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Abstract

Big science infrastructures are confronting increasing demands for public accountability, not
only within scientific discovery but also their capacity to generate secondary economic value.
To build and operate their sophisticated infrastructures, big science often generates frontier
technologies by designing and building technical solutions to complex and unprecedented
engineering problems. In parallel, the previous decade has seen the disruption of rapid
technological changes impacting the way science is done and shared, which has led to the
coining of the concept of Open Science (OS). Governments are quickly moving towards the
OS paradigm and asking big science centres to "open up” the scientific process. Yet these
two forces run in opposition as the commercialisation of scientific outputs usually requires
significant financial investments and companies are willing to bear this cost only if they can
protect the innovation from imitation or unfair competition. This PhD dissertation aims at
understanding how new applications of ICT are affecting primary research outcomes and the
resultant technology transfer in the context of big science and OS. It attempts to uncover the
tensions in these two normative forces and identify the mechanisms that are employed to
overcome them. The dissertation is comprised of four separate studies: 1) A mixed-method
study combining two large-scale global online surveys of research scientists (2016, 2018),
with two case studies in high energy physics and molecular biology scientific communities
that assess explanatory factors behind scientific data sharing practices; 2) A case study of
Open Targets, an information infrastructure based upon data commons, where the European
Molecular Biology Laboratory-EBI and pharmaceutical companies collaborate and share
scientific data and technological tools to accelerate drug discovery; 3) A study of a unique
dataset of 170 projects funded under ATTRACT—a novel policy instrument of the European
Commission led by European big science infrastructures—which aims to understand the
nature of the serendipitous process behind transitioning big science technologies to
previously unanticipated commercial applications; and 4) A case study of White Rabbit
technology, a sophisticated open-source hardware developed at the European Organization
for Nuclear Research (CERN) in collaboration with an extensive ecosystem of companies.

Keywords: big science, open science, open-source hardware, data commons, information

infrastructures, transaction costs economics, collective action, serendipity, epistemic cultures.
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Introduction

This chapter introduces the topic of the PhD thesis, and presents its structure and content



1.1 Introduction to the topic of the PhD thesis

Big science, defined as large-scale and capital-intensive scientific collaborative efforts
(Weinberg 1961), has provided societies with frontier technologies that have impacted
businesses, markets, and people's lives. One major characteristic of these infrastructures is
that they cannot use off-the-shelf technologies to conduct their experiments and
measurements. Instead, they require unique solutions to unprecedented engineering problems
that severely challenge technology suppliers and thereby serve as drivers of innovation.
Famous examples of technologies impacting business are the World Wide Web (specifically
HTTP, URL, HTML), the capacitive touch screen conceived at first for mastering the
controls of the Super Proton Synchrotron at the European Organization for Nuclear Research
(CERN), and also the detection, imaging, and computational technologies developed for
advanced scientific measurement and analysis which have demonstrated tremendous potential
for many industries such as advanced manufacturing, medical diagnostics and imaging,
biotechnology, and microelectronics (Bressan 2014a, 2014b).

The tremendous potential of big science centres to innovate has equally not gone unnoticed
by policymakers who, after the "carte blanche" attitudes of early big-science endeavours
(Autio, Bianchi-Streit et al. 2003) and the softening of their geopolitical ethos (Hellstrom and
Jacob 2012; Weinberg 1961, 1963, 1964), have increasingly demanded a broader higher
return on investment via commercialisation of their technologies and research outputs
(normative vector 1: technology transfer) (Autio 2014; Autio et al. 2004; Autio, Hameri et al.
2003; Castelnovo et al. 2018; Hallonsten 2014; Heidler and Hallonsten 2015). Although there
is extensive literature describing big science’s technological contribution to business and
society, most of those studies have treated these organisations as a “black box”, just as
known about how big science infrastructures can actively cultivate the transfer of their
technologies to unanticipated and “outside” applications to fulfill the public policy plea
(Autio 2014; Autio et al. 2004).

In parallel, the previous decade has seen the disruption of rapid technological changes,
primarily in Information and Communication Technologies (ICT), impacting the way
science is done and shared. Several terms have appeared to mark the impact of ICT in
science: e-science (Crowston et al. 2008, 2009; David and Spence 2003; Stockinger 2005),
the fourth paradigm in scientific discovery (Atkins et al. 2003; Hey 2009), and cyberscience
or science 2.0 (Borgman 2010; Edwards 2019). The scientific process has long been one of
the leading application areas of ICT and the rapid technological evolution in the last decade
has been transforming science with the emergence of new research methods that capitalise on
advanced computational resources, distributed infrastructures that support long-term sharing
and reusing of data collections and scientific instruments. Data intensity, powered by

computational hardware, software and research processes, is allowing scientists to carry out



experiments at unprecedented levels in terms of scale and volume (Borgman 2010;
Dougherty and Dunne 2011; Hey 2009). Social computing is also enabling new behaviours in
communication and collaboration among scientists, where researchers are using multiple
tools to share elements of their research: from literature reviews (e.g. Zotero'), to data (e.g.
Figshare?) or their electronic lab notebooks (e.g. Scinote®) (OECD 2015)

Within such a framework, opening up and sharing data, code, scientific experimental devices,
and any primary research output has become increasingly important. This phenomenon has
led to the coining of the concept of Open Science (OS), which describes an approach to
research based on greater access to any primary outputs of research with minimal restriction
while fostering broader collaboration and transparency through all the stages of the scientific
process (David 2003; OECD 2015). In this context, opening up and sharing data through data
infrastructures, code (open-source software), engineering tools (open-source hardware), notes
(electronic lab notebooks) and any possible primary research output have become
increasingly crucial in particular in big science settings which have the policy mandate to
widely disseminate all possible scientific outputs generated (Atkins 2003; Borgman 2015;
European Commission 2014, 2019; OECD 2015). Governments are quickly moving towards
the OS paradigm and asking public research institutions and big science centres to "open up"
the scientific process—often making these practices requisite for continued funding (vector 2:
open science) (European Commission 2014).

Yet these two forces run in opposition: Big science centres must negotiate a tension between
their goal of generating revenue and economic stimulus via transferring their technologies to
the market (vector 1: technology transfer), with the additional plea by policymakers of
increasing openness in the way science is performed and diffused (vector 2: open science).
The commercialisation of scientific outputs usually requires significant financial investments
and companies are willing to bear this cost only if they can protect the innovation from
imitation or unfair competition (Caulfield et al. 2012; David 2003; Dosi et al. 2006;
Perkmann and Schildt 2015).

Hence, the overarching goal of this PhD dissertation is:

(1) To understand the tension between the two normative forces that big science
infrastructures face (i.e. technology transfer and open science (OS)) by uncovering the

mechanisms that are employed to overcome the challenges that lie at the root of such tension.

To understand this tension requires understanding the macro phenomenon of each of the
vectors (i.e. open science and technology transfer) as external forces that at times can work
contradictorily. Hence, we seek:

' About Zotero: https://www.zotero.org/
2 About Figshare: https:/figshare.com/
3 About Scinote: https://scinote.net/




(1.1.) To understand the dynamics behind the aim of opening up primary research outputs

(i.e. open science vector).

(1.2.) To understand the dynamics of steering big science activities towards transferring their
technological solutions to previously unanticipated commercial applications (i.e. technology

transfer vector).

Understanding the dynamics of the exogenous influence of the openness vector (1.1) and the
technology transfer vector (1.2.) will inform our goal (1) to understand the tension between
the two that at times can work contradictorily, and to elucidate the specific mechanisms that
organisations use to reconcile the tensions caused by the two vectors.

1.2 Structure

This PhD thesis adopts the form of four studies, all written for publication. Each of these four
studies responds to a step in the research strategy to accomplish the aforementioned
overarching research goal of understanding the dynamics and tension within and across open
science and technology transfer vectors and uncovering the mechanisms that are employed to

overcome them.

e Chapter 2 presents the overarching framework in which the four studies are
developed and introduces the research gaps and research questions that each study
addresses. It provides an overview of the four complementary studies.

e Chapter 3 is the first of the four studies, which aims at understanding the first
vector: open science, responding to the first sub-goal (1.1.) of our PhD
investigation. In particular the study will shed light on the dynamics behind
opening up scientific data and the explanatory factors behind the gradual and
disparate adoption of data sharing practices across scientists. With this purpose,
the study engages in a mixed-method design combining survey data collected in
2016 (n=1,162) and 2018 (n=1,029) and qualitative data from two case studies
sequentially sampled of two information infrastructures within two scientific
communities (i.e. high-energy physics and molecular biology). The study draws
upon the notion of “epistemic cultures” originated from the sociology of science
and a collective action theory perspective to understand the incentives and
deterrents that scientists confront when considering contributions to the collective
goods of data sharing (i.e. data commons).

e Chapter 4 is the second empirical study, which consists of a micro-study of a
single case that gives us insight into the different mechanisms that help reconcile
the main tensions between the first exogenous influence presented (i.e. open
science) and technology transfer. The study analyses the governance processes in
the development of an information infrastructure based upon data commons in the

big science field of molecular biology. The study examines the exemplary case of



Open Targets (OT), a large-scale information infrastructure created by leading
organisations in bioinformatics, genomics, and pharmaceuticals that include for-
profit companies, non-profit foundations, and public research organisations.
Under collective action theoretical lenses, the study theorises about the
governance conditions of modularity and brokerage that enable a fluid process of
transitioning between open and opaque spaces of work in the development of the
information infrastructure. This fluid dynamic helped navigate many of the trade-
offs between private and collective interests in the development of shared resource
pools composed of heterogeneous members with different objectives.

e Chapter 5 is the third study, which aims at understanding the second vector:
technology transfer, responding to the second sub-goal (1.2.) of our PhD
investigation. The study seeks to understand the nature of the serendipitous
process behind transferring big science technologies to alternative and previously
unanticipated commercial applications by looking at the modes towards its
realisation. Leveraging a unique dataset of 170 projects funded under
ATTRACT,* a novel policy instrument of the European Commission aiming to
harness the detection and imaging technologies of the leading European research
infrastructures towards entrepreneurship, the study uncovers four serendipity
modes showing the potential of directed interventions enabling organisations to
find unexpected commercial applications of big science research.

e Chapter 6 is the fourth study which consists of a micro-study of a single case that
gives us insight into the different operational levers that help reconcile the main
tensions between the two exogenous influence presented (i.e. open science and
technology transfer). In particular, the study will assess the development of White
Rabbit (WR), an OSH initiated at CERN and deployed as a powerful precision
and synchronisation technology in many industrial settings where time accuracy is
critical. Through the investigation of WR, the study contributes to recent
conceptualisations of digital objects by uncovering the differences from hybrids to
purely non-material digital objects and elucidates what happens when we
transpose the open-source model of development to a hybrid object. As a lens to
understand how different attributes of objects require different development
models, we adopt relevant constructs from Transaction Costs Economics (TCE)
and examine its utility as a predictive theory of open source hardware
development.

4 The members of ATTRACT are as follows: the European Organization for Nuclear Research (CERN),
European Molecular Biology Laboratory (EMBL), European Southern Observatory (ESO), European
Synchrotron Radiation Facility (ESRF), European X-Ray Free-Electron Laser Facility (European XFEL), and
the Institut Laue-Langevin (ILL), Aalto University, Esade Business School, and the European Industrial
Research Management Association (EIRMA).



e Chapter 7 integrates the main conclusions, theoretical and practical contributions,
limitations, and suggestions for future research from the four articles.
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Figure 1. Overview of the four studies integrating the PhD dissertation



2

Overarching Framework

This chapter discusses the phenomenon under investigation, related constructs and literatures,
presents the research question, offers an overview of the four empirical studies that constitute
chapters 3, 4, 5, and 6, and their theoretical foundations.



2.1 Big science

First coined by physicist Alvin Weinberg (1961), big science is a term used to refer to
research organisation with high capital intensity, long-lasting facilities or networks, operating
in monopoly or oligopoly conditions, and affected by externalities that produce social
big science was initially devoted to nuclear physics and astronomy, it has spread to other
disciplines such as molecular biology, where scientists are tapping into data resources and
computational infrastructures.

Under the label of big science infrastructures, there is (alphabetically): CERN, European
Molecular Biology Laboratory (EMBL), European Synchrotron Radiation Facility (ESRF),
European Southern Observatory (ESO), Institut Laue Langevin (ILL), Joint European Torus
(JET), International Thermonuclear Experimental Reactor (ITER) and the now-completed
Human Genome Project.

2.2 The role of ICT in big science

Science, and in particular big science (Au 2014; Borgman 2015; Hey 2009), has been one of
the leading application domains of ICT. Multiple constructs have emerged to describe how
ICT has transformed scientific research (e.g. eScience, eResearch, cyberscience or science
2.0) and the supporting systems that emerged to assist such transformation (e.g.
cyberinfrastructures). Big science research could not be understood today without high-
performance computing supporting the analyses of large volumes of data or without the
diverse internet-enabled applications affording scientists access to a variety of resources
including other scientists’ workflows. Supercolliders, telescopes and a diverse set of large
instruments are operated by large distributed research teams employing a wide range of ICT
applications.

The fundamental nature of the data produced in such big science infrastructures has also
changed: More than 200 petabytes of data are now permanently archived in CERN’s tape
libraries, which come from the particles collided in the Large Hadron Collider (LHC)
detectors that generate about one petabyte of collision data per second (Gaillard 2017); more
than 120 petabytes are archived in EMBL-EBI, which have experienced a deluge of
biological data after the completion of the human genome in 2003 (Cook et al. 2018); and
large volumes of data coming from remote sensing in satellites have revolutionised
environmental sciences.



Within such a context, while seeking to accomplish their primary goal of conducting
groundbreaking scientific research, big science centres face two exogenous demands that
affect how they do it. First, they are requested to generate secondary socio-economic benefits
and returns on investment by transferring the technologies developed for their scientific
experimentation to other industrial settings. Second, they need to maximise the dissemination
of their primary research outputs by disclosing with minimal restrictions their data, code, and
the design of their engineering tools (OSH) so that others can re-use them.

2.3 Two normative vectors

2.3.1 First normative vector: Open Science

Whereas the origins of OS are rooted in the norms of science articulated by sociologist
Robert Merton (1973) who stressed the co-operative character of inquiry, the current
developments of ICT transforming scientific practices have led to an emergent approach to
research that reduces the barriers to sharing any form of research output, methods or tools at
any stage of the research process (Friesike et al. 2015). The expression is used as an umbrella
term that encapsulates open access to publications, open research data, open-source software,
open-source scientific hardware, open distributed collaboration, open peer review, and

citizen science.

OS was one of the clear political priorities of Commissioner Moedas. In 2014, the European
Commission launched a public consultation about OS, which, in 2015, resulted in a policy
agenda to foster it in Europe. This policy engagement led to the launch of the Open Science
Cloud, a federated data infrastructure with cloud-based services to offer the scientific
community an open environment for storing, sharing, and re-using scientific data, and the
implementation of several actions contained in the Amsterdam Call for Action on OS. Also,
in the United States, the Federal Crowdsourcing and Citizen Science Act were signed into
law in January 2018. The requirements from funding agencies have incorporated the mandate
of opening up research data and making it publicly available: US National Institutes of
Health (NIH) in 2003 for grants over $500,000 (NIH 2003), the National Science Foundation
(NSF) in 2010 (Borgman 2012), and the European Commission for Horizon 2020 program in
2014 (European Commission 2014).

Governments are quickly moving towards the OS paradigm and asking public research
institutions and big science centres to "open up" their processes with particular attention to
their data, meaning to make it freely available for other scientists to reuse. However, only
recently has the literature started capturing the factors inhibiting scientific data sharing,
suggesting that it imposes increased costs on scientists and their institutions without
commensurate professional benefits (Borgman 2015; Edwards 2019; Edwards et al. 2011;



Tenopir et al. 2015; Wallis et al. 2013). Considering the tensions between policymakers and
funding agencies’ efforts to foster data sharing and the apparent barriers to its wide adoption,
we lack an understanding of the multifaceted and complex dynamics behind the normative
force of sharing research data and the explanatory factors behind the drivers for and
barriers to sharing research data.

2.3.1 Second normative vector: Technology Transfer

Since the 1970s, public research institutions have faced demands for greater accountability of
public spending, which have only grown in the current climate of budgetary austerity. In
particular, big science accounts for a large proportion of publicly-funded research. With the
conclusion of the Cold War, the direct link between big science, nuclear physics, and
government expenditures on defence programs decreased. As a result, big science
infrastructures faced more vigorous appeals to demonstrate their social value, not only in
scientific discovery but also for the economy and society in general (Autio 2014; Autio et al.
2004; Schmied 1982).

Often associated with numerous technological innovations gestated during WWII, such as
radar and wireless communication, big science infrastructures generate frontier technologies
by severely challenging technology suppliers with sophisticated engineering problems that
require never-seen technologies. By conducting experiments and measurements with
unprecedented technological specifications, big science cannot use off-the-shelf technologies,
thereby serving as an incredible driver of innovation, while significantly advancing the
technical and organisational capacities of technology suppliers. Besides the immediate
applications within experimentation and instrumentation, many of these technologies find
alternative applications that were not part of their original scope within the scientific facility.
Famous examples of research technologies gestated in big science centres impacting business
are the World Wide Web (specifically HTTP, URL, HTML) at CERN, and also the detection,
imaging, and computational technologies developed for advanced scientific measurement and
analysis in the framework of such infrastructures which have demonstrated tremendous
potential for many other industries such as advanced manufacturing, medical devices and
imaging, biotechnology, and microelectronics.

The tremendous potential of big science centres to innovate has equally not gone unnoticed
by policymakers who, after the "carte blanche" attitudes of early big-science endeavours
(Autio, Bianchi-Streit et al. 2003), have increasingly demanded a broader higher return on
investment via commercialisation of their technologies and research outputs (Guston 2000).
However, the difficulties of transitioning these technologies and technical knowledge from
the big science setting to “outside” their organisational setting, i.e. technology transfer
(Bozeman 2000), are substantial. The primary goal of such big science infrastructures is to
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drive cutting-edge scientific research. Neither their cultures nor their governance is optimised
for technology commercialisation. As such, different efforts have been put in place to
provide the demand-side pull on these frontier technologies. For instance, most big science
infrastructures set up specific structures, such as technology transfer offices (TTOs) (Siegel
et al. 2003), as well as internal protocols and policies that seek to foster business
collaboration. For example, the European Molecular Biology Laboratory (EMBL) created
EMBL Enterprise Management Technology Transfer (EMBLEM), an affiliate and the
commercial arm of the EMBL in 1999; CERN set up the Knowledge Transfer Group in 1997,
which provides active service to CERN by managing and advising on all activities related to
technology transfer. Moreover, since 2012, the organisation has set up business incubation
centres (BICs) throughout its Member States (nine at present) to support entrepreneurs in
taking CERN technologies and know-how to market.

While big science is famous for its capacity to bring new technologies to society in
applications previously unanticipated, yet there is a limited amount of rigorous empirical
research on the nature of the serendipity behind such process, which refers to a broad,
multifaceted phenomenon related to the unanticipated discovery of something beneficial. Big
science infrastructures are often treated as “black boxes” from which studies only grasp the
outputs of the serendipity process by counting licenses or spin-offs (Autio 2014; Autio et al.
2004), but we lack knowledge on how such infrastructures can proactively realise such
serendipity process (Autio 2014; Autio et al. 2004; Autio, Hameri et al. 2003; Castelnovo et
al. 2018; Hallonsten 2014; Heidler and Hallonsten 2015).

Extant literature on serendipity has mostly been based on small-sample or anecdotal
examples of scientific discoveries, and has mainly focused on the individual scientists'
experiences as opposed to a more systemic level of analysis (Autio 2014). Hence, questions
remain around how to move towards the technology transfer vector and how to shift
serendipity towards proactively finding market applications for big science. There is a need
for studies that put forward empirical examinations of serendipity to understand the dynamics
that lie at the root of policy demands for leveraging big science technologies into market
applications.

2.4 Managing the tension between technology transfer and open science

While OS promises to enhance the efficiency and quality of research by lowering data
collection costs and fostering collaboration throughout the research process, it is unclear in
the literature how a deliberate decision to share the scientific process openly with no
Intellectual Property (IP) restrictions may affect the commercial exploitation of research
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outputs (Caulfield et al. 2012; David 2003, 2004; Dosi et al. 2006; Perkmann and Schildt
2015).

One of the most famous and unprecedented examples reflecting such friction between
openness and economic returns via commercialisation of technologies was the World Wide
Web when Tim Berners- Lee on April 30, 1993, convinced managers at CERN to place it in
the public domain and make the IP freely available to everyone. By accepting this, CERN
effectively agreed not to draw revenues or economic value from it. The tension emerges in
other examples, for instance in the Super Proton Synchrotron (SPS), which came on-stream
in 1976. It was the first accelerator to have a computerised control system. At that time,
mastering the controls of the big new accelerator required technological ingenuity that led to
the invention of the world's first capacitive touch screen. To develop the technology at that
time, CERN worked with one of its suppliers. The development of the technology involved
new techniques for metallisation on various substrates, which was the object of patent rights.
However, when Bent Stumpe, CERN's scientist, was asked to sign a nondisclosure
agreement, he refused, arguing that all inventions at CERN should be open. The supplier at
this time was interested but unable to invest in the project unless the organisation could
commit itself not to disclose the technology to third parties. As a consequence, CERN's
involvement with the further development of touch screens ended and these technologies
were put on hold and reinvented and brought to market in many applications by other players
years later around the world (World Intellectual Property Organization, 2010).

Finally, the case of the Human Genome Project also provides an example from the life
science field, when a global publicly-funded consortium, challenged by a parallel
commercial effort, decided to open up all draft sequences of genes and made them available
to everybody (Shreeve 2005). Had commercial pressure dominated, this could have led to a
global “genome gold-rush” (Boulton et al. 2012).

These examples reflect the inherent fension regarding effects that greater openness in the
scientific process powered by ICT may pose to the financial protection and exploitation of
the technologies resulting from scientific activity (Dosi et al. 2006; Perkmann et al. 2013;
Perkmann and Schildt 2015; West 2008). The commercialisation of scientific outputs usually
requires significant investment, and companies are only willing to bear this cost if they can
protect such outputs from imitation or unfair competition (Agerfalk et al. 2015; Agerfalk and
Fitzgerald 2008).
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2.5 Research question

Hence, the overarching research question guiding my dissertation is:

How are new applications of ICT affecting research processes and the resultant technology
transfer in the context of big science and open science?

To answer our research question we will interrogate the two forces in isolation: open science
(study 1) and technology transfer (study 3) and will explore through two single-case studies
the different operational levers that help reconcile the main tensions between these two
exogenous forces. In particular, we selected two of the constructs under the OS umbrella for
their empirical prominence, significant impact on how businesses collaborate with big
science and their theoretical relevance for the IS discipline:

a) Data commons (also called “open data in research” or “data collaboratives"’). Data
commons co-locate data, storage, and computing infrastructures with commonly used
services and tools for analysing and sharing data to create an interoperable resource for the
research community (Grossman et al., 2016).

b) Open source hardware (OSH) refers to tangible artifacts—machines, devices, or other
physical things—whose design is made publicly available in such a way that anyone can
study, modify, distribute, make, and sell the design or hardware based on that design (Open
Source Hardware Association 2012).

2.6 Overview of four complementary studies

As briefly introduced in section 1.2, to respond to the aforementioned overarching research
aim the dissertation is structured in four complementary empirical studies (Figure 2).

13



Figure 1. Overview of the four complementary studies
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While the first and third studies offer us a contextual overview of the dynamics in the two
vectoral forces of open science (study 1) and technology transfer (study 3), the studies on
Open Targets (OT) (study 2) and White Rabbit (WR) (study 4) provide us with the required
depth to understand the specific mechanisms that organisations use to reconcile the tensions
caused by these two trajectories. Both studies, WR and OT, offer a complementary
perspective on describing the tensions of these two exogenous forces by examining two
different OS dimensions: OSH in WR, and data commons in OT. The two case studies come
from two leading big science infrastructures in two different fields: high-energy physics
(CERN) and molecular biology (OT), and offer us some variance when investigating the
mechanisms that emerge to overcome the tensions. That is, in the case of WR it is hardware
with embedded operating, middleware, or application-level software applied as a
synchronisation device in multiple industrial settings (OSH), while for OT it is data and
technological tools to accelerate R&D development processes in drug discovery (data
commons). Both studies share the unit of analysis by looking at the ecosystem of
organisations that contributed to the development of WR, namely firms’ network and
research organisations and their interactions when developing WR; and the organisations that
develop OT information infrastructure, that is, big science infrastructure, pharmaceutical and
biotech companies and other research organisations.
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While these two investigations are paramount in our inquiry, the two larger studies
addressing sub-goals 1.1. and 1.2 provide us with the contextual overview to understand the
dynamics in each normative vector, that is, the difficulties behind opening up scientific data
by exploring the factors behind the gradual and disparate adoption of data sharing practices
across scientists (i.e. first study: open science vector); and the nature of the serendipitous
process behind transferring big science technologies to alternative and previously
unanticipated commercial applications (i.e. third study: technology transfer vector).

The units of analysis of the four studies are also complementary: the first study investigates
the researcher perspective (individual level of analysis); the second and fourth study
investigate the ecosystem of organisations participating in Open Targets and White Rabbit,
and the third study is at a project level of analysis investigating the serendipitous mode in
ATTRACT projects. This complementarity provides us with a holistic examination of the
friction generated by the two exogenous forces.

In terms of research design (see Table 2), the four studies display heterogeneity in methods.
The first study employs a mixed-method approach where the survey data of two global online
surveys in 2016- 2018 are compared and combined with qualitative data of two case studies.
The second and fourth studies consist of single-case qualitative studies based on primary and
secondary data. The third study codifies 170 project proposals (3,000 words on average) to
identify patterns across proposals and cluster them by identifying four main serendipity
modes. The variety in methods responds to the needs of each specific study question, while it
helps to provide a global view of the phenomenon under study, that is, the dynamics within
and across open science and technology transfer in the context of big science.
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Table 1: Overview of the four empirical studies
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2.7 The theoretical basis of the four empirical studies

The disparity of the technological objects at the core of each work (open-source hardware,
data commons), the different perspectives employed (from micro-foundations to the
ecosystem level) and the heterogeneity in the specific interrogations of the four studies led to
the adoption of different theoretical foundations to more appropriately and effectively guide
each study towards progress in the common overarching research objective of the dissertation
(see Figure 2 below).

Figure 2. Overview of theoretical foundations employed across studies
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N
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1 Collective Action Theory |
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_______________________________
LA .
~ | Digital objects, Open source,
’, “ | Transaction Costs Economics

Big Science ‘ Technology Transfer
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As a result, the first study of the dissertation combines a cultural perspective from the
sociology of science that draws on the notion of “epistemic cultures” (Knorr Cetina 1999)
and a collective action theory perspective (Hardin 1968, 1982; Olson 2009; Ostrom 1990)
that seeks to understand the complex, intricate system of incentives and disincentives that
scientists confront when considering whether to contribute to the collective goods of data
sharing.

The second study relies on the literature on information infrastructures (Constantinides 2012;
Constantinides and Barrett 2015; Hanseth and Monteiro 1997) and adopts a collective action
theory approach (Hardin 1968, 1982; Olson 2009; Ostrom 1990) to identify the many trade-
offs between private and collective interests in the development of shared resource pools
composed of heterogeneous members with different objectives.

The third study is based on prior literature on serendipity (Fink et al. 2017; Garud et al. 2018;
Yaqub 2018) to test serendipity models previously identified and identify two additional

ones.
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Finally, the fourth study builds upon the literature on digital objects and artifacts (Faulkner
and Runde 2019; Kallinikos et al. 2013; Orlikowski and Tacono 2001; Yoo 2010) and open-
source (Benkler 2002; Dahlander and Magnusson 2008; Feller and Fitzgerald 2002;
Fitzgerald 2006; Fitzgerald and Feller 2002; Howison and Crowston 2014; O’Mahony and
Ferraro 2007) while adopting transaction costs economics theoretical lenses (Williamson
1975, 1985, 1996). These theoretical underpinnings help us to effectively isolate how OSH
differs from what we know about open-source software and better inform the challenges
around developing an object with physical components.
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Table 2. Overview of the research design of the four empirical studies
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19




2.8 Research process and scholarly contributions

The four articles of this dissertation are in different stages of publication. The first article, co-
authored with Jonathan Warecham, is based on the research done in the framework of the
Open Science Monitor commissioned by the Directorate General of Research and Innovation
of the European Commission and published by the European Commission:

Pujol Priego L, Wareham J. "REANA: Reproducible Research Data Analysis
Platform: Open Science Monitor Case Study". European Commission Directorate-
General for Research and Innovation, B-1049 Brussels. 2019.
http://publications.europa.eu/publication/manifestation_identifier/PUB_KI10219176E
NN. Accessed March 20, 2019.

Pujol Priego L, Wareham J. “Zenodo”. European Commission Directorate-General
for Research and Innovation, B-1049 Brussels. 2019.
https://op.europa.eu/en/publication-detail/-/publication/b5187345-f3b1-11e9-8c1{-
0laa75ed71al/language-en/format-PDF/source-118580915. Accessed March 20,
2019

Pujol Priego L, Wareham J. “Open Targets: Open Science Monitor Case Study”.
European Commission Directorate-General for Research and Innovation, B-1049
Brussels. 2018
http://publications.europa.eu/publication/manifestation_identifier/PUB_KI0518020E
NN. Accessed March 20, 2019.

Pujol Priego L, Wareham J. “Pistoia Alliance: Open Science Monitor Case Study”.
European Commission Directorate-General for Research and Innovation, B-1049
Brussels; 2018.
http://publications.europa.eu/publication/manifestation_identifier/PUB_KI0618230E
NN. Accessed March 20, 2019.

Pujol Priego L and Wareham J. “Yoda: Open Science Monitor Case Study.”
European Commission Directorate-General for Research and Innovation, B-1049
Brussels. 2018.
http://publications.europa.eu/publication/manifestation_identifier/PUB_KI0518019E
NN. Accessed March 20, 2019

The manuscript is currently in preparation for submission to a leading IS journal.
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The second article, also co-authored with Jonathan Wareham, was presented in:

Pujol Priego, L. and Wareham, J. D. (2019) "Open Targets: Pre-competitive
Collaborative Research in Life Sciences." Academy of Management Proceedings.
Vol. 2019. No. 1. Briarcliff Manor, NY 10510: Academy of Management, 2019.

The manuscript is currently in preparation for submission to a leading IS journal.

The third article written with Jonathan Wareham, A. Romasanta, T. Warecham Mathiassen,
M. Nordberg and P. Garcia Tello was revised and resubmitted (under the second round of

review) to Technovation in March 2020.
The fourth article is co-authored with Jonathan Wareham and was presented in:

Pujol Priego, L. and Wareham, J. D. (2018) “Time as a service: White Rabbit at
CERN” International Conference on Information Systems Proceedings. Vol. 2018.

San Francisco: Association for Information Systems.
It has been submitted in February 2020 to MIS Quarterly (under review)
Finally, this research has also informed the following studies:

Brunswicker, S., Pujol Priego, L. and Almirall, E. (2019). Transparency in
policymaking: A complexity view. Government Information Quarterly. Volume 36,
Issue 3, July 2019, pp. 571-591

Pujol Priego L. and J. Wareham “Emergent open strategies to accelerate innovation:
Lessons from the Pharmaceutical industry” Harvard Deusto Business Review, No
289, 05/2019, p. 70-81

Susanne Beck, Carsten Bergenholtzj, Marcel Bogers, Tiare-Maria Brasseura, Marie
Louise Conradsen, Diletta Di Marcou, Daniel Dorler, Agnes Efferta, Benedikt
Fecher, Despoina Filiou, Thomas Gillierh, Christoph Grimpeb, Marc Gruberk,
Carolin Haeusslerl, Florian Heigl, Karin Hoislp, Katie Hyslopa, Olga Kokshaginat,
Marcel LaFlammea, Cornelia Lawson, Wolfgang Lukas, Markus Nordberg, Maria
Theresa Nornj, Marion Poetz, Gernot Pruschak, Laia Pujol Priego, Agnieszka
Radziwon, Janet Rafners, Alexander, Rusero, Henry Sauermann, Julia Suess-Reyesa,
Sonali K. Shahk, Jacob F. Shersons, Christopher L. Tucci, Philipp Tuertscher, Jane
Bjorn Vedel, Roberto Verganti, Jonathan Wareham, Sunny Mosangzi Xu. 2019
"Open Innovation in Science" Industry and Innovation (lead article in the special

issue on Open Innovation in Science).
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Book Chapter: Osimo, D., Pujol Priego, L., and Vuorikari, R. (2017). Alternative
Research Funding Mechanisms: Make Funding Fit for Science 2.0. Research 2.0 and
the Impact of Digital Technologies on Scholarly Inquiry (pp. 53-67). IGI Global.
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3

The Stickiness of Scientific Data: Epistemic
Cultures and a Collective Action Dialogue

The article that constitutes this chapter aims at understanding the first vector: open science,
which responds to the first sub-goal (1.1.) of our PhD investigation. The study empirically
investigates the dynamics behind sharing scientific data while interrogating the explanatory

factors behind the gradual and disparate adoption of data sharing practices across scientists
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3.1 Abstract

Researchers are generating unprecedented volumes of data. As the expectations of big
scientific data grow, the expectations on the potential of sharing it and allowing others to
mine, aggregate, and recombine it with other data for novel findings grow as well. As such,
government funding entities, particularly in Western Europe and the US, have placed open
data at the crux of scientific policy. While sharing scientific data has been positively
promoted for some time now, only recently have several challenges become apparent,
suggesting that data sharing imposes increased costs on scientists and their institutions
without commensurate professional benefits. Considering the tensions between policymakers
and funding agencies’ efforts to foster data sharing and the apparent barriers to its wide
adoption, we lack 1) a recent overview of data being shared across scientists (if and what); 2)
how researchers share their data (how), and 3) what mechanisms enable research data sharing
(why). Our study engages in a mixed-method design by combining survey data collected in
2016 (n=1,162) and 2018 (n=1,029) to explore data sharing behaviours of scientists across
disciplines and countries; and qualitative data from two case studies sequentially sampled
within two scientific communities of the disciplines surveyed (i.e. physics and life science):
high-energy physics (HEP) and molecular biology (MB). As a lens to understand the factors
behind data sharing practices, we draw upon the notion of epistemic cultures, originated from
the sociology of science, and the collective action theory perspective to shed light on the
incentives and deterrents that scientists confront when considering contributions to the

collective goods of data sharing.

Keywords: open science, scientific data sharing, data commons, epistemic cultures,

collective action theory.

3.2 Introduction

In September 2011 OPERA (Oscillation Project with Emulsion-tRacking Apparatus)
researchers fired a 730 km beam of muon neutrinos from CERN (European Organization for
Nuclear Research) to the Gran Sasso National Laboratory in central Italy at what appeared to
be faster than the speed of light. Puzzled by these results, they decided to upload all the data
with unprecedented granularity at arXiv.org. The scientific team included all the necessary
procedural descriptions so that other scientists could search for an explanation for this
surprising violation of physical law. More than 200 papers emerged and were shared at
arXiv.org trying to explain the effect. With ruthless external scrutiny, the mystery was

resolved within a year: the OPERA team announced the identification of two potential
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sources of timing error that corrupted measurements (Royal Society 2012). Many similar
examples abound on the scientific and social value of data sharing; but if researchers were

asked today whether they release their data, what would they answer?

Researchers are generating unprecedented volumes of data (Hey 2009). Although some
disciplines have a long tradition of working with big data, particularly the big science
research infrastructures (Weinberg 1961) for physics and astronomy (Atkins et al. 2003;
Borgman 2015, 2015; Carillo and Papagni 2014), other disciplines have only recently begun
to adopt the practice (EIROforum IT working group 2013). Examples of recent adopters of
big data include computational social science (Lazer 2009), digital humanities (Kaplan
2015), sensor devices (Wallis et al. 2013), social media data (Plantin et al. 2018) citizen
science research projects (Hochachka et al. 2012), and political science and public policy
(Lee et al. 2016).

Perspectives have evolved, increasing the scale, role, and status of data in recent years.
Scientific data is now its own scholarly object with dedicated journals such as Nature-
Scientific Data. The increasing use of data-intensive methods has been labelled the “fourth
paradigm” in science (Atkins et al. 2003; Hey 2009) that augments “the existing paradigms
of experimental theoretical and computational science” (Edwards et al. 2011 p. 670). As the
expectations of big scientific data grow, the expectations on the potential of sharing it and
allowing others to mine, aggregate, and recombine it with other data for novel findings grow
as well: “If the rewards of the data deluge are to be reaped, then researchers who produce
those data must share them, and do so in such a way that the data are interpretable and
reusable by others” (Borgman 2012 p. 1059). Data sharing describes the act of releasing data
in a form that can be used by others (Pasquetto et al. 2017). If research data needs to be
shared, it is expected to be FAIR (Findable, Accessible, Interoperable and Reusable)’ so that
it can be easily and effectively discovered and reused. Recent studies have estimated that the
annual financial cost of not sharing FAIR data to be at least €10.2bn for the European
economy; an additional estimate of the impact of FAIR on potential economic growth is

€16bn annually (European Commission 2019b).

The growing importance of sharing (FAIR) data comes as part of a more general “open”
movement embracing greater transparency in science (Edwards 2019). Starting with open
access publishing, it expanded towards open scientific data, open standards, open
repositories, open bibliography, open lab-notebooks, open-source software and hardware,
with an endless list of 'open'- qualifiers to all activities in the scientific realm (Friesike et al.

2015). The urgency of sharing FAIR data is not only grounded in the reproducibility crisis

5. The term FAIR was launched in the Lorentz workshop celebrated in 2014. The resulting FAIR principles
were published in 2016. See https://www.go-fair.org/fair-principles/
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(Baker 2015) or concerns about fraudulent scientific practices (Kupferschmidt 2018) but also
a recognition of the novel technological and scientific innovations resulting from data sharing
(Borgman 2010).

As such, government funding entities, particularly in Western Europe and the US, have
placed open data at the crux of scientific policy. Carlos Moedas, the former EU
Commissioner for Research, Science and Innovation, made open research data one of the
EU’s priorities in 2015. Several expert working groups were put in place (e.g. High-level
expert group on FAIR data; the Open Science Policy Platform; Expert group on altimetrics)
to provide advice about how to foster and promote research data sharing in Europe. In 2016,
the European Commission launched the Open Science Cloud initiative, a federated data
infrastructure with cloud-based services to offer the scientific community an open
environment for storing, sharing, and reusing scientific data. This policy evolution has been
accompanied by requirements from funding agencies that scientific data be publicly
available: US National Institutes of Health (NIH) in 2003 for grants over $500,000 (NIH
2003), the National Science Foundation (NSF) in 2010 (Borgman 2012), and the European

Commission for Horizon 2020 program in 2014 (European Commission 2014).

Accompanying policy, new private and public entities have emerged to facilitate the
aggregation and publication of research data. Examples include the Research Data Alliance,
the National Data Service, as well as for-profit publishers who attempt to build on existing
structures (e.g. Mendeley Data) (Borgman 2015). Platforms such as Dataverse (King 2007),
FigShare (Thelwall and Kousha 2016), Dryad (White et al. 2008), Zenodo (Peters et al.
2017), DataHub (Bhardwaj et al. 2014), and EUDat (Lecarpentier et al. 2013) have also

emerged, offering scholars new venues to archive and share their data (Cragin et al. 2010).

