard is influenced 

by in-field spatial variability (due to soil type variations), fertility, and water content, 

among other factors. In precision agriculture, yield mapping helps to determine the 

reasons for and find solutions to cope with this variability (Kurtulmus et al., 2014). 

Finally, fruit localization is the basis for future automated harvesting. Manual picking is 

a bottleneck in fruit production management, because it requires lots of resources in the 

context of decreasing farming labour force. In addition, hand harvesting exposes 

farmers to awkward postures on ladders and platforms with heavy loads, making 

manual harvesting dangerous and inefficient (De-An et al., 2011; Gongal et al., 2015). 
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The detection of fruits can involve many fruit properties of different complexity, from 

the simplest, such as the presence/absence of a fruit, to properties that are more 

challenging to measure, including size, volume, diameter, maturation stage, sugar, and 

other substance contents, defects and disease/pest affectation, etc. There are multiple 

technologies available for fruit detection and localization, each with its advantages and 

disadvantages (Gongal et al., 2015). All approaches have to solve problems derived 

from occlusions (Stein et al., 2016; Wachs et al., 2010), clustering (Gong et al., 2013; 

Xiang et al., 2014), and variable lighting conditions (Gongal et al., 2016; C. Zhao et al., 

2016).  

The most commonly used sensors are RGB cameras (Linker, 2017; Maldonado and 

Barbosa, 2016; C. Zhao et al., 2016). These are affordable sensors, which allow fruits to 

be distinguished from other elements by colour (Linker et al., 2012; Liu et al., 2016), 

geometric shape (Barnea et al., 2016; Lak et al., 2010), texture (Chaivivatrakul and 

Dailey, 2014; Qureshi et al., 2017), or by using machine learning techniques like, e.g., 

deep neural networks (Bargoti and Underwood, 2017). The two main drawbacks to 

RGB cameras are their sensitivity to lighting conditions and the fact that they only 

provide 2D information (unless using stereoscopic techniques). Other, more expensive, 

cameras include thermal cameras (Bulanon et al., 2009, 2008; Stajnko et al., 2004; 

Wachs et al., 2010), multispectral cameras (Sa et al., 2016; Zhang et al., 2015), and 

hyperspectral cameras (Okamoto and Lee, 2009; Safren et al., 2007). The former allows 

fruits to be distinguished from the background through their temperature, while the 

latter detect fruits from their reflectance at different wavelengths. Like RGB cameras, 

thermal, multispectral, and hyperspectral cameras do not provide 3D information, unless 

a stereoscopic approach is implemented. 

There are several solutions to obtain three-dimensional information. One of them is 

based on using two (stereovision) or more cameras (Font et al., 2014; Si et al., 2015; 

Xiang et al., 2014). By applying triangulation techniques, it is possible to obtain the 

depth of each pixel and reconstruct the 3D structure. The major advantage of this 

technique is that it allows us to obtain accurate 3D models with RGB information, while 

the main disadvantages are that 3D model generation is computationally expensive and 

the performance is affected by lighting conditions. Another more recent technique is the 
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use of laser range finders and LiDAR-based (Light Detection and Ranging) systems. 

These are more expensive sensors that generally operate under the principle of time-of-

flight (TOF) (Wehr and Lohr, 1999). This type of sensor typically also provides the 

amount of energy backscattered from the impacted object. Very few studies have used 

LiDAR-based systems in fruit detection and, to the best of the authors’ knowledge, none 

of them have been tested in a real orchard environment. For example, Jiménez et al. 

(2000, 1999) developed a vision system based on a laser range-finder, with the aim of 

detecting spherical objects in non-structured environments. They report good detection 

performances, although the tests were carried out on a limited number of oranges 

suspended from an artificial tree. Finally, another technology derived from 

photogrammetry and LiDAR, and also used in fruit growing, are the RGB-D (depth) 

cameras, where each pixel of the image contains colour and depth data, generating 3D 

colour images (Barnea et al., 2016; Nguyen et al., 2016; Rosell-Polo et al., 2017, 2015). 

These systems are based on the simultaneous combination of RGB cameras and depth 

sensors based on laser light (either through structured laser light or TOF flash-type 

LiDAR-based systems).  

This work presents a proof of concept of using LiDAR in detecting Fuji apples in 

producing orchard trees. The methodology is founded on the fact that apples have 

higher apparent reflectance than leaves and trunks at 905 nm laser wavelength. The 

main contributions of this paper are: (1) analysis of apple reflectivity on 3D point 

clouds from LiDAR sensors; (2) development of an apple detection and localization 

algorithm based on three stages (point cloud segmentation; fruit separation, and false 

positive removal); and (3) experimental validation of the proposed technique on a real 

Fuji apple orchard. The principal advantage of this technique over previously published 

efforts would be its capacity to provide direct 3D fruit localization information without 

being affected by illumination conditions. The paper is structured as follows. Section 

4.2 presents the experimental data set, the point cloud generation procedure, the 

reflectance analysis, and the developed apple detection algorithm. Section 4.3 shows the 

results of the first experimental tests performed on three Fuji apple trees of a 

commercial orchard. Finally, the conclusions are presented in Section 4.4. 
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2. Materials and methods 

2.1. Experimental set up 

A fruit detection experiment was carried out on September 28th of 2017 in Tarassó farm, 

a commercial apple orchard located in Agramunt, Catalonia, Spain (E: 336,297 m; N: 

4,623,494 m; 312 m a.s.l., UTM 31T - ETRS89). The trials were carried out in an 8-

year-old Fuji apple orchard (Malus domestica Borkh. cv. Fuji), trained in a tall spindle 

system with a maximum tree height of 3.75 m. The three analysed trees were at BBCH 

(Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) growth stage 

85 (Meier et al., 2001), three weeks before harvesting.  

The measurement equipment consisted of a mobile Terrestrial Laser Scanner (MTLS), 

comprised of a LiDAR sensor and a real-time kinematics global navigation satellite 

system (RTK-GNSS), connected to a rugged laptop suitable for working in field 

conditions. The LiDAR sensor used was a Puck VLP-16 (Velodyne LIDAR Inc., San 

José, CA, USA), which generates a 3D point cloud (x-y-z positions) of the scanned 

scene, as well as calibrated apparent reflectance (R) of each point in the 3D point cloud. 

This calibration was carried out by sensor manufacturer using a set of calibration 

targets, and implies a conversion of the backscattered range-corrected intensity (digital 

numbers) into apparent reflectance values independently of laser power and distance 

(Velodyne, 2016). Note that the measured apparent reflectance (hereinafter referred to 

as reflectance) is an approximation of the actual hemispherical reflectance, considering 

that the measured objects are Lambertian (diffuse reflectors), and not considering the 

incidence angle (Kaasalainen et al., 2011; Kukko et al., 2008; Ray, 1994).  The VLP-16 

sensor emits 16 laser beams (905 nm wavelength) with a horizontal angular resolution 

of 2º (30º horizontal FoV) when mounted on a vertical plane as shown in Figure 1. 

Although the vertical FoV can be set up to 360º, in this experiment it was set to 150º, 

since only one row of trees was scanned. The scanning frequency rate was set to 10 Hz, 

corresponding to a vertical angular resolution of 0.2º, so that a maximum of 12,000 

points were obtained from each scan (acquisition speed of 120,000 points/second). Even 

though this sensor has a range of 100 m, points further than 4 m where not considered 

for 3D point cloud generation, thus only the tree row of interest was modelled. The 
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acquisition of Coordinated Universal Time (UTC) of each point was obtained via a GPS 

18x LVC receiver (Garmin International Inc., Olathe, KS, USA), connected to the VLP-

16 sensor. The RTK-GNSS system used was the GPS1200+ (Leica Geosystems AG, 

Heerbrugg, Swizeland), which provides absolute coordinates and UTC time 

(synchronized with the LiDAR) with a frequency of 20 Hz and a precision of approx. 20 

mm. 

 
Fig. 1. View of the MTLS equipment showing the GNSS antenna placement and the mounting 
orientation of the LiDAR sensor. Distance data are in mm. 

As shown in Figure 1, the MTLS measurement system was mounted on the rear of an 

air-assisted sprayer by means of an aluminium structure. The sprayer was pulled at low 

gear by a farm tractor equipped with an electronic speedometer. The GNSS rover 

receiver antenna was installed on top of the mast, at a height of 3.5 m. The LiDAR 

sensor was mounted vertically (Figure 1) and placed at a height of 1.8 m, that is about 

half the maximum height of studied trees. This position was selected to have similar 
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detection performance along the tree height. The field test was performed by moving the 

MTLS along a rectilinear trajectory parallel to the tree row axis, at a distance of 2.4 m. 

Due to the fact that the system did not include an inertial measurement unit (IMU), 

moving the MTLS along a linear trajectory was important to improve the point cloud 

consistency. The forward speed was 0.125 m s-1, corresponding to a resolution of 12.5 

mm between consecutive scans (~53,600 points m-2 in a vertical plane at the distance of 

2.4m). The tree row was scanned from both sides in order to obtain a complete 3D 

model. 

2.2. 3D point cloud model 

A rigid transformation was performed by applying a rotation and translation matrix to 

each point, in order to build the point cloud with absolute coordinates. The translation 

matrix was built using the Universal Transverse Mercator (UTM) coordinates of the 

RTK-GNSS system, by considering the relative distance between the optical centre of 

the LiDAR sensor and the GNSS receiver. The rotation matrix depends on the 

orientation of the MTLS at each time instant and was obtained by the forward direction 

computed from the measurements of the RTK-GNSS receiver. Given that the trials were 

performed with a short rectilinear trajectory, the tilt of the platform can be ignored, 

assuming a constant orientation along the path. An illustration of the 3D point cloud 

models generated is shown in Figure 2. 

The resulting 3D point cloud was manually labelled in order to generate ground truth of 

the apples locations. This enables a study of the features that characterize the apples, as 

well as the possibility to evaluate the performance of the developed apple detection 

techniques. The annotation was carried out using the software CloudCompare (Cloud 

Compare [GPL software] v2.9 Omnia), placing 3D rectangular bounding boxes on each 

apple, as can be seen in the third tree of Figure 2. This annotation was supported by 

additional RGB images to localise the apples in the 3D point cloud. The actual number 

of apples counted in field (ground truth field or GT_field) were 139 in tree 1, 145 in tree 

2, and 139 in tree 3, of which 133, 138 and 134, respectively, could be labelled in the 

3D point cloud (ground truth labels or GT_labels) due to occlusions or in field counting 

errors. Trees 1 and 2 were used as the training dataset to select and tune the algorithm 
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parameters, while tree 3 was used as the test dataset to evaluate the performance of the 

developed algorithm. From the labelled scene and the reflectance data extracted from 

the LiDAR for each point, a reflectance study of the different elements of the tree was 

carried out (Section 3.1).  

 
Figure 2. 3D point cloud models obtained for trees 1, 2, and 3. First two trees were used as 
training dataset, while the third was kept as test dataset. Ground truth bounding boxes of tree 3 
are shown, while the zoom bounding box (red circle) shows its shape. 

2.3. Apple detection algorithm 

As shown in Figure 3, the algorithm proposed in this paper is structured as follows: 1) 

Point cloud segmentation; 2) fruit separation; and 3) false positive removal. The 

segmentation is based on the reflectance of measured elements and aims at removing 

points corresponding to leaves, branches, and the trunk, and grouping the remaining 

points -likely to be an apple- in clusters. The fruit separation uses features of clusters in 

order to identify and split those that contain more than one apple. False positive removal 

is based on the geometry and reflectance of the clusters. All data processing was 

implemented in MATLAB (R2018a, Math Works Inc., Natick, Massachusetts, USA). 

The different implemented steps are detailed below. 
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Figure 3. Apple detection algorithm flowchart. 

2.3.1. Point cloud segmentation 

The objective of this step is to segment the 3D point cloud and obtain a set of clusters 

with points that could be apple candidates. Since some groups of apples could be 

touching, the clusters obtained in this first step could contain one or more apples. The 

3D model acquired with the MTLS consists of a set of 3D points with UTM coordinates 

and their reflectance [x, y, z, R]. The reflectance analysis (Section 3.1) shows that apple 

reflectance at the 905 nm laser wavelength is higher than that for leaves and the trunk 

and, therefore, this parameter is used for apple detection. To remove the points that do 

not correspond to apples, a threshold, Rth, is applied. This is followed by Sparse Outlier 

Removal (Rusu et al., 2008) to reduce the noise; this approach removes the points 

which fall outside μ + α·σ, with μ and σ being the mean and standard deviation, 

respectively, of the k nearest neighbour distances, while α is a tuning parameter. The 

point cloud segmentation ends with a connected components labelling using a density-

based scan algorithm, DBSCAN (Ester et al., 1996), which clusters points that have 

more than minPts points closer than a distance, ε. Outlier Removal is first applied to 
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delete noisy points that otherwise would connect clusters from different apples. All the 

parameters used in this step were selected through a hyperparameter optimization 

procedure, using the training data set to search for the combination of parameters that 

best suits our data. In this search, we found that the results were stable against small 

variations in the different parameter values, except the reflectance threshold, the 

behaviour of which is shown in Section 3.1, Figure 7. The parameter values used are 

detailed in Appendix A.  

2.3.2. Apple separation 

If apples are properly separated, the results obtained in the previous step would 

consist of a set of clusters of one apple in each. Nevertheless, it was found that groups 

of apples touching will result in clusters of more than one apple. The aim of this second 

step is to identify the clusters containing more than one apple and split them into sub-

clusters, each containing one apple. First, the number of apples, K, that make up a 

cluster has to be predicted, and then the cluster is split using the K-means algorithm. 

This clustering method aims to partition the 3D points into K sub-clusters in which each 

3D point belongs to the sub-cluster with nearest mean (Jain, 2010). 

To predict the number of apples contained in each cluster (the K number used in the 

K-means algorithm), three different methods were tested. The first one is inspired by a 

template matching technique (Brunelli, 2009). The second method applies a decision 

tree, based on cluster features such as volume, density of points, reflectance, and shape. 

Finally, the third method is a combination of the previous two approaches. These 

methods are explained in more detail below. 

Method 1 

The first approach projects the 3D point clouds of each cluster (Figure 4b) onto a 2D 

plane, obtaining an image of the cluster with reflectance data at a resolution of 4x4 mm 

per pixel (Figure 4c). The cluster image then is convolved with a Gaussian filter of size 

20x20 pixels and standard deviation of 3.5. These parameters correspond to the 

measured fruit size, so that the dimension of this filter is 80x80 mm, similar to the mean 

size of the tested apples. Since the apples have an approximately spherical shape, when 

the cluster image is convolved with a Gaussian filter, the local maxima of the obtained 
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image correspond to the centres of the apples (Figure 4d). The value K, to be used in the 

K-means algorithm, corresponds to the number of local maxima found in the convolved 

image (Figure 4e).  

The result of this method could vary with the 2D projection plane used (e.g., the 

projection may produce occlusions). The technique is applied in four different planes to 

prevent this projection-induced variability: frontal, lateral, top, and the plane defined by 

the first two principal axes of the cluster (Figure 4, b and c). The value of K will be the 

maximum obtained in these four planes. The principal axes are the directions where the 

variance of data is maximized and, therefore, where the points exhibit the largest range. 

The first two principal axes define the principal plane of the cluster and are obtained by 

applying singular value decomposition (SVD) to the set of points forming the cluster. 

 
Figure 4. Method 1 - Cluster splitting by Gaussian smoothing. The aim of this method is to 
determine the number of apples, K, that are contained in a cluster. a) Actual data before 
applying method 1: the real scene is scanned and the resulting point cloud is segmented, 
obtaining clusters likely to contain apples. b) Cluster containing 2 apples. c) 2D projection in 
four planes: (1) frontal; (2) lateral, (3) top; and (4) plane defined by 2 principal axes. d) 
Gaussian smoothing. e) Local maxima identification.  
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Method 2 

The second method applies a decision tree based on cluster features. The first step is to 

extract the following features for each cluster: volume (V), number of cluster points (P), 

mean reflectance of cluster points (𝑅𝑅�), and a geometric parameter, Ψ, computed as the 

product of normalized eigenvalues [λ1n , λ2n , λ3n ]. The volume (V) was defined as the 

volume enclosed by the boundary points of the cluster. Clusters that contain more than 

one fruit are expected to have a larger volume (V) and more points (P). However, when 

a fruit is placed next to a leaf or trunk (not filtered in previous steps), the cluster volume 

(V) and the number of points (P) could increase as well. Due to this fact, the threshold, 

𝑅𝑅�, is applied, as it was observed that the mean reflectance of this kind of trunk/leaf co-

located cluster is lower than clusters containing grouped fruits. The last features used 

are the eigenvalues, which provide information about the cluster shape. Spherical 

shapes (clusters with only one apple) will have similar eigenvalues, while elongated 

shapes will have different eigenvalues. Eigenvalues are obtained with SVD, and their 

values depend on the variance of the points projected on the principal axes. In order to 

compare eigenvalues of different clusters, a normalization step is applied so that the 

eigenvalues sum to one. From that, the geometric parameter Ψ is defined as the product 

of eigenvalues and a normalization factor. The normalization factor of 27 allows the 

geometrical parameter, Ψ,  to be bound between 0 and 1:  

𝜆𝜆𝐿𝐿𝑛𝑛 = 𝜆𝜆𝑖𝑖
𝜆𝜆1+𝜆𝜆2+𝜆𝜆3

    so that   𝜆𝜆1𝑛𝑛 + 𝜆𝜆2𝑛𝑛 + 𝜆𝜆3𝑛𝑛 = 1                                                          (1) 

𝛹𝛹 = 27 · 𝜆𝜆1𝑛𝑛 · 𝜆𝜆2𝑛𝑛 · 𝜆𝜆3𝑛𝑛  where  �        𝛹𝛹 = 1               for  spherical distributions
1 > 𝛹𝛹 ≥ 0          otherwise                                (2) 

55 



   

CHAPTER IV 
P4: Fruit detection in an apple orchard using a mobile 

terrestrial laser scanner 

 
Figure 5. Method 2 - Decision tree used to predict the number of apples in a cluster. 

The implemented decision tree is based on the analysed features in the training data set 

and is composed of the following steps (Figure 5): 

• Feature extraction: Compute V ,P ,𝑅𝑅�, and 𝛹𝛹 of the studied cluster. 

• Step 1: If V, P, and 𝑅𝑅� are higher than the corresponding thresholds Vk1 , Pk1, 𝑅𝑅�k1, 

and 𝛹𝛹 is smaller than 𝛹𝛹k1, it is concluded that the cluster contains more than one 

apple. Otherwise, K is assigned the value 1. 

• Step 2: A cluster will have more than two apples if P is higher than Pk2 and 𝛹𝛹 is 

lower than 𝛹𝛹k2 , or if V is higher than Vk2. Otherwise, K is assigned the value of 

2. 

• Step 3: K=4 when a cluster meets both previous conditions and has a volume (V) 

higher than Vk3. Otherwise, K is assigned the value 3. 

All threshold values used in the decision tree were empirically selected by the graphical 

representation of four analysed features using the training dataset. The values used and 

the graphical representation of these features are presented in Appendix A, Table A1 

and Figure A1.  
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Method 3 

By applying method 1, some single-fruit clusters are split into multiple detections due to 

partial occlusions of apples by leaves. Method 3 addresses this concern by combining 

methods 1 and 2. First, step 1 of method 2 is applied to distinguish between clusters 

with single or multiple apples. For those clusters that contain more than one apple, 

method 1 is applied to determine the value of K.  

2.3.3. False Positive removal 

After implementing the first two steps of the algorithm (segmentation and apple 

separation), it was observed that some detections do not actually correspond to apples, 

i.e., these were false positive detections. That is because some leaves and trunks have a 

texture or shape that result in a high reflectance. It was found that some of these 

erroneous detections had a different geometric shape (𝛹𝛹), volume (V), and mean 

reflectance (𝑅𝑅�) compared to the successful detections. In order to reduce these false 

positives, the clusters that met the condition (𝛹𝛹 < 𝛹𝛹FP) | (𝑅𝑅� < 𝑅𝑅�FP) | (V > VFP) were 

removed. In the same manner as with method 2, the thresholds were empirically 

selected from a graphical representation of these three features using the training 

dataset. The values used and the graphical representation of these features are presented 

in Appendix A, Table A1 and Figure A1.  

2.4. Performance evaluation 

In this work, the results were evaluated using two different approaches: localization and 

identification. The localization evaluation aims to assess the system in the context of 

harvesting automation. This approach assumes that a robotic arm, when it gets close to a 

group of apples, is able to separate different apples that have been detected within the 

same cluster, or to unify the multi-detections that correspond to the same apple. Thus, a 

detection that contains K apples counts as K true positives (Figure 6a), while multi-

detections are counted as one true positive and no false positives (Figure 6e).  

The identification evaluation aims to assess the system for use in yield prediction or 

mapping. This assessment is performed cluster-by-cluster, so that a single detection 

containing K apples counts as only one true positive (Figure 6a), while a single apple 
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detected n times (multi-detection) is counted as one true positive and Nm = n-1 false 

positives (Figure 6e). 

To evaluate object detection in images, the metric intersection over union (IoU) is 

commonly used. This is possible when both bounding-box and object detection can be 

seen as a group of pixels. In this study, the detections are groups of 3D points, while 

ground truth bounding boxes are cube regions. The metric IoU has been substituted by 

the intersection over detection (IoD) for this reason; IoD is defined as the percentage of 

detected points that are placed inside ground truth bounding boxes. 

The following defines the metrics used for each approach, namely localization 

(subscript L) and identification (subscript ID).  

• Intersection over detection (IoDi): Percentage of points, Pi, of a detection, i, that 

are placed inside ground truth bounding-boxes (GT).  𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿 =  𝑃𝑃𝑖𝑖∩𝐺𝐺𝐺𝐺
𝑃𝑃𝑖𝑖

 

• True positive localization (TPL): Number of ground truth apples that are 

detected with an IoDi≥0.5. 

• False positive localization (FPL): Number of detections with an IoDi<0.5. 

• Localization success (SuccessL): Quotient between TPL and the number of 

labelled apples (GTlabels). 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿 = 𝐺𝐺𝑃𝑃𝐿𝐿
𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 

• False detection rate localization (FDRL): Ratio between FPL and the total 

positive (TPL + FPL) 𝐹𝐹𝐼𝐼𝑅𝑅𝐿𝐿 = 𝐹𝐹𝑃𝑃𝐿𝐿
𝐺𝐺𝑃𝑃𝐿𝐿+𝐹𝐹𝑃𝑃𝐿𝐿

 

• True positive identification (TPID): Number of clusters with an IoDi≥0.5, minus 

multi-detections ( ∑𝑁𝑁𝑚𝑚).  

• False positive identification (FPID): Sum of the number of detections with an 

IoDi<0.5 (FPL), plus multi-detections.  FP𝐼𝐼𝐿𝐿  =  FP𝐿𝐿  +   ∑𝑁𝑁𝑚𝑚. 

