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ABSTRACT

Non-centralized control schemes for large-scale systems, including energy networks,
are more flexible, scalable, and reliable than the centralized counterpart. These ben-
efits are obtained by having a set of local controllers, each of which is responsible for
a partition of the system, instead of one central entity that controls the whole system.
Furthermore, in some cases, employing a non-centralized control structure might be
necessary due to the intractability problem of the centralized method. Thus, this the-
sis is devoted to the study of non-centralized optimization-based control approaches
for large-scale energy systems. Mainly, this thesis focuses on the communication and

cooperation processes of local controllers, which are integral parts of such schemes.

Throughout this thesis, the model predictive control framework is applied to solve
the economic dispatch problem of large-scale energy systems. In a non-centralized
architecture, local controllers must cooperatively solve the economic dispatch prob-
lem, which is formulated as a convex optimization problem with edge-based coupling
constraints, at each time step. Therefore, first, the augmented Lagrangian approach is
deployed to decompose the problem and to design two distributed optimization meth-
ods, which are iterative and require the local controllers to exchange information with
each other at each iteration. It is then shown that the sequence produced by these
methods converges to an optimal solution when some conditions, which include how

the controllers must communicate and cooperate, are satisfied.

However, in practice, the communication process might not always be perfect, i.e.,
the required communication assumption does not hold. In the case of communication
link failures, the distributed methods might not be able to compute a solution. There-
fore, an information exchange protocol that is based on consensus is designed to over-
come this problem. Furthermore, the proposed distributed optimization methods are

also further extended such that they work over random communication networks and

vii



asynchronous updates, i.e., when not all controllers always perform the updates. Un-
der this setup, the convergence and the convergence rate of the algorithms are shown.
Additionally, the implementation of these distributed methods in the MPC-based eco-
nomic dispatch of energy systems is also presented. The discussion includes the tech-
niques that can be used to reduce the number of iterations and the performance of the

methods in a numerical study.

Considering that the aforementioned methods are communication-intensive, an al-
ternative non-centralized scheme, which provides a trade-off between communication
intensity and suboptimality, is proposed. The scheme consists of repartitioning the
network online with the aim of obtaining self-sufficient subsystems, forming coalitions
for subsystems that are not self-sufficient, and decomposing the economic dispatch
problem of the system into coalition-based subproblems. In this scheme, each subsys-
tem only communicates to the others that belong to the same coalition; thus, reducing
communication flows. Especially when all subsystems are self-sufficient, exchanging

information is not needed.

Finally, a cooperation problem during the implementation of the decisions is dis-
cussed. Specifically, some subsystems do not comply with the computed decisions
to gain better performance at the cost of deteriorating the performance of the other
subsystems. A resilient scheme that can cope with this problem is formulated. It con-
sists of a stochastic method to robustify the decisions against such adversarial behavior
and an identification and mitigation method that is based on hypothesis testing using
Bayesian inference. The proposed scheme, in general, can mitigate the effect of non-
compliant subsystems on the regular ones, and in a specific case, can also identify the

adversarial subsystems.

Keywords: model predictive control (MPC), distributed MPC, non-centralized
MPC, distributed optimization, system partitioning, large-scale systems, economic dis-

patch, time-varying networks, resilient methods
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RESUMEN

Los esquemas de control no centralizados aplicados a sistemas a gran escala, entre
los que se incluyen las redes energéticas, son mas flexibles, escalables y fiables que
sus equivalentes centralizados. Dichos beneficios pueden obtenerse empleando un
conjunto de controladores locales, donde cada uno de ellos es responsable de una
parte del sistema, en lugar de una entidad central que controle la totalidad del sistema.
Asimismo, el uso de una estructura de control no centralizada podria ser, en algunos
casos, necesario, dado el problema de intratabilidad del método centralizado. Por con-
siguiente, la presente tesis trata sobre el estudio de enfoques de control no centraliza-
dos basados en optimizacidon para redes energéticas a gran escala. Principalmente,
esta tesis se centra en los procesos de comunicacién y cooperacion llevados a cabo por

los controladores locales, que constituyen partes esenciales de dichos esquemas.

Alo largo de esta tesis, el control predictivo basado en modelos se usa para resolver
el problema de expedir energia en redes energéticas a gran escala desde un punto de
vista econémico. En arquitecturas no centralizadas, los controladores locales deben
resolver dicho problema de forma cooperativa, el cual se formula como un problema
de optimizacién convexo con restricciones de acoplamiento en los enlaces entre nodos,
que debe ser resuelto en cada instante de tiempo. Para ello, el método de Lagrangiano
aumentado se utiliza inicialmente para descomponer el problema y disefiar dos méto-
dos de optimizacion distribuidos, que son iterativos y requieren que los controladores
locales intercambien informacion entre ellos en cada iteracién. A continuacién, se
muestra que la secuencia generada por estos métodos converge a la solucién 6ptima a
condicién de que se cumplan ciertas condiciones, incluyendo cémo los controladores

deben comunicarse y cooperar.

Sin embargo, en la préctica, la comunicacidn no siempre es perfecta, es decir, el

supuesto de comunicacion requerido no se cumple. En el caso de fallos en los enlaces
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de comunicacién, los métodos distribuidos podrian no ser capaces de proporcionar
una solucidn. Para paliar este problema, se disefia un protocolo de informacién basado
en consenso. Mas aun, los métodos de optimizacion distribuidos se extienden a fin de
que sean capaces de trabajar en redes con comunicaciones aleatorias y actualizaciones
asincronas, es decir, redes en que no todos los controladores realicen las actualiza-
ciones. En esta configuracién se muestran la convergencia y el orden de convergencia
de dichos algoritmos. Se muestra, ademas, la implementaciéon de estos métodos en el
control predictivo econémico basado en modelos para redes energéticas. La discusién
incluye las técnicas que pueden usarse para reducir el numero de iteraciones, asi como

el desempeno de los métodos, a través de un estudio numérico.

Teniendo en cuenta que los métodos anteriormente mencionados requieren una
comunicacidn intensa, se propone otro esquema no centralizado que proporciona un
compromiso entre intensidad de comunicacién y suboptimalidad. Dicha estrategia
consiste en volver a particionar en linea el sistema con el objetivo de obtener subsis-
temas autosuficientes, formando coaliciones de subsistemas que no lo sean por sepa-
rado, y descomponiendo el problema econdmico de expedicién de energia en subprob-
lemas de tipo coalicional. En este esquema, cada subsistema se comunica Unicamente
con aquellos otros subsistemas que pertenezcan a la misma coalicidn, reduciendo asi
el trafico de comunicacién. En particular, cuando todos los subsistemas son autosufi-

cientes, el intercambio de informacién ya no es necesario.

Finalmente, se considera el problema de la cooperaciéon durante la implementacién
de las decisiones. Especificamente, algunos subsistemas no acatan las decisiones
tomadas con el fin de lograr un desempefio propio superior a expensas de empeo-
rar el desempefio de otros subsistemas. Es por esto que, con el fin de lidiar con este
problema, se propone un esquema resiliente, el cual consiste en un método estocds-
tico para hacer las decisiones mds robustas frente a tal comportamiento adverso, y un
método de identificacién y mitigacion basado en evaluacion de hipétesis usando infer-
enciabayesiana. En general, el esquema propuesto logra mitigar el efecto de los subsis-
temas incumplidores sobre el resto, y en un caso concreto, también permite identificar

los subsistemas adversos.

Palabras clave: control predictivo basado en modelos (MPC), MPC distribuido,

MPC no centralizado, optimizacién distribuida, particionado de sistemas, sistemas



a gran escala, despacho econdémico, sistemas variables con el tiempo, métodos re-

silientes.
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RESUM

Els esquemes de control no centralitzats aplicats a sistemes a gran escala, entre els
quals s’inclouen les xarxes energetiques, son més flexibles, escalables i fiables que els
seus equivalents centralitzats. Aquests beneficis es poden obtenir fent servir un con-
junt de controladors locals, en qué cadascun d’ells és responsable d'una part del sis-
tema, en lloc d'una entitat central que controli la totalitat del sistema. Aixi mateix,
'ds d’'una estructura de control no centralitzada podria ser, en alguns casos, necessari,
donat el problema d'intractabilitat del metode centralitzat. Per tant, la present tesi
tracta sobre l'estudi denfocaments de control no centralitzats basats en optimitzaci6
per a xarxes energetiques a gran escala. Principalment, aquesta tesi se centra en els
processos de comunicacio i cooperacid duts a terme pels controladors locals, que con-

stitueixen parts essencials d'aquests esquemes.

Al llarg d’aquesta tesi, el control predictiu basat en models sutilitza per a resol-
dre el problema d’expedicié denergia en xarxes energetiques a gran escala des d'un
punt de vista economic. En arquitectures no centralitzades, els controladors locals
han de resoldre aquest problema de forma cooperativa, formulat com un problema
d'optimitzacié convex amb restriccions d’acoblament en els enllacos entre nodes i que
ha de ser resolt a cada instant de temps. A tal efecte, el metode de Lagrangia aug-
mentat s'utilitza inicialment per a descomposar el problema i dissenyar dos metodes
doptimitzacié distribuits, que son iteratius i requereixen que els controladors locals
intercanviin informacié entre ells a cada iteracié. A continuacid, es mostra que la se-
qliencia generada per aquests metodes convergeix a la solucié optima si es compleixen
certes condicions, incloent la manera en que els controladors s’han de comunicar i co-

operar.

No obstant aix0, a la practica, la comunicacié no és sempre perfecta, és a dir, el

suposit de comunicacié perfecta no es compleix. En el cas de fallades en els enllacos
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de comunicaci6, els metodes distribuits podrien no ser capagos de proporcionar una
solucid. Per a resoldre aquest problema, es dissenya un protocol d'informacié basat
en consens. A més, els metodes d'optimitzacié distribuits s'amplien per tal que siguin
capagos de treballar en xarxes amb comunicacions aleatories i actualitzacions asin-
crones, és a dir, xarxes en que no tots els controladors realitzin les actualitzacions. En
aquestes configuracions es mostren la convergencia i l'ordre de convergencia d’aquests
algoritmes. A més, es mostra també la implementacié d’aquests metodes en el control
predictiu economic basat en models per a xarxes energetiques. La discussié inclou les
técniques que es poden emprar per a reduir el nombre d’iteracions, aixi com el rendi-

ment dels metodes, fent servir un estudi numeric.

Tenint en compte que els metodes anteriorment esmentats requereixen una comu-
nicaci6 intensa, es proposa un altre esquema no centralitzat que proporciona un com-
promis entre intensitat de comunicaci6 i suboptimalitat. Aquesta estrategia consisteix
entornar a particionar el sistema en linia amb l'objectiu d'obtenir subsistemes autosufi-
cients, formant coalicions de subsistemes que no ho siguin per separat, i descomposant
el problema economic d’expedicié denergia en subproblemes de tipus coalicional. En
aquest esquema, cada subsistema es comunica Unicament amb aquells altre subsis-
temes que pertanyin a la mateixa coalicid, reduint aixi el transit de comunicacié. En
particular, quan tots els sistemes sén autosuficients, I'intercanvi d'informacié deixa de

ser necessari.

Finalment, es considera el problema de la cooperacié durant la implementacié de
les decisions. Especificament, alguns subsistemes no acaten les decisions preses amb
la finalitat de millorar el propi rendiment a costa de disminuir el d’altres subsistemes.
Es per aixo que, a fi de solucionar aquest problema, es proposa un esquema resilient,
el qual consisteix en un metode estocastic per fer les decisions més robustes davant
d’aquest comportament advers, i un metode d’identificacié i mitigaci6 basat en evaluar
hipotesis utilitzant inferéncia bayesiana. En general, 'esquema proposat aconsegueix
mitigar 'efecte que els subsistemes no obedients exerceixen sobre la resta, i en un cas

concert, també permet identificar els subsistemes adversos.

Paraules clau: control predictiu basat en models (MPC), MPC distribuit, MPC no
centralitzat, optimizacié distribuida, particionat de sistemes, sistemes a gran escala,

despatx economic, sistemes variables amb el temps, metodes resilients.
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ABSTRAKSI

Skema kendali yang tidak tersentralisasi untuk sistem berskala besar, seperti sistem
jaringan energi, lebih fleksibel, skalabel, dan reliabel dibandingkan dengan skema
tersentralisasi. Keuntungan ini diperoleh dari terdapatnya satu set pengendali lokal,
yang hanya bertanggung jawab terhadap satu partisi dari sistem tersebut, daripada jika
hanya terdapat satu entitas yang mengendalikan seluruh sistem. Bahkan dalam beber-
apa sistem, penerapan struktur kendali yang tidak tersentralisasi menjadi keharusan
karena adanya permasalahan intraktabilitas dari metode tersentralisasi. Oleh karena
itu, disertasi ini bertujuan untuk melakukan studi pada metode kendali berdasarkan
optimisasi dengan struktur yang tidak tersentralisasi untuk sistem energi berskala be-
sar. Khususnya, disertasi ini memfokuskan pada proses komunikasi dan kooperasi
pengendali-pengendali lokal, yang merupakan bagian integral dalam skema yang di-

maksud.

Pada disertasi ini, sistem kontrol prediktif (model predictive control (MPC)) diter-
apkan untuk menyelesaikan optimisasi economic dispatch pada sistem energi berskala
besar. Dalam arsitektur yang tidak tersentralisasi, pengendali-pengendali lokal harus
menyelesaikan permasalahan economic dispatch secara kooperatif. Permasalahan eco-
nomic dispatch ini diformulasikan sebagai optimisasi yang konveks dan memiliki kon-
strain terkopling. Oleh karena itu, pendekatan Lagrange yang teraugmentasi diter-
apkan untuk mendekomposisi permasalahan optimisasi terkait. Pendekatan ini juga
digunakan untuk merancang dua metode optimisasi terdistribusi, yang iteratif dan
mengharuskan pengendali-pengendali lokal bertukar informasi satu sama lain pada
setiap iterasi. Sekuensi yang dihasilkan dari kedua metode tersebut akan terkon-
vergensi pada suatu solusi yang optimal apabila beberapa kondisi, yang meliputi

bagaimana pengendali harus berkomunikasi dan berkooperasi, terpenuhi.

Namun, pada praktiknya, proses komunikasi yang terjadi mungkin tidak selalu
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sempurna, dalam hal ini asumsi pada proses komunikasi yang dibutuhkan tidak ter-
penuhi. Pada kasus kegagalan jaringan komunikasi, metode terdistribusi yang diran-
cang mungkin tidak dapat menemukan solusinya. Oleh karena itu, suatu protokol
untuk pertukaran informasi yang berdasarkan pada konsensus dirancang untuk men-
gatasi permasalahan ini. Selanjutnya, dua metode terdistribusi yang telah dirancang
juga dikembangkan lebih jauh sehingga metode-metode tersebut dapat bekerja pada
jaringan komunikasi stokastik dengan proses yang asinkron, yaitu proses dimana tidak
semua pengendali selalu melakukan pembaruan. Dalam hal ini, konvergensi dan laju
konvergensi dari metode yang dirancang dipertunjukkan. Selain itu, implementasi
dari metode terdistribusi pada sistem economic dispatch berbasis MPC juga dibahas.
Diskusi pada bagian ini mencakup beberapa teknik yang dapat digunakan untuk men-
gurangi jumlah iterasi dan performa dari metode-metode yang dirancang pada suatu

studi numerik.

Dengan pertimbangan bahwa metode-metode yang disebut sebelumnya membu-
tuhkan komunikasi yang intensif, maka sebuah skema alternatif, yang memberikan
trade-off antara intensitas komunikasi dan suboptimalitas, juga dirancang. Skema
ini terdiri dari repartisi sistem online yang bertujuan untuk mendapatkan subsistem-
subsistem yang swasembada, pembentukan koalisi untuk subsistem-subsistem yang
tidak swasembada, dan dekomposisi permasalahan economic dispatch menjadi sub-
problem berbasis koalisi. Dalam skema ini, tiap subsistem hanya perlu berkomunikasi
dengan subsistem-subsistem lain yang berada pada koalisi yang sama; sehingga men-
gurangi aliran komunikasi. Jika semua subsistem yang terbentuk swasembada, maka

pertukaran informasi tidak dibutuhkan sama sekali.

Pada akhirnya, disertasi ini juga membahas mengenai suatu permasalahan kop-
erasi dalam masa implementasi keputusan (solusi). Pada permasalahan kooperasi ini,
terdapat beberapa subsistem yang tidak menuruti keputusan (solusi), misalnya den-
gan tujuan untuk mendapatkan kinerja yang lebih baik dan di saat yang bersamaan
memperburuk kinerja subsistem lainnya. Maka, sebuah skema resilien yang dapat
mengatasi permasalahan ini dirumuskan. Skema tersebut terdiri dari sebuah metode
stokastik untuk merobustifikasi keputusan terhadap perilaku adversari dan sebuah
metode identifikasi dan mitigasi yang berdasarkan pada pengujian hipotesis dengan
menggunakan inferensi Bayes. Skema yang diusulkan, secara umum, dapat memit-
igasi pengaruh subsistem yang tidak patuh pada subsistem reguler, dan pada kasus

tertentu, juga dapat mengidentifikasi subsistem yang menjadi adversari.
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Kata kunci: sistem kendali prediktif (MPC), MPC terdistribusi, MPC non-
tersentralisasi, optimisasi terdistribusi, pemartisian sistem, sistem berskala besar, eco-

nomic dispatch, jaringan bervariasi waktu, metode-metode resilien.
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NOTATION

L>a
I1
A® B
(a,b)
|- |

- Il

1115

blkdiag(-)
col(-)
diag(-)

All-one column vector with the size of n

Identity matrix with the size of n x n

Expectation operator

Probability measure

Set of real numbers

{beR:b>a},foraeR

{beR:b>a},foraecR

Set of integers

{beZ:b>a},foracZ

{beZ:b>a},foracZ

Cartesian product

Kronecker product of two matrices A and B

Inner product of a,b € R”

Cardinality operator

Euclidean norm

The squared of weighted norm induced by the squared matrix D,
e.g., fora € R" and D € R™", ||a||% = (a, Da).
Construct a block diagonal matrix of the arguments
Concatenate the arguments as a column vector

Construct a diagonal matrix of the arguments
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CHAPTER 1

INTRODUCTION

Firstly, this chapter provides the background and motivation of this thesis by illustrat-
ing the development of the energy sector, stating some new control challenges that
arise due to the transformation of energy systems, and introducing the model predic-
tive control (MPC) approach that is suitable as an energy management framework and
able to overcome the challenges. Afterward, the key research questions, which incite
the development of the thesis, are formulated. Finally, the contents and the related

publications of the thesis are stated.

1.1 Development of Energy Systems

Current innovations in the energy sector are driven to achieve clean, efficient, and
sustainable production, operation, and consumption of energy, as targeted by poli-
cymakers from many countries, e.g., as stated in [Eur18a, Eur18b, Dep, Nat, OME™14].
Significant changes in energy systems that can be seen nowadays include the pene-
tration of small-scale production units, particularly those that use renewable energy
sources, at a high rate [Int19], the introduction of flexible (controllable) loads, not only
in households but also in the form of electrical vehicles [GS19], and the integration with

information and communication infrastructures to set up intelligent systems [Amil1].

A paradigm shift on the way energy systems must be controlled and managed is re-

quired to take full advantage of the above technological developments. For instance,
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the power generated by non-dispatchable renewable energy sources, such as solar
and wind, is intermittent and weather-dependent unlike conventional fossil-based
power generators; thus, they require storage devices to compensate for this limitation
[MHA18]. Moreover, the hierarchical and centralized control approach in electrical
transmission and distribution networks might not be applicable and must be adapted
when a large number of distributed generation and storage units as well as flexible
loads are present in the system [MDS"17, DSPB16]. Additionally, the availability of
information and communication technology encourages the development of novel ap-

proaches for controlling and managing energy systems [MDS™17, MHA18].

The emphasis of this thesis is on the economic dispatch problem of energy net-
works considering the aforementioned technological development. Specifically, the
regarded energy networks may consist of a large number of controllable components,
such as distributed generation units, which can be dispatchable or non-dispatchable,
storage devices, and flexible loads. The economic dispatch problem of such systems
deals with computing economically optimal references of the controllable components
such that the generated power meets the demand and the operational constraints of
the network are satisfied [KHMM14]. Therefore, the problem can be considered as an

optimization problem of a large-scale system.

One of the main challenges faced when dealing with a control problem of a large-
scale system is the complexity of computing control inputs, especially when the avail-
able computational time and resources are limited. Moreover, a large amount of data,
such as data from sensors or control inputs for the actuators, must also be commu-
nicated between the system and the controller. Additionally, for some large-scale
systems, including energy networks, the reliability, the scalability, and the flexibil-
ity of the controller are also important [CSMndlPnL13]. Furthermore, such systems
may also have additional features, such as uncertain behavior of their components
and time-varying topologies, which increase the complexity of the control problem.
In an energy network, not only the energy demand but also the energy produced by
non-dispatchable generation units, such as solar- or wind-powered units, are uncer-
tain. Moreover, current electrical grids may also possess time-varying topologies. For
instance, electric vehicles, as ones of the components of the grid, move around and are

connected to different charging points at different time instants.
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1.2 Non-centralized Model Predictive Control

Model Predictive Control (MPC) or receding horizon control is an online optimization-
based control method that computes its control inputs by minimizing a cost function
while taking into account the dynamics of the system and both physical and opera-
tional constraints [RM09]. The controller requires the model of the systems in order to
represent its dynamical behavior. Furthermore, an MPC controller takes into account
the prediction over a certain time horizon and only applies the control input that cor-
responds to the current time instant. Additionally, it also applies the receding horizon
principle, in which the prediction horizon is always shifted forward at each time in-
stant. The MPC framework, with its feature, is suitable to be implemented as an eco-
nomic dispatch scheme of energy networks. One of the advantages of considering the
MPC framework is in handling components with dynamics and uncertainties, in com-
parison to tradional economic dispatch schemes [PWK*17, ZH14]. In this regard, the
energy management problem must be cast as a finite horizon optimization problem,
which includes the economic cost function as well as the physical and the operational

constraints of the components in the system.

In dealing with a large network, the MPC framework has been developed to incor-

porate non-centralized architectures, which are defined as follows:

Definition 1.1 (Non-centralized architecture). A control scheme has a non-centralized
architecture if there exists a group of local controllers, each of which is responsible for

a partition/portion of the system. O

Note that each local controller may only require partial model, constraints, and
states as well as compute partial control inputs. Furthermore, following [Sca09,
CSMndIPnL13], non-centralized MPC schemes are classified into the decentralized and

distributed architectures, which are defined next.

Definition 1.2 (Decentralized architecture [CSMndIPnL13]). A non-centralized control
architecture is called decentralized if the local controllers do not communicate with

each other to compute their control inputs. O

Definition 1.3 (Distributed architecture [CSMndIPnL13]). A non-centralized control ar-
chitecture is called distributed if the local controllers communicate with each other to

compute their control inputs. O
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\ A | vy ]
Local Local Local
Controller 1 Controller 2 Controller n

T A T A T A
U7 | I L1 Ug| | T2 Up | T
A 4 L A A L A A L
’ Subsystem 1 ‘ ’ Subsystem 2 ‘ e ’ Subsystem n
)
System

__ physical interactions _._._ communication

Figure 1.2: Distributed control scheme.

Decentralized and distributed schemes are shown in Figures 1.1 and 1.2, respec-
tively. As provided in their definitions, the main distinction of these two architectures
is the existence of communication when computing the control inputs. Note that com-
munication is an important feature of distributed approaches since it allows local con-
trollers to have extra information about their neighbors. Therefore, the performance
of distributed approaches is, in general, better than the decentralized counterparts. In
fact, most of the non-centralized MPC approaches that are able to meet the centralized
performance belong to the class of distributed approaches. However, decentralized
controllers are relatively more straightforward than distributed ones while achieving a
suboptimal performance that may be enough for specific systems, e.g., weakly coupled
systems [CSMndlPnL13].

Non-centralized schemes are developed mainly to overcome issues faced by
the centralized counterpart when the system is too large and complex [Sca09,
CSMndIPnL13]. One of the problems is intractability, which is the inability of the
controller to compute the control input in a given time. This issue often arises since

the optimization problem behind the controller is too large or too complex. In this



1.2 : Non-centralized Model Predictive Control 5

regard, by having a non-centralized scheme, the optimization problem can be de-
composed into subproblems, which are locally tractable and then assigned to the lo-
cal controllers. Furthermore, as discussed in [Sca09, CSMndIPnL13], non-centralized

schemes are more flexible and scalable than the centralized counterpart.

Summaries and surveys of non-centralized MPC approaches are provided in [Sca09,
CSMnd1PnL13, MN13, NM14]. Furthermore, in [MN13, NM14], some classifications are
also made. These approaches are classified based on the process features, such as cou-
pling source; control features, such as architecture, controller knowledge and attitude,
computation type, or communication; and theoretical features, such as optimality and
robustness. In designing a non-centralized scheme, it is important to identify the cou-
pling sources, i.e., what makes the overall system non-separable. Based on this knowl-
edge and the control objectives, then some control features can be decided. For in-
stance: whether the information required by each controller is strictly local, i.e., only
the information of the neighboring subsystems, or partially global, i.e., some infor-
mation of all subsystems; whether the attitude is cooperative or non-cooperative; and

whether the communication between the controllers is serial or parallel.

Based on the nature of the considered control problem, where an optimal deci-
sion of a global problem is sought, this thesis concentrates on cooperative approaches,
where local controllers cooperate to compute their optimal decisions. In this regard,
distributed optimization algorithms are employed. Such algorithms are typically it-
erative and require the local controllers to exchange information with their neigh-
bors. Furthermore, under some conditions, the decisions computed converge to an
optimal solution. Some cooperative and iterative DMPC schemes for energy man-
agement problems that have been proposed in the literature include, among others,
those that are based on dual decomposition [LvFS14], the alternating direction method
of multipliers (ADMM) [WOK15, HBR"19], the accelerated distributed augmented La-
grangian (ADAL) [SHR18], the optimality-condition decomposition (OCD) [BGHL16],
and Douglas-Rachford operator splitting [HVP*16]. Furthermore, in [PWK*17], the
optimization problem behind the DMPC scheme is formulated as a mixed-integer pro-
gramming problem, and the scheme uses a coordinator and consists of three optimiza-
tion phases. Similarly, [BGK*16] also proposes a hierarchical distributed MPC scheme

with a coordinator and two optimization phases.

Despite many efforts to employ a non-centralized MPC scheme in energy networks
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that have been made, further study and investigation are still needed. This thesis, in
particular, gives special attention to the improvement of communication and coopera-
tion processes that local controllers must carry out. As previously discussed, commu-
nication and cooperation play an important role in the deployment of a non-centralized
scheme. This thesis addresses some potential communication and cooperation prob-
lems that might occur and develops methodologies to deal with them. Specifically, the

problems include:
« Communication link failures, which prevent them from obtaining necessary in-
formation.

« Asynchronous updates, where some local controllers are not able to send infor-

mation to their neighbors.
« Non-compliance, where some local controllers do not implement the decisions

that have been computed from applying a distributed optimization algorithm.

Furthermore, this thesis also exploits the system partitioning approach with the aim
to reduce the intensity of the communication process when a distributed optimization

algorithm is deployed.

1.3 Research Questions

The research objectives of this thesis are driven from the following questions:
(Q1) How to design and implement a non-centralized MPC-based economic dispatch
scheme for large-scale energy systems?

(Q2) How to design an information-exchange protocol for distributed MPC approaches

that is resilient against communication failures?

(Q3) Do distributed optimization algorithms work over time-varying communication

networks and in an asynchronous manner?

(Q4) How to perform online partitioning on large-scale energy systems in a distributed

manner?
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(Q5) How can online partitioning be used in a non-centralized economic dispatch

scheme of large-scale energy systems?

(Q¢) How to design a non-centralized MPC-based economic dispatch scheme that is

resilient against non-compliance issues?

While the key research question ((Q1) serves as the main objective of this thesis, the other
questions provide specific goals. The remaining chapters of the thesis are devoted to

providing the answers, which become the contributions of this thesis.

1.4 Thesis Outline

Figure 1.3 presents the outline of the thesis and the connections of the chapters. Fur-

thermore, the content of each chapter in this thesis is summarized as follows:

Chapter 2: Non-centralized MPC-based economic dispatch

This chapter provides the formulation of the energy management problem of a large-
scale energy system. The model of the network, the optimization problem, and the
general assumptions considered throughout the thesis are presented. Moreover, the
non-centralized MPC framework and its specific issues that become key points in the
discussion of this thesis are also explained. Therefore, this chapter initiates the answer

to the key research question (Q1).

Chapter 3: Distributed augmented Lagrangian methods

In this chapter, two distributed optimization methods, which are based on the aug-
mented Lagrangian approach, are developed to solve the economic dispatch problem
formulated in Chapter 2. The distributed methods exploit the particular structure of
the problem to achieve scalability. Furthermore, the convergence analysis of the pro-
posed methods is also presented. This chapter partially answers key research question

(Q1) and is partly based on the following publication:

« W. Ananduta, A. Nedi¢, and C. Ocampo-Martinez. Distributed augmented La-
grangian method for link-based resource sharing problems of multi-agent sys-

tems. IEEE Transactions on Automatic Control. Submitted.
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Figure 1.3: Outline of the thesis. Arrows indicate read-before relations.

Chapter 4: Mitigating communication failures in distributed MPC schemes

This chapter deals with the problem of communication failures that distributed MPC
schemes might face in practice. Furthermore, it presents an application of consensus
algorithm as the information-exchange protocol and a solution to the communication
failure problem. Regarding the proposed solution, a discussion on how to partition
the communication network and reconfigure the partitions is also provided. Thus, this
chapter answers the key research question (Q)2). Moreover, it is based on the following

publications:
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« W. Ananduta, J. Barreiro-Gomez, C. Ocampo-Martinez, and N. Quijano. Re-
silient information-exchange protocol for distributed model predictive control
schemes. In Proceedings of the American Control Conference (ACC), pages 1286-
1291, 2018.

« W. Ananduta, ]J. Barreiro-Gomez, C. Ocampo-Martinez, and N. Quijano. Mitiga-
tion of communication failures in distributed model predictive control strategies.
IET Control Theory Applications, 12(18):2507-2515, 2018.

Chapter 5: Distributed methods with stochastic communication

This chapter investigates how to extend the distributed optimization methods pre-
sented in Chapter 3 such that they work under imperfect communication conditions.
Specifically, the distributed methods are modified and implemented over a random
communication network and in an asynchronous manner. Moreover, this chapter also
studies their convergence properties. This chapter answers the key research question

(Q3) and is partially based on the following publication:

« W. Ananduta, A. Nedi¢, and C. Ocampo-Martinez. Distributed augmented La-
grangian method for link-based resource sharing problems of multi-agent sys-

tems. IEEE Transactions on Automatic Control. Submitted.

Chapter 6: Implementation of distributed methods for the MPC-based dispatch
scheme

This chapter studies the application of the distributed methods discussed in Chapters
3 and 5 to the non-centralized MPC-based economic dispatch scheme for energy sys-
tems. Some techniques to improve the convergence speed, which is important for on-
line optimization, are applied. The study is based on numerical simulations that are
carried using a benchmark case. Therefore, this chapter partially answers the key re-

search questions (Q)1) and (Q3). Additionally, it is based on the following publication:

« W. Ananduta, C. Ocampo-Martinez, and A. Nedi¢. A distributed augmented La-
grangian method over stochastic network for economic dispatch of large-scale

energy systems. IEEE Transactions on Control of Network Systems. To be submitted.
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Chapter 7: A non-centralized control scheme based on online partitioning

This chapter discusses a distributed methodology to perform online system partition-
ing of large-scale energy networks. The partitioning method is specifically developed
as a part of a non-centralized economic dispatch scheme, which has low communica-
tion burden. Furthermore, some analysis on the outcome of the partitioning method
and the non-centralized control scheme is also provided. This chapter answers the key
research questions (Q1), (Q4), and (Q)5). Furthermore, it is based on the following publi-

cations:

+ W. Ananduta and C. Ocampo-Martinez. Decentralized energy management
of power networks with distributed generation using periodical self-sufficient
repartitioning approach. In Proceedings of the American Control Conference (ACC),
pages 3230-3235, 2019.

« W. Ananduta and C. Ocampo-Martinez. Event-triggered partitioning for noncen-
tralized predictive-control-based economic dispatch of electrical networks. Au-

tomatica. Under second review.

Chapter 8: Resiliency of non-centralized MPC schemes against adversaries

This chapter addresses cooperation issues that the non-centralized MPC-based eco-
nomic dispatch scheme might encounter. Particularly, it is considered that some
agents are adversarial and do not comply with the decisions computed by the non-
centralized algorithm applied by the agents in order to have a better performance.
Therefore, a method to cope this issue is proposed. The method consists of robusti-
fying the decisions and identifying as well as mitigating the adversarial behavior. This
chapter answers the key research question (QQs) and is based on the following publica-

tions:

« W. Ananduta, J. M. Maestre, C. Ocampo-Martinez, and H. Ishii. Resilient dis-
tributed energy management for systems of interconnected microgrids. In Pro-
ceedings of the IEEE 57th Conference on Decision and Control (CDC), pages 6159-6164,
Miami, USA, 2018.

« W. Ananduta, J. M. Maestre, C. Ocampo-Martinez, and H. Ishii. A resilient ap-
proach for distributed mpc-based economic dispatch in interconnected micro-

grids. In Proceedings of the European Control Conference, pages 891-896, Naples,
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Italy, 2019.

« W. Ananduta, J. M. Maestre, C. Ocampo-Martinez, and H. Ishii. Resilient dis-
tributed model predictive control for energy management of interconnected mi-
crogrids. Optimal Control, Applications and Methods, 2019. To appear. DOI:
10.1002/oca.2534.

Chapter 9: Concluding remarks
This chapter provides some remarks regarding the results obtained and presented in
Chapters 2-8. The key research questions, introduced in Section 1.3, are also addressed.

Furthermore, this chapter also suggests some open questions for future research.

1.5 Other Publication

The following publication is related to the research topic and has been done during the

completion of this thesis:

« W. Ananduta, T. Pippia, C. Ocampo-Martinez, J. Sijs, and B. De Schutter. Online
partitioning method for decentralized control of linear switching large-scale sys-
tems. Journal of the Franklin Institute, 356(6):3290-3313, 2019.
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CHAPTER 2

NON-CENTRALIZED MPC-BASED
ECONOMIC DISPATCH

This chapter presents the energy management problem of large-scale energy networks
and a non-centralized framework to solve it. First, Section 2.1 provides the model of
the systems. Then, in Section 2.2, the mathematical formulation of the problem is
stated. Section 2.3 presents a non-centralized scheme based on model predictive con-
trol (MPC) as the general framework considered in this thesis, whereas Section 2.4 in-
troduces the benchmark case that is used when performing some numerical simula-

tions. Finally, Section 2.5 summarizes this chapter by giving some remarks.

2.1 Model of Large-Scale Energy Systems

Let a large-scale energy system be represented by an undirected graph G = (N, €),
where N = {1,2,...,n} denotes the set of nodes and £ C N x N denotes the set of links
that physically connect the nodes. In this system, each node might consume, store, or
produce energy. Each of the capabilities is represented by a component, namely load,
storage unit, and generation unit, respectively. Moreover, each pair of nodes that are
connected, e.g., nodes i and j such that {4, j} € £, might also exchange energy between
each other. Additionally, there might exist a third party, from which a node can import

energy if the node is connected to it.

13
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Beside classifying based on their capabilities, the components of the networks can
be further divided into two groups: dispatchable and non-dispatchable units. This clas-
sification is relevant since, in an energy management problem, the objective is to com-
pute the set points of the dispatchable units. Both generation units and loads can be
either dispatchable or non-dispatchable, whereas storage units are dispatchable. How-
ever, for simplification of notations, it is considered that all energy generation units are
dispatchable, whereas all loads are non-dispatchable and might be uncertain. Note
that, the generality of the model is not lost since dispatchable loads can be considered
as negative production of energy and, similarly, non-dispatchable generation units can
be considered as the components that consume negative energy. Finally, denote by
N C N, Nt C N, and NP C N the set of nodes that have dispatchable generation

units, storage units, and are connected with a third party, respectively.

In a non-centralized control scheme, it is assumed that there exists m computa-
tional units (controllers), where m < n. These controllers cooperatively manage the
operation of the system G. In this regard, the system must be partitioned, where the

definition of partitions is given as follows:

Definition 2.1 (Non-overlapping partitions). Let M,,, forp = 1,2,...,m, be non-empty
subsets of A/. Then, theset M = {M, : p=1,2,...,m} defines m non-overlapping
partitions of graph G = (N, €) if J;L; M, = N and M, N M, = 0, for any M,,, M, €
Mandp # q. O

Note that the partitioning of the network can be done based on the network design,
market design, or the energy contracts [KCLB14, ST13, SSP*19]. Moreover, a large-
scale network might also be partitioned optimally. For instance, in [AMEF12, AME13,
BAAT18], the authors propose optimization-based partitioning approaches for electri-
cal networks. In this thesis, it is assumed that the system has been initially partitioned.
Later in Chapter 7, the partitions are dynamically changed as a result of the proposed

non-centralized scheme.