While sharing scientific data has been positively promoted for some time now, only recently
have several challenges become apparent. In general terms, researchers have identified
factors inhibiting data sharing, suggesting that it imposes increased costs on scientists and
their institutions without commensurate professional benefits (Borgman 2015; Edwards
2019; Edwards et al. 2011; Tenopir et al. 2015; Wallis et al. 2013). Considering the tensions
between policymakers and funding agencies’ efforts to foster data sharing and the apparent
barriers to its wide adoption, we lack 1) a recent overview of data being shared across
scientists (if and what); 2) how researchers share their data (how), and 3) what mechanisms

enable research data sharing (why).
Hence, the research questions that this study seeks to answer are:
RQIa: Do researchers share their data?

RQ1b: How do they share their data?
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RQ2: What mechanisms enable researchers to share their data?

Our study engages in a mixed-method design to answer the research questions (Venkatesh et
al. 2013) (Figure 1). First, to answer RQla and RQ1b, we employ survey data collected in
2016 (n=1,162) and 2018 (n=1,029) to explore data sharing behaviours of scientists across
disciplines and countries. To explain the results from the survey and answer our RQ2 (why),
we employ qualitative data from two case studies sequentially sampled within two of the
disciplines surveyed (i.e. physics and life science). We chose these disciplines because they
displayed the highest rates of data sharing and reuse in our survey findings, yet have
significantly different scientific cultures, offering some variance needed to investigate the
factors and boundary conditions behind data sharing practices. Specifically, we selected the
communities of high-energy physics (HEP) and molecular biology (MB). Two information
infrastructures (i.e. Reana (HEP) and Open Targets (MB)) were established to facilitate
scientific data sharing within these communities. Our study complements the survey findings

through an analysis of the architecture, practices, and governance of each infrastructure.

As a lens to understand the factors behind the data sharing practices, we draw upon both
cultural and rational perspectives. The notion of ‘epistemic cultures’ originated from the
sociology of science but has been subsequently applied in IS and organisational studies to
understand information and knowledge sharing across communities (e.g. Kellogg et al. 2006;
Mork et al. 2008). This perspective helps us explain the diversity and discontinuity across
scientific communities and their heterogeneous data sharing practices. We augment a cultural
perspective with a rational perspective to understand the incentives and disincentives that
scientists confront when considering contributions to the collective goods of data sharing.
Towards this, we employ collective action theory (Hess and Ostrom 2003; Olson 2009;
Ostrom 1990), also used by IS scholars to explain how agents share heterogeneous
information when developing common information infrastructures (Constantanides 2012;
Constantinides and Barrett 2015; Vassilakopoulou et al. 2016). Collective action theory
provides a useful framework to explain why researchers would contribute their data to
collective resources by identifying incentives that are articulated for scientists to share. We
believe that these complementary perspectives are useful in elucidating scientists’ data

sharing practices.
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Figure 1. A mixed-method approach to answer RQla,b, and RQ2

56(3;:: Do researchers share their RQ2: What mechanisms enable

researchers to share their data?
RQ1b: How do they share their data?

l To R

understand -
the survey Case studies

Survey jun- july 2016: Survey oct - nov 2018: It
n=1,162 researchers €=>»  n=1,029 researchers L _’ffli _S_ --»| High-Energy Physics —> Molecular Biology
(2.3% response rate) (2.5% response rate) Reana Open Targets

The remainder of the paper is organised as follows. We first provide the research context by
reviewing the background concepts from the IS and STS pieces of literature to delineate what
data is and identify the reasons for sharing, or not sharing, scientific data. In a second step,
we review the theoretical foundations of our research study and sequentially describe our
methods and results. We follow Venkatesh et al.'s (2013) guidelines on how to present results
of mixed-method studies: we first present the method and results from the survey data, and
thereafter, the method and results from the case studies. We synthesise the findings and
discuss the theoretical and practical implications of the study, its limitations, and future
directions.

3.3 Research Context

An examination of research data sharing practices requires a brief review of the ontology of
data as portrayed in the academic literature and the role of data in scientific knowledge
production.

3.3.1 Conceptual considerations: what (or when) data is

“Data are representations of observations, objects, or other entities used as evidence of
phenomena for research or scholarship” (Borgman 2015 p. 18). A more operational definition
from OAIS (Open Archival Information System) defines data as “a reinterpretable
representation of information in a formalised manner suitable for communication,
interpretation, or processing.” Examples of data include: “sequence of bits, a table of
numbers, the characters on a page, the recording of sounds made by a person speaking, or a
moon rock specimen” (Consultative Committee for Space Data Systems 2012 p. 10).

The first important observation when examining these definitions is that data is created by
people or machines. Entities may have a material existence or maybe a digital one (e.g.
signals from sensors), which requires “acknowledge[ing] relationships between data,

computers, models, and software” (Uhlir and Cohen 2011, as reported in Borgman, 2012a, p.
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1061). These entities become data when scientists use them as evidence to understand a
phenomenon better. In a seminal work, Susan Leigh Star describes how we may unveil the
processes by which a scientific fact “emerges which is simultaneously stripped of its
complexities and isolated from its relationship to a larger work/historical context” (Star 1983,
pp. 224-225; Kallinikos and Tempini 2014). Thus, data typically involves a process
(Kallinikos and Constantinou 2015) in which a scientist considers the observation or any
other entity as evidence for a phenomenon and “collects, acquires, represents, analyses, and
interprets those entities as data” (Borgman 2015 p. 62). Recognizing that data is a process
implies that the research context is determinative to what becomes data and how it is
processed (Kallinikos and Constantinou 2015). As such, it becomes paramount that all
relevant contextual information is gathered in the description of the data, giving metadata a
critical role in data sharing practices; metadata increases the utility of data across disciplines,
time, geography or application domains (Edwards et al. 2011). For data to be reusable for
those who did not create it, metadata needs to describe how it was generated, measured, and
recorded. For instance, in biobanks, data creators need to publish highly-detailed descriptions
of data collection parameters and procedures, including what was excluded or considered
irrelevant (Demir and Murtagh 2013).

The conditions, instruments or mechanisms by which data is generated and recorded also
informs the different #ypes of research data (Kallinikos and Constantinou 2015). The US
National Science Board distinguishes between: a) observational data, which results from
identifying and recording facts or occurrences of a phenomenon; b) computational data,
which results from implementing computer models or simulations; and c¢) experimental data,
which is the product of implementing procedures in controlled conditions to test hypotheses
or discover new laws (National Science Board 2005). Finally, a record is a fourth category
that encompasses ‘“everything else” not present in the former three. It is essential to
acknowledge that this categorisation is permeable to some extent: observational data can be
used in computational models or results from experiments may be used to refine the
collection of observations.

The genesis of data may also affect an operational decision about whether to preserve the
data and for how long (National Science Board 2005). For instance, it is considered essential
to preserve observational data because it is the most difficult to replicate. Computational data
requires extensive documentation on hardware, software, input data, and the workflow
followed. Finally, the replicability of experimental data highly depends on the conditions of
the experiment (Raphael et al. 2020). Nevertheless, who makes such decisions? Who has the
authority to decide whether to destroy, share, or withhold data?
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3.3.2 Incentives and deterrents for data sharing in science

Where authors are initially the copyright holders of their academic publications, the
jurisdiction of data is more ambiguous: uncertainty around ownership, control, and access
over the data generates tensions. “Even when individuals and groups assign authority for
data, the rights and responsibilities may remain unclear” (Borgman 2015 p. 43). What
happens in practice is that raw data usually becomes the “intellectual and physical property
of their creator” (Bowker 1999 p. 646). Policymakers, funders, and academic institutions are
working towards an increased awareness that while publications and the knowledge produced
from the research data pertains to the authors, the underlying data needs to be considered a
public good (European Commission 2014; OECD 2015) so that its potential value can be
unleashed (Jarvenpad and Markus 2018; Vassilakopoulou et al. 2016).

Merton (1973) captured the norms of science in the imperatives of disinterestedness,
communalism, universalism and organised scepticism. These principles highlight the
cooperative spirit of scientific inquiry and emphasise that knowledge growth stems from
collaboration where transparency and making scientific processes and outputs public are
fundamental. Nevertheless, the transparency applied for research outputs such as publications
does not play the same way for data: while scientists disseminate their publications, this
differs when it comes to data (Tenopir et al. 2015).

While the practical concerns of making raw data transparent have been removed by lowering
the cost of storing digital data and computing progress, other reasons behind non-sharing
come into play (Table 1). First, there is a lack of incentives and rewards in the scholarly
system which is heavily biased towards traditional journal and conference dissemination
(Borgman 2015; Plantin et al. 2018); promotion and tenure decisions rarely take into account
“subsidiary” products such as data or software contributions (Harley et al. 2010; Howison et
al. 2015). Relatedly, some journals (e.g. The Journal of Neuroscience (Maunsell 2010))
recently announced that they would no longer publish supplementary data as reviewers are
not able to spend the time required to scrutinise the material. Basically, for scholars driven by
credit, sharing data offers little benefit, particularly in light of intentions to try to publish
future articles out of the same data or aggregating it with complementary datasets (Harley et
al. 2010; Meijer et al. 2017). Other factors include misuse, misinterpretation or liability
concerns (Meijer et al. 2017; Tenopir et al. 2015; Wallis et al. 2013), in particular the fear
that their work practices will come under scrutiny (Harley et al. 2010). A lack of skills,
expertise, and tools to make their data available also hinders the practice (Borgman 2015).
Finally, the real difficulty and costs associated with getting researchers to record detailed
metadata are determinative (Edwards et al. 2011). Scientists' main interest is in using the
data and they have little incentive to incur the additional overhead of a collective of unknown
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and future researchers “to whom they are not accountable and from whom they receive little
if any benefit” (Edwards et al. 2011 p. 673; Gitter 2010). The production of metadata and the
contextual descriptions of datasets require a critical amount of time to repair mistakes and
misunderstandings, and researchers prefer to spend more time on new endeavours. Some
have attempted to calculate the costs of metadata production, which could span an estimated
two to three weeks from an average of a two-year research grant application (OpenAire
2019). In a dedicated study to examine high-energy physics practices, the vast majority of
respondents (94.3%) thought that “the additional effort needed for preparing data for
preservation in a re-usable form is substantial (more than 1% of the overall effort invested in
producing and analysing the data) whereas 43.0% think that the supplementary effort is more
than 10%” (Holzner et al. 2009 p.6). Table 1 summarises these arguments.

Table 1. Reasons why data sharing is disincentivised in science

Reasons for not | Description Source
sharing
Lack of credit There is a lack of consistency in the (Borgman 2015; Meijer et al.

way data is cited.

2017; Parsons et al. 2010;

Piwowar and Vision 2013)

Lack of incentives

and rewards

The scholarly system is heavily
biased towards publications and
secondary products such as data or

code are rendered far less credit.

(Harley et al. 2010; Howison
et al. 2015; Plantin et al.
2018)

Misuse,
misinterpretation,

liability concerns

Uncertainty over who is going to
reuse the data and for what purposes
and lack of understanding of the data
and thus misuse.

(Meijer et al. 2017; Tenopir et
al. 2015; Wallis et al. 2013)

Lack of skills

Lack of expertise and knowledge of

tools to make their data available.

(Borgman 2015; European
Commission 2019b; Meijer et
al. 2017; OECD 2015)

Costs to input

metadata

The effort and time-consuming
activity of providing contextual
information and detailed descriptions
of the data.

(Edwards 2010; Holzner et al.
2009; OpenAire 2019)

Nevertheless, despite such barriers, there is a consensus that sharing scientific data is

beneficial, making it a clear objective for the research community at large. The reasons
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behind such consensus include (Table 2): to improve reproducibility; to accelerate scientific
processes and research velocity; to increase scientific quality; to prevent scientific fraud; and
to increase scientific productivity by reducing redundancy and innovation gains (e.g.
Borgman 2015; Edwards et al. 2011; European Commission 2019a; OECD 2015; Tenopir et
al. 2015).
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Table 2. Reasons for data sharing in science

Reasons sharing

Description

Source

Reproducibility Sharing research data raises transparency and multiplies opportunities for the | (Baker 2015; Fecher et al.
replicability of research findings. Making it easier to peer review data | 2015; Lyon 2016; OECD
strengthens transparency and the potential of publishing negative results and | 2015; Pujol Priego and
enables accurate verifications of research findings. Wareham 2019; Tenopir et al.

2015)

Accelerate  scientific | The availability of the Gene Expression Omnibus (GEO) database at the US | (Borgman 2015; Pasquetto et

progress National Center for Biotechnology Information led to more than 1,150 | al. 2017; Piwowar et al. 2011)
published articles by third-party contributors by the end of 2010.

Increase scientific | Sharing research data is related to the strength of the evidence supporting the | (Wicherts et al. 2011)

quality results and the quality of the statistical results reporting.

Fraud prevention

Sharing research data contributes to the identification of scientific fraud and

enables transparency and greater scrutiny of research.

(Kupferschmidt 2018)

Increase scientific

efficiency

It increases the scientific efficiency of the research system by reducing
duplication of costs and other costs stemming from data storage and transfer.
More knowledge can be produced from the same data and thus increase
returns on publicly-funded research.

(Lyon 2016; OECD 2015;
Whyte and Pryor 2011)

Innovation gains

Data sharing fosters the reuse of data for R&D and innovation processes (e.g.
in drug discovery processes). For instance, the use of data from PubMed
Central at the US National Institutes of Health's repository has 17% unique

daily users from companies versus 25% from universities.

(Khaladkar et al. 2017; Swan
2012)
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3.4 Theoretical underpinnings

Understanding the drivers for and barriers to sharing research data is both multifaceted and
complex. We believe that they are shaped by the specific research community’s values and
norms (cultural perspective) as well as the professional incentives that reconcile both
individual and collective interests (rational perspective). Consequently, our study builds upon
the notion of “epistemic culture” (Knorr Cetina 1999) and collective action theory (Hess and
Ostrom 2003; Olson 2009; Ostrom 1990) to build a complementary perspective on the

phenomenon.

3.4.1 Epistemic cultures

Anthropologist Knorr Cetina (1999) coined the notion of epistemic cultures to describe
“those amalgams of arrangements and mechanisms—bonded through affinity, necessity and
historical coincidence—which, in a given field, make up how we know what we know”
(Knorr Cetina 1999 p. 1). The notion of epistemic culture claims that the nature of scientific
activities, types of reasoning, and practices of establishing evidence are variable across
scientific fields. It is considered a cultural approach that disputes the ‘unity of science’
associated with the Vienna Circle (Knorr Cetina 1999 p. 3) and “reveals the fragmentation of
contemporary science” (Mork et al. 2008 p. 15). The main idea that Knorr Cetina argues is

that different scientific fields exhibit different epistemic cultures.

The idea of different scholarly cultures can be drawn back to the (Fleck 1979 [1935]) idea of
“styles of thought” shared by “thought collectives” (Knorr Cetina 1999) and also relates to a
concept of “thought worlds” (Dougherty 1992) or the idea of “communities of knowing”
(Boland and Tenkasi 1995). Haas (1992) also uses the notion of “epistemic communities”
defining groups of people engaged in knowledge production. The general and universal idea
across such notions is that knowledge is situated and local (Borgman 2012). "There is no
'view from nowhere'—knowledge is always situated in a place, time, conditions, practices,
and understandings. There is no single knowledge but multiple bits of knowledge" (Cetina
2007; Glaser et al. 2015).

What makes Knorr Cetina's ideas attractive is that her definition of “culture” is rooted in
practice, that is, when defining epistemic cultures, she designates the prevailing dynamics
and aggregate patterns in scientists' practices. The “epistemic machinery” defines the shared
tools, techniques, particular ontologies of instruments, conventional methods, and the
architectures of shared empirical approaches that the epistemic subjects use to produce and
distribute knowledge between them. She grounds the concept in the making of science, in
practice and acts of making knowledge and the patterns in such practices. She constructs the

concept of epistemic cultures, describing their interiorised process and arguing that scientists
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(or epistemic subjects) and the organisations and collectives that are part of the epistemic
culture (e.g. labs and experiments) are shaped by conventional practices and these shared
pieces of machinery of knowing, which also affects the nature of competition in the field
(Knorr Cetina 2007).

Employing Knorr Cetina’s lenses, we would expect that data sharing practices may be
community-bound as a result of the epistemic culture of the community. Differences in data
sharing practices across scientific communities would depend on whether the scientific
community is more “communitarian” or “individualistic”, using her terminology, resulting
from how contributions are ascribed to individual scientists in the community and their
norms and practices. A collective or communitarian epistemic culture compared to the
individualised nature of another one may display predispositions to share and fewer concerns

about individual incentives and rewards

The cultural explanation is useful when trying to account for the heterogeneity of data
sharing practices across “field-specific research culture” (Gléser et al. 2015 p. 329). This is
logical if we consider the long training cycles with which new members are trained, the
specificities in the technological tools, the commonly accepted methods, particular financing
sources, norms in collaboration dynamics, and how responsibility and authorship are

assigned.

3.4.2 Collective action theory: managing the commons

An alternative for explaining differences in data practices is to examine the mechanisms put
in place by which self-interested researchers would contribute to a data commons. Commons
designates a “resource shared by a group of people that is subject to social dilemmas” (Hess
and Ostrom 2003). We bring an economic-rational perspective to the foreground of the data
sharing conversation by revisiting classic collective action theory to uncover the intricate
system of incentives and rewards behind the considerable amount of work needed to make

data available to others and eventually FAIR.

Collective action theory has been widely used in sociology and economics to understand
individuals' motivation to engage in collective action (Fulk et al. 2004; Monge et al. 1998).
Research into collective action problems was originated with Olson's work in the classic
Logic of Collective Action, which later Hardin (1968) developed with his thesis on the
“tragedy of the commons” that argues how uncontrolled individual self-interested pursuits
may corrupt the commons (Greco and Floridi 2004). In other words, the tragedy of the
commons is an instantiation of the prisoner’s dilemma (with n-people) where the rational
pursuit of each self-interest results in suboptimal management of the commons (Greco and
Floridi 2004; Fletcher and Zwick 2000; Ostrom 1986).
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As Hardin (1982) describes, the community benefits if the individual perceives gains from
their contribution to the commons. However, if no scientists perceive gains from contributing
to the commons, the shared pool of resources is 'latent' and will not succeed by itself without
external intervention. The social dilemma in contributing to the data commons arises when
the incentive structure favours the free-riding of scientists on other contributions. Optimally,
there should be a positive relationship between individual gains and individuals'
contributions to the commons and the value of the commons and the collective resources that
have been contributed. By increasing the number of contributors to the commons, the
individual commitment to contribute is reinforced. In other words, there is individual-

collective interdependence.

What makes collective action useful in understanding the scientific data sharing phenomenon
is that the fundamental dynamic behind the commons is the prediction of individual gains by
adjusting the values and costs associated with resource contribution (Fulk et al. 2004; Ostrom
1990; Vitali et al. 2018; Weill and Ross 2004).

3.5 Methods and Results

For the analysis and presentation of our data, we have followed the approach suggested by
Venkatesh et al. (2013) to extract the most potential value from mixed-method research. As a
result, we first present the method and results of the analysis of the survey data, we follow
that with the case studies and thereafter synthesise the findings of both. The synthesis of the
results in the discussion is a “bridging” process (Creswell 2018) where we seek to leverage
the complementarities between the findings to enrich our empirical and theoretical

understanding of scientific data practices.
3.5.1 Survey 2016 and 2018

3.5.1.1 Method and data

We developed a large-scale global online survey collected in 2016 and 2018 in collaboration
with Elsevier, and the academic collaboration of scholars to provide an Open Science
Monitor for the European Commission. The survey data allow us to answer RQ1la—whether
researchers share data—and RQ2a—how they do it.

The survey of 2016 was sent in June-July 2016 by Elsevier to researchers worldwide in all
scientific disciplines. 1,162 researchers responded, which represented a 2.3% response rate.
Responses were weighted by the research team to be representative of the researcher
population (UNESCO counts of researchers, 2013). The margin of error for 1,162 responses

was estimated + 2.87% at 95% confidence levels (see prior analysis of the survey and full
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dataset in (Meijer et al. 2017). The full and raw data results from survey 2016 were available
at DOI:10.17632/bwrnfb4bvh.1.

The survey of 2018 was sent in October-November 2018 to 40,991 individuals randomly
selected from the Scopus author database while being weighted to be representative of the
researcher population (UNESCO counts of researchers), to which 1,029 researchers
responded (2.5% response rate). Appendix B provides the demographics of the survey

respondents. Appendix C presents the full survey questionnaire.

The significant differences between the 2016 and 2018 survey questionnaires are four
additional questions that were added in 2018 to assess the consequences of data sharing for
scientists in their future collaborations with for-profit entities and other scientists. Finally,

other minor modifications were introduced in the questionnaire to improve clarity.

We employ the survey data with a descriptive objective to analyse frequencies, averages, and
patterns across researchers to obtain an overview of scientists’ willingness to share data if
they have done it, and through which means. The survey allows extracting such attitudes and
practices by age, country, and discipline, while providing initial trends comparing results
from 2016 and 2018.

3.5.1.2 Findings of the survey

Data sharing practices are steady

Comparing survey results between 2016 and 2018 reveals that despite widespread support
from policymakers and pressure from funding agencies, the number of academic researchers
that declare making their data available remains stable, with no growth shown over the past
two years (66%) (Figure 2). Although researchers acknowledge the benefits of data sharing,
their practices are still limited, with one-third of researchers saying they do not share their
data at all. While researchers acknowledge the benefits of sharing unpublished research data
(74%), fewer are willing to share data (66%) or have previously shared their data (64%)
(Figure 2).
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Figure 2. Researchers’ attitudes on data sharing
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Data sharing varies across disciplines

Data sharing practices are dependent on the field. The survey results show that data sharing
activities are highly concentrated in math (79%), computer science (70%) physics and
astronomy (69%) and life science (65%) (Figure 3). When we compare physics and
astronomy to life science, we see that while 65% of scientists in physics and astronomy say
that access to others’ data would benefit their research, a larger number coming to 73% is
willing to allow others to access their data. On the contrary, in life science, while 74% say
they benefit from others’ data, the number of scientists willing to allow others to access their
data is lower (65%) (Figure 2). The same pattern displayed in life science disciplines of
higher perceived benefit compared to the willingness to share is shown in the rest of

disciplines except physics and maths.
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Figure 3. Attitudes to data sharing by discipline
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Discriminatory sharing

The survey data show that most of the data sharing is carried out between collaborators on
the same projects (80%), suggesting that researchers adopt a discriminatory approach,
sharing data with selected partners on a case by case basis (Figure 4). Most scientists still
rely on ad hoc and communicative exchanges to share their data instead of formal data
repositories (14%), as “purpose-built, stored and ready for use” data (Edwards et al. 2011)
(Figure 4). Although efforts have been made to improve metadata products, the results
suggest that we will still see “informal, ad hoc, incomplete and contested processes of
communicating about data” (Edwards et al. 2011), as only 14% of researchers share it
through data repositories. Overall, a third of researchers say they do not share their data at
all.
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Figure 4. Data sharing behaviour of researchers

Note: Corresponding question: Have you done any of the following with any or all of
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Figure 5. Preferred ways for data sharing

Note: Corresponding question: Have you published the research data that you used or
created as part of your last research project in any of the following ways? (See Qlf
and Qlcl in Appendix B)
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Data sharing: an interactive process

Over one-third of researchers were contacted by another university/institute after sharing

their data. 10% were contacted by a company, and over one-third of researchers believe that

sharing data promoted new collaborations with researchers in their discipline. By being

contacted by other researchers, whether in public or for-profit organisations, we infer that

others are accessing the data and are trying to understand or reuse it. It also suggests that
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metadata or the description and contextual information of the data is not enough in some

cases or requires clarification with the scientist who generated the data (Figure 5).

Figure 6. Follow up to data sharing
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In sum, what becomes clear from the survey results is that data sharing is a practice that
varies significantly across disciplines (and we speculate subfields). Each discipline delineates
collectively the tools that fulfill specific requirements for their community. Why are there
such disparities across scientific disciplines? Which mechanisms are behind the high data
sharing rates of physics or life sciences? And what can we learn from these fields with high
scientific data sharing rates?

3.5.2 Case study

3.5.2.1 Method and Data

We follow this with a qualitative study of two cases sampled from two of the disciplines
displaying high rates of data sharing, molecular biology and high energy physics, to find
plausible explanations of factors enabling scientists' data sharing behaviours to enrich and
extend the quantitative results from the survey (Creswell 2018). As such, the primary
purpose for employing a sequential mixed approach in our study was to acquire
complementary explanatory insights about scientific data sharing practices in the two
empirical settings while providing opportunities for opening avenues for future research
(Venkatesh et al. 2013). This offered us a holistic approach to the phenomenon.
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The two case studies are thematically sampled (Creswell 2018) as representative of two
different epistemic cultures to account for the cultural dimensions which ground and augment
other formal mechanisms that influence how and why researchers share their data. To capture
data practices behaviours of HEP and MB, we investigate their practices grounded in two
information infrastructures. Open Targets is a microbiology consortium created in 2015 by
for-profit, non-profit and research entities led by the European Molecular Biology
Laboratory-European Bioinformatics Institute (EMBL- EBI). Reana is led by the European
Organization for Nuclear Research (CERN), established in 2018 as an infrastructure that
embeds a set of platforms and services developed by the HEP community to share their data

and code and foster reproducibility of scientific results.

Information infrastructures have been defined as "a digital library system based on
commonly shared standards and containing information of both local and/or widespread
interest" (Kahn and Cerf 1988 pp. 3) ... “to augment our ability to search for, correlate,
analyse and synthesise available information,” (Kahn and Cerf 1988 p. 11.) Adding a social
dimension, Constantinides (2012 p. 21) defines them as “efforts to integrate other computer-
based and social systems, and to regulate and monitor processes that were previously
performed in various, isolated settings.” Our decision to focus on information infrastructures
(as opposed to less-institutionalised data sharing practices) is based on the fact that the
highest data sharing levels are in communities that actively use information infrastructures.
As such, we believe that insight into the determinants of the most successful practices can be
obtained by studying these infrastructures.

Both infrastructures are based upon data commons, i.e. data commons co-locate data,
storage, and computing infrastructures with commonly used services and tools for analysing
and sharing data to create interoperable resources for a different base of users (Grossman et
al. 2016).

The study of both cases relies on diverse primary and secondary data sources, described in
Table 3. Numerous discussions with managers from Open Targets and Reana were an
integral part of the Open Science Monitor and shared by the European Commission services

in separate reports (Pujol Priego and Wareham 2018, 2019).

As part of participation in the two additional EU H2020 funded projects, the authors
benefited from extensive conversations with policymakers, research infrastructure managers,
data architects, and programmers to discuss data sharing practices and future open research
data (CS3MESH4EOSC part of the European Open Science Cloud, and ATTRACT funded
by Research Infrastructure Innovation H2020-INFRAINNOV).
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Table 3. Details on Data Collection

MB - Open Targets

HEP-Reana and related platforms

Primary
data sources

13 interviews with scientists and
managerial team of Open Targets

4 interviews with scientists and managerial
team of Reana and related platforms.

4 interviews with CERN programmers and
data architects.

Observations

Study visit to Genome Campus
for Open Targets Open Days —
workshop, working groups and
social event (June 2019)

Study visits to CERN (2018, 2019, 2020).

Partner in H2020-funded CS3MESH4EOSC,
a constituent project of the European Open
Science Cloud
https://cordis.europa.cu/project/id/863353

and ATTRACT https://attract-eu.com/

Interviews and discussions with open data-
related services at CERN (Zenodo, Open Data
Portal, CS3-ScienceMesh)

Secondary
data sources

41 publications

1 tutorial on OT infrastructure
3 outreach posts

19 release notes

6 posts

7 websites

Experiments data policy and guidelines:
CMS data policy

ALICE data policy

ATLAS data policy

LHCb data policy

OPERA data policy

CERN open data terms of use

22 guidelines in CERN open data portal
CERN Analysis Preservation Portal

Documentation from data preservation HEP
projects

Joint declaration and task force
documentation on HEP data preservation

Reana workshop presentations June 2018
12 runnable examples of Reana

6 publications

6 release notes

User guide

Administrator guide Developer guide

2 blog posts
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Empirical context 1: Molecular biology and Open Targets

The sequencing of the human genome (Human Genome Project, HGP) is recognised as “the
largest undertaking in the history of biological science” (Chaguturu et al. 2014 p. 35). Not
only did it transform biology into a data-driven science as a result of the deluge of new data
and computational techniques, but it also opened the debate about research data sharing when
Celera, a private undertaking, initially announced their intention to patent "fully-
characterised important structures" amounting to 100-300 targets (Leonelli 2012). In March
2000, President Clinton announced that the data on the genome sequence should be made
freely available to the entire research community. Some argue that in the post-HGP era, the
human genome brought to biology a blueprint on research data sharing that other research
communities need to follow. HGP propelled discourse on open research data to the forefront
of molecular biology research (Leonelli, 2012) and spawned a new generation of information
infrastructures to generate, integrate, and curate the growing data pools with other sources
and commonly used tools and analytical methods for the research community (Grossman et
al. 2016; Vamathevan et al. 2019). As a result, the discipline has been very active in

developing data commons (Pujol Priego and Wareham 2018).
Open Targets (OT) was created in 2015 by the EMBL-EBI, Europe’s flagship laboratory for

life science, with the Wellcome Sanger Institute, and pharmaceutical companies (Biogen,
Celgene, GSK, Sanofi, Takeda) to accelerate knowledge about the links between genetic
targets and disease development. The architecture, data policies, and procedures from
researchers participating in OT provide insights about the mechanisms that effectively foster

data sharing across the MB research community.
Empirical context 2: High-Energy Physics and Reana

Big scientific research infrastructures within High-Energy Physics such as CERN have a long
tradition of embracing open data. Large volumes of data generated via expensive, unique,
and extensive experiments make data preservation and reuse important. Reana is a reusable
and reproducible research data analysis infrastructure created at CERN in 2018 to facilitate
data and code reuse. The infrastructure sits on already existing platforms and services
provided by CERN to the HEP community such as Zenodo, a free and open data repository,
and the CERN open data portal, which are precedents to Reana infrastructure. The
infrastructure generalises computational practices used by the HEP community and facilitates
the adoption of workflow systems to run and reuse data analysis on remote compute clouds
(Simko et al. 2018). CERN generated Reana to allow the different HEP experiments to
adhere to FAIR principles and facilitate data sharing and reuse in the community. Reana
allows the reuse and reinterpretation of the data shared by helping HEP scientists to structure
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their input data, their analysis code, containerised environments, and computational
workflows to run the analysis on remote clouds (Pujol Priego and Wareham 2019). What
makes Reana attractive is that the infrastructure helps to generalise computational practices
employed by HEP scientists, thereby systematizing reproducibility. The infrastructure
supports a plurality of “container technologies (Docker), workflow engines (CWL, Yadage),
shared storage systems (Ceph, EOS) and compute cloud infrastructures (Ku-
Kubernetes/OpenStack, HTCondor)” used by the HEP scientific community (Simko et al.
2018, p. 1).

The analysis of HEP and MB scientists around Open Targets and Reana infrastructures gives
us an insight into how such culturally different communities are capable of actively sharing

and reusing data.

3.5.2.2 Findings of the case studies

Preliminary observations about HEP and MB communities suggest two different epistemic
cultures consistent with Knorr Cetina's work: HEP is more communitarian with MB more
individualistic, using Knorr Cetina's terms. When looking at how HEP data flows are
organised, we first realise the importance of the entity of “the experiment”. In HEP, few
extensive, capital-intensive experiments have been designed and constructed over 20 odd
years. For example, CERN currently hosts seven large experiments on the Large Hadron
Collider, four of which are elaborate international collaborations (ATLAS, CMS, ALICE,
LHCb).

By contrast, MB is organised around the “laboratory” or single institution, and consistent
with what Knorr Cetina describes, molecular biologists are shaped by the conviction that they
need to compete “for the priority of important findings” (Knorr Cetina, 1999), generating

competition within and across labs.

When comparing how HEP and MB ascribe contribution to an individual scientist, we soon
realise that in HEP there can be a vast number of authors as the construction and operation
the experiments depends on many people, the record being over 5,000 authors on one article
(Aad et al. 2015). In MB, although there are also challenges in ascribing results to individual
scientists, the experiments are typically far less capital-intensive and permit differentiation in
contributions within smaller teams. Finally, it is worth noting that some MB research is
closer to commercial organisations (life sciences and pharma), where HEP is traditionally
considered basic research with a more extended pathway towards any commercial outcome.
Accordingly, we would expect a more competitive culture with less data sharing in MB than
HEP. However, despite such differences in their epistemic cultures, both exhibit high levels

of data sharing.
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Open Targets
OT was set up in 2015 under the umbrella of the EMBL-EBI and Sanger Institute within the

collaboration of large pharmaceutical companies. By applying lean user experience (UX)
design methods, OT infrastructure was developed to search, assess, and integrate a vast
quantity of genetic and biological data to support target-centric and disease-centric inquiries.
At present, OT contains more than 27,717 targets, 7,999,050 associations, 13,445 diseases,
and 20 data sources (Open Targets, 2020).

OT displays a modular infrastructure containing different layers, access rights, and data
standards that employ different mechanisms for researchers to be able to simultaneously
share their data and comply with the norm in the post-HGP community era, while
simultaneously allowing them to grasp the competitive benefits of being the generators of the
data. The stratified architecture grants different access rights to the data, where data
generators are granted access to a hidden layer augmented by a public layer accessible (with

different rights) to any researcher willing to reuse the data.

The modular architecture with different access rights combines time dilation between the
generation of the data and the publication of the data in the infrastructure that spans on

average two years and could be considered as a considerably long “embargo period”.

Finally, the information infrastructure acts as a “boundary organisation” (O’Mahony and
Bechky 2008), that is, “structures capable of effectively mediating between disparate
constituencies and establishing common ground among the differing interests in play”
(Perkmann and Schildt 2015 p. 1134).

The two mechanisms are combined with normative governance rules provided by the
infrastructure on data access and reuse, where the ownership and responsibilities over the
data are explicit. These two mechanisms fit in a “logic of exchange” that seeks to maximise
benefits for the researchers (that is, the potential of the data for being reused and the
competitive advantage of data generators) while minimizing the costs of sharing data. This
optimisation is completed by providing the protocols and data standards required to minimise
the efforts of data reuse and increasing the value of the data aggregated while reducing the
uncertainty over who controls and owns the data. The fact that for-profit companies form a
significant part of the OT consortium suggests that the mechanisms are effective in balancing
incentives to scientists to contribute while mitigating the risks of a competitive loss to other

re-users of their data.
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Reana

CERN built Reana as an infrastructure for the HEP research community to foster the reuse of
the data generated via the large HEP experiments, which built upon data access and
preservation policies agreed within the main experiments. While the data policies may differ
slightly across experiments, they all stratify the data generated by the HEP community in
four main layers: a) data directly related to publications, which include the complete
documentation for published results; b) simplified data formats devoted to training exercises
within the physics community; c) reconstructed data, simulations, and software analysis to
facilitate research analysis; and finally, d) the raw level data and associated software, which
permits access to the full potential of the experimental data reuse (Pujol Priego and Wareham
2019). Data sharing is concentrated for data layers (b) and (c) described above. Raw data (d)
is not made available to other researchers to reuse for declared pragmatic reasons. For
instance, one of the core CERN experiments, CMS (Compact Muon Solenoid) produces on
average 1 petabyte (100 gigabytes) of “raw” data per second, and similar data volumes
characterise other experiments. As the LHC data policy explains: “/¢ is practically impossible
to make the full raw data-set from scientific endeavours of the scale of high-energy physics
easily usable in a meaningful way outside of the collaboration. [...]It should be noted that,
for these reasons, direct access to the raw data is not even permitted to individuals within the

collaboration, and that instead the production of reconstructed data is performed centrally.”

Experiments also foresee a time dilation between the generation of the experimental data and
the moment to share it with the external research community. These periods, also referred to

as embargo periods, allow the data generators within the experiment to publish.

As explained in the LHC experiment data policy: "In general data will be retained for the
sole use of the collaboration for a period commensurate with the substantial investment in
the effort needed to record, reconstruct and analyse those data. After this period, some
portion of the data will then be made available externally, with this proportion rising with
time. The CB will keep such periods and proportions under review and may reconsider
whether they should be varied in the light of experience. In the first instance, access will be
granted to portions of the DST data five years after data is taken. The portion of the data
which LHCb would normally make available is 50% after five years, rising to 100% after ten

years."

One of the significant concerns within the HEP community related to data sharing is not
credit but more importantly that the reuse may lead to an inflation of incorrect results.
Consistent with what researchers claim in a dedicated study on data preservation in HEP
(Holzner et al. 2009), “45.0% of the respondents are ‘very concerned’ or ‘gravely
concerned’ that data re-use may in general lead to an inflation of incorrect results.
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Interestingly, experimentalists are by far more concerned (51.3%) than theorists (29.0%)” (p.
7).

Different research teams employ a variety of tools supporting their computational workflows.
By analyzing the different scientific pipelines, Reana has abstracted the steps that scientists
follow and provides a "simple 'shell script' use case where commands are run sequentially,
and each step produces outputs for the next step" (Simko et al. 2018 p. 2). As a result, Reana
allows structuring research data analysis in a reusable way making it possible to instantiate
computational workflows remotely in the cloud with the support of a set of workflows

specifications, storage systems, and container technologies.

"Our own experience from opening up vast volumes of data is that openness cannot simply be
tacked on as an afterthought at the end of the scientific endeavour. Besides, openness alone
does not guarantee reproducibility or reusability, so it should not be pursued as a goal in
itself. Focusing on data is also not enough: it needs to be accompanied by software,
workflow, and explanations, all of which need to be captured throughout the usual iterative

and closed research lifecycle, ready for a timely open release with the results" (Chen et al.

2019).

The main idea behind Reana's infrastructure is to preserve software and data workflows so
that they can enhance collaborative scientific work and as a way of grasping the knowledge
behind a given analysis during the review process (Dphep Study Group 2009). Such data
sharing process and preservation techniques are embedded in the Reana framework and can
be translated into new analysis methods for future HEP research. Reana was set up to seek
the reuse of experimental data first by the large community of collaborators themselves and
then extend it.

The Reana cases describe the challenges for the HEP community to share and reuse their data
which implies a shift from in-depth documenting and archiving of analysis towards
preservation based on simulation and software containers. For instance, the CMS experiment
preserves “the reconstructed data and simulations by keeping available a copy of the data
reconstructed with the best available knowledge of the detector performance and conditions
for each period of data-taking a virtualised computing environment, compatible with the
software version with which the original data can be analysed, is provided and maintained”
(Dphep Study Group 2009 p. 7).

Reana acts as a boundary organisation or “interface” to the experiment knowhow so that
other researchers outside the experiment can reuse it. Data policies in HEP are decentralised
at the experiment level, instead of at the infrastructure level, and Reana builds on top of the

data rights and responsibilities agreed within every single experiment.
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In Reana, we also find meaningful roles for the mechanisms of modularity (i.e. levels of data
with different data access) and time dilation. While normative governance defining data
access rights and responsibilities exists, it is not provided at the infrastructure-level but rather
at the experiment-level, making the infrastructure respect distinct data policies. Table 4 in the
Appendix provides a detailed description of the progression of our empirical analysis towards
the theoretical constructs of the two mechanisms, modularity and time dilation, as well as the

normative role of the infrastructure/experiments.

55



Table 4. Theoretical progression of our analysis

Hlustrative examples of empirical observations from data sources

How they are similar

How they differ

MB- Open Targets

HEP- Reana

Identification of same
theoretical construct

Theoretical observation

“When data is ready, we integrate it into the
platform; we need to wait until it is ready and
publicise and then we enter it in the platform at
that point and release it” OT4.