• Identification success (SuccessID or recall): Quotient between TPID and GTlabels.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐿𝐿 = 𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐺𝐺𝑃𝑃𝐼𝐼𝐼𝐼
𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 

• False detection rate identification (FDRID): Ratio between FPID and the total 

positive. 𝐹𝐹𝐼𝐼𝑅𝑅𝐼𝐼𝐿𝐿 = 𝐹𝐹𝑃𝑃𝐼𝐼𝐼𝐼
𝐺𝐺𝑃𝑃𝐼𝐼𝐼𝐼+𝐹𝐹𝑃𝑃𝐼𝐼𝐼𝐼
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• Precision: Percentage of TPID with respect to the total positive (TPID + FPID)

 𝑃𝑃𝑟𝑟𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝐼𝐼𝑛𝑛 = 𝐺𝐺𝑃𝑃𝐼𝐼𝐼𝐼
𝐺𝐺𝑃𝑃𝐼𝐼𝐼𝐼+𝐹𝐹𝑃𝑃𝐼𝐼𝐼𝐼

  

• F1-score: Harmonic mean of precision and recall. 𝐹𝐹1 = 2 · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿𝐺𝐺𝑛𝑛·𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿𝐺𝐺𝑛𝑛+𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺

 

Selected examples of the evaluation criteria can be seen in Figure 6. Intersection over 

detection (IoD) is given for different scenarios, while true positive and false positive 

rates are calculated for localization and identification assessment approaches. Red 

shapes are apple detections, while green squares correspond to the ground truth labels. 

Note that actual clusters and bounding-boxes are in 3D (as shown in Figure 2), although 

for the sake of simplicity this figure shows the 2D projection. The examples shown are: 

a) One cluster with K=2 apples and three GT bounding-boxes ; b) One cluster with K=1 

apple and one GT bounding-box ; c) Two clusters of K=1 apple each and two GT 

bounding-boxes ; d) One GT bounding-box not detected ; e) Two clusters detecting the 

same GT bounding-box (multi-detection) ; f) One cluster that does not correspond to 

any GT object ; and g) One cluster detecting an apple with an IoD<0.5. 

 
Figure 6. Localization and identification performance evaluation criteria. Intersection over 
detection (IoD) is given for different scenarios, while true positive and false positive are 
calculated for localization and identification assessment approaches. Red shapes are apple 
detections, while green squares correspond to the ground truth labels.  
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3. Results and discussions  

3.1. Reflectance analysis 

Table 1 shows the reflectance analysis results for both trees used in the training dataset. 

Mean apparent reflectance values of 28.9%, 29.1%, and 44.3% were obtained for 

leaves, trunks, and Fuji apples, respectively. These results indicate that the reflectance is 

higher than other tree elements. Hence, this characteristic will be used as a valuable 

feature for Fuji apple detection. Note that these results were obtained using a LiDAR 

system operating with a laser source at 905nm wavelength. Further studies should be 

carried out to ensure that the present methodology could be extended to other laser 

systems (operating at different wavelengths) and other fruit varieties or branching 

structures. 

Table 1. Reflectance analysis: The mean apparent reflectance and standard deviation of 

different elements in an apple orchard. 

Tree Elements mean(R) [%] std(R) [%] 

T1 Leaves 29.23 13.57 

T2 Leaves 28.69 13.88 

T1 Trunks 29.67 14.83 

T2 Trunks 28.52 15.41 

T1 Apples 43.59 16.81 

T2 Apples 45.10 16.78 

The results of this analysis are the basis of the proposed detection algorithm, with 

reflectance being the principal feature used in the segmentation step. Although Fuji 

apples have higher reflectance than leaves and trunks at 905 nm, the standard deviation 

is high enough to create overlap between classes (Figure 7b). In order to find the 

optimal threshold, Rth,. that will remove the points corresponding to leaves, branches, 

and trunks, a performance evaluation of the detection algorithm (Section 2.3) was 

carried out using different reflectance thresholds. Figure 7a plots the evolution of 

precision, recall, and F1-score metrics, computed before applying the false positive 

removal step, under different reflectance thresholds, Rth.. The best results were obtained 

with an Rth = 60%, resulting in an F1-score=82.16% for the training dataset. Figure 7b 
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shows the reflectance distributions for leaves, trunks, and apples. As can be seen, most 

of the 3D points belonging to apples were below the threshold value. This is because 

our restrictive threshold minimizes the false positives of leaves and trunks being 

selected as apples. Furthermore, omitting points as apple is not as critical as having a 

few apple points in a cluster, which are sufficient for detection.  

  
a) b) 

Figure 7. a) Precision (green dashed line), recall (red dotted line), and F1-score (blue solid line) 
versus the applied reflectance threshold; b) Gaussian distributions obtained for each tree 
element in the reflectance analysis of the training dataset. Green solid line corresponds to 
leaves, blue dotted line to trunks and red dashed line to fruits. The vertical dash-dotted line 
indicates the reflectance threshold used for fruit detection. 

3.2. Step-by-step algorithm performance evaluation 

This section presents a qualitative and quantitative evaluation of the different steps and 

methods implemented in this paper. Regarding the qualitative evaluation, Figure 8 

illustrates the evolution after each processing step. First, Figure 8a shows an RGB 

image of one of the trees, which is incorporated to assist in visualization, but was not 

used in the algorithm. Figure 8b renders the 3D model obtained with the MTLS. The 

colour scale indicates the reflectance of each point, where blue corresponds to low 

values and red implies high reflectance. It is evident from this representation how Fuji 

apples exhibit higher reflectance than other tree elements. Figure 8c shows the results 

after applying the reflectance threshold, Rth, to the original point cloud. In this step, 

many of the leaf and trunk points were removed. Once the sparse outlier removal is 

applied (Figure 8d), zones with low point density were removed, leaving only groups of 

points which are candidates for apple detection. Figure 8e illustrates the segmentation 

output, which terminates the clustering of connected points. This result has clusters with 
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one apple (red, orange, blue, and purple), clusters with more than one apple (green), and 

false positives (grey). The apple detection algorithm ends by splitting clusters with more 

than one apple and removing false positives. The final result is presented in Figure 8f. 

Table 2 presents the results of the test dataset for each step and method implemented. 

The first row shows the results after point cloud segmentation (Section 2.3.1); rows 2-4 

indicate the results obtained when applying the splitting techniques presented in Section 

2.3.2; and the last three rows present the final results after removing the false positives 

detected (Section 2.3.3). 

 
Figure 8. Illustration of the different processing steps (tree 2). a) RGB image. b) Point cloud 
obtained with the MTLS. c) Point cloud after applying the reflectance threshold. d) Sparse 
outlier removal. e) Connected component labelling (DBSCAN). f) Apple separation and false 
positive removal. For better visualization purposes, in b), scale ranges from 0 (blue) to 100 
(red), while in c) and d) the scale ranges from 60 (blue) to 100 (red). 
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The localization success values obtained after point cloud segmentation (before apple 

separation and false positive removal) are slightly higher than 87% (first row). These 

results are similar to other methodologies using colour cameras (Gongal et al., 2015). 

The identification success presents significantly lower results (~73%), because of some 

detections containing more than one apple. Methods 1, 2, and 3 therefore were applied, 

in order to split these clusters, methods (Section 2.3.2). As a result, the identification 

success increased by more than 8% (rows 2 to 4), although the number of false positives 

also increased due to multi-detections. Method 1 performed best in terms of increasing 

the identification success (+11%), but also generated more multi-detections. Method 2 

increased identification success by more than 8%, while false positives only increased 

3%. The results of method 3 are a trade-off between the previous two methods. Since 

localization success performs an evaluation on a point-by-point basis, applying 

separation methods does not vary the results of this metric.  

When applying false positive removal (rows 5 to 7), it is observed that the false 

detection rate fell by more than 5%, while the localization and identification successes 

were not affected (except for method 3, with a decrease of less than 1%). The best 

results were obtained by combining method 2 with false positive removal, resulting in a 

lower number of false positives, without affecting the performance of the apple 

detection algorithm. 

The processing times indicated in Table 2 correspond to processing the data with a 64-

bit operating system, with 8GB of RAM and an Intel ® Core(TM) i7-4500U processor 

(1.80 GHz, boosted to 2.40 GHz). Although method 2 was slightly more efficient than 

the other two approaches, no significant differences were observed in the processing 

time. This is because the most computationally intensive operation is in the DBSCAN 

clustering algorithm (9.1 seconds), which is part of the segmentation step included in all 

methods.  
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Table 2. Performance assessment of the different implemented steps and methods: point cloud 
segmentation (S); apple separation methods 1, 2, and 3 (M1, M2, and M3, respectively); and 
false positive removal step (FPr). Results include information from the test dataset (tree 3). 

 Localization  Identification 
Processing 
Time [s] Method 

SuccessL 
[%] 

FDRL 
[%] 

 SuccessID 
[%] 

FDRID 
[%] 

S 87.5 11.9  73.5 13.8 11.0 

S + M1 87.5 20.7  85.3 26.1 11.9 

S + M2 87.5 15.6  82.4 17.0 11.0 

S + M3 87.5 16.8  84.6 20.7 12.0 

S + M1 + FPr 87.5 12.5  85.3 18.3 12.1 

S + M2 + FPr 87.5 9.8  82.4 10.4 11.1 

S + M3 + FPr 86.8 11.3  83.8 14.9 12.4 
 

3.3. Detection results 

Table 3 shows the apple detection algorithm, as evaluated individually for each tree. 

These results were generated by applying the point cloud segmentation, followed by an 

apple separation using method 2, and removing false positives using the condition 

expressed in Section 2.3. The detection rate is similar for processed trees despite being 

slightly better for tree 1 and 3. A localization success of 87.5% with a 9.8% of FDRL, an 

identification success of 82.4% with a 10.4% of FDRID, and an F1-score of 85.8% were 

obtained using the test dataset. These results are comparable with those obtained with 

other methodologies used in the state of the art. So far, the best detection rates have 

been reported with image processing, obtaining accuracies of between 80% and 85% 

using colour features (Gongal et al., 2015), and up to 86% of recall using deep learning 

(Bargoti and Underwood, 2017). However, the vision systems used in harvesting robots 

in orchard environments report a mean value of 80% in localization success and a mean 

value of 70% in identification success (Bac et al., 2014). Although it is difficult to 

compare the research found in the state of the art review, given that they are evaluated 

with different datasets, the methodology presented in this paper yields similar detection 

rates to previous work based on colour cameras, with the advantage that LiDAR-based 

measurements are not affected by illumination conditions. Furthermore, the location of 

each detected apple is obtained directly, which makes the presented system very 
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interesting for autonomous harvesting or fruit load assessment for yield mapping 

applications.  

Table 3. Apple detection assessment using method 2. Trees 1 and 2 were used as training 
dataset and tree 3 as test dataset. GTfield corresponds to the number of apples hand-counted in 
field, while GTlabels corresponds to the number of apples labelled in data. Other metrics are 
defined in Section 2.4. 
  Localization  Identification 

F1-score Tree GTfield GTlabels TPL FPL SuccessL FDRL  TPID FPID SuccessID FDRID 

Tree 1 139 133 116 12 87.2% 9.4%  110 16 82.7% 12.7% 0.849 
Tree 2 145 138 118 13 85.5% 9.9%  109 15 79.0% 12.1% 0.832 
Tree 3 139 136 119 13 87.5% 9.8%  112 13 82.4% 10.4% 0.858 

Regarding the computational cost, Table 4 includes the inference time, processing each 

tree separately, and all trees combined. The number of points of each test is also 

reported. As expected, the computational time increases with the number of points 

processed. Results show that processing trees individually is much more efficient than 

processing all trees at once. This is because the average run time complexity of 

DBSCAN is not linear with the number of points (Ester et al., 1996), resulting in higher 

efficiency when processing small point clouds. 

Table 4. Computational cost according to the number of points in the point cloud. 

Tree Nº of points Processing Time [s] 
Tree 1 438.260 8.0 
Tree 2 460.847 9.6 
Tree 3 526.136 11.2 
Tree 1+2+3 1.425.243 68.8 

 

4. Conclusions 

This work presents a new methodology for Fuji apple detection and localization in real 

commercial orchard environments using a LiDAR-based mobile terrestrial laser scanner 

(MTLS) with reflectance capabilities. A reflectance analysis of the different apple tree 

elements was carried out, which showed that apples exhibit a higher reflectance than 

leaves and trunks at the 905 nm laser wavelength; we therefore conclude that this 

characteristic is a valuable feature for apple detection. An apple detection algorithm, 

65 



   

CHAPTER IV 
P4: Fruit detection in an apple orchard using a mobile 

terrestrial laser scanner 

suitable for dealing with point clouds obtained with an MTLS, was subsequently 

developed and tested on three apple trees from a commercial apple orchard. The 

algorithm is divided into three steps: (1) removal of points corresponding to leaves and 

trunk and clustering the remaining points with a connected component labelling, (2) 

identification and splitting of clusters that contain more than one apple, and (3) false 

positive reduction. In order to predict the number of apples grouped in a cluster, three 

different methods were proposed: template matching, decision tree, and a combination 

of both approaches. The best results were achieved by applying a decision tree, resulting 

in a localization success of 87.5% with a 9.8% false detection rate, an identification 

success of 82.4% with a 10.4% false detection rate, and an F1-score of 85.8% in the test 

dataset. These outcomes represent an advance in the fruit detection field, since the 

results are comparable with those from colour (RGB) camera systems used in past 

efforts; however, the proposed LiDAR-based has the additional advantages that 

measurements are not affected by illumination conditions and that the method directly 

provides 3D fruit location information. An important limitation of this work is the small 

dataset. A larger dataset could allow the parameters to be learnt automatically (instead 

of being manually selected), thereby obtaining an algorithm that could better generalize 

with new data. Future efforts should include an analysis of fruit reflectance under 

different laser wavelengths, the extension of the dataset to other fruit varieties and 

species, and the application of machine learning algorithms in larger datasets.  
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Appendix A. Parameter values and feature analysis 

Table A1 presents the values set for each parameter used in the algorithm. Parameter Rth 

is used in the segmentation step. See more details about these parameters in Section 

2.3.1. Parameters with sub-index kj refer to the thresholds used in Section 2.3.2 - 

method 2 and were selected after analysing the graphical representation of cluster 

features shown in Fig. A1. Parameters with sub-index FP correspond to the thresholds 

used to remove false positives (Section 2.3.3) and were selected after analysing the 

graphical representation of detection features shown in Fig. A2.  

Table A1. Parameter values used to detect apples in the presented dataset. The first five 
parameters were used during the point cloud segmentation step. Parameters sub-indexed with 
letter K correspond to thresholds used in the apple separation step. Parameters sub-indexed with 
letters FP were used in the false positive removal step.  

Symbol Value Units 
Rth 60 % 
k 20 Points 
α 0 --- 
minPts 15 Points 
ε 0.03 m 
Vk1 1.5·10-4 m3 
Pk1 85 Points 
𝑅𝑅�k1 67.5 % 
𝛹𝛹k1 0.8 --- 
Pk2 400 Points 
𝛹𝛹k2 0.6 --- 
Vk2 1.2·10-3 m3 
Vk3 1.6·10-3 m3 
𝛹𝛹FP 0.46 --- 
𝑅𝑅�FP 65.25 % 
VFP 10-3 m3 
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Figure A1. Graphical representation of cluster features. The features analysed are the geometric 
parameter, Ψ, and the number of points (left), and the mean reflectance and the cluster volume 
(right). Clusters with one apple are represented in green squares; clusters with two apples are 
represented in blue diamonds; clusters with three apples in magenta asterisks; and clusters with 
four apples or more in black crosses. Yellow, red and blue lines correspond to K1, K2 and K3 
thresholds, respectively. This analysis was performed on the training data set (Trees 1 and 2) 
and was used to set the thresholds explained in Section 2.3.2 - method 2.  

  

Figure A2. Graphical representation of detection features. The features analysed are the 
geometric parameter, Ψ, the mean reflectance and the cluster volume. False positives (FP) are 
represented by red crosses; true positives are represented by blue circles. Horizontal and vertical 
lines show the thresholds used to remove FP. This analysis was performed on the training data 
set (Trees 1 and 2) and was used to set the thresholds explained in Section 2.3.2 - method 2.  
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canopy geometric characterization using LiDAR with forced 

air flow  
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Abstract 
Yield monitoring and geometric characterization of crops provide information about 

orchard variability and vigor, enabling the farmer to make faster and better decisions in 

tasks such as irrigation, fertilization, pruning, among others. When using LiDAR 

technology for fruit detection, fruit occlusions are likely to occur leading to an 

underestimation of the yield. This work is focused on reducing the fruit occlusions for 

LiDAR-based approaches, tackling the problem from two different approaches: 

applying forced air flow by means of an air-assisted sprayer, and using multi-view 

sensing. These approaches are evaluated in fruit detection, yield prediction and 

geometric crop characterization. Experimental tests were carried out in a commercial 

Fuji apple (Malus domestica Borkh. cv. Fuji) orchard. The system was able to detect 

and localize more than 80% of the visible fruits, predict the yield with a root mean 

square error lower than 6% and characterize canopy height, width, cross-section area 

and leaf area. The forced air flow and multi-view approaches helped to reduce the 

number of fruit occlusions, locating 6.7 % and 6.5 % more fruits, respectively. 

Therefore, the proposed system can potentially monitor the yield and characterize the 

geometry in apple trees. Additionally, combining trials with and without forced air flow 
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and multi-view sensing presented significant advantages for fruit detection as they 

helped to reduce the number of fruit occlusions. 

Keywords: Apple detection; Fruit counting; Yield prediction; 3D plant modeling; 

Geometric characterization. 

Nomenclature 

af  Trial scanning with forced air flow 
D  Number of fruit detections 
DR  Detection rate 
E  Trial scanning from the east side 
FoV  Field-of-view 
FP  False positive detection 
FPR  False positive rate 
FPr  False positive removal step 
FS  Fruit separation step 
GTfield  Number of apples manually counted in the orchard 
GTlabels  Number of apples labelled in the 3D point cloud 
H1  Trial scanning with LiDAR sensor at 1.8m height 
H2  Trial scanning with LiDAR sensor at 2.5m height 
IMU  Inertial measurement unit 
K  Number of apples in a cluster of 3D points 
LD  Number of labels detected 
MD  Multi-detection 
MDR  Multi-detection rate 
n  Trial scanning without forced air flow application 
P  Precision 
Pp  Pre-processing 
Pt  Number of points that contain a cluster 
R  Recall 
𝑅𝑅�  Mean reflectance of the points of a cluster 
𝑟𝑟ℎ  Reflectance histogram 
𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅  Root mean square error 
RTK-GNSS Real-time kinematics global navigation satellite system 
SVM  Support-vector-machine 
T  Total number of fruits in the dataset 
TP  True positive 
V    Volume of a cluster 
W  Trial scanning from the west side 
w.r.t.  abbreviation of “with respect to” 
λn  Normalized eigenvalues  
𝜎𝜎𝑝𝑝  Standard deviation reflectance of cluster points 
Ψ  Geometric parameter 
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1. Introduction 

Agricultural farms are required to increase production while reducing the environmental 

impact in a sustainable way (Tilman et al., 2011). Although mechanization and the 

evolution of agricultural machinery in extensive fields have helped to enhance crop 

production efficiency (Bechar and Vigneault, 2016), most of the intensive orchards are 

still being managed in similar ways to traditional farming methods, with labor intensive 

operations and without addressing in-field spatial variability (Uribeetxebarria et al., 

2019). To meet food supply and environmental demands, precision agriculture aims to 

find new strategies that allow the farmer for a more efficient management of orchards, 

reducing the amount of inputs while increasing fruit quality and productivity (Vázquez-

Arellano et al., 2016). 

To confront these challenges, orchard vigor and variability need to be better understood 

(Kamilaris and Prenafeta-Boldú, 2018). To this end, orchard characterization through 

information and communication technologies plays a crucial role, as shown in (Colaço 

et al., 2018a, 2018b; Narvaez et al., 2017). Obtaining an accurate characterization of 

trees by non-destructive methods at different growth stages provides valuable 

information that can be used for enhancing precision in orchard management (Andújar 

et al., 2017; Rosell and Sanz, 2012). This characterization can include phenology 

monitoring, plant geometric characterization and yield monitoring, among others. 

In the last decade, different sensors and methods have been used for the geometric 

characterization of tree orchards. Due to the unstructured and complex nature of 

agricultural environments, with variable canopy structures in depth, porosity, training 

systems, among others (Vázquez-Arellano et al., 2016), the acquisition of 3D 

information –from depth cameras, structure-from-motion approaches, stereo vision and 

light detection and ranging (LiDAR) sensors– showed the most promising results in 

terms of orchard characterization and plant reconstruction, as has been shown in Rosell 

and Sanz (2012) and Yandún Narváez et al. (2016). Sensors and sensing techniques for 

the 3D modeling of orchards have been used to estimate parameters such as crop 

growth, height, shape and leaf area, with applications in pesticide treatments, irrigation, 
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fertilization, pruning and crop training (Jiménez-Brenes et al., 2017; Narvaez et al., 

2017; Pfeiffer et al., 2018; Sanz et al., 2018; Tagarakis et al., 2018). 

For yield mapping and monitoring, the most commonly used sensors are RGB cameras 

(Gongal et al., 2015; Linker, 2017; Maldonado and Barbosa, 2016; Zhao et al., 2016). 

The main disadvantage of RGB cameras is that they only provide 2D information. 

Advances in artificial intelligence and computer vision have led to remarkable progress 

in fruit detection (Bargoti and Underwood, 2017a; Gan et al., 2018; Sa et al., 2016). 

Nevertheless, fruit detection performance continues to be affected by extrinsic factors 

that do not depend on the robustness of the algorithm, including the occlusion of fruits 

by other vegetative organs or lighting conditions (Bac et al., 2014; Gongal et al., 2015; 

Liu et al., 2016). Very few studies have tackled the problem of occlusions. Bulanon et 

al. (2009) and Gongal et al. (2018) proposed the use of multi-view imaging systems, 

while other works have used supportive tools such as an air blower to reduce melon leaf 

occlusions (Edan et al., 2000) or a mechanism to reduce canopy volume in citrus trees 

(Lee and Rosa, 2006). Other studies have considered variable lighting conditions, some 

of which have tried to minimize variable illumination effects by converting images to 

other color spaces (Payne et al., 2013; Zhou et al., 2012), while others have proposed 

working with artificial lighting, although this involves the use of tunnel structures 

around trees or working at night time (Gongal et al., 2016; Linker and Kelman, 2015; 

Payne et al., 2014).  