Now, suppose that at each discrete-time step ¢t € Z>, the system G is partitioned
into m non-overlapping subsystems, defined by theset M; = {M,:: p=1,2,...,m}
according to Definition 2.1. Each subsystem consists of a number of connected nodes
and is considered as a supra-node. Since each subsystem contains some nodes, then
each subsystem has similar features of the nodes. In particular, each subsystem might

consume, store, or produce energy. Moreover, two neighboring subsystems might also
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Figure 2.1: An example of a small-scale energy network. Top figure shows graph G where the
nodes in N are depicted as dots and the links in £ are depicted as solid lines. The graph G
is partitioned into 5 subsystems. Bottom figure shows graph G; where the subsystems (supra-
nodes) in P are depicted as filled squares and the links in £} are depicted as dash-dotted lines.

exchange energy. However, different from the nodes, each subsystem has a computa-
tion unit/local controller that manages the operation of the nodes that belong to that
subsystem. In this thesis, the notions of subsystem and agent are used interchangeably

as an independent controllable entity.

The network of subsystems/supra-nodes is described by the undirected graph G} =
(P,&}). Theset P = {1,2,...,m} denotes the index set of the subsystems and &£ C
P x P denotes the set of links among the subsystems. Furthermore, if there exists at
least one node in subsystem p connected to a node in subsystem ¢, then {p, ¢} € &;.
Therefore, let \V;, denote the set of neighbors of subsystem p € P at time step ¢, i.e.,
Npp=1{qeP:3{i,j} € Ei€ Mpy,j € Mgs,p # q}. Figure 2.1 illustrates how the
network of supra-nodes of a small-scale energy system is formed. Additionally, notice
that each node is associated with a subsystem and the association might change over
time ¢. In this regard, let ¢ : N' x Z — P be the function that gives the subsystem index
with which a node is associated at time step ¢, i.e., ¢(i,t) := p, wherep € {pe P :i €
M, }. Note that, for non-overlapping partitions at t € Z>o, theset{p € P : i € M, ;}

has a unique element, for any i € N.

Itis important to note that the definition of subsystems used in this thesis coincides
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with that of microgrids [ST13, OME™14]. With the presence of distributed generation
and storage units, the microgrid concept is considered as the building blocks of a smart
grid and has become a key to the development of non-centralized control approachesin
energy systems [ST13]. Some literature, e.g., [LCAT12, PWK"17, HBR"19], starts the
discussion of distributed or decentralized control approaches by assuming the exis-
tence of a network of microgrids. It is also worth mentioning that conceptually micro-
grids can operate in two modes: the grid-connected mode and the island mode, where
it is not connected to the main grid. This microgrid feature will be revisited later in
Chapter 8.

A network of energy prosumers (producer-consumer) and electrical distribution
networks can be represented by the previously explained model. In a network of pro-
sumers, e.g., networks of buildings, industrial sites, and residential areas that own
small-scale generation and storage units, each node represents a prosumer. There-
fore, in this case, each subsystem only consists of one node and the network of nodes
and supra-nodes, i.e., G and G}, are equivalent. Moreover, it also implies that the par-
titioning of the network raises naturally. Additionally, different forms of energy, e.g.,
not only electrical energy but also thermal energy, might exist and must be managed.
Some examples of this type of networks are discussed in [SSP*19, SBP19, RK19]. On
the other hand, an electrical distribution network comprises a set of load busses might
also have small-scale generation units, such as solar panels, wind turbines, or fuel-
based generators, and storage units. According to the IEEE std 1547.4, such distribu-
tion networks can be partitioned into a number of microgrids to facilitate powerful
control and operation infrastructure in the future distribution systems [BAA118]. In
this regard, the idea of having a network of microgrids is to improve robustness and
self-healing features of the network [AMEF12, BAA"18].

2.2 Economic Dispatch Problem

The objective of economic dispatch is to set economically optimal references for the
controllable components such that the energy produced is equal to the energy con-
sumed while at the same time the constraints of the system are satisfied. Therefore,

an economic dispatch is formulated as a constrained optimization problem. Typically,
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the computed set points are defined over a specific time horizon. In a day-ahead plan-
ning problem, e.g., [GB15, AOST13, CMRP"11], hourly set points for the next one day
are calculated. In some other economic dispatch problems, e.g., those that are dis-
cussed in [GVB16, PRG14, BGHL16], shorter sampling time and horizon might also be
considered. Note that, since the control problem discussed in this thesis is a high-level
one, i.e., computing the set points of the controllable components, it is assumed that
these components have low-level controllers that control them such that the set points

are met.

2.2.1 Optimization Problem Formulation

In order to state the economic dispatch problem considered in this thesis, first the
decision variables are defined as follows. Recall that each node i € N might ob-
tain energy from a dispatchable generation unit, storage unit, or a third party (e.g.
the main grid) depending on whether the node has those units and connected to the
third party or not. Note that the set points are typically power, i.e., the amount of
energy per time unit. Therefore, denote the local decision of node i at time step ¢ by

dg tp d P

1 dg t
wip = col(ufl, ujs,ut,) € R™, where ul, € R, u;§ € R™", and u},

set points of the power delivered from/to the storage unit, the power produced by the

€ Rzo are the

dispatchable generation units, and the power imported from the third party, respec-
tively. Note that n! = 2+ n?g. Moreover, each node might also exchange power with its
neighbor nodes. In this case, let \; := {j : {i,j} € £} be the set of neighbors of node
i. Then, the power exchanged between nodes i and j € N; is denoted by vf,t € R. Note
that vg,t is a decision of node i, whereas the decision of node j is denoted by v}, and it
must hold that

vl vk, =0, ViEN, VieN. (2.1)

For each i € N, collect the coupled decisions vf}t, forall j € NV, as a column vector v; ; :=
col({vit}je A;). Finally, d;; € R denotes the difference between the uncontrollable
loads and the power generated by the non-dispatchable generation unit. If d;; > 0,
then the aggregated uncontrollable load is larger than the power generated by the non-

dispatchable unit. Therefore, for each node i € N, it also must hold that
1%+ 1y i — dig = 0, (2.2)

which represents the local power balance equation of node 1.
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Now, denote the time horizon, over which the economic dispatch must be solved,
by h and define an ordered set of time indices 7 := {¢,t+1,...,t+h —1}. Fur-
thermore, define the concatenated decision variables over the time horizon h with
bold symbols, i.e., u;; = col({u;,}rer) € R, vg’t = col({vg’T}TeT) € R", and
d;; = col({d;.}re7) € R". Additionally, define that v;; = col({vit}jeNi) e RWilh,

Then, the economic dispatch problem is stated as follows:

minimize (fil(ui,t) + ff(vi,t)> (2.3a)
{(uievi,6) bien ieN

s.t. (ui7t,vi,t) € ﬁi,t, Vi € N, (23b)

v, +vl, =0, VjEN, VieN. (2.3c)

In Problem (2.3), each node i € N is assigned to a local cost function, which consists
of two parts, f! and f¢, which depend on u; ; and v; ;, respectively. Moreover, in (2.3b),
the decisions of each node i € NV are constrained by the local set £; ;, which is defined
as follows: L;; = (U; x V;) N W, ¢, where U; C R™" is a constraint set of Wity Vi C RWilh
is a constraint set of v; ¢, and W ; is the set such that the power balance equation (2.2),

for the whole time horizon, is satisfied, i.e.,

Wie = {(w,0) e RO (o1 Yut (T @ h)vtdig=0).  (24)

)

Furthermore, the coupling constraints in (2.3c), which is obtained from (2.1), highlight
the particularity of the problem structure. Due to these constraints, the problem can
be considered as a link-based resource sharing problem. Finally, it is supposed that the

following assumptions on Problem (2.3) hold.

Assumption 2.1. For each i € A, the functions f! : R™" — R and f! : RWilh 5 R are
differentiable and convex. Moreover, f}(u;,) is strongly convex with strong convexity

constant o;. O

Assumption 2.2. For eachi € N andt € Z>(, U; and V; are non-empty, polyhedral,

and compact whereas £; ; is non-empty. O

Remark 2.1. By Assumption 2.2 and the definition of W, the non-empty set L; ;, for
each i € N and ¢ € Z>, is polyhedral and compact. O

Assumption 2.3. The feasible set of Problem (2.3), for any ¢ € Z>¢, is non-empty. O

In the literature, e.g., [MDS"17, KCLB14, BGHL16, HBR"19], a strongly convex



2.2 : Economic Dispatch Problem 19

quadratic cost function is typically considered as the cost function of producing en-

ergy, which is related to the local decisions u; , e.g.,

FHuwig) = (wig, Qiwiyg) + (i, wis),

where a diagonal positive definite matrix Q; € Ri*" and q; € R are constant.
On the other hand, the cost function of exchanging energy can be either quadratic, as
in [HBR'19], which considers a cost function that is based on the loss of energy when
transfering power, or linear, as in [SSP*19], which considers the cost of trading energy
among agents. In this thesis, the assumption on the cost function (Assumption 2.1) is

more general and includes the typical cost functions considered in the literature.

The assumption on the local sets I; and V; (Assumption 2.2) is made since com-
monly the local and coupled decisions are constrained by the operating limitations of
the components, which usually form a polyhedral set, whereas Assumption 2.3 is con-
sidered to ensure the existence of solutions of Problem 2.3 at each time step. Moreover,
as seen in (2.4), the information of d; -, for all 7 € T, is required. However, since d; ;
is uncertain, one can only provide a forecast of d; ;, which is denoted by dzf’t. It is as-
sumed that the forecast can be obtained, e.g., based on historical data. Now, denote

w; ; as the difference between d; ; and d! ,, i.e.,

di’t - dit + wld;t, VZ € N (2.5)

d,max
it

- d _r1.d . d,max . d
Then, itis also assumed that w{, = [wf ];e7 is bounded by w; ;" i.e., |wi,| < w

where w?’tmax, foreachi € N andt € Z>, is known. Thus, one can consider the worst-
case scenario of d;; in W, ; to obtain robust decisions with respect to this uncertainty
as follows:

diy = df, + W™, VieN, Ve Zs. (2.6)

Therefore, the definition of W;; includes (2.6), implying the set W, ; depends on the
wg’tmax. Moreover, note that in Chapter 7, a stochastic method is introduced to relax

the assumption on w,.

Now, typical constraints associated with the controllable components of the system
and defining the local sets /; and V; are mentioned. These constraints also provide a
model of the components considered in the economic dispatch problem (2.3). The

operational constraints of the controllable components are, as follows:
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1. Dispatchable generation units. The production capacity constraints of these units

are stated as follows:

dg,min dg dg,max .
u; <wuo <y , VieN,VreT, (2.7)
dg,mi d . .
where the vector u;®™" and u;®"** denote the minimum and maximum power

that can be generated by the dispatchable generation units in node i, respectively.
Note that, for i ¢ A/98, yJ&™" =y, demax _ ¢

2. Storage units. The capability of storing energy is modeled by discrete-time inte-

grator dynamics, i.e.,

Tirl = GiTir +bui,, Vie N, VreT, (2.8)

where z; denotes the state of charge (SoC) of the storage unit . The scalar a; €
(0, 1] denotes the efficiency of the storage whereas b; = —eiT_—;p, where T, denotes
the sampling time of the system and e; " denotes the energy capacity of the stor-
age unit. Moreover, the SoC and the power delivered to/from the storage are also

constrained as follows:

x;‘nin < Tir+1 < x;nax’ Vi € NSta vreT, (29)
—uh <o <udl, Vie N WreT, (2.10)
u?,%’ =0, Vig N VreT, (2.11)

where 2" z™& ¢ [0,1] denote the upper and lower limit of SoC whereas

R Rt
ush, udh € R denote the maximum charging and discharging power of the stor-

age.

3. Imported power. The amount of power that can be imported from a third party is

limited as follows:

0<ul <uP™ VieN® VreT, (2.12)
u =0, Vig N VreT, (2.13)
where u>"™* denotes the maximum power that can be imported.

4. Exchanged power. The amount of power that can be exchanged between two
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neighboring nodes might also be limited as follows:

j,max < J < Uj,max
i SV )

VieN;, Vie N,VreT, (2.14)

—U

where v{ "M is the maximum power that can be delivered to/from node i through

link {i, j}.

Remark 2.2. One might consider additional constraints, e.g., those that are inter-
temporal. For instance, the rate of power produced by the generation units or the rate
of power delivered to/from the storage units. With these constraints, Assumption 2.2
still holds. O

2.2.2 Problem Reformulation Based on the Network of Supra-nodes

As discussed in Section 2.1, the network G is partitioned into m subsystems, each
of which is managed by a local controller. Therefore, it is necessary to re-
state the economic dispatch problem (2.3) from the perspective of the network of

subsystems/supra-nodes.

Proposition 2.1. Suppose that, at time step t, the system G is partitioned into m non-
overlapping subsystems, defined by M; = {M,,; : p € P}, i.e, My, forallp € P, satisfy

Definition 2.1. Then, Problem (2.3) can be rewritten as follows:

minimize 37 37 (Fhwin) + fE(wir) (2.152)
B PEP iEMyp ¢

s.t. (uit,vit) € Ly, Vi€ My, Vp € P, (2.15b)

vl +vl, =0, VjEN;NMypy, Vi€ My, ¥peP, (2.15¢)

vl +vl, =0, VjEN\Myy, Vi€ My, Vp € P. (2.15d)

Proof. Since M, , for all p € P, are non-overlapping, by Definition 2.1, it holds that
Myt N Mg = 0, for any p # ¢, where p,q € P, and U,cp Mp: = N. Thus, the
cost function in (2.15a) are equivalent to the cost function in (2.3a), the constraints in
(2.15b) is equivalent to the constraints in (2.3b). Moreover, the equality constraints in
(2.3c) are decomposed into (2.15¢) and (2.15d). O
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By rewriting the problem as in (2.15), it can be observed that the cost function is
decomposable. In this regard, each subsystem can be assigned its own local cost func-
tion, i.e., ;e rq, (fH(wis) + f£(viy)). Similarly, the constraints in (2.15b) and (2.15c)
are also decomposable and each subsystem only consider its local constraints, i.e.,
(uit,viy) € Ly, foralli € My, and 'va;t + v;?,t =0, forallj e ;N M,,andi € M,,.
Therefore, u;, for all i € M,, as well as v}, and vé’t, forall j € N; N M,; and
i € My, are local decisions of supra-node p. Finally, it is also observed that each
equality constraint in (2.15d) couples two neighboring subsystems, i.e., subsystems
¢(i,t) and ¢(j, ), for each j € Nj\M,+,i € M, ,, and p € P. Note that ¢(j,t) € Ng(m’t

and, vice versa, ¢(i,t) € N;( In this regard, the decisions vg;t, forall j € N;\ M, +

j7t)7t.
and i € M, ,, are coupled decisions of supra-node p.

2.3 Non-centralized MPC Scheme

In this thesis, the MPC framework [RM09, CSMndIPnL13], which uses the receding
horizon principle, is applied. Therefore, at each time step, the economic dispatch
problem over a fixed time horizon based on the measurement at that time step is solved
and only the decisions at the first time instant are applied to the system. In general,
an MPC-based economic dispatch algorithm consists of the steps detailed in Algorithm
2.1.

Algorithm 2.1 MPC-based economic dispatch
Iteration: For each t € Z>,

1. Compute u; and v, 4, for all i € NV, by solving the optimization problem (2.15).
2. Implement the decisions of the current time step ¢, i.e., u; ; and v; ¢, forall i € N.

3. Measure the states z; 1, for alli € NSt

For step 1 of Algorithm 2.1, non-centralized methods are considered to solve the
optimization problem (2.15). Note that a non-centralized approach to perform step 1
requires cooperation and communication among the controllers of the subsystems.
In step 2, each subsystem must implement the decisions that have been computed in
the previous step. In this regard, the compliance of all subsystems with respect to the
computed decisions is required. Finally, in step 3, it is assumed that each subsystem

can measure its states. The discussions in this thesis are focused on steps 1 and 2 of
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Figure 2.2: The set of communication links at k1, £°(k;), is depicted by dashed lines whereas
the set of communication links at ks, £°(k2), is depicted by dotted lines. The graph G;, which
is fixed for all k, is shown by filled squared and dash-dotted lines.

Algorithm 2.1. In particular, Chapters 3-7 address non-centralized approaches to com-
pute the decisions whereas Chapter 8 focuses on a non-compliance problem that might

arise in step 2.

Finally, in regard to the non-centralized architecture, local controllers might need
to exchange some information among each other over a communication network.
The model of this network is given as follows. Let the undirected time-varying graph
G¢(k) = (P,&°(k)) represents the communication network of local controllers where
EC(k) denotes the set of bidirectional communication links that interconnect the lo-
cal controllers. Therefore, if {i,j} € £°(k), the local controllers of subsystems i and
j can communicate and exchange information at discrete-time step k. Note that the
time indices k and ¢ are on a different time scale. While ¢ defines the time step of the
system, k defines the time step of the controllers or the algorithms, i.e., it represents
the iteration step of the algorithms. In this regard, the sampling period that defines the
discrete-time step t is assumed to be much larger than the sampling period that defines
k. Additionally, to avoid confusion, the time indices ¢ and k are written differently, i.e.,
t as a subscript and k in parentheses. An example of a time-varying communication

network of the system shown in Figure 2.1 is depicted in Figure 2.2.

2.4 Benchmark Case

The numerical studies in some chapters are based on the PG&E 69-buss electrical dis-
tribution network, depicted in Figure 2.3. Each bus is considered as a node, thus
n = 69. The available load data of each bus is used as the maximum value of
the non-dispatchable loads, which vary over time. Moreover, dispatchable and non-

dispatchable generation units as well as storage units are added in some busses. The
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Figure 2.3: The topology of the PG&E 69-bus distribution system and its 8-agent initial partition
[AMEF12]. Squares indicate the distributed generation units, i.e., M and [J represent a renew-
able generation unit and a dispatchabale generator, respectively, whereas crosses, X, indicate
the storages.

locations where these units are placed might vary from one study to another and will
be specified later in the corresponding chapter. Nevertheless, an initial partition based
on [AMEF12] and shown in Figure 2.3 is used to form the supra-node network G*. Based

on this partitioning result, there are 8 interconnected subsystems.

In the economic dispatch problem of the benchmark case, a quadratic cost function
of f}(u;), for alli € N, in the form

Fluig) = uZtQiui,t (2.16)

is considered. Note that Q! = I, ® diag(cs', ¢, ¢'P), where ¢!, %%, and ¢ denote the
per-unit cost of power delivered to/from the storage unit, the per-unit cost of power
generated by the dispatchable generator, and the per-unit cost of importing power from
the third party. Moreover, by denoting ¢! per-unit cost of power transferred by node i,

the cost function ff(v;), for all i € NV, are linear in Chapter 6, as follows

fi(vig) = Cﬂ;\/\mvi,t, (2.17)
whereas in Chapters 7 and 8, they are quadratic, as follows:

fivig) = v, Q5viy, (2.18)

where Q$ = ¢t hn;|- In addition, the local constraint sets 4; and V;, for alli € VNV, are
formed by (2.6)-(2.14).
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2.5 Summary

This chapter presents the model of large-scale energy systems and their economic dis-
patch problem. General assumptions on the system and the problem are also speci-
fied. Moreover, the non-centralized MPC-based control framework is also introduced.
Next, in Chapter 3, two distributed optimization methods that are designed to solve the

economic dispatch problem are presented.
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CHAPTER 3

DISTRIBUTED AUGMENTED
LAGRANGIAN METHODS

The discussion about non-centralized MPC schemes for economic dispatch is started
by presenting two distributed optimization algorithms that solve Problem (2.15). The
proposed methods are based on the augmented Lagrangian approach. First, in Sec-
tion 3.1, a brief introduction about the augmented Lagrangian approach is presented.
Then, in Section 3.2, a distributed algorithm based on this approach is designed and its
convergence properties are stated. Section 3.3 discusses another distributed algorithm
based on the ADMM, which also belongs to the class of the augmented Lagrangian
methods. Similarly, the design and convergence analysis of the second algorithm is
provided. Finally, some comparisons of the proposed algorithms and conclusions are

drawn in Section 3.4.

3.1 Augmented Lagrangian Methods

Recall the network of subsystems G* = (P, £%) and Problem (2.15) without time index

t, as follows:

minimize Z Z FHug) + f£(vy) (3.1a)
{(wivi)€Litien pEP iEM, ( )
st.v] +vi =0, VjeEN;, Vie M, VpeP, (3.1b)

27
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where (2.15c¢) and (2.15d) are represented by (3.1b). Note that since the goal of this
chapter is to show distributed methods that solve (2.15) at a fixed time step ¢, the time
index ¢ is dropped to simplify the notation. It is considered that the local decisions
u;, for all i € M,, are private and cannot be shared whereas the coupled decisions v;,
for all i € M,, can be shared. Problem (3.1) is a multi-agent optimization problem
where m computational units (agents) cooperatively optimize a separable convex cost
function subject to convex local constraints and equality coupling constraints. The
problem presented in (3.1) can be considered as a resource sharing problem, where
the coupling exists in the links of the network. Moreover, it can also be reformulated
as an extended monotropic optimization problem [Ber08]. Nevertheless, the particular
structure of the coupling constraints will be exploited to design scalable distributed

methods.

The main challenge to solve (3.1) in a non-centralized manner is the existence of
equality coupling constraints, which makes Problem (3.1) not trivially separable. In
order to overcome this challenge and design a distributed algorithm, the Lagrange
dual theory on convex optimization is considered [BPC*11]. The main idea of this
concept is to relax the coupling constraints such that the relaxed problem is de-
composable. In this regard, Lagrange multipliers associated with the coupling con-
straints are introduced. In the dual problem, these multipliers are maximized. For
interested readers, this concept is extensively discussed in [BV10, Ber95]. Many dis-
tributed optimization methods, including those for energy management problems,
e.g., [LvFS14, KCLB14, WOK15, HBR " 19], are developed based on solving the dual prob-

lem.

As previously mentioned, the problem considered is suitable to be decomposed us-
ing the Lagrange dual approach. Although it is possible to reformulate the problem
into a consensus-based problem [NO09, NOP10, Chal6], the latter approach can be-
come impractical when the number of agents is large since the information that must
be exchanged is unnecessarily large. On the other hand, by employing a Lagrange
dual-based method, the information necessary to be exchanged only depends on the
neighboring agents. In order to deal with a larger class of cost functions, particularly
those that are not necessarily strongly convex, the problem is augmented by introduc-

ing an auxiliary quadratic term which will be useful in the convergence analysis.

In the literature, there have been some distributed methods that are developed
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based on the augmented Lagrangian approach for different types of problems, includ-
ing the extended monotropic ones. They include the ADAL method [CDZ15, CZ16,
LCZ18], diagonal quadratic approximation algorithm [MR92, BMR94, Rus95], and the
ADMM [BT97, BPC*11, WO13, CHLW16, Chal6]. The main difference among these
algorithms is the technique that they use to decompose the augmented Lagrangian.
In this chapter, two distributed optimization algorithms particularly designed to solve
Problem (3.1) are presented. One algorithm is inspired by the ADAL method [CDZ15]
whereas the other is an ADMM-based algorithm. Different from the distributed meth-
ods presented in the aforementioned literature, the proposed algorithms consider the
partition of the decision variables and exploit the special structure of the coupling con-

straints to achieve scalability.

3.2 Distributed Augmented Lagrangian Algorithm

The distributed algorithm presented in this section is closely related to the ADAL
method, discussed in [CDZ15, LCZ18]. Similar to the ADAL method, some information
from the neighbors is required in the local optimization step. Additionally, a convex
combination step to update the primal variable is also necessary. Differently, in the
proposed method, each agent only performs a convex combination step to update the
coupled variables instead of all the decisions. Moreover, since a different augmented
Lagrangian function than that considered in [CDZ15], the condition of the step size,

which guarantees convergence, is also different.

3.2.1 Algorithm Design

Consider the augmented problem of (3.1) in the following form:

minimize Z Z flws) + fE(vi) + Z v +’U;||%

{(ui,vi)eLi}ien pEP icM, jeN: (3.2)
st. vl +vi =0, VjeEN, Vie M, VpeP.
The Lagrange dual approach is used to decompose Problem (3.2). To this end, denote

the decisions of the whole network by u = col({u;}icn) and v = col({v; }ien) and
introduce the Lagrangian of the augmented problem (3.2), denoted by L;(u, v, A), as
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follows:

Li(u,0,0) = 37 () + 150 + 30 (Lol +ol) + ol +231B)). (3
iEN JEN;

where the coupled constraints in (3.1b) are relaxed and A{ € R", forall j € N and
i € N, are the Lagrange multipliers associated with them. Note that, for conve-
nience, the Lagrange multipliers are compactly written as A = col({\;};cn7), Where
A= col({}\f}jeNi). Additionally, note also that N' = |J,cp M, and M, # M ifp # ¢
since the partitions are non-overlapping. Now, introduce the dual function, denoted
by g1(\) as follows:

g1(A) = minimize Li(u,v,\). (3.4)
HA) = mininpize Sl )

The domain of g;(\) is the entire space of A. It is also known from the duality theory
that g1 () is concave and continuous. Therefore, based on the Weierstrass theorem,

for any A, the value g; () is finite.

The dual problem associated with Problem (3.2) is stated as follows:
maxi}\mize g1(N). (3.5)

Note that the dual optimal value is finite. Furthermore, the strong duality holds and
the set of dual optimal points is non-empty since, in the primal problem (3.1), the
cost function is convex and the constraints are linear [Ber95, Proposition 5.2.1]. In
other word, there exists a saddle point of the Lagrangian function L;(u, v, \), i.e., a
point (u*,v*,X*) € [[;cn Li x REiex "Nil such that, for any (u,v) € [\ £i and
X € RZien "Vil it holds that

Li(u*, v, A) < Li(u,v*, A\*) < Ly (u, v, \"). (3.6)

The saddle point relation implies that (u*, v*) is a solution to Problem (3.1), while A*

is a dual optimal solution.

The dual function g;(\) has separable constraints and all the terms in the La-
grangian function are also separable, except for the quadratic terms ||'vf + 'v§||%, for
all j € N;and i € N. In this regard, for each node i € N, the information from its
neighbors will be used as a way to approximate the aforementioned quadratic terms

and decompose g;(A). For each node i € N, denote by f;j- the information associated
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with 'u;'. from neighbor j € N;. Thus, the minimization on the right hand side of (3.4)

is approximated by

minimize Z Z (fl (wi) + fi(vi) + Z < )\z,vl —i—v + ||va +17§||§)). (3.7)

i,0i)EL; i
{(wi,vi)€ }ENPEP iEM, JEN;

It can be seen that the above minimization is decomposable. Therefore, assign a local

minimization problem to each agent p € M,, as follows:

. . . 1 C ]
minimize + + ( (A vl +08) + + ))
{(uivvi)e['i}iej\/lp Z <f wi) + i (vi) ]EZ./V ¢ vl v HU UJH2 (3.8)

Notice that due to the strong convexity of f}(u;) (Assumption 2.1) and the quadratic

term [|v] 4 9! |3, there exists a unique solution to the minimization in (3.8).

Now, the distributed algorithm based on the augmented Lagrangian is ready to be
presented. First, recall that ¢(4, -) is the index of the subsystem/agent with which node
i is associated and let ng , forall j € N; and i € N, denote the step sizes. Thus, the
distributed method is shown in Algorithm 3.1. In step 1 of Algorithm 3.1, each agent
updates the local decisions u;(k + 1), for all i € M, and auxiliary variables, which are
denoted by ﬁi( ), for all i € M,, and used to update the shared decisions by solving
(3.8), where © v = (k:) forall j € NV; and i € M,,. Then, the update of v;(k + 1), for all
i € M,, by (3.10), where nl- (0,1), uses a convex combination of v;(k) and the value at
the previous iteration v; (k). Meanwhile, the dual variables are updated by (3.11), using
the step size ng , for all j € N;. The choice of 17{ will be discussed later when showing
the convergence properties of Algorithm 3.1. Related to steps 3 and 5, vé(k) and )\é(k),
for all j € N;\M,, and i € M,, are decisions of agent ¢(j,-) € N,;. Therefore, agent
p must receive information from agent ¢(j, -) and vice versa. On the other hand, v} (k)
and A} (k), for all j € N; N M, and i € M,, are local decisions of agent p and are com-
puted locally by agent p. The information exchange requirement between neighboring
subsystems implicitly provides an assumption on the communication network G¢(k),

as follows.

Assumption 3.1. The communication network G¢(k) is static, i.e., G°(k) = (P, E(k)),
where E¢(k) = &3, for all k € Z>. O



32 Chapter 3 : Distributed Augmented Lagrangian Methods

Algorithm 3.1 Distributed augmented Lagrangian (DAL) method

Initialization: For each i € NV, v;(0) = vy € RWil" and X;(0) = A\jo € RWVil,
Iteration: For each agentp € P,
1. Update u;(k + 1) and v;(k), for all : € M,,, according to

{(ui(k +1),9;(k))}iem, =arg  min > <fi1(uz')+fic(vi)

{(ui,vi)€LiYiem, ;

EM,
+ 3 (k) + X5 (k) v]) + [[o] +v§<k>\\%)>.
JEN;
(3.9)
2. Update v/ (k + 1), forall j € A; and i € M,, as follows:
vl (k+1) = i) (k) + (1 - ng‘) vl (k). (3.10)

3. For each j € N\ M, andi € M,, send v/(k + 1) to and receive vi(k + 1) from
agent ¢(j,-) € Nj.

4. Update the dual variables )\g (k+1), forall j € N; and i € M,, according to

N (k+1) = N (k) + 7 (vg(k+1)+v;i(k+1)). (3.11)

5. For each j € N;\ M, and i € M,, send )\g(k: + 1) to and receive A;(k: + 1) from
agent ¢(j,-) € N;.

3.2.2 Convergence Analysis

In this section, the convergence of Algorithm 3.1 is shown. Prior to showing the main
convergence results, some intermediate results in Lemmas 3.1-3.3 are established.
Lemma 3.1 provides an estimate obtained from the optimality conditions of the local
minimization problems (3.8) and the saddle point inequalities in (3.6). Lemma 3.2 ma-
nipulates this estimate and Lemma 3.3 uses it to provide a sufficient condition of the
step sizes n{ , forall j € N; and i € N, such that the Lyapunov function, denoted by
Vi(k) and defined later, is monotonically non-increasing under Algorithm 3.1. Finally,
the convergence of the sequence produced by Algorithm 3.1 is shown in Theorem 3.1

based on Lemma 3.3.

First, due to Assumption 2.1, recall some properties of convex and strongly convex

differentiable functions, which will be used in the analysis.
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Property 3.1. (Convexity) A differentiable function f : R™ — R is convex, if, for any x,y €
R", it holds that

fy) = f(@) = (V[(z),y — ).

Property 3.2. (Strong convexity [Bec17, Theorem 5.24.iii]) A differentiable function f :
R™ — R is strongly convex with strong convexity constant o, if, for any xz,y € R", it holds
that

(Vfy) = Vf(@),y —z) > olly — z2.

Now, the first building block to show the convergence of Algorithm 3.1 is stated.

Lemma 3.1. Let Assumptions 2.1-2.3 hold. Furthermore, let (u;(k + 1),v;(k)), for each
i € M, be the attainer of the local optimization in (3.9) and (u*, v*, X*) be a saddle point
of Li(u, v, ) as defined in (3.3). Then, it holds that

0< ) (—wllw(w D) —wfl3+ > (N = M(k), 0] (k) + 9} (k))
1EN jeN;

= > (1197 k) + B3R5 + 200} (k) — 93 (k), 9] (k) —vz*>)).

JEN;

Proof. Since (u},v}) € L;, for each i € M,, the optimality condition [Ned08, Theorem
20] of the local optimization in (3.9) yields the following relation:

0= > (VA itk + 1), uf —wilk+ 1)) + (Vf£(@:(K)), vf = 0:(k))
e | | D (3.13)
+ 57 () + X (), 0] = 9] (k) + 2067 (k) + wi (), o]* — 9] (K))) ).
JEN;

Moreover, (u;(k + 1),v;(k)), for each i € M,, is also locally feasible, i.e.,
(ui(k+1),0,(k)) € L;. Now, consider the second inequality in (3.6), which implies
that

(u*,v*) = arg {(U¢,v€€16igi}ieN L(u,v, A").

Based on the optimality condition of the above minimization and the fact that
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(u;(k+1),0i(k)) € L;, it follows that

0<Z<sz u), wi(k +1) — ui) + (Vfi(v]), 0i(k) — v7)

N (3.14)

30 (4 AP (k) = of") + 4] + ol 9] (k) — 0])) )

JEN;

where the last term on the right-hand side of the inequality, i.e., > ;x> e 4('02* +

v, o7 (k) —v*), is equal to 0 since v/* + vi* =0, forall j € \;andi € V. By summing

up (3.13) over all agents in P and combining with (3.14), it holds that

0< 3 (VA ) = Vi wilk + 1),k + 1) = u)
ieN
+ (Vi (v]) = Vi (0i(k)), 0i(k) — v})
+ 37 O AT = N (k) — AL(R), 9 (k) — 07) (3.15)
JEN;
=2 " (5] (k) + v (k), 9] (k) — v]") ).
JEN:
For each i € NV, the convexity of f£(v;) (c.f. Property 3.1) gives (V f£(v}), v;(k) — v}) <
[i(0i(k)) — f7(vf) and (V f£(0i(k)), v — 0i(k)) < [ff(v]) — f7(i(k)) and the strong
convexity of f}(u;) (c.f. Property 3.2) gives (V f}(w}) — V fH(wi(k+1)),u;(k+1) —u?) <
—oillui(k + 1) — u¥||3. Applying these relations to (3.15), it follows that

0< Z( oillui(k + 1) = wf 3+ Y (N + XF = X (k) — Xi(k), 9L (k) — o))

ieN JEN;
=2 3" (8] (k) + v (k), 8] (k) — v]"))
JEN; -
=3 (molluith 1) — il 3 N + A = N() = X (0), 91 (8) — ")
ieN jEN
=2 (6] (k) + 85(k), 8] (k) — v]") + () (k) = 95(k), 8] (k) — ]") ).
JEN;

where the equality is obtained by adding the term Y, > n. 2(05 (k) — 05 (k), © o7 (k) —

%) Uy
v]*) = 0. Now, manipulate the second term on the right-hand side of the equality, i.e.,

S5 N EAT - M (k) — AL(k), 9 (k) — vl*).

iEN JEN;
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By considering the summation over all links and since at each link there exist two inner

products associated with both agents coupled by that link, that term is equivalent to

> (A7 = N (k) = Xi(k), 9] (k) — v]")
{i,j}e€
A N = X (k) = AL (), 9 (k) — v}"))
= D X = A(R) = (k). 9 (k) + 95 (R)
{i,j}e€

=D DN = N (k), 9] (k) + 05(k)).

i€EN jEN;

where the first equality is obtained by using the fact that v * o+ v“ = 0. Using
similar analysis, the third term on the right-hand side of the equality in (3.16), i.e.,

23 en S jen (91 (k) + 9 (k), 9] (k) — v]*) is equivalent to

720l (k) + 0i(k), ¥ (k) + => > |I9] (k)13

{i,j}e€ ieN jeN;

Thus, the desired inequality (3.12) is obtained. O

Then, a useful estimate is derived from the result obtained in Lemma 3.1. In this

regard, define the auxiliary variables, 5\? (k), for all j € N; and i € N, as follows:
N (k) = X (k) + (1= 1) (] (k) + 05 (k). (3.17)

Lemma 3.2. Let Assumptions 2.1-2.3 hold. Furthermore, let (u;(k + 1),v;(k)), foralli €
M,, be the attainer of the local optimization in (3.9) and (u*,v*, X*) be a saddle point of
Ly (u,v, \) as defined in (3.3). Furthermore, let X! (k), for all j € N; andi € N, be defined
as in (3.17). Then, it holds that

> (Z (N (k) = N* 0 (k) + 83 (k) + 2007 () — v] (k) v] () - vg*>>

ieEN \JEN;
<->. (mllul(w D—ufl3+ > fH (k) — vl (k)3 (3.18)
ieEN JjeN;

J i
m 4l — (] +0l)? ¥
+ > ! 5 ! IIU?(kH’vj(k)II%)-

JEN;

Proof. The inequality in (3.18) is obtained by algebraically manipulating the result in
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Lemma 3.1. The complete proof is given in Appendix A.1. O

As the next building block to show the convergence result, define a Lyapunov func-
tion, denoted by Vi (k). For any given saddle point of L;(u, v, A) (see (3.3)), denoted by

(u*,v*, A*), V1(k) can be constructed as follows:
1 -
Vi(k) = lo(k) = v*[IZ + SlIA(k) = A[Iz, (3.19)

where A = col({X;(k) }ien), Ai(k) = col({N (k) }jens), N (k) is defined in (3.17), H =
blkdiag({H;}icn) and H; = blkdiag({(n; )= n}jen;), for alli € N. In the next lemma,
it is shown that {V;(k)} is monotomcally non-increasing under Algorithm 3.1 with a
certain condition of the step sizes )/, for all j € N and i € N. Moreover, an upper
bound of Vi (k + 1) — Vi(k), for any k € Z>, that will be used in the main theorems is

also obtained.