"The platform team (in charge of releasing the
data) get to see the type of data very early in the
process. They have sample data, and they
discuss the format. We also have a UX
specialist, to understand what the deliverable is
and how we manifest it in the platform so that
people can use it to make a decision. This is the
Jfoundation for data specification. How are we
going to receive it? What does it look like, how
will it be processed? The discussions are very
early on, and we try to get mock-ups very early
on, to gather feedback from the consortium
partners but also other users, and then we kind
of refine them that as we go along (...) It is a
moving target, as some of the projects do not
know what the data will look like, so we have
monthly meetings." OT4

“New data will enter the portal once the
embargo periods for them are over.” (CERN
Open Data Portal)

“The first data release of 2010 data took
place in 2014, as a stress-test exercise of the
entire preservation, re-use, and access chain.
This release was followed by a full analysis
of the procedure, which was endorsed by the
Collaboration Board in 2015, and regular
data releases, accompanied by appropriate
simulated data, each approved by the
Collaboration Board, are now taking place"
(CMS April 2018)

Time dilation

(Mechanism 1)

The embargo period of HEP is around 5 to
10 years, depending on the experiments.

In OT, the time dilation between the
generation of the data and release in OT is
18 months to two years.

After the embargo period in HEP, only a
% of the data is agreed to be released.

In OT, all the data generated is shared in
OT infrastructure.

“So, we have a platform that is public and open
to everybody. Then, for the experimental
projects, the partners share the data while they
are creating it in Google buckets .

"We have an intranet for the consortium
partners. It is an information exchange between

"Open access to its data by people outside
the collaboration can be considered at four
levels of increasing complexity."

Modularity
(Mechanism 2)

HEP establishes four layers of data: raw
data is not released, while more elaborated
versions of data are opened (level 2 in
open data portal and reused in Reana;
level 1 from publications through HEP
library systems).

® A bucket in Google cloud storage is a primary container that holds data. Owners of buckets control access to the data.
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partners (...) The intranet has a link with the
platform, and it is used for the general
governance of the projects. As we go through
the project call processes, there are page
proposals to share the details. It is like a one-
stop-shop for the whole portfolio of projects.”
OT4.

Raw data from target associations with
metadata is released in OT. However, the
aggregations with data related to the next
steps of the drug discovery process (e.g.
proprietary compound libraries) remain
closed.

“There is a need to coordinate the integration of
data into OT, both from the projects that
generate data but also with the data providers
such as Chembl and Uniprot and all the data
that goes into the platform to keep it up to date.
We also work with the developer team that
creates some of the features that users will use
to visualise the data coming through.” OT4

Boundary
organisation

(Mechanism 3)

The infrastructure:

Dissipates
uncertainties over data
ownership, control,

access rights and rights
to reuse. Defines and
agrees on a clear data
policy amongst OT
participants.

“The data preservation process should
follow well-defined policies, defined as soon
as possible during the lifetime of the
collaborations, and possibly embedded in a
global HEP data preservation initiative.”

“For the widest possible re-use of the data,
while protecting the Collaboration's liability
and reputation, data will be released under
the emerging standard Creative Commons
CCO0 waiver.”’

The experiment:

Dissipates
uncertainties over data
ownership, control,

access rights and rights
to reuse. Defines and
agrees on a clear data
policy that prevails
across infrastructures.

- The boundary organisation and what
makes the interface that mediates the data
flows between researchers and establishes
the rules, responsibilities, and drivers in
data policies varies in the two cases.

- The prominent role of the experiment in
HEP, which decides rights and
responsibilities across data. These rules
prevail across infrastructures, including
Reana. The competition over the data is

not between scientists but between
experiments.

- In MB, the different experimental
projects need to comply with the data
governance and rules of the OT
infrastructures, which  establish the

protocols to avoid unintended spill overs
and a regulated process to release the data
generated.

7 Creative Commons License: http:/creativecommons.org/publicdomain/zero/1.0.
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3.6 Discussion

3.6.1 Implications for theory

Data sharing is desired by the research community at large. 74% of researchers say that
having access to other data would benefit them. Nevertheless, the number of researchers
in our survey who have shared their data remains stable from 2016 to 2018, despite all
policy activities, funders' efforts, and investments put in place to foster research data
sharing. Admittedly, two years may not be indicative of longer trends, but the lack of
any meaningful difference suggests that the uptake of data sharing practices is slow.
Our analysis further suggests that there is no homogenous explanation. Slow adoption
of data sharing comes from an intertwined web of varied cultures and rational pursuits.
Where HEP and MB have significantly different epistemic cultures, research
infrastructures, and scientific practices, both communities have established information
infrastructures with mechanisms designed to mitigate the domain-specific costs and
facilitate data sharing and reuse.

In this respect, the cultural explanation usually employed to justify data sharing
differences across academic communities is only partially adequate. Both HEP and MB
have professional norms characterised by some level of self-interested “exchange logic”
which can deter scientists from absorbing the additional costs of data sharing with no
apparent benefits.

Our case studies have examined two different information infrastructures that have
enacted mechanisms to align scientists’ professional incentives with data sharing
practices across more individualist and communitarian scientific communities. That MB
and HEP have two substantially different epistemic cultures is understandable given the
vastly different research infrastructures and scientific practices: the enormous scale of
many HEP experiments requires substantial organisations where individual
contributions are difficult to account for. MB, by contrast, is conducted in smaller teams
with less capitally-intensive research infrastructures, clearly influencing the allocation
of academic merit and professional status.

Our analysis of Open Targets and Reana offers insight into how these differences can be
accommodated in two different information infrastructures. Both Open Targets and
Reana employ modularity, time dilation, and explicit governance to align the private
interests of the scientists with the collective interests of their communities. In this
respect, there is a consensus that scientific data should be a public good. Scientists,
however, need some assurance of the recognition of their scientific endeavours.
Towards this, scientific communities can consider adjusting how they allocate
professional merit to recognise the cultivation and publication of datasets as a legitimate
professional contribution. However, the mere publication of datasets is insufficient to
address the challenges of reproducibility and scientific efficiency. Appropriate
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governance and policies enacted in the information infrastructures can address the needs
of metadata as well as the risks of data misuse and liability specific to the scientific

community.

In Table 5, we summarise the results and suggest some normative implications that we

discuss next in implications for policy and practice.
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Table 5. Summary of findings and normative implications

Findings

Normative Implications

66% of researchers say they make their data available. The %
remains stable, with no growth shown over the past two years.

Funding and policymaker requirements for data sharing have little effect
in the short-term.

Alternative approaches (e.g. scientific-community based mechanisms)
may be more effective in promoting data sharing practices.

Data sharing varies significantly across disciplines.

Most of the data sharing is carried out between collaborators on
the same projects (80%), suggesting that researchers adopt a
discriminatory approach by sharing data with selected partners.
Only 14% of researchers share theirs through data repositories.

Metadata is an interactive process: over one-third of researchers
were contacted by another university/institute after sharing their
data, and 10% were contacted by a company.

Disparities in data sharing practices suggest that there is no one-size-fits-
all in data sharing policies.

Knowing with whom you share the data (or delegated mechanisms of
trust) is relevant for researchers to share. General repositories may not be
the means to enforce data sharing amongst research communities.

Releasing data is the beginning but not the end; it leads to interactive
exchanges with data re-users. This implies more unexpected effort but
also potential new collaborations.

Research
Questions

RQla: Do
researchers  share
their data?

RQ1b: How do
they share their
data?

RQ2: What
mechanisms have

emerged to enable
researchers to share
their data?

Both communitarian and individualistic scientific communities
(different epistemic cultures) employ three mechanisms (with
some variation) to enable data sharing in both scientific
communities:

-Modularity
-Time dilation

-Boundary organisation to establish transparent data
governance and mediate the identification of the “bona fide”
researcher.

Sharing data is not a dichotomous decision, but rather it needs to establish
a degree towards what data you share (modularity), and when you share it
(time dilation - embargos).

Scientific communities can consider adjusting professional norms to
recognise data sharing as a legitimate contribution.
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3.6.2 Implications for policy and practice

This study contributes to the current research policy debate that is examining the potential
policy interventions to increase data sharing across scientists. Survey data combined with the
insights from the two case studies suggest that one size does not fit all, in particular for such
a complex phenomenon as an intricate system of incentives and rewards, combined with

historical and cultural accounts that shape the diverse research practices.

The insights from the two case studies also guide other disciplines displaying less data
sharing practices in the survey such as ours. In particular, our research communities could
leverage the potential of research data sharing to increase the transparency and
reproducibility of our research practices. Towards this, the establishment of information
infrastructures in the social, economic, and managerial sciences can adopt mechanisms such
as modularity and time dilation, with the appropriate mechanisms concerning metadata,

reuse, and liability that are critical to ensure that data sharing objectives are achieved.

3.7 Conclusion

"The Republic of Science is a Society of Explorers. Such a society strives towards an
unknown future, which it believes to be accessible and worth achieving. In the case of
scientists, the explorers strive towards a hidden reality, for the sake of intellectual
satisfaction. And as they satisfy themselves, they enlighten all men and are thus helping
society to fulfill its obligation towards intellectual self-improvement" (Polanyi 1962 p. 19).
Data sharing is a practice that is intended for the collective benefit of the “society of
explorers”. In this respect, scientific communities are far from being united, but display
heterogeneous practices and norms in the way science is produced and how merit and status
are allocated. The need for greater transparency and reproducibility, combined with advances
in ICT, render data sharing a clear choice for scientific policymakers and funders. Yet
reasons for its gradual and disparate adoption are less obvious. A delicate system of
mechanisms needs to be established to align individual and collective incentives. Moreover,
these will differ across scientific communities. The use of modularity, time dilation, and
appropriate policies are pivotal in the information infrastructures created by the scientific
disciplines currently at the forefront of scientific data sharing. Other academic communities
that seek to follow these examples can apply these mechanisms in a manner accordant with

their own epistemic cultures and professional practices.
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Opaque Spaces of the Commons: Governing
Information Infrastructures in Life Sciences

The article that constitutes this chapter consists in a micro-study of a single case that gives us
insight into the different mechanisms that help reconcile the main tensions between the two
exogenous forces: open science and technology transfer. It empirically investigates Open
targets an information infrastructures based upon data commons developed by EMBL-EBI

and pharmaceutical companies to accelerate the drug discovery process.

71



4.1 Abstract

The sequencing of the human genome is recognized as a major landmark in biomedical
research that has facilitated the emerging disciplines of genomics, proteomics, and systems
biology. However, the capabilities and economic resources needed to leverage these vast data
sources towards a greater understanding of disease mechanisms often exceed the scope of a
single organization. In response to this challenge, biopharmaceutical companies have created
commons-based information infrastructures. We present the exemplary case of Open Targets
(OT), a large-scale information infrastructure created by leading organizations in
bioinformatics, genomics, and pharmaceuticals that includes for-profit companies, non-profit
foundations, and public research organizations. We describe and theorize about the
governance conditions of modularity and brokerage that enable the processes of folding and
unfolding into concealed or open spaces of work. This fluid dynamic simultaneously enables
the benefits of shared investments and protects the private economic interests of its members.
It offers a successful model for information infrastructure governance that navigates many of
the trade-offs between private and collective interests in common resource pools composed

of heterogeneous members with divergent objectives.

Keywords: Information infrastructure; collective action; governance; drug discovery

4.2 Introduction

The sequencing of the human genome (Human Genome Project, HGP) is recognized as “the
largest undertaking in the history of biological science”(Chaguturu et al. 2014, p.35), which
brought 1) a deluge of new biological data to be incorporated and assimilated in drug
discovery processes; 2) new computational challenges of transforming DNA sequence
information into disease-associated protein functions leading to the generation of digital
technologies such as bioinformatics, metabolomics or genomics; and more broadly, 3) the
discipline of systems biology, which promotes the understanding of how networks in the
biological system interact (Au, 2014). Enabled by new computational technologies, the HGP
opened the door to abundant data and, consequently, fundamental changes in how scientists
understand diseases and biological mechanisms.

Sixteen years since its completion, it is acknowledged that the full potential of the HGP has
not been realized for a number of reasons. One explanation is that the technological
challenges of exploiting the HGP exceed the capabilities traditionally available to an
individual company (Altshuler et al. 2010). In parallel, the cost of drug discovery has been
growing (Lee 2015): the total R&D spent worldwide by pharmaceutical and biotechnology
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firms increased from USD 108 billion (2006) to USD 141 billion (2015) (Evaluate Pharma
2017), while the cost of developing a single medicine is estimated at 2.6 billion, more than
double the figure of only a decade ago (Tufts Center for the Study of Drug Development
2015).

As a result, pharmaceutical companies have carefully opened up their boundaries in the early
phases of drug discovery by creating pooled, commons-based information infrastructures
shared across multiple, often competing, organizations. The primary focus of such
information infrastructures has been to generate, integrate, and curate large data pools with
commonly used tools and analytical methods for the research community (Grossman et al.
2016, Vamathevan et al. 2019). The main impetus is to avoid redundant investments in early-

stage research efforts and to accelerate drug discovery.

Information infrastructures have been defined as “multi-layered entities comprised of
technological components, people and institutional arrangements” (Constantanides 2012 p.
25) (Hanseth and Monteiro 1997). A more technology-focused definition is “a digital library
system based on commonly shared standards and containing information of both local and/or
widespread interest” (Kahn and Cerf 1988 pp. 3) ... “to augment our ability to search for,
correlate, analyze and synthesize available information,” (Kahn and Cerf 1988 p.11.) Adding
a social dimension, Constantanides (2012 p.21) defines information infrastructures as “efforts
to integrate other computer-based and social systems, and to regulate and monitor processes
that were previously performed in various, isolated settings.” The logic behind these
conceptualizations is now evident, as pharmaceutical companies have developed information
infrastructures that integrate shared data, technologies, methods, and the rapidly increasing
financial expense of integrating human genome information into drug discovery processes.
The goal is to pool resources to achieve the needed depth and scale to validate potential
therapeutic targets for various diseases in the first two of seven phases in drug discovery,
typically occupying three of the twelve total years required on average. In drug discovery, the
term “targets” typically refers to proteins that have three-dimensional structures to which
specific molecules can bind to provoke some physiological effect.

The development of these information infrastructures has been based upon the concept of the
commons, which refers to a set of resources that are collectively owned and shared among a
community (Ostrom 1990). Commons contain public and private property over which
different agents have certain rights. By creating such information infrastructures,
organizations commit to revealing resources (data, methods, technologies) and forgo IP
related to drug targets (Mishra et al. 2016). More concretely, companies agree to postpone

the time to patent in the drug discovery process, accepting that targets will no longer be
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patent objects, and the data, technologies, and knowledge related to targets are to be shared

openly in an information infrastructure.

Such time dilation at the moment of patenting offers a novel practice of sharing in the early
phase of drug discovery that poses both benefits and challenges: while limited sharing can
lead to redundant investments and delays in scientific discovery, excessive sharing can lead
to unintended spillovers that damage the firm’s competitive position. In other words, the
development of the infrastructure (i.e., the conceptualization and implementation) must
adequately negotiate a conundrum: it must be sufficiently open that organizations benefit
from sharing but adequately restrictive at certain points to protect private economic interests
in the competitive race towards therapeutic drug development. Ultimately, participants in
these information infrastructures face a collective action problem: how do pharmaceutical
companies develop an infrastructure that grants access to the data, methods, and technology,
which we refer to as collective resources, critical to upstream drug development while
preserving downstream commercial opportunities? Balancing these economic and scientific
incentives remains a challenge in an [P-intensive industry, which has historically been
characterized by high levels of secrecy, even between clinical teams within a company
(Allarakhia 2014, Mittleman et al. 2013). To address this challenge, the development of the
information infrastructure requires well-considered governance that enables the sharing of
pooled resources, which we term openness, while offering the protections, or closure, needed

to realize an economic return on firms’ investments in later phases.

The term “collective action” refers to joint action by a number of agents to achieve and
distribute some gain through coordination or cooperation (Hardin, 1982). Research into
collective action problems was initiated with Mancur Olson’s (1965) now classic Logic of
Collective Action and later popularized with Gareth Hardin’s (1968) thesis on the “tragedy of
the commons.” Collective action research has been adopted by information infrastructure
scholars to understand the challenges of information infrastructure development that align
individual and collective interests from the different organizations involved. Tightly coupled
with this literature is the concept of governance, which refers to the rules that underlie the
social activities that are integral to order relationships, responsibilities, and expectations of
contributors (Ostrom 1990, Mindel et al. 2018, Weill and Ross 2004). The debate on
commons governance distinguishes between bottom-up, decentralized or polycentric
approaches and top-down or centralized structures in assigning rights, responsibilities, and
privileges in various types of collective resource systems (Constantinides and Barrett 2015,
Mindel et al. 2018). The historical discourse has been polarized in two rival schools of
thought: one represented by Garret Hardin and the second by Elinor Ostrom. Hardin’s
‘tragedy of the commons’ describes the cautionary tale of how collective resources will

eventually decline if governed in a decentralized manner characterized by a high level of

74



openness. By contrast, the 2009 Nobel Prize winner in Economics Elinor Ostrom documents
in her book Governing the Commons (1990) how communities manage collective resources

without top-down regulations.

When adopting the commons discourse to understand information infrastructures, the
proponents of the top-down approach argue that infrastructure development needs to have
clear governance defining who makes what decisions e.g., (Weill and Ross 2004). A
contrasting scholarship argues that information infrastructures cannot be governed in a top-
down, centrally controlled manner due to the complex dynamics required to cultivate a
constantly growing base of users with diverse needs (Hanseth and Lyytinen 2010, Sahay and
Aanestad 2009). This literature suggests that information infrastructures need to be governed
through their design, suggesting a set of design principles and rules that acknowledge
“pivotal relationships between technical and social elements, and their dynamic interactions”
(Hanseth and Lyytinen 2010 p.15); that is, through careful design choices, information

infrastructures can be self-organized.

In this paper, while we acknowledge the relevance of bottom-up governance approaches to
information infrastructures, we argue that they also need to be effectively governed with
certain restrictions to award the appropriate economic protections for companies to realize a

return on their substantial investments.

Thus, the key research question that we seek to answer is as follows:_how do organizations

develop commons-based information infrastructures that govern access to collective

resources while simultaneously protecting the members’ private interests?

Following calls in the recent literature (Mindel et al. 2018) and requests to “cover the
interplay with institutions, goods, and the social practice” (Von Krogh et al. 2012, p. 670),
our objective is to advance beyond the usual rivalry between bottom-up and top-down
governance and the binary distinction between public and private goods in information
infrastructure research. We seek to understand and develop theory about alternative
governance forms that allow dynamic navigation through the needs of sharing collective
resources (openness) with the appropriate levers of restriction and confidentiality (closure) to

enable the pursuit of competitive interests.

Among other successful results, OT researchers have effectively contributed to accelerating
the development of targeted cancer treatments by discovering “thousands of genes essential
for cancer’s survival and ranked which ones show the most promise as drug targets for
developing new treatments” by employing a novel computational framework that integrates
“multiple lines of evidence to assign each gene a target priority score” (Behan et al. 2019 p.
511).
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Combining insights from the extant literature and findings from our in-depth study, we
develop a generalizable model of information infrastructure governance based on the
commons that enables both the protection of competitive knowledge and a degree of
openness to make the collaboration effective. Our study seeks to better understand the
collective action challenge of granting participating organizations access to collective
resources while reconciling both collective and self-interests. While our empirical context is
an information infrastructure in the life sciences, we believe that our findings can inform
information infrastructure development in a wider range of domains. Our theoretical
development integrates ideas from three main areas: 1) information infrastructure governance
scholarship, e.g., (Constantanides 2012, Constantinides and Barrett 2015, Hanseth 2001,
Hanseth and Lyytinen 2010, Hanseth and Monteiro 1997); 2) collective action theory, e.g.,
(Hardin 1968, Hess and Ostrom 2003, Ostrom 1990); and 3) the literature describing the
implications of the sequencing of the human genome and recent computational research
methods to the collaborative dynamics of the pharmaceutical industry, e.g., (Allarakhia 2014,
Au 2014, Choudhury et al. 2014, Collins 2003, Hood and Rowen 2013, Vamathevan et al.
2019).

The remainder of the paper is structured as follows. In the next section, we develop our
theoretical underpinnings regarding information infrastructure development and collective
action theory. This is followed by a discussion of the research context and methods employed
for conducting the empirical study. We then draw on our theoretical approach in presenting
the results of our analysis on OT. Finally, we develop contributions to collective action
challenges and information infrastructure development and suggest avenues for future

research.

4.3 A Paradigm Shift in Science and Technology for Drug Discovery

Drug discovery is defined as “the process of creating chemical or biological molecules that
have the potential to be developed as therapeutic agents, typically because they generate a
desired biological effect in an appropriate testing or assay system against a particular
molecular (drug) target” (Weigelt, 2009, p. 941). The basic approach in drug discovery
consists of developing drugs that will alter the disease state by modulating (i.e., as an agonist

or antagonist) the activity of a molecular target (Vamathevan et al. 2019).

Despite some idiosyncrasies that may change from company to company, the standard drug
discovery and development process can be divided into the following interdependent
processes (Chaguturu et al. 2014): 1) target identification, which focuses on discovering the
molecular targets (normally proteins) that play a fundamental role in disease; this phase is

devoted to uncovering causal associations between a target and disease, which requires
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demonstrating that the modulation of a target has an effect on (i.e., modulates) a disease
state; 2) target validation, which is the confirmation of the molecular target being associated
with the disease identified by employing physiologically relevant ex vivo and in vivo
models; 3) lead or hit identification, which consists of identifying multiple pharmacological
molecules active against potential targets; 4) the lead optimization process consists of
optimizing the "function of how tightly the molecules interact with the target in order to
improve selectivity and the degree to which a dose of a drug produces the desired effect
against a specific target"(Chaguturu et al. 2014, p.34) while evaluating the safety of leading
molecules; 5) preclinical trials to identify the best candidate molecules to test; and 6) clinical
trials (phases I, 11, and III) test potency, metabolism, toxicity and other variables critical to

regulatory approval.

In essence, once a target has been confirmed to be associated with a disease, companies need
to identify for further development the pharmacological molecules that can affect the target.
At this point, the lead leaves the discovery phase and enters preclinical development
(Zanders 2011). The transition from the discovery phase (related to targets) to preclinical
development (lead development) is a major one: scientists leave ‘blue sky’ research and enter
into a heavily regulated process of developing and marketing a medication to be sold to a
global market. The steps to be taken from the discovery phase onwards have a diverse set of
legal and financial implications for the company at hand. While the work on the discovery
phase, which involves in targets until the lead molecule is chosen to proceed to development,
is experimental, the following steps devoted to development require the manufacture and
formulation of the compounds, which comprise highly regulated procedures with very well-
defined processes that need to be consistently performed. Fundamentally, such consecutive
phases need to prove that the drug candidate can effectively bind and modulate the target in a
safe manner. Towards this end, company teams need to examine the pharmacodynamics (i.e.,
the effect of the drug on the body), pharmacokinetics (i.e., the effect of the body on the drug),
and safety pharmacology or toxicology, in other words, any undesirable effects (Zanders
2011).

Historically, academia conducted basic research in biology, deciphering new disease targets
and relevant pathways with potential therapeutic value, while biopharmaceutical companies
pursued closed research in search of therapeutic targets. Since the completion of the HGP,
genomics technologies in drug discovery have shifted the problem from the “identification
and creation of novel small-molecule drugs against known targets (chemistry) to the
biological characterization and functional validation of large numbers of unknown drug
targets (biology) at the molecular, cellular and system levels” (Hopkins et al. 2007, p. 371).
The effort consists of decoding the disease-associated mechanisms that are generated by

single or multiple genes and understanding their interaction with environmental factors.
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While the genome is a significant determinant of how diseases originate and evolve,
environmental factors often play an essential role, and in many cases, these two factors are
intertwined (i.e., a particular genotype may change the risk of an environmentally induced
disease) (Katsila et al. 2016).

As a result, firms have shifted their focus towards the early stages of the drug discovery
process, reducing investments in later stages to improve the success rate of drugs entering the
development pipeline. The significant economic cost of this novel research form requires
collaborative investments to generate large shared data resources. In essence, we have
witnessed a paradigm shift since the completion of human genome sequencing and the

consequent technological advances, the features of which we summarize in Table 1.
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Table 1. A Paradigm Shift in Drug Discovery (inspired by Au, 2014)

Before After Source
Time (average) 8 — 10 years 10 - 15 years (e.g., Au 2014; Lee, 2015;
Schuhmacher et al. 2016)
Cost (average) $800 million $1.65 billion (e.g., Tufts Center for the Study

of Drug Development, 2015)

Intellectual property

Patent protection

Shorter patent protection and numerous drugs going
off a patent-patent cliff

2015; Lesser and Hefner, 2017)

Paradigm Shift

Drug discovery | “Trial and Error” — start with 1000 | More targeted pathways that demand a better | (e.g., Lesser and Hefner 2017)
Methodology compounds and narrow it down understanding of biology

Focus Focus on later stages of drug development | Increased focus on the basic science of drug discovery | (e.g., Lesser and Hefner, 2017)
Technologies The standard strategy was to internalize | Innovative computational biology approaches require | (e.g., Au 2014; Barnes et al. 2009;

implemented for drug
discovery

public-domain data and to build (or
license) internal platforms to manage and
integrate them with internal data

the development of new technologies that extract value
from increasingly comprehensive public-domain data
sources. A shift from ‘proprietary data' to ‘proprietary
understanding of data’

Loging et al. 2007; Schrattenholz
and Soskic 2008)

Publication of clinical
trial data

Restricted access due to IP protection
reasons. Patient data confidential unless
subpoenaed by a court order

Companies opening up clinical trial data for research
to increase a better understanding of disease
progression

(e.g., Au 2014; Pogorelc 2014)

The scope of industrial-
academic collaborations

Focus on specific targets. Partnership
agreements are typically small in scope

The broader focus of the collaboration expanding
across one or more indications, therapeutic areas, or
operational capabilities

(e.g., Bianchi et al, 2011;
Chaguturu et al. 2014; Hunter and
Stephens, 2010; Salah and

McCulloch, 2011

Type of industrial-
academic collaboration

Typically involving two parties and using
a structure (a “sponsor” and “partner”
model) that distributes control, risks, and
rewards

Typically involving three or more parties including
biopharmaceutical companies, academia, non-profit
contributing resources. Shared control and decision-
making, thus increasing potential risks and rewards

(e.g., Lesser and Hefner, 2017)
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4.4 Theoretical underpinnings

4.4.1 A Collective Action Approach to Information Infrastructures

Information infrastructures such as data and code repositories for scientific or health

information have long been differentiated from transactional information systems (e.g., ERP)

for being integrators of widely distributed and previously siloed information spaces
(Constantanides 2012, Constantinides and Barrett 2015, Hanseth and Monteiro 1997). The
key attributes of an information infrastructure described by such a body of literature are
described in Table 2.

Table 2. Summary of Key Aspects of an Information Infrastructure (1I)

II attributes Definition Sources
Shared and open | An information infrastructure is shared by and open | e.g., (Byrd and Turner
to a large user base and technological components. | 2001, Constantanides 2012,
Hanseth 2001)
Reusable and | An information infrastructure is modular in that it | e.g. (Byrd and Turner 2001,
modular has the ability to add, modify and remove | Chung et al. 2003, Duncan

technological components with little effect on its
features and process of other components. The
modular attribute of an infrastructure leads to the
subprinciples of decomposition, recombination and

reusability of its components.

1995)

Built on installed

base

An information infrastructure is not developed from
scratch but on the existing installed base, which

constantly evolves in different layers.

e.g., (Grisot et al. 2014,
Hanseth 2001, Weill and
Broadbent 1998)

Enabling

An information infrastructure has a supporting or
enabling function. It is not designed to automate
something that already exists or to support one way
of working or a specific application but to support

the emergence of new activities.

e.g., (Hanseth 2001)

Embodied in

standards

An information infrastructure and its components
are embodied in different standards (e.g., coding
schemes, terminologies) that need to be agreed

upon to facilitate the interoperability and

e.g., (Ciborra and Andreu
2001, Hanseth et al. 2006,
Hanseth
1997)

and Monteiro
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connection between the different components and
their further reusability. “Standards are a necessary
constituting element” of the collection of
information infrastructure connections (Hanseth
2001, pp.57). Standards allow a shared pattern of
use among a diverse range of user organizations.

Heterogeneous An information infrastructure is a heterogeneous | e.g., (Ciborra and Andreu
collage of people, systems and processes. 2001, Hanseth et al. 2006,
Hanseth and Monteiro
1997)

The process of integrating information spaces is characterized by being complex due to a
number of challenges that it needs to face (Constantinides and Barrett 2015). Challenges
include combining heterogeneous interests and resources from the different organizations and
(Hanseth and Lyytinen 2010, Hanseth and Monteiro 1997) agreeing on a set of standards
(Bowker 1999, Hanseth 2001, Hanseth and Monteiro 1997, Star and Ruhleder 1996), which
“are a necessary constituting element” (Hanseth 2001, p.57) “to the collection of information
infrastructure connections” (Constantanides 2012 p.26). An additional challenge is defining
an appropriate governance that facilitates the integration and sustainability of the information
infrastructure (Constantinides and Barrett 2015). Decisions are made across a wide range of
aspects, including infrastructure architecture and its components, procurement and operation,
type of information, standards, access and user rights, applications, processes, and resource
investment e.g., (Weill and Ross 2004).

Some researchers have argued that information infrastructures need to be governed in a
centrally controlled manner to solve conflicts of interests, e.g., (Markus et al. 2006, Vincent
and Camp 2004), while other scholars have argued that centralized control is insufficient to
address the dynamics of a perpetually changing base of heterogeneous users (Hanseth and
Lyytinen 2010, Henfridsson and Bygstad 2013, Sahay and Aanestad 2009, Yoo et al. 2012).

A top-down versus bottom-up approach for governing information infrastructures translates
the centuries long debate among economists, sociologists, ecologists, and political scientists
regarding how to govern different types of collective resource systems called commons
(Mindel et al. 2018). Both streams of literature are preoccupied with how large-scale
resource pools can be made openly accessible to a large population of users while
maintaining an equilibrium between, often competing, private and public interests. The

central dilemma is that the inappropriate governance of a commons may disincentivize
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agents to contribute to the common resource pool and jeopardize its overall sustainability
(Rolland & Monteiro, 2002).

The historical discourse has been polarized into two rival schools of thought: one represented
by Garret Hardin and the second by Elinor Ostrom. In 1968, Hardin popularized the ‘tragedy
of the commons,” which became a leading paradigm in political science as an argument
explaining what will happen to openly accessible resources if strong top-down institutions do
not set limits on individual freedoms (Hardin 1968), showing how uncontrolled individual
self-interested pursuits may sabotage the common good (Greco and Floridi 2004). The
tragedy of the commons is an instantiation of the prisoner’s dilemma, specifically, an n-
person prisoner’s dilemma where the rational pursuit of each agent's individual self-interest
leads to suboptimal management of common recourses (Greco and Floridi 2004, Fletcher and
Zwick 2000, Ostrom 1986). According to Hardin’s logic, decentralized online information
systems would not succeed due to their high openness levels (Mindel et al. 2018). There are
abundant studies providing empirical support for Hardin’s argument, e.g., (Ma and Agarwal
2007, Moon and Sproull 2008, Ransbotham and Kane 2011, Stewart and Gosain 2006).

As an alternative, Ostrom (1990) argued that the logic behind the tragedy of the commons is
simplistic and problematic. In the 1980s, Ostrom and her school of thought collected and
analyzed more than 5,000 empirical field studies from around the world to scrutinize and
identify the structural characteristics of open resource systems: the attributes and practices of
their users and rules and the reported outcomes. This research identified many well-
functioning open resource systems that work in the absence of strong, centralized authority
(Nagendra and Ostrom 2012, Ostrom 1990). She observed that the ‘most resilient governance
arrangements were those that dynamically managed boundary setting and mutual
accountability through a high degree of inclusivity in decision-making’ (Mindel et al. 2018).
The main idea was that by increasing the number of decision-makers (polycentricity), an
individual’s commitment to the open resource system is reinforced, mitigating the need for
central governance. The concept of polycentricity was first developed by (Polanyi 1951) to
describe the free independent exercise by scientists unconstrained by the intervention of a
central management authority (Aligica and Tarko 2012). Ten years later, polycentricity was
adapted by Ostrom (et al. 1961) as an alternative to centralization. The resulting framework
became the foundation for common-pool resource governance research, also known as

collective-action research.

The literature, to date, has paid little theoretical attention to whether centralized and
polycentric governance of an information infrastructure are discrete, static alternatives or,
rather, a fluid and manageable characteristic that could be dynamically governed through
certain architectural characteristics of the infrastructure. Just how such movement between
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openness and closure is made possible in an information infrastructure (what this balancing
involves, who manages it, how it happens and how it actually impacts the collective action
problem while addressing both collective and private self-interests) is an under-researched
area that we endeavor to explore and theorize about. Such an exploration requires an
understanding of the type of collective resources under focus.

4.4.2 Commons Goods in Information Infrastructures

Samuelson (Samuelson 1954 pp. 387-389) classified goods as either private or public,
placing great emphasis on exclusion. Goods for which the use by other individuals was
excluded were labeled private, in contrast to goods for which all individuals were included
(i.e., public goods). Another dimension was introduced into the schema by adding
subtractability (also referred to as rivalry), where the use of a good by one person subtracts
from the availability of the good to others. Across this two-dimensional classification of
goods, research has been developed to identify the varying degree of exclusion and
subtractability. Embracing these two dimensions (exclusion & subtractability), collective
action research transcended the dual classification of public versus private goods (Monge et
al. 1998), which led to the approach to goods as commons, which exhibit properties of both
private and public goods (Ostrom 1990).

Despite their parallel characteristics, Hardin’s and Ostrom’s ‘commons’ (called common
pool resources by Ostrom) have important differences with the goods involved in discussions
of information infrastructures. Hardin and Ostrom theorize about physical resource systems
with tangible natural or man-made resources. The application of collective action research to
theorize about information infrastructures conceptualizes a ‘good’ as the functionalities that
the information system affords and the collective interests and resources of the users.
Compared to the classical theorization around natural collective action goods (e.g., forests,
fisheries, pastures), in information infrastructures, goods are ‘sociotechnically
interdependent on the heterogeneity of interests and resources of a distributed user base”
(Constantinides and Barrett 2015 pp.44, Markus et al. 2006). As a result, information
infrastructure research maintains that due to the distributed and interdependent nature of such
goods, ‘the level of the good at any given time will depend on the average rate of collective

resources contributed’ (Monge et al. 1998 p.417)

While the physical nature of the resources in Ostrom’s and Hardin’s theories makes the
resource unit subtractable, in information infrastructures, the resources are in a digitalized
form, so one person’s use of information does not directly imply subtraction from another
person’s ability to use it; resources do not face the social dilemma of overconsumption
(Constantinides and Barrett 2015, Mindel et al. 2018). The characteristics of exclusion and
subtractability are not “givens” as in natural resources, but “they can be fabricated and
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technologically contingent”(Vassilakopoulou et al. 2016 pp.4.) Thus, information
infrastructures are always subject to negotiations regarding the extent to which they remain
open and shared by a wide and growing base of users (Hanseth 2001, Star and Ruhleder
1996), how they regulate their use through IP regimes e.g., (Benkler 2006), standards
(Monteiro 1998), and the governance structures to manage their use e.g., (Weill and
Broadbent 1998, Weill and Ross 2004).

4.4.3 Folding and Unfolding Processes in Information Infrastructures

In addition to information infrastructure scholarship and collective action theory, we now
introduce two constructs to complete our conceptual foundations. In our theorizing, we
borrow from Shaikh and Vaast (2016) the concepts of folding and unfolding. Shaikh and
Vaast (Shaikh and Vaast 2016) employ these terms to describe how open-source developers
create opaque spaces of work (the fold) and transition dynamically back to open spaces.
Folding refers to the process by which developers create such private workspaces (the fold),
and unfolding is the process by which the output of the fold (e.g., code, bug fixes) is released
back into the open. Folding and unfolding processes balance the need in open-source
software development for complete openness in the development process and sharing the
source code with the need for moments to work in opacity. It is “a folding from what happens
outside” (Shaikh and Vaast 2016 p.827) into a more restricted or hidden space that creates a

territory for reflective organizing.

Originally inspired by Deleuze’s and Kavanagh and Araujo’s ideas (Deleuze and Strauss
1991, Kavanagh and Araujo 1995), the creation of the fold or hidden territories is temporary
and return that which is inside back to the outside or a wider environment after a period of
time. Folds are enabled by digital technologies and represent a virtual space for restricted
exchanges and possess a fluid nature ‘where change is the norm’ (Shaikh and Vaast 2016
p.827). Unfolding is the natural occurrence after the fold when releasing the output (e.g.,

code) of the discussion.

We will adapt the concept of folding and unfolding in our theorizing to illustrate how
information infrastructures dynamically manage pharmaceutical companies’ need for

openness and closure.

4.5 Research context and methods

We conducted a longitudinal, in-depth case study of OT with the goal of providing
theoretical insights into how to govern data commons, allowing firms to reveal their data and
resources while competing in later stages (Yin, 1984). Case-based exploratory methods are

suitable for investigating poorly understood phenomena (Eisenhardt 1989).

84



OT offered a powerful opportunity for theory generation. Based on a set of preliminary
interviews with managers at a variety of pharmaceutical companies (n=5) and life science
laboratories (n=3), we selected OT following three main criteria: its fit, distinctiveness, and
revelatory nature (Eisenhardt 1989; Siggelkow 2007; Yin 2003). First, OT is an information
infrastructure that has achieved extraordinary success in organizing the disclosure of data,
technology, and methods, leading to the identification of 2,540 potential new indications for
791 current drug targets. Second, the case is distinctive in the sense that the OT includes
Europe’s leading pharma and life science organizations and flagship scientific research
infrastructures. Finally, we view OT as highly revelatory of a successful example of
information infrastructure governance that enables data and knowledge sharing (Altshuler et
al., 2010) to accelerate target identification and validation while protecting organizations’
assets in the later stages of the drug development process. In this section, we describe the
research context and our data collection and analysis.

4.5.1 Research Context

OT is constituted by a group of organizations: EBI-EMBL—Europe’s flagship laboratory for
life science—the Wellcome Sanger Institute, GSK, Biogen, Takeda, Celgene, and Sanofi.
The organizations collaborate to generate target-centered data on human physiology and
systems biology in pursuit of cutting-edge experimentation, which they openly share and
integrate with publicly available data in the OT infrastructure.

The methods used by OT include a combination of large-scale genomic experiments with
scientific statistical and computational techniques to identify and validate causality between
targets, pathways, and diseases (Open Targets, 2018). OT employs advances in cutting-edge
genetic methods to support researchers in the first step of exploring new drugs, concretely
helping them to identify "where to start" (Open Targets, 2018). By applying lean user
experience (UX) design methods, OT members developed an infrastructure that searches,
assesses and integrates a vast quantity of pubic and proprietary genetic and biological data to
support target-centric and disease-centric inquiries.

According to the last update available (November 2019), OT contains more than 27,069
targets, 6,336,307 associations, 13,579 diseases, and 20 data sources (Open Targets, 2018).
OT collective work has resulted, among other highlighted results, in the identification of
2,540 potential new indications for 791 current drug targets. A total of 1,366 of these 2,540
indications are for Orphanet rare diseases where the target is a known drug target for a
common disease (Khaldakar et al., 2017). OT has suggested potential drug-repositioning

opportunities for 14 rare diseases, and according to Pharmaprojects’, which gathers

8 Pharmaprojects website: http://www.pharmaprojects.com
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worldwide drug development pipeline data, 6% of all new target-disease pairs uncovered in
OT are in drug development, which is a conservative estimate given that only indications
with exact matches were considered (Khaldakar et al., 2017). Drug repositioning is a strategy
in drug development that seeks to expand the indication space for a successful drug or find a
new indication for a drug that was not successful in clinical trials. While the traditional
approach to drug development takes from 10 to 15 years, the repositioning strategy takes an
average of 6.5 years (Khaladkar et al. 2017).