Other 2D sensors, including thermal, multispectral and hyperspectral cameras, have also 

shown potential for fruit detection (Bulanon et al., 2008; Okamoto and Lee, 2009; Sa et 

al., 2016; Safren et al., 2007; Zhang et al., 2015), although their use is not as extended 

as color cameras due to their cost and the high level of training required for their 

operation (Linker, 2018). The recent evolution in the fields of sensing and photonics has 

led to the introduction of the use of 3D sensors. Depth cameras based on stereoscopy, 

structured light or time-of-flight (ToF) are the most commonly used 3D sensors for fruit 

detection (Gené-Mola et al., 2019b; Gongal et al., 2015). The main limitation of these 

sensors is that their performance decreases under direct sunlight (Rosell-Polo et al., 

2015).  
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LiDAR sensors have been widely applied for geometric characterization (Rosell and 

Sanz, 2012; Vázquez-arellano et al., 2016). However, their use is marginal for fruit 

detection and yield monitoring, probably because they are more expensive than other 

alternative sensors (such as RGB cameras) and do not provide color data. However, in 

addition to providing 3D information of the scene, one of the advantages of using 

LiDAR sensors is that the measurements are not affected by lighting conditions. 

Previous studies using LiDAR sensor data for fruit detection have been carried out in 

lab conditions and tested with a limited dataset, from 7 to 114 fruits (Feng et al., 2012; 

Gotou et al., 2003; Jiménez et al., 2000; Tanigaki et al., 2008). In other areas, LiDAR 

sensors have been placed on robotic platforms to infer the distance between the fruit and 

the robotic arm, though the actual detection of the fruit was performed using other 

systems such as RGB imaging (Bulanon and Kataoka, 2010; Ceres et al., 1998; Stein et 

al., 2016; Yin et al., 2009). More recently, the authors of the present study presented a 

proof of concept of the usefulness of LiDAR for apple detection in real commercial 

orchard environments (Gené-Mola et al., 2019a).  

In this work, a multi-beam LiDAR sensor is used for remote fruit detection and plant 

geometrical characterization in a commercial Fuji apple orchard (Malus domestica 

Borkh. cv. Fuji). A fruit detection algorithm based on reflectance thresholding and 

Support Vector Machine (SVM) was developed. Under the hypothesis that moving the 

tree foliage and using multi-view sensing will reduce the number of fruit occlusions and 

will increase the percentage of fruits detected, the system was mounted on an air-

assisted sprayer used to generate forced air flow. The rest of the paper is structured as 

follows: Section 2 presents the experimental setup, the fruit detection algorithm, and the 

methodology carried out to predict the yield and characterize the canopy; Section 3 

evaluates the fruit detection algorithm and the effect of using air action and different 

sensor positioning in terms of fruit detection accuracy, yield prediction estimation and 

geometric characterization performance; Section 4 discusses the performance of the 

system and compares the presented methodology to other works from the state of the 

art; finally, the conclusions retrieved from this work are presented in Section 5. 
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2. Methods  

2.1. Experimental set up 

Data was acquired in a commercial Fuji apple orchard (Malus domestica Borkh. cv. 

Fuji) (Figure 1), located in Agramunt, Catalonia, Spain (E: 336297 m, N: 4623494 m, 

312 m a.s.l., UTM 31T - ETRS89). The scanning was carried out 3 weeks before 

harvesting, at BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische 

Industrie) (Meier, 2001) growth stage 85. Trees grown in the selected orchard were 8-

years-old and were trained in a tall spindle system with a maximum canopy height of 

3.5-4 m, width of 1-1.5 m, and tree spacing of 4x1 m. All tests presented in this paper 

were carried out on 11 consecutive Fuji apple trees containing a total of 1444 apples 

(Table 1).  

The equipment used for data acquisition was a mobile terrestrial laser scanner (MTLS) 

system with a multi-beam LiDAR sensor and a real-time kinematics global navigation 

satellite system (RTK-GNSS). A Puck VLP-16 (Velodyne LIDAR Inc., San José, CA, 

USA) LiDAR sensor was placed on a vertical plane to scan with a vertical field-of-view 

(FoV) of 360º, emitting 16 laser beams distributed in a horizontal FoV of 30º. In other 

words, each laser beam had a unique scanning angle, ranging from +15º to -15º, with a 

2º step between the scanning angles. For each scan, the sensor provides a 3D point 

cloud with calibrated reflectance values (at 905 nm wavelength) of the measured scene, 

reporting values from 0-100 for diffuse reflectivities from 0% to 100% (Velodyne, 

2016). This reflectance calibration was carried out by the sensor manufacturer, and 

allows getting reflectance values independently of laser power and distance. The 

LiDAR sensor acquisition frequency rate was set to 10 Hz (10 scans per second), 

corresponding to a vertical angular resolution of 0.2º. A GPS1200+ (Leica Geosystems 

AG, Heerbrugg, Switzerland) RTK-GNSS was used, with an absolute error of 0.01/0.02 

m (horizontal / vertical), providing positioning measurements with rate of 20 Hz. Each 

sensor was connected to a rugged laptop, and data were synchronized by acquisition 

time stamp.  
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Figure 1. Tested Fuji apple orchard. 

The MTLS system was placed on an air-assisted sprayer and was pulled by a tractor at 

0.125 m/s forward speed along a linear trajectory parallel to the row of trees. Since the 

MTLS system did not include an inertial measurement unit (IMU), moving the system 

at low speed (0.125 m/s) and along a linear trajectory was important to reduce 

vibrations (in amplitude) and obtain precise point clouds -without misalignments 

between different scans-. The air-assisted sprayer was used to generate turbulent air 

with the aim of moving the tree foliage and dis-occlude apples behind the leaves. As the 

LiDAR sensor was oriented vertically and the scanning plane was orthogonal to the 

canopy, the LiDAR measuring area was the area under the air flow influence (Figure 2). 

The data acquired contains measurements from two different LiDAR heights (H1 and 

H2) and two different air conditions (n and af, where n stands for measurements without 

air flow action; and af for measurements with air flow action). The LiDAR sensor 

position H1 corresponded to a sensor height of 1.8 m (approximately half of the tree 

height), while H2 corresponded to the measurements with a LiDAR height of 2.5 m. In 

order to generate forced air, the air-assisted sprayer operated at 18π rad s-1 (540 rpm of 

PTO, power take-off angular speed). In these conditions, the sprayer fan generated an 

air flow speed of 5.5 ± 2.3 m s-1, measured at a distance of 2.4 m from the fan axial 

center (the approximate horizontal distance between the sensor and the axis/trunk of the 

measured trees). A total of 4 trials were carried out, corresponding to all possible 

combinations between sensor heights and air conditions: H1,n, H1,af, H2,n and H2,af. In 
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order to obtain a complete representation of the canopy, for each trial, the tree row was 

scanned from the west (W) and from the east (E) side. Trials merging both scanned 

sides are denoted as (E+W). 

  

a) b) 

Figure 2. Diagram of the MTLS and the arrangement of its elements. a) Rear view.b) Top view. 
The zoom-in circle shows the position of the LiDAR sensor with respect to the sprayer fan. Air 
flow is represented in blue, while red lines illustrate the 16 laser beams distributed along the 
sensor field-of-view (FoV). 

For each scan, a 3D point cloud with coordinates relative to the sensor was provided by 

the LiDAR system. To generate the point clouds with absolute coordinates, the RTK-

GNSS data were used to infer the position and the orientation of the sensor, obtaining a 

rotation and translation matrix that transformed points in relative coordinates to points 

in absolute global world coordinates. To generate ground truth of the apples locations 

(GTlabels), the resulting point clouds were manually labelled, placing 3D rectangular 

bounding boxes around each apple, as shown in Figure 3c. This annotation was carried 

out using the software CloudCompare (Cloud Compare [GPL software] v2.9 Omnia) 

and supported by additional RGB images of the tested trees. A total of 1353 fruits were 

visually identified in the point cloud during ground truth generation, representing the 

93.7% of the total amount of fruits manually counted (GTfield) in the orchard. Thus, 

6.3% of apples were discarded since they were not visible in the 3D point clouds. Table 

1 shows the number of fruits per tree manually counted in the orchard GTfield compared 

with the number of labelled apples in the 3D point cloud GTlabels. The dataset generated 

and analyzed during the current study has been made publicly available at 

http://www.grap.udl.cat/en/publications/LFuji_air_dataset.html. 
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Figure 3. Illustration of the dataset generated for the current study. a) RGB image of the 
measured Fuji apple trees. b) Point cloud data generated from MTLS measurements. Color scale 
ranges from 0% (blue) to 100% (red) corresponding to the calibrated reflectance of the 
measured scene. c) Annotated point cloud with 3D rectangular bounding boxes placed around 
each apple.  

Table 1. Fruit counting ground truth. Comparison between the number of fruits manually 
counted (GTfield) in the orchard and the number of fruits annotated in the 3D point cloud 
(GTlabels).  

 
GTfield GTlabels 

Tree 01 139 138 
Tree 02 106 100 
Tree 03 139 131 
Tree 04 137 129 
Tree 05 94 85 
Tree 06 131 119 
Tree 07 119 114 
Tree 08 145 137 
Tree 09 139 131 
Tree 10 136 122 
Tree 11 159 147 
Total 1444 1353 

 

2.2. Fruit detection algorithm 

With the purpose of detecting and locating fruits from the MTLS data, the algorithm 

presented in Gené-Mola et al. (2019a) was implemented but lightly modified. The main 

modification included the use of an SVM approach (Cortes and Vapnik, 1995) in order 
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to avoid using manually set parameters and to automatically train the features that 

characterize apples. The algorithm consists of 4 main steps: pre-processing, fruit 

clustering, fruit separation and false positive removal (Figure 4). To combine different 

scans, such as data from east and west sides, from different sensor heights or different 

air flow conditions, the 3D point clouds were merged before applying the fruit detection 

algorithm. The registration of different point clouds was automatic since all scans were 

georeferenced in absolute world coordinates. Merging different scans in a single point 

cloud allows for reducing the number of multi-detections, e.g., points from an apple 

appearing in two different scans (such as from east and west sides) were merged in a 

unique point cloud, and in consequence, the apple was detected only once.  

 
Figure 4. Fruit detection algorithm pipeline. 

Pre-processing was based on the fact that apples have a higher IR reflectance than 

background. In this step, a reflectance threshold was set in order to remove the points 

that are not likely to belong to an apple. Then, sparse outlier removal (Rusu et al., 2008) 

was applied to remove noisy points. After removing background points, the remaining 

points were clustered in groups of connected points by applying a density-based scan 

algorithm DBSCAN(Ester et al., 1996). These first two steps (pre-processing and fruit 
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clustering) were implemented following the algorithm presented in Gené-Mola et al. 

(2019a).  

The minimum distance used in DBSCAN to cluster connected points was ε = 0.03 m. 

Therefore, points belonging to two different fruits closer than ε were grouped in the 

same cluster. A fruit separation step was applied to discriminate the aforementioned 

clusters. First, the features of each cluster (volume, number of points, eigenvalues, and 

reflectance) were extracted. Then, a linear SVM with a penalty factor of C=0.35 

(Burges, 1998) was used to predict the number of fruits (K) that contains each cluster. 

Clusters that had more than one apple (K > 1) were split into K sub-clusters using the 

K-means algorithm (Jain, 2010).  

The last step of the algorithm was a false positive filter. False positives are the 

detections that have been wrongly classified as apple. These false positives were 

derived from elements –such as trunks or leaves– that had reflectance values higher than 

expected (R > 60%), or from clusters that were wrongly split, detecting apples more 

than once (multi-detections). An SVM was used to classify each cluster as a correct or 

wrong detection. The SVMs used in the fruit separation and false positive removal steps 

were fed with 8 cluster features: 

• Cluster volume 𝑉𝑉. 

• Number of points 𝑃𝑃𝑃𝑃 that contain a cluster.  

• Normalized eigenvalues λ𝑛𝑛 = [λ1𝑛𝑛, λ2𝑛𝑛, λ3𝑛𝑛]. The eigenvalues are obtained by 

singular value decomposition (SVD), and their value depends on the variance of 

points (3D data) projected on their principal axes (Jolliffe, 2011). In order to 

compare different clusters, an eigenvalues normalization is applied, so that the 

sum of normalized eigenvalues is one.  

• Geometrical parameter 𝛹𝛹 = 27 · λ1𝑛𝑛 · λ2𝑛𝑛 ·  λ3𝑛𝑛 defined as the product of 

normalized eigenvalues and a normalization factor equal to 27. Since the 

maximum value of the product of the normalized eigenvalues is equal to 1
27

, 

achieved when all normalized eigenvalues are equal to 1
3
 (for spherical clusters), 

the normalization factor of 27 allows the geometrical parameter to be bounded 

between 0 and 1, being 1 for spherical clusters.  

84 



   

CHAPTER V 
P5: Fruit detection, yield prediction and canopy geometric 

characterization using LiDAR with forced air flow 

• Reflectance histogram 𝑟𝑟ℎ =  [𝑟𝑟ℎ1, 𝑟𝑟ℎ2, 𝑟𝑟ℎ3, 𝑟𝑟ℎ4, 𝑟𝑟ℎ5] / 𝑃𝑃, where 

𝑟𝑟ℎ1, 𝑟𝑟ℎ2, 𝑟𝑟ℎ3, 𝑟𝑟ℎ4, 𝑟𝑟ℎ5 are the number of points in the cluster with a reflectance 

between 60:68, 68:76, 76:84, 84:92 and 92:100, respectively.  

• Mean reflectance of cluster points 𝑅𝑅�. 

• Standard deviation reflectance of cluster points 𝜎𝜎𝐿𝐿. 

• Maximum reflectance of cluster points 𝑅𝑅𝑚𝑚𝐺𝐺𝑚𝑚. 

All processing presented in this work was implemented using MATLAB® (R2018a, 

Math Works Inc., Natick, Massachusetts, USA) and is publicly available jointly with 

the corresponding dataset at 

http://www.grap.udl.cat/en/publications/LFuji_air_dataset.html 

2.3. Canopy characterization 

The mean canopy height, width, contour and cross-section area were computed 

following the methodology described in Escolà et al. (2017). The row of trees was 

splitted into vertical slices of 0.1 m length. For each slice, the maximum canopy height 

and width were computed as the distance between the two most distant points in the 

vertical and horizontal directions (denoted as Z and X axis in Figure 3b, respectively). 

Then, the mean height and mean width were calculated as the mean of the maximum 

canopy heights and maximum canopy widths of all slices (110 slices for all 11 trees). 

The mean canopy contour was obtained similarly, computing the mean canopy width at 

different tree heights intervals of 0.1 m (40 heights intervals). The area within the mean 

canopy contour was defined as the cross-section area.  

Finally, the leaf area was estimated using the projected tree row surface (PTRS) 

described in Sanz et al. (2018), which correlates the frontal projected surface and the top 

projected surface with the linear leaf area (leaf area per meter).  

2.4. Performance evaluation 

The effect of using forced air action and different sensor positions (multi-view sensing) 

was evaluated in terms of fruit detection accuracy, yield prediction estimation and 

geometric characterization performance.  
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To evaluate the fruit detection accuracy, each detection obtained using the fruit 

detection algorithm was classified as one of the following groups: 

• True positive (𝑇𝑇𝑃𝑃): Detections that intersect with a ground truth apple label 

(bounding box annotation) with an overlap higher than 50%. In case of multi-

detections, only one true positive was counted. 

• False positive (𝐹𝐹𝑃𝑃): Detections that do not intersect with an annotation with 

an overlapping higher than 50%. 

• Multi-detection (𝑅𝑅𝐼𝐼): A multi-detection is produced when a single apple is 

detected n times (by different detections). That could happen, for instance, if a 

single apple detection was wrongly split in K detections when applying the 

fruit separation step. In that case, it is counted one 𝑇𝑇𝑃𝑃 and n - 1  multi-

detections 𝑅𝑅𝐼𝐼. 

Having the total amount of 𝑇𝑇𝑃𝑃, 𝐹𝐹𝑃𝑃, 𝑅𝑅𝐼𝐼, and the number of labels detected (𝐿𝐿𝐼𝐼), the 

fruit detection accuracy is assessed in terms of detection rate (𝐼𝐼𝑅𝑅), recall (𝑅𝑅), precision 

(𝑃𝑃), false positive rate (𝐹𝐹𝑃𝑃𝑅𝑅), multi-detection rate (𝑅𝑅𝐼𝐼𝑅𝑅) and F1-score, as follows: 

 𝐼𝐼𝑅𝑅 = 𝐿𝐿𝐿𝐿
𝐺𝐺  , (1) 

 𝑅𝑅 = 𝐺𝐺𝑃𝑃
𝐺𝐺  , (2) 

 𝑃𝑃 = 𝐺𝐺𝑃𝑃
𝐿𝐿  , (3) 

 𝐹𝐹𝑃𝑃𝑅𝑅 = 𝐹𝐹𝑃𝑃
𝐿𝐿  , (4) 

 𝑅𝑅𝐼𝐼𝑅𝑅 = 𝑀𝑀𝐿𝐿
𝐿𝐿  , (5) 

 𝐹𝐹1 = 2 𝐿𝐿·𝑃𝑃
𝐿𝐿+𝑃𝑃 , (6) 

where 𝐼𝐼 is the number of fruit detections and  𝑇𝑇 is the total number of fruits in the 

dataset.  

Since the algorithm used for fruit detection needs to be trained, the test has to be 

performed using a new dataset, different to the one used for training. To do so, an 11-

fold cross-validation was practiced (11 iterations). Each iteration evaluated one tree, 

while the other trees were used as training set. The final test results presented in 
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sections 3.1 and 3.2 were obtained aggregating 𝑇𝑇𝑃𝑃, 𝐹𝐹𝑃𝑃 and 𝑅𝑅𝐼𝐼 from all iterations and 

computing the metrics previously defined for all the dataset. Section 3.1 reports results 

after the pre-processing (Pp), fruit separation (FS) and false positive removal (FPr) 

steps. Different combinations of features used in the FS and FPr steps were evaluated in 

order to assess the usefulness of using each feature. This evaluation was carried out 

using data acquired from sensor height H1, without forced air action and from both row 

sides (H1,n,(E+W)). On the other hand, section 3.2 evaluates, both qualitatively and 

quantitatively, the fruit detection performance under different conditions and analyzes 

the effect of using forced air flow and scanning at different sensor heights. Results are 

reported either with respect to (w.r.t.) GTfield, as well as w.r.t. GTlabels. These two 

different approaches allow comparing the present methodology to other fruit detection 

works evaluated w.r.t. the number of visible fruits (Gongal et al., 2015).  

The yield prediction was also evaluated following the 11-fold cross-validation model. 

First, the fruit detection algorithm was used to automatically count the number of fruits 

on each tree. Then, 11 iterations were performed in order to assess the yield prediction 

on each tree. In yield prediction, what is important is not so much the percentage of 

fruits detected but rather the correlation that exists between the number of detections 

and the actual number of fruits in the tree (Linker, 2017). Thus, a simple linear 

regression model 𝑦𝑦 = 𝑟𝑟 · 𝑥𝑥 + 𝑏𝑏 was obtained using the training set. This model related 

the number of fruits detected 𝐼𝐼 and the actual number of fruits manually counted in the 

field 𝐺𝐺𝑇𝑇𝑓𝑓𝐿𝐿𝑝𝑝𝐺𝐺𝑓𝑓. Then, the linear model was used to predict the number of fruits of the test 

set. With that, we ensured that the prediction model was not influenced by the 

detections of the tested tree. Finally, the prediction error associated to each tree 

prediction was computed as  

 
𝑅𝑅𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑡𝑡 =

𝐹𝐹𝑟𝑟𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑟𝑟𝑆𝑆𝐹𝐹𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝐹𝐹 − 𝐺𝐺𝑇𝑇𝑓𝑓𝐿𝐿𝑝𝑝𝐺𝐺𝑓𝑓
𝐺𝐺𝑇𝑇𝑓𝑓𝐿𝐿𝑝𝑝𝐺𝐺𝑓𝑓

 . (7) 

In order to have an evaluation of all the dataset, the root mean square error (RMSE) was 

computed: 

 
𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝑅𝑅𝑟𝑟𝑟𝑟𝐼𝐼𝑟𝑟𝑡𝑡)2𝐺𝐺

𝑡𝑡=1
𝑁𝑁

 , (8) 

where 𝑁𝑁 is the number of trees evaluated; in this work N=11. 
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For the geometrical characterization evaluation, the trial H1,n was considered the 

reference measurement as it was the configuration validated in the original 

methodologies used to compute the geometrical parameters assessed (Escolà et al., 

2017; Sanz et al., 2018). Since training data were not required, this evaluation was 

carried out on all the dataset at once, comparing the geometrical characterization 

obtained with standard scanning, H1,n, with forced air flow application, H1,(n+af), and 

with the multi-view approach H(1+2),n. 

3. Results  

This section evaluates the fruit detection algorithm and analyses the effect of air flow 

and different sensor positioning for fruit detection, yield prediction and geometric 

characterization. All results are obtained using the data presented in section 2.1. 

3.1. Feature assessment 

Comparing results using all features, the FS and FPr steps significantly improved the 

algorithm performance, going from an F1-score of 0.7449 (after pre-processing) to an 

F1-score of 0.7837 and 0.8119 after the FS and FPr steps, respectively (Table 2). 

Regarding the features, volume was the most useful for FS, presenting an F1-score 

improvement of 4% (from 0.7449 to 0.7824), however, it did not contribute in removing 

FP. The most useful feature for FPr was the reflectance histogram, improving the F1-

score by 2% when it was used. It can be observed that the other tested features also 

contributed positively to the FS and FPr steps, except for 𝜎𝜎𝐿𝐿 and 𝑅𝑅𝑚𝑚𝐺𝐺𝑚𝑚 which slightly 

penalized the FS although they were useful for FPr. 

Table 2. Features assessment using data acquired at sensor height H1 without forced air action 
(H1,n). The evaluation is reported in terms of F1-score with respect to the number of annotated 
fruits.  

Feature Pp         
𝑉𝑉  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
𝑟𝑟ℎ   ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
𝛹𝛹    ✔ ✔ ✔ ✔ ✔ ✔ 
𝑃𝑃𝑃𝑃     ✔ ✔ ✔ ✔ ✔ 
λ𝑛𝑛      ✔ ✔ ✔ ✔ 
𝑅𝑅�       ✔ ✔ ✔ 
𝜎𝜎𝐿𝐿        ✔ ✔ 

𝑅𝑅𝑚𝑚𝐺𝐺𝑚𝑚         ✔ 
Pp + FS 0.7449 0.7824 0.7834 0.7838 0.7842 0.7843 0.7847 0.7839 0.7837 

Pp + FS + FPr 0.7449 0.7824 0.8019 0.8089 0.8090 0.8098 0.8103 0.8110 0.8119 
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3.2. Fruit detection results 

For simplicity, in this section results w.r.t. GTlabels are presented outside parentheses, 

together with results w.r.t. GTfield inside parentheses. Trials with data from only one tree 

side (either E or W) presented the lowest detection rates, reporting F1-score values of 

0.537 (0.513) and 0.624 (0.598), at conditions H1,n,E and H1,n,W, respectively. The 

performance significantly improved when the trees were scanned from both sides, 

presenting an F1-score of 0.812 (0.784) at conditions H1,n,(E+W). The detection rates 

dropped when trees were scanned under forced air flow conditions H1,af,(E+W) because 

the point cloud quality decreased (became “blurred”) and, while some apples were dis-

occluded by the air flow effect, others were occluded (Figure 5). The forced air flow 

usefulness was found when combining the data acquired with and without forced air 

flow H1,(n+af),(E+W). Merging these trials, the percentage of detected fruits increased by 

more than 7%, achieving a detection rate of 0.894 (0.838), a recall of 0.814 (0.763) and 

an F1-score of 0.826 (0.799). Trials at height H2 presented lower detection rates because 

the LiDAR was positioned in an upper position and, in consequence, the system failed 

on detecting fruits at the bottom parts of trees (Figure 6 and Figure 8). Nevertheless, 

combining trials at different sensor heights H(1+2),n,(E+W) (multi-view approach) 

increased fruit detection performance similarly to combining different air conditions, 

achieving an F1-score of 0.830 (0.802). Finally, combining all trials H(1+2),(n+af),(E+W) 

(different sensor heights and air flow conditions) increased the detection rate but 

penalized the recall. This took place due to fact that the point cloud became more 

blurred, making difficult to split up groups of apples.  