Lemma 3.3. Let Assumptions 2.1-2.3 and 3.1 hold. Let the sequence
{(u(k),v(k),v(k),\(k))} be generated by Algorithm 3.1 and (u*,v*,A*) be a saddle
point of Li(u,v, ) as defined in (3.3). Furthermore, let Vi(k) be defined in (3.19). If
ml =i = ny € (0,}), forallj € N;andi € N, then {Vi(k)} is a monotonically

non-increasing sequence and the following inequality holds:

Vilk +1) = Vi(k) < = aillus(k + 1) — uf|)}

ieEN

_ zj:v zj:v ( _mj> |97 (k) — vl (k)3 (3.20)
1EN g€

-3 3 )+ a1
ieN jeN;

Proof. Firstly, notice that A/ (k + 1) can be expressed as follows:

A(k+1) (k: 1)+ (1-— )( (k+1)+v(k:+1))
= N (k) + ] (0] (b + 1) + wi(k + 1)) + (1= ) (0] (h + 1) + 0} (k + 1))
(k:)+(f(k+1)+v(k+1))
= A (k) + (1 = 133) (v] () + v} (k) + 0y (8] () + ©%(k))
= X (k) + ] (] (k) + 0}(k)),
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where the second equality is obtained by substituting )\g (k + 1) with the expression in
(3.11) and the fourth equality is obtained by subtituting ’vf (k+1)and fv;- (k+1) with the
expression in (3.10) and by using the fact that ng = 77;- = n;;. Thus, it follows from the

preceding expression that

I (k + 1) = X3 = | M (k) + o] (9] () + 0%(k)) — A3
= [N (k) — N*13 + [l (9] (k) + 91 (k)) 13
+ 2] (N (k) — X%, (k) + (k). (3.21)

z’z

Moreover, it holds that

o] (k + 1) — 0" (13 = |w! (k) + 5 (8] — vl (k) — v!*|}
= |[vl (k) — o!*|3 + |l (0] — ! (K))I3 (3.22)
+ 2 (0] — vl (), v (k) — vI*).

From (3.21) and (3.22), the term V;(k + 1) — V4 (k) can be expressed, as follows:

Vilk+1) = Vi(k) = (k) = v(®) 30 + > D 2 i 1(9 (k) + o4 (k)13
ieEN jEN;
+ 37 3T (N (k) — A% 9] (k) + 95 (k)
i€EN jEN;
+ > 28] —vl(k),v] (k) — v]")
ieN jEN;
< o (k) — v(k ||H1+ZZ"’|| (k)13
ieN jeN;
= ;n@(m — B3 = ailluilk + 1) — w3
iEN
277, 277Z . ~d 2
-2 > 167 () + o4 (k) |13,
ieN jEN;

where the inequality is obtained by using (3.18), which provides the estimate of the
last two term on the right-hand side of the first equality. Thus, the inequality (3.20)
follows. Moreover, based on (3.20), V; (k) is monotonically non-increasing, i.e., Vi (k +
1) — Vi(k) < 0if ! = ni =n; € (0, %). 0

Finally, the convergence properties of Algorithm 3.1 are stated as follows.
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Theorem 3.1. Let Assumptions 2.1-2.3 and 3.1 hold. Furthermore, let the sequence
{(u(k),v(k),0(k),N(k))} be generated by Algorithm 3.1. Ifnf = T}; = n; € (0,3), for
allj € N andi € N, then,

a. (Feasibility) limy,_,o ||v] (k) + vi(k)[3 = 0, forall j € N andi € N,

b. (Primal and dual variable convergence) There exists a saddle point of L1(u, v, \) (see
(3.3)), denoted by (u*, v*, X*), such thatlimy_, u(k) = w*, limy_, ., v(k) = v*, and
limy o0 A(k) = A*. O

Proof. Recall the function V; (k) defined in (3.19) and the inequality (3.20) in Lemma
3.3. By rearranging and iterating (3.20), for ¢ = 0, ..., k, it follows that

k
DD aillui+1) —ufll3

/= Oie./\/

1530 35 S RN IETCRITL
= OlGNJGN

Ly s e )t On5 53(6) + 53(0)13
{=0ieN jEN;

k
< 3 (Va0 = VA(C+ 1)) = Va(0) — Vik + 1) < Vi (0),
=0

where the last inequality is obtained by dropping the non-positive term —V; (k+1). The
above inequalities imply that each each quadratic term on the left-hand side of the first

inequality is summable and converges to 0 as k goes to infinity, i.e., for each i € N,

lim |lu;(k) —ul|3 =0, (3.23)
k—o0
lm o] (k) — 9] (K)[|3 = 0, Vi € M, (3.24)
—00
lim ||o] (k) + 9} (k)| =0, Vj € M. (3.25)
k—o00

Based on (3.24) and (3.25), it follows that
lim [0l (k) +vi(K)|3 =0, Vj € \;, Vi e N. (3.26)
—00

Based on (3.20), the sequences {||v(k) — ”*leq} and {||A(k)— )\*qu} are bounded. Thus,

there exist accumulation points of the sequences {v(k)} and {A(k)}. Furthermore, due
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to the boundedness of {A(k)} and (3.26), {A(k)} is also bounded and has accumulation
points. Let the subsequence {(v(k¢), A(k¢))} be convergent and denote its limit point
by (v?, A?).

The next step of the proof is to show that (u*, v?, A?) is a saddle point of L; (u, v, ),
ie., (u*,v? A\?) satisfies the inequalities in (3.6). Based on (3.26), vga + v§a =
limy oo (v] (k) + ' (kg)) = 0, forall j € N;and ¢ € N. Thus, it is obtained that,
forany A € RZZGNW\H, Li(u*,v?, A) = Li(u*,v?, A?), satisfying the first inequality in
(3.6). It remains to show the second inequality in (3.6). Based on (3.24), for alli € N it
follows that lim,_,, ©(k;) = v*. Now, consider the update step (3.9), for alli € N, i.e.,

(w(k+1),0(k) =arg  min " (fllw) + fE(v)

(w;,v;)EL; GEN * ieN

+ 37 (M) + Xih), o) + [[0] + v} (R)3) )

JEN;

By substituting k with ky, it follows that lim,_, (w(ke + 1), 0(k¢)) = (u*,v?), based on
(5.12), and it also holds that

(u*,v?) = 11m arg  min Z(le(uz) + fi(vi)

—00 (ui,vi)eﬁi,ieN :

eN
7 (N ke) + Xi (e, 0] + [10] + v (ko)l3))
jeEN;
~ arg (%w)meig’iwg(f}(ui)+ff(vi)+%\; (wa NP ol + o] + vt 3))
— ; Lia,. ,

where the last equality holds by removing the term ;.\ >~ c v, va + v;'-a |3 since this
term is zero at (u*, v*) due to the fact that v/* - vi* = 0, for all j € A andi € V. Addi-
tionally, v* is an attainer of ming, ;.\ e, Jv! + vi||5. Therefore, the pair (u*,v?)

also minimizes L;(u, v, A?), i.e

(u*,v?) € arg (th)rréi?meNg(fil(uz') + ff(w)%—%\% ( A{a,vl + > + Hv + Uﬂ\z))

where the cost function in the minimization is obtained by adding the quadratic term

DN 2o jeN o] + vt||5 to the cost function on the right-hand side of the equality in
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(3.27). Hence, the preceding relation implies the second inequality in (3.6). Thus,
(u*,v?, A?) is a saddle point of L;(u, v, A). Finally, set v* = v? and A* = A% in Vj (k)
(see (3.19)). Since the subsequence of V; (k¢) converges to 0 and due to the monotonicity

of Vi (k), the entire sequence converges to (v?, A?). O

Remark 3.1. If the dual variables A;(0), for alli € N, are initialized such that A{O = )\é‘o;
then, it follows that A/ (k) = X (k), for all k € Zxo, since n = 1} = n;. In this setup,
the second round of communication (Step 5) in Algorithm 3.1 is not necessary and each
agent p € P knows )\;(kz +1), for all j € N;\ M, and i € M,, at each step k. O

3.3 Distributed ADMM Algorithm

The second distributed algorithm presented in this chapter is based on the ADMM ap-
proach [BT97, BPC'11]. Similar to Algorithm 3.1, it is an iterative algorithm that solves
the dual of an augmented problem associated with Problem (3.1). In this regard, at
each iteration, primal and dual variables are updated. However, in the ADMM-based
algorithm, the information from the neighbors is not necessary when performing the
local optimization step to compute primal variables, as can be seen later. Note that
Problem (3.1) has a special structure due to the edge-based coupling constraints and
the partition of the decision variables into coupled and local constraints. In the deriva-

tion of the algorithm, this structure is exploited, similarly as in [Cha16].

3.3.1 Algorithm Design

First, an auxiliary variables yg € R", for each j € N and i € N, is introduced. Note
that for convenience, these variables are compactly written as y; = col({y{ }ien;) and

y = col({y; }ien). Then, Problem (3.1) is reformulated and augmented as follows:

minimize Z Z FHug) + f(v) + Z %va - ny% (3.28a)

{(uwivi) €L,y €ERMNiN Y ez peEP iEM, JEN;
st.vl —yl =0, VjeN;, Vie M, VpeP, (3.28D)
yl +yi =0, VjEN, Vie M, VpeP. (3.28¢)
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The idea behind the introduction of the auxiliary variables and the addition of the con-
straints in (3.28b) is to construct a separable cost function of the augmented problem
(3.28). As can be seen, not only the cost function (3.28a) but also (3.28b) can be suitably
decomposed to the subsystems. Meanwhile, the coupling constraints between neigh-
boring subsystems appear in some of the constraints in (3.28c), i.e., yf +y} =0, for
each j € N;\M,,i € M,,andp € P.

Then, denote the Lagrange multipliers associated with the constraints in (3.28b) by
p! € RNl forall j € N and i € N. In this regard, the Lagrangian function, which is
associated with Problem (3.28) and denoted by Ly (u, v, y, ), is defined as follows:

Ba(wo.gon) = X 3 (Ao g5+ 3 (ol = v+ glol - wil3) |

pEP iEM,, JEN;
(3.29)

where p = col({p; }ien), i = col({ug }ien;). Therefore, the dual function associated
with (3.28), denoted by g2 (), is stated, as follows:

gg(u) = min LQ(Ua%y,H)
{(uivi)eLsyi RN} e e (3.30)

st yl +yl=0, VjeEN;, Vie M, ¥peP,

and the dual problem associated with (3.28) is as follows:
maximize ga(p).
"

Note that the strong duality holds and the set of dual optimal points is non-empty, for
the same reason discussed in Section 3.2.1. Therefore, there exists a saddle point of the
Lagrangian function Ly (u, v, y, ), i.e., a point (u*, v*, y*, p*) € [[;cp LixR? ien hNil
such that for any (u,v) € [[;c\ £i and (y, p) € R? Lien MVl it holds that

L2<U’*7 ’U*, y*v l‘l’) < LQ(U’*7 U*v y*7 “*) < LQ(ua VY, “*)7 (331)

implying that (u*,v*,y*) is a solution to Problem (3.28), while p* is a dual optimal

solution.

Asin Algorithm 3.1, the ADMM-based algorithm consists of computing the attainer

of local minimization problems derived from the dual function to update the primal
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variables and perform a gradient ascent to update the dual variables. Different from Al-
gorithm 3.1, here the dual function is not approximated. Instead, the primal variables
are computed by alternately solving the subproblems obtained from the minimization

in (3.30). In particular, the ADMM steps at iteration & are given as follows.

1. Update the primal variables u(k + 1) and v(k + 1), as follows:

(u(k+1),v(k+1)) =arg min Ly((w,v,y(k), u(k))). (3.32)
{(uivi)eLitien

2. Update the auxiliary variables y(k + 1), as follows:

y(k+1) =arg min Lo(u(k+1),v(k+1),y,pn(k))
{yi R WNil}ic s (3.33)

st yl +yl=0, VjeN;, VieM, VpeP.
3. Update the dual variables pu(k + 1), as follows:
pllk+1) = gl (k) + o (Vb + ) =yl (k+1)), VieN, VieN, (334

where ng € R>, for each j € N; and i € N, is the step size to update u{(k +1).

Due to the structure of Ly(u,v,y,u), the minimization in (3.32) is decomposable.
Moreover, the dual variable update in (3.34) can also be carried in a non-centralized
manner. The remaining task is to decompose the auxiliary variable update in (3.33),
which is not trivially decomposable due to the existence of coupling equality con-
straints. However, the analytical solution to the minimization (3.33) can be computed.
It is observed that the minimization in (3.33) is a quadratic problem in the following

form:

. . . 1 / 1 ] j
m1r}LlAr}jlze Z Z (—(ui(k), yf’> + 5””5(]‘3 +1) - yﬁll%)
{y;i€R"Wil}ic s ieN jEN; (3.35)

sty +yl=0, VjeEN;, VieM, VpeP.

Since the cost function is strongly convex, the solution is unique. Moreover, the cost

function can be written as

j ' i i Ly j Lo i
> k) yl) = (R, wh) + S llv] (k + 1) — w15 + llvy(k + 1) — w33,
{1,7}€€

By imposing the equality constraints in (3.28c), i.e., y§ = —y{ , the problem in (3.35) is
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equivalent to

L . . A . 1 . 1. . .
Z minimize —<u»§(k),y§>+<u}(k),y3>+§llvf-(/f+1)—y§!\§+§llv§(k+1)+yf\|§-
{ijtee Y

Denote by yf (k + 1) the solution of the above minimization, for each {i,j} € £. Thus,

the optimality condition of this minimization problem is as follows:
0= —pl (k) + (k) = (v +1) = gl (k+ 1)) + (V) + 1) + /(b 4+ 1))

implying that

yi(k+ 1) = % (1) — i (R) + w2k + 1) — 0k + 1)), V) € N Vi € .
It turns out that yf (k+1), for each node i € N can be computed using the information
of its neighboring nodes j € N;, implying the decomposability of this step. Thus, the
distributed ADMM-based algorithm is stated in Algorithm 3.2. Note that the step to
update (u;(k + 1),v;(k + 1)), in (3.36) is obtained by decomposing (3.32). Then, each
agent must exchange some of its coupled variables in order to update y;(k + 1), for all
nodes that belong to that agent, as in (3.37). Finally, the dual variable updates, shown

in (3.38), only require local information that each agent has acquired from the previous

steps.

Remark 3.2. It is assumed that the cost function in Problem (3.1) is dual-friendly
[ULGN18], i.e., the explicit solution to (3.36) (and also (3.9)) is available. The optimiza-
tion problems in (3.36) (and (3.9)) are strongly convex, and efficient numerical methods

to compute the solution are available [NN94, Nes13].

Remark 3.3. In order to initialize y/(0), for all j € N;\M, and i € M,, agent p must
agree with its neighbor ¢(j,-) by means of communication or by setting a common

initial point of y? (0), i.e., y? (0) = yo € R", forall j € N;andi € .

Remark 3.4. Similarly to Algorithm 3.1, Algorithm 3.2 also requires synchronous update

and neighbor-to-neighbor communication, as stated in Assumption 3.1.

3.3.2 Convergence Analysis

In this section, the convergence of Algorithm 3.2 is shown. To that end, first denote
the residual associated with the relaxed constraint (3.28b) by (k) € RXien Wil where
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Algorithm 3.2 Distributed ADMM-based method

Initialization: For each i € N, u1;(0) = pio € RWVilh and y;(0) € RMWVil,
Iteration: For each agentp € P,
1. Update u;(k + 1) and v;(k + 1), for all i € M,,, according to

{(wilk+ 1), vi(k + 1))hiear, =arg  min > (fHw) + f5(w)

{(ui,vi)€Litiem, ieM,

: . 1 . :
+ (Wi k), vl + Sl = g R)IB).
JEN;

(3.36)

2. For each j € M;\M,, and i € M,, send v{(k + 1) and u‘g(k) to agent ¢(j,-) € N
and receive v} (k + 1) and p (k) from agent ¢(j,-) € N.

3. Update yf(k + 1), forall j € NV; and i € M,, as follows:
, 1 . , . .
yl(k+1) =3 (,Lg(k) — (k) vl (k1) — vl (k + 1)) . (3.37)
4. Update the dual variables ui(k: + 1), forall j € NV; and i € M,, according to

l 1) = () + ] (00 1) = g (k1)) (3.38)

r(k) = col({ri}ien), ri(k) = col({r}jens), and

(k) = vl (k) —yl(k), VjeNi,VieN. (3.39)

% i

The convergence analysis of Algorithm 3.2 follows the same idea as that of Algorithm
3.1. Firstly, a Lyapunov function will be proposed. Then, an upper-bound and the
monotonicity of this function will be shown. In order to obtain a useful upper-bound
of the Lyapunov function, the optimality conditions of the local optimizations in Algo-

rithm 3.2 and the saddle point inequality in (3.31) are evaluated in Lemma 3.4.

Lemma 3.4. Let Assumptions 2.1-2.3 hold. Furthermore, let (u;(k + 1),v;(k + 1)), for all
i € M,, be the attainer of the local optimization in (3.36), yf (k+1), forallj € N; and
i € N, be computed by (3.37), and (u*, v*, u*) be a saddle point of L1 (u, v, ) as defined in
(3.29). Then, it holds that

(k) — e+ 1)+ 3 (k1) — 713 — 2 (k) — o3

1 1 .
< —5lr(k+ 1)H§—§Hr(k +1) +ylk+1) —y®)E - > oillwi(k + 1) — w3,
ieN

(3.40)
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Proof. Firstly, the optimality condition of the minimization in (3.36) gives

0< ). <<vfil(ui(k + 1)), ui —ui(k + 1)) + (Vfi (vi(k + 1)), v; —vi(k + 1))

ieEM
M (3.41)

+ 57l (k) + vl (k+ 1) — (k)v—v(k—i—l)))
JjeN;
for all (u;,v;) € L;, where i € M,. Moreover, (u;(k + 1),v;(k + 1)) € L;, for each
i € M.

Secondly, since y(k + 1) is computed by (3.37), implying that it is the attainer of
(3.35), the optimality condition of the minimization in (3.35) yields

0< > > (—pl(k) —vl(k+ 1) +yl(k+ 1),y —y/(k+1)), (3.42)
i€EN JEN;

for all y € RZien Wil guch that yf = —y§. Moreover, yf(k: +1) = —y;.(k + 1), for all
jeN;and € N.

Thirdly, by the second saddle point inequality in (3.31), it holds that

(u*,v*, y*, u*) = arg min ’ Ly(u,v,y, p)
{(ui,vi)eﬁu’yiERh‘Nl‘}z‘eN (3.43)

st yl +yl=0, VjeEN;, VieM, VpeP.

Since (u(k + 1),v(k + 1),y(k + 1) is a feasible solution to the minimization in (3.43),
ie., (ui(k+1),v;(k + 1)) € £;, foralli € ', and y (k + 1) = —yi(k + 1), for all j € \;
and € N, the optimality conditions of (3.43) yields

0<Z<Vf1 )t 1) =) + (VL) vk + 1) — v7)
ieN

3 (" ol =yl vl (k4 1) = o)+ (ol g ,yz(k+1)—yf*>)>

JEN;

—Z(vﬂ o+ 1) — ) + (VAo 1) — o) + 3 ,<k+1>>>
ieEN JEN;
(3.44)

where the equality is obtained by combining the last two inner products and using the
fact that v/* — y/* = Oand r/(k + 1) = v/ (k + 1) — y/(k + 1), forall j € A andi € N/
(see (3.39)). Additionally, (u},v}) € L;, foralli € N and yg* + y;'.* =0, forallj e N;
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and ¢ € N, implying one can substitute (u;, v;) in (3.41) with (u},v}) and y in (3.42)
with y*.

Then, by combining (3.41), for all p € P, where (u;,v;) = (u},v}), for alli € M,,
(3.42) where y = y*, and (3.44), it holds that

zEN JEN;
+ Y AV = ffwilk + 1)), vi(k + 1) — )

ieN (3.45)
)0 (k) + vl (k+ 1) — gl (k), v]" — vl (k + 1))

ieEN JEN;
YD (=l (k) = vl (k+ 1)+l (k+ 1),y — gl (k4 1)),

€N JEN;

Based on the strong convexity of f!(u;) (see Property 3.2) and the convexity of f¢(v;)
(see Property 3.1), for all i € VV, it follows from (3.45) that

0=y <o—iui<k+ — B+ Y Gl ) >)

ieN JEN;
+ 3l (k) + vl (ke + 1) =yl (k) 0] — vl (k + 1))
ieN jEN;
+ 3 Y (—pl(k) = vl (k1) +yl (k+ 1),y —yl (k+1))
ieN jeN; (3.46)
=" —oillwik+1) — w3+ > (" — pd (k), vl (k +1))
iEN JEN;
+3 > Wk + 1) =yl (k) v — vl (k+ 1))
i€EN JEN;
+> > (- D +yl(k+1),97 — v/ (k+1)).
i€EN jEN;

The remaining step is to manipulate the last two inner products on the right-hand
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side of the equality in (3.46), as follows:

(0l (k+1) — y!(k),v]" — vl (k+ 1)) + (=v/(k+ 1) + ol (b + 1), 97" — g/ (k + 1))
— W+ D)+l (k+1) — (k) g —rl(k+1) — gl (k+ 1))
+rl(k+ 1),y (k+1) — ?*>
= — |l (k+ DI+ () (k+ 1), 57" =y (k+ 1) + (7] (k+ 1), 9] (k+ 1) — g
+ (Yl (k+1) =yl (k), Z—yi<k+1>>—<y£<k+1>—y£<k>,rz‘<k+1>>
= —|rl(k+ DI+ W/ (k+1) — ¥l (k), y]" — ¥l (k +1))
—(yi (k+1)—y; (k),ri (k+1)). (3.47)

Furthermore, observe that

20yl (k) —yl (k+ 1),/ (k+1) —y7") = — [lyl (k + 1) — v* 115 — [ly! (k) — v/ (k + D)3
+ lyl (k) =yl |13, (3.48)
=2(y] (k+ 1) =y (k),v] (k + 1)) =[] (k + D5 + [y} (k + 1) — g/ (}) 3
— el (k+1) +yl(k+1) —yl (k)3 (3.49)

By applying the relations (3.48) and (3.49) to (3.47), it holds that
(W (k+1) =yl (k),v]" — vl (k+ 1)) + (—v!(k+ 1) + g/ (k + 1), y]" — y!(k + 1))

1 1 . . 1 . A
= =5l + D5 — Sy (k+1) = vl |5+ 5l (k) - v/ 3

1 . .
S G+ 1)+ gl (k1) = (3 (3.50)

By combining (3.46) and (3.50), the desired inequality follows. O

The result obtained in Lemma 3.4 provides an insight of a suitable Lyapunov func-
tion that works for Algorithm 3.2. In particular, define the candidate Lyapunov func-
tion, denoted by V5(k), as follows. Recall that H = blkdiag({H;}icn) and H; =
blkdiag({(n ) n}ien;), for alli € N. Then, for any saddle point of Ly(u,v,y, p),
denoted by (u*,v*, y*, n), let Vo (k) be

Va(k) = k) — s + 5 llw(h) — 73 (3.5)

In Lemma 3.5, a sufficient condition such that V,(k) is monotonically non-increasing
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and an upper-bound of V; (k) are provided.

Lemma 3.5. Let Assumptions 2.1-2.3 and 3.1 hold. Let the sequence
{(u(k),v(k),y(k),u(k))} be generated by Algorithm 3.2 and (u*,v*,y*,u*) be a
saddle point of La(u, v, y, p) as defined in (3.3). Furthermore, let V5(k) be defined in (3.51).
If 77? € (0,1), forallj € N;andi € N, then {Vi(k)} is a monotonically non-increasing

sequence and the following inequality holds:

Va(k +1) = Va(k) < —%Hr(k + 1) +y(k+1) —yR)IE - Y oillui(k +1) — ufl3

iEN
Yyl ”an (k+1)[3 <o0.

ieEN jEN;
(3.52)

Proof. First, using the definition of 7(k) in (3.39) and the dual variable update in (3.38),
it holds that

1 : ‘ 1 ‘ . oo
i (k1) = f7ll5 = 5l (k) = "l + S i (R + 1)l (3:53)

; m;
+ (pl (k) — " el (ke + 1))

Then, the difference between V5 (k+1) and V5 (k), for each k € Z>, is stated as follows:

Valk +1) = Va(k) = glluth + 1) = wl + 3tk + 1) — I3
— Slk) = B~ S () — w3
= Lot Dl + {1l8) — -+ 1)
+ 5l +1) 13— (k) — w3

1 *
< —glr(k+1) +y(k+1) — y(B)3 = aillui(k + 1) — w3
iEN

-y Z ”@ 7l (k +1)|2 < 0, (3.54)

ieN jeN;

where the second equality is obtained by using the relation in (3.53), the first inequality
is obtained from the inequality (3.40), and the last inequality holds since € (0,1), for
allj € N;jandi € N. O
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Finally the convergence properties of Algorithm 3.2 are shown in the following the-

orem.

Theorem 3.2. Let Assumptions 2.1-2.3 and 3.1 hold. Furthermore, let the sequence
{(u(k),v(k),y(k), p(k))} be generated by Algorithm 3.2. If ] € (0,1), forall j € N and
i € N, then,

a. (Feasibility) limy, .., ||v] (k) + vi(K)||5 =0, forall j € N;andi € N,

b. (Primaland dualvariable convergence) There exists a saddle point of La(u, v, y, p) (See
(3.29)), denoted by (u*, v*, y*, w*), such thatlimy_, . u(k) = v*, limy_, o, v(k) = v*,
limy_, o y(k) = y*, and limy_, o, p(k) = p*. d

Proof. The proof follows the same steps of the proof of Theorem 3.1. First, rearranging

and iterating the first inequality in (3.52) over £ = 0, 1, ..., k implies that

Him [|r(k +1) + y(k+1) = y(k)|lz = 0, (3.55)
Jim 0| (k + 1) —ulf3=0, VieN, (3.56)
—00

lim ||r(k 4+ 1)[|3 = lim |v(k+1) —y(k+1)]3=0. (3.57)
k—o0 k—o0

Moreover, by (3.55) and (3.57), it holds that
Bim fly(k +1) = y(k)]5 = 0. (3.58)
—00

Additionally, due to the update rule in (3.37), yf (k) = —y;'-(k), forallj e N;,i € N/, and
k € Z>,. Based on this fact and the relation in (3.57), it also holds that

lim v (k + 1) + vi(k +1)[3 =0, Vj € N}, Vi € N. (3.59)
—00

Furthermore, based on (3.52), the sequences {y(k)} and {u(k))} are bounded and
have accumulation points. Additionally, based on (3.57), {v(k)} is also bounded and
has accumulation points, which are equal to that of {y(k)}. Now, consider a convergent
subsequence {(v(k¢),y(ke), u(ke))} and its limit point, denoted by (v?, y?, u?), where
v? = y?. Then, it will be shown that (u*, v?, y?, u?) is a saddle point of the Lagrangian
function Ly (u, v, y, pu) as defined in (3.29), i.e., (u*, v?, y?, u?) satisfies the saddle point

inequalities in (3.31).
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Based on (3.57), it holds that v/ — y7* = lim,_, .. (v? (k) — v/ (k) = 0, for all j € A;
and i € N. Therefore, for any p € ]Rziethi‘, Lo(u*,v®, y?, ) = La(u*,v?, y?, u?),
satisfying the first inequality in (3.31). Now, by substituting k& with %, in (3.36), for all
i € N, and taking the limit as ¢ goes to infinity, it holds that

(u*,v?) = lim arg min Z(le(uz) + f(v;)

{—00 (ui,vi)eﬁi,ie./\/’ ‘

eN
+3 (dtho). o) + lof =l (k) 1))
JEN;
marg, min 2 (Al %\j{(u@, D+ el vI3) )

—arg - min NieZN(f (wi) + f7 (vi +j§ it o)) = (it gl >), (3.60)
where the last equality is obtained by introducing the constant — > ;.\ > i p, (ug 4 yf )
and since the quadraticterm 3, > . [lv] —9/*[3is 0 at (u*, v*) dueto (3.57). Now,
note that (v, ¢*) minimizes Y, Y-, 0] — y|I3 since v}* — y]* = 0, forall j € N;
and i € N. Therefore, (u*, v?, y*) minimizes Ly(u, v, y, u?), implying the satisfaction
of the second inequality in (3.31). Hence, it can be concluded that (u*, v?, y?, u?) is a
saddle point of Lo(u,v,y, p). Finally, set y* = y? and p* = p? in Va(k) (see (3.51)).
Since the subsequence of V5 (k) converges to 0 and due to the monotonicity of V,(k),

the entire sequence {(u(k),y(k), u(k))} converges to (v?, y?, u?). O

3.4 Summary

In this chapter, two distributed algorithms that are based on the augmented Lagrangian
approach are proposed to solve Problem (3.1). The comparison between the two algo-

rithms is given as follows:

« Problem augmentation. The first step of designing both algorithms is augmenting
Problem (3.1). While in the design of Algorithm 3.1, the auxiliary terms are based
on the coupling constraints (3.1b), in the design of Algorithm 3.2, auxiliary vari-

ables and constraints are introduced, and the augmentation is based on them.

« Algorithm design. Each algorithm is derived based on the steps of solving its dual
problem, where primal variables are updated by computing the attainers of local

optimization problems and dual variables are updated using the gradient ascent
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step. Regarding the computation of the primal variables, Algorithm 3.1 consid-
ers a parametrization of its dual function and uses a convex combination step to
update the coupled variables. Differently, Algorithm 3.2 alternatively solves two

decomposable optimizations to compute the primal variables.

« Information exchange. At each iteration, Algorithm 3.1 in the general form re-
quires two rounds of communication (steps 3 and 5) whereas Algorithm 3.2 only
requires one round of communication. However, the amount of information ex-
changed per iteration is the same. Additionally, as mentioned in Remark 3.1,
with a proper initialization, Algorithm 3.1 only needs one round of communica-

tion per iteration.

« Convergence condition. The sufficient conditions of the step sizes 77{ ,forall j e
and ; € N, that guarantee the convergence of both algorithms are also different.
While Algorithm 3.1 requires an agreement between 17{ and ng , when the network
uses Algorithm 3.2, each subsystem can choose 775 independently. Moreover, the
range in which the value 77{ can be chosen is also different between both algo-

rithms.

« Convergence analysis. As shown in Theorems 3.1 and 3.2 that both algorithms pro-
duce a sequence that converges to a saddle point. The convergence analysis of
both algorithms is essentially the same, where the optimality conditions of the
optimization problems involved in the algorithms are evaluated and then a suit-
able Lyapunov function is proposed and used to show the convergence. Note that
the Lyapunov functions used in the convergence analysis of both algorithms are
different.

Both algorithms are scalable since each local controller only deals with a rela-
tively small dimension decisions, which are associated with the nodes of its subsystem,
and it also only communicates with its neighbors. Furthermore, both algorithms re-
quire a fixed communication network where each pair of neighboring subsystems must
be able to communicate. Moreover, all subsystems must perform the updates syn-
chronously. These conditions are stated in Assumption 3.1. In the next two chapters,
the communication network will be considered not as ideal as in Assumption 3.1. In
practice, the communication network might be time-varying, e.g., due to link failures.

Chapter 4 discusses information exchange protocols that can be used by any distributed
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method when communication link failures occur whereas Chapter 5 focuses specifi-
cally on modifying Algorithms 3.1 and 3.2 such that they still work when the commu-
nication network is time-varying and the updates are performed asynchronously by

the subsystems.



CHAPTER 4

MITIGATING COMMUNICATION
FAILURES IN DISTRIBUTED MPC
SCHEMES

Information sharing among local controllers is a key feature of any distributed model
predictive control (DMPC) strategy. This chapter addresses the problem of commu-
nication failures in DMPC strategies and proposes a distributed solution to cope with
them. The proposal consists in an information-exchange protocol that is based on con-
sensus. By applying this protocol as a complementary plug-in to a DMPC strategy,
the controllers improve the resiliency against communication failures and relax the
requirements of the communication network. Furthermore, a discussion on the se-
lection criteria of the information-sharing network and a reconfiguration algorithm,
which is a contingency procedure to maintain the connectivity of the network, are also
presented. In order to demonstrate the performance and advantages of the proposed
approach when it is applied to a DMPC strategy, a case study of the economic dispatch
problem is provided. Note that the explanation in this chapter is not restricted to the
scheme with the distributed algorithms presented in Chapter 3. Instead, the proposed
protocol can be applied to a broad class of DMPC strategies.

53
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4.1 Introduction

Different DMPC approaches require different communication structures as well as dif-
ferent ways to exchange information among local controllers [Sca09]. Some DMPC ap-
proaches require local controllers to share information iteratively while others require
that the information exchange is made only once at each time instant. In terms of
their communication networks, some approaches, such as the algorithms presented
in Chapter 3 and those discussed in [FS12, CJMZ16, LZL17], require a neighbor-to-
neighbor communication while other approaches, e.g., [SVR*10, TCG™16], require all
controllers to exchange information with all the others. In any way, the information-
sharing network, through which the exchange of information occurs, is important for

systems that use a DMPC approach.

An information-sharing network may face some problems during the operation of
the associated system. Those issues include communication failures (total loss of com-
munication links), delays, and data packet drops [GYH17]. This chapter focuses on the
failures (loss of links) of the information-sharing network, implying some local con-
trollers are no longer able to communicate with others. As mentioned in [GYH17] and
later discussed, communication failures may lead to severe problems such as the in-
ability of the controllers to compute control inputs or the suboptimality of the solu-

tions.

Some recent literature has addressed the problem of communication failures in a
distributed control strategy, in particular DMPC. The authors of [LZZ05] analyse the
performance degradation of a DMPC strategy that is based on Nash optimality dur-
ing such failures while assuming that the algorithm is convergent. The authors of
[HLMdIPn"11] propose a scheme where the subsystems assume that their neighbors
take null control actions during communication failures. In [SMA14], the authors de-
velop a methodology to extend the DMPC strategy that is proposed in [MRA12] such
that it can cope with communication failures. The methodology involves substitut-
ing the coupled constraints with tube-based constraints that restrict the control in-
puts. Furthermore, [KAGB16] proposes to add an observer for a robust DMPC strat-
egy. Hence, during a communication failure, the state bounds are estimated by the
observer and are posed as extra constraints into the DMPC design. Additionally, a re-
silient information-sharing network architecture for distributed frequency regulation

is proposed in [NGE16]. Moreover, the controller in [NGE16] adopts a zero-bias control
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strategy and allows other subsystems to stabilize themselves.

The aforementioned contributions only improve some DMPC strategies to tackle
communication failures in a way that they specifically add or modify the algorithms.
Therefore, they limit the application of the solution only to the DMPC strategies that
are discussed in those papers. In this regard, different from the works previously dis-
cussed, this chapter proposes a communication protocol that can be applied regard-
less the DMPC strategy that is used to control the system. The protocol is an iterative
algorithm that requires local controllers to communicate at each iteration until the in-
formation that is received converges to the correct value. It is based on the distributed
consensus protocol [ME10, OSM04, OFMO07] and can also be perceived as distributed
projection dynamics (DPD) [BGOQ17, QOMBG*17].

The remaining of the chapter is structured as follows. Section 4.2 provides an anal-
ysis of the impact of communication failures in a DMPC strategy. Then, Section 4.3
presents the consensus-based information-exchange protocol. Afterward, some cri-
teria to select a suitable information-sharing network for the proposed protocol and
a network reconfiguration algorithm that supplements the protocol are proposed in
Section 4.4. Furthermore, the advantages of the proposed protocol in the economic
dispatch problem of prosumers are shown in Section 4.5. Finally, some concluding

remarks are drawn in Section 4.6.

4.2 Impact of Communication Failures

This section is dedicated to show, by an example, what could happen when there are
failures in the information-sharing network, i.e., at least one communication link fails
for a certain time slot. During this period, the affected subsystems cannot commu-
nicate with each other while employing a DMPC strategy. For this example, consider
an energy system with a network of subsystems P, which apply a DMPC-based eco-
nomic dispatch. Moreover, consider a set of neighboring subsystems, denoted by
P = {p,qg € P: {p,¢} € &} C P suffer a communication link failure, i.e., their
communication links connecting each other fail at time step tf, i.e., {p, ¢} ¢ &, forall
p,q € PY. This implies that at time step !f, the subsystems in P!f cannot exchange in-
formation among each other although it is necessary to do so to perform the distributed

algorithm, say Algorithm 3.1 or 3.2. In this regard, it is assumed that these subsystems
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use the old information that is available from the previous time step, t!f

sider the unknown information to be null, as in [HLMdIPn*11] and [NGE16]. This is

precisely stated in Assumption 4.1.