4.5.2 Data Collection and Sources

Our study relies on a diverse set of primary and secondary data to provide richness and
enhance the validity of our findings (Alvesson 2009, Klein and Myers 1999). Primary data
included 25 semi-structured interviews conducted in two phases from 2017 to 2019 and
direct observations from one study visit at the Welcome Genome Campus for the OT open
days (June 2019). Our objective was to interview a representative cross-section of OT,
including academics, company members, the operational team and external users (non-
members) of the OT infrastructure. The interview process was concluded when no significant
additional insights were obtained from the data, and theoretical saturation was achieved.
Secondary sources were also an essential data source. As OT activity has been widely
publicized in media outlets, it was possible to collect substantial and relevant information
from published sources. We combined these data with the publications resulting from OT
(i.e., 41 research publications), together with tutorials about how to use OT infrastructure,
blog posts, release notes, webinars, workshop presentations, the question and answer (Q&A)
section of the OT website, and OT information contained in the seven partners’ websites and
annual reports. These secondary sources appear to be very useful, as they allowed us to
perform crosschecks using multiple sources. The combination of our primary data with
secondary data analysis allowed us to build our theoretical inferences from the case.

Finally, we supplemented our data with peer-reviewed publications on the topic of target
identification and validation in the drug discovery process. We drew upon these sources to
better grasp the technical work involved in OT to identify the target-disease associations and
understand the type of data and methods used to find the best evidence of an effective and
safe target. These academic sources served the mutually relevant but separate purpose of
acquainting us much more deeply with relevant bioinformatics and biomedical backgrounds.
This gave us contextual knowledge to make better sense of our primary data, both the
interviews and observations (Lok and de Rond 2012). Table 4 in Appendixes provides a

detailed description of the data collection, sources and their use in the analysis.
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4.5.3 Data Analysis

We performed a two-stage inductive analysis. The first stage, conducted between September
2017 and November 2018, was exploratory. We obtained primary data from 10 in-depth
semi-structured interviews and informal conversations with research scientists and engineers
from academic organizations and the managers of companies participating in information
infrastructures in the life science sector. This phase was also devoted to reading abundant
material available online about emerging information infrastructures after the HGP in the life
science sector.

After this first exploratory phase, in a second stage, we completed 15 interviews in a second
round with a cross-section of representative organizations participating in OT. The major
themes in our interview protocol are summarized in Appendix B. Interviews were, on
average, 45-60 min long, and the questions focused on OT governance, technical
characteristics of the infrastructure, the role of the OT operational team, and the competitive
and cooperative dynamics sustaining the infrastructure. Interviews were anonymized, and we
organized and analyzed data for salient themes. We compared transcripts to identify themes
in initial interviews to then explore and contrast these themes in subsequent interviews.
Themes were coded by one of he co-authors and they were iteratively discussed with the
other co-author, especially when the categorization was unclear to reach an agreement. We
performed the interviews and their analysis in several iterations, and thus those earlier
transcripts informed and incorporated information emerging from later interviews. In our
results (section 5), we present interview excerpts from the study, with alphanumeric key
identifiers (corresponding to table 3) representing quoted interviewees. Table 4 in appendix
provides a detailed description of the progression of our empirical analysis towards the

theoretical constructs.
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Table 3. Details on Data Collection and Use in the Analysis

Source of | Type of data | Description Identifiers Use in the analysis
data
Interviews First Round Research  scientists and | R1 To gather data and an
=10 engineers from academic R overall understanding
organizations in of the logic behind
information commons in | R3 developing common
the pharmaceutical sector information
(n=3) infrastructures
Managers of companies | M1 M2
participating in information M3 M4
infrastructures  in  the
pharmaceutical sector (n=6) | M5 M6
Operational team members | Ol
involved in information
infrastructures
Second Round | Research scientists and | ROT]I To gather data on
=15 engineers from academic | ROT2 technical attributes of
organizations partnered | ROT3 oT infrastructure,
with OT (n=4) ROT4 governance and
Managers of companies in | MT1 organizational
OT (n=3) processes.
MT2 MT3
Managers of companies not | NOT1
paﬁlclpatlng m OT bgt NOT2
using the platform and their NOT3
outcomes (n=3)
Managers of OT — | OT1OT2
operational team (n=5) OT3 OT4
OT5s
Observations | Visit to OT Observation to OT Open Days —| To gain additional
workshop, working groups and social | understandings of how
event (June 2019) the OT operational
team facilitates the
work of OT partners
Secondary Publications | 41 publications To gather data and
data Tutorials 1 tutorial on OT infrastructure obtain an overall
understanding of all
Blog 3 outreach posts oT infrastructure,
Release 19 release notes components,  usages,
and governance and
notes .
major outcomes of the
Q&A 6 posts collaboration.
OT  partner | 7 websites
websites
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4.6 Results

4.6.1 Open Targets Information Infrastructure

OT was created in 2015 by a nucleus of academic institutions and pharmaceutical companies
that sought to mitigate the attrition rates of firms’ pipelines and increase the probability of a
successful drug going through the process. The organizations decided to achieve this via the
development of an information infrastructure to 1) integrate comprehensive datasets from
myriad public databases, such as UniProt, ChEMBL, NHGRI-EBI GWAS, EuropePMC, and
Cancer Gene Census, and share computational techniques to calculate, rank and score gene-
disease associations and 2) generate new data, methods and tools via joint experimental
research projects, the results of which would later be combined with large public datasets to
support data-driven target prioritization.

The integration of the datasets followed a federated approach to develop summary
information about the data, which takes the form of evidence objects supplied by the source
database or by the OT team from parsing other databases. The idea was not to store all
relevant data because the databases are already uniquely tailored to many of the specialized
data sources and often evolve quickly. The infrastructure interface works as an open access
"Google" — a type of search engine that extensively searches, assesses and integrates the vast
quantity of genetic and biological data available — supporting two main paths: target-centric
and disease-centric inquiries. An OT user can search for a target and is presented with
visualizations of the evidence for associations with specific diseases clustered into broad
therapeutic areas, allowing in-depth investigations of the evidence and user-defined lists of
associations. In the second path, the user enters the name of a disease and asks which targets
can be associated with this disease. The output is a visualized summary of the genetic targets
associated with that disease and the underlying evidence available (Koscielny et al. 2017).
OT also integrates third-party visualizations, which include visualizations of biological
pathways developed by Reactome, a graphical display of RNA baseline expression
developed by Expression Atlas, a visualization of the different protein features developed by
UniProt or a three-dimensional protein structure display for targets®. In Appendix we offer an
example of a search result in the OT infrastructure.

The analysis of our data reveals a governance form in OT that afforded two processes:
folding and unfolding, which allowed organizations to dynamically navigate from open
towards opaque and closed workspaces to protect companies’ economic interests. The
conditions creating and dissipating the fold are as follows: 1) a modular infrastructure

containing different layers, access rights, and data standards supporting the systems’

9 WebGL-based viewer for proteins and other macromolecular structures: http://dx.doi.org/10.5281/zenodo.20980
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interoperability (so-called ‘technical attributes’ of the information infrastructure) and 2) a
brokerage exercise by a trusted third party, the OT operational team, which behaves as an
independent entity and as a liaison to the different companies to manage the boundaries
between open, opaque and closed spaces of work (i.e., the ‘organizational attributes’ of the
information infrastructure). We turn first to the description of the technical and
organizational attributes (the conditions) to allow an appropriate description of the processes

of folding and unfolding.

4.6.2 The Technical Attributes of Open Targets: A Modular Infrastructure with
Multiple Layers

OT designed different layers in the information infrastructures: a public layer, where any user

can add data and tools through a federated approach coordinated by an OT operational team;

a consortium layer, where only a selected number of partners can join through a negotiation

process; and finally, each partner can privately include their proprietary data by integrating

OT with their internal information systems (the private layer).

1) First, regarding the public layer, the information shared is accessible to any organization
but belongs to the organization that contributed it to the public OT domain. The results are
openly shared in the OT infrastructure and are aggregated and temporally delayed formats.

“We are not keeping the data for ourselves. We generate the data on the Wellcome Trust
campus, and the data is made available. It takes a little bit of time, it has to be in the right
format, but all data is available, and we need to write a publication before disclosing the
data, which takes time.” MT2 claims, “The platform has an average of 1,100 visitors per
week.” As OT4 further explains, “We contribute not only with the data but also with the

processes, documentation and the code that runs the platform.”

2) Regarding the consortium layer, OT members have access to the data that generate

through collaborative experimental projects, together with all contextual information relevant
for extracting insights from large-scale experimentation. The information is accessible to any
organization in the consortium and belongs to the organization contributing to the project and
generating the data. As MOT1 describes,

“Accessing the raw data is not that easy. It is not easy to interpret. The data is hard to deal
with, and we need to be part of the consortium to be part of the experimental projects that
generate the data, to have access to the metadata, and be close to the academic partners in
the consortium to exploit the data.” As OT4 describes, “Everybody that joins OT

understands the premise for being here. There is limited access without a doubt. Everybody
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’

understands that until there is a formal publication after the project there is no disclosure.’
oT4

The process of becoming a member of OT is highly regulated to safeguard productive and
sustained collaboration: a) all members have to reach consensus on accepting the candidate
organization; b) only one organization per year is allowed to enter the consortium; c)
significant in-cash and in-kind investment is required (a commitment that the organization’s
teams will devote resources to consortium activity); and d) the decision entails a rigorous
evaluation, spanning several months of negotiation, to determine whether the candidate
organization is committed to sharing its resources and capabilities for a sustained period of
time and to ensure strong alignment between the goals of the candidate and the consortium.
As OT1 describes,

“To become a member, you need to share the vision of the consortium [open disclosure] and
agree on investing around two-digit million euros, and all partners have to accept your
membership." As MT2 explains, "We have to be careful; this is why we have only one
company join every year. It takes time to integrate a company into the consortium."

The process of incorporating a new member can be proactive (i.e., reaching out to
organizations that OT members want to bring into the consortium) or reactive (i.e.,
addressing the requests of organizations asking to join the consortium):

“There are companies that contact us and express their interest in being part of the
consortium, and there are other companies that we actively reach out to" (MT1).

Agreeing with the OT ‘philosophy’ of sharing resources across partners and the results with
the broader research community is not natural for pharmaceutical companies. As MOT2
explains,

“Our head of R&D thought that it was better to put the investment in working with others on
targets than trying to be the only ones knowing about the targets (...) An important issue is
that for this step of target identification, genetics and genomics data is extremely relevant,
which is a seed that is changing extremely rapidly and is a seed where most of the data
advances are provided by academic advances. The way to exploit this information and our
expertise was working with leading academic centers and joining forces with other
companies.” As he further explains, “Our head of R&D came from academia and decided
that in the specific activities of early discovery and early biology, there is so much going on
that he realized we would not be able to compete. Typically, to compete requires
considerable investment, and we did not know if such investment was going to pay off. It is a

long time and a very risky investment."”

3) The private layer to individual company members: in-house, firms can integrate OT with

their proprietary data on compound libraries and preclinical and clinical trial data to further
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develop a potential drug for the identified target. Only company members can access the
information, which is exclusive to the organization (i.e., a private good).

"We have other features that are private, that we do not share with others. Those hidden
features allow me, for instance, to work with my compound library on the platform, which I
do not share with other OT partners” (MT2). “We also can ask for new features in the
platform. We can also implement the platform in-house, within the company, integrate it with
our systems, and you receive support from the other members of the consortium” (OT1).

In addition to the demarcation of multiple layers based on access rights or visibility, the
modularity of the infrastructure emphasizes a decomposition of loosely coupled knowledge
domains in the drug discovery process (Henfridsson et al. 2014). This decomposition is based
on 1) temporal latency and 2) domain separation of data and knowledge.

First, temporal latencies refer to the periods between the generation of a particular datum
and its mandated release to the public commons (Contreras 2010). Second, regarding
knowledge domain separation, e.g., (Sakakibara 2002), firms agreed in knowledge domains
across the drug discovery process where they would reveal their data, methods, and
technologies while separating them from domains where they would compete. Generally,
firms agreed where to draw the line between what is considered precompetitive and
competitive knowledge (figure 1).

Figure 1. Descriptive Visualization of Data and Knowledge Shared within Drug Discovery
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In practical terms, firms decomposed the type of data and knowledge required in each phase
of drug discovery into different components. They agreed to disclose data related to phases I
and II of the drug discovery process (target identification and validation) while not revealing
the knowledge and proprietary data that they use to identify the multiple molecules active
against the potential targets or other information useful in later stages of the drug
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development process (i.e., phase 3 onwards) (figure 1). Dr. Rolf Apweiler, former director of
OT, explains this as follows: "the identification of a promising new target is precompetitive
and should be shared, with the subsequent steps moving into the competitive arena” (figure
1). This distinction is fluid: “The definitions of precompetitive data may change over time,
and boundaries of the intellectual property are becoming increasingly fluid." (OT1)

5.3. The Organizational Attributes in Open Targets: A Brokerage Exercise

Integrating information spaces from the different organizations in OT required a brokerage
exercise by a trusted third party. The organizations involved in OT agree on the selection of a
team — the OT executive and operational team (henceforth, the operational team) — that
includes individuals with highly sophisticated scientific and managerial expertise who
operate as a separate entity. As OT3 describes, “we compare ourselves to a startup.”

The OT team acts as a ‘broker’ across the different organizations, enabling the pooling of
dispersed information across the organizations and supporting transitions among public,
shared, and private workspaces. Non-disclosure agreements and complementary legal
boundaries are implemented bilaterally between the OT team and each organization. The
operational team also helps the different organizations agree on a set of standards and data
protocols that enable not only interoperability between different layers but also boundaries
between layers (public, consortium and private). As OT4 describes, “Any access to data from
the experimental project is provisioned through a person on the OT operational team. We
have a gatekeeper for that, so that any person from our team asking for data needs to go
through this person.”

The operational team also helps match individual research initiatives across companies in
pursuit of a joint research agenda. Organizations agree on a set of projects that will generate
experimental data, which will initially be owned by the organizations generating it but will
be made available in the public layer of the OT infrastructure after two years. An example of
a brokerage activity implemented by the OT operational team is described by MT1I: “The
process starts with a call for proposals that we distribute across all the companies, and the
academic partners do the same as well, and we ask for an expression of interest, which
consists of a one-page idea. We receive various ideas from our colleagues worldwide, we
look at them [referring to the OT management team], and we see if the idea makes sense in
what it tries to achieve. Then we do some matchmaking between companies, putting together
similar ideas and proposals coming from X, Y and Z [a reference to specific OT companies],
and we build teams combining the three firms. We merge the ideas that we agreed made
sense into single projects. Based on the feedback that we provide, those teams come together
after the matchmaking and write a full project proposal, which is around five pages. The

projects are then reviewed by the Scientific Leadership team composed of representatives of
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each partner. Based on their ranking, we give a cut-off according to the budget available.
Then, a certain number of projects go ahead and start. Typically, projects last 2-3 years"
(see figure 2).

Figure 2. Shaping the Research Agenda, Match-making and Merging
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4.6.3 Folding and Unfolding Processes: Navigating Dynamically among the
Private, Shared and Public Layers
A detailed analysis of our data gave us insights into what happens at the boundaries of each
layer (public, consortium, private) and how the different organizations move across layers in
the modular infrastructure. We characterize this process of fluidly transitioning through
layers as folding and unfolding, employing Shaikh and Vaast’s terminology (Shaikh and
Vaast 2016). We use the term ‘folding’ to refer to the process by which organizations in OT
create ‘private pockets of interactions’ inside their organizations (i.e., the movement of going
private) and limit the openness of the information infrastructure. We employ the term
‘unfolding’ to describe the process by which organizations in OT release private information
from private interactions into the shared or public layer of the infrastructure (figure 3). In

other words, we consider the ‘open’ characteristics traditionally discussed in the information
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infrastructure literature (Constantanides 2012, Hanseth 2001) as a fluid and manageable
attribute of an information infrastructure.

1) Folding refers to the process by which OT organizations create private workspaces: either
a) including the OT consortium (i.e., opaque), or b) totally closed within a single
organization (i.e., dark). Folding towards the consortium occurs when organizations seek to
generate experimental data and robust evidence about targets and disease associations in
collaborative projects. The outcomes are released after an average of two years into the
public domain. In the second case of folding towards a single organization, companies
periodically return to their drug development departments to exploit target-disease
associations for their own drug discovery pipeline, that is, identifying potential molecules in
their private compound libraries that may more satisfactorily modulate such targets.

2) Unfolding refers to the process by which OT organizations bring the output of the fold
(e.g., experimental data, method, or technological tool generated in an OT project) back into
the open.

These two processes allow information infrastructures to balance the principle of openness
with the organization's needs for opacity and closure following competitive and market logic.
The process of folding towards the consortium layer gives organizations “access to data
since minute one, while the public will only have it after a publication and appropriate
curation, which takes on average of two years, and this makes a huge difference,” explains
OT1. “This gives us an advantage compared to others outside OT," MT1 confirms.
Additionally, MT1 cites the reason for folding into the shared consortium space: “Sharing
scientific data in the public domain is a necessary but insufficient requirement for being able
to reuse such data for drug development. You need, and this is what you pay for, close
interaction with the scientists who generate data to understand what the data says, how it
was generated, and how to interpret it.”

Folding towards a completely closed space inside the company occurs when organizations
need to integrate proprietary data and knowledge to reuse the information obtained from
targets in the shared space in its pipeline. As OT1 explains, “We know about other companies
that are using the platform, and it is beneficial to them. Absolutely, that is happening. What
they cannot do if they are not part of the consortium is to direct, integrate proprietary
domains or data going to the platform, prioritize regarding functionalities of the platform, or

determine the types of functions they want in the platform” (see figure 3).
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Figure 3. Folding and Unfolding Processes
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4.7 Discussion

It has been suggested that the massive increases in genomic and proteomic data have had a
profound impact on the structure of the pharma and life sciences industries (Chaguturu et al.
2014, Zanders 2011). Specifically, the clear demarcations that once existed between a) drug
discovery and drug development and b) precompetitive and competitive domains are now
becoming more fluid. This is a consequence of the rapidly increasing costs of drug
development and the high costs of curating very large bioinformatic datasets and novel
computational methods; the economic costs of developing and operating these information
infrastructures are simply too great to be borne by any single organization. Our case study of
OT is an outstanding exemplar of a life sciences information infrastructure constituted by
some of the world’s leading research, non-profit, and for-profit organizations. Despite their
different objectives, they have developed a successful governance form to balance the
tensions of sharing and collaboration inherent in a business context characterized by secrecy

and vigilant patent protection.
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Given that OT exhibits both private and public good properties (Ostrom 1990), our analysis
has identified the collective action challenges of aligning private and collective interests and
an appropriate governance form for this information infrastructure. We theorize towards a
governance approach that affords two processes, i.e., folding and unfolding, that allows
dynamic navigation towards open, opaque and dark workspaces that protect the members’
economic interests.

The governance form provides a continuum between openness and closure, which are
enabled by two elements. The first element is the technical attributes of the information
infrastructure, which is modular with private, consortium, and public layers. Modularity not
only relates to access rights or visibility based on the organizational level but also employs
temporal levers (i.e., delays) to affect this. In combination, these attributes enable the
decomposition and redefinition of drug discovery domains that have historically been highly
segregated (i.e., target identification, target validation, lead identification, lead optimization.)
As a consequence, the clear boundary between what had previously been considered
precompetitive and competitive is now more fluid, manifesting a structural change in the
industry. The second element that enables the folding and unfolding process is the function
of a broker. The broker acts as a trusted third party, enabling members to effectively
transition through the various levels of disclosure and collaboration based upon need. The
broker first negotiates the entry of new members into the OT shared layer (the consortium) to
determine whether the candidate organization is committed to sharing its resources for a
sustained period of time and whether its private interests are aligned with OT’s collective
goals. Later, through bilateral agreements with each organization the broker facilitates the
integration of the OT’s shared work layers into the companies’ private workspaces to
facilitate competitive drug development. Additional tasks under the broker’s role include the
pooling of disperse resources into the information infrastructure, mediation to agree on data
standards and protocols, and support for the integration and compatibility of data across the

infrastructure.

4.7.1 Implications for theory

Our theoretical developments integrate ideas from information infrastructure scholarship,
collective action theory, and the conceptual foundations of the folding and unfolding
constructs imported from Shaikh and Vaast (Shaikh and Vaast 2016). These constructs
extend previous work on secluded workspaces and related concepts such as the ‘structural
folds’ of Vaan et al. (2015) and Vedres and Stark (2010) and the ‘relational spaces’ of
Kellogg (2009). Our research differs in that our folds do not theorize about individual
behavior. Rather, we take the organization as the focal entity and theorize about the process
of folding and unfolding under the governance of an information infrastructure. The temporal
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aspect of the previous work of (Shaikh and Vaast 2016) also differs in terms of context: the
research and development processes in drug discovery are longer than those in open-source
development, and as a result, the temporality of the opaque spaces is longer.

Applying this theoretical perspective to the empirical case, we sought to understand the
dynamic governance of an information infrastructure that overcomes the challenge of
simultaneously aligning individual and collective interests. This research contributes to the
current scholarship in the information infrastructure literature by theorizing the open attribute
of infrastructure as a manageable and fluid attribute that allows moving from private to open
workspaces with common goods that can be reused by any potential organization. Openness
and closure are both enabling and constraining attributes of an information infrastructure
depending on the context at hand. Our findings describe a governance approach that makes
the two compatible, describing the ongoing navigation between open and private workspaces
that allows organizations to optimize their private and collective interests. Our research
suggests a formula to overcome the historical social dilemmas of collective action (i.e., free-
riding and overconsumption) in the sense that contributors have incentives to invest in the
commons because the governance approach allows them to benefit via the use of specific
levers (i.e., access time, integration with proprietary data, rights to patent fully developed
drugs.)

Finally, we extend the classic debate between top-down and bottom-up governance models:
our case bridges the two with an alternative approach in which a broker, a trusted third party,
is assigned coordination and arbitration tasks to orchestrate and mediate the flows of data and
knowledge. According to our case data, folding and unfolding processes were allowed not
only by the technical attributes of the modular infrastructure but also through an
organizational component whereby an operational team with bilateral trust helped move the
organizations from one layer to another. This governance form offers a more nuanced
perspective to the classic portrayal of top-down or bottom-up governance approaches as

discrete, static alternatives.

4.7.2 Implications for Practice

By many measures, OT represents an extreme case of an information infrastructure: the
partners include several of the world’s most accomplished research and scientific institutions
together with some of the most highly capitalized companies in the pharmaceutical sector. In
this sense, it represents an exceptional case in which the ethos of scientific knowledge as a
social good and profit-seeking business investment intertwine. While it is unreasonable to
expect that all information infrastructures will operate with such acute opposition between
public and private interests, most collaborative infrastructures and platforms with
heterogeneous contributors will have divergent or competing objectives in some form
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(Wareham et al. 2014). We suggest that the governance mechanisms that permit a dynamic
transitions among varying layers of openness and closure, both technical (i.e., modularity)
and organizational (i.e., brokerage), are in some sense generalizable to alternative forms of
information infrastructures characterized by divergent motives and institutional objectives
(European Commission 2019, Hey 2009).

A leitmotif in our analysis is that the general increase in novel data-intensive computational
methods in drug discovery and development is not unique to the pharmaceutical sector.
Rather, it is a tendency we expect to observe across other scientifically intensive industries.
As this evolution continues, we expect to see a number of industries transformed in response
to increased reliance upon computationally intensive research and development methods. It
can also be expected that the movement to combine resources and share costs towards what
might be considered precompetitive or public-good outcomes will increase. While
preliminary, our analysis of OT offers a model of how one might map similar structural shifts

in related industries.

7. Conclusion

The pharmaceutical industry is notorious for its reliance on patent protection and secrecy.
Open Targets has been celebrated as a model for other industry organizations and
policymakers due to its form of governance that enables the participation of for-profit
pharma companies in a shared information infrastructure alongside non-profit foundations
and public research institutions; the benefits of shared investments and public-good outcomes
can be realized while simultaneously protecting the private economic interests of the OT
members. This is attributable to a governance form that allows fluid navigation from openly
shared and private workspaces. Our case focuses on modularity and brokerage as general
conditions that make members’ private and collective interests compatible. As
computationally intensive research and development methods pervade other industries, we
can expect a commensurate increase in required investment levels, rendering them
prohibitive to individual organizations. As commons-based information infrastructures
emerge in response, the governance described in this case offer a model of how to

successfully navigate the trade-offs between private and collective interests.
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Appendix A
Table 4. Construct definitions

‘ Construct definition

Openness: access to information. Related to the act of sharing information, it is a key featured exhibited by
information infrastructures

Source

e.g., (Hanseth and Lyytinen 2010,
Shaikh and Vaast 2016)

Information infrastructure: “multi-layered entities comprised of technological components, people and
institutional arrangements”

(Constantanides 2012 p. 25)

Commons: A set of resources that are collectively owned and shared among a community. Commons contain
public and private property over which different agents have certain rights.

(Ostrom 1990)

Collective action: refers to joint action by a number of agents to achieve and distribute some gain through
coordination or cooperation

(Hardin 1982)

Drug discovery: “the process of creating chemical or biological molecules that have the potential to be
developed as therapeutic agents, typically because they generate a desired biological effect in an appropriate
testing or assay system against a particular molecular (drug) target”.

(Weigelt, 2009, p. 941)

Governance: the rules that underlie the social activities, which are integral to order relationships,
responsibilities, and expectations of contributors.

e.g., (Mindel et al. 2018, Weill and
Ross 2004)

Modularity: An information infrastructure is modular in that it has the ability to add, modify and remove
technological components with little effect on its features and the processes of other components. The
modular attribute of infrastructure leads to the subprinciples of decomposition, recombination and reusability
of infrastructure components

e.g., (Byrd and Turner 2001, Chung
et al. 2003, Duncan 1995,
Henfridsson et al. 2014)

Brokerage: the process of connecting actors in systems of social, economic, or political relations to facilitate
access to valued resources

e.g., (Burt 2000, Obstfeld et al.
2014, Stovel and Shaw 2012)

Folding: the process by which organizations create ‘private pockets of interactions’ inside their organizations | (Shaikh and Vaast 2016)
(i.e., the movement of going private) and limit the openness of the information infrastructure
Unfolding: the process by which organizations release private information from private interactions into the | (Shaikh and Vaast 2016)

shared or public layer of the infrastructure
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Appendix B

Example of Interview Guide

About the organization, role and responsibilities

What does your organization do?

What is your role at the organization?

e  Which activities have you developed in OT?
Initial engagement

How did organization become aware of and initially get involved in OT?

Why did you want to join OT?

Why did your organization agree not to patent targets? What has this decision meant for
your organization?

How was the process of taking part in OT?

e  Which processes did you undertake within your organization to join OT?
About OT infrastructure

What are the components, functions and applications of OT?

What is the difference between OT public and OT access for partners?

How are the data, technologies, and methods generated in the collaboration within OT
integrated into the OT infrastructure?

How are the data, technologies, and methods generated in the collaboration within OT
integrated into your organization?

Which processes did you follow to make such integration possible outside of OT

collaboration and within your organization?
About OT collaboration

What do you share in OT projects?

What do you not want to share in OT projects?

How do you control what your team does not share with OT in keeping with what the
organization does not want to share? In other words, what processes do you follow so
that the information shared is only relevant for targets and not for competitive phases in
drug discovery?

How do you use the knowledge from OT collaboration in the subsequent drug discovery
process? How do you reuse the data, technologies or methods?

What have been the positive and negative effects of collaborating with your
competitors?

How is the OT operational team selected?

How does the OT team help select projects?

How does the OT team manage the process of publishing the data, methods,
technologies and any output in the infrastructure?

How does the OT team help you to integrate such outputs with your internal processes
to proceed in the drug discovery process?
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Appendix C

Figure 4. Example of Visualization of Search Results in OT Infrastructure
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Appendix D

Table 5. Data Analysis and Theoretical Constructs

Illustrative examples of empirical observations and excerpts from the | Theoretical observations Theoretical Category in
interviews constructs theorization
“Partners (rveferring to company partners) take the public instance of OT and | Process of folding Folding Governance
th licate that i jvate inst d th th Il inject thei . . .
ey replicate that in a private instance, and then they will inject their own | Integrate consortium data or public data with processes
private data (...) They want their internal teams to make decisions with their .
. . .. company proprietary data
private data but also knowing what already existing data tell us and how our data . . .
. . ” - Collaboration with OT team to migrate the
integrate with that data” OT4 . .
shared or open data to proprietary systems in a
“Sometimes, their private instances (referring to companies) are managed bilateral collaboration
entirely internally by them, but other times they involve a third party, a vendor, to | -  Non-disclosure agreement with OT team to help
assist them in the maintenance and update. They try to align with our releases, we integrate public or shared data with proprietary
release five times a year, every two months or so, and they take the last data data.
releases and refresh [them]with any additional features that we release, and they | -  Agreement on data standards and metadata
replicate that internally.” OT5 compatible with the structure of private datasets
- . . t le locki
“Our development team would sit with the company members or the intermediary 0 enable locking
S 7| - Protocol agreement on data flows to guarantee
vendor and work through how we run the pipelines and how we can get their : . .
. . o ) control points before releasing or keeping data
proprietary data in. And then, we go through their different requirements, so we rivate
work and see how we can hand something over to them that can be simply P ’
configured for them when they take it inside” OT5
“When data is ready, we integrate it into the platform; we need to wait until it is | Process of unfolding Unfolding

ready and publicize and then we enter it in the platform at that point and release
it” OT4.

“The platform team (in charge of releasing the data) get to see the type of data
very early in the process. They have sample data, and they discuss the format. We
also have a UX specialist, to understand what the deliverable is and how we
manifest it in the platform so that people can use it to make a decision. This is the
foundation for data specification, really. How are we going to receive it, what
does it looks like, how will it be processed? The discussions are very early on,
and we try to get mock ups very early on, to gather feedback from the consortium
partners but also from other users, and then we kind of refine them that as we go
along (...) It is a moving target, as some of the projects do not know what the data

- Public release of data in OT infrastructure
originating from OT consortium projects announced
through OT dissemination networks.

- Data curation process by OT team before releasing
the data

- Formal approval by OT scientific lead committee
represented by all organizations of data, methods, and
tool release
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will look like, so we have monthly meetings.” OT4

" We have other features that are private, that we do not share with others. Those
hidden features allow me, for instance, to work with my compound library on the
platform, which I do not share with other OT partners” (MT2).

“We also can ask for new features in the platform. We can also implement the
platform in-house, within the company, integrate it with our systems, and you
receive support from the other members of the consortium” (OT1).

“So, we have the platform that is public and open to everybody. Then, for the
experimental projects, the partners share the data while they are creating it in

google buckets'®”

“We have an intranet for the consortium partners. It is information exchange
between partners (...) The intranet has a link with the platform, and it is used for
general governance of the projects. As we go through the project call processes,
there are page proposals to share the details. It is like a one-stop shop for the
whole portfolio of projects” OT4.

Access rights

- Public: anyone can access the data

- Shared: only consortium partners can access the
data

- Private: only company members can access the
data

“Everybody that joins OT understands the premise for being here. There is
limited access without a doubt. Everybody understands that until there is a formal
publication after the project there is no disclosure.”

Time latency

- Two years on average from the generation of the
datum until it is released in the OT public layer.

“Companies usually have a flag for the data that is private and what is public in
their private instances because for them it is very important to differentiate that”
OT4

Domain or boundary demarcation

- Delimitation of data and knowledge boundaries that
correspond to public, shared and private layers.

“We never get the whole, the full set of data. And sometimes we only get dummy
data, which is fine because we only need to see the structure of the data. And
likewise with the comnsortium members (referring to when they emulate Open
Target in private instances) they do need our help and say, ok I have my private
instance, now how do I inject my private data, but they do not want to share their
data with us, so we talk about it in the context; we talk about the structure of their
data, so to some extent it is blinded” OT4.

Interoperability and data standards

Agreement among OT partners on the structure and
labeling of the data to make them integrable with
public and private layers.

Modularity

Conditions
creating the
fold—unfold:
Technical
attributes of
information
infrastructur
es

10 A bucket in google cloud storage is a basic container that holds data. Owners of buckets control access to the data.
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“Any access to data on an experimental project is provisioned through a person
on the operations team at OT. We do have a gatekeeper for that. Any person from
our team asking for data needs to go through them” OT5

“There is a need to coordinate the integration of data into OT, both from the
projects that generate data but also with the data providers such as Chembl and
Uniprot and all the data that goes into the platform to keep it up to date. We also
work with the developer team that creates some of the features that users will use
to visualize the data coming through.” OT4

Trusted third party

-Selection of an executive and operational team that
behaves as a separate entity financially reporting to
the governance board representing all organizations.

- Coordination and mediation role when conflicts of
interest arise among company members

“To become a member, you need to share the vision of the consortium
[open disclosure] and agree on investing around at least two-digit million
euros, and all partners have to accept your membership." OTI

"We have to be careful; this is why we have only one company join every year. It
takes time to integrate a company into the consortium." MT2

“EMBL EBI, Wellcome Trust [the academic partners] are part of this philosophy
to make raw data available. They are academic institutions, and this is easy for
them. However, the question of openness is a question for companies. Not all
companies agree to be open and share their knowledge and information about a
discovery. This is a major issue. Some companies agree to open up their
knowledge about a discovery, but other companies do not join because they do
not believe in this strategy. They do not want to share" (MT2)

Bilateral negotiations

- Bilateral negotiations before entering OT
consortium to agree on the conditions of the
collaboration (i.e., resources to be invested and
policies about data releases and open collaboration
among partners)

“We implement brokerage and matchmaking exercises to create the
working teams and projects” (OT1)

Pooling common resources

- Identification of the disperse resources that are
being invested in the different company teams subject
to become a joint collaborative project. Coordination
of the process through calls for proposals and open
collaboration days to identify such common ground.

“We have regular meetings with the consortium members. They come to us with
challenges on data integration, and suggestions, and then we feed it back to the
developers, and try to have something improved for them (...) We get also
suggestions on the features or data that we should get from partners.”OT4

“The requirements from the different companies are framed differently. We have
meetings on a quarterly basis. We prioritize the requirements. There is a
roadmap” OT4

Bilateral support for integration:

- Bilateral NDA agreements with the OT operational
team to support integration of shared and public data
to private systems.

Brokerage

Conditions
creating the
fold—unfold:
organization
al attributes
of
information
infrastructur
es
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Serendipity in Big Science Infrastructures

The article that constitutes this chapter aims at understanding the second vector: technology
transfer, responding to the second sub-goal (1.2.) of our PhD investigation. The study seeks
to understand the nature of the serendipitous process behind transferring big science
technologies to commercial applications by empirically investigating the European initiative:
ATTRACT
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5.1 Abstract

This paper explores how policy can promote the application of scientific research beyond its
original purview. We analyze ATTRACT!!, a novel policy instrument in the European
Commission’s Horizon 2020 program, aiming to harness the detection and imaging
technologies of the leading European research infrastructures towards entrepreneurship. In
this initiative, 170 projects were funded with €100,000 for each to develop a proof-of-
concept commercial application within one year. Leveraging the unique dataset from the
projects funded under ATTRACT, our study finds different serendipity modes compared to
the previously proposed typologies, as follows: (1) building on previous research, (2)
combining different technologies, (3) applying a technology into a different field, and (4)
using artificial intelligence or machine learning. This study contributes to the emerging
literature on serendipity by showing the potential of policy interventions to enable
individuals and organizations to find unexpected commercial applications of big science

research.
Keywords: big science, serendipity, high-imaging technology

5.2 Introduction

Some of the most pervasive technologies in society today, such as the internet, medical
diagnostics and treatments, and information and communication technologies, result from
leveraging the research generated by big science infrastructures to areas beyond their direct
scientific purview. While the potential of big science to create social, cultural, and economic
impacts is acknowledged, uncertainty remains on how these big science infrastructures can
deliberately find novel applications outside of their immediate scopes of research. Moreover,
there are also questions regarding the extent to which policymakers can play an active role in
enabling these research centers to find novel uses for their research that were previously
unanticipated. Exploring these questions, this paper examines a novel policy response by the
European Union to promote the commercialization of technologies from some of Europe’s

most impactful research infrastructures.

' The members of ATTRACT are as follows: the European Organization for Nuclear Research (CERN),
European Molecular Biology Laboratory (EMBL), European Southern Observatory (ESO), European
Synchrotron Radiation Facility (ESRF), European X-Ray Free Electron Laser Facility (European XFEL), and
the Institut Laue-Langevin (ILL), Aalto University, ESADE Business School, and the European Industrial
Research

Management Association (EIRMA).
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The term serendipity has been evoked to describe various unintended discoveries, typically
with some beneficial outcomes. For example, Fleming’s discovery of penicillin is often cited
as a serendipitous discovery with tremendous social value. The definition of serendipity,
however, can be ambiguous. The Merriam Webster dictionary defines serendipity as “the
faculty or phenomenon of finding valuable or agreeable things not sought for” (Merriam-
Webster, 2020), while the Oxford dictionary defines it as “the occurrence and development
of events by chance in a happy or beneficial way” (Oxford University Press, 2019). In the
management and innovation literature, creating conditions that foster serendipity is

considered desirable for managers and policy-makers (Yaqub, 2018).

On the surface, the argument that serendipity can play a positive role in scientific processes
and policy has its immediate value as ex-post, anecdotal narratives with limited normative
value. However, this misconception comes from interpreting serendipity as mere
happenstance instead of resulting from deliberate effort (de Rond, 2014). A systematic
analysis of serendipity is useful because it offers a more nuanced understanding of its
antecedents and mechanisms (e.g., Yaqub, 2018; Garud 2018). By identifying the formative
conditions of serendipity, the design of mechanisms to realize the peripheral benefits of
scientific research infrastructures can be improved; in effect, one could attempt to
systematize serendipity. However, to date, most of the research has been speculative or based

on small-sample, anecdotal evidence from previous scientific discoveries.

This study examines the ATTRACT project, a €20M-funded initiative within the Horizon
2020 Framework Program that aims to systematize the discovery of breakthrough
applications of imaging and detection technologies from the leading European science
research infrastructures. Recognizing that the full potential of these detection and imaging
technologies is unknown, ATTRACT was formulated with the understanding that capturing
the value of big science will require both stimulating exploration and the simultaneous
fostering of commercial development through risk absorption and support. Accordingly,
ATTRACT supported 170 projects with seed-funding grants of €100,000 each to leverage
their various technologies towards sustainable businesses and greater economic returns for

the European economy.

Analyzing how the large research infrastructures can find new impactful uses for their
science is highly relevant. Given their extreme sophistication and required investment levels,
research infrastructures are normally funded by taxpayers via national ministries or funding
agencies — often in pan-national consortia. As such, it bears upon policymakers to seek
mechanisms to optimize the potential socioeconomic value of these public investments.
ATTRACT brings six of the largest European scientific research infrastructures, which are
also members of the EIROforum, together; they are as follows: European Organization for
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Nuclear Research (CERN), European Molecular Biology Laboratory (EMBL), European
Southern Observatory (ESO), European Synchrotron Radiation Facility (ESRF), European
X-ray Free Electron Laser Facility (European XFEL), and the Institut Laue-Langevin (ILL).
These organizations work in diverse domains, such as nuclear, particle, and condensed matter
physics; life sciences; molecular biology; astronomy; materials science; structural biology;

and chemistry.