For a visual/qualitative assessment, Figure 5 shows an example of the acquired point 

cloud and the corresponding fruit detection results. Due to the field-of-view of the RGB 

camera used to acquire images shown in Figure 5a, only the bottom part (from 0m to 

2m height) of tree 4 was illustrated. To help the visualization, the colour scale of Figure 

5b represents the calibrated reflectance of the measured scene, illustrating reflectance 

values from 10% (blue) to 80% (red). From that, it can be observed that apples present a 

higher reflectance than other tree elements.  
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Red squares of Figure 5 show an example of an apple that was occluded in trial H1,n,  

and became dis-occluded in H1,af, due to the effect of applying forced air flow. The 

opposite happened in the blue squares example, where an apple that was visible in H1,n 

became occluded in H1,af. These occlusions affected the fruit detection performance, as 

it can be seen in the detections shown in Figure 5c. To take advantage of the dis-

occlusions produced by the air flow effect without being penalized by its occlusions, the 

data from both trials (H1,n and H1,af) were combined, increasing the number of visible 

apples as it can be observed in the detections shown in H1,(n+af). Comparing the detection 

rates between H1,n,(E+W) and H1,(n+af),(E+W) in Table 3, more than a 7% of fruits were dis-

occluded when combining trials with and without force air flow, presenting an increase 

of the DR from 0.823  in H1,n,(E+W)  to 0.894 in H1,(n+af),(E+W). 

Table 3. Fruit detection assessment at different sensor heights and air flow conditions. Results 
are reported in terms of detection rate (DR), recall (R), precision (P), false detection rate (FDR), 
multi-detection rate (MDR) and F1-score. DR, R and F1-score were computed with respect to 
the number of labelled fruits (L), and to the total amount of fruits manually counted in the field 
(F). Best achieved results are in bold type.  

Trial DR  R P  FDR  MDR F1-score 
 L F  L F    L F 

*H1,n,(E+W) 0.823  0.771  0.758 0.710 0.875 0.104 0.021 0.812 0.784 
H1,n,E 0.415  0.389  0.383 0.359 0.898 0.089 0.013 0.537 0.513 
H1,n,W 0.540 0.506  0.485 0.454 0.875 0.110 0.015 0.624 0.598 
H1,af,(E+W) 0.768 0.720  0.698 0.654 0.868 0.108 0.024 0.774 0.746 
H1,(n+af),(E+W) 0.894 0.838  0.814  0.763 0.839 0.110 0.051 0.826 0.799 
H2,n,(E+W) 0.663 0.621  0.588 0.551 0.841 0.131 0.028 0.692 0.666 
H2,n,E 0.351 0.329  0.318 0.298 0.909 0.085 0.006 0.471 0.449 
H2,n,W 0.429 0.402  0.369 0.346 0.798 0.171 0.031 0.505 0.482 
H2,af,(E+W) 0.573 0.537  0.517 0.484 0.885 0.096 0.019 0.652 0.626 
H2,(n+af),(E+W) 0.748 0.701  0.656 0.615 0.803 0.143 0.054 0.722 0.696 
H(1+2),n,(E+W) 0.892 0.836  0.802 0.751 0.860 0.095 0.045 0.830 0.802 
H(1+2),n,E 0.528 0.495  0.480 0.450 0.884 0.096 0.020 0.622 0.596 
H(1+2),n,W 0.653 0.612  0.576 0.540 0.853 0.112 0.035 0.688 0.661 
H(1+2),af,(E+W) 0.868 0.813  0.793 0.743 0.866 0.092 0.042 0.828 0.800 
H(1+2),(n+af),(E+W) 0.917 0.859  0.789 0.739 0.777 0.101 0.122 0.783 0.758 
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Figure 5. Illustration of the forced air flow effect in fruit detection. Left side corresponds to a 
trial without forced air (H1,n) while right side corresponds to a measurement with forced air flow 
action (H1,af). a) RGB images taken from the sensor position. b) Point cloud obtained with the 
MTLS. c) Fruit detections using the fruit detection algorithm. Squares in red and blue are a 
zoom-in of two zones where the air flow effect dis-occluded (red) or occluded (blue) some 
fruits. Squares denoted by H1,(n+af) correspond to the trial that aggregates the data from H1,n and 
H1,af. 
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3.3. Fruit location results 

As well as not being affected by usual field lighting conditions, the LiDAR sensor used 

has the advantage of providing the relative 3D location of the fruits detected. When 

integrated in the designed MTLS, the fruits are located in global 3D coordinates. That 

allows to obtain the spatial distribution of detected fruits in height (along ‘y’ axis) and 

in depth (along ‘x’ axis). Figure 6 shows that that most of the fruits from the dataset (11 

trees) were between heights of 0.6 m and 2.1 m. It is also observed that, when scanning 

at height H2, the detection rate dropped in lower zones of the tree, while aggregating 

data from both scanning heights H(1+2) helps to increase the detection rate (Figure 6). 

The distribution of fruits along the ‘x’ axis (Figure 7) shows that the east side (x > 0) 

was 10cm wider and had a 2 % more of fruits than the west side (x < 0). Due to the 

limited number of tested trees (11 trees), further tests should be carried out to study the 

relation between the canopy width and the fruit yield. The fruit distribution also shows 

that 1233 fruits out of 1353 (91%) were at distances between -0.4 m and 0.4 m from the 

center of the tree (along the x axis), with a maximum production of 599 (44%) fruits at 

distance intervals of ±[0.1, 0.3] (Figure 7). It is also observed that the best detection 

performance was achieved when combining data acquired with and without forced air 

action (cyan vertical bars). It should be noted that the mean canopy contour was 

computed from the average of all canopy widths in the data set and not as the maximum 

width. For this reason, some detected apples in Figure 7 fall outside the plotted mean 

canopy contour.  
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Figure 6. Distribution of fruits in height and comparison with the number of fruits identified 
when scanning at different sensor height (H1 and H2). Data includes information from all dataset 
(11 trees). Left and bottom axis refers to the horizontal bars, which provide the number of true 
positives identified by the fruit detection algorithm at different height intervals. Right and top 
axis (height and width) refers to the mean canopy width illustrated in green. 

  

 
Figure 7. Distribution of fruits in depth (along x axis) and comparison with the number of fruits 
identified in all dataset (11 trees) when scanning at different air flow conditions (n and af). The 
mean canopy contour is also illustrated in green. Left and bottom axis refers to the number of 
true positive identified in each ‘x’ position, while the right axis refers to the height of the mean 
canopy contour.  
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From the distribution histograms presented in Figure 6 and Figure 7, it is 

straightforward to obtain an evaluation of the fruit detection performance at different 

tree locations, facilitating an analysis of where the fruit detection system fails or 

succeeds. Figure 8 illustrates the detection rate (DR) distribution in height and along the 

x axis for the different trials: height sensor positions H1 and H2, air flow conditions n 

and af, and scanned sides E and W. Since in H1 the sensor height was approximately the 

half of the tree height, the DR of trial H1 decreased in the lower and upper tree zones 

(more sharply in the upper zone), approximately at heights under 1m and above 2.5m 

(Figure 8a). On the other hand, in H2 the sensor was located in the upper zone, which 

explains that the DR of trial H2 decreased in the lower parts of the tree, under 2m 

height, while reporting DR > 85% for heights above 2.5m (Figure 8a). The trial that 

combines both sensor heights H(1+2) takes advantage of both views, presenting DR 

higher than 85% for tree heights above 1m. Regarding the detection performance in 

depth (along the ‘x’ axis), H2 presented low DR in external zones -further than 0.4m 

from the center of trees- (Figure 8b). This is because the widest zones were at the 

bottom of the tree, corresponding to the zone where H2 had more occlusions. In Figure 

8(c-f), the DR was higher in the trials without forced air flow than in the trials with 

forced air flow. Nevertheless, the DR was improved more than 5% when combining 

both scanning conditions. This improvement was seen along all tree heights and widths. 

Finally, Figure 7(g-h) illustrate the DR distribution when processing data from tree row 

sides separately (E or W) and together (E+W). The detection rate dropped more than 

28% on the non-scanned side: trial H1,n,E presented low detection rates on the west side 

(x < 0) and trial H1,n,W on the east side (x > 0). However, when aggregating the two 

sides, the detection performance was almost constant in all tree widths because of the 

reduction of the number of fruit occlusions when scanning from the two sides of the 

apple trees. 
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Fig. 2. Detection rate under different air flow conditions (n and af) and sensor positions (H1 and 
H2) at different tree locations: in height (a, c, e, g) and along the ‘x’ axis (b, d, f, h). All plots 
evaluate data acquired from both row sides (E+W), except g) and h) where the evaluated row 
side is specified in the corresponding legend. 
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3.4. Yield prediction results 

Table 4 shows yield prediction results for trial H(1+2),n, which reported the highest F1-

score, as seen in section 3.2. Results showed higher prediction errors when using data 

from only one tree side (E or W), obtaining RMSEs of 19.0% and 12.4% and a 

coefficient of determination (R2) of 0.58 and 0.54, when scanning from the east and 

west sides, respectively. The prediction was significantly improved when using data 

from both tree sides (E+W), presenting errors between -7.7% and 12.0% with an RMSE 

of 5.7% (Table 4) and R2=0.87 (Figure 9).  

Table 4. Yield predictions results (number of fruits) combining H1 and H2 data without forced 
air flow (H(1+2),n). Results are presented for data acquired from one tree side, either east (E) or 
west (W), and combining data from both sides (E+W). 

 Ground 
Truth 

(# fruits) 

Fruits detected  
(D) 

 Fruits predicted 
(a·D + b) 

 Prediction error 
(%) 

 E W E+W  E W E+W  E W E+W 
Tree01 139 71 96 125  133.9 145.7 142.8  -3.7 4.8 2.7 
Tree02 106 57 69 98  126.6 119.9 115.5  19.5 13.1 9.0 
Tree03 139 64 81 118  128.3 128.2 134.4  -7.7 -7.7 -3.3 
Tree04 137 61 89 116  126.0 137.4 132.3  -8.0 0.3 -3.4 
Tree05 94 44 59 79  121.0 116.2 92.8  28.8 23.7 -1.3 
Tree06 131 66 96 127  130.7 147.5 146.7  -0.2 12.6 12.0 
Tree07 119 54 84 103  122.5 133.6 118.9  3.0 12.3 -0.1 
Tree08 145 66 77 118  129.3 122.7 133.8  -10.8 -15.4 -7.7 
Tree09 139 63 90 126  127.5 138.3 144.0  -8.3 -0.5 3.6 
Tree10 136 68 70 114  131.8 114.0 130.1  -3.1 -16.2 -4.4 
Tree11 159 120 102 137  237.3 147.0 153.4  49.3 -7.6 -3.5 
Total 1444 734 913 1261   RMSE:  19.0 12.4 5.7 

 

When comparing different sensor heights and air flow conditions, the highest 

performance was achieved by H1,n,(E+W), obtaining an RMSE of 5.4% (Table 5). 

Although merging different air conditions (n+af) or different sensor heights (H(1+2)) 

improved the percentage of fruits detected, neither the air flow effect H1,(n+af),(E+W) nor 

the multi-view approach H(1+2),n,(E+W) improved yield prediction, presenting similar 

results to those of trial H1,n,(E+W). 
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Figure 9. Linear regression between the number of apples detected with H(1+2),n,(E+W) and the 
actual number of apples per tree (GTfield).  

Table 5. Yield prediction assessment at different sensor heights (H1 and H2), air conditions (n 
and af) and scanned sides (E and W). Best achieved results are in bold type. 

Trial RMSE (%) 

H1,n,(E+W) 5.4 
H1,n,E 15.2 
H1,n,W 15.3 
H1,af,(E+W) 6.8 
H1,(n+af),(E+W) 5.5 
H2,n,(E+W) 8.1 
H2,n,E 11.3 
H2,n,W 10.6 
H2,af,(E+W) 12.7 
H2,(n+af),(E+W) 10.0 
*H(1+2),n,(E+W) 5.7 
*H(1+2),n,E 19.0 
*H(1+2),n,W 12.4 
H(1+2),af,(E+W) 6.7 
H(1+2),(n+af),(E+W) 8.1 

 

3.5. Geometric characterization results 

Regarding height results, it was observed that the forced air flow and multi-view 

approaches produced very similar results when measuring the mean canopy height. 

Mean width estimation was neither significantly affected by the multi-view 

configuration; but a difference higher than 10% was reported when scanning with 
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forced air flow (Table 6). The mean cross-section area measurement was the parameter 

which has been affected the most by the scanning conditions, with differences of 22.3% 

when combining air conditions and 16.3% when combining different sensor heights. 

These higher deviations are the consequence of an error propagation of height and width 

measurements. For a qualitative evaluation, Figure 10 illustrates the mean canopy 

contour obtained in different trials. It can be observed that the multi-view approach 

(plotted in blue) matched slightly better the reference trial than the trial that combines 

different air conditions (plotted in red). Finally, concerning the leaf area analysis, both 

approaches performed similarly, with a 10.6% difference when combining different air 

conditions and an 8.3% difference with the multi-view approach.  

 
Fig. 3. Illustration of the mean canopy contour obtained at different sensor heights (H1 and H2) 
and air flow conditions (n and af). The east side (E) corresponds to the positive horizontal 
distances. 
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Table 2. Geometric characterization assessment at different sensor heights (H1 and H2) and air 
conditions (n and af). Differences with respect to the reference trial H1_n are reported within 
brackets.  

Height Air flow Mean Height 
[m] 

Mean Width 
[m] 

Mean Cross-
Section area 

[m2] 

Mean Leaf 
Area 

[m2/m] 
H1 n 3.64 1.23 2.12 9.77 
H1 (n+af) 3.71 (2.1%) 1.36 (10.7%) 2.59 (22.3%) 10.80 (10.6%) 
(H1+H2) n 3.68 (1.3%) 1.27 (3.8%) 2.46 (16.3%) 10.57 (8.3%) 

 

4. Discussion  

The fruit detection results showed that trials H1,(n+af), and H(1+2),n, located 6.7 % and 6.5 

% more fruits than H1,n, respectively, presenting DR > 0.89 and R > 0.80 with respect to 

the total number of annotated fruits. Although it is difficult to compare systems tested 

with different datasets, these results are similar (in terms of detection rate) to those 

obtained in studies based on color images, which have reported accuracies of between 

80% and 85% using color features (Gongal et al., 2015) and up to 90% (F1-score) using 

deep learning (Bargoti and Underwood, 2017a; Gené-Mola et al., 2019c; Sa et al., 

2016). The results are also comparable with those of studies based on vision systems 

used in orchard harvesting robots, which have reported a mean location success of 80% 

and a mean identification success of 70% (Bac et al., 2014). 

The system used in this study was based on the MTLS described in Escolà et al. (2017). 

However, there was a big improvement when replacing the 2D LiDAR sensor with the 

3D Velodyne VLP-16. Although the original system was not used to detect fruits, 

having 16 laser beams within a ±15º horizontal FoV, that is 16 different points of view, 

certainly contributed to improving the fruit detection rates. In future works, the system 

could be further improved by including an IMU sensor. With that, the system could 

scan faster -higher forward speed- and along different types of trajectories -not limited 

to linear-. 

Among the main advantages of using the system presented here for fruit detection are 

that the sensor is not affected by lighting conditions and provides the 3D location of 

fruits. This allows to know the special fruit distribution in the tree, which can be useful 

for studying and optimizing agricultural processes (Martin-Gorriz et al., 2014; Widmer 
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and Krebs, 2001), e.g. comparing different pruning and thinning strategies with the 

spatial distribution of fruits in the trees and the yield. In Figure 6, it was observed that in 

general terms the number of fruits increases in wider zones, and in Figure 7 that the 

number of fruits at the center of the tree was 30% lower than at horizontal distance 

intervals of ±[0.1, 0.3]. This could be a consequence of canopy porosity (Pfeiffer et al., 

2018; Trentacoste et al., 2018), because the center of the tree receives less light than the 

outer parts, however further analysis is needed. System performance at different heights 

and widths was analyzed. Figure 8a showed that the multi-view approach H(1+2),n 

presented similar detection rates at different heights. In contrast, with H1,n system 

performance decreased when trying to detect fruits from the upper zone of the tree, and 

with H2,n when detecting fruits from the bottom. As for fruit detection performance 

along the horizontal axis, H2,n presented low detection rates in the outer parts, whereas 

H1,n and H(1+2),n presented similar detection rates in all tree widths (Figure 8b).  

Knowing the fruit distribution on the tree structure could be valuable for the planning 

and optimization of harvesting strategies (Bargoti and Underwood, 2017b). For 

example, depending on the amount of fruits in the top parts of the trees and considering 

the extra costs involved to pick them (use of ladders or elevation platforms), the farmer 

could decide not harvest the highest areas. This could also result in improved overall 

quality of the harvested apples, due to the reduction of fruits damage (in lower and 

intermediate parts of the tree), caused by metal structures needed to reach the highest 

points (Młotek et al., 2015). 

With respect to the yield prediction results, the presented system was able to estimate 

the number of fruits on each tree with an RMSE of 5.4% when scanning with standard 

conditions H1,n. Similar results were obtained using the forced air flow and multi-view 

approaches, with RMSE values of 5.5% and 5.7%, respectively. This means that, 

although merging air conditions or sensor heights can help to minimize the number of 

fruit occlusions, these conditions do not provide an advantage for yield prediction, 

because the correlation between the number of detections and the actual number of 

fruits in the trees was similar to the one in H1,n. The yield prediction errors of ~5.5% 

reported in trials H1,n, H1,(n+af), and H(1+2),n, are comparable with other state-of-the-art 

yield prediction methods, such as those presented by Linker (2018b, 2017), Payne et al. 
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(2014) and Zhou et al. (2012), which reported yield prediction errors of between 10% 

and 16%. However, while Linker (2018b, 2017) and Payne et al. (2014) used night-time 

images to prevent detection errors due to natural lighting, the presented methodology is 

not affected by lighting conditions. 

Another advantage of using a MTLS system compared to other devices or systems used 

for fruit detection is that it allows simultaneous yield monitoring and geometric 

characterization. The system was able to measure canopy geometrical parameters at the 

same time, namely height, width, cross-section area and leaf area. Therefore, spatial 

maps of different canopy features can be created, observing the relationship between 

canopy structure and fruit tree productivity. This capability makes the designed system 

a very interesting tool that can be used to analyze the behavior of different fruit tree 

varieties in relation to its potential of production (Kühn et al., 2003), the fruit location 

and, especially, how pruning techniques and training systems could affect production 

depending on the structural organization (Martin-Gorriz et al., 2014). 

5. Conclusions  

This work presents an analysis of different methodologies based on the use of a mobile 

terrestrial laser scanner for remote fruit detection and plant geometrical characterization. 

In order to minimize fruit occlusions, two different approaches were tested: forced air 

flow and multi-view sensing. The main contributions of this paper were: (1) A 

methodology for simultaneous fruit location and canopy geometric characterization; (2) 

An analysis of the usefulness of forced air flow and multi-view approaches for fruit 

detection, yield prediction and canopy geometric characterization. The results show that 

the system was able to detect and locate more than 80% of the total annotated fruits and 

to predict the yield with an RMSE lower than 6%. These fruit detection results are 

comparable with those obtained with other state-of-the-art methodologies, with the 

advantages that the presented system is not affected by lighting conditions and also 

provides geometric characterization of the tree crop, allowing the comparison between 

yield and canopy structure. From the scanning conditions analysis, it is concluded that 

the best configuration for yield prediction and geometric characterization corresponds to 

mounting the sensor at half the maximum tree height H1 and scanning without forced air 
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flow action. However, if the LiDAR-based system is used for fruit detection, combining 

data acquired with and without forced air flow action H1,(n+af) or using the multi-view 

H(1+2),n approach are good options to increase the percentage of fruits detected. If the 

scanning system is used for both fruit detection and geometric characterization, the best 

option is the multi-view approach, since it increases the fruit detection rate without 

excessively penalizing geometric characterization. Future works should focus in the 

analysis of fruit occlusions in different training systems and extending the present study 

to other fruit varieties.  
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Abstract 
Fruit detection and localization will be essential for future agronomic management of 

fruit crops, with applications in yield prediction, yield mapping and automated 

harvesting. RGB-D cameras are promising sensors for fruit detection given that they 

provide geometrical information with color data. Some of these sensors work on the 

principle of time-of-flight (ToF) and, besides color and depth, provide the backscatter 

signal intensity. However, this radiometric capability has not been exploited for fruit 

detection applications. This work presents the KFuji RGB-DS database, composed of 

967 multi-modal images containing a total of 12,839 Fuji apples. Compilation of the 

database allowed a study of the usefulness of fusing RGB-D and radiometric 

information obtained with Kinect v2 for fruit detection. To do so, the signal intensity 

was range corrected to overcome signal attenuation, obtaining an image that was 

proportional to the reflectance of the scene. A registration between RGB, depth and 

intensity images was then carried out. The Faster R-CNN model was adapted for use 

with five-channel input images: color (RGB), depth (D) and range-corrected intensity 
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signal (S). Results show an improvement of 4.46% in F1-score when adding depth and 

range-corrected intensity channels, obtaining an F1-score of 0.898 and an AP of 94.8% 

when all channels are used. From our experimental results, it can be concluded that the 

radiometric capabilities of ToF sensors give valuable information for fruit detection.  

Keywords: RGB-D; Multi-modal faster R-CNN; Convolutional Neural Networks; Fruit 

detection; Agricultural robotics; Fruit reflectance.  

1. Introduction 
To meet the food needs of a world’s growing population, horticulture must find new 

ways to increase the production of fruits and vegetables (Siegel et al., 2014). This is a 

major challenge for agricultural communities, especially in a context of rising farming 

costs and a shortage of skilled labor. Efficient and sustainable agronomic management 

is required to reduce economic and environmental costs while increasing orchard 

productivity. 