— 1, and con-

Assumption4.1. Consider that two neighboring subsystems p and ¢ do not have a com-
munication link at time step ', i.e., {p, ¢} € & but {p,q} ¢ £5. Therefore, at ¢!, sub-
system p considers the decision of subsystem ¢, i.e., v; aeforallj € M randi € M,

denoted by 13; ar = col ({0} }re7), as follows:

] _4If 1If
G v;.’TItlf_l, T=t5 ..., t"+h—2,

0, r=tf+hn—1,
and vice versa. Note that the subscript 7|t!f
attf — 1. 0

— 1 indicates that the decision is computed

By considering Assumption 4.1, the subsystems in P'f can immediately compute
some of their coupled decisions, i.e., vg’tlf = —iyj,’tlf, forall j € My, andi € M,
where p # ¢ and p,q € PY. This implies that, instead of solving Problem (2.15), the

subsystems in the network essentially try solve the following problem:

minimize Z Z (le(u”) + ff(vi7t)) (4.1a)
{wievithien pEP €My 4

s.t. (wig,vir) € Ly, Vie My, Vp e P, (4.1b)
vl +vl, =0, VjEN; N My, Vi€ My, ¥peP, (4.1¢)
vl, + v, =0, VjEN\Myy, Vi € My, ¥p € P\PH, (4.1d)
vl, + v, =0, VjEN; N Mgy, Vg€ P\PE, Vi e My, Vp € P, (4.1e)
vl +0h, =0, VjEeN;N Mgy, Vg€ P Vie My, ¥pe Pl (4.1f)

wheret = t!f, Note that the equality constraints in (4.1f) are local constraints and differ-
entiate Problem (4.1) from Problem (2.15). The DMPC scheme in [HLMdIPn*11], which
apply Assumption 4.1 during failures, also assumes that null control input is a feasible
solution. However, the latter assumption does not always hold in general. Therefore,
Problem (4.1) might actually be infeasible. If feasible solutions to Problem (4.1) exist,

then they are also feasible solutions to Problem (2.15). However, these solutions might
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not be an optimal solution to Problem (2.15). Hence, increasing the resiliency of the

communication infrastructure is important to avoid the occurrence such problems.

4.3 Information-Exchange Protocol

This section discusses a proposal to improve the resiliency of the information-sharing
network. Mainly, it is an application of the consensus algorithm as an information-
exchange protocol for the DMPC schemes. First, the proposed protocol is presented

and then the advantages of the protocol is explained.

Recall the communication network of subsystems at a fixed time step ¢ as the
information-sharing graph G¢ = (P, £°), where the subscript ¢ is dropped for nota-
tional simplicity. Furthermore, consider that some supra-nodes (subsystems) require
information denoted by 6, = col({@fn}?zl) € R, from subsystem r € P. Depending on
the DMPC strategy applied to the system and the couplings in the system, 6, may con-
sist of either state or input information, which is required by some or all other nodes to
run the DMPC algorithm. In the distributed algorithms presented in Chapter 3, the in-
formation that must be shared is some coupled variables and dual variables. Therefore,
there exists a sub-graph G¢ = (P, £°) C G¢, where P, C P is the set that consists of but
not limited to subsystem r and the other subsystems that require ,, while £&& C £€is
the set of communication links available that connect P,. For instance, in the DAL and
ADMM-based distributed algorithms, which require neighbor-to-neighbor communi-
cation, some neighbors ¢ € NS might be included in P, while the other neighbors are
included in the other information-sharing subgraphs. In order to apply the protocol,

the following assumptions must hold.
Assumption 4.2. The undirected sub-graph G¢ is connected. O

Assumption 4.3. Subsystem r, which sends the information, has prior knowledge of
|P,|, while all p € P,.\{r} know nf. O

Remark 4.1. Following Assumption 4.2, it is possible that there are some nodes in P,
that do not need the information 6,, but they are required as intermediate nodes in

order to ensure the connectivity of G¢. O

The proposed information-exchange protocol is based on the following consensus
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dynamics:

Pp(k) = Y a(thy(r) — p(k)), Vp € Pr, (4.2a)

qENZS

where v, € R" is the information state of subsystem p € P,.. Moreover, the index k is
used to denote continuous time, A is the set of subsystems that are the neighbors of
subsystem p in G, i.e., Ny = {q¢ € P, : {p,q} € &}, and a € R, is a constant gain.

Furthermore, the information states of all nodes in P, are initialized by

Py 0y, =
(o) = {710 =T (4.3)

0 otherwise.

0
nd>

Note that the vectors v, for all p € P, are dedicated only for the transmission of in-
formation 6,, which comes from subsystem r. Thus, each local controller needs to
allocate a different data storage for acquiring another information, i.e., if there are

more than one source nodes.

Proposition 4.1. Suppose that Assumptions 4.2 and 4.3 hold. Under the dynamics (4.2) and
by initializing the information states as in (4.3), lim,_,o ¥p(x) = 6,, for each p € P,.

Proof. Let ¢(k) = col({p(k)}pep,) € RIPrI"? be the information state of the overall
system. There exists a permutation matrix ® € RIPrn?xIPrIn? such that ¢ (k) = S (x),
where (k) = col({q/)l}fil) and o'(r) = col({¥}}pep,) € R, foralll = {1,...,nf}.
Based on (4.2), the dynamics of 9 (k) are

(k) = — (Lg @ LEGE) ) $(x),

where L#(Gy) denotes the graph Laplacian of G;. The eigenvalues of I, ® L8(Gy) are
the same as the eigenvalues of L&(G¢) with the algebraic multiplicity of n’. Hence, the
claimed statement follows from the convergence analysis of the consensus dynamics
as explained in [ME10, pp. 46]. O

Remark 4.2. The convergence rate of the protocol depends on the structure of the net-
work and is indicated by the second smallest eigenvalue of the Laplacian of the graph
[OSM04]. U

Remark 4.3. Although the information states asymptotically converge to 6,, for all p €

P,, in practice, sufficiently similar information can be recovered in a finite time. [
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Two main advantages of the proposed information-exchange protocol are high-
lighted as follows. Firstly, it relaxes some assumptions that are required by most of
DMPC strategies. Mainly, it relaxes the requirement of the information-sharing net-
work topology. As discussed in Section 4.1, different DMPC strategies might have dif-
ferent requirements regarding the information-sharing network topology supposing
that the information is directly exchanged as required. However, by employing the
proposed protocol, these requirements are relaxed such that G does not have to ful-
fill certain topological structure. Instead, only the connectivity of Gf is necessary (As-
sumption 4.2). Secondly, this protocol also enhances the resiliency of DMPC-type con-
trollers against communication failures. According to Assumption 4.2, the information
can still be exchanged although some links of the network Gy fail as long as the network
is still connected. Therefore, to some extent of link failures, a DMPC strategy that uses

the proposed protocol to exchange information can still be performed.

The advantages provided by the protocol also come with some costs, which are ex-
tra computation and communication, in terms of the amount of data that is exchanged.
This is due to the fact that all subsystems should reach consensus by iteratively ex-
changing information and applying (4.2) before obtaining the correct information from
their neighbors. Therefore, one must ensure that the total time to exchange informa-
tion using the consensus-based protocol and to compute the control inputs is smaller
than the sampling time of the controlled system. In practice, the satisfaction of this
assumption depends on the system complexity, i.e., the instrumentation and the other

hardware as well as the software, e.g., the optimization solver.

4.4 Graph Selection and Reconfiguration

In this section, first, a discussion on how to choose the information-sharing sub-
graph, G¢, from the available information-sharing network is provided. Two crite-
ria of selection are the resiliency of the network against communication failures and
the convergence rate of the proposed method. It is a direct implication that, when
the information-sharing graph has more links (edges) connecting the subsystems, the

chance that the graph is still connected when a failure occurs is higher. Furthermore,
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Figure 4.1: A network of 12 subsystems. The physical network G and the information-sharing
network G¢ are represented by the solid and dashed lines, respectively.

as stated in Remark 4.2, the second smallest eigenvalue of L8(G¢) indicates the conver-
gence rate of the protocol in the sense that a larger eigenvalue implies a faster conver-
gence rate. As noted in [OSMO04], the second smallest eigenvalue of a sparse Laplacian
is relatively small compared to a dense Laplacian. Hence, these criteria lead to the fact

that the network should have as many links as possible.

Redundancy is required when dealing with communication failures. Thus, when
selecting an information-sharing graph, it is important to consider having redundant
links in the information-sharing graph. For instance, a path is not a suitable structure
since once a link is disconnected, the graph is disconnected. In that sense, a cyclic
graph is more redundant because the proposed method could still be applied when
one link of this graph is broken. Furthermore, it is obvious that a complete graph is
the most suitable one. On the other hand, the topology of a large-scale system usually
has a sparse Laplacian matrix due to the fact that a subsystem is usually only coupled
with other closest subsystems. This may imply its information-sharing network has
sparse Laplacian as well. However, this network can be decomposed into some sub-
graphs that do not have sparse Laplacian, which implies they may have faster conver-
gence rate. By also considering the redundancy criterion, then one may be able to use

a smaller yet redundant information-sharing graph.

As an example, consider the information-sharing graph depicted in Figure 4.1. Its
Laplacian has the second smallest eigenvalue of 0.23. However, now consider its sub-
graphs that are depicted in Figure 4.2. Notice that the sub-graphs that are formed are
cyclic, in order to satisfy the redundancy requirement. Among these sub-graphs, the

smallest value of the Laplacian second smallest eigenvalues is 2.00. This means that



4.4 : Graph Selection and Reconfiguration 61

PR P -]
L Y s \
5 4\ 7 I
\ | / /
\\\(/ 4.\\_/3.\\—/f2
6
a g~1 b. g~2
/‘7\~/6(R\ ///9(\ 9.\\\—’8}\
I I / I I \\
\ / L= LT T TS0
. v % 10
9% _ 8" 2 11 11
C. g~3 d Q~4 e.g~5

Figure 4.2: Decomposition of G¢ into 5 smaller connected information sharing sub-graphs.

the convergence rate of the proposed method is much faster by using the smaller sub-
graphs as the information-sharing graphs among the subsystems. However, the redun-
dancy of the sub-graphs is not as good as the overall graph, G¢. For instance, consider
sub-graph G5 (Figure 4.2¢) and suppose that the links {7,9} and {6, 7} are broken, then
this sub-graph is not connected anymore, which implies the nodes in this sub-graph (6,
7,8, and 9) cannot exchange information among each other. Nevertheless, the graph G¢
is in fact still connected, allowing the protocol to be applied and all nodes to exchange

information when G° is used as the information-sharing graph of all information.

Secondly, a distributed algorithm to reconfigure the information-sharing sub-
graphs is also proposed. The reconfiguration is a contingency procedure when the
information-sharing graphs are disconnected due to the failures, i.e., Assumption 4.2
does not hold. Moreover, the reconfiguration can also be applied even though the
graphs are still connected in order to maintain redundancy. Therefore, recall the
information-sharing network G¢ = (P,£°) and its sub-graph G¢ = (P,,&°) C G° that
is used to share the information of subsystem r, denoted by 6,, among the subsystems
in P, C P. Now, denote the set of links that fail at time step t'f by £f ¢ £¢. Moreover,
let the following Assumption 4.4 holds.

Assumption 4.4. Each subsystem p € P has prior knowledge of its neighbors in the
information-sharing network G¢, i.e., NJ and its subset /\7; = {q: {p,q} € E°, Vg ¢
Pr}. 0

Then, for each link {p, ¢} € £, find a subsystem that is a neighbor of p and ¢ in
G¢ and does not belong to P,. By defining = := {£ : { € /\~/pC N /\;lg, ¥{p,q} € £} and
& = {{0,p}.{0,q}, V¢ € E, ¥{p,q} € €'}, the updates of the sub-graph G¢ at ¢!f are
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Algorithm 4.1 Reconfiguration procedure

1. Each subsystem i € P, detects whether there are link failures.

2. For all subsystems p and ¢, where {p, ¢} € E +and p,q € P,, detect the links that
are failed.

3. For all subsystems p and ¢, where {p,q} € £ 7 and p,q € P, send information of
the failed links to the neighbors that do not belong to 7, e.g., subsystem p sends
to {0:0 € N} and subsystem ¢ sendsto {o: 0 € N}.

4. For all # € ©, receive the same information of one failed link from two different
neighbors.

5. For all # € ©, confirm to join the sub-graph G¢.

6. Compute the updated |S,| using the distributed consensus algorithm.

P+ PrNEand £ « (ES\EYF) N &;.

Since the sub-graph G¢ is modified, Assumption 4.3 no longer holds. If the number
of links that fail, |£f|, is known by the source node, r, then it can easily update |P,|
after the reconfiguration since one node is added for each link that fails. If this is not
the case, the distributed consensus algorithm can again be used to recalculate the total
number of subsystems in P,. To this end, consider an auxiliary variable, denoted by
(p(K), for each node p € P,. Initialize (,(0) = 0 for p # r and (,(0) = 1. By applying
the standard distributed consensus [OSM04, OFM07]

Gr) = 3 alé; (k) — &(r)), (4.4)

qENg

the variable (,(x) converges to 1/|P,| as K — oo, for all p € P,. Therefore, in a fi-
nite time, ks, which denotes the settling time of the consensus, subsystem r can obtain
|P,| = rnd(1/(.(ks)). Note that the whole reconfiguration procedure can be performed
in a distributed fashion, i.e., the algorithm only requires each node to have local infor-
mation of its neighbors (Assumption 4.4) and neighbor-to-neighbor communication.

The distributed reconfiguration procedure is stated in Algorithm 4.1.

Remark 4.4. The intersection of /\7p° and NV . forany {p,q} € £ might be empty. In this

case, the associated information-sharing graph cannot be reconfigured. O
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4.5 Case Study

In this section, the effectiveness of the proposed protocol is shown through a simula-
tion study under the framework of the economic dispatch problem of interconnected
prosumers. Each prosumer is considered as a subsystem. Furthermore, each pro-
sumer has a dispatchable generator, a storage unit, and aggregated load. It is assumed
that the cost function is a strictly convex quadratic function as defined in (2.16) and
(2.18), and the economic dispatch problem as stated in (2.15) is formulated using the
constraints defined by (2.6)-(2.14). The distributed algorithm used to solve their eco-
nomic dispatch problem (2.15) is the standard dual-ascent [BPC*11], which requires
neighbor-to-neighbor communication at each iteration. It is assumed that the default
protocol of exchanging information is that a subsystem sends and receives information
to and from the physical neighbors through the direct communication links available
between them. Furthermore, the proposed information-exchange protocol may also
be applied to this algorithm to replace the default one. When the proposed protocol
is applied, it is assumed that the information shared at the end of the information-
exchange steps is similar enough such that it does not affect the convergence of the

algorithm.

Numerical simulations are carried out in MATLAB on a PC with 16 GB of RAM and
2.6 GHz Intel core i7. The network consists of 12 prosumers, i.e., P = {1,...,12}. Fig-
ure 4.1 depicts the topology of the network, G5, which is time-invariant and the default
information-sharing network of the controllers, G°. The simulation time of all sim-
ulations is one day with the sampling time of 15 minutes. The prediction horizon of
the DMPC controller is » = 6 and the parameters corresponding to each prosumer are
shown in Table 4.1. Furthermore, it is assumed that each local controller knows the

local load and its forecast over the prediction horizon at each time step.

In order to compare the performance of the proposed method, four scenarios,
which are described in Table 4.2, are simulated. The communication failures are de-
fined as follows. Att € {2,3,10—13,40—42,80—82}, the information-sharing network
during the scenarios with failure is G¢ = (P, £°), where £¢ = £°\{{2, 3}, {4, 6}, {9,11}}
(the failed links are indicated by || in Figure 4.1). In addition, in Scenarios 2 and 4,
the proposed information-exchange protocol uses sub-graphs as shown in Figure 4.2
as the information-sharing graphs in order to increase the convergence rates. Dur-

ing failures, all information-sharing sub-graphs only lose one link, hence they are still
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Table 4.1: Parameters of the agents

Parameters Value Unit Sub-system (p)
gmin | gmax 20%, 80% - all
ulh, udh 50, 50 kW all
ydgmin -, dgmax 0,1000 kW all
vp™, forall g € N3 100 kW all
u? ™ 2000 KW all
ap 0.90 - all
St ar, o 0.1,250,0.1 - all
38 2 - 2,6, 11
10 - 1,3,4,5,7,
8,9, 10, 12

Table 4.2: The average stage cost during failures

Scenario Protocol, Communication Cost (Proportional)

1 Default, no failures 1.00
2 Consensus-based, no failures 1.00
3 Default, with failures 1.16
4 Consensus-based, with failures 1.00

connected.

Scenario 1 is considered as the baseline performance since the controllers produce
the global optimal solution. The simulation result of Scenario 2, as seen in Table 4.2,
shows that the proposed information-exchange protocol is able to achieve the optimal
performance. In Scenario 3, the prosumers that are disconnected cannot exchange in-
formation using the default protocol. Therefore, these prosumers adopt Assumption
4.1, which means that the unknown information of the neighbors is considered to be
null. In this regard, it is considered that feasible solution of the dispatch problem ex-
ists under Assumption 4.1. Table 4.2 shows that there is a performance degradation
(16% of higher cost than the optimal case) when the prosumers are in Scenario 3. On
the other hand, all prosumers are able to obtain the required information with the pro-
posed methodology despite the occurrence of the failures, as expected. Therefore, the
optimal solutions can be obtained by the system, as can be seen by comparing the cost

of Scenario 4 and that of Scenario 1, which are equal.
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Figure 4.3: The operation of subsystems 3 and 2 in Scenario 3 (solid lines) and Scenarios 1, 2,
and 4 (dashed lines): a. Power generated by subsystem 3 (ug?t), b. Power generated by subsys-

tem 2 (ugi , and c. Power transferred from subsystem 2 to subsystem 3 (v3 ,).

As illustrations, Figures 4.3-4.5 show the operation of the prosumers that are af-
fected by the communication failures in Scenarios 3 and 4. The communication links

between these neighboring prosumers are broken. In Scenario 4, the 3" and 4t

pro-
sumers import power from the 2°¢ and 6™ prosumers, respectively, at the time instants
when the failure occurs. Furthermore, there is also some energy that is exchanged be-
tween the 9™ and 11™ prosumers during these time instants. These decisions are equal
to those that are taken in Scenarios 1 and 2. However, in Scenario 3, the 3" and 4%
prosumers do not import any power from their neighbors (see Figures 4.3c and 4.4c).
Instead, they produce more power to comply with the load (see Figures 4.3a and 4.4a).
Moreover, the 9™ and 11" prosumers do not always exchange energy and their power
generation decisions are slightly different than those in Scenario 4 during these time

instants (Figure 4.5c).
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Figure 4.4: The operation of subsystems 4 and 6 in Scenario 3 (solid lines) and Scenarios 1, 2,
and 4 (dashed lines): a. Power generated by subsystem 4 (uii), b. Power generated by subsys-

tem 6 (ug?t), and c. Power transferred from subsystem 6 to subsystem 4 (v5 ,).

4.6 Summary

A methodology to cope with the problem of communication failures in distributed MPC
strategies has been proposed. It involves a consensus-based information-exchange
protocol and a graph reconfiguration algorithm. A numerical study, which shows
the application of this protocol to a DMPC-based economic dispatch scheme of net-
worked prosumers, demonstrates the advantages of the proposed protocol. Next, in
Chapter 5, the distributed algorithms presented in Chapter 3 are discussed further and
improved such that not only they work under time-varying communication network
without the need of using the consensus-based information exchange protocol but also
asynchronously. Nevertheless, the main take away from this chapter is the generality

of the methodology as it can be applied to other DMPC strategies as well.
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Figure 4.5: The operation of subsystems 9 and 11 in Scenario 3 (solid lines) and Scenarios 1, 2,
and 4 (dashed lines): a. Power generated by subsystem 9 (ugi), b. Power generated by subsys-

tem 11 (U(E,t): and c. Power transferred from subsystem 11 to subsystem 9 (v5}).
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CHAPTER 5

DISTRIBUTED METHODS WITH
STOCHASTIC COMMUNICATION

This chapter revisits the distributed algorithms introduced in Chapter 3 and dis-
cusses how these algorithms perform over time-varying communication network asyn-
chronously. Therefore, after a brief introduction in Section 5.1, the stochastic model of
time-varying communication networks and the asynchronicity of performing the up-
dates is explained in Section 5.2. Then, by taking into account the stochastic commu-
nication model, the modification of the distributed algorithms is presented in Section
5.3. Afterwards, the convergence and the convergence rate analysis of the modified
algorithms are provided in Section 5.4. Furthermore, Section 5.5 is devoted to numeri-
cal simulations under the framework of energy systems. Finally, Section 5.6 concludes

this chapter.

5.1 Introduction

As remarked at the end of Chapter 3, in the distributed methods shown in Algorithms
3.1 and 3.2, the agents that are coupled through link-based constraints must always
communicate certain information with their neighbors at each iteration. In this chap-
ter, it is considered that the information exchange process might be imperfect, i.e.,
Assumption 3.1 does not longer hold. For instance, some communication link fails or

some agents have not finished computing local decisions, thus they cannot send their

69
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information at some iterations. In this regard, the communication network is assumed
to be randomly time-varying and the updates are asynchronous. Consequently, some

adjustments to these distributed algorithms are necessary.

In addition, these issues are also relevant to the application in the energy systems.
Since they are critical infrastructures, it is expected the control and management of
such systems to be resilient against communication failures. Furthermore, having the
ability to update the decisions asynchronously also improves the robustness of the sys-
tems, particularly, when there are delays in the communication. However, distributed
methods based on dual decomposition, ADMM, or ADAL for energy management that
are proposed in the literature, e.g., [LvFS14, KCLB14, WOK15, HBR*19, SHR18], typ-
ically consider a perfect information exchange process, i.e., the necessary informa-
tion required to execute the updates is available at each iteration. In fact, this is a
common and usually implicit assumption considered, as it can also be found in other
distributed methods that are proposed in the literature, such as [KHMM14, HKW15,
BGHL16, KMG™'18].

Exhaustive study on consensus-based distributed methods show that this approach
works over time-varying communication network [NOP10, NO15, NOS17, NL18]. In
these algorithms, the main assumption considered is that the graph representation
of the communication network is jointly (strongly) connected. Furthermore, dual
decomposition or ADMM-based algorithms that also incorporate a consensus-based
method for different problems over a time-varying communication network have also
reported, e.g., in [TTC17, SS18, GWLG18, AH19]. In this thesis, instead of having a
jointly connected assumption, the communication network as well as asynchronous
updates are modeled as random processes. Therefore, the particular proposal of
this chapter is closely related to the work reported in [WO13, CHLW16]. In [WO13],
an ADMM algorithm that works asynchronously is proposed and the random model
of the network is introduced. Differently, in [CHLW16], a distributed optimization
problem with coupled equality constraints is considered and the ADMM is applied
as a method to update the dual variables. It is worth mentioning that the algorithm
proposed in [CHLW16] also requires connectivity assumption on the communication
graph since one objective of the algorithm is to achieve a consensus on the dual vari-
ables. A stochastic gradient proximal method for consensus that also considers ran-
domly time-varying network has also been proposed in [HC17]. Related to energy

management problems, the work in [TTC17] proposes a distributed demand response
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scheme based on the randomized distributed ADMM proposed in [CHLW16]. Simi-
larly, random communication failures and asynchronous updates are also considered
in [BCST19, BTCS18, MSL18], which discuss distributed ADMM approaches for solving

a distributed consensus optimization problem.

5.2 Random Communication

Recall the network of agents P, represented by the undirected graph G5 = (P, &9).
The communication network of these agents is represented by the undirected graph
G¢(k) = (P,&°(k)), where £°(k) C &° denotes the set of communication links that are
active at iteration k—1, i.e., {p,q} € £°(k) means that agents p and ¢ can exchange
information between each other at k—1. In Assumption 3.1, it is considered that Algo-
rithms 3.1 and 3.2 works under G¢(k) where £¢(k) = &5, for all k € Z>(. However, this
assumption is relaxed here. Particularly, the communication network is modeled as a

random graph [WO13], as follows.

Assumption 5.1 (Random network). The set £¢(k) is a random variable that is indepen-
dent and identically distributed across iterations. Furthermore, any communication
link between two coupled agents p and g, where {p, ¢} € £, is active with a positive
probability denoted by 5,4, i.e., P ({p, ¢} € £°(k)) = Bpq > 0. O

Since £°(k) is a subset of £3, it can be considered that there exists a pre-specified
communication network, i.e., £%, and based on Assumption 5.1, the links of this graph
are active with a positive probability. For practical reasons, such as the cost of com-
munication infrastructure, having a communication network represented by &5 is suf-
ficient, since each agent only needs the information from its neighbors to perform the
updates based on Algorithms 3.1 and 3.2, i.e., agent p only needs information from its
neighbors in ;. It is worth mentioning that the model of the random network used
can be considered as a stochastic block model [Abb17], where the probability of each
communication link between two neighboring agents (i.e., p and ¢ where ¢ € N and
vice versa) being active is positive and can be different between each other, whereas
the probability of each edge between two non-neighboring agents (i.e., p and ¢ where

q ¢ N, and vice versa) is zero.

Moreover, as can be seen in Algorithms 3.1 and 3.2, each agent must perform the
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updates and communicate at each iteration, implying the synchronicity that all agents
must have. However, this might not be the case in practice. In particular, it might
happen that not all agents update their decisions at each iteration. For instance, due to
the inability of some agents to solve their local optimization at the end of the iteration.
Therefore, the asynchronous updates are also modeled as a random process, as follows.
Denote the set of agents that are active and update their primal and dual variables at

iteration k—1 by A(k). Then, consider the following assumption.

Assumption 5.2 (Asynchronous update). The set A(k) C P is arandom variable that is
independent and identically distributed across iterations. Moreover, an agent p € P is
active and updates its primal and dual variables at iteration & with a positive probability
denoted by v,, i.e.,, P (p € A(k)) =, > 0. O

5.3 Stochastic Distributed Algorithms

In this section, Algorithms 3.1 and 3.2 are modified by taking into account the random
communication model introduced in Section 5.2. Firstly, consider the time-varying na-
ture of the communication network (Assumption 5.1), and allow each agent to perform
the updates asynchronously as defined in Assumption 5.2. Based on Assumptions 5.1
and 5.2, an active agent p € A(k) can only exchange information to its neighbor ¢ € N
if both agents are active and the communication link {p, ¢} is also active. In this re-
gard, for each agent p € P, denote the set of coupled neighbors with which agent p can
exchange information by A, (k) = {p € N N A(k) : {p,q} € £°(k)}.

Consider Algorithm 3.1. Under Assumptions 5.1 and 5.2, an active agentp € A(k+1)
might not have vj(k) and )\}(k:), for j € N;\M,, andi € M,, to perform steps 1 and 4 at
iteration k. Therefore, it needs to track v} (k) and X’(k). In this regard, this informa-
tion is captured by the auxiliary variables 2/ (k) and & (k), for all j € N; and i € M,,
respectively. Based on the preceding considerations, the distributed augmented La-

grangian method is modified as stated in Algorithm 5.1. Observe that the update of
J

)

Algorithm 3.2 as well as Assumptions 5.1 and 5.2. Since the information of the neigh-

v; (k) is also modified even though only local information is required. Now, consider
bors is only used to update the auxiliary variable y;(k), then the only step that needs a
modification is step 3. With a similar adjustment as in the other approach, the ADMM-

based method under the random communication model is presented in Algorithm 5.2.



5.4 : Convergence Analysis 73

As canbe seen in Algorithms 5.1 and 5.2, some variables are not always updated at each
iteration. Specifically, 'vf (k)and )\g (k) in Algorithm 5.1 as well as yf (k) and ug (k) in Al-
gorithm 5.2. The update of these variables depends on the communication availability
between agents ¢(i, -) and ¢(j, -), particularly when ¢(i, -) # ¢(J, -). This way of updat-
ing the variables is intuitively natural and later, in Section 5.4, it will be shown that it

is the key to ensure the convergence of the produced sequence to an optimal solution.

Remark 5.1. In Algorithm 5.1, to initialize the auxiliary variables z;(0) and &;(0), for
alli € N, either agent ¢(i,-) € P receives v}(0) and )\;(0), for all j € N;\M,, and
i € M,, from all neighbors ¢(j,-) € ./\/'(;(L.) or it is set such that, for each i € N,
v;(0) = 2;(0) = vol|p;, and A;(0) = &;(0) = AoTjp; s, for any vo, A9 € R. Moreover, the
initialization of the auxiliary variable y;(0) in Algorithm 5.2 can also be carried out in

a similar manner. O

Remark 5.2. Algorithms 3.1 and 3.2, which are performed under Assumption 3.1, are
special cases of Algorithms 5.1 and 5.2, respectively, where 3,, = 1, for all {p, ¢} € £°
andy, = 1,forall p € P. O

5.4 Convergence Analysis

In this section, the convergence of the sequences produced by Algorithms 5.1 and 5.2
is studied. Moreover, the convergence rate, in terms of the ergodic average of the vari-

ables, is also provided.

5.4.1 Convergence of Stochastic DAL Algorithm
The main idea of the convergence analysis of Algorithm 5.1 is similar to that of Algo-
rithm 3.1, which is shown in Section 3.2.2. In fact, the convergence analysis of Algo-

rithm 5.1 is built upon the results obtained in the aforementioned section.

The first step of this analysis is defining a Lyapunov function, which is denoted
by Vi (k) and constructed based on the Lyapunov function V; (k) defined in (3.19). For
any saddle point of L;(u, v, A) (see (3.3)), denoted by (u*, v*, A*), Vi (k) is defined as
follows:

Tik) = (k) — w1 + glw(k) — A1, 59)

where v(k) = [vi(k)]ien, vi(k) = [V] (k)] jen;, and

vl (k) = N(k) + (1 —5))(v] (k) + 2] (k)), ¥j € Ni, Vi € N.

(2
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Algorithm 5.1 Stochastic distributed augmented Lagrangian (DAL) method
Initialization: For each node i € N, v;(0) = vyp € R¥Mil" and X;(0) = A € RWVilr,
Moreover, z](0) = v}(0) and &/ (0) = X(0), for all j € N;andi € N.

Iteration: For each agentp € A(k + 1),

1. Update (u;(k + 1),v;(k)), for all i € M,,, according to

{(wi(k +1),0i(k)) }iem, = arg min > (fil(ui) + fi (vi)+

{(uivi) €L biemy ;27
P

D CHORSAC) <'>+rvz+z3<k>u%)>.<s.1>

jeN;

2. Update v (k + 1), for all j € A; and i € M,, as follows:

’Ui(k v 1) = {m]f?f(k) + (1 - 775) Ug(k‘), if ¢(j,) € Ap(k+ 1)U {p}, 5

vf (k), otherwise.

3. For each j € N;\M,, such that ¢(j,-) € A,(k+ 1) and i € M,, send vg(kz +1)to
and receive v;-(k' + 1) from agent ¢(j, -).

4. Update the auxiliary and dual variables z;(k + 1) and A;(k + 1), for all i € M,,
according to

1) = {:g(k+1), if ¢(j,-) € Ap(k + 1) U {p}, (5.3)

1 (k), otherwise,
By (vl (k1) + 2]k +1)) i 6(5.) € Ak +1) U {p),
k), otherwise.

A{(kﬂ):{

(5.4)

5. For each j € N;\\M,, such that ¢(j,-) € A,(k + 1) and ¢ € M,, send )\g(k: +1)to
and receive A}(k: + 1) from agent ¢(j, -).

6. Update the auxiliary variable &;(k + 1), for all i € M,, according to

Ni(k+1), ifo(s,-) € Ay(k+ 1)U {p},

€lk+1) ={ / (5

&l (k), otherwise.

For agent p ¢ A(l{} + 1), uz(k‘ + 1) = ul(kz), ’UZ(/{? + 1) = ’Ui(k'), ZZ(]{J + 1) = Zi(k‘), )\z(k‘ +
1) = Ai(k), and &;(k + 1) = &;(k), for all i € M,,.

Moreover, H = blkdiag({H,}icr), Hi = blkdiag({(cu;n) 'I1}jen;),for alli € N,
where «;; € (0, 1], for each j € N; and i € N, is defined as follows. Letp = ¢(i,-) € P
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Algorithm 5.2 Stochastic distributed ADMM-based method
Initialization: For each i € N, p;(0) = pio € RWVilh and y/ (0) = yi(0) € R, for all
jEN;.
Iteration: For each agentp € A(k + 1),
1. Update u;(k + 1) and v;(k + 1), for all : € M,,, according to

{(wilk+ 1),k + D) }ien, =arg,  min > (fllw) + 5 (v)
eEM

{(uivi)€Litiemy

_ o 69
+ k), 0] + Slvd =yl )IB).
JEN;

2. For each j € N;\M,, such that ¢(j,-) € A,(k + 1) and i € M,, send v’(k+1) and
w] (k) to agent ¢(j, -) € N and receive v’ (k+1) and (k) from agent ¢(j,-) € N
3. Update yf(k' + 1), forall j € N; and i € M,, as follows:
L (1l (0) = () + ! (k1) = vk + 1)),

y(k+1) = if ¢(j,-) € Ap(k + 1) U{p}, (5.7)
y{ (k), otherwise.

4. Update the dual variables ,ug (k+1), forall j € N; and i € M,, according to

l k) + ] (] (k+1) =yl (k+ 1)), i 6(j,) € Ay(k + 1)U {p},
uf (k), otherwise.

plk+1) = {
(5.8)

For agentp ¢ A(k + 1), wi(k + 1) = wi(k), vi(k +1) = vi(k), yi(k + 1) = vi(k), and
wi(k+1) = pi(k), foralli € M,,.

and ¢ = ¢(j,-) € P. Then,

) if b
o = {ﬂpq'Yp’Yq b 7é q (5‘10)

YTps otherwise.

Recall that 3, is the probability of communication link between agents p and ¢ being
active whereas v, is the probability of agent p being active, respectively (see Assump-
tions 5.1 and 5.2). In Lemma 5.1, it is shown that the sequence {V;(k)} is non-negative

supermartingale. This fact is used as the basis of the convergence proof.

Lemma 5.1. Let Assumptions 2.1-2.3 and 5.1-5.2 hold. Furthermore, let the sequence
{u(k),v(k),v(k),A(k)} be generated by Algorithm 5.1 and (u*,v*, \*) be a saddle point
of L1(u, v, \) as defined in (3.3). Furthermore, consider Vi (k) defined in (5.9). If nf = n; =
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ni; € (0,%), forallj € N andi € N, then the sequence {Vi(k)} is a non-negative super-
martingale and it holds with probability 1 that

E (k4 DIFE)) = Vilk) < = oilluilk+ 1) — w3

ieN
55 ( —my) 197 (k) — v (k)13 (5.11)
ieEN jEN;
i 2 L oJ b
-3 = k) 4630 < .
ieN jeN;

Proof. Since V; (k) is a sum of norms and ng and «;; are positive, the sequence {V; (k)}
is clearly non-negative. Denote by Fi (k) the filtration up to and including the itera-
tion k, i.e., Fi(k) = {A0), &), u(l),v(€),A((),z((),&€), ¢ = 0,1,...,k}. Now, it
must be shown that the conditional expectation of the sequence with respect to F (k)
is always non-increasing. Based on Assumptions 5.1 and 5.2, the initialization step
of Algorithm 5.1, and the update rules (5.2), (5.3), and (5.4), the variables 'ug (k+1),
2Z(k+1) = vi(k + 1), and M(k + 1), for each j € N; N M, andi € M,, are
updated when agent ¢(i,-) is active, whereas, for each j € N;\M, and i € M,,
those variables are only updated when agents ¢(i,-) and ¢(j,-) are active and com-
munication link {¢(7, ), #(j,-)} is active. Therefore, it is observed from (5.10) that
the probability of v/ (k + 1), 2/ (k + 1) = vi(k + 1), and XN (k 4 1) being updated is
a;; € (0,1], whereas, with probability 1 — «;;, they are not updated and the values
remain the same as v I(k), zi (k) = ( ), and )\J( ). Thus, it is also observed that

Vik+1) =XNE+1) = Mk+1)+ 1 —n)) (@ (k+1) + vl *(k + 1)) with probability a;
or the value Vf (k) = S\g (k) is kept with with probability 1 — «;;. Hence, it is obtained
with probability 1 that

E(V(k + DIF (k) )~V (k)= (uv<k+1> o + 5l + 1)~ X

Fl(k)>_‘~/1(k)

; . 1— oy s ,
—ZZ< L lod (1) — 073 4+ 22 ol (k) — o3
ieENjFEN; 77 i
j g2 L= Qg 12
+ ||)‘ (k+1) =X ||2+7j”}‘i(k)_)‘i 12
204”771 2052‘]'771'
~Va(k)
= lv(k +1) —v* |5 — v(k) —v*||%

15 * L5 *
IR+ 1) = X - SIAGR) - XU,
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where the last equality is obtained since the terms ), Z]GM P Hv k) — v{*H%,
D iEN 2ojeN; WHM( ) — XJ*||3, and —V; (k) cancel each other. Notlce that since the

scalings of the remaining quadratic terms do not involve «;;, the weighted vector norm
induced by H can be used. Based on the definition of V; (k) given in (3.19), itis obtained
with probability 1 that

E (Vi(k+ 1)IFi()) = Va(k) = Vil +1) = Vi(k).

Therefore, by applying (3.20) to this relation, the desired relations in (5.11) follow, with
probability 1, when ] = nt = ni; € (0,1). Thus, (5.11) also shows that the sequence

{Vi(k)} is non-negative supermartingale. O

Now, the convergence theorem of Algorithm 5.1 is stated. The proof of the theorem

relies on Lemma 5.1.