The 170 projects funded under ATTRACT provide a unique dataset to examine the processes
towards serendipity. In this analysis, we find the following modes: (1) building on previous
research, (2) combining different technologies, (3) applying technology into a different field
and (4) using artificial intelligence or machine learning. We validate the previous typologies
of serendipity and extend these notions by describing new categories. Unlike the previous
studies that examined serendipity ex-ante, this study explores purposeful actions carried out
in the pursuit of serendipity. Moreover, we explore how the intentional nature of the policy
intervention by ATTRACT can help in finding new, previously unexplored applications of

research technologies.

The article proceeds by reviewing the history of big science, the polemics of its underlying
social value, and the mechanisms and measures that policymakers use to stimulate the
application of science towards social and economic impacts. We describe the literature on
serendipity, summarizing the extant literature and the main research questions. We present
the ATTRACT project and explore how it attempts to systematize serendipity. Contributing
to the serendipity literature, we summarize the 170 projects funded under the call and
examine the various modes used to discover previously unanticipated applications. We
conclude with observations concerning serendipity and describe trajectories for future

initiatives concerning big science and socioeconomic value.

5.3 Background: big science and social impact

In the following, we explore the history of big science and the issues related to its impact on

society.

5.3.1 Definition and History

Big science infrastructures are defined by Florio and Sirtori (2016) as institutions with a)
high capital intensity, b) long-lasting facilities or networks, c¢) operating in monopoly or
oligopoly conditions affected by externalities, d) who produce social benefits via the
generation of new knowledge (either pure or applied). As argued by Giudice (2012), the
evolution of big science began early in the twentieth century with examples such as the

factory-like conditions where Heike Kamerlingh Onnes made seminal discoveries on
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superfluidity and superconductivity in the early 1900s, or the Wilson Observatory, completed
in 1917 and made famous by Edwin Hubble. What began to characterize research as big
science was how it differed from the ideal of the lone genius in the laboratory with simple

table-top experiments.

This new model of scientific exploration was fully institutionalized by Ernest Orlando
Lawrence at the University of California, Berkeley with the development of the cyclotron,
which is a device for accelerating nuclear particles to very high velocities to bombard,
disintegrate and form completely new elements and radioactive isotopes. While the first
cyclotron was merely a simple 4-inch device that could be held in the human hand, over time,
larger versions that could achieve greater energy levels were created. With each subsequent
generation of the cyclotron, a larger number of physicists, engineers, and chemists were
needed for construction, operation, and maintenance. More importantly, he advanced a form
of team-based, collaborative science that contrasted with the isolated model of ‘smaller
science’!? (Hiltzik, 2016) and later matured into large research teams with hundreds of
scientists and engineers. This new type of industrialized science eventually propagated to
other American and European universities and was facetiously called the ‘Cyclotron

Republic’ by Lawrence's numerous admirers and rivals (Hiltzik, 2016).

The cyclotron also provides an early example of how big science research can have
alternative applications for socioeconomic impact. A serendipitous by-product of Lawrence’s
lab was the production of radioactive isotopes useful for cancer treatment (Hiltzik, 2016).
With the help of his brother John Lawrence, a medical doctor who became the director of the
university’s Medical Physics Laboratory, Ernest was able to recraft the cyclotron’s narrative
to court funders intrigued by the potential of important isotopes. In a Faustian spirit, the
laboratory metaphorically produced oncology-focused isotopes by day, while discretely
conducting basic research by night, and while many on the team bemoaned the fact that
commitments to medical research hindered advancement in fundamental physics, this shrewd
strategy enabled Lawrence to fund his constantly moving targets of higher energy levels that
required more sophisticated hardware, complex operating organizations, and generated
unprecedented costs. This tactic further institutionalized the future relationship between big
science and big funders, be they philanthropies, national ministries of defense or energy, or

increasingly, supranational-coalitions (Crease et al., 2016).

12 Quoting Luis Alvarez in Hiltzik (2015): There were no doors inside the Rad Lab. ‘Its central focus was the
cyclotron, on which everyone worked and which belonged to everyone equally (though perhaps more to
Ernest). Everyone was free to borrow or use everyone else’s equipment or, more commonly, to plan a joint
experiment’. The team approach to physics, Alvarez judged, was ‘Lawrence’s greatest invention’. (Hiltzik
2015:129-30).
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The rise of big science, however, is often associated with the Manhattan Project and the
numerous technological innovations that were enhanced during WWIIL, such as radar and
wireless communication. Motivated primarily by military and global political concerns,
technological superiority was considered a central element of geopolitical competition
(Galison and Hevly, 1992). This superiority was not limited to military research, although the
defense industry was certainly a central protagonist. Espoused in the famous report of
Vannevar Bush (1945), Science: The Endless Frontier, basic research was not only good for
fundamental science but generated applied engineering and technologies that translated into
products, spin-offs, jobs, and overall economic prosperity that benefited all social classes.
The ‘Bush legacy’ (Wilson, 1991) was further catalyzed by the successful leap-start of the
Soviet space program, an event that galvanized the American public to approve the
astronomical funding levels of the American space program while having little concern for
its scientific merit. With the perceived technological gap between the USA and the USSR,
the Soviet space program was considered a severe existential threat that, similar to the
Manbhattan Project, could only be remedied by massive investments in basic, applied, and

ever-bigger science (Giudice, 2012).

Currently, with the cold war decades in the past, the role of big science in society has
transformed. The perception of grand existential geopolitical threats has turned into a more
disperse narrative. As a result, investments in big science motivated by national security or
geopolitical stability have decreased. This decrease has weakened the sacrosanct link
between nuclear physics, weapons research, and geopolitical security and, as a consequence,
has reduced the primacy of fundamental physics (Galison and Hevly, 1992; Hiltzik, 2016).
Moreover, the tenacious success of the Standard Model has left aspiring physicists
scrambling for new avenues to conduct physics, leading them to astrophysics and cosmology,

as well as more distant fields, such as biology and life sciences (Galison, 2016).

In addition, the nature of big science infrastructures has become more heterogeneous. Today,
traditional particle accelerators and nuclear reactors work alongside synchrotron radiation,
neutron scattering, and free electron laser facilities, where the empirical scope has widened to
materials science, chemistry, energy, condensed matter physics, nanoscience, biology,
biotechnology and pharmacology (Doing, 2018; Heinze and Hallonsten, 2017). Finally, big
science infrastructures are no longer constrained by national security mandates. These
infrastructures must now compete in a global scientific market with increased mobility,
transparency, and competition. As such, they are often in positions where they need to justify
their utility and efficiency across diverse scientific communities and policymakers
(Hallonsten, 2014; Heidler and Hallonsten, 2015).
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5.3.2 Impact Assessment of Big Science

The previously described changes have transformed the political context in which big science
operates. An important early figure looking into the new challenges faced by big science was
Alvin Weinberg, director for the Oak Ridge National Laboratory, where uranium was
enriched for the atomic bomb in its early years. In his important articles in Science (1961)
and Minerva (1964 and 1963), he voiced his concerns that big science had become a bloated
self-serving institution of bureaucracy and complacency, disconnected from more basic
human and social needs (Crease et al., 2016). At the same time, the softening of geopolitical
ethos did not free big science from excessive political influence (Hellstrom and Jacob, 2012;
Weinberg, 1964, 1963, 1961). In contrast, since public budgets require substantial political
support, there were concerns that champions may be tempted to sell and defend their visions
with a certain level of sensationalism (Scudellari, 2017). Moreover, there were worries that
the business of blockbuster science could undermine the more serious and less sensational
work of normal science (Hellstrom and Jacob, 2012). Weinberg then wanted to establish
some criteria for which investments in big science could be evaluated against alternative

social priorities (Hellstrom and Jacob 2012).

An obvious point of departure is to evaluate the scientific productivity levels of big science
infrastructures, which are typically evidenced through citation and patent counts. While
quantitative evaluation of these measures is easy, they are also considered very imperfect
proxies of scientific value, as well as poor indicators of the many peripheral benefits of big
science infrastructures (OECD, 2003; Schopper, 2016). As an example, Bianco et al. (2017)
argue that the International Space Station, which has cost over $100 billion to build and $2
billion a year to operate, has, as of 2017, only produced 34 refereed articles and 4 patents.
Given their long cycle times, publication and patent counts favor more mature infrastructures

and are often used as post hoc justifications of sunk-cost investments.

Broadening the scope beyond scientific impact, the normal focus for researchers attempting
to evaluate the value of big scientific research infrastructures is on the impacts of direct
spending on high-tech procurement with subsequent multiplier effects (Autio et al., 2003;
Castelnovo et al., 2018). For instance, aggregating numerous studies of CERN, Schopper
(2016) estimates that for every euro spent on high-tech products, an additional 4.2 euros are
generated in supporting industries. Beyond the impacts on immediate suppliers, another
narrative used to justify investments in scientific research infrastructures are technology
spinoffs, with their corresponding or assumed economic growth, job creation, and tax
revenue (Aschhoff and Sofka, 2009). Here, NASA may be the most prolific example,
boasting over 2,000 spinoffs since 19764 (NASA Spinoff)'®. Like the early cyclotrons at

13 https://spinoff.nasa.gov/database/
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Berkeley, the value of spinoffs is that they often commercialize technologies in applications
outside of a laboratory’s principal scientific purview, demonstrating how major research
infrastructures can generate impacts beneficial to society without detriment to its main
mission (OECD, 2014).

An important characteristic of technology spinoffs as a metric of social value is that the
benefits are assumed to accrue to society well beyond the immediate scientific community,
and this assumption is important in justifying the investments to taxpayers. However,
estimating the indirect, or even direct, economic impacts becomes even more problematic
when the technological derivatives are not protected by patents, trademarks, or citations
(Schopper, 2016), as is often the case. Given that the political mandate of many research
infrastructures is to generate scientific knowledge towards greater social value (Hammett,
1941), the decision not to protect technologies with property rights is frequent and explicit.
These practices are consistent with the ethos of open science and open innovation
movements (Chesbrough, 2003; European Commission, 2016a), as well as specific mandates
from funding agencies to make publicly funded research data accessible, with research
results published in open access platforms and FAIR data principles (European Commission,
2012). The most famous and recent case was the World Wide Web (specifically, HTTP,
URL, HTML), i.e., when Tim Berners-Lee convinced CERN’s managers in 1993 to place it
in the public domain and make the IP freely available to everyone. By accepting this case,
CERN effectively agreed not to draw revenues or economic value from it. In the words of a
CERN senior scientific officer: ‘In the case of a conflict between revenue generation and
dissemination, dissemination takes precedence’ (World Intellectual Property Organization,
2010). For a technology with this level of impact, any quantification of its socio-economic

value almost approaches the surreal.

Researchers have attempted to derive more holistic models by conceptually defining the
alternative social benefits of research infrastructures (Autio et al., 1996). For example, Florio
et al. (2016) derive a model that is based on the following six main dimensions: 1) impact on
firms due to technological spillovers produced by access to new knowledge and learning by
doing; 2) benefits to employees and students through increases in human capital; 3) the social
value of scientific publications for scientists; 4) cultural benefits through outreach activities;

5) additional services provided to consumers; and 6) the value of the scientific discovery.

An earlier, complementary perspective was offered by Autio et al. (2004) who derived a
number of propositions related to the positive value that a big science infrastructure can have
on its ecosystem of suppliers. These include pushing the frontiers of technology and
engineering standards, reducing uncertainty surrounding standards and technology
investments, sharing their capacity to manage highly complex projects, aggregating highly
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diverse and specialized knowledge domains towards radical learning and novel
combinations, access to international networks, prestige and reputation, network formation,

an exceptional scale and a scope that supports extreme prototyping and testing.

Overall, the indicators are not perfect in terms of assessing the impacts of research
infrastructures since they can be insufficient proxies of what they are measuring (e.g.,
citations), suffer from time-lag effects (Schopper, 2016), and can be myopic in capturing the
value provided (spillover effects, human capital formation, or cultural value). As argued in
Boisot et al. (2011), the more that a research infrastructure deals with fundamental research,
the greater the uncertainty surrounding the future value of the outputs. The lack of reliable
data, or well-understood causality, means that more holistic conceptualizations are

excessively difficult to quantify and can lead to politically oriented narratives.

In summary, the previous discussion leads to the following conclusions: For research at the
forefront of science, a variety of big science organizations have been created with facilities,
infrastructures, and instrumentation with unprecedented technical sophistication. With
questions on how limited public resources are allocated, concerns have arisen on the social
and economic value of big science and how to effectively measure these impacts. Despite
these worries, big science infrastructures have a consistent track record in terms of finding
alternative applications for their technologies that have tangible impacts on society. While it
is common for big science to find serendipitous value in areas previously unanticipated, there
is a limited amount of rigorous empirical research on the nature of serendipity and how it can
be proactively cultivated. We, therefore, review the literature on serendipity and its

mechanisms in the following section.

5.4 Serendipity

Serendipity refers to a broad, multifaceted phenomenon related to the unanticipated
discovery of something beneficial. As it has been used in various contexts, we trace its
various conceptualizations over time. Moreover, we describe the current understanding of

how serendipity can be fostered.

5.4.1 Definitions and Typologies of Serendipity

The term serendipity was coined by writer Horace Walpole in 1754, who was inspired by the
Persian fairy tale, Three Princes of Serendip (Cunha et al., 2010; Rosenman, 2001). He refers
to serendipity as an unexpected discovery found from the combination of accident and
sagacity (Rosenman, 2001). Sagacity refers to having perception and sound judgment, or in
other words, a prepared mind. As such, instead of being merely interchangeable with the

words luck, happenstance or providence, serendipity is better seen as a capability requiring
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the focus of attention (de Rond, 2014). An equivalent formulation can be seen in the context
of entrepreneurial opportunity, where serendipity has been seen as the combination of
directed search, favorable accidents and prior knowledge (Dew, 2009). By stripping away the
random and sometimes mystical aspects of serendipity, it becomes a concept that can be
subject to rigorous evaluation, allowing an examination of its triggers, antecedents and

mechanisms.

A methodical attempt to understand serendipity was initiated by Robert Merton in the 1950s,
which eventually resulted in a book dedicated to serendipity in 2004 (Merton and Barber,
2004). Yaqub (2018) conducted a systematic review of Merton’s archives to identify four
specific archetypes of serendipity. Mainly focusing on scientific discoveries, he organizes
these according to a) whether there is a targeted line of inquiry; and b) the type of solution
discovered. Yaqub (2018) defines Walpolian serendipity as a targeted line of inquiry that
leads to discoveries that researchers were not in search of (solution to a different problem).
Mertonian serendipity happens where the desired solution is achieved via an unexpected
route (targeted problem - different path). Bushian serendipity is where untargeted
exploratory research leads to a solution for a well-known problem. Finally, Stephanian
serendipity is where untargeted research finds an unsought solution that may find a future

application.

However, even earlier than Yaqub (2018), de Rond (2014) describes a different framework
for the structure of serendipity. While he also organizes serendipity in a 2x2 matrix, he
divides it differently according to a) whether the solution was the intended target and b)
whether the original research design was causal to the solution. In his work, de Rond evokes
the term pseudo-serendipity to describe when the solutions are intended in the first place,

compared to (only) serendipity, where the solutions are completely unanticipated.

One key difference between the two is that de Rond (2014) already assumes that there is an
intended target for serendipity to occur, while Yaqub (2018) also permits untargeted search
in his framework. Nonetheless, we can see some equivalence between their categories. For
instance, while not exactly the same, pseudo-serendipity corresponds to the Mertonian
formulation of serendipity, while de Rond’s serendipity is equivalent to the Walpolian
formulation. Another difference is that whether the discovered solution is a consequence of

random variation or deliberate design is not adequately captured by Yaqub’s recent typology.

The role of design in serendipity is further emphasized in the work of Garud et al (2018).
Taking insights from the evolutionary biology literature, they introduce the term ‘exaptation’
to the innovation literature to refer to the “emergence of functionalities for scientific
discoveries that were unanticipated ex-ante.” They identify two forms of exaptation, as
follows: franklins and miltons. Franklins refer to the supplementary usage of existing
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structures in areas in which they were not originally intended for use (e.g., using coins as
screwdrivers). Miltons refer to discoveries without a currently known function. A widely
known image to illustrate miltons is that of spandrels, i.e., the triangular space
unintentionally created by the shape of arches, which were later used as a blank canvas for
painting (Bahar, 2018).

In contrast to the previous formulations of serendipity, Fink et al. (2017) propose another
perspective altogether, with is based on the crossovers of interdependent components. In an
experimental study, they show that components early on do not have much benefit, as their
utility depends on the existence of other components. However, as the innovation process
continues and other components appear, the potential of this original set of components can
suddenly manifest. This moment, which seems to come out of nowhere, is what is perceived
as serendipity. Accordingly, they explain that serendipity is not only a matter of
happenstance but is a result of the components’ delayed fruition, which occurs from the

existence of other important components.

Finally, it is also important to note another field where the term serendipity has also gained
ground, as it gives insights into what differentiates serendipity from other similar concepts.
In the field of information systems, serendipity has become an important metric in
recommender systems (Kotkov et al., 2016). Recommender systems seek to predict what
rating a user would give to a certain product so that new products can be recommended.
These systems have been the backbones powering widely used services such as Netflix,
Spotify, and YouTube. In such systems, serendipity means that users do not only receive
results that are relevant but results that are significantly different from the user’s previously

rated items. This component of surprise is what seems to define serendipity in this context.

5.4.2 Realizing Serendipity

Aside from attempting to find better definitions of serendipity and understanding its nature,
there has also been much progress made on the various factors or mechanisms that can lead
to serendipity. McCay-Peet and Toms (2015) propose a process model for how individuals
discover and perceive serendipitous events. Their model consists of the following
components: Trigger, Connection, Follow-up, Valuable Outcome and an Unexpected Thread.
The trigger refers to environmental cues sparking the interest of the individual. This trigger is
then connected by the individual to their previous knowledge and experiences. Individuals
then follow-up on these triggers to obtain a valuable outcome. The surprise occurs from

noticing the unexpected thread present from the previous processes.

The conditions that promote serendipity have also been explored. For instance, the strategies

that individuals can pursue to increase the likelihood of serendipity include “varying their
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routines, being observant, making mental space, relaxing their boundaries, drawing on
previous experiences, looking for patterns and seizing opportunities” (Makri et al., 2014).
Yaqub (2018) also describes four mechanisms that we summarize as (1) examining
deviations from theory, (2) activating previously acquired knowledge and experiences from
individuals, (3) tolerating errors and following up on such occurrences, and (4) leveraging
networks. In the organizational context, Cunha et al. (2010) identify some conditions related
to serendipity, including boundary spanning, mindfulness, social networks, teamwork, free

space for creativity and opportunities for playing with ideas.

Artificial intelligence has also been used to find novel solutions to various challenges.
Computational methods can aid in the search for interesting information, enabling the
discovery of new knowledge domains that have been previously unexplored (Arvo, 1999;
Beale, 2007). In drug discovery, for instance, it has been used to repurpose drugs to new
therapeutic areas (Mak and Pichika, 2019). As progress in the field increases, artificial
systems that “catalyze, evaluate and leverage serendipitous occurrences themselves” are also
increasingly explored (Corneli et al., 2014).

While serendipity at the personal and organizational level has been emerging, the literature
on how serendipity can be actively pursued at a macro-level is still limited. Garud et al.
(2018) describe arrangements to induce exaptation of science, as follows: exaptive pools,
exaptive events, and exaptive forums. Exaptive pools refer to the maintenance of scientific
discoveries such as through patent and publication databases. These ideas, however, remain
decoupled until they are activated by exaptive events, such as technology fairs and
workshops. These possibilities can be further developed and contextualized through exaptive

forums, where actors become increasingly entangled.

In summary, the extant literature on serendipity has mostly been speculative or based upon
small-sample, anecdotal examples of scientific discoveries. Moreover, the previous studies
mainly focus on the individual scientists, lacking understanding of how serendipity can be
induced at a more macro-level. As such, questions remain on how serendipity can be
cultivated towards finding market applications for science and how it can be cultivated, for
instance, with the help of policy. To move the serendipity literature forward, there is a need
for studies based on empirical evidence, preferably using quasi-experimental conditions. By
examining the novel policy response ATTRACT, this study puts forward a rigorous

empirical examination of serendipity.

5.5 ATTRACT

The ATTRACT project is a €20M-funded initiative within the Horizon 2020 Framework

Program that aims to systematize the discovery of breakthrough applications of research from
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the leading European big science infrastructures. In the following section, we describe its

underlying philosophy, aims and results to date.

5.5.1 Philosophy

The assertion that the products of scientific research centers can have value outside of their
intended scientific purview is not new.'* It was demonstrated clearly by Lawrence’s early
cyclotrons in oncology, and the idea was perhaps best institutionalized as an important policy
driver by Bush, who advocated large investments in untargeted scientific research as a source
of serendipitous discoveries or solutions (Bush, 1945; Yaqub, 2018). In a more liberal
interpretation, the Bush legacy favors large investments in research for its unknowable
scientific value, as well as numerous unknown benefits that accrue as socio-economic

derivatives (education, spin-offs, job creation, etc.)

During the last three decades, policy-makers have increasingly emphasized policies to
accelerate innovation and economic growth (Edler and Fagerberg, 2017). Three main types
of approaches have been developed. The mission-oriented approach aims to support solutions
to challenges that are part of an explicit political agenda. Here, policy-makers tend to anchor
innovation policies in grand societal challenges, such as national defense, climate change, or
other sustainable development goals (Galison, 2016; Galison and Hevly, 1992; Mazzucato,
2016; Mazzucato and Semieniuk, 2017; Mowery, 2012). Invention-oriented approaches aim
to stimulate the supply of inventions as derivatives of scientific discovery while leaving any
commercial exploitation to the market (Bush, 1945; Wilson, 1991). This was the most widely
adopted approach championed post-war by Bush, as policy-makers sought to advance science
and technology as broad drivers of geopolitical policy (Galison, 2016; Galison and Hevly,
1992). Finally, recent decades have seen system-oriented approaches that seek to foster
interactions among the different actors taking part in the innovation ecosystem (Borras and
Laatsit, 2019; Lundvall, 2010; Lundvall and Borras, 2009).

Within these main orientations, a wide range of policy instruments have been deployed in
Europe to stimulate innovation (European Commission 2016), and different typologies have
been suggested to understand them (e.g., Borras and Edquist, 2013; Edler and Georghiou,
2007). The most widely accepted view considers instruments such as those focusing either on
technology push or market pull. Technology push (supply-side) policies stimulate framework
conditions and opportunities for innovation to thrive, including measures to support R&D
collaboration, network formation, and incentives to attract highly skilled labor to focal
regions and sectors. For example, in Europe, the Future and Emerging Technologies (FET)

program has allocated €2.7 billion to pursue breakthrough ideas through unexplored

14 Detailed information can be found at https://attract-eu.com.
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collaborations of multidisciplinary scientific and cutting-edge engineering teams, which is

indicative of the invention-oriented approach mentioned earlier.

Market pull (demand-side) interventions have been emphasized with greater frequency in the
most recent literature (Edler and Georghiou, 2007; European Commission, 2016b; Rolfstam,
2009). This perception recognizes that the derivatives of basic scientific research have
limited value if specific market-pull mechanisms are not in place to facilitate their entry to
the market (Scherer, 1982; Schmookler, 1962). Demand-side policy instruments include
measures to foster investments by private capital (brokering, tech-transfer, IP, subsidies, etc.)
or, alternatively, pre-commercial procurement to nurture financial liquidity, investment, and
operational scale in start-ups and SMEs (Edler and Fagerberg, 2017; Rolfstam, 2009).
However, instruments that simultaneously stimulate both the supply-side and demand-side
dynamics, especially for early-stage, high-risk technologies, are less common (Cunningham
et al., 2013; European Commission, 2016b).

The challenge of bridging the supply and demand sides of the innovation cycle is not an
exclusive concern of innovation policies. It is also a well-known challenge in
entrepreneurship research, where it is frequently metaphorized as the valley of death (VoD)
(Beard et al., 2009; Hudson and Khazragui, 2013). This metaphor describes the difficult
phase in product development and commercialization where many viable products or start-
ups do not survive for a variety of reasons. Typically, these include excessive and unforeseen
costs for research, prototyping, testing and manufacturing, limited product development
budgets, ineffective coordination and expertise, sub-critical market exposure, and the
inability to obtain sufficient internal or external funding to bring the product or start-up to a

revenue-generating state (Frank et al., 1996).

A substantial amount of research has focused on the various mechanisms that can be
marshaled towards mitigating the VoD phenomenon, which include the following:
innovation intermediaries (Islam, 2017); scientific parks; technology clusters and living labs
(Almirall and Wareham, 2011); industry associations (Markham et al., 2010); business
incubators and accelerators; technology brokers and tech-transfer functions (Beard et al.,
2009); regional, national, and pan-national funding instruments, such as Horizon 2020, EIT
and ERC of Europe, and NIH, NSF of the US (Hudson and Khazragui, 2013). Finally,
particularly in the medical and life sciences fields, there has been a growth in initiatives in
translational research (Butler, 2008). No single VoD scenario is applicable to all
technologies. For technologies with high technology readiness levels (TRL) (Banke, 2010),
the VoD is potentially less fatal, particularly for incremental innovations with probable
market uptake. This condition is typically addressed by risk mitigation functions performed
by private investment and venture capital. However, technologies with low TRLs require
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more extensive interventions, typically with both risk absorption (seed funding and early
industry involvement) and risk mitigation (public/private investment mechanisms). It is
important to note that TRLs are highly context dependent; i.e., the technology may be very
mature and tested in its original application at the scientific research installation (high TRL),
but immature in a larger system of commercialization when used in a different sector or
market (low TRL) (Héder, 2017).

5.5.2 Purpose, design and results to date

The main aim of ATTRACT is to harness and direct exploration towards breakthrough
innovation opportunities in detection and imaging technologies, while also offering space for
serendipity to stumble onto unforeseen applications. As such, there are no ‘intended’
technological applications or desired outcomes. Rather, the ATTRACT governance is
designed to generate as many options and variety in the applications as possible. That
acknowledged, there are some obvious areas where detection and imaging technologies can
be employed towards substantial, if not paradigmatic, advances in other domains. Frost and
Sullivan argue that imaging and detection technologies will have core functions in almost all
technically sophisticated commercial products and will constitute an annual market of over
$100 billion in their own right (Frost & Sullivan, 2015). These domains include medical
device and imaging technology, biotechnology, energy, advanced manufacturing,
automation, microelectronics, materials and coatings, environment and sustainability, and

information and communication technology.

On many dimensions, ATTRACT has been designed to directly address the ineffectual
transition — or disconnection — between the technology-push instruments (applied in the early
phases) and the market-pull instruments (the later entry of private capital) (Auerswald and
Branscomb, 2003; Wolfe et al., 2014). In this respect, ATTRACT is distinctive from recent
instruments, such as FET, given that the focal actors include both research infrastructures and
industrial players, and equal protagonism is given to both the supply and demand sides. This
is enabled by the pre-existing relationships between research infrastructures and their
industrial suppliers; that is, the highly specialized SMEs that have contributed to the
engineering, construction, and operation of some of the world’s most sophisticated
technologies. Thus, the industrial relevance and operational feasibility of the projects are
verified from the start. Specifically, for projects involving European research facilities and
industrial organizations, the most immediate use of their technologies is guaranteed. In this
sense, a first ‘internal market’ is assured. This ‘internal market’ paves the way for industry to
target other applications and new commercial opportunities (i.e., the feasibility of the pilot
technologies has been prototyped and tested in the real and demanding working conditions of

big science facilities).
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The completion of ATTRACT phase I is expected to lead to insights and findings that inform
modifications and extensions to the design of ATTRACT phase II and related innovation
policy initiatives. ATTRACT phase II will aim to take a select group of 10-20 validated
projects from ATTRACT phase I and scale them towards technology readiness levels 5-8.
ATTRACT phase 11 is specifically designed to address the intermediate or secondary phases
of the valley of death phenomenon, which requires greater scalability, maturity, and support.
Funding for ATTRACT phase II is currently being negotiated with the relevant funding
bodies and is subject to receiving grants. However, the current estimates suggest a total
funding of €35 million. In addition, emphasis will be placed on the transition to public
sources of equity-based capital (e.g., the European Investment Fund and the European
Investment Bank), as well as private capital sources, such as early and late-stage venture

capital and private equity.

Table 1 highlights the main attributes of ATTRACT and how they are positioned relative to

traditional EU funding instruments and private capital investments.
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Table 1. Comparison between ATTRACT and other funding instruments

ATTRACT EU range public | Private
funding instrument
instruments'

Approach Considers that breakthrough | Assumes that only | Focuses on
for crossing | technologies need two steps of | one step is needed | relatively  low-
the valley of | risk  absorption and risk | — mnormally risk | risk technologies
death mitigation. mitigation (projects | with no need for
Risk Public sced funding to foster are funded on equal | risk absorption.
absorption ideas with breakthrough footing).”

(reduce potential (100k EUR).

large TRL | ATTRACT2 aims to continue

gap) with public scale funding for

selected projects (2-4M EUR).

Risk Public/private investment | Public/private Angel, Venture
mitigation mechanisms. 3 investment capital funding.
(close TRL mechanisms.
gap)
Pre- Ensured in projects with | Not ensured and | Not ensured.
competitive | participation of research | depending on a
market infrastructures. project-by-project

case.
Scaling up Late-stage VC funding instruments, private equity, IPOs, etc.

'We are referring to EU funding programs such as Horizon 2020. We do not consider

national public funding programs.

the SME
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smeinstrument.

2Exceptions exist, such as instrument
Nevertheless, they differ from ATTRACT because a project needs to apply for seed
funding, and subsequently, for scale funding. In ATTRACT, the transition between seed

and scale is streamlined.

Shttp://www.eif.org/; http://www.eib.org/en/index.htm
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As of the writing of this paper, ATTRACT has implemented the following steps:

I. An open call was launched to solicit project proposals (1,211 submitted) for
leveraging detection and imaging technologies towards potentially commercially
sustainable products or services. While not exclusive, the emphasis was on concepts
at technology readiness levels 2-4. The call solicited proposals leveraging the
following four main technology groups: a) sensors; b) data acquisition systems and

computing; ¢) software and integration; and d) front- and back-end electronics.

2. All submissions were assessed on technical merit and innovation-potential.
Specifically, the evaluation dimensions included the project definition, scope, and
technological feasibility, state-of-the-art, scientific/engineering merit, industrial

potential, commercial feasibility, and social value.

3. 170 projects were awarded €100,000 for the development of a proof-of-concept or
prototype with an application outside of the original purview of the technology, over

a period of one year.

5.5.3 The 170 Funded ATTRACT Projects

The call was open from 1 August to 31 October 2018. In that period, 1,211 proposals were
received. The top 10 countries submitting applications were as follows: Italy (261); Spain
(230); Switzerland (108); France (96); the United Kingdom (81); Germany (67); Finland
(65); the Netherlands (59); Portugal (33); and Austria (26). From these submissions, 170

projects were selected for funding.

To analyze these different projects, we carried out the following: We collected the text
proposal of the 170 funded projects for analysis. Each proposal submitted contained a
maximum of 3,000 words, including the following parts: a) summary; b) project description;
c) technology description and external benchmarks; d) envisioned innovation potential
(scientific and/or industrial), as well as envisioned social value; e) project implementation,
budget, deliverables, and dissemination plan. The proposals of these 170 funded projects

were read by the authors and three master’s students for evaluation.

Three master’s students with backgrounds in biomedical engineering, mechanical
engineering/physics and entrepreneurship evaluated each project independently. They coded
for the following project characteristics: technology readiness level (scale of 1 to 9), scope of
market application (specific, specific but easily expandable, or general), location in the value
chain (upstream or downstream), technology novelty (scale of 1 to 5), technology relevance
to the market (scale of 1 to 5) and credibility of budget and milestones (scale of 1 to 5). The
variables were used based on extant definitions in the literature (i.e. TRL and MRL). In the

event that there were no extant definitions, new categories were induced from the
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phenomenon (serendipity). After analyzing each project separately by the three independent
coders, their findings were integrated. In cases where the codes were not consistent,
discussions were held to reach agreement. The coding was then validated in an additional
round of coding by the authors and then tabulated. As such, each project was evaluated and
coded by a minimum of three independent evaluators. Three physicists (two co-author of the
study) and a venture capital expert oversaw the coding process and validate results. The
results are presented in the following paragraphs.

The ATTRACT project call required the participation of a minimum of two collaborating
organizations. While the majority of projects were the result of two organizations
collaborating, as many as five organizations can be seen collaborating in a single project
(Figure 1A).

Figure 1. Summary of Organizations Involved in ATTRACT projects.
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Exploring the countries represented in each project funded in ATTRACT, Figure 1B shows
that the majority of projects involve collaborations between organizations located in the same
country. Such arrangements allow the partners to closely interact and meet frequently as they
work on their projects. Interestingly, almost half of the projects (45%) involve international
collaboration. Especially when projects require highly specialized, scarcely available

expertise among partners, it is necessary for collaborations to occur across borders.

As seen in Figure 1C, the majority of projects involve research organizations (ROs) or
universities. Aligning with the goals of ATTRACT, many projects also involve input from
industrial partners, including startups, small and medium-sized enterprises (SMEs) or
multinational corporations (MNCs). The most represented configuration involves
collaborations between universities and research organizations (Figure 1D). These research
organizations typically have expertise in spinning out technologies. Aside from this
configuration, industry-academia collaborations are extremely common, most notably
between universities and SMEs and ROs and SME:s.

We visualize the 170 projects in Figure 2 through automated processing of the textual data
from the proposals. As the showcased projects reveal, ATTRACT covers wide ground in the
domains of technologies sourced and targeted application areas. There is a huge cluster of
projects applying big science research to impact the field of healthcare, such as through
better diagnostics and treatments (blue cluster). Aside from this cluster, there are many more
projects applying the imaging and detection technologies of big science to various
commercial applications, such as consumer electronics, environmental monitoring, and
security (green cluster). Finally, we see efforts to further improve the technologies
themselves, with the immediate market of serving the big science infrastructures (orange

cluster).
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Figure 2. Visualization of the 170 Funded Projects under ATTRACT.
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Each project is labeled by its acronym. The projects are plotted by processing their textual

data (removal of stop words, lemmatization, inclusion of n-grams), performing TF-IDF

vectorization and decomposing by PCA into two components. The colors were generated by

K-Means clustering. The blue cluster refers to projects in healthcare. The green cluster refers

to applications of detectors to various areas. The orange cluster refers to upstream advances

in sensor technologies. The code will be available online.

The automated classification was, however, not adequate to fully understand the projects

included within ATTRACT. We, thus, conduct further analyses by manually evaluating the
textual data of the projects. Figure 3A shows the different technological domains as

submitted the participants, which are as follows: sensors (70%),

data-acquisition systems and

computing (32%), software and integration (30%) and front and back-end electronics (16%).

Note that the projects can belong to more than one domain so they do not add up to exactly

100%. As observed, a large percentage of projects are in the domain of sensors. This
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percentage is not unexpected, as big science infrastructures are generally known for the
sophistication of their imaging and detection technologies. The high expertise of these groups
in sensor technology, together with the versatility of sensors towards various uses, make

them good candidates for exploring alternative commercial applications.

Figure 3. Summary of the Various Coded Dimensions of the ATTRACT Projects.
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A shows the domains of the projects, as stated in their proposals. B shows the application
areas, as coded from analyzing the text. C describes the scope of the market application for
each project. D shows whether the application area is upstream or downstream. E describes
our rating on the relevance of the proposed technology to the selected market. F describes our
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evaluation of the technology readiness level of each project. 2G describes our evaluation of
the novelty of the technology. 2H shows the evaluation of the credibility of the proposed

budget and milestones of each project.

Further analysis was carried out to describe the different features of the funded projects under
ATTRACT (Figure 3). Figure 3B shows that ATTRACT caters to a diverse range of
application areas, including healthcare (36%), electronics (20%), environment (12%), energy
(6%), security (6%) and manufacturing (6%). These projects commit to these areas in
varying degrees. Figure 3C shows that the projects are almost equally split in terms of the
degree of specificity in the application area. While 35% of the projects are specific to their
mentioned application area, there are also a large number of projects offering a general
solution to different application areas (28%). An interesting category is the 38% that are
specific but expandable projects that have already identified their pilot market but then can
easily extend their reach to other areas. Furthermore, Figure 3D shows that there are slightly
more projects located upstream in the value chain. These upstream projects (55%) aim to
supply companies with knowledge and technologies that can be further processed and
integrated towards their offerings. In contrast, downstream projects (45%) cater directly

towards solving the problems of its intended market.

Figure 3E shows that the most common technology readiness level was 2, meaning that the
projects are only in the stage where the technology and/or application area has been
conceptualized. The average TRL across all projects was 1.8. These low TRL values are in
line with what was expected from the projects during the proposal call. The low TRLs show
that these technologies are still in their early stages, requiring further development towards
becoming viable solutions. Their low TRLs have the benefit, however, of giving them the

flexibility to find the serendipitous area where their application will have the most impact.

Originating from the leading big science infrastructures, the projects feature some of the most
advanced, cutting-edge technologies. Figure 3F shows that the projects are highly novel, with
an average rating of 3.4 out of 5. The problem typically with technologies that are too novel
is finding areas that would be relevant for their application. However, as seen in Figure 3G,
the projects have generally high relevance to the markets they are hoping to serve. Across all
projects, the average rating was 3.5 out of 5. This rating implies that a project such as
ATTRACT can help activate researchers to find relevant applications for the technologies
they are working on. Otherwise, for projects lower in rating, the support provided by
ATTRACT enables these projects to refine their technologies to find a better fit with their

market of choice or to find a more applicable market to which their solutions can be of value.
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To systematically explore the space in the development of their technologies, it is important
for the project’s team to have a credible plan and list of milestones. Figure 3H shows that the

projects were rated highly on this aspect, with an average rating of 3.5 out of 5.

5.5.4 Modes towards Serendipity

In the project text, the researchers typically narrate the mode by which they were able to
develop new applications for their scientific research. We identified the recurrent themes by
which serendipitous discoveries were actively pursued by project members in our first read
through the 170 projects. In the second and third readings, we categorized the projects

according to the following criteria:

e Combination of different technologies — technologies or knowledge from different
research domains is combined, integrated or assembled together to produce a new

application.

¢ Building on previous research — technologies from previous research work are
extended or improved to be more effective or efficient but are still within the same

domain or application area.

e Applying technology to another field — technology or knowledge from one domain is

used in a new research domain or application area.

e Using machine learning or artificial intelligence — when the computational advances
in machine learning or artificial intelligence are used to augment or find new uses for

existing technologies.

Note that the projects typically combine these modes to different degrees and so, we coded
them according to what is explicitly mentioned in the text. The number of projects in each
category is summarized in Figure 4.
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Figure 4. Modes towards Serendipity in the ATTRACT projects.
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5.5.4.1 Combination of different technologies

The most represented mode was the combination of different technologies (41%). Under this
category, technologies could come from adjacent or distant domains. Moreover, these
technologies could be combined with varying degrees of integration. On one extreme, we
identify a subset of projects (16%) where existing, readily available technologies are
assembled to develop a new application. For instance, a project called PHIL, which aims to

use a photonic system for liquid biopsy, mentions the following:

“we will design and build the system using mainly commercial solutions for the different

system aspects”.

Otherwise, many projects combine the latest advances from distant research areas to create
novel solutions. A notable example is the SCENT project, which aims to create new gas

sensors. The project mentions that it is:

“based on merging two up-to-now disjointed macro-disciplines: high-pressure technology
and gas-sensing; whose scientific communities are still far one another: the former focusing

mainly on synthesis of materials, the latter unaware of HP-potentialities.”