Improvements in technological fields like robotics and computer science have provided 

farmers with tools to increase production in an efficient and sustainable way 

(Underwood et al., 2016). The use of new technologies in precision agriculture has been 

applied in the optimization of agricultural processes such as water irrigation, 

agrochemical application, fertilization, pruning and thinning (Auat Cheein and Carelli, 

2013; Bargoti and Underwood, 2017b). Farmers can obtain valuable information for 

optimization of these processes from the detection and quantification of fruit 

distribution within the canopy.  

Advances in sensing and computer vision have facilitated the development of remote 

fruit detection systems, with applications in yield prediction, yield mapping and 

automated harvesting. Yield prediction allows farmers to plan the harvest campaign, 

fruit storage and sales (Bargoti and Underwood, 2017b; Nuske et al., 2014). On many 

occasions, yield estimation is carried out by manual counting of a few samples, without 

addressing spatial variability within the orchard. Although simple random sampling 

(SRS) is a widely used technique for yield estimation, it is necessary to sample a 

relatively large number of trees for a precise estimation. Though this may sometimes be 

unfeasible with manual counting, it could be possible by using currently available 
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computer vision technologies. As for yield mapping, production maps provide useful 

information for fruit growers. Fruit orchards usually show spatial variability due to soil 

variations, fertility, water irrigation, among others (Uribeetxebarria et al., 2018). An 

analysis of yield maps helps farmers to find the reasons for such variability and to 

determine which areas of lower productivity require special attention. Finally, fruit 

detection and 3D localization are the first steps in the development of automated 

harvesting. Hand harvesting is a hard and human-resource intensive labor, which has to 

find an alternative since the decreasing availability of skilled labor force (Gongal et al., 

2015). Despite the latest advances in imaging techniques and computer vision, detecting 

and localizing fruits within the canopy is still a pending issue that has to face problems 

derived from the heterogeneity of the environment, such as occlusions with other 

vegetative organs and variable lighting conditions. Most of the emerging sensors, such 

depth cameras (RGB-D sensors), have not yet been exploited for fruit detection and 

localization. The major reason is  the lack of substantial datasets (Hameed et al., 2018). 

This paper introduces the KFuji RGB-DS database, which contains multi-modal images 

of Fuji apples in real orchards, and presents a novel study of the usefulness of RGB-D 

sensors and their radiometric capabilities for fruit detection. The Faster Region-based 

Convolutional Neural Network (Faster R-CNN) was adapted and implemented for apple 

detection using multi-modal images obtained with Microsoft’s Kinect v2 (Microsoft, 

Redmond, WA, USA). The multi-modal images were obtained after pre-processing and 

registering three different modalities: color (RGB), depth (D) and range-corrected IR 

intensity -proportional to reflectance- (S).  

The main contributions of this paper are: (1) provision of the first apple dataset with 

multi-modal images from RGB-D sensors with color, depth and range-corrected IR 

intensity data, and the corresponding annotations with the ground truth apple locations; 

(2) an analysis of the radiometric capabilities of Kinect v2 for fruit detection; (3) an 

implementation of a high-performance fruit detection system using an adaptation of 

Faster R-CNN for five-channel input images; (4) a study of the optimal anchor scales 

and aspect ratios used in the region proposal network (RPN). After this Introduction 

section, the rest of the paper is structured as follows: section 2 presents related work 

retrieved from the state of the art; section 3 describes the proposed dataset, explaining 
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the signal range-correction theoretical basis, the experimental set up for data 

acquisition, the pre-processing needed to build the 5-channel multi-modal images, and 

the network implemented for fruit detection; section 4 shows the results and discusses 

qualitatively and quantitatively the performance of the fruit detector when using each of 

the modalities provided by the sensor; finally, the conclusions are presented in section 5 

2. Related work 

Over the years, different sensors and systems have been used for fruit detection and 

localization (Gongal et al., 2015). The most commonly sensors used are color (or RGB) 

cameras (Bargoti and Underwood, 2017a; Linker, 2017; Maldonado and Barbosa, 2016; 

Zhao et al., 2016). However, the drawbacks to these sensors include the fact that they 

only provide 2D information and their measurements are affected by lighting 

conditions. Advances in photonics and the exploration of non-visible wavelengths have 

allowed the introduction of other systems, including thermal, multispectral and 

hyperspectral cameras. Thermal cameras have been used in fruit detection, 

differentiating fruits from background by the different thermal inertia of the fruits. 

Fruits can thus be detected when the ambient temperature is increasing or decreasing 

(Bulanon et al., 2008; Stajnko et al., 2004). Multispectral and hyperspectral cameras 

have also been used for fruit detection, allowing the acquisition of data at different 

bands of the electromagnetic spectrum (Okamoto and Lee, 2009; Sa et al., 2016; Safren 

et al., 2007; Zhang et al., 2015). However, like RGB cameras, thermal, multispectral 

and hyperspectral cameras only provide 2D information. 

More recently, LiDAR (Light Detection and Ranging) systems have been introduced in 

agriculture to obtain 3D models of crops (Escolà et al., 2017; Rosell Polo et al., 2009; 

Sanz et al., 2018). This sensor works according to the time-of-flight principle (ToF), 

measuring distances to the objects by computing the time required by a laser pulse to 

complete the round trip between sensor and target. Besides the geometrical information 

(3D point clouds), this sensor also provides the amount of light backscattered by the 

scene (related with the reflectance). In this respect, the authors have shown in a recent 

study (Gené-Mola et al., 2018) that some fruits, like Fuji apples, have higher reflectance 
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than leaves and trunks, reporting an 85% detection success rate when using the 

reflectance capabilities of a LiDAR sensor.  

Another technology derived from previous ones, and also used in crop monitoring are 

the RGB-D or depth cameras (Rosell-Polo et al., 2017, 2015). These sensors provide 3D 

information with color data, allowing the detection and subsequent 3D localization of 

the fruit. The operating principle can be based on stereo triangulation (Font et al., 2014; 

Wang et al., 2017) or on a combination of an RGB and a depth sensor, either based on 

structured light (Nguyen et al., 2016) or on ToF (Barnea et al., 2016; Gongal et al., 

2018). Similarly to LiDAR sensors, RGB-D systems based on the ToF principle provide 

the amount of light backscattered by the scene, which can be related to the reflectance 

after range correction and sensor calibration (Rodríguez-Gonzálvez et al., 2016). This 

radiometric capability has been applied to face detection (Chhokra et al., 2018) by using 

the backscattered IR intensity image (without range correction) as an additional channel 

(RGB-DI). However, to the best of the authors’ knowledge, no previous object detection 

work has used range-corrected intensity data (proportional to reflectance). The use of 

this additional information would be of interest in fruit detection, since the reflectance 

of some fruit varieties is higher than background reflectance (Gené-Mola et al., 2018).  

Regarding the processing techniques used for fruit detection, most previous works have 

used traditional hand-crafted features to encode the data acquired with different sensors 

and infer fruit location. More recently, the introduction of deep neural networks has led 

to remarkable progress in object recognition and, therefore, in fruit detection. The object 

detection network Faster R-CNN (Ren et al., 2017) is the most commonly used for fruit 

detection (Bargoti and Underwood, 2017a; Gan et al., 2018; Sa et al., 2016; Stein et al., 

2016). Although other state-of-the-art networks are computationally more efficient (Liu 

et al., 2016; Redmon and Farhadi, 2017), real-time inference is not normally a 

requirement in fruit detection, so Faster R-CNN is often chosen due to its better 

performance with small objects. The main drawback of using convolutional neural 

networks is that they require a large amount of labelled data. As  pointed out in previous 

studies (Hameed et al., 2018), the lack of substantial datasets is a barrier for exploring 

emerging sensors that could be useful for fruit detection. 
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3. Materials and Methods 

3.1 Theoretical basis 

As previously introduced, the operation of the Kinect v2 sensor is based on the ToF 

principle. Thus, the received power coming from an object located at a distance R is 

given by the elastic LiDAR equation (Höfle and Pfeifer, 2007; Rodríguez-Gonzálvez et 

al., 2016): 

2 cost
r sys atm

P A
P

R
r
η η θ

π
= ,      (1) 

where tP  is the emitted power, A is the receiving area, r is the object reflectance, sysη is 

the optical efficiency of the instrument, atmη  accounts for atmospheric absorption and 

scattering, and θ is the incidence angle. The atmη is assumed to be equal to unity due to 

the short working range of the Kinect sensor. The received power rP  is range corrected 

in order to compare returns coming from different distances: 

2 cosrP R Kr θ=  ,     (2) 

where 𝐾𝐾 is the system constant that groups the instrument parameters. Rodríguez-

Gonzálvez et al. (2016) showed that there is a linear relationship between the digitized 

intensity E  provided by the Kinect v2 and the received power: 

· rE a P b= +        (3) 

where a is the gain and b is the offset. From Eq. (2) and Eq. (3) it is found that the 

range-corrected signal S depends on the reflectance r  as follows,  

2 cosS ER r θ= ∝       (4) 

where 2 2 2 2R x y z= + + , with [ , , ]x y z  the Cartesian coordinates of each point in the 3D 

cloud with respect to the sensor. 
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3.2 KFuji RGB-DS dataset 

3.2.1 Data acquisition 

Data were acquired in a commercial Fuji apple orchard (Malus domestica Borkh. cv. 

Fuji) located in Agramunt, Catalonia, Spain. The images were taken on September 25-

28th of 2017, three weeks before harvesting, at BBCH (Biologische Bundesanstalt, 

Bundessortenamt und CHemische Industrie) phenological growth stage 85 (Meier, 

2001).  

The data acquisition equipment consisted of two RGB-D cameras mounted on a mobile 

platform at heights of 1 m and 3 m, respectively (Figure 1) in order to capture data from 

all the tree height. The RGB-D sensors used were two Microsoft Kinect v2, which 

incorporate an RGB camera and a depth sensor that works according to the ToF 

principle. This sensor provides 3 different types of data: a color image, a depth image 

that can be used to generate a 3D point cloud of the scene, and the received IR 

backscattered intensity. Specific software written in C# was developed to collect and 

save data automatically. The software generates a 3D point cloud for each capture, with 

RGB and backscattered intensity data for each point, and saves it jointly with the raw 

RGB image. All captures were carried out during the night, using artificial lighting, 

since performance of the depth sensor drops under direct sunlight exposure (Rosell-Polo 

et al., 2015). Table 1 summarizes the specifications of the sensor and the platform used 

for data acquisition.  

 
Figure 1. View of the acquisition equipment showing the Kinect v2 sensors mounted on the 
mobile platform. 
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Table 1. Measurement equipment specifications. 

RGB-D sensor Manufacturer and model Microsoft Kinect v2 
 RGB channel resolution (pixels) 1920 x 1080 
 RGB channel field-of-view (FOV) 84.1º x 53.8º 
 IR and Depth channel resolution (pixels) 512 x 424 
 IR and Depth channel FOV  70º x 60º 
 Working range (m) 0.5 - 8 
Mobile Platform Developer GRAP-UdL-AT research group 
 Forward speed (km/h) 0.5 (manually adjustable) 
 Sensors height (m) 1 - 3 

 

3.2.2 Data preparation 

Once the data were collected, for each capture it was obtained a 3D point cloud (with 

RGB and backscattered intensity information) and the corresponding raw RGB image. 

Captures were processed separately. Depending on the application where this 

methodology is used, apples appearing in the overlapped parts of images should be 

addressed. For instance, for yield estimation, images should be registered in order to 

count the apples appearing in the overlapped parts only one time. However, this is not 

the goal of this work. 

A pre-processing was carried out to prepare these data as input data of the convolutional 

neural network. Data preparation included range-correction of the backscattered signal, 

2D projection of the 3D point cloud, and image registration between range-corrected 

intensity and raw RGB images. Figure 2 illustrates a flowchart of the data preparation 

steps. 

 
Figure 2. Data preparation diagram. For each frame, the sensor provides a 3D point cloud with 
RGB and backscattered intensity data, and a raw RGB image. Firstly, the intensity signal is 
range-corrected. Then, the 3D point cloud is projected onto a 2D plane parallel to the sensor, 
generating the range-corrected and depth images. Finally, the projected images are resized and 
cropped in order to register them with the RGB raw image. 5-channel multi-modal images of 
the scene were obtained, with RGB channels in high resolution.  
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The range correction of the backscattered signal was performed as described in Section 

3.1. After obtaining the 3D point cloud with range-corrected intensity data, a 

perspective projection onto a plane parallel to the sensor was carried out, generating the 

corresponding RGB projected, range-corrected intensity and depth images. Since the 

vertical field-of-view (FOV) of the depth sensor is larger than the vertical FOV of the 

RGB camera, the top and bottom parts, where no RGB information is given, were cut 

(blue regions in the RGB proj. image of Figure 2). This step was the responsible of 

having a different image aspect ratio that the original 512/424. In order to work with an 

RGB image with higher resolution than that of the IR image, a registration between the 

RGB raw image and the projected images is required. To do so, projected images were 

resized (bicubic interpolation) to 1600 x 1080 pixels (px) to achieve the same vertical 

size as the RGB high resolution image. Finally, an image registration was performed in 

order to have correspondence between all images, obtaining a 5-channel multi-modal 

image (with RGB in high resolution) where each pixel has information from 3 

modalities: color (RGB), range-corrected intensity and depth (Figure 2). Hereinafter, the 

RGB image obtained after the point cloud projection is denoted as RGBp, while the 

RGB image obtained after registering the raw RGB image is denoted as RGBhr. In order 

to have similar mean and variance between channels, the range-corrected intensity and 

depth images were normalized between 0 and 255 -like RGB images-. This 

normalization is desirable to ensure fast convergence of the network. The RGB channels 

were saved in 8-bit images while the range-corrected intensity and depth images were 

stored in 64-bits to avoid data precision loss.  

Ground truth fruit locations were manually annotated using the Pychet Labeller toolbox 

(Bargoti, 2016), labeling a total of 12,839 apples in all the dataset. Due to the large 

number of fruits per image (more than 100 fruits/image), and taking into account that 

fruit size (44 ± 6 px in diameter) is relatively small with respect to image size (1600 x 

1080 px), each capture was divided into 9 sub-images of 548 x 373 px, with an overlap 

of 20 px between sub-images to avoid the partially split of fruits at the boundaries in 

different partitions (Figure 3). 
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Figure 3. Image sub-division. Each raw image was divided into 9 sub-images to achieve a 
better relation between apple and image size.  

In total, the data set is composed of 967 sub-images, split into training, validation, and 

test sets as shown in Table 2. Some examples of the multi-modal sub-images used in the 

training dataset are shown in Figure 4. Due to further quantization for representation, 

fruits cannot be seen in depth images. The KFuji RGB-DS dataset with corresponding 

annotations has been made publicly available at 

www.grap.udl.cat/en/publications/datasets.html. 

Table 3. Dataset configuration. 

Raw image Sub-image Fruit size Training Validation Test No. of fruits 
(all dataset) 

1600x1080 px 548x373 px 44 ± 6 px 619 (64%) 155 (16%) 193 (20%) 12.839 
 

 
Figure 4. Sample of 3 multi-modal images extracted from training dataset and their associated 
fruit location ground truth (red bounding boxes). First column corresponds to RGBhr, second 
column to S and the third column to D channel.  
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3.3 Experiments 

The Faster R-CNN object detection network (Ren et al., 2017) was used in this work as 

fruit detector. The choice of Faster R-CNN allows a comparison of the performance of 

our methodology with previous works that also used Faster R-CNN for fruit detection 

(Bargoti and Underwood, 2017a; Gan et al., 2018; Sa et al., 2016; Stein et al., 2016). 

Faster R-CNN was originally developed to detect objects in color images. The original 

work (Ren et al., 2017) tested the network with PASCAL VOC (Everingham et al., 

2010) and COCO (Lin et al., 2014) datasets, reporting a mean average precision (mAP) 

of 78.8% and 42.7% for the VOC 2007 and COCO test sets, respectively. Faster R-

CNN is composed of two modules: (1) a region proposal network (RPN), to identify 

promising regions of interest (ROIs) that are likely to contain an object; (2) a 

classification network, which classifies the regions proposed. Both parts share the first 

convolutional layers, making it a fast object detector. The RPN uses the feature maps 

produced by the first convolutional layers to produce promising ROIs by means of a 

series of convolutional and fully connected layers. The RPN output is then used to crop 

out corresponding regions from the feature maps produced by the first convolutional 

layers (crop pooling). The regions produced by crop pooling are then passed through a 

classification network and a regressor to predict the probability of a ROI being apple or 

background and refine the ROI. Figure 5 illustrates a diagram of the implemented Faster 

R-CNN network. 

 

Figure 5. Diagram of the implemented Faster R-CNN. The main modifications to the original 
Faster R-CNN are the multi-modal input and the anchor scales.  
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In this work, the first convolutional layers uses the VGG-16 model (Simonyan and 

Zisserman, 2014) pre-trained with ImageNet dataset (Deng et al., 2009) and fine-tuned 

with our training dataset. The original implementation of Faster R-CNN was modified 

to make it suitable for our dataset. The main modifications to the original Faster R-CNN 

done in this work are: (1) multi-modal input and (2) region proposal adaptation.  

Regarding the multi-modal input, since the original implementation of Faster R-CNN 

uses color images, the input layer was modified to work with 5-channel images. Due to 

these additional channels, filters from the first convolutional layer increase in depth 

(from 3 to 5), which implies that more weights must be initialized. Thus, after loading 

pre-trained weights in the network, additional weights corresponding to channels D and 

S were randomly initialized.  

To generate region proposals, the RPN evaluates different boxes in each position of the 

image with a stride of 16 pixels. The different types of boxes evaluated are called 

anchors and are characterized by their scale (box area) and the aspect ratio. The original 

implementation of Faster R-CNN proposed 3 anchor scales of 8, 16 and 32 -

corresponding to box areas of 1282, 2562 and 5122 pixels-, and 3 aspect ratios of 1:1, 1:2 

and 2:1. Since the presented dataset has smaller objects than datasets tested in Ren et al. 

(2017), a study of the optimal anchor scales and aspect ratios was carried out. Besides 

the anchors proposed in the original paper (8, 16, 32), smaller anchor scales were also 

tested (2 and 4). The aspect ratios used in this study were the same as those used in the 

original implementation (1:1, 1:2 and 2:1), however, two different configurations were 

tested: only considering aspect ratio of 1:1, and combining the three aspect ratios. 

Figure 6 illustrates the anchors tested in this work compared with the image size. 

Although using input images of 548 x 373 px, the network resizes the input images to 

600 px on the shortest side. For this reason, the shortest side has 600 px instead of 373 

px. 

To evaluate the performance, average precision (AP), precision, recall and F1-score 

metrics are reported for the test dataset. Predictions were considered as true positive if 

the intersection over union (IoU) between prediction and ground truth bounding boxes 

was greater than 0.5. The network was implemented in PyTorch framework (Paszke et 

al., 2017) and has been made publicly available at 

www.grap.udl.cat/en/publications/datasets.html. 
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Figure 6. Anchors tested compared with the image size. Five anchor scales were tested: 2 
(magenta), 4 (cyan), 8 (green), 16 (blue) and 32 (red). For each anchor, three different aspect 
ratios were used: 0.5, 1 and 2.  

4. Results and discussion 
This section presents a qualitative and quantitative evaluation of the proposed fruit 

detection methodology, assessing the performance when using different image 

modalities provided by Kinect v2, and studying the optimal anchor scale configurations 

proposed in the RPN.  

To study the usefulness of different image modalities (RGB, S and D), different Faster 

R-CNN models were trained using each modality separately as well as combinations 

thereof. This study was carried out using projected color images RGBp since they have 

the same resolution as S and D images, to enable a comparison between modalities 

performed under the same conditions. Nevertheless, results with 5-channel multi-model 

images using RGBhr are also provided to assess the potential of the sensor for fruit 

detection.  

4.1 Training assessment 

The network was trained end-to-end using the loss function proposed in Ren et al. 

(2017), which is comprised of the sum of a classification loss and a bounding box 

regression loss. Following Ren et al. (2017), the training loss function considered 

positive detections if IoU>0.7 and negative if IoU<0.3, while anchors that are neither 

positive nor negative do not contribute to the loss function. Adam optimizer with a 

learning rate of 0.0001 was used to update network weights iteratively, performing a 

total of 309 training (38 validation) iterations per epoch with a batch size of 4 images. 

Data augmentation was performed with left-right flipping to expand the variability of 

the training dataset. A validation set was used to evaluate the training after each epoch 

to check model generalization and identify if it starts to overfit. The number of images 
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used for training, validation and test were 619, 155 and 193, respectively. Figure 7 

shows the loss function for training and validation sets using different image modalities. 

By comparing models where RGBp was used, it can be seen how when only using color 

modality (plotted in cyan) the model starts to overfit earlier than with the addition of S 

and D channels (plotted in orange and green). Therefore, the use of S and D channels 

allowed model training during more iterations without overfitting. With respect to 

training curves, the loss function archived lower values when using only color images. 

However, the opposite occurred with validation losses, with the best validation loss 

achieved by combining all modalities. This is a consequence of early overfitting of the 

RGBp model, and, from that, it was concluded that the S and D channels helped model 

generalization, with better results obtained on the validation dataset when using 5-

channel multi-modal images. On the other hand, when comparing the performance of 

using RGBp or RGBhr images, training and validation loss functions showed an 

important improvement when RGBhr images were used. This improvement increased 

when adding S and D channels to RGBhr, although not in the same proportion as multi-

modal images with RGBp. This suggests that if future RGB-D sensors had depth sensors 

with higher resolution (similar to color cameras), detection performance could be 

improved even further.  

 
Figure 7. Training and validation (val) losses depending on the number of training epochs. Loss 
function was computed following Ren et al. (2017). In cyan, the evolution of training and 
validation losses is plotted using RGB projected images (RGBp). Orange data refer to projected 
images with range-corrected signal intensity (S) data, and green data when adding depth (D) 
information as well. Shown in blue are the results corresponding to use of high resolution RGB 
(RGBhr -registered row image-). Finally, results of multi-modal data with RGBhr, range-
corrected signal and depth images are plotted in red. Vertical lines mark the epoch where each 
model starts to overfit, which is the epoch in which test results are reported.  
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4.2 Anchor optimization 

This section evaluates the performance of Faster R-CNN with multi-modal images 

(RGBhr+S+D) depending on the anchor scales used in the RPN. The original paper of 

Faster R-CNN (Ren et al., 2017) used anchor scales of 8-16-32, but it mentions that the 

anchor scales used were not specifically chosen for a particular dataset. The present 

work was evaluated on a very different dataset (with small spherical objects) from the 

one used in the original Faster R-CNN work. Therefore, the behavior of the network 

using anchor scales of 2, 4, 8, 16 and 32 and aspect ratios of 1:2, 1:1, 2:2 was analyzed.  