Theorem 5.1. Let Assumptions 2.1-2.3 and 5.1-5.2 hold. Furthermore, let the sequence

{u(k),v(k),o(k), A(k)} be generated by Algorithm 5.1. If j/ = ne = niy € (0,1), for
allj € N andi € N, then, with probability 1,

a. (Feasibility) limy_, ||v{(l<:) + v}(k)”% =0, forallj € N;andi e N,

b. (Primal and dual variable convergence) There exists a saddle point of L1 (u, v, \) (see
(3.3)), denoted by (u*, v*, X*), such thatlimy_, u(k) = w*, limy_, ., v(k) = v*, and
limg o0 A(k) = A*. O

Proof. Recall the function V; (k) defined in (5.9) and the inequality (5.11) in Lemma 5.1.

Rearranging and iterating (5.11), for £ = 0,...,k, and taking the total expectation, it
follows that

k . .
5 ( (ol + 1) — ] +Z(—n,-j)E(uﬁg(e)—vz(or%)

£=0ieN JEN;
Mg — \&Mij )~ 2771] AJ
Eﬁjf E (11/(0) +9(0)13) )
< 3 E (ffl(@ - Vit + 1)) = 11(0) —E (ffl(k - 1)) < V4(0),
{=0

where the last inequality is obtained by dropping the non-positive term



78 Chapter 5 : Distributed Methods with Stochastic Communication

E (f/l(k n 1)). The above inequalities imply that {E(o;||u;(k + 1) — u?||2)}, for
all i € N, is summable and converges to 0. Similarly, {E(||& (k) — v!(k)||3)}, and
{E(||&! (k) + v} (K)[|3)}, for all j € V; and i € N, are also summable and converge to 0.
Using the Markov inequality, for any ¢ > 0, it holds that

limsupP’(Z (olul(k +1) —uf|5 + Z ( ij> ||Ug(k) - f’?(’“)%)

k—o0

ieN JEN;
Mij 2772 N o
+Y Y ”()+vj(k)||§>€>
1EN JEN;
: 1 . y
< lim sup €E<Z ot 1) = wil + 3 (5= ) Iof0) - 520008
k—roo ieEN JEN;
Mij 2m N S
+y > A= ]()+vj(k‘)||§)=0-
ieEN jEN;
Thus, it holds with probability 1 that
klim |ui (k) —uf||3 =0, Vi € N, (5.12)
—00
lm o] (k) — 9] (k)3 = 0, Vj € Ni, Vi € N, (5.13)
— 00
lim |97 (k) + 9% (k)||3 =0, Vj € \;, Vi € N. (5.14)
—00

Moreover, based on (5.13) and (5.14), it follows with probability 1 that

lim [0} (k) +vi(k)|3 =0, Vj € A}, Vi€ N. (5.15)
—00

The remaining steps of the proof are quite similar to the proof of Theorem 3.1.
Based on (5.11) and the martingale convergence theorem, the sequences {||v(k) —
v*||%} and {|lv(k) — X*||%} are bounded with probability 1, i.e., there exist accumula-
tion points of the sequences {v(k)} and {v(k)}. Furthermore, {\(k)} is also bounded
with probability 1 and has accumulation points due to the boundedness of {v(k)}, the
relation in (5.15), and the fact that zf (k) = 'v;(k;), for each k, which follows from
the initialization of z{ (k) in Algorithm 5.1 and the update rules (5.2)-(5.3). Then, let
{(v(ke), A(k¢))} be a convergent subsequence and assume that (v?, A?) is its limit point.
Therefore, for each j € N;andi € N, limy o 2/ (k¢) = limy vi(ke) = 'v;'.a and
limy o0 & (ke) = lim, o0 Aé»(k’g) = A;'.a with probability 1 due to the initialization of the



5.4 : Convergence Analysis 79

variables in Algorithm 5.1 and the update rules (5.3) and (5.5).

Now, it must be shown that (u*,v? A?) is a saddle point of Li(u,v, ), i.e.,
(u*,v?, A?) satisfies the inequalities in (3.6). Based on (5.15), vga + fu;'.a =
limy o0 (V7 (k) + vi(ke)) = 0, with probability 1, for all j € Aj andi € N. Thus,
for any A € RZien "WVil ) (u* 02, X) = Li(u*, v?, A?), satisfying the first inequality in
(3.6). It remains to show the second inequality in (3.6). Consider the update step (5.1),

foralli e NV, i.e.,

(u(k +1),8(k)) =arg  min Z(f}(ui)Jrf{’(vi)Jr

Vi) ELG I :
(ui,v;)€ ZEN@GN

> (k) + & k), v]) + o] + 2 (B)13)).

JEN;

By substituting k£ with k, and taking the limit as ¢ goes to infinity on both sides of the
equality, it holds with probability 1 that

(u*,v?) = lim arg ~ min Z(le(uz) + fi(vi)+

£—00 (ws,v;)EL; iEN

ieN
> (N (k) + €0, 0] + 0] + 2] (R)I3) )
JEN;
: 1 c ja @ .0 J a2
=ar min H(ug) + f () + A+ AT o)+ ||v) + v
B R e 2 (1) 4 FE(00) 4 30 (042 w]) o+ 1))
) JEN;
: 1 c ja g 3
= ar min Hwg) + f () + A v ) ). 5.16
g(Ui,vi)Eﬁi,iGNg\:/(fl(u) f, <U) ]gj\;f i)Y v-7>> ( )

The left-hand side of the first equality is obtained by using lim,_, (u(k¢ + 1), 0(k¢)) =
(u*, v?®), with probability 1, due to (5.12) and (5.13), which implies that lim,_, ., v(k;) =
v?, with probability 1. The second equality is obtained since lim;_,, z{ (ko) = v}a and
limy_,o0 & (ko) = )\é.a, with probability 1, for all j € A; and ¢ € N. Then, the last
equality holds since the term 5, > v |v! + 'vj-a||§ is zero at (u*, v?) due to the fact
that v/* + vi* = 0, for all j € A and i € V. Additionally, v* is also an attainer of
ming Yo Y ien; 107 + 5|3 since v]* + vi* = 0, for all j € N and i € N. Therefore,

the pair (u*, v?) also minimizes L (u, v, A?), i.e.,

(wot)carg  min S (flw) + frw) + D0 (0] + ol + o] +0313) ),

(ui,’vi)E,Ci,ZEN ieN JGM

where the cost function in the minimization is obtained by adding the quadratic term
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Y ieN 2N vl + v||3 to the cost function on the right-hand side of the last equality
in (5.16). Hence, the preceding relation implies the second inequality in (3.6). Thus, it
is concluded that (u*, v?, A?) is a saddle point of L; (u, v, X) with probability 1. Finally,
set v* = v® and A* = A% in V; (k) (see (5.9)). Since the subsequence of V; (k,) converges
to 0 with probability 1 and V; (k) is non-negative supermartingale, the entire sequence
{(v(k),A(k)} converges to (v?, A?) with probability 1. O

Remark 5.3. If the dual variables \;(0), for all i € N, are initialized such that )\go = >‘§'0)
then, A/(k) = N/(k), for all k > 0, since ] = n} = n;;. In this setup, similarly as
in Algorithm 3.1, the second round of communication (Step 5) in Algorithm 5.1 is not
necessary and each agent p € A(k + 1) can update &/ (k + 1) = Ag(k + 1), for each
j e Ni\M, and i € M,, if ¢(j,-) € Ay(k + 1) U {p}, or & (k + 1) = &/ (k), otherwise. [J

Next, the convergence rate of Algorithm 5.1 is shown. To that end, define the er-

godic average of the primal and auxiliary variables, as follows:

(5.17)

foralli e N.

Theorem 5.2. Let Assumptions 2.1-2.3 and 5.1-5.2 hold. Furthermore, let the sequence
{u(k),v(k), o(k), A(k)} be generated by Algorithm 5.1 with n/ = i = mij € (0,%), for
allj € Nandi € N, and (u*,v*, X*) be a saddle point of L1(u, v, ) as defined in (3.3).
Then, the convergence rate of Algorithm 5.1 is O(+) and it holds that

Z E (o||ai(k) — u}||3)

ieN
+35 (3 ) (10— v - o I3)
iEN JEN; (5.18)
g — (2053)° 0 (1= 5 2
£ Wl g (15— 1) + Bk - 1)R)
iEN JEN;

1 * (|2 L5 * (|2
< _ - _
< o (o) = w3 + SI20) = X ;).

where u;(k), v;(k), and v;(k) are the ergodic average of the primal variables (5.17), a =
ming; jyee @ij, and (k) is defined by (3.17).

O

Proof. By rearranging the summation of (5.11) over / = 0, ...,k — 1 and taking the total
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expectation, it holds that

k-1
»> (E (st + 1) = wil3) + 3 (5= ) £ (1670 - v (O1R)

=0 ieN

JEN; =0 (5.19)
= Va(0) ~ E (Vi(k)) < VA(0) = [[0(0) — "]} + 3 IA©) ~ M2,
< < o(0) — vl + 51RO - X[y

where the second inequality is obtained by dropping the non-positive term —E (f/l (k:))
and the last inequality is obtained by using the definition of a. Furthermore, due to the

convexity of the squared of the Euclidean norm, it follows that

k—1
FE(|@i(k) —uf(3) < Y E(llui( +1) — ufl3),
y | P
KE(19] (k —1) = o] (k = D)]13) < D E(19](6) = v] (0)]13),
=0
k—1

FE(|[8] (k — 1) + 95(k — 1)II3) < Y E(|9](6) + 5(0)]13).

The desired inequality follows by applying the above relations to (5.19) and using the
fact that o; > 0, foralli € N, and 3 — n;; > 0, w > 0, for all j € A and
ieN. O

Theorem 5.2 shows that the convergence rate of Algorithm 5.1 in terms of the er-
godic average of the primal and dual variables is (’)(%). Furthermore, it also implies

that the convergence time is O(=- ), showing the influence of the probability of the ac-

1
ea
tivation of links and agents on the number of iterations required to reach a solution

with the desired error e.

5.4.2 Convergence of Stochastic Distributed ADMM Algorithm

The convergence of the sequence produced by Algorithm 5.2 is shown using the
same technique used in Section 5.4.1. First, a suitable Lyapunov function is de-
fined. To that end, recall a;; from (5.10) and H = blkdiag({H;}icp’) and H; =
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blkdiag({(aijng)fllh}jeNi), for all i € N. Moreover, define that G = blkdiag({G }ien)
and G; = blkdiag({(ai;) 'Ir}jen;), for all i € N. Then, the candidate Lya-
punov function, for any saddle point of La(u, v, y, ) (see (3.29)), which is denoted by
(u*,v*, y*, p*), is defined by

(7 1 * 1 *
Va(k) = 5llu(k) = ¥l g + 5lly (k) = y'lle- (5.20)
Lemma 5.2 shows that the sequence {V5(k)} is non-negative supermartingale.

Lemma 5.2. Let Assumptions 2.1-2.3 and 5.1-5.2 hold. Furthermore, let the sequence
{u(k),v(k),y(k), u(k)} be generated by Algorithm 5.2 and (u*, v*, y*, u*) be a saddle point
of Ly(w,v,y, p) as defined in (3.29). Furthermore, consider Va(k) defined in (5.20). If

/€ (0,1), forallj € N andi € N, then the sequence {Va(k)} is a non-negative super-
martingale and it holds with probability 1 that

E (Valk + DIF(R)) — Vak) <~ r(k+ 1)+ y(k + 1)~ y(k)]3
=3 ok 1) — w3

= (5.21)

vyl ”W +1)3 <o.

1EN JEN;

Proof. The proof follows the same steps in the proof of Lemma 5.1. For completeness,

the proof is shown in Appendix A.2. O

Now, the convergence properties of Algorithm 5.2 are stated as follows.

Theorem 5.3. Let Assumptions 2.1-2.3 and 5.1-5.2 hold. Furthermore, let the sequence
{u(k),v(k),y(k), u(k)} be generated by Algorithm 5.2. Ifnf € (0,1), forallj € N and
i € N, then,

a. (Feasibility) limy_,o [0 (k) + vi(K)||3 = 0, with probability 1, for all j € N; and
ieN.

b. (Primal and dualvariable convergence) There exists a saddle point of Lo (u, v, y, i) (see
(3.29)), denoted by (u*, v*, y*, p*), such thatlimy_, ., u(k) = u*, limg_, o, v(k) = v*,
limy o y(k) = y*, and limy_, o, u(k) = p*, with probability 1. O
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Proof. The steps of the proof follows that of Theorem 5.1. By rearranging and iterat-
ing the first inequality in (5.21) over ¢/ = 0, 1,. .., k and taking the total expectation, it
follows that

Jim f[r(k +1) +y(k +1) —y(k)[3 =0, (5.22)
Jim ol (k + 1) —ulf3=0, VieN, (5.23)
— 00

lim ||r(k+1)||3 = lim |v(k+1) —y(k+1)3=0, (5.24)
k—o0 k—o0

with probability 1. Moreover, by (5.22) and (5.24), it holds with probability 1 that
lim [|y(k +1) - y(k)3 =0, (5.25)
k—o0

with probability 1. Additionally, due to the initialization step in Algorithm 5.2 and the
update rule in (5.7), yg(k) = —yé(k:), forall j € NV, i € N, and k € Z>(. Based on this
fact and the relation in (5.24), it also holds that

lim vl (k+1) +vi(k+1)[3 =0, Vj € N}, Vi € N. (5.26)
—00

Then, it remains to show that the sequence {(u(k),y(k), u(k))} converges to a saddle
point with probability 1. The arguments are similar to those that are in the proof of

Theorem 3.2. The complete proof is given in Appendix A.3. O

Finally, the convergence rate of Algorithm 5.2, with respect to the ergodic average

of the primal and auxiliary variables defined by

ol
—
o
—

u(t)
0]€7

v(f)
k‘ )

a(k) = o(k) = g(k) (5.27)

~
Il
~
Il
=)
~
Il
=)

is stated as follows.

Theorem 5.4. Let Assumptions 2.1-2.3 and 5.1-5.2 hold. Furthermore, let the sequence
{u(k),v(k),y(k), u(k)} be generated by Algorithm 5.2 with n{ € (0,1), forall j € N and
i € N, and (u*,v*, X*) be a saddle point of Ly(u,v,y,\) as defined in (3.29). Then, the
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4

Figure 5.1: The network of 5 agents. Squares (M) indicate the agents whereas the solid lines
indicate the physical links between agents.

convergence rate of Algorithm 5.2 is O() and it holds that
1 _ _ _ *
SE ([o(k) =gk = DIE) + D E (osllai(k) — uf[3)

ieN

+ 0 L (el k) - wl)13) (5.28)

ieN jeN;

1 1 * (12 1 * (12
< (= _ - _
< o (GO =973+ () — ;).

where u;(k), v;(k), and y;(k) are the ergodic average of the primal variables (5.27) and o =

ming; jyee Qij- U

Proof. The proof is similar to that of Theorem 5.2. For completeness, it is given in Ap-

pendix A.4. O

5.5 Numerical Simulations

This section showcases the performance of Algorithms 5.1 and 5.2 in a small-scale en-
ergy management problem. The network considered in this numerical study is de-
picted in Figure 5.1. It is a network of prosumers where each node represents a pro-
sumer as an agent. Moreover, each agent 7 has a dispatchable generator. It is consid-

ered that the dispatchable generator has a quadratic cost function, i.e.,

d;
le(UZ) = Ciguz’TUiy
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Table 5.1: Parameter values of the agents

Agent
Parameters 1 2 3 4 5

8 10 8 6 4

¢ij 1 1 1 1
yma 10 10 10 10 10
ymax 35 3.5 35 3.5 3.5

(2

dg

where ¢, is a positive scalar that denotes the per-unit cost of generating power. It is

also considered that the trading of power between agents is subject to a linear cost, i.e.,

fE) =" el Tl

JEN;
where ¢;; is a positive scalar that denotes the per-unit cost of transfering power.

The parameter values of each agent are given in Table 5.1 and their loads are shown
in Figure 5.2. Moreover, Algorithm 5.1 uses ng = 0.2, forall j € V; and i € N whereas
Algorithm 5.1 uses nf = 0.6, for all j € N; and ¢« € N. In these simulations, a one-
shot optimization at the 18™ hour with the time horizon 4 steps ahead is performed.
Furthermore, it is assumed that 8;; = 3, for all {7, j} € £ and 7; = ~. Furthermore,
four different values of o, i.e., « = 1, @ = 0.8, @ = 0.6, and « = 0.4, are considered.

For each « < 1, ten Monte Carlo simulations are carried out.

The convergences of | u(k) —u*||2, ||v(k) —0(k)||2, and ||v(k) 4+ z(k)||2 with different
values of « obtained by Algorithm 5.1 are shown in Figure 5.3. On the other hand,
the simulation results obtained from simulating Algorithm 5.2, i.e., the convergence
of |[u(k) — u*|2 and ||v(k) — y(k)||2, are shown in Figure 5.4. Note that the value u* is
computed by solving the problem in a centralized fashion, which can still be done due
to the small size of the system. Furthermore, the optimal value of the problem, which is
4.91 x 103, is always obtained in all simulations. Moreover, it can be seen that the larger
a, the faster the primal and dual variables converge under both algorithms, as shown
in Theorems 5.2 and 5.4. In addition, it is worth mentioning that despite Algorithm 5.2
uses a larger step size than Algorithm 5.1, the former method reaches the same error

value of u(k), i.e., [[u(k) — u*||2, slower than the latter method.
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11 T T T T T T T T
—B&— Agent 1
10 H—6— Agent 2
Agent 3
9 H—— Agent 4
—E&— Agent 5

Power (p.u)

hour

Figure 5.2: One-day load data used in the simulations is obtained based on a residential load
profile. The one-shot optimization simulated occurs at the 18" hour with load data used appear
inside the dashed rectangle.

5.6 Summary

This chapter presents two stochastic distributed methods based on the augmented La-
grangian approach. The stochasticity of the methods comes from the communication
model, where the network is randomly time-varying and the updates performed by
the agents are randomly asynchronous. The convergence of the sequences produced
by the proposed algorithms is analytically shown. Moreover, a numerical simulation
with a small-scale network of prosumers shows their performance. Next, in Chapter 6,
both algorithms are implemented as a distributed MPC scheme for economic dispatch.
Some heuristic methods to increase the speed of convergence are introduced and the

schemes are implemented in the benchmark case by means of simulations.
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Figure 5.3: Convergence of ||u(k) — u*||2 (top plot), ||v(k) — ©(k)||2 (middle plot) and ||v(k) +
z(k)||2 (bottom plot) with Algorithm 5.1.
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Figure 5.4: Convergence of ||u(k) — u*||2 (top plot) and ||v(k) — y(k)||2 (bottom plot) with Algo-
rithm 5.2.



CHAPTER 6

IMPLEMENTATION OF DISTRIBUTED
METHODS FOR THE MPC-BASED
DISPATCH SCHEME

This chapter is devoted to showing the performance of the distributed algorithms pro-
posed in Chapter 5 as they are implemented in the MPC-based economic dispatch
scheme of large-scale energy systems. Since the MPC-based scheme is an online
optimization-based approach, the optimization algorithm used must be able to find
a satisfying solution in a given period of time. In this regard, additional techniques
to improve the convergence speed of the algorithm can be added. Particularly, the
Nesterov’s acceleration and the warm start methods are considered. Therefore, they
are discussed in Sections 6.1 and 6.2, respectively. Afterward, a numerical simulation
study is carried out using the benchmark case and presented in Section 6.3. Finally,

Section 6.4 concludes this chapter with some remarks.

6.1 Accelerated Versions

This section discusses the application of Nesterov’s accelerated gradient method to Al-
gorithms 5.1 and 5.2. First, Nesterov’s acceleration method and the accelerated version
of Algorithms 5.1 and 5.2 are presented. Then, some numerical results, which show the

improvement on the convergence speed obtained by implementing the acceleration

89
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method, are provided.

6.1.1 Adapting Nesterov’s Accelerated Gradient Method

In [Nes83], Nesterov proposes an optimal gradient method that has convergence rate
of (’)(k%) for a convex smooth optimization. The main idea of this accelerated gradient
method is that the gradient step is taken from a smartly chosen interpolated point of
the last two iterations. This method has been further extended for non-smooth cases
in [BT09]. Furthermore, a generalization of the accelerated method and its variants
and a unifying framework to analyze them are provided in [Tse]. As an MPC tech-
nique, this approach is discussed in [PB13, GDK*13], where the primal cost function
is assumed to be strongly convex and the dual problem is solved. Note that, [PB13]
considers a centralized scheme, whereas [GDK'13] discusses a distributed one. Sim-
ilarly, in [BNOT14], network resource allocation problems with strongly concave cost
function is solved in a distributed manner using an accelerated dual ascent method,
i.e., the update of the dual variables uses the Nesterov’s accelerated gradient method.
Additionally, an ADMM algorithm that implements this technique for a more general
convex problems with an equality constraint is presented in [GMS13, GOSB14].

To show the accelerated gradient method, consider the following problem:
minimize f(u),

where v € R™ and f(u) : R"™ — R is a differentiable convex function wih Lipschitz
continuous gradient. Moreover, denote by w the Lipschitz constant of the gradient of
f(u), which is denoted by V f(u). The accelerated gradient method for the preceding
problem, as presented in [GOSB14], is shown in Algorithm 6.1. As can be seen, u(k) is

the interpolated point that is used to perform the gradient step.

Now, the accelerated technique is adapted to the stochastic DAL and ADMM-based
methods as shown in Algorithms 6.2 and 6.3. Since in these algorithms the gradient
step is applied to the dual variable updates, an interpolated point of the dual variable
must be computed at each iteration based on the rule shown in steps 1 and 2 of Algo-
rithm 6.1. Due to this requirement, all agents must always be active at each iteration,

i.e., the following assumption holds.

Assumption 6.1. The probability of agent p € P being activeis 1,i.e., P(p € A(k)) =1,



6.1 : Accelerated Versions 91

Algorithm 6.1 Nesterov’s accelerated gradient descent
Initialization: 6(0) = 1, u(0) = u(—1) € R™, n < 1/w.
Iteration:

1. Update 0(k + 1) by 6(k + 1) = 1(1 + /40(k)> + 1)

2. Update a(k + 1) by ik + 1) = u(k) + g (u(k) — u(k — 1))

3. Update u(k + 1) byu(k+1) =u(k+1) —nVf(u(k +1))

forallp € Pand k € Z>. O

The preceding assumption implies that Algorithms 6.2 and 6.3 are performed syn-
chronously. Nevertheless, the communication network might still be randomly time-
varying. Notice that in Algorithms 6.2 and 6.3, the interpolated point A;(k + 1) and
fi(k + 1), respectively, are used to update the primal variables (see step 3 of both
algorithms). Additionally, in Algorithm 6.2, due to the initialization of the dual vari-
ables, the auxiliary variables to keep tracking the dual variables of the neighbors are
not needed, since A (k) = X.(k), for all {i, j} € £ and k € Z> (c.f. Remark 5.1).

It is also noted that the acceleration technique is treated as a heuristic method and
the effectiveness will be shown through numerical simulations. Although [GMS13,
GOSB14] show the convergence rate analysis of an accelerated ADMM method, the
problems considered in those papers are limited and do not include the economic dis-
patch problem (3.1). Specifically, [GOSB14], which provides a more general result than
[GMS13], shows the convergence rate of (’)(k%) when the cost function is composed of
two component, one is strongly convex while the other is quadratic. Moreover, the
problems considered only have an equality constraint but do not include local con-

straint sets.

6.1.2 Convergence Speed Improvement

The improvement obtained by applying Nesterov’s accelerated gradient method is
shown through numerical simulations. Therefore, consider the network of prosumers
presented in Section 5.5. However, in this simulation study, Algorithms 5.1, 5.2, 6.2,
and 6.3 are applied to a number of randomly generated cases, in each of which, the

network G is randomly generated based on the Erd6s-Rényi model with the number of
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Algorithm 6.2 Stochastic accelerated DAL method

Initialization: For each node i € N, v;(0) = vy € RNilh and X;(0) = \(~1) = 0 €
RWilk, Moreover, 2{(0) = v!(0) and & (0) = Xi(0), forall j € N; andi € N, and
6(0) = 1.

Iteration: For each agentp € P,

1. Update 0(k + 1) as follows:

O(k+1) = %(1 + /40(k)? + 1).
2. Update \;(k + 1), for all i € M,, as follows:

Xi(k+1) = Xi(k) +

3. Update (u;(k + 1), v;(k)), for all i € M, according to

{(ui(k + 1)7@1'(]‘3))}1'6/\@ = arg min Z (fll(uz) + fi(vg)+

{(uivi)€Libiemy , 27
p

£33 (2N k4 1))+ va+z5(k>\%)>-

JEN;
4. Update v{(k: + 1), forall j € N; and i € M,, as follows:

okt 1) = {nf'ﬁf(kH (1=n) vl k), if 6(j.) € Ap(k + 1)U {p},

v (k), otherwise.

5. For each j € N;\\M,, such that ¢(j, ) € Ay(k + 1) and i € M,, send vg(kz +1)to
and receive 'u;'-(k' + 1) from agent ¢(j, -).

6. Update the auxiliary and dual variables z;(k + 1) and A;(k + 1), for all i € M,,
according to

Hk+1)= vi(k+1), if(j,-) € Ap(k +1)U{p},
' z! (k), otherwise,

- {;\g’(kH) ol (vl + 1) + 2] (R + 1)), i 6(5,) € Ak +1) U {p},
a {(k—i—l), otherwise.

nodes and the connectivity level (the proportion of the number of links with respect
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Algorithm 6.3 Stochastic accelerated distributed ADMM-based method
Initialization: For each i € N, p;(0) = pio € RWVilh and y/ (0) = yi(0) € R, for all
j € Ni,and 6(0) = 1.
Iteration: For each agentp € P,
1. Update 6(k + 1) as follows:

Ok +1) = %(1 + VAR 1),

2. Update f1;(k + 1), for all i € M,, as follows:

1) = A + e ) = = 1)

3. Update u;(k + 1) and v;(k + 1), for all i € M,,, according to

{(wilk + 1), v,k + 1)}iear, —arg  min > (fhw) + f2(w)
eM

{(uivi)eLitiemy

v . 1 . .
+ > (e + 1), 07) + 5o~y (R)]3)-
JEN;

4. For each j € N;\M,, such that ¢(j, ) € Ay(k + 1) and i € M,, send v’ (k+1)and
] (k) to agent ¢(j, -) € N and receive v’ (k+1) and (k) from agent ¢(j,-) € N
5. Update y/(k + 1), for all j € A and i € M,), as follows:
| L (1l (0) — () + ! (k1) = vk + 1)),
yi(k+1) = if ¢(j, ) € Ap(k +1) U {p},

yf (k), otherwise.

6. Update the dual variables ,uf (k+1), forall j € N; and i € M,, according to

(k1) ] (w064 1) =l (k4 1)) £ 60) € Ak +1) U {p),

J
pi (k+1) =
fl(k+1), otherwise.

to the maximum possible number of links) as the parameters that are varied. Further-
more, at each scenario, the upper-bound of u;, the load d;, and the cost coefficient c?g,
for each node i € N, are sampled with uniform distribution, i.e., u/"®* ~ 10 + [—1, 1],
d; ~ [8.25] 4+ [—0.25,0.25], and c?g ~ [7.5] + [-2.5,2.5]. Moreover, at each case, it is set
thath =1, 8;; = 0.9, forall j € NV; and i € NV, whereas A(k) = P, forall k € Z>(. Addi-
tionally, the DAL algorithms 5.1 and 6.2 use n;; = 0.2, forall j € N; and i € NV, whereas,
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Figure 6.1: Performance of the proposed algorithms on networks with different number of
nodes.

the ADMM-based algorithms 5.2 and 6.3 use ;; = 0.6, for all j € A; andi € V.

Figure 6.1 shows how these four algorithms performed on the networks with 5, 10,
15, 20, 25, and 30 nodes and 40% of connectivity level. Moreover, Figure 6.2 shows the
simulation results where the connectivity level is varied and the number of nodes is
fixed. As can be seen, the accelerated versions, Algorithms 6.2 and 6.3, which are de-
noted by Ac-DAL and Ac-ADMM, respectively, require less number of iterations to stop,
i.e., to reach the tolerable level of primal residual error, than the standard versions
(Algorithms 5.1 and 5.2). Additionally, Figure 6.1 also shows how the number of nodes
in the network influence the number of iterations required to reach the same perfor-
mance level. As expected, the number of iterations required grows with the number of
nodes due to the increasing dimension of decision variables. However, based on Figure
6.2, the number of iterations does not have a positive correlation with the connectivity

level as that with the number of nodes.

6.2 Warm Start Method

The second technique used to reduce the number of iterations performed by the dis-
tributed algorithms is the warm start method [BPC*"11]. As suggested by its name, the
idea of this method is carefully choosing the initial condition of the variables. Partic-
ularly for an MPC scheme, where a similar problem is repeatedly solved at each time

step, the variables can be initialized using the computed value from the previous time
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Figure 6.2: Performance of the proposed algorithms on networks with different level of con-
nectivity. Left plot considers a 10-node network whereas right plot considers a 20-node net-
work.

step. Note that the difference between the problem solved at one step and another
is the uncertainty that comes from the load and non-dispatchable generation. At time
step t, although only u; ; and v; ; are implemented, the decisions for & time steps ahead,
i.e., u; r and v; ;.for all 7 € T, are computed. Furthermore, the dual variables from the

last iteration at ¢ can also be saved to be also used at the next time step, ¢ + 1.
Now, consider the DAL algorithm and let v] o= col({viﬂ (JreT) and X} e
col({\] T|t}TET)’ forall j € N; and i € N, denote the coupled and dual solutions com-

puted at time ¢. Therefore, in the next time step, t+ 1, they can be initialized as follows:

: , 1
v,41(0) = COI({U?,TH}?—LF{-%’ 'Uzq,tJrhfllt)?

. Pl
Al 41(0) = COI({Ag,ﬂt}itH’ Ag,t+h—1|t)7

for all j € N;and i € N. Similarly, let the auxiliary and dual variables at the end

of the iteration of the ADMM-based algorithm at time step ¢ be denoted by yf i =

col({y] ,;}rer) and i\, = col({u] ,}rer), forall j € Aj and i € N. Then, in the
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next time step ¢ + 1, these variables are initialized as follows:
J _ J t+h—1
Yii11(0) = col({y; L\ 1oty Ui nope)s
j _ i ytth—1 g
p’it—i—l (0) - COI({ug7T|t}7—:t+1a /Lg,t—&—h—l\t)’
for all j € N; and i € N. Notice that the variables associated with the last time step
in the horizon, i.e., t + h, are initialized in the same way as the variables at ¢t + h — 1.
The reason of this choice is twofold. Firstly, as previously explained, the difference
between the optimization problem solved at ¢ and ¢ + 1 is the uncertain variables d;,
for each i € N. Secondly, the difference between d; ¢y, and d; ¢y,—1, for each i € N,

might not be large, especially when the sampling period is small.

6.3 Simulation study of DMPC Scheme

This section presents the simulation study, where Algorithms 5.1 and 5.2 as well as
their accelerated versions (Algorithms 6.2 and 6.3, respectively) are implemented in
the DMPC scheme. First, the setup of the test case is explained and then the simulation

results are presented and discussed.

6.3.1 Simulation Setups

The benchmark case, which is described in Section 2.4, is considered in this simula-
tion study. The locations of dispatchable generators, non-dispatchable generators, and
storage units in the network are shown in Figure 6.3. The parameters of the compo-
nents in the network are given in Table 6.2. Moreover, the available load data set is
used as the maximum value of the load at each node. The nodes that have a maximum
load greater than 100 kW are considered to have a commercial load profile. Otherwise,
they have a residential load profile. The non-dispatchable generation units are solar-
based, with the maximum power generation as shown in Table 6.1. Additionally, it is
assumed that the subsystems have the knowledge of the loads and non-dispatchable
power generation, implying perfect forecast so that the analysis can be focused only
on the outcomes of the algorithms. An example of residential and commercial load
profiles is shown in the top plot of Figure 6.4, whereas a solar-based generation profile

is shown in the bottom plot of Figure 6.4.
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Figure 6.3: The locations of non-dispatchable units (indicated by filled squares, W), dispatch-
able generators (indicated by empty squares, [J), and storage units (indicated by crosses, X) in
the benchmark case.

The simulation time is one day with the sampling time of 15 minutes, implying 96
steps. Moreover, the prediction horizon in the DMPC scheme is h = 4. Furthermore, it
is assumed that the probability of each communication link being active is equal, i.e.,
Bpg = B = 0.9, for each {p,q} € &%, whereas all agents are always active at each itera-
tion to accommodate the accelerated algorithms. Four simulations have been carried
out and each simulation uses the same case but a different distributed algorithm, i.e.,
the DAL, accelerated DAL, ADMM-based, and accelerated ADMM-based methods. For
the DAL and the accelerated DAL methods (Algorithms 5.1 and 6.2, respectively), the
step sizes are set to be nf = 0.2, for all {7, j} € £. Moreover, their stopping criterion
is ||ve(k) + 2¢(k)|l2 < 1, which is the primal residual [BPCT11]. Note that since the
stopping criterion corresponds to the coupling constraints and the maximum allow-
able power transferred is 200 kW, the choice of the stopping criterion is small enough
and tolerable. For the ADMM-based method and its accelerated version (Algorithms
5.2 and 6.3, respectively), the step sizes are set to be nf = 0.6, for all {7, j} € £. Ad-
ditionally, the stopping criterion used in these algorithms is also the primal residual,
i.e., ||vi(k) — yi(k)|]2 < 1, which also corresponds to the coupling constraints. Addi-
tionally, the warm start method is applied to all algorithms. Note that all simulations
are carried out in MATLAB with Yalmip [L04] and the quadprog solver on a PC with 16

GB of RAM and 2.6 GHz Intel core i7.
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Table 6.1: Maximum generated power of solar-based generation units

Nodes Maximum power [kW]
7,32,37,45,56, 65 50
20, 41 75
16,54 100
52 150

One-day load profiles

T T T

150 T T T

Commercial
—-=-- Residential

0 10 20 30 40 50 60 70 80 90 100
time step (t)

One-day solar-based power profiles
60 T T T T T T T

Power kW]

0 10 20 30 40 50 60 70 80 90 100
time step (t)

Figure 6.4: One-day residential and commercial load profiles (top plot) and one-day solar-based
power generation profile (bottom plot).

6.3.2 Simulation Results

In this study, mainly, two aspects are highlighted. First, the improvement obtained
from implementing the acceleration technique. Second, a comparison of the perfor-
mance of the DAL and the ADMM methods. Figures 6.5-6.8 show the simulation results.

Figure 6.5 shows the number of iterations required by the stochastic DAL, acceler-
ated DAL, ADMM-based, and accelerated ADMM-based methods, over all time steps.
While the red lines show the median, the blue boxes cover the 25%-75™ percentiles.
The average number of iterations are 1294.9, 730.6, 1518.8, and 905.4, respectively.

From these results and together with the results presented in Section 6.1.2, it can
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Table 6.2: Parameters of the Network Components

Parameters Value Unit Bus

pJBmn L d8mA g 400 KW ie N8

1

gPin pmax a0 30,100,50 % i€ NSt
uh) ydh 100,100 kW  je N
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] 200 - {i,jleé
s c?g 1,10 - ieN
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Figure 6.5: The number of iterations performed by each algorithms. The blue boxes show the
25t percentiles until the 75" percentiles and the red lines show the median.

clearly be concluded that adding the acceleration technique to both DAL and ADMM-
based, algorithms improve the convergence speed. However, it is also important to
note that the acceleration technique does not allow the subsystems to be inactive ran-

domly since they must always perform the interpolation steps at each iteration.

In order to compare the performance of the DAL and ADMM-based methods, first,

the power imbalances are evaluated. Based on (2.1) and (2.2), the coupled and local
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Figure 6.6: Top plot shows the coupled power imbalance, ||A€||2 (see (6.1)). Bottom plot shows
the local power imbalance, ||Al||; (see (6.2)).

power imbalance indices, denoted by A} and A¢, respectively, are defined as follows:

Af = col({v], + v}, }jenien). (6.1)
Ap = col({1 ] iy + ]l|TM|Ui,t —dittien). (6.2)

Figure 6.6 shows ||A¢||y (top plot) and ||Al|s (bottom plot). It can be observed that
||Ag||2 obtained from the DAL methods is lower than that of the ADMM-based meth-
ods, most of the time. The lower ||Af||2 is, the better since it implies the satisfaction
of the coupling constraints. Therefore, to achieve the same performance, the stopping
criterion of the ADMM-based method must be set lower, implying a larger number of
iterations than the current simulation results. Moreover, in terms of local power im-
balance, ||A}||> obtained from the ADMM-based methods is zero since both u;; and
v, foralli € N and ¢t € Z>(, are computed by solving the local optimizations, which
include the local power balance constraints (2.2). On the other hand, in the DAL meth-
ods, v; 4, for alli € N and t € Z>, are obtained by performing a convex combination
step of the solution of the local optimization and the value at the previous iteration.