5.5.4.2 Building on previous research

The second mode we identified is extending and building on previous research (31%).
Typically, this mode proceeds from re-examining previous research so that new features that
have not been previously identified or explored can surface. Pursuing this re-examination

typically requires a meticulous re-examination of previously acquired knowledge and finding
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new perspectives in the existing data. A notable example is the project Random Power,

which is a random bit generator for cryptography. According to their proposal:

“The genesis of the project is an example of ingenuity and serendipity and can be tracked to
the effort of understanding random events affecting the response of state-of-the-art detectors
of light with single-photon sensitivity.”

Another way that previous research is reinterpreted is by exaggerating features or taking
things to the extreme. For instance, there are many projects that examine what possibilities
would be opened if current detectors could be applied at extremely cold temperatures or in
environments with very high radiation. Similarly, there are projects that develop new
application areas through imagining what opportunities can be created if a technology

becomes a magnitude more efficient or powerful.

The previous research can also be extended by projecting from the current state of their
research a laudable target. By setting a difficult goal, the researchers then leave it to their
abilities and to successful development of the project so that they can bridge the gap between

this goal and their current state.

5.5.4.3 Applying technology to another field

Another set of projects (27%) applied a technology from one field to another field. This
category coincides best with the previous notions of serendipity — finding new uses from
existing things. By exposing a technology to a field that it has not been previously used for,
new use cases for the technology potentially emerge. Especially for the big science institutes
in ATTRACT, their technologies might be narrowly used within their scientific domain.
These new technologies are also able to provide a fresh perspective to the field, proposing
new ways to deal with the problems that the existing technologies currently employed within

the field may not adequately address.

A notable example of a project is SIMS, which involves designing a seismic imaging and
monitoring system. They mention that they will develop a:

“next-generation MEMS sensor that utilizes patented technology inspired by the search for

’

gravitational waves.’

5.5.4.4 Using artificial intelligence or machine learning

The final mode we identified involved the application of machine learning for a specific
application, accounting for 14% of the projects. This category can be considered a subset of
the previous category since machine learning is a breakthrough originating from the
computational sciences that is finding new uses in different domains. By being able to find

patterns that humans cannot easily identify, it can be said that applying Al or machine
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learning increases the efficacy of various sensors in what can be obtained from the data it is

able to collect.

Many of the projects in this category are in the field of healthcare. The usage of machine
learning allows data collected from the various imaging technologies to be brought together
and processed to reveal new insights on certain diseases. For instance, the project MAGres
plans to integrate various magnetic resonance techniques to obtain a better understanding of

the brain tumor glioblastoma. They mention the following:

“ML [machine learning] methods are the key to unlock the predictive power from the

complex and high-dimensional data to be acquired”

5.6 Discussion

We identify four categories of how big science research can be used in previously unexplored
ways towards commercial applications. These four modes towards serendipity are (1) a
combination of different technologies, (2) building on previous research, (3) applying
technology to another field and (4) using Al or machine learning. Compared to the previous
studies of serendipity, the categories we describe do not completely coincide with any one

proposed typology of serendipity, as summarized in Table 2.
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Table 2. Contributions to the previous literature on serendipity

140

Serendipity by way
of random variation

Serendipity as the
unintended
consequence of
design

Walpolian

Targeted search
solves an
unexpected
problem

Franklin’s

character was
previously  shaped
for some use but is
now coopted for a
different role (ex.
coin as screwdriver)

Pseudo-serendipity
by way of random
variation

Pseudo-serendipity
as the unintended

Mertonian

Targeted search
solves problem via
an unexpected route

consequence of
design
Crossovers between
components  (Fink
etal., 2017)
Computer-aided
serendipity  (Arvo,
1999)
Bushian
Untargeted search
solves an

immediate problem

Stephanian
Untargeted search
solves a problem
later

Milton’s

character was not
shaped for some use
but has the potential
to be coopted for
another use (ex.
spandrels)



The category of applying technology from one field to another coincides highly with the
previous notions of Walpolian serendipity (Yaqub, 2018) and the idea of exaptation (Garud
et al., 2018). These two formulations, on a fundamental level, refer to the unanticipated usage
of a certain item. A nuanced difference, however, between these previous notions on
serendipity is that our categorization stems from a different view of serendipity, i.e.,
exploring the modes towards its realization. Instead of characterizing it ex-ante, our category
describes the actions that researchers are actually taking in the hopes of finding serendipitous

applications for their scientific research.

On the surface, extending the previous research does not seem to be related to serendipity.
The implied incremental nature of the progress that comes from building on previous
research makes it seem that it is not a viable way to cultivate serendipity. However, as we
find in the different projects, extending the previous research can be productive, especially if
it allows the accumulated wealth of knowledge and experience of various actors to be
activated and re-examined. This productivity coincides with how Cunha et al., (2010) sees
serendipity, i.e., as the process of metaphorical association — seeing things in a new way.
Such activation facilitates researchers to pursue a laudable target that they have not

considered doing before.

Compared to the previous typologies of serendipity, we find two new categories. The first
one is the combination of different technologies. This conceptualization of the phenomenon
is consistent with that of Fink et al. (2017), which relates serendipity to the surprise from the
crossover of interdependent components. On a fundamental level, the innovation research has
greatly emphasized the role of combining knowledge from diverse domains to generate
breakthrough innovation (e.g., Guan and Yan, 2016; Schoenmakers and Duysters, 2010).
Nonetheless, it has not been explicitly linked to serendipity due to the lack of empirical

studies on its realization.

Finally, in the ATTRACT projects on Al and machine learning were used to process and
make sense of the huge quantities of data generated by the various sensors. These
technologies are valuable, as they are able to see subtle patterns that are invisible to the
human eye. Al and machine learning improve the performance of certain technologies by
being able to process large amounts of data and integrate different sources of information to
obtain new insights. However, it is important to make a distinction that Al and machine
learning were mainly used to integrate the data resulting from the detectors instead of for
discovering new applications. Machine learning was not used on a meta-level to discover
new serendipitous applications of the technologies, for instance, from mining text from
publications and patents. However, with the ongoing progress in these technologies (as in
recommender systems), it would be interesting to see how Al and machine learning can
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directly be used to generate leads for serendipitous connections between various topics (e.g.,
Arvo, 1999; Giles and Walkowicz, 2019).

5.6.1 Implications for theory

The research on serendipity has evolved beyond the simple conceptualization as an accident
or happenstance. Recent developments have allowed serendipity to be scientifically
examined by having reformulated it as a capacity, requiring the focus of attention (de Rond,
2014). This paper validates the previously proposed typologies on serendipity through the
unique dataset of ATTRACT. While the previous research on serendipity mainly relied on
anecdotal stories in the history of science, ours is grounded on the data from the 170 funded
projects under ATTRACT. With these projects spanning different domains and varying in
their technological features, this gives us access to a large dataset that we can probe to study

how serendipity is actively pursued.

Unlike the previous studies of serendipity, which view the phenomenon after it has already
occurred, we provide another perspective by looking at the modes towards its realization.
This process-oriented data-driven approach allowed us to find two previously unidentified
modes wherein serendipity can be cultivated, as follows: combining technologies and using
machine learning. More systematic analyses with other novel datasets are needed to

corroborate our findings and identify other means that serendipity can be realized.

5.6.2 Implications for policy and practice

Our paper shows how policy can enable researchers to find alternate serendipitous uses for
their technologies. The ATTRACT project is consistent with calls by Mazzucato (2013,
2016, 2017), who argues that the government can go beyond its role as a regulator or fixer of
markets towards an entrepreneurial role, absorbing the risks in strategic sectors until
technologies have reached a sufficiently mature state to be attractive to private and venture
capital. This assumes that market mechanisms and private capital alone may not be the most
efficient routes to realizing innovation via basic to applied research (Martin, 2016). Specific
industrial policies and stimulus instruments are needed to absorb the risks in basic research
settings when working with low TRL technologies. This is particularly relevant to
ATTRACT in light of the empirical research suggesting that the more the research
infrastructure is involved in basic research as part of its mission, the less likely that the
organization will be involved in technology transfer activities (Boisot et al., 2011; Rahm et
al., 1988); this is certainly the case for several ATTRACT partners.

ATTRACT also resonates with the ‘cooperative technology’ model of technology transfer
described by Bozeman (2000), which assumes that government laboratories and research

infrastructures can play an important role in technology innovation and economic growth.
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With some variation, authors such as Mazzucato and Bozeman echo the original doctrine of
Vannevar Bush, i.e., that basic research has a substantial and positive impact on socio-
economic innovation via direct and indirect mechanisms. Interestingly, however, the recent
literature has argued that while it is commonly believed that Bush maintained an
unquestioning faith in an integrated and linear model of innovation, his notion was more
sophisticated and involved symbiotic cross-fertilization (Leyden and Menter, 2018). In this
view, the authors argue that while Bush saw that basic research and applied research benefit
each other, they also succeed by working as separate systems, or stacks. Consequently,
scientific and economic policy mechanisms should seek to coordinate the two systems,
allowing each to operate through its own logic and success criteria, yet simultaneously
cultivating specific points where they can nurture each other (Cunningham et al., 2013;
European Commission, 2016b; Leyden and Menter, 2018). ATTRACT does not presume to
be the definitive word on how to accomplish this coordination task. Indeed, faithful to its
genesis in scientific institutions, ATTRACT should be seen as an experiment in innovation
policy (Bakhshi et al., 2011). With its focus on the revelation of information and cross-
fertilization of technology and entrepreneurial options, it is experimental at an operational
level. With its novel constellation of actors, resources, design, and governance, ATTRACT is

very much an experiment in innovation policy.

5.7 Conclusions

We have described the ATTRACT project, which is a novel innovation policy instrument to
find new applications for the breakthrough imaging, detection, and computational

technologies of Europe’s leading scientific research infrastructures.

We have described the philosophy behind the project, discussing the history of big science
and the issues with regard to assessing its socioeconomic impact. Where ATTRACT is still
in-process, the large data set from the proposals allows us to view serendipity in a unique,
unprecedented manner. Specifically, the 170 projects allow us to probe serendipity in a
quasi-experimental setting with some controls. We identify several novel modalities of
serendipity that emerge from the data.

There are many interesting avenues for future research. First, it is a widely accepted wisdom
that increasing the collisions between different actors promotes the chances of serendipity.
As such, it is valuable to understand how the various partners working in the projects were
able to find each other and create new applications for their previous technologies.
Incorporating insights from the alliance and network literature would create new insights in

the serendipity literature.
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Faithful to its genesis in scientific institutions, ATTRACT is best viewed as a policy
experiment. Where a complete evaluation of it will require more time, the initial evidence
suggests that policymakers can play a purposeful and effective role in fostering derivative

benefits from public investments in big scientific research infrastructures.
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From Bits to Atoms: White Rabbit at CERN

The article that constitutes this chapter consists in a micro-study of a single case that gives us
insight into the different mechanisms that help reconcile the main tensions between the two
exogenous influence presented (i.e open science and technology transfer).The study
empirically investigates White Rabbit, an open-source hardware initiated at CERN and

transferred to multiple industrial settings
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6.1 Abstract

The success of Open Source Software (OSS) has inspired others to adopt the 'open source
way’ of development to the field of electronic hardware design: Open Source Hardware
(OSH). While there are many expectations that an open-source ethos will influence
commercial hardware development to the same degree that it has influenced software
development, yet little is known about how the transposition of open-source development to
a form of technology ‘object’ that has material components (hybrid objects) might be
unsuccessful if the conditions salient in OSS development are not equally applicable in OSH.
We study the development of White Rabbit (WR), an OSH initiated at CERN and deployed
as a powerful precision and synchronization technology in many industrial settings where
time accuracy is critical. Through the investigation of WR, our study contributes to recent
conceptualizations of digital objects by uncovering the differences from hybrids to purely
non-material digital objects and elucidates what happens when we transpose the OS model of
development to a hybrid object. As a lens to understand how different attributes of objects
require different development models, we adopt relevant constructs from Transaction Costs

Economics (TCE) and examine its utility as a predictive theory of OSH development.

Keywords: Open source hardware, hybrid objects, development, transaction costs

economics.

6.2 Introduction

“Oh dear! Oh dear! I shall be too late!” Alice follows the time-obsessed hare down the rabbit
hole into Wonderland. The White Rabbit is the first Wonderland character that Alice
encounters in Alice's Adventures in Wonderland, a fantasy novel by English mathematician
Charles Lutwidge Dodgson published in 1865. White Rabbit (WR) is also the name of an
open source hardware (OSH) that consists of a fully deterministic Ethernet-based network for
data transfer and synchronization. The technology was developed in 2008 by the European
Organization for Nuclear Research (centre européen pour la recherche nucléaire; CERN) to
provide a sequencing and synchronization solution for CERN’s geographically distributed
accelerator network. WR was developed as an OSH through a sustained collaboration among
traditional vendors, peripheral research organizations, and a heterogeneous community of
voluntary contributors. WR was born as the evolution of CERN’s General Machine Timing
(GMT) program and is currently the clock and event distribution system of their accelerators

where time accuracy at the nanosecond!’ level is required. After its implementation at

I5° A nanosecond (ns) is an SI unit of time equal to one billionth of a second, that is, 1/1,000,000,000 of a
second, or 10—9 seconds.
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CERN, WR was adopted by other scientific research infrastructures and subsequently
implemented in a variety of industrial settings where time accuracy is critical, including high-
frequency trading (HFT) matching engines in financial services, telecommunications
networks, automated vehicles, modern central navigation systems for air traffic control, and

smart grids.

The success of Open Source Software (OSS) has inspired others to adopt the 'open source
way''® of development in the field of electronic hardware design: OSH. OSH is a term for
hardware or tangible artifacts — machines, devices, or other physical things — for which the
design is made publicly available in a way that anyone can study, modify, distribute, make,
and sell either the design or hardware based on this design (OSH Association). OSH typically
comprises both material and non-material layers; that is, it can be viewed as a stack of
technologies with a physical form combined with embedded operating, middleware, or
application-level software. Although OSH is most common in scientific research
infrastructures (Balka 2011; Boisseau et al. 2018; Mellis and Buechley 2012; Pearce 2012), it
has now attracted the attention of a wide range of industrial organizations that need to
develop never-seen-before technologies not easily acquired through commercial vendors.
The domain of OSH includes a diverse range of projects and products such as computer
systems and components, scientific machines and tools, robotics, home automation, and
medical and biotech instruments (Pearce 2012). Some compelling examples of OSH!7
include Arduino'®, RepRap'?, and the Open Compute Project?®. Projects range from small-
scale, do-it-yourself hardware projects for electronics hobbyists to complex projects that
require highly sophisticated expertise, long development cycles, and industrial manufacturing
capabilities, which render them cost-prohibitive to hobbyists or small research laboratories
(Balka et al. 2009; Boisseau et al. 2018; Oberloier and Pearce 2017). For example, RISC-V?!
is gaining momentum as an OSH instruction set architecture (ISA) in both research and
commercial organizations that seek to avoid the non-recurring engineering costs of

specialized integrated circuits.

With this recent evolution in OSH, some scholars have predicted that an open-source ethos
will influence commercial hardware development to the same degree that it has influenced
software development (Balka et al. 2010; Powell, 2016). However, the transposition of open-
source development to a form of technology ‘object’ that has material components might be

unsuccessful if the conditions salient in OSS development are not equally applicable in OSH.

16 We borrow this expression from Howison and Crowston (2014).
17 See a comprehensive list of examples OSH at ohwr.org.

18 arduino.cc

19 reprap.org

20 opencompute.org

2! riscv.org
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Following Faulkner and Runde (2019), we define objects as entities that endure (i.e.,
“something that exists through time and is fully present at each and every point in time over
the period of its existence” p. 5) and entities that are structured, that is, entities composed of a
number of distinct parts (henceforth components). We employ the term ‘object’ in the same
spirit as Faulkner and Runde (2009, 2013, 2019) and Kallinikos et al. (2013) to designate
purposefully engineered objects rather than any object that occurs naturally. The universe has
all types of objects; we refer here only to a subset of them that we term digital objects.
Digital objects have not only a function that “members of some community impose on that
object in pursuit of their practical interests” (Faulkner and Runde 2013 p. 807) but also a
form, which means that they possess the characteristics and capabilities so that the object's
function can be performed. Both function and form give the object its technical identity. For
instance, using Faulkner and Runde's (2013) example, an application for network monitoring
derives its technical identity by facilitating the monitoring of devices connected to the local
network. Digital objects have components or constituent parts that do not have a technical
identity themselves to the degree that they do not fulfill a function given by a community, but
they possess different attributes; that is, digital objects have defining properties according to

how the components work, how they are arranged, and how they interact with one another.

A principal attribute to distinguish is the difference between material and non-material
components, which is their embodiment. The notion of embodiment (Yoo 2010) owes its
legacy to the philosophy of phenomenology (Boland 1986; Heidegger 1962) and refers to
“the property of being manifest in and of the everyday world” (Dourish 2001 p.18). Material
components have spatial attributes (i.e., shape, volume, mass, and location). That is, material
components have a “physical mode of being” (Faulkner and Runde 2013 p. 806), which
makes them “rigid, stable and tangible” (Yoo 2010 p. 222) as opposed to non-material
components, which exist “in a logic state, which makes them malleable and fungible” (von
Briel et al. 2018 p. 281). Digital objects with material and non-material components fall into
the group of hybrid objects, or hybrids (Faulkner and Runde 2019). Hybrid objects include
any hardware with middleware or software (Yoo 2010) and encompass many of the objects

being developed in OSH projects.

To our knowledge, little scholarly work has systematically investigated how the premises of
open-source development differ when applied to hybrids. As other scholars have emphasized,
the open-source model may not easily be transposed to hybrid development (Balka 2011;
Balka et al. 2010; Boisseau et al. 2018; Oberloier and Pearce 2017; West and Kuk 2016) or
any object different than software (Lerner and Tirole 2003). Therefore, further research is
warranted given the expected impact of OSH. Moreover, an analysis of the open-source
development of hybrids offers the variance needed to theorize, beyond OSS, the relationship

between the attributes of object components (i.e., what is being developed) and the
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organizational conditions of their development model (i.e., how it is being developed).

Accordingly, the research question that this study asks is

How do the attributes of a hybrid object and its components affect the open-

source model of development?

To answer our research question, we first engage in a review of recent conceptualizations of
digital objects to delineate the attributes of the digital objects that contain both material and
non-material components (hybrids) to understand ‘what’ agents act on when they develop
them (Faulkner and Runde 2019; Kallinikos et al. 2013; Yoo et al. 2010). We adopt the
definition of development as the “social process of designing, developing, and implementing
the technical artifact, usually in a specific organizational context and over time”
(Akhlaghpour et al. 2013 p.152). In a second step, we review what we know about hybrid
development to understand how hardware that contains middleware and software has
traditionally been developed. Third, we review the IS literature on the ‘open source way’ of
developing software. Our goal is to extract from this literature the common characteristics of
how work is organized in OS development and the conditions that underlie it (i.e., the
prerequisites for the occurrence of OS development) (Benkler 2002; Dahlander and
Magnusson 2008; Feller and Fitzgerald 2002; Fitzgerald 2006; Fitzgerald and Feller 2002;
Howison and Crowston 2014; O’Mahony and Ferraro 2007).

As a lens to understand how hybrid component attributes and their interaction require
different development models, we briefly review transaction costs economics (TCE)
(Williamson 1975, 1985, 1996) as a high-level theoretical frame. We find the logic of TCE to
be useful because it works through the strategic alignment hypothesis, namely, that
transactions with different attributes will align with governance structures that vary in their
relative ability to economize on particular attributes of transaction costs (Williamson 1996).
We believe that this underlying mechanism is similar to and useful for understanding the
relationship between the attributes of a hybrid object’s components and how they align with
an appropriate model of development. We appropriate relevant concepts from TCE and
explore both their adequacy and limitations in explaining hybrid object development.

The remainder of the paper is organized as follows. After discussing the theoretical
underpinnings of our research study and analysis, we then describe our research context
around WR and its development, the research design and analytic methods. We also present
the findings and discuss the theoretical and practical implications of the study, its limitations,

and future research.
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6.3 Theoretical underpinnings

6.3.1 The attributes of hybrids

Beginning with Orlikowski and Iacono’s (2001) empirical study about the treatment of
digital technology in IS research, scholars have portrayed the specific features of digital
technology in diverse ways (e.g., Ekbia 2009, Kallinikos et al., 2011, 2013, Faulkner and
Runde 2009, 2019; Yoo et al., 2010), with the greatest emphasis on the non-material aspects
of digital objects. Attributes such as non-rivalry, infinite expansibility, reproducibility
(Faulkner and Runde 2009, 2013) and largely unstable, unbounded (Ekbia 2009), interactive,
fluid, editable or distributed attributes (Kallinikos et al. 2010, 2013 p.360; Manovich 2001)
are supported by examples such as blogs, wikis, personal profiles in social media, booking
systems, digital libraries, files, images, films or videos, and open-source software. This
literature stream is less attentive to the physical nature of components, for instance, their
capability to be reproduced, distributed, or their stability over time. Thus, there is an
opportunity to better understand the attributes of hybrid digital objects where material

characteristics are present.

From our review of the literature, five salient attributes are relevant for our analysis (e.g.,
Ekbia 2009; Faulkner and Runde 2009, 2013, 2019; Kallinikos et al. 2010, 2013; Yoo 2010;
Nambisan et al. 2017). These five attributes are 1) embodiment, 2) modularity, 3)
granularity, 4) editability, and 5) reproducibility. Our study applies these five attributes to
assess how these traits vary when a digital object contains material components. We provide
the construct definitions and our conceptual departure from the related notions in Appendix
A.

Embodiment refers to the component’s material or non-material state as described previously
(Faulkner and Runde 2009, 2011; Yoo et al. 2010). Modularity describes components as
either 1) loosely coupled — where functionalities are dependent yet distinct from one another
or 2) tightly coupled — where components are more closely integrated and responsive to, but
less distinct, from one another (von Briel et al. 2018; Kallinikos et al. 2010, 2013; Manovich
2001; Yoo 2010). Granularity is also determinative, as it affects the degree to which a
development task can be decomposed into smaller units to be completed by smaller teams or
individuals (Kallinikos et al. 2010, 2013; Kallinikos and Mariategui 2011). Taken together,
modularity and granularity describe a great deal about the composition of the object and
components, that is, their relative sizes, how they are arranged and relate to one another, and
their degree of interdependence (von Briel et al. 2018; Kallinikos et al. 2010). We are also
concerned with the degree to which object components are modifiable, specifically,
editability, as it affects the degree to which multiple implementations, customizations, or
forking are possible at specific points in the technology stack (von Briel et al. 2018; Ekbia
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2009; Faulkner and Runde 2019; Kallinikos et al. 2010). Reproducibility is associated with
embodiment, as it describes the pragmatic or economic cost of producing and distributing
multiple units of the object or component (Kallinikos et al. 2010). In this sense, although
digital objects with non-material components (e.g., a web browser) can be downloaded
unlimited times once the code is written, each copy of a hybrid object or component requires
physical production and distribution (von Briel et al. 2018; Faulkner and Runde 2009, 2013,
2019; Kallinikos et al. 2013).

6.3.2 The development of hybrids

The development of hybrids has traditionally been characterized as requiring a number of
discrete and sequential steps that are not as easily decomposed, distributed or completed in
parallel processes (DeMicheli and Sami 2013). Although there is no single approach to

hybrid development, our purpose is to identify the common features across the literature.

The first step in the development of hybrids is the logical design, which is represented in the
schematic diagram. The schematic diagram provides no information on the physical
arrangement or interconnection of the parts; it is only a logical depiction of the object. Where
one could argue that hybrids and pure software design are similar up to this point (logical
design), they diverge from here. Hybrid objects require a translational action to go from the
digital representation of the object (the logical design) to the object itself. Translational
action refers to “practices associated with movement from one layer of the bearer to another”
(Faulkner and Runde 2019 p.10). For hybrid objects, the material attributes of the
components (e.g., size, heat, etc.) and the interconnection of the parts must be considered.
Moving from the schematic to the actual physical layout is somewhat of an art form, as the
physical nature of the components must be considered (Ackermann 2009). Electronic design
automation (EDA) can aid the developer to generate a netlist that describes each set of
electrical connections by grouping them into a ‘Net’, a group of components that are
electrically tied together. This netlist also describes the electrical value and physical
attributes of the components from component libraries. However, despite the benefits of
EDA software, substantial human expertise is required to evaluate the challenges of size
constraints, heat, radio interference, external connections, component cost and other
operational and environmental factors; two equally qualified designers could easily produce
two different circuit boards of varying quality based on the same schematic (Ackermann
2009).

Sophisticated hybrid objects with multiple components can have subassemblies. When the
object is more complex, it is more difficult to complete the detailed development of any one
part until the entire subassembly is developed, which reinforces the sequential nature of the
process. For such objects, no matter how much care is put into the object architecture and
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design, unexpected side effects arise when each prototype is assembled and tested for the
first time; these are side effects that will not appear when the components are tested in
isolation (Pan et al. 2018). For this reason, where commercial software testing is often
conducted by independent software specialists who test individual components and their
integration according to testing scripts (Wareham and Sonne 2008), for such hybrid objects,
this testing is often performed by the engineers who design the object given their more
tightly coupled and integrated nature (Drechsler and Breiter 2007). Moreover, the integration
of different subassemblies requires ensuring the compatibility of the different components
with market standards (DeMicheli and Sami 2013; Gajski and Vahid 1995).

Several observations about the traditional development of hybrids are worth noting. When
the phases of development are independent, (i.e., logical design, schematic capture, physical
design, prototyping, and testing), they are highly interdependent and sequential. Changes in
the fundamental design are more difficult and expensive to modify later in the development
cycle, as a change of one component “is likely to require extensive compensating changes in
the designs of many interrelated components” (Sanchez and Mahoney 1996 p.65 ). This
generates a certain inflexibility to engineering modifications later in the process, which
imposes some stability on the core structure and principal components (DeMicheli and Sami
2013). In addition, the use of non-standard components requires more time between
development iterations for “procuring materials, creating tooling, trial runs, product
assembly, [and] quality control” (von Briel et al. 2018 p.283; Marion et al. 2012). Non-
standard designs also have an acute effect on testing costs, which limit the frequency of
design iterations and further constrain the possibility of modifications by different developers
(Gajski and Vahid 1995; Mellis and Buechley 2012).

Various software tools can only partially alleviate these challenges. Although EDA offers
substantial automation benefits, as mentioned, human expertise plays a substantial role in the
actual physical design of the object (Ackermann 2009). Other software tools exist for
tracking and integrating concurrent modifications introduced by different developers (Mellis
and Buechley 2012). However, the limited maturity of these tools requires far more
centralized direction-giving; this effect is exacerbated by the addition of multiple software
layers on top of the hardware (Pan et al. 2018; Drechsler and Breiter 2007). Even if
employing virtual prototypes (Bogers and Horst 2014) or advanced manufacturing techniques
(e.g., 3D printing) (Bogers et al. 2016), the development of hybrids “involves more activities
such as transferring premature prototypes into designs that can actually be manufactured”
(von Briel et al. 2018 p.283; Yu et al. 2018), which incur time, especially when compared to

the modifications to software based on writing lines of code (Mellis and Buechley 2012).
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Finally, the high interdependence of physical components can aggravate the business and
financial aspects of the development process to control costs, which encourages linear
process planning to define who contributes at various points of the process (von Briel et al.
2018; Yu et al. 2018). Overall, such centralized direction-giving in the development process
has typically been exercised in organizational hierarchies, that is, following formal rules
within an organization to preserve “agency over component supply and functions” (von Briel
et al. 2018 p.283) or contractual mechanisms that specify development processes and

outcomes that preserve input control over the development.

6.3.3 Conditions for OS development

The basic characteristics of the open-source model have been articulated in a large number of
publications by its advocates (e.g. Raymond, 1999; Cook, 2001; Linux Documentation
Project, 2001; Masum, 2001) through diverse case studies of OS development projects
(Mockus et al., 2002; Scacchi, 2001). Essentially, the open-source model has been described
as an alternative organizational model for development, which is neither market nor
hierarchy (Shah 2006). Diverse and partially overlapping approaches have described it as
commons-based peer production (Benkler 2006), a community-based model (Shah 2005,
2006), open sourcing (Agerfalk and Fitzgerald 2008), collective invention (Allen 1983),
private-collective innovation (von Hippel and von Krogh 2003) or distributed innovation
(Lakhani and von Hippel 2004).

Early OS research primarily concentrated on delineating the unique characteristics of the
‘open source way’ of software development (Crowston and Howison 2006; Feller and
Fitzgerald 2002, 2002; Mockus et al. 2002; Raymond 1999), how open source communities
coordinate work (Ben-Menahem et al. 2015; Crowston and Howison 2006; Howison and
Crowston 2014; Koch and Schneider 2002; Krogh and Hippel 2006) and how they are
governed (O’Mahony and Ferraro 2007; Sharma et al. 2002; Tullio and Staples 2013). As the
success of OS initiatives progressed and commercial companies increasingly engaged in OS
communities, scholars studied the transformation of OS into a more mainstream and
commercial form of developing software, which is labeled as OSS 2.0 (Fitzgerald 2006).
With a strong commercial orientation, OS went from a phenomenon of “ideologically driven
developer communities” (Rolandsson et al. 2011 p.577) to a commercial model of
developing software where many companies engage with communities in collaborative

developments (Niederman et al. 2006).

Although OS is not a homogeneous approach to software development, the specific attributes
(i.e., common characteristics of how work is organized) and conditions (i.e., prerequisites for
the occurrence of OS development) that underlie its model of development are common in
this literature. These attributes are (a) the voluntary nature of the collaboration where agents
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work autonomously and self-select their tasks in (Crowston, 1997; Howison and Crowston,
2014; Lindberg et al., 2016; Maha and Vaast, 2015; Shah 2005, 2006) (b) a loosely
centralized collaboration (Cutosksy et al., 1996; Feller and Fitzgerald 2000, 2002) (c) where
geographically distributed teams or individuals (Cook 2001; Feller et al. 2008; Feller and
Fitzgerald 2002, 2002; Markus 2007) (d) work in parallel development in an asynchronous
collaboration of tasks supported by (Cook 2001; Feller et al. 2008; Feller and Fitzgerald
2001, 2002; Markus 2007) (e) infrastructural tools such as the internet and concurrent
versioning of software (Baldwin and Clark 2006; Egyedi and Joode 2004; Feller et al. 2008;
Feller and Fitzgerald 2002). Table 5 in the appendix provides a summary of the main
attributes and related sources in the literature.

Underlying such characterization of OS development are some requisite conditions. These
are a) modularity (Benkler 2002; Fitzgerald 2006; Howison and Crowston 2014; Lindberg et
al. 2014; MacCormack et al. 2006), b) granularity (Benkler 2002, 2006; Howison and
Crowston 2014; Lindberg et al. 2014), and c) low integration costs (Benkler 2002; Feller and
Fitzgerald 2002; Howison and Crowston 2014; Langlois and Garzarelli 2008). As Howison
and Crowston (2015) argue, to enable asynchronous collaboration, the “open superposition”
of tasks is necessary. This requires that each module creates an ‘“(adequately) finished
artifact” (Howison and Crowston 2015 p. 44) that can be completed by an individual
programmer in a geographically distributed environment. This further assumes not only that
tasks can be broken down into smaller independent problems (modularity) but also that such
tasks are sufficiently granular for independent and geographically distributed individuals to
understand and complete them (granularity). In other words, “to pool a relatively large pool
of contributors, the modules should be predominantly fine-grained, or small in size. This
allows the project to capture contributions from large numbers of contributors whose
motivation level will not sustain anything more than quite small efforts towards the project”
(Benkler 2006, p. 10). Moreover, with requisite modularity and granularity, OS contributors
can practice what Howison and Crowston (2014) call productive deferral, where difficult
tasks can be deferred to allow developers to work on easier tasks (which is therefore

asynchronous and non-linear development).

Finally, these independent modules must be re-integrated to form a useful system. This
requires low instantiation costs, that is, the costs of rebuilding and adding additional layers to
existing work and quality controls over the modules and the costs of integrating completed
modules and making them interoperable (Howison and Crowston, 2014; Benkler 2006).
When these appropriate integration characteristics (e.g., efforts and costs) are sufficiently
low, non-linear, asynchronous development is increasingly feasible: complex, functionally
interdependent work can be broken down and completed without prohibitive decomposition
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and reintegration efforts. Table 5 in Appendix A provides a summary of the main conditions

for OS development and the related sources in the literature.

6.3.4 A Transaction Costs Economics Perspective on Hybrid Development

Transaction cost economics (TCE) has had an established tradition in management studies
since the seminal publications of Williamson (1975, 1985). TCE has been applied in
information systems research, particularly in an attempt to understand how ICT reduces
external and internal coordination costs, thereby affecting firm size and managerial controls
(Gurbaxani and Whang 1991; Malone et al. 1987). The literature on TCE is vast, and
excellent reviews of it exist (e.g., Macher and Richman 2008). It is important to emphasize
that although the core concepts of TCE are described in the works of Williamson (1975,
1985, 1996), TCE discourse has been applied to so many domains in management, law and
social science that a comprehensive interpretation of the theory is well beyond the scope of
this paper. What is relevant for our analysis is that TCE works through the discriminating

alignment hypothesis: that transactions with different attributes will align with governance

structures that differ in their relative ability to economize on particular attributes of
transaction costs (Williamson 1996). Given transaction attributes, the resulting transaction
will be governed by mechanisms conceptualized as falling at some point on a market-
hierarchy continuum. Where the costs of using market-based mechanisms are excessively
high, transactions will be internally integrated into a single organization or firm. With
progressively lower external coordination costs and asset specificity, transactions can be
completed in governance forms that can be considered to be decreasingly complex and less
centrally governed. The most commonly cited TCE transaction attributes are defined in Table

5 in Appendix A.

TCE is a predictive theory. By exploring the conceptual similarity between transaction
attributes and component attributes, the logic of TCE can be extended to predict the
development models (as outcomes roughly equivalent to TCE governance structures) of
hybrid objects according to their component attributes (Niederman et al. 2006). We therefore
focus on several key constructs of TCE, primarily product and production attributes, that are
most useful to our analysis and show how they relate to the five component attributes
discussed earlier. Note that there is some overlap among the concepts, which make a one-to-
one mapping difficult. We have attempted to simplify at an appropriate level to understand
the most important conceptual relationships and extrapolate predictive statements on how the

development of hybrid object components will be governed based on the related TCE logic.
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Table 1. Relating the hybrid component attributes to TCE constructs

Component Relevant TCE Rationale TCE Prediction
Attribute Construct
Embodiment Asset Specificity | TCE says very little about the | None
. differences between tangible
Material i i W 'g i
and intangible assets; specificity
Non-material could vary widely in both cases.
Modularity Interdependence Tightly coupled components are | The development of tightly
Tightly coupled more interdependent. coupled  components  is
. . . dinated th h
Higher interdependence requires coordmnate rought more
Loosely coupled . . centralized governance.
more centralized coordination.
The devel t of loosel
Loosely coupled components ¢ le:{ze opment of loosely
. t ]
are less interdependent. Lower coupte components s
. . coordinated  through less
interdependence requires less-
. . centralized governance.
centralized coordination.
Complex  components and
Product/?rocess production processes require | Development processes with
complexity higher monitoring costs. higher monitoring costs are
coordinated through more
centralized governance.
Simple components and
L . . Development processes with
Monitoring Costs | production processes —require o
lower monitoring costs lower monitoring costs are
. coordinated  through less
centralized governance.
Tightly coupled and complex
Integration components are difficult to . )
characteristics decompose and re-integrate, Components  with  high
. . . . it ti 4
which increases integration mniegration costs are
costs coordinated through more
. centralized governance.
Loosely coupled and less- c 0
. t. it
complex components are easier omponents - wi ow
. it ti 4
to decompose and re-integrate, mniegration costs are
coordinated through less

which decreases integration

costs.

centralized governance.
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Granularity Duration Highly granular components can | Components with  higher
High granularity Frequency be d'eveloped with a shorter | granularity are coordinated
duration, greater frequency, and | through less centralized

Low granularity Monitoring Costs | Jower monitoring cost. governance.

Low granularity components are | Components  with  low
developed with a longer | granularity are coordinated
duration, lower frequency, and | through more centralized

higher monitoring cost. governance.
Editability Asset Specificity | A component or IT object that is | Components that are less
High editability editable is  more ' readily | asset-specific are
configurable to alternative uses. | coordinated through less
Low editability Asset specificity decreases with | centralized governance.
greater editability.
A comp on'ent'o'r IT object tl_lat Components that are highly
has low editability is less readily )
i asset specific are
configurable to alternative uses. )
o ) coordinated through more
Asset specificity increases with )
o centralized governance.
lesser editability.
Reproducibility Transaction Risk | Components with low technical | Easily reproducible
(financial & legal) | sophistication and low | components confer lower

economic costs are easily | financial risk and can
reproducible. therefore  be  developed
through less centralized

governance.

Components with high technical
Difficult  to  reproduce

sophistication and high
components confer greater

economic costs are difficult to ) )
financial risk and are

reproduce.
therefore developed through
more centralized
governance.

What is evident from this exercise is that although there are many useful similarities, some
logical extensions are required to equate TCE transaction attributes to hybrid object
component attributes. We assess these limitations in the Discussion section of this article.
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For our analysis, we do not consider all the transaction governance outcomes identified in the
extensive TCE literature (e.g., joint ventures, franchising, complex versus simple contracts,
etc.). Rather, we collapse them into two generalized governance modes based on decreasing
levels of centralized coordination and direction-giving, namely, 1) hierarchical control and
2) contractual agreements, with the addition of 3) voluntary contributions from the OS
literature discussed previously, given that the OS literature has argued that OS communities
are a competing form of governance mode along hierarchies and markets (Benkler 2002;
Demil and Lecocq 2006; Niederman et al. 2006; Watson et al. 2005). Hierarchical control
refers to any activity that is completed, coordinated, or controlled by a single organization.
Contractual agreements refer to the processes and outcomes described and committed to by
transacting parties as stipulated in legally binding agreements. Voluntary contributions are
the contributions of individuals or organizations that contribute to OS development processes
without any pecuniary compensation or legal obligation. A key characteristic of voluntary
contributions is that they are organized in a decentralized manner, with each contributor self-
selecting their tasks and foregoing any managerial process or price established in contractual
agreements (Niederman et al. 2006; Watson et al. 2005).

6.4 Research context and methods

We engage in an inductive, longitudinal, in-depth case study about WR, an OSH developed
at CERN in collaboration with more than 31 additional organizations. WR offers a powerful
opportunity for theory generation by being “paradigmatic of some phenomena of interest”
(Gerring 2007, p. 101), where “its extreme value on an independent or dependent variable of
interest” helps us to theorize an emerging phenomenon. As a highly complex and
sophisticated hybrid object, the approach allowed us to explore deeply contextualized
patterns in the open-source development of a hybrid. We studied the ecosystem of the
organizations that contributed to the development of WR, namely, firms’ network and

research organizations and their interaction when developing a hybrid object such as WR.

6.4.1 Research Context

Since the 1970s, particle physicists have used the so-called Standard Model to describe the
fundamental structure of matter. CERN has deployed the world’s most powerful particle
accelerators and detectors to test the predictions and limits of the Standard Model, and most
recently, they corroborated the existence of the Higgs boson. WR is the name of an OSH
initiated in 2008 when engineers at CERN were confronted with limited bandwidth and the
impossibility of dynamically evaluating the delay induced by the data links that constitute
CERN's geographically distributed computing infrastructure. WR was developed with the

following unprecedented specifications: a) the transfer of a time reference from a central
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location to many destinations with an accuracy better than one nanosecond and a precision
better than 50 picoseconds??; b) the ability to service more than 1,000 nodes; c) the ability to
cover distances of the order of 10 km; d) and data transfer from a central controller to many

nodes with a guaranteed upper bound in latency.