Table 3 presents the results obtained when using different anchor scales and aspect 

ratios in terms of AP. Comparing anchor scales configurations, the worst performances 

were achieved using anchor scales of 16 and 32, while other configurations performed 

similarly, with an AP ranging between 93.4% (using anchor scale of 8 and aspect ratios 

of 1:2, 1:1 and 2:1), and 94.8% (using anchor scales of 4 and aspect ratios of 1:1). 

Regarding the anchor aspect ratios, best results were obtained only using squared 

anchors (anchor ratios of 1:1). This responds the fact that fruits are spherical. As for 

computational efficiency, Table 3 shows that frame rate slightly decreases when 

combining different anchor scales or aspect ratios. This fact is due to the number of 

convolutional operations in the RPN increases. However, since the number of object 

proposals was limited to 100 in all cases (as suggested in Sa et al. 2016) the 

computational efficiency do not show important differences. From these results, the 

following sections use anchor scales of 4 and aspect ratios of 1:1, being the 

configuration that showed the best performance. 
Table 3. Fruit detection results on RGBhr+S+D test set using different anchor scales and ratios.  

 Anchor aspect ratios 
 [1:2 , 1:1, 2:1]  [1:1] 
Anchor scales AP (%) frames/s  AP (%) frames/s 
8-16-32 (Ren et al., 2017) 93.1 12.7  92.8 12.9 
2 93.6 12.7  94.0 13.1 
4 93.5 12.6  94.8 13.6 
8 93.4 12.4  93.7 13.3 
16 91.3 13.0  86.6 13.2 
32 79.9 12.9  86.4 13.0 
2-4-8 94.1 12.7  94.4 12.4 
4-8-16 94.1 12.6  93.5 12.1 
2-4-8-16 93.1 12.8  94.1 12.8 
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Figure 8 illustrates some fruit detection examples using anchor scales of 4 and aspect 

ratios of 1:1. Images were selected to show cases where the network succeeds or fails, 

so that the illustrated examples correspond to the four best (first column), four 

intermediate (second column) and four worst (third column) scored images from the test 

dataset. As can be seen, most of the false positives correspond to image regions that are 

very similar to apples or to real apples that were not labelled because of human errors 

when labelling. On the other hand, most of the false negatives correspond to highly 

occluded apples and to apples that were cut by the borders of the image.  

 
Figure 8. Fruit detection results on RGBhr+S+D test set using anchor scales of 4, 8 and 16. True 
positive detections are shown in green squares, false positives in red and false negatives in blue. 
Images are ordered according to their F1-score. Column (a) contains examples of the best 
detection results, F1-score = 1. Column (b) contains the four intermediate scored images of the 
test set, corresponding to an F1-score =0.91. Column (c) shows the worst detections, ordered 
from bottom to top with an F1-score = [0.23, 0.67, 0.67, 0.67]. 
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4.3 Test results from different modalities 

Regarding the test set, Table 4 presents fruit detection results obtained from different 

input image modalities. The performance of Faster R-CNN using each input type was 

evaluated in terms of Precision (P), Recall (R), F1-score, AP and number of inferred 

images per second (processing on a GeForce GTX TITAN X GPU). A confidence 

threshold of 0.85 was selected from Precision and Recall curves (Figure 9). The number 

of training epoch is also given. This number was chosen from training and validation 

loss curves, selecting the last epoch that did not present overfit (vertical lines in Figure 

7). Figure 10 shows graphically the fruit detection of three selected images from the test 

set using different input modalities (RGBp, S, D, RGBp+S and RGBp+S+D). True 

positives are shown in green, false positives in red and false negatives in blue.  

 
Figure 9. Precision and Recall curves obtained for different image modalities. Black asterisks 
correspond to the working points with the selected confidence threshold of 0.85.  

Table 4. Fruit detection results from test dataset using different image modalities.  
Channels Epoch P R F1-score AP (%) frames/s 
RGBp  5 0.808 0.851 0.829 88.7 13.4 
S 4 0.848 0.768 0.806 85.9 13.5 
D 7 0.699 0.582 0.635 61.3 13.4 
RGBp+S 8 0.887 0.827 0.856 89.8 12.9 
RGBp+D 9 0.802 0.848 0.824 88.0 13.7 
S+D 9 0.731 0.821 0.774 84.6 13.4 
RGBp+S+D 10 0.869 0.864 0.866 91.2 13.1 
RGBhr 9 0.847 0.888 0.867 92.7 12.9 
RGBhr+S+D 12 0.897 0.899 0.898 94.8 13.6 
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Comparing results from single modality images (Table 4, rows 1-3), color images gave 

the best performance with an F1-score of 0.829 and an AP of 88.7%, followed by the 

range-corrected intensity image with an F1-score of 0.806 and an AP of 85.9%. Note 

that, although range-corrected intensity images have never been used for fruit detection, 

the results using this modality are comparable with other state-of-the-art methods. The 

least valuable modality was the Depth channel which was only able to detect highly 

exposed (non-occluded) apples, as can be seen in Figure 10. Better results were 

obtained when combining different modalities (multi-modal images), achieving an F1-

score of 0.866 and an AP of 91.2% when all channels were used. The most important 

benefit of adding S and D was found in the Precision metric, which rose from 0.808 

(RGBp) to 0.869 (RGBp+S+D), although Recall and AP also improved albeit in smaller 

percentages. This means that range-corrected intensity and depth images help to reduce 

false positives. Real examples of this effect can be found in Figure 10, where, when 

comparing results before and after using S and D channels, a reduction in false positives 

is observed. Another advantage of using the S channel was found when detecting fruits 

in shadowed regions, where the RGB image presents a dark non-colored region whereas 

the S channel shows high intensities. This occurs in Figure 10b, where an apple in a 

shadowed region was not detected using RGBp, but was detected using the S channel.  

 Finally, as was expected, the best performance was achieved using multi-modal images 

with RGBhr, S and D, reporting an F1-score of 0. 898 and a AP of 94.8%. Regarding the 

computational efficiency of the neural network, the number of inferred images per 

second did not present any relation with the number of channels used. This is because 

the addition of channels only affects the number of operations on the first layer, which 

is insignificant with respect to the whole network. 

Although it is difficult to compare methodologies tested with different datasets,  results 

shows similar performance to other fruit detection works based on neural networks, 

such as Bargoti and Underwood (2017), Gan et al. (2018) and Sa et al. (2016) which 

reported F1-scores between 0.838 and 0.929 (using less restrictive IoU thresholds than 

the present work).  However, the use of RGB-D sensors has the advantage that, 

although detecting fruits in 2D images, it is straightforward to infer the 3D location of 

each detection.  
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Figure 10. Selected examples of fruit detection results to show the effect of adding range-
corrected signal intensity (S) and depth (D) information. For each sample a), b) and c), six 
different fruit detection results are shown depending on the input data type: RGBp (first row), S 
(second row), D (third row), multi-modal RGBp and S (fourth row), using all modalities RGBp, 
S and D (fifth row), and using all modalities with high resolution image RGBhr, S and D (last 
row). True positive detections are shown in green, false positives in red and false negatives in 
blue. 
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The main limitation of the proposed methodology is that the working conditions are 

restricted to low illuminance levels. However, we expect that future sensors could solve 

this limitation. For instance, LiDAR-based sensors are already able to build 3D models 

with reflectance data in natural lighting conditions. In addition, convolutional neural 

networks have shown good performances with wide enough datasets that contain 

different illumination conditions (Amara et al., 2017; Chen et al., 2017; Rahnemoonfar 

and Sheppard, 2017). From that, we expect that if future RGB-D sensors would not be 

influenced by high illumination levels, the methodology proposed could be used in 

daylight. 

5. Conclusions 
This work presents a novel methodology for fruit detection using RGB-D sensors, 

taking advantage of their radiometric capabilities. Multi-modal images were built using 

data provided by Microsoft’s Kinect v2. To do so, a range correction of the 

backscattered intensity signal was carried out to overcome signal attenuation (R-2 

dependence). Then, a registration between different channels was performed, obtaining 

images with 3 modalities: color (RGB), depth (D), and range-corrected intensity (S). 

The KFuji RGB-DS dataset and the corresponding annotations have been made publicly 

available, being the first dataset for fruit detection that contains RGB, depth and range-

corrected intensity channels. The Faster R-CNN object detection network was used to 

evaluate the usefulness of fusing all modalities. Results show an improvement of 4.46%  

in F1-score when all modalities were used -from 0.829 (RGBp) to 0.866 (RGBp-D-S)-. 

This entails an advance in the field of fruit detection, since the results are comparable to 

other fruit detection methodologies retrieved from the state of the art, with the 

additional advantage that, by using RGB-D sensors, it is possible to infer the 3D 

position of each detection. The optimum anchor scales used in the region proposal 

network were also analyzed. It is concluded that, for KFuji RGB-DS dataset where 

fruits are spherical and small with respect to the image size, the optimum configuration 

were anchor scales of 4 and aspect ratios of 1:1. The main limitation of using RGB-D is 

that the performance of the depth sensor drops under direct sunlight. Future works will 

include 3D fruit localization by projecting the 2D fruit detection onto the 3D world 
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using the depth channel data as well as collecting data of different fruit varieties and at 

different growth stages.  
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Abstract 
The development of remote fruit detection systems able to identify and 3D locate fruits 

provides opportunities to improve the efficiency of agriculture management. Most of 

the current fruit detection systems are based on 2D image analysis. Although the use of 

3D sensors is emerging, precise 3D fruit location is still a pending issue. This work 

presents a new methodology for fruit detection and 3D location consisting of: (1) 2D 

fruit detection and segmentation using Mask R-CNN instance segmentation neural 

network; (2) 3D point cloud generation of detected apples using structure-from-motion 

(SfM) photogrammetry; (3) projection of 2D image detections onto 3D space; (4) false 

positives removal using a trained support vector machine. This methodology was tested 

on 11 Fuji apple trees containing a total of 1455 apples. Results showed that, by 

combining instance segmentation with SfM the system performance increased from an 

F1-score of 0.816 (2D fruit detection) to 0.881 (3D fruit detection and location) with 

respect to the total amount of fruits. The main advantages of this methodology are the 

reduced number of false positives and the higher detection rate, while the main 

disadvantage is the high processing time required for SfM, which makes it presently 

unsuitable for real-time work. From these results, it can be concluded that the 
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combination of instance segmentation and SfM provides high performance fruit 

detection with high 3D data precision. The dataset has been made publicly available and 

an interactive visualization of fruit detection results is accessible at 

http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html  

Keywords: Structure-from-motion; fruit detection; fruit location; Mask R-CNN; 

terrestrial remote sensing  

1. Introduction 
The need to provide food for an increasingly large population, while at the same time 

minimizing the agricultural impact on the environment, makes it essential to devote as 

much effort as possible to the development of techniques and methods that can ensure 

the increased efficiency, quality, and sustainability of agricultural activities. To achieve 

this goal, precision agriculture (PA) is establishing itself as a cornerstone approach 

which, based on crop information obtained with various techniques, provides tools for 

optimizing crop management and making appropriate decisions (ISPA, 2019). The 

monitoring of crops through the combination of sensors, processing systems, and 

mobile platforms ‒terrestrial, airborne or spaceborne‒ to carry this instrumentation, are 

key to providing precise and detailed crop information. Such questions are usually the 

starting point of optimization processes. 

Knowledge of the spatial (3D) distribution of fruits through their detection and location, 

with different levels of resolution ‒within a specific tree and at plot level‒ is of 

enormous interest in agriculture. Having this information allows harvest and production 

estimates to be made, which leads to better planning of harvesting, storage and 

marketing tasks (Bargoti and Underwood, 2017; Nuske et al., 2014). With such 

information, it is also possible to know the spatial distribution of fruits and yield, and to 

relate it to the rest of the variables and factors that influence the management of 

plantations, such as the strategies of irrigation, fertilization and pruning, the 

characteristics and variability of the soil composition, the topographic characteristics of 

the plot, the size and structure of the trees, pest and disease impact, and so on. In 

addition, knowledge of the georeferenced distribution of fruits along the plot can be a 

starting point for robotized harvesting, as the harvester robot would have the 
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coordinates of each fruit and could primarily focus on the collection process itself, with 

a resulting gain in speed and efficiency. 

The characterization of the 3D spatial distribution of fruits, at both tree and plot scale, is 

a highly active research field. Commonly used sensors include RGB, multispectral, 

hyperspectral and thermal cameras, as well as 3D sensor technology such as LiDAR and 

depth cameras (RGB-D) (Li et al., 2014; Narvaez et al., 2017). Each of these sensors 

has its own strengths and weaknesses when used in real-field conditions, with the best 

choice depending on the specific application. Thus, while RGB cameras are 

economically affordable and user-friendly, they are severely affected by lighting 

conditions (Gongal et al., 2015). Both multi and hyperspectral cameras add spectral 

information beyond RGB bands, allowing the extraction of a rich set of parameters and 

vegetation indexes, but they are more expensive and time-consuming. In the case of 

thermal cameras, which capture the temperature information of objects, the different 

thermal inertia between fruits and background enables their differentiation. However, 

measurements are affected by the fruit size and the thermal evolution of the 

environment along the day, leading to a narrow temporal range of operations in field 

measurements (Bulanon et al., 2008; Gongal et al., 2015). Both LiDAR and RGB-D 

systems allow the 3D characteristics of fruits and plants to be directly obtained by 

determining the sensor-target distance, with time-of-flight and structured-light the most 

common measuring principles. Both systems allow the generation of high density 3D 

point clouds (coloured in the case of RGB-D sensors) of plants and fruits. While LiDAR 

sensors are usually quite expensive and not user-friendly, RGB-D are commonly low-

cost plug-and-play sensors but they lose performance in high luminance environments, 

which is a drawback under real-field conditions (Rosell-Polo et al., 2015). Finally, 

through the post-processing of digital images, photogrammetry techniques are being 

used to obtain 3D representations of different scenarios in many fields, including 

agriculture (Torres-Sánchez et al., 2018). One of the most successful and commonly 

used methods is called structure-from-motion (SfM), which identifies common 

characteristics in the collected images to infer the camera positions and then build the 

3D representation of the scene (Westoby et al., 2012). 
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With respect to data processing, many state-of-the-art fruit detection systems use 

handcrafted features to encode the data acquired with different sensors and subsequently 

apply algorithms to obtain the fruit detection and location (Bargoti and Underwood, 

2017; Gené-Mola et al., 2019c). More recently, remarkable progress has been achieved 

through the introduction of deep learning, which is based on multiple layer artificial 

neural networks (Koirala et al., 2019). Most approaches in fruit detection are based on 

the analysis of 2D images, although the processing of 3D images is quickly emerging 

(Nguyen et al., 2016; Tao and Zhou, 2017). Due to the unstructured environment of tree 

crops, occlusions of fruits with other vegetative organs and changing lighting conditions 

are the main problems that have to be dealt with (Gongal et al., 2015). To increase fruit 

visibility, some authors have proposed the use of multi-view imaging (Hemming et al., 

2014), although it may lead to some fruits being counted twice if a proper image 

registration methodology is not used. To do so, Stein et al. (2016) proposed the use of 

epipolar geometry combined with the Hungarian algorithm (Kuhn, 2010). Similarly, Liu 

et al. (2018) used the Hungarian Algorithm refined with SfM to track fruits in video 

fruit counting. In contrast, Gongal et al. (2016) identified duplicate apples by projecting 

2D image detections onto 3D models generated using RGB-D sensor data. 

This work presents a new methodology for fruit detection and 3D location, combining 

the use of instance segmentation neural networks and SfM photogrammetry. The Mask 

R-CNN (He et al., 2017) deep neural network was used to detect and segment fruits in 

2D RGB images. Then, SfM was used to generate an accurate 3D model and locate the 

detected fruits in the space. The main advantages of using SfM are that: (1) it is a multi-

view approach and, in consequence, presents a reduced number of fruit occlusions; (2) 

the registration between images is automatically done, which ensures no double 

counting of apples appearing in different images. The remainder of this paper is 

structured as follows: Section 2 presents the experimental setup, the acquired dataset, 

and the methodology pipeline, including a description of the deep neural network used 

for fruit detection, the SfM technique used to generate the 3D model, and the projection 

of 2D image detections onto the 3D generated model; Section 3 evaluates the detections 

both in the 2D images and in the 3D model, while Section 4 discusses the results; 
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Finally, Section 5 presents the conclusions obtained in this study and proposes future 

research directions. 

2. Materials and Methods 

2.1 Data acquisition 

Tests were carried out in a commercial Fuji apple orchard (Malus domestica Borkh. cv. 

Fuji) located in the municipality of Agramunt, Catalonia, Spain (latitude: 

41º44’47.07”N; longitude: 1º01’52.23”E). Trees grown in the studied orchard were 

trained in a tall spindle system, with a plantation frame of 4 x 0.9 m and a maximum 

canopy height and width of approximately 3.5 m and 1.5 m, respectively. The studied 

section was formed by 11 consecutive trees from the same row of trees, containing a 

total of 1455 apples. Images were acquired at the end of September 2017, at BBCH 

phenological growth stage 85 ‒advanced ripening, increase in intensity of cultivar-

specific color‒ (Meier, 2001).  

In the choice of photographic equipment and its setup, the quality of the photographs 

was prioritized. An EOS 60D DSLR Canon camera, with an 18 MP (5184 x 3456 px) 

CMOS APS-C sensor (22.3 x 14.9mm) was used (Canon Inc. Tokyo, Japan). Regarding 

the optics, a Canon EF-S 24mm f/2.8 STM lens was chosen, with a 35 mm film 

equivalent focal length of 38 mm and with a field of view of [59° 10 ', 50° 35'] 

(horizontal, vertical). 

A total of 582 photographs were taken, 291 images per row side. No artificial light was 

used. The photographs were taken freehand, which allowed an average shooting 

frequency of 8 photographs per minute. Thus, the lighting conditions between the first 

and last photograph were very similar. The east face was photographed in the morning 

(11:53 - 12:26h) and the west face in the afternoon (15:27 - 16:05h), with a similar 

illumination obtained in both faces. 

Images were taken from 53 photographic positions (per side). In each position, a 

vertical sweep of 5-6 photographs was taken (Figure 1a) from the lower part (soil-trunk) 

to the upper part of the trees. The separation between two consecutive positions was 22 

cm (Figure 1b). These photographic positions defined a line parallel with respect to the 
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apple tree row. The distance between the camera and the middle plane of the row was 

around 3 m and the height of the camera above the ground was 1.7 m (Figure 1a). With 

this configuration, the vertical and horizontal overlapping between neighbouring images 

was higher than 30% and 90%, respectively (Figure 2). This dataset has been made 

publicly available at www.grap.udl.cat/en/publications/datasets.html (Fuji-SfM dataset).  

 
Figure 1. a) Transversal scheme of the layout and distances of the photographic process. b) 
Isometric view of three scanned trees showing the separation between consecutive photographic 
positions. 

 

 

(a) (b) 

Figure 2. a) Vertical overlapping between two contiguous photographs. b) Horizontal 
displacement between two adjacent photographic positions. 
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2.2 Methodology pipeline 

As shown in Figure 3, the proposed fruit detection and location methodology includes 

the following processing steps: 1) 2D RGB image instance segmentation; 2) 3D point 

cloud generation using SfM photogrammetry; 3) Projection of 2D detections onto the 

3D point cloud.  

Due to the large amount of apples per image and the fact that convolutional neural 

networks performance decreases when detecting small objects, before applying the 

instance segmentation step the images were split into 24 sub-images of 1024x1024 

pixels. Then, the convolutional neural network Mask R-CNN (He et al., 2017) was used 

to detect and segment the apples (Section 2.2.1). Apple detections and masks in the 

cropped images were translated to the original images. These masked images were used 

to generate a 3D model by means of SfM photogrammetry, thus, only the 3D model of 

the objects of interest (apples) was generated (Section 2.2.2). To count the total number 

of fruits, and to know which 3D points belong to each apple, the last step used the 

camera matrices obtained from SfM camera alignment to project 2D detections onto 3D 

point clouds following the pinhole camera model (Section 2.2.3).  

Image cropping step, the translation of detections to the original images, and the 

projection of 2D detections were processed with a 64-bit operating system, with 8GB of 

RAM and an Intel ® Core(TM) i7-4500U processor (1.80 GHz, boosted to 2.40 GHz). 

The instance segmentation step (Mask RCNN) was processed in a CPU+GPU machine 

with a GeForce GTX TITAN X GPU. The 3D model generation (SfM) was tested in the 

mentioned CPU computer, as well as in a a CPU+GPU machine with a GeForce GTX 

1060. Further details of the implementation of these steps are described in the following 

sub-sections. 
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Figure 3. Fruit detection and location methodology flowchart. Hexagons represent data 
preparation steps while rectangles define data processing steps. 

2.2.1 Instance segmentation 

The Mask R-CNN (He et al., 2017) deep neural network was used for apple detection 

and segmentation (instance segmentation) in acquired 2D RGB images. For an input 

image, this model provides 2D bounding boxes and semantic masks for the objects in 

the scene. It is an extension of the Faster R-CNN (Ren et al., 2017) network that adds a 

branch for predicting segmentation masks on each region of interest (RoI). 

The operation is depicted in Figure 4. Two parts can be differentiated in the 

architecture: the backbone, used for feature extraction, and the network head for 

bounding-box recognition (classification and regression) and mask prediction, that is 

applied separately to each RoI. 
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Fig. 4. Diagram of Mask R-CNN architecture. 

The backbone is a feature pyramid network (FPN) (Lin et al., 2017), a type of fully 

convolutional network that exploits the inherent multi-scale, pyramidal hierarchy of 

deep convolutional networks to construct a feature pyramid map that provides RoI 

features from different levels of the feature pyramid according to their scale. 

The Mask R-CNN network head is a small network that is slid over the feature map. 

Each sliding window is mapped to a lower-dimensional feature. At each sliding-window 

location, multiple region proposals are simultaneously predicted. The proposals are 

parameterized relative to a set of reference boxes, called anchors. An anchor is centred 

at the sliding window in question, and is associated with a scale and aspect ratio. This 

anchor-based design improves computational efficiency allowing features to be shared 

without an extra cost for addressing scales. 

The obtained features are fed into two sibling fully connected layers—a box-regression 

layer and a box-classification layer. The process can be described in two stages. The 

first stage employs a region proposal network (RPN) to scan the feature pyramid map 

provided by the backbone and outputs a set of regions (region proposals) that are 

candidates to contain objects. The RoIAlign layer shares the forward pass of a CNN for 

an image across its subregions. Then, the features in each region are pooled using 

bilinear interpolation to maintain a precise alignment. The second stage classifies the 

object inside each one of the proposed regions into a set of predetermined classes, 
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refines the bounding box and provides a pixel level mask for the object. The predictions 

of the class, bounding box and binary mask for each RoI are performed in parallel. 

We used an existing implementation of the Mask RCNN obtained from Abdulla (2017) 

with a ResNet-101-FPN backbone. A model pre-trained in the COCO dataset (Lin et al., 

2014) was adapted for Fuji apple detection by restricting the number of classes to one 

and by fine-tuning the model using 12 images containing a total of 1749 apples that 

were manually labelled using the VIA annotation software (Dutta and Zisserman, 2019). 