This explains the non-zero value of the local power imbalance Al.
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Figure 6.7: The total power transferred among subsystems at each iteration. Top plot shows
the total power transferred while bottom plot compares the difference of the transferred power
obtained by different algorithms with the result of the DAL method as the baseline.

Figure 6.7 shows the total transferred power among the subsystems. As can be seen
from the top plot, the subsystems in the network are actively transferring power among
each other in order to perform optimally. Furthermore, Figure 6.8 shows the cost at
each iteration, for all methods, which differ due to the early termination of the algo-

rithms.

6.4 Summary

This chapter presents a simulation study of the implementation of the DAL and ADMM-
based distributed methods to the MPC-based economic dispatch scheme. Moreover, in
order to improve the convergence speed of these methods, the Nesterov’s acceleration
technique is added to the algorithms and the simulation results show the effectiveness
of this acceleration technique. By implementing the proposed distributed algorithms,
the non-centralized MPC scheme is robust against random communication failures.

This feature is important considering its application to energy systems. Finally, note
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Figure 6.8: The stage cost at each iteration. Top plot shows the cost while bottom plot compares
the difference of the cost obtained by different algorithms with the result of the DAL method as
the baseline.

that in this chapter, both the DAL and ADMM-based algorithms are implemented in a
fully distributed MPC scheme, which requires intensive neighbor-to-neighbor commu-
nication. Next, in Chapter 7, a different non-centralized scheme, which requires less

intensive communication, is proposed.



CHAPTER 7

A NON-CENTRALIZED CONTROL
SCHEME BASED ON ONLINE
PARTITIONING

In this chapter, a novel non-centralized economic dispatch scheme is proposed. It is
inspired by the coalitional control scheme and is a mixture of distributed and decen-
tralized ones. The methodology, which is outlined in Section 7.2, combines an online
repartitioning method (Section 7.3) and a procedure to form self-sufficient coalitions
of subsystems to solve the economic dispatch problem (2.3) (Section 7.4). Further-
more, the analysis of the methodology, including the outcomes of the repartitioning
and coalition formation algorithms, is presented in the corresponding sections. More-
over, an upper bound of the suboptimality of the proposed scheme is also provided
in Section 7.5. Some numerical simulations are also carried out to show the effective-
ness of the proposed scheme in the benchmark case, as presented in Section 7.6. Fi-
nally, Section 7.7 concludes this chapter with some remarks. The methodology that is
presented in this chapter is an extension of that in [AOM19], where a periodical reparti-
tioning scheme for a fully decentralized scheme is proposed. Additionally, a feasibility
issue arisen from subsystems that are not self-sufficient, which can be found when us-
ing the scheme in [AOM19], is resolved by the coalition-based approach proposed in
this chapter.

103
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7.1 Introduction

As discussed in Chapter 3 and [BGHL16, WOK15, KCLB14, BGK*16], a typical non-
centralized approach to solving MPC-based economic dispatch problems is by using a
distributed optimization algorithm. Such algorithms are usually iterative and require
high information flow, i.e., at each iteration, each local controller must exchange in-
formation with its neighbors, with the advantage of obtaining an optimal solution. This
chapter presents an alternative non-centralized scheme with low information flow and
iterations, which are desirable for online optimization. There are two main ingredients
of the proposed approach. The first ingredient is a proper partitioning of the network
and the second ingredient is the formulation of coalition-based sub-problems, which

requires a coalition formation algorithm.

In the first part of the method, the network is (re)-partitioned into a fixed number
of subsystems. The objective of the repartitioning scheme is to obtain self-sufficient
and efficient subsystems. Roughly speaking, a subsystem is self-sufficient when it can
provide its loads using its local generation units. Note that a precise definition of self-
sufficiency used throughout the chapter is provided later. When this goal is achieved,
each subsystem does not need to rely on the other subsystems, implying a local eco-
nomic dispatch problem can be solved by itself. In addition, the efficiency criterion is

in line with the objective of the economic dispatch problem.

Therefore, a repartitioning procedure that has low computational burden and is
performed in a distributed manner is proposed. The proposed repartitioning pro-
cedure is a graph-based technique and closely related to the partitioning methods
presented in [AOM19, APOM™19]. The main idea is to move some nodes from one
partition to another in order to improve the partitioning objective function. The
proposed technique belong to the class of local improvement methods, which in-
cludes the methods discussed in [KL70, BGOMQ17, BGOMQ19]. In most literature,
e.g., [Fja98, Gup97, NFAWH16, GHT16, BGOMQ17, OMBP11] system partitioning pro-
cedures are considered as an offline task that is carried out only once, before applying
a non-centralized control approach. Differently, the approach proposed in this chap-
ter changes the partitions of the system online. In this regard, the repartitioning of the

network is triggered by a certain event, i.e., at least one subsystem is not self-sufficient.

In the second part of the method, the economic dispatch problem is decom-

posed into coalition-based sub-problems. Since the repartitioning procedure does not
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Figure 7.1: The overall scheme of the proposed method.

guarantee that the resulting subsystems are self-sufficient, those subsystems that are
not self-sufficient are grouped together with some of their neighbors to form a self-
sufficient coalition. In this regard, a coalition formation algorithm, which is also car-
ried out in a distributed manner, is proposed. Furthermore, coalition-based economic
dispatch sub-problems are formulated. These problems are solved by the local con-
trollers of the subsystems in order to obtain a feasible but possibly suboptimal solution

to the centralized economic dispatch problem.

The coalition-based economic dispatch approach is inspired by the coalitional con-
trol approach [MMndIPnJL*14, FMH" 14, FMC17, FDMC18, MMA™'17]. In the coali-
tional control scheme, the subsystems are clustered into several coalitions based on the
relevance of the subsystems, e.g., the degree of coupling among the subsystems. Fur-
thermore, the subsystems that are in the same coalition cooperatively compute their
control inputs. In the proposed method, the coalitions formed are based on the ne-
cessity to maintain the feasibility of the economic dispatch sub-problems, which can
be perceived as the relevance of the agents to the problem itself. Specifically related
to the control problems of energy systems, [FDMC18] provides a case study of voltage
control in a power network. However, a coalitional scheme in the dispatch level has

not been proposed in the literature.

The overall approach can be perceived as a mixture of distributed and decentral-
ized methods. A distributed optimization algorithm is still used to solve coalition-based
dispatch problems when a coalition consists of more than one subsystem, implying
neighbor-to-neighbor communication is required. On the other hand, subsystems be-
longing to different coalitions, even though they are physically neighbors to each other,
do not communicate, as in a decentralized scheme. Additionally, similar to the ap-
proach in [NOMMDSI15], the scheme is time-varying. A flow diagram that summarizes

the overall method is shown in Figure 7.1.
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7.2 Definitions

Prior to presenting the proposed methodology, some definitions are established. To
that end, recall that ug% is the power that can be generated by the dispatchable gener-

ation units of node ¢ and d; ; is the aggregated load of node 1.

Definition 7.1 (Local imbalance). The local power imbalance of a subset of nodes M C

N atanyt € Z>, denoted by AM ;» is defined as

AT, = Z < 17, dgu” +dzt> (7.1)

1eEM

where d; y = df , + W™ (see (2.6)) with w™ denotes the worst-case disturbance. O

In the view of Definition 7.1, the local imbalance of subsystem M, ; indicates the
difference between the aggregated worst-case load of subsystem M, ; and the local
power generation of subsystem M, ;. Then, the self-sufficiency of a subsystem is de-

fined as follows.

Definition 7.2 (Self-sufficiency). A subsetofnodes M C N atanyt > 0is self-sufficient
if it has non-positive local imbalance at any step along the prediction horizon h, i.e.,
Al <o, forallr e T={t,t+1,...,t+h—1}. O

Self-sufficiency is suitably defined with the considered economic dispatch prob-
lem, which has a certain time horizon h. Note that, in the context of electrical energy
systems, microgrids, which can be disconnected from the main grids or other micro-
grids (when in the island mode), must be self-sufficient. Definition 7.2 will be used as
the criterion to decide whether a repartitioning process is necessary at time instant ¢.
Moreover, using the notion of imbalance in Definition 7.1, the imbalance cost, which

will be considered in the repartitioning problem, is defined as follows.

Definition 7.3 (Imbalance cost). The imbalance cost of subsystem p € P, with M,,; €
M, atany t € Z>(, denoted by Ii,f’;‘, is defined as

=Y max (0.4%,, ). (7.2)

TET

where Aiﬁp .+ is defined based on (7.1). O



7.3 : Online Repartitioning Scheme 107

The imbalance cost (7.2) penalizes a subsystem that does not have enough local
power resource to meet the loads over the whole prediction horizon. On the other
hand, another repartitioning objective, namely the efficiency of each subsystem, is also

considered and provided in the following definition.

Definition 7.4 (Efficiency cost). The efficiency cost of subsystem p € P, with M,,; €
M, atany t € Z>, is defined as follows:

Jh= o min 3 () + ) + i {vidiea)
O s, v (7.3)
S.t. ’Uit + ’U;,t == 0, vj G ./\/; m Mp7t, Vl E Mp7t,
where f5 : R>=ieMpe "W R s defined as follows:
fo{vithiem,,) = Z Z o] 113, (7.4)
1€EMp.t JEN \Mp,t
in which %! is the extra per-unit cost of transferring power. O

The auxiliary cost function f;({v;}icm,,) adds an extra cost on the power trans-
ferred between one subsystem to another in order to minimize the dependency on the
neighbors. Note that ¢§' can be set quite large to incentivize the decoupling among
the subsystems. Moreover, as can be seen in Definition 7.4, in order to compute J;jﬁf,
the local controller must solve a local economic dispatch problem over i time instants,
which is derived from (2.15), where the coupling constraints between neighboring sub-

systems are relaxed.

7.3 Online Repartitioning Scheme

Due to the time-varying nature of the loads, the self-sufficiency condition of each sub-
system (c.f. Definition 7.2) might change over time. In that event, i.e., when a subsys-
tem is not self-sufficient, then the repartitioning processis triggered. In this regard, the
triggering mechanism is provided in Algorithm 7.1. At each time instant ¢, first the con-
trollers in the network execute Algorithm 7.1. Furthermore, when the flag to perform
repartitioning is raised, it is assumed that all other subsystems can receive this infor-

mation. This assumption can be fulfilled if there is an either all-to-all communication
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Algorithm 7.1 Repartitioning triggering mechanism

1. For each subsystem p € P, with the set of nodes M,,; 1 € M,_;, evaluate its
self-sufficiency at ¢t based on Definition 7.2.

2. If a subsystem is not self-sufficient, raise a flag to start repartitioning procedure.
Otherwise wait until all subsystems perform step 1.

3. Iftheflagto startthe repartitioning procedure is not raised, then keep the current
partitions, i.e., M; = M;_1.

network or, at worst, a connected communication network. When the communication
network of the subsystems is connected, there exists a path from a subsystem to any

other subsystem that can be used to relay this information.

Supposing that the network is triggered to repartition itself, the repartitioning prob-
lem that will be solved is stated next. First, assume that the network is initially parti-
tioned into m non-overlapping subsystems and denote the set of initial partitionatt = 0
by My = {Mio, Map,..., Mp0}. Thus, for some time instant ¢, at which the sys-
tem must perform repartitioning, the optimization problem that must be solved is as

follows:

minintlize pz:; J"(Mpt) (7.5a)

st | JMp =N, Mpin Mgy =0, ¥Mpy, Mgr € My, p#q,  (7.5b)
p=1

)\g(gm) >0, V./\/lp7t c Mt, (7.5C)
M(0) = M1, (7.5d)

The cost function J™(M,,;) is defined by

T (My) = adpf + Jgy, (7.6)

where « is the tuning parameter to determine the trade-off between both the imbal-
ance and efficiency costs. Moreover, G,; = (My, &) denotes the subgraph of sub-
system p, with the set of edges denoted by &, = {(i,j) € £ : i,5 € M} and Xa(Gpt)
denotes the second smallest eigenvalue of the Laplacian matrix of subgraph G, ;. Equa-

tion (7.5c) implies the requirement of having connected subsystems, i.e., the subgraph
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formed by each subsystem is connected. This constraint is imposed to avoid decou-
pling among the nodes within each subsystem. Furthermore, M, (0) denotes the par-
tition at the first iteration k£ = 0, which is obtained from the partition at the previous
time instant, ¢ — 1. In addition, Assumption 7.1, which is related to the initial partition

M, is considered.

Assumption 7.1. The initial partition M, is non-overlapping with connected subsys-

tems. O

Remark 7.1. For the case of electrical distribution networks, the initial partition M,
could be obtained by solving an optimal microgrid construction problem [BAA'18,
AMEF12]. U

Now, the repartitioning procedure, where the subsystems cooperatively solve Prob-
lem (7.5), is discussed. To solve the repartitioning problem while taking into account
the setup of the system, an iterative local improvement algorithm that is performed in
a distributed and synchronous manner is proposed. The main idea of the algorithm
is as follows. At each iteration, one node is proposed to be moved from one subsys-
tem to a neighboring subsystem in order to improve the total cost. The algorithm is a
variation of the Kernighan-Lin algorithm [KL70] and similar to the method presented
in [GZ87, KK98]. However, differently from the proposed approach, the method in
[GZ87, KK98] considers different cost function and constraints, e.g., balancing number
of vertices. Additionally, unlike the method in [BGOMQ17, BGOMQ19] and as explained
later in Proposition 7.1, by considering moving only one vertex at each iteration, con-

vergence to a local optimum can be shown.

Therefore, first consider the initial partition M (0). Moreover, denote the set of
boundary nodes of subsystem M,,;, i.e., nodes that are connected (coupled) to at least
one bus that belongs to another subsystem by M7, = {i : (i,j) € £,i € Mp:,j €
N\M,+}. Then, the repartitioning procedure is stated in Algorithm 7.2. The num-
ber of repartitioning iterations can be upper-bounded by a constant denoted by £™#*.
Thus, the procedure is stopped when it reaches the maximum number of iteration

k™2, Proposition 7.1 characterizes the solution obtained by the proposed algorithm.

Proposition 7.1. Let M be the initial partition at t = 0 and Assumption 7.1 hold. At any
time instant at which the repartitioning process is triggered, the output of Algorithm 7.2 is a

non-overlapping partition with connected subsystems and converges to a local minimum. [
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Algorithm 7.2 Repartitioning procedure

Suppose that subsystem p € P is chosen randomly to propose a node that will be moved
at the k™ iteration. Then, the steps at each iteration are described below:

1.

Subsystem p computes J™(M,,+(k)), which is the local cost function at the k™
iteration, based on (7.6).

. Subsystem p computes a node that will be offered to be moved, denoted by 6,,(k)

as follows:
0p(k) € arg min J" (M, (k)\{6}), (7.7)
fe MDY, (k)
where M;‘}(k) C M3 (k) is a subset of boundary busses that do not disconnect
subsystem p when removed, i.e., the graph form by M,, ;(k)\{0}, for 6 € M;}ﬂ(k‘),

is connected. The node 6, (k) is randomly selected from the set of minimizers of
(7.7).

. Subsystem p computes the local cost difference if §,(k) is moved out from sub-

system M, i.e.,

Ady (k) = T (Mp e (R)\{0p(K)}) = T (Mp,e(F))- (7.8)

. Subsystem p shares the information of 0, (k) and AJ] (k) to the related neighbor-

ing subsystems ¢(j,t) € N, such that {0,(k), j} € €.

. All neighbors ¢ = ¢(j,t) € N}, such that {6,(k),j} € &, compute the expected

total cost difference if 6, (k) is moved from subsystem p to subsystem ¢, as follows:
AT (k) = T (Maa(k) U{0p(k)}) — J™(Mqu(k) + A7 (K), (7.9)

and send the information of AJ{°(k) to subsystem p.

. Subsystem p selects the neighbor that will receive 6,(k) as follows:

q* € arg 1’1;/1\1/’1 AJL(k), st A{0p(k),j} €&, j € Mgu(k), (7.10)
€N

where ¢* is randomly chosen from the set of minimizers.

. If AJ2 (k) < 0, then the partition is updated as follows:

Mk +1) = My ()\{6,(k)}, (7.11)
My (k4 1) = Mo o(k) U {8,(k) . (7.12)

Otherwise, the algorithm jumps to the next iteration, &k + 1.

Proof. Define by 7 the time instant at which the repartitioning process is triggered, i.e.,

there exists at least one subsystem in M, that is not self-sufficient. Let 7y be the first
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(smallest) repartitioning instant. Notice that the initial partition M (0), at any reparti-
tioning instant 7, equals to the solution of Algorithm 7.2 at the previous repartitioning
instant. Therefore, if at 7y the assertion holds, then it also holds for any repartitioning

instants. Hence, it remains to evaluate the outcome of the repartitioning process at 7.

Since the system is not repartitioned when ¢ < 7y, the initial partition at 7o,
M, (0) = My, is non-overlapping with connected subsystems due to Assumption 7.1.
Moreover, at any iteration of the repartitioning procedure, k¥ < k™%, the node pro-
posed to be moved is selected from Mgflm (k), which is the set of boundary nodes that
do not cause the disconnection of the associated subsystem when removed (see (7.7)).
At the end of the iteration, either one node is moved from one subsystem to another or
no node is moved. These facts imply that, at the end of any iteration, M, (k) remains

non-overlapping and the connectivity of each subsystem is maintained.

Now, the convergence of the repartitioning solution is shown. To this end, recall
that the total cost at the beginning of iteration k is expressed by > _ . » J™ (M, - (k)). The
convergence is proved by showing that the evolution of the total cost is non-increasing.
Suppose that 6,(k) is moved from subsystem p to subsystem ¢*. Therefore, it follows
that

Y T Mk +1)) =D T (M. (k)
peP peP
= JT(Mpr(k+1)) = JT(Mp(k)) + T (Mgs - (k + 1)) = T (Mg~ (k))

)

= JT My (E)\{0p(k)}) = J" (Mpr(F)) + J" (Mg 7 (k) U{bp(k)}) — J" (Mg 7 (K))

The first equality follows from the fact that only the local costs of subsystems p and
q* change after iteration k. The third equality follows from (7.8) and (7.9), and the
inequality comes from the condition imposed in step 7 of Algorithm 7.2, where 6,,(k)
is not moved if AJ{%. (k) > 0. When no node is moved, the last inequality becomes an
equality. O

Remark 7.2. After the network is repartitioned by Algorithm 7.2, not all subsystems
might be self-sufficient. Note that in general, Problem (2.3) might actually have fea-
sible solutions that require high power exchange, implying it might be impossible to

partition the network into self-sufficient subsystems. O
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7.4 Coalition-Based Economic Dispatch Scheme

In this section, the non-centralized economic dispatch scheme based on the previously
explained repartitioning approach is discussed. The main objective of the scheme is to
have as less communication traffic as possible. In this regard, let each self-sufficient
subsystem to solve its local economic dispatch problem without exchanging power
with its neighbors. Therefore, self-sufficient subsystems do not need to communicate
with its neighbors to dispatch its components. However, a fully decentralized method
can only be performed if all subsystems are self-sufficient. For any subsystem that is
not self-sufficient, its local economic dispatch problem might be infeasible since local
power production is not enough to meet the load. Since the repartitioning outcome
does not guarantee the self-sufficiency of each subsystem, then the subsystems that
are not self-sufficient must form a coalition with some other subsystems such that the

resulting economic dispatch problem that must be solved by each coalition is feasible.

7.4.1 Coalition Formation

In a coalitional control scheme, only subsystems that belong to the same coalition
can communicate among each other; thus, cooperatively compute their control in-
puts [FMC17, FDMC18]. Therefore, it is necessary to construct the coalitions of subsys-
tems that are relevant to the considered economic dispatch problem and this section
presents a procedure to do so. To that end, denote by C,; and D, ; the set of nodes
and the set of subsystems that belong to the coalition of subsystem p, respectively.
Then, assign one pair (Cp ¢, Dy ) to each subsystem p € P to keep tracking the nodes
and neighboring subsystems with which it forms a coalition. The coalition formation
mechanism is described in Algorithm 7.3. The outcome of Algorithm 7.3 is stated in

Proposition 7.2.

Proposition 7.2. By performing Algorithm 7.3, either all resulting coalitions C,¢(m — 1),
for allp € P, are self-sufficient or all coalitions are merged, i.e., Cp(m — 1) = N, for all
peEP. O

Proof. At each iteration k < m — 1, the evaluation in step 1 has two mutually exclusive

outcomes:

1. All coalitions are self-sufficient.
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Algorithm 7.3 Coalition formation procedure

Initialization: Each subsystem M, ; defines C, +(0) = M, ; and D, ;(0) = {p}.
Iteration: While &k < m — 1, do:

1.

Each subsystem p evaluates whether its coalition is self-sufficient based on Defi-
nition 7.2, i.e., whether

ALy =0, VTE{t, ... t+h—1}
holds true.

If coalition Cp (k) is self-sufficient, then subsystem p waits until the iterations
stop, i.e., k =m — 1.

Otherwise, subsystem p initiates a coalition merger by sending Ag;lt( ) for all
7 € T, to the subsystems that do not belong to coalition C, (k) but they have
physical connections with at least one node in coalition C,,(k), i.e., ¢ € N, =
{eeP:{i,j} € & i€ Cpu(k),j € Myu,Cqu(k) # Cpi(k)}. Note that if Ny, = 0),
then subsystem p does nothing until the iterations stop, i.e., k = m — 1.

For each neighbor ¢ € Ny, if it is not communicating with another subsystem,
then it computes

Jm =3 max (0, A )+ AT ).
TET

Otherwise, J&™ = co. Then, it sends back J&™ to coalition Cp (k).

Based on Jgim, subsystem p chooses the neighbor with which it will merge as a
coalition, as follows:

* : cim cim
q" € arg qI‘EnAI/l;lf Jq s.t. J; T < oo
p,t

Update the coalition sets, i.e., C,i(k + 1) = C, (k) U Cq (k) and Dpy(k + 1) =
D, (k) UDyg(k), forall p € Dy (k) and C, 1 (k+1) = Cp (k) UCp (k) and D, ¢ (k +
1) =D, (k) UDy(k), forall p € Dy (k).

k < k + 1 and go back to step 1.

There exist some coalitions that are not self-sufficient.

In case 1, it holds that C,;(m — 1) = C,+(k), for all p € P since the coalitions do not

change from the k™ iteration until the (m—1)™ iteration. Note that when all subsystems

My € M, are self-sufficient, then C, +(0), for all p € P, are self-sufficient. Therefore,

this case is also included here. In case 2, according to steps 3-6 in Algorithm 7.3, at
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least one of the coalitions that are not self-sufficient will be merged with one of its
neighboring coalitions at the next iteration k£ + 1. Since the number of initial coalitions
is finite (m), then if case 2 keeps occurring, all coalitions will be merged, i.e., C,; =
N, forall p = 1,...,m, at a finite number of iterations. Otherwise, case 1 will occur.
Furthermore, in case 2, the minimum number of coalitions that can perform steps
3-6 (merging with one of its neighboring coalitions) is one. If, for £ > 1, only one
coalition merges with one of its neighbors, then it requires m — 1 iterations to merge all
coalitions. Note that if more than one pair of coalitions merges at least in one iteration,

then the number of iterations required to merge all of them is less than m — 1. O

Remark 7.3. Notice that in steps 3-6 of Algorithm 7.3 more than one coalition that is not
self-sufficient can initiate a coalition merger. However, in step 4, each coalition can
only be asked by one neighbor at each iteration. In this regard, step 4 can be executed

by the principle of first comes first served. O

7.4.2 Coalition-Based Economic Dispatch

This section outlines the proposed scheme to solve Problem (2.3) based on the coali-
tions that have been formed. Note that when all subsystems p € P are self-sufficient,
the coalitions are reset as in the initialization of Algorithm 7.3, i.e., C,; = M, ,, for
all p € P. First, Problem (2.3) is reformulated as a coalition-based problem and the

reformulation is shown in Proposition 7.3.

Proposition 7.3. Suppose that, at time instant t, the network is partitioned into m non-
overlapping subsystems, defined by the set My = {M,, : p € P}. Furthermore, coalitions
of subsystems, denoted by Cp,, for allp € P, are formed based on Algorithm 7.3. Then,

Problem (2.3) is equivalent to

minimize Z Z (fil(ui,t) + ff(vivt)> (7.13a)
{wi,t,vitbien PEP ieMy..

s.t. (ui’t, ’U@t) S ﬁ,"t, Vi € Cpﬂg, Vp € P, (7.13b)

v, +vl, =0, VjEN;NCpy, Vi€ Cyy, VpeEP, (7.13¢)

v, +vi, =0, VjeN\Cps, Vi €Cpy, VpEP. (7.13d)
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Proof. Notice that (J,pCpt = N. Then, the proof follows the proof of Proposition

2.1. U

Remark 7.4. For each coalition C, 4, (7.13b) and (7.13c) are local constraints. Particu-
larly for the constraints in (7.13c), some of them might involve two different subsys-

tems. Meanwhile, (7.13d) are coupling constraints with other coalitions. O

Suppose that at the end of the coalition formation procedure there exist ¢ distinct
coalitions whose elements are different from one to another, where ¢ < m. Note that
when C,; = Cy, subsystems p and ¢ belong to the same coalition. A non-centralized
economic dispatch scheme will be formulated for these coalitions by decomposing
Problem (7.13) such that each coalition solves its own economic dispatch. The decom-
position is done by not allowing power exchange between two neighboring coalitions.
Thus, the MPC-based economic dispatch problem must be solved at each coalition C, 4,

for all p € P, is stated as follows:

minimize ; (Flwia) + fe(wia) (7.142)
st (wig, vig) € Liy, Vi € Cpy, (7.14b)

”f,t +vi, =0, VjeEN;NCpy, Vi€ Cpy, (7.14c)

vl, =0, Vj€N\Cp, Vi €Cpp. (7.14d)

Note that if subsystems p and ¢ belong to the same coalition at time step ¢, i.e., C,; =
Cyt, then they must cooperatively solve the same problem in a distributed manner.
Additionally, if ¢ = m, then each subsystem is self-sufficient, implying a fully decen-
tralized scheme is applied to the network. On the other hand, if ¢ = 1, then a fully

distributed scheme is applied to the network.

Now, it is shown that Problem (7.14), for any coalition, has a solution. Furthermore,

the solution to Problem (7.14) is also a feasible solution to the original problem (2.3).

Proposition 7.4. Suppose that Assumption 2.3 holds and let the coalitionsCp, forallp € P,
are formed by using Algorithm 7.3. Then, there exists a non-empty set of optimal solutions to
Problem (7.14), for each coalition C,;, where p € P. O

Proof. Since the cost function is convex and the constraints form a compact and con-

vex set, the existence of optimal solutions is guaranteed provided that the feasible set
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is nonempty. Therefore, it remains to show that Problem (7.14), for any C, ;, has a non-
empty feasible set. If Algorithm 7.3 results in one coalition over the whole network, i.e.,
Cpt =N, forp=1,...,m, thenitimplies that all subsystems must solve the centralized
economic dispatch problem (7.13) cooperatively. Therefore, in this case, for any Cp ,
Problem (7.14) is equal to Problem (7.13). Due to Assumption 2.3, feasible solutions
to Problem (7.13) exist. Otherwise, Algorithm 7.3 results in at least two different self-
sufficient coalitions. Based on (7.1), the worst-case uncertain imbalance between loads
and non-dispatchable generation can be met cooperatively by the distributed genera-
tion units within the coalition. Therefore, there exists a non-empty subset of feasible
solution of Problem (7.13) such that (7.14d), for each C,;, where p = 1,...,m, holds,

implying the existence of a non-empty feasible set of Problem (7.14). O

Proposition 7.5. Let (uj;,v},), for alli € Cp4, be the solution to Problem (7.14), for all
coalitions Cp ;, where p € P. Then, they are also a feasible solution to Problem (2.3). O

Proof. In Proposition 7.3, it is shown that Problem (7.13) is equivalent to Problem (2.3).
Therefore, it remains to show that (u; v}, ), for alli € N is a feasible solution to
Problem (7.13). Note that Problem (7.14) is obtained by decomposing Problem (7.13).
As can be seen, the constraints (7.13b)-(7.13c) are decomposed for each coalition and
considered as (7.14b)-(7.14c) in Problem (7.14). Since (“Zt’ vzt), foralli € Cp 4, satisfy
the constraints (7.14b)-(7.14c), they also satisfy (7.13b)-(7.13c). Finally, for any C,, by
(7.14d), it holds that vf: = vl =0, forall j € M;\Cp;andi € Cp . From this fact, it
follows that fuf’; + v = 0forall j € Nj\Cp; and i € Gy, implying the satisfaction of
the constraints in (7.13d). O

Finally, it is noted that the main issue in solving Problem (7.14) in a distributed way
is the existence of coupling constraints among the subsystems in the same coalition,
ie.,

vl 4 vl =0, VjEN;NCp\Mpy, Vi € Cpy. (7.15)

One way to overcome the coupling constraints is by implementing the distributed

methods presented in Chapters 3 and 5.
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7.5 Suboptimality and Communication Complexity

This section discusses the suboptimality and communication burden of the proposed
scheme. First, an estimation of the suboptimality level achieved by the scheme is
shown. To that end, state the collection of the optimization problems (7.14), for all

coalitions Cp,;, p € P, as follows:

minimize Z (fll(uzt) + fz‘c(vi,t)>
{(wi,t,vie) Yien JeN (7.16)

s.t. (7.14b), (7.14c), and (7.14d), Vp € P.

Denote the optimal value of Problem (7.16) by .J;*. Note that J; represents the cost func-
tion value of Problem (2.3) computed by the proposed scheme. Furthermore, denote
by J° the optimal value of Problem (2.3) and define the suboptimality measure as the
difference between the cost function value computed using the proposed scheme and

the optimal value of Problem (2.3), denoted by AJ,, i.e.,
AJy=Jf = J7. (7.17)
Therefore, an estimate of AJ; is shown in Proposition 7.6.

Proposition 7.6. Let J; and J; be the optimal values of Problems (7.16) and (2.3) at time
t, respectively. Furthermore, let J? denote the optimal value of the following optimization

problem:

minimize Z (le(uzt) + fic(’Ui,t))
{(wi,t,vi,e) Yien Y (7 18)

s.t. (7.14b) and (7.14c), Vp € P.

Then, the following estimate on the suboptimality measure AJ,, defined in (7.17), holds:

AJ, < JfF—J°. (7.19)

Proof. Note that Problem (7.18) can be obtained by relaxing Problem (2.3). In partic-
ular, the coupling constraint vg’t + vit = 0, for each pair of nodes i and j that do not
belong to the same coalition, is discarded in Problem (7.18). Due to this relaxation,
it can be concluded that J? < J?. Moreover, based on Proposition 7.5, the solution

obtained by Problem (7.14), for all coalitions C,;, p € P, is also a feasible solution to
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Problem (2.3), implying that J? < J;. Based on the preceding observations, the rela-
tion in (7.19) holds. O

Remark 7.5. Consider the case when C,; = N, for all p € P. In this case, for any : € N,
all neighbors of node 4, i.e., j € N;, belong to the same coalition as that of node i. Thus,
in (7.14d), N;\Cp, = 0. This fact implies that Problem (7.16) is equivalent to Problem
(2.3) and Problem (7.18), implying AJ; = 0 and J; — J} = 0. O

Remark 7.6. The optimal value of Problem (7.18) can be regarded as a lower bound of
Problem (2.3). Problem (7.18) can also be decomposed into m sub-problems, each of
which can be assigned to each coalition. Specifically, each sub-problem is stated as

follows:

minimize Z (fil(ui,t) + fic(’vi,t)>
{(us,evit)}iec, , i€Cp s (7.20)

s.t. (7.14b) and (7.14c).

As mentioned in Remark 7.5, AJ; = J; — J? = 0when C,; = N, for all p € P. Then, in

this particular case, .J} is not necessary to be computed. O

Now, the communication cost of the proposed scheme is discussed. Algorithms
7.2 and 7.3 do require information exchange among the controllers. The total size of
data exchanged throughout the process in Algorithm 7.2 is O(m) per iteration. It is ob-
tained since, at each iteration, the subsystem selected to propose a node to be moved
must send the information about the node, which is a scalar, to its neighbors and re-
ceives back the cost adjustment, which is also a scalar. Furthermore, the total size of
information exchanged in Algorithm 7.3 is also O(m), since the information exchange
process is similar to that of Algorithm 7.2. Finally, the size of data communicated when
solving the coalition-based economic dispatch problem is evaluated. Each coalition
might need to use a distributed optimization method since there might be more than
one subsystem in a coalition. As an example, consider Algorithm 3.1 with one round
communication as the distributed optimization method. In this algorithm, the size of
exchanged information is O(m|N|h) per iteration since each subsystem must exchange

the coupled decision variables with each neighbor.

In the best-case scenario, communication might not be necessary at one time in-
stant, particularly when all subsystems are self-sufficient. Furthermore, even if the
repartitioning procedure is triggered, in the worst-case scenario, i.e., when the result-

ing coalition includes all subsystems, the extra amount of data must be exchanged
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to perform the repartitioning and coalition formation procedures is relatively much
smaller than that of performing the distributed algorithm. In addition, for a coali-
tion that only has one subsystem, its controller only needs to solve a local optimization

problem once, which also significantly reduces the computational burden.

As stated in Remark 7.5, an optimal solution is only obtained when the scheme is
fully distributed, i.e., all controllers belong to the same coalition. In other cases, the
solution might be suboptimal. However, in those cases, the communication burden
of the scheme is lower than when the scheme is fully distributed since some agents
do not need to communicate to its neighbors that do not belong to the same coalition.

Therefore, there is a trade-off between communication burden and suboptimality.

Finally, it is worth noting some points regarding the practicality of performing the
proposed scheme. As in any distributed scheme, local controllers must cooperate to
perform the scheme and a communication network must also be available. Since the
partition of the physical network is time-varying, a dynamic communication network,
containing necessary links, might be required. Another possibility is by having an all-
to-all network, although in the process, not all links will be used. Furthermore, each
local controller must also be able to communicate with the dispatchable components
of the network, i.e., the storage and dispatchable generation units. The second impor-
tant note is that although this chapter considers an MPC-based framework, where the
set-points are computed at each time instant, the proposed method can also be imple-
mented for a day-ahead economic dispatch without requiring any modification. In this
case, the prediction horizon is set to be one day. On each day and prior to the compu-

tation of the decisions, the self-sufficiency of each subsystem is evaluated.

7.6 Numerical Study

Numerical study in this chapter considers the benchmark case (see Section 2.4) where
the dispatchable, solar-based distributed generation, and storage units are placed ac-
cording to Figure 7.2. Moreover, the load profiles are generated based on the typi-
cal residential load profile whereas the non-dispatchable generation units are solar-
powered. It is assumed that the subsystems have perfect knowledge of the loads and
non-dispatchable generation units, i.e., wj** = 0, for all ¢ > Z>(. Note that, quadratic

cost functions as defined in (2.16) and (2.18) are considered and the local constraint
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Figure 7.2: The locations of non-dispatchable units B, dispatchable generators [, and storage
units X in the benchmark case.

Table 7.1: Parameters of the Network Components

Parameters Value Unit Bus
pJBmin L demax g 350 kW ic N8
omin gmax a0 30,100,50 % i€ NSt

ush, udh 100,100 kW i€ Nt
€cap,i 1000 kWh e N*
a; 1 - ic Nt
cst, %8 1,10 - ieN
C’;p’ c 10,1 - ieN

sets U; and V;, for all i € N, considered in this simulation study are formed by (2.6)-
(2.14). The simulation time is one day with the sampling time of 15 minutes, implying
96 time steps. Furthermore, the prediction horizon is set to be 8 time steps and the
parameters of the repartitioning procedure are set as follows k™% = 80 and o = 10*.

The other parameters of the components are given in Table 7.1.

The initial partition of the network is given in Section 2.4 and shown in Figure 7.2.
How the subsystems form coalitions throughout the simulation can be seen in Figure
7.3. Att = 1,...,13, all subsystems obtained from the initial partition of the network
are self-sufficient. Then, att = 14, for the first time the network must be repartitioned.
Moreover, for ¢t = 14,...,24, the repartitioning and coalition formation procedures
are always performed. During this period, two subsystems are not self-sufficient and
join together as a coalition. Att¢ = 25, the repartitioning procedure produces self-
sufficient subsystems, as shown in Figure 7.4.a and self-sufficiency is maintained until

t = 57. However, during the peak hours, coalitions must be formed and even at some
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Figure 7.3: The evolution of coalitions formed.

period all subsystems must join as one coalition. Gradual changes of the coalitions
formed particularly at ¢ € Z>57 can also be observed. Moreover, towards the end of
the simulation it can also be seen that by performing repartitioning of the network,
the number of self-sufficient subsystems improves as the number of distinct coalitions
also increases. Finally, at ¢ = 96, all the subsystems formed, as shown in Figure 7.4.b,

are self-sufficient.

Figure 7.5 shows the cost values for all time instant and the suboptimality of the pro-
posed scheme. As provided by Proposition 7.6, the controllers might also compute an
upper bound of the suboptimality, which is shown by the dashed line in the bottom plot
of Figure 7.5. The average suboptimality throughout the simulation is 21.93%, whereas
the average upper bound of the suboptimality defined in Proposition 7.6 is 51.38%. Fur-
thermore, during ¢t = 62, ..., 72, when all subsystems form one coalition, the optimal

cost values are obtained since a fully distributed scheme is employed.