Prior to WR, the extant synchronization standard for Ethernet networks was the Precise Time
Protocol (PTP), which is standardized as IEEE 1588. WR extends PTP in a backwardly
compatible way to achieve sub-nanosecond accuracy (Moreira et al. 2009). “The
combination of deterministic latencies with a common notion of time to within one
nanosecond allows WR to be a suitable technology to solve diverse problems in distributed

real-time control and data acquisition” (Lipinski et al. 2011 p.2).

WR started as an OSH in 2008 when CERN decided to collaboratively develop the
technology with any voluntary contributor willing to join the endeavor. An open call was
placed in CERN’s vendor ecosystem, supported by a repository, wiki, developers’ mailing
list, workshops and other collaborative tools. Most importantly, an open source hardware
license was created to govern the rules of sharing, distributing and selling the WR designs.
Very early on, GSI Helmholtzzentrum fiir Schwerionenforschung, a large-scale accelerator
facility in Germany, joined the development together with two companies that started
contributing to the WR hardware, gateware, and software development. Motivated by the
purposive engagement of CERN, a larger group of companies and research organizations
joined (31 at present) to progressively shape a diverse and vibrant ecosystem of organizations
that contributed to the development of WR components. Since its beginning, the number of
contributors that joined the WR community has grown beyond any expectation and has
surpassed CERN's capability of keeping track of the different applications of WR, reuses or
adaptations. Although the initial intentions of CERN were to evolve the General Machine
Timing (GMT) protocol, by deciding to develop the technology as an OSH, it eventually
grew into a “multilaboratory, multicompany and multinational collaboration developing a
technology that is commercially available, used worldwide, and incorporated into the original
PTP” (Lipinski et al. 2018 p.2)

6.4.2 Data Collection and Sources

Our study relies on a diverse set of primary and secondary data to provide richness and
enhance the validity of our findings (Alvesson and Skoldberg 2009; Klein and Myers 1999).
We collected data across three years (2017-2019) and conducted more than 35 interviews. In
addition to the interviews, direct observations were conducted from two study visits to CERN

in 2017 and 2018, including the participation in a WR developer workshop. Interviews were

22 A picosecond is an SI unit of time equal to 10—12 or 1/1,000,000,000,000 (one trillionth) of a
second.
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chosen on the initial recommendation of the WR lead team at CERN, with subsequent
recommendations from the interviewees. Our objective was to interview a representative
cross-section of the WR community. The interview process was concluded when no
significant additional insights were obtained from the data and theoretical saturation was
achieved. The major themes in our interview protocol are summarized in Appendix B. In our
results (section 4), we present interview excerpts from the study, with alphanumeric key

identifiers (corresponding to Table 2) that represent quoted interviewees.

Secondary sources included information retrieved from the WR repository and Wiki, which
contains general information about the WR project (i.e., newsletters, a list of companies
involved in the WR ecosystem, and presentations and reports from workshops), information
about WR technology (i.e., synchronization, data delivery and standardization in IEEE1588-
2008) and the WR system (i.e., the switch, master and node), a list of users of WR
technology, and information about the open hardware license. We also gathered data from
the websites of WR users and suppliers, the research project websites that have integrated
WR, social media and academic publications. Table 2 presents the details of each of these

sources.

6.4.3 Data Analysis

We performed a three-stage inductive analysis by relying on established procedures for
inductive research (Miles and Huberman 1994). We iterated between data and theory to shed
light on emergent themes and constructs. The first stage was devoted to reading the abundant
material available online about WR. We produced brief summaries that moved from
technical descriptions to managerial inferences. Second, in-depth interviews were conducted
to understand the primary agents involved in the WR community, their contributions to the
technology development and how the development was organized since its inception until

present. Three rounds of interviews were implemented in this process, as Table 2 describes.

We iteratively analyzed the interview transcripts by coding relevant observations and
contrasting them with our analysis of secondary sources. Data was coded by one of he co-
authors and it was progressively discussed with the other co-author, especially when the
categorization was unclear to reach an agreement. We generated research memos that
synthesized the emergent themes identified in the analysis and compared them with prior
research. Finally, we confronted the empirical data with theory. Table 4 and Appendix C
provide a detailed description of the progression of our empirical analysis towards the

theoretical constructs.

To validate our findings, we applied the respondents validation (Miles and Huberman 1994)

by sharing our initial findings with the participants of the study and the WR community. The
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preliminary results were presented at a workshop on 6-7 October 2018} to an audience of 56
participants of the WR community to gather feedback about the main results of the study.
Additionally, a draft was shared with the interviewees to solicit their feedback and identify
gaps in the technical details of WR technology and development history. Finally, we
triangulated the results with an independent study performed in parallel in October 2018
based on a text-mining analysis of the WR Repository and WR community exchanges. This
parallel study informed the sequential data collection phases by helping to identify new
contributors to WR development and by disentangling the separate developer contributions to

WR components.

23 The workshop information is published at https://www.ohwr.org/projects/5/wiki/oct2018meeting.
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Table 2. Details on the data collection and use in the analysis

Source

of

data Type of data Description Identifiers Use in the analysis
Interviews First Round Research scientists and engineers in research | RSE1 (2 interviews) To gather data and an overall
=18 infrastructures RSE2 (2 interviews) understanding of the process, chfferent
phases, agents and actions in WR
RSE3 development.
Personnel at the technology transfer offices of the | RT1
research infrastructures RT?
P1
Other staff in research infrastructures involved in WR | R1
development RD
Companies developing software CS1
Companies developing hardware CHI (2 interviews)
CH2
CH3
Companies implementing pilots of WR with different | CD1
customers CcD2
Customers of WR not involved in WR development CAl
Second Round Research scientists and engineers at research | RSE4 To gather data on how work was
infrastructures organized and coordinated in the WR
n=13 RSE 5 or s
development process within the
different phases identified.
Other staff in research infrastructures involved in WR | R3
development R4
RS
Companies developing software CS2
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Companies developing hardware CH4
Companies implementing pilots of WR with different | CD3
customers CD4
Customers of WR not involved in WR development CA2
CA3
CA4
CAS
Third Round Research scientists and engineers in research | RSE1 To verify the interpretations and
_ infrastructures (n=3) provide increasing detail on WR-
n=4 RSE 5 .
specific ~ components and  each
RSE 6 development model (i.e., hierarchical
- lonine b control, contractual agreements and
Companies developing hardware CH1 voluntary contributions) per
component used over time.

Observations | First Visit April 2017: Visit CERN to see infrastructure, timing systems department, | To gain additional understanding about
technology transfer office WR contributors, users, the
- — - interacti th how th
Second Visit October 2018: Workshop on WR with more than 56 participants. Presentation of Herattiofts atmong tiem and how they
. . . organize the work.
preliminary insights about the study to gather feedback from participants.
Secondary Repository 5,076 commits, To gather data and obtain an overall
data understanding of all WR technology,
36 developer members . .
its components, interdependences,
Wiki Documentation about cycles of development, different
t i ti
- WR Technology: WR Switch; Master (Data, Timing); Node (WR PTP Core); zgzﬁ%ii)lrs Vzr;éorrlrsl;i? Zi/i:?l%ss ;m{);;}%
WR good practice guide; Calibration (default parameters for WR switches/nodes, | joyel opmenit
procedure); data-delivery; synchronization; Standardization in IEEE1588-2008; ’
and a Frequently Asked Questions section.
- WR Users: 30 users of WR and 16 evaluating the technology (documentation
about the organizations, descriptions, and presentations)
- WR Projects: 13 publicly funded projects using WR
Newsletters 5 newsletters (2013, 2014, 2015, 2018)
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Meeting Minutes

10 meeting minutes (2008- 2018)

Published
Workshop 10 Workshops (2008- 2018)

1 Developer meeting (2010)

2 Tutorial WR workshops (2017, 2018)
Blogs/Websites 43 websites of users and projects
Publications Presentations (n=64)

Papers (n=53)

Master thesis on WR (n=2)

Posters (n=2)

Demos (n=3 in 2010 and 2013)

Training material (n=2 in 2013 and 2016)
Test reports (n=18)

Other data

Parallel WR
Study

Text-mining analysis of an independent study implement by another researcher
studying WR

To triangulate facts and observations
regarding WR development with the
analysis of commits and contributors.

170




6.5 Findings

6.5.1 Isolating the Attributes of a Hybrid

We decomposed WR into its different components to identify their specific attributes (see
Figure 2 for a graphical representation of the components). Table 3 provides a description of
each WR component with excerpts from the interviews and data to substantiate their
attributes. For each component, we qualify a) embodiment — dichotomously as material or
non-material — and the four additional attributes of b) modularity, c) granularity, d)
editability and e) reproducibility as a matter of degree, that is, high, moderate or low.

Figure I WR representation of switch synchronization hierarchy (Moreira et al. 2009)

Control

Database

[ 2000 nodes
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Table 3. Data analysis and theoretical constructs

WR components

Illustrative examples of empirical observations and interview
excerpts

Theoretical observations

Theoretical
constructs

Software

Switch

Dedicated
software

switch

at91bootstrap-3.3

barebox-2014.04

Linux-3.16.38

buildroot-2016.02

General-purpose
software — used both
in the switch and node

Node

General-purpose
software — used both
in the switch and node

Dedicated
for the node

software

“Switch is like a router with a very precise timing. Nodes is a
distinct component but WR is everything, and how you implement
both: it has a specific circuit that allows implementing both” CH1

“It is much faster to develop the software than anything else. So,
for instance, they could not test it until we managed to get a
prototype of the hardware” RSES

“The development cycle was longer for the hardware than the
software because if we lose something, we could compile it. It
takes us a second, and then you test if it works. The test cycle is
very fast.” RSE 1

“I was working in the protocol and the PTP itself, whereas A was
working on some hardware; then, I was also working on some
gateware parts of the switch and then B was integrating all
together. B was not coordinating; he was integrating and taking
different inputs and trying to make them work. For example, the
software that interacts with gateware and hardware needs to
speak with one and the other. You still need to integrate them”
RSEG.

"It is a multilevel process. For the software, it required to be
integrated with the hardware. Tests for each of the components,
and as soon as they were integrated, we run other tests. The
testing is done by the same developers; we do not have a separate
team for testing” RSEG.

- No major differences between the software
for the switch and the node

- Development of WR software was faster
than for the other components

- Easy to reproduce with other developers
contributing

- Loosely coupled, different developers,
contributing in parallel to the general and
dedicated software for both the switch and
nodes

- Highly granular enabling two companies,
developers at the sponsor organization and
other distributed voluntary developers to

contribute in parallel

- WR software was constantly edited and
generated more than five prototype versions

Non-material

Modularity
(high)
Granularity
(high)
Editability
(high)
Reproducibility
(high)
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Gateware | Switch | General-purpose “Gateware and software it is easier to split it among companies, | - No major differences of the gateware for | Non-material
gateware — IP Cores | but hardware does not make sense” RSE6 the switch and the node .
4 both i b Modularity
t .
use. © i the "We had different actors working in parallel. I was coordinating | - Development of the gateware was split | (moderate)
switch and node . . . . .
the contributions that came from gateware Y that was integrating | among different contributors Granularity
Dedicated switch ever)./thmg. together. In the beginning, we had two companies | Easy to reproduce with other developers | (high)
gateware helping with the software and gateware, the other two for the contributing
hardware. X was integrating everything” RSEG. Editability
Module . .
) - Components more tightly coupled | (high)
specifications: hdlspec | “We are now developing gateware for new designs of the nodes, .
] compared to the software of the switch and o
so we are supporting different applications of the nodes because . Reproducibility
Gateware-software i p " lication” RSE6 node; different developers were (high)
interface 1 depends on each appiication ' contributing, but most work is performed by
a core group
Node | General-purpose
gateware — IP Cores - Gateware was edited but was more stable;
used both in the three prototype versions
switch and node
Dedicated  gateware
for the node
Hardware | Switch | Electronics & | “If we say a switch, we think about a hardware box” RSE1 - Highly stratified (many layers) but with | Material
Mechani S . .
cehanies “The switch has 18 ports, and it is a completely different h;fg“h 1nterde(11)ender;c1es amogg layers - for Modularity
WR Switch Box: It is | functionality. It has to forward data between ports. The switch © 1ca;:y. an. pet or@ar:;:e .1ilsuTs (mlore (low)
a white metal 19” 1U | looks like 18 ports that are interconnected. It implements more granularity 1s associated with less time .
i ) accuracy) Granularity
case with two cooling | standards and because it is a generic device and needs to allow (low)
fans in the back different configurations. You implement many more protocols | - Low granularity — entity block; more
Main PCB- Tt confai than in the nodes. Basically the switch is much more complex | granularity translates into inefficiencies and | Editability
: It contains
] ) than the node because it is 18 times the node; plus, each of the | lowers the switch performance. (moderate)
the main electronics . s to int ! betw " Ives: bl g
components, ARM ?or; reeds 1o era; 5 ¢ been erf1se ve;, P uS,lly ou ;ee °1- Low modularity — components tightly | Reproducibility
processor, Xilinx impiement more ﬂe}f’ tity lecause o ne; s t? alow ifferent coupled; splitting the switch translates into (low)
FPGA chip, types of configurations; plus, you need o implement more more standards to be applied to relate one to
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oscillators, memories,

etc.
Backplane PCB: It
contains electrical

connections to 18 SFP
cages, debug USB-
UART ports, LEDs,
etc.

features let’s say” RSE6

"It would not work to decentralize the WR hardware design. It
needs to be one company that controls the design for one device.
For software, you can have different people working on different
parts. On gateware, it works decentralized like the software, but
for hardware, this is not possible, especially for the switch. I do
not see it working” RSE6.

"The switch is quite a compact device, it needs to work like one
unified device, and if you have different companies, you need to
define different interfaces between the parts that they are
designing, test each part, see that they work together, and you
make it much more complex, too much work and much more
expensive. For the precision, it is also better that you do not have
so many connectors, here, it was no practical” RSE 1.

“For example, when I was working on one IP core in the switch, 1
did test it alone, I gave it to X who was integrating everything and
then we were debugging” RSE6

“You could not make it more granular, it would make it many
costs and extra work and less efficacy in terms of precision. It
would be harder to make it work” CH1

another, less accuracy as it is lost across
modules, more effort to split and tightly

coordinate work across teams, more costly

- High stability of the switch version — the
actual version is very similar to the first
in 2012; very stable as the
development cycles were too long and very

version

costly in terms of prototyping and testing

- Very difficult to reproduce; requires
manufacturing companies with engineering
expertise to reproduce each unit (the
marginal cost is significantly higher than 0)

and distribute them

Node

WR PTP core

“If we think of a node, we think about an IP core that you can
instantiate in different hardware” RSE2

“Node is an end device whether it receives or sends staff to one
port. You throw or you digest the data. It is like one of the switch
ports; plus, you need to implement, like in the switch, WR
protocol” RSE 6

“The development of the node it is easier than the switch” CH1

“(Referring to WR hardware development) /n hardware, it can

- Less stratified than the switch; it is 1/18
times the switch (fewer layers)

- Heterogeneous instantiations of the nodes
depending on the context of the WR
implementation (e.g., sea, altitude, pressure,
etc.)

- Moderate editability as the number of
versions of the node is associated with all

Material

Modularity
(low)

Granularity
(low)

Editability
(moderate)
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take us weeks or months to do the same for software. This is the
same for open or not open stuff. It costs you a lot to do a
prototype in terms of money, time; you need to wait for it and test
for it. It is much more difficult: more expensive, more time, more
difficult. Once you do it, you do not change it very often" RSE1

“The node is different because the first node was a spec board
and designed here, and then one company developed a simplified
version. Some people took this design and made different formats,
and this was without ourselves doing it, we did not pay for the
design, it was because people needed it’ RSE 6

the diverse WR implementations

- Low reproducibility requires
manufacturers to source prototypes and
distribute them

- Low modularity — splitting the node is
ineffective; each version of the node had a
core group of developers

Reproducibility
(low)

175




Some general patterns should be noted. For the material components of WR, specifically, the
hardware layers of the switch and node, we found a) low modularity and b) low granularity.
Where the switch was more stratified compared to the node, both had high interdependencies
among the layers required for timekeeping precision; additional layers reduced accuracy.
Likewise, the components could not be split into more granular parts as this would generate
interoperability problems across component interfaces and more standards to implement,
which would further impede chronological precision. Additionally, for the switch and nodes,
we found c) moderate editability; multiple developers can act on the design of the switch and
the node and modify them but to a lesser degree than the software components. Although the
switch was a more stable technology, the node offers greater editability, and as a result, there
are five times more versions of the node compared to the switch. In addition, we found d)
low reproducibility, with an average cost per node in the range of 1,500 dollars and the
switch approximately 10,000 dollars. The development process involved physical
prototyping that must be manufactured and acquired to test its performance, with
reproducibility as an important attribute. As CH1 describes, “If someone wants to use WR, 1
need to manufacture it. However, in software, if I need to modify something, I do not incur
NRE [referring to non-recurring engineering costs] because I modify [and] compile and
users or any developer tries it, but in WR, I need to manufacture another prototype, and
these costs are neutral for me; I need to incur costs in electronics. This process of
manufacturing has additional costs, and of course, if I need to sell it, I need to certify it to

ensure that it is safe, and this has important additional costs”.

Across the software and gateware layers of WR, we found high levels of a) modularity b)
granularity c) editability and d) reproducibility, as described in Table 3 through our data,
which made the development of such layers faster and the distributed contributions easier to
organize. As RSE1 explains, “The development cycle was longer for the hardware than the
software because if we lose something (in the software), we could compile it. It takes us a
second, and then, you test if it works. The test cycle is very fast”. As RSE6 further describes,
“Gateware and software it is easier to split it among companies, but hardware does not make

sense’”.

6.5.2 Three Phases of the Evolution of WR Development
The hybrid model for developing WR underwent three main phases, where the hierarchical,

contractual and voluntary contributions varied over time (see Table 4).

The first phase (from 2008 to 2012) began with the project launch in 2008 and concluded
when WR achieved the first version of the switch and the node in 2012. WR was launched as
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an OSH project, a decision that is consistent with CERN’s traditional operational philosophy
and raison d'étre. As Bij et al. (2013) explained, “OSH also fits CERN’s role of transferring
the technologies it has developed to industry and to stimulate industry with innovative
products such as the WR”, p.7. As RSE 5 further describes, “To develop WR as open source
would help us to get specialist knowledge, where we know that small companies play a large
role; but on the other hand, we would need to support them and help them to achieve the
quality we need. Companies benefit from that process because it helps them improve and

produce better hardware”.

However, given that WR would be a sophisticated technology conceived for a very specific
purpose and due to the different interdependencies and highly integrated nature of the switch
and the node, it quickly became evident that the design of the first versions of both the switch
and the node needed to be controlled and directed by the sponsor, CERN. As stated by one
hardware developer, “CERN was our grandfather — not only when we were developing WR

together but also in the first moments when we were wondering what was next” (CHI).

Contractual arrangements with two hardware suppliers and two software suppliers enabled
the development of the first prototype, which required tight coordination among tasks and
development teams. The development followed the four major sequential and consecutive
steps of 1) requirement and specifications, 2) design, 3) implementation, and 4) testing,
where the outcomes of each step were highly dependent on the results of the previous step.
Although some parallel and asynchronous development was conducted by peripheral
research organizations, overall, the development followed planned and sequential phases
with low voluntary contributions. This phase is characterized by a predominance of
hierarchical control by the sponsor. Beyond fulfilling the technical requirements of the
switch and node design, the strong initial protagonism by CERN can be viewed as part of an
initial community-building phase to build interest and confidence in the project. As stated by
a CERN engineer, “After allocating some funding for the first companies to join, we needed
to convince others to invest in developing WR [as voluntary contributors], which was not an
easy task. I had to reach out proactively to the companies we knew could do it and convince
them. We needed first, to select companies that had not only the expertise but also the
capacity afterward to provide support to the WR product” (RSE 5). The initial reliance on
hierarchical control supplemented with several key contracts served as a signaling
mechanism: “We knew CERN was serious this time by engaging firms, and this also sent a
message to other organizations [as voluntary contributors] that could collaborate with us”
(CH2). These initial signals were determinative in convincing voluntary contributors to later
join in the development cycle: “Other organizations and potential users joined and agreed to

invest in the development because they saw other companies developing WR, and they know
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that those companies will actually be able to provide the technology once the R&D process is
finished” (CH2). CH1 further explained the implications of such engagement for companies:
“the difficulty of WR, but this is the same for any other OSH, is that it needs to be
manufactured along the process. That means that there are additional costs. For example,
you have the additional costs of qualification to prove that it works and later on in the
process, to certify that the design works, and this is an overhead that you do not have in the
software layers of WR or any software (...) and if I need to introduce any modification, then |

need to start all over again”.

The second phase (from 2012 to 2015) began with the first WR prototype release. At this
point, first users began implementing WR and reported bugs, whose fixes were incorporated
into further designs. Novel instantiations of the node began to appear based on the unique
requirements of the installations of other scientific research infrastructures. As such, this
phase has high voluntary contributions and minor changes to the design of the switch but
many new designs and configurations for the nodes. This phase is characterized by the low
direction-giving by the sponsor (the switch was stable) with many new designs of the nodes

emerging from a growing WR community.

Some extraordinary examples of WR implementations that lead to new node designs and
switch modifications include meteorology research institutes that need to transfer time from
atomic clocks over distances up to 1,000 km, the neutrino telescope KM3Net located in the
deepest seas of the Mediterranean, and a five-cubic kilometer Cherenkov submarine detector
in Toulon (France), Sicily (Italy) and Peloponnese (Greece). At 4,410 meters above sea level,
China built the Large High Altitude Air Shower Observatory (LHAASO), the world's largest
and most sensitive cosmic-ray observatory for gamma-ray astronomy, which consists of more
than 6,300 detectors and 12 telescopes. Four layers of WR switches (583 in total) covered
7,344 nodes of a Square Kilometer Complex Array (KM2A) detector and a Water
Cherenkov Detector Array (WCDA) (White Rabbit wiki).

The third phase (from 2015 to 2020) began when WR started a standardization process to
guarantee the stability of the technology, which raised awareness about the potential of WR
across industries. In this phase, WR reuse and implementations emerged in
telecommunications, financial services, smart grids, air traffic control, electronics and
industry 4.0 applications. As a result, new versions of WR switches and nodes were
developed as proprietary applications and not disclosed to the WR community. Voluntary
contributions by the senior contributors to WR (both companies and peripheral research
organizations) were balanced in this phase by proprietary contributions to the switch and

node designs. Hierarchical control was exercised by the sponsor, not in development, but in

178



the standardization of the core technologies along with the coordination and aggregation of

the WR community contributions.

In this phase, we find a growing number of increasingly heterogenous adoptions by industry.
Examples include Vodafone, which conducted a successful proof of concept in 2017 to
distribute accurate timing through the live Vodafone network where time was measured with
a surprisingly small error of less than one nanosecond over a cascade of four sites that
spanned a total distance of 320 km. As reported in the WR wiki, “Needless to say that this
result builds strongly on the outstanding work delivered by the WR community over the past
vears, and we are thankful to all of you who contributed. We are absolutely convinced that
with WR, you have created a game changer that will enable marvelous new technologies in
the future!”(JK, The Netherlands, 9/6/17). In financial services, the Frankfurt Stock
Exchange implemented WR because it needed a time synchronization technology superior to
the current standards of NTP and PTP. As CHI1 describes, “Financial transaction
organizations are required by law to prove that the time reference used for stamping
transactions is UTC [Coordinated Universal Time] traceable. Thus, the accuracy required is
in the millisecond range, but WR allows the nanosecond range with high accuracy, allowing
legal timestamping applications.” Similar implementations at other financial exchanges are
appearing in the media, as “The financial industry has easily become the most obsessed with
time” (Markoff 2018 p.1). Table 5 provides detailed information on the adopters of WR

throughout the three main phases.
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Table 4. A hybrid model of development over time

Phase 1 — Design process (first prototypes)

2008 2009 2010 2011

Trigger: WR designs kick off with one supplier
supporting WR specifications

Phase 2 — Users/developers join for testing and
design new versions

2012 2013 2014 2015

Trigger: First commercial WR prototype

o First users of WR contribute reporting bugs to

'§ o Design of the first version of the switch and the switch, which impact further switch designs
S node controlled by CERN (1 manager, one ¢ High voluntary contributors to design multiple
S integrator, two coordinators of components) versions of the node, conditional on the
% | o Contractual agreements with HW and SW different applications of WR
5 suppliers to allow a first prototype to emerge | ® Contractual agreements for WR for production
@ that required strong coordination among tasks | ® Low direction given by the sponsor as the
= and teams switch was stable, while there was high
& | o Low voluntary contributions that include few generativity as the new designs of the nodes
research infrastructures were shared in the repository as the WR
e High direction provided by the sponsor was community was growing
given to the design
WR Review of | Switch 4th WR Contract WR 8th WR | The
workshop | Switch MCH Worksho | with Starting Worksho | standardiz
1. Project | MCH card v2 p. PTP supplier for | Kit p, ation
start. card v1. PCB working | assemblage | available. | CERN, process in
ready. ona WR | (production Geneva IEEE with
node. of (Switzerl | many
prototypes) and). users of
CERN WR.
‘2 received 4
> WR V3
=

Phase 3 — Applications outside the scientific

industry, forking, and parallel proprietary

developments

2016 2017 2018 2019

Trigger: Standardization process of WR raises

awareness across industries

o First implementations in other industries (e.g.,
financial services, telecommunications, etc.)

e New proprietary versions of WR switch and
nodes conditional on the particular setting
emerge; designs were developed inside the
organizations and not disclosed to the
community
Voluntary contributions are balanced by
proprietary contributions to the switch and node
designs

Release | The 2nd WR WR

5.0 of second Tutorial officially
White producer | Workshop | standardize
Rabbit of White |, Beijing | d.

switch Rabbit (China).

software | switch

is out. 45 | hardware

improve | joins.

ments

and

extension
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switches. s made.
White White Report on | WR 6th WR WR EISCAT, | Release EPFL- More The first A new
Rabbit Rabbit measuring | Demonstr | Workshop. | switch Sweden | 4.2 of STI-IEL- | users of major working
workshop | workshop | propagati | ation V33 impleme | White DESL- WR- beam time | draft of the
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6.5.3 WR Development: A Hybrid Model for a Hybrid Object

When CERN decided to develop WR technology as OSH, it soon became evident that the
very specific function, sophistication, and interdependent nature required that the core
technological design be established before significant voluntary contributions could be
incorporated. As a result, traditional hierarchical and contractual mechanisms were employed
towards greater directionality and control in the initial development phases. After the core
technologies were developed and stable, an increasing amount of voluntary contributions
were incorporated at all levels of the WR technology stack. We label this as a hybrid model
of development. The tightest hierarchical controls were enabled through employment in
traditional engineering and development companies with CERN as sponsor and integrator.
Moderate control was enabled by formal contracts that enabled the development of
specialized components that were beyond the scope of capabilities for the core WR
development organizations. Voluntary contributions originated in the WR community, with
some centralized coordination and integration by CERN. This hybrid model is depicted in

Figure 2.

Figure 2 Overview of WR development organization
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Hierarchical control

The most central function for CERN as the sponsor and principal user of WR was to provide
sponsorship, legitimacy and centralized control to the project. This means the coordination of

the initial specifications of WR across both contractual partners and voluntary contributors,
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the internal management of the more complex and interdependent WR components (the
hardware), and the aggregation and integration of the voluntary contributions. Given the
heterogeneity of these diverse contributions, CERN put a team in place to orchestrate WR
development. As RSE explains, “4 was coordinating the contributions that came from
gateware, B from the software and C of the hardware of WR switch and node. D was
integrating everything together. In the beginning, we had two companies helping with the
software and gateware, the other two for the hardware. Each of us was coordinating the
contributions of the company and the ones coming from other organizations. D was
integrating everything [...] and E was in charge to coordinate everything as part of the
department role more from a management perspective”. As CHI claims, “WR worked
essentially because of the leadership of CERN”.

The need for a differentiated approach based on component attributes is evident in the
following quote where RSE 6 explains how the hybrid model worked: “There was internal
work at CERN, different work at companies and then other contributions by other
organizations that voluntarily joined and contributed, and all this work was coordinated and
integrated at CERN”. RSE 2 further justifies that “Whenever we want to have something
done, we put a contract. Volunteer contributions are nice, contributions for free we accept
them as developed packages, it shows that it works, and then we integrated them in the
switch. However, when you need something specific, and if you do not know if it works or if it
will not work, we need to control it. For software, you can be a one-man company, whereas
for a company that develops hardware, you need licenses, expensive equipment, and before
you get paid for what you do, you need to send it for production, which costs money, and for

prototyping, which costs money again, and this does not translate into software”.
Contractual agreements

The contractual agreements employed were clustered around the following four main
activities: 1) contracts awarded to companies to gather and manage WR specifications across
the WR development community; 2) contracts to develop the repository and main hub for
WR collaboration; 3) further contractual arrangements to contribute to the first switch and
node prototypes across the software, gateware and hardware components; and 4) contracts
for prototyping, where manufacturers were asked to produce a few units of WR switch and
nodes and distribute them across the community for testing. All of these contractual
arrangements specify that all documentation that results from the development must be

shared in the repository and are governed under an open-source license.

An interesting facet of the contractual agreements was that many vendors included voluntary
contributions as part of their deliverable. In these instances, complete documentation also
included contracting partners’ efforts in supporting other voluntary contributions to WR
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development. That is, if their component included volunteer contributions from the WR
community, they were equally responsible for this. As RSE4 explains, “You have to be ready

to document and publish everything. Support may take more than you want”.

Voluntary contributions

As WR deployments increased beyond the original scope of scientific research
infrastructures, a more heterogeneous community of WR users engaged in developing the
software, gateware and hardware to customize it to the specific operational requirements of
their diverse applications. A portfolio of tools common to OS initiatives was used in WR
development that facilitated the customized applications in addition to the standard WR
layers. These tools included documentation wikis, issue tracking, dedicated mailing lists,
peer review over email, regular face-to-face meetings, dedicated workshops, and proprietary
tools to allow distributed hardware development such as electronic design automation and

field-programmable gate array (FPGA) development tools.

The voluntary contributions were diverse. Some were focused on the core technologies,
whereas others emphasized the more peripheral aspects of the nodes and software. Some
volunteers contributed to testing, where other volunteers participated in WR OSH
communities with the explicit purpose of cultivating skills that could be monetized as they
worked with their own clients. As RSE 6 shares about one organization that voluntarily
contributed, “X’s contribution to WR was a measurement of one of the key things that WR
used to reach the nanosecond. They invented this.” Another example of a voluntary
contribution is "Y was contributing from the very beginning although it is hard to point to
one thing. They were contributing to some modules in the switch to some extent” (RSE 3). In
some cases, the voluntary contributions were related to testing the first WR prototype in
2012: “When organizations started using WR, they started to find bugs and were doing bug
reports but not a development of some kind. All of these bug reports resulted in new releases
of the switches, and people [and] other research infrastructures helped developing new
releases”. Other companies contributed to WR communities to learn: “Other organizations
contributed to discussions. Minimum effort contributors but their business idea was to
contribute to the discussions so that they could be the first to use WR in case they had the
first client to make sure that they could use it”” (RSE 5).

In addition, a set of regulatory devices, such as the creation of a new open-source hardware
license, were also put in place to agree on codified norms across organizations and ensure the
stability of the core technology. This element is particularly important given that whether via
contracts or via voluntary engagement, all contributors in WR development are

organizations. As RSE 6 explains, “We always find companies in open hardware ...it

187



depends on the type of hardware. If it is simple hardware, then you will find individuals with
tools that allow simple designs, but for designs that are complex such as WR, only companies
and organizations [participate] because the tools cost many money." Previous research in
technology ecosystems and platforms has emphasized the importance of standards and
disciplined versioning of core technologies as insurance of a fair economic return on

investments by implementors, re-sellers, and complementors (Wareham et al. 2014).

6.6 Discussion

6.6.1 Theoretical Implications

First, our study contributes to recent conceptualizations of digital objects by uncovering the
differences from hybrids to purely non-material digital objects. The study of WR identifies
that the physical nature of the components of hybrid objects deviates from the attributes
commonly associated with digital objects in both essence and degree. WR, and by extension,
many sophisticated hybrid objects that contain material components, exhibit less editability
and less reproducibility and are less modular and less granular. As a consequence, the efforts
for their decomposition and reintegration are higher compared to pure non-material digital
objects. As such, the nominal and relative attributes of the hybrid object components of a)
embodiment, b) modularity, ¢) granularity, d) editability, and e) reproducibility have strong
implications for how their development is organized (Akhlaghpour, Wu, Lapointe,
Pinsonneault, 2013). As our analysis shows, at certain levels, these attributes can inhibit the
possibility for development to be completed in conditions normally ascribed to OS. In the
case study of WR, this resulted in the coexistence of voluntary contributions combined with

traditional hierarchical and contractual models of development.

This rationale can be specified as follows. The development of tightly coupled components
requires highly sequential processes with intensive coordination and control over the
activities. A change of one component may require extensive compensating modifications in
the designs of many other interrelated components. Consequently, the development cycles of
hybrids are longer, and modifications and one point may require more time and resources
given the component interdependencies. Relatedly, the granularity of the components is
important if the nature of the object does not permit a reduction into numerous independent
elements. It follows that the editability, or the ability to modify it continuously and
systematically, can be lower in hybrids due to tighter integration with the hardware. Where
this is not always the case (personal computing devices are an obvious example), many OSH
projects are designed to address specific needs that have yet to be fulfilled by mature
commercial HW/SW solutions and consequently, will likely have a higher level of coupling

between these layers. The material aspect of hybrids can reduce their reproducibility, which
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implies non-negligible production and distribution costs and dissuades voluntary
contributions, as volunteers normally need to incur significant expenses related to
prototyping and testing. As evidenced in this case, this is very much correlated with the

sophistication and economic costs of the technology.

We have re-visited some fundamental ideas of TCE to explain the modalities of developing
hybrid objects. TCE certainly does not explain all aspects of our OSH phenomenon, and we
clearly do not want to oversubscribe it as a theoretical lens (Fischer 1977). Through the
discriminating alignment hypothesis, TCE predicts_governance structures according to the
transaction attributes (Williamson, 1996). In exploring the conceptual equivalence between
transaction attributes and component attributes, we demonstrate that some TCE logic and
constructs are particularly well-suited to make predictive statements about when OSH
development will be 1) hierarchically or 2) contractually governed or 3) built on voluntary
contributions in a more traditional OS manner. We simplified our use of TCE by collapsing
the development models to two major outcomes (hierarchical control and contracts,
supplemented by voluntary contributions), but given the novelty of OSH, we believe that this
predictive capacity should not be underestimated. CERN chose to develop WR by leveraging
the expertise of a significant number of heterogeneous voluntary organizations willing to
develop WR as an OSH; however, following a similar logic of the strategic alignment
hypothesis, WR component attributes determined the need for a mixed model of
development to emerge that combined voluntary contributions with commercial contracts and
hierarchical control.

Most likely, the most potent TCE construct in our analysis is interdependence, as it
envelopes modularity as a predictor of development governance. Object components with
low modularity are more tightly coupled. This applies to both their physical and logical
attributes of all technology layers and, therefore, also to their development process that
requires greater linear coordination and centralized control. This logic applies equally to the
TCE constructs of product complexity and monitoring costs, which although they are also
strong predictors, they can be more ambiguous as observable attributes of objects or
components. In addition, the TCE constructs of duration and frequency are also useful in that
they indirectly relate to the granularity of the component. TCE posits that transactions with a
shorter duration and frequency are governed by less centralized, simpler market-based
governance forms. Similarly, more granular components can be developed in a less-
centralized or voluntary mode. The TCE construct of asset specificity is somewhat
synonymous with editability to the degree that the component can be re-configured for
alternative uses (low asset specificity = high editability). As TCE predicts that low asset-
specific transactions are governed through less centralized governance, it follows that we

found that the more highly editable layers of WR were developed through less centralized
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contractual or voluntary processes. Transaction risk is more of an omnibus TCE construct
that refers to the potential economic loss, IP infringement, enforcement costs, or any general
legal or financial loss. It follows from TCE that higher transaction risks will be governed
through more complex and centralized governance forms. Where these elements were present
in our analysis of WR, they did not emerge as a focal concern from our respondents to the
same degree. This may be a consequence of the unique culture and social norms that are
common in scientific research organizations. Interestingly, TCE has very little to say about
the material versus non-material embodiment of object components. This may be because
where there is some correlation between the material attributes of the component and its
modularity, granularity and integration characteristics, this correlation can vary considerably
based on the design and complexity of the object.

6.6.2 Practical Implications

Big-science research infrastructures develop some of the most sophisticated technologies in
existence. Researchers are currently experimenting with OSH to develop new complex
hybrid objects that will find multiple unintended applications in different industries
(Wareham and Pujol 2019). In parallel, commercial interest in OSH is growing, particularly
for organizations that want to minimize the non-recurring engineering costs of nonexistent
technologies or solutions. Although open source is a powerful model that can serve as a low-
cost source of frontier technologies, it might need to be supplemented with more traditional
commercial development processes at specific points based on the component attributes. A
need for hierarchical control and contractual agreements is likely greater for OSH projects
that are highly sophisticated, which require unique expertise and greater financial
investments. The WR case illustrates how the transposition of the open-source model to WR
was possible with the combination of these traditional managerial mechanisms that allow
direction-giving and control at specific, necessary phases of its development. Combined with
the generative nature of the OS community, they made it possible for WR to be deployed as a
powerful precision and synchronization technology in many industrial settings. It will be
compelling to follow the emergence of OSH movements in other realms of high-end

commercial computing such as the RISC-V movement in integrated circuits.

6.6.3 Limitations and Future Research

Our findings are subject to limitations that warrant further investigation. First, we study an
extreme case of OSH developed with the sponsorship of CERN. In this regard, WR is non-
representative, but it is studied with the goal of understanding something that is likely to
become more predominant in the future. Furthermore, for theory generation, it is beneficial to
study cases with high values on variables of critical interest. Obviously, we should be
prudent in extrapolating our findings to contexts that do not have the same level of technical
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sophistication, economic resources, and political stature as CERN, as these factors are clearly

influential in the case of WR.

As a technology, there are two aspects of WR that are also exceptional. First, as time
measurement in the extreme is very sensitive to both the physical and logical architecture of
the technology, WR is very tightly coupled at certain points, and this high interdependence
between layers clearly influenced its development model. Other OSH projects may not have
the same technical sensitivities and may therefore be amenable to a wider range of
development modes. Second, WR is not a general use technology such as an operating
system or scripting software; it was commissioned with a very specific purpose and is
therefore intolerant to significant variance in its performance. Clearly, OSH projects that are
more general purpose and not constrained by such rigid outcome requirements might be
tolerant of greater scope drift or more organic development processes. It follows, then, that
additional research is needed in OSH to investigate different types of hybrids in a wider
variety of contexts to further substantiate the relationships between the attributes of hybrid

components and multiple forms of development.