This small dataset used to train and validate the Mask RCNN did not include images 

from trees assessed in the 3D location approach, ensuring that the data used to test the 

system was not used for training. In order to have a better relation between image size 

and fruit size, and due to the large number of fruits per image, each image was split into 

24 sub-images of 1024x1024 pixels (6 horizontal and 4 vertical division s). An overlap 

between neighbouring sub-images of 213 px in vertical and 192 px in horizontal was 

applied to avoid the partially split of fruits at the boundaries in different partitions. 

Thus, the dataset used to train and validate the Mask R-CNN consists of 288 sub-

images, split into training and validation as shown in Table 1. Horizontal flipping data 

augmentation was used to increase the number of training images. The learning rate was 

set to 0.001, with a learning momentum of 0.9 and a weight decay of 0.0001. This 

dataset and the corresponding annotations have been made publicly available at 

www.grap.udl.cat/en/publications/datasets.html (Fuji-SfM dataset).  

Table 1. Dataset configuration. 

Mask R-CNN training - validation 
Raw image size Sub-image size   
5184 x 3456 px 1024x1024 px   
Training  Validation  No. of fruits (annotated) 
231 sub-images 57 sub-images 1749   
 
Data for 3D point cloud generation 
Raw image size No. of images  
5184 x 3456 px 582 (291 per row side)  
  
3D data    
No. of trees No. of fruits Training Test 
11  1455  3 trees 8 trees 
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Instance segmentation results (Section 3.1) were assessed  in terms of recall (R), 

precision (P), F1-score and average precision (AP) (Zhang and Zhang, 2009), 

considering as true positives detections with a ground truth mask overlap higher than 

50% (IoU > 0.5). 

2.2.2 3D point cloud generation 

To reconstruct the 3D information from the multiple 2D images, a classical multi-view 

SfM technique based on bundle adjustment (Triggs et al., 2000) was employed in each 

row side. This approach aims to simultaneously determine the structure (3D coordinates 

of scene points) and the calibration parameters of each of the cameras that minimize the 

total reprojection error. 

In particular, Agisoft Professional Photoscan software was employed to perform the 3D 

reconstruction (v1.4, Agisoft LLC, St. Petersburg, Russia). The specific software 

configuration parameters set are detailed in Appendix A, Table A1. The three main 

steps followed to generate the 3D point cloud are:  

a. Feature matching: where correspondences between points across different 
images are computed. 

b. Camera estimation: using the previous correspondences, camera parameters and 
locations are estimated for each image. 

c. Dense reconstruction: camera parameters are used to project 2D image points 
into their corresponding 3D locations. 

The relationship between 2D image points and 3D locations is described following a 

pinhole camera model. Let 𝑥𝑥 be a representation of a 3D point in homogeneous 

coordinates (a 4-dimensional vector), and let 𝑝𝑝 be a representation of the 2D image of 

this point in the pinhole camera (a 3-dimensional vector in homogenous coordinates). 

Then, the relation between them can be expressed as: 

 𝑝𝑝 = 𝐶𝐶𝐿𝐿 · 𝑥𝑥 , (1) 

where 𝐶𝐶𝐿𝐿 is the 3x4 camera matrix that represents the intrinsic (matrix 𝐾𝐾) and extrinsic 

(matrix [𝑅𝑅𝐿𝐿 𝑇𝑇𝐿𝐿]) camera parameters for camera 𝑃𝑃: 

 𝐶𝐶𝐿𝐿 = 𝐾𝐾 [𝑅𝑅𝐿𝐿 𝑇𝑇𝐿𝐿] , (2) 

In our case, as all images were taken with the same camera, intrinsic camera parameters 

are shared between all images (no 𝑃𝑃 subindex in matrix 𝐾𝐾). Extrinsic parameters, on the 
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other hand, are different for each image. Thus, rotation matrices 𝑅𝑅𝐿𝐿 and translational 

vectors 𝑇𝑇𝐿𝐿 are defined for each image and related to the first image of the dataset 

(camera 𝑃𝑃 = 0 uses 𝑅𝑅0 = 𝐼𝐼 and 𝑇𝑇0 = [0 0 0]).  

Figure 5a represents the 3D point cloud generated using original RGB images. This 

point cloud was manually annotated, placing rectangular bounding boxes around each 

apple (Figure 5b). A total of 1455 apples were annotated in the point cloud, which is 

similar to the total number of apples manually counted in the orchard (1444 apples). 

The small difference between the number of annotations and the number of apples 

counted in the orchard can be attributed to human error during fruit counting. Annotated 

3D bounding boxes were used as ground truth to evaluate the performance of the system 

in Section 3.2. 

By using a mask in the original images ‒obtained with the trained Mask R-CNN 

described in Section 2.2.1‒ only the apples (not the entire trees) are reconstructed in 

Figure 5c. Using masked images was desirable to only reconstruct the 3D model of the 

objects of interest (apples) and to reduce the computational time. As the 3D 

reconstruction stage is scale invariant, a set of known markers (depicted in Figure 5d) 

separated by 85 cm were used to scale the resulting 3D point cloud to a real-world scale. 

 
Figure 5. a) Illustration of the 3D point cloud obtained using original RGB images. Yellow 
rectangles show the positions where reference markers were placed. b) Annotated point cloud 
with 3D rectangular bounding boxes placed around each apple. c) Apples 3D point cloud 
obtained using masked images. d) Illustration of reference markers used to scale the resulting 
3D point cloud. 
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2.2.3 Projection of 2D detections onto 3D point cloud 

Although SfM photogrammetry with masked images allows generation of the 3D model 

of only the objects of interest (apples), the resulting point cloud should be clustered in 

groups of 3D points per apple (3D apple detections) to count and locate detected fruits.  

Knowing the intrinsic camera parameters (matrix K), as well as the pose and orientation 

of all images (matrix [Ri Ti]), 2D image detections were projected onto the 3D point 

cloud using the pinhole camera model (Eqs. (1) and (2)). The main issues to deal with 

during these projections were: (1) identification of objects (apples) behind detections; 

(2) unification of detections of an object detected from different photos.  

Figure 6 illustrates the steps carried out to perform the 2D to 3D projection, showing an 

example with two images taken from different positions. To assist visualization, Figure 

6a shows a small region of the scanned scene and Figure 6b shows the 3D model 

obtained applying SfM photogrammetry with masked images. In Figure 6c, detections 

from image 1 (img1) were projected onto the 3D point cloud. Due to the position of the 

camera with respect to the scene, an apple was occluded behind the green detection. In 

consequence, after projecting the 2D green detection, the detected and the occluded 

apples were clustered within the same group of 3D points (plotted in green in the 3D 

model of Figure 6c). To identify objects behind a detection, a connected components 

labelling was applied to each 3D projection using the density-based scan algorithm 

DBSCAN (Ester et al., 1996). The minimum distance between connected points was set 

to 3 cm. If more than one group of connected points were found in a 3D detection, only 

the nearest (to the camera) was selected. Comparing Figure 6c and Figure 6d, it can be 

observed how the apple behind the green detection was released after applying 

DBSCAN. Having the detections of img1 in the 3D point cloud, the next image (img2) 

was processed. Detections from img2 that presented an overlap higher than 50% (IoU > 

0.5) with previously detected apples were identified and unified (Figure 6e), and new 

detections with no overlap with previous detections or with IoU < 0.5 were projected 

onto the 3D point cloud (Figure 6f). The process was repeated for all the images used to 

generate the 3D point cloud. 
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In order to reduce the number of false positives, a linear support-vector-machine (SVM) 

was trained to identify and remove false positive detections. This SVM was fed using 4 

features per detection: 

• Number of points P that contain a 3D detection. 

• Detection volume V.  

• Detection density δ = 𝑉𝑉
𝑃𝑃
 . 

• Geometric feature 𝛹𝛹 = 27 · λ1𝑛𝑛 · λ2𝑛𝑛 ·  λ3𝑛𝑛, where [λ1𝑛𝑛, λ2𝑛𝑛, λ3𝑛𝑛] are the 

normalized eigenvalues (so that λ1𝑛𝑛 + λ2𝑛𝑛 +  λ3𝑛𝑛 = 1), obtained applying 

singular value decomposition (SVD) on the 3D points of a detection. The 

applied coefficient of 27 allows 𝛹𝛹 to be bounded between 0 and 1, with 1 

being for spherical detections.  

The graphical representation of these features is shown in Appendix B, Figure B 1. In 

order to train this SVM, 3 trees (out of 11) containing a total of 434 apples were used as 

the training dataset. The result of identifying and removing false positive detections can 

be observed in Figure 6g, where the blue detection has been removed.  

 

Figure 6. Projection of 2D detections onto 3D point cloud. a) Data acquisition. b) 3D model 
obtained using structure-from-motion with segmented images. c) Projection of detections from 
image 1 (img1) onto the 3D point cloud. d) Identification of apples behind detections. e) 
Identification of apples appearing in a new image that were previously detected in other images. 
f) Projection of a new detection (coloured in purple) from image 2 (img2). g) False positive 
removal. 
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3D fruit detection results (Section 3.2) were assessed in terms of detection rate (DR), 

recall (R), precision (P), false positive rate (FPR), muti-detection rate (MDR), and F1-

score, as follows: 

DR = LD
T

 , (3) 

R = TP
T

 , (4) 

P = TP
D

 , (5) 

FPR = FP
D

 , (6) 

MDR = MD
D

 , (7) 

F1 = 2 R·P
R+P

 , (8) 

where T is the total number of fruits in the dataset, D is the number of detections, LD is 

the number of labels detected (annotations bounding boxes detected), TP is the number 

of true positives (detection with a ground truth overlap higher than 50%), FP is the 

number of false positives (detection with a ground truth overlap lower than 50%), and 

MD is the number of multi-detections produced when a single apple is detected multiple 

times.  

3. Results 
3.1 2D detection results  

Table 2 presents instance segmentation results after training Mask R-CNN during 18 

epochs (number of epochs not presenting overfitting). Results show an AP of 0.8599, 

and an F1-score of 0.8573. Although the best balance between P and R was achieved 

with a confidence threshold of 0.9, all detections classified as “apple” (confidence level 

> 0.5) where used for the 3D point cloud generation. This is because an increase of false 

positives (lower precision) is not as critical as decreasing the recall, since to build the 

3D model an object has to be seen in, at least, two different images. Then, false positive 

objects that are only detected in one image will be automatically removed when 

applying SfM photogrammetry. 
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Table 2. Instance segmentation results at different confidence levels. Best F1-score result is in 
bold type. 

Confidence R P F1 
0.5 0.8779 0.7622 0.8160 
0.55 0.8746 0.7737 0.8211 
0.6 0.8746 0.7840 0.8268 
0.65 0.8729 0.7991 0.8344 
0.7 0.8680 0.8117 0.8389 
0.75 0.8663 0.8242 0.8447 
0.8 0.8663 0.8333 0.8495 
0.85 0.8647 0.8465 0.8555 
0.9 0.8597 0.8569 0.8583 
0.95 0.8399 0.8761 0.8576 
AP 0.8599   

Figure 7 shows 6 selected images from the validation dataset and the corresponding 

fruit detections, allowing a qualitative evaluation of instance segmentation results. As 

can be observed, most of the apples were successfully detected, including highly 

occluded or shadowed ones. In addition, Mask-RCNN masked correctly the pixels 

belonging to an apple, even when apples were visually split by branch or leaves, which 

is of interest to generate the 3D model of only apples when applying SfM. It was also 

observed that some of the detections reported as false positive were actually apples 

miss-annotated due to human error when labeling (green rectangles in Figure 7 b-d,f). 

Other false positives were wrong detections at the image borders, in parts of the image 

presenting a similar pattern to apples (red rectangles in Figure 7 b-d), or multi-

detections (blue rectangles in Figure 7 a,e-f). As for the apples not detected, it can be 

seen that false negatives (yellow rectangles in Figure 7 a-b,e) were apples cut at the 

image borders, highly occluded and/or small apples. To overcome the increase of false 

positives and negatives at image borders, a certain overlap between sub-images was 

considered when splitting the original image into sub-images (Section 2.2.1). Thus, 

detection failures at image borders did not affect the performance of the 3D model.  
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Figure 7. Selected examples of instance segmentation results to show correct detections (colour 
masks), false positives due to network failures (red rectangles), false positives due to miss-
annotated apples (green rectangles), false positives due to multi-detections (blue rectangles), 
and false negatives (yellow rectangles). For each capture, the original sub-image (left) and the 
corresponding detections (right) are shown. 

3.2 3D location results 

This section evaluates quantitatively and qualitatively the performance of the proposed 

methodology for 3D fruit detection and location. Table 3 presents the detection rates 

achieved in the training (3 trees, 434 apples) and test (8 trees, 1021 apples) datasets. 

Results show a high detection rate (DR=0.991) with low false detections (FDR=0.037). 

However, because some apples were clustered in a unique detection (as shown in Figure 

9) and due to the presence of multi-detections (MDR=0.106), the recall and precision 

decreased to 0.906 and 0.857, respectively, which represents an F1-score of 0.881. 

Table 3. 3D fruit detection and location results from training and test datasets. 

  DR R P FDR MDR F1-score 
Training dataset 0.984 0.905 0.881 0.038 0.081 0.893 
Test dataset 0.991 0.906 0.857 0.037 0.106 0.881 
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For yield prediction, the percentage of detected fruits and false positives is not as 

important as having a high correlation between the number of detections (𝐼𝐼 = 𝑇𝑇𝑃𝑃 +

𝐹𝐹𝑃𝑃 + 𝑅𝑅𝐼𝐼) and the actual number of fruits in the trees (𝑇𝑇) (Linker, 2017). Figure 8 

illustrates the correspondence between 𝐼𝐼 and 𝑇𝑇 in all trees of the dataset (11 trees). 

Results show the existence of a linear correlation between these variables, presenting a 

coefficient of determination of R2=0.80 and a root mean square deviation of 6.42% of 

fruits.  

 
Figure 8. Linear regression between the number of detections (D) and the actual number of 
fruits per tree (T). 

For a qualitative evaluation, the reader is referred to inspect an interactive 3D 

visualization of the test scene and the corresponding fruit detections by opening the 

following link in a web-browser: 

http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html. Using the side menu, the 

reader can either visualize the scanned scene, the 3D point cloud of the apples obtained 

using SfM with masked images, or the apple detections obtained after 2D-3D projection 

and false positive removal steps.  

The obtained point cloud showed higher 3D data precision compared with data provided 

by other sensors used for fruit detection, such as LiDAR or depth-cameras (Gené-Mola 

et al., 2019a, 2019b; Gongal et al., 2016; Nguyen et al., 2016; Tao and Zhou, 2017; 

Williams et al., 2019). Moreover, most of the apples were correctly detected, identifying 

the 3D points that belong to each apple. The presence of false positives is almost non-

existent (FDR=0.037), while most of the multi-detections appeared in apples seen from 
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both sides of the row of trees, when the detection from one side did not overlap 

sufficiently (they were not unified) with the detection from the other tree side. In 

contrast, as shown in Figure 9, some groups of apples were unified in a single detection, 

which explains the difference between the detection rate and the recall values reported 

in Table 3. This is because when two apples were detected in a single detection, only 

one true positive is counted to compute the recall metric. 

 
Figure 9. Illustration of 3D fruit detection and location results from the test dataset: a) 3D 
visualisation of the scanned scene. b) Test scene with coloured fruit detections. A zoom view is 
shown to assist the visualization of the detections in the first tree of the dataset. Black circles 
show two examples where two apples were unified in a single detection. The reader is referred 
to the following link for an interactive 3D visualization of test fruit detection results: 
http://www.grap.udl.cat/documents/photogrammetry_fruit_detection.html  

Regarding the computational cost of the presented methodology, Table 4 includes the 

inference time of different processing steps implied in the presented methodology. The 

most computational expensive was the SfM photogrammetry, which required around 

500 min to generate the 3D point cloud of the apples contained in the 11 tested trees in a 

conventional CPU computer. However, this processing time could be significantly 

reduced by processing this step in a graphic processing unite (GPU). The projection of 

2D detections onto the 3D point cloud was also a computational expensive step, which 

required 260 min to process all images from the dataset. Since the code developed to 

project 2D detections onto the 3D point cloud was not parallelized, this step could not 

be processed in the CPU+GPU machine. 
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Table 4. Computational cost of processing steps implied in the developed methodology. The 
reported processing time corresponds to the time required to process all the dataset (11 trees, 
582 images). 

Process Processing time 
 CPU CPU+GPU 
Instance segmentation (Mask RCNN) --- 35 min 
3D point cloud generation (SfM) 500 min 50 min 
Projection of 2D detections onto 3D point cloud 260 min --- 

 

4. Discussion 
This paper proposes a combination of instance segmentation neural networks and SfM 

for fruit detection and 3D location. By projecting 2D segmentation masks onto the 3D 

point cloud, results showed an increase of 2.8% in recall (from 0.878 to 0.906), 9.5% in 

precision (from 0.762 to 0.857) and 6.5% in F1-score (from 0.816 to 0.881). This 

difference could be even larger because 2D instance segmentation results were 

evaluated with respect to the number of visible fruits in the images –since it was not 

possible to estimate the number of occluded fruits in the 2D images–, while the 3D fruit 

detection was evaluated with respect to the total number of fruits in the tree. The use of 

SfM helped to increase the detection rate because of the multi-view approach of this 

technique. As stated by Hemming et al. (2014), due to the unstructured environment of 

orchards most fruits are partially/fully occluded from a single viewpoint, and thus multi-

view imaging increases fruit detectability. When using multi-view imaging, an image 

registration is necessary to not double-count apples appearing in different images. In 

this work, this registration was automatically done by projecting 2D detections onto the 

3D point cloud; even so, results showed a 10.6% multi-detection rate. Other authors 

have proposed similar approaches: Gongal et al. (2016) reported an error of 21.1% 

when identifying duplicate apples by projecting 2D image detections onto 3D models 

from RGB-D sensors, while Stein et al. (2016) used the 3D point cloud acquired from 

LiDAR-based sensors to identify multi-detections, although they did not assess the 

performance of this multi-detection identification. Using SfM not only helped to 

increase the detection rate, but also decreased the number of false detections, because, 

to build the 3D point cloud, an object has to be detected in at least two different images, 

but the same false positive is not likely to be detected in two different images. Then, 

false positives only detected in one image were automatically removed. This fact, 
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combined with the use of an SVM to identify false positives, explains the increase of 

11.9% in precision, from 0.762 (2D image detections) to 0.881 (3D detections).  

Although it is difficult to compare results from different datasets, our implementation of 

Mask R-CNN (F1-score=0.8583) performed similarly to other state-of-the-art fruit 

detection works based on deep convolutional neural networks, which reported F1-score 

values between 0.73 and 0.97 (Koirala et al., 2019). Mask R-CNN is not as fast as other 

object detection networks used for fruit detection ‒ such as YOLO (Redmon and 

Farhadi, 2018; Tian et al., 2019) ‒, but it has the advantage of providing segmentation 

masks for each detection, which is necessary in our application to obtain the proper 3D 

location when projecting 2D detections onto the 3D point cloud. As for the 3D apple 

location performance, few works have provided 3D detection rates with respect to the 

total amount of fruits in trees. For instance, Stein et al. (2016) reported a good 

correlation (R2=0.9) between the number of fruits detected and the actual number of 

fruits in the trees, but the methodology was not assessed in terms of precision, recall and 

F1-score (or similar metrics). Tao and Zhou (2017) reported a similar 3D detection 

performance to that of our methodology (F1-score = 0.921), but they tested the system 

on a smaller dataset of 59 apples. Finally, comparing the presented methodology with 

respect to other computer vision systems used in fruit harvesting robots, our system 

performed well compared to most of those presented in Bac et al. (2014) and Williams 

et al. (2019), which reported detection rates below 85%. However, the presented 

methodology is not suitable for harvesting robots because it cannot work at real-time 

due to the high amount of images to be processed and the computationally-intensive 

processing of SfM (Wang et al., 2019). Nevertheless, the evolution of computing 

hardware and the development of efficient algorithms could overcome this limitation in 

the future. 

 Finally, from a qualitative/visual analysis of the 3D data, the point cloud obtained using 

SfM presented a higher precision compared with other sensors used for 3D fruit 

location, such as LiDAR-based and depth cameras (Gené-Mola et al., 2019a; Nguyen et 

al., 2016; Tao and Zhou, 2017). This suggests that the methodology could potentially be 

used to measure fruit size, which, combined with the good correlation between the 
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number of fruit detections and the number of total fruits in the tree, would allow 

computation of fruit load in weight (yield estimation).  

For yield prediction or yield mapping applications, the computational cost of the 

presented methodology is not a critical issue, as data can be processed offline. However, 

in the tests carried out in this work, data was acquired manually, being a labour and 

time consuming task when scanning larger areas. In order to automatize the data 

acquisition, some authors have used RGB-D sensors integrated on mobile platforms 

(Milella et al., 2019). Similarly, to optimize the data acquisition of the proposed 

methodology, future works should study the development of a compact system 

composed by different cameras mounted on a terrestrial platform. 

5. Conclusions 

This work proposes the combination of instance segmentation neural networks and 

structure-from-motion (SfM) for apple detection and 3D location. Due to the multi-view 

approach on which SfM is based, results showed a small number of fruit occlusions 

compared with other fruit detection systems, reporting a detection rate of 99.1%. 

However, 8.5% of the apples were grouped in detections with more than one apple, with 

the result that the recall rate decreased to 0.906. Another advantage of using SfM was 

the reduction of false positives. Since SfM only generates the 3D model of those objects 

appearing in, at least, two different images, false positives only detected in one image 

were automatically discarded. This false positive reduction from SfM, combined with 

the use of a support vector machine to identify false positive detections, produced an 

increase in the precision metric from 0.762 (2D image detections) to 0.857 (3D 

detections). 3D location results reported an F1-score of 0.881 with respect to the total 

amount of fruit on the trees, with the conclusion that the proposed methodology 

performs well compared to other state-of-the-art 3D fruit location systems. The main 

disadvantage of this methodology is that, due to the computationally-intensive 

operations of SfM, it cannot process the data in real-time, which is an important 

limitation for its application in harvesting robots. However, the evolution of computing 

hardware and the development of efficient algorithms could overcome this issue in the 

future. The dataset and the corresponding annotations have been made publicly 
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available, being the first dataset for 3D photogrammetric fruit detection and location. 

Due to the high spatial precision obtained with SfM and the good correlation between 

the number of detections and the actual number of fruits in the tree (R2=0.8), future 

works should extend the methodology to measure fruit size and, consequently, perform 

fruit yield estimations.  
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Appendix A. Parameter values used for 3D point cloud generation 

Table A1. Configuration set to perform the 3D reconstruction using Agisoft Professional 
Photoscan (v1.4, Agisoft LLC, St. Petersburg, Russia). 