7.7 Summary

This chapter presents a novel non-centralized MPC-based economic dispatch scheme.

The approach consists of an event-triggered repartitioning method with the aim of
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a. The partitioning result at ¢t = 25.
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b. The partitioning result at ¢ = 96.

Figure 7.4: Partitioning results at a. ¢ = 25 and b. ¢ = 96. At both time instants, the resulting
subsystems are self-sufficient.

maintaining self-sufficiency of each subsystem and decomposing the centralized eco-
nomic dispatch problem into coalition-based sub-problems in order to compute a fea-
sible but possibly suboptimal decisions. The main advantage of the approach is a low
communication burden, which is essential for online applications. Additionally, the
effectiveness of the approach is also showcased in a numerical study. This chapter
completes the discussion of this thesis on how to solve the economic dispatch problem
in a non-centralized manner. Then, the next chapter discusses the second step of the
MPC-based scheme, where the decisions that have been computed are implemented.
Particularly, a cooperation issue, when not all subsystems comply with the computed

decisions, is presented and a methodology to deal with this issue is developed.
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Figure 7.5: Top plot shows the cost values computed using the proposed scheme, J;, (solid
line), by solving Problem (2.3) centrally as the benchmark J?, (dashed-dotted line), and the
lower bound, J? (dashed line). Bottom plot shows the suboptimality of the proposed scheme

and its upper bound.
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CHAPTER 8

RESILIENCY OF NON-CENTRALIZED
MPC SCHEMES AGAINST
ADVERSARIES

Non-centralized MPC-based economic dispatch schemes for energy systems rely on
the cooperation of all agents. This chapter discusses the case in which some of the
agents perform one type of adversarial actions (attacks) and they do not comply with
the decisions computed by performing a non-centralized MPC algorithm. Moreover,
this chapter specifically discusses energy systems whose subsystems behave as a mi-
crogrid, which can operate in either connected or island mode. A novel resilient non-
centralized MPC scheme for such systems that can cope with non-compliance issue
is proposed in this chapter. The approach consists of passive and active methods.
The passive method robustifies the decisions, whereas the active method isolates the
adversarial agents. Therefore, first, Section 8.1 provides an introduction of the non-
compliance problem and an outlook of the proposed methodology. Then, Section 8.2
gives the adversary model considered in the system. Afterward, the passive and ac-
tive methods are presented in Sections 8.3 and 8.4, respectively. The combination of
these methods is then shown in Section 8.5. Furthermore, the analysis of the proposed
methodology is then given in Section 8.6, whereas the effectiveness of the methodology
is showcased by numerical simulations in Section 8.7. Finally, Section 8.8 provides a

summary of this chapter.

125
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8.1 Non-compliance in Non-centralized Schemes

As discussed in Section 2.3, one of the main requirements for implementing a dis-
tributed approach is the cooperation among all agents, which must operate in com-
pliance with the algorithm. However, it might happen that some agents in the network
do not cooperate because they selfishly want to have a better performance or suffer
from failures. This chapter discusses the case in which there are agents that might
perform a certain adversarial behavior. In particular, it is considered that the adver-
sarial agents do not comply with the decisions that are obtained from the distributed
algorithm implemented in the network. In other words, the adversarial agents might
implement a different decision/control input than the one that is computed by using
the distributed algorithm.

Non-compliance of some agents in a network that applies a distributed control ap-
proach has been discussed in some papers, e.g., [VVM 117, SSLF17]. For instance, a se-
cure dual-decomposition-based DMPC, in which each agent should monitor two neigh-
bors that provide extreme control input values and disregard these extreme values, has
been proposed in [VVM*17]. Furthermore, a cyber-attack problem of a consensus-
based distributed control scheme for distributed energy storage systems has also been
addressed in [SSLF17], where the approach involves a fuzzy-logic-based detection and
a consensus-based leader-follower distributed control scheme. Related to the cyber-
security issue of cyber-physical systems, the work presented in [PDB13] provides a
mathematical framework for attack detection and monitoring, particularly for deter-
ministic systems. Moreover, consensus problems in which some of the agents per-
form an adversarial behavior to prevent convergence have also been investigated in
[LZKS13, DIT18, FWH17]. In the DMPC framework, the issue that some agents might
provide false information, which is a different type of adversarial behaviors, has also
been discussed [VMIN17, TG16]. A scenario-based defense mechanism [VMIN17] and
a compensation scheme to incentivize truth telling among agents [TG16] have been

proposed to deal with false information problems.

The main contribution of this chapter is the resilient method for non-centralized
economic dispatch schemes of energy systems. The proposed approach combines
both passive and active mechanisms to deal with the issue of unexpected disturbances.
Specifically, the economic dispatch problem, which takes into account the adversarial

behavior, is formulated as a chance-constrained problem in which attacks and loads
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are regarded as uncertain disturbances. In order to solve the problem, a stochastic
two-step approach is applied. The first step of the approach is to compute probabilistic
bounds using a randomization-based program while the second step is to solve a robust
program that takes into account the probabilistic bounds. As a result, it can be guar-
anteed that the obtained solution is also a feasible solution to the chance-constrained
problem. Furthermore, this chapter also presents an active methodology based on hy-
pothesis testing using Bayesian inference to identify and disconnect from the agents
that perform adversarial actions. In order to decide the connection with the neigh-
bors, each agent must solve a local mixed-integer problem. Note that the probabilistic
bounds computed in the passive mechanism are necessary ingredients for the identi-
fication scheme. Additionally, how the attack identification and mitigation methods

work is shown analytically and by means of simulation.

This chapter is written based on [AMOMI18, AMOMI19a, AMOMI19b]. The pre-
liminary idea of both passive and active methods for a restrictive case is presented
in [AMOMI18]. Then [AMOMI19a] introduces a stochastic approach and provides the
analysis of the methodology for the restrictive case. Finally, [AMOMI19b] extends the
proposed approach to a more general adversary model. Since the control approach
considered in this thesis is based on MPC, it is more related to the work in [VVM™17],
than that in [SSLF17]. However, different from the method proposed in [VVM*17], the
proposed methodology deals with the attacks by computing control inputs that are ro-
bust with respect to such attacks. Furthermore, the proposed approach is also able to
identify the adversarial agents in certain cases and can also deal with more general

systems in which there are more than one adversarial agent in the network.

8.2 System and Adversary Models

In this chapter, consider that the subsystems in the network have the capability to oper-
ate in the connected and the island modes. This is, in fact, one of the standard features
of amicrogrid [ST13]. This feature implies that each subsystem can independently con-
nect or disconnect with its neighbors or the third party. In order to take into account
the connections among subsystem in the economic dispatch problem, let o7 ; € {0,1}
be the connection indicator of agent p with neighbor ¢ € A, i.e., o}, = 1 implies

agent p connects to neighbor ¢, whereas ¢} ;, = 0 implies agent p does not connect to
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neighbor ¢. The variable o, ; = col({o} , }c ~s,) affects the constraints associated with

coupled variables v;, particularly (2.14), which is now redefined, as follows:

— vg’maxgg’t < vzjﬁ < vf’maxgzt, Vje Ni\Mpy, Vie My, VT €T, (8.1)
, VieNNMpy, Vie My, VT €T, (8.2)

_,.J,max i j,max
v SV LS

for each subsystem p € P. Since the preceding constraints define the local set £; ;, the

economic dipatch problem (2.15) is restated as follows:

minimize 37 37 (Fhwin) + f(via) (8.32)
A PEP i€EM, 1

s.t. (wir,vir) € Lit(0pt), Vi€ Mpy, Vp € P, (8.3b)

vl + ol =0, VjeN;N Myy, Vi€ My, ¥p e P, (8.3¢)

vl + v, =0, VjeN\Myy, Vi € My, Vp € P. (8.3d)

Based on this formulation, the economic dispatch problem considered in the previous
chapters considers that each subsystem in the fully connected mode, i.e., o, = 1,
for all ¢ € Nj;,. Moreover, when agent p is in the island mode, it holds that g;it =0,
for all ¢ € A,. Later, the capability of disconnecting with neighbors will be used
in the identification and mitigation of attacks. Additionally, operating in the island
mode requires each subsystem to be self-sufficient, i.e., it can meet its loads using local

production for a certain period of time (see Definition 7.2).

Now, denote the decisions at time step ¢ computed by local controllers by u;, and
vy, for all i € V. These decisions are computed by solving Problem (8.3) and several
non-centralized algorithms have been presented in the previous chapters. Therefore,
assume that one of the non-centralized algorithms is used to compute these decisions.
According to the MPC algorithm (step 2 in Algorithm 2.1), these decisions are supposed
to be implemented at time step ¢. However, in this chapter, it is considered that some of
the agents might perform adversarial actions. Definition 8.1 classifies the regular and
the adversarial agents in the network. In this regard, denote the set of regular agents

by R and the set of adversarial agents by S.

Definition 8.1. An agent p € P is regular if it always implements its control inputs wu; ;
and v; ¢, for all i € M,,;, according to the decision computed from the non-centralized
algorithm, i.e., u; s = u;t and v;; = v;t, foralli € M, ;andt > 0. Otherwise, agent p is

adversarial.
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Furthermore, consider the F-local model of adversaries that is stated in Definition
8.2 [LZKS13]. Moreover, an attack follows Definition 8.3 and it is assumed that the at-

tacks occur in a probabilistic manner and thus consider Assumption 8.1.

Definition 8.2. Given F' € Z>1, the set of adversarial agents is F-local if [SNA},| < F,
forallp € P. O

Definition 8.3. An attack is an event at which an adversarial agent p € S implements
a control input that is different than the decision obtained from the non-centralized

algorithm, i.e., u; ¢ # u}, and v; ; # v},, for somet € Z>pandi € M, ;. O

Assumption 8.1. The probability of an attack to occur at each time step ¢ € Z>, for

each p € S, can be time-varying with a uniform lower bound, denoted by 7' > 0. [

By performing an attack according to Definition 8.3, an adversarial agent might gain
benefit from its neighbors. For instance, an adversarial agent may produce energy with
the quantity smaller than the amount that has been decided from the non-centralized
algorithm. It then asks its neighbor to compensate the deficiency of power. This attack
is possible since these agents are connected and the power balance equations must be
met. In this circumstance, the economic cost of the adversarial agent might be less
than what it was supposed to be, but its neighbors must pay an extra cost to produce
and deliver the energy compensation. Itis assumed thatif an adversarial agent attacks,
it attacks all of its neighbors equally at the same time. Clearly, different distribution
schemes can also be considered, but the study of how each adversarial agent attacks
is out of the scope of this thesis and is left for future work. The proposed methods
presented in Sections 8.3 and 8.4 can deal with this issue and for this reason this simple
assumption is chosen without loss of generality. In the next sections, a non-centralized

distributed strategy to deal with such attacks is proposed.

8.3 Robustification Against Attacks

In this section, the passive method, where the computed decisions are robustified
against attacks, is described. As discussed in Section 2.2, the economic dispatch prob-
lem considers non-dispatchable power consumption and production as a source of un-
certainty. Similarly, the attacks can also be assumed as another source of uncertainty.

Moreover, in Section 2.2, it is also assumed that the uncertainty of the loads is bounded
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and the bound is known. Here, this assumption is relaxed by considering a stochas-
tic approach. To that end, denote by w;; = [w?, . wjtt} ' the uncertainties in node
i € N, where wgt is the load uncertainty, as already defined in Section 2.2, and wftt is
the amount of attack received by node i. Moreover, denote that w;; = col({wj r}re7)
and consider Assumption 8.2, which is necessary for a randomization-based method
and commonly considered [MRV 13, VMLA13]. Note that an assumption on the distri-
bution function of w; ; is not needed, although any type of distribution could be con-

sidered as well.

Assumption 8.2. Let ; C R?" for each i € N, be an uncertain set that is endowed
with a Borel o-algebra. For each node i € N and for any t € Z>(, w;; € ; is a random

process that is independent and identically distributed (i.i.d.). O
Furthermore, instead of using (2.5), redefine d; ; by

dig=d, + (I, ® 1] )wiy, VieN, (8.4)

which is used to construct the set W,.(w;:), and consequently the local set
L; (0pt, wi.). By taking this into account and since a stochastic method is considered,

Problem (8.3) is then reformulated as a chance-constrained problem as follows:

minimize Z Z (le(u”) + ff(vi’t)> (8.5a)
{uithien PEP iEMy

s.t. P((ui,t, ’Um) S [,Z',t(gpi,wi,t”’th S Ql) >1—¢g;, Vi€ Mp7t, Vp e P, (8.5b)

vl +ol, =0, VieN;N My, Vi€ My, Vp e P, (8.5¢)

Ug,t + U;‘,t =0, VjeN\Mypy, Vie My, VpeP. (8.5d)

The inequalities in (8.5b) are the chance constraints where ¢; € (0, 1) is the maximum
allowable level of violation. By having a chance-constrained problem, small proba-
bility of violation of the local constraints (u;,v;:) € L;:(w;+) is allowed. Violation,
with small probability, in this control level is tolerable since it will only imply subop-
timality of the performance. Any solution of Problem (8.5) is referred to as an ¢-level
feasible solution, where ¢ = ), ¢;. To solve Problem (8.5), a two-step stochastic ap-
proach [MGL14] is followed. The methodology consists of two steps: first, a probabilis-
tic bound of the disturbance is computed and then, a robust programming problem
that takes into account the probabilistic bound is solved. The solutions obtained using

this approach are feasible solutions of the corresponding chance-constrained problem
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with certain confidence [MGL14]. One of the advantages of applying this approach,
compared to the standard scenario approach [CCO06], is that since the dimension of the
uncertain vector w; ; is smaller than the dimension of the decision vector (u; ¢+, v; ), the
number of scenarios that must be generated is smaller when applying this approach
than when directly applying the scenario approach to Problem (8.5) [MGL14]. Fur-
thermore, since the local constraints are convex, the second step of this approach is

tractable. The steps of this approach are explained in Sections 8.3.1 and 8.3.2.

8.3.1 Computing Probabilistic Bounds

In this step, a randomized program, in which a number of scenarios of the disturbance
is generated and considered in the constraints of the problem, is solved to compute a
set that probabilistically bounds the uncertainty of the chance-constrained problem.
Letthe setthat bounds a portion of the probability mass of w; ; be denoted by B, which
is defined to be a polyhedral set, i.e., B}, = {1y € R*" : (I min )y < ;" }, where the
inequality relations are component-wise, and ;; min P € R* denote the lower

and upper bounds of w; 1, respectively. Moreover, note that ¢; min _ = col({¢; Y e

-
where ;"] min _ [¢d*vm‘n w‘i‘t*vmm} , and similarly, 47" = col({¢;"**};7), where

1, T 1,T

1,T 1,T 1,T

-
Promax {wd*vmax qp‘?‘t*vmax} , where wd* minand wd* M are associated with w

atx,min atx,max .
whereas ¢; 7 and ¢; are associated with w}" .

In order to compute B}, a chance-constrained problem for each i € A is formu-

lated as follows:

max min
minimize ]1 ( it i’t)

¢m1n7¢max (8.6)

st. P (’wm S [ ngin, E}aX”wi’t S Qz) >1—g.

Problem (8.6) is solved with the scenario approach, which can be stated as follows:

minimize 1), ( X — thm)
min max ’
it (8.7)
(s) min max _
S.t. wi’t € [ it o Wit ], S = 1, <y Mgy

(s )

where w; / denote a scenario of w; ;, generated according to the probability measure
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for w; ; in ani.i.d. manner, and n, ; is the number of scenarios, which satisfies [MGL14]

e 1
> ——— 4h—1+1In— 8.8
ns,z_gi(e_l) ( + nCz'), ( )
where ¢; € (0,1) indicates the desired level of confidence and e is the Euler constant.
With some abuse of notation, let the set B}, be constructed from the solution of Prob-
lem (8.7). This set is a feasible solution of (8.6) with probability at least 1 — ;.

Remark 8.1. The level of violation (g;) and the level of confidence ((;) are predefined

parameters that determine the number of scenarios needed to be generated. O

8.3.2 Robust Reformulation

Upon obtaining the bounds B;,, for all i € N, a robust counterpart of Problem (8.5)
is derived. Since the local constraints are convex, the vertex enumeration method,
where the uncertain variable w; ;, for each i € N, is substituted with the vertices of
By, can be applied [MGL14]. Particularly, the worst-case disturbance based on the
computed bounds B, is 1;,**. In other words, ;""" becomes a probabilistic upper-

bound of w; ;. Therefore, the robust formulation associated with Problem (8.5) is stated

as follows:
minimize Z Z (fl wis) + fi (v t)) (8.92)
(e v kien (25,50,
s.t. (Wi, vig) € Lig(optyy ), Vi€ Myy, ¥pe P, (8.9b)
vl +vl, =0, VjENNMyy, Vie My, ¥peP, (8.9¢)
vl + v, =0, VjEN\Myy, Vi€ Mpy, Vp € P. (8.9d)

In regard to Problem (8.9) and the island mode operation of the agents, consider that

Assumption 8.3, which replaces Assumption 2.3, holds.

Assumption 8.3. The feasible set of Problem (8.9) is non-empty. Furthermore, this set
has a subset in which 'vf’t = 0!, =0, forallj € N\\M,, i€ M,,andp € P.

The existence of nonempty feasible region in Problem (8.9) depends on the scenario
realization, which determines the construction of the probabilistic bounds. Therefore,

each agent can compute the bounds such that Assumption 8.3 holds. Furthermore, the
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second part of Assumption 8.3 follows from the consideration that each agent can oper-
ate in the island mode, which requires self-sufficiency. The robustness of the decisions

obtained by solving (8.9) is characterized by [MGL14, Proposition 1], as follows.

Proposition 8.1. Suppose that Assumptions 8.2 and 8.3 hold. Furthermore, let ¢Z;max, for
alli € N, are computed by solving (8.7), where the number of generated scenarios satisfies
(8.8). Then, the solution to Problem (8.9) is an e-level feasible solution of Problem (8.5), with
probability at least 1 — (, wheree =), \ye;and ¢ = Y .z Gi- O

Therefore, Problem (8.9) is solved to compute u;, and v;,, for alli € N, and the
non-centralized methods that are proposed in Chapters 3, 5, and 7 can be used. Note
that when the non-centralized scheme in Chapter 7 is used, since each agent is self-
sufficient due to the second part of Assumption 8.3, the network is not repartitioned
and N, for each p € P, is constant, whereas the other distributed methods do not
change the partitions. Therefore, for the remaining of the chapter, it is assumed that

the set of neighbors of each agent p € P is fixed and denoted by \j.

8.4 Attack Identification and Mitigation Method

Besides employing the stochastic approach outlined in Section 8.3, an active method-
ology to identify the adversarial agents and mitigate the attacks is also proposed. The
identification methodology is a hypothesis testing using Bayesian inference. Further-
more, the identification method requires regular agents to actively disconnect the links
with their neighbors. To decide from which neighbors an agent should disconnect, a

local mixed-integer optimization problem is solved.

8.4.1 Attack Detection

In order to identify the adversarial neighbors, a regular agent must be able to detect
an attack in the first place. Now, assume that an agent can measure the total distur-
bance at each step ¢. This assumption is justifiable since each agent p € P has the
information of the set points u;, and v}, for all i € M,,;, and can obtain the actual
energy consumption at time step ¢, by measurements. Thus, the difference between

them, which can be regarded as power imbalance, shows the actual total disturbance
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affecting the agent. Denote the total disturbance of agent p by w),;, then it holds that

Wp,t = Z <1Tuzt + ]ITU;,t - ?i) ) (8.10)

iEM,

where d3 is the actual load of node i € M,; measured at time ¢. As can be seen,

(8.10) actually evaluates the power balance of all the nodes that belong to agent p. Note
that, as mentioned in Section 2.3, the power mismatches at each node is handled by
low-level controllers, which act similarly as an automatic generation control [GVM 11,
VMLA13].

The probabilistic bound B}, can now be used as the threshold to define whether
an attack occurs. Recall that 1} min [1,!)2: »min @Zjitt* minT  where wd* M and wat* ;rain
denote the lower bounds of the disturbance associated to the load and to an attack, re-
spectively, and similarly ;"™ = [¢3:,max wia*’max] where wd* M and 1/1at* M3 denote
the corresponding upper bounds. Then, the attack detection is defined as follows.

Definition 8.4. Let 53, € {0,1}, for each regular agent p € R and t € Zx, be the
indicator that detects attacks. If

Z wd*m1n<wpt< Z wd*maxj (8.11)

iEMp ¢ 1EMp ¢

then there is no attack detected and 63, = 0. Otherwise, 05!, = 1, implying an attack is
detected. O

Using Definition 8.4, the following definitions of an undetectable attack and a false
attack detection are given. Furthermore, Assumption 8.4 related to undetectable at-

tacks is considered.

Definition 8.5. An attackis detectableif ) |, Mot wlatt # O such that (8.11) does not hold.
On the other hand, an attack is undetectable if ) _,_ My wj‘tt = 0 such that (8.11) holds.
O

Assumption 8.4. The probability of the undetectable attacks that are received by agent
p € R, denoted by 7,2, is less than 1. O

Definition 8.6. A false attack detection occurs at agent p when w(; = 0, foralli € M,

at dx,min
and 5 R 1 i e, if ZZGM it wzt < ZZEMP t 1/) or Z’LGM it wz t > Ele./\/lp t
when w?, = 0, foralli € M,,;. a

d*,max
(e
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When an attack is undetectable, the regular agent p € R cannot distinguish the at-
tack from the load disturbance. Such an attack is tolerable since the total disturbance
is within the bounds of the load disturbance. For systems without disturbances, un-
detectable attacks are also defined similarly in [PDB13]. Furthermore, Assumption 8.4
implies that some attacks are detectable by agent p, which is necessary in order to iden-
tify the adversarial neighbor. On the other hand, a false detection occurs when the load
disturbance is outside of the computed bounds. It is worth mentioning that the detec-

tion scheme is similar to the passive fault detection method presented in [IBP*08].

8.4.2 Identification and Mitigation Method

A regular agent that has more than one neighbor is not able to identify which ones are
adversarial although it could detect an attack based on Definition 8.4. Therefore, a hy-
pothesis testing scheme based on Bayesian inference is formulated as the method to
identify the adversarial neighbors. In this method, it is assumed that regular agents do
not have prior knowledge of the occurrence of the attacks, but each agent p € R has an
initial expectation on the probability of attacks received, denoted by #5". The param-
eter 7' is a positive constant smaller than one that is used to update the hypothesis
probability as shown in (22)-(23) below. It does not need to reflect the actual probabil-
ity of the received attacks and only affects the convergence of the identification process

as shown in Section 8.5.

Based on the F-local adversary model, where |[N;| > F, each regular agentp € R

considers all the sets that are the elements of the power set of A/ and have the cardi-

» 'ip o D F
Note that ©3' # O5* if x1 # x2. Now, consider a set of hypotheses, #, = {H} : x =

0,1,...,n;'}, where the hypotheses are defined as follows:

NS
nality F. Let these sets be denoted by O}, for x = 1,2,...,nll, where nll = (’ P ’) .

. Hg : There is no adversarial neighbor,

« H) : The set ©) contains all the adversarial neighbors,

fory=1,..., ng. Hence, each set O is associated with one hypothesis. Furthermore,

recall the attack indicator variable 62t

o> which is defined in Definition 8.4. The Bayesian



136 Chapter 8 : Resiliency of Non-centralized MPC Schemes Against Adversaries

inference is used as the model to update the probability of the hypothesis as follows:

Py (Hy )P, (55", [Hy)

Po () = = e
p7

VHX € H,, (8.12)

where P;, 1 (Hj) is the a posteriori probability of Hy given the event 63", i.e., Py, 1 (Hy) =
P(Hj[05%); P:(Hy) denotes the probability of hypothesis Hj at time instant ; P (35

denotes the marginal likelihood of 65';; and (05!, |Hj) denotes the probability of ob-
t

serving 05!, given hypothesis Hy. The probability P;(63%,|H}) is formulated as follows:

7 for x =0,
Py (65 = OJHG) = ¢ ) aat i
1-— (maxqe@g Qp7t> it forx=1,...,n,, (5.13)
N 0, form =0,
By (5%, = 1[HY) =
(maxqe% ggﬂf) frgtj fory=1,... ,ng,

where ¢! ; € {0,1}, forall ¢ € NV}, denote the decision whether agent p both connects to
and negotiates with neighbor ¢. Additionally, the initial probabilities of all hypotheses

are defined as

1—73% fory=0
Po(HX) = P X=5 (8.14)
#at/nfl forx =1,...,n}

)

implying that agent p initially considers each neighbor has an equal chance of attack-

ing. Note that 73" does not need to be equal to any p2', for ¢ € Nj N S. In addition, for

agent p € R, where |[N;j| < F, two hypotheses are considered, i.e., Hg and Hll), where
1_

0, =N;.

The last ingredient of the active method is the connection decision at each step, g, .

In order to compute g, ¢, agent p solves a local mixed-integer optimization problem as

follows:
minimize  ,n, Z cp10h + Z JHO (8.15a)
Qp’{(ui,t,’vi,t)}iEMp’t qENS PEMp
P s
s.t. (uiyt, ’Uz‘,t) € Ei,t(gp, ’l,b:’tmax), Vi € ./leﬂf, Vp e P, (8.15b)
vl +vl, =0, VjEN; N My, Vi€ My, (8.15¢)
op € {Tpgy Y U{e € {0, 1} 170 = NG| - F, (8.15d)

where g, = col({op}qen;) and gp € {0,1}. Furthermore, ¢, = >, cry.0con} P, (H"),
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for each ¢ € A, denotes the individual weight associated to oy p € Rsp denotes a
weight that must be predefined and nJ', denotes the number of attacks that agent p has
detected, i.e., nd, = >°!_ 63 . By having n2!, as a weight, establishing a connection
with a neighbor is penalized more if the number of attacks detected increases. More-
over, the constraint (8.15d) implies that agent p can either connect to all neighbors or
disconnect from any F' neighbors. It can be seen that Problem (8.15) considers the
same local constraints of Problem (8.9) and disregards the coupling constraints among

subsystems.

Problem (8.15) is a mixed-integer quadratic program (MIQP). Notice that the
Boolean variable ggi, for each ¢ € N, is penalized by adding weight c;t, proportion-
ally to the sum of probability measures of the hypotheses associated with neighbor
q. Furthermore, having constraint (8.15d) means that there are only ng + 1 possible
solutions of g,. Therefore, if nl is relatively small, agent p might solve n; 4 1 con-
vex problems, i.e., Problem (8.15) without (8.15d) and with a fixed and different p,
that satisfies (8.15d). Another way to solve Problem (8.15) is by directly employing a
mixed-integer optimization method such as the branch-and-bound algorithm. Finally,
let 9y, € {0, 133l be the set of minimizers of Problem (8.15) and suppose that the

decision g, is chosen from Qi i.e., opt € Qp i

Remark 8.2. One might set v, large enough such that 1, Nl € i only if 3, = 0. In
this case, once an attack is detected, some of the neighbors are always disconnected.

0

Remark 8.3. Based on the second part of Assumption 8.3, the feasibility of Problem
(8.15) is guaranteed.

8.5 The Overall Scheme

The inclusion of the proposed methodologies in this chapter to the non-centralized
MPC scheme (Algorithm 2.1) is summarized in Algorithm 8.1. First, each regular agent
P € R computes the probabilistic bounds of the disturbance and decides the con-
nections with the neighbors. Then, it performs a non-centralized algorithm, e.g., the
DAL method (Algorithm 3.1) or the distributed ADMM-based method (Algorithm 3.2)
to compute the decisions. After the decisions are applied, the agent detects the occur-

rence of an attack and performs the identification method. Note that ]P’(H;() in step 4 of
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Algorithm 8.1 Resilient Non-Centralized MPC, forp € R
Initialize the hypothesis probabilities according to (8.14).
Iteration: fort =0,1,2, ...

1. Choose n,; according to (8.8).

2. Compute the probabilistic bound B;, for all i € M,,+, by solving (8.7).
3. Compute Q5 , by solving (8.15).

4. If 1 Ns| € Q;’ti then choose g, = 1|y3). Otherwise, choose randomly ¢,; € 9} ;
such that P(Hy) # 0.

5. Compute u;, and v}, for alli € M,,, by solving (8.9) using a non-centralized
algorithm.

6. Implement v}, and v}, for alli € M, 1, and ;.
7. Measure the states, z; 11, for alli € M,,, NN
8. Compute 43", based on Definition 8.4.

9. Update the probability values of the hypotheses according to (8.12).

Algorithm 8.1 is associated to the set ©X = {¢ € N+ 0}, = 0}. Related to step 6 of Al-
gorithm 8.1, in particular the part of implementing g, , it has been assumed that any
agent can temporarily disconnect the physical link between itself and its neighbors,
respecting the decision of g, ;. Note that two agents, p and ¢, where {p,q} € £%, can
only exchange energy if and only if ¢} , = o} , = 1. Therefore, although there exists a
connection between agents p and g, either of them can block the influence by closing
the connection. Furthermore, due to constraints (8.1), when one of two neighboring
agents, say p and ¢, decides to disconnect, the negotiation of the power transferred is
forced towards a common solution vit = v, =0, foranyi € M,;andj € M,; where
{i,j} € £. Although this assumption is not suitable for a conventional power network,
considering the framework of microgrids, which can work in the island mode, discon-
necting two neighboring microgrids can be done. The analysis of the algorithm, in
terms of the result of the mitigation and identification method, is presented next in

Section 8.6.

Remark 8.4. In the problem setting, for simplicity, the probability distribution of the
uncertainties w;; remains the same over time under Assumption 2. In this case, to
reduce the computational effort at each iteration in Algorithm 8.1, steps 3 and 4 can
actually be carried out only once offline [MRV'13]. In this case, suppose that the prob-

abilistic bounds that are computed by solving (8.7) in an offline manner are denoted
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by By, for all i € N. Then, at each time instant ¢, Bf, = B;. In general, however, the
distribution of w; ; can be time-varying, and with sufficient computational resources

and knowledge regarding the variables, steps 3 and 4 can be executed online.

8.6 Analysis of the Identification Method

This section shows how each regular agent can correctly identify the adversarial agent
in the case F' = 1 and, in general, for any F'-local adversary model, can block the influ-
ence of all adversarial neighbors by employing Algorithm 8.1. Note that in this model,
the total number of adversarial agents in the network might be more than F'. The anal-
ysis is divided into two parts, for the case F' = 1 and for the case F' > 1. Firstly, the

following lemmas, which are useful in the analysis, are established.

Lemma 8.1. Suppose that Assumptions 8.1-8.4 hold. If a regular agent, p € R, is connected
to any adversarial neighbor, then the probability that infinitely many detectable attacks are
received by agent p is 1. O

Proof. Since Assumptions 8.1 and 8.4 hold, the probability that detectable attacks occur
is a positive scalar that is lower bounded by mingensns 7g(1 — m3%) > 0. Furthermore,
the connection between agent p and an adversarial neighbor implies that agent ¢ can
receive an attack from the adversarial neighbor. As a result, based on the Borel-Cantelli
lemma [CK13, Section 8.2.3] and since Assumption 8.2 holds, the claimed statement
follows. O

Lemma 8.2. Let Assumption 8.3 hold. Suppose that at time step T, the minimizer v} chosen
Jfrom the set of minimizers Q; . of Problem (8.15) is such that some of the neighbors are dis-
connected, i.e., there exists some ¢* € ©X = {q € Ny o5, = 0}, |©X| = F. Furthermore,
suppose that fort >, 1)xs| ¢ Q- If agent p does not detect an attack, i.e., o5t = 0, then
Q?,wrl = {QILT}'

Proof. The decision about which neighbors should be disconnected by agent p is based
on the weight of ¢ , in (8.15a). For the case F' = 1, the weight depends on the probabil-
ity measure of each hypothesis, i.e., ¢} - = P-(Hy"), where Hy", for each ¢ € N5, is asso-
ciated to ©) = {q}. Therefore, o, = 0implies that P (HX"") € arg max,c N3 (B (Hp")).
Observe that, for t > T, P;(65; = 0) = 1 only if P.(Hy"") = 1, implying P(H)?) = 0
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for ¢ # ¢*. Thus in this case the claimed statement follows immediately. Now, con-
sider the case where P.(H,”") < 1. Since dit, = 0and P;(55) € (0,1), by applying
(8.12), it follows that Pry; (Hy" ) > Py ( H,"") and Pr; (H}") < P.(H}") < P (H,""), for
any ¢ € N3\{¢*}. Therefore, Pr;1(H,"") = arg maxge s (Pry1(Hp?)) and the claimed

statement follows.

For the case F > 1, let O be the set of all neighbors that are disconnected from
agent p at time step t = T, i.e. @;,% = {q € N : 0}« = 0}. Note that there is a
hypothesis that is associated to @p , denoted by H§, and the probability measure of
this hypothesis is denoted by P,(HY). Consider any ¢* € 9;371 and g € N;\@;?J. Since
¢* € X, are disconnected at t = T, it holds that ¢ > ¢, for any ¢ € N ;. Now,
it will be shown that ¢/, 11 > Cp o4y by updating Py (Hy) for all Hy € H, with (8.12)
when 05!, = 0. Similarly to the case " = 1, if for any ¢ € N5\Oy+, ¢j - = 0, it holds that

ZTH > ch 1 = Cpr = 0. In the case that ¢ - > 0, for some ¢ € J\/S\G)p <, it follows

that ¢’

Y 11 > Cpoi1, Which is shown as follows.

From the fact that c}]:T > ¢} 1, it holds that

P> e PU(HY) + Y Po(HY) + ) Po(HY) > > Po(HY) + Y Po(HY)

XET\{X} xeJ XET’ xeJ
SP(HY) + Y Po(HY) — ) Po(HY) >0, (8.16)
x€IT\{X} X€J'

where 7 = {x : ¢* € ©},¢ ¢ O}, T ={x 1 ¢ € O},¢" ¢ O}, and J = {x : q €
Ox,¢* € ©5}. The second inequality is obtained directly from the definition of the

weight cj ;. Furthermore, observing at ¢ = T + 1, it follows that

Cprril ~ Gyl = P2 (Hy) + Z Pr1(H Z Pry1(H
XET\{X} XET'
= aPe(HY) + oy Y Po(HY) —ag Y Po(HY)
XE€ET\{X} XET'

[e% -~
=y | P(HY) + D Po(HY) - D P(HY) | >0,

2 XET\{X} xeJ’

where a; = 1/Py(05', = 0) and ag = (1 — 73")/P(d5"; = 0). The last inequality follows
from the fact that o; > a5 and (8.16) holds. O
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Lemma 8.1 indicates that when a regular agent is connected to an adversarial agent,
a detectable attack will occur almost surely. Meanwhile, Lemma 8.2 shows how a reg-
ular agent decides the connection under certain conditions. Both lemmas are used to

show how the attack identification and mitigation method works.

The Case where F' =1

When F = 1, there exist || + 1 hypotheses, where O3, for y = 1,...,|N;|, have
one element. The outcome of the identification method for F' = 1 is characterized in

Proposition 8.2 as follows.

Proposition 8.2. Suppose that Assumptions 8.1-8.3 hold, a regular agenti € R applies
Algorithm 8.1 with F' = 1, and there exists an adversarial neighbor of agent p. If there is no

false detection, then agent p correctly identifies the adversarial neighbor. O

Proof. Aregular agent p € R identifies its adversarial neighbor by concluding from the
probability measures of its hypotheses. In particular, let the adversarial neighbor be
denoted by ¢at € /\/'ps NS and the hypothesis associated to g, is denoted by Hy™. Then, it
will be shown that P;(Hy*) eventually becomes 1. Note that when one of the hypothesis
probabilities equals 1, the others equal 0 since Zl?f(l P;(HY) = 1, for any t € Z>o.

Recall that P;(Hy), for all Hy € H,, evolve based on the Bayesian inference given
in (8.12). From (8.13), the dynamics (8.12) can be seen as hybrid dynamics since
5Ia)',tt7
5% = 0, no attack is detected because the adversarial neighbor either does not attack or

op+ € {0,1}. Note that when &5, = 1, a detectable attack occurs, whereas, when

performs an undetectable attack. Furthermore, recall also that o} , = 0 implies agent
q is blocked, so that if ¢ = ¢q¢, it cannot attack. Otherwise, agent ¢ is not blocked. At
each ¢, there is only at most one neighbor that is blocked due to constraint (8.15d) in

Problem (8.15), which is solved to determine g, ; (step 10 of Algorithm 8.1).

Now, the dynamics of all P;(Hy) is analyzed based on the decision g, ;. During the
period at which g,; = 1, Nl the adversarial agent can attack. Note that the number

of detectable attacks, n3';, is unbounded due to Lemma 8.1. As a result, depending on

the weight -, for some ¢ where nZ'; is sufficiently large, 1, Nl & 95

pzt}
8.2. Additionally, it is observed from (8.12) and (8.13) that starting for the first time

e.g., see Remark

instant that 63", = 1, Py 1(H)) = 0. If agent p only has one neighbor, a detectable
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attack immediately leads to the identification that the neighbor is adversarial. In the
following, consider the case where || > 1 and observe the dynamics of P;(H}), for
which 1 s, ¢ Q ;. In particular, consider two cases: (a) when the adversarial agent is

blocked and (b) when a regular neighbor is blocked.