There are some parallels between the WR OS community and the literature on platform
complementors (Constantinides et al. 2018; Tiwana et al. 2010; Wareham et al. 2014).
Specifically, the WR switch is similar to a stable platform core. The OS community behaves
like platform complementors that develop more customized implementations at the node,
gateware and software layers for specific contexts and thus attract a large number of
heterogeneous contributors that pursue their own innovation strategies and commercial goals.
As research on technology ecosystems and platforms is currently more extensive than OSH,

any identifiable similarities or differences could offer valuable insights.

6.7 Conclusion

A nanosecond is roughly the time that it takes light to travel one foot and has long been
considered a critical metric in computing (Markoff 2018), even in the era of single-
box/single-location computers. Currently, the industrial internet is pushing the adoption of
massive sensor data and real-time communications; software, hardware, and data are now
scattered over heterogeneous grid, mesh and cloud computing installations. For these
geographically dispersed applications, the accurate measurement of time is commensurately
difficult — yet critical — in industries that are time-sensitive or even “obsessed with time”
(Markoff 2018 p.1).

WR was developed as an OSH to address the distortions created by time latency in CERN’s
geographically distributed network. Born as a natively open-source endeavor, WR

development was governed through a variety of high, moderate or de-centralized governance,
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that is, hierarchical, contractual, or voluntary contributions, respectively. The attributes of the
object components were clearly determinative in the choice of the development model. Our
analysis identified and described these causal relationships and showed how different
developmental modalities can co-exist and complement one another towards the development
of hybrid objects with diverse component attributes. We further demonstrated how, after the
initial sponsorship by CERN, the subsequent WR implementation and adaptation by other
scientific infrastructures and industry was possible due to a vibrant open source community
capable of customizing and thereby further evolving the more modifiable layers of the WR
technology stack.
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Appendix A

Table 5 Key construct definition

Key construct definition

Construct definition Source Related notions in the literature Key departure
About the | Hybrid object: Digital objects with material and | (Faulkner and Runde 2019) Type of digital objects or digital | We extract from the literature on
Object non-material components. Hybrid objects include artifacts or IT artifacts. digital objects the traits ascribed to
any hardware with middleware or software and such objects and any reference to
encompass many of the objects being developed digital objects with some degree of
in OSH projects. physicality.
Embodiment: Material (or perpetual) and non- | (Faulkner and Runde 2009, | Numerical representation (Manovich | We differentiate between material

material (or ephemeral) embodiment.

2011; Yoo et al. 2010)

2001)

Largely unstable, unbounded and
resisting reification (Ekbia 2009)

and non-material components.

Modularity: “Modularity represents the technical
realization of the simple yet powerful idea that
integral, en bloc objects or systems are hard to act
upon, control, and manipulate” (Kallinikos et al.
2013, p. 360). It is an attribute of object
components that refers to their faculty of being
responsive to and distinct from one another.
When they are responsive to and distinct from one
another, they are /loosely coupled; when the
components are responsive but not distinct from

one another they are tightly coupled.

(Kallinikos et al. 2010, 2013;
Kallinikos and Mariategui 2011;
Manovich 2001;

Yoo et al. 2010)

Communicability,  sensibility, and
associability (Yoo 2010; Yoo et al.

2010)

Modularity is the first condition for
OS development. OS can be applied
and highly
software development if it allows for

to costly complex
modularity, that is, breaking down
complex problems into "smaller,
independent or weakly connected
problems" that can be then dealt with
Modularity
decreases the need for contributors to
their task

actively.

flexibility

by diverse agents.
coordinate
interdependencies

Modularity  increases
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(Benkler, 2002; Fitzgerald 2006;

Lindberg, 2013; MacCormack,
Rusnak, & Baldwin, 2006; Howison
and Crowston, 2014).

Granularity: Granularity refers to the ability of
an object to be decomposed into numerous, small-
grained components. Modularity refers to the

relationship between components, whereas
granularity refers to the number of units to which
one can decompose the object. Both modularity
(tightly versus loosely coupled) and granularity
(high or low) should be considered to be
continuums, that is, matters of degree, not discrete

alternatives.

(Benkler 2006;

Kallinikos et al. 2010, 2013;
Kallinikos and Mariategui 2011;
Manovich 2001)

Infinite expansibility (Faulkner and
Runde 2009, 2011, 2019)

Granularity is the second condition
for OS development. An object can
be OS developed if the components
of the object are sufficiently granular
or small-grained. The granularity of
the

determines

components is crucial and
the  possibility of
distributed agents to simultaneously
cooperate in concurrent tasks in part
of the same development process. ‘To
pool a relatively large pool of
contributors, the modules should be
predominantly fine-grained, or small
in size. This allows the project to
contributions  from

capture large

numbers of contributors whose
motivation level will not sustain
anything more than quite small
efforts towards the project’ (Benkler
2006, p. 10).

Benkler, 2002, 2006; Lindberg, 2013

Editability: Digital objects are pliable and are
susceptible to be modified continuously and
systematically. Editability can be achieved by

rearranging, adding, modifying or eliminating

(Kallinikos et al. 2013;
Kallinikos et al 2010;
Kallinikos and Mariategui 2011;
Manovich 2001)

Accessibility (Benkler, 2006, Lessig
2006)

Adaptability (Zittrain, 2008; Benkler,
20006; Lessig 2006)

Editability is the third condition of IS
the  integration
characteristics of the object. An
object can be OS developed if the

and involves
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elements. Addressability (Yoo, 2010; Yoo et al. | cost of integrating independent
2010) modules and  making  them
Interactivity (Kallinikos et al. 2013) interoperable or the cost of

Openness (Kallinikos et al. 2013, connecting people to tasks is
Kallinikos et al. 2010, Kallinikos and | sufficiently low due to efficient and
Mariategui, 2011) cheap network communications
Recombinability ~ (Faulkner  and | (Benkler, 2002; Langlois and
Runde 2009, 2011) Garzarelli, 2008; Howison and

Reprogrammability (Yoo 2010; Yoo | Crowston, 2014).
et al. 2010; Kallinikos et al. 2013;
Kallinikos and Mariategui 2011;
Manovich 2001; Zittrain 2008
Variability (Manovich, 2001)

Traceability (Yoo 2010; Yoo et al.
2010)

Transcoding (Manovich 2001)

Reproducibility: Minimal marginal cost. (Faulkner and Runde 2009, | Transferability — (Zittrain,  2008), | Reproducibility is associated with
2011) Benkler, 2006), Lessig, 2006) embodiment, as it describes the
Distributedness, which refers to | pragmatic or economic cost of
seldom being contained within a | producing and distributing multiple
single source or  institution | units of the object or component
(Kallinikos et al. 2013) (Kallinikos et al. 2010).

Non-rivalry, which concerns the
possibility of an object being used
simultaneously by a large number of
parties (Faulkner and Runde 2013
p-815, 2009, 2011, 2019)

About the | Development: The “social process of designing, | (Akhlaghpour, Wu, Lapointe, Based on TCE, we identify two

developme | developing, and implementing the technical | Pinsonneault 2013) ) generalized development models (in
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nt

artifact, usually in a specific organizational

context and over time”.

TCE terms, governance structures)
based on decreasing levels of
centralized coordination and
direction-giving: 1)  hierarchical
control  and 2) contractual
agreements, with the addition of 3)
volunteer contributions from the OS

literature.

Organizational attributes of a development
process: major characteristics that describe the
organization of a particular (or type of)
development process (cf. ‘how’ a development
process is organized).

Based on (Crowston and
Howison 2006; Feller and
Fitzgerald 2002; Fitzgerald and
Feller 2002; Raymond 1999)

About OS development

Autonomy and the self-selection of tasks: OS is
characterized by a collaborative effort where
agents combine effort voluntarily and self-select
their tasks, which does not mean that they do not
receive pecuniary compensation (though that may
often be true) but rather that the collaborators
choose their tasks in a similar way that arises in
the assignment of sellers to products in a classic
market (Lindberg, 2013). “Work is not assigned
to developers; instead, they choose what to work
on” (Sharma et al. 2002 p.10).

Loosely centralized: OS is characterized by
distributed teams that have access to the source
code, submit code patches to solve problems and

(Crowston, 1997; Howison and
Crowston, 2014; Lindberg,
Berente, Gaskin and Lyytinen,
2016; Maha and Vaast, 2015;
Shah 2005, 2006; Di Tullio and
Stapies, 2014)

(Cutosksy et al., 1996; Moon &
Sproull, 2000, Feller and
Fitzgerald 2000, 2002; Feller et
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add functionalities to the software.

Virtual boundaries: OS is characterized by a
geographically distributed community defined by
virtual rather than physical boundaries. OS
communities do not have well-defined boundaries
and remain open to new contributors, which can
join at any time and are fluid in allowing any
member to leave the community. Users can not
only contribute to the source code but also test the
software, report bugs, or suggest new features.

Asynchronous  collaboration and open
superposition of tasks: OS is characterized by
massive parallel development, debugging, and
asynchronous collaboration supported by the
internet as a communication, collaboration and
distribution  platform and by concurrent
versioning software. Complex OS collective work
can be completed in a sequence of layers or
modules with distinct functionality and payoffs

that do not depend on future work for its utility.

al. 2002)

(Cook 2001; Feller et al. 2008;
Feller and Fitzgerald 2002,
2002; Markus 2007)

(Cook 2001; Feller et al. 2008;
Feller and Fitzgerald 2001,
2002; Markus 2007)

Infrastructural tools that facilitate parallel
The

versioning systems allow the submission and

development: internet and concurrent

responsive testing of code patches and the
frequent releases that characterize OS.

(Baldwin and Clark 2006;
Egyedi and Joode 2004; Feller
et al. 2008; Feller and Fitzgerald
2002).

About the
common
TCE
concepts

Asset specificity: The degree to which an asset
can be redeployed to alternative uses and by
without sacrifice of

alternative users any

productive value.

(Dyer 1997; Macher and
Richman 2008; Williamson

1975, 1985, 1989, 1996)

See Table 1, which address the relation among the TCE concepts with

206




used

Duration: The time during which the transaction

will transpire.

Frequency: How often specific transactions

occur.

Search costs: Costs associated with searching
markets for supplier/product availability and the
determination of price and quality.

Uncertainty: The uncertainty surrounding the
transaction that includes market, geopolitical or

institutional uncertainties.

Monitoring and enforcement costs: Includes the
costs associated with ensuring that each party
fulfills a predetermined set of obligations and
with any legal costs required for enforcement.

Interdependence: The degree to which a product
or process can be decomposed into discrete tasks
and completed by individual vendors.

(Related to)

Product and process complexity: Relating to the
number of components and the extent of the
interactions to  manage between  these

components.

Transaction risk: The potential economic or
opportunity cost associated with a failed

transaction.

attributes of hybrid object components.
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Appendix B

Example of interview guide

About the organization, roles, and responsibilities

e What does your organization do?

e What is your role at the organization?

e  When did you got involved in WR?
What was your task?

Has your task changed over time?
Inltlal engagement

How did the organization know about and initially get involved in WR?

¢ How did your organization fund the investment for collaborating in WR? Did it change
over time?

e (in case it was via a contract): What was the reason for the contract? Duration? What
happened after the contract?

Motivational aspects for collaborating

e What were the motivational aspects behind the collaboration?
e How did these motivations change over time?

About WR technology and the process of development

e What are the components, functions, and applications of WR?
e Please describe the development cycle of WR (including versions).
e How did the development of WR hardware differ from WR gateware and software?

¢ How did the different development tasks relate to one another for hardware, gateware,
software?

What were, in your opinion, the major events in the development of WR? Why?

Coordlnatlon

How did you develop your task?
e Did you collaborate with someone?

e Did you report to anyone inside and outside your organization?
e  Which tools did you use to develop and communicate the outcomes of your task?
e Did you have meetings? For what purpose?

How did you use the repository, wiki, mailing list? Others?

The role of the license

e What is the OSH license? ]
e Did you participate in the debate on the OSH license?
e In your opinion, what are the differences between the license versions?
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Appendix C

Table 6. Data analysis and theoretical constructs related to the development models

N¢ | Events Time | Developme | Theoretical observation Theoretical construct

nt phase

1) Diligent requirements collection through CERN- supplier | 2008 Specificatio | Cosylab was called in to gather requirements by using input | Contractual  agreement for
contract- to gather joint (cross-organizational) specifications- ns from CERN, GSI’s Facility for Antiproton and Ion Research | specifications

(FAIR) project, L’Institut de Physique Nucléaire de Lyon
(IPNL), and ITER, the international nuclear fusion project.
Requirements were collected through the phone, video
conferences and in person. The requirements were organized
into layers, starting at the lowest (physical) layer and moving
up until the event distribution processor. Then, commonalities
were listed, and the potential incompatibilities were identified.

2 Publication of all specifications by CERN: All specifications files | 2008 Specificatio | Open publication of all specifications so that developers could | Voluntary contributions
are published to benefit from peer review and to enable remote ns join the collective endeavor
collaboration.

3) Contract to create a web-based Open Hardware Repository portal | 2009 Specificatio | CERN decided to outsource the development of a repository for | Contractual ~ agreement  to
CERN- supplier contract. ns and | the following reasons, according to testimonials: develop an infrastructural tool
Contained: file repository, a wiki and general project Design e  Time saved by having fast research results to allow further open source
documentation e Increased quality of the requirements by adding a wide development

field of expertise

e  Time saved by flexible addition of complementary
development services

e  Tailored solution that fit an open-source community

4 Provision of an open repository to allow community collaboration | 2009- | All Open repository contents are considered to be the knowledge | Voluntary contributions

presen hub of all the WR community.
t
%) Community manager to coordinate the requests of developers and | 2009- | All A person designated at CERN orchestrates and directs all | Voluntary contributions
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users presen outside communications and requests to enter the community,
t implementation requirements, etc.
(6) Contract with supplier for WR switch hardware design (e.g., | 2008 Design CERN outsourced to an expert engineering company the design | Contractual  agreement for
cards) of the WR switch (only hardware) to accelerate the design | hardware design
process.
@) Contract with supplier for WR switch software and gateware 2008 Design CERN outsourced to an expert software company the | Contractual agreement for
development of core-specific software and gateware for the | software design
switch to accelerate the design process.
®) Quality and design review of software and hardware by CERN | 2008 Design and | In-house: quality review of the design of both | Hierarchical control
design unit and Beams department Prototyping | software/hardware core WR
©) Contract with supplier for assemblage (production of prototypes) 2012 - | Prototyping | CERN supplier for the hardware design, outsourced the | Contractual agreement for
2013 assemblage of WR switch prototypes. Although it was | prototypes
outsourced by the supplier, CERN had direct control on the
quality (1-year iterations due to gaps from production files to
actual production).
(10) | Contract with second supplier for WR production (GSI- Creotech) | 2017 Prototyping | GSI contracted a second supplier to produce WR prototypes to | Contractual —agreements for
look for redundancy in the system. prototypes
(11) | Contract with second supplier for WR production (CERN- | 2017 Prototyping | CERN purchased from second provider WR switch to test the | Contractual agreements for
Creotech) to compare quality quality and compare it with the first provider. prototypes
(12) | Plugfest to check interoperability with other companies’ hardware | 2010 Design Voluntary contributions
designs and to showcase WR to attract developers
(13) | Contract CERN- Supplier to develop a WR Starting Kit- to attract | 2012 Testing (and | Starting Kit consisted of a couple of Spartan-6-based boards | Voluntary contributions
users and developers (peer review). Design) called SPEC, one of which can be configured to be a master
and the other as a slave to encourage users to perform early-
evaluation experiments. WR starting kit developed
(14) | Coordination meetings with CERN personnel 2008- | All Section meetings were led by the director of the section to | Hierarchical control
2019 manage and coordinate actions across WR development.
(15) | Coordination meetings with the four direct suppliers 2008- | Design CERN- supplier meetings to direct tasks Hierarchical control
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2012

(16)

Coordination meetings with all WR community led by CERN

2008-
2019

All

Workshops with all the WR community to coordinate and
direct tasks. Conclusion — agreement after the first workshop —
Timing Workshop Summary

Summary of the Timing Workshop held 15 February 2008:
CERN will be the manager for all the tasks related to WR
development.

Hierarchical control (Project
management — task assignments

across community)

(17

Documentation control by CERN (including schematics and PCB
documentation by CERN)

2008-
2019

Design

Upload all documentation of the schematics and PCB. Identify
incompleteness with respect to prototyping (flaws), improve
the quality of documentation and guarantee the accessibility of
such information.

Hierarchical control

(18)

Release of an open source hardware license v.1.1 to attract
voluntary developers (not via contracts) and govern the

distribution of the open hardware designs.

2011

Design,
Testing, and
Implementat
ion

A new open source hardware license will attract contributors
from outside the organization.

The research group released Version 1.1 of its open hardware
license (OHL) three months after the initial license was
published. The license borrows concepts from open source
software licensing models but governs the use of hardware
designs instead of source code.

Voluntary contributions

(19)

Release second version of open source hardware license

2011

All

Release second version of open source hardware license to
attract voluntary developers (not via contracts) and govern the
distribution of the open hardware designs.

Voluntary contributions

(20)

Release of an open source hardware license v.1.1

2013

All

Release of an open source hardware license v.1.1 to attract
voluntary developers (not via contracts) and govern the
distribution of the open hardware designs.

Voluntary contributions

2y

Development of an open source tool that allows open hardware
design (KiKat)

2019

Design

Development of alternative tools to the proprietary ones that
exist to facilitate open hardware design

Voluntary contributions
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Discussion and conclusion

This final chapter integrates the findings of the articles that compose chapters 3,4,5
and 6, as well as discussing the theoretical contributions, managerial and policy implications,

limitations of the dissertation, followed by future research opportunities
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7.1Theoretical contributions

The main goal of this Ph.D. dissertation is to understand the tension between two competing
vectors that are influencing big science infrastructures: 1) calls for more openness in

scientific processes and outcomes, and 2) a need for more effective technology transfer.

On one hand, studies #1 and #3 have offered a contextual overview of the dynamics within
each of these exogenous forces in isolation and have provided contributions to a) the
literature of open science, and b) technology transfer, respectively. A better understanding of
each vectorial force has enabled an exploration of the dynamics at the intersection of the two
forces. Considering study #2 and study #4 as a joint product, we extract several broader
contributions to the study of information systems development at the intersect of the two
vectors (figure 1). We conclude with table 1 that summarizes the theoretical contributions

and normative implications.

Figure 1. Overview of the goals of the four empirical studies

GOAL

(1) To understand the tension between the two normative forces that big science infrastructures face (i.e.
technology transfer and open science (0S)) by uncovering the mechanisms that are employed to overcome the

challenges that lie at the root of such tension.

2. Repurposing: applying technology to another field
3. Building on technological installed base
4. Augmenting existing technologies with Al and ML

* Varies across disciplines
* Reasons behind disparity: Epistemic cultures
and mechanisms for data governance

c First vector: Open science SUB-GOAL SUB-GOAL Second vector: Technoloy transfer

S (1.1 To understand the dynamics behind the aim (1.2.) To understand the dynamics of steering big

@  of opening up primary research outputs science activities towards transferring their

§ I || technological solutions to commercial applications ___
E Study 1: Stickiness of scientific data Study 3 Attract Detection and

S Data Serendipity modes: imaging technologies
O ' * Datasharing remains stable commons

3

=

1
1
!
1 1. Recombination
1
1
1
1

Study 2: Open Targets ‘ Data commons Study 4: White Rabbit

(Hybrid) governance process: folding and Hybrid development process
unfolding

Folding and unfolding governance
processes

Modularity

Brokerage

Hierarchical control
Contractual arrangements
Combined with voluntary contributions

Micro-studies
swisiueydadin
Mechanisms
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7.1.1 Contribution to open science literature

Open science literature suggests that scientific data sharing confers increased costs to
scientists and their institutions without commensurate professional benefits (Borgman 2015;
Edwards 2019; Edwards et al. 2011; Tenopir et al. 2015; Wallis et al. 2013). Yet we lack a

recent overview of whether, and how, data is shared across scientists.

The inequality of policy attention towards scientific data sharing compared to other trends
within open science (i.e. open access) has resulted in a lack of evidence about if scientists
share their data, how they share data, and the reasons behind their data sharing behavior.
While data about open access publications are readily available, indicators about scientific

data sharing have been lacking.

In consequence, generating a comparable global survey data set informs future policy
discussions and is one of the primary contributions to this literature stream. Additionally, the
analysis of the study #1 data also advances that there is no homogenous explanation of why
the number of researchers who have shared their data remains stable from 2016 to 2018. The
study confirms the difficulties of scientific data sharing (e.g. Borgman 2015; Edwards et al.
2011; Piwowar et al. 2007), but further contributes by uncovering the delicate system of
mechanisms that need to be implemented to align individual and collective incentives in a
manner consistent with the specific epistemic cultures of each scientific community and their
professional practices. Specifically, in comparing two scientific communities (HEP and MB),
the study provides a theoretical explanation of why the slow adoption of data sharing is due
to an intertwined web of varied cultures and rational pursuits. Where HEP and MB have
significantly different epistemic cultures, research infrastructures, and scientific practices,
both communities have established information infrastructures with mechanisms designed to
mitigate the domain-specific costs and facilitate data sharing and re-use. In short, the study
suggests that modularity and time dilation can be employed as governance mechanisms that
reconcile the collective benefits of the scientific community with individual academic career
incentives. Both mechanisms can be employed across various epistemic cultures to
accommodate divergent practices across scientific communities. Appropriate and transparent
governance enacted in the information infrastructures can mitigate the perceived risks

preventing scientific data sharing.

7.1.2 Contribution to the literature on technology transfer in big science

The present dissertation also contributes to the literature on big science by opening the 'black
box' of how big science brings new technologies to society in applications previously
unanticipated and sheds light on the nature of the serendipity behind such broad and

multifaceted process.
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While previous literature extensively reflects on the technology contributions of big science
infrastructures (Autio 2014; Autio et al. 2003, 2004; Castelnovo et al. 2018; Hallonsten 2014;
Heidler and Hallonsten 2015) and has mostly based on anecdotal examples of scientific
discoveries and individual scientists' experiences, yet we lacked knowledge on how such
infrastructures may purposefully realize such serendipity process in a more systemic level
(Autio, 2014).

The third study sits in this literature and explores the dynamics behind the aim of transferring
big science solutions to unanticipated market applications through the analysis of the 170
projects funded under the ATTRACT initiative. The analysis uncovers four modes wherein
serendipity can be cultivated: Recombination of technologies; repurposing; building and
extending technology from previous research; and Al and ML to augment existing

technologies.

The study contributes to evolving research on serendipity beyond its simple
conceptualization as a natural accident and suggests that big science infrastructure can

proactively shape the transfer of their technological solutions to other industrial settings.

7.1.3 Contribution to 1S development

Finally, and probably the major theoretical contribution of the dissertation relies upon the
intersection of these two vectors (i.e. open science and technology transfer) and sits at the
core of IS development. By assessing two different open science dimensions in Open Targets
(OT) and White Rabbit (WR) (i.e. data commons and open-source hardware), the cases help
elucidate the specific mechanisms that organizations use to reconcile the tensions caused

when for-profit entities contribute to opensource or commons-based resource pools.

In particular, in the case of White Rabbit, we describe the friction of transposing an open-
source model of development to digital objects with physical components (hybrids). We
isolate how hybrid objects deviate in nature and form, that is, their attributes, in comparison
to pure non-material digital objects (Faulkner and Runde 2009, 2013, 2019). Thereafter, the
attributes of hybrid objects are analyzed under the conditions of open source development
(i.e. high modularity, high granularity, and low integration costs), to understand the
applicability of the 'open source way' in OSH development (Benkler 2002; Feller et al. 2002,
2008; Fitzgerald 2006; Howison and Crowston 2014). In the WR case, we found that open-
source development was complemented with more traditional commercial development
processes at specific points. The case uncovers the need for hierarchical control and
contractual agreements that allow direction-giving and coordination in the development of a
highly sophisticated OSH such as WR. This was a result of the highly complex and

interdependent nature of the technology, which requires centralized control, technical
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expertise, and more considerable financial investments. Combined with the generative nature
of the OS community, WR was successfully developed and deployed as a powerful precision
and synchronization technology at many scientific research infrastructures, and sequentially,
in numerous industrial settings. This wider diffusion of WR outside of its immediate
scientific purview is a result of the open-source community supporting it.

The case of Open Targets moves to a different open science dimension (i.e. data commons).
It sheds light on the dynamic governance of an information infrastructure that overcomes the
challenge of simultaneously aligning individual and collective interests (Constantanides
2012, Constantinides and Barrett 2015; Hanseth and Monteiro 1997). By integrating ideas
from information infrastructure scholarship and collective action theory (Hardin 1968, 1982;
Ostrom 1990), we theorize that the openness-attribute of information infrastructure is a
manageable with appropriate mechanisms that enable movement from private to open
workspaces. This allows contributions to common goods by for-profit companies that need
opacity and closure following competitive and market logic. In other words, to overcome the
historical, social dilemmas of collective action (i.e., free-riding and overconsumption) and
provide the effective incentives for contributors to invest in the commons, two mechanisms
are employed that afford the fluid movement between open and closed spaces of work: the
principle of modularity, which refers to the technical architecture of the infrastructure, and
the role of a broker or a trusted third party, that serves as an arbiter amongst the organizations

to orchestrate the exchanges.

Taken together both studies, what we can appreciate is the parallelism between the fluid
navigation through open and opaque spaces in Open Targets and the hybrid development
process in WR. In OT, such hybridity between open and dark places made 'openness'
compatible with the traditional, restricted, and controlled spaces of work where protected
R&D processes take place to pursue the competitive race towards a new drug. In WR, the
‘hybrid development process’ made ‘openness’ and the generativity of open-source
compatible with hierarchical control and contractual agreements to coordinate and afford
direction-giving in the development of a complex OSH such as WR. What the combination
of the two studies teaches us is that ‘openness’ needs some degree of opacity to find the
proper equilibrium between the two vectorial forces. The studies go one step further and
advance how organizations can navigate across the shadows; that is, graduated levels of

transparency and accessibility.

In both cases, the very prominent role of the digital artifact is evident. In OT, the technical
attributes of a multi-layered infrastructure designed around the principle of modularity
afforded navigation between scientific openness and closed market logic, making individual
and collective interests compatible. In dissecting the technical attributes of the ‘object’ to
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understand where and how different agents act, we can decipher the mechanisms that
emerged to make for-profit and community-based collaboration in both White Rabbit and
Open Targets development. In both studies, by identifying the technical attributes of the
artifacts we manage to relate them to the governance approach that stakeholders follow to
find the optimum equilibrium between openness and technology commercialization.

Equally important and related to the technical characteristics, both studies feature the role of
the organizational attributes that accompany the development of a data commons
infrastructure or open-source hardware development. The arbitrage role of an operational
team at Open Targets that behaves as a trusted-third party governing the exchanges between
the organizations, or the orchestrating role of CERN who grandfathered and directed the
development of White Rabbit.

In sum, when contrasting the dynamics of each of the vectorial forces (i.e. open science and
technology transfer) with the friction acrossthe vectors, we elucidate the intricate
complexities that interact when scientific institutions attempt to simultaneously foster
openness in research processes while boosting the commercialization of their technologies.
Our case studies show how the technical attributes of a digital ‘object’ or information
infrastructure combine with effective arbitration towards effective policy interventions. Table
1 provides an overview of the contributions and normative implications of the different
studies in this dissertation.
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Table 1. Overview of the contributions of the different studies and normative implications

Study # 1: The stickiness of scientific data | 2: Opaque spaces of the commons: Governing | 3: Systematising serendipity | 4: From bits to atoms: White Rabbit at
information infrastructures in Life Sciences for big science | CERN
infrastructures
Research Do researchers share their data? How do How do organizations develop commons-based Which are the formative How do the attributes of a hybrid object and its
Question they share their data? Which mechanisms | information infrastructures that govern access to conditions of serendipity components affect the open-source model of
emerge to enable researchers to share collective resources while simultaneously protecting transforming big science research | development?
their data? the members’ private interests? towards commercial applications?
Theoretical Epistemic cultures Information Infrastructures Serendipity Digital objects and IT artifacts
Foundation Collective action theory Collective Action theory Open-source
Transaction Costs Economics
Contribution Epistemic cultures (communitarian versus | Two dynamic processes: Folding and unfolding to Four serendipity models: Hybrid development model
individualistic) coexist with rational cost- | transition from open to opaque spaces of work .. .
benefit estimat)ions P paque sp 1. Recombination The physical nature of the components of
The two processes are afforded by the principles of 2 R o anplvi hybrid objects inhibits the conditions of open
The principles of modularity and time modularity (technical architecture of the infrastructure) : : hep ?rp ostmg : aIt)lIl) ylf{lgl d source development and leads to the emergence
dilation are mechanisms that allow and brokerage (organizational attributes of the echnology to another e of a hybrid model that combines hierarchical
fostering data sharing practices by infrastructure) 3. Incremental: build and extend control, contractual arrangements, and
making compatible individual and technology from previous voluntary contributions.
collective interests. Both mechanisms research
allow mitigating differences in more o
communitarian and individualistic 4. Al and ML to augment existing
scientific epistemic cultures technologies
Normative Sharing scientific data is not a The development of data infrastructures based upon Big science infrastructure can The material aspect of hybrids objects can
Implications | dichotomous decision, but it needs to commons needs to allow the dynamic transition actively shape the transfer of their | reduce object editability, granularity,

establish a degree towards what data do
you share (modularity), and when do you
share it (time dilation - embargos).
Mechanisms shaping incentives and
rewards need to be designed locally to
account for differences in epistemic
cultures and suggesting that one-size-
does-not-fit-all.

between open and opaque spaces of work to preserve
the private incentives of for-profit to invest in the
infrastructure development and to overcome the
historical, social dilemmas of collective action (i.e.,
free-riding and overconsumption).

A modular architecture combined with the role of a
broker or a trusted third party, who is assigned
coordination and arbitration tasks to orchestrate and
mediate the flows of data are required to overcome the
apparent incompatibility of openness versus
commercialization of R&D outputs.

technological solutions to
alternative industrial settings by
proactively cultivating four
serendipity models.

reproducibility, and integration characteristics.

While open source is a powerful model that can
serve as to leverage crowd knowledge towards
developing frontier technologies, it might need
to be supplemented with more traditional
commercial development processes at specific
points based on the component attributes (i.e.
editability, granularity, integration, and
reproducibility).
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7.2Managerial and policy implications

The managerial implications of the Ph.D. thesis are multiple. With the COVID-19
crisis, the policy attention on open science has grown. The response of the scientific
community to COVID-19 outbreak has been to embrace the principles of open science
unprecedented levels, including: sharing preprints to speed up access to research
outputs; global scientific data sharing related to COVID-19 to accelerate discovery
(Buytaert et al. 2020). The examples have only been the tip of the iceberg of what some
open science ideologists have been trying to pursue for the last decade. We can predict
that the open science policy mandate is not only here to stay but will push much further.

Yet, although we know how openness help to leverage the spread of skills and expertise
and accelerate discovery, we see also in the exemplar space of COVID-19 that this goal
can be at odds with the companies engaged in the commercialization of ventilators
(Buytaert et al. 2020); additionally, it also induces fear into pharma concerning the
safeguard of data and knowledge flows in the race towards a COVID vaccine or other

The present dissertation places itself at the center of this tension and tries to overcome
the 'dualistic' ideological debates where stakeholders position themselves at the
extremes of the open-closed continuum in policy discussions. As such, we try to offer a
nuanced perspective on how to pursue a 'smart' openness and inform policy
interventions by suggesting governance mechanisms that manage not only to safeguard
economic interests of for-profits in their R&D and innovation pursuits, but also to align
their individual interests with the open science demands.

While the full industrial impact of scientific data infrastructures based upon commons
and open-source hardware is yet to come, both the Open Targets and White Rabbit
studies offer inspiring formulas of how they frame the tension as a manageable trade-off
with appropriate governance mechanisms. In an exercise to describe the policy
relevance of the results, we provide a summary of the policy implications of the studies
in table 2.

We conclude by elaborating two examples of the major policy implications and
resulting recommendations from the dissertation results: First, we consider the present
context where the European Commission is currently investing in the development of a
major scientific data infrastructure, the European Open Science Cloud (EOSC)
(European Commission, 2019), which is foreseen to accelerate scientific data sharing
across European countries and beyond. Our results suggest that modularity should be a
major characteristic of the EOSC architecture to successfully attract the engagement of
a broad range of the extended community, including for-profit entities. Developing an
infrastructure with different layers and access rights while simultaneously allowing
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embargo periods over the data (time dilation) can allow organizations and scientists to
navigate across their required levels of opacity to align their specific interests with the
common good. Allowing some degrees of ‘darkness’ in EOSC design will also
contribute to achieving larger engagement of the wide community and, hence, to its
sustainability. Paradoxically, if the rational pursuits of commercial organizations or
scientists’ professional incentives are ignored in the technical development and
governance of the EOSC, it may jeopardize the uptake of such infrastructures and lead
to wasteful public expenditures.

A second example can be taken from open source hardware, where public research
infrastructures are experimenting with this new formula in the procurement of their
scientific experimental tools (Pearce, 2012). Open-source hardware offers these
organizations the possibility to avoid vendor lock-in, to merge disperse expertise from
their network of suppliers and contributors, and at the same time, align their public
mission by fully disseminating the design of their technologies. However, if funding
agencies do not permit some degrees of darkness through permissive open-source
hardware licenses that allow proprietary (and non-disclosed) developments to emerge
around the core technology, this well-intentioned policy could fail to engage core
contributions by those seeking subsequent commercial exploitation on the periphery.

In sum, openness in science needs some degree of opacity to find the proper equilibrium
between the two the social benefits of science and the commercial interests of some of
its most important contributors. In essence, our analysis suggests that policies calling
for carte-blanche openness that ignore the incentives of many profit-seeking
organizations that make valuable contributions to the larger ecosystems supporting
scientific programs may have undesirable consequences. It is important to move away
from naive ideological debates between the pro-Open with pro-IP advocates and employ
hybrid governance approaches that allow resolving the divergent interests of its various
stakeholders. This dissertation suggests that policy attention needs to be focused on
finding an acceptable equilibrium to make these forces compatible.
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Table 2. Overview of the general policy implications of the different studies

Study # 1: The stickiness of scientific data 2: Opaque spaces of the commons 3: Systematising serendipity 4: White Rabbit at CERN
Findings 66% of researchers declare making their data | Folding and unfolding are two governance | Four serendipity models: The physical nature of the components of
available. The % remains stable, with no | processes that allow organizations to transition . hybrid objects inhibits the conditions of open
growth shown over the past two years. Data | from open to opaque spaces of work. These two 1. Recombination source development and leads to the emergence
sharing significantly varies across disciplines. | governance processes are afforded by the | 2. Repurposing: applying technology to another of a hybrid model that combines hierarchical
Both communitarian and individualistic | principles of modularity and brokerage that are | field control, contractual  arrangements, and
scientific communities (different epistemic | articulated through the technical and ) voluntary contributions.
cultures), employ three mechanisms (with some | organizational attributes of the infrastructure. | 3- Incremental: build and extend technology
variation) to enable data sharing in both | These two processes allow overcoming the | from previous research
sc.ier.ltiﬁc communities: Modglarity; Time historical _S(_)cial dilemma of col.lective action | 4 AT and ML to augment existing technologies
dilation; and Boundary organization to establish | (i.e. free riding and overconsumption)
transparent data governance and mediate the
identification of the 'bona fide' researcher.
General Mechanisms shaping incentives and rewards | The development of public data infrastructures | The policy mandate of the increasing impact of | Public procurement policies of research
. towards scientists to foster scientific data | (or the federation of existing ones) needs to | big science infrastructures can be materialized | infrastructures at large can foster the model of
Policy sharing need to be designed locally to account | allow the navigation between open but also | in a systemic way by the infrastructures through | open-source hardware — as they have done for
Implications for differences in epistemic cultures and | restricted spaces of work combined with | purposively facilitating inside their activities | open-source software. By advocating for this

suggesting that one-size-does-not-fit-all.

embargo periods over the data (or time dilation
between the creation and disclosure of the data)
to preserve private and individual incentives.

These infrastructures need to be governed by a
trusted third-party of the community (with
bilateral Non-disclosure agreements) that
behaves as an arbiter and orchestrates the data
flow.

four serendipity paths (corresponding to the
four serendipity models).

New public funding instruments can
experiment with the four models to accelerate
the technology transfer of big science
technological solutions to alternative industrial
settings

model of development in their procurements
they will allow large peer review of their
technologies, will avoid vendor lock-in
situations, and obtain system efficiency gains
by avoiding redundant technology
developments across infrastructures. Yet, the
voluntary contributions of open source need to
be complemented by more traditional
commercial development processes at specific
points based on the technology attributes (i.e.
editability,  granularity, integration, and
reproducibility).

Open-source hardware licenses applied to these
public procurements need to consider allowing
contributors to engage and not disclose
proprietary developments around the core open
and standardized hardware technology to
protect for-profit interests and enable an
ecosystem to emerge around the technology.
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7.3 Limitations and future research

Notwithstanding its theoretical contributions, this Ph.D. dissertation also has several
limitations. While the individual limitations of each study are explained separately in
each chapter, this section aims at providing a holistic perspective.

Regarding the study of data sharing attitudes and practices, where the sample sizes were
large, the period between the two surveys was only two years. Given the phenomenon
studied, this sampling is likely insufficient to detect long-term patterns. Additional
surveys with the same instrument can enrich our current data. Additionally, research
that purposefully examines the heterogeneity in data sharing practices across disciplines
can benefit from in-depth comparisons of high-intensive and low-intensive data sharing
scientific communities to explore whether the mechanisms uncovered in our study to
mitigate the domain-specific barriers and facilitate data sharing and re-use are
applicable in other scientific contexts.

Open Targets is constituted by some of the world's most formidable research
organizations together with highly capitalized pharmaceutical companies. As such, the
generalizability of the findings to other information infrastructures in different contexts
might also be limited. It should be noted in the case of OT is also exceptional because
of the extremely competitive nature of the life sciences industry. Other information
infrastructures may not have the historical precedence of secrecy, legal protection, and
long investment lifecycles.

The challenge of the case method is to generalize the findings. Nevertheless, it is worth
mentioning that there is a trade-off between internal and external validity. White Rabbit
is also a very sophisticated and expensive technology. It is plausible that OSH with less
cost and complexity could be developed in entirely different modalities. Hence, while
we acknowledge the difficulties of generalizing the results of OT or WR to the larger
populations, it is equally valid that the internal validity of our findings in both studies is
the main focus. Our results are deeply grounded in the contexts under study, and by
employing established procedures in inductive research (Miles and Huberman 1994),
the two cases sought to maximize the internal validity of our results.

Regarding the study of ATTRACT, we exploit a unique dataset of 170 projects funded
with €100,000 to develop a proof-of-concept commercial application within one year.
This is also a unique policy intervention historically unprecedented in the European
Commissions. As such, we encourage more systematic analysis with other novel
datasets to understand other approaches by which a serendipity process can be
identified, brokered, and cultivated. In the future, the role of generative computing and
machine learning will likely be necessary for this respect.
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Finally, by studying an extreme case of OSH developed with the sponsorship of CERN,
we acknowledge that WR is non-representative, yet it is studied to understand
something likely to become more predominant in the future. Extreme cases are
particularly useful for theory generation, as they exhibit high values on variables of
critical interest (Gerring 2007). Nevertheless, the level of technical complexity,
financial resources, and political stature of CERN are likely unique yet essential
influences in the case. Hence, we should be prudent in extrapolating our results to a
different context that does not display the same local characteristics. We encourage
additional research in OSH to investigate the heterogeneity of hybrids in different
contexts to substantiate further the relationships between the attributes of hybrid
components and multiple forms of development. Recent announcements of OSH
ventilators being developed in response to the COVID 19 virus are an obvious
opportunity for such research (Pearce 2020).
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