Step Parameter Configuration set Description 

Camera 
alignment 

Accuracy High Images used in original size 
Key point limit 100000 Upper limit of feature points per image 
Tie point limit 10000 Upper limit of matching points per image 

Dense 
cloud 

Quality Medium Images downscaled by factor of 16 (4 times 
per side) 

Depth filtering Mild Filter used to sort out outliers 
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Appendix B. False positive feature analysis 

  

Figure B1 Graphical representation of apple detection features. The features analysed are the 
volume, number of points, the geometric parameter Ψ, and the detection point density δ. False 
positives are represented in red crosses; true positives are represented in blue diamonds. This 
analysis was performed on the training data set and was used to train the SVM for false 
positives identification (explained in Section 2.2.3). 

References 
Abdulla, W., 2017. Mask R-CNN for object detection and instance segmentation on Keras and 

TensorFlow. GitHub Repos. 

Bac, C.W., Van Henten, E.J., Hemming, J., Edan, Y., 2014. Harvesting Robots for High-value 
Crops: State-of-the-art Review and Challenges Ahead. J. F. Robot. 31, 888–911. 
doi:10.1002/rob.21525 

Bargoti, S., Underwood, J.P., 2017. Image Segmentation for Fruit Detection and Yield 
Estimation in Apple Orchards. J. F. Robot. 34, 1039–1060. doi:10.1002/rob.21699 

Bulanon, D.M., Burks, T.F., Alchanatis, V., 2008. Study on temporal variation in citrus canopy 
using thermal imaging for citrus fruit detection. Biosyst. Eng. 101, 161–171. 
doi:10.1016/j.biosystemseng.2008.08.002 

Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A Density-Based Algorithm for Discovering 
Clusters in Large Spatial Databases with Noise. Proc. 2nd Int. Conf. Knowl. Discov. Data 
Min. 96, 226–231. doi:10.1.1.71.1980 

Gené-Mola, J., Gregorio, E., Guevara, J., Auat, F., Sanz-cortiella, R., Escolà, A., Llorens, J., 
Morros, J.-R., Ruiz-Hidalgo, J., Vilaplana, V., Rosell-Polo, J.R., 2019a. Fruit detection in 
an apple orchard using a mobile terrestrial laser scanner. Biosyst. Eng. 187, 171–184. 
doi:10.1016/j.biosystemseng.2019.08.017 

Gené-Mola, J., Vilaplana, V., Rosell-Polo, J.R., Morros, J.-R., Ruiz-Hidalgo, J., Gregorio, E., 
2019b. KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with 
color, depth and range-corrected IR data. Data Br. 25, 104289. 
doi:10.1016/j.dib.2019.104289 

157 



   

CHAPTER VII 
P7: Fruit detection and 3D location using instance 

segmentation neural networks and structure-from-motion 

Gené-Mola, J., Vilaplana, V., Rosell-Polo, J.R., Morros, J.R., Ruiz-Hidalgo, J., Gregorio, E., 
2019c. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their 
radiometric capabilities. Comput. Electron. Agric. 162, 689–698. 
doi:10.1016/j.compag.2019.05.016 

Gongal, A., Amatya, S., Karkee, M., Zhang, Q., Lewis, K., 2015. Sensors and systems for fruit 
detection and localization: A review. Comput. Electron. Agric. 116, 8–19. 
doi:10.1016/j.compag.2015.05.021 

Gongal, A., Silwal, A., Amatya, S., Karkee, M., Zhang, Q., Lewis, K., 2016. Apple crop-load 
estimation with over-the-row machine vision system. Comput. Electron. Agric. 120, 26–
35. doi:10.1016/j.compag.2015.10.022 

He, K., Gkioxari, G., Dollar, P., Girshick, R., 2017. Mask RCNN. Proc. IEEE Int. Conf. 
Comput. Vis. 2017, 2961–2969. doi:10.1109/ICCV.2017.322 

Hemming, J., Ruizendaal, J., Willem Hofstee, J., van Henten, E.J., 2014. Fruit detectability 
analysis for different camera positions in sweet-pepper. Sensors (Switzerland) 14, 6032–
6044. doi:10.3390/s140406032 

ISPA, (International Society of PrecisionAgriculture), 2019. ISPA Official Definition of 
Precision Agriculture. ISPA Newsl. 7 (7) July. 

Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C., 2019. Deep learning – Method overview and 
review of use for fruit detection and yield estimation. Comput. Electron. Agric. 162, 219–
234. doi:10.1016/j.compag.2019.04.017 

Kuhn, H.W., 2010. The Hungarian method for the assignment problem, in: 50 Years of Integer 
Programming 1958-2008: From the Early Years to the State-of-the-Art. doi:10.1007/978-
3-540-68279-0_2 

Li, L., Zhang, Q., Huang, D., 2014. A review of imaging techniques for plant phenotyping. 
Sensors (Switzerland) 14, 20078–20111. doi:10.3390/s141120078 

Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid 
networks for object detection, in: Proceedings - 30th IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR 2017. doi:10.1109/CVPR.2017.106 

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 
2014. Microsoft COCO: Common objects in context, in: European Conference on 
Computer Vision. pp. 740–755. doi:10.1007/978-3-319-10602-1_48 

Linker, R., 2017. A procedure for estimating the number of green mature apples in night-time 
orchard images using light distribution and its application to yield estimation. Precis. 
Agric. 18, 59–75. doi:10.1007/s11119-016-9467-4 

Liu, X., Chen, S.W., Aditya, S., Sivakumar, N., Dcunha, S., Qu, C., Taylor, C.J., Das, J., 
Kumar, V., 2018. Robust Fruit Counting: Combining Deep Learning, Tracking, and 
Structure from Motion. IEEE Int. Conf. Intell. Robot. Syst. 1045–1052. 
doi:10.1109/IROS.2018.8594239 

Meier, U., 2001. Growth stages of mono- and dicotyledonous plants, BBCH Monograph. 
doi:10.5073/bbch0515  

Milella, A., Marani, R., Petitti, A., Reina, G., 2019. In-field high throughput grapevine 

158 



   

CHAPTER VII 
P7: Fruit detection and 3D location using instance 

segmentation neural networks and structure-from-motion 

phenotyping with a consumer-grade depth camera. Comput. Electron. Agric. 156, 293–
306. doi:10.1016/j.compag.2018.11.026 

Narvaez, F.Y., Reina, G., Torres-Torriti, M., Kantor, G., Cheein, F.A., 2017. A survey of 
ranging and imaging techniques for precision agriculture phenotyping. IEEE/ASME Trans. 
Mechatronics 22, 2428–2439. doi:10.1109/TMECH.2017.2760866 

Nguyen, T.T., Vandevoorde, K., Wouters, N., Kayacan, E., De Baerdemaeker, J.G., Saeys, W., 
2016. Detection of red and bicoloured apples on tree with an RGB-D camera. Biosyst. 
Eng. 146, 33–44. doi:10.1016/j.biosystemseng.2016.01.007 

Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Singh, S., 2014. Automated visual yield 
estimation in vineyards. J. F. Robot. 31(5), 837–860. doi:10.1002/rob.21541 

Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. Tech Report, 
arXiv1804.02767. 

Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 
1137–1149. doi:10.1109/TPAMI.2016.2577031 

Rosell-Polo, J.R., Cheein, F.A., Gregorio, E., Andújar, D., Puigdomènech, L., Masip, J., Escolà, 
A., 2015. Advances in Structured Light Sensors Applications in Precision Agriculture and 
Livestock Farming. Adv. Agron. 133, 71–112. doi:10.1016/bs.agron.2015.05.002 

Stein, M., Bargoti, S., Underwood, J., 2016. Image Based Mango Fruit Detection, Localisation 
and Yield Estimation Using Multiple View Geometry. Sensors 16, 1915. 
doi:10.3390/s16111915 

Tao, Y., Zhou, J., 2017. Automatic apple recognition based on the fusion of color and 3D 
feature for robotic fruit picking. Comput. Electron. Agric. 142, 388–396. 
doi:10.1016/j.compag.2017.09.019 

Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z., 2019. Apple detection during 
different growth stages in orchards using the improved YOLO-V3 model. Comput. 
Electron. Agric. 157, 417–426. doi:10.1016/j.compag.2019.01.012 

Torres-Sánchez, J., de Castro, A.I., Peña, J.M., Jiménez-Brenes, F.M., Arquero, O., Lovera, M., 
López-Granados, F., 2018. Mapping the 3D structure of almond trees using UAV acquired 
photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 176, 172–
184. doi:10.1016/j.biosystemseng.2018.10.018 

Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W., 2000. Bundle Adjustment — A 
Modern Synthesis Vision Algorithms: Theory and Practice. Vis. Algorithms Theory Pract. 
298–375. doi:10.1007/3-540-44480-7_21 

Wang, X., Rottensteiner, F., Heipke, C., 2019. Structure from motion for ordered and unordered 
image sets based on random k-d forests and global pose estimation. ISPRS J. Photogramm. 
Remote Sens. 147, 19–41. doi:10.1016/j.isprsjprs.2018.11.009 

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. “Structure-
from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. 
Geomorphology 179, 300–314. doi:10.1016/j.geomorph.2012.08.021 

Williams, H.A.M., Jones, M.H., Nejati, M., Seabright, M.J., Bell, J., Penhall, N.D., Barnett, J.J., 

159 



   

CHAPTER VII 
P7: Fruit detection and 3D location using instance 

segmentation neural networks and structure-from-motion 

Duke, M.D., Scarfe, A.J., Seok, H., Lim, J., Macdonald, B.A., 2019. Robotic kiwifruit 
harvesting using machine vision , convolutional neural networks , and robotic arms. 
Biosyst. Eng. 181, 140–156. doi:10.1016/j.biosystemseng.2019.03.007 

Zhang, E., Zhang, Y., 2009. Average Precision, in: LIU, L., ÖZSU, M.T. (Eds.), Encyclopedia 
of Database Systems. Springer US, Boston, MA, pp. 192–193. doi:10.1007/978-0-387-
39940-9_482 

 

 

 

 

 

 

 

 

 

 

160 



 

 
 
 

 



   

CHAPTER VIII 
General discussion 

Chapter VIII. General discussion 
So far, the fruit detection results obtained with different sensors have been discussed 

individually in the corresponding chapters. This chapter offers a global comparison and 

discussion of all the tested sensors and methodologies. Table 1 summarises the main 

results presented in this thesis. 2D fruit detection results were obtained with respect to 

the number of annotated fruits (visible fruits) because the actual number of fruits inside 

the field-of-view was not available. Conversely, 3D fruit detection methods were 

evaluated with respect to the total amount of fruits manually counted in the field.  

Table 1. Comparison between different sensors and methods tested. Abbreviations: 
thresholding (Th); decision tree (D.Tree); support vector machine (SVM); structure-from-
motion (SfM); colour data (RGB); range-corrected intensity data (S); depth data (D); data 
acquired from a single sensor position and without air-flow (H1,n); data acquired combing air-
flow conditions (H1,(n+af)); data acquired from two different sensor positions (H(1+2),n); precision 
(P); recall (R).  

2D fruit detection    
Article Sensor Method Data P R F1-score 
P6  RGB-D FasterRCNN  RGB 0.847 0.888 0.867 
P6 RGB-D FasterRCNN  RGB+S+D 0.897 0.899 0.898 
P7 RGB MaskRCNN RGB 0.857 0.860 0.858 
3D fruit detection    
Article Sensor Method Data P R F1-score 
P4  LiDAR Th+D.Tree H1,n 0.846 0.729 0.783 
P5 LiDAR Th+SVM H1,n 0.875 0.710 0.784 
P5 LiDAR Th+SVM H1,(n+af) 0.839 0.763 0.799 
P5 LiDAR Th+SVM H(1+2),n 0.860 0.751 0.802 
P7  RGB Mask+SfM SfM point cloud 0.857 0.906 0.881 
Yield prediction   
Article Sensor Method Data R2 RMSE 
P5  LiDAR Th+SVM H(1+2),n 0.87 5.7% 
P7  RGB Mask+SfM SfM point cloud 0.80 8.2% 

 

1. 2D fruit detection 
The deep neural network Faster RCNN was used in Chapter VI (P6) to detect fruits in 

2D multimodal images. Results showed an improvement in fruit detection performance 

when adding the range-corrected intensity S and depth D channels to the colour image, 

reporting an increase of 3.1% in F1-score, from 0.867 to 0.898. Other authors have also 
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attempted to improve detection performance by combining different data modalities. 

For instance, Gan et al. (2018) obtained an increase of 2.3% in F1-score when 

combining colour and thermal images, while Sa et al. (2016) reported an increase of 

2.2% in F1-score when combining colour and near-infrared images.  

The methodology presented in Chapter VII (P7) also uses a CNN for fruit detection in 

2D images. In this case, the neural network architecture was the Mask RCNN, which 

not only provides object detection bounding boxes, but also gives the corresponding 

segmentation masks. Results showed an F1-score of 0.858, similar to the one reported 

in P6 with RGB images (F1-score of 0.867). These results are comparable with other 

state-of-the-art works based on neural networks, which reported F1-score values 

between 0.73 and 0.97 (Koirala et al., 2019). The comparison between the 2D fruit 

detection tests presented in P6 and P7 suggests that the methodology of P7 could be 

further improved by using RGB-S-D multimodal images. That could be done by using 

an RGB-DToF sensor. However, the current RGB-D sensors provide data with lower 

resolution than high definition (HD) colour cameras, which could affect the precision 

and resolution of the SfM point clouds generated in P7. Additionally, a disadvantage of 

using RGB-DToF is that the working conditions are restricted to low illuminance levels. 

Another approach could be the registration of LiDAR point clouds with HD colour 

images. That would allow the generation of HD multimodal images and their use based 

on the hypothesis that it would increase the 2D fruit detection rate without penalising 

the consistency of the SfM point cloud. However, further research should be carried out 

to test the viability of this approach. 

2. 3D fruit detection and yield prediction 
Many fruit detection works from the state-of-the-art are based on 2D sensors and do not 

confront the 3D location problem (Gongal et al., 2015; Koirala et al., 2019). A relevant 

contribution of the present thesis is that it combines high performance object detection 

algorithms with 3D sensor data, allowing the location of detected fruits in the 3D space 

(3D fruit detection). Knowing the location of the fruits provides valuable information to 

the farmer for orchard management based on in-field variability, as well as to plan and 

optimize the harvesting campaign (Bargoti and Underwood, 2017b). Additionally, the 

use of 3D sensors allows the measurement of geometrical parameters of the canopy at 
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the same time, as well as the determination of the relationship between these parameters 

and yield production and the management strategies of irrigation, fertilization, thinning, 

and pruning, among others (Escolà et al., 2017; Kühn et al., 2003; Martin-Gorriz et al., 

2014).  

Chapter IV (P4) presented a proof of concept of using LiDAR sensors for 3D fruit 

detection. The algorithm was based on a reflectance thresholding followed by a decision 

tree (D.Tree). This algorithm was tested in P4 using 3 randomly selected trees. 

However, the results reported in Table 1 were obtained with the LFuji-air dataset (P1), 

allowing a comparison with other 3D fruit detection results presented in the table. In 

Chapter V (P5) the algorithm was enhanced by replacing the D.Tree with an SVM. The 

results did not present a significant improvement in terms of F1-score (from 0.783 to 

0.784). However, the fact that SVM’s are automatically trained based on the features 

that characterize apples and the reduction of manually set parameters supposed an 

advance in the algorithm. 

Table 2 summarises the strengths and weaknesses of the tested methodologies. An 

advantage of using LiDAR with respect to other sensors such as depth cameras is that 

the LiDAR measurements are not affected by the lighting conditions. Nevertheless, the 

fruit detection performance continues to be affected by the number of fruits occluded by 

other vegetative organs such as trunks and leaves. Some authors have proposed the use 

of multi-view sensing to reduce the number of fruit occlusions (Hemming et al., 2014). 

In this thesis, P5 tackled the occlusions issue by moving tree foliage with a forced air 

flow and by using multi-view sensing. The results showed that, by combining different 

air flow conditions, H1,(n+af), the F1-score increased by 1.5%, from 0.784 to 0.799, 

similar to the multi-view approach H(1,2),n, which presented an improvement of 1.8% in 

F1-score (Table 1). 

The use of CNN has demonstrated remarkable progress in 2D image object detection 

(Koirala et al., 2019). However, CNNs present some limitations when dealing with 

unstructured data such as LiDAR point clouds (Qi et al., 2017). Chapter VII (P7) 

proposed the combination of Mask R-CNN and SfM photogrammetry to detect fruits in 

2D images and locate them in the 3D space. The results outperformed other 3D fruit 
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detection methodologies tested in this thesis, presenting an F1-score of 0.881 with 

respect to the total amount of fruits in the 11 tested trees. Comparing 2D results 

obtained with Mask RCNN and 3D detections obtained after projecting 2D detections 

into the 3D space, the F1-score metric showed an increase of more than 2%, from 0.858 

(2D detections) to 0.881 (3D detections) (Table 1). From that, it is concluded that, due 

to the multi-view approach on which SfM is based, this technique helped to increase the 

detection rate, reducing the number of false positives and preventing the double 

counting of fruits that appeared in two different images. 

Table 2. Advantages and disadvantages of the developed/tested methodologies.  
Article Methodology Data Advantages Disadvantages 
P4 / P5 MTLS + Th. + 

SVM 
Reflectance - Not affected by lighting 

conditions 
- Fruit occlusions 
- Expensive equipment 

P5 MTLS + 
air/Multi-view 

Reflectance - Not affected by lighting 
conditions 
- Reduced number of fruit 
occlusions 

- Expensive equipment 

P6 RGB-D-S + 
FasterRCNN 

Reflectance 
+ colour 

- High detection rates 
- High inference speed 
- Low cost 

- Fruit occlusions 
- Limited to low 
lighting levels 

P7 MaskRCNN + 
SfM 

Colour - High detection rates 
- Low number of false 
positives 
- Reduced number of fruit 
occlusions 
- Low cost 
- High 3D data precision 

- High computational 
time 

 

Although the combination of Mask RCNN with SfM (P7) presented higher fruit 

detection rates than the use of LiDAR (P4 and P5), LiDAR detections showed a 

stronger correlation with the actual number of fruits per tree, reporting a coefficient of 

determination (R2) of 0.87 and a root mean square error (RMSE) of 5.7%, while the 

SfM approach showed an R2 of 0.80 and an RMSE of 8.2%. These prediction errors are 

comparable with other state-of-the-art yield prediction methods, such as those presented 

in Linker (2018, 2017), Payne et al. (2014), and Zhou et al. (2012). From the 

perspective of a qualitative assessment of 3D data, the point cloud obtained with SfM 

presented less noisy points and a higher precision compared to RGB-D and LiDAR 
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point clouds. This suggests that, in future works, the methodology presented in P7 could 

potentially be used for fruit size measuring, which, combined with the good correlation 

between the number of fruit detections and the number of total fruits in the tree, would 

allow the computation of fruit load in weight. 
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Chapter IX. Conclusions 

This PhD thesis has contributed to the development of new methodologies for fruit 

detection based on the combination of different photon-based sensors (LiDAR, RGB 

and RGB-D) and computer vision techniques.  

First, an MTLS was used to analyse the reflectance of apples, trunks, branches and 

leaves. This analysis showed that apples present higher reflectance values than other 

tree elements at the 905nm laser wavelength, concluding that reflectance is a valuable 

feature for fruit detection (Chapter IV). On this basis, an algorithm based on 

reflectance and geometric features was developed to detect fruits in LiDAR point clouds 

(Chapter IV and V). The algorithm consisted of four different steps: (1) reflectance 

thresholding, (2) connected component labelling, (3) identification and splitting of 

cluster points with more than one apple, and (4) false positive reduction. Three different 

classification methods were tested in steps (3) and (4), including template matching, 

decision tree and SVM. From that, it was concluded that the best fruit detection 

performance can be achieved either with decision trees or with SVM, presenting F1-

scores of 0.783 (decision trees) and 0.784 (SVM), respectively. However, the use of 

SVM presented the additional advantages that the algorithms was automatically trained 

and the reduced number of manually set parameters.  

A significant advantage of using LiDAR sensors with respect to passive sensors such as 

colour cameras was that the measurements were not affected by illumination conditions. 

However, the performance of the system was still being affected by extrinsic factors that 

do not depend on the sensor, such as the number of occluded fruits. To deal with this 

issue, two different approaches were tested: forced air flow and multi-view sensing 

(Chapter V). From that, it was concluded that combining data acquired with and 

without forced air flow conditions and the multi-view approach are good options to 

improve fruit detectability, reporting an increase in F1-score of more than 1.5% in fruit 

detection. However, these approaches showed no advantage when using the MTLS 

system for yield prediction. 
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CHAPTER IX  
Conclusions 

Similarly to LiDAR sensors, RGB-D cameras based on the ToF principle provide the 

amount of light backscattered by the scene, which can be related to the reflectance after 

range correction and sensor calibration. Since apples showed a higher IR reflectance 

than other tree elements, Chapter VI analysed the usefulness of using the backscattered 

light from RGB-D sensors besides the colour and depth images. To do so, first, the 

backscattered IR signal was range corrected. Then, a registration of different data was 

carried out, obtaining images with 3 modalities: colour, depth and range-corrected 

intensity. Results showed an improvement of more than 3% in F1-score when all 

modalities were used, with the conclusion that the use of range-corrected intensity from 

RGB-D sensors helps to increase the percentage of fruits detected. An additional 

advantage of using RGB-D sensors with respect to colour cameras, is that they can 3D 

locate the detected fruits by using depth information, while the main disadvantage is 

that the depth measurement performance decreases under direct sunlight. 

To use high performance deep neural networks for object detection in 2D images, 

without losing 3D spatial information, and to reduce the number of fruit occlusions 

using a multi-view approach, Chapter VII proposed the combination of instance 

segmentation neural networks and SfM. Results outperformed other methodologies 

tested in the present thesis, presenting an F1-score of 0.881 in 3D fruit location. Due to 

the multi-view approach on which SfM is based, this methodology showed a small 

number of fruit occlusions, reporting a detection rate of 99.1%. However, the algorithm 

did not succeed in detaching some groups of apples that were detected in a single 

detection, which responds to the decrease in the recall metric to 0.906. An additional 

advantage of using SfM was that it helped to reduce the number of false positives, 

producing an increase in the precision metric from 0.762 (2D image detections) to 0.857 

(3D detections). The main disadvantage of this methodology was the computational 

time required to generate 3D models with SfM, which does not allow real-time data 

processing. However, the evolution of computing hardware and the development of 

efficient algorithms may overcome this limitation in the future.  
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CHAPTER IX  
Conclusions 

Considering all the conclusions that have been made, future works should include: (1) 

an analysis of fruit reflectance under different laser wavelengths; (2) the analysis of fruit 

occlusions in different crop training systems; (3) the projection of 2D fruit detections 

obtained from RGB-D sensors onto the 3D space using the depth channel data; (4) the 

extension of this research to other fruit varieties, species and maturity stages; and (5) 

and the development of a methodology to measure fruit size. 
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