In case (a), suppose that at time step ¢, the adversarial agent is blocked, i.e., ng‘g* =0.

Therefore, 65, = 0. Moreover, according to Lemma 8.2, ggfiil = 0, implying d¢ | = 0.
In fact, ¢}4" = 0 and 65!, = 0, for all t > ¢. Hence, since 45, and g, for t > t, are

fixed, the dynamics (8.12) are smooth. By recursively applying (8.12), starting from ¢,

and considering fixed 05!, and g, , it follows that, for ¢ > ¢,

X (WH;@()FL X X
PHY) = Py(HY), VHY € H,,
P
> (py) P (HE)
x=0
where myx = P05}, = 0[H}), i.e.,
1; fOI' X € {07 Xat};
7THX ==
: 1 — a3, otherwise.
Hence, for Hy™,
1
Py (HX) = P, (HX2t).
D= BH + % (o) ) )
XFMat

Thus, it holds that lim;_, ., P;(Hy™) = 1, since Ty <1 for all xy # xat. Furthermore, it
also holds that lim;_,~, P,(HY) = 0 for x # Xat-

In case (b), suppose that at time step ¢, a regular neighbor ¢ € N;\{gat} is blocked,
ie., g,*t = 0. According to Lemma 8.2 and the dynamics (8.12) and (8.13), the neighbor
qis blocked as long as 5!, = 0, for t > t. However, consider that at some > , 5;% =1.
Then, based on (8.12) and (8.13), P, ; (Hy*) = 0. Note that since gy is not blocked for
t < k < t,adetectable attack will occur almost surely (Lemma 8.1). Thus, if any regular
neighbor ¢ € NV;\{qat} is being blocked, its probability P, (H,?) will eventually become
0. As a result, if another regular neighbor is blocked at ¢ =  + 1, case (b) repeats,

whereas if the adversarial neighbor is blocked, case (a) follows. O

Remark 8.5. Based on Proposition 8.2, each regular agent that applies Algorithm 8.1 can
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identify its adversarial neighbor correctly for the case F' = 1 provided that there is no
false detection. Based on Definition 8.6, a false detection occurs when the uncertainty
from the load, wgt, is outside of the probabilistic bounds. Since the computed deci-
sion is an e-level solution (Proposition 8.1), the probability of wgt being outside of the
bounds is at most ¢, which can be set to be small. Nevertheless, if false detections are
made during the operation, then all hypothesis probabilities will eventually become

zero. When they are all zero, the identification process can then be restarted. O

The Case where ' > 1

In the case that ' > 1, a regular agent might not be able to identify the adversarial
neighbors. However, it can block all adversarial neighbors, as presented in Proposition
8.3.

Proposition 8.3. Suppose that Assumptions 8.1-8.3 hold, regular agent p € R applies Al-
gorithm 8.1 with F' > 1, and there exist at most F' adversarial neighbors of agent p € R.
If there is no false detection, then the hypothesis probability associated to one of the sets of
neighbors that contain all adversarial neighbors converges to one and, when all hypothesis

probabilities P,(Hy ) have converged, agent p blocks all adversarial neighbors. O

Proof. The lines of proof are similar to those of Proposition 8.2. Let S, denote the set of
adversarial neighbors of agent p, i.e., S, = NV;NS. Note that by Definition 8.2, [S,| < F.
The analysis is based on the dynamics of P,(Hy), for all HY € H,, at¢ > to, for which
Liys| ¢ Q- Firstly, observe that, if F > N, then there are only two hypotheses.
The assertion immediately holds since when there is a detectable attack, P(H)) = 0.
Furthermore, since 15 ¢ Qf, all neighbors are disconnected. Now observe two
possible cases on the decision of g, ; for I' < [N}j|. The cases are similar to those that

are explained in the proof of Proposition 8.2.

In case (a), suppose that at ¢, agent p blocks all adversarial neighbors, ¢ € S, i.e.,
Qg’é = 0 for all ¢ € S,. Since agent p is disconnected from all adversarial neighbors, at
t=t, 5;& = 0. Furthermore, based on Lemma 8.2, the decision to block all adversarial
neighbors hold for ¢ > t. Therefore, P;(Hy), for all x = 0,1,...,n}}, evolve smoothly
fort > t. Let @;;(,t denotes the set of neighbors that are disconnected by agent p at time
t,i.e., 6;;(,2 ={qeN;: g;i — 0} and H} denotes the hypothesis associated to @ﬁt. Note

that S, C @}’;‘y where the equality holds if |S,| = F. By evaluating the dynamics (8.12)
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similarly to the proof of Proposition 8.2, it holds that lim, ., P;(HY) = 1 whereas the

other hypothesis probabilities converge to 0.

In case (b), suppose that at ¢, some adversarial neighbors are not blocked, i.e., the
set{ge€Sy,:j ¢ @Z,é} is nonempty. As in the case F' = 1, if there is no attack,
due to Lemma 8.2, the set of neighbors @;{é will still be blocked at the next time step,
t =t + 1. Furthermore, since P;(Hy) for all y = 1,...,n; are initialized equally, only
P,(HY) evolves differently, for ¢ > t. The other probabilities, P;,(HY), for x # ¥ such
that P;(Hy) # 0, are equal, for ¢t > ¢, since they are multiplied by the same factor,
which is either (1 —75") /P(65';) when there is no attack, or 75'/P(45),) when there is an
attack. Nevertheless, the occurrence of the next attack is with probability 1 (Lemma
8.1). Suppose that the next attack occurs at ¢. Therefore, ]P;(H;z) = 0, while other
hypotheses that have probability strictly larger than zero at ¢ = ¢ — 1, have an equal
value at ¢ = ¢, denoted by 7;. Note that the number of these hypotheses is 1/7;. The
decision g, 7,, depends on solving Problem (8.15) and step 4 in Algorithm 8.1. Due to
X
P,

att =1+ 1. If S, C @;fz L1 case (a) will follow, otherwise case (b) will be repeated.

Note that, since the number of sets of disconnected neighbors that do not include all

step 4 in Algorithm 8.1, a different set of neighbors, i.e., G)]’;‘Z L 7O is disconnected

adversarial agents is limited and such a set cannot be chosen twice, eventually a set of
neighbors, ©, which includes all adversarial neighbors, i.e., S, C 0y, is disconnected.

Thus, eventually case (a) occurs. O

Remark 8.6. Proposition 8.3 shows that each regular agent that applies Algorithm 8.1
can eventually block all adversarial neighbors for any F' > 1, provided that there is no
false detection. Therefore, similar to the case F' = 1, setting a small desired level of
violation ¢ implies a high probability of blocking all adversarial neighbors. Further-
more, when false detections occur, then the identification and mitigation process can

be restarted after all hypothesis probabilities have become zero. O

8.7 Case Study

In order to show the effectiveness of the proposed approach in mitigating attacks and
identifying adversarial agents, a simplified model of the benchmark case PG&E 69-bus
distribution network is considered. Using the partition described in Section 2.4, each

agent is considered to have one (supra-)node, which contains dispatchable generation
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1<24 5 1 8
3 \6

Figure 8.1: The network of supra-nodes/agents obtained from the benchmark case.

Table 8.1: Parameters of the agents

Parameters Value Unit Node (7)
MR max 30,80,50 % all
ush ) ydh 300,300 kW all
yJemin -, dgmax 0,1000 . 3,4,7,8
0, 2000 1,2,5,6
o forall j € N; 110 kW all
P 2000 W 1
0 else
ecap’i 500 3) 4, 7, 8
1000 kWh 1,2,5,6
a; 0.98 - all
S el 1,250,0.1 - all
e 5 2,4,6,7
10 1,3,5,8
;i 0.01 - all

and storage units as well as loads. The network of the agents, G}, which is fixed for all
t € Z>o, is shown in Figure 8.1. Furthermore, the parameter values of the components
of each subsystem are given in Table 8.1. Itis considered that there are two types of load
profiles, which are residential and industrial loads. Moreover, suppose that subsystems
1, 2, 5, and 6 have industrial load profiles whereas the others have residential profiles.

In addition, it is set that agents 2, 6, and 7 are adversarial.

Two simulation studies are carried out. The first study shows how the overall
scheme works in two scenarios, which correspond to the conditions in Propositions
8.2 and 8.3, while the second study emphasizes on the attack detection scheme. The
simulations are carried out in MATLAB with YALMIP [L04] using a computer with 2.6
GHz Intel Core i7 CPU and 16 GB of RAM. In addition, it is set that the sampling time is

15 minutes, the prediction horizon is four time steps.
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State of Charge of Agent 1
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Figure 8.2: The evolution of SoC of agent 1 (top plot) and the power exchanged between agent
1 and its adversarial neighbor, agent 2 (bottom plot).

8.7.1 Performance of the Overall Scheme

In this simulation, where the simulation time is one day (96 steps), the adversarial
agents, p = 2,6, 7, attack with ﬂgt = 0.3. The industrial and the residential load profiles
are based on realistic data collected in a large-scale study [HFI 18, New]. Furthermore,
the network has solar-based energy sources, the profiles of which are also based on re-
alistic data [New]. The attack strategy of the adversarial agents is to reduce the produc-
tion of their dispatchable generation units randomly. Here, Algorithm 8.1 is applied
to the previously described system. Two simulation scenarios are considered, where
it is assumed that false detection never occurs. In the first scenario, it is assumed that
F = 1, whereas in the second scenario F' = 2. Figures 8.2-8.4 show some plots of the
simulation results. From the top plot of Figure 8.2, it is observed that the SoC value of
agent 1 stays in the limit for all time steps in both scenarios, showing the robustness of
the decisions with respect to the attacks and system disturbance. Figures 8.3 and 8.4
show how agent 1 manages to disconnect from its adversarial neighbor (agent 2). Par-
ticularly in Scenario 1, agent 1 identifies that agent 2 is an adversarial agent. Moreover,
once one of the hypothesis probability values converge to 1, the bottom plot of Figure

8.2 shows that agent 1 stops exchanging power with agent 2.
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Hypothesis Probability of Agent 1 in Scenario 1
T T T

0 20 40 60 80 100
time step (t)

Figure 8.3: The evolution of each hypothesis probability of agent 1 (top plot) and the connection
decision of agent 1 at each time instant (bottom plot) in Scenario 1. Note that ©] = {2},0? =

{3}, 07 = {4}.

Hypothesis Probability of Agent 1 in Scenario 2
T T T T T T

T

1 et i
A Prob. HY
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0.5 — — _Prob. H}|

0 10 20 30 40 50 60 70 80 90 100

Connection Decision of Agent 1
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time step (t)

Figure 8.4: The evolution of each hypothesis probability of agent 1 (top plot) and the connection
decision of agent 1 at each time instant (bottom plot) in Scenario 2. Note that ©f = {2,3},0% =
{2,4},03 = {3,4}.



148 Chapter 8 : Resiliency of Non-centralized MPC Schemes Against Adversaries

Attacks and Detection of Agent 1
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Figure 8.5: Top plot shows the detection variable 4}, (dot-dashed blue plot with cross markers)
and the actual event, i.e., whether there is an attack (1) or not (0) (dashed red plot with circle
markers). Bottom plot shows the attack disturbance of agent 1, w{",. These plots are taken from
one simulation.

Table 8.2: Detection results of the regular agents

Agent Correct Detection (%) Undetectable Attack (%) False Detection (%)

1 82.74 16.82 0.44
3 99.40 0.00 0.60
4 82.59 17.11 0.30
S 79.61 20.09 0.30
8 49.85 50.15 0.00
Total 78.84 20.83 0.33

8.7.2 Performance of the Attack Detection Scheme

In the second simulation study, Monte Carlo simulations are performed to observe the
attack detection scheme. Suppose that the adversarial agents p = 2,6, 7 attack with
75t = 0.5 and the regular agents do not apply the active strategy of disconnecting their
neighbors so that the regular agents are always subject to attacks. Note that the prob-

ability of attack is set to be quite high in order to observe more attacks, particularly
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Table 8.3: Average local performance change during the attacks

Adversarial Agent Regular Agent
Case Study 9 6 . 1 4 s 8
6.1 19.7% 1.5% 4.5% 0.0% —0.3% —-0.1% —0.2%
6.2 35.2% 8.9% 53.3% —-04% -1.1% —-0.6% —-3.7%

Note: Agent 3 does not have any adversarial neighbors.

undetectable ones. For these simulations, load and renewable power generation pro-
files from the first simulation study are perturbed. seven simulations, each of which
is 96 time steps length, are carried out. Therefore, 672 detection instants, for each
regular agent, can be observed. Table 8.2 shows the summary of the attack detection
outcomes whereas Figure 8.5 shows the attack detection of agent 1 in some time steps
of one simulation. Correct detection means that an agent correctly detects whether
there is an attack or not. As expected from the stochastic method, the probability of
false detection is less than €. One can see a false detection in the top plot of Figure 8.5

attime step ¢t = 7.

8.7.3 Discussions

The local performance improvements obtained by each adversarial agent when per-
forming successful attacks in both simulation studies presented in Sections 8.7.1 and
8.7.2 are shown in Table 8.3. Furthermore, as can be seen in Table 8.3, the perfor-
mance of the regular agents are degraded by the attacks. The degradation is relatively
low compared to the improvement obtained by the adversarial agents since most of the
attacks can still be handled by the storage unit, whose cost per unit is cheaper than us-
ing the dispatchable generator, whereas the adversarial agents manage to reduce the
power production of their generators by performing the attacks. However, note that
the available power in the storage unit of a regular agent is lower after an attack occurs.
Therefore, the performance of a regular agent after an attack might still deteriorate and

this performance degradation is not captured in Table 8.3.

It is also worth mentioning that an adversarial agent might actually perform an
undetectable attack. Although the performance improvement obtained by an unde-
tectable attack is less than a detectable one since undetectable attack is limited, the

identification process will take longer time to finish. For instance, as can be seen in
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Table 8.2, the probability of correct detections of agent 8 is 49.85%, implying that the
adversarial neighbor of agent 8 has successfully performed undetectable attacks half
of the time. Note that, in the case study of Section 8.7.2, the average performance im-
provements obtained by the adversarial agents 2, 6, and 7 by performing undetectable
attacks are lower than the total average shown in Table 8.3 (9.7%, 0.1%, and 52.61%,
respectively). Similarly, the performance degradation of each regular agent by unde-
tectable attacks is also quite low (less than 0.6%). Nevertheless, in order to guarantee
that the performed attack is undetectable, an adversarial agent will require local infor-
mation of its neighbors, which is not shared in the presented problem setting. There-

fore, it is difficult for the adversarial agents to keep attacking without being detected.

8.8 Summary

A distributed approach for the economic dispatch problem of energy systems in the
presence of adversaries has been proposed. The adversarial actions are considered as
uncertain disturbances and the economic dispatch problem is formulated as a chance-
constrained problem. Thus, a two-step stochastic approach is applied so that the con-
trol inputs computed are robustly feasible against the adversarial behavior. Further-
more, the proposed approach also includes a methodology to identify the adversarial
agents and mitigate the attacks from these agents. The methodology is based on hy-
pothesis testing using Bayesian inference and requires each regular agent to solve a
local mixed-integer problem to decide the connection with its neighbors. Therefore,
the proposed scheme is a combination of active and passive methods to deal with un-

expected disturbances.



CHAPTER 9

CONCLUDING REMARKS

9.1 Contributions

The main objectives of this thesis are to design non-centralized MPC-based schemes
for economic dispatch of large-scale energy system and to study the communication
and cooperation processes of the schemes. Motivated by the fact that energy systems
are critical infrastructures, potential communication and cooperation problems that
might occur during the implementation of the schemes are investigated and method-
ologies to cope with them are developed. The contributions of this thesis are summa-

rized as follows.

The first contribution is the development of two distributed optimization methods,
which work under an imperfect communication process, to solve edge-based resource
sharing problems, which include the economic dispatch problem of energy systems
formulated in Chapter 2. The methods, which are called the DAL and ADMM-based
methods, are based on the augmented Lagrangian approach and introduced in Chapter
3. Then, in Chapter 5, the imperfect communication process is modeled as a random
time-varying network and random asynchronous updates. Considering this model, the
DAL and ADMM-based methods are modified and their convergence properties are in-
vestigated. Finally, Chapter 6 showcases the implementation of the methods under
the MPC-based framework for the energy management of large-scale systems through

simulations of a benchmark case.
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Considering the importance of the communication infrastructure in DMPC
schemes, a consensus-based information-exchange protocol is proposed as the second
contribution of the thesis, which is provided in Chapter 4. The aim of this proposal is
to improve the resiliency of the communication infrastructure with respect to failures.
As opposed to the first contribution, which focuses on a specific distributed approach,

the second contribution can be applied to a broad class of DMPC strategies.

Furthermore, in effort to obtain a scheme that has less reliance on the exchanges
of information, a coalition-based economic dispatch scheme that uses an online sys-
tem repartitioning is developed. By properly partitioning the network, self-sufficient
coalitions of subsystems with local economic dispatch subproblems, can be obtained.
To this end, an event-triggered repartitioning procedure, a coalition-formation proce-
dure, and a coalition-based economic dispatch scheme are proposed as the third con-

tribution, which is presented in Chapter 7.

Finally, one potential cooperation problem in the scheme, namely the non-
compliance of agents, is studied in Chapter 8. As the last contribution, a methodology
to cope with non-compliance problems during the decision implementation phase is
proposed and analyzed. The methodology includes the robustification of the decisions

and the identification and mitigation of the attack.

9.2 Answering Research Questions

To conclude the discussion presented in Chapters 2-8, the key research questions for-

mulated in Section 1.3 are addressed as follows:

(Q1) How to design and implement a non-centralized MPC-based economic dispatch scheme
for large-scale energy systems?
An MPC-based economic dispatch for large-scale energy systems, as shown in Al-
gorithm 2.1, mainly consists of two tasks: solving a finite-time horizon optimiza-
tion problem at each time step and implementing the first decisions, i.e., those
that correspond to the current time step. Clearly, prior to designing method-
ologies to perform these tasks, a mathematical problem formulation is required.
Section 2.2 formulates the economic dispatch problem as a convex problem with

edge-based coupling constraints.
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(Q2)

(Q3)

In a non-centralized scheme, the first task, i.e., solving the optimization prob-
lem, must be carried out by local controllers. In this regard, two distributed
algorithms, namely the DAL and ADMM-based methods, which are suitable to
solve the problem have been proposed in Chapter 3. The algorithms are based
on the augmented Lagrangian approach and exploit the structure of the coupling
constraints. These algorithms are iterative and require information exchanges
among local controllers at each iteration. As discussed in Chapter 6, some tech-
niques, such as the Nesterov’s acceleration and the warm start methods, can be
applied to reduce the number of iterations. Furthermore, it has also been shown
that the sequence produced by any of these algorithms converges to an optimal

solution to the economic dispatch problem.

Moreover, with the objective of reducing communication flow, an alternative
non-centralized scheme has also been proposed in Chapter 7. The scheme is
based on an online system partitioning and coalition formation. When the re-
sulting partitions are self-sufficient, the economic dispatch problem can even be
solved in a decentralized manner without requiring communication and itera-

tions.

It is worth mentioning that the cooperation and communication of the local con-
trollers play an important role in a non-centralized control scheme. Further-
more, there might be potential problems with the communication and coopera-

tion that must be handled and are addressed by the remaining key research ques-

tions (Q2)-(Qs)-

How to design an information-exchange protocol for distributed MPC approaches that
is resilient against communication failures?

The resiliency of the information exchange process, which is an integral part of a
distributed MPC strategy, can be improved by applying the distributed consensus
algorithm. By using consensus, the required information does not always have
to come directly from its source. Therefore, the distributed MPC algorithm can
still be performed even though some communication links fail. As presented in
Chapter 4, a consensus-based information-exchange protocol is designed. More-
over, a method to partition the communication network and that to reconfigure

the partitions are also presented.

Do distributed optimization algorithms work over time-varying communication net-

works and in an asynchronous manner?



154

Chapter 9 : Concluding Remarks

(Q4)

(@Qs)

It has been shown in Chapter 5 that the DAL and ADMM-based methods produce a
sequence that almost surely converges to an optimal solution of the economic dis-
patch problem when the communication network is stochastically time-varying
and the updates are performed asynchronously. In order to do so, the methods
must be adjusted. Nevertheless, the adjustment is intuitive in the sense that some
variables are updated based on the availability of new information. It is worth
discussing that some references mentioned in Chapter 5 discuss different dis-
tributed optimization methods that work over random communication networks
or asynchronous updates. There are also some other distributed approaches that
work over time-varying network under the jointly connected assumption. Al-
though Chapter 5 does not give a general answer to the question, it provides some
examples of distributed methods that work under the required conditions and a
suggestion of how other distributed algorithms might be modified such that they

work under imperfect communication conditions.

How to perform online partitioning on large-scale energy systems in a distributed man-
ner?

Firstly, the task of decomposing the system is translated into a graph partitioning
problem. Although vast options of graph partitioning methods are available in
the literature, one cannot randomly choose any of these methods. Typically, the
way the network is partitioned must be in accordance with the partitioning objec-
tive. Moreover, the requirement that it must be performed in a distributed man-
ner also gives an additional challenge. Chapter 7 provides a distributed reparti-
tioning procedure, which can be classified as a local improvement method and is
particularly designed with the objective of solving the economic dispatch prob-
lem with a non-centralized scheme. Additionally, as shown in Chapter 7, the par-

titioning solution of the method converges to a local optimum.

How can online partitioning be used in a non-centralized economic dispatch scheme of
large-scale energy systems?

A large-scale energy system can be partitioned into self-sufficient subsystems,

which are able to meet their demand locally without relying on importing energy
from other subsystems or a third party. By having a group of self-sufficient sub-

systems, the economic dispatch problem of the network can then be decomposed
into local subproblems of the subsystems. However, due to the time-varying

nature of the loads and non-dispatchable power generation, self-sufficiency of
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the subsystems might be compromised. Therefore, the partitions of the network
must be adjusted and an online partitioning scheme is required to make the mod-
ification, as shown in Chapter 7. Additionally, the partitioning scheme proposed
in Chapter 7 does not guarantee that the partitions are always self-sufficient.
Therefore, the subsystems that are not self-sufficient must form a coalition with
some of their neighbors to ensure that the local economic dispatch subproblem
that they solve is feasible. To that end, a coalition formation method is also pro-

posed.

(Qs) How to design a non-centralized MPC-based economic dispatch scheme that is resilient
against non-compliance issues?
The non-compliance problem, where some adversarial agents do not cooperate
and selfishly operate at their own benefits by not implementing the computed
solution, is dealt with by two mechanisms. Firstly, the decisions of each regular
agent are robustified such that the adversarial behavior does not affect the opera-
tion of the regular agents, e.g., violating the operational constraints. This passive
mechanism uses a stochastic method where the adversarial behavior is consid-
ered as a source of uncertainty. Then, a probabilistic bound of the uncertainties
that influence the regular agents is computed and a robust economic dispatch
problem is formulated. Secondly, the adversarial agents are at least localized. To
that end, a hypothesis testing method based on Bayesian inference is employed to
identify the adversarial agents. In a specific case, it is shown that the adversarial
agents are identified. These two mechanisms are effective for systems of inter-
connected microgrids, which can operate on the island and connected modes, as

presented in Chapter 8.

9.3 Directions of Future Research

This thesis has investigated some communication and cooperation problems on the
non-centralized MPC schemes, mainly for the economic dispatch problem of large-
scale energy systems. However, each of the methodologies that have been developed
still requires further improvements and investigation. Hence, some ideas for future

research are outlined as follows:

+ The stochastic distributed optimization methods presented in Chapter 5 might
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be extended to problems with global (coupled) cost functions or non-convex cou-
pling constraints, which are relevant to the energy management and the opti-
mal power flow problems of electrical energy systems. Furthermore, the con-
vergence analysis of the accelerated versions of the methods, which are shown

in Chapter 6, needs to be done.

As noted in Remark 3.2, the solutions to the local optimization problems in the
proposed distributed optimization methods can be computed by efficient solvers.
However, the methods might be extended by considering an inexact optimiza-
tion approach, such as first-order methods discussed in [ULGN18], in order to re-
duce the computational complexity or to deal with non-dual-friendly functions.
In this regard, further analysis of the performance of this possible extension of

the method is required.

Related to the information-exchange protocol in Chapter 4, an automatic and sys-
tematic technique to design an optimal communication network, which is also
resilient, is required to complement the protocol. Furthermore, a time-varying

partitioning method may improve the proposed reconfiguration procedure.

Since the coalition-based economic dispatch scheme provides a trade-off be-
tween suboptimality and communication burden, it might be better to include
the suboptimality measure as another criterion that not only triggers but also
becomes the objective of the repartitioning. In this regard, the non-centralized
control scheme proposed in Chapter 7, including the repartitioning and coalition

formation methods, need to be modified.

On the topic of cooperation problem of non-centralized MPC schemes, it is im-
portant to analyze potential clever attacks that are hard to be detected. In this re-
gard, the interaction between regular and adversarial agents might be analyzed
using game theoretic approaches. Furthermore, there is still a room for improve-
ment of the identification method presented in Section 8.4. For instance, by em-
ploying an information-sharing scheme of the hypothesis probability among the

agents.

There are other communication and cooperation problems that might occur and
must be dealt with, such as noisy communication and adversarial behaviors when
solving the optimization problem. Addressing these problems might require dif-

ferent tools and techniques than those that are used in this thesis.
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PROOFS

A.1 Proof of Lemma 3.2

Recall the result in Lemma 3.1. In particular, rearrange (3.12) and add the term
23 e jen (91 (k) — vl (k), ! (k) — v!*) on both side of the inequality. It is obtain
that

S5 () = N0 (k) + (k) + 28] (k) — o] (), 9] (k) — 0]}
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JEN;

The second inner product in the summation on the left-hand side of the inequality can

be expressed as follows:

(] (k) — v] (k), 9] (k) — 0I") = (8] (k) — v] (k), 8] (k) — v]* + v (k) — v] (k)
= (8] (k) — v] (k) v] (k) — o)) + |[8] (k) — v] (k) 3.

Moreover, the last two terms on the right-hand side of (A.1), i.e.,

1EN JEN;
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is equivalent to
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where the first equality is obtained since v/* + vi* = 0. Thus, by applying the two
preceding manipulations to (A.1), it follows that
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(A.2)

Furthermore, adding the term 3", 3, (1— 1)) (v (k) +vi(k), 9! (k) + 9% (k)) to both
sides of the inequality in (A.2) and recalling the definition of 5\? (k) in (3.17), it follows
that
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= > (197 (k) + &5k 3 + 20197 (k) — v () 3)
JEN;
+ ) (0] (k) + (k) — vl (k) — vi(k), 0! (k) + (k)
JEN;

+ 3 (1)l (k) + vl k), I(k)+@§(k)>).

JEN;

Now, consider the last two terms on the right-hand side of the inequality in (A.3). By
adding them with 3, e (1 —17)) (||@{(k) + 00 (k)3 — |97 (k) + @;i(k)ng) =0, itis
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obtain that
> 2« ( (k) +vi(k), ! (k) + 0} (k)
ieN jeN;
{9110+ 55(k) = o1 (6) =}, 516 + 63(0)
=>. D ( 1—n))(v! (k) + vi(k), & (k) + 9} (k)

iEN jEN;
(0 (k) + 93 (k) — v] (k) — i (), 9 (k) + 85(k)) (1 = o + 1))

=3 > (A=)l () + o k)3 +

ieEN jEN;
7} (0] (k) + 5(k) — v] (k) — vi(k), 9] (k) + 9}(k)) ).

Therefore, (A.3) becomes

S ( A 0] (k) + 9 (k) + 2(0] (k) — v] (k), v] (k) — ”3*>>

ieN jEN;

-y (—UiHUz‘(k 1) = w3 = 0 (w18 (k) + 95(R) I3 + 2] (k) — 9] (K)3) ()
iEN JEN;

0 (0] (k) + 9 (k) — 0] (k) — v} (k). & (k) + 95(k)) ).

JEN;

Now, compute an upper-bound of the term

SNl (ol (k) + 0l (k) — vl (k) — (k) 6] (k) + 9(k)),

ieEN jEN;

on the right-hand side of the inequality in (A.4). To that end, this term can be written
as

SN~ + i)l (k) — 0l (k), 5] (k) + 0(k)),

ieN jEN;
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since

> D (](k) + 5(k) — o] (k) — wj(k), 0] (k) + 5} (k)
ieN jeN;
= > (k) + 95 (k) — v (k) — wi(k), 9] (k) + 9 (k)
{i,j}e€
7 (6] () + 95 (k) — 0] (k) — v} (k), 9] (k) + 95 (k) )
= >~ +m)(w] (k) — o] (k). 0] (k) + 9(K)).
iEN JEN;
Using the fact that, forany ¢ € R,a € R",b € R", ||[a+£b[|3 = |lal|3+&2||b]|3+2¢(a, b) =
—&(a,b) < % (||al|3 + €2||b])3), an upper-bound of the term inside the summation is ob-

tained, as follows:

— (] + i) (vl (k) — ] (k), 9] (k) + 9} (k))
1

< 5 (7 (k) = 93 (k) I3+ (0] + 21187 ) + 93R)13) -

Therefore, using the above upper-bound and the fact that

SN el + e wE =SS i ”J 167 (k) + 5 (k) 3

ieN jEN; ieEN jEN;

the desired inequality (3.18) follows. O

A.2 Proofof Lemma 5.2

The sequence {V3(k)} is non-negative since Vs(k) is a sum of norms and n{ and o
are positive. Then, denote by F»(k) the filtration up to and including the iteration k,
ie., Fao(k) = {A0),E(0),u(l),v(0), u(€),y(l), £ =0,1,...,k}. Now, it must be shown
that the conditional expectation of the sequence with respect to (k) is always non-
increasing. Based on Assumptions 5.1 and 5.2, the initialization step in Algorithm 5.2,
and the update rules (5.7) and (5.8), the variables yf (k + 1) and ug (k + 1), for each
j € NN M, andi € M,, are updated when agent ¢(i, -) is active, whereas, for each
j € Ni\M, and i € M,, those variables are only updated when agents ¢(i, -) and ¢(J, -)
are active and communication link {¢4(7, ), #(j, )} is active. Therefore, it is observed
from (5.10) that the probability of yf (k+1)and ug(k: + 1) being updated is «;; € (0, 1],
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whereas, with probability 1 — «;;, they are not updated and the values remain the same

)

as yg (k) and p,g (k). Hence, it is obtained with probability 1 that

B(Va(h + DIFA(K))~Va(h)= E(;Hu(/ﬂ T R LR e AL

o)

1— s ,
-zz( (1) — 13 4+ ) —
iENGEN; ] 20u5m;

T (1) — | Y gl (k) — 03]~ Vak
+ gl G4 1) I+ = () — o) Va0
1 * (|12 1 *12
= Slulk +1) = p*llE = 5lluk) — 1z
1 1
+ 5l + 1) — I - S lu(k) - w73,
= ‘/é(k + 1) - VQ(k)v
where the last equality is obtgined since the terms ) ,_,, Z]GN i ||yz( ) — yZ “112,
DN DjEN: m\\u{(k) — pl*||3, and —Va(k) cancel each other. Therefore, by ap-
plying (3.52) to this relation, the desired relations in (5.11) follows, with probability 1,

when 77{ —=c (0,1). Thus, (5.21) also shows that the sequence {V5(k)} is non-negative

supermartingale. O

A.3 Proof of Theorem 5.3

By rearranging and iterating the first inequality in (5.21) over £ = 0, 1,. .., k and taking
the total expectation, it follows that

k
Z( (Ir@+ 1) +y+1) —y(0))3) + > ol (Jlui(@+ 1) — uf]3)
/=0 ieN
k
Yy mE< e+1)|y)> S E((Ta(0) - Va(e + 1))
iEN JEN; =0

= 15(0) — E(Va(k + 1)) < V3(0), (A.5)
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where the last inequality is obtained by dropping the non-positive term E(Va(k + 1)).
The inequalities in (A.5) implies that the terms on the left-hand side of the first inequal-

ity are summable and converge to 0 as k goes to infinity i.e.,

Jim (1 (Ir(€+1) +y(0+1) = y(O)I3 +§vaz (lwi (€ +1) = w3)
DI mEme+nu)>:o
iEN JEN;

Therefore, based on the preceding relation and the Markov inequality, it holds that

; 1
lim supIP’(2||r(€ + 1) +y(l+1)—y0))3+ Z oil|wi (€ + 1) — ul||3
k—o00 ieN

DI m”] n@ze)

ieEN jEN;

1
<lim sup E<2Hr(€+ 4+yl+1)— y(ﬁ)H% + E oillui(¢+1) — ufH%
k—o0 ieN

+ZZ ’72 Il (¢ + 1)) = 0,

€N JEN;

implying that, the convergence is with probability 1, i.e.,

Bim [lr(k+1) +y(k+1) — y(k)|5 =0, (A.6)
%maﬂm%+b—uM3:Q Vi e N, (A.7)
—00

lim ||r(k+1)||3 = lim |lv(k+1) —y(k+1)|3 =0, (A.8)
k—o00 k—o0

with probability 1. Moreover, by (A.6) and (A.8), it holds that
lim [y(k+1) —y(k)|5 =0, (A.9)
k—o0

with probability 1. Additionally, due to the initialization step in Algorithm 5.2 and the
update rule in (5.7), yf(k:) = —y;'-(k), forall j € NV, i € N, and k € Z>(. Based on this
fact and the relation in (A.8), it also holds with probability 1 that

lim vl (k + 1) + vi(k +1)[3 =0, Vj € N}, Vi € N. (A.10)
—00
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Furthermore, based on (5.21), the sequences {y(k)} and {u(k))} are bounded with
probability 1 and have accumulation points. Additionally, based on the bounded-
ness of {y(k)} and (A.8), {v(k)} is also bounded with probability 1 and has accumu-
lation points, which are equal to that of {y(k)}. Now, consider that the subsequence
{(v(ke),y(ke), p(ke))} converges to the limit point denoted by (v?, y?, u?), where v? =
y?. Then, it will be shown that the point (u*, v?, y?, u?) is a saddle point of the La-
grangian function Ls(u,v,y, u) as defined in (3.29), i.e., (u*,v?, y?, u?) satisfies the
saddle point inequalities in (3.31).

Based on (A.8), it holds that v/* — y/* = limy_,.. (v (k) — v/ (k¢)) = 0, with proba-
bility 1, forall j € N; and i € N. Therefore, for any p € R2ien PNl Lo(u*,v®, y?, u) =
Lo(u*,v?, y?, u?), satisfying the first inequality in (3.31). Now, by substituting k with &,
in (5.6), for all i € NV, and taking the limit as ¢ goes to infinity, it holds with probability
1 that

(u*,v?*) = lim arg min Z(le(uz) + ff(v;)

£—00 (ui,vi)eﬁi,ie/\/ :

eN
+ 3 (ko) + ol = vl (k0)13) )
JEN;
_ . -
=S 0 e 2 (00 4 5004 3 (02 0)  1od = o)
:arg(u“virileig’iwi;/(f S +j§/ ulol) =l yl)), A1D

where the second equality is obtained by using (A.9) and the last equality is obtained
by introducing the constant —3 ;.\ > s (,u,{a,yfa) and since the quadratic term
Sien 2jen: vl = 9?13 is 0 at (u*,v*) due to (A.8). Now, note that (v®,y*) mini-
mizes Y > jen; 107 — o) 13 since v]* — y/* = 0, forall j € Njandi € N. There-
fore, (u*,v?, y*) minimizes Ly (u, v, y, u?), implying the satisfaction of the second in-
equality in (3.31). Hence, it can be concluded that (u*, v?, y?, u?) is a saddle point of
Li(u,v,y, ). Finally, set y* = y* and p* = p? in Vg(k) (see (5.20)). Since the subse-
quence of Va(k;) converges to 0 and V»(k) is non-negative supermartingale, the entire

sequence {(u(k),y(k), u(k))} converges to (v?, y?, u?) with probability 1. O
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A.4 Proofof Theorem 5.4

Recall that rearranging the summation of (3.52) over / = 0,1, ...,k — 1 and taking the

total expectation yields

k—1
< (lo(¢+1) = y(@OlI3) + > oiF (Jua(t + 1) — u3)
(=0 1eEN

+ZZ ”ZEHMH) (e+1>yy§)>

zeNgeN’

(VAN
51

* 1 *
(0) = §Hy(0) —y*lE + S lm(0) — w5
1 * 1 *
(3190~ w718+ 10) - I (.12
where the term 7 (k) is substituted by v(k) — y(k) using (3.39) and the last inequality is

obtained by using the definition of «. Moreover, by the convexity of the squared of the

Euclidean norm, it holds that

k—1
KE (5 (k) — g(k — D)) E (vt +1) - y(0]3),
ff?
KE (llai(k) = wfl3) < Y B (Jua(€+1) —wfll3),
=0
k-1
KE ([lo(k) = g(k)[13) < D E (o€ +1) -y +1)]3).
=0

By applying the three preceding relations to (A.12), the desired inequality (5.28) follows
since n;; € (0,1), forall j € N; andi € N. O
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